xfs: avoid double-free in xfs_attr_node_addname
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
6ca1c906 20#include "xfs_format.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
ee1a47ab 32#include "xfs_btree.h"
1da177e4 33#include "xfs_dinode.h"
1da177e4 34#include "xfs_inode.h"
a844f451 35#include "xfs_inode_item.h"
a844f451 36#include "xfs_alloc.h"
1da177e4
LT
37#include "xfs_ialloc.h"
38#include "xfs_log_priv.h"
39#include "xfs_buf_item.h"
1da177e4
LT
40#include "xfs_log_recover.h"
41#include "xfs_extfree_item.h"
42#include "xfs_trans_priv.h"
1da177e4 43#include "xfs_quota.h"
0e446be4 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
28c8e41a 47#include "xfs_icreate_item.h"
d75afeb3
DC
48
49/* Need all the magic numbers and buffer ops structures from these headers */
f948dd76 50#include "xfs_symlink.h"
d75afeb3
DC
51#include "xfs_da_btree.h"
52#include "xfs_dir2_format.h"
2b9ab5ab 53#include "xfs_dir2.h"
d75afeb3
DC
54#include "xfs_attr_leaf.h"
55#include "xfs_attr_remote.h"
1da177e4 56
fc06c6d0
DC
57#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
58
9a8d2fdb
MT
59STATIC int
60xlog_find_zeroed(
61 struct xlog *,
62 xfs_daddr_t *);
63STATIC int
64xlog_clear_stale_blocks(
65 struct xlog *,
66 xfs_lsn_t);
1da177e4 67#if defined(DEBUG)
9a8d2fdb
MT
68STATIC void
69xlog_recover_check_summary(
70 struct xlog *);
1da177e4
LT
71#else
72#define xlog_recover_check_summary(log)
1da177e4
LT
73#endif
74
d5689eaa
CH
75/*
76 * This structure is used during recovery to record the buf log items which
77 * have been canceled and should not be replayed.
78 */
79struct xfs_buf_cancel {
80 xfs_daddr_t bc_blkno;
81 uint bc_len;
82 int bc_refcount;
83 struct list_head bc_list;
84};
85
1da177e4
LT
86/*
87 * Sector aligned buffer routines for buffer create/read/write/access
88 */
89
ff30a622
AE
90/*
91 * Verify the given count of basic blocks is valid number of blocks
92 * to specify for an operation involving the given XFS log buffer.
93 * Returns nonzero if the count is valid, 0 otherwise.
94 */
95
96static inline int
97xlog_buf_bbcount_valid(
9a8d2fdb 98 struct xlog *log,
ff30a622
AE
99 int bbcount)
100{
101 return bbcount > 0 && bbcount <= log->l_logBBsize;
102}
103
36adecff
AE
104/*
105 * Allocate a buffer to hold log data. The buffer needs to be able
106 * to map to a range of nbblks basic blocks at any valid (basic
107 * block) offset within the log.
108 */
5d77c0dc 109STATIC xfs_buf_t *
1da177e4 110xlog_get_bp(
9a8d2fdb 111 struct xlog *log,
3228149c 112 int nbblks)
1da177e4 113{
c8da0faf
CH
114 struct xfs_buf *bp;
115
ff30a622 116 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 117 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
118 nbblks);
119 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
120 return NULL;
121 }
1da177e4 122
36adecff
AE
123 /*
124 * We do log I/O in units of log sectors (a power-of-2
125 * multiple of the basic block size), so we round up the
25985edc 126 * requested size to accommodate the basic blocks required
36adecff
AE
127 * for complete log sectors.
128 *
129 * In addition, the buffer may be used for a non-sector-
130 * aligned block offset, in which case an I/O of the
131 * requested size could extend beyond the end of the
132 * buffer. If the requested size is only 1 basic block it
133 * will never straddle a sector boundary, so this won't be
134 * an issue. Nor will this be a problem if the log I/O is
135 * done in basic blocks (sector size 1). But otherwise we
136 * extend the buffer by one extra log sector to ensure
25985edc 137 * there's space to accommodate this possibility.
36adecff 138 */
69ce58f0
AE
139 if (nbblks > 1 && log->l_sectBBsize > 1)
140 nbblks += log->l_sectBBsize;
141 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 142
e70b73f8 143 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
144 if (bp)
145 xfs_buf_unlock(bp);
146 return bp;
1da177e4
LT
147}
148
5d77c0dc 149STATIC void
1da177e4
LT
150xlog_put_bp(
151 xfs_buf_t *bp)
152{
153 xfs_buf_free(bp);
154}
155
48389ef1
AE
156/*
157 * Return the address of the start of the given block number's data
158 * in a log buffer. The buffer covers a log sector-aligned region.
159 */
076e6acb
CH
160STATIC xfs_caddr_t
161xlog_align(
9a8d2fdb 162 struct xlog *log,
076e6acb
CH
163 xfs_daddr_t blk_no,
164 int nbblks,
9a8d2fdb 165 struct xfs_buf *bp)
076e6acb 166{
fdc07f44 167 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 168
4e94b71b 169 ASSERT(offset + nbblks <= bp->b_length);
62926044 170 return bp->b_addr + BBTOB(offset);
076e6acb
CH
171}
172
1da177e4
LT
173
174/*
175 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
176 */
076e6acb
CH
177STATIC int
178xlog_bread_noalign(
9a8d2fdb 179 struct xlog *log,
1da177e4
LT
180 xfs_daddr_t blk_no,
181 int nbblks,
9a8d2fdb 182 struct xfs_buf *bp)
1da177e4
LT
183{
184 int error;
185
ff30a622 186 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 187 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
188 nbblks);
189 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
190 return EFSCORRUPTED;
191 }
192
69ce58f0
AE
193 blk_no = round_down(blk_no, log->l_sectBBsize);
194 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
195
196 ASSERT(nbblks > 0);
4e94b71b 197 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
198
199 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
200 XFS_BUF_READ(bp);
aa0e8833 201 bp->b_io_length = nbblks;
0e95f19a 202 bp->b_error = 0;
1da177e4
LT
203
204 xfsbdstrat(log->l_mp, bp);
1a1a3e97 205 error = xfs_buf_iowait(bp);
d64e31a2 206 if (error)
901796af 207 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
208 return error;
209}
210
076e6acb
CH
211STATIC int
212xlog_bread(
9a8d2fdb 213 struct xlog *log,
076e6acb
CH
214 xfs_daddr_t blk_no,
215 int nbblks,
9a8d2fdb 216 struct xfs_buf *bp,
076e6acb
CH
217 xfs_caddr_t *offset)
218{
219 int error;
220
221 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
222 if (error)
223 return error;
224
225 *offset = xlog_align(log, blk_no, nbblks, bp);
226 return 0;
227}
228
44396476
DC
229/*
230 * Read at an offset into the buffer. Returns with the buffer in it's original
231 * state regardless of the result of the read.
232 */
233STATIC int
234xlog_bread_offset(
9a8d2fdb 235 struct xlog *log,
44396476
DC
236 xfs_daddr_t blk_no, /* block to read from */
237 int nbblks, /* blocks to read */
9a8d2fdb 238 struct xfs_buf *bp,
44396476
DC
239 xfs_caddr_t offset)
240{
62926044 241 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 242 int orig_len = BBTOB(bp->b_length);
44396476
DC
243 int error, error2;
244
02fe03d9 245 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
246 if (error)
247 return error;
248
249 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
250
251 /* must reset buffer pointer even on error */
02fe03d9 252 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
253 if (error)
254 return error;
255 return error2;
256}
257
1da177e4
LT
258/*
259 * Write out the buffer at the given block for the given number of blocks.
260 * The buffer is kept locked across the write and is returned locked.
261 * This can only be used for synchronous log writes.
262 */
ba0f32d4 263STATIC int
1da177e4 264xlog_bwrite(
9a8d2fdb 265 struct xlog *log,
1da177e4
LT
266 xfs_daddr_t blk_no,
267 int nbblks,
9a8d2fdb 268 struct xfs_buf *bp)
1da177e4
LT
269{
270 int error;
271
ff30a622 272 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 273 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
274 nbblks);
275 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
276 return EFSCORRUPTED;
277 }
278
69ce58f0
AE
279 blk_no = round_down(blk_no, log->l_sectBBsize);
280 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
281
282 ASSERT(nbblks > 0);
4e94b71b 283 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
284
285 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
286 XFS_BUF_ZEROFLAGS(bp);
72790aa1 287 xfs_buf_hold(bp);
0c842ad4 288 xfs_buf_lock(bp);
aa0e8833 289 bp->b_io_length = nbblks;
0e95f19a 290 bp->b_error = 0;
1da177e4 291
c2b006c1 292 error = xfs_bwrite(bp);
901796af
CH
293 if (error)
294 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 295 xfs_buf_relse(bp);
1da177e4
LT
296 return error;
297}
298
1da177e4
LT
299#ifdef DEBUG
300/*
301 * dump debug superblock and log record information
302 */
303STATIC void
304xlog_header_check_dump(
305 xfs_mount_t *mp,
306 xlog_rec_header_t *head)
307{
a0fa2b67 308 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 309 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 310 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 311 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
312}
313#else
314#define xlog_header_check_dump(mp, head)
315#endif
316
317/*
318 * check log record header for recovery
319 */
320STATIC int
321xlog_header_check_recover(
322 xfs_mount_t *mp,
323 xlog_rec_header_t *head)
324{
69ef921b 325 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
326
327 /*
328 * IRIX doesn't write the h_fmt field and leaves it zeroed
329 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
330 * a dirty log created in IRIX.
331 */
69ef921b 332 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
333 xfs_warn(mp,
334 "dirty log written in incompatible format - can't recover");
1da177e4
LT
335 xlog_header_check_dump(mp, head);
336 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
337 XFS_ERRLEVEL_HIGH, mp);
338 return XFS_ERROR(EFSCORRUPTED);
339 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
340 xfs_warn(mp,
341 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
342 xlog_header_check_dump(mp, head);
343 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
344 XFS_ERRLEVEL_HIGH, mp);
345 return XFS_ERROR(EFSCORRUPTED);
346 }
347 return 0;
348}
349
350/*
351 * read the head block of the log and check the header
352 */
353STATIC int
354xlog_header_check_mount(
355 xfs_mount_t *mp,
356 xlog_rec_header_t *head)
357{
69ef921b 358 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
359
360 if (uuid_is_nil(&head->h_fs_uuid)) {
361 /*
362 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
363 * h_fs_uuid is nil, we assume this log was last mounted
364 * by IRIX and continue.
365 */
a0fa2b67 366 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 367 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 368 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
369 xlog_header_check_dump(mp, head);
370 XFS_ERROR_REPORT("xlog_header_check_mount",
371 XFS_ERRLEVEL_HIGH, mp);
372 return XFS_ERROR(EFSCORRUPTED);
373 }
374 return 0;
375}
376
377STATIC void
378xlog_recover_iodone(
379 struct xfs_buf *bp)
380{
5a52c2a5 381 if (bp->b_error) {
1da177e4
LT
382 /*
383 * We're not going to bother about retrying
384 * this during recovery. One strike!
385 */
901796af 386 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
387 xfs_force_shutdown(bp->b_target->bt_mount,
388 SHUTDOWN_META_IO_ERROR);
1da177e4 389 }
cb669ca5 390 bp->b_iodone = NULL;
1a1a3e97 391 xfs_buf_ioend(bp, 0);
1da177e4
LT
392}
393
394/*
395 * This routine finds (to an approximation) the first block in the physical
396 * log which contains the given cycle. It uses a binary search algorithm.
397 * Note that the algorithm can not be perfect because the disk will not
398 * necessarily be perfect.
399 */
a8272ce0 400STATIC int
1da177e4 401xlog_find_cycle_start(
9a8d2fdb
MT
402 struct xlog *log,
403 struct xfs_buf *bp,
1da177e4
LT
404 xfs_daddr_t first_blk,
405 xfs_daddr_t *last_blk,
406 uint cycle)
407{
408 xfs_caddr_t offset;
409 xfs_daddr_t mid_blk;
e3bb2e30 410 xfs_daddr_t end_blk;
1da177e4
LT
411 uint mid_cycle;
412 int error;
413
e3bb2e30
AE
414 end_blk = *last_blk;
415 mid_blk = BLK_AVG(first_blk, end_blk);
416 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
417 error = xlog_bread(log, mid_blk, 1, bp, &offset);
418 if (error)
1da177e4 419 return error;
03bea6fe 420 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
421 if (mid_cycle == cycle)
422 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
423 else
424 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
425 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 426 }
e3bb2e30
AE
427 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
428 (mid_blk == end_blk && mid_blk-1 == first_blk));
429
430 *last_blk = end_blk;
1da177e4
LT
431
432 return 0;
433}
434
435/*
3f943d85
AE
436 * Check that a range of blocks does not contain stop_on_cycle_no.
437 * Fill in *new_blk with the block offset where such a block is
438 * found, or with -1 (an invalid block number) if there is no such
439 * block in the range. The scan needs to occur from front to back
440 * and the pointer into the region must be updated since a later
441 * routine will need to perform another test.
1da177e4
LT
442 */
443STATIC int
444xlog_find_verify_cycle(
9a8d2fdb 445 struct xlog *log,
1da177e4
LT
446 xfs_daddr_t start_blk,
447 int nbblks,
448 uint stop_on_cycle_no,
449 xfs_daddr_t *new_blk)
450{
451 xfs_daddr_t i, j;
452 uint cycle;
453 xfs_buf_t *bp;
454 xfs_daddr_t bufblks;
455 xfs_caddr_t buf = NULL;
456 int error = 0;
457
6881a229
AE
458 /*
459 * Greedily allocate a buffer big enough to handle the full
460 * range of basic blocks we'll be examining. If that fails,
461 * try a smaller size. We need to be able to read at least
462 * a log sector, or we're out of luck.
463 */
1da177e4 464 bufblks = 1 << ffs(nbblks);
81158e0c
DC
465 while (bufblks > log->l_logBBsize)
466 bufblks >>= 1;
1da177e4 467 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 468 bufblks >>= 1;
69ce58f0 469 if (bufblks < log->l_sectBBsize)
1da177e4
LT
470 return ENOMEM;
471 }
472
473 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
474 int bcount;
475
476 bcount = min(bufblks, (start_blk + nbblks - i));
477
076e6acb
CH
478 error = xlog_bread(log, i, bcount, bp, &buf);
479 if (error)
1da177e4
LT
480 goto out;
481
1da177e4 482 for (j = 0; j < bcount; j++) {
03bea6fe 483 cycle = xlog_get_cycle(buf);
1da177e4
LT
484 if (cycle == stop_on_cycle_no) {
485 *new_blk = i+j;
486 goto out;
487 }
488
489 buf += BBSIZE;
490 }
491 }
492
493 *new_blk = -1;
494
495out:
496 xlog_put_bp(bp);
497 return error;
498}
499
500/*
501 * Potentially backup over partial log record write.
502 *
503 * In the typical case, last_blk is the number of the block directly after
504 * a good log record. Therefore, we subtract one to get the block number
505 * of the last block in the given buffer. extra_bblks contains the number
506 * of blocks we would have read on a previous read. This happens when the
507 * last log record is split over the end of the physical log.
508 *
509 * extra_bblks is the number of blocks potentially verified on a previous
510 * call to this routine.
511 */
512STATIC int
513xlog_find_verify_log_record(
9a8d2fdb 514 struct xlog *log,
1da177e4
LT
515 xfs_daddr_t start_blk,
516 xfs_daddr_t *last_blk,
517 int extra_bblks)
518{
519 xfs_daddr_t i;
520 xfs_buf_t *bp;
521 xfs_caddr_t offset = NULL;
522 xlog_rec_header_t *head = NULL;
523 int error = 0;
524 int smallmem = 0;
525 int num_blks = *last_blk - start_blk;
526 int xhdrs;
527
528 ASSERT(start_blk != 0 || *last_blk != start_blk);
529
530 if (!(bp = xlog_get_bp(log, num_blks))) {
531 if (!(bp = xlog_get_bp(log, 1)))
532 return ENOMEM;
533 smallmem = 1;
534 } else {
076e6acb
CH
535 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
536 if (error)
1da177e4 537 goto out;
1da177e4
LT
538 offset += ((num_blks - 1) << BBSHIFT);
539 }
540
541 for (i = (*last_blk) - 1; i >= 0; i--) {
542 if (i < start_blk) {
543 /* valid log record not found */
a0fa2b67
DC
544 xfs_warn(log->l_mp,
545 "Log inconsistent (didn't find previous header)");
1da177e4
LT
546 ASSERT(0);
547 error = XFS_ERROR(EIO);
548 goto out;
549 }
550
551 if (smallmem) {
076e6acb
CH
552 error = xlog_bread(log, i, 1, bp, &offset);
553 if (error)
1da177e4 554 goto out;
1da177e4
LT
555 }
556
557 head = (xlog_rec_header_t *)offset;
558
69ef921b 559 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
560 break;
561
562 if (!smallmem)
563 offset -= BBSIZE;
564 }
565
566 /*
567 * We hit the beginning of the physical log & still no header. Return
568 * to caller. If caller can handle a return of -1, then this routine
569 * will be called again for the end of the physical log.
