xfs: add CRC checks to the AGF
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
ee1a47ab 32#include "xfs_btree.h"
1da177e4 33#include "xfs_dinode.h"
1da177e4 34#include "xfs_inode.h"
a844f451 35#include "xfs_inode_item.h"
a844f451 36#include "xfs_alloc.h"
1da177e4
LT
37#include "xfs_ialloc.h"
38#include "xfs_log_priv.h"
39#include "xfs_buf_item.h"
1da177e4
LT
40#include "xfs_log_recover.h"
41#include "xfs_extfree_item.h"
42#include "xfs_trans_priv.h"
1da177e4 43#include "xfs_quota.h"
43355099 44#include "xfs_utils.h"
0e446be4 45#include "xfs_cksum.h"
0b1b213f 46#include "xfs_trace.h"
33479e05 47#include "xfs_icache.h"
1da177e4 48
9a8d2fdb
MT
49STATIC int
50xlog_find_zeroed(
51 struct xlog *,
52 xfs_daddr_t *);
53STATIC int
54xlog_clear_stale_blocks(
55 struct xlog *,
56 xfs_lsn_t);
1da177e4 57#if defined(DEBUG)
9a8d2fdb
MT
58STATIC void
59xlog_recover_check_summary(
60 struct xlog *);
1da177e4
LT
61#else
62#define xlog_recover_check_summary(log)
1da177e4
LT
63#endif
64
d5689eaa
CH
65/*
66 * This structure is used during recovery to record the buf log items which
67 * have been canceled and should not be replayed.
68 */
69struct xfs_buf_cancel {
70 xfs_daddr_t bc_blkno;
71 uint bc_len;
72 int bc_refcount;
73 struct list_head bc_list;
74};
75
1da177e4
LT
76/*
77 * Sector aligned buffer routines for buffer create/read/write/access
78 */
79
ff30a622
AE
80/*
81 * Verify the given count of basic blocks is valid number of blocks
82 * to specify for an operation involving the given XFS log buffer.
83 * Returns nonzero if the count is valid, 0 otherwise.
84 */
85
86static inline int
87xlog_buf_bbcount_valid(
9a8d2fdb 88 struct xlog *log,
ff30a622
AE
89 int bbcount)
90{
91 return bbcount > 0 && bbcount <= log->l_logBBsize;
92}
93
36adecff
AE
94/*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
5d77c0dc 99STATIC xfs_buf_t *
1da177e4 100xlog_get_bp(
9a8d2fdb 101 struct xlog *log,
3228149c 102 int nbblks)
1da177e4 103{
c8da0faf
CH
104 struct xfs_buf *bp;
105
ff30a622 106 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
108 nbblks);
109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
110 return NULL;
111 }
1da177e4 112
36adecff
AE
113 /*
114 * We do log I/O in units of log sectors (a power-of-2
115 * multiple of the basic block size), so we round up the
25985edc 116 * requested size to accommodate the basic blocks required
36adecff
AE
117 * for complete log sectors.
118 *
119 * In addition, the buffer may be used for a non-sector-
120 * aligned block offset, in which case an I/O of the
121 * requested size could extend beyond the end of the
122 * buffer. If the requested size is only 1 basic block it
123 * will never straddle a sector boundary, so this won't be
124 * an issue. Nor will this be a problem if the log I/O is
125 * done in basic blocks (sector size 1). But otherwise we
126 * extend the buffer by one extra log sector to ensure
25985edc 127 * there's space to accommodate this possibility.
36adecff 128 */
69ce58f0
AE
129 if (nbblks > 1 && log->l_sectBBsize > 1)
130 nbblks += log->l_sectBBsize;
131 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 132
e70b73f8 133 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
134 if (bp)
135 xfs_buf_unlock(bp);
136 return bp;
1da177e4
LT
137}
138
5d77c0dc 139STATIC void
1da177e4
LT
140xlog_put_bp(
141 xfs_buf_t *bp)
142{
143 xfs_buf_free(bp);
144}
145
48389ef1
AE
146/*
147 * Return the address of the start of the given block number's data
148 * in a log buffer. The buffer covers a log sector-aligned region.
149 */
076e6acb
CH
150STATIC xfs_caddr_t
151xlog_align(
9a8d2fdb 152 struct xlog *log,
076e6acb
CH
153 xfs_daddr_t blk_no,
154 int nbblks,
9a8d2fdb 155 struct xfs_buf *bp)
076e6acb 156{
fdc07f44 157 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 158
4e94b71b 159 ASSERT(offset + nbblks <= bp->b_length);
62926044 160 return bp->b_addr + BBTOB(offset);
076e6acb
CH
161}
162
1da177e4
LT
163
164/*
165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
166 */
076e6acb
CH
167STATIC int
168xlog_bread_noalign(
9a8d2fdb 169 struct xlog *log,
1da177e4
LT
170 xfs_daddr_t blk_no,
171 int nbblks,
9a8d2fdb 172 struct xfs_buf *bp)
1da177e4
LT
173{
174 int error;
175
ff30a622 176 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 177 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
178 nbblks);
179 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
180 return EFSCORRUPTED;
181 }
182
69ce58f0
AE
183 blk_no = round_down(blk_no, log->l_sectBBsize);
184 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
185
186 ASSERT(nbblks > 0);
4e94b71b 187 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
188
189 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 XFS_BUF_READ(bp);
aa0e8833 191 bp->b_io_length = nbblks;
0e95f19a 192 bp->b_error = 0;
1da177e4
LT
193
194 xfsbdstrat(log->l_mp, bp);
1a1a3e97 195 error = xfs_buf_iowait(bp);
d64e31a2 196 if (error)
901796af 197 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
198 return error;
199}
200
076e6acb
CH
201STATIC int
202xlog_bread(
9a8d2fdb 203 struct xlog *log,
076e6acb
CH
204 xfs_daddr_t blk_no,
205 int nbblks,
9a8d2fdb 206 struct xfs_buf *bp,
076e6acb
CH
207 xfs_caddr_t *offset)
208{
209 int error;
210
211 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
212 if (error)
213 return error;
214
215 *offset = xlog_align(log, blk_no, nbblks, bp);
216 return 0;
217}
218
44396476
DC
219/*
220 * Read at an offset into the buffer. Returns with the buffer in it's original
221 * state regardless of the result of the read.
222 */
223STATIC int
224xlog_bread_offset(
9a8d2fdb 225 struct xlog *log,
44396476
DC
226 xfs_daddr_t blk_no, /* block to read from */
227 int nbblks, /* blocks to read */
9a8d2fdb 228 struct xfs_buf *bp,
44396476
DC
229 xfs_caddr_t offset)
230{
62926044 231 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 232 int orig_len = BBTOB(bp->b_length);
44396476
DC
233 int error, error2;
234
02fe03d9 235 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
236 if (error)
237 return error;
238
239 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
240
241 /* must reset buffer pointer even on error */
02fe03d9 242 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
243 if (error)
244 return error;
245 return error2;
246}
247
1da177e4
LT
248/*
249 * Write out the buffer at the given block for the given number of blocks.
250 * The buffer is kept locked across the write and is returned locked.
251 * This can only be used for synchronous log writes.
252 */
ba0f32d4 253STATIC int
1da177e4 254xlog_bwrite(
9a8d2fdb 255 struct xlog *log,
1da177e4
LT
256 xfs_daddr_t blk_no,
257 int nbblks,
9a8d2fdb 258 struct xfs_buf *bp)
1da177e4
LT
259{
260 int error;
261
ff30a622 262 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 263 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
264 nbblks);
265 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
266 return EFSCORRUPTED;
267 }
268
69ce58f0
AE
269 blk_no = round_down(blk_no, log->l_sectBBsize);
270 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
271
272 ASSERT(nbblks > 0);
4e94b71b 273 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
274
275 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
276 XFS_BUF_ZEROFLAGS(bp);
72790aa1 277 xfs_buf_hold(bp);
0c842ad4 278 xfs_buf_lock(bp);
aa0e8833 279 bp->b_io_length = nbblks;
0e95f19a 280 bp->b_error = 0;
1da177e4 281
c2b006c1 282 error = xfs_bwrite(bp);
901796af
CH
283 if (error)
284 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 285 xfs_buf_relse(bp);
1da177e4
LT
286 return error;
287}
288
1da177e4
LT
289#ifdef DEBUG
290/*
291 * dump debug superblock and log record information
292 */
293STATIC void
294xlog_header_check_dump(
295 xfs_mount_t *mp,
296 xlog_rec_header_t *head)
297{
a0fa2b67 298 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 299 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 300 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 301 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
302}
303#else
304#define xlog_header_check_dump(mp, head)
305#endif
306
307/*
308 * check log record header for recovery
309 */
310STATIC int
311xlog_header_check_recover(
312 xfs_mount_t *mp,
313 xlog_rec_header_t *head)
314{
69ef921b 315 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
316
317 /*
318 * IRIX doesn't write the h_fmt field and leaves it zeroed
319 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
320 * a dirty log created in IRIX.
321 */
69ef921b 322 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
323 xfs_warn(mp,
324 "dirty log written in incompatible format - can't recover");
1da177e4
LT
325 xlog_header_check_dump(mp, head);
326 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
327 XFS_ERRLEVEL_HIGH, mp);
328 return XFS_ERROR(EFSCORRUPTED);
329 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
330 xfs_warn(mp,
331 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
332 xlog_header_check_dump(mp, head);
333 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
334 XFS_ERRLEVEL_HIGH, mp);
335 return XFS_ERROR(EFSCORRUPTED);
336 }
337 return 0;
338}
339
340/*
341 * read the head block of the log and check the header
342 */
343STATIC int
344xlog_header_check_mount(
345 xfs_mount_t *mp,
346 xlog_rec_header_t *head)
347{
69ef921b 348 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
349
350 if (uuid_is_nil(&head->h_fs_uuid)) {
351 /*
352 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
353 * h_fs_uuid is nil, we assume this log was last mounted
354 * by IRIX and continue.
355 */
a0fa2b67 356 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 357 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 358 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
359 xlog_header_check_dump(mp, head);
360 XFS_ERROR_REPORT("xlog_header_check_mount",
361 XFS_ERRLEVEL_HIGH, mp);
362 return XFS_ERROR(EFSCORRUPTED);
363 }
364 return 0;
365}
366
367STATIC void
368xlog_recover_iodone(
369 struct xfs_buf *bp)
370{
5a52c2a5 371 if (bp->b_error) {
1da177e4
LT
372 /*
373 * We're not going to bother about retrying
374 * this during recovery. One strike!
375 */
901796af 376 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
377 xfs_force_shutdown(bp->b_target->bt_mount,
378 SHUTDOWN_META_IO_ERROR);
1da177e4 379 }
cb669ca5 380 bp->b_iodone = NULL;
1a1a3e97 381 xfs_buf_ioend(bp, 0);
1da177e4
LT
382}
383
384/*
385 * This routine finds (to an approximation) the first block in the physical
386 * log which contains the given cycle. It uses a binary search algorithm.
387 * Note that the algorithm can not be perfect because the disk will not
388 * necessarily be perfect.
389 */
a8272ce0 390STATIC int
1da177e4 391xlog_find_cycle_start(
9a8d2fdb
MT
392 struct xlog *log,
393 struct xfs_buf *bp,
1da177e4
LT
394 xfs_daddr_t first_blk,
395 xfs_daddr_t *last_blk,
396 uint cycle)
397{
398 xfs_caddr_t offset;
399 xfs_daddr_t mid_blk;
e3bb2e30 400 xfs_daddr_t end_blk;
1da177e4
LT
401 uint mid_cycle;
402 int error;
403
e3bb2e30
AE
404 end_blk = *last_blk;
405 mid_blk = BLK_AVG(first_blk, end_blk);
406 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
407 error = xlog_bread(log, mid_blk, 1, bp, &offset);
408 if (error)
1da177e4 409 return error;
03bea6fe 410 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
411 if (mid_cycle == cycle)
412 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
413 else
414 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
415 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 416 }
e3bb2e30
AE
417 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
418 (mid_blk == end_blk && mid_blk-1 == first_blk));
419
420 *last_blk = end_blk;
1da177e4
LT
421
422 return 0;
423}
424
425/*
3f943d85
AE
426 * Check that a range of blocks does not contain stop_on_cycle_no.
427 * Fill in *new_blk with the block offset where such a block is
428 * found, or with -1 (an invalid block number) if there is no such
429 * block in the range. The scan needs to occur from front to back
430 * and the pointer into the region must be updated since a later
431 * routine will need to perform another test.
1da177e4
LT
432 */
433STATIC int
434xlog_find_verify_cycle(
9a8d2fdb 435 struct xlog *log,
1da177e4
LT
436 xfs_daddr_t start_blk,
437 int nbblks,
438 uint stop_on_cycle_no,
439 xfs_daddr_t *new_blk)
440{
441 xfs_daddr_t i, j;
442 uint cycle;
443 xfs_buf_t *bp;
444 xfs_daddr_t bufblks;
445 xfs_caddr_t buf = NULL;
446 int error = 0;
447
6881a229
AE
448 /*
449 * Greedily allocate a buffer big enough to handle the full
450 * range of basic blocks we'll be examining. If that fails,
451 * try a smaller size. We need to be able to read at least
452 * a log sector, or we're out of luck.
453 */
1da177e4 454 bufblks = 1 << ffs(nbblks);
81158e0c
DC
455 while (bufblks > log->l_logBBsize)
456 bufblks >>= 1;
1da177e4 457 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 458 bufblks >>= 1;
69ce58f0 459 if (bufblks < log->l_sectBBsize)
1da177e4
LT
460 return ENOMEM;
461 }
462
463 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
464 int bcount;
465
466 bcount = min(bufblks, (start_blk + nbblks - i));
467
076e6acb
CH
468 error = xlog_bread(log, i, bcount, bp, &buf);
469 if (error)
1da177e4
LT
470 goto out;
471
1da177e4 472 for (j = 0; j < bcount; j++) {
03bea6fe 473 cycle = xlog_get_cycle(buf);
1da177e4
LT
474 if (cycle == stop_on_cycle_no) {
475 *new_blk = i+j;
476 goto out;
477 }
478
479 buf += BBSIZE;
480 }
481 }
482
483 *new_blk = -1;
484
485out:
486 xlog_put_bp(bp);
487 return error;
488}
489
490/*
491 * Potentially backup over partial log record write.
492 *
493 * In the typical case, last_blk is the number of the block directly after
494 * a good log record. Therefore, we subtract one to get the block number
495 * of the last block in the given buffer. extra_bblks contains the number
496 * of blocks we would have read on a previous read. This happens when the
497 * last log record is split over the end of the physical log.
498 *
499 * extra_bblks is the number of blocks potentially verified on a previous
500 * call to this routine.
501 */
502STATIC int
503xlog_find_verify_log_record(
9a8d2fdb 504 struct xlog *log,
1da177e4
LT
505 xfs_daddr_t start_blk,
506 xfs_daddr_t *last_blk,
507 int extra_bblks)
508{
509 xfs_daddr_t i;
510 xfs_buf_t *bp;
511 xfs_caddr_t offset = NULL;
512 xlog_rec_header_t *head = NULL;
513 int error = 0;
514 int smallmem = 0;
515 int num_blks = *last_blk - start_blk;
516 int xhdrs;
517
518 ASSERT(start_blk != 0 || *last_blk != start_blk);
519
520 if (!(bp = xlog_get_bp(log, num_blks))) {
521 if (!(bp = xlog_get_bp(log, 1)))
522 return ENOMEM;
523 smallmem = 1;
524 } else {
076e6acb
CH
525 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
526 if (error)
1da177e4 527 goto out;
1da177e4
LT
528 offset += ((num_blks - 1) << BBSHIFT);
529 }
530
531 for (i = (*last_blk) - 1; i >= 0; i--) {
532 if (i < start_blk) {
533 /* valid log record not found */
a0fa2b67
DC
534 xfs_warn(log->l_mp,
535 "Log inconsistent (didn't find previous header)");
1da177e4
LT
536 ASSERT(0);
537 error = XFS_ERROR(EIO);
538 goto out;
539 }
540
541 if (smallmem) {
076e6acb
CH
542 error = xlog_bread(log, i, 1, bp, &offset);
543 if (error)
1da177e4 544 goto out;
1da177e4
LT
545 }
546
547 head = (xlog_rec_header_t *)offset;
548
69ef921b 549 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
550 break;
551
552 if (!smallmem)
553 offset -= BBSIZE;
554 }
555
556 /*
557 * We hit the beginning of the physical log & still no header. Return
558 * to caller. If caller can handle a return of -1, then this routine
559 * will be called again for the end of the physical log.
