xfs: refactor unmount record detection into helper
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
57062787 27#include "xfs_da_format.h"
9a2cc41c 28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
239880ef 31#include "xfs_log.h"
1da177e4 32#include "xfs_log_priv.h"
1da177e4 33#include "xfs_log_recover.h"
a4fbe6ab 34#include "xfs_inode_item.h"
1da177e4
LT
35#include "xfs_extfree_item.h"
36#include "xfs_trans_priv.h"
a4fbe6ab
DC
37#include "xfs_alloc.h"
38#include "xfs_ialloc.h"
1da177e4 39#include "xfs_quota.h"
0e446be4 40#include "xfs_cksum.h"
0b1b213f 41#include "xfs_trace.h"
33479e05 42#include "xfs_icache.h"
a4fbe6ab 43#include "xfs_bmap_btree.h"
a4fbe6ab 44#include "xfs_error.h"
2b9ab5ab 45#include "xfs_dir2.h"
1da177e4 46
fc06c6d0
DC
47#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
48
9a8d2fdb
MT
49STATIC int
50xlog_find_zeroed(
51 struct xlog *,
52 xfs_daddr_t *);
53STATIC int
54xlog_clear_stale_blocks(
55 struct xlog *,
56 xfs_lsn_t);
1da177e4 57#if defined(DEBUG)
9a8d2fdb
MT
58STATIC void
59xlog_recover_check_summary(
60 struct xlog *);
1da177e4
LT
61#else
62#define xlog_recover_check_summary(log)
1da177e4 63#endif
7088c413
BF
64STATIC int
65xlog_do_recovery_pass(
66 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
1da177e4 67
d5689eaa
CH
68/*
69 * This structure is used during recovery to record the buf log items which
70 * have been canceled and should not be replayed.
71 */
72struct xfs_buf_cancel {
73 xfs_daddr_t bc_blkno;
74 uint bc_len;
75 int bc_refcount;
76 struct list_head bc_list;
77};
78
1da177e4
LT
79/*
80 * Sector aligned buffer routines for buffer create/read/write/access
81 */
82
ff30a622
AE
83/*
84 * Verify the given count of basic blocks is valid number of blocks
85 * to specify for an operation involving the given XFS log buffer.
86 * Returns nonzero if the count is valid, 0 otherwise.
87 */
88
89static inline int
90xlog_buf_bbcount_valid(
9a8d2fdb 91 struct xlog *log,
ff30a622
AE
92 int bbcount)
93{
94 return bbcount > 0 && bbcount <= log->l_logBBsize;
95}
96
36adecff
AE
97/*
98 * Allocate a buffer to hold log data. The buffer needs to be able
99 * to map to a range of nbblks basic blocks at any valid (basic
100 * block) offset within the log.
101 */
5d77c0dc 102STATIC xfs_buf_t *
1da177e4 103xlog_get_bp(
9a8d2fdb 104 struct xlog *log,
3228149c 105 int nbblks)
1da177e4 106{
c8da0faf
CH
107 struct xfs_buf *bp;
108
ff30a622 109 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 110 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
111 nbblks);
112 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
113 return NULL;
114 }
1da177e4 115
36adecff
AE
116 /*
117 * We do log I/O in units of log sectors (a power-of-2
118 * multiple of the basic block size), so we round up the
25985edc 119 * requested size to accommodate the basic blocks required
36adecff
AE
120 * for complete log sectors.
121 *
122 * In addition, the buffer may be used for a non-sector-
123 * aligned block offset, in which case an I/O of the
124 * requested size could extend beyond the end of the
125 * buffer. If the requested size is only 1 basic block it
126 * will never straddle a sector boundary, so this won't be
127 * an issue. Nor will this be a problem if the log I/O is
128 * done in basic blocks (sector size 1). But otherwise we
129 * extend the buffer by one extra log sector to ensure
25985edc 130 * there's space to accommodate this possibility.
36adecff 131 */
69ce58f0
AE
132 if (nbblks > 1 && log->l_sectBBsize > 1)
133 nbblks += log->l_sectBBsize;
134 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 135
e70b73f8 136 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
137 if (bp)
138 xfs_buf_unlock(bp);
139 return bp;
1da177e4
LT
140}
141
5d77c0dc 142STATIC void
1da177e4
LT
143xlog_put_bp(
144 xfs_buf_t *bp)
145{
146 xfs_buf_free(bp);
147}
148
48389ef1
AE
149/*
150 * Return the address of the start of the given block number's data
151 * in a log buffer. The buffer covers a log sector-aligned region.
152 */
b2a922cd 153STATIC char *
076e6acb 154xlog_align(
9a8d2fdb 155 struct xlog *log,
076e6acb
CH
156 xfs_daddr_t blk_no,
157 int nbblks,
9a8d2fdb 158 struct xfs_buf *bp)
076e6acb 159{
fdc07f44 160 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 161
4e94b71b 162 ASSERT(offset + nbblks <= bp->b_length);
62926044 163 return bp->b_addr + BBTOB(offset);
076e6acb
CH
164}
165
1da177e4
LT
166
167/*
168 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
169 */
076e6acb
CH
170STATIC int
171xlog_bread_noalign(
9a8d2fdb 172 struct xlog *log,
1da177e4
LT
173 xfs_daddr_t blk_no,
174 int nbblks,
9a8d2fdb 175 struct xfs_buf *bp)
1da177e4
LT
176{
177 int error;
178
ff30a622 179 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 180 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
181 nbblks);
182 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 183 return -EFSCORRUPTED;
3228149c
DC
184 }
185
69ce58f0
AE
186 blk_no = round_down(blk_no, log->l_sectBBsize);
187 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
188
189 ASSERT(nbblks > 0);
4e94b71b 190 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
191
192 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
193 XFS_BUF_READ(bp);
aa0e8833 194 bp->b_io_length = nbblks;
0e95f19a 195 bp->b_error = 0;
1da177e4 196
595bff75
DC
197 error = xfs_buf_submit_wait(bp);
198 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
901796af 199 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
200 return error;
201}
202
076e6acb
CH
203STATIC int
204xlog_bread(
9a8d2fdb 205 struct xlog *log,
076e6acb
CH
206 xfs_daddr_t blk_no,
207 int nbblks,
9a8d2fdb 208 struct xfs_buf *bp,
b2a922cd 209 char **offset)
076e6acb
CH
210{
211 int error;
212
213 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
214 if (error)
215 return error;
216
217 *offset = xlog_align(log, blk_no, nbblks, bp);
218 return 0;
219}
220
44396476
DC
221/*
222 * Read at an offset into the buffer. Returns with the buffer in it's original
223 * state regardless of the result of the read.
224 */
225STATIC int
226xlog_bread_offset(
9a8d2fdb 227 struct xlog *log,
44396476
DC
228 xfs_daddr_t blk_no, /* block to read from */
229 int nbblks, /* blocks to read */
9a8d2fdb 230 struct xfs_buf *bp,
b2a922cd 231 char *offset)
44396476 232{
b2a922cd 233 char *orig_offset = bp->b_addr;
4e94b71b 234 int orig_len = BBTOB(bp->b_length);
44396476
DC
235 int error, error2;
236
02fe03d9 237 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
238 if (error)
239 return error;
240
241 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
242
243 /* must reset buffer pointer even on error */
02fe03d9 244 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
245 if (error)
246 return error;
247 return error2;
248}
249
1da177e4
LT
250/*
251 * Write out the buffer at the given block for the given number of blocks.
252 * The buffer is kept locked across the write and is returned locked.
253 * This can only be used for synchronous log writes.
254 */
ba0f32d4 255STATIC int
1da177e4 256xlog_bwrite(
9a8d2fdb 257 struct xlog *log,
1da177e4
LT
258 xfs_daddr_t blk_no,
259 int nbblks,
9a8d2fdb 260 struct xfs_buf *bp)
1da177e4
LT
261{
262 int error;
263
ff30a622 264 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 265 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
266 nbblks);
267 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 268 return -EFSCORRUPTED;
3228149c
DC
269 }
270
69ce58f0
AE
271 blk_no = round_down(blk_no, log->l_sectBBsize);
272 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
273
274 ASSERT(nbblks > 0);
4e94b71b 275 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
276
277 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
278 XFS_BUF_ZEROFLAGS(bp);
72790aa1 279 xfs_buf_hold(bp);
0c842ad4 280 xfs_buf_lock(bp);
aa0e8833 281 bp->b_io_length = nbblks;
0e95f19a 282 bp->b_error = 0;
1da177e4 283
c2b006c1 284 error = xfs_bwrite(bp);
901796af
CH
285 if (error)
286 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 287 xfs_buf_relse(bp);
1da177e4
LT
288 return error;
289}
290
1da177e4
LT
291#ifdef DEBUG
292/*
293 * dump debug superblock and log record information
294 */
295STATIC void
296xlog_header_check_dump(
297 xfs_mount_t *mp,
298 xlog_rec_header_t *head)
299{
08e96e1a 300 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 301 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 302 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 303 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
304}
305#else
306#define xlog_header_check_dump(mp, head)
307#endif
308
309/*
310 * check log record header for recovery
311 */
312STATIC int
313xlog_header_check_recover(
314 xfs_mount_t *mp,
315 xlog_rec_header_t *head)
316{
69ef921b 317 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
318
319 /*
320 * IRIX doesn't write the h_fmt field and leaves it zeroed
321 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
322 * a dirty log created in IRIX.
323 */
69ef921b 324 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
325 xfs_warn(mp,
326 "dirty log written in incompatible format - can't recover");
1da177e4
LT
327 xlog_header_check_dump(mp, head);
328 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
329 XFS_ERRLEVEL_HIGH, mp);
2451337d 330 return -EFSCORRUPTED;
1da177e4 331 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
332 xfs_warn(mp,
333 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
334 xlog_header_check_dump(mp, head);
335 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
336 XFS_ERRLEVEL_HIGH, mp);
2451337d 337 return -EFSCORRUPTED;
1da177e4
LT
338 }
339 return 0;
340}
341
342/*
343 * read the head block of the log and check the header
344 */
345STATIC int
346xlog_header_check_mount(
347 xfs_mount_t *mp,
348 xlog_rec_header_t *head)
349{
69ef921b 350 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
351
352 if (uuid_is_nil(&head->h_fs_uuid)) {
353 /*
354 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
355 * h_fs_uuid is nil, we assume this log was last mounted
356 * by IRIX and continue.
357 */
a0fa2b67 358 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 359 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 360 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
361 xlog_header_check_dump(mp, head);
362 XFS_ERROR_REPORT("xlog_header_check_mount",
363 XFS_ERRLEVEL_HIGH, mp);
2451337d 364 return -EFSCORRUPTED;
1da177e4
LT
365 }
366 return 0;
367}
368
369STATIC void
370xlog_recover_iodone(
371 struct xfs_buf *bp)
372{
5a52c2a5 373 if (bp->b_error) {
1da177e4
LT
374 /*
375 * We're not going to bother about retrying
376 * this during recovery. One strike!
377 */
595bff75
DC
378 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
379 xfs_buf_ioerror_alert(bp, __func__);
380 xfs_force_shutdown(bp->b_target->bt_mount,
381 SHUTDOWN_META_IO_ERROR);
382 }
1da177e4 383 }
cb669ca5 384 bp->b_iodone = NULL;
e8aaba9a 385 xfs_buf_ioend(bp);
1da177e4
LT
386}
387
388/*
389 * This routine finds (to an approximation) the first block in the physical
390 * log which contains the given cycle. It uses a binary search algorithm.
391 * Note that the algorithm can not be perfect because the disk will not
392 * necessarily be perfect.
393 */
a8272ce0 394STATIC int
1da177e4 395xlog_find_cycle_start(
9a8d2fdb
MT
396 struct xlog *log,
397 struct xfs_buf *bp,
1da177e4
LT
398 xfs_daddr_t first_blk,
399 xfs_daddr_t *last_blk,
400 uint cycle)
401{
b2a922cd 402 char *offset;
1da177e4 403 xfs_daddr_t mid_blk;
e3bb2e30 404 xfs_daddr_t end_blk;
1da177e4
LT
405 uint mid_cycle;
406 int error;
407
e3bb2e30
AE
408 end_blk = *last_blk;
409 mid_blk = BLK_AVG(first_blk, end_blk);
410 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
411 error = xlog_bread(log, mid_blk, 1, bp, &offset);
412 if (error)
1da177e4 413 return error;
03bea6fe 414 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
415 if (mid_cycle == cycle)
416 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
417 else
418 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
419 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 420 }
e3bb2e30
AE
421 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
422 (mid_blk == end_blk && mid_blk-1 == first_blk));
423
424 *last_blk = end_blk;
1da177e4
LT
425
426 return 0;
427}
428
429/*
3f943d85
AE
430 * Check that a range of blocks does not contain stop_on_cycle_no.
431 * Fill in *new_blk with the block offset where such a block is
432 * found, or with -1 (an invalid block number) if there is no such
433 * block in the range. The scan needs to occur from front to back
434 * and the pointer into the region must be updated since a later
435 * routine will need to perform another test.
1da177e4
LT
436 */
437STATIC int
438xlog_find_verify_cycle(
9a8d2fdb 439 struct xlog *log,
1da177e4
LT
440 xfs_daddr_t start_blk,
441 int nbblks,
442 uint stop_on_cycle_no,
443 xfs_daddr_t *new_blk)
444{
445 xfs_daddr_t i, j;
446 uint cycle;
447 xfs_buf_t *bp;
448 xfs_daddr_t bufblks;
b2a922cd 449 char *buf = NULL;
1da177e4
LT
450 int error = 0;
451
6881a229
AE
452 /*
453 * Greedily allocate a buffer big enough to handle the full
454 * range of basic blocks we'll be examining. If that fails,
455 * try a smaller size. We need to be able to read at least
456 * a log sector, or we're out of luck.
457 */
1da177e4 458 bufblks = 1 << ffs(nbblks);
81158e0c
DC
459 while (bufblks > log->l_logBBsize)
460 bufblks >>= 1;
1da177e4 461 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 462 bufblks >>= 1;
69ce58f0 463 if (bufblks < log->l_sectBBsize)
2451337d 464 return -ENOMEM;
1da177e4
LT
465 }
466
467 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
468 int bcount;
469
470 bcount = min(bufblks, (start_blk + nbblks - i));
471
076e6acb
CH
472 error = xlog_bread(log, i, bcount, bp, &buf);
473 if (error)
1da177e4
LT
474 goto out;
475
1da177e4 476 for (j = 0; j < bcount; j++) {
03bea6fe 477 cycle = xlog_get_cycle(buf);
1da177e4
LT
478 if (cycle == stop_on_cycle_no) {
479 *new_blk = i+j;
480 goto out;
481 }
482
483 buf += BBSIZE;
484 }
485 }
486
487 *new_blk = -1;
488
489out:
490 xlog_put_bp(bp);
491 return error;
492}
493
494/*
495 * Potentially backup over partial log record write.
496 *
497 * In the typical case, last_blk is the number of the block directly after
498 * a good log record. Therefore, we subtract one to get the block number
499 * of the last block in the given buffer. extra_bblks contains the number
500 * of blocks we would have read on a previous read. This happens when the
501 * last log record is split over the end of the physical log.
502 *
503 * extra_bblks is the number of blocks potentially verified on a previous
504 * call to this routine.
505 */
506STATIC int
507xlog_find_verify_log_record(
9a8d2fdb 508 struct xlog *log,
1da177e4
LT
509 xfs_daddr_t start_blk,
510 xfs_daddr_t *last_blk,
511 int extra_bblks)
512{
513 xfs_daddr_t i;
514 xfs_buf_t *bp;
b2a922cd 515 char *offset = NULL;
1da177e4
LT
516 xlog_rec_header_t *head = NULL;
517 int error = 0;
518 int smallmem = 0;
519 int num_blks = *last_blk - start_blk;
520 int xhdrs;
521
522 ASSERT(start_blk != 0 || *last_blk != start_blk);
523
524 if (!(bp = xlog_get_bp(log, num_blks))) {
525 if (!(bp = xlog_get_bp(log, 1)))
2451337d 526 return -ENOMEM;
1da177e4
LT
527 smallmem = 1;
528 } else {
076e6acb
CH
529 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
530 if (error)
1da177e4 531 goto out;
1da177e4
LT
532 offset += ((num_blks - 1) << BBSHIFT);
533 }
534
535 for (i = (*last_blk) - 1; i >= 0; i--) {
536 if (i < start_blk) {
537 /* valid log record not found */
a0fa2b67
DC
538 xfs_warn(log->l_mp,
539 "Log inconsistent (didn't find previous header)");
1da177e4 540 ASSERT(0);
2451337d 541 error = -EIO;
1da177e4
LT
542 goto out;
543 }
544
545 if (smallmem) {
076e6acb
CH
546 error = xlog_bread(log, i, 1, bp, &offset);
547 if (error)
1da177e4 548 goto out;
1da177e4
LT
549 }
550
551 head = (xlog_rec_header_t *)offset;
552
69ef921b 553 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
554 break;
555
556 if (!smallmem)
557 offset -= BBSIZE;
558 }
559
560 /*
561 * We hit the beginning of the physical log & still no header. Return
562 * to caller. If caller can handle a return of -1, then this routine
563 * will be called again for the end of the physical log.
564 */
565 if (i == -1) {
2451337d 566 error = 1;
1da177e4
LT
567 goto out;
568 }
569
570 /*
571 * We have the final block of the good log (the first block
572 * of the log record _before_ the head. So we check the uuid.
573 */
574 if ((error = xlog_header_check_mount(log->l_mp, head)))
575 goto out;
576
577 /*
578 * We may have found a log record header before we expected one.
579 * last_blk will be the 1st block # with a given cycle #. We may end
580 * up reading an entire log record. In this case, we don't want to
581 * reset last_blk. Only when last_blk points in the middle of a log
582 * record do we update last_blk.
583 */
62118709 584 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 585 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
586
587 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
588 if (h_size % XLOG_HEADER_CYCLE_SIZE)
589 xhdrs++;
590 } else {
591 xhdrs = 1;
592 }
593
b53e675d
CH
594 if (*last_blk - i + extra_bblks !=
595 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
596 *last_blk = i;
597
598out:
599 xlog_put_bp(bp);
600 return error;
601}
602
603/*
604 * Head is defined to be the point of the log where the next log write
0a94da24 605 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
606 * eliminated when calculating the head. We aren't guaranteed that previous
607 * LR have complete transactions. We only know that a cycle number of
608 * current cycle number -1 won't be present in the log if we start writing
609 * from our current block number.
610 *
611 * last_blk contains the block number of the first block with a given
612 * cycle number.
613 *
614 * Return: zero if normal, non-zero if error.
615 */
ba0f32d4 616STATIC int
1da177e4 617xlog_find_head(
9a8d2fdb 618 struct xlog *log,
1da177e4
LT
619 xfs_daddr_t *return_head_blk)
620{
621 xfs_buf_t *bp;
b2a922cd 622 char *offset;
1da177e4
LT
623 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
624 int num_scan_bblks;
625 uint first_half_cycle, last_half_cycle;
626 uint stop_on_cycle;
627 int error, log_bbnum = log->l_logBBsize;
628
629 /* Is the end of the log device zeroed? */
2451337d
DC
630 error = xlog_find_zeroed(log, &first_blk);
631 if (error < 0) {
632 xfs_warn(log->l_mp, "empty log check failed");
633 return error;
634 }
635 if (error == 1) {
1da177e4
LT
636 *return_head_blk = first_blk;
637
638 /* Is the whole lot zeroed? */
639 if (!first_blk) {
640 /* Linux XFS shouldn't generate totally zeroed logs -
641 * mkfs etc write a dummy unmount record to a fresh
642 * log so we can store the uuid in there
643 */
a0fa2b67 644 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
645 }
646
647 return 0;
1da177e4
LT
648 }
649
650 first_blk = 0; /* get cycle # of 1st block */
651 bp = xlog_get_bp(log, 1);
652 if (!bp)
2451337d 653 return -ENOMEM;
076e6acb
CH
654
655 error = xlog_bread(log, 0, 1, bp, &offset);
656 if (error)
1da177e4 657 goto bp_err;
076e6acb 658
03bea6fe 659 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
660
661 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
662 error = xlog_bread(log, last_blk, 1, bp, &offset);
663 if (error)
1da177e4 664 goto bp_err;
076e6acb 665
03bea6fe 666 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
667 ASSERT(last_half_cycle != 0);
668
669 /*
670 * If the 1st half cycle number is equal to the last half cycle number,
671 * then the entire log is stamped with the same cycle number. In this
672 * case, head_blk can't be set to zero (which makes sense). The below
673 * math doesn't work out properly with head_blk equal to zero. Instead,
674 * we set it to log_bbnum which is an invalid block number, but this
675 * value makes the math correct. If head_blk doesn't changed through
676 * all the tests below, *head_blk is set to zero at the very end rather
677 * than log_bbnum. In a sense, log_bbnum and zero are the same block
678 * in a circular file.
679 */
680 if (first_half_cycle == last_half_cycle) {
681 /*
682 * In this case we believe that the entire log should have
683 * cycle number last_half_cycle. We need to scan backwards
684 * from the end verifying that there are no holes still
685 * containing last_half_cycle - 1. If we find such a hole,
686 * then the start of that hole will be the new head. The
687 * simple case looks like
688 * x | x ... | x - 1 | x
689 * Another case that fits this picture would be
690 * x | x + 1 | x ... | x
c41564b5 691 * In this case the head really is somewhere at the end of the
1da177e4
LT
692 * log, as one of the latest writes at the beginning was
693 * incomplete.
694 * One more case is
695 * x | x + 1 | x ... | x - 1 | x
696 * This is really the combination of the above two cases, and
697 * the head has to end up at the start of the x-1 hole at the
698 * end of the log.
699 *
700 * In the 256k log case, we will read from the beginning to the
701 * end of the log and search for cycle numbers equal to x-1.