570 */
571 if (i == -1) {
572 error = -1;
573 goto out;
574 }
575
576 /*
577 * We have the final block of the good log (the first block
578 * of the log record _before_ the head. So we check the uuid.
579 */
580 if ((error = xlog_header_check_mount(log->l_mp, head)))
581 goto out;
582
583 /*
584 * We may have found a log record header before we expected one.
585 * last_blk will be the 1st block # with a given cycle #. We may end
586 * up reading an entire log record. In this case, we don't want to
587 * reset last_blk. Only when last_blk points in the middle of a log
588 * record do we update last_blk.
589 */
62118709 590 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 591 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
592
593 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
594 if (h_size % XLOG_HEADER_CYCLE_SIZE)
595 xhdrs++;
596 } else {
597 xhdrs = 1;
598 }
599
b53e675d
CH
600 if (*last_blk - i + extra_bblks !=
601 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
602 *last_blk = i;
603
604out:
605 xlog_put_bp(bp);
606 return error;
607}
608
609/*
610 * Head is defined to be the point of the log where the next log write
611 * write could go. This means that incomplete LR writes at the end are
612 * eliminated when calculating the head. We aren't guaranteed that previous
613 * LR have complete transactions. We only know that a cycle number of
614 * current cycle number -1 won't be present in the log if we start writing
615 * from our current block number.
616 *
617 * last_blk contains the block number of the first block with a given
618 * cycle number.
619 *
620 * Return: zero if normal, non-zero if error.
621 */
ba0f32d4 622STATIC int
1da177e4 623xlog_find_head(
9a8d2fdb 624 struct xlog *log,
1da177e4
LT
625 xfs_daddr_t *return_head_blk)
626{
627 xfs_buf_t *bp;
628 xfs_caddr_t offset;
629 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
630 int num_scan_bblks;
631 uint first_half_cycle, last_half_cycle;
632 uint stop_on_cycle;
633 int error, log_bbnum = log->l_logBBsize;
634
635 /* Is the end of the log device zeroed? */
636 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
637 *return_head_blk = first_blk;
638
639 /* Is the whole lot zeroed? */
640 if (!first_blk) {
641 /* Linux XFS shouldn't generate totally zeroed logs -
642 * mkfs etc write a dummy unmount record to a fresh
643 * log so we can store the uuid in there
644 */
a0fa2b67 645 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
646 }
647
648 return 0;
649 } else if (error) {
a0fa2b67 650 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
651 return error;
652 }
653
654 first_blk = 0; /* get cycle # of 1st block */
655 bp = xlog_get_bp(log, 1);
656 if (!bp)
657 return ENOMEM;
076e6acb
CH
658
659 error = xlog_bread(log, 0, 1, bp, &offset);
660 if (error)
1da177e4 661 goto bp_err;
076e6acb 662
03bea6fe 663 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
664
665 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
666 error = xlog_bread(log, last_blk, 1, bp, &offset);
667 if (error)
1da177e4 668 goto bp_err;
076e6acb 669
03bea6fe 670 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
671 ASSERT(last_half_cycle != 0);
672
673 /*
674 * If the 1st half cycle number is equal to the last half cycle number,
675 * then the entire log is stamped with the same cycle number. In this
676 * case, head_blk can't be set to zero (which makes sense). The below
677 * math doesn't work out properly with head_blk equal to zero. Instead,
678 * we set it to log_bbnum which is an invalid block number, but this
679 * value makes the math correct. If head_blk doesn't changed through
680 * all the tests below, *head_blk is set to zero at the very end rather
681 * than log_bbnum. In a sense, log_bbnum and zero are the same block
682 * in a circular file.
683 */
684 if (first_half_cycle == last_half_cycle) {
685 /*
686 * In this case we believe that the entire log should have
687 * cycle number last_half_cycle. We need to scan backwards
688 * from the end verifying that there are no holes still
689 * containing last_half_cycle - 1. If we find such a hole,
690 * then the start of that hole will be the new head. The
691 * simple case looks like
692 * x | x ... | x - 1 | x
693 * Another case that fits this picture would be
694 * x | x + 1 | x ... | x
c41564b5 695 * In this case the head really is somewhere at the end of the
1da177e4
LT
696 * log, as one of the latest writes at the beginning was
697 * incomplete.
698 * One more case is
699 * x | x + 1 | x ... | x - 1 | x
700 * This is really the combination of the above two cases, and
701 * the head has to end up at the start of the x-1 hole at the
702 * end of the log.
703 *
704 * In the 256k log case, we will read from the beginning to the
705 * end of the log and search for cycle numbers equal to x-1.
706 * We don't worry about the x+1 blocks that we encounter,
707 * because we know that they cannot be the head since the log
708 * started with x.
709 */
710 head_blk = log_bbnum;
711 stop_on_cycle = last_half_cycle - 1;
712 } else {
713 /*
714 * In this case we want to find the first block with cycle
715 * number matching last_half_cycle. We expect the log to be
716 * some variation on
3f943d85 717 * x + 1 ... | x ... | x
1da177e4
LT
718 * The first block with cycle number x (last_half_cycle) will
719 * be where the new head belongs. First we do a binary search
720 * for the first occurrence of last_half_cycle. The binary
721 * search may not be totally accurate, so then we scan back
722 * from there looking for occurrences of last_half_cycle before
723 * us. If that backwards scan wraps around the beginning of
724 * the log, then we look for occurrences of last_half_cycle - 1
725 * at the end of the log. The cases we're looking for look
726 * like
3f943d85
AE
727 * v binary search stopped here
728 * x + 1 ... | x | x + 1 | x ... | x
729 * ^ but we want to locate this spot
1da177e4 730 * or
1da177e4 731 * <---------> less than scan distance
3f943d85
AE
732 * x + 1 ... | x ... | x - 1 | x
733 * ^ we want to locate this spot
1da177e4
LT
734 */
735 stop_on_cycle = last_half_cycle;
736 if ((error = xlog_find_cycle_start(log, bp, first_blk,
737 &head_blk, last_half_cycle)))
738 goto bp_err;
739 }
740
741 /*
742 * Now validate the answer. Scan back some number of maximum possible
743 * blocks and make sure each one has the expected cycle number. The
744 * maximum is determined by the total possible amount of buffering
745 * in the in-core log. The following number can be made tighter if
746 * we actually look at the block size of the filesystem.
747 */
748 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
749 if (head_blk >= num_scan_bblks) {
750 /*
751 * We are guaranteed that the entire check can be performed
752 * in one buffer.
753 */
754 start_blk = head_blk - num_scan_bblks;
755 if ((error = xlog_find_verify_cycle(log,
756 start_blk, num_scan_bblks,
757 stop_on_cycle, &new_blk)))
758 goto bp_err;
759 if (new_blk != -1)
760 head_blk = new_blk;
761 } else { /* need to read 2 parts of log */
762 /*
763 * We are going to scan backwards in the log in two parts.
764 * First we scan the physical end of the log. In this part
765 * of the log, we are looking for blocks with cycle number
766 * last_half_cycle - 1.
767 * If we find one, then we know that the log starts there, as
768 * we've found a hole that didn't get written in going around
769 * the end of the physical log. The simple case for this is
770 * x + 1 ... | x ... | x - 1 | x
771 * <---------> less than scan distance
772 * If all of the blocks at the end of the log have cycle number
773 * last_half_cycle, then we check the blocks at the start of
774 * the log looking for occurrences of last_half_cycle. If we
775 * find one, then our current estimate for the location of the
776 * first occurrence of last_half_cycle is wrong and we move
777 * back to the hole we've found. This case looks like
778 * x + 1 ... | x | x + 1 | x ...
779 * ^ binary search stopped here
780 * Another case we need to handle that only occurs in 256k
781 * logs is
782 * x + 1 ... | x ... | x+1 | x ...
783 * ^ binary search stops here
784 * In a 256k log, the scan at the end of the log will see the
785 * x + 1 blocks. We need to skip past those since that is
786 * certainly not the head of the log. By searching for
787 * last_half_cycle-1 we accomplish that.
788 */
1da177e4 789 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
790 (xfs_daddr_t) num_scan_bblks >= head_blk);
791 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
792 if ((error = xlog_find_verify_cycle(log, start_blk,
793 num_scan_bblks - (int)head_blk,
794 (stop_on_cycle - 1), &new_blk)))
795 goto bp_err;
796 if (new_blk != -1) {
797 head_blk = new_blk;
9db127ed 798 goto validate_head;
1da177e4
LT
799 }
800
801 /*
802 * Scan beginning of log now. The last part of the physical
803 * log is good. This scan needs to verify that it doesn't find
804 * the last_half_cycle.
805 */
806 start_blk = 0;
807 ASSERT(head_blk <= INT_MAX);
808 if ((error = xlog_find_verify_cycle(log,
809 start_blk, (int)head_blk,
810 stop_on_cycle, &new_blk)))
811 goto bp_err;
812 if (new_blk != -1)
813 head_blk = new_blk;
814 }
815
9db127ed 816validate_head:
1da177e4
LT
817 /*
818 * Now we need to make sure head_blk is not pointing to a block in
819 * the middle of a log record.
820 */
821 num_scan_bblks = XLOG_REC_SHIFT(log);
822 if (head_blk >= num_scan_bblks) {
823 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
824
825 /* start ptr at last block ptr before head_blk */
826 if ((error = xlog_find_verify_log_record(log, start_blk,
827 &head_blk, 0)) == -1) {
828 error = XFS_ERROR(EIO);
829 goto bp_err;
830 } else if (error)
831 goto bp_err;
832 } else {
833 start_blk = 0;
834 ASSERT(head_blk <= INT_MAX);
835 if ((error = xlog_find_verify_log_record(log, start_blk,
836 &head_blk, 0)) == -1) {
837 /* We hit the beginning of the log during our search */
3f943d85 838 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
839 new_blk = log_bbnum;
840 ASSERT(start_blk <= INT_MAX &&
841 (xfs_daddr_t) log_bbnum-start_blk >= 0);
842 ASSERT(head_blk <= INT_MAX);
843 if ((error = xlog_find_verify_log_record(log,
844 start_blk, &new_blk,
845 (int)head_blk)) == -1) {
846 error = XFS_ERROR(EIO);
847 goto bp_err;
848 } else if (error)
849 goto bp_err;
850 if (new_blk != log_bbnum)
851 head_blk = new_blk;
852 } else if (error)
853 goto bp_err;
854 }
855
856 xlog_put_bp(bp);
857 if (head_blk == log_bbnum)
858 *return_head_blk = 0;
859 else
860 *return_head_blk = head_blk;
861 /*
862 * When returning here, we have a good block number. Bad block
863 * means that during a previous crash, we didn't have a clean break
864 * from cycle number N to cycle number N-1. In this case, we need
865 * to find the first block with cycle number N-1.
866 */
867 return 0;
868
869 bp_err:
870 xlog_put_bp(bp);
871
872 if (error)
a0fa2b67 873 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
874 return error;
875}
876
877/*
878 * Find the sync block number or the tail of the log.
879 *
880 * This will be the block number of the last record to have its
881 * associated buffers synced to disk. Every log record header has
882 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
883 * to get a sync block number. The only concern is to figure out which
884 * log record header to believe.
885 *
886 * The following algorithm uses the log record header with the largest
887 * lsn. The entire log record does not need to be valid. We only care
888 * that the header is valid.
889 *
890 * We could speed up search by using current head_blk buffer, but it is not
891 * available.
892 */
5d77c0dc 893STATIC int
1da177e4 894xlog_find_tail(
9a8d2fdb 895 struct xlog *log,
1da177e4 896 xfs_daddr_t *head_blk,
65be6054 897 xfs_daddr_t *tail_blk)
1da177e4
LT
898{
899 xlog_rec_header_t *rhead;
900 xlog_op_header_t *op_head;
901 xfs_caddr_t offset = NULL;
902 xfs_buf_t *bp;
903 int error, i, found;
904 xfs_daddr_t umount_data_blk;
905 xfs_daddr_t after_umount_blk;
906 xfs_lsn_t tail_lsn;
907 int hblks;
908
909 found = 0;
910
911 /*
912 * Find previous log record
913 */
914 if ((error = xlog_find_head(log, head_blk)))
915 return error;
916
917 bp = xlog_get_bp(log, 1);
918 if (!bp)
919 return ENOMEM;
920 if (*head_blk == 0) { /* special case */
076e6acb
CH
921 error = xlog_bread(log, 0, 1, bp, &offset);
922 if (error)
9db127ed 923 goto done;
076e6acb 924
03bea6fe 925 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
926 *tail_blk = 0;
927 /* leave all other log inited values alone */
9db127ed 928 goto done;
1da177e4
LT
929 }
930 }
931
932 /*
933 * Search backwards looking for log record header block
934 */
935 ASSERT(*head_blk < INT_MAX);
936 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
937 error = xlog_bread(log, i, 1, bp, &offset);
938 if (error)
9db127ed 939 goto done;
076e6acb 940
69ef921b 941 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
942 found = 1;
943 break;
944 }
945 }
946 /*
947 * If we haven't found the log record header block, start looking
948 * again from the end of the physical log. XXXmiken: There should be
949 * a check here to make sure we didn't search more than N blocks in
950 * the previous code.
951 */
952 if (!found) {
953 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
954 error = xlog_bread(log, i, 1, bp, &offset);
955 if (error)
9db127ed 956 goto done;
076e6acb 957
69ef921b
CH
958 if (*(__be32 *)offset ==
959 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
960 found = 2;
961 break;
962 }
963 }
964 }
965 if (!found) {
a0fa2b67 966 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1da177e4
LT
967 ASSERT(0);
968 return XFS_ERROR(EIO);
969 }
970
971 /* find blk_no of tail of log */
972 rhead = (xlog_rec_header_t *)offset;
b53e675d 973 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
974
975 /*
976 * Reset log values according to the state of the log when we
977 * crashed. In the case where head_blk == 0, we bump curr_cycle
978 * one because the next write starts a new cycle rather than
979 * continuing the cycle of the last good log record. At this
980 * point we have guaranteed that all partial log records have been
981 * accounted for. Therefore, we know that the last good log record
982 * written was complete and ended exactly on the end boundary
983 * of the physical log.
984 */
985 log->l_prev_block = i;
986 log->l_curr_block = (int)*head_blk;
b53e675d 987 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
988 if (found == 2)
989 log->l_curr_cycle++;
1c3cb9ec 990 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 991 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 992 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 993 BBTOB(log->l_curr_block));
28496968 994 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 995 BBTOB(log->l_curr_block));
1da177e4
LT
996
997 /*
998 * Look for unmount record. If we find it, then we know there
999 * was a clean unmount. Since 'i' could be the last block in
1000 * the physical log, we convert to a log block before comparing
1001 * to the head_blk.
1002 *
1003 * Save the current tail lsn to use to pass to
1004 * xlog_clear_stale_blocks() below. We won't want to clear the
1005 * unmount record if there is one, so we pass the lsn of the
1006 * unmount record rather than the block after it.
1007 */
62118709 1008 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1009 int h_size = be32_to_cpu(rhead->h_size);
1010 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1011
1012 if ((h_version & XLOG_VERSION_2) &&
1013 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1014 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1015 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1016 hblks++;
1017 } else {
1018 hblks = 1;
1019 }
1020 } else {
1021 hblks = 1;
1022 }
1023 after_umount_blk = (i + hblks + (int)
b53e675d 1024 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1025 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1026 if (*head_blk == after_umount_blk &&
b53e675d 1027 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1028 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1029 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1030 if (error)
9db127ed 1031 goto done;
076e6acb 1032
1da177e4
LT
1033 op_head = (xlog_op_header_t *)offset;
1034 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1035 /*
1036 * Set tail and last sync so that newly written
1037 * log records will point recovery to after the
1038 * current unmount record.
1039 */
1c3cb9ec
DC
1040 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1041 log->l_curr_cycle, after_umount_blk);
1042 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1043 log->l_curr_cycle, after_umount_blk);
1da177e4 1044 *tail_blk = after_umount_blk;
92821e2b
DC
1045
1046 /*
1047 * Note that the unmount was clean. If the unmount
1048 * was not clean, we need to know this to rebuild the
1049 * superblock counters from the perag headers if we
1050 * have a filesystem using non-persistent counters.
1051 */
1052 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1053 }
1054 }
1055
1056 /*
1057 * Make sure that there are no blocks in front of the head
1058 * with the same cycle number as the head. This can happen
1059 * because we allow multiple outstanding log writes concurrently,
1060 * and the later writes might make it out before earlier ones.
1061 *
1062 * We use the lsn from before modifying it so that we'll never
1063 * overwrite the unmount record after a clean unmount.
1064 *
1065 * Do this only if we are going to recover the filesystem
1066 *
1067 * NOTE: This used to say "if (!readonly)"
1068 * However on Linux, we can & do recover a read-only filesystem.
1069 * We only skip recovery if NORECOVERY is specified on mount,
1070 * in which case we would not be here.
