xfs: lseek: the "whence" argument is called "whence"
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_inum.h"
a844f451
NS
26#include "xfs_sb.h"
27#include "xfs_ag.h"
1da177e4 28#include "xfs_mount.h"
57062787 29#include "xfs_da_format.h"
1da177e4 30#include "xfs_inode.h"
239880ef 31#include "xfs_trans.h"
239880ef 32#include "xfs_log.h"
1da177e4 33#include "xfs_log_priv.h"
1da177e4 34#include "xfs_log_recover.h"
a4fbe6ab 35#include "xfs_inode_item.h"
1da177e4
LT
36#include "xfs_extfree_item.h"
37#include "xfs_trans_priv.h"
a4fbe6ab
DC
38#include "xfs_alloc.h"
39#include "xfs_ialloc.h"
1da177e4 40#include "xfs_quota.h"
0e446be4 41#include "xfs_cksum.h"
0b1b213f 42#include "xfs_trace.h"
33479e05 43#include "xfs_icache.h"
a4fbe6ab
DC
44#include "xfs_bmap_btree.h"
45#include "xfs_dinode.h"
46#include "xfs_error.h"
2b9ab5ab 47#include "xfs_dir2.h"
1da177e4 48
fc06c6d0
DC
49#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
50
9a8d2fdb
MT
51STATIC int
52xlog_find_zeroed(
53 struct xlog *,
54 xfs_daddr_t *);
55STATIC int
56xlog_clear_stale_blocks(
57 struct xlog *,
58 xfs_lsn_t);
1da177e4 59#if defined(DEBUG)
9a8d2fdb
MT
60STATIC void
61xlog_recover_check_summary(
62 struct xlog *);
1da177e4
LT
63#else
64#define xlog_recover_check_summary(log)
1da177e4
LT
65#endif
66
d5689eaa
CH
67/*
68 * This structure is used during recovery to record the buf log items which
69 * have been canceled and should not be replayed.
70 */
71struct xfs_buf_cancel {
72 xfs_daddr_t bc_blkno;
73 uint bc_len;
74 int bc_refcount;
75 struct list_head bc_list;
76};
77
1da177e4
LT
78/*
79 * Sector aligned buffer routines for buffer create/read/write/access
80 */
81
ff30a622
AE
82/*
83 * Verify the given count of basic blocks is valid number of blocks
84 * to specify for an operation involving the given XFS log buffer.
85 * Returns nonzero if the count is valid, 0 otherwise.
86 */
87
88static inline int
89xlog_buf_bbcount_valid(
9a8d2fdb 90 struct xlog *log,
ff30a622
AE
91 int bbcount)
92{
93 return bbcount > 0 && bbcount <= log->l_logBBsize;
94}
95
36adecff
AE
96/*
97 * Allocate a buffer to hold log data. The buffer needs to be able
98 * to map to a range of nbblks basic blocks at any valid (basic
99 * block) offset within the log.
100 */
5d77c0dc 101STATIC xfs_buf_t *
1da177e4 102xlog_get_bp(
9a8d2fdb 103 struct xlog *log,
3228149c 104 int nbblks)
1da177e4 105{
c8da0faf
CH
106 struct xfs_buf *bp;
107
ff30a622 108 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 109 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
110 nbblks);
111 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
112 return NULL;
113 }
1da177e4 114
36adecff
AE
115 /*
116 * We do log I/O in units of log sectors (a power-of-2
117 * multiple of the basic block size), so we round up the
25985edc 118 * requested size to accommodate the basic blocks required
36adecff
AE
119 * for complete log sectors.
120 *
121 * In addition, the buffer may be used for a non-sector-
122 * aligned block offset, in which case an I/O of the
123 * requested size could extend beyond the end of the
124 * buffer. If the requested size is only 1 basic block it
125 * will never straddle a sector boundary, so this won't be
126 * an issue. Nor will this be a problem if the log I/O is
127 * done in basic blocks (sector size 1). But otherwise we
128 * extend the buffer by one extra log sector to ensure
25985edc 129 * there's space to accommodate this possibility.
36adecff 130 */
69ce58f0
AE
131 if (nbblks > 1 && log->l_sectBBsize > 1)
132 nbblks += log->l_sectBBsize;
133 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 134
e70b73f8 135 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
136 if (bp)
137 xfs_buf_unlock(bp);
138 return bp;
1da177e4
LT
139}
140
5d77c0dc 141STATIC void
1da177e4
LT
142xlog_put_bp(
143 xfs_buf_t *bp)
144{
145 xfs_buf_free(bp);
146}
147
48389ef1
AE
148/*
149 * Return the address of the start of the given block number's data
150 * in a log buffer. The buffer covers a log sector-aligned region.
151 */
076e6acb
CH
152STATIC xfs_caddr_t
153xlog_align(
9a8d2fdb 154 struct xlog *log,
076e6acb
CH
155 xfs_daddr_t blk_no,
156 int nbblks,
9a8d2fdb 157 struct xfs_buf *bp)
076e6acb 158{
fdc07f44 159 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 160
4e94b71b 161 ASSERT(offset + nbblks <= bp->b_length);
62926044 162 return bp->b_addr + BBTOB(offset);
076e6acb
CH
163}
164
1da177e4
LT
165
166/*
167 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
168 */
076e6acb
CH
169STATIC int
170xlog_bread_noalign(
9a8d2fdb 171 struct xlog *log,
1da177e4
LT
172 xfs_daddr_t blk_no,
173 int nbblks,
9a8d2fdb 174 struct xfs_buf *bp)
1da177e4
LT
175{
176 int error;
177
ff30a622 178 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 179 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
180 nbblks);
181 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 182 return -EFSCORRUPTED;
3228149c
DC
183 }
184
69ce58f0
AE
185 blk_no = round_down(blk_no, log->l_sectBBsize);
186 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
187
188 ASSERT(nbblks > 0);
4e94b71b 189 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
190
191 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
192 XFS_BUF_READ(bp);
aa0e8833 193 bp->b_io_length = nbblks;
0e95f19a 194 bp->b_error = 0;
1da177e4 195
83a0adc3 196 if (XFS_FORCED_SHUTDOWN(log->l_mp))
2451337d 197 return -EIO;
83a0adc3
CH
198
199 xfs_buf_iorequest(bp);
1a1a3e97 200 error = xfs_buf_iowait(bp);
d64e31a2 201 if (error)
901796af 202 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
203 return error;
204}
205
076e6acb
CH
206STATIC int
207xlog_bread(
9a8d2fdb 208 struct xlog *log,
076e6acb
CH
209 xfs_daddr_t blk_no,
210 int nbblks,
9a8d2fdb 211 struct xfs_buf *bp,
076e6acb
CH
212 xfs_caddr_t *offset)
213{
214 int error;
215
216 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
217 if (error)
218 return error;
219
220 *offset = xlog_align(log, blk_no, nbblks, bp);
221 return 0;
222}
223
44396476
DC
224/*
225 * Read at an offset into the buffer. Returns with the buffer in it's original
226 * state regardless of the result of the read.
227 */
228STATIC int
229xlog_bread_offset(
9a8d2fdb 230 struct xlog *log,
44396476
DC
231 xfs_daddr_t blk_no, /* block to read from */
232 int nbblks, /* blocks to read */
9a8d2fdb 233 struct xfs_buf *bp,
44396476
DC
234 xfs_caddr_t offset)
235{
62926044 236 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 237 int orig_len = BBTOB(bp->b_length);
44396476
DC
238 int error, error2;
239
02fe03d9 240 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
241 if (error)
242 return error;
243
244 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
245
246 /* must reset buffer pointer even on error */
02fe03d9 247 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
248 if (error)
249 return error;
250 return error2;
251}
252
1da177e4
LT
253/*
254 * Write out the buffer at the given block for the given number of blocks.
255 * The buffer is kept locked across the write and is returned locked.
256 * This can only be used for synchronous log writes.
257 */
ba0f32d4 258STATIC int
1da177e4 259xlog_bwrite(
9a8d2fdb 260 struct xlog *log,
1da177e4
LT
261 xfs_daddr_t blk_no,
262 int nbblks,
9a8d2fdb 263 struct xfs_buf *bp)
1da177e4
LT
264{
265 int error;
266
ff30a622 267 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 268 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
269 nbblks);
270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 271 return -EFSCORRUPTED;
3228149c
DC
272 }
273
69ce58f0
AE
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
276
277 ASSERT(nbblks > 0);
4e94b71b 278 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
279
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
281 XFS_BUF_ZEROFLAGS(bp);
72790aa1 282 xfs_buf_hold(bp);
0c842ad4 283 xfs_buf_lock(bp);
aa0e8833 284 bp->b_io_length = nbblks;
0e95f19a 285 bp->b_error = 0;
1da177e4 286
c2b006c1 287 error = xfs_bwrite(bp);
901796af
CH
288 if (error)
289 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 290 xfs_buf_relse(bp);
1da177e4
LT
291 return error;
292}
293
1da177e4
LT
294#ifdef DEBUG
295/*
296 * dump debug superblock and log record information
297 */
298STATIC void
299xlog_header_check_dump(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302{
08e96e1a 303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 305 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
307}
308#else
309#define xlog_header_check_dump(mp, head)
310#endif
311
312/*
313 * check log record header for recovery
314 */
315STATIC int
316xlog_header_check_recover(
317 xfs_mount_t *mp,
318 xlog_rec_header_t *head)
319{
69ef921b 320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
321
322 /*
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
326 */
69ef921b 327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
328 xfs_warn(mp,
329 "dirty log written in incompatible format - can't recover");
1da177e4
LT
330 xlog_header_check_dump(mp, head);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH, mp);
2451337d 333 return -EFSCORRUPTED;
1da177e4 334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
335 xfs_warn(mp,
336 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
337 xlog_header_check_dump(mp, head);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH, mp);
2451337d 340 return -EFSCORRUPTED;
1da177e4
LT
341 }
342 return 0;
343}
344
345/*
346 * read the head block of the log and check the header
347 */
348STATIC int
349xlog_header_check_mount(
350 xfs_mount_t *mp,
351 xlog_rec_header_t *head)
352{
69ef921b 353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
354
355 if (uuid_is_nil(&head->h_fs_uuid)) {
356 /*
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is nil, we assume this log was last mounted
359 * by IRIX and continue.
360 */
a0fa2b67 361 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 363 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
364 xlog_header_check_dump(mp, head);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH, mp);
2451337d 367 return -EFSCORRUPTED;
1da177e4
LT
368 }
369 return 0;
370}
371
372STATIC void
373xlog_recover_iodone(
374 struct xfs_buf *bp)
375{
5a52c2a5 376 if (bp->b_error) {
1da177e4
LT
377 /*
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
380 */
901796af 381 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
1da177e4 384 }
cb669ca5 385 bp->b_iodone = NULL;
1a1a3e97 386 xfs_buf_ioend(bp, 0);
1da177e4
LT
387}
388
389/*
390 * This routine finds (to an approximation) the first block in the physical
391 * log which contains the given cycle. It uses a binary search algorithm.
392 * Note that the algorithm can not be perfect because the disk will not
393 * necessarily be perfect.
394 */
a8272ce0 395STATIC int
1da177e4 396xlog_find_cycle_start(
9a8d2fdb
MT
397 struct xlog *log,
398 struct xfs_buf *bp,
1da177e4
LT
399 xfs_daddr_t first_blk,
400 xfs_daddr_t *last_blk,
401 uint cycle)
402{
403 xfs_caddr_t offset;
404 xfs_daddr_t mid_blk;
e3bb2e30 405 xfs_daddr_t end_blk;
1da177e4
LT
406 uint mid_cycle;
407 int error;
408
e3bb2e30
AE
409 end_blk = *last_blk;
410 mid_blk = BLK_AVG(first_blk, end_blk);
411 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
412 error = xlog_bread(log, mid_blk, 1, bp, &offset);
413 if (error)
1da177e4 414 return error;
03bea6fe 415 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
416 if (mid_cycle == cycle)
417 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
418 else
419 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
420 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 421 }
e3bb2e30
AE
422 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
423 (mid_blk == end_blk && mid_blk-1 == first_blk));
424
425 *last_blk = end_blk;
1da177e4
LT
426
427 return 0;
428}
429
430/*
3f943d85
AE
431 * Check that a range of blocks does not contain stop_on_cycle_no.
432 * Fill in *new_blk with the block offset where such a block is
433 * found, or with -1 (an invalid block number) if there is no such
434 * block in the range. The scan needs to occur from front to back
435 * and the pointer into the region must be updated since a later
436 * routine will need to perform another test.
1da177e4
LT
437 */
438STATIC int
439xlog_find_verify_cycle(
9a8d2fdb 440 struct xlog *log,
1da177e4
LT
441 xfs_daddr_t start_blk,
442 int nbblks,
443 uint stop_on_cycle_no,
444 xfs_daddr_t *new_blk)
445{
446 xfs_daddr_t i, j;
447 uint cycle;
448 xfs_buf_t *bp;
449 xfs_daddr_t bufblks;
450 xfs_caddr_t buf = NULL;
451 int error = 0;
452
6881a229
AE
453 /*
454 * Greedily allocate a buffer big enough to handle the full
455 * range of basic blocks we'll be examining. If that fails,
456 * try a smaller size. We need to be able to read at least
457 * a log sector, or we're out of luck.
458 */
1da177e4 459 bufblks = 1 << ffs(nbblks);
81158e0c
DC
460 while (bufblks > log->l_logBBsize)
461 bufblks >>= 1;
1da177e4 462 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 463 bufblks >>= 1;
69ce58f0 464 if (bufblks < log->l_sectBBsize)
2451337d 465 return -ENOMEM;
1da177e4
LT
466 }
467
468 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
469 int bcount;
470
471 bcount = min(bufblks, (start_blk + nbblks - i));
472
076e6acb
CH
473 error = xlog_bread(log, i, bcount, bp, &buf);
474 if (error)
1da177e4
LT
475 goto out;
476
1da177e4 477 for (j = 0; j < bcount; j++) {
03bea6fe 478 cycle = xlog_get_cycle(buf);
1da177e4
LT
479 if (cycle == stop_on_cycle_no) {
480 *new_blk = i+j;
481 goto out;
482 }
483
484 buf += BBSIZE;
485 }
486 }
487
488 *new_blk = -1;
489
490out:
491 xlog_put_bp(bp);
492 return error;
493}
494
495/*
496 * Potentially backup over partial log record write.
497 *
498 * In the typical case, last_blk is the number of the block directly after
499 * a good log record. Therefore, we subtract one to get the block number
500 * of the last block in the given buffer. extra_bblks contains the number
501 * of blocks we would have read on a previous read. This happens when the
502 * last log record is split over the end of the physical log.
503 *
504 * extra_bblks is the number of blocks potentially verified on a previous
505 * call to this routine.
506 */
507STATIC int
508xlog_find_verify_log_record(
9a8d2fdb 509 struct xlog *log,
1da177e4
LT
510 xfs_daddr_t start_blk,
511 xfs_daddr_t *last_blk,
512 int extra_bblks)
513{
514 xfs_daddr_t i;
515 xfs_buf_t *bp;
516 xfs_caddr_t offset = NULL;
517 xlog_rec_header_t *head = NULL;
518 int error = 0;
519 int smallmem = 0;
520 int num_blks = *last_blk - start_blk;
521 int xhdrs;
522
523 ASSERT(start_blk != 0 || *last_blk != start_blk);
524
525 if (!(bp = xlog_get_bp(log, num_blks))) {
526 if (!(bp = xlog_get_bp(log, 1)))
2451337d 527 return -ENOMEM;
1da177e4
LT
528 smallmem = 1;
529 } else {
076e6acb
CH
530 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
531 if (error)
1da177e4 532 goto out;
1da177e4
LT
533 offset += ((num_blks - 1) << BBSHIFT);
534 }
535
536 for (i = (*last_blk) - 1; i >= 0; i--) {
537 if (i < start_blk) {
538 /* valid log record not found */
a0fa2b67
DC
539 xfs_warn(log->l_mp,
540 "Log inconsistent (didn't find previous header)");
1da177e4 541 ASSERT(0);
2451337d 542 error = -EIO;
1da177e4
LT
543 goto out;
544 }
545
546 if (smallmem) {
076e6acb
CH
547 error = xlog_bread(log, i, 1, bp, &offset);
548 if (error)
1da177e4 549 goto out;
1da177e4
LT
550 }
551
552 head = (xlog_rec_header_t *)offset;
553
69ef921b 554 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
555 break;
556
557 if (!smallmem)
558 offset -= BBSIZE;
559 }
560
561 /*
562 * We hit the beginning of the physical log & still no header. Return
563 * to caller. If caller can handle a return of -1, then this routine
564 * will be called again for the end of the physical log.
565 */
566 if (i == -1) {
2451337d 567 error = 1;
1da177e4
LT
568 goto out;
569 }
570
571 /*
572 * We have the final block of the good log (the first block
573 * of the log record _before_ the head. So we check the uuid.
574 */
575 if ((error = xlog_header_check_mount(log->l_mp, head)))
576 goto out;
577
578 /*
579 * We may have found a log record header before we expected one.
580 * last_blk will be the 1st block # with a given cycle #. We may end
581 * up reading an entire log record. In this case, we don't want to
582 * reset last_blk. Only when last_blk points in the middle of a log
583 * record do we update last_blk.
584 */
62118709 585 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 586 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
587
588 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
589 if (h_size % XLOG_HEADER_CYCLE_SIZE)
590 xhdrs++;
591 } else {
592 xhdrs = 1;
593 }
594
b53e675d
CH
595 if (*last_blk - i + extra_bblks !=
596 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
597 *last_blk = i;
598
599out:
600 xlog_put_bp(bp);
601 return error;
602}
603
604/*
605 * Head is defined to be the point of the log where the next log write
0a94da24 606 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
607 * eliminated when calculating the head. We aren't guaranteed that previous
608 * LR have complete transactions. We only know that a cycle number of
609 * current cycle number -1 won't be present in the log if we start writing
610 * from our current block number.
611 *
612 * last_blk contains the block number of the first block with a given
613 * cycle number.
614 *
615 * Return: zero if normal, non-zero if error.