560 */
561 if (i == -1) {
562 error = -1;
563 goto out;
564 }
565
566 /*
567 * We have the final block of the good log (the first block
568 * of the log record _before_ the head. So we check the uuid.
569 */
570 if ((error = xlog_header_check_mount(log->l_mp, head)))
571 goto out;
572
573 /*
574 * We may have found a log record header before we expected one.
575 * last_blk will be the 1st block # with a given cycle #. We may end
576 * up reading an entire log record. In this case, we don't want to
577 * reset last_blk. Only when last_blk points in the middle of a log
578 * record do we update last_blk.
579 */
62118709 580 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 581 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
582
583 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
584 if (h_size % XLOG_HEADER_CYCLE_SIZE)
585 xhdrs++;
586 } else {
587 xhdrs = 1;
588 }
589
b53e675d
CH
590 if (*last_blk - i + extra_bblks !=
591 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
592 *last_blk = i;
593
594out:
595 xlog_put_bp(bp);
596 return error;
597}
598
599/*
600 * Head is defined to be the point of the log where the next log write
601 * write could go. This means that incomplete LR writes at the end are
602 * eliminated when calculating the head. We aren't guaranteed that previous
603 * LR have complete transactions. We only know that a cycle number of
604 * current cycle number -1 won't be present in the log if we start writing
605 * from our current block number.
606 *
607 * last_blk contains the block number of the first block with a given
608 * cycle number.
609 *
610 * Return: zero if normal, non-zero if error.
611 */
ba0f32d4 612STATIC int
1da177e4 613xlog_find_head(
9a8d2fdb 614 struct xlog *log,
1da177e4
LT
615 xfs_daddr_t *return_head_blk)
616{
617 xfs_buf_t *bp;
618 xfs_caddr_t offset;
619 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
620 int num_scan_bblks;
621 uint first_half_cycle, last_half_cycle;
622 uint stop_on_cycle;
623 int error, log_bbnum = log->l_logBBsize;
624
625 /* Is the end of the log device zeroed? */
626 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
627 *return_head_blk = first_blk;
628
629 /* Is the whole lot zeroed? */
630 if (!first_blk) {
631 /* Linux XFS shouldn't generate totally zeroed logs -
632 * mkfs etc write a dummy unmount record to a fresh
633 * log so we can store the uuid in there
634 */
a0fa2b67 635 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
636 }
637
638 return 0;
639 } else if (error) {
a0fa2b67 640 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
641 return error;
642 }
643
644 first_blk = 0; /* get cycle # of 1st block */
645 bp = xlog_get_bp(log, 1);
646 if (!bp)
647 return ENOMEM;
076e6acb
CH
648
649 error = xlog_bread(log, 0, 1, bp, &offset);
650 if (error)
1da177e4 651 goto bp_err;
076e6acb 652
03bea6fe 653 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
654
655 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
656 error = xlog_bread(log, last_blk, 1, bp, &offset);
657 if (error)
1da177e4 658 goto bp_err;
076e6acb 659
03bea6fe 660 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
661 ASSERT(last_half_cycle != 0);
662
663 /*
664 * If the 1st half cycle number is equal to the last half cycle number,
665 * then the entire log is stamped with the same cycle number. In this
666 * case, head_blk can't be set to zero (which makes sense). The below
667 * math doesn't work out properly with head_blk equal to zero. Instead,
668 * we set it to log_bbnum which is an invalid block number, but this
669 * value makes the math correct. If head_blk doesn't changed through
670 * all the tests below, *head_blk is set to zero at the very end rather
671 * than log_bbnum. In a sense, log_bbnum and zero are the same block
672 * in a circular file.
673 */
674 if (first_half_cycle == last_half_cycle) {
675 /*
676 * In this case we believe that the entire log should have
677 * cycle number last_half_cycle. We need to scan backwards
678 * from the end verifying that there are no holes still
679 * containing last_half_cycle - 1. If we find such a hole,
680 * then the start of that hole will be the new head. The
681 * simple case looks like
682 * x | x ... | x - 1 | x
683 * Another case that fits this picture would be
684 * x | x + 1 | x ... | x
c41564b5 685 * In this case the head really is somewhere at the end of the
1da177e4
LT
686 * log, as one of the latest writes at the beginning was
687 * incomplete.
688 * One more case is
689 * x | x + 1 | x ... | x - 1 | x
690 * This is really the combination of the above two cases, and
691 * the head has to end up at the start of the x-1 hole at the
692 * end of the log.
693 *
694 * In the 256k log case, we will read from the beginning to the
695 * end of the log and search for cycle numbers equal to x-1.
696 * We don't worry about the x+1 blocks that we encounter,
697 * because we know that they cannot be the head since the log
698 * started with x.
699 */
700 head_blk = log_bbnum;
701 stop_on_cycle = last_half_cycle - 1;
702 } else {
703 /*
704 * In this case we want to find the first block with cycle
705 * number matching last_half_cycle. We expect the log to be
706 * some variation on
3f943d85 707 * x + 1 ... | x ... | x
1da177e4
LT
708 * The first block with cycle number x (last_half_cycle) will
709 * be where the new head belongs. First we do a binary search
710 * for the first occurrence of last_half_cycle. The binary
711 * search may not be totally accurate, so then we scan back
712 * from there looking for occurrences of last_half_cycle before
713 * us. If that backwards scan wraps around the beginning of
714 * the log, then we look for occurrences of last_half_cycle - 1
715 * at the end of the log. The cases we're looking for look
716 * like
3f943d85
AE
717 * v binary search stopped here
718 * x + 1 ... | x | x + 1 | x ... | x
719 * ^ but we want to locate this spot
1da177e4 720 * or
1da177e4 721 * <---------> less than scan distance
3f943d85
AE
722 * x + 1 ... | x ... | x - 1 | x
723 * ^ we want to locate this spot
1da177e4
LT
724 */
725 stop_on_cycle = last_half_cycle;
726 if ((error = xlog_find_cycle_start(log, bp, first_blk,
727 &head_blk, last_half_cycle)))
728 goto bp_err;
729 }
730
731 /*
732 * Now validate the answer. Scan back some number of maximum possible
733 * blocks and make sure each one has the expected cycle number. The
734 * maximum is determined by the total possible amount of buffering
735 * in the in-core log. The following number can be made tighter if
736 * we actually look at the block size of the filesystem.
737 */
738 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
739 if (head_blk >= num_scan_bblks) {
740 /*
741 * We are guaranteed that the entire check can be performed
742 * in one buffer.
743 */
744 start_blk = head_blk - num_scan_bblks;
745 if ((error = xlog_find_verify_cycle(log,
746 start_blk, num_scan_bblks,
747 stop_on_cycle, &new_blk)))
748 goto bp_err;
749 if (new_blk != -1)
750 head_blk = new_blk;
751 } else { /* need to read 2 parts of log */
752 /*
753 * We are going to scan backwards in the log in two parts.
754 * First we scan the physical end of the log. In this part
755 * of the log, we are looking for blocks with cycle number
756 * last_half_cycle - 1.
757 * If we find one, then we know that the log starts there, as
758 * we've found a hole that didn't get written in going around
759 * the end of the physical log. The simple case for this is
760 * x + 1 ... | x ... | x - 1 | x
761 * <---------> less than scan distance
762 * If all of the blocks at the end of the log have cycle number
763 * last_half_cycle, then we check the blocks at the start of
764 * the log looking for occurrences of last_half_cycle. If we
765 * find one, then our current estimate for the location of the
766 * first occurrence of last_half_cycle is wrong and we move
767 * back to the hole we've found. This case looks like
768 * x + 1 ... | x | x + 1 | x ...
769 * ^ binary search stopped here
770 * Another case we need to handle that only occurs in 256k
771 * logs is
772 * x + 1 ... | x ... | x+1 | x ...
773 * ^ binary search stops here
774 * In a 256k log, the scan at the end of the log will see the
775 * x + 1 blocks. We need to skip past those since that is
776 * certainly not the head of the log. By searching for
777 * last_half_cycle-1 we accomplish that.
778 */
1da177e4 779 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
780 (xfs_daddr_t) num_scan_bblks >= head_blk);
781 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
782 if ((error = xlog_find_verify_cycle(log, start_blk,
783 num_scan_bblks - (int)head_blk,
784 (stop_on_cycle - 1), &new_blk)))
785 goto bp_err;
786 if (new_blk != -1) {
787 head_blk = new_blk;
9db127ed 788 goto validate_head;
1da177e4
LT
789 }
790
791 /*
792 * Scan beginning of log now. The last part of the physical
793 * log is good. This scan needs to verify that it doesn't find
794 * the last_half_cycle.
795 */
796 start_blk = 0;
797 ASSERT(head_blk <= INT_MAX);
798 if ((error = xlog_find_verify_cycle(log,
799 start_blk, (int)head_blk,
800 stop_on_cycle, &new_blk)))
801 goto bp_err;
802 if (new_blk != -1)
803 head_blk = new_blk;
804 }
805
9db127ed 806validate_head:
1da177e4
LT
807 /*
808 * Now we need to make sure head_blk is not pointing to a block in
809 * the middle of a log record.
810 */
811 num_scan_bblks = XLOG_REC_SHIFT(log);
812 if (head_blk >= num_scan_bblks) {
813 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
814
815 /* start ptr at last block ptr before head_blk */
816 if ((error = xlog_find_verify_log_record(log, start_blk,
817 &head_blk, 0)) == -1) {
818 error = XFS_ERROR(EIO);
819 goto bp_err;
820 } else if (error)
821 goto bp_err;
822 } else {
823 start_blk = 0;
824 ASSERT(head_blk <= INT_MAX);
825 if ((error = xlog_find_verify_log_record(log, start_blk,
826 &head_blk, 0)) == -1) {
827 /* We hit the beginning of the log during our search */
3f943d85 828 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
829 new_blk = log_bbnum;
830 ASSERT(start_blk <= INT_MAX &&
831 (xfs_daddr_t) log_bbnum-start_blk >= 0);
832 ASSERT(head_blk <= INT_MAX);
833 if ((error = xlog_find_verify_log_record(log,
834 start_blk, &new_blk,
835 (int)head_blk)) == -1) {
836 error = XFS_ERROR(EIO);
837 goto bp_err;
838 } else if (error)
839 goto bp_err;
840 if (new_blk != log_bbnum)
841 head_blk = new_blk;
842 } else if (error)
843 goto bp_err;
844 }
845
846 xlog_put_bp(bp);
847 if (head_blk == log_bbnum)
848 *return_head_blk = 0;
849 else
850 *return_head_blk = head_blk;
851 /*
852 * When returning here, we have a good block number. Bad block
853 * means that during a previous crash, we didn't have a clean break
854 * from cycle number N to cycle number N-1. In this case, we need
855 * to find the first block with cycle number N-1.
856 */
857 return 0;
858
859 bp_err:
860 xlog_put_bp(bp);
861
862 if (error)
a0fa2b67 863 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
864 return error;
865}
866
867/*
868 * Find the sync block number or the tail of the log.
869 *
870 * This will be the block number of the last record to have its
871 * associated buffers synced to disk. Every log record header has
872 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
873 * to get a sync block number. The only concern is to figure out which
874 * log record header to believe.
875 *
876 * The following algorithm uses the log record header with the largest
877 * lsn. The entire log record does not need to be valid. We only care
878 * that the header is valid.
879 *
880 * We could speed up search by using current head_blk buffer, but it is not
881 * available.
882 */
5d77c0dc 883STATIC int
1da177e4 884xlog_find_tail(
9a8d2fdb 885 struct xlog *log,
1da177e4 886 xfs_daddr_t *head_blk,
65be6054 887 xfs_daddr_t *tail_blk)
1da177e4
LT
888{
889 xlog_rec_header_t *rhead;
890 xlog_op_header_t *op_head;
891 xfs_caddr_t offset = NULL;
892 xfs_buf_t *bp;
893 int error, i, found;
894 xfs_daddr_t umount_data_blk;
895 xfs_daddr_t after_umount_blk;
896 xfs_lsn_t tail_lsn;
897 int hblks;
898
899 found = 0;
900
901 /*
902 * Find previous log record
903 */
904 if ((error = xlog_find_head(log, head_blk)))
905 return error;
906
907 bp = xlog_get_bp(log, 1);
908 if (!bp)
909 return ENOMEM;
910 if (*head_blk == 0) { /* special case */
076e6acb
CH
911 error = xlog_bread(log, 0, 1, bp, &offset);
912 if (error)
9db127ed 913 goto done;
076e6acb 914
03bea6fe 915 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
916 *tail_blk = 0;
917 /* leave all other log inited values alone */
9db127ed 918 goto done;
1da177e4
LT
919 }
920 }
921
922 /*
923 * Search backwards looking for log record header block
924 */
925 ASSERT(*head_blk < INT_MAX);
926 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
927 error = xlog_bread(log, i, 1, bp, &offset);
928 if (error)
9db127ed 929 goto done;
076e6acb 930
69ef921b 931 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
932 found = 1;
933 break;
934 }
935 }
936 /*
937 * If we haven't found the log record header block, start looking
938 * again from the end of the physical log. XXXmiken: There should be
939 * a check here to make sure we didn't search more than N blocks in
940 * the previous code.
941 */
942 if (!found) {
943 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
944 error = xlog_bread(log, i, 1, bp, &offset);
945 if (error)
9db127ed 946 goto done;
076e6acb 947
69ef921b
CH
948 if (*(__be32 *)offset ==
949 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
950 found = 2;
951 break;
952 }
953 }
954 }
955 if (!found) {
a0fa2b67 956 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1da177e4
LT
957 ASSERT(0);
958 return XFS_ERROR(EIO);
959 }
960
961 /* find blk_no of tail of log */
962 rhead = (xlog_rec_header_t *)offset;
b53e675d 963 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
964
965 /*
966 * Reset log values according to the state of the log when we
967 * crashed. In the case where head_blk == 0, we bump curr_cycle
968 * one because the next write starts a new cycle rather than
969 * continuing the cycle of the last good log record. At this
970 * point we have guaranteed that all partial log records have been
971 * accounted for. Therefore, we know that the last good log record
972 * written was complete and ended exactly on the end boundary
973 * of the physical log.
974 */
975 log->l_prev_block = i;
976 log->l_curr_block = (int)*head_blk;
b53e675d 977 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
978 if (found == 2)
979 log->l_curr_cycle++;
1c3cb9ec 980 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 981 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 982 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 983 BBTOB(log->l_curr_block));
28496968 984 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 985 BBTOB(log->l_curr_block));
1da177e4
LT
986
987 /*
988 * Look for unmount record. If we find it, then we know there
989 * was a clean unmount. Since 'i' could be the last block in
990 * the physical log, we convert to a log block before comparing
991 * to the head_blk.
992 *
993 * Save the current tail lsn to use to pass to
994 * xlog_clear_stale_blocks() below. We won't want to clear the
995 * unmount record if there is one, so we pass the lsn of the
996 * unmount record rather than the block after it.
997 */
62118709 998 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
999 int h_size = be32_to_cpu(rhead->h_size);
1000 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1001
1002 if ((h_version & XLOG_VERSION_2) &&
1003 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1004 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1005 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1006 hblks++;
1007 } else {
1008 hblks = 1;
1009 }
1010 } else {
1011 hblks = 1;
1012 }
1013 after_umount_blk = (i + hblks + (int)
b53e675d 1014 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1015 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1016 if (*head_blk == after_umount_blk &&
b53e675d 1017 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1018 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1019 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1020 if (error)
9db127ed 1021 goto done;
076e6acb 1022
1da177e4
LT
1023 op_head = (xlog_op_header_t *)offset;
1024 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1025 /*
1026 * Set tail and last sync so that newly written
1027 * log records will point recovery to after the
1028 * current unmount record.