1071 *
1072 * But... if the -device- itself is readonly, just skip this.
1073 * We can't recover this device anyway, so it won't matter.
1074 */
9db127ed 1075 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1076 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1077
9db127ed 1078done:
1da177e4
LT
1079 xlog_put_bp(bp);
1080
1081 if (error)
a0fa2b67 1082 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1083 return error;
1084}
1085
1086/*
1087 * Is the log zeroed at all?
1088 *
1089 * The last binary search should be changed to perform an X block read
1090 * once X becomes small enough. You can then search linearly through
1091 * the X blocks. This will cut down on the number of reads we need to do.
1092 *
1093 * If the log is partially zeroed, this routine will pass back the blkno
1094 * of the first block with cycle number 0. It won't have a complete LR
1095 * preceding it.
1096 *
1097 * Return:
1098 * 0 => the log is completely written to
1099 * -1 => use *blk_no as the first block of the log
1100 * >0 => error has occurred
1101 */
a8272ce0 1102STATIC int
1da177e4 1103xlog_find_zeroed(
9a8d2fdb 1104 struct xlog *log,
1da177e4
LT
1105 xfs_daddr_t *blk_no)
1106{
1107 xfs_buf_t *bp;
1108 xfs_caddr_t offset;
1109 uint first_cycle, last_cycle;
1110 xfs_daddr_t new_blk, last_blk, start_blk;
1111 xfs_daddr_t num_scan_bblks;
1112 int error, log_bbnum = log->l_logBBsize;
1113
6fdf8ccc
NS
1114 *blk_no = 0;
1115
1da177e4
LT
1116 /* check totally zeroed log */
1117 bp = xlog_get_bp(log, 1);
1118 if (!bp)
1119 return ENOMEM;
076e6acb
CH
1120 error = xlog_bread(log, 0, 1, bp, &offset);
1121 if (error)
1da177e4 1122 goto bp_err;
076e6acb 1123
03bea6fe 1124 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1125 if (first_cycle == 0) { /* completely zeroed log */
1126 *blk_no = 0;
1127 xlog_put_bp(bp);
1128 return -1;
1129 }
1130
1131 /* check partially zeroed log */
076e6acb
CH
1132 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1133 if (error)
1da177e4 1134 goto bp_err;
076e6acb 1135
03bea6fe 1136 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1137 if (last_cycle != 0) { /* log completely written to */
1138 xlog_put_bp(bp);
1139 return 0;
1140 } else if (first_cycle != 1) {
1141 /*
1142 * If the cycle of the last block is zero, the cycle of
1143 * the first block must be 1. If it's not, maybe we're
1144 * not looking at a log... Bail out.
1145 */
a0fa2b67
DC
1146 xfs_warn(log->l_mp,
1147 "Log inconsistent or not a log (last==0, first!=1)");
1da177e4
LT
1148 return XFS_ERROR(EINVAL);
1149 }
1150
1151 /* we have a partially zeroed log */
1152 last_blk = log_bbnum-1;
1153 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1154 goto bp_err;
1155
1156 /*
1157 * Validate the answer. Because there is no way to guarantee that
1158 * the entire log is made up of log records which are the same size,
1159 * we scan over the defined maximum blocks. At this point, the maximum
1160 * is not chosen to mean anything special. XXXmiken
1161 */
1162 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1163 ASSERT(num_scan_bblks <= INT_MAX);
1164
1165 if (last_blk < num_scan_bblks)
1166 num_scan_bblks = last_blk;
1167 start_blk = last_blk - num_scan_bblks;
1168
1169 /*
1170 * We search for any instances of cycle number 0 that occur before
1171 * our current estimate of the head. What we're trying to detect is
1172 * 1 ... | 0 | 1 | 0...
1173 * ^ binary search ends here
1174 */
1175 if ((error = xlog_find_verify_cycle(log, start_blk,
1176 (int)num_scan_bblks, 0, &new_blk)))
1177 goto bp_err;
1178 if (new_blk != -1)
1179 last_blk = new_blk;
1180
1181 /*
1182 * Potentially backup over partial log record write. We don't need
1183 * to search the end of the log because we know it is zero.
1184 */
1185 if ((error = xlog_find_verify_log_record(log, start_blk,
1186 &last_blk, 0)) == -1) {
1187 error = XFS_ERROR(EIO);
1188 goto bp_err;
1189 } else if (error)
1190 goto bp_err;
1191
1192 *blk_no = last_blk;
1193bp_err:
1194 xlog_put_bp(bp);
1195 if (error)
1196 return error;
1197 return -1;
1198}
1199
1200/*
1201 * These are simple subroutines used by xlog_clear_stale_blocks() below
1202 * to initialize a buffer full of empty log record headers and write
1203 * them into the log.
1204 */
1205STATIC void
1206xlog_add_record(
9a8d2fdb 1207 struct xlog *log,
1da177e4
LT
1208 xfs_caddr_t buf,
1209 int cycle,
1210 int block,
1211 int tail_cycle,
1212 int tail_block)
1213{
1214 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1215
1216 memset(buf, 0, BBSIZE);
b53e675d
CH
1217 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1218 recp->h_cycle = cpu_to_be32(cycle);
1219 recp->h_version = cpu_to_be32(
62118709 1220 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1221 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1222 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1223 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1224 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1225}
1226
1227STATIC int
1228xlog_write_log_records(
9a8d2fdb 1229 struct xlog *log,
1da177e4
LT
1230 int cycle,
1231 int start_block,
1232 int blocks,
1233 int tail_cycle,
1234 int tail_block)
1235{
1236 xfs_caddr_t offset;
1237 xfs_buf_t *bp;
1238 int balign, ealign;
69ce58f0 1239 int sectbb = log->l_sectBBsize;
1da177e4
LT
1240 int end_block = start_block + blocks;
1241 int bufblks;
1242 int error = 0;
1243 int i, j = 0;
1244
6881a229
AE
1245 /*
1246 * Greedily allocate a buffer big enough to handle the full
1247 * range of basic blocks to be written. If that fails, try
1248 * a smaller size. We need to be able to write at least a
1249 * log sector, or we're out of luck.
1250 */
1da177e4 1251 bufblks = 1 << ffs(blocks);
81158e0c
DC
1252 while (bufblks > log->l_logBBsize)
1253 bufblks >>= 1;
1da177e4
LT
1254 while (!(bp = xlog_get_bp(log, bufblks))) {
1255 bufblks >>= 1;
69ce58f0 1256 if (bufblks < sectbb)
1da177e4
LT
1257 return ENOMEM;
1258 }
1259
1260 /* We may need to do a read at the start to fill in part of
1261 * the buffer in the starting sector not covered by the first
1262 * write below.
1263 */
5c17f533 1264 balign = round_down(start_block, sectbb);
1da177e4 1265 if (balign != start_block) {
076e6acb
CH
1266 error = xlog_bread_noalign(log, start_block, 1, bp);
1267 if (error)
1268 goto out_put_bp;
1269
1da177e4
LT
1270 j = start_block - balign;
1271 }
1272
1273 for (i = start_block; i < end_block; i += bufblks) {
1274 int bcount, endcount;
1275
1276 bcount = min(bufblks, end_block - start_block);
1277 endcount = bcount - j;
1278
1279 /* We may need to do a read at the end to fill in part of
1280 * the buffer in the final sector not covered by the write.
1281 * If this is the same sector as the above read, skip it.
1282 */
5c17f533 1283 ealign = round_down(end_block, sectbb);
1da177e4 1284 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1285 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1286 error = xlog_bread_offset(log, ealign, sectbb,
1287 bp, offset);
076e6acb
CH
1288 if (error)
1289 break;
1290
1da177e4
LT
1291 }
1292
1293 offset = xlog_align(log, start_block, endcount, bp);
1294 for (; j < endcount; j++) {
1295 xlog_add_record(log, offset, cycle, i+j,
1296 tail_cycle, tail_block);
1297 offset += BBSIZE;
1298 }
1299 error = xlog_bwrite(log, start_block, endcount, bp);
1300 if (error)
1301 break;
1302 start_block += endcount;
1303 j = 0;
1304 }
076e6acb
CH
1305
1306 out_put_bp:
1da177e4
LT
1307 xlog_put_bp(bp);
1308 return error;
1309}
1310
1311/*
1312 * This routine is called to blow away any incomplete log writes out
1313 * in front of the log head. We do this so that we won't become confused
1314 * if we come up, write only a little bit more, and then crash again.
1315 * If we leave the partial log records out there, this situation could
1316 * cause us to think those partial writes are valid blocks since they
1317 * have the current cycle number. We get rid of them by overwriting them
1318 * with empty log records with the old cycle number rather than the
1319 * current one.
1320 *
1321 * The tail lsn is passed in rather than taken from
1322 * the log so that we will not write over the unmount record after a
1323 * clean unmount in a 512 block log. Doing so would leave the log without
1324 * any valid log records in it until a new one was written. If we crashed
1325 * during that time we would not be able to recover.
1326 */
1327STATIC int
1328xlog_clear_stale_blocks(
9a8d2fdb 1329 struct xlog *log,
1da177e4
LT
1330 xfs_lsn_t tail_lsn)
1331{
1332 int tail_cycle, head_cycle;
1333 int tail_block, head_block;
1334 int tail_distance, max_distance;
1335 int distance;
1336 int error;
1337
1338 tail_cycle = CYCLE_LSN(tail_lsn);
1339 tail_block = BLOCK_LSN(tail_lsn);
1340 head_cycle = log->l_curr_cycle;
1341 head_block = log->l_curr_block;
1342
1343 /*
1344 * Figure out the distance between the new head of the log
1345 * and the tail. We want to write over any blocks beyond the
1346 * head that we may have written just before the crash, but
1347 * we don't want to overwrite the tail of the log.
1348 */
1349 if (head_cycle == tail_cycle) {
1350 /*
1351 * The tail is behind the head in the physical log,
1352 * so the distance from the head to the tail is the
1353 * distance from the head to the end of the log plus
1354 * the distance from the beginning of the log to the
1355 * tail.
1356 */
1357 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1358 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1359 XFS_ERRLEVEL_LOW, log->l_mp);
1360 return XFS_ERROR(EFSCORRUPTED);
1361 }
1362 tail_distance = tail_block + (log->l_logBBsize - head_block);
1363 } else {
1364 /*
1365 * The head is behind the tail in the physical log,
1366 * so the distance from the head to the tail is just
1367 * the tail block minus the head block.
1368 */
1369 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1370 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1371 XFS_ERRLEVEL_LOW, log->l_mp);
1372 return XFS_ERROR(EFSCORRUPTED);
1373 }
1374 tail_distance = tail_block - head_block;
1375 }
1376
1377 /*
1378 * If the head is right up against the tail, we can't clear
1379 * anything.
1380 */
1381 if (tail_distance <= 0) {
1382 ASSERT(tail_distance == 0);
1383 return 0;
1384 }
1385
1386 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1387 /*
1388 * Take the smaller of the maximum amount of outstanding I/O
1389 * we could have and the distance to the tail to clear out.
1390 * We take the smaller so that we don't overwrite the tail and
1391 * we don't waste all day writing from the head to the tail
1392 * for no reason.
1393 */
1394 max_distance = MIN(max_distance, tail_distance);
1395
1396 if ((head_block + max_distance) <= log->l_logBBsize) {
1397 /*
1398 * We can stomp all the blocks we need to without
1399 * wrapping around the end of the log. Just do it
1400 * in a single write. Use the cycle number of the
1401 * current cycle minus one so that the log will look like:
1402 * n ... | n - 1 ...
1403 */
1404 error = xlog_write_log_records(log, (head_cycle - 1),
1405 head_block, max_distance, tail_cycle,
1406 tail_block);
1407 if (error)
1408 return error;
1409 } else {
1410 /*
1411 * We need to wrap around the end of the physical log in
1412 * order to clear all the blocks. Do it in two separate
1413 * I/Os. The first write should be from the head to the
1414 * end of the physical log, and it should use the current
1415 * cycle number minus one just like above.
1416 */
1417 distance = log->l_logBBsize - head_block;
1418 error = xlog_write_log_records(log, (head_cycle - 1),
1419 head_block, distance, tail_cycle,
1420 tail_block);
1421
1422 if (error)
1423 return error;
1424
1425 /*
1426 * Now write the blocks at the start of the physical log.
1427 * This writes the remainder of the blocks we want to clear.
1428 * It uses the current cycle number since we're now on the
1429 * same cycle as the head so that we get:
1430 * n ... n ... | n - 1 ...
1431 * ^^^^^ blocks we're writing
1432 */
1433 distance = max_distance - (log->l_logBBsize - head_block);
1434 error = xlog_write_log_records(log, head_cycle, 0, distance,
1435 tail_cycle, tail_block);
1436 if (error)
1437 return error;
1438 }
1439
1440 return 0;
1441}
1442
1443/******************************************************************************
1444 *
1445 * Log recover routines
1446 *
1447 ******************************************************************************
1448 */
1449
1450STATIC xlog_recover_t *
1451xlog_recover_find_tid(
f0a76953 1452 struct hlist_head *head,
1da177e4
LT
1453 xlog_tid_t tid)
1454{
f0a76953 1455 xlog_recover_t *trans;
1da177e4 1456
b67bfe0d 1457 hlist_for_each_entry(trans, head, r_list) {
f0a76953
DC
1458 if (trans->r_log_tid == tid)
1459 return trans;
1da177e4 1460 }
f0a76953 1461 return NULL;
1da177e4
LT
1462}
1463
1464STATIC void
f0a76953
DC
1465xlog_recover_new_tid(
1466 struct hlist_head *head,
1467 xlog_tid_t tid,
1468 xfs_lsn_t lsn)
1da177e4 1469{
f0a76953
DC
1470 xlog_recover_t *trans;
1471
1472 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1473 trans->r_log_tid = tid;
1474 trans->r_lsn = lsn;
1475 INIT_LIST_HEAD(&trans->r_itemq);
1476
1477 INIT_HLIST_NODE(&trans->r_list);
1478 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1479}
1480
1481STATIC void
1482xlog_recover_add_item(
f0a76953 1483 struct list_head *head)
1da177e4
LT
1484{
1485 xlog_recover_item_t *item;
1486
1487 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1488 INIT_LIST_HEAD(&item->ri_list);
1489 list_add_tail(&item->ri_list, head);
1da177e4
LT
1490}
1491
1492STATIC int
1493xlog_recover_add_to_cont_trans(
ad223e60
MT
1494 struct xlog *log,
1495 struct xlog_recover *trans,
1da177e4
LT
1496 xfs_caddr_t dp,
1497 int len)
1498{
1499 xlog_recover_item_t *item;
1500 xfs_caddr_t ptr, old_ptr;
1501 int old_len;
1502
f0a76953 1503 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1504 /* finish copying rest of trans header */
1505 xlog_recover_add_item(&trans->r_itemq);
1506 ptr = (xfs_caddr_t) &trans->r_theader +
1507 sizeof(xfs_trans_header_t) - len;
1508 memcpy(ptr, dp, len); /* d, s, l */
1509 return 0;
1510 }
f0a76953
DC
1511 /* take the tail entry */
1512 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1513
1514 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1515 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1516
45053603 1517 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1518 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1519 item->ri_buf[item->ri_cnt-1].i_len += len;
1520 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1521 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1522 return 0;
1523}
1524
1525/*
1526 * The next region to add is the start of a new region. It could be
1527 * a whole region or it could be the first part of a new region. Because
1528 * of this, the assumption here is that the type and size fields of all
1529 * format structures fit into the first 32 bits of the structure.
1530 *
1531 * This works because all regions must be 32 bit aligned. Therefore, we
1532 * either have both fields or we have neither field. In the case we have
1533 * neither field, the data part of the region is zero length. We only have
1534 * a log_op_header and can throw away the header since a new one will appear
1535 * later. If we have at least 4 bytes, then we can determine how many regions
1536 * will appear in the current log item.
