xfs: fix the comment of xlog_recover_buffer_pass2()
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
6ca1c906 20#include "xfs_format.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
ee1a47ab 32#include "xfs_btree.h"
1da177e4 33#include "xfs_dinode.h"
1da177e4 34#include "xfs_inode.h"
a844f451 35#include "xfs_inode_item.h"
a844f451 36#include "xfs_alloc.h"
1da177e4
LT
37#include "xfs_ialloc.h"
38#include "xfs_log_priv.h"
39#include "xfs_buf_item.h"
1da177e4
LT
40#include "xfs_log_recover.h"
41#include "xfs_extfree_item.h"
42#include "xfs_trans_priv.h"
1da177e4 43#include "xfs_quota.h"
0e446be4 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
28c8e41a 47#include "xfs_icreate_item.h"
d75afeb3
DC
48
49/* Need all the magic numbers and buffer ops structures from these headers */
f948dd76 50#include "xfs_symlink.h"
d75afeb3
DC
51#include "xfs_da_btree.h"
52#include "xfs_dir2_format.h"
2b9ab5ab 53#include "xfs_dir2.h"
d75afeb3
DC
54#include "xfs_attr_leaf.h"
55#include "xfs_attr_remote.h"
1da177e4 56
fc06c6d0
DC
57#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
58
9a8d2fdb
MT
59STATIC int
60xlog_find_zeroed(
61 struct xlog *,
62 xfs_daddr_t *);
63STATIC int
64xlog_clear_stale_blocks(
65 struct xlog *,
66 xfs_lsn_t);
1da177e4 67#if defined(DEBUG)
9a8d2fdb
MT
68STATIC void
69xlog_recover_check_summary(
70 struct xlog *);
1da177e4
LT
71#else
72#define xlog_recover_check_summary(log)
1da177e4
LT
73#endif
74
d5689eaa
CH
75/*
76 * This structure is used during recovery to record the buf log items which
77 * have been canceled and should not be replayed.
78 */
79struct xfs_buf_cancel {
80 xfs_daddr_t bc_blkno;
81 uint bc_len;
82 int bc_refcount;
83 struct list_head bc_list;
84};
85
1da177e4
LT
86/*
87 * Sector aligned buffer routines for buffer create/read/write/access
88 */
89
ff30a622
AE
90/*
91 * Verify the given count of basic blocks is valid number of blocks
92 * to specify for an operation involving the given XFS log buffer.
93 * Returns nonzero if the count is valid, 0 otherwise.
94 */
95
96static inline int
97xlog_buf_bbcount_valid(
9a8d2fdb 98 struct xlog *log,
ff30a622
AE
99 int bbcount)
100{
101 return bbcount > 0 && bbcount <= log->l_logBBsize;
102}
103
36adecff
AE
104/*
105 * Allocate a buffer to hold log data. The buffer needs to be able
106 * to map to a range of nbblks basic blocks at any valid (basic
107 * block) offset within the log.
108 */
5d77c0dc 109STATIC xfs_buf_t *
1da177e4 110xlog_get_bp(
9a8d2fdb 111 struct xlog *log,
3228149c 112 int nbblks)
1da177e4 113{
c8da0faf
CH
114 struct xfs_buf *bp;
115
ff30a622 116 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 117 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
118 nbblks);
119 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
120 return NULL;
121 }
1da177e4 122
36adecff
AE
123 /*
124 * We do log I/O in units of log sectors (a power-of-2
125 * multiple of the basic block size), so we round up the
25985edc 126 * requested size to accommodate the basic blocks required
36adecff
AE
127 * for complete log sectors.
128 *
129 * In addition, the buffer may be used for a non-sector-
130 * aligned block offset, in which case an I/O of the
131 * requested size could extend beyond the end of the
132 * buffer. If the requested size is only 1 basic block it
133 * will never straddle a sector boundary, so this won't be
134 * an issue. Nor will this be a problem if the log I/O is
135 * done in basic blocks (sector size 1). But otherwise we
136 * extend the buffer by one extra log sector to ensure
25985edc 137 * there's space to accommodate this possibility.
36adecff 138 */
69ce58f0
AE
139 if (nbblks > 1 && log->l_sectBBsize > 1)
140 nbblks += log->l_sectBBsize;
141 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 142
e70b73f8 143 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
144 if (bp)
145 xfs_buf_unlock(bp);
146 return bp;
1da177e4
LT
147}
148
5d77c0dc 149STATIC void
1da177e4
LT
150xlog_put_bp(
151 xfs_buf_t *bp)
152{
153 xfs_buf_free(bp);
154}
155
48389ef1
AE
156/*
157 * Return the address of the start of the given block number's data
158 * in a log buffer. The buffer covers a log sector-aligned region.
159 */
076e6acb
CH
160STATIC xfs_caddr_t
161xlog_align(
9a8d2fdb 162 struct xlog *log,
076e6acb
CH
163 xfs_daddr_t blk_no,
164 int nbblks,
9a8d2fdb 165 struct xfs_buf *bp)
076e6acb 166{
fdc07f44 167 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 168
4e94b71b 169 ASSERT(offset + nbblks <= bp->b_length);
62926044 170 return bp->b_addr + BBTOB(offset);
076e6acb
CH
171}
172
1da177e4
LT
173
174/*
175 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
176 */
076e6acb
CH
177STATIC int
178xlog_bread_noalign(
9a8d2fdb 179 struct xlog *log,
1da177e4
LT
180 xfs_daddr_t blk_no,
181 int nbblks,
9a8d2fdb 182 struct xfs_buf *bp)
1da177e4
LT
183{
184 int error;
185
ff30a622 186 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 187 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
188 nbblks);
189 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
190 return EFSCORRUPTED;
191 }
192
69ce58f0
AE
193 blk_no = round_down(blk_no, log->l_sectBBsize);
194 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
195
196 ASSERT(nbblks > 0);
4e94b71b 197 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
198
199 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
200 XFS_BUF_READ(bp);
aa0e8833 201 bp->b_io_length = nbblks;
0e95f19a 202 bp->b_error = 0;
1da177e4
LT
203
204 xfsbdstrat(log->l_mp, bp);
1a1a3e97 205 error = xfs_buf_iowait(bp);
d64e31a2 206 if (error)
901796af 207 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
208 return error;
209}
210
076e6acb
CH
211STATIC int
212xlog_bread(
9a8d2fdb 213 struct xlog *log,
076e6acb
CH
214 xfs_daddr_t blk_no,
215 int nbblks,
9a8d2fdb 216 struct xfs_buf *bp,
076e6acb
CH
217 xfs_caddr_t *offset)
218{
219 int error;
220
221 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
222 if (error)
223 return error;
224
225 *offset = xlog_align(log, blk_no, nbblks, bp);
226 return 0;
227}
228
44396476
DC
229/*
230 * Read at an offset into the buffer. Returns with the buffer in it's original
231 * state regardless of the result of the read.
232 */
233STATIC int
234xlog_bread_offset(
9a8d2fdb 235 struct xlog *log,
44396476
DC
236 xfs_daddr_t blk_no, /* block to read from */
237 int nbblks, /* blocks to read */
9a8d2fdb 238 struct xfs_buf *bp,
44396476
DC
239 xfs_caddr_t offset)
240{
62926044 241 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 242 int orig_len = BBTOB(bp->b_length);
44396476
DC
243 int error, error2;
244
02fe03d9 245 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
246 if (error)
247 return error;
248
249 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
250
251 /* must reset buffer pointer even on error */
02fe03d9 252 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
253 if (error)
254 return error;
255 return error2;
256}
257
1da177e4
LT
258/*
259 * Write out the buffer at the given block for the given number of blocks.
260 * The buffer is kept locked across the write and is returned locked.
261 * This can only be used for synchronous log writes.
262 */
ba0f32d4 263STATIC int
1da177e4 264xlog_bwrite(
9a8d2fdb 265 struct xlog *log,
1da177e4
LT
266 xfs_daddr_t blk_no,
267 int nbblks,
9a8d2fdb 268 struct xfs_buf *bp)
1da177e4
LT
269{
270 int error;
271
ff30a622 272 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 273 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
274 nbblks);
275 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
276 return EFSCORRUPTED;
277 }
278
69ce58f0
AE
279 blk_no = round_down(blk_no, log->l_sectBBsize);
280 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
281
282 ASSERT(nbblks > 0);
4e94b71b 283 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
284
285 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
286 XFS_BUF_ZEROFLAGS(bp);
72790aa1 287 xfs_buf_hold(bp);
0c842ad4 288 xfs_buf_lock(bp);
aa0e8833 289 bp->b_io_length = nbblks;
0e95f19a 290 bp->b_error = 0;
1da177e4 291
c2b006c1 292 error = xfs_bwrite(bp);
901796af
CH
293 if (error)
294 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 295 xfs_buf_relse(bp);
1da177e4
LT
296 return error;
297}
298
1da177e4
LT
299#ifdef DEBUG
300/*
301 * dump debug superblock and log record information
302 */
303STATIC void
304xlog_header_check_dump(
305 xfs_mount_t *mp,
306 xlog_rec_header_t *head)
307{
a0fa2b67 308 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 309 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 310 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 311 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
312}
313#else
314#define xlog_header_check_dump(mp, head)
315#endif
316
317/*
318 * check log record header for recovery
319 */
320STATIC int
321xlog_header_check_recover(
322 xfs_mount_t *mp,
323 xlog_rec_header_t *head)
324{
69ef921b 325 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
326
327 /*
328 * IRIX doesn't write the h_fmt field and leaves it zeroed
329 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
330 * a dirty log created in IRIX.
331 */
69ef921b 332 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
333 xfs_warn(mp,
334 "dirty log written in incompatible format - can't recover");
1da177e4
LT
335 xlog_header_check_dump(mp, head);
336 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
337 XFS_ERRLEVEL_HIGH, mp);
338 return XFS_ERROR(EFSCORRUPTED);
339 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
340 xfs_warn(mp,
341 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
342 xlog_header_check_dump(mp, head);
343 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
344 XFS_ERRLEVEL_HIGH, mp);
345 return XFS_ERROR(EFSCORRUPTED);
346 }
347 return 0;
348}
349
350/*
351 * read the head block of the log and check the header
352 */
353STATIC int
354xlog_header_check_mount(
355 xfs_mount_t *mp,
356 xlog_rec_header_t *head)
357{
69ef921b 358 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
359
360 if (uuid_is_nil(&head->h_fs_uuid)) {
361 /*
362 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
363 * h_fs_uuid is nil, we assume this log was last mounted
364 * by IRIX and continue.
365 */
a0fa2b67 366 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 367 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 368 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
369 xlog_header_check_dump(mp, head);
370 XFS_ERROR_REPORT("xlog_header_check_mount",
371 XFS_ERRLEVEL_HIGH, mp);
372 return XFS_ERROR(EFSCORRUPTED);
373 }
374 return 0;
375}
376
377STATIC void
378xlog_recover_iodone(
379 struct xfs_buf *bp)
380{
5a52c2a5 381 if (bp->b_error) {
1da177e4
LT
382 /*
383 * We're not going to bother about retrying
384 * this during recovery. One strike!
385 */
901796af 386 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
387 xfs_force_shutdown(bp->b_target->bt_mount,
388 SHUTDOWN_META_IO_ERROR);
1da177e4 389 }
cb669ca5 390 bp->b_iodone = NULL;
1a1a3e97 391 xfs_buf_ioend(bp, 0);
1da177e4
LT
392}
393
394/*
395 * This routine finds (to an approximation) the first block in the physical
396 * log which contains the given cycle. It uses a binary search algorithm.
397 * Note that the algorithm can not be perfect because the disk will not
398 * necessarily be perfect.
399 */
a8272ce0 400STATIC int
1da177e4 401xlog_find_cycle_start(
9a8d2fdb
MT
402 struct xlog *log,
403 struct xfs_buf *bp,
1da177e4
LT
404 xfs_daddr_t first_blk,
405 xfs_daddr_t *last_blk,
406 uint cycle)
407{
408 xfs_caddr_t offset;
409 xfs_daddr_t mid_blk;
e3bb2e30 410 xfs_daddr_t end_blk;
1da177e4
LT
411 uint mid_cycle;
412 int error;
413
e3bb2e30
AE
414 end_blk = *last_blk;
415 mid_blk = BLK_AVG(first_blk, end_blk);
416 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
417 error = xlog_bread(log, mid_blk, 1, bp, &offset);
418 if (error)
1da177e4 419 return error;
03bea6fe 420 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
421 if (mid_cycle == cycle)
422 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
423 else
424 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
425 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 426 }
e3bb2e30
AE
427 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
428 (mid_blk == end_blk && mid_blk-1 == first_blk));
429
430 *last_blk = end_blk;
1da177e4
LT
431
432 return 0;
433}
434
435/*
3f943d85
AE
436 * Check that a range of blocks does not contain stop_on_cycle_no.
437 * Fill in *new_blk with the block offset where such a block is
438 * found, or with -1 (an invalid block number) if there is no such
439 * block in the range. The scan needs to occur from front to back
440 * and the pointer into the region must be updated since a later
441 * routine will need to perform another test.
1da177e4
LT
442 */
443STATIC int
444xlog_find_verify_cycle(
9a8d2fdb 445 struct xlog *log,
1da177e4
LT
446 xfs_daddr_t start_blk,
447 int nbblks,
448 uint stop_on_cycle_no,
449 xfs_daddr_t *new_blk)
450{
451 xfs_daddr_t i, j;
452 uint cycle;
453 xfs_buf_t *bp;
454 xfs_daddr_t bufblks;
455 xfs_caddr_t buf = NULL;
456 int error = 0;
457
6881a229
AE
458 /*
459 * Greedily allocate a buffer big enough to handle the full
460 * range of basic blocks we'll be examining. If that fails,
461 * try a smaller size. We need to be able to read at least
462 * a log sector, or we're out of luck.
463 */
1da177e4 464 bufblks = 1 << ffs(nbblks);
81158e0c
DC
465 while (bufblks > log->l_logBBsize)
466 bufblks >>= 1;
1da177e4 467 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 468 bufblks >>= 1;
69ce58f0 469 if (bufblks < log->l_sectBBsize)
1da177e4
LT
470 return ENOMEM;
471 }
472
473 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
474 int bcount;
475
476 bcount = min(bufblks, (start_blk + nbblks - i));
477
076e6acb
CH
478 error = xlog_bread(log, i, bcount, bp, &buf);
479 if (error)
1da177e4
LT
480 goto out;
481
1da177e4 482 for (j = 0; j < bcount; j++) {
03bea6fe 483 cycle = xlog_get_cycle(buf);
1da177e4
LT
484 if (cycle == stop_on_cycle_no) {
485 *new_blk = i+j;
486 goto out;
487 }
488
489 buf += BBSIZE;
490 }
491 }
492
493 *new_blk = -1;
494
495out:
496 xlog_put_bp(bp);
497 return error;
498}
499
500/*
501 * Potentially backup over partial log record write.
502 *
503 * In the typical case, last_blk is the number of the block directly after
504 * a good log record. Therefore, we subtract one to get the block number
505 * of the last block in the given buffer. extra_bblks contains the number
506 * of blocks we would have read on a previous read. This happens when the
507 * last log record is split over the end of the physical log.
508 *
509 * extra_bblks is the number of blocks potentially verified on a previous
510 * call to this routine.
511 */
512STATIC int
513xlog_find_verify_log_record(
9a8d2fdb 514 struct xlog *log,
1da177e4
LT
515 xfs_daddr_t start_blk,
516 xfs_daddr_t *last_blk,
517 int extra_bblks)
518{
519 xfs_daddr_t i;
520 xfs_buf_t *bp;
521 xfs_caddr_t offset = NULL;
522 xlog_rec_header_t *head = NULL;
523 int error = 0;
524 int smallmem = 0;
525 int num_blks = *last_blk - start_blk;
526 int xhdrs;
527
528 ASSERT(start_blk != 0 || *last_blk != start_blk);
529
530 if (!(bp = xlog_get_bp(log, num_blks))) {
531 if (!(bp = xlog_get_bp(log, 1)))
532 return ENOMEM;
533 smallmem = 1;
534 } else {
076e6acb
CH
535 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
536 if (error)
1da177e4 537 goto out;
1da177e4
LT
538 offset += ((num_blks - 1) << BBSHIFT);
539 }
540
541 for (i = (*last_blk) - 1; i >= 0; i--) {
542 if (i < start_blk) {
543 /* valid log record not found */
a0fa2b67
DC
544 xfs_warn(log->l_mp,
545 "Log inconsistent (didn't find previous header)");
1da177e4
LT
546 ASSERT(0);
547 error = XFS_ERROR(EIO);
548 goto out;
549 }
550
551 if (smallmem) {
076e6acb
CH
552 error = xlog_bread(log, i, 1, bp, &offset);
553 if (error)
1da177e4 554 goto out;
1da177e4
LT
555 }
556
557 head = (xlog_rec_header_t *)offset;
558
69ef921b 559 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
560 break;
561
562 if (!smallmem)
563 offset -= BBSIZE;
564 }
565
566 /*
567 * We hit the beginning of the physical log & still no header. Return
568 * to caller. If caller can handle a return of -1, then this routine
569 * will be called again for the end of the physical log.
570 */
571 if (i == -1) {
572 error = -1;
573 goto out;
574 }
575
576 /*
577 * We have the final block of the good log (the first block
578 * of the log record _before_ the head. So we check the uuid.
579 */
580 if ((error = xlog_header_check_mount(log->l_mp, head)))
581 goto out;
582
583 /*
584 * We may have found a log record header before we expected one.
585 * last_blk will be the 1st block # with a given cycle #. We may end
586 * up reading an entire log record. In this case, we don't want to
587 * reset last_blk. Only when last_blk points in the middle of a log
588 * record do we update last_blk.