1029 */
1c3cb9ec
DC
1030 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1031 log->l_curr_cycle, after_umount_blk);
1032 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1033 log->l_curr_cycle, after_umount_blk);
1da177e4 1034 *tail_blk = after_umount_blk;
92821e2b
DC
1035
1036 /*
1037 * Note that the unmount was clean. If the unmount
1038 * was not clean, we need to know this to rebuild the
1039 * superblock counters from the perag headers if we
1040 * have a filesystem using non-persistent counters.
1041 */
1042 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1043 }
1044 }
1045
1046 /*
1047 * Make sure that there are no blocks in front of the head
1048 * with the same cycle number as the head. This can happen
1049 * because we allow multiple outstanding log writes concurrently,
1050 * and the later writes might make it out before earlier ones.
1051 *
1052 * We use the lsn from before modifying it so that we'll never
1053 * overwrite the unmount record after a clean unmount.
1054 *
1055 * Do this only if we are going to recover the filesystem
1056 *
1057 * NOTE: This used to say "if (!readonly)"
1058 * However on Linux, we can & do recover a read-only filesystem.
1059 * We only skip recovery if NORECOVERY is specified on mount,
1060 * in which case we would not be here.
1061 *
1062 * But... if the -device- itself is readonly, just skip this.
1063 * We can't recover this device anyway, so it won't matter.
1064 */
9db127ed 1065 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1066 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1067
9db127ed 1068done:
1da177e4
LT
1069 xlog_put_bp(bp);
1070
1071 if (error)
a0fa2b67 1072 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1073 return error;
1074}
1075
1076/*
1077 * Is the log zeroed at all?
1078 *
1079 * The last binary search should be changed to perform an X block read
1080 * once X becomes small enough. You can then search linearly through
1081 * the X blocks. This will cut down on the number of reads we need to do.
1082 *
1083 * If the log is partially zeroed, this routine will pass back the blkno
1084 * of the first block with cycle number 0. It won't have a complete LR
1085 * preceding it.
1086 *
1087 * Return:
1088 * 0 => the log is completely written to
1089 * -1 => use *blk_no as the first block of the log
1090 * >0 => error has occurred
1091 */
a8272ce0 1092STATIC int
1da177e4 1093xlog_find_zeroed(
9a8d2fdb 1094 struct xlog *log,
1da177e4
LT
1095 xfs_daddr_t *blk_no)
1096{
1097 xfs_buf_t *bp;
1098 xfs_caddr_t offset;
1099 uint first_cycle, last_cycle;
1100 xfs_daddr_t new_blk, last_blk, start_blk;
1101 xfs_daddr_t num_scan_bblks;
1102 int error, log_bbnum = log->l_logBBsize;
1103
6fdf8ccc
NS
1104 *blk_no = 0;
1105
1da177e4
LT
1106 /* check totally zeroed log */
1107 bp = xlog_get_bp(log, 1);
1108 if (!bp)
1109 return ENOMEM;
076e6acb
CH
1110 error = xlog_bread(log, 0, 1, bp, &offset);
1111 if (error)
1da177e4 1112 goto bp_err;
076e6acb 1113
03bea6fe 1114 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1115 if (first_cycle == 0) { /* completely zeroed log */
1116 *blk_no = 0;
1117 xlog_put_bp(bp);
1118 return -1;
1119 }
1120
1121 /* check partially zeroed log */
076e6acb
CH
1122 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1123 if (error)
1da177e4 1124 goto bp_err;
076e6acb 1125
03bea6fe 1126 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1127 if (last_cycle != 0) { /* log completely written to */
1128 xlog_put_bp(bp);
1129 return 0;
1130 } else if (first_cycle != 1) {
1131 /*
1132 * If the cycle of the last block is zero, the cycle of
1133 * the first block must be 1. If it's not, maybe we're
1134 * not looking at a log... Bail out.
1135 */
a0fa2b67
DC
1136 xfs_warn(log->l_mp,
1137 "Log inconsistent or not a log (last==0, first!=1)");
1da177e4
LT
1138 return XFS_ERROR(EINVAL);
1139 }
1140
1141 /* we have a partially zeroed log */
1142 last_blk = log_bbnum-1;
1143 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1144 goto bp_err;
1145
1146 /*
1147 * Validate the answer. Because there is no way to guarantee that
1148 * the entire log is made up of log records which are the same size,
1149 * we scan over the defined maximum blocks. At this point, the maximum
1150 * is not chosen to mean anything special. XXXmiken
1151 */
1152 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1153 ASSERT(num_scan_bblks <= INT_MAX);
1154
1155 if (last_blk < num_scan_bblks)
1156 num_scan_bblks = last_blk;
1157 start_blk = last_blk - num_scan_bblks;
1158
1159 /*
1160 * We search for any instances of cycle number 0 that occur before
1161 * our current estimate of the head. What we're trying to detect is
1162 * 1 ... | 0 | 1 | 0...
1163 * ^ binary search ends here
1164 */
1165 if ((error = xlog_find_verify_cycle(log, start_blk,
1166 (int)num_scan_bblks, 0, &new_blk)))
1167 goto bp_err;
1168 if (new_blk != -1)
1169 last_blk = new_blk;
1170
1171 /*
1172 * Potentially backup over partial log record write. We don't need
1173 * to search the end of the log because we know it is zero.
1174 */
1175 if ((error = xlog_find_verify_log_record(log, start_blk,
1176 &last_blk, 0)) == -1) {
1177 error = XFS_ERROR(EIO);
1178 goto bp_err;
1179 } else if (error)
1180 goto bp_err;
1181
1182 *blk_no = last_blk;
1183bp_err:
1184 xlog_put_bp(bp);
1185 if (error)
1186 return error;
1187 return -1;
1188}
1189
1190/*
1191 * These are simple subroutines used by xlog_clear_stale_blocks() below
1192 * to initialize a buffer full of empty log record headers and write
1193 * them into the log.
1194 */
1195STATIC void
1196xlog_add_record(
9a8d2fdb 1197 struct xlog *log,
1da177e4
LT
1198 xfs_caddr_t buf,
1199 int cycle,
1200 int block,
1201 int tail_cycle,
1202 int tail_block)
1203{
1204 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1205
1206 memset(buf, 0, BBSIZE);
b53e675d
CH
1207 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1208 recp->h_cycle = cpu_to_be32(cycle);
1209 recp->h_version = cpu_to_be32(
62118709 1210 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1211 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1212 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1213 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1214 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1215}
1216
1217STATIC int
1218xlog_write_log_records(
9a8d2fdb 1219 struct xlog *log,
1da177e4
LT
1220 int cycle,
1221 int start_block,
1222 int blocks,
1223 int tail_cycle,
1224 int tail_block)
1225{
1226 xfs_caddr_t offset;
1227 xfs_buf_t *bp;
1228 int balign, ealign;
69ce58f0 1229 int sectbb = log->l_sectBBsize;
1da177e4
LT
1230 int end_block = start_block + blocks;
1231 int bufblks;
1232 int error = 0;
1233 int i, j = 0;
1234
6881a229
AE
1235 /*
1236 * Greedily allocate a buffer big enough to handle the full
1237 * range of basic blocks to be written. If that fails, try
1238 * a smaller size. We need to be able to write at least a
1239 * log sector, or we're out of luck.
1240 */
1da177e4 1241 bufblks = 1 << ffs(blocks);
81158e0c
DC
1242 while (bufblks > log->l_logBBsize)
1243 bufblks >>= 1;
1da177e4
LT
1244 while (!(bp = xlog_get_bp(log, bufblks))) {
1245 bufblks >>= 1;
69ce58f0 1246 if (bufblks < sectbb)
1da177e4
LT
1247 return ENOMEM;
1248 }
1249
1250 /* We may need to do a read at the start to fill in part of
1251 * the buffer in the starting sector not covered by the first
1252 * write below.
1253 */
5c17f533 1254 balign = round_down(start_block, sectbb);
1da177e4 1255 if (balign != start_block) {
076e6acb
CH
1256 error = xlog_bread_noalign(log, start_block, 1, bp);
1257 if (error)
1258 goto out_put_bp;
1259
1da177e4
LT
1260 j = start_block - balign;
1261 }
1262
1263 for (i = start_block; i < end_block; i += bufblks) {
1264 int bcount, endcount;
1265
1266 bcount = min(bufblks, end_block - start_block);
1267 endcount = bcount - j;
1268
1269 /* We may need to do a read at the end to fill in part of
1270 * the buffer in the final sector not covered by the write.
1271 * If this is the same sector as the above read, skip it.
1272 */
5c17f533 1273 ealign = round_down(end_block, sectbb);
1da177e4 1274 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1275 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1276 error = xlog_bread_offset(log, ealign, sectbb,
1277 bp, offset);
076e6acb
CH
1278 if (error)
1279 break;
1280
1da177e4
LT
1281 }
1282
1283 offset = xlog_align(log, start_block, endcount, bp);
1284 for (; j < endcount; j++) {
1285 xlog_add_record(log, offset, cycle, i+j,
1286 tail_cycle, tail_block);
1287 offset += BBSIZE;
1288 }
1289 error = xlog_bwrite(log, start_block, endcount, bp);
1290 if (error)
1291 break;
1292 start_block += endcount;
1293 j = 0;
1294 }
076e6acb
CH
1295
1296 out_put_bp:
1da177e4
LT
1297 xlog_put_bp(bp);
1298 return error;
1299}
1300
1301/*
1302 * This routine is called to blow away any incomplete log writes out
1303 * in front of the log head. We do this so that we won't become confused
1304 * if we come up, write only a little bit more, and then crash again.
1305 * If we leave the partial log records out there, this situation could
1306 * cause us to think those partial writes are valid blocks since they
1307 * have the current cycle number. We get rid of them by overwriting them
1308 * with empty log records with the old cycle number rather than the
1309 * current one.
1310 *
1311 * The tail lsn is passed in rather than taken from
1312 * the log so that we will not write over the unmount record after a
1313 * clean unmount in a 512 block log. Doing so would leave the log without
1314 * any valid log records in it until a new one was written. If we crashed
1315 * during that time we would not be able to recover.
1316 */
1317STATIC int
1318xlog_clear_stale_blocks(
9a8d2fdb 1319 struct xlog *log,
1da177e4
LT
1320 xfs_lsn_t tail_lsn)
1321{
1322 int tail_cycle, head_cycle;
1323 int tail_block, head_block;
1324 int tail_distance, max_distance;
1325 int distance;
1326 int error;
1327
1328 tail_cycle = CYCLE_LSN(tail_lsn);
1329 tail_block = BLOCK_LSN(tail_lsn);
1330 head_cycle = log->l_curr_cycle;
1331 head_block = log->l_curr_block;
1332
1333 /*
1334 * Figure out the distance between the new head of the log
1335 * and the tail. We want to write over any blocks beyond the
1336 * head that we may have written just before the crash, but
1337 * we don't want to overwrite the tail of the log.
1338 */
1339 if (head_cycle == tail_cycle) {
1340 /*
1341 * The tail is behind the head in the physical log,
1342 * so the distance from the head to the tail is the
1343 * distance from the head to the end of the log plus
1344 * the distance from the beginning of the log to the
1345 * tail.
1346 */
1347 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1348 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1349 XFS_ERRLEVEL_LOW, log->l_mp);
1350 return XFS_ERROR(EFSCORRUPTED);
1351 }
1352 tail_distance = tail_block + (log->l_logBBsize - head_block);
1353 } else {
1354 /*
1355 * The head is behind the tail in the physical log,
1356 * so the distance from the head to the tail is just
1357 * the tail block minus the head block.
1358 */
1359 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1360 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1361 XFS_ERRLEVEL_LOW, log->l_mp);
1362 return XFS_ERROR(EFSCORRUPTED);
1363 }
1364 tail_distance = tail_block - head_block;
1365 }
1366
1367 /*
1368 * If the head is right up against the tail, we can't clear
1369 * anything.
1370 */
1371 if (tail_distance <= 0) {
1372 ASSERT(tail_distance == 0);
1373 return 0;
1374 }
1375
1376 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1377 /*
1378 * Take the smaller of the maximum amount of outstanding I/O
1379 * we could have and the distance to the tail to clear out.
1380 * We take the smaller so that we don't overwrite the tail and
1381 * we don't waste all day writing from the head to the tail
1382 * for no reason.
1383 */
1384 max_distance = MIN(max_distance, tail_distance);
1385
1386 if ((head_block + max_distance) <= log->l_logBBsize) {
1387 /*
1388 * We can stomp all the blocks we need to without
1389 * wrapping around the end of the log. Just do it
1390 * in a single write. Use the cycle number of the
1391 * current cycle minus one so that the log will look like:
1392 * n ... | n - 1 ...
1393 */
1394 error = xlog_write_log_records(log, (head_cycle - 1),
1395 head_block, max_distance, tail_cycle,
1396 tail_block);
1397 if (error)
1398 return error;
1399 } else {
1400 /*
1401 * We need to wrap around the end of the physical log in
1402 * order to clear all the blocks. Do it in two separate
1403 * I/Os. The first write should be from the head to the
1404 * end of the physical log, and it should use the current
1405 * cycle number minus one just like above.
1406 */
1407 distance = log->l_logBBsize - head_block;
1408 error = xlog_write_log_records(log, (head_cycle - 1),
1409 head_block, distance, tail_cycle,
1410 tail_block);
1411
1412 if (error)
1413 return error;
1414
1415 /*
1416 * Now write the blocks at the start of the physical log.
1417 * This writes the remainder of the blocks we want to clear.
1418 * It uses the current cycle number since we're now on the
1419 * same cycle as the head so that we get:
1420 * n ... n ... | n - 1 ...
1421 * ^^^^^ blocks we're writing
1422 */
1423 distance = max_distance - (log->l_logBBsize - head_block);
1424 error = xlog_write_log_records(log, head_cycle, 0, distance,
1425 tail_cycle, tail_block);
1426 if (error)
1427 return error;
1428 }
1429
1430 return 0;
1431}
1432
1433/******************************************************************************
1434 *
1435 * Log recover routines
1436 *
1437 ******************************************************************************
1438 */
1439
1440STATIC xlog_recover_t *
1441xlog_recover_find_tid(
f0a76953 1442 struct hlist_head *head,
1da177e4
LT
1443 xlog_tid_t tid)
1444{
f0a76953 1445 xlog_recover_t *trans;
1da177e4 1446
b67bfe0d 1447 hlist_for_each_entry(trans, head, r_list) {
f0a76953
DC
1448 if (trans->r_log_tid == tid)
1449 return trans;
1da177e4 1450 }
f0a76953 1451 return NULL;
1da177e4
LT
1452}
1453
1454STATIC void
f0a76953
DC
1455xlog_recover_new_tid(
1456 struct hlist_head *head,
1457 xlog_tid_t tid,
1458 xfs_lsn_t lsn)
1da177e4 1459{
f0a76953
DC
1460 xlog_recover_t *trans;
1461
1462 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1463 trans->r_log_tid = tid;
1464 trans->r_lsn = lsn;
1465 INIT_LIST_HEAD(&trans->r_itemq);
1466
1467 INIT_HLIST_NODE(&trans->r_list);
1468 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1469}
1470
1471STATIC void
1472xlog_recover_add_item(
f0a76953 1473 struct list_head *head)
1da177e4
LT
1474{
1475 xlog_recover_item_t *item;
1476
1477 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1478 INIT_LIST_HEAD(&item->ri_list);
1479 list_add_tail(&item->ri_list, head);
1da177e4
LT
1480}
1481
1482STATIC int
1483xlog_recover_add_to_cont_trans(
ad223e60
MT
1484 struct xlog *log,
1485 struct xlog_recover *trans,
1da177e4
LT
1486 xfs_caddr_t dp,
1487 int len)
1488{
1489 xlog_recover_item_t *item;
1490 xfs_caddr_t ptr, old_ptr;
1491 int old_len;
1492
f0a76953 1493 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1494 /* finish copying rest of trans header */
1495 xlog_recover_add_item(&trans->r_itemq);
1496 ptr = (xfs_caddr_t) &trans->r_theader +
1497 sizeof(xfs_trans_header_t) - len;
1498 memcpy(ptr, dp, len); /* d, s, l */
1499 return 0;
1500 }
f0a76953
DC
1501 /* take the tail entry */
1502 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1503
1504 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1505 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1506
45053603 1507 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1508 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1509 item->ri_buf[item->ri_cnt-1].i_len += len;
1510 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1511 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1512 return 0;
1513}
1514
1515/*
1516 * The next region to add is the start of a new region. It could be
1517 * a whole region or it could be the first part of a new region. Because
1518 * of this, the assumption here is that the type and size fields of all
1519 * format structures fit into the first 32 bits of the structure.