702 * We don't worry about the x+1 blocks that we encounter,
703 * because we know that they cannot be the head since the log
704 * started with x.
705 */
706 head_blk = log_bbnum;
707 stop_on_cycle = last_half_cycle - 1;
708 } else {
709 /*
710 * In this case we want to find the first block with cycle
711 * number matching last_half_cycle. We expect the log to be
712 * some variation on
3f943d85 713 * x + 1 ... | x ... | x
1da177e4
LT
714 * The first block with cycle number x (last_half_cycle) will
715 * be where the new head belongs. First we do a binary search
716 * for the first occurrence of last_half_cycle. The binary
717 * search may not be totally accurate, so then we scan back
718 * from there looking for occurrences of last_half_cycle before
719 * us. If that backwards scan wraps around the beginning of
720 * the log, then we look for occurrences of last_half_cycle - 1
721 * at the end of the log. The cases we're looking for look
722 * like
3f943d85
AE
723 * v binary search stopped here
724 * x + 1 ... | x | x + 1 | x ... | x
725 * ^ but we want to locate this spot
1da177e4 726 * or
1da177e4 727 * <---------> less than scan distance
3f943d85
AE
728 * x + 1 ... | x ... | x - 1 | x
729 * ^ we want to locate this spot
1da177e4
LT
730 */
731 stop_on_cycle = last_half_cycle;
732 if ((error = xlog_find_cycle_start(log, bp, first_blk,
733 &head_blk, last_half_cycle)))
734 goto bp_err;
735 }
736
737 /*
738 * Now validate the answer. Scan back some number of maximum possible
739 * blocks and make sure each one has the expected cycle number. The
740 * maximum is determined by the total possible amount of buffering
741 * in the in-core log. The following number can be made tighter if
742 * we actually look at the block size of the filesystem.
743 */
744 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
745 if (head_blk >= num_scan_bblks) {
746 /*
747 * We are guaranteed that the entire check can be performed
748 * in one buffer.
749 */
750 start_blk = head_blk - num_scan_bblks;
751 if ((error = xlog_find_verify_cycle(log,
752 start_blk, num_scan_bblks,
753 stop_on_cycle, &new_blk)))
754 goto bp_err;
755 if (new_blk != -1)
756 head_blk = new_blk;
757 } else { /* need to read 2 parts of log */
758 /*
759 * We are going to scan backwards in the log in two parts.
760 * First we scan the physical end of the log. In this part
761 * of the log, we are looking for blocks with cycle number
762 * last_half_cycle - 1.
763 * If we find one, then we know that the log starts there, as
764 * we've found a hole that didn't get written in going around
765 * the end of the physical log. The simple case for this is
766 * x + 1 ... | x ... | x - 1 | x
767 * <---------> less than scan distance
768 * If all of the blocks at the end of the log have cycle number
769 * last_half_cycle, then we check the blocks at the start of
770 * the log looking for occurrences of last_half_cycle. If we
771 * find one, then our current estimate for the location of the
772 * first occurrence of last_half_cycle is wrong and we move
773 * back to the hole we've found. This case looks like
774 * x + 1 ... | x | x + 1 | x ...
775 * ^ binary search stopped here
776 * Another case we need to handle that only occurs in 256k
777 * logs is
778 * x + 1 ... | x ... | x+1 | x ...
779 * ^ binary search stops here
780 * In a 256k log, the scan at the end of the log will see the
781 * x + 1 blocks. We need to skip past those since that is
782 * certainly not the head of the log. By searching for
783 * last_half_cycle-1 we accomplish that.
784 */
1da177e4 785 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
786 (xfs_daddr_t) num_scan_bblks >= head_blk);
787 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
788 if ((error = xlog_find_verify_cycle(log, start_blk,
789 num_scan_bblks - (int)head_blk,
790 (stop_on_cycle - 1), &new_blk)))
791 goto bp_err;
792 if (new_blk != -1) {
793 head_blk = new_blk;
9db127ed 794 goto validate_head;
1da177e4
LT
795 }
796
797 /*
798 * Scan beginning of log now. The last part of the physical
799 * log is good. This scan needs to verify that it doesn't find
800 * the last_half_cycle.
801 */
802 start_blk = 0;
803 ASSERT(head_blk <= INT_MAX);
804 if ((error = xlog_find_verify_cycle(log,
805 start_blk, (int)head_blk,
806 stop_on_cycle, &new_blk)))
807 goto bp_err;
808 if (new_blk != -1)
809 head_blk = new_blk;
810 }
811
9db127ed 812validate_head:
1da177e4
LT
813 /*
814 * Now we need to make sure head_blk is not pointing to a block in
815 * the middle of a log record.
816 */
817 num_scan_bblks = XLOG_REC_SHIFT(log);
818 if (head_blk >= num_scan_bblks) {
819 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
820
821 /* start ptr at last block ptr before head_blk */
2451337d
DC
822 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
823 if (error == 1)
824 error = -EIO;
825 if (error)
1da177e4
LT
826 goto bp_err;
827 } else {
828 start_blk = 0;
829 ASSERT(head_blk <= INT_MAX);
2451337d
DC
830 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
831 if (error < 0)
832 goto bp_err;
833 if (error == 1) {
1da177e4 834 /* We hit the beginning of the log during our search */
3f943d85 835 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
836 new_blk = log_bbnum;
837 ASSERT(start_blk <= INT_MAX &&
838 (xfs_daddr_t) log_bbnum-start_blk >= 0);
839 ASSERT(head_blk <= INT_MAX);
2451337d
DC
840 error = xlog_find_verify_log_record(log, start_blk,
841 &new_blk, (int)head_blk);
842 if (error == 1)
843 error = -EIO;
844 if (error)
1da177e4
LT
845 goto bp_err;
846 if (new_blk != log_bbnum)
847 head_blk = new_blk;
848 } else if (error)
849 goto bp_err;
850 }
851
852 xlog_put_bp(bp);
853 if (head_blk == log_bbnum)
854 *return_head_blk = 0;
855 else
856 *return_head_blk = head_blk;
857 /*
858 * When returning here, we have a good block number. Bad block
859 * means that during a previous crash, we didn't have a clean break
860 * from cycle number N to cycle number N-1. In this case, we need
861 * to find the first block with cycle number N-1.
862 */
863 return 0;
864
865 bp_err:
866 xlog_put_bp(bp);
867
868 if (error)
a0fa2b67 869 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
870 return error;
871}
872
eed6b462
BF
873/*
874 * Seek backwards in the log for log record headers.
875 *
876 * Given a starting log block, walk backwards until we find the provided number
877 * of records or hit the provided tail block. The return value is the number of
878 * records encountered or a negative error code. The log block and buffer
879 * pointer of the last record seen are returned in rblk and rhead respectively.
880 */
881STATIC int
882xlog_rseek_logrec_hdr(
883 struct xlog *log,
884 xfs_daddr_t head_blk,
885 xfs_daddr_t tail_blk,
886 int count,
887 struct xfs_buf *bp,
888 xfs_daddr_t *rblk,
889 struct xlog_rec_header **rhead,
890 bool *wrapped)
891{
892 int i;
893 int error;
894 int found = 0;
895 char *offset = NULL;
896 xfs_daddr_t end_blk;
897
898 *wrapped = false;
899
900 /*
901 * Walk backwards from the head block until we hit the tail or the first
902 * block in the log.
903 */
904 end_blk = head_blk > tail_blk ? tail_blk : 0;
905 for (i = (int) head_blk - 1; i >= end_blk; i--) {
906 error = xlog_bread(log, i, 1, bp, &offset);
907 if (error)
908 goto out_error;
909
910 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
911 *rblk = i;
912 *rhead = (struct xlog_rec_header *) offset;
913 if (++found == count)
914 break;
915 }
916 }
917
918 /*
919 * If we haven't hit the tail block or the log record header count,
920 * start looking again from the end of the physical log. Note that
921 * callers can pass head == tail if the tail is not yet known.
922 */
923 if (tail_blk >= head_blk && found != count) {
924 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
925 error = xlog_bread(log, i, 1, bp, &offset);
926 if (error)
927 goto out_error;
928
929 if (*(__be32 *)offset ==
930 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
931 *wrapped = true;
932 *rblk = i;
933 *rhead = (struct xlog_rec_header *) offset;
934 if (++found == count)
935 break;
936 }
937 }
938 }
939
940 return found;
941
942out_error:
943 return error;
944}
945
7088c413
BF
946/*
947 * Seek forward in the log for log record headers.
948 *
949 * Given head and tail blocks, walk forward from the tail block until we find
950 * the provided number of records or hit the head block. The return value is the
951 * number of records encountered or a negative error code. The log block and
952 * buffer pointer of the last record seen are returned in rblk and rhead
953 * respectively.
954 */
955STATIC int
956xlog_seek_logrec_hdr(
957 struct xlog *log,
958 xfs_daddr_t head_blk,
959 xfs_daddr_t tail_blk,
960 int count,
961 struct xfs_buf *bp,
962 xfs_daddr_t *rblk,
963 struct xlog_rec_header **rhead,
964 bool *wrapped)
965{
966 int i;
967 int error;
968 int found = 0;
969 char *offset = NULL;
970 xfs_daddr_t end_blk;
971
972 *wrapped = false;
973
974 /*
975 * Walk forward from the tail block until we hit the head or the last
976 * block in the log.
977 */
978 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
979 for (i = (int) tail_blk; i <= end_blk; i++) {
980 error = xlog_bread(log, i, 1, bp, &offset);
981 if (error)
982 goto out_error;
983
984 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
985 *rblk = i;
986 *rhead = (struct xlog_rec_header *) offset;
987 if (++found == count)
988 break;
989 }
990 }
991
992 /*
993 * If we haven't hit the head block or the log record header count,
994 * start looking again from the start of the physical log.
995 */
996 if (tail_blk > head_blk && found != count) {
997 for (i = 0; i < (int) head_blk; i++) {
998 error = xlog_bread(log, i, 1, bp, &offset);
999 if (error)
1000 goto out_error;
1001
1002 if (*(__be32 *)offset ==
1003 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1004 *wrapped = true;
1005 *rblk = i;
1006 *rhead = (struct xlog_rec_header *) offset;
1007 if (++found == count)
1008 break;
1009 }
1010 }
1011 }
1012
1013 return found;
1014
1015out_error:
1016 return error;
1017}
1018
1019/*
1020 * Check the log tail for torn writes. This is required when torn writes are
1021 * detected at the head and the head had to be walked back to a previous record.
1022 * The tail of the previous record must now be verified to ensure the torn
1023 * writes didn't corrupt the previous tail.
1024 *
1025 * Return an error if CRC verification fails as recovery cannot proceed.
1026 */
1027STATIC int
1028xlog_verify_tail(
1029 struct xlog *log,
1030 xfs_daddr_t head_blk,
1031 xfs_daddr_t tail_blk)
1032{
1033 struct xlog_rec_header *thead;
1034 struct xfs_buf *bp;
1035 xfs_daddr_t first_bad;
1036 int count;
1037 int error = 0;
1038 bool wrapped;
1039 xfs_daddr_t tmp_head;
1040
1041 bp = xlog_get_bp(log, 1);
1042 if (!bp)
1043 return -ENOMEM;
1044
1045 /*
1046 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1047 * a temporary head block that points after the last possible
1048 * concurrently written record of the tail.
1049 */
1050 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1051 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1052 &wrapped);
1053 if (count < 0) {
1054 error = count;
1055 goto out;
1056 }
1057
1058 /*
1059 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1060 * into the actual log head. tmp_head points to the start of the record
1061 * so update it to the actual head block.
1062 */
1063 if (count < XLOG_MAX_ICLOGS + 1)
1064 tmp_head = head_blk;
1065
1066 /*
1067 * We now have a tail and temporary head block that covers at least
1068 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1069 * records were completely written. Run a CRC verification pass from
1070 * tail to head and return the result.
1071 */
1072 error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1073 XLOG_RECOVER_CRCPASS, &first_bad);
1074
1075out:
1076 xlog_put_bp(bp);
1077 return error;
1078}
1079
1080/*
1081 * Detect and trim torn writes from the head of the log.
1082 *
1083 * Storage without sector atomicity guarantees can result in torn writes in the
1084 * log in the event of a crash. Our only means to detect this scenario is via
1085 * CRC verification. While we can't always be certain that CRC verification
1086 * failure is due to a torn write vs. an unrelated corruption, we do know that
1087 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1088 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1089 * the log and treat failures in this range as torn writes as a matter of
1090 * policy. In the event of CRC failure, the head is walked back to the last good
1091 * record in the log and the tail is updated from that record and verified.
1092 */
1093STATIC int
1094xlog_verify_head(
1095 struct xlog *log,
1096 xfs_daddr_t *head_blk, /* in/out: unverified head */
1097 xfs_daddr_t *tail_blk, /* out: tail block */
1098 struct xfs_buf *bp,
1099 xfs_daddr_t *rhead_blk, /* start blk of last record */
1100 struct xlog_rec_header **rhead, /* ptr to last record */
1101 bool *wrapped) /* last rec. wraps phys. log */
1102{
1103 struct xlog_rec_header *tmp_rhead;
1104 struct xfs_buf *tmp_bp;
1105 xfs_daddr_t first_bad;
1106 xfs_daddr_t tmp_rhead_blk;
1107 int found;
1108 int error;
1109 bool tmp_wrapped;
1110
1111 /*
82ff6cc2
BF
1112 * Check the head of the log for torn writes. Search backwards from the
1113 * head until we hit the tail or the maximum number of log record I/Os
1114 * that could have been in flight at one time. Use a temporary buffer so
1115 * we don't trash the rhead/bp pointers from the caller.
7088c413
BF
1116 */
1117 tmp_bp = xlog_get_bp(log, 1);
1118 if (!tmp_bp)
1119 return -ENOMEM;
1120 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1121 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1122 &tmp_rhead, &tmp_wrapped);
1123 xlog_put_bp(tmp_bp);
1124 if (error < 0)
1125 return error;
1126
1127 /*
1128 * Now run a CRC verification pass over the records starting at the
1129 * block found above to the current head. If a CRC failure occurs, the
1130 * log block of the first bad record is saved in first_bad.
1131 */
1132 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1133 XLOG_RECOVER_CRCPASS, &first_bad);
1134 if (error == -EFSBADCRC) {
1135 /*
1136 * We've hit a potential torn write. Reset the error and warn
1137 * about it.
1138 */
1139 error = 0;
1140 xfs_warn(log->l_mp,
1141"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1142 first_bad, *head_blk);
1143
1144 /*
1145 * Get the header block and buffer pointer for the last good
1146 * record before the bad record.
1147 *
1148 * Note that xlog_find_tail() clears the blocks at the new head
1149 * (i.e., the records with invalid CRC) if the cycle number
1150 * matches the the current cycle.
1151 */
1152 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1153 rhead_blk, rhead, wrapped);
1154 if (found < 0)
1155 return found;
1156 if (found == 0) /* XXX: right thing to do here? */
1157 return -EIO;
1158
1159 /*
1160 * Reset the head block to the starting block of the first bad
1161 * log record and set the tail block based on the last good
1162 * record.
1163 *
1164 * Bail out if the updated head/tail match as this indicates
1165 * possible corruption outside of the acceptable
1166 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1167 */
1168 *head_blk = first_bad;
1169 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1170 if (*head_blk == *tail_blk) {
1171 ASSERT(0);
1172 return 0;
1173 }
1174
1175 /*
1176 * Now verify the tail based on the updated head. This is
1177 * required because the torn writes trimmed from the head could
1178 * have been written over the tail of a previous record. Return
1179 * any errors since recovery cannot proceed if the tail is
1180 * corrupt.
1181 *
1182 * XXX: This leaves a gap in truly robust protection from torn
1183 * writes in the log. If the head is behind the tail, the tail
1184 * pushes forward to create some space and then a crash occurs
1185 * causing the writes into the previous record's tail region to
1186 * tear, log recovery isn't able to recover.
1187 *
1188 * How likely is this to occur? If possible, can we do something
1189 * more intelligent here? Is it safe to push the tail forward if
1190 * we can determine that the tail is within the range of the
1191 * torn write (e.g., the kernel can only overwrite the tail if
1192 * it has actually been pushed forward)? Alternatively, could we
1193 * somehow prevent this condition at runtime?
1194 */
1195 error = xlog_verify_tail(log, *head_blk, *tail_blk);
1196 }
1197
1198 return error;
1199}
1200
65b99a08
BF
1201/*
1202 * Check whether the head of the log points to an unmount record. In other
1203 * words, determine whether the log is clean. If so, update the in-core state
1204 * appropriately.
1205 */
1206static int
1207xlog_check_unmount_rec(
1208 struct xlog *log,
1209 xfs_daddr_t *head_blk,
1210 xfs_daddr_t *tail_blk,
1211 struct xlog_rec_header *rhead,
1212 xfs_daddr_t rhead_blk,
1213 struct xfs_buf *bp,
1214 bool *clean)
1215{
1216 struct xlog_op_header *op_head;
1217 xfs_daddr_t umount_data_blk;
1218 xfs_daddr_t after_umount_blk;
1219 int hblks;
1220 int error;
1221 char *offset;
1222
1223 *clean = false;
1224
1225 /*
1226 * Look for unmount record. If we find it, then we know there was a
1227 * clean unmount. Since 'i' could be the last block in the physical
1228 * log, we convert to a log block before comparing to the head_blk.
1229 *
1230 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1231 * below. We won't want to clear the unmount record if there is one, so
1232 * we pass the lsn of the unmount record rather than the block after it.
1233 */
1234 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1235 int h_size = be32_to_cpu(rhead->h_size);
1236 int h_version = be32_to_cpu(rhead->h_version);
1237
1238 if ((h_version & XLOG_VERSION_2) &&
1239 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1240 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1241 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1242 hblks++;
1243 } else {
1244 hblks = 1;
1245 }
1246 } else {
1247 hblks = 1;
1248 }
1249 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1250 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1251 if (*head_blk == after_umount_blk &&
1252 be32_to_cpu(rhead->h_num_logops) == 1) {
1253 umount_data_blk = rhead_blk + hblks;
1254 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1255 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1256 if (error)
1257 return error;
1258
1259 op_head = (struct xlog_op_header *)offset;
1260 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1261 /*
1262 * Set tail and last sync so that newly written log
1263 * records will point recovery to after the current
1264 * unmount record.
1265 */
1266 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1267 log->l_curr_cycle, after_umount_blk);
1268 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1269 log->l_curr_cycle, after_umount_blk);
1270 *tail_blk = after_umount_blk;
1271
1272 *clean = true;
1273 }
1274 }
1275
1276 return 0;
1277}
1278
1da177e4
LT
1279/*
1280 * Find the sync block number or the tail of the log.
1281 *
1282 * This will be the block number of the last record to have its
1283 * associated buffers synced to disk. Every log record header has
1284 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1285 * to get a sync block number. The only concern is to figure out which
1286 * log record header to believe.
1287 *
1288 * The following algorithm uses the log record header with the largest
1289 * lsn. The entire log record does not need to be valid. We only care
1290 * that the header is valid.
1291 *
1292 * We could speed up search by using current head_blk buffer, but it is not
1293 * available.
1294 */
5d77c0dc 1295STATIC int
1da177e4 1296xlog_find_tail(
9a8d2fdb 1297 struct xlog *log,
1da177e4 1298 xfs_daddr_t *head_blk,
65be6054 1299 xfs_daddr_t *tail_blk)
1da177e4
LT
1300{
1301 xlog_rec_header_t *rhead;
b2a922cd 1302 char *offset = NULL;
1da177e4 1303 xfs_buf_t *bp;
7088c413 1304 int error;
7088c413 1305 xfs_daddr_t rhead_blk;
1da177e4 1306 xfs_lsn_t tail_lsn;
eed6b462 1307 bool wrapped = false;
65b99a08 1308 bool clean = false;
1da177e4
LT
1309
1310 /*
1311 * Find previous log record
1312 */
1313 if ((error = xlog_find_head(log, head_blk)))
1314 return error;
82ff6cc2 1315 ASSERT(*head_blk < INT_MAX);
1da177e4
LT
1316
1317 bp = xlog_get_bp(log, 1);
1318 if (!bp)
2451337d 1319 return -ENOMEM;
1da177e4 1320 if (*head_blk == 0) { /* special case */
076e6acb
CH
1321 error = xlog_bread(log, 0, 1, bp, &offset);
1322 if (error)
9db127ed 1323 goto done;
076e6acb 1324
03bea6fe 1325 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
1326 *tail_blk = 0;
1327 /* leave all other log inited values alone */
9db127ed 1328 goto done;
1da177e4
LT
1329 }
1330 }
1331
82ff6cc2
BF
1332 /*
1333 * Search backwards through the log looking for the log record header
1334 * block. This wraps all the way back around to the head so something is
1335 * seriously wrong if we can't find it.
1336 */
1337 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1338 &rhead_blk, &rhead, &wrapped);
1339 if (error < 0)
1340 return error;
1341 if (!error) {
1342 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1343 return -EIO;
1344 }
1345 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1346
1da177e4 1347 /*
7088c413
BF
1348 * Trim the head block back to skip over torn records. We can have
1349 * multiple log I/Os in flight at any time, so we assume CRC failures
1350 * back through the previous several records are torn writes and skip
1351 * them.
1da177e4 1352 */
7088c413
BF
1353 error = xlog_verify_head(log, head_blk, tail_blk, bp, &rhead_blk,
1354 &rhead, &wrapped);
1355 if (error)
eed6b462 1356 goto done;
1da177e4
LT
1357
1358 /*
1359 * Reset log values according to the state of the log when we
1360 * crashed. In the case where head_blk == 0, we bump curr_cycle
1361 * one because the next write starts a new cycle rather than
1362 * continuing the cycle of the last good log record. At this
1363 * point we have guaranteed that all partial log records have been
1364 * accounted for. Therefore, we know that the last good log record
1365 * written was complete and ended exactly on the end boundary
1366 * of the physical log.