589 */
62118709 590 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 591 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
592
593 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
594 if (h_size % XLOG_HEADER_CYCLE_SIZE)
595 xhdrs++;
596 } else {
597 xhdrs = 1;
598 }
599
b53e675d
CH
600 if (*last_blk - i + extra_bblks !=
601 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
602 *last_blk = i;
603
604out:
605 xlog_put_bp(bp);
606 return error;
607}
608
609/*
610 * Head is defined to be the point of the log where the next log write
611 * write could go. This means that incomplete LR writes at the end are
612 * eliminated when calculating the head. We aren't guaranteed that previous
613 * LR have complete transactions. We only know that a cycle number of
614 * current cycle number -1 won't be present in the log if we start writing
615 * from our current block number.
616 *
617 * last_blk contains the block number of the first block with a given
618 * cycle number.
619 *
620 * Return: zero if normal, non-zero if error.
621 */
ba0f32d4 622STATIC int
1da177e4 623xlog_find_head(
9a8d2fdb 624 struct xlog *log,
1da177e4
LT
625 xfs_daddr_t *return_head_blk)
626{
627 xfs_buf_t *bp;
628 xfs_caddr_t offset;
629 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
630 int num_scan_bblks;
631 uint first_half_cycle, last_half_cycle;
632 uint stop_on_cycle;
633 int error, log_bbnum = log->l_logBBsize;
634
635 /* Is the end of the log device zeroed? */
636 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
637 *return_head_blk = first_blk;
638
639 /* Is the whole lot zeroed? */
640 if (!first_blk) {
641 /* Linux XFS shouldn't generate totally zeroed logs -
642 * mkfs etc write a dummy unmount record to a fresh
643 * log so we can store the uuid in there
644 */
a0fa2b67 645 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
646 }
647
648 return 0;
649 } else if (error) {
a0fa2b67 650 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
651 return error;
652 }
653
654 first_blk = 0; /* get cycle # of 1st block */
655 bp = xlog_get_bp(log, 1);
656 if (!bp)
657 return ENOMEM;
076e6acb
CH
658
659 error = xlog_bread(log, 0, 1, bp, &offset);
660 if (error)
1da177e4 661 goto bp_err;
076e6acb 662
03bea6fe 663 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
664
665 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
666 error = xlog_bread(log, last_blk, 1, bp, &offset);
667 if (error)
1da177e4 668 goto bp_err;
076e6acb 669
03bea6fe 670 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
671 ASSERT(last_half_cycle != 0);
672
673 /*
674 * If the 1st half cycle number is equal to the last half cycle number,
675 * then the entire log is stamped with the same cycle number. In this
676 * case, head_blk can't be set to zero (which makes sense). The below
677 * math doesn't work out properly with head_blk equal to zero. Instead,
678 * we set it to log_bbnum which is an invalid block number, but this
679 * value makes the math correct. If head_blk doesn't changed through
680 * all the tests below, *head_blk is set to zero at the very end rather
681 * than log_bbnum. In a sense, log_bbnum and zero are the same block
682 * in a circular file.
683 */
684 if (first_half_cycle == last_half_cycle) {
685 /*
686 * In this case we believe that the entire log should have
687 * cycle number last_half_cycle. We need to scan backwards
688 * from the end verifying that there are no holes still
689 * containing last_half_cycle - 1. If we find such a hole,
690 * then the start of that hole will be the new head. The
691 * simple case looks like
692 * x | x ... | x - 1 | x
693 * Another case that fits this picture would be
694 * x | x + 1 | x ... | x
c41564b5 695 * In this case the head really is somewhere at the end of the
1da177e4
LT
696 * log, as one of the latest writes at the beginning was
697 * incomplete.
698 * One more case is
699 * x | x + 1 | x ... | x - 1 | x
700 * This is really the combination of the above two cases, and
701 * the head has to end up at the start of the x-1 hole at the
702 * end of the log.
703 *
704 * In the 256k log case, we will read from the beginning to the
705 * end of the log and search for cycle numbers equal to x-1.
706 * We don't worry about the x+1 blocks that we encounter,
707 * because we know that they cannot be the head since the log
708 * started with x.
709 */
710 head_blk = log_bbnum;
711 stop_on_cycle = last_half_cycle - 1;
712 } else {
713 /*
714 * In this case we want to find the first block with cycle
715 * number matching last_half_cycle. We expect the log to be
716 * some variation on
3f943d85 717 * x + 1 ... | x ... | x
1da177e4
LT
718 * The first block with cycle number x (last_half_cycle) will
719 * be where the new head belongs. First we do a binary search
720 * for the first occurrence of last_half_cycle. The binary
721 * search may not be totally accurate, so then we scan back
722 * from there looking for occurrences of last_half_cycle before
723 * us. If that backwards scan wraps around the beginning of
724 * the log, then we look for occurrences of last_half_cycle - 1
725 * at the end of the log. The cases we're looking for look
726 * like
3f943d85
AE
727 * v binary search stopped here
728 * x + 1 ... | x | x + 1 | x ... | x
729 * ^ but we want to locate this spot
1da177e4 730 * or
1da177e4 731 * <---------> less than scan distance
3f943d85
AE
732 * x + 1 ... | x ... | x - 1 | x
733 * ^ we want to locate this spot
1da177e4
LT
734 */
735 stop_on_cycle = last_half_cycle;
736 if ((error = xlog_find_cycle_start(log, bp, first_blk,
737 &head_blk, last_half_cycle)))
738 goto bp_err;
739 }
740
741 /*
742 * Now validate the answer. Scan back some number of maximum possible
743 * blocks and make sure each one has the expected cycle number. The
744 * maximum is determined by the total possible amount of buffering
745 * in the in-core log. The following number can be made tighter if
746 * we actually look at the block size of the filesystem.
747 */
748 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
749 if (head_blk >= num_scan_bblks) {
750 /*
751 * We are guaranteed that the entire check can be performed
752 * in one buffer.
753 */
754 start_blk = head_blk - num_scan_bblks;
755 if ((error = xlog_find_verify_cycle(log,
756 start_blk, num_scan_bblks,
757 stop_on_cycle, &new_blk)))
758 goto bp_err;
759 if (new_blk != -1)
760 head_blk = new_blk;
761 } else { /* need to read 2 parts of log */
762 /*
763 * We are going to scan backwards in the log in two parts.
764 * First we scan the physical end of the log. In this part
765 * of the log, we are looking for blocks with cycle number
766 * last_half_cycle - 1.
767 * If we find one, then we know that the log starts there, as
768 * we've found a hole that didn't get written in going around
769 * the end of the physical log. The simple case for this is
770 * x + 1 ... | x ... | x - 1 | x
771 * <---------> less than scan distance
772 * If all of the blocks at the end of the log have cycle number
773 * last_half_cycle, then we check the blocks at the start of
774 * the log looking for occurrences of last_half_cycle. If we
775 * find one, then our current estimate for the location of the
776 * first occurrence of last_half_cycle is wrong and we move
777 * back to the hole we've found. This case looks like
778 * x + 1 ... | x | x + 1 | x ...
779 * ^ binary search stopped here
780 * Another case we need to handle that only occurs in 256k
781 * logs is
782 * x + 1 ... | x ... | x+1 | x ...
783 * ^ binary search stops here
784 * In a 256k log, the scan at the end of the log will see the
785 * x + 1 blocks. We need to skip past those since that is
786 * certainly not the head of the log. By searching for
787 * last_half_cycle-1 we accomplish that.
788 */
1da177e4 789 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
790 (xfs_daddr_t) num_scan_bblks >= head_blk);
791 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
792 if ((error = xlog_find_verify_cycle(log, start_blk,
793 num_scan_bblks - (int)head_blk,
794 (stop_on_cycle - 1), &new_blk)))
795 goto bp_err;
796 if (new_blk != -1) {
797 head_blk = new_blk;
9db127ed 798 goto validate_head;
1da177e4
LT
799 }
800
801 /*
802 * Scan beginning of log now. The last part of the physical
803 * log is good. This scan needs to verify that it doesn't find
804 * the last_half_cycle.
805 */
806 start_blk = 0;
807 ASSERT(head_blk <= INT_MAX);
808 if ((error = xlog_find_verify_cycle(log,
809 start_blk, (int)head_blk,
810 stop_on_cycle, &new_blk)))
811 goto bp_err;
812 if (new_blk != -1)
813 head_blk = new_blk;
814 }
815
9db127ed 816validate_head:
1da177e4
LT
817 /*
818 * Now we need to make sure head_blk is not pointing to a block in
819 * the middle of a log record.
820 */
821 num_scan_bblks = XLOG_REC_SHIFT(log);
822 if (head_blk >= num_scan_bblks) {
823 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
824
825 /* start ptr at last block ptr before head_blk */
826 if ((error = xlog_find_verify_log_record(log, start_blk,
827 &head_blk, 0)) == -1) {
828 error = XFS_ERROR(EIO);
829 goto bp_err;
830 } else if (error)
831 goto bp_err;
832 } else {
833 start_blk = 0;
834 ASSERT(head_blk <= INT_MAX);
835 if ((error = xlog_find_verify_log_record(log, start_blk,
836 &head_blk, 0)) == -1) {
837 /* We hit the beginning of the log during our search */
3f943d85 838 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
839 new_blk = log_bbnum;
840 ASSERT(start_blk <= INT_MAX &&
841 (xfs_daddr_t) log_bbnum-start_blk >= 0);
842 ASSERT(head_blk <= INT_MAX);
843 if ((error = xlog_find_verify_log_record(log,
844 start_blk, &new_blk,
845 (int)head_blk)) == -1) {
846 error = XFS_ERROR(EIO);
847 goto bp_err;
848 } else if (error)
849 goto bp_err;
850 if (new_blk != log_bbnum)
851 head_blk = new_blk;
852 } else if (error)
853 goto bp_err;
854 }
855
856 xlog_put_bp(bp);
857 if (head_blk == log_bbnum)
858 *return_head_blk = 0;
859 else
860 *return_head_blk = head_blk;
861 /*
862 * When returning here, we have a good block number. Bad block
863 * means that during a previous crash, we didn't have a clean break
864 * from cycle number N to cycle number N-1. In this case, we need
865 * to find the first block with cycle number N-1.
866 */
867 return 0;
868
869 bp_err:
870 xlog_put_bp(bp);
871
872 if (error)
a0fa2b67 873 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
874 return error;
875}
876
877/*
878 * Find the sync block number or the tail of the log.
879 *
880 * This will be the block number of the last record to have its
881 * associated buffers synced to disk. Every log record header has
882 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
883 * to get a sync block number. The only concern is to figure out which
884 * log record header to believe.
885 *
886 * The following algorithm uses the log record header with the largest
887 * lsn. The entire log record does not need to be valid. We only care
888 * that the header is valid.
889 *
890 * We could speed up search by using current head_blk buffer, but it is not
891 * available.
892 */
5d77c0dc 893STATIC int
1da177e4 894xlog_find_tail(
9a8d2fdb 895 struct xlog *log,
1da177e4 896 xfs_daddr_t *head_blk,
65be6054 897 xfs_daddr_t *tail_blk)
1da177e4
LT
898{
899 xlog_rec_header_t *rhead;
900 xlog_op_header_t *op_head;
901 xfs_caddr_t offset = NULL;
902 xfs_buf_t *bp;
903 int error, i, found;
904 xfs_daddr_t umount_data_blk;
905 xfs_daddr_t after_umount_blk;
906 xfs_lsn_t tail_lsn;
907 int hblks;
908
909 found = 0;
910
911 /*
912 * Find previous log record
913 */
914 if ((error = xlog_find_head(log, head_blk)))
915 return error;
916
917 bp = xlog_get_bp(log, 1);
918 if (!bp)
919 return ENOMEM;
920 if (*head_blk == 0) { /* special case */
076e6acb
CH
921 error = xlog_bread(log, 0, 1, bp, &offset);
922 if (error)
9db127ed 923 goto done;
076e6acb 924
03bea6fe 925 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
926 *tail_blk = 0;
927 /* leave all other log inited values alone */
9db127ed 928 goto done;
1da177e4
LT
929 }
930 }
931
932 /*
933 * Search backwards looking for log record header block
934 */
935 ASSERT(*head_blk < INT_MAX);
936 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
937 error = xlog_bread(log, i, 1, bp, &offset);
938 if (error)
9db127ed 939 goto done;
076e6acb 940
69ef921b 941 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
942 found = 1;
943 break;
944 }
945 }
946 /*
947 * If we haven't found the log record header block, start looking
948 * again from the end of the physical log. XXXmiken: There should be
949 * a check here to make sure we didn't search more than N blocks in
950 * the previous code.
951 */
952 if (!found) {
953 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
954 error = xlog_bread(log, i, 1, bp, &offset);
955 if (error)
9db127ed 956 goto done;
076e6acb 957
69ef921b
CH
958 if (*(__be32 *)offset ==
959 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
960 found = 2;
961 break;
962 }
963 }
964 }
965 if (!found) {
a0fa2b67 966 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
050a1952 967 xlog_put_bp(bp);
1da177e4
LT
968 ASSERT(0);
969 return XFS_ERROR(EIO);
970 }
971
972 /* find blk_no of tail of log */
973 rhead = (xlog_rec_header_t *)offset;
b53e675d 974 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
975
976 /*
977 * Reset log values according to the state of the log when we
978 * crashed. In the case where head_blk == 0, we bump curr_cycle
979 * one because the next write starts a new cycle rather than
980 * continuing the cycle of the last good log record. At this
981 * point we have guaranteed that all partial log records have been
982 * accounted for. Therefore, we know that the last good log record
983 * written was complete and ended exactly on the end boundary
984 * of the physical log.
985 */
986 log->l_prev_block = i;
987 log->l_curr_block = (int)*head_blk;
b53e675d 988 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
989 if (found == 2)
990 log->l_curr_cycle++;
1c3cb9ec 991 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 992 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 993 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 994 BBTOB(log->l_curr_block));
28496968 995 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 996 BBTOB(log->l_curr_block));
1da177e4
LT
997
998 /*
999 * Look for unmount record. If we find it, then we know there
1000 * was a clean unmount. Since 'i' could be the last block in
1001 * the physical log, we convert to a log block before comparing
1002 * to the head_blk.
1003 *
1004 * Save the current tail lsn to use to pass to
1005 * xlog_clear_stale_blocks() below. We won't want to clear the
1006 * unmount record if there is one, so we pass the lsn of the
1007 * unmount record rather than the block after it.
1008 */
62118709 1009 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1010 int h_size = be32_to_cpu(rhead->h_size);
1011 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1012
1013 if ((h_version & XLOG_VERSION_2) &&
1014 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1015 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1016 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1017 hblks++;
1018 } else {
1019 hblks = 1;
1020 }
1021 } else {
1022 hblks = 1;
1023 }
1024 after_umount_blk = (i + hblks + (int)
b53e675d 1025 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1026 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1027 if (*head_blk == after_umount_blk &&
b53e675d 1028 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1029 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1030 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1031 if (error)
9db127ed 1032 goto done;
076e6acb 1033
1da177e4
LT
1034 op_head = (xlog_op_header_t *)offset;
1035 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1036 /*
1037 * Set tail and last sync so that newly written
1038 * log records will point recovery to after the
1039 * current unmount record.
1040 */
1c3cb9ec
DC
1041 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1042 log->l_curr_cycle, after_umount_blk);
1043 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1044 log->l_curr_cycle, after_umount_blk);
1da177e4 1045 *tail_blk = after_umount_blk;
92821e2b
DC
1046
1047 /*
1048 * Note that the unmount was clean. If the unmount
1049 * was not clean, we need to know this to rebuild the
1050 * superblock counters from the perag headers if we
1051 * have a filesystem using non-persistent counters.
1052 */
1053 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1054 }
1055 }
1056
1057 /*
1058 * Make sure that there are no blocks in front of the head
1059 * with the same cycle number as the head. This can happen
1060 * because we allow multiple outstanding log writes concurrently,
1061 * and the later writes might make it out before earlier ones.
1062 *
1063 * We use the lsn from before modifying it so that we'll never
1064 * overwrite the unmount record after a clean unmount.
1065 *
1066 * Do this only if we are going to recover the filesystem
1067 *
1068 * NOTE: This used to say "if (!readonly)"
1069 * However on Linux, we can & do recover a read-only filesystem.
1070 * We only skip recovery if NORECOVERY is specified on mount,
1071 * in which case we would not be here.
1072 *
1073 * But... if the -device- itself is readonly, just skip this.
1074 * We can't recover this device anyway, so it won't matter.
1075 */
9db127ed 1076 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1077 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1078
9db127ed 1079done:
1da177e4
LT
1080 xlog_put_bp(bp);
1081
1082 if (error)
a0fa2b67 1083 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1084 return error;
1085}
1086
1087/*
1088 * Is the log zeroed at all?
1089 *
1090 * The last binary search should be changed to perform an X block read
1091 * once X becomes small enough. You can then search linearly through
1092 * the X blocks. This will cut down on the number of reads we need to do.
1093 *
1094 * If the log is partially zeroed, this routine will pass back the blkno
1095 * of the first block with cycle number 0. It won't have a complete LR
1096 * preceding it.