1537 */
1538STATIC int
1539xlog_recover_add_to_trans(
ad223e60
MT
1540 struct xlog *log,
1541 struct xlog_recover *trans,
1da177e4
LT
1542 xfs_caddr_t dp,
1543 int len)
1544{
1545 xfs_inode_log_format_t *in_f; /* any will do */
1546 xlog_recover_item_t *item;
1547 xfs_caddr_t ptr;
1548
1549 if (!len)
1550 return 0;
f0a76953 1551 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1552 /* we need to catch log corruptions here */
1553 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1554 xfs_warn(log->l_mp, "%s: bad header magic number",
1555 __func__);
5a792c45
DC
1556 ASSERT(0);
1557 return XFS_ERROR(EIO);
1558 }
1da177e4
LT
1559 if (len == sizeof(xfs_trans_header_t))
1560 xlog_recover_add_item(&trans->r_itemq);
1561 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1562 return 0;
1563 }
1564
1565 ptr = kmem_alloc(len, KM_SLEEP);
1566 memcpy(ptr, dp, len);
1567 in_f = (xfs_inode_log_format_t *)ptr;
1568
f0a76953
DC
1569 /* take the tail entry */
1570 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1571 if (item->ri_total != 0 &&
1572 item->ri_total == item->ri_cnt) {
1573 /* tail item is in use, get a new one */
1da177e4 1574 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1575 item = list_entry(trans->r_itemq.prev,
1576 xlog_recover_item_t, ri_list);
1da177e4 1577 }
1da177e4
LT
1578
1579 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1580 if (in_f->ilf_size == 0 ||
1581 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1582 xfs_warn(log->l_mp,
1583 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1584 in_f->ilf_size);
1585 ASSERT(0);
1586 return XFS_ERROR(EIO);
1587 }
1588
1589 item->ri_total = in_f->ilf_size;
1590 item->ri_buf =
1591 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1592 KM_SLEEP);
1da177e4
LT
1593 }
1594 ASSERT(item->ri_total > item->ri_cnt);
1595 /* Description region is ri_buf[0] */
1596 item->ri_buf[item->ri_cnt].i_addr = ptr;
1597 item->ri_buf[item->ri_cnt].i_len = len;
1598 item->ri_cnt++;
9abbc539 1599 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1600 return 0;
1601}
1602
f0a76953 1603/*
a775ad77
DC
1604 * Sort the log items in the transaction.
1605 *
1606 * The ordering constraints are defined by the inode allocation and unlink
1607 * behaviour. The rules are:
1608 *
1609 * 1. Every item is only logged once in a given transaction. Hence it
1610 * represents the last logged state of the item. Hence ordering is
1611 * dependent on the order in which operations need to be performed so
1612 * required initial conditions are always met.
1613 *
1614 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1615 * there's nothing to replay from them so we can simply cull them
1616 * from the transaction. However, we can't do that until after we've
1617 * replayed all the other items because they may be dependent on the
1618 * cancelled buffer and replaying the cancelled buffer can remove it
1619 * form the cancelled buffer table. Hence they have tobe done last.
1620 *
1621 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1622 * read the buffer and replay changes into it. For filesystems using the
1623 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1624 * treated the same as inode allocation buffers as they create and
1625 * initialise the buffers directly.
a775ad77
DC
1626 *
1627 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1628 * This ensures that inodes are completely flushed to the inode buffer
1629 * in a "free" state before we remove the unlinked inode list pointer.
1630 *
1631 * Hence the ordering needs to be inode allocation buffers first, inode items
1632 * second, inode unlink buffers third and cancelled buffers last.
1633 *
1634 * But there's a problem with that - we can't tell an inode allocation buffer
1635 * apart from a regular buffer, so we can't separate them. We can, however,
1636 * tell an inode unlink buffer from the others, and so we can separate them out
1637 * from all the other buffers and move them to last.
1638 *
1639 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1640 * - buffer_list for all buffers except cancelled/inode unlink buffers
1641 * - item_list for all non-buffer items
1642 * - inode_buffer_list for inode unlink buffers
1643 * - cancel_list for the cancelled buffers
1644 *
1645 * Note that we add objects to the tail of the lists so that first-to-last
1646 * ordering is preserved within the lists. Adding objects to the head of the
1647 * list means when we traverse from the head we walk them in last-to-first
1648 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1649 * but for all other items there may be specific ordering that we need to
1650 * preserve.
f0a76953 1651 */
1da177e4
LT
1652STATIC int
1653xlog_recover_reorder_trans(
ad223e60
MT
1654 struct xlog *log,
1655 struct xlog_recover *trans,
9abbc539 1656 int pass)
1da177e4 1657{
f0a76953
DC
1658 xlog_recover_item_t *item, *n;
1659 LIST_HEAD(sort_list);
a775ad77
DC
1660 LIST_HEAD(cancel_list);
1661 LIST_HEAD(buffer_list);
1662 LIST_HEAD(inode_buffer_list);
1663 LIST_HEAD(inode_list);
f0a76953
DC
1664
1665 list_splice_init(&trans->r_itemq, &sort_list);
1666 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1667 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1668
f0a76953 1669 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1670 case XFS_LI_ICREATE:
1671 list_move_tail(&item->ri_list, &buffer_list);
1672 break;
1da177e4 1673 case XFS_LI_BUF:
a775ad77 1674 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1675 trace_xfs_log_recover_item_reorder_head(log,
1676 trans, item, pass);
a775ad77 1677 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1678 break;
1679 }
a775ad77
DC
1680 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1681 list_move(&item->ri_list, &inode_buffer_list);
1682 break;
1683 }
1684 list_move_tail(&item->ri_list, &buffer_list);
1685 break;
1da177e4 1686 case XFS_LI_INODE:
1da177e4
LT
1687 case XFS_LI_DQUOT:
1688 case XFS_LI_QUOTAOFF:
1689 case XFS_LI_EFD:
1690 case XFS_LI_EFI:
9abbc539
DC
1691 trace_xfs_log_recover_item_reorder_tail(log,
1692 trans, item, pass);
a775ad77 1693 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1694 break;
1695 default:
a0fa2b67
DC
1696 xfs_warn(log->l_mp,
1697 "%s: unrecognized type of log operation",
1698 __func__);
1da177e4
LT
1699 ASSERT(0);
1700 return XFS_ERROR(EIO);
1701 }
f0a76953
DC
1702 }
1703 ASSERT(list_empty(&sort_list));
a775ad77
DC
1704 if (!list_empty(&buffer_list))
1705 list_splice(&buffer_list, &trans->r_itemq);
1706 if (!list_empty(&inode_list))
1707 list_splice_tail(&inode_list, &trans->r_itemq);
1708 if (!list_empty(&inode_buffer_list))
1709 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1710 if (!list_empty(&cancel_list))
1711 list_splice_tail(&cancel_list, &trans->r_itemq);
1da177e4
LT
1712 return 0;
1713}
1714
1715/*
1716 * Build up the table of buf cancel records so that we don't replay
1717 * cancelled data in the second pass. For buffer records that are
1718 * not cancel records, there is nothing to do here so we just return.
1719 *
1720 * If we get a cancel record which is already in the table, this indicates
1721 * that the buffer was cancelled multiple times. In order to ensure
1722 * that during pass 2 we keep the record in the table until we reach its
1723 * last occurrence in the log, we keep a reference count in the cancel
1724 * record in the table to tell us how many times we expect to see this
1725 * record during the second pass.
1726 */
c9f71f5f
CH
1727STATIC int
1728xlog_recover_buffer_pass1(
ad223e60
MT
1729 struct xlog *log,
1730 struct xlog_recover_item *item)
1da177e4 1731{
c9f71f5f 1732 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1733 struct list_head *bucket;
1734 struct xfs_buf_cancel *bcp;
1da177e4
LT
1735
1736 /*
1737 * If this isn't a cancel buffer item, then just return.
1738 */
e2714bf8 1739 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1740 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1741 return 0;
9abbc539 1742 }
1da177e4
LT
1743
1744 /*
d5689eaa
CH
1745 * Insert an xfs_buf_cancel record into the hash table of them.
1746 * If there is already an identical record, bump its reference count.
1da177e4 1747 */
d5689eaa
CH
1748 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1749 list_for_each_entry(bcp, bucket, bc_list) {
1750 if (bcp->bc_blkno == buf_f->blf_blkno &&
1751 bcp->bc_len == buf_f->blf_len) {
1752 bcp->bc_refcount++;
9abbc539 1753 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1754 return 0;
1da177e4 1755 }
d5689eaa
CH
1756 }
1757
1758 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1759 bcp->bc_blkno = buf_f->blf_blkno;
1760 bcp->bc_len = buf_f->blf_len;
1da177e4 1761 bcp->bc_refcount = 1;
d5689eaa
CH
1762 list_add_tail(&bcp->bc_list, bucket);
1763
9abbc539 1764 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1765 return 0;
1da177e4
LT
1766}
1767
1768/*
1769 * Check to see whether the buffer being recovered has a corresponding
1770 * entry in the buffer cancel record table. If it does then return 1
1771 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1772 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1773 * the refcount on the entry in the table and remove it from the table
1774 * if this is the last reference.
1775 *
1776 * We remove the cancel record from the table when we encounter its
1777 * last occurrence in the log so that if the same buffer is re-used
1778 * again after its last cancellation we actually replay the changes
1779 * made at that point.
1780 */
1781STATIC int
1782xlog_check_buffer_cancelled(
ad223e60 1783 struct xlog *log,
1da177e4
LT
1784 xfs_daddr_t blkno,
1785 uint len,
1786 ushort flags)
1787{
d5689eaa
CH
1788 struct list_head *bucket;
1789 struct xfs_buf_cancel *bcp;
1da177e4
LT
1790
1791 if (log->l_buf_cancel_table == NULL) {
1792 /*
1793 * There is nothing in the table built in pass one,
1794 * so this buffer must not be cancelled.
1795 */
c1155410 1796 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1797 return 0;
1798 }
1799
1da177e4 1800 /*
d5689eaa 1801 * Search for an entry in the cancel table that matches our buffer.
1da177e4 1802 */
d5689eaa
CH
1803 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1804 list_for_each_entry(bcp, bucket, bc_list) {
1805 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1806 goto found;
1da177e4 1807 }
d5689eaa 1808
1da177e4 1809 /*
d5689eaa
CH
1810 * We didn't find a corresponding entry in the table, so return 0 so
1811 * that the buffer is NOT cancelled.
1da177e4 1812 */
c1155410 1813 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4 1814 return 0;
d5689eaa
CH
1815
1816found:
1817 /*
1818 * We've go a match, so return 1 so that the recovery of this buffer
1819 * is cancelled. If this buffer is actually a buffer cancel log
1820 * item, then decrement the refcount on the one in the table and
1821 * remove it if this is the last reference.
1822 */
1823 if (flags & XFS_BLF_CANCEL) {
1824 if (--bcp->bc_refcount == 0) {
1825 list_del(&bcp->bc_list);
1826 kmem_free(bcp);
1827 }
1828 }
1829 return 1;
1da177e4
LT
1830}
1831
1da177e4 1832/*
e2714bf8
CH
1833 * Perform recovery for a buffer full of inodes. In these buffers, the only
1834 * data which should be recovered is that which corresponds to the
1835 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1836 * data for the inodes is always logged through the inodes themselves rather
1837 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1838 *
e2714bf8
CH
1839 * The only time when buffers full of inodes are fully recovered is when the
1840 * buffer is full of newly allocated inodes. In this case the buffer will
1841 * not be marked as an inode buffer and so will be sent to
1842 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1843 */
1844STATIC int
1845xlog_recover_do_inode_buffer(
e2714bf8 1846 struct xfs_mount *mp,
1da177e4 1847 xlog_recover_item_t *item,
e2714bf8 1848 struct xfs_buf *bp,
1da177e4
LT
1849 xfs_buf_log_format_t *buf_f)
1850{
1851 int i;
e2714bf8
CH
1852 int item_index = 0;
1853 int bit = 0;
1854 int nbits = 0;
1855 int reg_buf_offset = 0;
1856 int reg_buf_bytes = 0;
1da177e4
LT
1857 int next_unlinked_offset;
1858 int inodes_per_buf;
1859 xfs_agino_t *logged_nextp;
1860 xfs_agino_t *buffer_nextp;
1da177e4 1861
9abbc539 1862 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1863
1864 /*
1865 * Post recovery validation only works properly on CRC enabled
1866 * filesystems.
1867 */
1868 if (xfs_sb_version_hascrc(&mp->m_sb))
1869 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1870
aa0e8833 1871 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1872 for (i = 0; i < inodes_per_buf; i++) {
1873 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1874 offsetof(xfs_dinode_t, di_next_unlinked);
1875
1876 while (next_unlinked_offset >=
1877 (reg_buf_offset + reg_buf_bytes)) {
1878 /*
1879 * The next di_next_unlinked field is beyond
1880 * the current logged region. Find the next
1881 * logged region that contains or is beyond
1882 * the current di_next_unlinked field.
1883 */
1884 bit += nbits;
e2714bf8
CH
1885 bit = xfs_next_bit(buf_f->blf_data_map,
1886 buf_f->blf_map_size, bit);
1da177e4
LT
1887
1888 /*
1889 * If there are no more logged regions in the
1890 * buffer, then we're done.
1891 */
e2714bf8 1892 if (bit == -1)
1da177e4 1893 return 0;
1da177e4 1894
e2714bf8
CH
1895 nbits = xfs_contig_bits(buf_f->blf_data_map,
1896 buf_f->blf_map_size, bit);
1da177e4 1897 ASSERT(nbits > 0);
c1155410
DC
1898 reg_buf_offset = bit << XFS_BLF_SHIFT;
1899 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1900 item_index++;
1901 }
1902
1903 /*
1904 * If the current logged region starts after the current
1905 * di_next_unlinked field, then move on to the next
1906 * di_next_unlinked field.
1907 */
e2714bf8 1908 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1909 continue;
1da177e4
LT
1910
1911 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1912 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1913 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1914 BBTOB(bp->b_io_length));
1da177e4
LT
1915
1916 /*
1917 * The current logged region contains a copy of the
1918 * current di_next_unlinked field. Extract its value
1919 * and copy it to the buffer copy.
1920 */
4e0d5f92
CH
1921 logged_nextp = item->ri_buf[item_index].i_addr +
1922 next_unlinked_offset - reg_buf_offset;
1da177e4 1923 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1924 xfs_alert(mp,
1925 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1926 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1927 item, bp);
1928 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1929 XFS_ERRLEVEL_LOW, mp);
1930 return XFS_ERROR(EFSCORRUPTED);
1931 }
1932
1933 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1934 next_unlinked_offset);
87c199c2 1935 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1936
1937 /*
1938 * If necessary, recalculate the CRC in the on-disk inode. We
1939 * have to leave the inode in a consistent state for whoever
1940 * reads it next....
1941 */
1942 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1943 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1944
1da177e4
LT
1945 }
1946
1947 return 0;
1948}
1949
1950/*
d75afeb3
DC
1951 * Validate the recovered buffer is of the correct type and attach the
1952 * appropriate buffer operations to them for writeback. Magic numbers are in a
1953 * few places:
1954 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1955 * the first 32 bits of the buffer (most blocks),
1956 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 1957 */
d75afeb3
DC
1958static void
1959xlog_recovery_validate_buf_type(
9abbc539 1960 struct xfs_mount *mp,
e2714bf8 1961 struct xfs_buf *bp,
1da177e4
LT
1962 xfs_buf_log_format_t *buf_f)
1963{
d75afeb3
DC
1964 struct xfs_da_blkinfo *info = bp->b_addr;
1965 __uint32_t magic32;
1966 __uint16_t magic16;
1967 __uint16_t magicda;
1968
1969 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1970 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1971 magicda = be16_to_cpu(info->magic);
61fe135c
DC
1972 switch (xfs_blft_from_flags(buf_f)) {
1973 case XFS_BLFT_BTREE_BUF:
d75afeb3 1974 switch (magic32) {
ee1a47ab
CH
1975 case XFS_ABTB_CRC_MAGIC:
1976 case XFS_ABTC_CRC_MAGIC:
1977 case XFS_ABTB_MAGIC:
1978 case XFS_ABTC_MAGIC:
1979 bp->b_ops = &xfs_allocbt_buf_ops;
1980 break;
1981 case XFS_IBT_CRC_MAGIC:
1982 case XFS_IBT_MAGIC:
1983 bp->b_ops = &xfs_inobt_buf_ops;
1984 break;
1985 case XFS_BMAP_CRC_MAGIC:
1986 case XFS_BMAP_MAGIC:
1987 bp->b_ops = &xfs_bmbt_buf_ops;
1988 break;
1989 default:
1990 xfs_warn(mp, "Bad btree block magic!");
1991 ASSERT(0);
1992 break;
1993 }
1994 break;
61fe135c 1995 case XFS_BLFT_AGF_BUF:
d75afeb3 1996 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
1997 xfs_warn(mp, "Bad AGF block magic!");
1998 ASSERT(0);
1999 break;
2000 }
2001 bp->b_ops = &xfs_agf_buf_ops;
2002 break;
61fe135c 2003 case XFS_BLFT_AGFL_BUF:
77c95bba
CH
2004 if (!xfs_sb_version_hascrc(&mp->m_sb))
2005 break;
d75afeb3 2006 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2007 xfs_warn(mp, "Bad AGFL block magic!");
2008 ASSERT(0);
2009 break;
2010 }
2011 bp->b_ops = &xfs_agfl_buf_ops;
2012 break;
61fe135c 2013 case XFS_BLFT_AGI_BUF:
d75afeb3 2014 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2015 xfs_warn(mp, "Bad AGI block magic!");
2016 ASSERT(0);
2017 break;
2018 }
2019 bp->b_ops = &xfs_agi_buf_ops;
2020 break;
61fe135c
DC
2021 case XFS_BLFT_UDQUOT_BUF:
2022 case XFS_BLFT_PDQUOT_BUF:
2023 case XFS_BLFT_GDQUOT_BUF:
123887e8 2024#ifdef CONFIG_XFS_QUOTA
d75afeb3 2025 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2026 xfs_warn(mp, "Bad DQUOT block magic!");
2027 ASSERT(0);
2028 break;
2029 }
2030 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2031#else
2032 xfs_alert(mp,
2033 "Trying to recover dquots without QUOTA support built in!");
2034 ASSERT(0);
2035#endif
3fe58f30 2036 break;
61fe135c 2037 case XFS_BLFT_DINO_BUF:
93848a99
CH
2038 /*
2039 * we get here with inode allocation buffers, not buffers that
2040 * track unlinked list changes.