1367 */
7088c413 1368 log->l_prev_block = rhead_blk;
1da177e4 1369 log->l_curr_block = (int)*head_blk;
b53e675d 1370 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
eed6b462 1371 if (wrapped)
1da177e4 1372 log->l_curr_cycle++;
1c3cb9ec 1373 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 1374 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 1375 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 1376 BBTOB(log->l_curr_block));
28496968 1377 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 1378 BBTOB(log->l_curr_block));
65b99a08 1379 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4
LT
1380
1381 /*
65b99a08
BF
1382 * Look for an unmount record at the head of the log. This sets the log
1383 * state to determine whether recovery is necessary.
1da177e4 1384 */
65b99a08
BF
1385 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1386 rhead_blk, bp, &clean);
1387 if (error)
1388 goto done;
92821e2b 1389
65b99a08
BF
1390 /*
1391 * Note that the unmount was clean. If the unmount was not clean, we
1392 * need to know this to rebuild the superblock counters from the perag
1393 * headers if we have a filesystem using non-persistent counters.
1394 */
1395 if (clean)
1396 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1397
1398 /*
1399 * Make sure that there are no blocks in front of the head
1400 * with the same cycle number as the head. This can happen
1401 * because we allow multiple outstanding log writes concurrently,
1402 * and the later writes might make it out before earlier ones.
1403 *
1404 * We use the lsn from before modifying it so that we'll never
1405 * overwrite the unmount record after a clean unmount.
1406 *
1407 * Do this only if we are going to recover the filesystem
1408 *
1409 * NOTE: This used to say "if (!readonly)"
1410 * However on Linux, we can & do recover a read-only filesystem.
1411 * We only skip recovery if NORECOVERY is specified on mount,
1412 * in which case we would not be here.
1413 *
1414 * But... if the -device- itself is readonly, just skip this.
1415 * We can't recover this device anyway, so it won't matter.
1416 */
9db127ed 1417 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1418 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1419
9db127ed 1420done:
1da177e4
LT
1421 xlog_put_bp(bp);
1422
1423 if (error)
a0fa2b67 1424 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1425 return error;
1426}
1427
1428/*
1429 * Is the log zeroed at all?
1430 *
1431 * The last binary search should be changed to perform an X block read
1432 * once X becomes small enough. You can then search linearly through
1433 * the X blocks. This will cut down on the number of reads we need to do.
1434 *
1435 * If the log is partially zeroed, this routine will pass back the blkno
1436 * of the first block with cycle number 0. It won't have a complete LR
1437 * preceding it.
1438 *
1439 * Return:
1440 * 0 => the log is completely written to
2451337d
DC
1441 * 1 => use *blk_no as the first block of the log
1442 * <0 => error has occurred
1da177e4 1443 */
a8272ce0 1444STATIC int
1da177e4 1445xlog_find_zeroed(
9a8d2fdb 1446 struct xlog *log,
1da177e4
LT
1447 xfs_daddr_t *blk_no)
1448{
1449 xfs_buf_t *bp;
b2a922cd 1450 char *offset;
1da177e4
LT
1451 uint first_cycle, last_cycle;
1452 xfs_daddr_t new_blk, last_blk, start_blk;
1453 xfs_daddr_t num_scan_bblks;
1454 int error, log_bbnum = log->l_logBBsize;
1455
6fdf8ccc
NS
1456 *blk_no = 0;
1457
1da177e4
LT
1458 /* check totally zeroed log */
1459 bp = xlog_get_bp(log, 1);
1460 if (!bp)
2451337d 1461 return -ENOMEM;
076e6acb
CH
1462 error = xlog_bread(log, 0, 1, bp, &offset);
1463 if (error)
1da177e4 1464 goto bp_err;
076e6acb 1465
03bea6fe 1466 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1467 if (first_cycle == 0) { /* completely zeroed log */
1468 *blk_no = 0;
1469 xlog_put_bp(bp);
2451337d 1470 return 1;
1da177e4
LT
1471 }
1472
1473 /* check partially zeroed log */
076e6acb
CH
1474 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1475 if (error)
1da177e4 1476 goto bp_err;
076e6acb 1477
03bea6fe 1478 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1479 if (last_cycle != 0) { /* log completely written to */
1480 xlog_put_bp(bp);
1481 return 0;
1482 } else if (first_cycle != 1) {
1483 /*
1484 * If the cycle of the last block is zero, the cycle of
1485 * the first block must be 1. If it's not, maybe we're
1486 * not looking at a log... Bail out.
1487 */
a0fa2b67
DC
1488 xfs_warn(log->l_mp,
1489 "Log inconsistent or not a log (last==0, first!=1)");
2451337d 1490 error = -EINVAL;
5d0a6549 1491 goto bp_err;
1da177e4
LT
1492 }
1493
1494 /* we have a partially zeroed log */
1495 last_blk = log_bbnum-1;
1496 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1497 goto bp_err;
1498
1499 /*
1500 * Validate the answer. Because there is no way to guarantee that
1501 * the entire log is made up of log records which are the same size,
1502 * we scan over the defined maximum blocks. At this point, the maximum
1503 * is not chosen to mean anything special. XXXmiken
1504 */
1505 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1506 ASSERT(num_scan_bblks <= INT_MAX);
1507
1508 if (last_blk < num_scan_bblks)
1509 num_scan_bblks = last_blk;
1510 start_blk = last_blk - num_scan_bblks;
1511
1512 /*
1513 * We search for any instances of cycle number 0 that occur before
1514 * our current estimate of the head. What we're trying to detect is
1515 * 1 ... | 0 | 1 | 0...
1516 * ^ binary search ends here
1517 */
1518 if ((error = xlog_find_verify_cycle(log, start_blk,
1519 (int)num_scan_bblks, 0, &new_blk)))
1520 goto bp_err;
1521 if (new_blk != -1)
1522 last_blk = new_blk;
1523
1524 /*
1525 * Potentially backup over partial log record write. We don't need
1526 * to search the end of the log because we know it is zero.
1527 */
2451337d
DC
1528 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1529 if (error == 1)
1530 error = -EIO;
1531 if (error)
1532 goto bp_err;
1da177e4
LT
1533
1534 *blk_no = last_blk;
1535bp_err:
1536 xlog_put_bp(bp);
1537 if (error)
1538 return error;
2451337d 1539 return 1;
1da177e4
LT
1540}
1541
1542/*
1543 * These are simple subroutines used by xlog_clear_stale_blocks() below
1544 * to initialize a buffer full of empty log record headers and write
1545 * them into the log.
1546 */
1547STATIC void
1548xlog_add_record(
9a8d2fdb 1549 struct xlog *log,
b2a922cd 1550 char *buf,
1da177e4
LT
1551 int cycle,
1552 int block,
1553 int tail_cycle,
1554 int tail_block)
1555{
1556 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1557
1558 memset(buf, 0, BBSIZE);
b53e675d
CH
1559 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1560 recp->h_cycle = cpu_to_be32(cycle);
1561 recp->h_version = cpu_to_be32(
62118709 1562 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1563 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1564 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1565 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1566 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1567}
1568
1569STATIC int
1570xlog_write_log_records(
9a8d2fdb 1571 struct xlog *log,
1da177e4
LT
1572 int cycle,
1573 int start_block,
1574 int blocks,
1575 int tail_cycle,
1576 int tail_block)
1577{
b2a922cd 1578 char *offset;
1da177e4
LT
1579 xfs_buf_t *bp;
1580 int balign, ealign;
69ce58f0 1581 int sectbb = log->l_sectBBsize;
1da177e4
LT
1582 int end_block = start_block + blocks;
1583 int bufblks;
1584 int error = 0;
1585 int i, j = 0;
1586
6881a229
AE
1587 /*
1588 * Greedily allocate a buffer big enough to handle the full
1589 * range of basic blocks to be written. If that fails, try
1590 * a smaller size. We need to be able to write at least a
1591 * log sector, or we're out of luck.
1592 */
1da177e4 1593 bufblks = 1 << ffs(blocks);
81158e0c
DC
1594 while (bufblks > log->l_logBBsize)
1595 bufblks >>= 1;
1da177e4
LT
1596 while (!(bp = xlog_get_bp(log, bufblks))) {
1597 bufblks >>= 1;
69ce58f0 1598 if (bufblks < sectbb)
2451337d 1599 return -ENOMEM;
1da177e4
LT
1600 }
1601
1602 /* We may need to do a read at the start to fill in part of
1603 * the buffer in the starting sector not covered by the first
1604 * write below.
1605 */
5c17f533 1606 balign = round_down(start_block, sectbb);
1da177e4 1607 if (balign != start_block) {
076e6acb
CH
1608 error = xlog_bread_noalign(log, start_block, 1, bp);
1609 if (error)
1610 goto out_put_bp;
1611
1da177e4
LT
1612 j = start_block - balign;
1613 }
1614
1615 for (i = start_block; i < end_block; i += bufblks) {
1616 int bcount, endcount;
1617
1618 bcount = min(bufblks, end_block - start_block);
1619 endcount = bcount - j;
1620
1621 /* We may need to do a read at the end to fill in part of
1622 * the buffer in the final sector not covered by the write.
1623 * If this is the same sector as the above read, skip it.
1624 */
5c17f533 1625 ealign = round_down(end_block, sectbb);
1da177e4 1626 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1627 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1628 error = xlog_bread_offset(log, ealign, sectbb,
1629 bp, offset);
076e6acb
CH
1630 if (error)
1631 break;
1632
1da177e4
LT
1633 }
1634
1635 offset = xlog_align(log, start_block, endcount, bp);
1636 for (; j < endcount; j++) {
1637 xlog_add_record(log, offset, cycle, i+j,
1638 tail_cycle, tail_block);
1639 offset += BBSIZE;
1640 }
1641 error = xlog_bwrite(log, start_block, endcount, bp);
1642 if (error)
1643 break;
1644 start_block += endcount;
1645 j = 0;
1646 }
076e6acb
CH
1647
1648 out_put_bp:
1da177e4
LT
1649 xlog_put_bp(bp);
1650 return error;
1651}
1652
1653/*
1654 * This routine is called to blow away any incomplete log writes out
1655 * in front of the log head. We do this so that we won't become confused
1656 * if we come up, write only a little bit more, and then crash again.
1657 * If we leave the partial log records out there, this situation could
1658 * cause us to think those partial writes are valid blocks since they
1659 * have the current cycle number. We get rid of them by overwriting them
1660 * with empty log records with the old cycle number rather than the
1661 * current one.
1662 *
1663 * The tail lsn is passed in rather than taken from
1664 * the log so that we will not write over the unmount record after a
1665 * clean unmount in a 512 block log. Doing so would leave the log without
1666 * any valid log records in it until a new one was written. If we crashed
1667 * during that time we would not be able to recover.
1668 */
1669STATIC int
1670xlog_clear_stale_blocks(
9a8d2fdb 1671 struct xlog *log,
1da177e4
LT
1672 xfs_lsn_t tail_lsn)
1673{
1674 int tail_cycle, head_cycle;
1675 int tail_block, head_block;
1676 int tail_distance, max_distance;
1677 int distance;
1678 int error;
1679
1680 tail_cycle = CYCLE_LSN(tail_lsn);
1681 tail_block = BLOCK_LSN(tail_lsn);
1682 head_cycle = log->l_curr_cycle;
1683 head_block = log->l_curr_block;
1684
1685 /*
1686 * Figure out the distance between the new head of the log
1687 * and the tail. We want to write over any blocks beyond the
1688 * head that we may have written just before the crash, but
1689 * we don't want to overwrite the tail of the log.
1690 */
1691 if (head_cycle == tail_cycle) {
1692 /*
1693 * The tail is behind the head in the physical log,
1694 * so the distance from the head to the tail is the
1695 * distance from the head to the end of the log plus
1696 * the distance from the beginning of the log to the
1697 * tail.
1698 */
1699 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1700 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1701 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1702 return -EFSCORRUPTED;
1da177e4
LT
1703 }
1704 tail_distance = tail_block + (log->l_logBBsize - head_block);
1705 } else {
1706 /*
1707 * The head is behind the tail in the physical log,
1708 * so the distance from the head to the tail is just
1709 * the tail block minus the head block.
1710 */
1711 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1712 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1713 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1714 return -EFSCORRUPTED;
1da177e4
LT
1715 }
1716 tail_distance = tail_block - head_block;
1717 }
1718
1719 /*
1720 * If the head is right up against the tail, we can't clear
1721 * anything.
1722 */
1723 if (tail_distance <= 0) {
1724 ASSERT(tail_distance == 0);
1725 return 0;
1726 }
1727
1728 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1729 /*
1730 * Take the smaller of the maximum amount of outstanding I/O
1731 * we could have and the distance to the tail to clear out.
1732 * We take the smaller so that we don't overwrite the tail and
1733 * we don't waste all day writing from the head to the tail
1734 * for no reason.
1735 */
1736 max_distance = MIN(max_distance, tail_distance);
1737
1738 if ((head_block + max_distance) <= log->l_logBBsize) {
1739 /*
1740 * We can stomp all the blocks we need to without
1741 * wrapping around the end of the log. Just do it
1742 * in a single write. Use the cycle number of the
1743 * current cycle minus one so that the log will look like:
1744 * n ... | n - 1 ...
1745 */
1746 error = xlog_write_log_records(log, (head_cycle - 1),
1747 head_block, max_distance, tail_cycle,
1748 tail_block);
1749 if (error)
1750 return error;
1751 } else {
1752 /*
1753 * We need to wrap around the end of the physical log in
1754 * order to clear all the blocks. Do it in two separate
1755 * I/Os. The first write should be from the head to the
1756 * end of the physical log, and it should use the current
1757 * cycle number minus one just like above.
1758 */
1759 distance = log->l_logBBsize - head_block;
1760 error = xlog_write_log_records(log, (head_cycle - 1),
1761 head_block, distance, tail_cycle,
1762 tail_block);
1763
1764 if (error)
1765 return error;
1766
1767 /*
1768 * Now write the blocks at the start of the physical log.
1769 * This writes the remainder of the blocks we want to clear.
1770 * It uses the current cycle number since we're now on the
1771 * same cycle as the head so that we get:
1772 * n ... n ... | n - 1 ...
1773 * ^^^^^ blocks we're writing
1774 */
1775 distance = max_distance - (log->l_logBBsize - head_block);
1776 error = xlog_write_log_records(log, head_cycle, 0, distance,
1777 tail_cycle, tail_block);
1778 if (error)
1779 return error;
1780 }
1781
1782 return 0;
1783}
1784
1785/******************************************************************************
1786 *
1787 * Log recover routines
1788 *
1789 ******************************************************************************
1790 */
1791
f0a76953 1792/*
a775ad77
DC
1793 * Sort the log items in the transaction.
1794 *
1795 * The ordering constraints are defined by the inode allocation and unlink
1796 * behaviour. The rules are:
1797 *
1798 * 1. Every item is only logged once in a given transaction. Hence it
1799 * represents the last logged state of the item. Hence ordering is
1800 * dependent on the order in which operations need to be performed so
1801 * required initial conditions are always met.
1802 *
1803 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1804 * there's nothing to replay from them so we can simply cull them
1805 * from the transaction. However, we can't do that until after we've
1806 * replayed all the other items because they may be dependent on the
1807 * cancelled buffer and replaying the cancelled buffer can remove it
1808 * form the cancelled buffer table. Hence they have tobe done last.
1809 *
1810 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1811 * read the buffer and replay changes into it. For filesystems using the
1812 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1813 * treated the same as inode allocation buffers as they create and
1814 * initialise the buffers directly.
a775ad77
DC
1815 *
1816 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1817 * This ensures that inodes are completely flushed to the inode buffer
1818 * in a "free" state before we remove the unlinked inode list pointer.
1819 *
1820 * Hence the ordering needs to be inode allocation buffers first, inode items
1821 * second, inode unlink buffers third and cancelled buffers last.
1822 *
1823 * But there's a problem with that - we can't tell an inode allocation buffer
1824 * apart from a regular buffer, so we can't separate them. We can, however,
1825 * tell an inode unlink buffer from the others, and so we can separate them out
1826 * from all the other buffers and move them to last.
1827 *
1828 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1829 * - buffer_list for all buffers except cancelled/inode unlink buffers
1830 * - item_list for all non-buffer items
1831 * - inode_buffer_list for inode unlink buffers
1832 * - cancel_list for the cancelled buffers
1833 *
1834 * Note that we add objects to the tail of the lists so that first-to-last
1835 * ordering is preserved within the lists. Adding objects to the head of the
1836 * list means when we traverse from the head we walk them in last-to-first
1837 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1838 * but for all other items there may be specific ordering that we need to
1839 * preserve.
f0a76953 1840 */
1da177e4
LT
1841STATIC int
1842xlog_recover_reorder_trans(
ad223e60
MT
1843 struct xlog *log,
1844 struct xlog_recover *trans,
9abbc539 1845 int pass)
1da177e4 1846{
f0a76953 1847 xlog_recover_item_t *item, *n;
2a84108f 1848 int error = 0;
f0a76953 1849 LIST_HEAD(sort_list);
a775ad77
DC
1850 LIST_HEAD(cancel_list);
1851 LIST_HEAD(buffer_list);
1852 LIST_HEAD(inode_buffer_list);
1853 LIST_HEAD(inode_list);
f0a76953
DC
1854
1855 list_splice_init(&trans->r_itemq, &sort_list);
1856 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1857 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1858
f0a76953 1859 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1860 case XFS_LI_ICREATE:
1861 list_move_tail(&item->ri_list, &buffer_list);
1862 break;
1da177e4 1863 case XFS_LI_BUF:
a775ad77 1864 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1865 trace_xfs_log_recover_item_reorder_head(log,
1866 trans, item, pass);
a775ad77 1867 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1868 break;
1869 }
a775ad77
DC
1870 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1871 list_move(&item->ri_list, &inode_buffer_list);
1872 break;
1873 }
1874 list_move_tail(&item->ri_list, &buffer_list);
1875 break;
1da177e4 1876 case XFS_LI_INODE:
1da177e4
LT
1877 case XFS_LI_DQUOT:
1878 case XFS_LI_QUOTAOFF:
1879 case XFS_LI_EFD:
1880 case XFS_LI_EFI:
9abbc539
DC
1881 trace_xfs_log_recover_item_reorder_tail(log,
1882 trans, item, pass);
a775ad77 1883 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1884 break;
1885 default:
a0fa2b67
DC
1886 xfs_warn(log->l_mp,
1887 "%s: unrecognized type of log operation",
1888 __func__);
1da177e4 1889 ASSERT(0);
2a84108f
MT
1890 /*
1891 * return the remaining items back to the transaction
1892 * item list so they can be freed in caller.
1893 */
1894 if (!list_empty(&sort_list))
1895 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1896 error = -EIO;
2a84108f 1897 goto out;
1da177e4 1898 }
f0a76953 1899 }
2a84108f 1900out:
f0a76953 1901 ASSERT(list_empty(&sort_list));
a775ad77
DC
1902 if (!list_empty(&buffer_list))
1903 list_splice(&buffer_list, &trans->r_itemq);
1904 if (!list_empty(&inode_list))
1905 list_splice_tail(&inode_list, &trans->r_itemq);
1906 if (!list_empty(&inode_buffer_list))
1907 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1908 if (!list_empty(&cancel_list))
1909 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1910 return error;
1da177e4
LT
1911}
1912
1913/*
1914 * Build up the table of buf cancel records so that we don't replay
1915 * cancelled data in the second pass. For buffer records that are
1916 * not cancel records, there is nothing to do here so we just return.
1917 *
1918 * If we get a cancel record which is already in the table, this indicates
1919 * that the buffer was cancelled multiple times. In order to ensure
1920 * that during pass 2 we keep the record in the table until we reach its
1921 * last occurrence in the log, we keep a reference count in the cancel
1922 * record in the table to tell us how many times we expect to see this
1923 * record during the second pass.
1924 */
c9f71f5f
CH
1925STATIC int
1926xlog_recover_buffer_pass1(
ad223e60
MT
1927 struct xlog *log,
1928 struct xlog_recover_item *item)
1da177e4 1929{
c9f71f5f 1930 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1931 struct list_head *bucket;
1932 struct xfs_buf_cancel *bcp;
1da177e4
LT
1933
1934 /*
1935 * If this isn't a cancel buffer item, then just return.
1936 */
e2714bf8 1937 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1938 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1939 return 0;
9abbc539 1940 }
1da177e4
LT
1941
1942 /*
d5689eaa
CH
1943 * Insert an xfs_buf_cancel record into the hash table of them.
1944 * If there is already an identical record, bump its reference count.
1da177e4 1945 */
d5689eaa
CH
1946 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1947 list_for_each_entry(bcp, bucket, bc_list) {
1948 if (bcp->bc_blkno == buf_f->blf_blkno &&
1949 bcp->bc_len == buf_f->blf_len) {
1950 bcp->bc_refcount++;
9abbc539 1951 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1952 return 0;
1da177e4 1953 }
d5689eaa
CH
1954 }
1955
1956 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1957 bcp->bc_blkno = buf_f->blf_blkno;
1958 bcp->bc_len = buf_f->blf_len;
1da177e4 1959 bcp->bc_refcount = 1;
d5689eaa
CH
1960 list_add_tail(&bcp->bc_list, bucket);
1961
9abbc539 1962 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1963 return 0;
1da177e4
LT
1964}
1965
1966/*
1967 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
1968 * entry in the buffer cancel record table. If it is, return the cancel
1969 * buffer structure to the caller.