1097 *
1098 * Return:
1099 * 0 => the log is completely written to
1100 * -1 => use *blk_no as the first block of the log
1101 * >0 => error has occurred
1102 */
a8272ce0 1103STATIC int
1da177e4 1104xlog_find_zeroed(
9a8d2fdb 1105 struct xlog *log,
1da177e4
LT
1106 xfs_daddr_t *blk_no)
1107{
1108 xfs_buf_t *bp;
1109 xfs_caddr_t offset;
1110 uint first_cycle, last_cycle;
1111 xfs_daddr_t new_blk, last_blk, start_blk;
1112 xfs_daddr_t num_scan_bblks;
1113 int error, log_bbnum = log->l_logBBsize;
1114
6fdf8ccc
NS
1115 *blk_no = 0;
1116
1da177e4
LT
1117 /* check totally zeroed log */
1118 bp = xlog_get_bp(log, 1);
1119 if (!bp)
1120 return ENOMEM;
076e6acb
CH
1121 error = xlog_bread(log, 0, 1, bp, &offset);
1122 if (error)
1da177e4 1123 goto bp_err;
076e6acb 1124
03bea6fe 1125 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1126 if (first_cycle == 0) { /* completely zeroed log */
1127 *blk_no = 0;
1128 xlog_put_bp(bp);
1129 return -1;
1130 }
1131
1132 /* check partially zeroed log */
076e6acb
CH
1133 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1134 if (error)
1da177e4 1135 goto bp_err;
076e6acb 1136
03bea6fe 1137 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1138 if (last_cycle != 0) { /* log completely written to */
1139 xlog_put_bp(bp);
1140 return 0;
1141 } else if (first_cycle != 1) {
1142 /*
1143 * If the cycle of the last block is zero, the cycle of
1144 * the first block must be 1. If it's not, maybe we're
1145 * not looking at a log... Bail out.
1146 */
a0fa2b67
DC
1147 xfs_warn(log->l_mp,
1148 "Log inconsistent or not a log (last==0, first!=1)");
5d0a6549
ES
1149 error = XFS_ERROR(EINVAL);
1150 goto bp_err;
1da177e4
LT
1151 }
1152
1153 /* we have a partially zeroed log */
1154 last_blk = log_bbnum-1;
1155 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1156 goto bp_err;
1157
1158 /*
1159 * Validate the answer. Because there is no way to guarantee that
1160 * the entire log is made up of log records which are the same size,
1161 * we scan over the defined maximum blocks. At this point, the maximum
1162 * is not chosen to mean anything special. XXXmiken
1163 */
1164 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1165 ASSERT(num_scan_bblks <= INT_MAX);
1166
1167 if (last_blk < num_scan_bblks)
1168 num_scan_bblks = last_blk;
1169 start_blk = last_blk - num_scan_bblks;
1170
1171 /*
1172 * We search for any instances of cycle number 0 that occur before
1173 * our current estimate of the head. What we're trying to detect is
1174 * 1 ... | 0 | 1 | 0...
1175 * ^ binary search ends here
1176 */
1177 if ((error = xlog_find_verify_cycle(log, start_blk,
1178 (int)num_scan_bblks, 0, &new_blk)))
1179 goto bp_err;
1180 if (new_blk != -1)
1181 last_blk = new_blk;
1182
1183 /*
1184 * Potentially backup over partial log record write. We don't need
1185 * to search the end of the log because we know it is zero.
1186 */
1187 if ((error = xlog_find_verify_log_record(log, start_blk,
1188 &last_blk, 0)) == -1) {
1189 error = XFS_ERROR(EIO);
1190 goto bp_err;
1191 } else if (error)
1192 goto bp_err;
1193
1194 *blk_no = last_blk;
1195bp_err:
1196 xlog_put_bp(bp);
1197 if (error)
1198 return error;
1199 return -1;
1200}
1201
1202/*
1203 * These are simple subroutines used by xlog_clear_stale_blocks() below
1204 * to initialize a buffer full of empty log record headers and write
1205 * them into the log.
1206 */
1207STATIC void
1208xlog_add_record(
9a8d2fdb 1209 struct xlog *log,
1da177e4
LT
1210 xfs_caddr_t buf,
1211 int cycle,
1212 int block,
1213 int tail_cycle,
1214 int tail_block)
1215{
1216 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1217
1218 memset(buf, 0, BBSIZE);
b53e675d
CH
1219 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1220 recp->h_cycle = cpu_to_be32(cycle);
1221 recp->h_version = cpu_to_be32(
62118709 1222 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1223 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1224 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1225 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1226 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1227}
1228
1229STATIC int
1230xlog_write_log_records(
9a8d2fdb 1231 struct xlog *log,
1da177e4
LT
1232 int cycle,
1233 int start_block,
1234 int blocks,
1235 int tail_cycle,
1236 int tail_block)
1237{
1238 xfs_caddr_t offset;
1239 xfs_buf_t *bp;
1240 int balign, ealign;
69ce58f0 1241 int sectbb = log->l_sectBBsize;
1da177e4
LT
1242 int end_block = start_block + blocks;
1243 int bufblks;
1244 int error = 0;
1245 int i, j = 0;
1246
6881a229
AE
1247 /*
1248 * Greedily allocate a buffer big enough to handle the full
1249 * range of basic blocks to be written. If that fails, try
1250 * a smaller size. We need to be able to write at least a
1251 * log sector, or we're out of luck.
1252 */
1da177e4 1253 bufblks = 1 << ffs(blocks);
81158e0c
DC
1254 while (bufblks > log->l_logBBsize)
1255 bufblks >>= 1;
1da177e4
LT
1256 while (!(bp = xlog_get_bp(log, bufblks))) {
1257 bufblks >>= 1;
69ce58f0 1258 if (bufblks < sectbb)
1da177e4
LT
1259 return ENOMEM;
1260 }
1261
1262 /* We may need to do a read at the start to fill in part of
1263 * the buffer in the starting sector not covered by the first
1264 * write below.
1265 */
5c17f533 1266 balign = round_down(start_block, sectbb);
1da177e4 1267 if (balign != start_block) {
076e6acb
CH
1268 error = xlog_bread_noalign(log, start_block, 1, bp);
1269 if (error)
1270 goto out_put_bp;
1271
1da177e4
LT
1272 j = start_block - balign;
1273 }
1274
1275 for (i = start_block; i < end_block; i += bufblks) {
1276 int bcount, endcount;
1277
1278 bcount = min(bufblks, end_block - start_block);
1279 endcount = bcount - j;
1280
1281 /* We may need to do a read at the end to fill in part of
1282 * the buffer in the final sector not covered by the write.
1283 * If this is the same sector as the above read, skip it.
1284 */
5c17f533 1285 ealign = round_down(end_block, sectbb);
1da177e4 1286 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1287 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1288 error = xlog_bread_offset(log, ealign, sectbb,
1289 bp, offset);
076e6acb
CH
1290 if (error)
1291 break;
1292
1da177e4
LT
1293 }
1294
1295 offset = xlog_align(log, start_block, endcount, bp);
1296 for (; j < endcount; j++) {
1297 xlog_add_record(log, offset, cycle, i+j,
1298 tail_cycle, tail_block);
1299 offset += BBSIZE;
1300 }
1301 error = xlog_bwrite(log, start_block, endcount, bp);
1302 if (error)
1303 break;
1304 start_block += endcount;
1305 j = 0;
1306 }
076e6acb
CH
1307
1308 out_put_bp:
1da177e4
LT
1309 xlog_put_bp(bp);
1310 return error;
1311}
1312
1313/*
1314 * This routine is called to blow away any incomplete log writes out
1315 * in front of the log head. We do this so that we won't become confused
1316 * if we come up, write only a little bit more, and then crash again.
1317 * If we leave the partial log records out there, this situation could
1318 * cause us to think those partial writes are valid blocks since they
1319 * have the current cycle number. We get rid of them by overwriting them
1320 * with empty log records with the old cycle number rather than the
1321 * current one.
1322 *
1323 * The tail lsn is passed in rather than taken from
1324 * the log so that we will not write over the unmount record after a
1325 * clean unmount in a 512 block log. Doing so would leave the log without
1326 * any valid log records in it until a new one was written. If we crashed
1327 * during that time we would not be able to recover.
1328 */
1329STATIC int
1330xlog_clear_stale_blocks(
9a8d2fdb 1331 struct xlog *log,
1da177e4
LT
1332 xfs_lsn_t tail_lsn)
1333{
1334 int tail_cycle, head_cycle;
1335 int tail_block, head_block;
1336 int tail_distance, max_distance;
1337 int distance;
1338 int error;
1339
1340 tail_cycle = CYCLE_LSN(tail_lsn);
1341 tail_block = BLOCK_LSN(tail_lsn);
1342 head_cycle = log->l_curr_cycle;
1343 head_block = log->l_curr_block;
1344
1345 /*
1346 * Figure out the distance between the new head of the log
1347 * and the tail. We want to write over any blocks beyond the
1348 * head that we may have written just before the crash, but
1349 * we don't want to overwrite the tail of the log.
1350 */
1351 if (head_cycle == tail_cycle) {
1352 /*
1353 * The tail is behind the head in the physical log,
1354 * so the distance from the head to the tail is the
1355 * distance from the head to the end of the log plus
1356 * the distance from the beginning of the log to the
1357 * tail.
1358 */
1359 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1360 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1361 XFS_ERRLEVEL_LOW, log->l_mp);
1362 return XFS_ERROR(EFSCORRUPTED);
1363 }
1364 tail_distance = tail_block + (log->l_logBBsize - head_block);
1365 } else {
1366 /*
1367 * The head is behind the tail in the physical log,
1368 * so the distance from the head to the tail is just
1369 * the tail block minus the head block.
1370 */
1371 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1372 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1373 XFS_ERRLEVEL_LOW, log->l_mp);
1374 return XFS_ERROR(EFSCORRUPTED);
1375 }
1376 tail_distance = tail_block - head_block;
1377 }
1378
1379 /*
1380 * If the head is right up against the tail, we can't clear
1381 * anything.
1382 */
1383 if (tail_distance <= 0) {
1384 ASSERT(tail_distance == 0);
1385 return 0;
1386 }
1387
1388 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1389 /*
1390 * Take the smaller of the maximum amount of outstanding I/O
1391 * we could have and the distance to the tail to clear out.
1392 * We take the smaller so that we don't overwrite the tail and
1393 * we don't waste all day writing from the head to the tail
1394 * for no reason.
1395 */
1396 max_distance = MIN(max_distance, tail_distance);
1397
1398 if ((head_block + max_distance) <= log->l_logBBsize) {
1399 /*
1400 * We can stomp all the blocks we need to without
1401 * wrapping around the end of the log. Just do it
1402 * in a single write. Use the cycle number of the
1403 * current cycle minus one so that the log will look like:
1404 * n ... | n - 1 ...
1405 */
1406 error = xlog_write_log_records(log, (head_cycle - 1),
1407 head_block, max_distance, tail_cycle,
1408 tail_block);
1409 if (error)
1410 return error;
1411 } else {
1412 /*
1413 * We need to wrap around the end of the physical log in
1414 * order to clear all the blocks. Do it in two separate
1415 * I/Os. The first write should be from the head to the
1416 * end of the physical log, and it should use the current
1417 * cycle number minus one just like above.
1418 */
1419 distance = log->l_logBBsize - head_block;
1420 error = xlog_write_log_records(log, (head_cycle - 1),
1421 head_block, distance, tail_cycle,
1422 tail_block);
1423
1424 if (error)
1425 return error;
1426
1427 /*
1428 * Now write the blocks at the start of the physical log.
1429 * This writes the remainder of the blocks we want to clear.
1430 * It uses the current cycle number since we're now on the
1431 * same cycle as the head so that we get:
1432 * n ... n ... | n - 1 ...
1433 * ^^^^^ blocks we're writing
1434 */
1435 distance = max_distance - (log->l_logBBsize - head_block);
1436 error = xlog_write_log_records(log, head_cycle, 0, distance,
1437 tail_cycle, tail_block);
1438 if (error)
1439 return error;
1440 }
1441
1442 return 0;
1443}
1444
1445/******************************************************************************
1446 *
1447 * Log recover routines
1448 *
1449 ******************************************************************************
1450 */
1451
1452STATIC xlog_recover_t *
1453xlog_recover_find_tid(
f0a76953 1454 struct hlist_head *head,
1da177e4
LT
1455 xlog_tid_t tid)
1456{
f0a76953 1457 xlog_recover_t *trans;
1da177e4 1458
b67bfe0d 1459 hlist_for_each_entry(trans, head, r_list) {
f0a76953
DC
1460 if (trans->r_log_tid == tid)
1461 return trans;
1da177e4 1462 }
f0a76953 1463 return NULL;
1da177e4
LT
1464}
1465
1466STATIC void
f0a76953
DC
1467xlog_recover_new_tid(
1468 struct hlist_head *head,
1469 xlog_tid_t tid,
1470 xfs_lsn_t lsn)
1da177e4 1471{
f0a76953
DC
1472 xlog_recover_t *trans;
1473
1474 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1475 trans->r_log_tid = tid;
1476 trans->r_lsn = lsn;
1477 INIT_LIST_HEAD(&trans->r_itemq);
1478
1479 INIT_HLIST_NODE(&trans->r_list);
1480 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1481}
1482
1483STATIC void
1484xlog_recover_add_item(
f0a76953 1485 struct list_head *head)
1da177e4
LT
1486{
1487 xlog_recover_item_t *item;
1488
1489 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1490 INIT_LIST_HEAD(&item->ri_list);
1491 list_add_tail(&item->ri_list, head);
1da177e4
LT
1492}
1493
1494STATIC int
1495xlog_recover_add_to_cont_trans(
ad223e60
MT
1496 struct xlog *log,
1497 struct xlog_recover *trans,
1da177e4
LT
1498 xfs_caddr_t dp,
1499 int len)
1500{
1501 xlog_recover_item_t *item;
1502 xfs_caddr_t ptr, old_ptr;
1503 int old_len;
1504
f0a76953 1505 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1506 /* finish copying rest of trans header */
1507 xlog_recover_add_item(&trans->r_itemq);
1508 ptr = (xfs_caddr_t) &trans->r_theader +
1509 sizeof(xfs_trans_header_t) - len;
1510 memcpy(ptr, dp, len); /* d, s, l */
1511 return 0;
1512 }
f0a76953
DC
1513 /* take the tail entry */
1514 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1515
1516 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1517 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1518
45053603 1519 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1520 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1521 item->ri_buf[item->ri_cnt-1].i_len += len;
1522 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1523 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1524 return 0;
1525}
1526
1527/*
1528 * The next region to add is the start of a new region. It could be
1529 * a whole region or it could be the first part of a new region. Because
1530 * of this, the assumption here is that the type and size fields of all
1531 * format structures fit into the first 32 bits of the structure.
1532 *
1533 * This works because all regions must be 32 bit aligned. Therefore, we
1534 * either have both fields or we have neither field. In the case we have
1535 * neither field, the data part of the region is zero length. We only have
1536 * a log_op_header and can throw away the header since a new one will appear
1537 * later. If we have at least 4 bytes, then we can determine how many regions
1538 * will appear in the current log item.
1539 */
1540STATIC int
1541xlog_recover_add_to_trans(
ad223e60
MT
1542 struct xlog *log,
1543 struct xlog_recover *trans,
1da177e4
LT
1544 xfs_caddr_t dp,
1545 int len)
1546{
1547 xfs_inode_log_format_t *in_f; /* any will do */
1548 xlog_recover_item_t *item;
1549 xfs_caddr_t ptr;
1550
1551 if (!len)
1552 return 0;
f0a76953 1553 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1554 /* we need to catch log corruptions here */
1555 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1556 xfs_warn(log->l_mp, "%s: bad header magic number",
1557 __func__);
5a792c45
DC
1558 ASSERT(0);
1559 return XFS_ERROR(EIO);
1560 }
1da177e4
LT
1561 if (len == sizeof(xfs_trans_header_t))
1562 xlog_recover_add_item(&trans->r_itemq);
1563 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1564 return 0;
1565 }
1566
1567 ptr = kmem_alloc(len, KM_SLEEP);
1568 memcpy(ptr, dp, len);
1569 in_f = (xfs_inode_log_format_t *)ptr;
1570
f0a76953
DC
1571 /* take the tail entry */
1572 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1573 if (item->ri_total != 0 &&
1574 item->ri_total == item->ri_cnt) {
1575 /* tail item is in use, get a new one */
1da177e4 1576 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1577 item = list_entry(trans->r_itemq.prev,
1578 xlog_recover_item_t, ri_list);
1da177e4 1579 }
1da177e4
LT
1580
1581 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1582 if (in_f->ilf_size == 0 ||
1583 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1584 xfs_warn(log->l_mp,
1585 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1586 in_f->ilf_size);
1587 ASSERT(0);
1588 return XFS_ERROR(EIO);
1589 }
1590
1591 item->ri_total = in_f->ilf_size;
1592 item->ri_buf =
1593 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1594 KM_SLEEP);
1da177e4
LT
1595 }
1596 ASSERT(item->ri_total > item->ri_cnt);
1597 /* Description region is ri_buf[0] */
1598 item->ri_buf[item->ri_cnt].i_addr = ptr;
1599 item->ri_buf[item->ri_cnt].i_len = len;
1600 item->ri_cnt++;
9abbc539 1601 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1602 return 0;
1603}
1604
f0a76953 1605/*
a775ad77
DC
1606 * Sort the log items in the transaction.
1607 *
1608 * The ordering constraints are defined by the inode allocation and unlink
1609 * behaviour. The rules are:
1610 *
1611 * 1. Every item is only logged once in a given transaction. Hence it
1612 * represents the last logged state of the item. Hence ordering is
1613 * dependent on the order in which operations need to be performed so
1614 * required initial conditions are always met.
1615 *
1616 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1617 * there's nothing to replay from them so we can simply cull them
1618 * from the transaction. However, we can't do that until after we've
1619 * replayed all the other items because they may be dependent on the
1620 * cancelled buffer and replaying the cancelled buffer can remove it
1621 * form the cancelled buffer table. Hence they have tobe done last.
1622 *
1623 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1624 * read the buffer and replay changes into it. For filesystems using the
1625 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1626 * treated the same as inode allocation buffers as they create and
1627 * initialise the buffers directly.
a775ad77
DC
1628 *
1629 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1630 * This ensures that inodes are completely flushed to the inode buffer
1631 * in a "free" state before we remove the unlinked inode list pointer.