616 */
ba0f32d4 617STATIC int
1da177e4 618xlog_find_head(
9a8d2fdb 619 struct xlog *log,
1da177e4
LT
620 xfs_daddr_t *return_head_blk)
621{
622 xfs_buf_t *bp;
623 xfs_caddr_t offset;
624 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
625 int num_scan_bblks;
626 uint first_half_cycle, last_half_cycle;
627 uint stop_on_cycle;
628 int error, log_bbnum = log->l_logBBsize;
629
630 /* Is the end of the log device zeroed? */
2451337d
DC
631 error = xlog_find_zeroed(log, &first_blk);
632 if (error < 0) {
633 xfs_warn(log->l_mp, "empty log check failed");
634 return error;
635 }
636 if (error == 1) {
1da177e4
LT
637 *return_head_blk = first_blk;
638
639 /* Is the whole lot zeroed? */
640 if (!first_blk) {
641 /* Linux XFS shouldn't generate totally zeroed logs -
642 * mkfs etc write a dummy unmount record to a fresh
643 * log so we can store the uuid in there
644 */
a0fa2b67 645 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
646 }
647
648 return 0;
1da177e4
LT
649 }
650
651 first_blk = 0; /* get cycle # of 1st block */
652 bp = xlog_get_bp(log, 1);
653 if (!bp)
2451337d 654 return -ENOMEM;
076e6acb
CH
655
656 error = xlog_bread(log, 0, 1, bp, &offset);
657 if (error)
1da177e4 658 goto bp_err;
076e6acb 659
03bea6fe 660 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
661
662 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
663 error = xlog_bread(log, last_blk, 1, bp, &offset);
664 if (error)
1da177e4 665 goto bp_err;
076e6acb 666
03bea6fe 667 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
668 ASSERT(last_half_cycle != 0);
669
670 /*
671 * If the 1st half cycle number is equal to the last half cycle number,
672 * then the entire log is stamped with the same cycle number. In this
673 * case, head_blk can't be set to zero (which makes sense). The below
674 * math doesn't work out properly with head_blk equal to zero. Instead,
675 * we set it to log_bbnum which is an invalid block number, but this
676 * value makes the math correct. If head_blk doesn't changed through
677 * all the tests below, *head_blk is set to zero at the very end rather
678 * than log_bbnum. In a sense, log_bbnum and zero are the same block
679 * in a circular file.
680 */
681 if (first_half_cycle == last_half_cycle) {
682 /*
683 * In this case we believe that the entire log should have
684 * cycle number last_half_cycle. We need to scan backwards
685 * from the end verifying that there are no holes still
686 * containing last_half_cycle - 1. If we find such a hole,
687 * then the start of that hole will be the new head. The
688 * simple case looks like
689 * x | x ... | x - 1 | x
690 * Another case that fits this picture would be
691 * x | x + 1 | x ... | x
c41564b5 692 * In this case the head really is somewhere at the end of the
1da177e4
LT
693 * log, as one of the latest writes at the beginning was
694 * incomplete.
695 * One more case is
696 * x | x + 1 | x ... | x - 1 | x
697 * This is really the combination of the above two cases, and
698 * the head has to end up at the start of the x-1 hole at the
699 * end of the log.
700 *
701 * In the 256k log case, we will read from the beginning to the
702 * end of the log and search for cycle numbers equal to x-1.
703 * We don't worry about the x+1 blocks that we encounter,
704 * because we know that they cannot be the head since the log
705 * started with x.
706 */
707 head_blk = log_bbnum;
708 stop_on_cycle = last_half_cycle - 1;
709 } else {
710 /*
711 * In this case we want to find the first block with cycle
712 * number matching last_half_cycle. We expect the log to be
713 * some variation on
3f943d85 714 * x + 1 ... | x ... | x
1da177e4
LT
715 * The first block with cycle number x (last_half_cycle) will
716 * be where the new head belongs. First we do a binary search
717 * for the first occurrence of last_half_cycle. The binary
718 * search may not be totally accurate, so then we scan back
719 * from there looking for occurrences of last_half_cycle before
720 * us. If that backwards scan wraps around the beginning of
721 * the log, then we look for occurrences of last_half_cycle - 1
722 * at the end of the log. The cases we're looking for look
723 * like
3f943d85
AE
724 * v binary search stopped here
725 * x + 1 ... | x | x + 1 | x ... | x
726 * ^ but we want to locate this spot
1da177e4 727 * or
1da177e4 728 * <---------> less than scan distance
3f943d85
AE
729 * x + 1 ... | x ... | x - 1 | x
730 * ^ we want to locate this spot
1da177e4
LT
731 */
732 stop_on_cycle = last_half_cycle;
733 if ((error = xlog_find_cycle_start(log, bp, first_blk,
734 &head_blk, last_half_cycle)))
735 goto bp_err;
736 }
737
738 /*
739 * Now validate the answer. Scan back some number of maximum possible
740 * blocks and make sure each one has the expected cycle number. The
741 * maximum is determined by the total possible amount of buffering
742 * in the in-core log. The following number can be made tighter if
743 * we actually look at the block size of the filesystem.
744 */
745 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
746 if (head_blk >= num_scan_bblks) {
747 /*
748 * We are guaranteed that the entire check can be performed
749 * in one buffer.
750 */
751 start_blk = head_blk - num_scan_bblks;
752 if ((error = xlog_find_verify_cycle(log,
753 start_blk, num_scan_bblks,
754 stop_on_cycle, &new_blk)))
755 goto bp_err;
756 if (new_blk != -1)
757 head_blk = new_blk;
758 } else { /* need to read 2 parts of log */
759 /*
760 * We are going to scan backwards in the log in two parts.
761 * First we scan the physical end of the log. In this part
762 * of the log, we are looking for blocks with cycle number
763 * last_half_cycle - 1.
764 * If we find one, then we know that the log starts there, as
765 * we've found a hole that didn't get written in going around
766 * the end of the physical log. The simple case for this is
767 * x + 1 ... | x ... | x - 1 | x
768 * <---------> less than scan distance
769 * If all of the blocks at the end of the log have cycle number
770 * last_half_cycle, then we check the blocks at the start of
771 * the log looking for occurrences of last_half_cycle. If we
772 * find one, then our current estimate for the location of the
773 * first occurrence of last_half_cycle is wrong and we move
774 * back to the hole we've found. This case looks like
775 * x + 1 ... | x | x + 1 | x ...
776 * ^ binary search stopped here
777 * Another case we need to handle that only occurs in 256k
778 * logs is
779 * x + 1 ... | x ... | x+1 | x ...
780 * ^ binary search stops here
781 * In a 256k log, the scan at the end of the log will see the
782 * x + 1 blocks. We need to skip past those since that is
783 * certainly not the head of the log. By searching for
784 * last_half_cycle-1 we accomplish that.
785 */
1da177e4 786 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
787 (xfs_daddr_t) num_scan_bblks >= head_blk);
788 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
789 if ((error = xlog_find_verify_cycle(log, start_blk,
790 num_scan_bblks - (int)head_blk,
791 (stop_on_cycle - 1), &new_blk)))
792 goto bp_err;
793 if (new_blk != -1) {
794 head_blk = new_blk;
9db127ed 795 goto validate_head;
1da177e4
LT
796 }
797
798 /*
799 * Scan beginning of log now. The last part of the physical
800 * log is good. This scan needs to verify that it doesn't find
801 * the last_half_cycle.
802 */
803 start_blk = 0;
804 ASSERT(head_blk <= INT_MAX);
805 if ((error = xlog_find_verify_cycle(log,
806 start_blk, (int)head_blk,
807 stop_on_cycle, &new_blk)))
808 goto bp_err;
809 if (new_blk != -1)
810 head_blk = new_blk;
811 }
812
9db127ed 813validate_head:
1da177e4
LT
814 /*
815 * Now we need to make sure head_blk is not pointing to a block in
816 * the middle of a log record.
817 */
818 num_scan_bblks = XLOG_REC_SHIFT(log);
819 if (head_blk >= num_scan_bblks) {
820 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
821
822 /* start ptr at last block ptr before head_blk */
2451337d
DC
823 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
824 if (error == 1)
825 error = -EIO;
826 if (error)
1da177e4
LT
827 goto bp_err;
828 } else {
829 start_blk = 0;
830 ASSERT(head_blk <= INT_MAX);
2451337d
DC
831 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
832 if (error < 0)
833 goto bp_err;
834 if (error == 1) {
1da177e4 835 /* We hit the beginning of the log during our search */
3f943d85 836 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
837 new_blk = log_bbnum;
838 ASSERT(start_blk <= INT_MAX &&
839 (xfs_daddr_t) log_bbnum-start_blk >= 0);
840 ASSERT(head_blk <= INT_MAX);
2451337d
DC
841 error = xlog_find_verify_log_record(log, start_blk,
842 &new_blk, (int)head_blk);
843 if (error == 1)
844 error = -EIO;
845 if (error)
1da177e4
LT
846 goto bp_err;
847 if (new_blk != log_bbnum)
848 head_blk = new_blk;
849 } else if (error)
850 goto bp_err;
851 }
852
853 xlog_put_bp(bp);
854 if (head_blk == log_bbnum)
855 *return_head_blk = 0;
856 else
857 *return_head_blk = head_blk;
858 /*
859 * When returning here, we have a good block number. Bad block
860 * means that during a previous crash, we didn't have a clean break
861 * from cycle number N to cycle number N-1. In this case, we need
862 * to find the first block with cycle number N-1.
863 */
864 return 0;
865
866 bp_err:
867 xlog_put_bp(bp);
868
869 if (error)
a0fa2b67 870 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
871 return error;
872}
873
874/*
875 * Find the sync block number or the tail of the log.
876 *
877 * This will be the block number of the last record to have its
878 * associated buffers synced to disk. Every log record header has
879 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
880 * to get a sync block number. The only concern is to figure out which
881 * log record header to believe.
882 *
883 * The following algorithm uses the log record header with the largest
884 * lsn. The entire log record does not need to be valid. We only care
885 * that the header is valid.
886 *
887 * We could speed up search by using current head_blk buffer, but it is not
888 * available.
889 */
5d77c0dc 890STATIC int
1da177e4 891xlog_find_tail(
9a8d2fdb 892 struct xlog *log,
1da177e4 893 xfs_daddr_t *head_blk,
65be6054 894 xfs_daddr_t *tail_blk)
1da177e4
LT
895{
896 xlog_rec_header_t *rhead;
897 xlog_op_header_t *op_head;
898 xfs_caddr_t offset = NULL;
899 xfs_buf_t *bp;
900 int error, i, found;
901 xfs_daddr_t umount_data_blk;
902 xfs_daddr_t after_umount_blk;
903 xfs_lsn_t tail_lsn;
904 int hblks;
905
906 found = 0;
907
908 /*
909 * Find previous log record
910 */
911 if ((error = xlog_find_head(log, head_blk)))
912 return error;
913
914 bp = xlog_get_bp(log, 1);
915 if (!bp)
2451337d 916 return -ENOMEM;
1da177e4 917 if (*head_blk == 0) { /* special case */
076e6acb
CH
918 error = xlog_bread(log, 0, 1, bp, &offset);
919 if (error)
9db127ed 920 goto done;
076e6acb 921
03bea6fe 922 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
923 *tail_blk = 0;
924 /* leave all other log inited values alone */
9db127ed 925 goto done;
1da177e4
LT
926 }
927 }
928
929 /*
930 * Search backwards looking for log record header block
931 */
932 ASSERT(*head_blk < INT_MAX);
933 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
934 error = xlog_bread(log, i, 1, bp, &offset);
935 if (error)
9db127ed 936 goto done;
076e6acb 937
69ef921b 938 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
939 found = 1;
940 break;
941 }
942 }
943 /*
944 * If we haven't found the log record header block, start looking
945 * again from the end of the physical log. XXXmiken: There should be
946 * a check here to make sure we didn't search more than N blocks in
947 * the previous code.
948 */
949 if (!found) {
950 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
951 error = xlog_bread(log, i, 1, bp, &offset);
952 if (error)
9db127ed 953 goto done;
076e6acb 954
69ef921b
CH
955 if (*(__be32 *)offset ==
956 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
957 found = 2;
958 break;
959 }
960 }
961 }
962 if (!found) {
a0fa2b67 963 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
050a1952 964 xlog_put_bp(bp);
1da177e4 965 ASSERT(0);
2451337d 966 return -EIO;
1da177e4
LT
967 }
968
969 /* find blk_no of tail of log */
970 rhead = (xlog_rec_header_t *)offset;
b53e675d 971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
972
973 /*
974 * Reset log values according to the state of the log when we
975 * crashed. In the case where head_blk == 0, we bump curr_cycle
976 * one because the next write starts a new cycle rather than
977 * continuing the cycle of the last good log record. At this
978 * point we have guaranteed that all partial log records have been
979 * accounted for. Therefore, we know that the last good log record
980 * written was complete and ended exactly on the end boundary
981 * of the physical log.
982 */
983 log->l_prev_block = i;
984 log->l_curr_block = (int)*head_blk;
b53e675d 985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
986 if (found == 2)
987 log->l_curr_cycle++;
1c3cb9ec 988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 991 BBTOB(log->l_curr_block));
28496968 992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 993 BBTOB(log->l_curr_block));
1da177e4
LT
994
995 /*
996 * Look for unmount record. If we find it, then we know there
997 * was a clean unmount. Since 'i' could be the last block in
998 * the physical log, we convert to a log block before comparing
999 * to the head_blk.
1000 *
1001 * Save the current tail lsn to use to pass to
1002 * xlog_clear_stale_blocks() below. We won't want to clear the
1003 * unmount record if there is one, so we pass the lsn of the
1004 * unmount record rather than the block after it.
1005 */
62118709 1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1007 int h_size = be32_to_cpu(rhead->h_size);
1008 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1009
1010 if ((h_version & XLOG_VERSION_2) &&
1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1013 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1014 hblks++;
1015 } else {
1016 hblks = 1;
1017 }
1018 } else {
1019 hblks = 1;
1020 }
1021 after_umount_blk = (i + hblks + (int)
b53e675d 1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1023 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1024 if (*head_blk == after_umount_blk &&
b53e675d 1025 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1026 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1028 if (error)
9db127ed 1029 goto done;
076e6acb 1030
1da177e4
LT
1031 op_head = (xlog_op_header_t *)offset;
1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1033 /*
1034 * Set tail and last sync so that newly written
1035 * log records will point recovery to after the
1036 * current unmount record.
1037 */
1c3cb9ec
DC
1038 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1041 log->l_curr_cycle, after_umount_blk);
1da177e4 1042 *tail_blk = after_umount_blk;
92821e2b
DC
1043
1044 /*
1045 * Note that the unmount was clean. If the unmount
1046 * was not clean, we need to know this to rebuild the
1047 * superblock counters from the perag headers if we
1048 * have a filesystem using non-persistent counters.
1049 */
1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1051 }
1052 }
1053
1054 /*
1055 * Make sure that there are no blocks in front of the head
1056 * with the same cycle number as the head. This can happen
1057 * because we allow multiple outstanding log writes concurrently,
1058 * and the later writes might make it out before earlier ones.
1059 *
1060 * We use the lsn from before modifying it so that we'll never
1061 * overwrite the unmount record after a clean unmount.
1062 *
1063 * Do this only if we are going to recover the filesystem
1064 *
1065 * NOTE: This used to say "if (!readonly)"
1066 * However on Linux, we can & do recover a read-only filesystem.
1067 * We only skip recovery if NORECOVERY is specified on mount,
1068 * in which case we would not be here.
1069 *
1070 * But... if the -device- itself is readonly, just skip this.
1071 * We can't recover this device anyway, so it won't matter.
1072 */
9db127ed 1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1074 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1075
9db127ed 1076done:
1da177e4
LT
1077 xlog_put_bp(bp);
1078
1079 if (error)
a0fa2b67 1080 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1081 return error;
1082}
1083
1084/*
1085 * Is the log zeroed at all?
1086 *
1087 * The last binary search should be changed to perform an X block read
1088 * once X becomes small enough. You can then search linearly through
1089 * the X blocks. This will cut down on the number of reads we need to do.
1090 *
1091 * If the log is partially zeroed, this routine will pass back the blkno
1092 * of the first block with cycle number 0. It won't have a complete LR
1093 * preceding it.
1094 *
1095 * Return:
1096 * 0 => the log is completely written to
2451337d
DC
1097 * 1 => use *blk_no as the first block of the log
1098 * <0 => error has occurred
1da177e4 1099 */
a8272ce0 1100STATIC int
1da177e4 1101xlog_find_zeroed(
9a8d2fdb 1102 struct xlog *log,
1da177e4
LT
1103 xfs_daddr_t *blk_no)
1104{
1105 xfs_buf_t *bp;
1106 xfs_caddr_t offset;
1107 uint first_cycle, last_cycle;
1108 xfs_daddr_t new_blk, last_blk, start_blk;
1109 xfs_daddr_t num_scan_bblks;
1110 int error, log_bbnum = log->l_logBBsize;
1111
6fdf8ccc
NS
1112 *blk_no = 0;
1113
1da177e4
LT
1114 /* check totally zeroed log */
1115 bp = xlog_get_bp(log, 1);
1116 if (!bp)
2451337d 1117 return -ENOMEM;
076e6acb
CH
1118 error = xlog_bread(log, 0, 1, bp, &offset);
1119 if (error)
1da177e4 1120 goto bp_err;
076e6acb 1121
03bea6fe 1122 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1123 if (first_cycle == 0) { /* completely zeroed log */
1124 *blk_no = 0;
1125 xlog_put_bp(bp);
2451337d 1126 return 1;
1da177e4
LT
1127 }
1128
1129 /* check partially zeroed log */
076e6acb
CH
1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1131 if (error)
1da177e4 1132 goto bp_err;
076e6acb 1133
03bea6fe 1134 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1135 if (last_cycle != 0) { /* log completely written to */
1136 xlog_put_bp(bp);
1137 return 0;
1138 } else if (first_cycle != 1) {
1139 /*
1140 * If the cycle of the last block is zero, the cycle of
1141 * the first block must be 1. If it's not, maybe we're
1142 * not looking at a log... Bail out.
1143 */
a0fa2b67
DC
1144 xfs_warn(log->l_mp,
1145 "Log inconsistent or not a log (last==0, first!=1)");
2451337d 1146 error = -EINVAL;
5d0a6549 1147 goto bp_err;
1da177e4
LT
1148 }
1149
1150 /* we have a partially zeroed log */
1151 last_blk = log_bbnum-1;
1152 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1153 goto bp_err;
1154
1155 /*
1156 * Validate the answer. Because there is no way to guarantee that
1157 * the entire log is made up of log records which are the same size,
1158 * we scan over the defined maximum blocks. At this point, the maximum
1159 * is not chosen to mean anything special. XXXmiken
1160 */
1161 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1162 ASSERT(num_scan_bblks <= INT_MAX);
1163
1164 if (last_blk < num_scan_bblks)
1165 num_scan_bblks = last_blk;
1166 start_blk = last_blk - num_scan_bblks;
1167
1168 /*
1169 * We search for any instances of cycle number 0 that occur before
1170 * our current estimate of the head. What we're trying to detect is
1171 * 1 ... | 0 | 1 | 0...
1172 * ^ binary search ends here
1173 */
1174 if ((error = xlog_find_verify_cycle(log, start_blk,
1175 (int)num_scan_bblks, 0, &new_blk)))
1176 goto bp_err;
1177 if (new_blk != -1)
1178 last_blk = new_blk;
1179
1180 /*
1181 * Potentially backup over partial log record write. We don't need
1182 * to search the end of the log because we know it is zero.
1183 */
2451337d
DC
1184 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1185 if (error == 1)
1186 error = -EIO;
1187 if (error)
1188 goto bp_err;
1da177e4
LT
1189
1190 *blk_no = last_blk;
1191bp_err:
1192 xlog_put_bp(bp);
1193 if (error)
1194 return error;
2451337d 1195 return 1;
1da177e4
LT
1196}
1197
1198/*
1199 * These are simple subroutines used by xlog_clear_stale_blocks() below
1200 * to initialize a buffer full of empty log record headers and write
1201 * them into the log.