1da177e4 1970 */
84a5b730
DC
1971STATIC struct xfs_buf_cancel *
1972xlog_peek_buffer_cancelled(
ad223e60 1973 struct xlog *log,
1da177e4
LT
1974 xfs_daddr_t blkno,
1975 uint len,
1976 ushort flags)
1977{
d5689eaa
CH
1978 struct list_head *bucket;
1979 struct xfs_buf_cancel *bcp;
1da177e4 1980
84a5b730
DC
1981 if (!log->l_buf_cancel_table) {
1982 /* empty table means no cancelled buffers in the log */
c1155410 1983 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 1984 return NULL;
1da177e4
LT
1985 }
1986
d5689eaa
CH
1987 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1988 list_for_each_entry(bcp, bucket, bc_list) {
1989 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 1990 return bcp;
1da177e4 1991 }
d5689eaa 1992
1da177e4 1993 /*
d5689eaa
CH
1994 * We didn't find a corresponding entry in the table, so return 0 so
1995 * that the buffer is NOT cancelled.
1da177e4 1996 */
c1155410 1997 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
1998 return NULL;
1999}
2000
2001/*
2002 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2003 * otherwise return 0. If the buffer is actually a buffer cancel item
2004 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2005 * table and remove it from the table if this is the last reference.
2006 *
2007 * We remove the cancel record from the table when we encounter its last
2008 * occurrence in the log so that if the same buffer is re-used again after its
2009 * last cancellation we actually replay the changes made at that point.
2010 */
2011STATIC int
2012xlog_check_buffer_cancelled(
2013 struct xlog *log,
2014 xfs_daddr_t blkno,
2015 uint len,
2016 ushort flags)
2017{
2018 struct xfs_buf_cancel *bcp;
2019
2020 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2021 if (!bcp)
2022 return 0;
d5689eaa 2023
d5689eaa
CH
2024 /*
2025 * We've go a match, so return 1 so that the recovery of this buffer
2026 * is cancelled. If this buffer is actually a buffer cancel log
2027 * item, then decrement the refcount on the one in the table and
2028 * remove it if this is the last reference.
2029 */
2030 if (flags & XFS_BLF_CANCEL) {
2031 if (--bcp->bc_refcount == 0) {
2032 list_del(&bcp->bc_list);
2033 kmem_free(bcp);
2034 }
2035 }
2036 return 1;
1da177e4
LT
2037}
2038
1da177e4 2039/*
e2714bf8
CH
2040 * Perform recovery for a buffer full of inodes. In these buffers, the only
2041 * data which should be recovered is that which corresponds to the
2042 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2043 * data for the inodes is always logged through the inodes themselves rather
2044 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 2045 *
e2714bf8
CH
2046 * The only time when buffers full of inodes are fully recovered is when the
2047 * buffer is full of newly allocated inodes. In this case the buffer will
2048 * not be marked as an inode buffer and so will be sent to
2049 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
2050 */
2051STATIC int
2052xlog_recover_do_inode_buffer(
e2714bf8 2053 struct xfs_mount *mp,
1da177e4 2054 xlog_recover_item_t *item,
e2714bf8 2055 struct xfs_buf *bp,
1da177e4
LT
2056 xfs_buf_log_format_t *buf_f)
2057{
2058 int i;
e2714bf8
CH
2059 int item_index = 0;
2060 int bit = 0;
2061 int nbits = 0;
2062 int reg_buf_offset = 0;
2063 int reg_buf_bytes = 0;
1da177e4
LT
2064 int next_unlinked_offset;
2065 int inodes_per_buf;
2066 xfs_agino_t *logged_nextp;
2067 xfs_agino_t *buffer_nextp;
1da177e4 2068
9abbc539 2069 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
2070
2071 /*
2072 * Post recovery validation only works properly on CRC enabled
2073 * filesystems.
2074 */
2075 if (xfs_sb_version_hascrc(&mp->m_sb))
2076 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 2077
aa0e8833 2078 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
2079 for (i = 0; i < inodes_per_buf; i++) {
2080 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2081 offsetof(xfs_dinode_t, di_next_unlinked);
2082
2083 while (next_unlinked_offset >=
2084 (reg_buf_offset + reg_buf_bytes)) {
2085 /*
2086 * The next di_next_unlinked field is beyond
2087 * the current logged region. Find the next
2088 * logged region that contains or is beyond
2089 * the current di_next_unlinked field.
2090 */
2091 bit += nbits;
e2714bf8
CH
2092 bit = xfs_next_bit(buf_f->blf_data_map,
2093 buf_f->blf_map_size, bit);
1da177e4
LT
2094
2095 /*
2096 * If there are no more logged regions in the
2097 * buffer, then we're done.
2098 */
e2714bf8 2099 if (bit == -1)
1da177e4 2100 return 0;
1da177e4 2101
e2714bf8
CH
2102 nbits = xfs_contig_bits(buf_f->blf_data_map,
2103 buf_f->blf_map_size, bit);
1da177e4 2104 ASSERT(nbits > 0);
c1155410
DC
2105 reg_buf_offset = bit << XFS_BLF_SHIFT;
2106 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
2107 item_index++;
2108 }
2109
2110 /*
2111 * If the current logged region starts after the current
2112 * di_next_unlinked field, then move on to the next
2113 * di_next_unlinked field.
2114 */
e2714bf8 2115 if (next_unlinked_offset < reg_buf_offset)
1da177e4 2116 continue;
1da177e4
LT
2117
2118 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 2119 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
2120 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2121 BBTOB(bp->b_io_length));
1da177e4
LT
2122
2123 /*
2124 * The current logged region contains a copy of the
2125 * current di_next_unlinked field. Extract its value
2126 * and copy it to the buffer copy.
2127 */
4e0d5f92
CH
2128 logged_nextp = item->ri_buf[item_index].i_addr +
2129 next_unlinked_offset - reg_buf_offset;
1da177e4 2130 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
2131 xfs_alert(mp,
2132 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2133 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
2134 item, bp);
2135 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2136 XFS_ERRLEVEL_LOW, mp);
2451337d 2137 return -EFSCORRUPTED;
1da177e4
LT
2138 }
2139
88ee2df7 2140 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
87c199c2 2141 *buffer_nextp = *logged_nextp;
0a32c26e
DC
2142
2143 /*
2144 * If necessary, recalculate the CRC in the on-disk inode. We
2145 * have to leave the inode in a consistent state for whoever
2146 * reads it next....
2147 */
88ee2df7 2148 xfs_dinode_calc_crc(mp,
0a32c26e
DC
2149 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2150
1da177e4
LT
2151 }
2152
2153 return 0;
2154}
2155
50d5c8d8
DC
2156/*
2157 * V5 filesystems know the age of the buffer on disk being recovered. We can
2158 * have newer objects on disk than we are replaying, and so for these cases we
2159 * don't want to replay the current change as that will make the buffer contents
2160 * temporarily invalid on disk.
2161 *
2162 * The magic number might not match the buffer type we are going to recover
2163 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2164 * extract the LSN of the existing object in the buffer based on it's current
2165 * magic number. If we don't recognise the magic number in the buffer, then
2166 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2167 * so can recover the buffer.
566055d3
DC
2168 *
2169 * Note: we cannot rely solely on magic number matches to determine that the
2170 * buffer has a valid LSN - we also need to verify that it belongs to this
2171 * filesystem, so we need to extract the object's LSN and compare it to that
2172 * which we read from the superblock. If the UUIDs don't match, then we've got a
2173 * stale metadata block from an old filesystem instance that we need to recover
2174 * over the top of.
50d5c8d8
DC
2175 */
2176static xfs_lsn_t
2177xlog_recover_get_buf_lsn(
2178 struct xfs_mount *mp,
2179 struct xfs_buf *bp)
2180{
2181 __uint32_t magic32;
2182 __uint16_t magic16;
2183 __uint16_t magicda;
2184 void *blk = bp->b_addr;
566055d3
DC
2185 uuid_t *uuid;
2186 xfs_lsn_t lsn = -1;
50d5c8d8
DC
2187
2188 /* v4 filesystems always recover immediately */
2189 if (!xfs_sb_version_hascrc(&mp->m_sb))
2190 goto recover_immediately;
2191
2192 magic32 = be32_to_cpu(*(__be32 *)blk);
2193 switch (magic32) {
2194 case XFS_ABTB_CRC_MAGIC:
2195 case XFS_ABTC_CRC_MAGIC:
2196 case XFS_ABTB_MAGIC:
2197 case XFS_ABTC_MAGIC:
2198 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2199 case XFS_IBT_MAGIC: {
2200 struct xfs_btree_block *btb = blk;
2201
2202 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2203 uuid = &btb->bb_u.s.bb_uuid;
2204 break;
2205 }
50d5c8d8 2206 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2207 case XFS_BMAP_MAGIC: {
2208 struct xfs_btree_block *btb = blk;
2209
2210 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2211 uuid = &btb->bb_u.l.bb_uuid;
2212 break;
2213 }
50d5c8d8 2214 case XFS_AGF_MAGIC:
566055d3
DC
2215 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2216 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2217 break;
50d5c8d8 2218 case XFS_AGFL_MAGIC:
566055d3
DC
2219 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2220 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2221 break;
50d5c8d8 2222 case XFS_AGI_MAGIC:
566055d3
DC
2223 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2224 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2225 break;
50d5c8d8 2226 case XFS_SYMLINK_MAGIC:
566055d3
DC
2227 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2228 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2229 break;
50d5c8d8
DC
2230 case XFS_DIR3_BLOCK_MAGIC:
2231 case XFS_DIR3_DATA_MAGIC:
2232 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2233 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2234 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2235 break;
50d5c8d8 2236 case XFS_ATTR3_RMT_MAGIC:
e3c32ee9
DC
2237 /*
2238 * Remote attr blocks are written synchronously, rather than
2239 * being logged. That means they do not contain a valid LSN
2240 * (i.e. transactionally ordered) in them, and hence any time we
2241 * see a buffer to replay over the top of a remote attribute
2242 * block we should simply do so.
2243 */
2244 goto recover_immediately;
50d5c8d8 2245 case XFS_SB_MAGIC:
fcfbe2c4
DC
2246 /*
2247 * superblock uuids are magic. We may or may not have a
2248 * sb_meta_uuid on disk, but it will be set in the in-core
2249 * superblock. We set the uuid pointer for verification
2250 * according to the superblock feature mask to ensure we check
2251 * the relevant UUID in the superblock.
2252 */
566055d3 2253 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
fcfbe2c4
DC
2254 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2255 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2256 else
2257 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
566055d3 2258 break;
50d5c8d8
DC
2259 default:
2260 break;
2261 }
2262
566055d3 2263 if (lsn != (xfs_lsn_t)-1) {
fcfbe2c4 2264 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
566055d3
DC
2265 goto recover_immediately;
2266 return lsn;
2267 }
2268
50d5c8d8
DC
2269 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2270 switch (magicda) {
2271 case XFS_DIR3_LEAF1_MAGIC:
2272 case XFS_DIR3_LEAFN_MAGIC:
2273 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2274 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2275 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2276 break;
50d5c8d8
DC
2277 default:
2278 break;
2279 }
2280
566055d3
DC
2281 if (lsn != (xfs_lsn_t)-1) {
2282 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2283 goto recover_immediately;
2284 return lsn;
2285 }
2286
50d5c8d8
DC
2287 /*
2288 * We do individual object checks on dquot and inode buffers as they
2289 * have their own individual LSN records. Also, we could have a stale
2290 * buffer here, so we have to at least recognise these buffer types.
2291 *
2292 * A notd complexity here is inode unlinked list processing - it logs
2293 * the inode directly in the buffer, but we don't know which inodes have
2294 * been modified, and there is no global buffer LSN. Hence we need to
2295 * recover all inode buffer types immediately. This problem will be
2296 * fixed by logical logging of the unlinked list modifications.
2297 */
2298 magic16 = be16_to_cpu(*(__be16 *)blk);
2299 switch (magic16) {
2300 case XFS_DQUOT_MAGIC:
2301 case XFS_DINODE_MAGIC:
2302 goto recover_immediately;
2303 default:
2304 break;
2305 }
2306
2307 /* unknown buffer contents, recover immediately */
2308
2309recover_immediately:
2310 return (xfs_lsn_t)-1;
2311
2312}
2313
1da177e4 2314/*
d75afeb3
DC
2315 * Validate the recovered buffer is of the correct type and attach the
2316 * appropriate buffer operations to them for writeback. Magic numbers are in a
2317 * few places:
2318 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2319 * the first 32 bits of the buffer (most blocks),
2320 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2321 */
d75afeb3 2322static void
50d5c8d8 2323xlog_recover_validate_buf_type(
9abbc539 2324 struct xfs_mount *mp,
e2714bf8 2325 struct xfs_buf *bp,
1da177e4
LT
2326 xfs_buf_log_format_t *buf_f)
2327{
d75afeb3
DC
2328 struct xfs_da_blkinfo *info = bp->b_addr;
2329 __uint32_t magic32;
2330 __uint16_t magic16;
2331 __uint16_t magicda;
2332
67dc288c
DC
2333 /*
2334 * We can only do post recovery validation on items on CRC enabled
2335 * fielsystems as we need to know when the buffer was written to be able
2336 * to determine if we should have replayed the item. If we replay old
2337 * metadata over a newer buffer, then it will enter a temporarily
2338 * inconsistent state resulting in verification failures. Hence for now
2339 * just avoid the verification stage for non-crc filesystems
2340 */
2341 if (!xfs_sb_version_hascrc(&mp->m_sb))
2342 return;
2343
d75afeb3
DC
2344 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2345 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2346 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2347 switch (xfs_blft_from_flags(buf_f)) {
2348 case XFS_BLFT_BTREE_BUF:
d75afeb3 2349 switch (magic32) {
ee1a47ab
CH
2350 case XFS_ABTB_CRC_MAGIC:
2351 case XFS_ABTC_CRC_MAGIC:
2352 case XFS_ABTB_MAGIC:
2353 case XFS_ABTC_MAGIC:
2354 bp->b_ops = &xfs_allocbt_buf_ops;
2355 break;
2356 case XFS_IBT_CRC_MAGIC:
aafc3c24 2357 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2358 case XFS_IBT_MAGIC:
aafc3c24 2359 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2360 bp->b_ops = &xfs_inobt_buf_ops;
2361 break;
2362 case XFS_BMAP_CRC_MAGIC:
2363 case XFS_BMAP_MAGIC:
2364 bp->b_ops = &xfs_bmbt_buf_ops;
2365 break;
2366 default:
2367 xfs_warn(mp, "Bad btree block magic!");
2368 ASSERT(0);
2369 break;
2370 }
2371 break;
61fe135c 2372 case XFS_BLFT_AGF_BUF:
d75afeb3 2373 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2374 xfs_warn(mp, "Bad AGF block magic!");
2375 ASSERT(0);
2376 break;
2377 }
2378 bp->b_ops = &xfs_agf_buf_ops;
2379 break;
61fe135c 2380 case XFS_BLFT_AGFL_BUF:
d75afeb3 2381 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2382 xfs_warn(mp, "Bad AGFL block magic!");
2383 ASSERT(0);
2384 break;
2385 }
2386 bp->b_ops = &xfs_agfl_buf_ops;
2387 break;
61fe135c 2388 case XFS_BLFT_AGI_BUF:
d75afeb3 2389 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2390 xfs_warn(mp, "Bad AGI block magic!");
2391 ASSERT(0);
2392 break;
2393 }
2394 bp->b_ops = &xfs_agi_buf_ops;
2395 break;
61fe135c
DC
2396 case XFS_BLFT_UDQUOT_BUF:
2397 case XFS_BLFT_PDQUOT_BUF:
2398 case XFS_BLFT_GDQUOT_BUF:
123887e8 2399#ifdef CONFIG_XFS_QUOTA
d75afeb3 2400 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2401 xfs_warn(mp, "Bad DQUOT block magic!");
2402 ASSERT(0);
2403 break;
2404 }
2405 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2406#else
2407 xfs_alert(mp,
2408 "Trying to recover dquots without QUOTA support built in!");
2409 ASSERT(0);
2410#endif
3fe58f30 2411 break;
61fe135c 2412 case XFS_BLFT_DINO_BUF:
d75afeb3 2413 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2414 xfs_warn(mp, "Bad INODE block magic!");
2415 ASSERT(0);
2416 break;
2417 }
2418 bp->b_ops = &xfs_inode_buf_ops;
2419 break;
61fe135c 2420 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2421 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2422 xfs_warn(mp, "Bad symlink block magic!");
2423 ASSERT(0);
2424 break;
2425 }
2426 bp->b_ops = &xfs_symlink_buf_ops;
2427 break;
61fe135c 2428 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2429 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2430 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2431 xfs_warn(mp, "Bad dir block magic!");
2432 ASSERT(0);
2433 break;
2434 }
2435 bp->b_ops = &xfs_dir3_block_buf_ops;
2436 break;
61fe135c 2437 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2438 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2439 magic32 != XFS_DIR3_DATA_MAGIC) {
2440 xfs_warn(mp, "Bad dir data magic!");
2441 ASSERT(0);
2442 break;
2443 }
2444 bp->b_ops = &xfs_dir3_data_buf_ops;
2445 break;
61fe135c 2446 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2447 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2448 magic32 != XFS_DIR3_FREE_MAGIC) {
2449 xfs_warn(mp, "Bad dir3 free magic!");
2450 ASSERT(0);
2451 break;
2452 }
2453 bp->b_ops = &xfs_dir3_free_buf_ops;
2454 break;
61fe135c 2455 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2456 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2457 magicda != XFS_DIR3_LEAF1_MAGIC) {
2458 xfs_warn(mp, "Bad dir leaf1 magic!");
2459 ASSERT(0);
2460 break;
2461 }
2462 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2463 break;
61fe135c 2464 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2465 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2466 magicda != XFS_DIR3_LEAFN_MAGIC) {
2467 xfs_warn(mp, "Bad dir leafn magic!");
2468 ASSERT(0);
2469 break;
2470 }
2471 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2472 break;
61fe135c 2473 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2474 if (magicda != XFS_DA_NODE_MAGIC &&
2475 magicda != XFS_DA3_NODE_MAGIC) {
2476 xfs_warn(mp, "Bad da node magic!");
2477 ASSERT(0);
2478 break;
2479 }
2480 bp->b_ops = &xfs_da3_node_buf_ops;
2481 break;
61fe135c 2482 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2483 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2484 magicda != XFS_ATTR3_LEAF_MAGIC) {
2485 xfs_warn(mp, "Bad attr leaf magic!");
2486 ASSERT(0);
2487 break;
2488 }
2489 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2490 break;
61fe135c 2491 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2492 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2493 xfs_warn(mp, "Bad attr remote magic!");
2494 ASSERT(0);
2495 break;
2496 }
2497 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2498 break;
04a1e6c5
DC
2499 case XFS_BLFT_SB_BUF:
2500 if (magic32 != XFS_SB_MAGIC) {
2501 xfs_warn(mp, "Bad SB block magic!");
2502 ASSERT(0);
2503 break;
2504 }
2505 bp->b_ops = &xfs_sb_buf_ops;
2506 break;
ee1a47ab 2507 default:
61fe135c
DC
2508 xfs_warn(mp, "Unknown buffer type %d!",
2509 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2510 break;
2511 }
1da177e4
LT
2512}
2513
d75afeb3
DC
2514/*
2515 * Perform a 'normal' buffer recovery. Each logged region of the
2516 * buffer should be copied over the corresponding region in the
2517 * given buffer. The bitmap in the buf log format structure indicates
2518 * where to place the logged data.
2519 */
2520STATIC void
2521xlog_recover_do_reg_buffer(
2522 struct xfs_mount *mp,
2523 xlog_recover_item_t *item,
2524 struct xfs_buf *bp,
2525 xfs_buf_log_format_t *buf_f)
2526{
2527 int i;
2528 int bit;
2529 int nbits;
2530 int error;
2531
2532 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2533
2534 bit = 0;
2535 i = 1; /* 0 is the buf format structure */
2536 while (1) {
2537 bit = xfs_next_bit(buf_f->blf_data_map,
2538 buf_f->blf_map_size, bit);
2539 if (bit == -1)
2540 break;
2541 nbits = xfs_contig_bits(buf_f->blf_data_map,
2542 buf_f->blf_map_size, bit);
2543 ASSERT(nbits > 0);
2544 ASSERT(item->ri_buf[i].i_addr != NULL);
2545 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2546 ASSERT(BBTOB(bp->b_io_length) >=
2547 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2548
709da6a6
DC
2549 /*
2550 * The dirty regions logged in the buffer, even though
2551 * contiguous, may span multiple chunks. This is because the
2552 * dirty region may span a physical page boundary in a buffer
2553 * and hence be split into two separate vectors for writing into
2554 * the log. Hence we need to trim nbits back to the length of
2555 * the current region being copied out of the log.
2556 */
2557 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2558 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2559
d75afeb3
DC
2560 /*
2561 * Do a sanity check if this is a dquot buffer. Just checking
2562 * the first dquot in the buffer should do. XXXThis is
2563 * probably a good thing to do for other buf types also.
2564 */
2565 error = 0;
2566 if (buf_f->blf_flags &
2567 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2568 if (item->ri_buf[i].i_addr == NULL) {
2569 xfs_alert(mp,
2570 "XFS: NULL dquot in %s.", __func__);
2571 goto next;
2572 }
2573 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2574 xfs_alert(mp,
2575 "XFS: dquot too small (%d) in %s.",
2576 item->ri_buf[i].i_len, __func__);
2577 goto next;
2578 }
9aede1d8 2579 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
d75afeb3
DC
2580 -1, 0, XFS_QMOPT_DOWARN,
2581 "dquot_buf_recover");
2582 if (error)
2583 goto next;
2584 }
2585
2586 memcpy(xfs_buf_offset(bp,
2587 (uint)bit << XFS_BLF_SHIFT), /* dest */
2588 item->ri_buf[i].i_addr, /* source */
2589 nbits<<XFS_BLF_SHIFT); /* length */
2590 next:
2591 i++;
2592 bit += nbits;
2593 }
2594
2595 /* Shouldn't be any more regions */
2596 ASSERT(i == item->ri_total);
2597
67dc288c 2598 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2599}
2600
1da177e4
LT
2601/*
2602 * Perform a dquot buffer recovery.