1632 *
1633 * Hence the ordering needs to be inode allocation buffers first, inode items
1634 * second, inode unlink buffers third and cancelled buffers last.
1635 *
1636 * But there's a problem with that - we can't tell an inode allocation buffer
1637 * apart from a regular buffer, so we can't separate them. We can, however,
1638 * tell an inode unlink buffer from the others, and so we can separate them out
1639 * from all the other buffers and move them to last.
1640 *
1641 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1642 * - buffer_list for all buffers except cancelled/inode unlink buffers
1643 * - item_list for all non-buffer items
1644 * - inode_buffer_list for inode unlink buffers
1645 * - cancel_list for the cancelled buffers
1646 *
1647 * Note that we add objects to the tail of the lists so that first-to-last
1648 * ordering is preserved within the lists. Adding objects to the head of the
1649 * list means when we traverse from the head we walk them in last-to-first
1650 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1651 * but for all other items there may be specific ordering that we need to
1652 * preserve.
f0a76953 1653 */
1da177e4
LT
1654STATIC int
1655xlog_recover_reorder_trans(
ad223e60
MT
1656 struct xlog *log,
1657 struct xlog_recover *trans,
9abbc539 1658 int pass)
1da177e4 1659{
f0a76953
DC
1660 xlog_recover_item_t *item, *n;
1661 LIST_HEAD(sort_list);
a775ad77
DC
1662 LIST_HEAD(cancel_list);
1663 LIST_HEAD(buffer_list);
1664 LIST_HEAD(inode_buffer_list);
1665 LIST_HEAD(inode_list);
f0a76953
DC
1666
1667 list_splice_init(&trans->r_itemq, &sort_list);
1668 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1669 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1670
f0a76953 1671 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1672 case XFS_LI_ICREATE:
1673 list_move_tail(&item->ri_list, &buffer_list);
1674 break;
1da177e4 1675 case XFS_LI_BUF:
a775ad77 1676 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1677 trace_xfs_log_recover_item_reorder_head(log,
1678 trans, item, pass);
a775ad77 1679 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1680 break;
1681 }
a775ad77
DC
1682 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1683 list_move(&item->ri_list, &inode_buffer_list);
1684 break;
1685 }
1686 list_move_tail(&item->ri_list, &buffer_list);
1687 break;
1da177e4 1688 case XFS_LI_INODE:
1da177e4
LT
1689 case XFS_LI_DQUOT:
1690 case XFS_LI_QUOTAOFF:
1691 case XFS_LI_EFD:
1692 case XFS_LI_EFI:
9abbc539
DC
1693 trace_xfs_log_recover_item_reorder_tail(log,
1694 trans, item, pass);
a775ad77 1695 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1696 break;
1697 default:
a0fa2b67
DC
1698 xfs_warn(log->l_mp,
1699 "%s: unrecognized type of log operation",
1700 __func__);
1da177e4
LT
1701 ASSERT(0);
1702 return XFS_ERROR(EIO);
1703 }
f0a76953
DC
1704 }
1705 ASSERT(list_empty(&sort_list));
a775ad77
DC
1706 if (!list_empty(&buffer_list))
1707 list_splice(&buffer_list, &trans->r_itemq);
1708 if (!list_empty(&inode_list))
1709 list_splice_tail(&inode_list, &trans->r_itemq);
1710 if (!list_empty(&inode_buffer_list))
1711 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1712 if (!list_empty(&cancel_list))
1713 list_splice_tail(&cancel_list, &trans->r_itemq);
1da177e4
LT
1714 return 0;
1715}
1716
1717/*
1718 * Build up the table of buf cancel records so that we don't replay
1719 * cancelled data in the second pass. For buffer records that are
1720 * not cancel records, there is nothing to do here so we just return.
1721 *
1722 * If we get a cancel record which is already in the table, this indicates
1723 * that the buffer was cancelled multiple times. In order to ensure
1724 * that during pass 2 we keep the record in the table until we reach its
1725 * last occurrence in the log, we keep a reference count in the cancel
1726 * record in the table to tell us how many times we expect to see this
1727 * record during the second pass.
1728 */
c9f71f5f
CH
1729STATIC int
1730xlog_recover_buffer_pass1(
ad223e60
MT
1731 struct xlog *log,
1732 struct xlog_recover_item *item)
1da177e4 1733{
c9f71f5f 1734 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1735 struct list_head *bucket;
1736 struct xfs_buf_cancel *bcp;
1da177e4
LT
1737
1738 /*
1739 * If this isn't a cancel buffer item, then just return.
1740 */
e2714bf8 1741 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1742 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1743 return 0;
9abbc539 1744 }
1da177e4
LT
1745
1746 /*
d5689eaa
CH
1747 * Insert an xfs_buf_cancel record into the hash table of them.
1748 * If there is already an identical record, bump its reference count.
1da177e4 1749 */
d5689eaa
CH
1750 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1751 list_for_each_entry(bcp, bucket, bc_list) {
1752 if (bcp->bc_blkno == buf_f->blf_blkno &&
1753 bcp->bc_len == buf_f->blf_len) {
1754 bcp->bc_refcount++;
9abbc539 1755 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1756 return 0;
1da177e4 1757 }
d5689eaa
CH
1758 }
1759
1760 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1761 bcp->bc_blkno = buf_f->blf_blkno;
1762 bcp->bc_len = buf_f->blf_len;
1da177e4 1763 bcp->bc_refcount = 1;
d5689eaa
CH
1764 list_add_tail(&bcp->bc_list, bucket);
1765
9abbc539 1766 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1767 return 0;
1da177e4
LT
1768}
1769
1770/*
1771 * Check to see whether the buffer being recovered has a corresponding
1772 * entry in the buffer cancel record table. If it does then return 1
1773 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1774 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1775 * the refcount on the entry in the table and remove it from the table
1776 * if this is the last reference.
1777 *
1778 * We remove the cancel record from the table when we encounter its
1779 * last occurrence in the log so that if the same buffer is re-used
1780 * again after its last cancellation we actually replay the changes
1781 * made at that point.
1782 */
1783STATIC int
1784xlog_check_buffer_cancelled(
ad223e60 1785 struct xlog *log,
1da177e4
LT
1786 xfs_daddr_t blkno,
1787 uint len,
1788 ushort flags)
1789{
d5689eaa
CH
1790 struct list_head *bucket;
1791 struct xfs_buf_cancel *bcp;
1da177e4
LT
1792
1793 if (log->l_buf_cancel_table == NULL) {
1794 /*
1795 * There is nothing in the table built in pass one,
1796 * so this buffer must not be cancelled.
1797 */
c1155410 1798 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1799 return 0;
1800 }
1801
1da177e4 1802 /*
d5689eaa 1803 * Search for an entry in the cancel table that matches our buffer.
1da177e4 1804 */
d5689eaa
CH
1805 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1806 list_for_each_entry(bcp, bucket, bc_list) {
1807 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1808 goto found;
1da177e4 1809 }
d5689eaa 1810
1da177e4 1811 /*
d5689eaa
CH
1812 * We didn't find a corresponding entry in the table, so return 0 so
1813 * that the buffer is NOT cancelled.
1da177e4 1814 */
c1155410 1815 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4 1816 return 0;
d5689eaa
CH
1817
1818found:
1819 /*
1820 * We've go a match, so return 1 so that the recovery of this buffer
1821 * is cancelled. If this buffer is actually a buffer cancel log
1822 * item, then decrement the refcount on the one in the table and
1823 * remove it if this is the last reference.
1824 */
1825 if (flags & XFS_BLF_CANCEL) {
1826 if (--bcp->bc_refcount == 0) {
1827 list_del(&bcp->bc_list);
1828 kmem_free(bcp);
1829 }
1830 }
1831 return 1;
1da177e4
LT
1832}
1833
1da177e4 1834/*
e2714bf8
CH
1835 * Perform recovery for a buffer full of inodes. In these buffers, the only
1836 * data which should be recovered is that which corresponds to the
1837 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1838 * data for the inodes is always logged through the inodes themselves rather
1839 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1840 *
e2714bf8
CH
1841 * The only time when buffers full of inodes are fully recovered is when the
1842 * buffer is full of newly allocated inodes. In this case the buffer will
1843 * not be marked as an inode buffer and so will be sent to
1844 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1845 */
1846STATIC int
1847xlog_recover_do_inode_buffer(
e2714bf8 1848 struct xfs_mount *mp,
1da177e4 1849 xlog_recover_item_t *item,
e2714bf8 1850 struct xfs_buf *bp,
1da177e4
LT
1851 xfs_buf_log_format_t *buf_f)
1852{
1853 int i;
e2714bf8
CH
1854 int item_index = 0;
1855 int bit = 0;
1856 int nbits = 0;
1857 int reg_buf_offset = 0;
1858 int reg_buf_bytes = 0;
1da177e4
LT
1859 int next_unlinked_offset;
1860 int inodes_per_buf;
1861 xfs_agino_t *logged_nextp;
1862 xfs_agino_t *buffer_nextp;
1da177e4 1863
9abbc539 1864 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1865
1866 /*
1867 * Post recovery validation only works properly on CRC enabled
1868 * filesystems.
1869 */
1870 if (xfs_sb_version_hascrc(&mp->m_sb))
1871 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1872
aa0e8833 1873 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1874 for (i = 0; i < inodes_per_buf; i++) {
1875 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1876 offsetof(xfs_dinode_t, di_next_unlinked);
1877
1878 while (next_unlinked_offset >=
1879 (reg_buf_offset + reg_buf_bytes)) {
1880 /*
1881 * The next di_next_unlinked field is beyond
1882 * the current logged region. Find the next
1883 * logged region that contains or is beyond
1884 * the current di_next_unlinked field.
1885 */
1886 bit += nbits;
e2714bf8
CH
1887 bit = xfs_next_bit(buf_f->blf_data_map,
1888 buf_f->blf_map_size, bit);
1da177e4
LT
1889
1890 /*
1891 * If there are no more logged regions in the
1892 * buffer, then we're done.
1893 */
e2714bf8 1894 if (bit == -1)
1da177e4 1895 return 0;
1da177e4 1896
e2714bf8
CH
1897 nbits = xfs_contig_bits(buf_f->blf_data_map,
1898 buf_f->blf_map_size, bit);
1da177e4 1899 ASSERT(nbits > 0);
c1155410
DC
1900 reg_buf_offset = bit << XFS_BLF_SHIFT;
1901 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1902 item_index++;
1903 }
1904
1905 /*
1906 * If the current logged region starts after the current
1907 * di_next_unlinked field, then move on to the next
1908 * di_next_unlinked field.
1909 */
e2714bf8 1910 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1911 continue;
1da177e4
LT
1912
1913 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1914 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1915 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1916 BBTOB(bp->b_io_length));
1da177e4
LT
1917
1918 /*
1919 * The current logged region contains a copy of the
1920 * current di_next_unlinked field. Extract its value
1921 * and copy it to the buffer copy.
1922 */
4e0d5f92
CH
1923 logged_nextp = item->ri_buf[item_index].i_addr +
1924 next_unlinked_offset - reg_buf_offset;
1da177e4 1925 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1926 xfs_alert(mp,
1927 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1928 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1929 item, bp);
1930 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1931 XFS_ERRLEVEL_LOW, mp);
1932 return XFS_ERROR(EFSCORRUPTED);
1933 }
1934
1935 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1936 next_unlinked_offset);
87c199c2 1937 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1938
1939 /*
1940 * If necessary, recalculate the CRC in the on-disk inode. We
1941 * have to leave the inode in a consistent state for whoever
1942 * reads it next....
1943 */
1944 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1945 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1946
1da177e4
LT
1947 }
1948
1949 return 0;
1950}
1951
1952/*
d75afeb3
DC
1953 * Validate the recovered buffer is of the correct type and attach the
1954 * appropriate buffer operations to them for writeback. Magic numbers are in a
1955 * few places:
1956 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1957 * the first 32 bits of the buffer (most blocks),
1958 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 1959 */
d75afeb3
DC
1960static void
1961xlog_recovery_validate_buf_type(
9abbc539 1962 struct xfs_mount *mp,
e2714bf8 1963 struct xfs_buf *bp,
1da177e4
LT
1964 xfs_buf_log_format_t *buf_f)
1965{
d75afeb3
DC
1966 struct xfs_da_blkinfo *info = bp->b_addr;
1967 __uint32_t magic32;
1968 __uint16_t magic16;
1969 __uint16_t magicda;
1970
1971 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1972 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1973 magicda = be16_to_cpu(info->magic);
61fe135c
DC
1974 switch (xfs_blft_from_flags(buf_f)) {
1975 case XFS_BLFT_BTREE_BUF:
d75afeb3 1976 switch (magic32) {
ee1a47ab
CH
1977 case XFS_ABTB_CRC_MAGIC:
1978 case XFS_ABTC_CRC_MAGIC:
1979 case XFS_ABTB_MAGIC:
1980 case XFS_ABTC_MAGIC:
1981 bp->b_ops = &xfs_allocbt_buf_ops;
1982 break;
1983 case XFS_IBT_CRC_MAGIC:
1984 case XFS_IBT_MAGIC:
1985 bp->b_ops = &xfs_inobt_buf_ops;
1986 break;
1987 case XFS_BMAP_CRC_MAGIC:
1988 case XFS_BMAP_MAGIC:
1989 bp->b_ops = &xfs_bmbt_buf_ops;
1990 break;
1991 default:
1992 xfs_warn(mp, "Bad btree block magic!");
1993 ASSERT(0);
1994 break;
1995 }
1996 break;
61fe135c 1997 case XFS_BLFT_AGF_BUF:
d75afeb3 1998 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
1999 xfs_warn(mp, "Bad AGF block magic!");
2000 ASSERT(0);
2001 break;
2002 }
2003 bp->b_ops = &xfs_agf_buf_ops;
2004 break;
61fe135c 2005 case XFS_BLFT_AGFL_BUF:
77c95bba
CH
2006 if (!xfs_sb_version_hascrc(&mp->m_sb))
2007 break;
d75afeb3 2008 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2009 xfs_warn(mp, "Bad AGFL block magic!");
2010 ASSERT(0);
2011 break;
2012 }
2013 bp->b_ops = &xfs_agfl_buf_ops;
2014 break;
61fe135c 2015 case XFS_BLFT_AGI_BUF:
d75afeb3 2016 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2017 xfs_warn(mp, "Bad AGI block magic!");
2018 ASSERT(0);
2019 break;
2020 }
2021 bp->b_ops = &xfs_agi_buf_ops;
2022 break;
61fe135c
DC
2023 case XFS_BLFT_UDQUOT_BUF:
2024 case XFS_BLFT_PDQUOT_BUF:
2025 case XFS_BLFT_GDQUOT_BUF:
123887e8 2026#ifdef CONFIG_XFS_QUOTA
d75afeb3 2027 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2028 xfs_warn(mp, "Bad DQUOT block magic!");
2029 ASSERT(0);
2030 break;
2031 }
2032 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2033#else
2034 xfs_alert(mp,
2035 "Trying to recover dquots without QUOTA support built in!");
2036 ASSERT(0);
2037#endif
3fe58f30 2038 break;
61fe135c 2039 case XFS_BLFT_DINO_BUF:
93848a99
CH
2040 /*
2041 * we get here with inode allocation buffers, not buffers that
2042 * track unlinked list changes.
2043 */
d75afeb3 2044 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2045 xfs_warn(mp, "Bad INODE block magic!");
2046 ASSERT(0);
2047 break;
2048 }
2049 bp->b_ops = &xfs_inode_buf_ops;
2050 break;
61fe135c 2051 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2052 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2053 xfs_warn(mp, "Bad symlink block magic!");
2054 ASSERT(0);
2055 break;
2056 }
2057 bp->b_ops = &xfs_symlink_buf_ops;
2058 break;
61fe135c 2059 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2060 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2061 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2062 xfs_warn(mp, "Bad dir block magic!");
2063 ASSERT(0);
2064 break;
2065 }
2066 bp->b_ops = &xfs_dir3_block_buf_ops;
2067 break;
61fe135c 2068 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2069 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2070 magic32 != XFS_DIR3_DATA_MAGIC) {
2071 xfs_warn(mp, "Bad dir data magic!");
2072 ASSERT(0);
2073 break;
2074 }
2075 bp->b_ops = &xfs_dir3_data_buf_ops;
2076 break;
61fe135c 2077 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2078 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2079 magic32 != XFS_DIR3_FREE_MAGIC) {
2080 xfs_warn(mp, "Bad dir3 free magic!");
2081 ASSERT(0);
2082 break;
2083 }
2084 bp->b_ops = &xfs_dir3_free_buf_ops;
2085 break;
61fe135c 2086 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2087 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2088 magicda != XFS_DIR3_LEAF1_MAGIC) {
2089 xfs_warn(mp, "Bad dir leaf1 magic!");
2090 ASSERT(0);
2091 break;
2092 }
2093 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2094 break;
61fe135c 2095 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2096 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2097 magicda != XFS_DIR3_LEAFN_MAGIC) {
2098 xfs_warn(mp, "Bad dir leafn magic!");
2099 ASSERT(0);
2100 break;
2101 }
2102 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2103 break;
61fe135c 2104 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2105 if (magicda != XFS_DA_NODE_MAGIC &&
2106 magicda != XFS_DA3_NODE_MAGIC) {
2107 xfs_warn(mp, "Bad da node magic!");
2108 ASSERT(0);
2109 break;
2110 }
2111 bp->b_ops = &xfs_da3_node_buf_ops;
2112 break;
61fe135c 2113 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2114 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2115 magicda != XFS_ATTR3_LEAF_MAGIC) {
2116 xfs_warn(mp, "Bad attr leaf magic!");
2117 ASSERT(0);
2118 break;
2119 }
2120 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2121 break;
61fe135c 2122 case XFS_BLFT_ATTR_RMT_BUF:
d75afeb3
DC
2123 if (!xfs_sb_version_hascrc(&mp->m_sb))
2124 break;
cab09a81 2125 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2126 xfs_warn(mp, "Bad attr remote magic!");
2127 ASSERT(0);
2128 break;
2129 }
2130 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2131 break;
04a1e6c5
DC
2132 case XFS_BLFT_SB_BUF:
2133 if (magic32 != XFS_SB_MAGIC) {
2134 xfs_warn(mp, "Bad SB block magic!");
2135 ASSERT(0);
2136 break;
2137 }
2138 bp->b_ops = &xfs_sb_buf_ops;
2139 break;
ee1a47ab 2140 default:
61fe135c
DC
2141 xfs_warn(mp, "Unknown buffer type %d!",
2142 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2143 break;
2144 }
1da177e4
LT
2145}
2146
d75afeb3
DC
2147/*
2148 * Perform a 'normal' buffer recovery. Each logged region of the
2149 * buffer should be copied over the corresponding region in the
2150 * given buffer. The bitmap in the buf log format structure indicates
2151 * where to place the logged data.