1202 */
1203STATIC void
1204xlog_add_record(
9a8d2fdb 1205 struct xlog *log,
1da177e4
LT
1206 xfs_caddr_t buf,
1207 int cycle,
1208 int block,
1209 int tail_cycle,
1210 int tail_block)
1211{
1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1213
1214 memset(buf, 0, BBSIZE);
b53e675d
CH
1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1216 recp->h_cycle = cpu_to_be32(cycle);
1217 recp->h_version = cpu_to_be32(
62118709 1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1221 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1223}
1224
1225STATIC int
1226xlog_write_log_records(
9a8d2fdb 1227 struct xlog *log,
1da177e4
LT
1228 int cycle,
1229 int start_block,
1230 int blocks,
1231 int tail_cycle,
1232 int tail_block)
1233{
1234 xfs_caddr_t offset;
1235 xfs_buf_t *bp;
1236 int balign, ealign;
69ce58f0 1237 int sectbb = log->l_sectBBsize;
1da177e4
LT
1238 int end_block = start_block + blocks;
1239 int bufblks;
1240 int error = 0;
1241 int i, j = 0;
1242
6881a229
AE
1243 /*
1244 * Greedily allocate a buffer big enough to handle the full
1245 * range of basic blocks to be written. If that fails, try
1246 * a smaller size. We need to be able to write at least a
1247 * log sector, or we're out of luck.
1248 */
1da177e4 1249 bufblks = 1 << ffs(blocks);
81158e0c
DC
1250 while (bufblks > log->l_logBBsize)
1251 bufblks >>= 1;
1da177e4
LT
1252 while (!(bp = xlog_get_bp(log, bufblks))) {
1253 bufblks >>= 1;
69ce58f0 1254 if (bufblks < sectbb)
2451337d 1255 return -ENOMEM;
1da177e4
LT
1256 }
1257
1258 /* We may need to do a read at the start to fill in part of
1259 * the buffer in the starting sector not covered by the first
1260 * write below.
1261 */
5c17f533 1262 balign = round_down(start_block, sectbb);
1da177e4 1263 if (balign != start_block) {
076e6acb
CH
1264 error = xlog_bread_noalign(log, start_block, 1, bp);
1265 if (error)
1266 goto out_put_bp;
1267
1da177e4
LT
1268 j = start_block - balign;
1269 }
1270
1271 for (i = start_block; i < end_block; i += bufblks) {
1272 int bcount, endcount;
1273
1274 bcount = min(bufblks, end_block - start_block);
1275 endcount = bcount - j;
1276
1277 /* We may need to do a read at the end to fill in part of
1278 * the buffer in the final sector not covered by the write.
1279 * If this is the same sector as the above read, skip it.
1280 */
5c17f533 1281 ealign = round_down(end_block, sectbb);
1da177e4 1282 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1283 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1284 error = xlog_bread_offset(log, ealign, sectbb,
1285 bp, offset);
076e6acb
CH
1286 if (error)
1287 break;
1288
1da177e4
LT
1289 }
1290
1291 offset = xlog_align(log, start_block, endcount, bp);
1292 for (; j < endcount; j++) {
1293 xlog_add_record(log, offset, cycle, i+j,
1294 tail_cycle, tail_block);
1295 offset += BBSIZE;
1296 }
1297 error = xlog_bwrite(log, start_block, endcount, bp);
1298 if (error)
1299 break;
1300 start_block += endcount;
1301 j = 0;
1302 }
076e6acb
CH
1303
1304 out_put_bp:
1da177e4
LT
1305 xlog_put_bp(bp);
1306 return error;
1307}
1308
1309/*
1310 * This routine is called to blow away any incomplete log writes out
1311 * in front of the log head. We do this so that we won't become confused
1312 * if we come up, write only a little bit more, and then crash again.
1313 * If we leave the partial log records out there, this situation could
1314 * cause us to think those partial writes are valid blocks since they
1315 * have the current cycle number. We get rid of them by overwriting them
1316 * with empty log records with the old cycle number rather than the
1317 * current one.
1318 *
1319 * The tail lsn is passed in rather than taken from
1320 * the log so that we will not write over the unmount record after a
1321 * clean unmount in a 512 block log. Doing so would leave the log without
1322 * any valid log records in it until a new one was written. If we crashed
1323 * during that time we would not be able to recover.
1324 */
1325STATIC int
1326xlog_clear_stale_blocks(
9a8d2fdb 1327 struct xlog *log,
1da177e4
LT
1328 xfs_lsn_t tail_lsn)
1329{
1330 int tail_cycle, head_cycle;
1331 int tail_block, head_block;
1332 int tail_distance, max_distance;
1333 int distance;
1334 int error;
1335
1336 tail_cycle = CYCLE_LSN(tail_lsn);
1337 tail_block = BLOCK_LSN(tail_lsn);
1338 head_cycle = log->l_curr_cycle;
1339 head_block = log->l_curr_block;
1340
1341 /*
1342 * Figure out the distance between the new head of the log
1343 * and the tail. We want to write over any blocks beyond the
1344 * head that we may have written just before the crash, but
1345 * we don't want to overwrite the tail of the log.
1346 */
1347 if (head_cycle == tail_cycle) {
1348 /*
1349 * The tail is behind the head in the physical log,
1350 * so the distance from the head to the tail is the
1351 * distance from the head to the end of the log plus
1352 * the distance from the beginning of the log to the
1353 * tail.
1354 */
1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1357 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1358 return -EFSCORRUPTED;
1da177e4
LT
1359 }
1360 tail_distance = tail_block + (log->l_logBBsize - head_block);
1361 } else {
1362 /*
1363 * The head is behind the tail in the physical log,
1364 * so the distance from the head to the tail is just
1365 * the tail block minus the head block.
1366 */
1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1369 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1370 return -EFSCORRUPTED;
1da177e4
LT
1371 }
1372 tail_distance = tail_block - head_block;
1373 }
1374
1375 /*
1376 * If the head is right up against the tail, we can't clear
1377 * anything.
1378 */
1379 if (tail_distance <= 0) {
1380 ASSERT(tail_distance == 0);
1381 return 0;
1382 }
1383
1384 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1385 /*
1386 * Take the smaller of the maximum amount of outstanding I/O
1387 * we could have and the distance to the tail to clear out.
1388 * We take the smaller so that we don't overwrite the tail and
1389 * we don't waste all day writing from the head to the tail
1390 * for no reason.
1391 */
1392 max_distance = MIN(max_distance, tail_distance);
1393
1394 if ((head_block + max_distance) <= log->l_logBBsize) {
1395 /*
1396 * We can stomp all the blocks we need to without
1397 * wrapping around the end of the log. Just do it
1398 * in a single write. Use the cycle number of the
1399 * current cycle minus one so that the log will look like:
1400 * n ... | n - 1 ...
1401 */
1402 error = xlog_write_log_records(log, (head_cycle - 1),
1403 head_block, max_distance, tail_cycle,
1404 tail_block);
1405 if (error)
1406 return error;
1407 } else {
1408 /*
1409 * We need to wrap around the end of the physical log in
1410 * order to clear all the blocks. Do it in two separate
1411 * I/Os. The first write should be from the head to the
1412 * end of the physical log, and it should use the current
1413 * cycle number minus one just like above.
1414 */
1415 distance = log->l_logBBsize - head_block;
1416 error = xlog_write_log_records(log, (head_cycle - 1),
1417 head_block, distance, tail_cycle,
1418 tail_block);
1419
1420 if (error)
1421 return error;
1422
1423 /*
1424 * Now write the blocks at the start of the physical log.
1425 * This writes the remainder of the blocks we want to clear.
1426 * It uses the current cycle number since we're now on the
1427 * same cycle as the head so that we get:
1428 * n ... n ... | n - 1 ...
1429 * ^^^^^ blocks we're writing
1430 */
1431 distance = max_distance - (log->l_logBBsize - head_block);
1432 error = xlog_write_log_records(log, head_cycle, 0, distance,
1433 tail_cycle, tail_block);
1434 if (error)
1435 return error;
1436 }
1437
1438 return 0;
1439}
1440
1441/******************************************************************************
1442 *
1443 * Log recover routines
1444 *
1445 ******************************************************************************
1446 */
1447
1448STATIC xlog_recover_t *
1449xlog_recover_find_tid(
f0a76953 1450 struct hlist_head *head,
1da177e4
LT
1451 xlog_tid_t tid)
1452{
f0a76953 1453 xlog_recover_t *trans;
1da177e4 1454
b67bfe0d 1455 hlist_for_each_entry(trans, head, r_list) {
f0a76953
DC
1456 if (trans->r_log_tid == tid)
1457 return trans;
1da177e4 1458 }
f0a76953 1459 return NULL;
1da177e4
LT
1460}
1461
1462STATIC void
f0a76953
DC
1463xlog_recover_new_tid(
1464 struct hlist_head *head,
1465 xlog_tid_t tid,
1466 xfs_lsn_t lsn)
1da177e4 1467{
f0a76953
DC
1468 xlog_recover_t *trans;
1469
1470 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1471 trans->r_log_tid = tid;
1472 trans->r_lsn = lsn;
1473 INIT_LIST_HEAD(&trans->r_itemq);
1474
1475 INIT_HLIST_NODE(&trans->r_list);
1476 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1477}
1478
1479STATIC void
1480xlog_recover_add_item(
f0a76953 1481 struct list_head *head)
1da177e4
LT
1482{
1483 xlog_recover_item_t *item;
1484
1485 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1486 INIT_LIST_HEAD(&item->ri_list);
1487 list_add_tail(&item->ri_list, head);
1da177e4
LT
1488}
1489
1490STATIC int
1491xlog_recover_add_to_cont_trans(
ad223e60
MT
1492 struct xlog *log,
1493 struct xlog_recover *trans,
1da177e4
LT
1494 xfs_caddr_t dp,
1495 int len)
1496{
1497 xlog_recover_item_t *item;
1498 xfs_caddr_t ptr, old_ptr;
1499 int old_len;
1500
f0a76953 1501 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1502 /* finish copying rest of trans header */
1503 xlog_recover_add_item(&trans->r_itemq);
1504 ptr = (xfs_caddr_t) &trans->r_theader +
1505 sizeof(xfs_trans_header_t) - len;
1506 memcpy(ptr, dp, len); /* d, s, l */
1507 return 0;
1508 }
f0a76953
DC
1509 /* take the tail entry */
1510 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1511
1512 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1513 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1514
45053603 1515 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1516 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1517 item->ri_buf[item->ri_cnt-1].i_len += len;
1518 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1519 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1520 return 0;
1521}
1522
1523/*
1524 * The next region to add is the start of a new region. It could be
1525 * a whole region or it could be the first part of a new region. Because
1526 * of this, the assumption here is that the type and size fields of all
1527 * format structures fit into the first 32 bits of the structure.
1528 *
1529 * This works because all regions must be 32 bit aligned. Therefore, we
1530 * either have both fields or we have neither field. In the case we have
1531 * neither field, the data part of the region is zero length. We only have
1532 * a log_op_header and can throw away the header since a new one will appear
1533 * later. If we have at least 4 bytes, then we can determine how many regions
1534 * will appear in the current log item.
1535 */
1536STATIC int
1537xlog_recover_add_to_trans(
ad223e60
MT
1538 struct xlog *log,
1539 struct xlog_recover *trans,
1da177e4
LT
1540 xfs_caddr_t dp,
1541 int len)
1542{
1543 xfs_inode_log_format_t *in_f; /* any will do */
1544 xlog_recover_item_t *item;
1545 xfs_caddr_t ptr;
1546
1547 if (!len)
1548 return 0;
f0a76953 1549 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1550 /* we need to catch log corruptions here */
1551 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1552 xfs_warn(log->l_mp, "%s: bad header magic number",
1553 __func__);
5a792c45 1554 ASSERT(0);
2451337d 1555 return -EIO;
5a792c45 1556 }
1da177e4
LT
1557 if (len == sizeof(xfs_trans_header_t))
1558 xlog_recover_add_item(&trans->r_itemq);
1559 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1560 return 0;
1561 }
1562
1563 ptr = kmem_alloc(len, KM_SLEEP);
1564 memcpy(ptr, dp, len);
1565 in_f = (xfs_inode_log_format_t *)ptr;
1566
f0a76953
DC
1567 /* take the tail entry */
1568 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1569 if (item->ri_total != 0 &&
1570 item->ri_total == item->ri_cnt) {
1571 /* tail item is in use, get a new one */
1da177e4 1572 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1573 item = list_entry(trans->r_itemq.prev,
1574 xlog_recover_item_t, ri_list);
1da177e4 1575 }
1da177e4
LT
1576
1577 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1578 if (in_f->ilf_size == 0 ||
1579 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1580 xfs_warn(log->l_mp,
1581 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1582 in_f->ilf_size);
1583 ASSERT(0);
aaaae980 1584 kmem_free(ptr);
2451337d 1585 return -EIO;
e8fa6b48
CH
1586 }
1587
1588 item->ri_total = in_f->ilf_size;
1589 item->ri_buf =
1590 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1591 KM_SLEEP);
1da177e4
LT
1592 }
1593 ASSERT(item->ri_total > item->ri_cnt);
1594 /* Description region is ri_buf[0] */
1595 item->ri_buf[item->ri_cnt].i_addr = ptr;
1596 item->ri_buf[item->ri_cnt].i_len = len;
1597 item->ri_cnt++;
9abbc539 1598 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1599 return 0;
1600}
1601
f0a76953 1602/*
a775ad77
DC
1603 * Sort the log items in the transaction.
1604 *
1605 * The ordering constraints are defined by the inode allocation and unlink
1606 * behaviour. The rules are:
1607 *
1608 * 1. Every item is only logged once in a given transaction. Hence it
1609 * represents the last logged state of the item. Hence ordering is
1610 * dependent on the order in which operations need to be performed so
1611 * required initial conditions are always met.
1612 *
1613 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1614 * there's nothing to replay from them so we can simply cull them
1615 * from the transaction. However, we can't do that until after we've
1616 * replayed all the other items because they may be dependent on the
1617 * cancelled buffer and replaying the cancelled buffer can remove it
1618 * form the cancelled buffer table. Hence they have tobe done last.
1619 *
1620 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1621 * read the buffer and replay changes into it. For filesystems using the
1622 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1623 * treated the same as inode allocation buffers as they create and
1624 * initialise the buffers directly.
a775ad77
DC
1625 *
1626 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1627 * This ensures that inodes are completely flushed to the inode buffer
1628 * in a "free" state before we remove the unlinked inode list pointer.
1629 *
1630 * Hence the ordering needs to be inode allocation buffers first, inode items
1631 * second, inode unlink buffers third and cancelled buffers last.
1632 *
1633 * But there's a problem with that - we can't tell an inode allocation buffer
1634 * apart from a regular buffer, so we can't separate them. We can, however,
1635 * tell an inode unlink buffer from the others, and so we can separate them out
1636 * from all the other buffers and move them to last.
1637 *
1638 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1639 * - buffer_list for all buffers except cancelled/inode unlink buffers
1640 * - item_list for all non-buffer items
1641 * - inode_buffer_list for inode unlink buffers
1642 * - cancel_list for the cancelled buffers
1643 *
1644 * Note that we add objects to the tail of the lists so that first-to-last
1645 * ordering is preserved within the lists. Adding objects to the head of the
1646 * list means when we traverse from the head we walk them in last-to-first
1647 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1648 * but for all other items there may be specific ordering that we need to
1649 * preserve.
f0a76953 1650 */
1da177e4
LT
1651STATIC int
1652xlog_recover_reorder_trans(
ad223e60
MT
1653 struct xlog *log,
1654 struct xlog_recover *trans,
9abbc539 1655 int pass)
1da177e4 1656{
f0a76953 1657 xlog_recover_item_t *item, *n;
2a84108f 1658 int error = 0;
f0a76953 1659 LIST_HEAD(sort_list);
a775ad77
DC
1660 LIST_HEAD(cancel_list);
1661 LIST_HEAD(buffer_list);
1662 LIST_HEAD(inode_buffer_list);
1663 LIST_HEAD(inode_list);
f0a76953
DC
1664
1665 list_splice_init(&trans->r_itemq, &sort_list);
1666 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1667 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1668
f0a76953 1669 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1670 case XFS_LI_ICREATE:
1671 list_move_tail(&item->ri_list, &buffer_list);
1672 break;
1da177e4 1673 case XFS_LI_BUF:
a775ad77 1674 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1675 trace_xfs_log_recover_item_reorder_head(log,
1676 trans, item, pass);
a775ad77 1677 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1678 break;
1679 }
a775ad77
DC
1680 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1681 list_move(&item->ri_list, &inode_buffer_list);
1682 break;
1683 }
1684 list_move_tail(&item->ri_list, &buffer_list);
1685 break;
1da177e4 1686 case XFS_LI_INODE:
1da177e4
LT
1687 case XFS_LI_DQUOT:
1688 case XFS_LI_QUOTAOFF:
1689 case XFS_LI_EFD:
1690 case XFS_LI_EFI:
9abbc539
DC
1691 trace_xfs_log_recover_item_reorder_tail(log,
1692 trans, item, pass);
a775ad77 1693 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1694 break;
1695 default:
a0fa2b67
DC
1696 xfs_warn(log->l_mp,
1697 "%s: unrecognized type of log operation",
1698 __func__);
1da177e4 1699 ASSERT(0);
2a84108f
MT
1700 /*
1701 * return the remaining items back to the transaction
1702 * item list so they can be freed in caller.
1703 */
1704 if (!list_empty(&sort_list))
1705 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1706 error = -EIO;
2a84108f 1707 goto out;
1da177e4 1708 }
f0a76953 1709 }
2a84108f 1710out:
f0a76953 1711 ASSERT(list_empty(&sort_list));
a775ad77
DC
1712 if (!list_empty(&buffer_list))
1713 list_splice(&buffer_list, &trans->r_itemq);
1714 if (!list_empty(&inode_list))
1715 list_splice_tail(&inode_list, &trans->r_itemq);
1716 if (!list_empty(&inode_buffer_list))
1717 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1718 if (!list_empty(&cancel_list))
1719 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1720 return error;
1da177e4
LT
1721}
1722
1723/*
1724 * Build up the table of buf cancel records so that we don't replay
1725 * cancelled data in the second pass. For buffer records that are
1726 * not cancel records, there is nothing to do here so we just return.
1727 *
1728 * If we get a cancel record which is already in the table, this indicates
1729 * that the buffer was cancelled multiple times. In order to ensure
1730 * that during pass 2 we keep the record in the table until we reach its
1731 * last occurrence in the log, we keep a reference count in the cancel
1732 * record in the table to tell us how many times we expect to see this
1733 * record during the second pass.
1734 */
c9f71f5f
CH
1735STATIC int
1736xlog_recover_buffer_pass1(
ad223e60
MT
1737 struct xlog *log,
1738 struct xlog_recover_item *item)
1da177e4 1739{
c9f71f5f 1740 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1741 struct list_head *bucket;
1742 struct xfs_buf_cancel *bcp;
1da177e4
LT
1743
1744 /*
1745 * If this isn't a cancel buffer item, then just return.