8ba701ee 2603 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2604 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2605 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2606 *
2607 * Return false if the buffer was tossed and true if we recovered the buffer to
2608 * indicate to the caller if the buffer needs writing.
1da177e4 2609 */
ad3714b8 2610STATIC bool
1da177e4 2611xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2612 struct xfs_mount *mp,
2613 struct xlog *log,
2614 struct xlog_recover_item *item,
2615 struct xfs_buf *bp,
2616 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2617{
2618 uint type;
2619
9abbc539
DC
2620 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2621
1da177e4
LT
2622 /*
2623 * Filesystems are required to send in quota flags at mount time.
2624 */
ad3714b8
DC
2625 if (!mp->m_qflags)
2626 return false;
1da177e4
LT
2627
2628 type = 0;
c1155410 2629 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2630 type |= XFS_DQ_USER;
c1155410 2631 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2632 type |= XFS_DQ_PROJ;
c1155410 2633 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2634 type |= XFS_DQ_GROUP;
2635 /*
2636 * This type of quotas was turned off, so ignore this buffer
2637 */
2638 if (log->l_quotaoffs_flag & type)
ad3714b8 2639 return false;
1da177e4 2640
9abbc539 2641 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
ad3714b8 2642 return true;
1da177e4
LT
2643}
2644
2645/*
2646 * This routine replays a modification made to a buffer at runtime.
2647 * There are actually two types of buffer, regular and inode, which
2648 * are handled differently. Inode buffers are handled differently
2649 * in that we only recover a specific set of data from them, namely
2650 * the inode di_next_unlinked fields. This is because all other inode
2651 * data is actually logged via inode records and any data we replay
2652 * here which overlaps that may be stale.
2653 *
2654 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2655 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2656 * of the buffer in the log should not be replayed at recovery time.
2657 * This is so that if the blocks covered by the buffer are reused for
2658 * file data before we crash we don't end up replaying old, freed
2659 * meta-data into a user's file.
2660 *
2661 * To handle the cancellation of buffer log items, we make two passes
2662 * over the log during recovery. During the first we build a table of
2663 * those buffers which have been cancelled, and during the second we
2664 * only replay those buffers which do not have corresponding cancel
34be5ff3 2665 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2666 * for more details on the implementation of the table of cancel records.
2667 */
2668STATIC int
c9f71f5f 2669xlog_recover_buffer_pass2(
9a8d2fdb
MT
2670 struct xlog *log,
2671 struct list_head *buffer_list,
50d5c8d8
DC
2672 struct xlog_recover_item *item,
2673 xfs_lsn_t current_lsn)
1da177e4 2674{
4e0d5f92 2675 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2676 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2677 xfs_buf_t *bp;
2678 int error;
6ad112bf 2679 uint buf_flags;
50d5c8d8 2680 xfs_lsn_t lsn;
1da177e4 2681
c9f71f5f
CH
2682 /*
2683 * In this pass we only want to recover all the buffers which have
2684 * not been cancelled and are not cancellation buffers themselves.
2685 */
2686 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2687 buf_f->blf_len, buf_f->blf_flags)) {
2688 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2689 return 0;
1da177e4 2690 }
c9f71f5f 2691
9abbc539 2692 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2693
a8acad70 2694 buf_flags = 0;
611c9946
DC
2695 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2696 buf_flags |= XBF_UNMAPPED;
6ad112bf 2697
e2714bf8 2698 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2699 buf_flags, NULL);
ac4d6888 2700 if (!bp)
2451337d 2701 return -ENOMEM;
e5702805 2702 error = bp->b_error;
5a52c2a5 2703 if (error) {
901796af 2704 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2705 goto out_release;
1da177e4
LT
2706 }
2707
50d5c8d8 2708 /*
67dc288c 2709 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2710 * the lsn of the transaction we are replaying.
67dc288c
DC
2711 *
2712 * Note that we have to be extremely careful of readahead here.
2713 * Readahead does not attach verfiers to the buffers so if we don't
2714 * actually do any replay after readahead because of the LSN we found
2715 * in the buffer if more recent than that current transaction then we
2716 * need to attach the verifier directly. Failure to do so can lead to
2717 * future recovery actions (e.g. EFI and unlinked list recovery) can
2718 * operate on the buffers and they won't get the verifier attached. This
2719 * can lead to blocks on disk having the correct content but a stale
2720 * CRC.
2721 *
2722 * It is safe to assume these clean buffers are currently up to date.
2723 * If the buffer is dirtied by a later transaction being replayed, then
2724 * the verifier will be reset to match whatever recover turns that
2725 * buffer into.
50d5c8d8
DC
2726 */
2727 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c
DC
2728 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2729 xlog_recover_validate_buf_type(mp, bp, buf_f);
50d5c8d8 2730 goto out_release;
67dc288c 2731 }
50d5c8d8 2732
e2714bf8 2733 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2734 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2735 if (error)
2736 goto out_release;
e2714bf8 2737 } else if (buf_f->blf_flags &
c1155410 2738 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2739 bool dirty;
2740
2741 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2742 if (!dirty)
2743 goto out_release;
1da177e4 2744 } else {
9abbc539 2745 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4 2746 }
1da177e4
LT
2747
2748 /*
2749 * Perform delayed write on the buffer. Asynchronous writes will be
2750 * slower when taking into account all the buffers to be flushed.
2751 *
2752 * Also make sure that only inode buffers with good sizes stay in
2753 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2754 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2755 * buffers in the log can be a different size if the log was generated
2756 * by an older kernel using unclustered inode buffers or a newer kernel
2757 * running with a different inode cluster size. Regardless, if the
0f49efd8
JL
2758 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2759 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2760 * the buffer out of the buffer cache so that the buffer won't
2761 * overlap with future reads of those inodes.
2762 */
2763 if (XFS_DINODE_MAGIC ==
b53e675d 2764 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2765 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
0f49efd8 2766 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2767 xfs_buf_stale(bp);
c2b006c1 2768 error = xfs_bwrite(bp);
1da177e4 2769 } else {
ebad861b 2770 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2771 bp->b_iodone = xlog_recover_iodone;
43ff2122 2772 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2773 }
2774
50d5c8d8 2775out_release:
c2b006c1
CH
2776 xfs_buf_relse(bp);
2777 return error;
1da177e4
LT
2778}
2779
638f4416
DC
2780/*
2781 * Inode fork owner changes
2782 *
2783 * If we have been told that we have to reparent the inode fork, it's because an
2784 * extent swap operation on a CRC enabled filesystem has been done and we are
2785 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2786 * owners of it.
2787 *
2788 * The complexity here is that we don't have an inode context to work with, so
2789 * after we've replayed the inode we need to instantiate one. This is where the
2790 * fun begins.
2791 *
2792 * We are in the middle of log recovery, so we can't run transactions. That
2793 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2794 * that will result in the corresponding iput() running the inode through
2795 * xfs_inactive(). If we've just replayed an inode core that changes the link
2796 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2797 * transactions (bad!).
2798 *
2799 * So, to avoid this, we instantiate an inode directly from the inode core we've
2800 * just recovered. We have the buffer still locked, and all we really need to
2801 * instantiate is the inode core and the forks being modified. We can do this
2802 * manually, then run the inode btree owner change, and then tear down the
2803 * xfs_inode without having to run any transactions at all.
2804 *
2805 * Also, because we don't have a transaction context available here but need to
2806 * gather all the buffers we modify for writeback so we pass the buffer_list
2807 * instead for the operation to use.
2808 */
2809
2810STATIC int
2811xfs_recover_inode_owner_change(
2812 struct xfs_mount *mp,
2813 struct xfs_dinode *dip,
2814 struct xfs_inode_log_format *in_f,
2815 struct list_head *buffer_list)
2816{
2817 struct xfs_inode *ip;
2818 int error;
2819
2820 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2821
2822 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2823 if (!ip)
2451337d 2824 return -ENOMEM;
638f4416
DC
2825
2826 /* instantiate the inode */
2827 xfs_dinode_from_disk(&ip->i_d, dip);
2828 ASSERT(ip->i_d.di_version >= 3);
2829
2830 error = xfs_iformat_fork(ip, dip);
2831 if (error)
2832 goto out_free_ip;
2833
2834
2835 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2836 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2837 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2838 ip->i_ino, buffer_list);
2839 if (error)
2840 goto out_free_ip;
2841 }
2842
2843 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2844 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2845 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2846 ip->i_ino, buffer_list);
2847 if (error)
2848 goto out_free_ip;
2849 }
2850
2851out_free_ip:
2852 xfs_inode_free(ip);
2853 return error;
2854}
2855
1da177e4 2856STATIC int
c9f71f5f 2857xlog_recover_inode_pass2(
9a8d2fdb
MT
2858 struct xlog *log,
2859 struct list_head *buffer_list,
50d5c8d8
DC
2860 struct xlog_recover_item *item,
2861 xfs_lsn_t current_lsn)
1da177e4
LT
2862{
2863 xfs_inode_log_format_t *in_f;
c9f71f5f 2864 xfs_mount_t *mp = log->l_mp;
1da177e4 2865 xfs_buf_t *bp;
1da177e4 2866 xfs_dinode_t *dip;
1da177e4 2867 int len;
b2a922cd
CH
2868 char *src;
2869 char *dest;
1da177e4
LT
2870 int error;
2871 int attr_index;
2872 uint fields;
347d1c01 2873 xfs_icdinode_t *dicp;
93848a99 2874 uint isize;
6d192a9b 2875 int need_free = 0;
1da177e4 2876
6d192a9b 2877 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2878 in_f = item->ri_buf[0].i_addr;
6d192a9b 2879 } else {
4e0d5f92 2880 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2881 need_free = 1;
2882 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2883 if (error)
2884 goto error;
2885 }
1da177e4
LT
2886
2887 /*
2888 * Inode buffers can be freed, look out for it,
2889 * and do not replay the inode.
2890 */
a1941895
CH
2891 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2892 in_f->ilf_len, 0)) {
6d192a9b 2893 error = 0;
9abbc539 2894 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2895 goto error;
2896 }
9abbc539 2897 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2898
c3f8fc73 2899 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2900 &xfs_inode_buf_ops);
ac4d6888 2901 if (!bp) {
2451337d 2902 error = -ENOMEM;
ac4d6888
CS
2903 goto error;
2904 }
e5702805 2905 error = bp->b_error;
5a52c2a5 2906 if (error) {
901796af 2907 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2908 goto out_release;
1da177e4 2909 }
1da177e4 2910 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
88ee2df7 2911 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2912
2913 /*
2914 * Make sure the place we're flushing out to really looks
2915 * like an inode!
2916 */
69ef921b 2917 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2918 xfs_alert(mp,
2919 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2920 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2921 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2922 XFS_ERRLEVEL_LOW, mp);
2451337d 2923 error = -EFSCORRUPTED;
638f4416 2924 goto out_release;
1da177e4 2925 }
4e0d5f92 2926 dicp = item->ri_buf[1].i_addr;
1da177e4 2927 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2928 xfs_alert(mp,
2929 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2930 __func__, item, in_f->ilf_ino);
c9f71f5f 2931 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2932 XFS_ERRLEVEL_LOW, mp);
2451337d 2933 error = -EFSCORRUPTED;
638f4416 2934 goto out_release;
1da177e4
LT
2935 }
2936
50d5c8d8
DC
2937 /*
2938 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2939 * than the lsn of the transaction we are replaying. Note: we still
2940 * need to replay an owner change even though the inode is more recent
2941 * than the transaction as there is no guarantee that all the btree
2942 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2943 */
2944 if (dip->di_version >= 3) {
2945 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2946
2947 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2948 trace_xfs_log_recover_inode_skip(log, in_f);
2949 error = 0;
638f4416 2950 goto out_owner_change;
50d5c8d8
DC
2951 }
2952 }
2953
e60896d8
DC
2954 /*
2955 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2956 * are transactional and if ordering is necessary we can determine that
2957 * more accurately by the LSN field in the V3 inode core. Don't trust
2958 * the inode versions we might be changing them here - use the
2959 * superblock flag to determine whether we need to look at di_flushiter
2960 * to skip replay when the on disk inode is newer than the log one
2961 */
2962 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2963 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2964 /*
2965 * Deal with the wrap case, DI_MAX_FLUSH is less
2966 * than smaller numbers
2967 */
81591fe2 2968 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2969 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2970 /* do nothing */
2971 } else {
9abbc539 2972 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 2973 error = 0;
638f4416 2974 goto out_release;
1da177e4
LT
2975 }
2976 }
e60896d8 2977
1da177e4
LT
2978 /* Take the opportunity to reset the flush iteration count */
2979 dicp->di_flushiter = 0;
2980
abbede1b 2981 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2982 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2983 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2984 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4 2985 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2986 xfs_alert(mp,
2987 "%s: Bad regular inode log record, rec ptr 0x%p, "
2988 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2989 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 2990 error = -EFSCORRUPTED;
638f4416 2991 goto out_release;
1da177e4 2992 }
abbede1b 2993 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2994 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2995 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2996 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2997 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4 2998 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2999 xfs_alert(mp,
3000 "%s: Bad dir inode log record, rec ptr 0x%p, "
3001 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3002 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3003 error = -EFSCORRUPTED;
638f4416 3004 goto out_release;
1da177e4
LT
3005 }
3006 }
3007 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 3008 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4 3009 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
3010 xfs_alert(mp,
3011 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3012 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3013 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
3014 dicp->di_nextents + dicp->di_anextents,
3015 dicp->di_nblocks);
2451337d 3016 error = -EFSCORRUPTED;
638f4416 3017 goto out_release;
1da177e4
LT
3018 }
3019 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 3020 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4 3021 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
3022 xfs_alert(mp,
3023 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3024 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 3025 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2451337d 3026 error = -EFSCORRUPTED;
638f4416 3027 goto out_release;
1da177e4 3028 }
93848a99
CH
3029 isize = xfs_icdinode_size(dicp->di_version);
3030 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 3031 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4 3032 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
3033 xfs_alert(mp,
3034 "%s: Bad inode log record length %d, rec ptr 0x%p",
3035 __func__, item->ri_buf[1].i_len, item);
2451337d 3036 error = -EFSCORRUPTED;
638f4416 3037 goto out_release;
1da177e4
LT
3038 }
3039
3040 /* The core is in in-core format */
93848a99 3041 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
3042
3043 /* the rest is in on-disk format */
93848a99
CH
3044 if (item->ri_buf[1].i_len > isize) {
3045 memcpy((char *)dip + isize,
3046 item->ri_buf[1].i_addr + isize,
3047 item->ri_buf[1].i_len - isize);
1da177e4
LT
3048 }
3049
3050 fields = in_f->ilf_fields;
3051 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3052 case XFS_ILOG_DEV:
81591fe2 3053 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
3054 break;
3055 case XFS_ILOG_UUID:
81591fe2
CH
3056 memcpy(XFS_DFORK_DPTR(dip),
3057 &in_f->ilf_u.ilfu_uuid,
3058 sizeof(uuid_t));
1da177e4
LT
3059 break;
3060 }
3061
3062 if (in_f->ilf_size == 2)
638f4416 3063 goto out_owner_change;
1da177e4
LT
3064 len = item->ri_buf[2].i_len;
3065 src = item->ri_buf[2].i_addr;
3066 ASSERT(in_f->ilf_size <= 4);
3067 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3068 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3069 (len == in_f->ilf_dsize));
3070
3071 switch (fields & XFS_ILOG_DFORK) {
3072 case XFS_ILOG_DDATA:
3073 case XFS_ILOG_DEXT:
81591fe2 3074 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
3075 break;
3076
3077 case XFS_ILOG_DBROOT:
7cc95a82 3078 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 3079 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
3080 XFS_DFORK_DSIZE(dip, mp));
3081 break;
3082
3083 default:
3084 /*
3085 * There are no data fork flags set.
3086 */
3087 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3088 break;
3089 }
3090
3091 /*
3092 * If we logged any attribute data, recover it. There may or
3093 * may not have been any other non-core data logged in this
3094 * transaction.
3095 */
3096 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3097 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3098 attr_index = 3;
3099 } else {
3100 attr_index = 2;
3101 }
3102 len = item->ri_buf[attr_index].i_len;
3103 src = item->ri_buf[attr_index].i_addr;
3104 ASSERT(len == in_f->ilf_asize);
3105
3106 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3107 case XFS_ILOG_ADATA:
3108 case XFS_ILOG_AEXT:
3109 dest = XFS_DFORK_APTR(dip);
3110 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3111 memcpy(dest, src, len);
3112 break;
3113
3114 case XFS_ILOG_ABROOT:
3115 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
3116 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3117 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
3118 XFS_DFORK_ASIZE(dip, mp));
3119 break;
3120
3121 default:
a0fa2b67 3122 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 3123 ASSERT(0);
2451337d 3124 error = -EIO;
638f4416 3125 goto out_release;
1da177e4
LT
3126 }
3127 }
3128
638f4416
DC
3129out_owner_change:
3130 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3131 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3132 buffer_list);
93848a99
CH
3133 /* re-generate the checksum. */
3134 xfs_dinode_calc_crc(log->l_mp, dip);
3135
ebad861b 3136 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3137 bp->b_iodone = xlog_recover_iodone;
43ff2122 3138 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
3139
3140out_release:
61551f1e 3141 xfs_buf_relse(bp);
6d192a9b
TS
3142error:
3143 if (need_free)
f0e2d93c 3144 kmem_free(in_f);
b474c7ae 3145 return error;
1da177e4
LT
3146}
3147
3148/*
9a8d2fdb 3149 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
3150 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3151 * of that type.
3152 */
3153STATIC int
c9f71f5f 3154xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
3155 struct xlog *log,
3156 struct xlog_recover_item *item)
1da177e4 3157{
c9f71f5f 3158 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
3159 ASSERT(qoff_f);
3160
3161 /*
3162 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 3163 * group/project quotaoff or both.
1da177e4
LT
3164 */
3165 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3166 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
3167 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3168 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
3169 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3170 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3171
d99831ff 3172 return 0;
1da177e4
LT
3173}
3174
3175/*
3176 * Recover a dquot record
3177 */
3178STATIC int
c9f71f5f 3179xlog_recover_dquot_pass2(
9a8d2fdb
MT
3180 struct xlog *log,
3181 struct list_head *buffer_list,
50d5c8d8
DC
3182 struct xlog_recover_item *item,
3183 xfs_lsn_t current_lsn)
1da177e4 3184{
c9f71f5f 3185 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3186 xfs_buf_t *bp;
3187 struct xfs_disk_dquot *ddq, *recddq;
3188 int error;
3189 xfs_dq_logformat_t *dq_f;
3190 uint type;
3191
1da177e4
LT
3192
3193 /*
3194 * Filesystems are required to send in quota flags at mount time.
3195 */
3196 if (mp->m_qflags == 0)
d99831ff 3197 return 0;
1da177e4 3198
4e0d5f92
CH
3199 recddq = item->ri_buf[1].i_addr;
3200 if (recddq == NULL) {
a0fa2b67 3201 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 3202 return -EIO;
0c5e1ce8 3203 }
8ec6dba2 3204 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 3205 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 3206 item->ri_buf[1].i_len, __func__);
2451337d 3207 return -EIO;
0c5e1ce8
CH
3208 }
3209
1da177e4
LT
3210 /*
3211 * This type of quotas was turned off, so ignore this record.
3212 */
b53e675d 3213 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
3214 ASSERT(type);
3215 if (log->l_quotaoffs_flag & type)
d99831ff 3216 return 0;
1da177e4
LT
3217
3218 /*
3219 * At this point we know that quota was _not_ turned off.
3220 * Since the mount flags are not indicating to us otherwise, this
3221 * must mean that quota is on, and the dquot needs to be replayed.
3222 * Remember that we may not have fully recovered the superblock yet,
3223 * so we can't do the usual trick of looking at the SB quota bits.
3224 *
3225 * The other possibility, of course, is that the quota subsystem was
3226 * removed since the last mount - ENOSYS.
3227 */
4e0d5f92 3228 dq_f = item->ri_buf[0].i_addr;
1da177e4 3229 ASSERT(dq_f);
9aede1d8 3230 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
a0fa2b67
DC
3231 "xlog_recover_dquot_pass2 (log copy)");
3232 if (error)
2451337d 3233 return -EIO;
1da177e4
LT
3234 ASSERT(dq_f->qlf_len == 1);
3235
ad3714b8
DC
3236 /*
3237 * At this point we are assuming that the dquots have been allocated
3238 * and hence the buffer has valid dquots stamped in it. It should,
3239 * therefore, pass verifier validation. If the dquot is bad, then the
3240 * we'll return an error here, so we don't need to specifically check
3241 * the dquot in the buffer after the verifier has run.
3242 */
7ca790a5 3243 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 3244 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 3245 &xfs_dquot_buf_ops);
7ca790a5 3246 if (error)
1da177e4 3247 return error;
7ca790a5 3248
1da177e4 3249 ASSERT(bp);
88ee2df7 3250 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
1da177e4 3251
50d5c8d8
DC
3252 /*
3253 * If the dquot has an LSN in it, recover the dquot only if it's less
3254 * than the lsn of the transaction we are replaying.
3255 */
3256 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3257 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3258 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3259
3260 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3261 goto out_release;
3262 }
3263 }
3264
1da177e4 3265 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3266 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3267 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3268 XFS_DQUOT_CRC_OFF);
3269 }
1da177e4
LT
3270
3271 ASSERT(dq_f->qlf_size == 2);
ebad861b 3272 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3273 bp->b_iodone = xlog_recover_iodone;
43ff2122 3274 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3275
50d5c8d8
DC
3276out_release:
3277 xfs_buf_relse(bp);
3278 return 0;
1da177e4
LT
3279}
3280
3281/*
3282 * This routine is called to create an in-core extent free intent
3283 * item from the efi format structure which was logged on disk.