2152 */
2153STATIC void
2154xlog_recover_do_reg_buffer(
2155 struct xfs_mount *mp,
2156 xlog_recover_item_t *item,
2157 struct xfs_buf *bp,
2158 xfs_buf_log_format_t *buf_f)
2159{
2160 int i;
2161 int bit;
2162 int nbits;
2163 int error;
2164
2165 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2166
2167 bit = 0;
2168 i = 1; /* 0 is the buf format structure */
2169 while (1) {
2170 bit = xfs_next_bit(buf_f->blf_data_map,
2171 buf_f->blf_map_size, bit);
2172 if (bit == -1)
2173 break;
2174 nbits = xfs_contig_bits(buf_f->blf_data_map,
2175 buf_f->blf_map_size, bit);
2176 ASSERT(nbits > 0);
2177 ASSERT(item->ri_buf[i].i_addr != NULL);
2178 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2179 ASSERT(BBTOB(bp->b_io_length) >=
2180 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2181
709da6a6
DC
2182 /*
2183 * The dirty regions logged in the buffer, even though
2184 * contiguous, may span multiple chunks. This is because the
2185 * dirty region may span a physical page boundary in a buffer
2186 * and hence be split into two separate vectors for writing into
2187 * the log. Hence we need to trim nbits back to the length of
2188 * the current region being copied out of the log.
2189 */
2190 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2191 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2192
d75afeb3
DC
2193 /*
2194 * Do a sanity check if this is a dquot buffer. Just checking
2195 * the first dquot in the buffer should do. XXXThis is
2196 * probably a good thing to do for other buf types also.
2197 */
2198 error = 0;
2199 if (buf_f->blf_flags &
2200 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2201 if (item->ri_buf[i].i_addr == NULL) {
2202 xfs_alert(mp,
2203 "XFS: NULL dquot in %s.", __func__);
2204 goto next;
2205 }
2206 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2207 xfs_alert(mp,
2208 "XFS: dquot too small (%d) in %s.",
2209 item->ri_buf[i].i_len, __func__);
2210 goto next;
2211 }
2212 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2213 -1, 0, XFS_QMOPT_DOWARN,
2214 "dquot_buf_recover");
2215 if (error)
2216 goto next;
2217 }
2218
2219 memcpy(xfs_buf_offset(bp,
2220 (uint)bit << XFS_BLF_SHIFT), /* dest */
2221 item->ri_buf[i].i_addr, /* source */
2222 nbits<<XFS_BLF_SHIFT); /* length */
2223 next:
2224 i++;
2225 bit += nbits;
2226 }
2227
2228 /* Shouldn't be any more regions */
2229 ASSERT(i == item->ri_total);
2230
9222a9cf
DC
2231 /*
2232 * We can only do post recovery validation on items on CRC enabled
2233 * fielsystems as we need to know when the buffer was written to be able
2234 * to determine if we should have replayed the item. If we replay old
2235 * metadata over a newer buffer, then it will enter a temporarily
2236 * inconsistent state resulting in verification failures. Hence for now
2237 * just avoid the verification stage for non-crc filesystems
2238 */
2239 if (xfs_sb_version_hascrc(&mp->m_sb))
2240 xlog_recovery_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2241}
2242
1da177e4
LT
2243/*
2244 * Do some primitive error checking on ondisk dquot data structures.
2245 */
2246int
2247xfs_qm_dqcheck(
a0fa2b67 2248 struct xfs_mount *mp,
1da177e4
LT
2249 xfs_disk_dquot_t *ddq,
2250 xfs_dqid_t id,
2251 uint type, /* used only when IO_dorepair is true */
2252 uint flags,
2253 char *str)
2254{
2255 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2256 int errs = 0;
2257
2258 /*
2259 * We can encounter an uninitialized dquot buffer for 2 reasons:
2260 * 1. If we crash while deleting the quotainode(s), and those blks got
2261 * used for user data. This is because we take the path of regular
2262 * file deletion; however, the size field of quotainodes is never
2263 * updated, so all the tricks that we play in itruncate_finish
2264 * don't quite matter.
2265 *
2266 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2267 * But the allocation will be replayed so we'll end up with an
2268 * uninitialized quota block.
2269 *
2270 * This is all fine; things are still consistent, and we haven't lost
2271 * any quota information. Just don't complain about bad dquot blks.
2272 */
69ef921b 2273 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 2274 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2275 xfs_alert(mp,
1da177e4 2276 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2277 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2278 errs++;
2279 }
1149d96a 2280 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 2281 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2282 xfs_alert(mp,
1da177e4 2283 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2284 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2285 errs++;
2286 }
2287
1149d96a
CH
2288 if (ddq->d_flags != XFS_DQ_USER &&
2289 ddq->d_flags != XFS_DQ_PROJ &&
2290 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 2291 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2292 xfs_alert(mp,
1da177e4 2293 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2294 str, id, ddq->d_flags);
1da177e4
LT
2295 errs++;
2296 }
2297
1149d96a 2298 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 2299 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2300 xfs_alert(mp,
1da177e4
LT
2301 "%s : ondisk-dquot 0x%p, ID mismatch: "
2302 "0x%x expected, found id 0x%x",
1149d96a 2303 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2304 errs++;
2305 }
2306
2307 if (!errs && ddq->d_id) {
1149d96a 2308 if (ddq->d_blk_softlimit &&
d0a3fe67 2309 be64_to_cpu(ddq->d_bcount) >
1149d96a 2310 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2311 if (!ddq->d_btimer) {
2312 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2313 xfs_alert(mp,
2314 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 2315 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2316 errs++;
2317 }
2318 }
1149d96a 2319 if (ddq->d_ino_softlimit &&
d0a3fe67 2320 be64_to_cpu(ddq->d_icount) >
1149d96a 2321 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2322 if (!ddq->d_itimer) {
2323 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2324 xfs_alert(mp,
2325 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2326 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2327 errs++;
2328 }
2329 }
1149d96a 2330 if (ddq->d_rtb_softlimit &&
d0a3fe67 2331 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2332 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2333 if (!ddq->d_rtbtimer) {
2334 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2335 xfs_alert(mp,
2336 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2337 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2338 errs++;
2339 }
2340 }
2341 }
2342
2343 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2344 return errs;
2345
2346 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2347 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2348
2349 /*
2350 * Typically, a repair is only requested by quotacheck.
2351 */
2352 ASSERT(id != -1);
2353 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2354 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2355
2356 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2357 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2358 d->dd_diskdq.d_flags = type;
2359 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4 2360
6fcdc59d
DC
2361 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2362 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2363 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2364 XFS_DQUOT_CRC_OFF);
2365 }
2366
1da177e4
LT
2367 return errs;
2368}
2369
2370/*
2371 * Perform a dquot buffer recovery.
2372 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2373 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2374 * Else, treat it as a regular buffer and do recovery.
2375 */
2376STATIC void
2377xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2378 struct xfs_mount *mp,
2379 struct xlog *log,
2380 struct xlog_recover_item *item,
2381 struct xfs_buf *bp,
2382 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2383{
2384 uint type;
2385
9abbc539
DC
2386 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2387
1da177e4
LT
2388 /*
2389 * Filesystems are required to send in quota flags at mount time.
2390 */
2391 if (mp->m_qflags == 0) {
2392 return;
2393 }
2394
2395 type = 0;
c1155410 2396 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2397 type |= XFS_DQ_USER;
c1155410 2398 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2399 type |= XFS_DQ_PROJ;
c1155410 2400 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2401 type |= XFS_DQ_GROUP;
2402 /*
2403 * This type of quotas was turned off, so ignore this buffer
2404 */
2405 if (log->l_quotaoffs_flag & type)
2406 return;
2407
9abbc539 2408 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2409}
2410
2411/*
2412 * This routine replays a modification made to a buffer at runtime.
2413 * There are actually two types of buffer, regular and inode, which
2414 * are handled differently. Inode buffers are handled differently
2415 * in that we only recover a specific set of data from them, namely
2416 * the inode di_next_unlinked fields. This is because all other inode
2417 * data is actually logged via inode records and any data we replay
2418 * here which overlaps that may be stale.
2419 *
2420 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2421 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2422 * of the buffer in the log should not be replayed at recovery time.
2423 * This is so that if the blocks covered by the buffer are reused for
2424 * file data before we crash we don't end up replaying old, freed
2425 * meta-data into a user's file.
2426 *
2427 * To handle the cancellation of buffer log items, we make two passes
2428 * over the log during recovery. During the first we build a table of
2429 * those buffers which have been cancelled, and during the second we
2430 * only replay those buffers which do not have corresponding cancel
34be5ff3 2431 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2432 * for more details on the implementation of the table of cancel records.
2433 */
2434STATIC int
c9f71f5f 2435xlog_recover_buffer_pass2(
9a8d2fdb
MT
2436 struct xlog *log,
2437 struct list_head *buffer_list,
2438 struct xlog_recover_item *item)
1da177e4 2439{
4e0d5f92 2440 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2441 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2442 xfs_buf_t *bp;
2443 int error;
6ad112bf 2444 uint buf_flags;
1da177e4 2445
c9f71f5f
CH
2446 /*
2447 * In this pass we only want to recover all the buffers which have
2448 * not been cancelled and are not cancellation buffers themselves.
2449 */
2450 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2451 buf_f->blf_len, buf_f->blf_flags)) {
2452 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2453 return 0;
1da177e4 2454 }
c9f71f5f 2455
9abbc539 2456 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2457
a8acad70 2458 buf_flags = 0;
611c9946
DC
2459 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2460 buf_flags |= XBF_UNMAPPED;
6ad112bf 2461
e2714bf8 2462 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2463 buf_flags, NULL);
ac4d6888
CS
2464 if (!bp)
2465 return XFS_ERROR(ENOMEM);
e5702805 2466 error = bp->b_error;
5a52c2a5 2467 if (error) {
901796af 2468 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
1da177e4
LT
2469 xfs_buf_relse(bp);
2470 return error;
2471 }
2472
e2714bf8 2473 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2474 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2475 } else if (buf_f->blf_flags &
c1155410 2476 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2477 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2478 } else {
9abbc539 2479 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2480 }
2481 if (error)
2482 return XFS_ERROR(error);
2483
2484 /*
2485 * Perform delayed write on the buffer. Asynchronous writes will be
2486 * slower when taking into account all the buffers to be flushed.
2487 *
2488 * Also make sure that only inode buffers with good sizes stay in
2489 * the buffer cache. The kernel moves inodes in buffers of 1 block
2490 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2491 * buffers in the log can be a different size if the log was generated
2492 * by an older kernel using unclustered inode buffers or a newer kernel
2493 * running with a different inode cluster size. Regardless, if the
2494 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2495 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2496 * the buffer out of the buffer cache so that the buffer won't
2497 * overlap with future reads of those inodes.
2498 */
2499 if (XFS_DINODE_MAGIC ==
b53e675d 2500 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2501 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
1da177e4 2502 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2503 xfs_buf_stale(bp);
c2b006c1 2504 error = xfs_bwrite(bp);
1da177e4 2505 } else {
ebad861b 2506 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2507 bp->b_iodone = xlog_recover_iodone;
43ff2122 2508 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2509 }
2510
c2b006c1
CH
2511 xfs_buf_relse(bp);
2512 return error;
1da177e4
LT
2513}
2514
2515STATIC int
c9f71f5f 2516xlog_recover_inode_pass2(
9a8d2fdb
MT
2517 struct xlog *log,
2518 struct list_head *buffer_list,
2519 struct xlog_recover_item *item)
1da177e4
LT
2520{
2521 xfs_inode_log_format_t *in_f;
c9f71f5f 2522 xfs_mount_t *mp = log->l_mp;
1da177e4 2523 xfs_buf_t *bp;
1da177e4 2524 xfs_dinode_t *dip;
1da177e4
LT
2525 int len;
2526 xfs_caddr_t src;
2527 xfs_caddr_t dest;
2528 int error;
2529 int attr_index;
2530 uint fields;
347d1c01 2531 xfs_icdinode_t *dicp;
93848a99 2532 uint isize;
6d192a9b 2533 int need_free = 0;
1da177e4 2534
6d192a9b 2535 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2536 in_f = item->ri_buf[0].i_addr;
6d192a9b 2537 } else {
4e0d5f92 2538 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2539 need_free = 1;
2540 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2541 if (error)
2542 goto error;
2543 }
1da177e4
LT
2544
2545 /*
2546 * Inode buffers can be freed, look out for it,
2547 * and do not replay the inode.
2548 */
a1941895
CH
2549 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2550 in_f->ilf_len, 0)) {
6d192a9b 2551 error = 0;
9abbc539 2552 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2553 goto error;
2554 }
9abbc539 2555 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2556
c3f8fc73 2557 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2558 &xfs_inode_buf_ops);
ac4d6888
CS
2559 if (!bp) {
2560 error = ENOMEM;
2561 goto error;
2562 }
e5702805 2563 error = bp->b_error;
5a52c2a5 2564 if (error) {
901796af 2565 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
1da177e4 2566 xfs_buf_relse(bp);
6d192a9b 2567 goto error;
1da177e4 2568 }
1da177e4 2569 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2570 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2571
2572 /*
2573 * Make sure the place we're flushing out to really looks
2574 * like an inode!
2575 */
69ef921b 2576 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
1da177e4 2577 xfs_buf_relse(bp);
a0fa2b67
DC
2578 xfs_alert(mp,
2579 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2580 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2581 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2582 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2583 error = EFSCORRUPTED;
2584 goto error;
1da177e4 2585 }
4e0d5f92 2586 dicp = item->ri_buf[1].i_addr;
1da177e4
LT
2587 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2588 xfs_buf_relse(bp);
a0fa2b67
DC
2589 xfs_alert(mp,
2590 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2591 __func__, item, in_f->ilf_ino);
c9f71f5f 2592 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2593 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2594 error = EFSCORRUPTED;
2595 goto error;
1da177e4
LT
2596 }
2597
e60896d8
DC
2598 /*
2599 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2600 * are transactional and if ordering is necessary we can determine that
2601 * more accurately by the LSN field in the V3 inode core. Don't trust
2602 * the inode versions we might be changing them here - use the
2603 * superblock flag to determine whether we need to look at di_flushiter
2604 * to skip replay when the on disk inode is newer than the log one
2605 */
2606 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2607 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2608 /*
2609 * Deal with the wrap case, DI_MAX_FLUSH is less
2610 * than smaller numbers
2611 */
81591fe2 2612 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2613 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2614 /* do nothing */
2615 } else {
2616 xfs_buf_relse(bp);
9abbc539 2617 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2618 error = 0;
2619 goto error;
1da177e4
LT
2620 }
2621 }
e60896d8 2622
1da177e4
LT
2623 /* Take the opportunity to reset the flush iteration count */
2624 dicp->di_flushiter = 0;
2625
abbede1b 2626 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2627 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2628 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2629 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4
LT
2630 XFS_ERRLEVEL_LOW, mp, dicp);
2631 xfs_buf_relse(bp);
a0fa2b67
DC
2632 xfs_alert(mp,
2633 "%s: Bad regular inode log record, rec ptr 0x%p, "
2634 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2635 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2636 error = EFSCORRUPTED;
2637 goto error;
1da177e4 2638 }
abbede1b 2639 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2640 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2641 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2642 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2643 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4
LT
2644 XFS_ERRLEVEL_LOW, mp, dicp);
2645 xfs_buf_relse(bp);
a0fa2b67
DC
2646 xfs_alert(mp,
2647 "%s: Bad dir inode log record, rec ptr 0x%p, "
2648 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2649 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2650 error = EFSCORRUPTED;
2651 goto error;
1da177e4
LT
2652 }
2653 }
2654 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2655 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4
LT
2656 XFS_ERRLEVEL_LOW, mp, dicp);
2657 xfs_buf_relse(bp);
a0fa2b67
DC
2658 xfs_alert(mp,
2659 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2660 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2661 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2662 dicp->di_nextents + dicp->di_anextents,
2663 dicp->di_nblocks);
6d192a9b
TS
2664 error = EFSCORRUPTED;
2665 goto error;
1da177e4
LT
2666 }
2667 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2668 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4
LT
2669 XFS_ERRLEVEL_LOW, mp, dicp);
2670 xfs_buf_relse(bp);
a0fa2b67
DC
2671 xfs_alert(mp,
2672 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2673 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2674 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b
TS
2675 error = EFSCORRUPTED;
2676 goto error;
1da177e4 2677 }
93848a99
CH
2678 isize = xfs_icdinode_size(dicp->di_version);
2679 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2680 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4
LT
2681 XFS_ERRLEVEL_LOW, mp, dicp);
2682 xfs_buf_relse(bp);
a0fa2b67
DC
2683 xfs_alert(mp,
2684 "%s: Bad inode log record length %d, rec ptr 0x%p",
2685 __func__, item->ri_buf[1].i_len, item);
6d192a9b
TS
2686 error = EFSCORRUPTED;
2687 goto error;
1da177e4
LT
2688 }
2689
2690 /* The core is in in-core format */
93848a99 2691 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2692
2693 /* the rest is in on-disk format */
93848a99
CH
2694 if (item->ri_buf[1].i_len > isize) {
2695 memcpy((char *)dip + isize,
2696 item->ri_buf[1].i_addr + isize,
2697 item->ri_buf[1].i_len - isize);
1da177e4
LT
2698 }
2699
2700 fields = in_f->ilf_fields;
2701 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2702 case XFS_ILOG_DEV:
81591fe2 2703 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2704 break;
2705 case XFS_ILOG_UUID:
81591fe2
CH
2706 memcpy(XFS_DFORK_DPTR(dip),
2707 &in_f->ilf_u.ilfu_uuid,
2708 sizeof(uuid_t));
1da177e4
LT
2709 break;
2710 }
2711
2712 if (in_f->ilf_size == 2)
2713 goto write_inode_buffer;
2714 len = item->ri_buf[2].i_len;
2715 src = item->ri_buf[2].i_addr;
2716 ASSERT(in_f->ilf_size <= 4);
2717 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2718 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2719 (len == in_f->ilf_dsize));
2720
2721 switch (fields & XFS_ILOG_DFORK) {
2722 case XFS_ILOG_DDATA:
2723 case XFS_ILOG_DEXT:
81591fe2 2724 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2725 break;
2726
2727 case XFS_ILOG_DBROOT:
7cc95a82 2728 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2729 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2730 XFS_DFORK_DSIZE(dip, mp));
2731 break;
2732
2733 default:
2734 /*
2735 * There are no data fork flags set.