1746 */
e2714bf8 1747 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1748 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1749 return 0;
9abbc539 1750 }
1da177e4
LT
1751
1752 /*
d5689eaa
CH
1753 * Insert an xfs_buf_cancel record into the hash table of them.
1754 * If there is already an identical record, bump its reference count.
1da177e4 1755 */
d5689eaa
CH
1756 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1757 list_for_each_entry(bcp, bucket, bc_list) {
1758 if (bcp->bc_blkno == buf_f->blf_blkno &&
1759 bcp->bc_len == buf_f->blf_len) {
1760 bcp->bc_refcount++;
9abbc539 1761 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1762 return 0;
1da177e4 1763 }
d5689eaa
CH
1764 }
1765
1766 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1767 bcp->bc_blkno = buf_f->blf_blkno;
1768 bcp->bc_len = buf_f->blf_len;
1da177e4 1769 bcp->bc_refcount = 1;
d5689eaa
CH
1770 list_add_tail(&bcp->bc_list, bucket);
1771
9abbc539 1772 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1773 return 0;
1da177e4
LT
1774}
1775
1776/*
1777 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
1778 * entry in the buffer cancel record table. If it is, return the cancel
1779 * buffer structure to the caller.
1da177e4 1780 */
84a5b730
DC
1781STATIC struct xfs_buf_cancel *
1782xlog_peek_buffer_cancelled(
ad223e60 1783 struct xlog *log,
1da177e4
LT
1784 xfs_daddr_t blkno,
1785 uint len,
1786 ushort flags)
1787{
d5689eaa
CH
1788 struct list_head *bucket;
1789 struct xfs_buf_cancel *bcp;
1da177e4 1790
84a5b730
DC
1791 if (!log->l_buf_cancel_table) {
1792 /* empty table means no cancelled buffers in the log */
c1155410 1793 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 1794 return NULL;
1da177e4
LT
1795 }
1796
d5689eaa
CH
1797 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1798 list_for_each_entry(bcp, bucket, bc_list) {
1799 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 1800 return bcp;
1da177e4 1801 }
d5689eaa 1802
1da177e4 1803 /*
d5689eaa
CH
1804 * We didn't find a corresponding entry in the table, so return 0 so
1805 * that the buffer is NOT cancelled.
1da177e4 1806 */
c1155410 1807 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
1808 return NULL;
1809}
1810
1811/*
1812 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1813 * otherwise return 0. If the buffer is actually a buffer cancel item
1814 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1815 * table and remove it from the table if this is the last reference.
1816 *
1817 * We remove the cancel record from the table when we encounter its last
1818 * occurrence in the log so that if the same buffer is re-used again after its
1819 * last cancellation we actually replay the changes made at that point.
1820 */
1821STATIC int
1822xlog_check_buffer_cancelled(
1823 struct xlog *log,
1824 xfs_daddr_t blkno,
1825 uint len,
1826 ushort flags)
1827{
1828 struct xfs_buf_cancel *bcp;
1829
1830 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1831 if (!bcp)
1832 return 0;
d5689eaa 1833
d5689eaa
CH
1834 /*
1835 * We've go a match, so return 1 so that the recovery of this buffer
1836 * is cancelled. If this buffer is actually a buffer cancel log
1837 * item, then decrement the refcount on the one in the table and
1838 * remove it if this is the last reference.
1839 */
1840 if (flags & XFS_BLF_CANCEL) {
1841 if (--bcp->bc_refcount == 0) {
1842 list_del(&bcp->bc_list);
1843 kmem_free(bcp);
1844 }
1845 }
1846 return 1;
1da177e4
LT
1847}
1848
1da177e4 1849/*
e2714bf8
CH
1850 * Perform recovery for a buffer full of inodes. In these buffers, the only
1851 * data which should be recovered is that which corresponds to the
1852 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1853 * data for the inodes is always logged through the inodes themselves rather
1854 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1855 *
e2714bf8
CH
1856 * The only time when buffers full of inodes are fully recovered is when the
1857 * buffer is full of newly allocated inodes. In this case the buffer will
1858 * not be marked as an inode buffer and so will be sent to
1859 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1860 */
1861STATIC int
1862xlog_recover_do_inode_buffer(
e2714bf8 1863 struct xfs_mount *mp,
1da177e4 1864 xlog_recover_item_t *item,
e2714bf8 1865 struct xfs_buf *bp,
1da177e4
LT
1866 xfs_buf_log_format_t *buf_f)
1867{
1868 int i;
e2714bf8
CH
1869 int item_index = 0;
1870 int bit = 0;
1871 int nbits = 0;
1872 int reg_buf_offset = 0;
1873 int reg_buf_bytes = 0;
1da177e4
LT
1874 int next_unlinked_offset;
1875 int inodes_per_buf;
1876 xfs_agino_t *logged_nextp;
1877 xfs_agino_t *buffer_nextp;
1da177e4 1878
9abbc539 1879 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1880
1881 /*
1882 * Post recovery validation only works properly on CRC enabled
1883 * filesystems.
1884 */
1885 if (xfs_sb_version_hascrc(&mp->m_sb))
1886 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1887
aa0e8833 1888 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1889 for (i = 0; i < inodes_per_buf; i++) {
1890 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1891 offsetof(xfs_dinode_t, di_next_unlinked);
1892
1893 while (next_unlinked_offset >=
1894 (reg_buf_offset + reg_buf_bytes)) {
1895 /*
1896 * The next di_next_unlinked field is beyond
1897 * the current logged region. Find the next
1898 * logged region that contains or is beyond
1899 * the current di_next_unlinked field.
1900 */
1901 bit += nbits;
e2714bf8
CH
1902 bit = xfs_next_bit(buf_f->blf_data_map,
1903 buf_f->blf_map_size, bit);
1da177e4
LT
1904
1905 /*
1906 * If there are no more logged regions in the
1907 * buffer, then we're done.
1908 */
e2714bf8 1909 if (bit == -1)
1da177e4 1910 return 0;
1da177e4 1911
e2714bf8
CH
1912 nbits = xfs_contig_bits(buf_f->blf_data_map,
1913 buf_f->blf_map_size, bit);
1da177e4 1914 ASSERT(nbits > 0);
c1155410
DC
1915 reg_buf_offset = bit << XFS_BLF_SHIFT;
1916 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1917 item_index++;
1918 }
1919
1920 /*
1921 * If the current logged region starts after the current
1922 * di_next_unlinked field, then move on to the next
1923 * di_next_unlinked field.
1924 */
e2714bf8 1925 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1926 continue;
1da177e4
LT
1927
1928 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1929 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1930 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1931 BBTOB(bp->b_io_length));
1da177e4
LT
1932
1933 /*
1934 * The current logged region contains a copy of the
1935 * current di_next_unlinked field. Extract its value
1936 * and copy it to the buffer copy.
1937 */
4e0d5f92
CH
1938 logged_nextp = item->ri_buf[item_index].i_addr +
1939 next_unlinked_offset - reg_buf_offset;
1da177e4 1940 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1941 xfs_alert(mp,
1942 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1943 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1944 item, bp);
1945 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1946 XFS_ERRLEVEL_LOW, mp);
2451337d 1947 return -EFSCORRUPTED;
1da177e4
LT
1948 }
1949
1950 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1951 next_unlinked_offset);
87c199c2 1952 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1953
1954 /*
1955 * If necessary, recalculate the CRC in the on-disk inode. We
1956 * have to leave the inode in a consistent state for whoever
1957 * reads it next....
1958 */
1959 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1960 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1961
1da177e4
LT
1962 }
1963
1964 return 0;
1965}
1966
50d5c8d8
DC
1967/*
1968 * V5 filesystems know the age of the buffer on disk being recovered. We can
1969 * have newer objects on disk than we are replaying, and so for these cases we
1970 * don't want to replay the current change as that will make the buffer contents
1971 * temporarily invalid on disk.
1972 *
1973 * The magic number might not match the buffer type we are going to recover
1974 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1975 * extract the LSN of the existing object in the buffer based on it's current
1976 * magic number. If we don't recognise the magic number in the buffer, then
1977 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1978 * so can recover the buffer.
566055d3
DC
1979 *
1980 * Note: we cannot rely solely on magic number matches to determine that the
1981 * buffer has a valid LSN - we also need to verify that it belongs to this
1982 * filesystem, so we need to extract the object's LSN and compare it to that
1983 * which we read from the superblock. If the UUIDs don't match, then we've got a
1984 * stale metadata block from an old filesystem instance that we need to recover
1985 * over the top of.
50d5c8d8
DC
1986 */
1987static xfs_lsn_t
1988xlog_recover_get_buf_lsn(
1989 struct xfs_mount *mp,
1990 struct xfs_buf *bp)
1991{
1992 __uint32_t magic32;
1993 __uint16_t magic16;
1994 __uint16_t magicda;
1995 void *blk = bp->b_addr;
566055d3
DC
1996 uuid_t *uuid;
1997 xfs_lsn_t lsn = -1;
50d5c8d8
DC
1998
1999 /* v4 filesystems always recover immediately */
2000 if (!xfs_sb_version_hascrc(&mp->m_sb))
2001 goto recover_immediately;
2002
2003 magic32 = be32_to_cpu(*(__be32 *)blk);
2004 switch (magic32) {
2005 case XFS_ABTB_CRC_MAGIC:
2006 case XFS_ABTC_CRC_MAGIC:
2007 case XFS_ABTB_MAGIC:
2008 case XFS_ABTC_MAGIC:
2009 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2010 case XFS_IBT_MAGIC: {
2011 struct xfs_btree_block *btb = blk;
2012
2013 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2014 uuid = &btb->bb_u.s.bb_uuid;
2015 break;
2016 }
50d5c8d8 2017 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2018 case XFS_BMAP_MAGIC: {
2019 struct xfs_btree_block *btb = blk;
2020
2021 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2022 uuid = &btb->bb_u.l.bb_uuid;
2023 break;
2024 }
50d5c8d8 2025 case XFS_AGF_MAGIC:
566055d3
DC
2026 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2027 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2028 break;
50d5c8d8 2029 case XFS_AGFL_MAGIC:
566055d3
DC
2030 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2031 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2032 break;
50d5c8d8 2033 case XFS_AGI_MAGIC:
566055d3
DC
2034 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2035 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2036 break;
50d5c8d8 2037 case XFS_SYMLINK_MAGIC:
566055d3
DC
2038 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2039 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2040 break;
50d5c8d8
DC
2041 case XFS_DIR3_BLOCK_MAGIC:
2042 case XFS_DIR3_DATA_MAGIC:
2043 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2044 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2045 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2046 break;
50d5c8d8 2047 case XFS_ATTR3_RMT_MAGIC:
566055d3
DC
2048 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2049 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2050 break;
50d5c8d8 2051 case XFS_SB_MAGIC:
566055d3
DC
2052 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2053 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2054 break;
50d5c8d8
DC
2055 default:
2056 break;
2057 }
2058
566055d3
DC
2059 if (lsn != (xfs_lsn_t)-1) {
2060 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2061 goto recover_immediately;
2062 return lsn;
2063 }
2064
50d5c8d8
DC
2065 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2066 switch (magicda) {
2067 case XFS_DIR3_LEAF1_MAGIC:
2068 case XFS_DIR3_LEAFN_MAGIC:
2069 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2070 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2071 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2072 break;
50d5c8d8
DC
2073 default:
2074 break;
2075 }
2076
566055d3
DC
2077 if (lsn != (xfs_lsn_t)-1) {
2078 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2079 goto recover_immediately;
2080 return lsn;
2081 }
2082
50d5c8d8
DC
2083 /*
2084 * We do individual object checks on dquot and inode buffers as they
2085 * have their own individual LSN records. Also, we could have a stale
2086 * buffer here, so we have to at least recognise these buffer types.
2087 *
2088 * A notd complexity here is inode unlinked list processing - it logs
2089 * the inode directly in the buffer, but we don't know which inodes have
2090 * been modified, and there is no global buffer LSN. Hence we need to
2091 * recover all inode buffer types immediately. This problem will be
2092 * fixed by logical logging of the unlinked list modifications.
2093 */
2094 magic16 = be16_to_cpu(*(__be16 *)blk);
2095 switch (magic16) {
2096 case XFS_DQUOT_MAGIC:
2097 case XFS_DINODE_MAGIC:
2098 goto recover_immediately;
2099 default:
2100 break;
2101 }
2102
2103 /* unknown buffer contents, recover immediately */
2104
2105recover_immediately:
2106 return (xfs_lsn_t)-1;
2107
2108}
2109
1da177e4 2110/*
d75afeb3
DC
2111 * Validate the recovered buffer is of the correct type and attach the
2112 * appropriate buffer operations to them for writeback. Magic numbers are in a
2113 * few places:
2114 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2115 * the first 32 bits of the buffer (most blocks),
2116 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2117 */
d75afeb3 2118static void
50d5c8d8 2119xlog_recover_validate_buf_type(
9abbc539 2120 struct xfs_mount *mp,
e2714bf8 2121 struct xfs_buf *bp,
1da177e4
LT
2122 xfs_buf_log_format_t *buf_f)
2123{
d75afeb3
DC
2124 struct xfs_da_blkinfo *info = bp->b_addr;
2125 __uint32_t magic32;
2126 __uint16_t magic16;
2127 __uint16_t magicda;
2128
67dc288c
DC
2129 /*
2130 * We can only do post recovery validation on items on CRC enabled
2131 * fielsystems as we need to know when the buffer was written to be able
2132 * to determine if we should have replayed the item. If we replay old
2133 * metadata over a newer buffer, then it will enter a temporarily
2134 * inconsistent state resulting in verification failures. Hence for now
2135 * just avoid the verification stage for non-crc filesystems
2136 */
2137 if (!xfs_sb_version_hascrc(&mp->m_sb))
2138 return;
2139
d75afeb3
DC
2140 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2141 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2142 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2143 switch (xfs_blft_from_flags(buf_f)) {
2144 case XFS_BLFT_BTREE_BUF:
d75afeb3 2145 switch (magic32) {
ee1a47ab
CH
2146 case XFS_ABTB_CRC_MAGIC:
2147 case XFS_ABTC_CRC_MAGIC:
2148 case XFS_ABTB_MAGIC:
2149 case XFS_ABTC_MAGIC:
2150 bp->b_ops = &xfs_allocbt_buf_ops;
2151 break;
2152 case XFS_IBT_CRC_MAGIC:
aafc3c24 2153 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2154 case XFS_IBT_MAGIC:
aafc3c24 2155 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2156 bp->b_ops = &xfs_inobt_buf_ops;
2157 break;
2158 case XFS_BMAP_CRC_MAGIC:
2159 case XFS_BMAP_MAGIC:
2160 bp->b_ops = &xfs_bmbt_buf_ops;
2161 break;
2162 default:
2163 xfs_warn(mp, "Bad btree block magic!");
2164 ASSERT(0);
2165 break;
2166 }
2167 break;
61fe135c 2168 case XFS_BLFT_AGF_BUF:
d75afeb3 2169 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2170 xfs_warn(mp, "Bad AGF block magic!");
2171 ASSERT(0);
2172 break;
2173 }
2174 bp->b_ops = &xfs_agf_buf_ops;
2175 break;
61fe135c 2176 case XFS_BLFT_AGFL_BUF:
d75afeb3 2177 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2178 xfs_warn(mp, "Bad AGFL block magic!");
2179 ASSERT(0);
2180 break;
2181 }
2182 bp->b_ops = &xfs_agfl_buf_ops;
2183 break;
61fe135c 2184 case XFS_BLFT_AGI_BUF:
d75afeb3 2185 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2186 xfs_warn(mp, "Bad AGI block magic!");
2187 ASSERT(0);
2188 break;
2189 }
2190 bp->b_ops = &xfs_agi_buf_ops;
2191 break;
61fe135c
DC
2192 case XFS_BLFT_UDQUOT_BUF:
2193 case XFS_BLFT_PDQUOT_BUF:
2194 case XFS_BLFT_GDQUOT_BUF:
123887e8 2195#ifdef CONFIG_XFS_QUOTA
d75afeb3 2196 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2197 xfs_warn(mp, "Bad DQUOT block magic!");
2198 ASSERT(0);
2199 break;
2200 }
2201 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2202#else
2203 xfs_alert(mp,
2204 "Trying to recover dquots without QUOTA support built in!");
2205 ASSERT(0);
2206#endif
3fe58f30 2207 break;
61fe135c 2208 case XFS_BLFT_DINO_BUF:
d75afeb3 2209 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2210 xfs_warn(mp, "Bad INODE block magic!");
2211 ASSERT(0);
2212 break;
2213 }
2214 bp->b_ops = &xfs_inode_buf_ops;
2215 break;
61fe135c 2216 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2217 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2218 xfs_warn(mp, "Bad symlink block magic!");
2219 ASSERT(0);
2220 break;
2221 }
2222 bp->b_ops = &xfs_symlink_buf_ops;
2223 break;
61fe135c 2224 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2225 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2226 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2227 xfs_warn(mp, "Bad dir block magic!");
2228 ASSERT(0);
2229 break;
2230 }
2231 bp->b_ops = &xfs_dir3_block_buf_ops;
2232 break;
61fe135c 2233 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2234 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2235 magic32 != XFS_DIR3_DATA_MAGIC) {
2236 xfs_warn(mp, "Bad dir data magic!");
2237 ASSERT(0);
2238 break;
2239 }
2240 bp->b_ops = &xfs_dir3_data_buf_ops;
2241 break;
61fe135c 2242 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2243 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2244 magic32 != XFS_DIR3_FREE_MAGIC) {
2245 xfs_warn(mp, "Bad dir3 free magic!");
2246 ASSERT(0);
2247 break;
2248 }
2249 bp->b_ops = &xfs_dir3_free_buf_ops;
2250 break;
61fe135c 2251 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2252 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2253 magicda != XFS_DIR3_LEAF1_MAGIC) {
2254 xfs_warn(mp, "Bad dir leaf1 magic!");
2255 ASSERT(0);
2256 break;
2257 }
2258 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2259 break;
61fe135c 2260 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2261 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2262 magicda != XFS_DIR3_LEAFN_MAGIC) {
2263 xfs_warn(mp, "Bad dir leafn magic!");
2264 ASSERT(0);
2265 break;
2266 }
2267 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2268 break;
61fe135c 2269 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2270 if (magicda != XFS_DA_NODE_MAGIC &&
2271 magicda != XFS_DA3_NODE_MAGIC) {
2272 xfs_warn(mp, "Bad da node magic!");
2273 ASSERT(0);
2274 break;
2275 }
2276 bp->b_ops = &xfs_da3_node_buf_ops;
2277 break;
61fe135c 2278 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2279 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2280 magicda != XFS_ATTR3_LEAF_MAGIC) {
2281 xfs_warn(mp, "Bad attr leaf magic!");
2282 ASSERT(0);
2283 break;
2284 }
2285 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2286 break;
61fe135c 2287 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2288 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2289 xfs_warn(mp, "Bad attr remote magic!");
2290 ASSERT(0);
2291 break;
2292 }
2293 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2294 break;
04a1e6c5
DC
2295 case XFS_BLFT_SB_BUF:
2296 if (magic32 != XFS_SB_MAGIC) {
2297 xfs_warn(mp, "Bad SB block magic!");
2298 ASSERT(0);
2299 break;
2300 }
2301 bp->b_ops = &xfs_sb_buf_ops;
2302 break;
ee1a47ab 2303 default:
61fe135c
DC
2304 xfs_warn(mp, "Unknown buffer type %d!",
2305 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2306 break;
2307 }
1da177e4
LT
2308}
2309
d75afeb3
DC
2310/*
2311 * Perform a 'normal' buffer recovery. Each logged region of the
2312 * buffer should be copied over the corresponding region in the
2313 * given buffer. The bitmap in the buf log format structure indicates
2314 * where to place the logged data.