3284 * It allocates an in-core efi, copies the extents from the format
3285 * structure into it, and adds the efi to the AIL with the given
3286 * LSN.
3287 */
6d192a9b 3288STATIC int
c9f71f5f 3289xlog_recover_efi_pass2(
9a8d2fdb
MT
3290 struct xlog *log,
3291 struct xlog_recover_item *item,
3292 xfs_lsn_t lsn)
1da177e4 3293{
e32a1d1f
BF
3294 int error;
3295 struct xfs_mount *mp = log->l_mp;
3296 struct xfs_efi_log_item *efip;
3297 struct xfs_efi_log_format *efi_formatp;
1da177e4 3298
4e0d5f92 3299 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3300
1da177e4 3301 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
e32a1d1f
BF
3302 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3303 if (error) {
6d192a9b
TS
3304 xfs_efi_item_free(efip);
3305 return error;
3306 }
b199c8a4 3307 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3308
a9c21c1b 3309 spin_lock(&log->l_ailp->xa_lock);
1da177e4 3310 /*
e32a1d1f
BF
3311 * The EFI has two references. One for the EFD and one for EFI to ensure
3312 * it makes it into the AIL. Insert the EFI into the AIL directly and
3313 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3314 * AIL lock.
1da177e4 3315 */
e6059949 3316 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
e32a1d1f 3317 xfs_efi_release(efip);
6d192a9b 3318 return 0;
1da177e4
LT
3319}
3320
3321
3322/*
e32a1d1f
BF
3323 * This routine is called when an EFD format structure is found in a committed
3324 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3325 * was still in the log. To do this it searches the AIL for the EFI with an id
3326 * equal to that in the EFD format structure. If we find it we drop the EFD
3327 * reference, which removes the EFI from the AIL and frees it.
1da177e4 3328 */
c9f71f5f
CH
3329STATIC int
3330xlog_recover_efd_pass2(
9a8d2fdb
MT
3331 struct xlog *log,
3332 struct xlog_recover_item *item)
1da177e4 3333{
1da177e4
LT
3334 xfs_efd_log_format_t *efd_formatp;
3335 xfs_efi_log_item_t *efip = NULL;
3336 xfs_log_item_t *lip;
1da177e4 3337 __uint64_t efi_id;
27d8d5fe 3338 struct xfs_ail_cursor cur;
783a2f65 3339 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3340
4e0d5f92 3341 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3342 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3343 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3344 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3345 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3346 efi_id = efd_formatp->efd_efi_id;
3347
3348 /*
e32a1d1f
BF
3349 * Search for the EFI with the id in the EFD format structure in the
3350 * AIL.
1da177e4 3351 */
a9c21c1b
DC
3352 spin_lock(&ailp->xa_lock);
3353 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3354 while (lip != NULL) {
3355 if (lip->li_type == XFS_LI_EFI) {
3356 efip = (xfs_efi_log_item_t *)lip;
3357 if (efip->efi_format.efi_id == efi_id) {
3358 /*
e32a1d1f
BF
3359 * Drop the EFD reference to the EFI. This
3360 * removes the EFI from the AIL and frees it.
1da177e4 3361 */
e32a1d1f
BF
3362 spin_unlock(&ailp->xa_lock);
3363 xfs_efi_release(efip);
a9c21c1b 3364 spin_lock(&ailp->xa_lock);
27d8d5fe 3365 break;
1da177e4
LT
3366 }
3367 }
a9c21c1b 3368 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3369 }
e32a1d1f 3370
e4a1e29c 3371 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3372 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3373
3374 return 0;
1da177e4
LT
3375}
3376
28c8e41a
DC
3377/*
3378 * This routine is called when an inode create format structure is found in a
3379 * committed transaction in the log. It's purpose is to initialise the inodes
3380 * being allocated on disk. This requires us to get inode cluster buffers that
3381 * match the range to be intialised, stamped with inode templates and written
3382 * by delayed write so that subsequent modifications will hit the cached buffer
3383 * and only need writing out at the end of recovery.
3384 */
3385STATIC int
3386xlog_recover_do_icreate_pass2(
3387 struct xlog *log,
3388 struct list_head *buffer_list,
3389 xlog_recover_item_t *item)
3390{
3391 struct xfs_mount *mp = log->l_mp;
3392 struct xfs_icreate_log *icl;
3393 xfs_agnumber_t agno;
3394 xfs_agblock_t agbno;
3395 unsigned int count;
3396 unsigned int isize;
3397 xfs_agblock_t length;
fc0d1656
BF
3398 int blks_per_cluster;
3399 int bb_per_cluster;
3400 int cancel_count;
3401 int nbufs;
3402 int i;
28c8e41a
DC
3403
3404 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3405 if (icl->icl_type != XFS_LI_ICREATE) {
3406 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3407 return -EINVAL;
28c8e41a
DC
3408 }
3409
3410 if (icl->icl_size != 1) {
3411 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3412 return -EINVAL;
28c8e41a
DC
3413 }
3414
3415 agno = be32_to_cpu(icl->icl_ag);
3416 if (agno >= mp->m_sb.sb_agcount) {
3417 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3418 return -EINVAL;
28c8e41a
DC
3419 }
3420 agbno = be32_to_cpu(icl->icl_agbno);
3421 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3422 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3423 return -EINVAL;
28c8e41a
DC
3424 }
3425 isize = be32_to_cpu(icl->icl_isize);
3426 if (isize != mp->m_sb.sb_inodesize) {
3427 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3428 return -EINVAL;
28c8e41a
DC
3429 }
3430 count = be32_to_cpu(icl->icl_count);
3431 if (!count) {
3432 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3433 return -EINVAL;
28c8e41a
DC
3434 }
3435 length = be32_to_cpu(icl->icl_length);
3436 if (!length || length >= mp->m_sb.sb_agblocks) {
3437 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3438 return -EINVAL;
28c8e41a
DC
3439 }
3440
7f43c907
BF
3441 /*
3442 * The inode chunk is either full or sparse and we only support
3443 * m_ialloc_min_blks sized sparse allocations at this time.
3444 */
3445 if (length != mp->m_ialloc_blks &&
3446 length != mp->m_ialloc_min_blks) {
3447 xfs_warn(log->l_mp,
3448 "%s: unsupported chunk length", __FUNCTION__);
3449 return -EINVAL;
3450 }
3451
3452 /* verify inode count is consistent with extent length */
3453 if ((count >> mp->m_sb.sb_inopblog) != length) {
3454 xfs_warn(log->l_mp,
3455 "%s: inconsistent inode count and chunk length",
3456 __FUNCTION__);
2451337d 3457 return -EINVAL;
28c8e41a
DC
3458 }
3459
3460 /*
fc0d1656
BF
3461 * The icreate transaction can cover multiple cluster buffers and these
3462 * buffers could have been freed and reused. Check the individual
3463 * buffers for cancellation so we don't overwrite anything written after
3464 * a cancellation.
3465 */
3466 blks_per_cluster = xfs_icluster_size_fsb(mp);
3467 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3468 nbufs = length / blks_per_cluster;
3469 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3470 xfs_daddr_t daddr;
3471
3472 daddr = XFS_AGB_TO_DADDR(mp, agno,
3473 agbno + i * blks_per_cluster);
3474 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3475 cancel_count++;
3476 }
3477
3478 /*
3479 * We currently only use icreate for a single allocation at a time. This
3480 * means we should expect either all or none of the buffers to be
3481 * cancelled. Be conservative and skip replay if at least one buffer is
3482 * cancelled, but warn the user that something is awry if the buffers
3483 * are not consistent.
28c8e41a 3484 *
fc0d1656
BF
3485 * XXX: This must be refined to only skip cancelled clusters once we use
3486 * icreate for multiple chunk allocations.
28c8e41a 3487 */
fc0d1656
BF
3488 ASSERT(!cancel_count || cancel_count == nbufs);
3489 if (cancel_count) {
3490 if (cancel_count != nbufs)
3491 xfs_warn(mp,
3492 "WARNING: partial inode chunk cancellation, skipped icreate.");
78d57e45 3493 trace_xfs_log_recover_icreate_cancel(log, icl);
28c8e41a 3494 return 0;
78d57e45 3495 }
28c8e41a 3496
78d57e45 3497 trace_xfs_log_recover_icreate_recover(log, icl);
fc0d1656
BF
3498 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3499 length, be32_to_cpu(icl->icl_gen));
28c8e41a
DC
3500}
3501
00574da1
ZYW
3502STATIC void
3503xlog_recover_buffer_ra_pass2(
3504 struct xlog *log,
3505 struct xlog_recover_item *item)
3506{
3507 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3508 struct xfs_mount *mp = log->l_mp;
3509
84a5b730 3510 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3511 buf_f->blf_len, buf_f->blf_flags)) {
3512 return;
3513 }
3514
3515 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3516 buf_f->blf_len, NULL);
3517}
3518
3519STATIC void
3520xlog_recover_inode_ra_pass2(
3521 struct xlog *log,
3522 struct xlog_recover_item *item)
3523{
3524 struct xfs_inode_log_format ilf_buf;
3525 struct xfs_inode_log_format *ilfp;
3526 struct xfs_mount *mp = log->l_mp;
3527 int error;
3528
3529 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3530 ilfp = item->ri_buf[0].i_addr;
3531 } else {
3532 ilfp = &ilf_buf;
3533 memset(ilfp, 0, sizeof(*ilfp));
3534 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3535 if (error)
3536 return;
3537 }
3538
84a5b730 3539 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3540 return;
3541
3542 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3543 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3544}
3545
3546STATIC void
3547xlog_recover_dquot_ra_pass2(
3548 struct xlog *log,
3549 struct xlog_recover_item *item)
3550{
3551 struct xfs_mount *mp = log->l_mp;
3552 struct xfs_disk_dquot *recddq;
3553 struct xfs_dq_logformat *dq_f;
3554 uint type;
7d6a13f0 3555 int len;
00574da1
ZYW
3556
3557
3558 if (mp->m_qflags == 0)
3559 return;
3560
3561 recddq = item->ri_buf[1].i_addr;
3562 if (recddq == NULL)
3563 return;
3564 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3565 return;
3566
3567 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3568 ASSERT(type);
3569 if (log->l_quotaoffs_flag & type)
3570 return;
3571
3572 dq_f = item->ri_buf[0].i_addr;
3573 ASSERT(dq_f);
3574 ASSERT(dq_f->qlf_len == 1);
3575
7d6a13f0
DC
3576 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3577 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3578 return;
3579
3580 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3581 &xfs_dquot_buf_ra_ops);
00574da1
ZYW
3582}
3583
3584STATIC void
3585xlog_recover_ra_pass2(
3586 struct xlog *log,
3587 struct xlog_recover_item *item)
3588{
3589 switch (ITEM_TYPE(item)) {
3590 case XFS_LI_BUF:
3591 xlog_recover_buffer_ra_pass2(log, item);
3592 break;
3593 case XFS_LI_INODE:
3594 xlog_recover_inode_ra_pass2(log, item);
3595 break;
3596 case XFS_LI_DQUOT:
3597 xlog_recover_dquot_ra_pass2(log, item);
3598 break;
3599 case XFS_LI_EFI:
3600 case XFS_LI_EFD:
3601 case XFS_LI_QUOTAOFF:
3602 default:
3603 break;
3604 }
3605}
3606
d0450948 3607STATIC int
c9f71f5f 3608xlog_recover_commit_pass1(
ad223e60
MT
3609 struct xlog *log,
3610 struct xlog_recover *trans,
3611 struct xlog_recover_item *item)
d0450948 3612{
c9f71f5f 3613 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3614
3615 switch (ITEM_TYPE(item)) {
3616 case XFS_LI_BUF:
c9f71f5f
CH
3617 return xlog_recover_buffer_pass1(log, item);
3618 case XFS_LI_QUOTAOFF:
3619 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3620 case XFS_LI_INODE:
d0450948 3621 case XFS_LI_EFI:
d0450948 3622 case XFS_LI_EFD:
c9f71f5f 3623 case XFS_LI_DQUOT:
28c8e41a 3624 case XFS_LI_ICREATE:
c9f71f5f 3625 /* nothing to do in pass 1 */
d0450948 3626 return 0;
c9f71f5f 3627 default:
a0fa2b67
DC
3628 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3629 __func__, ITEM_TYPE(item));
c9f71f5f 3630 ASSERT(0);
2451337d 3631 return -EIO;
c9f71f5f
CH
3632 }
3633}
3634
3635STATIC int
3636xlog_recover_commit_pass2(
ad223e60
MT
3637 struct xlog *log,
3638 struct xlog_recover *trans,
3639 struct list_head *buffer_list,
3640 struct xlog_recover_item *item)
c9f71f5f
CH
3641{
3642 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3643
3644 switch (ITEM_TYPE(item)) {
3645 case XFS_LI_BUF:
50d5c8d8
DC
3646 return xlog_recover_buffer_pass2(log, buffer_list, item,
3647 trans->r_lsn);
c9f71f5f 3648 case XFS_LI_INODE:
50d5c8d8
DC
3649 return xlog_recover_inode_pass2(log, buffer_list, item,
3650 trans->r_lsn);
c9f71f5f
CH
3651 case XFS_LI_EFI:
3652 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3653 case XFS_LI_EFD:
3654 return xlog_recover_efd_pass2(log, item);
d0450948 3655 case XFS_LI_DQUOT:
50d5c8d8
DC
3656 return xlog_recover_dquot_pass2(log, buffer_list, item,
3657 trans->r_lsn);
28c8e41a
DC
3658 case XFS_LI_ICREATE:
3659 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3660 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3661 /* nothing to do in pass2 */
3662 return 0;
d0450948 3663 default:
a0fa2b67
DC
3664 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3665 __func__, ITEM_TYPE(item));
d0450948 3666 ASSERT(0);
2451337d 3667 return -EIO;
d0450948
CH
3668 }
3669}
3670
00574da1
ZYW
3671STATIC int
3672xlog_recover_items_pass2(
3673 struct xlog *log,
3674 struct xlog_recover *trans,
3675 struct list_head *buffer_list,
3676 struct list_head *item_list)
3677{
3678 struct xlog_recover_item *item;
3679 int error = 0;
3680
3681 list_for_each_entry(item, item_list, ri_list) {
3682 error = xlog_recover_commit_pass2(log, trans,
3683 buffer_list, item);
3684 if (error)
3685 return error;
3686 }
3687
3688 return error;
3689}
3690
d0450948
CH
3691/*
3692 * Perform the transaction.
3693 *
3694 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3695 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3696 */
1da177e4
LT
3697STATIC int
3698xlog_recover_commit_trans(
ad223e60 3699 struct xlog *log,
d0450948 3700 struct xlog_recover *trans,
1da177e4
LT
3701 int pass)
3702{
00574da1
ZYW
3703 int error = 0;
3704 int error2;
3705 int items_queued = 0;
3706 struct xlog_recover_item *item;
3707 struct xlog_recover_item *next;
3708 LIST_HEAD (buffer_list);
3709 LIST_HEAD (ra_list);
3710 LIST_HEAD (done_list);
3711
3712 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3713
f0a76953 3714 hlist_del(&trans->r_list);
d0450948
CH
3715
3716 error = xlog_recover_reorder_trans(log, trans, pass);
3717 if (error)
1da177e4 3718 return error;
d0450948 3719
00574da1 3720 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3721 switch (pass) {
3722 case XLOG_RECOVER_PASS1:
c9f71f5f 3723 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3724 break;
3725 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3726 xlog_recover_ra_pass2(log, item);
3727 list_move_tail(&item->ri_list, &ra_list);
3728 items_queued++;
3729 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3730 error = xlog_recover_items_pass2(log, trans,
3731 &buffer_list, &ra_list);
3732 list_splice_tail_init(&ra_list, &done_list);
3733 items_queued = 0;
3734 }
3735
43ff2122
CH
3736 break;
3737 default:
3738 ASSERT(0);
3739 }
3740
d0450948 3741 if (error)
43ff2122 3742 goto out;
d0450948
CH
3743 }
3744
00574da1
ZYW
3745out:
3746 if (!list_empty(&ra_list)) {
3747 if (!error)
3748 error = xlog_recover_items_pass2(log, trans,
3749 &buffer_list, &ra_list);
3750 list_splice_tail_init(&ra_list, &done_list);
3751 }
3752
3753 if (!list_empty(&done_list))
3754 list_splice_init(&done_list, &trans->r_itemq);
3755
43ff2122
CH
3756 error2 = xfs_buf_delwri_submit(&buffer_list);
3757 return error ? error : error2;
1da177e4
LT
3758}
3759
76560669
DC
3760STATIC void
3761xlog_recover_add_item(
3762 struct list_head *head)
3763{
3764 xlog_recover_item_t *item;
3765
3766 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3767 INIT_LIST_HEAD(&item->ri_list);
3768 list_add_tail(&item->ri_list, head);
3769}
3770
1da177e4 3771STATIC int
76560669
DC
3772xlog_recover_add_to_cont_trans(
3773 struct xlog *log,
3774 struct xlog_recover *trans,
b2a922cd 3775 char *dp,
76560669 3776 int len)
1da177e4 3777{
76560669 3778 xlog_recover_item_t *item;
b2a922cd 3779 char *ptr, *old_ptr;
76560669
DC
3780 int old_len;
3781
89cebc84
BF
3782 /*
3783 * If the transaction is empty, the header was split across this and the
3784 * previous record. Copy the rest of the header.
3785 */
76560669 3786 if (list_empty(&trans->r_itemq)) {
848ccfc8 3787 ASSERT(len <= sizeof(struct xfs_trans_header));
89cebc84
BF
3788 if (len > sizeof(struct xfs_trans_header)) {
3789 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3790 return -EIO;
3791 }
3792
76560669 3793 xlog_recover_add_item(&trans->r_itemq);
b2a922cd 3794 ptr = (char *)&trans->r_theader +
89cebc84 3795 sizeof(struct xfs_trans_header) - len;
76560669
DC
3796 memcpy(ptr, dp, len);
3797 return 0;
3798 }
89cebc84 3799
76560669
DC
3800 /* take the tail entry */
3801 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3802
3803 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3804 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3805
3806 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3807 memcpy(&ptr[old_len], dp, len);
3808 item->ri_buf[item->ri_cnt-1].i_len += len;
3809 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3810 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
3811 return 0;
3812}
3813
76560669
DC
3814/*
3815 * The next region to add is the start of a new region. It could be
3816 * a whole region or it could be the first part of a new region. Because
3817 * of this, the assumption here is that the type and size fields of all
3818 * format structures fit into the first 32 bits of the structure.
3819 *
3820 * This works because all regions must be 32 bit aligned. Therefore, we
3821 * either have both fields or we have neither field. In the case we have
3822 * neither field, the data part of the region is zero length. We only have
3823 * a log_op_header and can throw away the header since a new one will appear
3824 * later. If we have at least 4 bytes, then we can determine how many regions
3825 * will appear in the current log item.
3826 */
3827STATIC int
3828xlog_recover_add_to_trans(
3829 struct xlog *log,
3830 struct xlog_recover *trans,
b2a922cd 3831 char *dp,
76560669
DC
3832 int len)
3833{
3834 xfs_inode_log_format_t *in_f; /* any will do */
3835 xlog_recover_item_t *item;
b2a922cd 3836 char *ptr;
76560669
DC
3837
3838 if (!len)
3839 return 0;
3840 if (list_empty(&trans->r_itemq)) {
3841 /* we need to catch log corruptions here */
3842 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3843 xfs_warn(log->l_mp, "%s: bad header magic number",
3844 __func__);
3845 ASSERT(0);
3846 return -EIO;
3847 }
89cebc84
BF
3848
3849 if (len > sizeof(struct xfs_trans_header)) {
3850 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3851 ASSERT(0);
3852 return -EIO;
3853 }
3854
3855 /*
3856 * The transaction header can be arbitrarily split across op
3857 * records. If we don't have the whole thing here, copy what we
3858 * do have and handle the rest in the next record.
3859 */
3860 if (len == sizeof(struct xfs_trans_header))
76560669
DC
3861 xlog_recover_add_item(&trans->r_itemq);
3862 memcpy(&trans->r_theader, dp, len);
3863 return 0;
3864 }
3865
3866 ptr = kmem_alloc(len, KM_SLEEP);
3867 memcpy(ptr, dp, len);
3868 in_f = (xfs_inode_log_format_t *)ptr;
3869
3870 /* take the tail entry */
3871 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3872 if (item->ri_total != 0 &&
3873 item->ri_total == item->ri_cnt) {
3874 /* tail item is in use, get a new one */
3875 xlog_recover_add_item(&trans->r_itemq);
3876 item = list_entry(trans->r_itemq.prev,
3877 xlog_recover_item_t, ri_list);
3878 }
3879
3880 if (item->ri_total == 0) { /* first region to be added */
3881 if (in_f->ilf_size == 0 ||
3882 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3883 xfs_warn(log->l_mp,
3884 "bad number of regions (%d) in inode log format",
3885 in_f->ilf_size);
3886 ASSERT(0);
3887 kmem_free(ptr);
3888 return -EIO;
3889 }
3890
3891 item->ri_total = in_f->ilf_size;
3892 item->ri_buf =
3893 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3894 KM_SLEEP);
3895 }
3896 ASSERT(item->ri_total > item->ri_cnt);
3897 /* Description region is ri_buf[0] */
3898 item->ri_buf[item->ri_cnt].i_addr = ptr;
3899 item->ri_buf[item->ri_cnt].i_len = len;
3900 item->ri_cnt++;
3901 trace_xfs_log_recover_item_add(log, trans, item, 0);
3902 return 0;
3903}
b818cca1 3904
76560669
DC
3905/*
3906 * Free up any resources allocated by the transaction
3907 *
3908 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3909 */
3910STATIC void
3911xlog_recover_free_trans(
3912 struct xlog_recover *trans)
3913{
3914 xlog_recover_item_t *item, *n;
3915 int i;
3916
3917 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3918 /* Free the regions in the item. */
3919 list_del(&item->ri_list);
3920 for (i = 0; i < item->ri_cnt; i++)
3921 kmem_free(item->ri_buf[i].i_addr);
3922 /* Free the item itself */
3923 kmem_free(item->ri_buf);
3924 kmem_free(item);
3925 }
3926 /* Free the transaction recover structure */
3927 kmem_free(trans);
3928}
3929
e9131e50
DC
3930/*
3931 * On error or completion, trans is freed.