2736 */
2737 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2738 break;
2739 }
2740
2741 /*
2742 * If we logged any attribute data, recover it. There may or
2743 * may not have been any other non-core data logged in this
2744 * transaction.
2745 */
2746 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2747 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2748 attr_index = 3;
2749 } else {
2750 attr_index = 2;
2751 }
2752 len = item->ri_buf[attr_index].i_len;
2753 src = item->ri_buf[attr_index].i_addr;
2754 ASSERT(len == in_f->ilf_asize);
2755
2756 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2757 case XFS_ILOG_ADATA:
2758 case XFS_ILOG_AEXT:
2759 dest = XFS_DFORK_APTR(dip);
2760 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2761 memcpy(dest, src, len);
2762 break;
2763
2764 case XFS_ILOG_ABROOT:
2765 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2766 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2767 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2768 XFS_DFORK_ASIZE(dip, mp));
2769 break;
2770
2771 default:
a0fa2b67 2772 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4
LT
2773 ASSERT(0);
2774 xfs_buf_relse(bp);
6d192a9b
TS
2775 error = EIO;
2776 goto error;
1da177e4
LT
2777 }
2778 }
2779
2780write_inode_buffer:
93848a99
CH
2781 /* re-generate the checksum. */
2782 xfs_dinode_calc_crc(log->l_mp, dip);
2783
ebad861b 2784 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2785 bp->b_iodone = xlog_recover_iodone;
43ff2122 2786 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2787 xfs_buf_relse(bp);
6d192a9b
TS
2788error:
2789 if (need_free)
f0e2d93c 2790 kmem_free(in_f);
6d192a9b 2791 return XFS_ERROR(error);
1da177e4
LT
2792}
2793
2794/*
9a8d2fdb 2795 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2796 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2797 * of that type.
2798 */
2799STATIC int
c9f71f5f 2800xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2801 struct xlog *log,
2802 struct xlog_recover_item *item)
1da177e4 2803{
c9f71f5f 2804 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2805 ASSERT(qoff_f);
2806
2807 /*
2808 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2809 * group/project quotaoff or both.
1da177e4
LT
2810 */
2811 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2812 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2813 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2814 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2815 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2816 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2817
2818 return (0);
2819}
2820
2821/*
2822 * Recover a dquot record
2823 */
2824STATIC int
c9f71f5f 2825xlog_recover_dquot_pass2(
9a8d2fdb
MT
2826 struct xlog *log,
2827 struct list_head *buffer_list,
2828 struct xlog_recover_item *item)
1da177e4 2829{
c9f71f5f 2830 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2831 xfs_buf_t *bp;
2832 struct xfs_disk_dquot *ddq, *recddq;
2833 int error;
2834 xfs_dq_logformat_t *dq_f;
2835 uint type;
2836
1da177e4
LT
2837
2838 /*
2839 * Filesystems are required to send in quota flags at mount time.
2840 */
2841 if (mp->m_qflags == 0)
2842 return (0);
2843
4e0d5f92
CH
2844 recddq = item->ri_buf[1].i_addr;
2845 if (recddq == NULL) {
a0fa2b67 2846 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
2847 return XFS_ERROR(EIO);
2848 }
8ec6dba2 2849 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2850 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
2851 item->ri_buf[1].i_len, __func__);
2852 return XFS_ERROR(EIO);
2853 }
2854
1da177e4
LT
2855 /*
2856 * This type of quotas was turned off, so ignore this record.
2857 */
b53e675d 2858 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2859 ASSERT(type);
2860 if (log->l_quotaoffs_flag & type)
2861 return (0);
2862
2863 /*
2864 * At this point we know that quota was _not_ turned off.
2865 * Since the mount flags are not indicating to us otherwise, this
2866 * must mean that quota is on, and the dquot needs to be replayed.
2867 * Remember that we may not have fully recovered the superblock yet,
2868 * so we can't do the usual trick of looking at the SB quota bits.
2869 *
2870 * The other possibility, of course, is that the quota subsystem was
2871 * removed since the last mount - ENOSYS.
2872 */
4e0d5f92 2873 dq_f = item->ri_buf[0].i_addr;
1da177e4 2874 ASSERT(dq_f);
a0fa2b67
DC
2875 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2876 "xlog_recover_dquot_pass2 (log copy)");
2877 if (error)
1da177e4 2878 return XFS_ERROR(EIO);
1da177e4
LT
2879 ASSERT(dq_f->qlf_len == 1);
2880
7ca790a5 2881 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73
DC
2882 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2883 NULL);
7ca790a5 2884 if (error)
1da177e4 2885 return error;
7ca790a5 2886
1da177e4
LT
2887 ASSERT(bp);
2888 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2889
2890 /*
2891 * At least the magic num portion should be on disk because this
2892 * was among a chunk of dquots created earlier, and we did some
2893 * minimal initialization then.
2894 */
a0fa2b67
DC
2895 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2896 "xlog_recover_dquot_pass2");
2897 if (error) {
1da177e4
LT
2898 xfs_buf_relse(bp);
2899 return XFS_ERROR(EIO);
2900 }
2901
2902 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
2903 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2904 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2905 XFS_DQUOT_CRC_OFF);
2906 }
1da177e4
LT
2907
2908 ASSERT(dq_f->qlf_size == 2);
ebad861b 2909 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2910 bp->b_iodone = xlog_recover_iodone;
43ff2122 2911 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2912 xfs_buf_relse(bp);
1da177e4
LT
2913
2914 return (0);
2915}
2916
2917/*
2918 * This routine is called to create an in-core extent free intent
2919 * item from the efi format structure which was logged on disk.
2920 * It allocates an in-core efi, copies the extents from the format
2921 * structure into it, and adds the efi to the AIL with the given
2922 * LSN.
2923 */
6d192a9b 2924STATIC int
c9f71f5f 2925xlog_recover_efi_pass2(
9a8d2fdb
MT
2926 struct xlog *log,
2927 struct xlog_recover_item *item,
2928 xfs_lsn_t lsn)
1da177e4 2929{
6d192a9b 2930 int error;
c9f71f5f 2931 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2932 xfs_efi_log_item_t *efip;
2933 xfs_efi_log_format_t *efi_formatp;
1da177e4 2934
4e0d5f92 2935 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2936
1da177e4 2937 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2938 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2939 &(efip->efi_format)))) {
2940 xfs_efi_item_free(efip);
2941 return error;
2942 }
b199c8a4 2943 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2944
a9c21c1b 2945 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2946 /*
783a2f65 2947 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2948 */
e6059949 2949 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2950 return 0;
1da177e4
LT
2951}
2952
2953
2954/*
2955 * This routine is called when an efd format structure is found in
2956 * a committed transaction in the log. It's purpose is to cancel
2957 * the corresponding efi if it was still in the log. To do this
2958 * it searches the AIL for the efi with an id equal to that in the
2959 * efd format structure. If we find it, we remove the efi from the
2960 * AIL and free it.
2961 */
c9f71f5f
CH
2962STATIC int
2963xlog_recover_efd_pass2(
9a8d2fdb
MT
2964 struct xlog *log,
2965 struct xlog_recover_item *item)
1da177e4 2966{
1da177e4
LT
2967 xfs_efd_log_format_t *efd_formatp;
2968 xfs_efi_log_item_t *efip = NULL;
2969 xfs_log_item_t *lip;
1da177e4 2970 __uint64_t efi_id;
27d8d5fe 2971 struct xfs_ail_cursor cur;
783a2f65 2972 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2973
4e0d5f92 2974 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2975 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2976 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2977 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2978 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2979 efi_id = efd_formatp->efd_efi_id;
2980
2981 /*
2982 * Search for the efi with the id in the efd format structure
2983 * in the AIL.
2984 */
a9c21c1b
DC
2985 spin_lock(&ailp->xa_lock);
2986 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2987 while (lip != NULL) {
2988 if (lip->li_type == XFS_LI_EFI) {
2989 efip = (xfs_efi_log_item_t *)lip;
2990 if (efip->efi_format.efi_id == efi_id) {
2991 /*
783a2f65 2992 * xfs_trans_ail_delete() drops the
1da177e4
LT
2993 * AIL lock.
2994 */
04913fdd
DC
2995 xfs_trans_ail_delete(ailp, lip,
2996 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 2997 xfs_efi_item_free(efip);
a9c21c1b 2998 spin_lock(&ailp->xa_lock);
27d8d5fe 2999 break;
1da177e4
LT
3000 }
3001 }
a9c21c1b 3002 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3003 }
a9c21c1b
DC
3004 xfs_trans_ail_cursor_done(ailp, &cur);
3005 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3006
3007 return 0;
1da177e4
LT
3008}
3009
28c8e41a
DC
3010/*
3011 * This routine is called when an inode create format structure is found in a
3012 * committed transaction in the log. It's purpose is to initialise the inodes
3013 * being allocated on disk. This requires us to get inode cluster buffers that
3014 * match the range to be intialised, stamped with inode templates and written
3015 * by delayed write so that subsequent modifications will hit the cached buffer
3016 * and only need writing out at the end of recovery.
3017 */
3018STATIC int
3019xlog_recover_do_icreate_pass2(
3020 struct xlog *log,
3021 struct list_head *buffer_list,
3022 xlog_recover_item_t *item)
3023{
3024 struct xfs_mount *mp = log->l_mp;
3025 struct xfs_icreate_log *icl;
3026 xfs_agnumber_t agno;
3027 xfs_agblock_t agbno;
3028 unsigned int count;
3029 unsigned int isize;
3030 xfs_agblock_t length;
3031
3032 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3033 if (icl->icl_type != XFS_LI_ICREATE) {
3034 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3035 return EINVAL;
3036 }
3037
3038 if (icl->icl_size != 1) {
3039 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3040 return EINVAL;
3041 }
3042
3043 agno = be32_to_cpu(icl->icl_ag);
3044 if (agno >= mp->m_sb.sb_agcount) {
3045 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3046 return EINVAL;
3047 }
3048 agbno = be32_to_cpu(icl->icl_agbno);
3049 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3050 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3051 return EINVAL;
3052 }
3053 isize = be32_to_cpu(icl->icl_isize);
3054 if (isize != mp->m_sb.sb_inodesize) {
3055 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3056 return EINVAL;
3057 }
3058 count = be32_to_cpu(icl->icl_count);
3059 if (!count) {
3060 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3061 return EINVAL;
3062 }
3063 length = be32_to_cpu(icl->icl_length);
3064 if (!length || length >= mp->m_sb.sb_agblocks) {
3065 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3066 return EINVAL;
3067 }
3068
3069 /* existing allocation is fixed value */
3070 ASSERT(count == XFS_IALLOC_INODES(mp));
3071 ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3072 if (count != XFS_IALLOC_INODES(mp) ||
3073 length != XFS_IALLOC_BLOCKS(mp)) {
3074 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3075 return EINVAL;
3076 }
3077
3078 /*
3079 * Inode buffers can be freed. Do not replay the inode initialisation as
3080 * we could be overwriting something written after this inode buffer was
3081 * cancelled.
3082 *
3083 * XXX: we need to iterate all buffers and only init those that are not
3084 * cancelled. I think that a more fine grained factoring of
3085 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3086 * done easily.
3087 */
3088 if (xlog_check_buffer_cancelled(log,
3089 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3090 return 0;
3091
3092 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3093 be32_to_cpu(icl->icl_gen));
3094 return 0;
3095}
3096
1da177e4
LT
3097/*
3098 * Free up any resources allocated by the transaction
3099 *
3100 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3101 */
3102STATIC void
3103xlog_recover_free_trans(
d0450948 3104 struct xlog_recover *trans)
1da177e4 3105{
f0a76953 3106 xlog_recover_item_t *item, *n;
1da177e4
LT
3107 int i;
3108
f0a76953
DC
3109 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3110 /* Free the regions in the item. */
3111 list_del(&item->ri_list);
3112 for (i = 0; i < item->ri_cnt; i++)
3113 kmem_free(item->ri_buf[i].i_addr);
1da177e4 3114 /* Free the item itself */
f0a76953
DC
3115 kmem_free(item->ri_buf);
3116 kmem_free(item);
3117 }
1da177e4 3118 /* Free the transaction recover structure */
f0e2d93c 3119 kmem_free(trans);
1da177e4
LT
3120}
3121
d0450948 3122STATIC int
c9f71f5f 3123xlog_recover_commit_pass1(
ad223e60
MT
3124 struct xlog *log,
3125 struct xlog_recover *trans,
3126 struct xlog_recover_item *item)
d0450948 3127{
c9f71f5f 3128 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3129
3130 switch (ITEM_TYPE(item)) {
3131 case XFS_LI_BUF:
c9f71f5f
CH
3132 return xlog_recover_buffer_pass1(log, item);
3133 case XFS_LI_QUOTAOFF:
3134 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3135 case XFS_LI_INODE:
d0450948 3136 case XFS_LI_EFI:
d0450948 3137 case XFS_LI_EFD:
c9f71f5f 3138 case XFS_LI_DQUOT:
28c8e41a 3139 case XFS_LI_ICREATE:
c9f71f5f 3140 /* nothing to do in pass 1 */
d0450948 3141 return 0;
c9f71f5f 3142 default:
a0fa2b67
DC
3143 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3144 __func__, ITEM_TYPE(item));
c9f71f5f
CH
3145 ASSERT(0);
3146 return XFS_ERROR(EIO);
3147 }
3148}
3149
3150STATIC int
3151xlog_recover_commit_pass2(
ad223e60
MT
3152 struct xlog *log,
3153 struct xlog_recover *trans,
3154 struct list_head *buffer_list,
3155 struct xlog_recover_item *item)
c9f71f5f
CH
3156{
3157 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3158
3159 switch (ITEM_TYPE(item)) {
3160 case XFS_LI_BUF:
43ff2122 3161 return xlog_recover_buffer_pass2(log, buffer_list, item);
c9f71f5f 3162 case XFS_LI_INODE:
43ff2122 3163 return xlog_recover_inode_pass2(log, buffer_list, item);
c9f71f5f
CH
3164 case XFS_LI_EFI:
3165 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3166 case XFS_LI_EFD:
3167 return xlog_recover_efd_pass2(log, item);
d0450948 3168 case XFS_LI_DQUOT:
43ff2122 3169 return xlog_recover_dquot_pass2(log, buffer_list, item);
28c8e41a
DC
3170 case XFS_LI_ICREATE:
3171 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3172 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3173 /* nothing to do in pass2 */
3174 return 0;
d0450948 3175 default:
a0fa2b67
DC
3176 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3177 __func__, ITEM_TYPE(item));
d0450948
CH
3178 ASSERT(0);
3179 return XFS_ERROR(EIO);
3180 }
3181}
3182
3183/*
3184 * Perform the transaction.
3185 *
3186 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3187 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3188 */
1da177e4
LT
3189STATIC int
3190xlog_recover_commit_trans(
ad223e60 3191 struct xlog *log,
d0450948 3192 struct xlog_recover *trans,
1da177e4
LT
3193 int pass)
3194{
43ff2122 3195 int error = 0, error2;
d0450948 3196 xlog_recover_item_t *item;
43ff2122 3197 LIST_HEAD (buffer_list);
1da177e4 3198
f0a76953 3199 hlist_del(&trans->r_list);
d0450948
CH
3200
3201 error = xlog_recover_reorder_trans(log, trans, pass);
3202 if (error)
1da177e4 3203 return error;
d0450948
CH
3204
3205 list_for_each_entry(item, &trans->r_itemq, ri_list) {
43ff2122
CH
3206 switch (pass) {
3207 case XLOG_RECOVER_PASS1:
c9f71f5f 3208 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3209 break;
3210 case XLOG_RECOVER_PASS2:
3211 error = xlog_recover_commit_pass2(log, trans,
3212 &buffer_list, item);
3213 break;
3214 default:
3215 ASSERT(0);
3216 }
3217
d0450948 3218 if (error)
43ff2122 3219 goto out;
d0450948
CH
3220 }
3221
3222 xlog_recover_free_trans(trans);
43ff2122
CH
3223
3224out:
3225 error2 = xfs_buf_delwri_submit(&buffer_list);
3226 return error ? error : error2;
1da177e4
LT
3227}
3228
3229STATIC int
3230xlog_recover_unmount_trans(
ad223e60
MT
3231 struct xlog *log,
3232 struct xlog_recover *trans)
1da177e4
LT
3233{
3234 /* Do nothing now */
a0fa2b67 3235 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
3236 return 0;
3237}
3238
3239/*
3240 * There are two valid states of the r_state field. 0 indicates that the
3241 * transaction structure is in a normal state. We have either seen the
3242 * start of the transaction or the last operation we added was not a partial
3243 * operation. If the last operation we added to the transaction was a
3244 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3245 *
3246 * NOTE: skip LRs with 0 data length.