2315 */
2316STATIC void
2317xlog_recover_do_reg_buffer(
2318 struct xfs_mount *mp,
2319 xlog_recover_item_t *item,
2320 struct xfs_buf *bp,
2321 xfs_buf_log_format_t *buf_f)
2322{
2323 int i;
2324 int bit;
2325 int nbits;
2326 int error;
2327
2328 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2329
2330 bit = 0;
2331 i = 1; /* 0 is the buf format structure */
2332 while (1) {
2333 bit = xfs_next_bit(buf_f->blf_data_map,
2334 buf_f->blf_map_size, bit);
2335 if (bit == -1)
2336 break;
2337 nbits = xfs_contig_bits(buf_f->blf_data_map,
2338 buf_f->blf_map_size, bit);
2339 ASSERT(nbits > 0);
2340 ASSERT(item->ri_buf[i].i_addr != NULL);
2341 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2342 ASSERT(BBTOB(bp->b_io_length) >=
2343 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2344
709da6a6
DC
2345 /*
2346 * The dirty regions logged in the buffer, even though
2347 * contiguous, may span multiple chunks. This is because the
2348 * dirty region may span a physical page boundary in a buffer
2349 * and hence be split into two separate vectors for writing into
2350 * the log. Hence we need to trim nbits back to the length of
2351 * the current region being copied out of the log.
2352 */
2353 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2354 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2355
d75afeb3
DC
2356 /*
2357 * Do a sanity check if this is a dquot buffer. Just checking
2358 * the first dquot in the buffer should do. XXXThis is
2359 * probably a good thing to do for other buf types also.
2360 */
2361 error = 0;
2362 if (buf_f->blf_flags &
2363 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2364 if (item->ri_buf[i].i_addr == NULL) {
2365 xfs_alert(mp,
2366 "XFS: NULL dquot in %s.", __func__);
2367 goto next;
2368 }
2369 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2370 xfs_alert(mp,
2371 "XFS: dquot too small (%d) in %s.",
2372 item->ri_buf[i].i_len, __func__);
2373 goto next;
2374 }
9aede1d8 2375 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
d75afeb3
DC
2376 -1, 0, XFS_QMOPT_DOWARN,
2377 "dquot_buf_recover");
2378 if (error)
2379 goto next;
2380 }
2381
2382 memcpy(xfs_buf_offset(bp,
2383 (uint)bit << XFS_BLF_SHIFT), /* dest */
2384 item->ri_buf[i].i_addr, /* source */
2385 nbits<<XFS_BLF_SHIFT); /* length */
2386 next:
2387 i++;
2388 bit += nbits;
2389 }
2390
2391 /* Shouldn't be any more regions */
2392 ASSERT(i == item->ri_total);
2393
67dc288c 2394 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2395}
2396
1da177e4
LT
2397/*
2398 * Perform a dquot buffer recovery.
8ba701ee 2399 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2400 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2401 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2402 *
2403 * Return false if the buffer was tossed and true if we recovered the buffer to
2404 * indicate to the caller if the buffer needs writing.
1da177e4 2405 */
ad3714b8 2406STATIC bool
1da177e4 2407xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2408 struct xfs_mount *mp,
2409 struct xlog *log,
2410 struct xlog_recover_item *item,
2411 struct xfs_buf *bp,
2412 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2413{
2414 uint type;
2415
9abbc539
DC
2416 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2417
1da177e4
LT
2418 /*
2419 * Filesystems are required to send in quota flags at mount time.
2420 */
ad3714b8
DC
2421 if (!mp->m_qflags)
2422 return false;
1da177e4
LT
2423
2424 type = 0;
c1155410 2425 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2426 type |= XFS_DQ_USER;
c1155410 2427 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2428 type |= XFS_DQ_PROJ;
c1155410 2429 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2430 type |= XFS_DQ_GROUP;
2431 /*
2432 * This type of quotas was turned off, so ignore this buffer
2433 */
2434 if (log->l_quotaoffs_flag & type)
ad3714b8 2435 return false;
1da177e4 2436
9abbc539 2437 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
ad3714b8 2438 return true;
1da177e4
LT
2439}
2440
2441/*
2442 * This routine replays a modification made to a buffer at runtime.
2443 * There are actually two types of buffer, regular and inode, which
2444 * are handled differently. Inode buffers are handled differently
2445 * in that we only recover a specific set of data from them, namely
2446 * the inode di_next_unlinked fields. This is because all other inode
2447 * data is actually logged via inode records and any data we replay
2448 * here which overlaps that may be stale.
2449 *
2450 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2451 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2452 * of the buffer in the log should not be replayed at recovery time.
2453 * This is so that if the blocks covered by the buffer are reused for
2454 * file data before we crash we don't end up replaying old, freed
2455 * meta-data into a user's file.
2456 *
2457 * To handle the cancellation of buffer log items, we make two passes
2458 * over the log during recovery. During the first we build a table of
2459 * those buffers which have been cancelled, and during the second we
2460 * only replay those buffers which do not have corresponding cancel
34be5ff3 2461 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2462 * for more details on the implementation of the table of cancel records.
2463 */
2464STATIC int
c9f71f5f 2465xlog_recover_buffer_pass2(
9a8d2fdb
MT
2466 struct xlog *log,
2467 struct list_head *buffer_list,
50d5c8d8
DC
2468 struct xlog_recover_item *item,
2469 xfs_lsn_t current_lsn)
1da177e4 2470{
4e0d5f92 2471 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2472 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2473 xfs_buf_t *bp;
2474 int error;
6ad112bf 2475 uint buf_flags;
50d5c8d8 2476 xfs_lsn_t lsn;
1da177e4 2477
c9f71f5f
CH
2478 /*
2479 * In this pass we only want to recover all the buffers which have
2480 * not been cancelled and are not cancellation buffers themselves.
2481 */
2482 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2483 buf_f->blf_len, buf_f->blf_flags)) {
2484 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2485 return 0;
1da177e4 2486 }
c9f71f5f 2487
9abbc539 2488 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2489
a8acad70 2490 buf_flags = 0;
611c9946
DC
2491 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2492 buf_flags |= XBF_UNMAPPED;
6ad112bf 2493
e2714bf8 2494 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2495 buf_flags, NULL);
ac4d6888 2496 if (!bp)
2451337d 2497 return -ENOMEM;
e5702805 2498 error = bp->b_error;
5a52c2a5 2499 if (error) {
901796af 2500 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2501 goto out_release;
1da177e4
LT
2502 }
2503
50d5c8d8 2504 /*
67dc288c 2505 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2506 * the lsn of the transaction we are replaying.
67dc288c
DC
2507 *
2508 * Note that we have to be extremely careful of readahead here.
2509 * Readahead does not attach verfiers to the buffers so if we don't
2510 * actually do any replay after readahead because of the LSN we found
2511 * in the buffer if more recent than that current transaction then we
2512 * need to attach the verifier directly. Failure to do so can lead to
2513 * future recovery actions (e.g. EFI and unlinked list recovery) can
2514 * operate on the buffers and they won't get the verifier attached. This
2515 * can lead to blocks on disk having the correct content but a stale
2516 * CRC.
2517 *
2518 * It is safe to assume these clean buffers are currently up to date.
2519 * If the buffer is dirtied by a later transaction being replayed, then
2520 * the verifier will be reset to match whatever recover turns that
2521 * buffer into.
50d5c8d8
DC
2522 */
2523 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c
DC
2524 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2525 xlog_recover_validate_buf_type(mp, bp, buf_f);
50d5c8d8 2526 goto out_release;
67dc288c 2527 }
50d5c8d8 2528
e2714bf8 2529 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2530 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2531 if (error)
2532 goto out_release;
e2714bf8 2533 } else if (buf_f->blf_flags &
c1155410 2534 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2535 bool dirty;
2536
2537 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2538 if (!dirty)
2539 goto out_release;
1da177e4 2540 } else {
9abbc539 2541 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4 2542 }
1da177e4
LT
2543
2544 /*
2545 * Perform delayed write on the buffer. Asynchronous writes will be
2546 * slower when taking into account all the buffers to be flushed.
2547 *
2548 * Also make sure that only inode buffers with good sizes stay in
2549 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2550 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2551 * buffers in the log can be a different size if the log was generated
2552 * by an older kernel using unclustered inode buffers or a newer kernel
2553 * running with a different inode cluster size. Regardless, if the
0f49efd8
JL
2554 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2555 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2556 * the buffer out of the buffer cache so that the buffer won't
2557 * overlap with future reads of those inodes.
2558 */
2559 if (XFS_DINODE_MAGIC ==
b53e675d 2560 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2561 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
0f49efd8 2562 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2563 xfs_buf_stale(bp);
c2b006c1 2564 error = xfs_bwrite(bp);
1da177e4 2565 } else {
ebad861b 2566 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2567 bp->b_iodone = xlog_recover_iodone;
43ff2122 2568 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2569 }
2570
50d5c8d8 2571out_release:
c2b006c1
CH
2572 xfs_buf_relse(bp);
2573 return error;
1da177e4
LT
2574}
2575
638f4416
DC
2576/*
2577 * Inode fork owner changes
2578 *
2579 * If we have been told that we have to reparent the inode fork, it's because an
2580 * extent swap operation on a CRC enabled filesystem has been done and we are
2581 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2582 * owners of it.
2583 *
2584 * The complexity here is that we don't have an inode context to work with, so
2585 * after we've replayed the inode we need to instantiate one. This is where the
2586 * fun begins.
2587 *
2588 * We are in the middle of log recovery, so we can't run transactions. That
2589 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2590 * that will result in the corresponding iput() running the inode through
2591 * xfs_inactive(). If we've just replayed an inode core that changes the link
2592 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2593 * transactions (bad!).
2594 *
2595 * So, to avoid this, we instantiate an inode directly from the inode core we've
2596 * just recovered. We have the buffer still locked, and all we really need to
2597 * instantiate is the inode core and the forks being modified. We can do this
2598 * manually, then run the inode btree owner change, and then tear down the
2599 * xfs_inode without having to run any transactions at all.
2600 *
2601 * Also, because we don't have a transaction context available here but need to
2602 * gather all the buffers we modify for writeback so we pass the buffer_list
2603 * instead for the operation to use.
2604 */
2605
2606STATIC int
2607xfs_recover_inode_owner_change(
2608 struct xfs_mount *mp,
2609 struct xfs_dinode *dip,
2610 struct xfs_inode_log_format *in_f,
2611 struct list_head *buffer_list)
2612{
2613 struct xfs_inode *ip;
2614 int error;
2615
2616 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2617
2618 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2619 if (!ip)
2451337d 2620 return -ENOMEM;
638f4416
DC
2621
2622 /* instantiate the inode */
2623 xfs_dinode_from_disk(&ip->i_d, dip);
2624 ASSERT(ip->i_d.di_version >= 3);
2625
2626 error = xfs_iformat_fork(ip, dip);
2627 if (error)
2628 goto out_free_ip;
2629
2630
2631 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2632 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2633 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2634 ip->i_ino, buffer_list);
2635 if (error)
2636 goto out_free_ip;
2637 }
2638
2639 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2640 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2641 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2642 ip->i_ino, buffer_list);
2643 if (error)
2644 goto out_free_ip;
2645 }
2646
2647out_free_ip:
2648 xfs_inode_free(ip);
2649 return error;
2650}
2651
1da177e4 2652STATIC int
c9f71f5f 2653xlog_recover_inode_pass2(
9a8d2fdb
MT
2654 struct xlog *log,
2655 struct list_head *buffer_list,
50d5c8d8
DC
2656 struct xlog_recover_item *item,
2657 xfs_lsn_t current_lsn)
1da177e4
LT
2658{
2659 xfs_inode_log_format_t *in_f;
c9f71f5f 2660 xfs_mount_t *mp = log->l_mp;
1da177e4 2661 xfs_buf_t *bp;
1da177e4 2662 xfs_dinode_t *dip;
1da177e4
LT
2663 int len;
2664 xfs_caddr_t src;
2665 xfs_caddr_t dest;
2666 int error;
2667 int attr_index;
2668 uint fields;
347d1c01 2669 xfs_icdinode_t *dicp;
93848a99 2670 uint isize;
6d192a9b 2671 int need_free = 0;
1da177e4 2672
6d192a9b 2673 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2674 in_f = item->ri_buf[0].i_addr;
6d192a9b 2675 } else {
4e0d5f92 2676 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2677 need_free = 1;
2678 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2679 if (error)
2680 goto error;
2681 }
1da177e4
LT
2682
2683 /*
2684 * Inode buffers can be freed, look out for it,
2685 * and do not replay the inode.
2686 */
a1941895
CH
2687 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2688 in_f->ilf_len, 0)) {
6d192a9b 2689 error = 0;
9abbc539 2690 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2691 goto error;
2692 }
9abbc539 2693 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2694
c3f8fc73 2695 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2696 &xfs_inode_buf_ops);
ac4d6888 2697 if (!bp) {
2451337d 2698 error = -ENOMEM;
ac4d6888
CS
2699 goto error;
2700 }
e5702805 2701 error = bp->b_error;
5a52c2a5 2702 if (error) {
901796af 2703 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2704 goto out_release;
1da177e4 2705 }
1da177e4 2706 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2707 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2708
2709 /*
2710 * Make sure the place we're flushing out to really looks
2711 * like an inode!
2712 */
69ef921b 2713 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2714 xfs_alert(mp,
2715 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2716 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2717 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2718 XFS_ERRLEVEL_LOW, mp);
2451337d 2719 error = -EFSCORRUPTED;
638f4416 2720 goto out_release;
1da177e4 2721 }
4e0d5f92 2722 dicp = item->ri_buf[1].i_addr;
1da177e4 2723 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2724 xfs_alert(mp,
2725 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2726 __func__, item, in_f->ilf_ino);
c9f71f5f 2727 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2728 XFS_ERRLEVEL_LOW, mp);
2451337d 2729 error = -EFSCORRUPTED;
638f4416 2730 goto out_release;
1da177e4
LT
2731 }
2732
50d5c8d8
DC
2733 /*
2734 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2735 * than the lsn of the transaction we are replaying. Note: we still
2736 * need to replay an owner change even though the inode is more recent
2737 * than the transaction as there is no guarantee that all the btree
2738 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2739 */
2740 if (dip->di_version >= 3) {
2741 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2742
2743 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2744 trace_xfs_log_recover_inode_skip(log, in_f);
2745 error = 0;
638f4416 2746 goto out_owner_change;
50d5c8d8
DC
2747 }
2748 }
2749
e60896d8
DC
2750 /*
2751 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2752 * are transactional and if ordering is necessary we can determine that
2753 * more accurately by the LSN field in the V3 inode core. Don't trust
2754 * the inode versions we might be changing them here - use the
2755 * superblock flag to determine whether we need to look at di_flushiter
2756 * to skip replay when the on disk inode is newer than the log one
2757 */
2758 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2759 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2760 /*
2761 * Deal with the wrap case, DI_MAX_FLUSH is less
2762 * than smaller numbers
2763 */
81591fe2 2764 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2765 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2766 /* do nothing */
2767 } else {
9abbc539 2768 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 2769 error = 0;
638f4416 2770 goto out_release;
1da177e4
LT
2771 }
2772 }
e60896d8 2773
1da177e4
LT
2774 /* Take the opportunity to reset the flush iteration count */
2775 dicp->di_flushiter = 0;
2776
abbede1b 2777 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2778 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2779 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2780 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4 2781 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2782 xfs_alert(mp,
2783 "%s: Bad regular inode log record, rec ptr 0x%p, "
2784 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2785 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 2786 error = -EFSCORRUPTED;
638f4416 2787 goto out_release;
1da177e4 2788 }
abbede1b 2789 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2790 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2791 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2792 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2793 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4 2794 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2795 xfs_alert(mp,
2796 "%s: Bad dir inode log record, rec ptr 0x%p, "
2797 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2798 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 2799 error = -EFSCORRUPTED;
638f4416 2800 goto out_release;
1da177e4
LT
2801 }
2802 }
2803 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2804 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4 2805 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2806 xfs_alert(mp,
2807 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2808 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2809 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2810 dicp->di_nextents + dicp->di_anextents,
2811 dicp->di_nblocks);
2451337d 2812 error = -EFSCORRUPTED;
638f4416 2813 goto out_release;
1da177e4
LT
2814 }
2815 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2816 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4 2817 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2818 xfs_alert(mp,
2819 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2820 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2821 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2451337d 2822 error = -EFSCORRUPTED;
638f4416 2823 goto out_release;
1da177e4 2824 }
93848a99
CH
2825 isize = xfs_icdinode_size(dicp->di_version);
2826 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2827 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4 2828 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2829 xfs_alert(mp,
2830 "%s: Bad inode log record length %d, rec ptr 0x%p",
2831 __func__, item->ri_buf[1].i_len, item);
2451337d 2832 error = -EFSCORRUPTED;
638f4416 2833 goto out_release;
1da177e4
LT
2834 }
2835
2836 /* The core is in in-core format */
93848a99 2837 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2838
2839 /* the rest is in on-disk format */
93848a99
CH
2840 if (item->ri_buf[1].i_len > isize) {
2841 memcpy((char *)dip + isize,
2842 item->ri_buf[1].i_addr + isize,
2843 item->ri_buf[1].i_len - isize);
1da177e4
LT
2844 }
2845
2846 fields = in_f->ilf_fields;
2847 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2848 case XFS_ILOG_DEV:
81591fe2 2849 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2850 break;
2851 case XFS_ILOG_UUID:
81591fe2
CH
2852 memcpy(XFS_DFORK_DPTR(dip),
2853 &in_f->ilf_u.ilfu_uuid,
2854 sizeof(uuid_t));
1da177e4
LT
2855 break;
2856 }
2857
2858 if (in_f->ilf_size == 2)
638f4416 2859 goto out_owner_change;
1da177e4
LT
2860 len = item->ri_buf[2].i_len;
2861 src = item->ri_buf[2].i_addr;
2862 ASSERT(in_f->ilf_size <= 4);
2863 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2864 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2865 (len == in_f->ilf_dsize));
2866
2867 switch (fields & XFS_ILOG_DFORK) {
2868 case XFS_ILOG_DDATA:
2869 case XFS_ILOG_DEXT:
81591fe2 2870 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2871 break;
2872
2873 case XFS_ILOG_DBROOT:
7cc95a82 2874 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2875 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2876 XFS_DFORK_DSIZE(dip, mp));
2877 break;
2878
2879 default:
2880 /*
2881 * There are no data fork flags set.
2882 */
2883 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2884 break;
2885 }
2886
2887 /*
2888 * If we logged any attribute data, recover it. There may or
2889 * may not have been any other non-core data logged in this
2890 * transaction.