2041 */
d75afeb3 2042 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2043 xfs_warn(mp, "Bad INODE block magic!");
2044 ASSERT(0);
2045 break;
2046 }
2047 bp->b_ops = &xfs_inode_buf_ops;
2048 break;
61fe135c 2049 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2050 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2051 xfs_warn(mp, "Bad symlink block magic!");
2052 ASSERT(0);
2053 break;
2054 }
2055 bp->b_ops = &xfs_symlink_buf_ops;
2056 break;
61fe135c 2057 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2058 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2059 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2060 xfs_warn(mp, "Bad dir block magic!");
2061 ASSERT(0);
2062 break;
2063 }
2064 bp->b_ops = &xfs_dir3_block_buf_ops;
2065 break;
61fe135c 2066 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2067 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2068 magic32 != XFS_DIR3_DATA_MAGIC) {
2069 xfs_warn(mp, "Bad dir data magic!");
2070 ASSERT(0);
2071 break;
2072 }
2073 bp->b_ops = &xfs_dir3_data_buf_ops;
2074 break;
61fe135c 2075 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2076 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2077 magic32 != XFS_DIR3_FREE_MAGIC) {
2078 xfs_warn(mp, "Bad dir3 free magic!");
2079 ASSERT(0);
2080 break;
2081 }
2082 bp->b_ops = &xfs_dir3_free_buf_ops;
2083 break;
61fe135c 2084 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2085 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2086 magicda != XFS_DIR3_LEAF1_MAGIC) {
2087 xfs_warn(mp, "Bad dir leaf1 magic!");
2088 ASSERT(0);
2089 break;
2090 }
2091 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2092 break;
61fe135c 2093 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2094 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2095 magicda != XFS_DIR3_LEAFN_MAGIC) {
2096 xfs_warn(mp, "Bad dir leafn magic!");
2097 ASSERT(0);
2098 break;
2099 }
2100 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2101 break;
61fe135c 2102 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2103 if (magicda != XFS_DA_NODE_MAGIC &&
2104 magicda != XFS_DA3_NODE_MAGIC) {
2105 xfs_warn(mp, "Bad da node magic!");
2106 ASSERT(0);
2107 break;
2108 }
2109 bp->b_ops = &xfs_da3_node_buf_ops;
2110 break;
61fe135c 2111 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2112 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2113 magicda != XFS_ATTR3_LEAF_MAGIC) {
2114 xfs_warn(mp, "Bad attr leaf magic!");
2115 ASSERT(0);
2116 break;
2117 }
2118 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2119 break;
61fe135c 2120 case XFS_BLFT_ATTR_RMT_BUF:
d75afeb3
DC
2121 if (!xfs_sb_version_hascrc(&mp->m_sb))
2122 break;
cab09a81 2123 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2124 xfs_warn(mp, "Bad attr remote magic!");
2125 ASSERT(0);
2126 break;
2127 }
2128 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2129 break;
04a1e6c5
DC
2130 case XFS_BLFT_SB_BUF:
2131 if (magic32 != XFS_SB_MAGIC) {
2132 xfs_warn(mp, "Bad SB block magic!");
2133 ASSERT(0);
2134 break;
2135 }
2136 bp->b_ops = &xfs_sb_buf_ops;
2137 break;
ee1a47ab 2138 default:
61fe135c
DC
2139 xfs_warn(mp, "Unknown buffer type %d!",
2140 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2141 break;
2142 }
1da177e4
LT
2143}
2144
d75afeb3
DC
2145/*
2146 * Perform a 'normal' buffer recovery. Each logged region of the
2147 * buffer should be copied over the corresponding region in the
2148 * given buffer. The bitmap in the buf log format structure indicates
2149 * where to place the logged data.
2150 */
2151STATIC void
2152xlog_recover_do_reg_buffer(
2153 struct xfs_mount *mp,
2154 xlog_recover_item_t *item,
2155 struct xfs_buf *bp,
2156 xfs_buf_log_format_t *buf_f)
2157{
2158 int i;
2159 int bit;
2160 int nbits;
2161 int error;
2162
2163 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2164
2165 bit = 0;
2166 i = 1; /* 0 is the buf format structure */
2167 while (1) {
2168 bit = xfs_next_bit(buf_f->blf_data_map,
2169 buf_f->blf_map_size, bit);
2170 if (bit == -1)
2171 break;
2172 nbits = xfs_contig_bits(buf_f->blf_data_map,
2173 buf_f->blf_map_size, bit);
2174 ASSERT(nbits > 0);
2175 ASSERT(item->ri_buf[i].i_addr != NULL);
2176 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2177 ASSERT(BBTOB(bp->b_io_length) >=
2178 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2179
709da6a6
DC
2180 /*
2181 * The dirty regions logged in the buffer, even though
2182 * contiguous, may span multiple chunks. This is because the
2183 * dirty region may span a physical page boundary in a buffer
2184 * and hence be split into two separate vectors for writing into
2185 * the log. Hence we need to trim nbits back to the length of
2186 * the current region being copied out of the log.
2187 */
2188 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2189 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2190
d75afeb3
DC
2191 /*
2192 * Do a sanity check if this is a dquot buffer. Just checking
2193 * the first dquot in the buffer should do. XXXThis is
2194 * probably a good thing to do for other buf types also.
2195 */
2196 error = 0;
2197 if (buf_f->blf_flags &
2198 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2199 if (item->ri_buf[i].i_addr == NULL) {
2200 xfs_alert(mp,
2201 "XFS: NULL dquot in %s.", __func__);
2202 goto next;
2203 }
2204 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2205 xfs_alert(mp,
2206 "XFS: dquot too small (%d) in %s.",
2207 item->ri_buf[i].i_len, __func__);
2208 goto next;
2209 }
2210 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2211 -1, 0, XFS_QMOPT_DOWARN,
2212 "dquot_buf_recover");
2213 if (error)
2214 goto next;
2215 }
2216
2217 memcpy(xfs_buf_offset(bp,
2218 (uint)bit << XFS_BLF_SHIFT), /* dest */
2219 item->ri_buf[i].i_addr, /* source */
2220 nbits<<XFS_BLF_SHIFT); /* length */
2221 next:
2222 i++;
2223 bit += nbits;
2224 }
2225
2226 /* Shouldn't be any more regions */
2227 ASSERT(i == item->ri_total);
2228
9222a9cf
DC
2229 /*
2230 * We can only do post recovery validation on items on CRC enabled
2231 * fielsystems as we need to know when the buffer was written to be able
2232 * to determine if we should have replayed the item. If we replay old
2233 * metadata over a newer buffer, then it will enter a temporarily
2234 * inconsistent state resulting in verification failures. Hence for now
2235 * just avoid the verification stage for non-crc filesystems
2236 */
2237 if (xfs_sb_version_hascrc(&mp->m_sb))
2238 xlog_recovery_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2239}
2240
1da177e4
LT
2241/*
2242 * Do some primitive error checking on ondisk dquot data structures.
2243 */
2244int
2245xfs_qm_dqcheck(
a0fa2b67 2246 struct xfs_mount *mp,
1da177e4
LT
2247 xfs_disk_dquot_t *ddq,
2248 xfs_dqid_t id,
2249 uint type, /* used only when IO_dorepair is true */
2250 uint flags,
2251 char *str)
2252{
2253 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2254 int errs = 0;
2255
2256 /*
2257 * We can encounter an uninitialized dquot buffer for 2 reasons:
2258 * 1. If we crash while deleting the quotainode(s), and those blks got
2259 * used for user data. This is because we take the path of regular
2260 * file deletion; however, the size field of quotainodes is never
2261 * updated, so all the tricks that we play in itruncate_finish
2262 * don't quite matter.
2263 *
2264 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2265 * But the allocation will be replayed so we'll end up with an
2266 * uninitialized quota block.
2267 *
2268 * This is all fine; things are still consistent, and we haven't lost
2269 * any quota information. Just don't complain about bad dquot blks.
2270 */
69ef921b 2271 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 2272 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2273 xfs_alert(mp,
1da177e4 2274 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2275 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2276 errs++;
2277 }
1149d96a 2278 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 2279 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2280 xfs_alert(mp,
1da177e4 2281 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2282 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2283 errs++;
2284 }
2285
1149d96a
CH
2286 if (ddq->d_flags != XFS_DQ_USER &&
2287 ddq->d_flags != XFS_DQ_PROJ &&
2288 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 2289 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2290 xfs_alert(mp,
1da177e4 2291 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2292 str, id, ddq->d_flags);
1da177e4
LT
2293 errs++;
2294 }
2295
1149d96a 2296 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 2297 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2298 xfs_alert(mp,
1da177e4
LT
2299 "%s : ondisk-dquot 0x%p, ID mismatch: "
2300 "0x%x expected, found id 0x%x",
1149d96a 2301 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2302 errs++;
2303 }
2304
2305 if (!errs && ddq->d_id) {
1149d96a 2306 if (ddq->d_blk_softlimit &&
d0a3fe67 2307 be64_to_cpu(ddq->d_bcount) >
1149d96a 2308 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2309 if (!ddq->d_btimer) {
2310 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2311 xfs_alert(mp,
2312 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 2313 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2314 errs++;
2315 }
2316 }
1149d96a 2317 if (ddq->d_ino_softlimit &&
d0a3fe67 2318 be64_to_cpu(ddq->d_icount) >
1149d96a 2319 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2320 if (!ddq->d_itimer) {
2321 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2322 xfs_alert(mp,
2323 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2324 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2325 errs++;
2326 }
2327 }
1149d96a 2328 if (ddq->d_rtb_softlimit &&
d0a3fe67 2329 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2330 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2331 if (!ddq->d_rtbtimer) {
2332 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2333 xfs_alert(mp,
2334 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2335 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2336 errs++;
2337 }
2338 }
2339 }
2340
2341 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2342 return errs;
2343
2344 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2345 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2346
2347 /*
2348 * Typically, a repair is only requested by quotacheck.
2349 */
2350 ASSERT(id != -1);
2351 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2352 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2353
2354 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2355 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2356 d->dd_diskdq.d_flags = type;
2357 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4 2358
6fcdc59d
DC
2359 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2360 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2361 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2362 XFS_DQUOT_CRC_OFF);
2363 }
2364
1da177e4
LT
2365 return errs;
2366}
2367
2368/*
2369 * Perform a dquot buffer recovery.
2370 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2371 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2372 * Else, treat it as a regular buffer and do recovery.
2373 */
2374STATIC void
2375xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2376 struct xfs_mount *mp,
2377 struct xlog *log,
2378 struct xlog_recover_item *item,
2379 struct xfs_buf *bp,
2380 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2381{
2382 uint type;
2383
9abbc539
DC
2384 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2385
1da177e4
LT
2386 /*
2387 * Filesystems are required to send in quota flags at mount time.
2388 */
2389 if (mp->m_qflags == 0) {
2390 return;
2391 }
2392
2393 type = 0;
c1155410 2394 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2395 type |= XFS_DQ_USER;
c1155410 2396 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2397 type |= XFS_DQ_PROJ;
c1155410 2398 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2399 type |= XFS_DQ_GROUP;
2400 /*
2401 * This type of quotas was turned off, so ignore this buffer
2402 */
2403 if (log->l_quotaoffs_flag & type)
2404 return;
2405
9abbc539 2406 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2407}
2408
2409/*
2410 * This routine replays a modification made to a buffer at runtime.
2411 * There are actually two types of buffer, regular and inode, which
2412 * are handled differently. Inode buffers are handled differently
2413 * in that we only recover a specific set of data from them, namely
2414 * the inode di_next_unlinked fields. This is because all other inode
2415 * data is actually logged via inode records and any data we replay
2416 * here which overlaps that may be stale.
2417 *
2418 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2419 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2420 * of the buffer in the log should not be replayed at recovery time.
2421 * This is so that if the blocks covered by the buffer are reused for
2422 * file data before we crash we don't end up replaying old, freed
2423 * meta-data into a user's file.
2424 *
2425 * To handle the cancellation of buffer log items, we make two passes
2426 * over the log during recovery. During the first we build a table of
2427 * those buffers which have been cancelled, and during the second we
2428 * only replay those buffers which do not have corresponding cancel
2429 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2430 * for more details on the implementation of the table of cancel records.
2431 */
2432STATIC int
c9f71f5f 2433xlog_recover_buffer_pass2(
9a8d2fdb
MT
2434 struct xlog *log,
2435 struct list_head *buffer_list,
2436 struct xlog_recover_item *item)
1da177e4 2437{
4e0d5f92 2438 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2439 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2440 xfs_buf_t *bp;
2441 int error;
6ad112bf 2442 uint buf_flags;
1da177e4 2443
c9f71f5f
CH
2444 /*
2445 * In this pass we only want to recover all the buffers which have
2446 * not been cancelled and are not cancellation buffers themselves.
2447 */
2448 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2449 buf_f->blf_len, buf_f->blf_flags)) {
2450 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2451 return 0;
1da177e4 2452 }
c9f71f5f 2453
9abbc539 2454 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2455
a8acad70 2456 buf_flags = 0;
611c9946
DC
2457 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2458 buf_flags |= XBF_UNMAPPED;
6ad112bf 2459
e2714bf8 2460 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2461 buf_flags, NULL);
ac4d6888
CS
2462 if (!bp)
2463 return XFS_ERROR(ENOMEM);
e5702805 2464 error = bp->b_error;
5a52c2a5 2465 if (error) {
901796af 2466 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
1da177e4
LT
2467 xfs_buf_relse(bp);
2468 return error;
2469 }
2470
e2714bf8 2471 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2472 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2473 } else if (buf_f->blf_flags &
c1155410 2474 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2475 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2476 } else {
9abbc539 2477 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2478 }
2479 if (error)
2480 return XFS_ERROR(error);
2481
2482 /*
2483 * Perform delayed write on the buffer. Asynchronous writes will be
2484 * slower when taking into account all the buffers to be flushed.
2485 *
2486 * Also make sure that only inode buffers with good sizes stay in
2487 * the buffer cache. The kernel moves inodes in buffers of 1 block
2488 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2489 * buffers in the log can be a different size if the log was generated
2490 * by an older kernel using unclustered inode buffers or a newer kernel
2491 * running with a different inode cluster size. Regardless, if the
2492 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2493 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2494 * the buffer out of the buffer cache so that the buffer won't
2495 * overlap with future reads of those inodes.
2496 */
2497 if (XFS_DINODE_MAGIC ==
b53e675d 2498 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2499 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
1da177e4 2500 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2501 xfs_buf_stale(bp);
c2b006c1 2502 error = xfs_bwrite(bp);
1da177e4 2503 } else {
ebad861b 2504 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2505 bp->b_iodone = xlog_recover_iodone;
43ff2122 2506 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2507 }
2508
c2b006c1
CH
2509 xfs_buf_relse(bp);
2510 return error;
1da177e4
LT
2511}
2512
2513STATIC int
c9f71f5f 2514xlog_recover_inode_pass2(
9a8d2fdb
MT
2515 struct xlog *log,
2516 struct list_head *buffer_list,
2517 struct xlog_recover_item *item)
1da177e4
LT
2518{
2519 xfs_inode_log_format_t *in_f;
c9f71f5f 2520 xfs_mount_t *mp = log->l_mp;
1da177e4 2521 xfs_buf_t *bp;
1da177e4 2522 xfs_dinode_t *dip;
1da177e4
LT
2523 int len;
2524 xfs_caddr_t src;
2525 xfs_caddr_t dest;
2526 int error;
2527 int attr_index;
2528 uint fields;
347d1c01 2529 xfs_icdinode_t *dicp;
93848a99 2530 uint isize;
6d192a9b 2531 int need_free = 0;
1da177e4 2532
6d192a9b 2533 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2534 in_f = item->ri_buf[0].i_addr;
6d192a9b 2535 } else {
4e0d5f92 2536 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2537 need_free = 1;
2538 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2539 if (error)
2540 goto error;
2541 }
1da177e4
LT
2542
2543 /*
2544 * Inode buffers can be freed, look out for it,
2545 * and do not replay the inode.
2546 */
a1941895
CH
2547 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2548 in_f->ilf_len, 0)) {
6d192a9b 2549 error = 0;
9abbc539 2550 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2551 goto error;
2552 }
9abbc539 2553 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2554
c3f8fc73 2555 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2556 &xfs_inode_buf_ops);
ac4d6888
CS
2557 if (!bp) {
2558 error = ENOMEM;
2559 goto error;
2560 }
e5702805 2561 error = bp->b_error;
5a52c2a5 2562 if (error) {
901796af 2563 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
1da177e4 2564 xfs_buf_relse(bp);
6d192a9b 2565 goto error;
1da177e4 2566 }
1da177e4 2567 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2568 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2569
2570 /*
2571 * Make sure the place we're flushing out to really looks
2572 * like an inode!