3247 */
3248STATIC int
3249xlog_recover_process_data(
9a8d2fdb 3250 struct xlog *log,
f0a76953 3251 struct hlist_head rhash[],
9a8d2fdb 3252 struct xlog_rec_header *rhead,
1da177e4
LT
3253 xfs_caddr_t dp,
3254 int pass)
3255{
3256 xfs_caddr_t lp;
3257 int num_logops;
3258 xlog_op_header_t *ohead;
3259 xlog_recover_t *trans;
3260 xlog_tid_t tid;
3261 int error;
3262 unsigned long hash;
3263 uint flags;
3264
b53e675d
CH
3265 lp = dp + be32_to_cpu(rhead->h_len);
3266 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3267
3268 /* check the log format matches our own - else we can't recover */
3269 if (xlog_header_check_recover(log->l_mp, rhead))
3270 return (XFS_ERROR(EIO));
3271
3272 while ((dp < lp) && num_logops) {
3273 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3274 ohead = (xlog_op_header_t *)dp;
3275 dp += sizeof(xlog_op_header_t);
3276 if (ohead->oh_clientid != XFS_TRANSACTION &&
3277 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
3278 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3279 __func__, ohead->oh_clientid);
1da177e4
LT
3280 ASSERT(0);
3281 return (XFS_ERROR(EIO));
3282 }
67fcb7bf 3283 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 3284 hash = XLOG_RHASH(tid);
f0a76953 3285 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
3286 if (trans == NULL) { /* not found; add new tid */
3287 if (ohead->oh_flags & XLOG_START_TRANS)
3288 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 3289 be64_to_cpu(rhead->h_lsn));
1da177e4 3290 } else {
9742bb93 3291 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
3292 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3293 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
3294 WARN_ON(1);
3295 return (XFS_ERROR(EIO));
3296 }
1da177e4
LT
3297 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3298 if (flags & XLOG_WAS_CONT_TRANS)
3299 flags &= ~XLOG_CONTINUE_TRANS;
3300 switch (flags) {
3301 case XLOG_COMMIT_TRANS:
3302 error = xlog_recover_commit_trans(log,
f0a76953 3303 trans, pass);
1da177e4
LT
3304 break;
3305 case XLOG_UNMOUNT_TRANS:
a0fa2b67 3306 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
3307 break;
3308 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
3309 error = xlog_recover_add_to_cont_trans(log,
3310 trans, dp,
3311 be32_to_cpu(ohead->oh_len));
1da177e4
LT
3312 break;
3313 case XLOG_START_TRANS:
a0fa2b67
DC
3314 xfs_warn(log->l_mp, "%s: bad transaction",
3315 __func__);
1da177e4
LT
3316 ASSERT(0);
3317 error = XFS_ERROR(EIO);
3318 break;
3319 case 0:
3320 case XLOG_CONTINUE_TRANS:
9abbc539 3321 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 3322 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
3323 break;
3324 default:
a0fa2b67
DC
3325 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3326 __func__, flags);
1da177e4
LT
3327 ASSERT(0);
3328 error = XFS_ERROR(EIO);
3329 break;
3330 }
3331 if (error)
3332 return error;
3333 }
67fcb7bf 3334 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3335 num_logops--;
3336 }
3337 return 0;
3338}
3339
3340/*
3341 * Process an extent free intent item that was recovered from
3342 * the log. We need to free the extents that it describes.
3343 */
3c1e2bbe 3344STATIC int
1da177e4
LT
3345xlog_recover_process_efi(
3346 xfs_mount_t *mp,
3347 xfs_efi_log_item_t *efip)
3348{
3349 xfs_efd_log_item_t *efdp;
3350 xfs_trans_t *tp;
3351 int i;
3c1e2bbe 3352 int error = 0;
1da177e4
LT
3353 xfs_extent_t *extp;
3354 xfs_fsblock_t startblock_fsb;
3355
b199c8a4 3356 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3357
3358 /*
3359 * First check the validity of the extents described by the
3360 * EFI. If any are bad, then assume that all are bad and
3361 * just toss the EFI.
3362 */
3363 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3364 extp = &(efip->efi_format.efi_extents[i]);
3365 startblock_fsb = XFS_BB_TO_FSB(mp,
3366 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3367 if ((startblock_fsb == 0) ||
3368 (extp->ext_len == 0) ||
3369 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3370 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3371 /*
3372 * This will pull the EFI from the AIL and
3373 * free the memory associated with it.
3374 */
666d644c 3375 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3376 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3377 return XFS_ERROR(EIO);
1da177e4
LT
3378 }
3379 }
3380
3381 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 3382 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
3383 if (error)
3384 goto abort_error;
1da177e4
LT
3385 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3386
3387 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3388 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3389 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3390 if (error)
3391 goto abort_error;
1da177e4
LT
3392 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3393 extp->ext_len);
3394 }
3395
b199c8a4 3396 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3397 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3398 return error;
fc6149d8
DC
3399
3400abort_error:
3401 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3402 return error;
1da177e4
LT
3403}
3404
1da177e4
LT
3405/*
3406 * When this is called, all of the EFIs which did not have
3407 * corresponding EFDs should be in the AIL. What we do now
3408 * is free the extents associated with each one.
3409 *
3410 * Since we process the EFIs in normal transactions, they
3411 * will be removed at some point after the commit. This prevents
3412 * us from just walking down the list processing each one.
3413 * We'll use a flag in the EFI to skip those that we've already
3414 * processed and use the AIL iteration mechanism's generation
3415 * count to try to speed this up at least a bit.
3416 *
3417 * When we start, we know that the EFIs are the only things in
3418 * the AIL. As we process them, however, other items are added
3419 * to the AIL. Since everything added to the AIL must come after
3420 * everything already in the AIL, we stop processing as soon as
3421 * we see something other than an EFI in the AIL.
3422 */
3c1e2bbe 3423STATIC int
1da177e4 3424xlog_recover_process_efis(
9a8d2fdb 3425 struct xlog *log)
1da177e4
LT
3426{
3427 xfs_log_item_t *lip;
3428 xfs_efi_log_item_t *efip;
3c1e2bbe 3429 int error = 0;
27d8d5fe 3430 struct xfs_ail_cursor cur;
a9c21c1b 3431 struct xfs_ail *ailp;
1da177e4 3432
a9c21c1b
DC
3433 ailp = log->l_ailp;
3434 spin_lock(&ailp->xa_lock);
3435 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3436 while (lip != NULL) {
3437 /*
3438 * We're done when we see something other than an EFI.
27d8d5fe 3439 * There should be no EFIs left in the AIL now.
1da177e4
LT
3440 */
3441 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3442#ifdef DEBUG
a9c21c1b 3443 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3444 ASSERT(lip->li_type != XFS_LI_EFI);
3445#endif
1da177e4
LT
3446 break;
3447 }
3448
3449 /*
3450 * Skip EFIs that we've already processed.
3451 */
3452 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3453 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3454 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3455 continue;
3456 }
3457
a9c21c1b
DC
3458 spin_unlock(&ailp->xa_lock);
3459 error = xlog_recover_process_efi(log->l_mp, efip);
3460 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3461 if (error)
3462 goto out;
a9c21c1b 3463 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3464 }
27d8d5fe 3465out:
a9c21c1b
DC
3466 xfs_trans_ail_cursor_done(ailp, &cur);
3467 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3468 return error;
1da177e4
LT
3469}
3470
3471/*
3472 * This routine performs a transaction to null out a bad inode pointer
3473 * in an agi unlinked inode hash bucket.
3474 */
3475STATIC void
3476xlog_recover_clear_agi_bucket(
3477 xfs_mount_t *mp,
3478 xfs_agnumber_t agno,
3479 int bucket)
3480{
3481 xfs_trans_t *tp;
3482 xfs_agi_t *agi;
3483 xfs_buf_t *agibp;
3484 int offset;
3485 int error;
3486
3487 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 3488 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
3489 if (error)
3490 goto out_abort;
1da177e4 3491
5e1be0fb
CH
3492 error = xfs_read_agi(mp, tp, agno, &agibp);
3493 if (error)
e5720eec 3494 goto out_abort;
1da177e4 3495
5e1be0fb 3496 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3497 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3498 offset = offsetof(xfs_agi_t, agi_unlinked) +
3499 (sizeof(xfs_agino_t) * bucket);
3500 xfs_trans_log_buf(tp, agibp, offset,
3501 (offset + sizeof(xfs_agino_t) - 1));
3502
e5720eec
DC
3503 error = xfs_trans_commit(tp, 0);
3504 if (error)
3505 goto out_error;
3506 return;
3507
3508out_abort:
3509 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3510out_error:
a0fa2b67 3511 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3512 return;
1da177e4
LT
3513}
3514
23fac50f
CH
3515STATIC xfs_agino_t
3516xlog_recover_process_one_iunlink(
3517 struct xfs_mount *mp,
3518 xfs_agnumber_t agno,
3519 xfs_agino_t agino,
3520 int bucket)
3521{
3522 struct xfs_buf *ibp;
3523 struct xfs_dinode *dip;
3524 struct xfs_inode *ip;
3525 xfs_ino_t ino;
3526 int error;
3527
3528 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3529 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3530 if (error)
3531 goto fail;
3532
3533 /*
3534 * Get the on disk inode to find the next inode in the bucket.
3535 */
475ee413 3536 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3537 if (error)
0e446673 3538 goto fail_iput;
23fac50f 3539
23fac50f 3540 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3541 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3542
3543 /* setup for the next pass */
3544 agino = be32_to_cpu(dip->di_next_unlinked);
3545 xfs_buf_relse(ibp);
3546
3547 /*
3548 * Prevent any DMAPI event from being sent when the reference on
3549 * the inode is dropped.
3550 */
3551 ip->i_d.di_dmevmask = 0;
3552
0e446673 3553 IRELE(ip);
23fac50f
CH
3554 return agino;
3555
0e446673
CH
3556 fail_iput:
3557 IRELE(ip);
23fac50f
CH
3558 fail:
3559 /*
3560 * We can't read in the inode this bucket points to, or this inode
3561 * is messed up. Just ditch this bucket of inodes. We will lose
3562 * some inodes and space, but at least we won't hang.
3563 *
3564 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3565 * clear the inode pointer in the bucket.
3566 */
3567 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3568 return NULLAGINO;
3569}
3570
1da177e4
LT
3571/*
3572 * xlog_iunlink_recover
3573 *
3574 * This is called during recovery to process any inodes which
3575 * we unlinked but not freed when the system crashed. These
3576 * inodes will be on the lists in the AGI blocks. What we do
3577 * here is scan all the AGIs and fully truncate and free any
3578 * inodes found on the lists. Each inode is removed from the
3579 * lists when it has been fully truncated and is freed. The
3580 * freeing of the inode and its removal from the list must be
3581 * atomic.
3582 */
d96f8f89 3583STATIC void
1da177e4 3584xlog_recover_process_iunlinks(
9a8d2fdb 3585 struct xlog *log)
1da177e4
LT
3586{
3587 xfs_mount_t *mp;
3588 xfs_agnumber_t agno;
3589 xfs_agi_t *agi;
3590 xfs_buf_t *agibp;
1da177e4 3591 xfs_agino_t agino;
1da177e4
LT
3592 int bucket;
3593 int error;
3594 uint mp_dmevmask;
3595
3596 mp = log->l_mp;
3597
3598 /*
3599 * Prevent any DMAPI event from being sent while in this function.
3600 */
3601 mp_dmevmask = mp->m_dmevmask;
3602 mp->m_dmevmask = 0;
3603
3604 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3605 /*
3606 * Find the agi for this ag.
3607 */
5e1be0fb
CH
3608 error = xfs_read_agi(mp, NULL, agno, &agibp);
3609 if (error) {
3610 /*
3611 * AGI is b0rked. Don't process it.
3612 *
3613 * We should probably mark the filesystem as corrupt
3614 * after we've recovered all the ag's we can....
3615 */
3616 continue;
1da177e4 3617 }
d97d32ed
JK
3618 /*
3619 * Unlock the buffer so that it can be acquired in the normal
3620 * course of the transaction to truncate and free each inode.
3621 * Because we are not racing with anyone else here for the AGI
3622 * buffer, we don't even need to hold it locked to read the
3623 * initial unlinked bucket entries out of the buffer. We keep
3624 * buffer reference though, so that it stays pinned in memory
3625 * while we need the buffer.
3626 */
1da177e4 3627 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3628 xfs_buf_unlock(agibp);
1da177e4
LT
3629
3630 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3631 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3632 while (agino != NULLAGINO) {
23fac50f
CH
3633 agino = xlog_recover_process_one_iunlink(mp,
3634 agno, agino, bucket);
1da177e4
LT
3635 }
3636 }
d97d32ed 3637 xfs_buf_rele(agibp);
1da177e4
LT
3638 }
3639
3640 mp->m_dmevmask = mp_dmevmask;
3641}
3642
1da177e4 3643/*
0e446be4
CH
3644 * Upack the log buffer data and crc check it. If the check fails, issue a
3645 * warning if and only if the CRC in the header is non-zero. This makes the
3646 * check an advisory warning, and the zero CRC check will prevent failure
3647 * warnings from being emitted when upgrading the kernel from one that does not
3648 * add CRCs by default.
3649 *
3650 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3651 * corruption failure
1da177e4 3652 */
0e446be4
CH
3653STATIC int
3654xlog_unpack_data_crc(
3655 struct xlog_rec_header *rhead,
3656 xfs_caddr_t dp,
3657 struct xlog *log)
1da177e4 3658{
f9668a09 3659 __le32 crc;
0e446be4
CH
3660
3661 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3662 if (crc != rhead->h_crc) {
3663 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3664 xfs_alert(log->l_mp,
3665 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
f9668a09
DC
3666 le32_to_cpu(rhead->h_crc),
3667 le32_to_cpu(crc));
0e446be4 3668 xfs_hex_dump(dp, 32);
1da177e4
LT
3669 }
3670
0e446be4
CH
3671 /*
3672 * If we've detected a log record corruption, then we can't
3673 * recover past this point. Abort recovery if we are enforcing
3674 * CRC protection by punting an error back up the stack.
3675 */
3676 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3677 return EFSCORRUPTED;
1da177e4 3678 }
0e446be4
CH
3679
3680 return 0;
1da177e4
LT
3681}
3682
0e446be4 3683STATIC int
1da177e4 3684xlog_unpack_data(
9a8d2fdb 3685 struct xlog_rec_header *rhead,
1da177e4 3686 xfs_caddr_t dp,
9a8d2fdb 3687 struct xlog *log)
1da177e4
LT
3688{
3689 int i, j, k;
0e446be4
CH
3690 int error;
3691
3692 error = xlog_unpack_data_crc(rhead, dp, log);
3693 if (error)
3694 return error;
1da177e4 3695
b53e675d 3696 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3697 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3698 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3699 dp += BBSIZE;
3700 }
3701
62118709 3702 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3703 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3704 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3705 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3706 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3707 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3708 dp += BBSIZE;
3709 }
3710 }
0e446be4
CH
3711
3712 return 0;
1da177e4
LT
3713}
3714
3715STATIC int
3716xlog_valid_rec_header(
9a8d2fdb
MT
3717 struct xlog *log,
3718 struct xlog_rec_header *rhead,
1da177e4
LT
3719 xfs_daddr_t blkno)
3720{
3721 int hlen;
3722
69ef921b 3723 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
3724 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3725 XFS_ERRLEVEL_LOW, log->l_mp);
3726 return XFS_ERROR(EFSCORRUPTED);
3727 }
3728 if (unlikely(
3729 (!rhead->h_version ||
b53e675d 3730 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 3731 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 3732 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3733 return XFS_ERROR(EIO);
3734 }
3735
3736 /* LR body must have data or it wouldn't have been written */
b53e675d 3737 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3738 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3739 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3740 XFS_ERRLEVEL_LOW, log->l_mp);
3741 return XFS_ERROR(EFSCORRUPTED);
3742 }
3743 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3744 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3745 XFS_ERRLEVEL_LOW, log->l_mp);
3746 return XFS_ERROR(EFSCORRUPTED);
3747 }
3748 return 0;
3749}
3750
3751/*
3752 * Read the log from tail to head and process the log records found.
3753 * Handle the two cases where the tail and head are in the same cycle
3754 * and where the active portion of the log wraps around the end of
3755 * the physical log separately. The pass parameter is passed through
3756 * to the routines called to process the data and is not looked at
3757 * here.
3758 */
3759STATIC int
3760xlog_do_recovery_pass(
9a8d2fdb 3761 struct xlog *log,
1da177e4
LT
3762 xfs_daddr_t head_blk,
3763 xfs_daddr_t tail_blk,
3764 int pass)
3765{
3766 xlog_rec_header_t *rhead;
3767 xfs_daddr_t blk_no;
fc5bc4c8 3768 xfs_caddr_t offset;
1da177e4
LT
3769 xfs_buf_t *hbp, *dbp;
3770 int error = 0, h_size;
3771 int bblks, split_bblks;
3772 int hblks, split_hblks, wrapped_hblks;
f0a76953 3773 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3774
3775 ASSERT(head_blk != tail_blk);
3776
3777 /*
3778 * Read the header of the tail block and get the iclog buffer size from
3779 * h_size. Use this to tell how many sectors make up the log header.