2891 */
2892 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2893 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2894 attr_index = 3;
2895 } else {
2896 attr_index = 2;
2897 }
2898 len = item->ri_buf[attr_index].i_len;
2899 src = item->ri_buf[attr_index].i_addr;
2900 ASSERT(len == in_f->ilf_asize);
2901
2902 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2903 case XFS_ILOG_ADATA:
2904 case XFS_ILOG_AEXT:
2905 dest = XFS_DFORK_APTR(dip);
2906 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2907 memcpy(dest, src, len);
2908 break;
2909
2910 case XFS_ILOG_ABROOT:
2911 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2912 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2913 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2914 XFS_DFORK_ASIZE(dip, mp));
2915 break;
2916
2917 default:
a0fa2b67 2918 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 2919 ASSERT(0);
2451337d 2920 error = -EIO;
638f4416 2921 goto out_release;
1da177e4
LT
2922 }
2923 }
2924
638f4416
DC
2925out_owner_change:
2926 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2927 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2928 buffer_list);
93848a99
CH
2929 /* re-generate the checksum. */
2930 xfs_dinode_calc_crc(log->l_mp, dip);
2931
ebad861b 2932 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2933 bp->b_iodone = xlog_recover_iodone;
43ff2122 2934 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
2935
2936out_release:
61551f1e 2937 xfs_buf_relse(bp);
6d192a9b
TS
2938error:
2939 if (need_free)
f0e2d93c 2940 kmem_free(in_f);
b474c7ae 2941 return error;
1da177e4
LT
2942}
2943
2944/*
9a8d2fdb 2945 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2946 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2947 * of that type.
2948 */
2949STATIC int
c9f71f5f 2950xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2951 struct xlog *log,
2952 struct xlog_recover_item *item)
1da177e4 2953{
c9f71f5f 2954 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2955 ASSERT(qoff_f);
2956
2957 /*
2958 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2959 * group/project quotaoff or both.
1da177e4
LT
2960 */
2961 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2962 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2963 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2964 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2965 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2966 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2967
d99831ff 2968 return 0;
1da177e4
LT
2969}
2970
2971/*
2972 * Recover a dquot record
2973 */
2974STATIC int
c9f71f5f 2975xlog_recover_dquot_pass2(
9a8d2fdb
MT
2976 struct xlog *log,
2977 struct list_head *buffer_list,
50d5c8d8
DC
2978 struct xlog_recover_item *item,
2979 xfs_lsn_t current_lsn)
1da177e4 2980{
c9f71f5f 2981 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2982 xfs_buf_t *bp;
2983 struct xfs_disk_dquot *ddq, *recddq;
2984 int error;
2985 xfs_dq_logformat_t *dq_f;
2986 uint type;
2987
1da177e4
LT
2988
2989 /*
2990 * Filesystems are required to send in quota flags at mount time.
2991 */
2992 if (mp->m_qflags == 0)
d99831ff 2993 return 0;
1da177e4 2994
4e0d5f92
CH
2995 recddq = item->ri_buf[1].i_addr;
2996 if (recddq == NULL) {
a0fa2b67 2997 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 2998 return -EIO;
0c5e1ce8 2999 }
8ec6dba2 3000 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 3001 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 3002 item->ri_buf[1].i_len, __func__);
2451337d 3003 return -EIO;
0c5e1ce8
CH
3004 }
3005
1da177e4
LT
3006 /*
3007 * This type of quotas was turned off, so ignore this record.
3008 */
b53e675d 3009 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
3010 ASSERT(type);
3011 if (log->l_quotaoffs_flag & type)
d99831ff 3012 return 0;
1da177e4
LT
3013
3014 /*
3015 * At this point we know that quota was _not_ turned off.
3016 * Since the mount flags are not indicating to us otherwise, this
3017 * must mean that quota is on, and the dquot needs to be replayed.
3018 * Remember that we may not have fully recovered the superblock yet,
3019 * so we can't do the usual trick of looking at the SB quota bits.
3020 *
3021 * The other possibility, of course, is that the quota subsystem was
3022 * removed since the last mount - ENOSYS.
3023 */
4e0d5f92 3024 dq_f = item->ri_buf[0].i_addr;
1da177e4 3025 ASSERT(dq_f);
9aede1d8 3026 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
a0fa2b67
DC
3027 "xlog_recover_dquot_pass2 (log copy)");
3028 if (error)
2451337d 3029 return -EIO;
1da177e4
LT
3030 ASSERT(dq_f->qlf_len == 1);
3031
ad3714b8
DC
3032 /*
3033 * At this point we are assuming that the dquots have been allocated
3034 * and hence the buffer has valid dquots stamped in it. It should,
3035 * therefore, pass verifier validation. If the dquot is bad, then the
3036 * we'll return an error here, so we don't need to specifically check
3037 * the dquot in the buffer after the verifier has run.
3038 */
7ca790a5 3039 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 3040 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 3041 &xfs_dquot_buf_ops);
7ca790a5 3042 if (error)
1da177e4 3043 return error;
7ca790a5 3044
1da177e4
LT
3045 ASSERT(bp);
3046 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3047
50d5c8d8
DC
3048 /*
3049 * If the dquot has an LSN in it, recover the dquot only if it's less
3050 * than the lsn of the transaction we are replaying.
3051 */
3052 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3053 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3054 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3055
3056 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3057 goto out_release;
3058 }
3059 }
3060
1da177e4 3061 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3062 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3063 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3064 XFS_DQUOT_CRC_OFF);
3065 }
1da177e4
LT
3066
3067 ASSERT(dq_f->qlf_size == 2);
ebad861b 3068 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3069 bp->b_iodone = xlog_recover_iodone;
43ff2122 3070 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3071
50d5c8d8
DC
3072out_release:
3073 xfs_buf_relse(bp);
3074 return 0;
1da177e4
LT
3075}
3076
3077/*
3078 * This routine is called to create an in-core extent free intent
3079 * item from the efi format structure which was logged on disk.
3080 * It allocates an in-core efi, copies the extents from the format
3081 * structure into it, and adds the efi to the AIL with the given
3082 * LSN.
3083 */
6d192a9b 3084STATIC int
c9f71f5f 3085xlog_recover_efi_pass2(
9a8d2fdb
MT
3086 struct xlog *log,
3087 struct xlog_recover_item *item,
3088 xfs_lsn_t lsn)
1da177e4 3089{
6d192a9b 3090 int error;
c9f71f5f 3091 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3092 xfs_efi_log_item_t *efip;
3093 xfs_efi_log_format_t *efi_formatp;
1da177e4 3094
4e0d5f92 3095 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3096
1da177e4 3097 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
3098 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3099 &(efip->efi_format)))) {
3100 xfs_efi_item_free(efip);
3101 return error;
3102 }
b199c8a4 3103 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3104
a9c21c1b 3105 spin_lock(&log->l_ailp->xa_lock);
1da177e4 3106 /*
783a2f65 3107 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 3108 */
e6059949 3109 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 3110 return 0;
1da177e4
LT
3111}
3112
3113
3114/*
3115 * This routine is called when an efd format structure is found in
3116 * a committed transaction in the log. It's purpose is to cancel
3117 * the corresponding efi if it was still in the log. To do this
3118 * it searches the AIL for the efi with an id equal to that in the
3119 * efd format structure. If we find it, we remove the efi from the
3120 * AIL and free it.
3121 */
c9f71f5f
CH
3122STATIC int
3123xlog_recover_efd_pass2(
9a8d2fdb
MT
3124 struct xlog *log,
3125 struct xlog_recover_item *item)
1da177e4 3126{
1da177e4
LT
3127 xfs_efd_log_format_t *efd_formatp;
3128 xfs_efi_log_item_t *efip = NULL;
3129 xfs_log_item_t *lip;
1da177e4 3130 __uint64_t efi_id;
27d8d5fe 3131 struct xfs_ail_cursor cur;
783a2f65 3132 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3133
4e0d5f92 3134 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3135 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3136 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3137 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3138 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3139 efi_id = efd_formatp->efd_efi_id;
3140
3141 /*
3142 * Search for the efi with the id in the efd format structure
3143 * in the AIL.
3144 */
a9c21c1b
DC
3145 spin_lock(&ailp->xa_lock);
3146 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3147 while (lip != NULL) {
3148 if (lip->li_type == XFS_LI_EFI) {
3149 efip = (xfs_efi_log_item_t *)lip;
3150 if (efip->efi_format.efi_id == efi_id) {
3151 /*
783a2f65 3152 * xfs_trans_ail_delete() drops the
1da177e4
LT
3153 * AIL lock.
3154 */
04913fdd
DC
3155 xfs_trans_ail_delete(ailp, lip,
3156 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 3157 xfs_efi_item_free(efip);
a9c21c1b 3158 spin_lock(&ailp->xa_lock);
27d8d5fe 3159 break;
1da177e4
LT
3160 }
3161 }
a9c21c1b 3162 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3163 }
e4a1e29c 3164 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3165 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3166
3167 return 0;
1da177e4
LT
3168}
3169
28c8e41a
DC
3170/*
3171 * This routine is called when an inode create format structure is found in a
3172 * committed transaction in the log. It's purpose is to initialise the inodes
3173 * being allocated on disk. This requires us to get inode cluster buffers that
3174 * match the range to be intialised, stamped with inode templates and written
3175 * by delayed write so that subsequent modifications will hit the cached buffer
3176 * and only need writing out at the end of recovery.
3177 */
3178STATIC int
3179xlog_recover_do_icreate_pass2(
3180 struct xlog *log,
3181 struct list_head *buffer_list,
3182 xlog_recover_item_t *item)
3183{
3184 struct xfs_mount *mp = log->l_mp;
3185 struct xfs_icreate_log *icl;
3186 xfs_agnumber_t agno;
3187 xfs_agblock_t agbno;
3188 unsigned int count;
3189 unsigned int isize;
3190 xfs_agblock_t length;
3191
3192 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3193 if (icl->icl_type != XFS_LI_ICREATE) {
3194 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3195 return -EINVAL;
28c8e41a
DC
3196 }
3197
3198 if (icl->icl_size != 1) {
3199 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3200 return -EINVAL;
28c8e41a
DC
3201 }
3202
3203 agno = be32_to_cpu(icl->icl_ag);
3204 if (agno >= mp->m_sb.sb_agcount) {
3205 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3206 return -EINVAL;
28c8e41a
DC
3207 }
3208 agbno = be32_to_cpu(icl->icl_agbno);
3209 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3210 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3211 return -EINVAL;
28c8e41a
DC
3212 }
3213 isize = be32_to_cpu(icl->icl_isize);
3214 if (isize != mp->m_sb.sb_inodesize) {
3215 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3216 return -EINVAL;
28c8e41a
DC
3217 }
3218 count = be32_to_cpu(icl->icl_count);
3219 if (!count) {
3220 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3221 return -EINVAL;
28c8e41a
DC
3222 }
3223 length = be32_to_cpu(icl->icl_length);
3224 if (!length || length >= mp->m_sb.sb_agblocks) {
3225 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3226 return -EINVAL;
28c8e41a
DC
3227 }
3228
3229 /* existing allocation is fixed value */
71783438 3230 ASSERT(count == mp->m_ialloc_inos);
126cd105 3231 ASSERT(length == mp->m_ialloc_blks);
71783438 3232 if (count != mp->m_ialloc_inos ||
126cd105 3233 length != mp->m_ialloc_blks) {
28c8e41a 3234 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
2451337d 3235 return -EINVAL;
28c8e41a
DC
3236 }
3237
3238 /*
3239 * Inode buffers can be freed. Do not replay the inode initialisation as
3240 * we could be overwriting something written after this inode buffer was
3241 * cancelled.
3242 *
3243 * XXX: we need to iterate all buffers and only init those that are not
3244 * cancelled. I think that a more fine grained factoring of
3245 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3246 * done easily.
3247 */
3248 if (xlog_check_buffer_cancelled(log,
3249 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3250 return 0;
3251
3252 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3253 be32_to_cpu(icl->icl_gen));
3254 return 0;
3255}
3256
1da177e4
LT
3257/*
3258 * Free up any resources allocated by the transaction
3259 *
3260 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3261 */
3262STATIC void
3263xlog_recover_free_trans(
d0450948 3264 struct xlog_recover *trans)
1da177e4 3265{
f0a76953 3266 xlog_recover_item_t *item, *n;
1da177e4
LT
3267 int i;
3268
f0a76953
DC
3269 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3270 /* Free the regions in the item. */
3271 list_del(&item->ri_list);
3272 for (i = 0; i < item->ri_cnt; i++)
3273 kmem_free(item->ri_buf[i].i_addr);
1da177e4 3274 /* Free the item itself */
f0a76953
DC
3275 kmem_free(item->ri_buf);
3276 kmem_free(item);
3277 }
1da177e4 3278 /* Free the transaction recover structure */
f0e2d93c 3279 kmem_free(trans);
1da177e4
LT
3280}
3281
00574da1
ZYW
3282STATIC void
3283xlog_recover_buffer_ra_pass2(
3284 struct xlog *log,
3285 struct xlog_recover_item *item)
3286{
3287 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3288 struct xfs_mount *mp = log->l_mp;
3289
84a5b730 3290 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3291 buf_f->blf_len, buf_f->blf_flags)) {
3292 return;
3293 }
3294
3295 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3296 buf_f->blf_len, NULL);
3297}
3298
3299STATIC void
3300xlog_recover_inode_ra_pass2(
3301 struct xlog *log,
3302 struct xlog_recover_item *item)
3303{
3304 struct xfs_inode_log_format ilf_buf;
3305 struct xfs_inode_log_format *ilfp;
3306 struct xfs_mount *mp = log->l_mp;
3307 int error;
3308
3309 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3310 ilfp = item->ri_buf[0].i_addr;
3311 } else {
3312 ilfp = &ilf_buf;
3313 memset(ilfp, 0, sizeof(*ilfp));
3314 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3315 if (error)
3316 return;
3317 }
3318
84a5b730 3319 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3320 return;
3321
3322 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3323 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3324}
3325
3326STATIC void
3327xlog_recover_dquot_ra_pass2(
3328 struct xlog *log,
3329 struct xlog_recover_item *item)
3330{
3331 struct xfs_mount *mp = log->l_mp;
3332 struct xfs_disk_dquot *recddq;
3333 struct xfs_dq_logformat *dq_f;
3334 uint type;
3335
3336
3337 if (mp->m_qflags == 0)
3338 return;
3339
3340 recddq = item->ri_buf[1].i_addr;
3341 if (recddq == NULL)
3342 return;
3343 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3344 return;
3345
3346 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3347 ASSERT(type);
3348 if (log->l_quotaoffs_flag & type)
3349 return;
3350
3351 dq_f = item->ri_buf[0].i_addr;
3352 ASSERT(dq_f);
3353 ASSERT(dq_f->qlf_len == 1);
3354
3355 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
0f0d3345 3356 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
00574da1
ZYW
3357}
3358
3359STATIC void
3360xlog_recover_ra_pass2(
3361 struct xlog *log,
3362 struct xlog_recover_item *item)
3363{
3364 switch (ITEM_TYPE(item)) {
3365 case XFS_LI_BUF:
3366 xlog_recover_buffer_ra_pass2(log, item);
3367 break;
3368 case XFS_LI_INODE:
3369 xlog_recover_inode_ra_pass2(log, item);
3370 break;
3371 case XFS_LI_DQUOT:
3372 xlog_recover_dquot_ra_pass2(log, item);
3373 break;
3374 case XFS_LI_EFI:
3375 case XFS_LI_EFD:
3376 case XFS_LI_QUOTAOFF:
3377 default:
3378 break;
3379 }
3380}
3381
d0450948 3382STATIC int
c9f71f5f 3383xlog_recover_commit_pass1(
ad223e60
MT
3384 struct xlog *log,
3385 struct xlog_recover *trans,
3386 struct xlog_recover_item *item)
d0450948 3387{
c9f71f5f 3388 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3389
3390 switch (ITEM_TYPE(item)) {
3391 case XFS_LI_BUF:
c9f71f5f
CH
3392 return xlog_recover_buffer_pass1(log, item);
3393 case XFS_LI_QUOTAOFF:
3394 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3395 case XFS_LI_INODE:
d0450948 3396 case XFS_LI_EFI:
d0450948 3397 case XFS_LI_EFD:
c9f71f5f 3398 case XFS_LI_DQUOT:
28c8e41a 3399 case XFS_LI_ICREATE:
c9f71f5f 3400 /* nothing to do in pass 1 */
d0450948 3401 return 0;
c9f71f5f 3402 default:
a0fa2b67
DC
3403 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3404 __func__, ITEM_TYPE(item));
c9f71f5f 3405 ASSERT(0);
2451337d 3406 return -EIO;
c9f71f5f
CH
3407 }
3408}
3409
3410STATIC int
3411xlog_recover_commit_pass2(
ad223e60
MT
3412 struct xlog *log,
3413 struct xlog_recover *trans,
3414 struct list_head *buffer_list,
3415 struct xlog_recover_item *item)
c9f71f5f
CH
3416{
3417 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3418
3419 switch (ITEM_TYPE(item)) {
3420 case XFS_LI_BUF:
50d5c8d8
DC
3421 return xlog_recover_buffer_pass2(log, buffer_list, item,
3422 trans->r_lsn);
c9f71f5f 3423 case XFS_LI_INODE:
50d5c8d8
DC
3424 return xlog_recover_inode_pass2(log, buffer_list, item,
3425 trans->r_lsn);
c9f71f5f
CH
3426 case XFS_LI_EFI:
3427 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3428 case XFS_LI_EFD:
3429 return xlog_recover_efd_pass2(log, item);
d0450948 3430 case XFS_LI_DQUOT:
50d5c8d8
DC
3431 return xlog_recover_dquot_pass2(log, buffer_list, item,
3432 trans->r_lsn);
28c8e41a
DC
3433 case XFS_LI_ICREATE:
3434 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3435 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3436 /* nothing to do in pass2 */
3437 return 0;
d0450948 3438 default:
a0fa2b67
DC
3439 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3440 __func__, ITEM_TYPE(item));
d0450948 3441 ASSERT(0);
2451337d 3442 return -EIO;
d0450948
CH
3443 }
3444}
3445
00574da1
ZYW
3446STATIC int
3447xlog_recover_items_pass2(
3448 struct xlog *log,
3449 struct xlog_recover *trans,
3450 struct list_head *buffer_list,
3451 struct list_head *item_list)
3452{
3453 struct xlog_recover_item *item;
3454 int error = 0;
3455
3456 list_for_each_entry(item, item_list, ri_list) {
3457 error = xlog_recover_commit_pass2(log, trans,
3458 buffer_list, item);
3459 if (error)
3460 return error;
3461 }
3462
3463 return error;
3464}
3465
d0450948
CH
3466/*
3467 * Perform the transaction.