1520 *
1521 * This works because all regions must be 32 bit aligned. Therefore, we
1522 * either have both fields or we have neither field. In the case we have
1523 * neither field, the data part of the region is zero length. We only have
1524 * a log_op_header and can throw away the header since a new one will appear
1525 * later. If we have at least 4 bytes, then we can determine how many regions
1526 * will appear in the current log item.
1527 */
1528STATIC int
1529xlog_recover_add_to_trans(
ad223e60
MT
1530 struct xlog *log,
1531 struct xlog_recover *trans,
1da177e4
LT
1532 xfs_caddr_t dp,
1533 int len)
1534{
1535 xfs_inode_log_format_t *in_f; /* any will do */
1536 xlog_recover_item_t *item;
1537 xfs_caddr_t ptr;
1538
1539 if (!len)
1540 return 0;
f0a76953 1541 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1542 /* we need to catch log corruptions here */
1543 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1544 xfs_warn(log->l_mp, "%s: bad header magic number",
1545 __func__);
5a792c45
DC
1546 ASSERT(0);
1547 return XFS_ERROR(EIO);
1548 }
1da177e4
LT
1549 if (len == sizeof(xfs_trans_header_t))
1550 xlog_recover_add_item(&trans->r_itemq);
1551 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1552 return 0;
1553 }
1554
1555 ptr = kmem_alloc(len, KM_SLEEP);
1556 memcpy(ptr, dp, len);
1557 in_f = (xfs_inode_log_format_t *)ptr;
1558
f0a76953
DC
1559 /* take the tail entry */
1560 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1561 if (item->ri_total != 0 &&
1562 item->ri_total == item->ri_cnt) {
1563 /* tail item is in use, get a new one */
1da177e4 1564 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1565 item = list_entry(trans->r_itemq.prev,
1566 xlog_recover_item_t, ri_list);
1da177e4 1567 }
1da177e4
LT
1568
1569 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1570 if (in_f->ilf_size == 0 ||
1571 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1572 xfs_warn(log->l_mp,
1573 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1574 in_f->ilf_size);
1575 ASSERT(0);
1576 return XFS_ERROR(EIO);
1577 }
1578
1579 item->ri_total = in_f->ilf_size;
1580 item->ri_buf =
1581 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1582 KM_SLEEP);
1da177e4
LT
1583 }
1584 ASSERT(item->ri_total > item->ri_cnt);
1585 /* Description region is ri_buf[0] */
1586 item->ri_buf[item->ri_cnt].i_addr = ptr;
1587 item->ri_buf[item->ri_cnt].i_len = len;
1588 item->ri_cnt++;
9abbc539 1589 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1590 return 0;
1591}
1592
f0a76953
DC
1593/*
1594 * Sort the log items in the transaction. Cancelled buffers need
1595 * to be put first so they are processed before any items that might
1596 * modify the buffers. If they are cancelled, then the modifications
1597 * don't need to be replayed.
1598 */
1da177e4
LT
1599STATIC int
1600xlog_recover_reorder_trans(
ad223e60
MT
1601 struct xlog *log,
1602 struct xlog_recover *trans,
9abbc539 1603 int pass)
1da177e4 1604{
f0a76953
DC
1605 xlog_recover_item_t *item, *n;
1606 LIST_HEAD(sort_list);
1607
1608 list_splice_init(&trans->r_itemq, &sort_list);
1609 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1610 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1611
f0a76953 1612 switch (ITEM_TYPE(item)) {
1da177e4 1613 case XFS_LI_BUF:
c1155410 1614 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539
DC
1615 trace_xfs_log_recover_item_reorder_head(log,
1616 trans, item, pass);
f0a76953 1617 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1618 break;
1619 }
1620 case XFS_LI_INODE:
1da177e4
LT
1621 case XFS_LI_DQUOT:
1622 case XFS_LI_QUOTAOFF:
1623 case XFS_LI_EFD:
1624 case XFS_LI_EFI:
9abbc539
DC
1625 trace_xfs_log_recover_item_reorder_tail(log,
1626 trans, item, pass);
f0a76953 1627 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1628 break;
1629 default:
a0fa2b67
DC
1630 xfs_warn(log->l_mp,
1631 "%s: unrecognized type of log operation",
1632 __func__);
1da177e4
LT
1633 ASSERT(0);
1634 return XFS_ERROR(EIO);
1635 }
f0a76953
DC
1636 }
1637 ASSERT(list_empty(&sort_list));
1da177e4
LT
1638 return 0;
1639}
1640
1641/*
1642 * Build up the table of buf cancel records so that we don't replay
1643 * cancelled data in the second pass. For buffer records that are
1644 * not cancel records, there is nothing to do here so we just return.
1645 *
1646 * If we get a cancel record which is already in the table, this indicates
1647 * that the buffer was cancelled multiple times. In order to ensure
1648 * that during pass 2 we keep the record in the table until we reach its
1649 * last occurrence in the log, we keep a reference count in the cancel
1650 * record in the table to tell us how many times we expect to see this
1651 * record during the second pass.
1652 */
c9f71f5f
CH
1653STATIC int
1654xlog_recover_buffer_pass1(
ad223e60
MT
1655 struct xlog *log,
1656 struct xlog_recover_item *item)
1da177e4 1657{
c9f71f5f 1658 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1659 struct list_head *bucket;
1660 struct xfs_buf_cancel *bcp;
1da177e4
LT
1661
1662 /*
1663 * If this isn't a cancel buffer item, then just return.
1664 */
e2714bf8 1665 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1666 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1667 return 0;
9abbc539 1668 }
1da177e4
LT
1669
1670 /*
d5689eaa
CH
1671 * Insert an xfs_buf_cancel record into the hash table of them.
1672 * If there is already an identical record, bump its reference count.
1da177e4 1673 */
d5689eaa
CH
1674 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1675 list_for_each_entry(bcp, bucket, bc_list) {
1676 if (bcp->bc_blkno == buf_f->blf_blkno &&
1677 bcp->bc_len == buf_f->blf_len) {
1678 bcp->bc_refcount++;
9abbc539 1679 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1680 return 0;
1da177e4 1681 }
d5689eaa
CH
1682 }
1683
1684 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1685 bcp->bc_blkno = buf_f->blf_blkno;
1686 bcp->bc_len = buf_f->blf_len;
1da177e4 1687 bcp->bc_refcount = 1;
d5689eaa
CH
1688 list_add_tail(&bcp->bc_list, bucket);
1689
9abbc539 1690 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1691 return 0;
1da177e4
LT
1692}
1693
1694/*
1695 * Check to see whether the buffer being recovered has a corresponding
1696 * entry in the buffer cancel record table. If it does then return 1
1697 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1698 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1699 * the refcount on the entry in the table and remove it from the table
1700 * if this is the last reference.
1701 *
1702 * We remove the cancel record from the table when we encounter its
1703 * last occurrence in the log so that if the same buffer is re-used
1704 * again after its last cancellation we actually replay the changes
1705 * made at that point.
1706 */
1707STATIC int
1708xlog_check_buffer_cancelled(
ad223e60 1709 struct xlog *log,
1da177e4
LT
1710 xfs_daddr_t blkno,
1711 uint len,
1712 ushort flags)
1713{
d5689eaa
CH
1714 struct list_head *bucket;
1715 struct xfs_buf_cancel *bcp;
1da177e4
LT
1716
1717 if (log->l_buf_cancel_table == NULL) {
1718 /*
1719 * There is nothing in the table built in pass one,
1720 * so this buffer must not be cancelled.
1721 */
c1155410 1722 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1723 return 0;
1724 }
1725
1da177e4 1726 /*
d5689eaa 1727 * Search for an entry in the cancel table that matches our buffer.
1da177e4 1728 */
d5689eaa
CH
1729 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1730 list_for_each_entry(bcp, bucket, bc_list) {
1731 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1732 goto found;
1da177e4 1733 }
d5689eaa 1734
1da177e4 1735 /*
d5689eaa
CH
1736 * We didn't find a corresponding entry in the table, so return 0 so
1737 * that the buffer is NOT cancelled.
1da177e4 1738 */
c1155410 1739 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4 1740 return 0;
d5689eaa
CH
1741
1742found:
1743 /*
1744 * We've go a match, so return 1 so that the recovery of this buffer
1745 * is cancelled. If this buffer is actually a buffer cancel log
1746 * item, then decrement the refcount on the one in the table and
1747 * remove it if this is the last reference.
1748 */
1749 if (flags & XFS_BLF_CANCEL) {
1750 if (--bcp->bc_refcount == 0) {
1751 list_del(&bcp->bc_list);
1752 kmem_free(bcp);
1753 }
1754 }
1755 return 1;
1da177e4
LT
1756}
1757
1da177e4 1758/*
e2714bf8
CH
1759 * Perform recovery for a buffer full of inodes. In these buffers, the only
1760 * data which should be recovered is that which corresponds to the
1761 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1762 * data for the inodes is always logged through the inodes themselves rather
1763 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1764 *
e2714bf8
CH
1765 * The only time when buffers full of inodes are fully recovered is when the
1766 * buffer is full of newly allocated inodes. In this case the buffer will
1767 * not be marked as an inode buffer and so will be sent to
1768 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1769 */
1770STATIC int
1771xlog_recover_do_inode_buffer(
e2714bf8 1772 struct xfs_mount *mp,
1da177e4 1773 xlog_recover_item_t *item,
e2714bf8 1774 struct xfs_buf *bp,
1da177e4
LT
1775 xfs_buf_log_format_t *buf_f)
1776{
1777 int i;
e2714bf8
CH
1778 int item_index = 0;
1779 int bit = 0;
1780 int nbits = 0;
1781 int reg_buf_offset = 0;
1782 int reg_buf_bytes = 0;
1da177e4
LT
1783 int next_unlinked_offset;
1784 int inodes_per_buf;
1785 xfs_agino_t *logged_nextp;
1786 xfs_agino_t *buffer_nextp;
1da177e4 1787
9abbc539
DC
1788 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1789
aa0e8833 1790 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1791 for (i = 0; i < inodes_per_buf; i++) {
1792 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1793 offsetof(xfs_dinode_t, di_next_unlinked);
1794
1795 while (next_unlinked_offset >=
1796 (reg_buf_offset + reg_buf_bytes)) {
1797 /*
1798 * The next di_next_unlinked field is beyond
1799 * the current logged region. Find the next
1800 * logged region that contains or is beyond
1801 * the current di_next_unlinked field.
1802 */
1803 bit += nbits;
e2714bf8
CH
1804 bit = xfs_next_bit(buf_f->blf_data_map,
1805 buf_f->blf_map_size, bit);
1da177e4
LT
1806
1807 /*
1808 * If there are no more logged regions in the
1809 * buffer, then we're done.
1810 */
e2714bf8 1811 if (bit == -1)
1da177e4 1812 return 0;
1da177e4 1813
e2714bf8
CH
1814 nbits = xfs_contig_bits(buf_f->blf_data_map,
1815 buf_f->blf_map_size, bit);
1da177e4 1816 ASSERT(nbits > 0);
c1155410
DC
1817 reg_buf_offset = bit << XFS_BLF_SHIFT;
1818 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1819 item_index++;
1820 }
1821
1822 /*
1823 * If the current logged region starts after the current
1824 * di_next_unlinked field, then move on to the next
1825 * di_next_unlinked field.
1826 */
e2714bf8 1827 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1828 continue;
1da177e4
LT
1829
1830 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1831 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1832 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1833 BBTOB(bp->b_io_length));
1da177e4
LT
1834
1835 /*
1836 * The current logged region contains a copy of the
1837 * current di_next_unlinked field. Extract its value
1838 * and copy it to the buffer copy.
1839 */
4e0d5f92
CH
1840 logged_nextp = item->ri_buf[item_index].i_addr +
1841 next_unlinked_offset - reg_buf_offset;
1da177e4 1842 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1843 xfs_alert(mp,
1844 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1845 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1846 item, bp);
1847 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1848 XFS_ERRLEVEL_LOW, mp);
1849 return XFS_ERROR(EFSCORRUPTED);
1850 }
1851
1852 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1853 next_unlinked_offset);
87c199c2 1854 *buffer_nextp = *logged_nextp;
1da177e4
LT
1855 }
1856
1857 return 0;
1858}
1859
1860/*
1861 * Perform a 'normal' buffer recovery. Each logged region of the
1862 * buffer should be copied over the corresponding region in the
1863 * given buffer. The bitmap in the buf log format structure indicates
1864 * where to place the logged data.
1865 */
1da177e4
LT
1866STATIC void
1867xlog_recover_do_reg_buffer(
9abbc539 1868 struct xfs_mount *mp,
1da177e4 1869 xlog_recover_item_t *item,
e2714bf8 1870 struct xfs_buf *bp,
1da177e4
LT
1871 xfs_buf_log_format_t *buf_f)
1872{
1873 int i;
1874 int bit;
1875 int nbits;
1da177e4
LT
1876 int error;
1877
9abbc539
DC
1878 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1879
1da177e4
LT
1880 bit = 0;
1881 i = 1; /* 0 is the buf format structure */
1882 while (1) {
e2714bf8
CH
1883 bit = xfs_next_bit(buf_f->blf_data_map,
1884 buf_f->blf_map_size, bit);
1da177e4
LT
1885 if (bit == -1)
1886 break;
e2714bf8
CH
1887 nbits = xfs_contig_bits(buf_f->blf_data_map,
1888 buf_f->blf_map_size, bit);
1da177e4 1889 ASSERT(nbits > 0);
4b80916b 1890 ASSERT(item->ri_buf[i].i_addr != NULL);
c1155410 1891 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
aa0e8833
DC
1892 ASSERT(BBTOB(bp->b_io_length) >=
1893 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1da177e4
LT
1894
1895 /*
1896 * Do a sanity check if this is a dquot buffer. Just checking
1897 * the first dquot in the buffer should do. XXXThis is
1898 * probably a good thing to do for other buf types also.