3780 */
62118709 3781 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3782 /*
3783 * When using variable length iclogs, read first sector of
3784 * iclog header and extract the header size from it. Get a
3785 * new hbp that is the correct size.
3786 */
3787 hbp = xlog_get_bp(log, 1);
3788 if (!hbp)
3789 return ENOMEM;
076e6acb
CH
3790
3791 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3792 if (error)
1da177e4 3793 goto bread_err1;
076e6acb 3794
1da177e4
LT
3795 rhead = (xlog_rec_header_t *)offset;
3796 error = xlog_valid_rec_header(log, rhead, tail_blk);
3797 if (error)
3798 goto bread_err1;
b53e675d
CH
3799 h_size = be32_to_cpu(rhead->h_size);
3800 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3801 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3802 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3803 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3804 hblks++;
3805 xlog_put_bp(hbp);
3806 hbp = xlog_get_bp(log, hblks);
3807 } else {
3808 hblks = 1;
3809 }
3810 } else {
69ce58f0 3811 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3812 hblks = 1;
3813 hbp = xlog_get_bp(log, 1);
3814 h_size = XLOG_BIG_RECORD_BSIZE;
3815 }
3816
3817 if (!hbp)
3818 return ENOMEM;
3819 dbp = xlog_get_bp(log, BTOBB(h_size));
3820 if (!dbp) {
3821 xlog_put_bp(hbp);
3822 return ENOMEM;
3823 }
3824
3825 memset(rhash, 0, sizeof(rhash));
3826 if (tail_blk <= head_blk) {
3827 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3828 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3829 if (error)
1da177e4 3830 goto bread_err2;
076e6acb 3831
1da177e4
LT
3832 rhead = (xlog_rec_header_t *)offset;
3833 error = xlog_valid_rec_header(log, rhead, blk_no);
3834 if (error)
3835 goto bread_err2;
3836
3837 /* blocks in data section */
b53e675d 3838 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3839 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3840 &offset);
1da177e4
LT
3841 if (error)
3842 goto bread_err2;
076e6acb 3843
0e446be4
CH
3844 error = xlog_unpack_data(rhead, offset, log);
3845 if (error)
3846 goto bread_err2;
3847
3848 error = xlog_recover_process_data(log,
3849 rhash, rhead, offset, pass);
3850 if (error)
1da177e4
LT
3851 goto bread_err2;
3852 blk_no += bblks + hblks;
3853 }
3854 } else {
3855 /*
3856 * Perform recovery around the end of the physical log.
3857 * When the head is not on the same cycle number as the tail,
3858 * we can't do a sequential recovery as above.
3859 */
3860 blk_no = tail_blk;
3861 while (blk_no < log->l_logBBsize) {
3862 /*
3863 * Check for header wrapping around physical end-of-log
3864 */
62926044 3865 offset = hbp->b_addr;
1da177e4
LT
3866 split_hblks = 0;
3867 wrapped_hblks = 0;
3868 if (blk_no + hblks <= log->l_logBBsize) {
3869 /* Read header in one read */
076e6acb
CH
3870 error = xlog_bread(log, blk_no, hblks, hbp,
3871 &offset);
1da177e4
LT
3872 if (error)
3873 goto bread_err2;
1da177e4
LT
3874 } else {
3875 /* This LR is split across physical log end */
3876 if (blk_no != log->l_logBBsize) {
3877 /* some data before physical log end */
3878 ASSERT(blk_no <= INT_MAX);
3879 split_hblks = log->l_logBBsize - (int)blk_no;
3880 ASSERT(split_hblks > 0);
076e6acb
CH
3881 error = xlog_bread(log, blk_no,
3882 split_hblks, hbp,
3883 &offset);
3884 if (error)
1da177e4 3885 goto bread_err2;
1da177e4 3886 }
076e6acb 3887
1da177e4
LT
3888 /*
3889 * Note: this black magic still works with
3890 * large sector sizes (non-512) only because:
3891 * - we increased the buffer size originally
3892 * by 1 sector giving us enough extra space
3893 * for the second read;
3894 * - the log start is guaranteed to be sector
3895 * aligned;
3896 * - we read the log end (LR header start)
3897 * _first_, then the log start (LR header end)
3898 * - order is important.
3899 */
234f56ac 3900 wrapped_hblks = hblks - split_hblks;
44396476
DC
3901 error = xlog_bread_offset(log, 0,
3902 wrapped_hblks, hbp,
3903 offset + BBTOB(split_hblks));
1da177e4
LT
3904 if (error)
3905 goto bread_err2;
1da177e4
LT
3906 }
3907 rhead = (xlog_rec_header_t *)offset;
3908 error = xlog_valid_rec_header(log, rhead,
3909 split_hblks ? blk_no : 0);
3910 if (error)
3911 goto bread_err2;
3912
b53e675d 3913 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3914 blk_no += hblks;
3915
3916 /* Read in data for log record */
3917 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3918 error = xlog_bread(log, blk_no, bblks, dbp,
3919 &offset);
1da177e4
LT
3920 if (error)
3921 goto bread_err2;
1da177e4
LT
3922 } else {
3923 /* This log record is split across the
3924 * physical end of log */
62926044 3925 offset = dbp->b_addr;
1da177e4
LT
3926 split_bblks = 0;
3927 if (blk_no != log->l_logBBsize) {
3928 /* some data is before the physical
3929 * end of log */
3930 ASSERT(!wrapped_hblks);
3931 ASSERT(blk_no <= INT_MAX);
3932 split_bblks =
3933 log->l_logBBsize - (int)blk_no;
3934 ASSERT(split_bblks > 0);
076e6acb
CH
3935 error = xlog_bread(log, blk_no,
3936 split_bblks, dbp,
3937 &offset);
3938 if (error)
1da177e4 3939 goto bread_err2;
1da177e4 3940 }
076e6acb 3941
1da177e4
LT
3942 /*
3943 * Note: this black magic still works with
3944 * large sector sizes (non-512) only because:
3945 * - we increased the buffer size originally
3946 * by 1 sector giving us enough extra space
3947 * for the second read;
3948 * - the log start is guaranteed to be sector
3949 * aligned;
3950 * - we read the log end (LR header start)
3951 * _first_, then the log start (LR header end)
3952 * - order is important.
3953 */
44396476 3954 error = xlog_bread_offset(log, 0,
009507b0 3955 bblks - split_bblks, dbp,
44396476 3956 offset + BBTOB(split_bblks));
076e6acb
CH
3957 if (error)
3958 goto bread_err2;
1da177e4 3959 }
0e446be4
CH
3960
3961 error = xlog_unpack_data(rhead, offset, log);
3962 if (error)
3963 goto bread_err2;
3964
3965 error = xlog_recover_process_data(log, rhash,
3966 rhead, offset, pass);
3967 if (error)
1da177e4
LT
3968 goto bread_err2;
3969 blk_no += bblks;
3970 }
3971
3972 ASSERT(blk_no >= log->l_logBBsize);
3973 blk_no -= log->l_logBBsize;
3974
3975 /* read first part of physical log */
3976 while (blk_no < head_blk) {
076e6acb
CH
3977 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3978 if (error)
1da177e4 3979 goto bread_err2;
076e6acb 3980
1da177e4
LT
3981 rhead = (xlog_rec_header_t *)offset;
3982 error = xlog_valid_rec_header(log, rhead, blk_no);
3983 if (error)
3984 goto bread_err2;
076e6acb 3985
b53e675d 3986 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3987 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3988 &offset);
3989 if (error)
1da177e4 3990 goto bread_err2;
076e6acb 3991
0e446be4
CH
3992 error = xlog_unpack_data(rhead, offset, log);
3993 if (error)
3994 goto bread_err2;
3995
3996 error = xlog_recover_process_data(log, rhash,
3997 rhead, offset, pass);
3998 if (error)
1da177e4
LT
3999 goto bread_err2;
4000 blk_no += bblks + hblks;
4001 }
4002 }
4003
4004 bread_err2:
4005 xlog_put_bp(dbp);
4006 bread_err1:
4007 xlog_put_bp(hbp);
4008 return error;
4009}
4010
4011/*
4012 * Do the recovery of the log. We actually do this in two phases.
4013 * The two passes are necessary in order to implement the function
4014 * of cancelling a record written into the log. The first pass
4015 * determines those things which have been cancelled, and the
4016 * second pass replays log items normally except for those which
4017 * have been cancelled. The handling of the replay and cancellations
4018 * takes place in the log item type specific routines.
4019 *
4020 * The table of items which have cancel records in the log is allocated
4021 * and freed at this level, since only here do we know when all of
4022 * the log recovery has been completed.
4023 */
4024STATIC int
4025xlog_do_log_recovery(
9a8d2fdb 4026 struct xlog *log,
1da177e4
LT
4027 xfs_daddr_t head_blk,
4028 xfs_daddr_t tail_blk)
4029{
d5689eaa 4030 int error, i;
1da177e4
LT
4031
4032 ASSERT(head_blk != tail_blk);
4033
4034 /*
4035 * First do a pass to find all of the cancelled buf log items.
4036 * Store them in the buf_cancel_table for use in the second pass.
4037 */
d5689eaa
CH
4038 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4039 sizeof(struct list_head),
1da177e4 4040 KM_SLEEP);
d5689eaa
CH
4041 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4042 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4043
1da177e4
LT
4044 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4045 XLOG_RECOVER_PASS1);
4046 if (error != 0) {
f0e2d93c 4047 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4048 log->l_buf_cancel_table = NULL;
4049 return error;
4050 }
4051 /*
4052 * Then do a second pass to actually recover the items in the log.
4053 * When it is complete free the table of buf cancel items.
4054 */
4055 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4056 XLOG_RECOVER_PASS2);
4057#ifdef DEBUG
6d192a9b 4058 if (!error) {
1da177e4
LT
4059 int i;
4060
4061 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4062 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4063 }
4064#endif /* DEBUG */
4065
f0e2d93c 4066 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4067 log->l_buf_cancel_table = NULL;
4068
4069 return error;
4070}
4071
4072/*
4073 * Do the actual recovery
4074 */
4075STATIC int
4076xlog_do_recover(
9a8d2fdb 4077 struct xlog *log,
1da177e4
LT
4078 xfs_daddr_t head_blk,
4079 xfs_daddr_t tail_blk)
4080{
4081 int error;
4082 xfs_buf_t *bp;
4083 xfs_sb_t *sbp;
4084
4085 /*
4086 * First replay the images in the log.
4087 */
4088 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4089 if (error)
1da177e4 4090 return error;
1da177e4
LT
4091
4092 /*
4093 * If IO errors happened during recovery, bail out.
4094 */
4095 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4096 return (EIO);
4097 }
4098
4099 /*
4100 * We now update the tail_lsn since much of the recovery has completed
4101 * and there may be space available to use. If there were no extent
4102 * or iunlinks, we can free up the entire log and set the tail_lsn to
4103 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4104 * lsn of the last known good LR on disk. If there are extent frees
4105 * or iunlinks they will have some entries in the AIL; so we look at
4106 * the AIL to determine how to set the tail_lsn.
4107 */
4108 xlog_assign_tail_lsn(log->l_mp);
4109
4110 /*
4111 * Now that we've finished replaying all buffer and inode
98021821 4112 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4113 */
4114 bp = xfs_getsb(log->l_mp, 0);
4115 XFS_BUF_UNDONE(bp);
bebf963f 4116 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4117 XFS_BUF_READ(bp);
bebf963f 4118 XFS_BUF_UNASYNC(bp);
1813dd64 4119 bp->b_ops = &xfs_sb_buf_ops;
1da177e4 4120 xfsbdstrat(log->l_mp, bp);
1a1a3e97 4121 error = xfs_buf_iowait(bp);
d64e31a2 4122 if (error) {
901796af 4123 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
4124 ASSERT(0);
4125 xfs_buf_relse(bp);
4126 return error;
4127 }
4128
4129 /* Convert superblock from on-disk format */
4130 sbp = &log->l_mp->m_sb;
98021821 4131 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4132 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4133 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
4134 xfs_buf_relse(bp);
4135
5478eead
LM
4136 /* We've re-read the superblock so re-initialize per-cpu counters */
4137 xfs_icsb_reinit_counters(log->l_mp);
4138
1da177e4
LT
4139 xlog_recover_check_summary(log);
4140
4141 /* Normal transactions can now occur */
4142 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4143 return 0;
4144}
4145
4146/*
4147 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4148 *
4149 * Return error or zero.
4150 */
4151int
4152xlog_recover(
9a8d2fdb 4153 struct xlog *log)
1da177e4
LT
4154{
4155 xfs_daddr_t head_blk, tail_blk;
4156 int error;
4157
4158 /* find the tail of the log */
65be6054 4159 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
4160 return error;
4161
4162 if (tail_blk != head_blk) {
4163 /* There used to be a comment here:
4164 *
4165 * disallow recovery on read-only mounts. note -- mount
4166 * checks for ENOSPC and turns it into an intelligent
4167 * error message.
4168 * ...but this is no longer true. Now, unless you specify
4169 * NORECOVERY (in which case this function would never be
4170 * called), we just go ahead and recover. We do this all
4171 * under the vfs layer, so we can get away with it unless
4172 * the device itself is read-only, in which case we fail.
4173 */
3a02ee18 4174 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4175 return error;
4176 }
4177
e721f504
DC
4178 /*
4179 * Version 5 superblock log feature mask validation. We know the
4180 * log is dirty so check if there are any unknown log features
4181 * in what we need to recover. If there are unknown features
4182 * (e.g. unsupported transactions, then simply reject the
4183 * attempt at recovery before touching anything.
4184 */
4185 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4186 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4187 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4188 xfs_warn(log->l_mp,
4189"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4190"The log can not be fully and/or safely recovered by this kernel.\n"
4191"Please recover the log on a kernel that supports the unknown features.",
4192 (log->l_mp->m_sb.sb_features_log_incompat &
4193 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4194 return EINVAL;
4195 }
4196
a0fa2b67
DC
4197 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4198 log->l_mp->m_logname ? log->l_mp->m_logname
4199 : "internal");
1da177e4
LT
4200
4201 error = xlog_do_recover(log, head_blk, tail_blk);
4202 log->l_flags |= XLOG_RECOVERY_NEEDED;
4203 }
4204 return error;
4205}
4206
4207/*
4208 * In the first part of recovery we replay inodes and buffers and build
4209 * up the list of extent free items which need to be processed. Here
4210 * we process the extent free items and clean up the on disk unlinked
4211 * inode lists. This is separated from the first part of recovery so
4212 * that the root and real-time bitmap inodes can be read in from disk in
4213 * between the two stages. This is necessary so that we can free space
4214 * in the real-time portion of the file system.
4215 */
4216int
4217xlog_recover_finish(
9a8d2fdb 4218 struct xlog *log)
1da177e4
LT
4219{
4220 /*
4221 * Now we're ready to do the transactions needed for the
4222 * rest of recovery. Start with completing all the extent
4223 * free intent records and then process the unlinked inode
4224 * lists. At this point, we essentially run in normal mode
4225 * except that we're still performing recovery actions
4226 * rather than accepting new requests.
4227 */
4228 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4229 int error;
4230 error = xlog_recover_process_efis(log);
4231 if (error) {
a0fa2b67 4232 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4233 return error;
4234 }
1da177e4
LT
4235 /*
4236 * Sync the log to get all the EFIs out of the AIL.
4237 * This isn't absolutely necessary, but it helps in
4238 * case the unlink transactions would have problems
4239 * pushing the EFIs out of the way.
4240 */
a14a348b 4241 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4242
4249023a 4243 xlog_recover_process_iunlinks(log);
1da177e4
LT
4244
4245 xlog_recover_check_summary(log);
4246
a0fa2b67
DC
4247 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4248 log->l_mp->m_logname ? log->l_mp->m_logname
4249 : "internal");
1da177e4
LT
4250 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4251 } else {
a0fa2b67 4252 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4253 }
4254 return 0;
4255}
4256
4257
4258#if defined(DEBUG)
4259/*
4260 * Read all of the agf and agi counters and check that they
4261 * are consistent with the superblock counters.
4262 */
4263void
4264xlog_recover_check_summary(
9a8d2fdb 4265 struct xlog *log)
1da177e4
LT
4266{
4267 xfs_mount_t *mp;
4268 xfs_agf_t *agfp;
1da177e4
LT
4269 xfs_buf_t *agfbp;
4270 xfs_buf_t *agibp;
1da177e4
LT
4271 xfs_agnumber_t agno;
4272 __uint64_t freeblks;
4273 __uint64_t itotal;
4274 __uint64_t ifree;
5e1be0fb 4275 int error;
1da177e4
LT
4276
4277 mp = log->l_mp;
4278
4279 freeblks = 0LL;
4280 itotal = 0LL;
4281 ifree = 0LL;
4282 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
4283 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4284 if (error) {
a0fa2b67
DC
4285 xfs_alert(mp, "%s agf read failed agno %d error %d",
4286 __func__, agno, error);
4805621a
FCH
4287 } else {
4288 agfp = XFS_BUF_TO_AGF(agfbp);
4289 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4290 be32_to_cpu(agfp->agf_flcount);
4291 xfs_buf_relse(agfbp);
1da177e4 4292 }
1da177e4 4293
5e1be0fb 4294 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4295 if (error) {
4296 xfs_alert(mp, "%s agi read failed agno %d error %d",
4297 __func__, agno, error);
4298 } else {
5e1be0fb 4299 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4300
5e1be0fb
CH
4301 itotal += be32_to_cpu(agi->agi_count);
4302 ifree += be32_to_cpu(agi->agi_freecount);
4303 xfs_buf_relse(agibp);
4304 }
1da177e4 4305 }
1da177e4
LT
4306}
4307#endif /* DEBUG */
This page took 0.901513 seconds and 5 git commands to generate.