3468 *
3469 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3470 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3471 */
1da177e4
LT
3472STATIC int
3473xlog_recover_commit_trans(
ad223e60 3474 struct xlog *log,
d0450948 3475 struct xlog_recover *trans,
1da177e4
LT
3476 int pass)
3477{
00574da1
ZYW
3478 int error = 0;
3479 int error2;
3480 int items_queued = 0;
3481 struct xlog_recover_item *item;
3482 struct xlog_recover_item *next;
3483 LIST_HEAD (buffer_list);
3484 LIST_HEAD (ra_list);
3485 LIST_HEAD (done_list);
3486
3487 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3488
f0a76953 3489 hlist_del(&trans->r_list);
d0450948
CH
3490
3491 error = xlog_recover_reorder_trans(log, trans, pass);
3492 if (error)
1da177e4 3493 return error;
d0450948 3494
00574da1 3495 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3496 switch (pass) {
3497 case XLOG_RECOVER_PASS1:
c9f71f5f 3498 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3499 break;
3500 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3501 xlog_recover_ra_pass2(log, item);
3502 list_move_tail(&item->ri_list, &ra_list);
3503 items_queued++;
3504 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3505 error = xlog_recover_items_pass2(log, trans,
3506 &buffer_list, &ra_list);
3507 list_splice_tail_init(&ra_list, &done_list);
3508 items_queued = 0;
3509 }
3510
43ff2122
CH
3511 break;
3512 default:
3513 ASSERT(0);
3514 }
3515
d0450948 3516 if (error)
43ff2122 3517 goto out;
d0450948
CH
3518 }
3519
00574da1
ZYW
3520out:
3521 if (!list_empty(&ra_list)) {
3522 if (!error)
3523 error = xlog_recover_items_pass2(log, trans,
3524 &buffer_list, &ra_list);
3525 list_splice_tail_init(&ra_list, &done_list);
3526 }
3527
3528 if (!list_empty(&done_list))
3529 list_splice_init(&done_list, &trans->r_itemq);
3530
d0450948 3531 xlog_recover_free_trans(trans);
43ff2122 3532
43ff2122
CH
3533 error2 = xfs_buf_delwri_submit(&buffer_list);
3534 return error ? error : error2;
1da177e4
LT
3535}
3536
3537STATIC int
3538xlog_recover_unmount_trans(
bbe4c668 3539 struct xlog *log)
1da177e4
LT
3540{
3541 /* Do nothing now */
a0fa2b67 3542 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
3543 return 0;
3544}
3545
3546/*
3547 * There are two valid states of the r_state field. 0 indicates that the
3548 * transaction structure is in a normal state. We have either seen the
3549 * start of the transaction or the last operation we added was not a partial
3550 * operation. If the last operation we added to the transaction was a
3551 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3552 *
3553 * NOTE: skip LRs with 0 data length.
3554 */
3555STATIC int
3556xlog_recover_process_data(
9a8d2fdb 3557 struct xlog *log,
f0a76953 3558 struct hlist_head rhash[],
9a8d2fdb 3559 struct xlog_rec_header *rhead,
1da177e4
LT
3560 xfs_caddr_t dp,
3561 int pass)
3562{
3563 xfs_caddr_t lp;
3564 int num_logops;
3565 xlog_op_header_t *ohead;
3566 xlog_recover_t *trans;
3567 xlog_tid_t tid;
3568 int error;
3569 unsigned long hash;
3570 uint flags;
3571
b53e675d
CH
3572 lp = dp + be32_to_cpu(rhead->h_len);
3573 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3574
3575 /* check the log format matches our own - else we can't recover */
3576 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 3577 return -EIO;
1da177e4
LT
3578
3579 while ((dp < lp) && num_logops) {
3580 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3581 ohead = (xlog_op_header_t *)dp;
3582 dp += sizeof(xlog_op_header_t);
3583 if (ohead->oh_clientid != XFS_TRANSACTION &&
3584 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
3585 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3586 __func__, ohead->oh_clientid);
1da177e4 3587 ASSERT(0);
2451337d 3588 return -EIO;
1da177e4 3589 }
67fcb7bf 3590 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 3591 hash = XLOG_RHASH(tid);
f0a76953 3592 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
3593 if (trans == NULL) { /* not found; add new tid */
3594 if (ohead->oh_flags & XLOG_START_TRANS)
3595 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 3596 be64_to_cpu(rhead->h_lsn));
1da177e4 3597 } else {
9742bb93 3598 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
3599 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3600 __func__, be32_to_cpu(ohead->oh_len));
9742bb93 3601 WARN_ON(1);
2451337d 3602 return -EIO;
9742bb93 3603 }
1da177e4
LT
3604 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3605 if (flags & XLOG_WAS_CONT_TRANS)
3606 flags &= ~XLOG_CONTINUE_TRANS;
3607 switch (flags) {
3608 case XLOG_COMMIT_TRANS:
3609 error = xlog_recover_commit_trans(log,
f0a76953 3610 trans, pass);
1da177e4
LT
3611 break;
3612 case XLOG_UNMOUNT_TRANS:
bbe4c668 3613 error = xlog_recover_unmount_trans(log);
1da177e4
LT
3614 break;
3615 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
3616 error = xlog_recover_add_to_cont_trans(log,
3617 trans, dp,
3618 be32_to_cpu(ohead->oh_len));
1da177e4
LT
3619 break;
3620 case XLOG_START_TRANS:
a0fa2b67
DC
3621 xfs_warn(log->l_mp, "%s: bad transaction",
3622 __func__);
1da177e4 3623 ASSERT(0);
2451337d 3624 error = -EIO;
1da177e4
LT
3625 break;
3626 case 0:
3627 case XLOG_CONTINUE_TRANS:
9abbc539 3628 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 3629 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
3630 break;
3631 default:
a0fa2b67
DC
3632 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3633 __func__, flags);
1da177e4 3634 ASSERT(0);
2451337d 3635 error = -EIO;
1da177e4
LT
3636 break;
3637 }
2a84108f
MT
3638 if (error) {
3639 xlog_recover_free_trans(trans);
1da177e4 3640 return error;
2a84108f 3641 }
1da177e4 3642 }
67fcb7bf 3643 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3644 num_logops--;
3645 }
3646 return 0;
3647}
3648
3649/*
3650 * Process an extent free intent item that was recovered from
3651 * the log. We need to free the extents that it describes.
3652 */
3c1e2bbe 3653STATIC int
1da177e4
LT
3654xlog_recover_process_efi(
3655 xfs_mount_t *mp,
3656 xfs_efi_log_item_t *efip)
3657{
3658 xfs_efd_log_item_t *efdp;
3659 xfs_trans_t *tp;
3660 int i;
3c1e2bbe 3661 int error = 0;
1da177e4
LT
3662 xfs_extent_t *extp;
3663 xfs_fsblock_t startblock_fsb;
3664
b199c8a4 3665 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3666
3667 /*
3668 * First check the validity of the extents described by the
3669 * EFI. If any are bad, then assume that all are bad and
3670 * just toss the EFI.
3671 */
3672 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3673 extp = &(efip->efi_format.efi_extents[i]);
3674 startblock_fsb = XFS_BB_TO_FSB(mp,
3675 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3676 if ((startblock_fsb == 0) ||
3677 (extp->ext_len == 0) ||
3678 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3679 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3680 /*
3681 * This will pull the EFI from the AIL and
3682 * free the memory associated with it.
3683 */
666d644c 3684 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3685 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2451337d 3686 return -EIO;
1da177e4
LT
3687 }
3688 }
3689
3690 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 3691 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
3692 if (error)
3693 goto abort_error;
1da177e4
LT
3694 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3695
3696 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3697 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3698 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3699 if (error)
3700 goto abort_error;
1da177e4
LT
3701 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3702 extp->ext_len);
3703 }
3704
b199c8a4 3705 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3706 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3707 return error;
fc6149d8
DC
3708
3709abort_error:
3710 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3711 return error;
1da177e4
LT
3712}
3713
1da177e4
LT
3714/*
3715 * When this is called, all of the EFIs which did not have
3716 * corresponding EFDs should be in the AIL. What we do now
3717 * is free the extents associated with each one.
3718 *
3719 * Since we process the EFIs in normal transactions, they
3720 * will be removed at some point after the commit. This prevents
3721 * us from just walking down the list processing each one.
3722 * We'll use a flag in the EFI to skip those that we've already
3723 * processed and use the AIL iteration mechanism's generation
3724 * count to try to speed this up at least a bit.
3725 *
3726 * When we start, we know that the EFIs are the only things in
3727 * the AIL. As we process them, however, other items are added
3728 * to the AIL. Since everything added to the AIL must come after
3729 * everything already in the AIL, we stop processing as soon as
3730 * we see something other than an EFI in the AIL.
3731 */
3c1e2bbe 3732STATIC int
1da177e4 3733xlog_recover_process_efis(
9a8d2fdb 3734 struct xlog *log)
1da177e4
LT
3735{
3736 xfs_log_item_t *lip;
3737 xfs_efi_log_item_t *efip;
3c1e2bbe 3738 int error = 0;
27d8d5fe 3739 struct xfs_ail_cursor cur;
a9c21c1b 3740 struct xfs_ail *ailp;
1da177e4 3741
a9c21c1b
DC
3742 ailp = log->l_ailp;
3743 spin_lock(&ailp->xa_lock);
3744 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3745 while (lip != NULL) {
3746 /*
3747 * We're done when we see something other than an EFI.
27d8d5fe 3748 * There should be no EFIs left in the AIL now.
1da177e4
LT
3749 */
3750 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3751#ifdef DEBUG
a9c21c1b 3752 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3753 ASSERT(lip->li_type != XFS_LI_EFI);
3754#endif
1da177e4
LT
3755 break;
3756 }
3757
3758 /*
3759 * Skip EFIs that we've already processed.
3760 */
3761 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3762 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3763 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3764 continue;
3765 }
3766
a9c21c1b
DC
3767 spin_unlock(&ailp->xa_lock);
3768 error = xlog_recover_process_efi(log->l_mp, efip);
3769 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3770 if (error)
3771 goto out;
a9c21c1b 3772 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3773 }
27d8d5fe 3774out:
e4a1e29c 3775 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3776 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3777 return error;
1da177e4
LT
3778}
3779
3780/*
3781 * This routine performs a transaction to null out a bad inode pointer
3782 * in an agi unlinked inode hash bucket.
3783 */
3784STATIC void
3785xlog_recover_clear_agi_bucket(
3786 xfs_mount_t *mp,
3787 xfs_agnumber_t agno,
3788 int bucket)
3789{
3790 xfs_trans_t *tp;
3791 xfs_agi_t *agi;
3792 xfs_buf_t *agibp;
3793 int offset;
3794 int error;
3795
3796 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 3797 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
3798 if (error)
3799 goto out_abort;
1da177e4 3800
5e1be0fb
CH
3801 error = xfs_read_agi(mp, tp, agno, &agibp);
3802 if (error)
e5720eec 3803 goto out_abort;
1da177e4 3804
5e1be0fb 3805 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3806 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3807 offset = offsetof(xfs_agi_t, agi_unlinked) +
3808 (sizeof(xfs_agino_t) * bucket);
3809 xfs_trans_log_buf(tp, agibp, offset,
3810 (offset + sizeof(xfs_agino_t) - 1));
3811
e5720eec
DC
3812 error = xfs_trans_commit(tp, 0);
3813 if (error)
3814 goto out_error;
3815 return;
3816
3817out_abort:
3818 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3819out_error:
a0fa2b67 3820 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3821 return;
1da177e4
LT
3822}
3823
23fac50f
CH
3824STATIC xfs_agino_t
3825xlog_recover_process_one_iunlink(
3826 struct xfs_mount *mp,
3827 xfs_agnumber_t agno,
3828 xfs_agino_t agino,
3829 int bucket)
3830{
3831 struct xfs_buf *ibp;
3832 struct xfs_dinode *dip;
3833 struct xfs_inode *ip;
3834 xfs_ino_t ino;
3835 int error;
3836
3837 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3838 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3839 if (error)
3840 goto fail;
3841
3842 /*
3843 * Get the on disk inode to find the next inode in the bucket.
3844 */
475ee413 3845 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3846 if (error)
0e446673 3847 goto fail_iput;
23fac50f 3848
23fac50f 3849 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3850 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3851
3852 /* setup for the next pass */
3853 agino = be32_to_cpu(dip->di_next_unlinked);
3854 xfs_buf_relse(ibp);
3855
3856 /*
3857 * Prevent any DMAPI event from being sent when the reference on
3858 * the inode is dropped.
3859 */
3860 ip->i_d.di_dmevmask = 0;
3861
0e446673 3862 IRELE(ip);
23fac50f
CH
3863 return agino;
3864
0e446673
CH
3865 fail_iput:
3866 IRELE(ip);
23fac50f
CH
3867 fail:
3868 /*
3869 * We can't read in the inode this bucket points to, or this inode
3870 * is messed up. Just ditch this bucket of inodes. We will lose
3871 * some inodes and space, but at least we won't hang.
3872 *
3873 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3874 * clear the inode pointer in the bucket.
3875 */
3876 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3877 return NULLAGINO;
3878}
3879
1da177e4
LT
3880/*
3881 * xlog_iunlink_recover
3882 *
3883 * This is called during recovery to process any inodes which
3884 * we unlinked but not freed when the system crashed. These
3885 * inodes will be on the lists in the AGI blocks. What we do
3886 * here is scan all the AGIs and fully truncate and free any
3887 * inodes found on the lists. Each inode is removed from the
3888 * lists when it has been fully truncated and is freed. The
3889 * freeing of the inode and its removal from the list must be
3890 * atomic.
3891 */
d96f8f89 3892STATIC void
1da177e4 3893xlog_recover_process_iunlinks(
9a8d2fdb 3894 struct xlog *log)
1da177e4
LT
3895{
3896 xfs_mount_t *mp;
3897 xfs_agnumber_t agno;
3898 xfs_agi_t *agi;
3899 xfs_buf_t *agibp;
1da177e4 3900 xfs_agino_t agino;
1da177e4
LT
3901 int bucket;
3902 int error;
3903 uint mp_dmevmask;
3904
3905 mp = log->l_mp;
3906
3907 /*
3908 * Prevent any DMAPI event from being sent while in this function.
3909 */
3910 mp_dmevmask = mp->m_dmevmask;
3911 mp->m_dmevmask = 0;
3912
3913 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3914 /*
3915 * Find the agi for this ag.
3916 */
5e1be0fb
CH
3917 error = xfs_read_agi(mp, NULL, agno, &agibp);
3918 if (error) {
3919 /*
3920 * AGI is b0rked. Don't process it.
3921 *
3922 * We should probably mark the filesystem as corrupt
3923 * after we've recovered all the ag's we can....
3924 */
3925 continue;
1da177e4 3926 }
d97d32ed
JK
3927 /*
3928 * Unlock the buffer so that it can be acquired in the normal
3929 * course of the transaction to truncate and free each inode.
3930 * Because we are not racing with anyone else here for the AGI
3931 * buffer, we don't even need to hold it locked to read the
3932 * initial unlinked bucket entries out of the buffer. We keep
3933 * buffer reference though, so that it stays pinned in memory
3934 * while we need the buffer.
3935 */
1da177e4 3936 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3937 xfs_buf_unlock(agibp);
1da177e4
LT
3938
3939 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3940 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3941 while (agino != NULLAGINO) {
23fac50f
CH
3942 agino = xlog_recover_process_one_iunlink(mp,
3943 agno, agino, bucket);
1da177e4
LT
3944 }
3945 }
d97d32ed 3946 xfs_buf_rele(agibp);
1da177e4
LT
3947 }
3948
3949 mp->m_dmevmask = mp_dmevmask;
3950}
3951
1da177e4 3952/*
0e446be4
CH
3953 * Upack the log buffer data and crc check it. If the check fails, issue a
3954 * warning if and only if the CRC in the header is non-zero. This makes the
3955 * check an advisory warning, and the zero CRC check will prevent failure
3956 * warnings from being emitted when upgrading the kernel from one that does not
3957 * add CRCs by default.
3958 *
3959 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3960 * corruption failure
1da177e4 3961 */
0e446be4
CH
3962STATIC int
3963xlog_unpack_data_crc(
3964 struct xlog_rec_header *rhead,
3965 xfs_caddr_t dp,
3966 struct xlog *log)
1da177e4 3967{
f9668a09 3968 __le32 crc;
0e446be4
CH
3969
3970 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3971 if (crc != rhead->h_crc) {
3972 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3973 xfs_alert(log->l_mp,
08e96e1a 3974 "log record CRC mismatch: found 0x%x, expected 0x%x.",
f9668a09
DC
3975 le32_to_cpu(rhead->h_crc),
3976 le32_to_cpu(crc));
0e446be4 3977 xfs_hex_dump(dp, 32);
1da177e4
LT
3978 }
3979
0e446be4
CH
3980 /*
3981 * If we've detected a log record corruption, then we can't
3982 * recover past this point. Abort recovery if we are enforcing
3983 * CRC protection by punting an error back up the stack.
3984 */
3985 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
2451337d 3986 return -EFSCORRUPTED;
1da177e4 3987 }
0e446be4
CH
3988
3989 return 0;
1da177e4
LT
3990}
3991
0e446be4 3992STATIC int
1da177e4 3993xlog_unpack_data(
9a8d2fdb 3994 struct xlog_rec_header *rhead,
1da177e4 3995 xfs_caddr_t dp,
9a8d2fdb 3996 struct xlog *log)
1da177e4
LT
3997{
3998 int i, j, k;
0e446be4
CH
3999 int error;
4000
4001 error = xlog_unpack_data_crc(rhead, dp, log);
4002 if (error)
4003 return error;
1da177e4 4004
b53e675d 4005 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 4006 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 4007 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
4008 dp += BBSIZE;
4009 }
4010
62118709 4011 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 4012 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 4013 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4014 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4015 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4016 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4017 dp += BBSIZE;
4018 }
4019 }
0e446be4
CH
4020
4021 return 0;
1da177e4
LT
4022}
4023
4024STATIC int
4025xlog_valid_rec_header(
9a8d2fdb
MT
4026 struct xlog *log,
4027 struct xlog_rec_header *rhead,
1da177e4
LT
4028 xfs_daddr_t blkno)
4029{
4030 int hlen;
4031
69ef921b 4032 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4033 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4034 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4035 return -EFSCORRUPTED;
1da177e4
LT
4036 }
4037 if (unlikely(
4038 (!rhead->h_version ||
b53e675d 4039 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4040 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4041 __func__, be32_to_cpu(rhead->h_version));
2451337d 4042 return -EIO;
1da177e4
LT
4043 }
4044
4045 /* LR body must have data or it wouldn't have been written */
b53e675d 4046 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4047 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4048 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4049 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4050 return -EFSCORRUPTED;
1da177e4
LT
4051 }
4052 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4053 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4054 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4055 return -EFSCORRUPTED;
1da177e4
LT
4056 }
4057 return 0;
4058}
4059
4060/*
4061 * Read the log from tail to head and process the log records found.
4062 * Handle the two cases where the tail and head are in the same cycle
4063 * and where the active portion of the log wraps around the end of
4064 * the physical log separately. The pass parameter is passed through
4065 * to the routines called to process the data and is not looked at
4066 * here.