1899 */
1900 error = 0;
c8ad20ff 1901 if (buf_f->blf_flags &
c1155410 1902 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
0c5e1ce8 1903 if (item->ri_buf[i].i_addr == NULL) {
a0fa2b67 1904 xfs_alert(mp,
0c5e1ce8
CH
1905 "XFS: NULL dquot in %s.", __func__);
1906 goto next;
1907 }
8ec6dba2 1908 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 1909 xfs_alert(mp,
0c5e1ce8
CH
1910 "XFS: dquot too small (%d) in %s.",
1911 item->ri_buf[i].i_len, __func__);
1912 goto next;
1913 }
a0fa2b67 1914 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1da177e4
LT
1915 -1, 0, XFS_QMOPT_DOWARN,
1916 "dquot_buf_recover");
0c5e1ce8
CH
1917 if (error)
1918 goto next;
1da177e4 1919 }
0c5e1ce8
CH
1920
1921 memcpy(xfs_buf_offset(bp,
c1155410 1922 (uint)bit << XFS_BLF_SHIFT), /* dest */
0c5e1ce8 1923 item->ri_buf[i].i_addr, /* source */
c1155410 1924 nbits<<XFS_BLF_SHIFT); /* length */
0c5e1ce8 1925 next:
1da177e4
LT
1926 i++;
1927 bit += nbits;
1928 }
1929
1930 /* Shouldn't be any more regions */
1931 ASSERT(i == item->ri_total);
ee1a47ab
CH
1932
1933 switch (buf_f->blf_flags & XFS_BLF_TYPE_MASK) {
1934 case XFS_BLF_BTREE_BUF:
1935 switch (be32_to_cpu(*(__be32 *)bp->b_addr)) {
1936 case XFS_ABTB_CRC_MAGIC:
1937 case XFS_ABTC_CRC_MAGIC:
1938 case XFS_ABTB_MAGIC:
1939 case XFS_ABTC_MAGIC:
1940 bp->b_ops = &xfs_allocbt_buf_ops;
1941 break;
1942 case XFS_IBT_CRC_MAGIC:
1943 case XFS_IBT_MAGIC:
1944 bp->b_ops = &xfs_inobt_buf_ops;
1945 break;
1946 case XFS_BMAP_CRC_MAGIC:
1947 case XFS_BMAP_MAGIC:
1948 bp->b_ops = &xfs_bmbt_buf_ops;
1949 break;
1950 default:
1951 xfs_warn(mp, "Bad btree block magic!");
1952 ASSERT(0);
1953 break;
1954 }
1955 break;
4e0e6040
DC
1956 case XFS_BLF_AGF_BUF:
1957 if (*(__be32 *)bp->b_addr != cpu_to_be32(XFS_AGF_MAGIC)) {
1958 xfs_warn(mp, "Bad AGF block magic!");
1959 ASSERT(0);
1960 break;
1961 }
1962 bp->b_ops = &xfs_agf_buf_ops;
1963 break;
ee1a47ab
CH
1964 default:
1965 break;
1966 }
1da177e4
LT
1967}
1968
1969/*
1970 * Do some primitive error checking on ondisk dquot data structures.
1971 */
1972int
1973xfs_qm_dqcheck(
a0fa2b67 1974 struct xfs_mount *mp,
1da177e4
LT
1975 xfs_disk_dquot_t *ddq,
1976 xfs_dqid_t id,
1977 uint type, /* used only when IO_dorepair is true */
1978 uint flags,
1979 char *str)
1980{
1981 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1982 int errs = 0;
1983
1984 /*
1985 * We can encounter an uninitialized dquot buffer for 2 reasons:
1986 * 1. If we crash while deleting the quotainode(s), and those blks got
1987 * used for user data. This is because we take the path of regular
1988 * file deletion; however, the size field of quotainodes is never
1989 * updated, so all the tricks that we play in itruncate_finish
1990 * don't quite matter.
1991 *
1992 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1993 * But the allocation will be replayed so we'll end up with an
1994 * uninitialized quota block.
1995 *
1996 * This is all fine; things are still consistent, and we haven't lost
1997 * any quota information. Just don't complain about bad dquot blks.
1998 */
69ef921b 1999 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 2000 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2001 xfs_alert(mp,
1da177e4 2002 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2003 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2004 errs++;
2005 }
1149d96a 2006 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 2007 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2008 xfs_alert(mp,
1da177e4 2009 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2010 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2011 errs++;
2012 }
2013
1149d96a
CH
2014 if (ddq->d_flags != XFS_DQ_USER &&
2015 ddq->d_flags != XFS_DQ_PROJ &&
2016 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 2017 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2018 xfs_alert(mp,
1da177e4 2019 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2020 str, id, ddq->d_flags);
1da177e4
LT
2021 errs++;
2022 }
2023
1149d96a 2024 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 2025 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2026 xfs_alert(mp,
1da177e4
LT
2027 "%s : ondisk-dquot 0x%p, ID mismatch: "
2028 "0x%x expected, found id 0x%x",
1149d96a 2029 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2030 errs++;
2031 }
2032
2033 if (!errs && ddq->d_id) {
1149d96a 2034 if (ddq->d_blk_softlimit &&
d0a3fe67 2035 be64_to_cpu(ddq->d_bcount) >
1149d96a 2036 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2037 if (!ddq->d_btimer) {
2038 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2039 xfs_alert(mp,
2040 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 2041 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2042 errs++;
2043 }
2044 }
1149d96a 2045 if (ddq->d_ino_softlimit &&
d0a3fe67 2046 be64_to_cpu(ddq->d_icount) >
1149d96a 2047 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2048 if (!ddq->d_itimer) {
2049 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2050 xfs_alert(mp,
2051 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2052 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2053 errs++;
2054 }
2055 }
1149d96a 2056 if (ddq->d_rtb_softlimit &&
d0a3fe67 2057 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2058 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2059 if (!ddq->d_rtbtimer) {
2060 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2061 xfs_alert(mp,
2062 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2063 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2064 errs++;
2065 }
2066 }
2067 }
2068
2069 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2070 return errs;
2071
2072 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2073 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2074
2075 /*
2076 * Typically, a repair is only requested by quotacheck.
2077 */
2078 ASSERT(id != -1);
2079 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2080 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2081
2082 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2083 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2084 d->dd_diskdq.d_flags = type;
2085 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2086
2087 return errs;
2088}
2089
2090/*
2091 * Perform a dquot buffer recovery.
2092 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2093 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2094 * Else, treat it as a regular buffer and do recovery.
2095 */
2096STATIC void
2097xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2098 struct xfs_mount *mp,
2099 struct xlog *log,
2100 struct xlog_recover_item *item,
2101 struct xfs_buf *bp,
2102 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2103{
2104 uint type;
2105
9abbc539
DC
2106 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2107
1da177e4
LT
2108 /*
2109 * Filesystems are required to send in quota flags at mount time.
2110 */
2111 if (mp->m_qflags == 0) {
2112 return;
2113 }
2114
2115 type = 0;
c1155410 2116 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2117 type |= XFS_DQ_USER;
c1155410 2118 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2119 type |= XFS_DQ_PROJ;
c1155410 2120 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2121 type |= XFS_DQ_GROUP;
2122 /*
2123 * This type of quotas was turned off, so ignore this buffer
2124 */
2125 if (log->l_quotaoffs_flag & type)
2126 return;
2127
9abbc539 2128 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2129}
2130
2131/*
2132 * This routine replays a modification made to a buffer at runtime.
2133 * There are actually two types of buffer, regular and inode, which
2134 * are handled differently. Inode buffers are handled differently
2135 * in that we only recover a specific set of data from them, namely
2136 * the inode di_next_unlinked fields. This is because all other inode
2137 * data is actually logged via inode records and any data we replay
2138 * here which overlaps that may be stale.
2139 *
2140 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2141 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2142 * of the buffer in the log should not be replayed at recovery time.
2143 * This is so that if the blocks covered by the buffer are reused for
2144 * file data before we crash we don't end up replaying old, freed
2145 * meta-data into a user's file.
2146 *
2147 * To handle the cancellation of buffer log items, we make two passes
2148 * over the log during recovery. During the first we build a table of
2149 * those buffers which have been cancelled, and during the second we
2150 * only replay those buffers which do not have corresponding cancel
2151 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2152 * for more details on the implementation of the table of cancel records.
2153 */
2154STATIC int
c9f71f5f 2155xlog_recover_buffer_pass2(
9a8d2fdb
MT
2156 struct xlog *log,
2157 struct list_head *buffer_list,
2158 struct xlog_recover_item *item)
1da177e4 2159{
4e0d5f92 2160 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2161 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2162 xfs_buf_t *bp;
2163 int error;
6ad112bf 2164 uint buf_flags;
1da177e4 2165
c9f71f5f
CH
2166 /*
2167 * In this pass we only want to recover all the buffers which have
2168 * not been cancelled and are not cancellation buffers themselves.
2169 */
2170 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2171 buf_f->blf_len, buf_f->blf_flags)) {
2172 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2173 return 0;
1da177e4 2174 }
c9f71f5f 2175
9abbc539 2176 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2177
a8acad70 2178 buf_flags = 0;
611c9946
DC
2179 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2180 buf_flags |= XBF_UNMAPPED;
6ad112bf 2181
e2714bf8 2182 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2183 buf_flags, NULL);
ac4d6888
CS
2184 if (!bp)
2185 return XFS_ERROR(ENOMEM);
e5702805 2186 error = bp->b_error;
5a52c2a5 2187 if (error) {
901796af 2188 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
1da177e4
LT
2189 xfs_buf_relse(bp);
2190 return error;
2191 }
2192
e2714bf8 2193 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2194 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2195 } else if (buf_f->blf_flags &
c1155410 2196 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2197 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2198 } else {
9abbc539 2199 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2200 }
2201 if (error)
2202 return XFS_ERROR(error);
2203
2204 /*
2205 * Perform delayed write on the buffer. Asynchronous writes will be
2206 * slower when taking into account all the buffers to be flushed.
2207 *
2208 * Also make sure that only inode buffers with good sizes stay in
2209 * the buffer cache. The kernel moves inodes in buffers of 1 block
2210 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2211 * buffers in the log can be a different size if the log was generated
2212 * by an older kernel using unclustered inode buffers or a newer kernel
2213 * running with a different inode cluster size. Regardless, if the
2214 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2215 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2216 * the buffer out of the buffer cache so that the buffer won't
2217 * overlap with future reads of those inodes.
2218 */
2219 if (XFS_DINODE_MAGIC ==
b53e675d 2220 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2221 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
1da177e4 2222 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2223 xfs_buf_stale(bp);
c2b006c1 2224 error = xfs_bwrite(bp);
1da177e4 2225 } else {
ebad861b 2226 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2227 bp->b_iodone = xlog_recover_iodone;
43ff2122 2228 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2229 }
2230
c2b006c1
CH
2231 xfs_buf_relse(bp);
2232 return error;
1da177e4
LT
2233}
2234
2235STATIC int
c9f71f5f 2236xlog_recover_inode_pass2(
9a8d2fdb
MT
2237 struct xlog *log,
2238 struct list_head *buffer_list,
2239 struct xlog_recover_item *item)
1da177e4
LT
2240{
2241 xfs_inode_log_format_t *in_f;
c9f71f5f 2242 xfs_mount_t *mp = log->l_mp;
1da177e4 2243 xfs_buf_t *bp;
1da177e4 2244 xfs_dinode_t *dip;
1da177e4
LT
2245 int len;
2246 xfs_caddr_t src;
2247 xfs_caddr_t dest;
2248 int error;
2249 int attr_index;
2250 uint fields;
347d1c01 2251 xfs_icdinode_t *dicp;
6d192a9b 2252 int need_free = 0;
1da177e4 2253
6d192a9b 2254 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2255 in_f = item->ri_buf[0].i_addr;
6d192a9b 2256 } else {
4e0d5f92 2257 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2258 need_free = 1;
2259 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2260 if (error)
2261 goto error;
2262 }
1da177e4
LT
2263
2264 /*
2265 * Inode buffers can be freed, look out for it,
2266 * and do not replay the inode.
2267 */
a1941895
CH
2268 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2269 in_f->ilf_len, 0)) {
6d192a9b 2270 error = 0;
9abbc539 2271 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2272 goto error;
2273 }
9abbc539 2274 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2275
c3f8fc73
DC
2276 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2277 NULL);
ac4d6888
CS
2278 if (!bp) {
2279 error = ENOMEM;
2280 goto error;
2281 }
e5702805 2282 error = bp->b_error;
5a52c2a5 2283 if (error) {
901796af 2284 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
1da177e4 2285 xfs_buf_relse(bp);
6d192a9b 2286 goto error;
1da177e4 2287 }
1da177e4 2288 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2289 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2290
2291 /*
2292 * Make sure the place we're flushing out to really looks
2293 * like an inode!
2294 */
69ef921b 2295 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
1da177e4 2296 xfs_buf_relse(bp);
a0fa2b67
DC
2297 xfs_alert(mp,
2298 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2299 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2300 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2301 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2302 error = EFSCORRUPTED;
2303 goto error;
1da177e4 2304 }
4e0d5f92 2305 dicp = item->ri_buf[1].i_addr;
1da177e4
LT
2306 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2307 xfs_buf_relse(bp);
a0fa2b67
DC
2308 xfs_alert(mp,
2309 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2310 __func__, item, in_f->ilf_ino);
c9f71f5f 2311 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2312 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2313 error = EFSCORRUPTED;
2314 goto error;
1da177e4
LT
2315 }
2316
2317 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2318 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2319 /*
2320 * Deal with the wrap case, DI_MAX_FLUSH is less
2321 * than smaller numbers
2322 */
81591fe2 2323 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2324 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2325 /* do nothing */
2326 } else {
2327 xfs_buf_relse(bp);
9abbc539 2328 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2329 error = 0;
2330 goto error;
1da177e4
LT
2331 }
2332 }
2333 /* Take the opportunity to reset the flush iteration count */
2334 dicp->di_flushiter = 0;
2335
abbede1b 2336 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2337 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2338 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2339 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4
LT
2340 XFS_ERRLEVEL_LOW, mp, dicp);
2341 xfs_buf_relse(bp);
a0fa2b67
DC
2342 xfs_alert(mp,
2343 "%s: Bad regular inode log record, rec ptr 0x%p, "
2344 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2345 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2346 error = EFSCORRUPTED;
2347 goto error;
1da177e4 2348 }
abbede1b 2349 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2350 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2351 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2352 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2353 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4
LT
2354 XFS_ERRLEVEL_LOW, mp, dicp);
2355 xfs_buf_relse(bp);
a0fa2b67
DC
2356 xfs_alert(mp,
2357 "%s: Bad dir inode log record, rec ptr 0x%p, "
2358 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2359 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2360 error = EFSCORRUPTED;
2361 goto error;
1da177e4
LT
2362 }
2363 }
2364 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2365 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4
LT
2366 XFS_ERRLEVEL_LOW, mp, dicp);
2367 xfs_buf_relse(bp);
a0fa2b67
DC
2368 xfs_alert(mp,
2369 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2370 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2371 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2372 dicp->di_nextents + dicp->di_anextents,
2373 dicp->di_nblocks);
6d192a9b
TS
2374 error = EFSCORRUPTED;
2375 goto error;
1da177e4
LT
2376 }
2377 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2378 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4
LT
2379 XFS_ERRLEVEL_LOW, mp, dicp);
2380 xfs_buf_relse(bp);
a0fa2b67
DC
2381 xfs_alert(mp,
2382 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2383 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2384 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b
TS
2385 error = EFSCORRUPTED;
2386 goto error;
1da177e4 2387 }
81591fe2 2388 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
c9f71f5f 2389 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4
LT
2390 XFS_ERRLEVEL_LOW, mp, dicp);
2391 xfs_buf_relse(bp);
a0fa2b67
DC
2392 xfs_alert(mp,
2393 "%s: Bad inode log record length %d, rec ptr 0x%p",
2394 __func__, item->ri_buf[1].i_len, item);
6d192a9b
TS
2395 error = EFSCORRUPTED;
2396 goto error;
1da177e4
LT
2397 }
2398
2399 /* The core is in in-core format */
4e0d5f92 2400 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
1da177e4
LT
2401
2402 /* the rest is in on-disk format */
81591fe2
CH
2403 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2404 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2405 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2406 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2407 }
2408
2409 fields = in_f->ilf_fields;
2410 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2411 case XFS_ILOG_DEV:
81591fe2 2412 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2413 break;
2414 case XFS_ILOG_UUID:
81591fe2
CH
2415 memcpy(XFS_DFORK_DPTR(dip),
2416 &in_f->ilf_u.ilfu_uuid,
2417 sizeof(uuid_t));
1da177e4
LT
2418 break;
2419 }
2420
2421 if (in_f->ilf_size == 2)
2422 goto write_inode_buffer;
2423 len = item->ri_buf[2].i_len;
2424 src = item->ri_buf[2].i_addr;
2425 ASSERT(in_f->ilf_size <= 4);
2426 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2427 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2428 (len == in_f->ilf_dsize));
2429
2430 switch (fields & XFS_ILOG_DFORK) {
2431 case XFS_ILOG_DDATA:
2432 case XFS_ILOG_DEXT:
81591fe2 2433 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2434 break;
2435
2436 case XFS_ILOG_DBROOT:
7cc95a82 2437 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2438 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2439 XFS_DFORK_DSIZE(dip, mp));
2440 break;
2441
2442 default:
2443 /*
2444 * There are no data fork flags set.