2573 */
69ef921b 2574 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
1da177e4 2575 xfs_buf_relse(bp);
a0fa2b67
DC
2576 xfs_alert(mp,
2577 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2578 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2579 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2580 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2581 error = EFSCORRUPTED;
2582 goto error;
1da177e4 2583 }
4e0d5f92 2584 dicp = item->ri_buf[1].i_addr;
1da177e4
LT
2585 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2586 xfs_buf_relse(bp);
a0fa2b67
DC
2587 xfs_alert(mp,
2588 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2589 __func__, item, in_f->ilf_ino);
c9f71f5f 2590 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2591 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2592 error = EFSCORRUPTED;
2593 goto error;
1da177e4
LT
2594 }
2595
e60896d8
DC
2596 /*
2597 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2598 * are transactional and if ordering is necessary we can determine that
2599 * more accurately by the LSN field in the V3 inode core. Don't trust
2600 * the inode versions we might be changing them here - use the
2601 * superblock flag to determine whether we need to look at di_flushiter
2602 * to skip replay when the on disk inode is newer than the log one
2603 */
2604 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2605 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2606 /*
2607 * Deal with the wrap case, DI_MAX_FLUSH is less
2608 * than smaller numbers
2609 */
81591fe2 2610 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2611 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2612 /* do nothing */
2613 } else {
2614 xfs_buf_relse(bp);
9abbc539 2615 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2616 error = 0;
2617 goto error;
1da177e4
LT
2618 }
2619 }
e60896d8 2620
1da177e4
LT
2621 /* Take the opportunity to reset the flush iteration count */
2622 dicp->di_flushiter = 0;
2623
abbede1b 2624 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2625 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2626 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2627 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4
LT
2628 XFS_ERRLEVEL_LOW, mp, dicp);
2629 xfs_buf_relse(bp);
a0fa2b67
DC
2630 xfs_alert(mp,
2631 "%s: Bad regular inode log record, rec ptr 0x%p, "
2632 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2633 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2634 error = EFSCORRUPTED;
2635 goto error;
1da177e4 2636 }
abbede1b 2637 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2638 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2639 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2640 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2641 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4
LT
2642 XFS_ERRLEVEL_LOW, mp, dicp);
2643 xfs_buf_relse(bp);
a0fa2b67
DC
2644 xfs_alert(mp,
2645 "%s: Bad dir inode log record, rec ptr 0x%p, "
2646 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2647 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2648 error = EFSCORRUPTED;
2649 goto error;
1da177e4
LT
2650 }
2651 }
2652 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2653 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4
LT
2654 XFS_ERRLEVEL_LOW, mp, dicp);
2655 xfs_buf_relse(bp);
a0fa2b67
DC
2656 xfs_alert(mp,
2657 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2658 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2659 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2660 dicp->di_nextents + dicp->di_anextents,
2661 dicp->di_nblocks);
6d192a9b
TS
2662 error = EFSCORRUPTED;
2663 goto error;
1da177e4
LT
2664 }
2665 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2666 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4
LT
2667 XFS_ERRLEVEL_LOW, mp, dicp);
2668 xfs_buf_relse(bp);
a0fa2b67
DC
2669 xfs_alert(mp,
2670 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2671 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2672 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b
TS
2673 error = EFSCORRUPTED;
2674 goto error;
1da177e4 2675 }
93848a99
CH
2676 isize = xfs_icdinode_size(dicp->di_version);
2677 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2678 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4
LT
2679 XFS_ERRLEVEL_LOW, mp, dicp);
2680 xfs_buf_relse(bp);
a0fa2b67
DC
2681 xfs_alert(mp,
2682 "%s: Bad inode log record length %d, rec ptr 0x%p",
2683 __func__, item->ri_buf[1].i_len, item);
6d192a9b
TS
2684 error = EFSCORRUPTED;
2685 goto error;
1da177e4
LT
2686 }
2687
2688 /* The core is in in-core format */
93848a99 2689 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2690
2691 /* the rest is in on-disk format */
93848a99
CH
2692 if (item->ri_buf[1].i_len > isize) {
2693 memcpy((char *)dip + isize,
2694 item->ri_buf[1].i_addr + isize,
2695 item->ri_buf[1].i_len - isize);
1da177e4
LT
2696 }
2697
2698 fields = in_f->ilf_fields;
2699 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2700 case XFS_ILOG_DEV:
81591fe2 2701 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2702 break;
2703 case XFS_ILOG_UUID:
81591fe2
CH
2704 memcpy(XFS_DFORK_DPTR(dip),
2705 &in_f->ilf_u.ilfu_uuid,
2706 sizeof(uuid_t));
1da177e4
LT
2707 break;
2708 }
2709
2710 if (in_f->ilf_size == 2)
2711 goto write_inode_buffer;
2712 len = item->ri_buf[2].i_len;
2713 src = item->ri_buf[2].i_addr;
2714 ASSERT(in_f->ilf_size <= 4);
2715 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2716 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2717 (len == in_f->ilf_dsize));
2718
2719 switch (fields & XFS_ILOG_DFORK) {
2720 case XFS_ILOG_DDATA:
2721 case XFS_ILOG_DEXT:
81591fe2 2722 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2723 break;
2724
2725 case XFS_ILOG_DBROOT:
7cc95a82 2726 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2727 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2728 XFS_DFORK_DSIZE(dip, mp));
2729 break;
2730
2731 default:
2732 /*
2733 * There are no data fork flags set.
2734 */
2735 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2736 break;
2737 }
2738
2739 /*
2740 * If we logged any attribute data, recover it. There may or
2741 * may not have been any other non-core data logged in this
2742 * transaction.
2743 */
2744 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2745 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2746 attr_index = 3;
2747 } else {
2748 attr_index = 2;
2749 }
2750 len = item->ri_buf[attr_index].i_len;
2751 src = item->ri_buf[attr_index].i_addr;
2752 ASSERT(len == in_f->ilf_asize);
2753
2754 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2755 case XFS_ILOG_ADATA:
2756 case XFS_ILOG_AEXT:
2757 dest = XFS_DFORK_APTR(dip);
2758 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2759 memcpy(dest, src, len);
2760 break;
2761
2762 case XFS_ILOG_ABROOT:
2763 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2764 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2765 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2766 XFS_DFORK_ASIZE(dip, mp));
2767 break;
2768
2769 default:
a0fa2b67 2770 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4
LT
2771 ASSERT(0);
2772 xfs_buf_relse(bp);
6d192a9b
TS
2773 error = EIO;
2774 goto error;
1da177e4
LT
2775 }
2776 }
2777
2778write_inode_buffer:
93848a99
CH
2779 /* re-generate the checksum. */
2780 xfs_dinode_calc_crc(log->l_mp, dip);
2781
ebad861b 2782 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2783 bp->b_iodone = xlog_recover_iodone;
43ff2122 2784 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2785 xfs_buf_relse(bp);
6d192a9b
TS
2786error:
2787 if (need_free)
f0e2d93c 2788 kmem_free(in_f);
6d192a9b 2789 return XFS_ERROR(error);
1da177e4
LT
2790}
2791
2792/*
9a8d2fdb 2793 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2794 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2795 * of that type.
2796 */
2797STATIC int
c9f71f5f 2798xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2799 struct xlog *log,
2800 struct xlog_recover_item *item)
1da177e4 2801{
c9f71f5f 2802 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2803 ASSERT(qoff_f);
2804
2805 /*
2806 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2807 * group/project quotaoff or both.
1da177e4
LT
2808 */
2809 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2810 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2811 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2812 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2813 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2814 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2815
2816 return (0);
2817}
2818
2819/*
2820 * Recover a dquot record
2821 */
2822STATIC int
c9f71f5f 2823xlog_recover_dquot_pass2(
9a8d2fdb
MT
2824 struct xlog *log,
2825 struct list_head *buffer_list,
2826 struct xlog_recover_item *item)
1da177e4 2827{
c9f71f5f 2828 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2829 xfs_buf_t *bp;
2830 struct xfs_disk_dquot *ddq, *recddq;
2831 int error;
2832 xfs_dq_logformat_t *dq_f;
2833 uint type;
2834
1da177e4
LT
2835
2836 /*
2837 * Filesystems are required to send in quota flags at mount time.
2838 */
2839 if (mp->m_qflags == 0)
2840 return (0);
2841
4e0d5f92
CH
2842 recddq = item->ri_buf[1].i_addr;
2843 if (recddq == NULL) {
a0fa2b67 2844 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
2845 return XFS_ERROR(EIO);
2846 }
8ec6dba2 2847 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2848 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
2849 item->ri_buf[1].i_len, __func__);
2850 return XFS_ERROR(EIO);
2851 }
2852
1da177e4
LT
2853 /*
2854 * This type of quotas was turned off, so ignore this record.
2855 */
b53e675d 2856 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2857 ASSERT(type);
2858 if (log->l_quotaoffs_flag & type)
2859 return (0);
2860
2861 /*
2862 * At this point we know that quota was _not_ turned off.
2863 * Since the mount flags are not indicating to us otherwise, this
2864 * must mean that quota is on, and the dquot needs to be replayed.
2865 * Remember that we may not have fully recovered the superblock yet,
2866 * so we can't do the usual trick of looking at the SB quota bits.
2867 *
2868 * The other possibility, of course, is that the quota subsystem was
2869 * removed since the last mount - ENOSYS.
2870 */
4e0d5f92 2871 dq_f = item->ri_buf[0].i_addr;
1da177e4 2872 ASSERT(dq_f);
a0fa2b67
DC
2873 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2874 "xlog_recover_dquot_pass2 (log copy)");
2875 if (error)
1da177e4 2876 return XFS_ERROR(EIO);
1da177e4
LT
2877 ASSERT(dq_f->qlf_len == 1);
2878
7ca790a5 2879 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73
DC
2880 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2881 NULL);
7ca790a5 2882 if (error)
1da177e4 2883 return error;
7ca790a5 2884
1da177e4
LT
2885 ASSERT(bp);
2886 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2887
2888 /*
2889 * At least the magic num portion should be on disk because this
2890 * was among a chunk of dquots created earlier, and we did some
2891 * minimal initialization then.
2892 */
a0fa2b67
DC
2893 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2894 "xlog_recover_dquot_pass2");
2895 if (error) {
1da177e4
LT
2896 xfs_buf_relse(bp);
2897 return XFS_ERROR(EIO);
2898 }
2899
2900 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
2901 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2902 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2903 XFS_DQUOT_CRC_OFF);
2904 }
1da177e4
LT
2905
2906 ASSERT(dq_f->qlf_size == 2);
ebad861b 2907 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2908 bp->b_iodone = xlog_recover_iodone;
43ff2122 2909 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2910 xfs_buf_relse(bp);
1da177e4
LT
2911
2912 return (0);
2913}
2914
2915/*
2916 * This routine is called to create an in-core extent free intent
2917 * item from the efi format structure which was logged on disk.
2918 * It allocates an in-core efi, copies the extents from the format
2919 * structure into it, and adds the efi to the AIL with the given
2920 * LSN.
2921 */
6d192a9b 2922STATIC int
c9f71f5f 2923xlog_recover_efi_pass2(
9a8d2fdb
MT
2924 struct xlog *log,
2925 struct xlog_recover_item *item,
2926 xfs_lsn_t lsn)
1da177e4 2927{
6d192a9b 2928 int error;
c9f71f5f 2929 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2930 xfs_efi_log_item_t *efip;
2931 xfs_efi_log_format_t *efi_formatp;
1da177e4 2932
4e0d5f92 2933 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2934
1da177e4 2935 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2936 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2937 &(efip->efi_format)))) {
2938 xfs_efi_item_free(efip);
2939 return error;
2940 }
b199c8a4 2941 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2942
a9c21c1b 2943 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2944 /*
783a2f65 2945 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2946 */
e6059949 2947 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2948 return 0;
1da177e4
LT
2949}
2950
2951
2952/*
2953 * This routine is called when an efd format structure is found in
2954 * a committed transaction in the log. It's purpose is to cancel
2955 * the corresponding efi if it was still in the log. To do this
2956 * it searches the AIL for the efi with an id equal to that in the
2957 * efd format structure. If we find it, we remove the efi from the
2958 * AIL and free it.
2959 */
c9f71f5f
CH
2960STATIC int
2961xlog_recover_efd_pass2(
9a8d2fdb
MT
2962 struct xlog *log,
2963 struct xlog_recover_item *item)
1da177e4 2964{
1da177e4
LT
2965 xfs_efd_log_format_t *efd_formatp;
2966 xfs_efi_log_item_t *efip = NULL;
2967 xfs_log_item_t *lip;
1da177e4 2968 __uint64_t efi_id;
27d8d5fe 2969 struct xfs_ail_cursor cur;
783a2f65 2970 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2971
4e0d5f92 2972 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2973 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2974 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2975 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2976 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2977 efi_id = efd_formatp->efd_efi_id;
2978
2979 /*
2980 * Search for the efi with the id in the efd format structure
2981 * in the AIL.
2982 */
a9c21c1b
DC
2983 spin_lock(&ailp->xa_lock);
2984 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2985 while (lip != NULL) {
2986 if (lip->li_type == XFS_LI_EFI) {
2987 efip = (xfs_efi_log_item_t *)lip;
2988 if (efip->efi_format.efi_id == efi_id) {
2989 /*
783a2f65 2990 * xfs_trans_ail_delete() drops the
1da177e4
LT
2991 * AIL lock.
2992 */
04913fdd
DC
2993 xfs_trans_ail_delete(ailp, lip,
2994 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 2995 xfs_efi_item_free(efip);
a9c21c1b 2996 spin_lock(&ailp->xa_lock);
27d8d5fe 2997 break;
1da177e4
LT
2998 }
2999 }
a9c21c1b 3000 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3001 }
a9c21c1b
DC
3002 xfs_trans_ail_cursor_done(ailp, &cur);
3003 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3004
3005 return 0;
1da177e4
LT
3006}
3007
28c8e41a
DC
3008/*
3009 * This routine is called when an inode create format structure is found in a
3010 * committed transaction in the log. It's purpose is to initialise the inodes
3011 * being allocated on disk. This requires us to get inode cluster buffers that
3012 * match the range to be intialised, stamped with inode templates and written
3013 * by delayed write so that subsequent modifications will hit the cached buffer
3014 * and only need writing out at the end of recovery.
3015 */
3016STATIC int
3017xlog_recover_do_icreate_pass2(
3018 struct xlog *log,
3019 struct list_head *buffer_list,
3020 xlog_recover_item_t *item)
3021{
3022 struct xfs_mount *mp = log->l_mp;
3023 struct xfs_icreate_log *icl;
3024 xfs_agnumber_t agno;
3025 xfs_agblock_t agbno;
3026 unsigned int count;
3027 unsigned int isize;
3028 xfs_agblock_t length;
3029
3030 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3031 if (icl->icl_type != XFS_LI_ICREATE) {
3032 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3033 return EINVAL;
3034 }
3035
3036 if (icl->icl_size != 1) {
3037 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3038 return EINVAL;
3039 }
3040
3041 agno = be32_to_cpu(icl->icl_ag);
3042 if (agno >= mp->m_sb.sb_agcount) {
3043 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3044 return EINVAL;
3045 }
3046 agbno = be32_to_cpu(icl->icl_agbno);
3047 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3048 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3049 return EINVAL;
3050 }
3051 isize = be32_to_cpu(icl->icl_isize);
3052 if (isize != mp->m_sb.sb_inodesize) {
3053 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3054 return EINVAL;
3055 }
3056 count = be32_to_cpu(icl->icl_count);
3057 if (!count) {
3058 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3059 return EINVAL;
3060 }
3061 length = be32_to_cpu(icl->icl_length);
3062 if (!length || length >= mp->m_sb.sb_agblocks) {
3063 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3064 return EINVAL;
3065 }
3066
3067 /* existing allocation is fixed value */
3068 ASSERT(count == XFS_IALLOC_INODES(mp));
3069 ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3070 if (count != XFS_IALLOC_INODES(mp) ||
3071 length != XFS_IALLOC_BLOCKS(mp)) {
3072 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3073 return EINVAL;
3074 }
3075
3076 /*
3077 * Inode buffers can be freed. Do not replay the inode initialisation as
3078 * we could be overwriting something written after this inode buffer was
3079 * cancelled.
3080 *
3081 * XXX: we need to iterate all buffers and only init those that are not
3082 * cancelled. I think that a more fine grained factoring of
3083 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3084 * done easily.