3932 */
1da177e4 3933STATIC int
eeb11688
DC
3934xlog_recovery_process_trans(
3935 struct xlog *log,
3936 struct xlog_recover *trans,
b2a922cd 3937 char *dp,
eeb11688
DC
3938 unsigned int len,
3939 unsigned int flags,
3940 int pass)
1da177e4 3941{
e9131e50
DC
3942 int error = 0;
3943 bool freeit = false;
eeb11688
DC
3944
3945 /* mask off ophdr transaction container flags */
3946 flags &= ~XLOG_END_TRANS;
3947 if (flags & XLOG_WAS_CONT_TRANS)
3948 flags &= ~XLOG_CONTINUE_TRANS;
3949
88b863db
DC
3950 /*
3951 * Callees must not free the trans structure. We'll decide if we need to
3952 * free it or not based on the operation being done and it's result.
3953 */
eeb11688
DC
3954 switch (flags) {
3955 /* expected flag values */
3956 case 0:
3957 case XLOG_CONTINUE_TRANS:
3958 error = xlog_recover_add_to_trans(log, trans, dp, len);
3959 break;
3960 case XLOG_WAS_CONT_TRANS:
3961 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3962 break;
3963 case XLOG_COMMIT_TRANS:
3964 error = xlog_recover_commit_trans(log, trans, pass);
88b863db
DC
3965 /* success or fail, we are now done with this transaction. */
3966 freeit = true;
eeb11688
DC
3967 break;
3968
3969 /* unexpected flag values */
3970 case XLOG_UNMOUNT_TRANS:
e9131e50 3971 /* just skip trans */
eeb11688 3972 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
e9131e50 3973 freeit = true;
eeb11688
DC
3974 break;
3975 case XLOG_START_TRANS:
eeb11688
DC
3976 default:
3977 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
3978 ASSERT(0);
e9131e50 3979 error = -EIO;
eeb11688
DC
3980 break;
3981 }
e9131e50
DC
3982 if (error || freeit)
3983 xlog_recover_free_trans(trans);
eeb11688
DC
3984 return error;
3985}
3986
b818cca1
DC
3987/*
3988 * Lookup the transaction recovery structure associated with the ID in the
3989 * current ophdr. If the transaction doesn't exist and the start flag is set in
3990 * the ophdr, then allocate a new transaction for future ID matches to find.
3991 * Either way, return what we found during the lookup - an existing transaction
3992 * or nothing.
3993 */
eeb11688
DC
3994STATIC struct xlog_recover *
3995xlog_recover_ophdr_to_trans(
3996 struct hlist_head rhash[],
3997 struct xlog_rec_header *rhead,
3998 struct xlog_op_header *ohead)
3999{
4000 struct xlog_recover *trans;
4001 xlog_tid_t tid;
4002 struct hlist_head *rhp;
4003
4004 tid = be32_to_cpu(ohead->oh_tid);
4005 rhp = &rhash[XLOG_RHASH(tid)];
b818cca1
DC
4006 hlist_for_each_entry(trans, rhp, r_list) {
4007 if (trans->r_log_tid == tid)
4008 return trans;
4009 }
eeb11688
DC
4010
4011 /*
b818cca1
DC
4012 * skip over non-start transaction headers - we could be
4013 * processing slack space before the next transaction starts
4014 */
4015 if (!(ohead->oh_flags & XLOG_START_TRANS))
4016 return NULL;
4017
4018 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4019
4020 /*
4021 * This is a new transaction so allocate a new recovery container to
4022 * hold the recovery ops that will follow.
4023 */
4024 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4025 trans->r_log_tid = tid;
4026 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4027 INIT_LIST_HEAD(&trans->r_itemq);
4028 INIT_HLIST_NODE(&trans->r_list);
4029 hlist_add_head(&trans->r_list, rhp);
4030
4031 /*
4032 * Nothing more to do for this ophdr. Items to be added to this new
4033 * transaction will be in subsequent ophdr containers.
eeb11688 4034 */
eeb11688
DC
4035 return NULL;
4036}
4037
4038STATIC int
4039xlog_recover_process_ophdr(
4040 struct xlog *log,
4041 struct hlist_head rhash[],
4042 struct xlog_rec_header *rhead,
4043 struct xlog_op_header *ohead,
b2a922cd
CH
4044 char *dp,
4045 char *end,
eeb11688
DC
4046 int pass)
4047{
4048 struct xlog_recover *trans;
eeb11688
DC
4049 unsigned int len;
4050
4051 /* Do we understand who wrote this op? */
4052 if (ohead->oh_clientid != XFS_TRANSACTION &&
4053 ohead->oh_clientid != XFS_LOG) {
4054 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4055 __func__, ohead->oh_clientid);
4056 ASSERT(0);
4057 return -EIO;
4058 }
4059
4060 /*
4061 * Check the ophdr contains all the data it is supposed to contain.
4062 */
4063 len = be32_to_cpu(ohead->oh_len);
4064 if (dp + len > end) {
4065 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4066 WARN_ON(1);
4067 return -EIO;
4068 }
4069
4070 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4071 if (!trans) {
4072 /* nothing to do, so skip over this ophdr */
4073 return 0;
4074 }
4075
e9131e50
DC
4076 return xlog_recovery_process_trans(log, trans, dp, len,
4077 ohead->oh_flags, pass);
1da177e4
LT
4078}
4079
4080/*
4081 * There are two valid states of the r_state field. 0 indicates that the
4082 * transaction structure is in a normal state. We have either seen the
4083 * start of the transaction or the last operation we added was not a partial
4084 * operation. If the last operation we added to the transaction was a
4085 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4086 *
4087 * NOTE: skip LRs with 0 data length.
4088 */
4089STATIC int
4090xlog_recover_process_data(
9a8d2fdb 4091 struct xlog *log,
f0a76953 4092 struct hlist_head rhash[],
9a8d2fdb 4093 struct xlog_rec_header *rhead,
b2a922cd 4094 char *dp,
1da177e4
LT
4095 int pass)
4096{
eeb11688 4097 struct xlog_op_header *ohead;
b2a922cd 4098 char *end;
1da177e4 4099 int num_logops;
1da177e4 4100 int error;
1da177e4 4101
eeb11688 4102 end = dp + be32_to_cpu(rhead->h_len);
b53e675d 4103 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
4104
4105 /* check the log format matches our own - else we can't recover */
4106 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 4107 return -EIO;
1da177e4 4108
eeb11688
DC
4109 while ((dp < end) && num_logops) {
4110
4111 ohead = (struct xlog_op_header *)dp;
4112 dp += sizeof(*ohead);
4113 ASSERT(dp <= end);
4114
4115 /* errors will abort recovery */
4116 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4117 dp, end, pass);
4118 if (error)
4119 return error;
4120
67fcb7bf 4121 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
4122 num_logops--;
4123 }
4124 return 0;
4125}
4126
4127/*
4128 * Process an extent free intent item that was recovered from
4129 * the log. We need to free the extents that it describes.
4130 */
3c1e2bbe 4131STATIC int
1da177e4
LT
4132xlog_recover_process_efi(
4133 xfs_mount_t *mp,
4134 xfs_efi_log_item_t *efip)
4135{
4136 xfs_efd_log_item_t *efdp;
4137 xfs_trans_t *tp;
4138 int i;
3c1e2bbe 4139 int error = 0;
1da177e4
LT
4140 xfs_extent_t *extp;
4141 xfs_fsblock_t startblock_fsb;
4142
b199c8a4 4143 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
4144
4145 /*
4146 * First check the validity of the extents described by the
4147 * EFI. If any are bad, then assume that all are bad and
4148 * just toss the EFI.
4149 */
4150 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4151 extp = &(efip->efi_format.efi_extents[i]);
4152 startblock_fsb = XFS_BB_TO_FSB(mp,
4153 XFS_FSB_TO_DADDR(mp, extp->ext_start));
4154 if ((startblock_fsb == 0) ||
4155 (extp->ext_len == 0) ||
4156 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
4157 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
4158 /*
4159 * This will pull the EFI from the AIL and
4160 * free the memory associated with it.
4161 */
666d644c 4162 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
5e4b5386 4163 xfs_efi_release(efip);
2451337d 4164 return -EIO;
1da177e4
LT
4165 }
4166 }
4167
4168 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 4169 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
4170 if (error)
4171 goto abort_error;
1da177e4
LT
4172 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
4173
4174 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
4175 extp = &(efip->efi_format.efi_extents[i]);
6bc43af3
BF
4176 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
4177 extp->ext_len);
fc6149d8
DC
4178 if (error)
4179 goto abort_error;
6bc43af3 4180
1da177e4
LT
4181 }
4182
b199c8a4 4183 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
70393313 4184 error = xfs_trans_commit(tp);
3c1e2bbe 4185 return error;
fc6149d8
DC
4186
4187abort_error:
4906e215 4188 xfs_trans_cancel(tp);
fc6149d8 4189 return error;
1da177e4
LT
4190}
4191
1da177e4
LT
4192/*
4193 * When this is called, all of the EFIs which did not have
4194 * corresponding EFDs should be in the AIL. What we do now
4195 * is free the extents associated with each one.
4196 *
4197 * Since we process the EFIs in normal transactions, they
4198 * will be removed at some point after the commit. This prevents
4199 * us from just walking down the list processing each one.
4200 * We'll use a flag in the EFI to skip those that we've already
4201 * processed and use the AIL iteration mechanism's generation
4202 * count to try to speed this up at least a bit.
4203 *
4204 * When we start, we know that the EFIs are the only things in
4205 * the AIL. As we process them, however, other items are added
4206 * to the AIL. Since everything added to the AIL must come after
4207 * everything already in the AIL, we stop processing as soon as
4208 * we see something other than an EFI in the AIL.
4209 */
3c1e2bbe 4210STATIC int
1da177e4 4211xlog_recover_process_efis(
f0b2efad 4212 struct xlog *log)
1da177e4 4213{
f0b2efad
BF
4214 struct xfs_log_item *lip;
4215 struct xfs_efi_log_item *efip;
3c1e2bbe 4216 int error = 0;
27d8d5fe 4217 struct xfs_ail_cursor cur;
a9c21c1b 4218 struct xfs_ail *ailp;
1da177e4 4219
a9c21c1b
DC
4220 ailp = log->l_ailp;
4221 spin_lock(&ailp->xa_lock);
4222 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
4223 while (lip != NULL) {
4224 /*
4225 * We're done when we see something other than an EFI.
27d8d5fe 4226 * There should be no EFIs left in the AIL now.
1da177e4
LT
4227 */
4228 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 4229#ifdef DEBUG
a9c21c1b 4230 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
4231 ASSERT(lip->li_type != XFS_LI_EFI);
4232#endif
1da177e4
LT
4233 break;
4234 }
4235
4236 /*
4237 * Skip EFIs that we've already processed.
4238 */
f0b2efad 4239 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
b199c8a4 4240 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 4241 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
4242 continue;
4243 }
4244
a9c21c1b
DC
4245 spin_unlock(&ailp->xa_lock);
4246 error = xlog_recover_process_efi(log->l_mp, efip);
4247 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
4248 if (error)
4249 goto out;
a9c21c1b 4250 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 4251 }
27d8d5fe 4252out:
e4a1e29c 4253 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 4254 spin_unlock(&ailp->xa_lock);
3c1e2bbe 4255 return error;
1da177e4
LT
4256}
4257
f0b2efad
BF
4258/*
4259 * A cancel occurs when the mount has failed and we're bailing out. Release all
4260 * pending EFIs so they don't pin the AIL.
4261 */
4262STATIC int
4263xlog_recover_cancel_efis(
4264 struct xlog *log)
4265{
4266 struct xfs_log_item *lip;
4267 struct xfs_efi_log_item *efip;
4268 int error = 0;
4269 struct xfs_ail_cursor cur;
4270 struct xfs_ail *ailp;
4271
4272 ailp = log->l_ailp;
4273 spin_lock(&ailp->xa_lock);
4274 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4275 while (lip != NULL) {
4276 /*
4277 * We're done when we see something other than an EFI.
4278 * There should be no EFIs left in the AIL now.
4279 */
4280 if (lip->li_type != XFS_LI_EFI) {
4281#ifdef DEBUG
4282 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4283 ASSERT(lip->li_type != XFS_LI_EFI);
4284#endif
4285 break;
4286 }
4287
4288 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4289
4290 spin_unlock(&ailp->xa_lock);
4291 xfs_efi_release(efip);
4292 spin_lock(&ailp->xa_lock);
4293
4294 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4295 }
4296
4297 xfs_trans_ail_cursor_done(&cur);
4298 spin_unlock(&ailp->xa_lock);
4299 return error;
4300}
4301
1da177e4
LT
4302/*
4303 * This routine performs a transaction to null out a bad inode pointer
4304 * in an agi unlinked inode hash bucket.
4305 */
4306STATIC void
4307xlog_recover_clear_agi_bucket(
4308 xfs_mount_t *mp,
4309 xfs_agnumber_t agno,
4310 int bucket)
4311{
4312 xfs_trans_t *tp;
4313 xfs_agi_t *agi;
4314 xfs_buf_t *agibp;
4315 int offset;
4316 int error;
4317
4318 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 4319 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
4320 if (error)
4321 goto out_abort;
1da177e4 4322
5e1be0fb
CH
4323 error = xfs_read_agi(mp, tp, agno, &agibp);
4324 if (error)
e5720eec 4325 goto out_abort;
1da177e4 4326
5e1be0fb 4327 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4328 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
4329 offset = offsetof(xfs_agi_t, agi_unlinked) +
4330 (sizeof(xfs_agino_t) * bucket);
4331 xfs_trans_log_buf(tp, agibp, offset,
4332 (offset + sizeof(xfs_agino_t) - 1));
4333
70393313 4334 error = xfs_trans_commit(tp);
e5720eec
DC
4335 if (error)
4336 goto out_error;
4337 return;
4338
4339out_abort:
4906e215 4340 xfs_trans_cancel(tp);
e5720eec 4341out_error:
a0fa2b67 4342 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 4343 return;
1da177e4
LT
4344}
4345
23fac50f
CH
4346STATIC xfs_agino_t
4347xlog_recover_process_one_iunlink(
4348 struct xfs_mount *mp,
4349 xfs_agnumber_t agno,
4350 xfs_agino_t agino,
4351 int bucket)
4352{
4353 struct xfs_buf *ibp;
4354 struct xfs_dinode *dip;
4355 struct xfs_inode *ip;
4356 xfs_ino_t ino;
4357 int error;
4358
4359 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 4360 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
4361 if (error)
4362 goto fail;
4363
4364 /*
4365 * Get the on disk inode to find the next inode in the bucket.
4366 */
475ee413 4367 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 4368 if (error)
0e446673 4369 goto fail_iput;
23fac50f 4370
23fac50f 4371 ASSERT(ip->i_d.di_nlink == 0);
0e446673 4372 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
4373
4374 /* setup for the next pass */
4375 agino = be32_to_cpu(dip->di_next_unlinked);
4376 xfs_buf_relse(ibp);
4377
4378 /*
4379 * Prevent any DMAPI event from being sent when the reference on
4380 * the inode is dropped.
4381 */
4382 ip->i_d.di_dmevmask = 0;
4383
0e446673 4384 IRELE(ip);
23fac50f
CH
4385 return agino;
4386
0e446673
CH
4387 fail_iput:
4388 IRELE(ip);
23fac50f
CH
4389 fail:
4390 /*
4391 * We can't read in the inode this bucket points to, or this inode
4392 * is messed up. Just ditch this bucket of inodes. We will lose
4393 * some inodes and space, but at least we won't hang.
4394 *
4395 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4396 * clear the inode pointer in the bucket.
4397 */
4398 xlog_recover_clear_agi_bucket(mp, agno, bucket);
4399 return NULLAGINO;
4400}
4401
1da177e4
LT
4402/*
4403 * xlog_iunlink_recover
4404 *
4405 * This is called during recovery to process any inodes which
4406 * we unlinked but not freed when the system crashed. These
4407 * inodes will be on the lists in the AGI blocks. What we do
4408 * here is scan all the AGIs and fully truncate and free any
4409 * inodes found on the lists. Each inode is removed from the
4410 * lists when it has been fully truncated and is freed. The
4411 * freeing of the inode and its removal from the list must be
4412 * atomic.
4413 */
d96f8f89 4414STATIC void
1da177e4 4415xlog_recover_process_iunlinks(
9a8d2fdb 4416 struct xlog *log)
1da177e4
LT
4417{
4418 xfs_mount_t *mp;
4419 xfs_agnumber_t agno;
4420 xfs_agi_t *agi;
4421 xfs_buf_t *agibp;
1da177e4 4422 xfs_agino_t agino;
1da177e4
LT
4423 int bucket;
4424 int error;
4425 uint mp_dmevmask;
4426
4427 mp = log->l_mp;
4428
4429 /*
4430 * Prevent any DMAPI event from being sent while in this function.
4431 */
4432 mp_dmevmask = mp->m_dmevmask;
4433 mp->m_dmevmask = 0;
4434
4435 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4436 /*
4437 * Find the agi for this ag.
4438 */
5e1be0fb
CH
4439 error = xfs_read_agi(mp, NULL, agno, &agibp);
4440 if (error) {
4441 /*
4442 * AGI is b0rked. Don't process it.
4443 *
4444 * We should probably mark the filesystem as corrupt
4445 * after we've recovered all the ag's we can....
4446 */
4447 continue;
1da177e4 4448 }
d97d32ed
JK
4449 /*
4450 * Unlock the buffer so that it can be acquired in the normal
4451 * course of the transaction to truncate and free each inode.
4452 * Because we are not racing with anyone else here for the AGI
4453 * buffer, we don't even need to hold it locked to read the
4454 * initial unlinked bucket entries out of the buffer. We keep
4455 * buffer reference though, so that it stays pinned in memory
4456 * while we need the buffer.
4457 */
1da177e4 4458 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 4459 xfs_buf_unlock(agibp);
1da177e4
LT
4460
4461 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 4462 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 4463 while (agino != NULLAGINO) {
23fac50f
CH
4464 agino = xlog_recover_process_one_iunlink(mp,
4465 agno, agino, bucket);
1da177e4
LT
4466 }
4467 }
d97d32ed 4468 xfs_buf_rele(agibp);
1da177e4
LT
4469 }
4470
4471 mp->m_dmevmask = mp_dmevmask;
4472}
4473
0e446be4 4474STATIC int
1da177e4 4475xlog_unpack_data(
9a8d2fdb 4476 struct xlog_rec_header *rhead,
b2a922cd 4477 char *dp,
9a8d2fdb 4478 struct xlog *log)
1da177e4
LT
4479{
4480 int i, j, k;
1da177e4 4481
b53e675d 4482 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 4483 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 4484 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
4485 dp += BBSIZE;
4486 }
4487
62118709 4488 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 4489 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 4490 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4491 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4492 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4493 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4494 dp += BBSIZE;
4495 }
4496 }
0e446be4
CH
4497
4498 return 0;
1da177e4
LT
4499}
4500
9d94901f 4501/*
b94fb2d1 4502 * CRC check, unpack and process a log record.
9d94901f
BF
4503 */
4504STATIC int
4505xlog_recover_process(
4506 struct xlog *log,
4507 struct hlist_head rhash[],
4508 struct xlog_rec_header *rhead,
4509 char *dp,
4510 int pass)
4511{
4512 int error;
b94fb2d1
BF
4513 __le32 crc;
4514
6528250b
BF
4515 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4516
b94fb2d1 4517 /*
6528250b
BF
4518 * Nothing else to do if this is a CRC verification pass. Just return
4519 * if this a record with a non-zero crc. Unfortunately, mkfs always
4520 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4521 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4522 * know precisely what failed.
4523 */
4524 if (pass == XLOG_RECOVER_CRCPASS) {
4525 if (rhead->h_crc && crc != le32_to_cpu(rhead->h_crc))
4526 return -EFSBADCRC;
4527 return 0;
4528 }
4529
4530 /*
4531 * We're in the normal recovery path. Issue a warning if and only if the
4532 * CRC in the header is non-zero. This is an advisory warning and the
4533 * zero CRC check prevents warnings from being emitted when upgrading
4534 * the kernel from one that does not add CRCs by default.
b94fb2d1 4535 */
b94fb2d1
BF
4536 if (crc != le32_to_cpu(rhead->h_crc)) {
4537 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4538 xfs_alert(log->l_mp,
4539 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4540 le32_to_cpu(rhead->h_crc),
4541 le32_to_cpu(crc));
4542 xfs_hex_dump(dp, 32);
4543 }
4544
4545 /*
4546 * If the filesystem is CRC enabled, this mismatch becomes a
4547 * fatal log corruption failure.