2445 */
2446 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2447 break;
2448 }
2449
2450 /*
2451 * If we logged any attribute data, recover it. There may or
2452 * may not have been any other non-core data logged in this
2453 * transaction.
2454 */
2455 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2456 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2457 attr_index = 3;
2458 } else {
2459 attr_index = 2;
2460 }
2461 len = item->ri_buf[attr_index].i_len;
2462 src = item->ri_buf[attr_index].i_addr;
2463 ASSERT(len == in_f->ilf_asize);
2464
2465 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2466 case XFS_ILOG_ADATA:
2467 case XFS_ILOG_AEXT:
2468 dest = XFS_DFORK_APTR(dip);
2469 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2470 memcpy(dest, src, len);
2471 break;
2472
2473 case XFS_ILOG_ABROOT:
2474 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2475 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2476 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2477 XFS_DFORK_ASIZE(dip, mp));
2478 break;
2479
2480 default:
a0fa2b67 2481 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4
LT
2482 ASSERT(0);
2483 xfs_buf_relse(bp);
6d192a9b
TS
2484 error = EIO;
2485 goto error;
1da177e4
LT
2486 }
2487 }
2488
2489write_inode_buffer:
ebad861b 2490 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2491 bp->b_iodone = xlog_recover_iodone;
43ff2122 2492 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2493 xfs_buf_relse(bp);
6d192a9b
TS
2494error:
2495 if (need_free)
f0e2d93c 2496 kmem_free(in_f);
6d192a9b 2497 return XFS_ERROR(error);
1da177e4
LT
2498}
2499
2500/*
9a8d2fdb 2501 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2502 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2503 * of that type.
2504 */
2505STATIC int
c9f71f5f 2506xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2507 struct xlog *log,
2508 struct xlog_recover_item *item)
1da177e4 2509{
c9f71f5f 2510 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2511 ASSERT(qoff_f);
2512
2513 /*
2514 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2515 * group/project quotaoff or both.
1da177e4
LT
2516 */
2517 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2518 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2519 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2520 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2521 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2522 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2523
2524 return (0);
2525}
2526
2527/*
2528 * Recover a dquot record
2529 */
2530STATIC int
c9f71f5f 2531xlog_recover_dquot_pass2(
9a8d2fdb
MT
2532 struct xlog *log,
2533 struct list_head *buffer_list,
2534 struct xlog_recover_item *item)
1da177e4 2535{
c9f71f5f 2536 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2537 xfs_buf_t *bp;
2538 struct xfs_disk_dquot *ddq, *recddq;
2539 int error;
2540 xfs_dq_logformat_t *dq_f;
2541 uint type;
2542
1da177e4
LT
2543
2544 /*
2545 * Filesystems are required to send in quota flags at mount time.
2546 */
2547 if (mp->m_qflags == 0)
2548 return (0);
2549
4e0d5f92
CH
2550 recddq = item->ri_buf[1].i_addr;
2551 if (recddq == NULL) {
a0fa2b67 2552 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
2553 return XFS_ERROR(EIO);
2554 }
8ec6dba2 2555 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2556 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
2557 item->ri_buf[1].i_len, __func__);
2558 return XFS_ERROR(EIO);
2559 }
2560
1da177e4
LT
2561 /*
2562 * This type of quotas was turned off, so ignore this record.
2563 */
b53e675d 2564 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2565 ASSERT(type);
2566 if (log->l_quotaoffs_flag & type)
2567 return (0);
2568
2569 /*
2570 * At this point we know that quota was _not_ turned off.
2571 * Since the mount flags are not indicating to us otherwise, this
2572 * must mean that quota is on, and the dquot needs to be replayed.
2573 * Remember that we may not have fully recovered the superblock yet,
2574 * so we can't do the usual trick of looking at the SB quota bits.
2575 *
2576 * The other possibility, of course, is that the quota subsystem was
2577 * removed since the last mount - ENOSYS.
2578 */
4e0d5f92 2579 dq_f = item->ri_buf[0].i_addr;
1da177e4 2580 ASSERT(dq_f);
a0fa2b67
DC
2581 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2582 "xlog_recover_dquot_pass2 (log copy)");
2583 if (error)
1da177e4 2584 return XFS_ERROR(EIO);
1da177e4
LT
2585 ASSERT(dq_f->qlf_len == 1);
2586
7ca790a5 2587 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73
DC
2588 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2589 NULL);
7ca790a5 2590 if (error)
1da177e4 2591 return error;
7ca790a5 2592
1da177e4
LT
2593 ASSERT(bp);
2594 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2595
2596 /*
2597 * At least the magic num portion should be on disk because this
2598 * was among a chunk of dquots created earlier, and we did some
2599 * minimal initialization then.
2600 */
a0fa2b67
DC
2601 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2602 "xlog_recover_dquot_pass2");
2603 if (error) {
1da177e4
LT
2604 xfs_buf_relse(bp);
2605 return XFS_ERROR(EIO);
2606 }
2607
2608 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2609
2610 ASSERT(dq_f->qlf_size == 2);
ebad861b 2611 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2612 bp->b_iodone = xlog_recover_iodone;
43ff2122 2613 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2614 xfs_buf_relse(bp);
1da177e4
LT
2615
2616 return (0);
2617}
2618
2619/*
2620 * This routine is called to create an in-core extent free intent
2621 * item from the efi format structure which was logged on disk.
2622 * It allocates an in-core efi, copies the extents from the format
2623 * structure into it, and adds the efi to the AIL with the given
2624 * LSN.
2625 */
6d192a9b 2626STATIC int
c9f71f5f 2627xlog_recover_efi_pass2(
9a8d2fdb
MT
2628 struct xlog *log,
2629 struct xlog_recover_item *item,
2630 xfs_lsn_t lsn)
1da177e4 2631{
6d192a9b 2632 int error;
c9f71f5f 2633 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2634 xfs_efi_log_item_t *efip;
2635 xfs_efi_log_format_t *efi_formatp;
1da177e4 2636
4e0d5f92 2637 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2638
1da177e4 2639 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2640 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2641 &(efip->efi_format)))) {
2642 xfs_efi_item_free(efip);
2643 return error;
2644 }
b199c8a4 2645 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2646
a9c21c1b 2647 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2648 /*
783a2f65 2649 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2650 */
e6059949 2651 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2652 return 0;
1da177e4
LT
2653}
2654
2655
2656/*
2657 * This routine is called when an efd format structure is found in
2658 * a committed transaction in the log. It's purpose is to cancel
2659 * the corresponding efi if it was still in the log. To do this
2660 * it searches the AIL for the efi with an id equal to that in the
2661 * efd format structure. If we find it, we remove the efi from the
2662 * AIL and free it.
2663 */
c9f71f5f
CH
2664STATIC int
2665xlog_recover_efd_pass2(
9a8d2fdb
MT
2666 struct xlog *log,
2667 struct xlog_recover_item *item)
1da177e4 2668{
1da177e4
LT
2669 xfs_efd_log_format_t *efd_formatp;
2670 xfs_efi_log_item_t *efip = NULL;
2671 xfs_log_item_t *lip;
1da177e4 2672 __uint64_t efi_id;
27d8d5fe 2673 struct xfs_ail_cursor cur;
783a2f65 2674 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2675
4e0d5f92 2676 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2677 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2678 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2679 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2680 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2681 efi_id = efd_formatp->efd_efi_id;
2682
2683 /*
2684 * Search for the efi with the id in the efd format structure
2685 * in the AIL.
2686 */
a9c21c1b
DC
2687 spin_lock(&ailp->xa_lock);
2688 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2689 while (lip != NULL) {
2690 if (lip->li_type == XFS_LI_EFI) {
2691 efip = (xfs_efi_log_item_t *)lip;
2692 if (efip->efi_format.efi_id == efi_id) {
2693 /*
783a2f65 2694 * xfs_trans_ail_delete() drops the
1da177e4
LT
2695 * AIL lock.
2696 */
04913fdd
DC
2697 xfs_trans_ail_delete(ailp, lip,
2698 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 2699 xfs_efi_item_free(efip);
a9c21c1b 2700 spin_lock(&ailp->xa_lock);
27d8d5fe 2701 break;
1da177e4
LT
2702 }
2703 }
a9c21c1b 2704 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2705 }
a9c21c1b
DC
2706 xfs_trans_ail_cursor_done(ailp, &cur);
2707 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
2708
2709 return 0;
1da177e4
LT
2710}
2711
1da177e4
LT
2712/*
2713 * Free up any resources allocated by the transaction
2714 *
2715 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2716 */
2717STATIC void
2718xlog_recover_free_trans(
d0450948 2719 struct xlog_recover *trans)
1da177e4 2720{
f0a76953 2721 xlog_recover_item_t *item, *n;
1da177e4
LT
2722 int i;
2723
f0a76953
DC
2724 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2725 /* Free the regions in the item. */
2726 list_del(&item->ri_list);
2727 for (i = 0; i < item->ri_cnt; i++)
2728 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2729 /* Free the item itself */
f0a76953
DC
2730 kmem_free(item->ri_buf);
2731 kmem_free(item);
2732 }
1da177e4 2733 /* Free the transaction recover structure */
f0e2d93c 2734 kmem_free(trans);
1da177e4
LT
2735}
2736
d0450948 2737STATIC int
c9f71f5f 2738xlog_recover_commit_pass1(
ad223e60
MT
2739 struct xlog *log,
2740 struct xlog_recover *trans,
2741 struct xlog_recover_item *item)
d0450948 2742{
c9f71f5f 2743 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
2744
2745 switch (ITEM_TYPE(item)) {
2746 case XFS_LI_BUF:
c9f71f5f
CH
2747 return xlog_recover_buffer_pass1(log, item);
2748 case XFS_LI_QUOTAOFF:
2749 return xlog_recover_quotaoff_pass1(log, item);
d0450948 2750 case XFS_LI_INODE:
d0450948 2751 case XFS_LI_EFI:
d0450948 2752 case XFS_LI_EFD:
c9f71f5f
CH
2753 case XFS_LI_DQUOT:
2754 /* nothing to do in pass 1 */
d0450948 2755 return 0;
c9f71f5f 2756 default:
a0fa2b67
DC
2757 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2758 __func__, ITEM_TYPE(item));
c9f71f5f
CH
2759 ASSERT(0);
2760 return XFS_ERROR(EIO);
2761 }
2762}
2763
2764STATIC int
2765xlog_recover_commit_pass2(
ad223e60
MT
2766 struct xlog *log,
2767 struct xlog_recover *trans,
2768 struct list_head *buffer_list,
2769 struct xlog_recover_item *item)
c9f71f5f
CH
2770{
2771 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2772
2773 switch (ITEM_TYPE(item)) {
2774 case XFS_LI_BUF:
43ff2122 2775 return xlog_recover_buffer_pass2(log, buffer_list, item);
c9f71f5f 2776 case XFS_LI_INODE:
43ff2122 2777 return xlog_recover_inode_pass2(log, buffer_list, item);
c9f71f5f
CH
2778 case XFS_LI_EFI:
2779 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2780 case XFS_LI_EFD:
2781 return xlog_recover_efd_pass2(log, item);
d0450948 2782 case XFS_LI_DQUOT:
43ff2122 2783 return xlog_recover_dquot_pass2(log, buffer_list, item);
d0450948 2784 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
2785 /* nothing to do in pass2 */
2786 return 0;
d0450948 2787 default:
a0fa2b67
DC
2788 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2789 __func__, ITEM_TYPE(item));
d0450948
CH
2790 ASSERT(0);
2791 return XFS_ERROR(EIO);
2792 }
2793}
2794
2795/*
2796 * Perform the transaction.
2797 *
2798 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2799 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2800 */
1da177e4
LT
2801STATIC int
2802xlog_recover_commit_trans(
ad223e60 2803 struct xlog *log,
d0450948 2804 struct xlog_recover *trans,
1da177e4
LT
2805 int pass)
2806{
43ff2122 2807 int error = 0, error2;
d0450948 2808 xlog_recover_item_t *item;
43ff2122 2809 LIST_HEAD (buffer_list);
1da177e4 2810
f0a76953 2811 hlist_del(&trans->r_list);
d0450948
CH
2812
2813 error = xlog_recover_reorder_trans(log, trans, pass);
2814 if (error)
1da177e4 2815 return error;
d0450948
CH
2816
2817 list_for_each_entry(item, &trans->r_itemq, ri_list) {
43ff2122
CH
2818 switch (pass) {
2819 case XLOG_RECOVER_PASS1:
c9f71f5f 2820 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
2821 break;
2822 case XLOG_RECOVER_PASS2:
2823 error = xlog_recover_commit_pass2(log, trans,
2824 &buffer_list, item);
2825 break;
2826 default:
2827 ASSERT(0);
2828 }
2829
d0450948 2830 if (error)
43ff2122 2831 goto out;
d0450948
CH
2832 }
2833
2834 xlog_recover_free_trans(trans);
43ff2122
CH
2835
2836out:
2837 error2 = xfs_buf_delwri_submit(&buffer_list);
2838 return error ? error : error2;
1da177e4
LT
2839}
2840
2841STATIC int
2842xlog_recover_unmount_trans(
ad223e60
MT
2843 struct xlog *log,
2844 struct xlog_recover *trans)
1da177e4
LT
2845{
2846 /* Do nothing now */
a0fa2b67 2847 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
2848 return 0;
2849}
2850
2851/*
2852 * There are two valid states of the r_state field. 0 indicates that the
2853 * transaction structure is in a normal state. We have either seen the
2854 * start of the transaction or the last operation we added was not a partial
2855 * operation. If the last operation we added to the transaction was a
2856 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2857 *
2858 * NOTE: skip LRs with 0 data length.
2859 */
2860STATIC int
2861xlog_recover_process_data(
9a8d2fdb 2862 struct xlog *log,
f0a76953 2863 struct hlist_head rhash[],
9a8d2fdb 2864 struct xlog_rec_header *rhead,
1da177e4
LT
2865 xfs_caddr_t dp,
2866 int pass)
2867{
2868 xfs_caddr_t lp;
2869 int num_logops;
2870 xlog_op_header_t *ohead;
2871 xlog_recover_t *trans;
2872 xlog_tid_t tid;
2873 int error;
2874 unsigned long hash;
2875 uint flags;
2876
b53e675d
CH
2877 lp = dp + be32_to_cpu(rhead->h_len);
2878 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2879
2880 /* check the log format matches our own - else we can't recover */
2881 if (xlog_header_check_recover(log->l_mp, rhead))
2882 return (XFS_ERROR(EIO));
2883
2884 while ((dp < lp) && num_logops) {
2885 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2886 ohead = (xlog_op_header_t *)dp;
2887 dp += sizeof(xlog_op_header_t);
2888 if (ohead->oh_clientid != XFS_TRANSACTION &&
2889 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
2890 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2891 __func__, ohead->oh_clientid);
1da177e4
LT
2892 ASSERT(0);
2893 return (XFS_ERROR(EIO));
2894 }
67fcb7bf 2895 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2896 hash = XLOG_RHASH(tid);
f0a76953 2897 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2898 if (trans == NULL) { /* not found; add new tid */
2899 if (ohead->oh_flags & XLOG_START_TRANS)
2900 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2901 be64_to_cpu(rhead->h_lsn));
1da177e4 2902 } else {
9742bb93 2903 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
2904 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2905 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
2906 WARN_ON(1);
2907 return (XFS_ERROR(EIO));
2908 }
1da177e4
LT
2909 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2910 if (flags & XLOG_WAS_CONT_TRANS)
2911 flags &= ~XLOG_CONTINUE_TRANS;
2912 switch (flags) {
2913 case XLOG_COMMIT_TRANS:
2914 error = xlog_recover_commit_trans(log,
f0a76953 2915 trans, pass);
1da177e4
LT
2916 break;
2917 case XLOG_UNMOUNT_TRANS:
a0fa2b67 2918 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
2919 break;
2920 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
2921 error = xlog_recover_add_to_cont_trans(log,
2922 trans, dp,
2923 be32_to_cpu(ohead->oh_len));
1da177e4
LT
2924 break;
2925 case XLOG_START_TRANS:
a0fa2b67
DC
2926 xfs_warn(log->l_mp, "%s: bad transaction",
2927 __func__);
1da177e4
LT
2928 ASSERT(0);
2929 error = XFS_ERROR(EIO);
2930 break;
2931 case 0:
2932 case XLOG_CONTINUE_TRANS:
9abbc539 2933 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 2934 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2935 break;
2936 default:
a0fa2b67
DC
2937 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2938 __func__, flags);
1da177e4
LT
2939 ASSERT(0);
2940 error = XFS_ERROR(EIO);
2941 break;
2942 }
2943 if (error)
2944 return error;
2945 }
67fcb7bf 2946 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2947 num_logops--;
2948 }
2949 return 0;
2950}
2951
2952/*
2953 * Process an extent free intent item that was recovered from
2954 * the log. We need to free the extents that it describes.