3085 */
3086 if (xlog_check_buffer_cancelled(log,
3087 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3088 return 0;
3089
3090 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3091 be32_to_cpu(icl->icl_gen));
3092 return 0;
3093}
3094
1da177e4
LT
3095/*
3096 * Free up any resources allocated by the transaction
3097 *
3098 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3099 */
3100STATIC void
3101xlog_recover_free_trans(
d0450948 3102 struct xlog_recover *trans)
1da177e4 3103{
f0a76953 3104 xlog_recover_item_t *item, *n;
1da177e4
LT
3105 int i;
3106
f0a76953
DC
3107 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3108 /* Free the regions in the item. */
3109 list_del(&item->ri_list);
3110 for (i = 0; i < item->ri_cnt; i++)
3111 kmem_free(item->ri_buf[i].i_addr);
1da177e4 3112 /* Free the item itself */
f0a76953
DC
3113 kmem_free(item->ri_buf);
3114 kmem_free(item);
3115 }
1da177e4 3116 /* Free the transaction recover structure */
f0e2d93c 3117 kmem_free(trans);
1da177e4
LT
3118}
3119
d0450948 3120STATIC int
c9f71f5f 3121xlog_recover_commit_pass1(
ad223e60
MT
3122 struct xlog *log,
3123 struct xlog_recover *trans,
3124 struct xlog_recover_item *item)
d0450948 3125{
c9f71f5f 3126 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3127
3128 switch (ITEM_TYPE(item)) {
3129 case XFS_LI_BUF:
c9f71f5f
CH
3130 return xlog_recover_buffer_pass1(log, item);
3131 case XFS_LI_QUOTAOFF:
3132 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3133 case XFS_LI_INODE:
d0450948 3134 case XFS_LI_EFI:
d0450948 3135 case XFS_LI_EFD:
c9f71f5f 3136 case XFS_LI_DQUOT:
28c8e41a 3137 case XFS_LI_ICREATE:
c9f71f5f 3138 /* nothing to do in pass 1 */
d0450948 3139 return 0;
c9f71f5f 3140 default:
a0fa2b67
DC
3141 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3142 __func__, ITEM_TYPE(item));
c9f71f5f
CH
3143 ASSERT(0);
3144 return XFS_ERROR(EIO);
3145 }
3146}
3147
3148STATIC int
3149xlog_recover_commit_pass2(
ad223e60
MT
3150 struct xlog *log,
3151 struct xlog_recover *trans,
3152 struct list_head *buffer_list,
3153 struct xlog_recover_item *item)
c9f71f5f
CH
3154{
3155 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3156
3157 switch (ITEM_TYPE(item)) {
3158 case XFS_LI_BUF:
43ff2122 3159 return xlog_recover_buffer_pass2(log, buffer_list, item);
c9f71f5f 3160 case XFS_LI_INODE:
43ff2122 3161 return xlog_recover_inode_pass2(log, buffer_list, item);
c9f71f5f
CH
3162 case XFS_LI_EFI:
3163 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3164 case XFS_LI_EFD:
3165 return xlog_recover_efd_pass2(log, item);
d0450948 3166 case XFS_LI_DQUOT:
43ff2122 3167 return xlog_recover_dquot_pass2(log, buffer_list, item);
28c8e41a
DC
3168 case XFS_LI_ICREATE:
3169 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3170 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3171 /* nothing to do in pass2 */
3172 return 0;
d0450948 3173 default:
a0fa2b67
DC
3174 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3175 __func__, ITEM_TYPE(item));
d0450948
CH
3176 ASSERT(0);
3177 return XFS_ERROR(EIO);
3178 }
3179}
3180
3181/*
3182 * Perform the transaction.
3183 *
3184 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3185 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3186 */
1da177e4
LT
3187STATIC int
3188xlog_recover_commit_trans(
ad223e60 3189 struct xlog *log,
d0450948 3190 struct xlog_recover *trans,
1da177e4
LT
3191 int pass)
3192{
43ff2122 3193 int error = 0, error2;
d0450948 3194 xlog_recover_item_t *item;
43ff2122 3195 LIST_HEAD (buffer_list);
1da177e4 3196
f0a76953 3197 hlist_del(&trans->r_list);
d0450948
CH
3198
3199 error = xlog_recover_reorder_trans(log, trans, pass);
3200 if (error)
1da177e4 3201 return error;
d0450948
CH
3202
3203 list_for_each_entry(item, &trans->r_itemq, ri_list) {
43ff2122
CH
3204 switch (pass) {
3205 case XLOG_RECOVER_PASS1:
c9f71f5f 3206 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3207 break;
3208 case XLOG_RECOVER_PASS2:
3209 error = xlog_recover_commit_pass2(log, trans,
3210 &buffer_list, item);
3211 break;
3212 default:
3213 ASSERT(0);
3214 }
3215
d0450948 3216 if (error)
43ff2122 3217 goto out;
d0450948
CH
3218 }
3219
3220 xlog_recover_free_trans(trans);
43ff2122
CH
3221
3222out:
3223 error2 = xfs_buf_delwri_submit(&buffer_list);
3224 return error ? error : error2;
1da177e4
LT
3225}
3226
3227STATIC int
3228xlog_recover_unmount_trans(
ad223e60
MT
3229 struct xlog *log,
3230 struct xlog_recover *trans)
1da177e4
LT
3231{
3232 /* Do nothing now */
a0fa2b67 3233 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
3234 return 0;
3235}
3236
3237/*
3238 * There are two valid states of the r_state field. 0 indicates that the
3239 * transaction structure is in a normal state. We have either seen the
3240 * start of the transaction or the last operation we added was not a partial
3241 * operation. If the last operation we added to the transaction was a
3242 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3243 *
3244 * NOTE: skip LRs with 0 data length.
3245 */
3246STATIC int
3247xlog_recover_process_data(
9a8d2fdb 3248 struct xlog *log,
f0a76953 3249 struct hlist_head rhash[],
9a8d2fdb 3250 struct xlog_rec_header *rhead,
1da177e4
LT
3251 xfs_caddr_t dp,
3252 int pass)
3253{
3254 xfs_caddr_t lp;
3255 int num_logops;
3256 xlog_op_header_t *ohead;
3257 xlog_recover_t *trans;
3258 xlog_tid_t tid;
3259 int error;
3260 unsigned long hash;
3261 uint flags;
3262
b53e675d
CH
3263 lp = dp + be32_to_cpu(rhead->h_len);
3264 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3265
3266 /* check the log format matches our own - else we can't recover */
3267 if (xlog_header_check_recover(log->l_mp, rhead))
3268 return (XFS_ERROR(EIO));
3269
3270 while ((dp < lp) && num_logops) {
3271 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3272 ohead = (xlog_op_header_t *)dp;
3273 dp += sizeof(xlog_op_header_t);
3274 if (ohead->oh_clientid != XFS_TRANSACTION &&
3275 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
3276 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3277 __func__, ohead->oh_clientid);
1da177e4
LT
3278 ASSERT(0);
3279 return (XFS_ERROR(EIO));
3280 }
67fcb7bf 3281 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 3282 hash = XLOG_RHASH(tid);
f0a76953 3283 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
3284 if (trans == NULL) { /* not found; add new tid */
3285 if (ohead->oh_flags & XLOG_START_TRANS)
3286 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 3287 be64_to_cpu(rhead->h_lsn));
1da177e4 3288 } else {
9742bb93 3289 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
3290 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3291 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
3292 WARN_ON(1);
3293 return (XFS_ERROR(EIO));
3294 }
1da177e4
LT
3295 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3296 if (flags & XLOG_WAS_CONT_TRANS)
3297 flags &= ~XLOG_CONTINUE_TRANS;
3298 switch (flags) {
3299 case XLOG_COMMIT_TRANS:
3300 error = xlog_recover_commit_trans(log,
f0a76953 3301 trans, pass);
1da177e4
LT
3302 break;
3303 case XLOG_UNMOUNT_TRANS:
a0fa2b67 3304 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
3305 break;
3306 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
3307 error = xlog_recover_add_to_cont_trans(log,
3308 trans, dp,
3309 be32_to_cpu(ohead->oh_len));
1da177e4
LT
3310 break;
3311 case XLOG_START_TRANS:
a0fa2b67
DC
3312 xfs_warn(log->l_mp, "%s: bad transaction",
3313 __func__);
1da177e4
LT
3314 ASSERT(0);
3315 error = XFS_ERROR(EIO);
3316 break;
3317 case 0:
3318 case XLOG_CONTINUE_TRANS:
9abbc539 3319 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 3320 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
3321 break;
3322 default:
a0fa2b67
DC
3323 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3324 __func__, flags);
1da177e4
LT
3325 ASSERT(0);
3326 error = XFS_ERROR(EIO);
3327 break;
3328 }
3329 if (error)
3330 return error;
3331 }
67fcb7bf 3332 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3333 num_logops--;
3334 }
3335 return 0;
3336}
3337
3338/*
3339 * Process an extent free intent item that was recovered from
3340 * the log. We need to free the extents that it describes.
3341 */
3c1e2bbe 3342STATIC int
1da177e4
LT
3343xlog_recover_process_efi(
3344 xfs_mount_t *mp,
3345 xfs_efi_log_item_t *efip)
3346{
3347 xfs_efd_log_item_t *efdp;
3348 xfs_trans_t *tp;
3349 int i;
3c1e2bbe 3350 int error = 0;
1da177e4
LT
3351 xfs_extent_t *extp;
3352 xfs_fsblock_t startblock_fsb;
3353
b199c8a4 3354 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3355
3356 /*
3357 * First check the validity of the extents described by the
3358 * EFI. If any are bad, then assume that all are bad and
3359 * just toss the EFI.
3360 */
3361 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3362 extp = &(efip->efi_format.efi_extents[i]);
3363 startblock_fsb = XFS_BB_TO_FSB(mp,
3364 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3365 if ((startblock_fsb == 0) ||
3366 (extp->ext_len == 0) ||
3367 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3368 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3369 /*
3370 * This will pull the EFI from the AIL and
3371 * free the memory associated with it.
3372 */
666d644c 3373 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3374 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3375 return XFS_ERROR(EIO);
1da177e4
LT
3376 }
3377 }
3378
3379 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 3380 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
3381 if (error)
3382 goto abort_error;
1da177e4
LT
3383 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3384
3385 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3386 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3387 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3388 if (error)
3389 goto abort_error;
1da177e4
LT
3390 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3391 extp->ext_len);
3392 }
3393
b199c8a4 3394 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3395 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3396 return error;
fc6149d8
DC
3397
3398abort_error:
3399 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3400 return error;
1da177e4
LT
3401}
3402
1da177e4
LT
3403/*
3404 * When this is called, all of the EFIs which did not have
3405 * corresponding EFDs should be in the AIL. What we do now
3406 * is free the extents associated with each one.
3407 *
3408 * Since we process the EFIs in normal transactions, they
3409 * will be removed at some point after the commit. This prevents
3410 * us from just walking down the list processing each one.
3411 * We'll use a flag in the EFI to skip those that we've already
3412 * processed and use the AIL iteration mechanism's generation
3413 * count to try to speed this up at least a bit.
3414 *
3415 * When we start, we know that the EFIs are the only things in
3416 * the AIL. As we process them, however, other items are added
3417 * to the AIL. Since everything added to the AIL must come after
3418 * everything already in the AIL, we stop processing as soon as
3419 * we see something other than an EFI in the AIL.
3420 */
3c1e2bbe 3421STATIC int
1da177e4 3422xlog_recover_process_efis(
9a8d2fdb 3423 struct xlog *log)
1da177e4
LT
3424{
3425 xfs_log_item_t *lip;
3426 xfs_efi_log_item_t *efip;
3c1e2bbe 3427 int error = 0;
27d8d5fe 3428 struct xfs_ail_cursor cur;
a9c21c1b 3429 struct xfs_ail *ailp;
1da177e4 3430
a9c21c1b
DC
3431 ailp = log->l_ailp;
3432 spin_lock(&ailp->xa_lock);
3433 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3434 while (lip != NULL) {
3435 /*
3436 * We're done when we see something other than an EFI.
27d8d5fe 3437 * There should be no EFIs left in the AIL now.
1da177e4
LT
3438 */
3439 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3440#ifdef DEBUG
a9c21c1b 3441 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3442 ASSERT(lip->li_type != XFS_LI_EFI);
3443#endif
1da177e4
LT
3444 break;
3445 }
3446
3447 /*
3448 * Skip EFIs that we've already processed.
3449 */
3450 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3451 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3452 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3453 continue;
3454 }
3455
a9c21c1b
DC
3456 spin_unlock(&ailp->xa_lock);
3457 error = xlog_recover_process_efi(log->l_mp, efip);
3458 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3459 if (error)
3460 goto out;
a9c21c1b 3461 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3462 }
27d8d5fe 3463out:
a9c21c1b
DC
3464 xfs_trans_ail_cursor_done(ailp, &cur);
3465 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3466 return error;
1da177e4
LT
3467}
3468
3469/*
3470 * This routine performs a transaction to null out a bad inode pointer
3471 * in an agi unlinked inode hash bucket.
3472 */
3473STATIC void
3474xlog_recover_clear_agi_bucket(
3475 xfs_mount_t *mp,
3476 xfs_agnumber_t agno,
3477 int bucket)
3478{
3479 xfs_trans_t *tp;
3480 xfs_agi_t *agi;
3481 xfs_buf_t *agibp;
3482 int offset;
3483 int error;
3484
3485 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 3486 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
3487 if (error)
3488 goto out_abort;
1da177e4 3489
5e1be0fb
CH
3490 error = xfs_read_agi(mp, tp, agno, &agibp);
3491 if (error)
e5720eec 3492 goto out_abort;
1da177e4 3493
5e1be0fb 3494 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3495 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3496 offset = offsetof(xfs_agi_t, agi_unlinked) +
3497 (sizeof(xfs_agino_t) * bucket);
3498 xfs_trans_log_buf(tp, agibp, offset,
3499 (offset + sizeof(xfs_agino_t) - 1));
3500
e5720eec
DC
3501 error = xfs_trans_commit(tp, 0);
3502 if (error)
3503 goto out_error;
3504 return;
3505
3506out_abort:
3507 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3508out_error:
a0fa2b67 3509 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3510 return;
1da177e4
LT
3511}
3512
23fac50f
CH
3513STATIC xfs_agino_t
3514xlog_recover_process_one_iunlink(
3515 struct xfs_mount *mp,
3516 xfs_agnumber_t agno,
3517 xfs_agino_t agino,
3518 int bucket)
3519{
3520 struct xfs_buf *ibp;
3521 struct xfs_dinode *dip;
3522 struct xfs_inode *ip;
3523 xfs_ino_t ino;
3524 int error;
3525
3526 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3527 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3528 if (error)
3529 goto fail;
3530
3531 /*
3532 * Get the on disk inode to find the next inode in the bucket.
3533 */
475ee413 3534 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3535 if (error)
0e446673 3536 goto fail_iput;
23fac50f 3537
23fac50f 3538 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3539 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3540
3541 /* setup for the next pass */
3542 agino = be32_to_cpu(dip->di_next_unlinked);
3543 xfs_buf_relse(ibp);
3544
3545 /*
3546 * Prevent any DMAPI event from being sent when the reference on
3547 * the inode is dropped.
3548 */
3549 ip->i_d.di_dmevmask = 0;
3550
0e446673 3551 IRELE(ip);
23fac50f
CH
3552 return agino;
3553
0e446673
CH
3554 fail_iput:
3555 IRELE(ip);
23fac50f
CH
3556 fail:
3557 /*
3558 * We can't read in the inode this bucket points to, or this inode
3559 * is messed up. Just ditch this bucket of inodes. We will lose
3560 * some inodes and space, but at least we won't hang.
3561 *
3562 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3563 * clear the inode pointer in the bucket.
3564 */
3565 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3566 return NULLAGINO;
3567}
3568
1da177e4
LT
3569/*
3570 * xlog_iunlink_recover
3571 *
3572 * This is called during recovery to process any inodes which
3573 * we unlinked but not freed when the system crashed. These
3574 * inodes will be on the lists in the AGI blocks. What we do
3575 * here is scan all the AGIs and fully truncate and free any
3576 * inodes found on the lists. Each inode is removed from the
3577 * lists when it has been fully truncated and is freed. The
3578 * freeing of the inode and its removal from the list must be
3579 * atomic.
3580 */
d96f8f89 3581STATIC void
1da177e4 3582xlog_recover_process_iunlinks(
9a8d2fdb 3583 struct xlog *log)
1da177e4
LT
3584{
3585 xfs_mount_t *mp;
3586 xfs_agnumber_t agno;
3587 xfs_agi_t *agi;
3588 xfs_buf_t *agibp;
1da177e4 3589 xfs_agino_t agino;
1da177e4
LT
3590 int bucket;
3591 int error;
3592 uint mp_dmevmask;
3593
3594 mp = log->l_mp;
3595
3596 /*
3597 * Prevent any DMAPI event from being sent while in this function.
3598 */
3599 mp_dmevmask = mp->m_dmevmask;
3600 mp->m_dmevmask = 0;
3601
3602 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3603 /*
3604 * Find the agi for this ag.
3605 */
5e1be0fb
CH
3606 error = xfs_read_agi(mp, NULL, agno, &agibp);
3607 if (error) {
3608 /*
3609 * AGI is b0rked. Don't process it.
3610 *
3611 * We should probably mark the filesystem as corrupt
3612 * after we've recovered all the ag's we can....