4067 */
4068STATIC int
4069xlog_do_recovery_pass(
9a8d2fdb 4070 struct xlog *log,
1da177e4
LT
4071 xfs_daddr_t head_blk,
4072 xfs_daddr_t tail_blk,
4073 int pass)
4074{
4075 xlog_rec_header_t *rhead;
4076 xfs_daddr_t blk_no;
fc5bc4c8 4077 xfs_caddr_t offset;
1da177e4
LT
4078 xfs_buf_t *hbp, *dbp;
4079 int error = 0, h_size;
4080 int bblks, split_bblks;
4081 int hblks, split_hblks, wrapped_hblks;
f0a76953 4082 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4083
4084 ASSERT(head_blk != tail_blk);
4085
4086 /*
4087 * Read the header of the tail block and get the iclog buffer size from
4088 * h_size. Use this to tell how many sectors make up the log header.
4089 */
62118709 4090 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4091 /*
4092 * When using variable length iclogs, read first sector of
4093 * iclog header and extract the header size from it. Get a
4094 * new hbp that is the correct size.
4095 */
4096 hbp = xlog_get_bp(log, 1);
4097 if (!hbp)
2451337d 4098 return -ENOMEM;
076e6acb
CH
4099
4100 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4101 if (error)
1da177e4 4102 goto bread_err1;
076e6acb 4103
1da177e4
LT
4104 rhead = (xlog_rec_header_t *)offset;
4105 error = xlog_valid_rec_header(log, rhead, tail_blk);
4106 if (error)
4107 goto bread_err1;
b53e675d
CH
4108 h_size = be32_to_cpu(rhead->h_size);
4109 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4110 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4111 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4112 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4113 hblks++;
4114 xlog_put_bp(hbp);
4115 hbp = xlog_get_bp(log, hblks);
4116 } else {
4117 hblks = 1;
4118 }
4119 } else {
69ce58f0 4120 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4121 hblks = 1;
4122 hbp = xlog_get_bp(log, 1);
4123 h_size = XLOG_BIG_RECORD_BSIZE;
4124 }
4125
4126 if (!hbp)
2451337d 4127 return -ENOMEM;
1da177e4
LT
4128 dbp = xlog_get_bp(log, BTOBB(h_size));
4129 if (!dbp) {
4130 xlog_put_bp(hbp);
2451337d 4131 return -ENOMEM;
1da177e4
LT
4132 }
4133
4134 memset(rhash, 0, sizeof(rhash));
4135 if (tail_blk <= head_blk) {
4136 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
4137 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4138 if (error)
1da177e4 4139 goto bread_err2;
076e6acb 4140
1da177e4
LT
4141 rhead = (xlog_rec_header_t *)offset;
4142 error = xlog_valid_rec_header(log, rhead, blk_no);
4143 if (error)
4144 goto bread_err2;
4145
4146 /* blocks in data section */
b53e675d 4147 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4148 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4149 &offset);
1da177e4
LT
4150 if (error)
4151 goto bread_err2;
076e6acb 4152
0e446be4
CH
4153 error = xlog_unpack_data(rhead, offset, log);
4154 if (error)
4155 goto bread_err2;
4156
4157 error = xlog_recover_process_data(log,
4158 rhash, rhead, offset, pass);
4159 if (error)
1da177e4
LT
4160 goto bread_err2;
4161 blk_no += bblks + hblks;
4162 }
4163 } else {
4164 /*
4165 * Perform recovery around the end of the physical log.
4166 * When the head is not on the same cycle number as the tail,
4167 * we can't do a sequential recovery as above.
4168 */
4169 blk_no = tail_blk;
4170 while (blk_no < log->l_logBBsize) {
4171 /*
4172 * Check for header wrapping around physical end-of-log
4173 */
62926044 4174 offset = hbp->b_addr;
1da177e4
LT
4175 split_hblks = 0;
4176 wrapped_hblks = 0;
4177 if (blk_no + hblks <= log->l_logBBsize) {
4178 /* Read header in one read */
076e6acb
CH
4179 error = xlog_bread(log, blk_no, hblks, hbp,
4180 &offset);
1da177e4
LT
4181 if (error)
4182 goto bread_err2;
1da177e4
LT
4183 } else {
4184 /* This LR is split across physical log end */
4185 if (blk_no != log->l_logBBsize) {
4186 /* some data before physical log end */
4187 ASSERT(blk_no <= INT_MAX);
4188 split_hblks = log->l_logBBsize - (int)blk_no;
4189 ASSERT(split_hblks > 0);
076e6acb
CH
4190 error = xlog_bread(log, blk_no,
4191 split_hblks, hbp,
4192 &offset);
4193 if (error)
1da177e4 4194 goto bread_err2;
1da177e4 4195 }
076e6acb 4196
1da177e4
LT
4197 /*
4198 * Note: this black magic still works with
4199 * large sector sizes (non-512) only because:
4200 * - we increased the buffer size originally
4201 * by 1 sector giving us enough extra space
4202 * for the second read;
4203 * - the log start is guaranteed to be sector
4204 * aligned;
4205 * - we read the log end (LR header start)
4206 * _first_, then the log start (LR header end)
4207 * - order is important.
4208 */
234f56ac 4209 wrapped_hblks = hblks - split_hblks;
44396476
DC
4210 error = xlog_bread_offset(log, 0,
4211 wrapped_hblks, hbp,
4212 offset + BBTOB(split_hblks));
1da177e4
LT
4213 if (error)
4214 goto bread_err2;
1da177e4
LT
4215 }
4216 rhead = (xlog_rec_header_t *)offset;
4217 error = xlog_valid_rec_header(log, rhead,
4218 split_hblks ? blk_no : 0);
4219 if (error)
4220 goto bread_err2;
4221
b53e675d 4222 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4223 blk_no += hblks;
4224
4225 /* Read in data for log record */
4226 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4227 error = xlog_bread(log, blk_no, bblks, dbp,
4228 &offset);
1da177e4
LT
4229 if (error)
4230 goto bread_err2;
1da177e4
LT
4231 } else {
4232 /* This log record is split across the
4233 * physical end of log */
62926044 4234 offset = dbp->b_addr;
1da177e4
LT
4235 split_bblks = 0;
4236 if (blk_no != log->l_logBBsize) {
4237 /* some data is before the physical
4238 * end of log */
4239 ASSERT(!wrapped_hblks);
4240 ASSERT(blk_no <= INT_MAX);
4241 split_bblks =
4242 log->l_logBBsize - (int)blk_no;
4243 ASSERT(split_bblks > 0);
076e6acb
CH
4244 error = xlog_bread(log, blk_no,
4245 split_bblks, dbp,
4246 &offset);
4247 if (error)
1da177e4 4248 goto bread_err2;
1da177e4 4249 }
076e6acb 4250
1da177e4
LT
4251 /*
4252 * Note: this black magic still works with
4253 * large sector sizes (non-512) only because:
4254 * - we increased the buffer size originally
4255 * by 1 sector giving us enough extra space
4256 * for the second read;
4257 * - the log start is guaranteed to be sector
4258 * aligned;
4259 * - we read the log end (LR header start)
4260 * _first_, then the log start (LR header end)
4261 * - order is important.
4262 */
44396476 4263 error = xlog_bread_offset(log, 0,
009507b0 4264 bblks - split_bblks, dbp,
44396476 4265 offset + BBTOB(split_bblks));
076e6acb
CH
4266 if (error)
4267 goto bread_err2;
1da177e4 4268 }
0e446be4
CH
4269
4270 error = xlog_unpack_data(rhead, offset, log);
4271 if (error)
4272 goto bread_err2;
4273
4274 error = xlog_recover_process_data(log, rhash,
4275 rhead, offset, pass);
4276 if (error)
1da177e4
LT
4277 goto bread_err2;
4278 blk_no += bblks;
4279 }
4280
4281 ASSERT(blk_no >= log->l_logBBsize);
4282 blk_no -= log->l_logBBsize;
4283
4284 /* read first part of physical log */
4285 while (blk_no < head_blk) {
076e6acb
CH
4286 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4287 if (error)
1da177e4 4288 goto bread_err2;
076e6acb 4289
1da177e4
LT
4290 rhead = (xlog_rec_header_t *)offset;
4291 error = xlog_valid_rec_header(log, rhead, blk_no);
4292 if (error)
4293 goto bread_err2;
076e6acb 4294
b53e675d 4295 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4296 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4297 &offset);
4298 if (error)
1da177e4 4299 goto bread_err2;
076e6acb 4300
0e446be4
CH
4301 error = xlog_unpack_data(rhead, offset, log);
4302 if (error)
4303 goto bread_err2;
4304
4305 error = xlog_recover_process_data(log, rhash,
4306 rhead, offset, pass);
4307 if (error)
1da177e4
LT
4308 goto bread_err2;
4309 blk_no += bblks + hblks;
4310 }
4311 }
4312
4313 bread_err2:
4314 xlog_put_bp(dbp);
4315 bread_err1:
4316 xlog_put_bp(hbp);
4317 return error;
4318}
4319
4320/*
4321 * Do the recovery of the log. We actually do this in two phases.
4322 * The two passes are necessary in order to implement the function
4323 * of cancelling a record written into the log. The first pass
4324 * determines those things which have been cancelled, and the
4325 * second pass replays log items normally except for those which
4326 * have been cancelled. The handling of the replay and cancellations
4327 * takes place in the log item type specific routines.
4328 *
4329 * The table of items which have cancel records in the log is allocated
4330 * and freed at this level, since only here do we know when all of
4331 * the log recovery has been completed.
4332 */
4333STATIC int
4334xlog_do_log_recovery(
9a8d2fdb 4335 struct xlog *log,
1da177e4
LT
4336 xfs_daddr_t head_blk,
4337 xfs_daddr_t tail_blk)
4338{
d5689eaa 4339 int error, i;
1da177e4
LT
4340
4341 ASSERT(head_blk != tail_blk);
4342
4343 /*
4344 * First do a pass to find all of the cancelled buf log items.
4345 * Store them in the buf_cancel_table for use in the second pass.
4346 */
d5689eaa
CH
4347 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4348 sizeof(struct list_head),
1da177e4 4349 KM_SLEEP);
d5689eaa
CH
4350 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4351 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4352
1da177e4
LT
4353 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4354 XLOG_RECOVER_PASS1);
4355 if (error != 0) {
f0e2d93c 4356 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4357 log->l_buf_cancel_table = NULL;
4358 return error;
4359 }
4360 /*
4361 * Then do a second pass to actually recover the items in the log.
4362 * When it is complete free the table of buf cancel items.
4363 */
4364 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4365 XLOG_RECOVER_PASS2);
4366#ifdef DEBUG
6d192a9b 4367 if (!error) {
1da177e4
LT
4368 int i;
4369
4370 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4371 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4372 }
4373#endif /* DEBUG */
4374
f0e2d93c 4375 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4376 log->l_buf_cancel_table = NULL;
4377
4378 return error;
4379}
4380
4381/*
4382 * Do the actual recovery
4383 */
4384STATIC int
4385xlog_do_recover(
9a8d2fdb 4386 struct xlog *log,
1da177e4
LT
4387 xfs_daddr_t head_blk,
4388 xfs_daddr_t tail_blk)
4389{
4390 int error;
4391 xfs_buf_t *bp;
4392 xfs_sb_t *sbp;
4393
4394 /*
4395 * First replay the images in the log.
4396 */
4397 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4398 if (error)
1da177e4 4399 return error;
1da177e4
LT
4400
4401 /*
4402 * If IO errors happened during recovery, bail out.
4403 */
4404 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
2451337d 4405 return -EIO;
1da177e4
LT
4406 }
4407
4408 /*
4409 * We now update the tail_lsn since much of the recovery has completed
4410 * and there may be space available to use. If there were no extent
4411 * or iunlinks, we can free up the entire log and set the tail_lsn to
4412 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4413 * lsn of the last known good LR on disk. If there are extent frees
4414 * or iunlinks they will have some entries in the AIL; so we look at
4415 * the AIL to determine how to set the tail_lsn.
4416 */
4417 xlog_assign_tail_lsn(log->l_mp);
4418
4419 /*
4420 * Now that we've finished replaying all buffer and inode
98021821 4421 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4422 */
4423 bp = xfs_getsb(log->l_mp, 0);
4424 XFS_BUF_UNDONE(bp);
bebf963f 4425 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4426 XFS_BUF_READ(bp);
bebf963f 4427 XFS_BUF_UNASYNC(bp);
1813dd64 4428 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3
CH
4429
4430 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4431 xfs_buf_relse(bp);
2451337d 4432 return -EIO;
83a0adc3
CH
4433 }
4434
4435 xfs_buf_iorequest(bp);
1a1a3e97 4436 error = xfs_buf_iowait(bp);
d64e31a2 4437 if (error) {
901796af 4438 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
4439 ASSERT(0);
4440 xfs_buf_relse(bp);
4441 return error;
4442 }
4443
4444 /* Convert superblock from on-disk format */
4445 sbp = &log->l_mp->m_sb;
98021821 4446 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4447 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4448 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
4449 xfs_buf_relse(bp);
4450
5478eead
LM
4451 /* We've re-read the superblock so re-initialize per-cpu counters */
4452 xfs_icsb_reinit_counters(log->l_mp);
4453
1da177e4
LT
4454 xlog_recover_check_summary(log);
4455
4456 /* Normal transactions can now occur */
4457 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4458 return 0;
4459}
4460
4461/*
4462 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4463 *
4464 * Return error or zero.
4465 */
4466int
4467xlog_recover(
9a8d2fdb 4468 struct xlog *log)
1da177e4
LT
4469{
4470 xfs_daddr_t head_blk, tail_blk;
4471 int error;
4472
4473 /* find the tail of the log */
65be6054 4474 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
4475 return error;
4476
4477 if (tail_blk != head_blk) {
4478 /* There used to be a comment here:
4479 *
4480 * disallow recovery on read-only mounts. note -- mount
4481 * checks for ENOSPC and turns it into an intelligent
4482 * error message.
4483 * ...but this is no longer true. Now, unless you specify
4484 * NORECOVERY (in which case this function would never be
4485 * called), we just go ahead and recover. We do this all
4486 * under the vfs layer, so we can get away with it unless
4487 * the device itself is read-only, in which case we fail.
4488 */
3a02ee18 4489 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4490 return error;
4491 }
4492
e721f504
DC
4493 /*
4494 * Version 5 superblock log feature mask validation. We know the
4495 * log is dirty so check if there are any unknown log features
4496 * in what we need to recover. If there are unknown features
4497 * (e.g. unsupported transactions, then simply reject the
4498 * attempt at recovery before touching anything.
4499 */
4500 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4501 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4502 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4503 xfs_warn(log->l_mp,
4504"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4505"The log can not be fully and/or safely recovered by this kernel.\n"
4506"Please recover the log on a kernel that supports the unknown features.",
4507 (log->l_mp->m_sb.sb_features_log_incompat &
4508 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
2451337d 4509 return -EINVAL;
e721f504
DC
4510 }
4511
2e227178
BF
4512 /*
4513 * Delay log recovery if the debug hook is set. This is debug
4514 * instrumention to coordinate simulation of I/O failures with
4515 * log recovery.
4516 */
4517 if (xfs_globals.log_recovery_delay) {
4518 xfs_notice(log->l_mp,
4519 "Delaying log recovery for %d seconds.",
4520 xfs_globals.log_recovery_delay);
4521 msleep(xfs_globals.log_recovery_delay * 1000);
4522 }
4523
a0fa2b67
DC
4524 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4525 log->l_mp->m_logname ? log->l_mp->m_logname
4526 : "internal");
1da177e4
LT
4527
4528 error = xlog_do_recover(log, head_blk, tail_blk);
4529 log->l_flags |= XLOG_RECOVERY_NEEDED;
4530 }
4531 return error;
4532}
4533
4534/*
4535 * In the first part of recovery we replay inodes and buffers and build
4536 * up the list of extent free items which need to be processed. Here
4537 * we process the extent free items and clean up the on disk unlinked
4538 * inode lists. This is separated from the first part of recovery so
4539 * that the root and real-time bitmap inodes can be read in from disk in
4540 * between the two stages. This is necessary so that we can free space
4541 * in the real-time portion of the file system.
4542 */
4543int
4544xlog_recover_finish(
9a8d2fdb 4545 struct xlog *log)
1da177e4
LT
4546{
4547 /*
4548 * Now we're ready to do the transactions needed for the
4549 * rest of recovery. Start with completing all the extent
4550 * free intent records and then process the unlinked inode
4551 * lists. At this point, we essentially run in normal mode
4552 * except that we're still performing recovery actions
4553 * rather than accepting new requests.
4554 */
4555 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4556 int error;
4557 error = xlog_recover_process_efis(log);
4558 if (error) {
a0fa2b67 4559 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4560 return error;
4561 }
1da177e4
LT
4562 /*
4563 * Sync the log to get all the EFIs out of the AIL.
4564 * This isn't absolutely necessary, but it helps in
4565 * case the unlink transactions would have problems
4566 * pushing the EFIs out of the way.
4567 */
a14a348b 4568 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4569
4249023a 4570 xlog_recover_process_iunlinks(log);
1da177e4
LT
4571
4572 xlog_recover_check_summary(log);
4573
a0fa2b67
DC
4574 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4575 log->l_mp->m_logname ? log->l_mp->m_logname
4576 : "internal");
1da177e4
LT
4577 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4578 } else {
a0fa2b67 4579 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4580 }
4581 return 0;
4582}
4583
4584
4585#if defined(DEBUG)
4586/*
4587 * Read all of the agf and agi counters and check that they
4588 * are consistent with the superblock counters.
4589 */
4590void
4591xlog_recover_check_summary(
9a8d2fdb 4592 struct xlog *log)
1da177e4
LT
4593{
4594 xfs_mount_t *mp;
4595 xfs_agf_t *agfp;
1da177e4
LT
4596 xfs_buf_t *agfbp;
4597 xfs_buf_t *agibp;
1da177e4
LT
4598 xfs_agnumber_t agno;
4599 __uint64_t freeblks;
4600 __uint64_t itotal;
4601 __uint64_t ifree;
5e1be0fb 4602 int error;
1da177e4
LT
4603
4604 mp = log->l_mp;
4605
4606 freeblks = 0LL;
4607 itotal = 0LL;
4608 ifree = 0LL;
4609 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
4610 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4611 if (error) {
a0fa2b67
DC
4612 xfs_alert(mp, "%s agf read failed agno %d error %d",
4613 __func__, agno, error);
4805621a
FCH
4614 } else {
4615 agfp = XFS_BUF_TO_AGF(agfbp);
4616 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4617 be32_to_cpu(agfp->agf_flcount);
4618 xfs_buf_relse(agfbp);
1da177e4 4619 }
1da177e4 4620
5e1be0fb 4621 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4622 if (error) {
4623 xfs_alert(mp, "%s agi read failed agno %d error %d",
4624 __func__, agno, error);
4625 } else {
5e1be0fb 4626 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4627
5e1be0fb
CH
4628 itotal += be32_to_cpu(agi->agi_count);
4629 ifree += be32_to_cpu(agi->agi_freecount);
4630 xfs_buf_relse(agibp);
4631 }
1da177e4 4632 }
1da177e4
LT
4633}
4634#endif /* DEBUG */
This page took 0.941555 seconds and 5 git commands to generate.