4548 */
4549 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4550 return -EFSCORRUPTED;
4551 }
9d94901f
BF
4552
4553 error = xlog_unpack_data(rhead, dp, log);
4554 if (error)
4555 return error;
4556
4557 return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4558}
4559
1da177e4
LT
4560STATIC int
4561xlog_valid_rec_header(
9a8d2fdb
MT
4562 struct xlog *log,
4563 struct xlog_rec_header *rhead,
1da177e4
LT
4564 xfs_daddr_t blkno)
4565{
4566 int hlen;
4567
69ef921b 4568 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4569 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4570 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4571 return -EFSCORRUPTED;
1da177e4
LT
4572 }
4573 if (unlikely(
4574 (!rhead->h_version ||
b53e675d 4575 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4576 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4577 __func__, be32_to_cpu(rhead->h_version));
2451337d 4578 return -EIO;
1da177e4
LT
4579 }
4580
4581 /* LR body must have data or it wouldn't have been written */
b53e675d 4582 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4583 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4584 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4585 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4586 return -EFSCORRUPTED;
1da177e4
LT
4587 }
4588 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4589 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4590 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4591 return -EFSCORRUPTED;
1da177e4
LT
4592 }
4593 return 0;
4594}
4595
4596/*
4597 * Read the log from tail to head and process the log records found.
4598 * Handle the two cases where the tail and head are in the same cycle
4599 * and where the active portion of the log wraps around the end of
4600 * the physical log separately. The pass parameter is passed through
4601 * to the routines called to process the data and is not looked at
4602 * here.
4603 */
4604STATIC int
4605xlog_do_recovery_pass(
9a8d2fdb 4606 struct xlog *log,
1da177e4
LT
4607 xfs_daddr_t head_blk,
4608 xfs_daddr_t tail_blk,
d7f37692
BF
4609 int pass,
4610 xfs_daddr_t *first_bad) /* out: first bad log rec */
1da177e4
LT
4611{
4612 xlog_rec_header_t *rhead;
4613 xfs_daddr_t blk_no;
d7f37692 4614 xfs_daddr_t rhead_blk;
b2a922cd 4615 char *offset;
1da177e4 4616 xfs_buf_t *hbp, *dbp;
a70f9fe5 4617 int error = 0, h_size, h_len;
1da177e4
LT
4618 int bblks, split_bblks;
4619 int hblks, split_hblks, wrapped_hblks;
f0a76953 4620 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4621
4622 ASSERT(head_blk != tail_blk);
d7f37692 4623 rhead_blk = 0;
1da177e4
LT
4624
4625 /*
4626 * Read the header of the tail block and get the iclog buffer size from
4627 * h_size. Use this to tell how many sectors make up the log header.
4628 */
62118709 4629 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4630 /*
4631 * When using variable length iclogs, read first sector of
4632 * iclog header and extract the header size from it. Get a
4633 * new hbp that is the correct size.
4634 */
4635 hbp = xlog_get_bp(log, 1);
4636 if (!hbp)
2451337d 4637 return -ENOMEM;
076e6acb
CH
4638
4639 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4640 if (error)
1da177e4 4641 goto bread_err1;
076e6acb 4642
1da177e4
LT
4643 rhead = (xlog_rec_header_t *)offset;
4644 error = xlog_valid_rec_header(log, rhead, tail_blk);
4645 if (error)
4646 goto bread_err1;
a70f9fe5
BF
4647
4648 /*
4649 * xfsprogs has a bug where record length is based on lsunit but
4650 * h_size (iclog size) is hardcoded to 32k. Now that we
4651 * unconditionally CRC verify the unmount record, this means the
4652 * log buffer can be too small for the record and cause an
4653 * overrun.
4654 *
4655 * Detect this condition here. Use lsunit for the buffer size as
4656 * long as this looks like the mkfs case. Otherwise, return an
4657 * error to avoid a buffer overrun.
4658 */
b53e675d 4659 h_size = be32_to_cpu(rhead->h_size);
a70f9fe5
BF
4660 h_len = be32_to_cpu(rhead->h_len);
4661 if (h_len > h_size) {
4662 if (h_len <= log->l_mp->m_logbsize &&
4663 be32_to_cpu(rhead->h_num_logops) == 1) {
4664 xfs_warn(log->l_mp,
4665 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4666 h_size, log->l_mp->m_logbsize);
4667 h_size = log->l_mp->m_logbsize;
4668 } else
4669 return -EFSCORRUPTED;
4670 }
4671
b53e675d 4672 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4673 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4674 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4675 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4676 hblks++;
4677 xlog_put_bp(hbp);
4678 hbp = xlog_get_bp(log, hblks);
4679 } else {
4680 hblks = 1;
4681 }
4682 } else {
69ce58f0 4683 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4684 hblks = 1;
4685 hbp = xlog_get_bp(log, 1);
4686 h_size = XLOG_BIG_RECORD_BSIZE;
4687 }
4688
4689 if (!hbp)
2451337d 4690 return -ENOMEM;
1da177e4
LT
4691 dbp = xlog_get_bp(log, BTOBB(h_size));
4692 if (!dbp) {
4693 xlog_put_bp(hbp);
2451337d 4694 return -ENOMEM;
1da177e4
LT
4695 }
4696
4697 memset(rhash, 0, sizeof(rhash));
d7f37692 4698 blk_no = rhead_blk = tail_blk;
970fd3f0 4699 if (tail_blk > head_blk) {
1da177e4
LT
4700 /*
4701 * Perform recovery around the end of the physical log.
4702 * When the head is not on the same cycle number as the tail,
970fd3f0 4703 * we can't do a sequential recovery.
1da177e4 4704 */
1da177e4
LT
4705 while (blk_no < log->l_logBBsize) {
4706 /*
4707 * Check for header wrapping around physical end-of-log
4708 */
62926044 4709 offset = hbp->b_addr;
1da177e4
LT
4710 split_hblks = 0;
4711 wrapped_hblks = 0;
4712 if (blk_no + hblks <= log->l_logBBsize) {
4713 /* Read header in one read */
076e6acb
CH
4714 error = xlog_bread(log, blk_no, hblks, hbp,
4715 &offset);
1da177e4
LT
4716 if (error)
4717 goto bread_err2;
1da177e4
LT
4718 } else {
4719 /* This LR is split across physical log end */
4720 if (blk_no != log->l_logBBsize) {
4721 /* some data before physical log end */
4722 ASSERT(blk_no <= INT_MAX);
4723 split_hblks = log->l_logBBsize - (int)blk_no;
4724 ASSERT(split_hblks > 0);
076e6acb
CH
4725 error = xlog_bread(log, blk_no,
4726 split_hblks, hbp,
4727 &offset);
4728 if (error)
1da177e4 4729 goto bread_err2;
1da177e4 4730 }
076e6acb 4731
1da177e4
LT
4732 /*
4733 * Note: this black magic still works with
4734 * large sector sizes (non-512) only because:
4735 * - we increased the buffer size originally
4736 * by 1 sector giving us enough extra space
4737 * for the second read;
4738 * - the log start is guaranteed to be sector
4739 * aligned;
4740 * - we read the log end (LR header start)
4741 * _first_, then the log start (LR header end)
4742 * - order is important.
4743 */
234f56ac 4744 wrapped_hblks = hblks - split_hblks;
44396476
DC
4745 error = xlog_bread_offset(log, 0,
4746 wrapped_hblks, hbp,
4747 offset + BBTOB(split_hblks));
1da177e4
LT
4748 if (error)
4749 goto bread_err2;
1da177e4
LT
4750 }
4751 rhead = (xlog_rec_header_t *)offset;
4752 error = xlog_valid_rec_header(log, rhead,
4753 split_hblks ? blk_no : 0);
4754 if (error)
4755 goto bread_err2;
4756
b53e675d 4757 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4758 blk_no += hblks;
4759
4760 /* Read in data for log record */
4761 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4762 error = xlog_bread(log, blk_no, bblks, dbp,
4763 &offset);
1da177e4
LT
4764 if (error)
4765 goto bread_err2;
1da177e4
LT
4766 } else {
4767 /* This log record is split across the
4768 * physical end of log */
62926044 4769 offset = dbp->b_addr;
1da177e4
LT
4770 split_bblks = 0;
4771 if (blk_no != log->l_logBBsize) {
4772 /* some data is before the physical
4773 * end of log */
4774 ASSERT(!wrapped_hblks);
4775 ASSERT(blk_no <= INT_MAX);
4776 split_bblks =
4777 log->l_logBBsize - (int)blk_no;
4778 ASSERT(split_bblks > 0);
076e6acb
CH
4779 error = xlog_bread(log, blk_no,
4780 split_bblks, dbp,
4781 &offset);
4782 if (error)
1da177e4 4783 goto bread_err2;
1da177e4 4784 }
076e6acb 4785
1da177e4
LT
4786 /*
4787 * Note: this black magic still works with
4788 * large sector sizes (non-512) only because:
4789 * - we increased the buffer size originally
4790 * by 1 sector giving us enough extra space
4791 * for the second read;
4792 * - the log start is guaranteed to be sector
4793 * aligned;
4794 * - we read the log end (LR header start)
4795 * _first_, then the log start (LR header end)
4796 * - order is important.
4797 */
44396476 4798 error = xlog_bread_offset(log, 0,
009507b0 4799 bblks - split_bblks, dbp,
44396476 4800 offset + BBTOB(split_bblks));
076e6acb
CH
4801 if (error)
4802 goto bread_err2;
1da177e4 4803 }
0e446be4 4804
9d94901f
BF
4805 error = xlog_recover_process(log, rhash, rhead, offset,
4806 pass);
0e446be4 4807 if (error)
1da177e4 4808 goto bread_err2;
d7f37692 4809
1da177e4 4810 blk_no += bblks;
d7f37692 4811 rhead_blk = blk_no;
1da177e4
LT
4812 }
4813
4814 ASSERT(blk_no >= log->l_logBBsize);
4815 blk_no -= log->l_logBBsize;
d7f37692 4816 rhead_blk = blk_no;
970fd3f0 4817 }
1da177e4 4818
970fd3f0
ES
4819 /* read first part of physical log */
4820 while (blk_no < head_blk) {
4821 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4822 if (error)
4823 goto bread_err2;
076e6acb 4824
970fd3f0
ES
4825 rhead = (xlog_rec_header_t *)offset;
4826 error = xlog_valid_rec_header(log, rhead, blk_no);
4827 if (error)
4828 goto bread_err2;
076e6acb 4829
970fd3f0
ES
4830 /* blocks in data section */
4831 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4832 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4833 &offset);
4834 if (error)
4835 goto bread_err2;
076e6acb 4836
9d94901f 4837 error = xlog_recover_process(log, rhash, rhead, offset, pass);
970fd3f0
ES
4838 if (error)
4839 goto bread_err2;
d7f37692 4840
970fd3f0 4841 blk_no += bblks + hblks;
d7f37692 4842 rhead_blk = blk_no;
1da177e4
LT
4843 }
4844
4845 bread_err2:
4846 xlog_put_bp(dbp);
4847 bread_err1:
4848 xlog_put_bp(hbp);
d7f37692
BF
4849
4850 if (error && first_bad)
4851 *first_bad = rhead_blk;
4852
1da177e4
LT
4853 return error;
4854}
4855
4856/*
4857 * Do the recovery of the log. We actually do this in two phases.
4858 * The two passes are necessary in order to implement the function
4859 * of cancelling a record written into the log. The first pass
4860 * determines those things which have been cancelled, and the
4861 * second pass replays log items normally except for those which
4862 * have been cancelled. The handling of the replay and cancellations
4863 * takes place in the log item type specific routines.
4864 *
4865 * The table of items which have cancel records in the log is allocated
4866 * and freed at this level, since only here do we know when all of
4867 * the log recovery has been completed.
4868 */
4869STATIC int
4870xlog_do_log_recovery(
9a8d2fdb 4871 struct xlog *log,
1da177e4
LT
4872 xfs_daddr_t head_blk,
4873 xfs_daddr_t tail_blk)
4874{
d5689eaa 4875 int error, i;
1da177e4
LT
4876
4877 ASSERT(head_blk != tail_blk);
4878
4879 /*
4880 * First do a pass to find all of the cancelled buf log items.
4881 * Store them in the buf_cancel_table for use in the second pass.
4882 */
d5689eaa
CH
4883 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4884 sizeof(struct list_head),
1da177e4 4885 KM_SLEEP);
d5689eaa
CH
4886 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4887 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4888
1da177e4 4889 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 4890 XLOG_RECOVER_PASS1, NULL);
1da177e4 4891 if (error != 0) {
f0e2d93c 4892 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4893 log->l_buf_cancel_table = NULL;
4894 return error;
4895 }
4896 /*
4897 * Then do a second pass to actually recover the items in the log.
4898 * When it is complete free the table of buf cancel items.
4899 */
4900 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 4901 XLOG_RECOVER_PASS2, NULL);
1da177e4 4902#ifdef DEBUG
6d192a9b 4903 if (!error) {
1da177e4
LT
4904 int i;
4905
4906 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4907 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4908 }
4909#endif /* DEBUG */
4910
f0e2d93c 4911 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4912 log->l_buf_cancel_table = NULL;
4913
4914 return error;
4915}
4916
4917/*
4918 * Do the actual recovery
4919 */
4920STATIC int
4921xlog_do_recover(
9a8d2fdb 4922 struct xlog *log,
1da177e4
LT
4923 xfs_daddr_t head_blk,
4924 xfs_daddr_t tail_blk)
4925{
4926 int error;
4927 xfs_buf_t *bp;
4928 xfs_sb_t *sbp;
4929
4930 /*
4931 * First replay the images in the log.
4932 */
4933 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4934 if (error)
1da177e4 4935 return error;
1da177e4
LT
4936
4937 /*
4938 * If IO errors happened during recovery, bail out.
4939 */
4940 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
2451337d 4941 return -EIO;
1da177e4
LT
4942 }
4943
4944 /*
4945 * We now update the tail_lsn since much of the recovery has completed
4946 * and there may be space available to use. If there were no extent
4947 * or iunlinks, we can free up the entire log and set the tail_lsn to
4948 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4949 * lsn of the last known good LR on disk. If there are extent frees
4950 * or iunlinks they will have some entries in the AIL; so we look at
4951 * the AIL to determine how to set the tail_lsn.
4952 */
4953 xlog_assign_tail_lsn(log->l_mp);
4954
4955 /*
4956 * Now that we've finished replaying all buffer and inode
98021821 4957 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4958 */
4959 bp = xfs_getsb(log->l_mp, 0);
4960 XFS_BUF_UNDONE(bp);
bebf963f 4961 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4962 XFS_BUF_READ(bp);
bebf963f 4963 XFS_BUF_UNASYNC(bp);
1813dd64 4964 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3 4965
595bff75 4966 error = xfs_buf_submit_wait(bp);
d64e31a2 4967 if (error) {
595bff75
DC
4968 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
4969 xfs_buf_ioerror_alert(bp, __func__);
4970 ASSERT(0);
4971 }
1da177e4
LT
4972 xfs_buf_relse(bp);
4973 return error;
4974 }
4975
4976 /* Convert superblock from on-disk format */
4977 sbp = &log->l_mp->m_sb;
98021821 4978 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4979 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4980 ASSERT(xfs_sb_good_version(sbp));
5681ca40
DC
4981 xfs_reinit_percpu_counters(log->l_mp);
4982
1da177e4
LT
4983 xfs_buf_relse(bp);
4984
5478eead 4985
1da177e4
LT
4986 xlog_recover_check_summary(log);
4987
4988 /* Normal transactions can now occur */
4989 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4990 return 0;
4991}
4992
4993/*
4994 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4995 *
4996 * Return error or zero.
4997 */
4998int
4999xlog_recover(
9a8d2fdb 5000 struct xlog *log)
1da177e4
LT
5001{
5002 xfs_daddr_t head_blk, tail_blk;
5003 int error;
5004
5005 /* find the tail of the log */
a45086e2
BF
5006 error = xlog_find_tail(log, &head_blk, &tail_blk);
5007 if (error)
1da177e4
LT
5008 return error;
5009
a45086e2
BF
5010 /*
5011 * The superblock was read before the log was available and thus the LSN
5012 * could not be verified. Check the superblock LSN against the current
5013 * LSN now that it's known.
5014 */
5015 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5016 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5017 return -EINVAL;
5018
1da177e4
LT
5019 if (tail_blk != head_blk) {
5020 /* There used to be a comment here:
5021 *
5022 * disallow recovery on read-only mounts. note -- mount
5023 * checks for ENOSPC and turns it into an intelligent
5024 * error message.
5025 * ...but this is no longer true. Now, unless you specify
5026 * NORECOVERY (in which case this function would never be
5027 * called), we just go ahead and recover. We do this all
5028 * under the vfs layer, so we can get away with it unless
5029 * the device itself is read-only, in which case we fail.
5030 */
3a02ee18 5031 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
5032 return error;
5033 }
5034
e721f504
DC
5035 /*
5036 * Version 5 superblock log feature mask validation. We know the
5037 * log is dirty so check if there are any unknown log features
5038 * in what we need to recover. If there are unknown features
5039 * (e.g. unsupported transactions, then simply reject the
5040 * attempt at recovery before touching anything.
5041 */
5042 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5043 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5044 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5045 xfs_warn(log->l_mp,
f41febd2 5046"Superblock has unknown incompatible log features (0x%x) enabled.",
e721f504
DC
5047 (log->l_mp->m_sb.sb_features_log_incompat &
5048 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
f41febd2
JP
5049 xfs_warn(log->l_mp,
5050"The log can not be fully and/or safely recovered by this kernel.");
5051 xfs_warn(log->l_mp,
5052"Please recover the log on a kernel that supports the unknown features.");
2451337d 5053 return -EINVAL;
e721f504
DC
5054 }
5055
2e227178
BF
5056 /*
5057 * Delay log recovery if the debug hook is set. This is debug
5058 * instrumention to coordinate simulation of I/O failures with
5059 * log recovery.
5060 */
5061 if (xfs_globals.log_recovery_delay) {
5062 xfs_notice(log->l_mp,
5063 "Delaying log recovery for %d seconds.",
5064 xfs_globals.log_recovery_delay);
5065 msleep(xfs_globals.log_recovery_delay * 1000);
5066 }
5067
a0fa2b67
DC
5068 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5069 log->l_mp->m_logname ? log->l_mp->m_logname
5070 : "internal");
1da177e4
LT
5071
5072 error = xlog_do_recover(log, head_blk, tail_blk);
5073 log->l_flags |= XLOG_RECOVERY_NEEDED;
5074 }
5075 return error;
5076}
5077
5078/*
5079 * In the first part of recovery we replay inodes and buffers and build
5080 * up the list of extent free items which need to be processed. Here
5081 * we process the extent free items and clean up the on disk unlinked
5082 * inode lists. This is separated from the first part of recovery so
5083 * that the root and real-time bitmap inodes can be read in from disk in
5084 * between the two stages. This is necessary so that we can free space
5085 * in the real-time portion of the file system.
5086 */
5087int
5088xlog_recover_finish(
9a8d2fdb 5089 struct xlog *log)
1da177e4
LT
5090{
5091 /*
5092 * Now we're ready to do the transactions needed for the
5093 * rest of recovery. Start with completing all the extent
5094 * free intent records and then process the unlinked inode
5095 * lists. At this point, we essentially run in normal mode
5096 * except that we're still performing recovery actions
5097 * rather than accepting new requests.
5098 */
5099 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
5100 int error;
5101 error = xlog_recover_process_efis(log);
5102 if (error) {
a0fa2b67 5103 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
5104 return error;
5105 }
1da177e4
LT
5106 /*
5107 * Sync the log to get all the EFIs out of the AIL.
5108 * This isn't absolutely necessary, but it helps in
5109 * case the unlink transactions would have problems
5110 * pushing the EFIs out of the way.
5111 */
a14a348b 5112 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 5113
4249023a 5114 xlog_recover_process_iunlinks(log);
1da177e4
LT
5115
5116 xlog_recover_check_summary(log);
5117
a0fa2b67
DC
5118 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5119 log->l_mp->m_logname ? log->l_mp->m_logname
5120 : "internal");
1da177e4
LT
5121 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5122 } else {
a0fa2b67 5123 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
5124 }
5125 return 0;
5126}
5127
f0b2efad
BF
5128int
5129xlog_recover_cancel(
5130 struct xlog *log)
5131{
5132 int error = 0;
5133
5134 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5135 error = xlog_recover_cancel_efis(log);
5136
5137 return error;
5138}
1da177e4
LT
5139
5140#if defined(DEBUG)
5141/*
5142 * Read all of the agf and agi counters and check that they
5143 * are consistent with the superblock counters.
5144 */
5145void
5146xlog_recover_check_summary(
9a8d2fdb 5147 struct xlog *log)
1da177e4
LT
5148{
5149 xfs_mount_t *mp;
5150 xfs_agf_t *agfp;
1da177e4
LT
5151 xfs_buf_t *agfbp;
5152 xfs_buf_t *agibp;
1da177e4
LT
5153 xfs_agnumber_t agno;
5154 __uint64_t freeblks;
5155 __uint64_t itotal;
5156 __uint64_t ifree;
5e1be0fb 5157 int error;
1da177e4
LT
5158
5159 mp = log->l_mp;
5160
5161 freeblks = 0LL;
5162 itotal = 0LL;
5163 ifree = 0LL;
5164 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
5165 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5166 if (error) {
a0fa2b67
DC
5167 xfs_alert(mp, "%s agf read failed agno %d error %d",
5168 __func__, agno, error);
4805621a
FCH
5169 } else {
5170 agfp = XFS_BUF_TO_AGF(agfbp);
5171 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5172 be32_to_cpu(agfp->agf_flcount);
5173 xfs_buf_relse(agfbp);
1da177e4 5174 }
1da177e4 5175
5e1be0fb 5176 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
5177 if (error) {
5178 xfs_alert(mp, "%s agi read failed agno %d error %d",
5179 __func__, agno, error);
5180 } else {
5e1be0fb 5181 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 5182
5e1be0fb
CH
5183 itotal += be32_to_cpu(agi->agi_count);
5184 ifree += be32_to_cpu(agi->agi_freecount);
5185 xfs_buf_relse(agibp);
5186 }
1da177e4 5187 }
1da177e4
LT
5188}
5189#endif /* DEBUG */
This page took 1.57349 seconds and 5 git commands to generate.