2955 */
3c1e2bbe 2956STATIC int
1da177e4
LT
2957xlog_recover_process_efi(
2958 xfs_mount_t *mp,
2959 xfs_efi_log_item_t *efip)
2960{
2961 xfs_efd_log_item_t *efdp;
2962 xfs_trans_t *tp;
2963 int i;
3c1e2bbe 2964 int error = 0;
1da177e4
LT
2965 xfs_extent_t *extp;
2966 xfs_fsblock_t startblock_fsb;
2967
b199c8a4 2968 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
2969
2970 /*
2971 * First check the validity of the extents described by the
2972 * EFI. If any are bad, then assume that all are bad and
2973 * just toss the EFI.
2974 */
2975 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2976 extp = &(efip->efi_format.efi_extents[i]);
2977 startblock_fsb = XFS_BB_TO_FSB(mp,
2978 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2979 if ((startblock_fsb == 0) ||
2980 (extp->ext_len == 0) ||
2981 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2982 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2983 /*
2984 * This will pull the EFI from the AIL and
2985 * free the memory associated with it.
2986 */
666d644c 2987 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 2988 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 2989 return XFS_ERROR(EIO);
1da177e4
LT
2990 }
2991 }
2992
2993 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 2994 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
2995 if (error)
2996 goto abort_error;
1da177e4
LT
2997 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2998
2999 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3000 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3001 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3002 if (error)
3003 goto abort_error;
1da177e4
LT
3004 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3005 extp->ext_len);
3006 }
3007
b199c8a4 3008 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3009 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3010 return error;
fc6149d8
DC
3011
3012abort_error:
3013 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3014 return error;
1da177e4
LT
3015}
3016
1da177e4
LT
3017/*
3018 * When this is called, all of the EFIs which did not have
3019 * corresponding EFDs should be in the AIL. What we do now
3020 * is free the extents associated with each one.
3021 *
3022 * Since we process the EFIs in normal transactions, they
3023 * will be removed at some point after the commit. This prevents
3024 * us from just walking down the list processing each one.
3025 * We'll use a flag in the EFI to skip those that we've already
3026 * processed and use the AIL iteration mechanism's generation
3027 * count to try to speed this up at least a bit.
3028 *
3029 * When we start, we know that the EFIs are the only things in
3030 * the AIL. As we process them, however, other items are added
3031 * to the AIL. Since everything added to the AIL must come after
3032 * everything already in the AIL, we stop processing as soon as
3033 * we see something other than an EFI in the AIL.
3034 */
3c1e2bbe 3035STATIC int
1da177e4 3036xlog_recover_process_efis(
9a8d2fdb 3037 struct xlog *log)
1da177e4
LT
3038{
3039 xfs_log_item_t *lip;
3040 xfs_efi_log_item_t *efip;
3c1e2bbe 3041 int error = 0;
27d8d5fe 3042 struct xfs_ail_cursor cur;
a9c21c1b 3043 struct xfs_ail *ailp;
1da177e4 3044
a9c21c1b
DC
3045 ailp = log->l_ailp;
3046 spin_lock(&ailp->xa_lock);
3047 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3048 while (lip != NULL) {
3049 /*
3050 * We're done when we see something other than an EFI.
27d8d5fe 3051 * There should be no EFIs left in the AIL now.
1da177e4
LT
3052 */
3053 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3054#ifdef DEBUG
a9c21c1b 3055 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3056 ASSERT(lip->li_type != XFS_LI_EFI);
3057#endif
1da177e4
LT
3058 break;
3059 }
3060
3061 /*
3062 * Skip EFIs that we've already processed.
3063 */
3064 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3065 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3066 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3067 continue;
3068 }
3069
a9c21c1b
DC
3070 spin_unlock(&ailp->xa_lock);
3071 error = xlog_recover_process_efi(log->l_mp, efip);
3072 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3073 if (error)
3074 goto out;
a9c21c1b 3075 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3076 }
27d8d5fe 3077out:
a9c21c1b
DC
3078 xfs_trans_ail_cursor_done(ailp, &cur);
3079 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3080 return error;
1da177e4
LT
3081}
3082
3083/*
3084 * This routine performs a transaction to null out a bad inode pointer
3085 * in an agi unlinked inode hash bucket.
3086 */
3087STATIC void
3088xlog_recover_clear_agi_bucket(
3089 xfs_mount_t *mp,
3090 xfs_agnumber_t agno,
3091 int bucket)
3092{
3093 xfs_trans_t *tp;
3094 xfs_agi_t *agi;
3095 xfs_buf_t *agibp;
3096 int offset;
3097 int error;
3098
3099 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3100 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3101 0, 0, 0);
e5720eec
DC
3102 if (error)
3103 goto out_abort;
1da177e4 3104
5e1be0fb
CH
3105 error = xfs_read_agi(mp, tp, agno, &agibp);
3106 if (error)
e5720eec 3107 goto out_abort;
1da177e4 3108
5e1be0fb 3109 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3110 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3111 offset = offsetof(xfs_agi_t, agi_unlinked) +
3112 (sizeof(xfs_agino_t) * bucket);
3113 xfs_trans_log_buf(tp, agibp, offset,
3114 (offset + sizeof(xfs_agino_t) - 1));
3115
e5720eec
DC
3116 error = xfs_trans_commit(tp, 0);
3117 if (error)
3118 goto out_error;
3119 return;
3120
3121out_abort:
3122 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3123out_error:
a0fa2b67 3124 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3125 return;
1da177e4
LT
3126}
3127
23fac50f
CH
3128STATIC xfs_agino_t
3129xlog_recover_process_one_iunlink(
3130 struct xfs_mount *mp,
3131 xfs_agnumber_t agno,
3132 xfs_agino_t agino,
3133 int bucket)
3134{
3135 struct xfs_buf *ibp;
3136 struct xfs_dinode *dip;
3137 struct xfs_inode *ip;
3138 xfs_ino_t ino;
3139 int error;
3140
3141 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3142 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3143 if (error)
3144 goto fail;
3145
3146 /*
3147 * Get the on disk inode to find the next inode in the bucket.
3148 */
475ee413 3149 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3150 if (error)
0e446673 3151 goto fail_iput;
23fac50f 3152
23fac50f 3153 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3154 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3155
3156 /* setup for the next pass */
3157 agino = be32_to_cpu(dip->di_next_unlinked);
3158 xfs_buf_relse(ibp);
3159
3160 /*
3161 * Prevent any DMAPI event from being sent when the reference on
3162 * the inode is dropped.
3163 */
3164 ip->i_d.di_dmevmask = 0;
3165
0e446673 3166 IRELE(ip);
23fac50f
CH
3167 return agino;
3168
0e446673
CH
3169 fail_iput:
3170 IRELE(ip);
23fac50f
CH
3171 fail:
3172 /*
3173 * We can't read in the inode this bucket points to, or this inode
3174 * is messed up. Just ditch this bucket of inodes. We will lose
3175 * some inodes and space, but at least we won't hang.
3176 *
3177 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3178 * clear the inode pointer in the bucket.
3179 */
3180 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3181 return NULLAGINO;
3182}
3183
1da177e4
LT
3184/*
3185 * xlog_iunlink_recover
3186 *
3187 * This is called during recovery to process any inodes which
3188 * we unlinked but not freed when the system crashed. These
3189 * inodes will be on the lists in the AGI blocks. What we do
3190 * here is scan all the AGIs and fully truncate and free any
3191 * inodes found on the lists. Each inode is removed from the
3192 * lists when it has been fully truncated and is freed. The
3193 * freeing of the inode and its removal from the list must be
3194 * atomic.
3195 */
d96f8f89 3196STATIC void
1da177e4 3197xlog_recover_process_iunlinks(
9a8d2fdb 3198 struct xlog *log)
1da177e4
LT
3199{
3200 xfs_mount_t *mp;
3201 xfs_agnumber_t agno;
3202 xfs_agi_t *agi;
3203 xfs_buf_t *agibp;
1da177e4 3204 xfs_agino_t agino;
1da177e4
LT
3205 int bucket;
3206 int error;
3207 uint mp_dmevmask;
3208
3209 mp = log->l_mp;
3210
3211 /*
3212 * Prevent any DMAPI event from being sent while in this function.
3213 */
3214 mp_dmevmask = mp->m_dmevmask;
3215 mp->m_dmevmask = 0;
3216
3217 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3218 /*
3219 * Find the agi for this ag.
3220 */
5e1be0fb
CH
3221 error = xfs_read_agi(mp, NULL, agno, &agibp);
3222 if (error) {
3223 /*
3224 * AGI is b0rked. Don't process it.
3225 *
3226 * We should probably mark the filesystem as corrupt
3227 * after we've recovered all the ag's we can....
3228 */
3229 continue;
1da177e4 3230 }
d97d32ed
JK
3231 /*
3232 * Unlock the buffer so that it can be acquired in the normal
3233 * course of the transaction to truncate and free each inode.
3234 * Because we are not racing with anyone else here for the AGI
3235 * buffer, we don't even need to hold it locked to read the
3236 * initial unlinked bucket entries out of the buffer. We keep
3237 * buffer reference though, so that it stays pinned in memory
3238 * while we need the buffer.
3239 */
1da177e4 3240 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3241 xfs_buf_unlock(agibp);
1da177e4
LT
3242
3243 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3244 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3245 while (agino != NULLAGINO) {
23fac50f
CH
3246 agino = xlog_recover_process_one_iunlink(mp,
3247 agno, agino, bucket);
1da177e4
LT
3248 }
3249 }
d97d32ed 3250 xfs_buf_rele(agibp);
1da177e4
LT
3251 }
3252
3253 mp->m_dmevmask = mp_dmevmask;
3254}
3255
1da177e4 3256/*
0e446be4
CH
3257 * Upack the log buffer data and crc check it. If the check fails, issue a
3258 * warning if and only if the CRC in the header is non-zero. This makes the
3259 * check an advisory warning, and the zero CRC check will prevent failure
3260 * warnings from being emitted when upgrading the kernel from one that does not
3261 * add CRCs by default.
3262 *
3263 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3264 * corruption failure
1da177e4 3265 */
0e446be4
CH
3266STATIC int
3267xlog_unpack_data_crc(
3268 struct xlog_rec_header *rhead,
3269 xfs_caddr_t dp,
3270 struct xlog *log)
1da177e4 3271{
f9668a09 3272 __le32 crc;
0e446be4
CH
3273
3274 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3275 if (crc != rhead->h_crc) {
3276 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3277 xfs_alert(log->l_mp,
3278 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
f9668a09
DC
3279 le32_to_cpu(rhead->h_crc),
3280 le32_to_cpu(crc));
0e446be4 3281 xfs_hex_dump(dp, 32);
1da177e4
LT
3282 }
3283
0e446be4
CH
3284 /*
3285 * If we've detected a log record corruption, then we can't
3286 * recover past this point. Abort recovery if we are enforcing
3287 * CRC protection by punting an error back up the stack.
3288 */
3289 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3290 return EFSCORRUPTED;
1da177e4 3291 }
0e446be4
CH
3292
3293 return 0;
1da177e4
LT
3294}
3295
0e446be4 3296STATIC int
1da177e4 3297xlog_unpack_data(
9a8d2fdb 3298 struct xlog_rec_header *rhead,
1da177e4 3299 xfs_caddr_t dp,
9a8d2fdb 3300 struct xlog *log)
1da177e4
LT
3301{
3302 int i, j, k;
0e446be4
CH
3303 int error;
3304
3305 error = xlog_unpack_data_crc(rhead, dp, log);
3306 if (error)
3307 return error;
1da177e4 3308
b53e675d 3309 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3310 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3311 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3312 dp += BBSIZE;
3313 }
3314
62118709 3315 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3316 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3317 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3318 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3319 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3320 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3321 dp += BBSIZE;
3322 }
3323 }
0e446be4
CH
3324
3325 return 0;
1da177e4
LT
3326}
3327
3328STATIC int
3329xlog_valid_rec_header(
9a8d2fdb
MT
3330 struct xlog *log,
3331 struct xlog_rec_header *rhead,
1da177e4
LT
3332 xfs_daddr_t blkno)
3333{
3334 int hlen;
3335
69ef921b 3336 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
3337 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3338 XFS_ERRLEVEL_LOW, log->l_mp);
3339 return XFS_ERROR(EFSCORRUPTED);
3340 }
3341 if (unlikely(
3342 (!rhead->h_version ||
b53e675d 3343 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 3344 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 3345 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3346 return XFS_ERROR(EIO);
3347 }
3348
3349 /* LR body must have data or it wouldn't have been written */
b53e675d 3350 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3351 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3352 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3353 XFS_ERRLEVEL_LOW, log->l_mp);
3354 return XFS_ERROR(EFSCORRUPTED);
3355 }
3356 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3357 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3358 XFS_ERRLEVEL_LOW, log->l_mp);
3359 return XFS_ERROR(EFSCORRUPTED);
3360 }
3361 return 0;
3362}
3363
3364/*
3365 * Read the log from tail to head and process the log records found.
3366 * Handle the two cases where the tail and head are in the same cycle
3367 * and where the active portion of the log wraps around the end of
3368 * the physical log separately. The pass parameter is passed through
3369 * to the routines called to process the data and is not looked at
3370 * here.
3371 */
3372STATIC int
3373xlog_do_recovery_pass(
9a8d2fdb 3374 struct xlog *log,
1da177e4
LT
3375 xfs_daddr_t head_blk,
3376 xfs_daddr_t tail_blk,
3377 int pass)
3378{
3379 xlog_rec_header_t *rhead;
3380 xfs_daddr_t blk_no;
fc5bc4c8 3381 xfs_caddr_t offset;
1da177e4
LT
3382 xfs_buf_t *hbp, *dbp;
3383 int error = 0, h_size;
3384 int bblks, split_bblks;
3385 int hblks, split_hblks, wrapped_hblks;
f0a76953 3386 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3387
3388 ASSERT(head_blk != tail_blk);
3389
3390 /*
3391 * Read the header of the tail block and get the iclog buffer size from
3392 * h_size. Use this to tell how many sectors make up the log header.
3393 */
62118709 3394 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3395 /*
3396 * When using variable length iclogs, read first sector of
3397 * iclog header and extract the header size from it. Get a
3398 * new hbp that is the correct size.
3399 */
3400 hbp = xlog_get_bp(log, 1);
3401 if (!hbp)
3402 return ENOMEM;
076e6acb
CH
3403
3404 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3405 if (error)
1da177e4 3406 goto bread_err1;
076e6acb 3407
1da177e4
LT
3408 rhead = (xlog_rec_header_t *)offset;
3409 error = xlog_valid_rec_header(log, rhead, tail_blk);
3410 if (error)
3411 goto bread_err1;
b53e675d
CH
3412 h_size = be32_to_cpu(rhead->h_size);
3413 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3414 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3415 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3416 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3417 hblks++;
3418 xlog_put_bp(hbp);
3419 hbp = xlog_get_bp(log, hblks);
3420 } else {
3421 hblks = 1;
3422 }
3423 } else {
69ce58f0 3424 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3425 hblks = 1;
3426 hbp = xlog_get_bp(log, 1);
3427 h_size = XLOG_BIG_RECORD_BSIZE;
3428 }
3429
3430 if (!hbp)
3431 return ENOMEM;
3432 dbp = xlog_get_bp(log, BTOBB(h_size));
3433 if (!dbp) {
3434 xlog_put_bp(hbp);
3435 return ENOMEM;
3436 }
3437
3438 memset(rhash, 0, sizeof(rhash));
3439 if (tail_blk <= head_blk) {
3440 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3441 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3442 if (error)
1da177e4 3443 goto bread_err2;
076e6acb 3444
1da177e4
LT
3445 rhead = (xlog_rec_header_t *)offset;
3446 error = xlog_valid_rec_header(log, rhead, blk_no);
3447 if (error)
3448 goto bread_err2;
3449
3450 /* blocks in data section */
b53e675d 3451 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3452 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3453 &offset);
1da177e4
LT
3454 if (error)
3455 goto bread_err2;
076e6acb 3456
0e446be4
CH
3457 error = xlog_unpack_data(rhead, offset, log);
3458 if (error)
3459 goto bread_err2;
3460
3461 error = xlog_recover_process_data(log,
3462 rhash, rhead, offset, pass);
3463 if (error)
1da177e4
LT
3464 goto bread_err2;
3465 blk_no += bblks + hblks;
3466 }
3467 } else {
3468 /*
3469 * Perform recovery around the end of the physical log.
3470 * When the head is not on the same cycle number as the tail,
3471 * we can't do a sequential recovery as above.
3472 */
3473 blk_no = tail_blk;
3474 while (blk_no < log->l_logBBsize) {
3475 /*
3476 * Check for header wrapping around physical end-of-log
3477 */
62926044 3478 offset = hbp->b_addr;
1da177e4
LT
3479 split_hblks = 0;
3480 wrapped_hblks = 0;
3481 if (blk_no + hblks <= log->l_logBBsize) {
3482 /* Read header in one read */
076e6acb
CH
3483 error = xlog_bread(log, blk_no, hblks, hbp,
3484 &offset);
1da177e4
LT
3485 if (error)
3486 goto bread_err2;
1da177e4
LT
3487 } else {
3488 /* This LR is split across physical log end */
3489 if (blk_no != log->l_logBBsize) {
3490 /* some data before physical log end */
3491 ASSERT(blk_no <= INT_MAX);
3492 split_hblks = log->l_logBBsize - (int)blk_no;
3493 ASSERT(split_hblks > 0);
076e6acb
CH
3494 error = xlog_bread(log, blk_no,
3495 split_hblks, hbp,
3496 &offset);
3497 if (error)
1da177e4 3498 goto bread_err2;
1da177e4 3499 }
076e6acb 3500
1da177e4
LT
3501 /*
3502 * Note: this black magic still works with
3503 * large sector sizes (non-512) only because:
3504 * - we increased the buffer size originally
3505 * by 1 sector giving us enough extra space
3506 * for the second read;
3507 * - the log start is guaranteed to be sector
3508 * aligned;
3509 * - we read the log end (LR header start)
3510 * _first_, then the log start (LR header end)
3511 * - order is important.
3512 */
234f56ac 3513 wrapped_hblks = hblks - split_hblks;
44396476
DC
3514 error = xlog_bread_offset(log, 0,
3515 wrapped_hblks, hbp,
3516 offset + BBTOB(split_hblks));
1da177e4
LT
3517 if (error)
3518 goto bread_err2;
1da177e4
LT
3519 }
3520 rhead = (xlog_rec_header_t *)offset;
3521 error = xlog_valid_rec_header(log, rhead,
3522 split_hblks ? blk_no : 0);
3523 if (error)
3524 goto bread_err2;
3525
b53e675d 3526 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3527 blk_no += hblks;
3528
3529 /* Read in data for log record */
3530 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3531 error = xlog_bread(log, blk_no, bblks, dbp,
3532 &offset);
1da177e4
LT
3533 if (error)
3534 goto bread_err2;
1da177e4
LT
3535 } else {
3536 /* This log record is split across the
3537 * physical end of log */
62926044 3538 offset = dbp->b_addr;
1da177e4
LT
3539 split_bblks = 0;
3540 if (blk_no != log->l_logBBsize) {
3541 /* some data is before the physical
3542 * end of log */
3543 ASSERT(!wrapped_hblks);
3544 ASSERT(blk_no <= INT_MAX);
3545 split_bblks =
3546 log->l_logBBsize - (int)blk_no;
3547 ASSERT(split_bblks > 0);
076e6acb
CH
3548 error = xlog_bread(log, blk_no,
3549 split_bblks, dbp,
3550 &offset);
3551 if (error)
1da177e4 3552 goto bread_err2;
1da177e4 3553 }
076e6acb 3554
1da177e4
LT
3555 /*
3556 * Note: this black magic still works with
3557 * large sector sizes (non-512) only because:
3558 * - we increased the buffer size originally
3559 * by 1 sector giving us enough extra space
3560 * for the second read;
3561 * - the log start is guaranteed to be sector
3562 * aligned;
3563 * - we read the log end (LR header start)
3564 * _first_, then the log start (LR header end)
3565 * - order is important.
3566 */
44396476 3567 error = xlog_bread_offset(log, 0,
009507b0 3568 bblks - split_bblks, dbp,
44396476 3569 offset + BBTOB(split_bblks));
076e6acb
CH
3570 if (error)
3571 goto bread_err2;
1da177e4 3572 }
0e446be4
CH
3573
3574 error = xlog_unpack_data(rhead, offset, log);
3575 if (error)
3576 goto bread_err2;
3577
3578 error = xlog_recover_process_data(log, rhash,
3579 rhead, offset, pass);
3580 if (error)
1da177e4
LT
3581 goto bread_err2;
3582 blk_no += bblks;
3583 }
3584
3585 ASSERT(blk_no >= log->l_logBBsize);
3586 blk_no -= log->l_logBBsize;
3587
3588 /* read first part of physical log */
3589 while (blk_no < head_blk) {
076e6acb
CH
3590 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3591 if (error)
1da177e4 3592 goto bread_err2;
076e6acb 3593
1da177e4
LT
3594 rhead = (xlog_rec_header_t *)offset;
3595 error = xlog_valid_rec_header(log, rhead, blk_no);
3596 if (error)
3597 goto bread_err2;
076e6acb 3598
b53e675d 3599 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3600 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3601 &offset);
3602 if (error)
1da177e4 3603 goto bread_err2;
076e6acb 3604
0e446be4
CH
3605 error = xlog_unpack_data(rhead, offset, log);
3606 if (error)
3607 goto bread_err2;
3608
3609 error = xlog_recover_process_data(log, rhash,
3610 rhead, offset, pass);
3611 if (error)
1da177e4
LT
3612 goto bread_err2;
3613 blk_no += bblks + hblks;
3614 }
3615 }
3616
3617 bread_err2:
3618 xlog_put_bp(dbp);
3619 bread_err1:
3620 xlog_put_bp(hbp);
3621 return error;
3622}
3623
3624/*
3625 * Do the recovery of the log. We actually do this in two phases.
3626 * The two passes are necessary in order to implement the function
3627 * of cancelling a record written into the log. The first pass
3628 * determines those things which have been cancelled, and the
3629 * second pass replays log items normally except for those which
3630 * have been cancelled. The handling of the replay and cancellations
3631 * takes place in the log item type specific routines.
3632 *
3633 * The table of items which have cancel records in the log is allocated
3634 * and freed at this level, since only here do we know when all of
3635 * the log recovery has been completed.
3636 */
3637STATIC int
3638xlog_do_log_recovery(
9a8d2fdb 3639 struct xlog *log,
1da177e4
LT
3640 xfs_daddr_t head_blk,
3641 xfs_daddr_t tail_blk)
3642{
d5689eaa 3643 int error, i;
1da177e4
LT
3644
3645 ASSERT(head_blk != tail_blk);
3646
3647 /*
3648 * First do a pass to find all of the cancelled buf log items.
3649 * Store them in the buf_cancel_table for use in the second pass.
3650 */
d5689eaa
CH
3651 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3652 sizeof(struct list_head),
1da177e4 3653 KM_SLEEP);
d5689eaa
CH
3654 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3655 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3656
1da177e4
LT
3657 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3658 XLOG_RECOVER_PASS1);
3659 if (error != 0) {
f0e2d93c 3660 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3661 log->l_buf_cancel_table = NULL;
3662 return error;
3663 }
3664 /*
3665 * Then do a second pass to actually recover the items in the log.
3666 * When it is complete free the table of buf cancel items.
3667 */
3668 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3669 XLOG_RECOVER_PASS2);
3670#ifdef DEBUG
6d192a9b 3671 if (!error) {
1da177e4
LT
3672 int i;
3673
3674 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 3675 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
3676 }
3677#endif /* DEBUG */
3678
f0e2d93c 3679 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3680 log->l_buf_cancel_table = NULL;
3681
3682 return error;
3683}
3684
3685/*
3686 * Do the actual recovery
3687 */
3688STATIC int
3689xlog_do_recover(
9a8d2fdb 3690 struct xlog *log,
1da177e4
LT
3691 xfs_daddr_t head_blk,
3692 xfs_daddr_t tail_blk)
3693{
3694 int error;
3695 xfs_buf_t *bp;
3696 xfs_sb_t *sbp;
3697
3698 /*
3699 * First replay the images in the log.
3700 */
3701 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 3702 if (error)
1da177e4 3703 return error;
1da177e4
LT
3704
3705 /*
3706 * If IO errors happened during recovery, bail out.
3707 */
3708 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3709 return (EIO);
3710 }
3711
3712 /*
3713 * We now update the tail_lsn since much of the recovery has completed
3714 * and there may be space available to use. If there were no extent
3715 * or iunlinks, we can free up the entire log and set the tail_lsn to
3716 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3717 * lsn of the last known good LR on disk. If there are extent frees
3718 * or iunlinks they will have some entries in the AIL; so we look at
3719 * the AIL to determine how to set the tail_lsn.
3720 */
3721 xlog_assign_tail_lsn(log->l_mp);
3722
3723 /*
3724 * Now that we've finished replaying all buffer and inode
98021821 3725 * updates, re-read in the superblock and reverify it.
1da177e4
LT
3726 */
3727 bp = xfs_getsb(log->l_mp, 0);
3728 XFS_BUF_UNDONE(bp);
bebf963f 3729 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 3730 XFS_BUF_READ(bp);
bebf963f 3731 XFS_BUF_UNASYNC(bp);
1813dd64 3732 bp->b_ops = &xfs_sb_buf_ops;
1da177e4 3733 xfsbdstrat(log->l_mp, bp);
1a1a3e97 3734 error = xfs_buf_iowait(bp);
d64e31a2 3735 if (error) {
901796af 3736 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
3737 ASSERT(0);
3738 xfs_buf_relse(bp);
3739 return error;
3740 }
3741
3742 /* Convert superblock from on-disk format */
3743 sbp = &log->l_mp->m_sb;
98021821 3744 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3745 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3746 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3747 xfs_buf_relse(bp);
3748
5478eead
LM
3749 /* We've re-read the superblock so re-initialize per-cpu counters */
3750 xfs_icsb_reinit_counters(log->l_mp);
3751
1da177e4
LT
3752 xlog_recover_check_summary(log);
3753
3754 /* Normal transactions can now occur */
3755 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3756 return 0;
3757}
3758
3759/*
3760 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3761 *
3762 * Return error or zero.
3763 */
3764int
3765xlog_recover(
9a8d2fdb 3766 struct xlog *log)
1da177e4
LT
3767{
3768 xfs_daddr_t head_blk, tail_blk;
3769 int error;
3770
3771 /* find the tail of the log */
65be6054 3772 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3773 return error;
3774
3775 if (tail_blk != head_blk) {
3776 /* There used to be a comment here:
3777 *
3778 * disallow recovery on read-only mounts. note -- mount
3779 * checks for ENOSPC and turns it into an intelligent
3780 * error message.
3781 * ...but this is no longer true. Now, unless you specify
3782 * NORECOVERY (in which case this function would never be
3783 * called), we just go ahead and recover. We do this all
3784 * under the vfs layer, so we can get away with it unless
3785 * the device itself is read-only, in which case we fail.
3786 */
3a02ee18 3787 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3788 return error;
3789 }
3790
a0fa2b67
DC
3791 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3792 log->l_mp->m_logname ? log->l_mp->m_logname
3793 : "internal");
1da177e4
LT
3794
3795 error = xlog_do_recover(log, head_blk, tail_blk);
3796 log->l_flags |= XLOG_RECOVERY_NEEDED;
3797 }
3798 return error;
3799}
3800
3801/*
3802 * In the first part of recovery we replay inodes and buffers and build
3803 * up the list of extent free items which need to be processed. Here
3804 * we process the extent free items and clean up the on disk unlinked
3805 * inode lists. This is separated from the first part of recovery so
3806 * that the root and real-time bitmap inodes can be read in from disk in
3807 * between the two stages. This is necessary so that we can free space
3808 * in the real-time portion of the file system.
3809 */
3810int
3811xlog_recover_finish(
9a8d2fdb 3812 struct xlog *log)
1da177e4
LT
3813{
3814 /*
3815 * Now we're ready to do the transactions needed for the
3816 * rest of recovery. Start with completing all the extent
3817 * free intent records and then process the unlinked inode
3818 * lists. At this point, we essentially run in normal mode
3819 * except that we're still performing recovery actions
3820 * rather than accepting new requests.
3821 */
3822 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3823 int error;
3824 error = xlog_recover_process_efis(log);
3825 if (error) {
a0fa2b67 3826 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
3827 return error;
3828 }
1da177e4
LT
3829 /*
3830 * Sync the log to get all the EFIs out of the AIL.
3831 * This isn't absolutely necessary, but it helps in
3832 * case the unlink transactions would have problems
3833 * pushing the EFIs out of the way.
3834 */
a14a348b 3835 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 3836
4249023a 3837 xlog_recover_process_iunlinks(log);
1da177e4
LT
3838
3839 xlog_recover_check_summary(log);
3840
a0fa2b67
DC
3841 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3842 log->l_mp->m_logname ? log->l_mp->m_logname
3843 : "internal");
1da177e4
LT
3844 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3845 } else {
a0fa2b67 3846 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
3847 }
3848 return 0;
3849}
3850
3851
3852#if defined(DEBUG)
3853/*
3854 * Read all of the agf and agi counters and check that they
3855 * are consistent with the superblock counters.
3856 */
3857void
3858xlog_recover_check_summary(
9a8d2fdb 3859 struct xlog *log)
1da177e4
LT
3860{
3861 xfs_mount_t *mp;
3862 xfs_agf_t *agfp;
1da177e4
LT
3863 xfs_buf_t *agfbp;
3864 xfs_buf_t *agibp;
1da177e4
LT
3865 xfs_agnumber_t agno;
3866 __uint64_t freeblks;
3867 __uint64_t itotal;
3868 __uint64_t ifree;
5e1be0fb 3869 int error;
1da177e4
LT
3870
3871 mp = log->l_mp;
3872
3873 freeblks = 0LL;
3874 itotal = 0LL;
3875 ifree = 0LL;
3876 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
3877 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3878 if (error) {
a0fa2b67
DC
3879 xfs_alert(mp, "%s agf read failed agno %d error %d",
3880 __func__, agno, error);
4805621a
FCH
3881 } else {
3882 agfp = XFS_BUF_TO_AGF(agfbp);
3883 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3884 be32_to_cpu(agfp->agf_flcount);
3885 xfs_buf_relse(agfbp);
1da177e4 3886 }
1da177e4 3887
5e1be0fb 3888 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
3889 if (error) {
3890 xfs_alert(mp, "%s agi read failed agno %d error %d",
3891 __func__, agno, error);
3892 } else {
5e1be0fb 3893 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3894
5e1be0fb
CH
3895 itotal += be32_to_cpu(agi->agi_count);
3896 ifree += be32_to_cpu(agi->agi_freecount);
3897 xfs_buf_relse(agibp);
3898 }
1da177e4 3899 }
1da177e4
LT
3900}
3901#endif /* DEBUG */
This page took 0.825947 seconds and 5 git commands to generate.