3613 */
3614 continue;
1da177e4 3615 }
d97d32ed
JK
3616 /*
3617 * Unlock the buffer so that it can be acquired in the normal
3618 * course of the transaction to truncate and free each inode.
3619 * Because we are not racing with anyone else here for the AGI
3620 * buffer, we don't even need to hold it locked to read the
3621 * initial unlinked bucket entries out of the buffer. We keep
3622 * buffer reference though, so that it stays pinned in memory
3623 * while we need the buffer.
3624 */
1da177e4 3625 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3626 xfs_buf_unlock(agibp);
1da177e4
LT
3627
3628 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3629 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3630 while (agino != NULLAGINO) {
23fac50f
CH
3631 agino = xlog_recover_process_one_iunlink(mp,
3632 agno, agino, bucket);
1da177e4
LT
3633 }
3634 }
d97d32ed 3635 xfs_buf_rele(agibp);
1da177e4
LT
3636 }
3637
3638 mp->m_dmevmask = mp_dmevmask;
3639}
3640
1da177e4 3641/*
0e446be4
CH
3642 * Upack the log buffer data and crc check it. If the check fails, issue a
3643 * warning if and only if the CRC in the header is non-zero. This makes the
3644 * check an advisory warning, and the zero CRC check will prevent failure
3645 * warnings from being emitted when upgrading the kernel from one that does not
3646 * add CRCs by default.
3647 *
3648 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3649 * corruption failure
1da177e4 3650 */
0e446be4
CH
3651STATIC int
3652xlog_unpack_data_crc(
3653 struct xlog_rec_header *rhead,
3654 xfs_caddr_t dp,
3655 struct xlog *log)
1da177e4 3656{
f9668a09 3657 __le32 crc;
0e446be4
CH
3658
3659 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3660 if (crc != rhead->h_crc) {
3661 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3662 xfs_alert(log->l_mp,
3663 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
f9668a09
DC
3664 le32_to_cpu(rhead->h_crc),
3665 le32_to_cpu(crc));
0e446be4 3666 xfs_hex_dump(dp, 32);
1da177e4
LT
3667 }
3668
0e446be4
CH
3669 /*
3670 * If we've detected a log record corruption, then we can't
3671 * recover past this point. Abort recovery if we are enforcing
3672 * CRC protection by punting an error back up the stack.
3673 */
3674 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3675 return EFSCORRUPTED;
1da177e4 3676 }
0e446be4
CH
3677
3678 return 0;
1da177e4
LT
3679}
3680
0e446be4 3681STATIC int
1da177e4 3682xlog_unpack_data(
9a8d2fdb 3683 struct xlog_rec_header *rhead,
1da177e4 3684 xfs_caddr_t dp,
9a8d2fdb 3685 struct xlog *log)
1da177e4
LT
3686{
3687 int i, j, k;
0e446be4
CH
3688 int error;
3689
3690 error = xlog_unpack_data_crc(rhead, dp, log);
3691 if (error)
3692 return error;
1da177e4 3693
b53e675d 3694 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3695 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3696 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3697 dp += BBSIZE;
3698 }
3699
62118709 3700 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3701 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3702 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3703 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3704 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3705 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3706 dp += BBSIZE;
3707 }
3708 }
0e446be4
CH
3709
3710 return 0;
1da177e4
LT
3711}
3712
3713STATIC int
3714xlog_valid_rec_header(
9a8d2fdb
MT
3715 struct xlog *log,
3716 struct xlog_rec_header *rhead,
1da177e4
LT
3717 xfs_daddr_t blkno)
3718{
3719 int hlen;
3720
69ef921b 3721 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
3722 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3723 XFS_ERRLEVEL_LOW, log->l_mp);
3724 return XFS_ERROR(EFSCORRUPTED);
3725 }
3726 if (unlikely(
3727 (!rhead->h_version ||
b53e675d 3728 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 3729 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 3730 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3731 return XFS_ERROR(EIO);
3732 }
3733
3734 /* LR body must have data or it wouldn't have been written */
b53e675d 3735 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3736 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3737 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3738 XFS_ERRLEVEL_LOW, log->l_mp);
3739 return XFS_ERROR(EFSCORRUPTED);
3740 }
3741 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3742 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3743 XFS_ERRLEVEL_LOW, log->l_mp);
3744 return XFS_ERROR(EFSCORRUPTED);
3745 }
3746 return 0;
3747}
3748
3749/*
3750 * Read the log from tail to head and process the log records found.
3751 * Handle the two cases where the tail and head are in the same cycle
3752 * and where the active portion of the log wraps around the end of
3753 * the physical log separately. The pass parameter is passed through
3754 * to the routines called to process the data and is not looked at
3755 * here.
3756 */
3757STATIC int
3758xlog_do_recovery_pass(
9a8d2fdb 3759 struct xlog *log,
1da177e4
LT
3760 xfs_daddr_t head_blk,
3761 xfs_daddr_t tail_blk,
3762 int pass)
3763{
3764 xlog_rec_header_t *rhead;
3765 xfs_daddr_t blk_no;
fc5bc4c8 3766 xfs_caddr_t offset;
1da177e4
LT
3767 xfs_buf_t *hbp, *dbp;
3768 int error = 0, h_size;
3769 int bblks, split_bblks;
3770 int hblks, split_hblks, wrapped_hblks;
f0a76953 3771 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3772
3773 ASSERT(head_blk != tail_blk);
3774
3775 /*
3776 * Read the header of the tail block and get the iclog buffer size from
3777 * h_size. Use this to tell how many sectors make up the log header.
3778 */
62118709 3779 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3780 /*
3781 * When using variable length iclogs, read first sector of
3782 * iclog header and extract the header size from it. Get a
3783 * new hbp that is the correct size.
3784 */
3785 hbp = xlog_get_bp(log, 1);
3786 if (!hbp)
3787 return ENOMEM;
076e6acb
CH
3788
3789 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3790 if (error)
1da177e4 3791 goto bread_err1;
076e6acb 3792
1da177e4
LT
3793 rhead = (xlog_rec_header_t *)offset;
3794 error = xlog_valid_rec_header(log, rhead, tail_blk);
3795 if (error)
3796 goto bread_err1;
b53e675d
CH
3797 h_size = be32_to_cpu(rhead->h_size);
3798 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3799 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3800 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3801 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3802 hblks++;
3803 xlog_put_bp(hbp);
3804 hbp = xlog_get_bp(log, hblks);
3805 } else {
3806 hblks = 1;
3807 }
3808 } else {
69ce58f0 3809 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3810 hblks = 1;
3811 hbp = xlog_get_bp(log, 1);
3812 h_size = XLOG_BIG_RECORD_BSIZE;
3813 }
3814
3815 if (!hbp)
3816 return ENOMEM;
3817 dbp = xlog_get_bp(log, BTOBB(h_size));
3818 if (!dbp) {
3819 xlog_put_bp(hbp);
3820 return ENOMEM;
3821 }
3822
3823 memset(rhash, 0, sizeof(rhash));
3824 if (tail_blk <= head_blk) {
3825 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3826 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3827 if (error)
1da177e4 3828 goto bread_err2;
076e6acb 3829
1da177e4
LT
3830 rhead = (xlog_rec_header_t *)offset;
3831 error = xlog_valid_rec_header(log, rhead, blk_no);
3832 if (error)
3833 goto bread_err2;
3834
3835 /* blocks in data section */
b53e675d 3836 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3837 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3838 &offset);
1da177e4
LT
3839 if (error)
3840 goto bread_err2;
076e6acb 3841
0e446be4
CH
3842 error = xlog_unpack_data(rhead, offset, log);
3843 if (error)
3844 goto bread_err2;
3845
3846 error = xlog_recover_process_data(log,
3847 rhash, rhead, offset, pass);
3848 if (error)
1da177e4
LT
3849 goto bread_err2;
3850 blk_no += bblks + hblks;
3851 }
3852 } else {
3853 /*
3854 * Perform recovery around the end of the physical log.
3855 * When the head is not on the same cycle number as the tail,
3856 * we can't do a sequential recovery as above.
3857 */
3858 blk_no = tail_blk;
3859 while (blk_no < log->l_logBBsize) {
3860 /*
3861 * Check for header wrapping around physical end-of-log
3862 */
62926044 3863 offset = hbp->b_addr;
1da177e4
LT
3864 split_hblks = 0;
3865 wrapped_hblks = 0;
3866 if (blk_no + hblks <= log->l_logBBsize) {
3867 /* Read header in one read */
076e6acb
CH
3868 error = xlog_bread(log, blk_no, hblks, hbp,
3869 &offset);
1da177e4
LT
3870 if (error)
3871 goto bread_err2;
1da177e4
LT
3872 } else {
3873 /* This LR is split across physical log end */
3874 if (blk_no != log->l_logBBsize) {
3875 /* some data before physical log end */
3876 ASSERT(blk_no <= INT_MAX);
3877 split_hblks = log->l_logBBsize - (int)blk_no;
3878 ASSERT(split_hblks > 0);
076e6acb
CH
3879 error = xlog_bread(log, blk_no,
3880 split_hblks, hbp,
3881 &offset);
3882 if (error)
1da177e4 3883 goto bread_err2;
1da177e4 3884 }
076e6acb 3885
1da177e4
LT
3886 /*
3887 * Note: this black magic still works with
3888 * large sector sizes (non-512) only because:
3889 * - we increased the buffer size originally
3890 * by 1 sector giving us enough extra space
3891 * for the second read;
3892 * - the log start is guaranteed to be sector
3893 * aligned;
3894 * - we read the log end (LR header start)
3895 * _first_, then the log start (LR header end)
3896 * - order is important.
3897 */
234f56ac 3898 wrapped_hblks = hblks - split_hblks;
44396476
DC
3899 error = xlog_bread_offset(log, 0,
3900 wrapped_hblks, hbp,
3901 offset + BBTOB(split_hblks));
1da177e4
LT
3902 if (error)
3903 goto bread_err2;
1da177e4
LT
3904 }
3905 rhead = (xlog_rec_header_t *)offset;
3906 error = xlog_valid_rec_header(log, rhead,
3907 split_hblks ? blk_no : 0);
3908 if (error)
3909 goto bread_err2;
3910
b53e675d 3911 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3912 blk_no += hblks;
3913
3914 /* Read in data for log record */
3915 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3916 error = xlog_bread(log, blk_no, bblks, dbp,
3917 &offset);
1da177e4
LT
3918 if (error)
3919 goto bread_err2;
1da177e4
LT
3920 } else {
3921 /* This log record is split across the
3922 * physical end of log */
62926044 3923 offset = dbp->b_addr;
1da177e4
LT
3924 split_bblks = 0;
3925 if (blk_no != log->l_logBBsize) {
3926 /* some data is before the physical
3927 * end of log */
3928 ASSERT(!wrapped_hblks);
3929 ASSERT(blk_no <= INT_MAX);
3930 split_bblks =
3931 log->l_logBBsize - (int)blk_no;
3932 ASSERT(split_bblks > 0);
076e6acb
CH
3933 error = xlog_bread(log, blk_no,
3934 split_bblks, dbp,
3935 &offset);
3936 if (error)
1da177e4 3937 goto bread_err2;
1da177e4 3938 }
076e6acb 3939
1da177e4
LT
3940 /*
3941 * Note: this black magic still works with
3942 * large sector sizes (non-512) only because:
3943 * - we increased the buffer size originally
3944 * by 1 sector giving us enough extra space
3945 * for the second read;
3946 * - the log start is guaranteed to be sector
3947 * aligned;
3948 * - we read the log end (LR header start)
3949 * _first_, then the log start (LR header end)
3950 * - order is important.
3951 */
44396476 3952 error = xlog_bread_offset(log, 0,
009507b0 3953 bblks - split_bblks, dbp,
44396476 3954 offset + BBTOB(split_bblks));
076e6acb
CH
3955 if (error)
3956 goto bread_err2;
1da177e4 3957 }
0e446be4
CH
3958
3959 error = xlog_unpack_data(rhead, offset, log);
3960 if (error)
3961 goto bread_err2;
3962
3963 error = xlog_recover_process_data(log, rhash,
3964 rhead, offset, pass);
3965 if (error)
1da177e4
LT
3966 goto bread_err2;
3967 blk_no += bblks;
3968 }
3969
3970 ASSERT(blk_no >= log->l_logBBsize);
3971 blk_no -= log->l_logBBsize;
3972
3973 /* read first part of physical log */
3974 while (blk_no < head_blk) {
076e6acb
CH
3975 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3976 if (error)
1da177e4 3977 goto bread_err2;
076e6acb 3978
1da177e4
LT
3979 rhead = (xlog_rec_header_t *)offset;
3980 error = xlog_valid_rec_header(log, rhead, blk_no);
3981 if (error)
3982 goto bread_err2;
076e6acb 3983
b53e675d 3984 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3985 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3986 &offset);
3987 if (error)
1da177e4 3988 goto bread_err2;
076e6acb 3989
0e446be4
CH
3990 error = xlog_unpack_data(rhead, offset, log);
3991 if (error)
3992 goto bread_err2;
3993
3994 error = xlog_recover_process_data(log, rhash,
3995 rhead, offset, pass);
3996 if (error)
1da177e4
LT
3997 goto bread_err2;
3998 blk_no += bblks + hblks;
3999 }
4000 }
4001
4002 bread_err2:
4003 xlog_put_bp(dbp);
4004 bread_err1:
4005 xlog_put_bp(hbp);
4006 return error;
4007}
4008
4009/*
4010 * Do the recovery of the log. We actually do this in two phases.
4011 * The two passes are necessary in order to implement the function
4012 * of cancelling a record written into the log. The first pass
4013 * determines those things which have been cancelled, and the
4014 * second pass replays log items normally except for those which
4015 * have been cancelled. The handling of the replay and cancellations
4016 * takes place in the log item type specific routines.
4017 *
4018 * The table of items which have cancel records in the log is allocated
4019 * and freed at this level, since only here do we know when all of
4020 * the log recovery has been completed.
4021 */
4022STATIC int
4023xlog_do_log_recovery(
9a8d2fdb 4024 struct xlog *log,
1da177e4
LT
4025 xfs_daddr_t head_blk,
4026 xfs_daddr_t tail_blk)
4027{
d5689eaa 4028 int error, i;
1da177e4
LT
4029
4030 ASSERT(head_blk != tail_blk);
4031
4032 /*
4033 * First do a pass to find all of the cancelled buf log items.
4034 * Store them in the buf_cancel_table for use in the second pass.
4035 */
d5689eaa
CH
4036 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4037 sizeof(struct list_head),
1da177e4 4038 KM_SLEEP);
d5689eaa
CH
4039 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4040 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4041
1da177e4
LT
4042 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4043 XLOG_RECOVER_PASS1);
4044 if (error != 0) {
f0e2d93c 4045 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4046 log->l_buf_cancel_table = NULL;
4047 return error;
4048 }
4049 /*
4050 * Then do a second pass to actually recover the items in the log.
4051 * When it is complete free the table of buf cancel items.
4052 */
4053 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4054 XLOG_RECOVER_PASS2);
4055#ifdef DEBUG
6d192a9b 4056 if (!error) {
1da177e4
LT
4057 int i;
4058
4059 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4060 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4061 }
4062#endif /* DEBUG */
4063
f0e2d93c 4064 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4065 log->l_buf_cancel_table = NULL;
4066
4067 return error;
4068}
4069
4070/*
4071 * Do the actual recovery
4072 */
4073STATIC int
4074xlog_do_recover(
9a8d2fdb 4075 struct xlog *log,
1da177e4
LT
4076 xfs_daddr_t head_blk,
4077 xfs_daddr_t tail_blk)
4078{
4079 int error;
4080 xfs_buf_t *bp;
4081 xfs_sb_t *sbp;
4082
4083 /*
4084 * First replay the images in the log.
4085 */
4086 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4087 if (error)
1da177e4 4088 return error;
1da177e4
LT
4089
4090 /*
4091 * If IO errors happened during recovery, bail out.
4092 */
4093 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4094 return (EIO);
4095 }
4096
4097 /*
4098 * We now update the tail_lsn since much of the recovery has completed
4099 * and there may be space available to use. If there were no extent
4100 * or iunlinks, we can free up the entire log and set the tail_lsn to
4101 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4102 * lsn of the last known good LR on disk. If there are extent frees
4103 * or iunlinks they will have some entries in the AIL; so we look at
4104 * the AIL to determine how to set the tail_lsn.
4105 */
4106 xlog_assign_tail_lsn(log->l_mp);
4107
4108 /*
4109 * Now that we've finished replaying all buffer and inode
98021821 4110 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4111 */
4112 bp = xfs_getsb(log->l_mp, 0);
4113 XFS_BUF_UNDONE(bp);
bebf963f 4114 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4115 XFS_BUF_READ(bp);
bebf963f 4116 XFS_BUF_UNASYNC(bp);
1813dd64 4117 bp->b_ops = &xfs_sb_buf_ops;
1da177e4 4118 xfsbdstrat(log->l_mp, bp);
1a1a3e97 4119 error = xfs_buf_iowait(bp);
d64e31a2 4120 if (error) {
901796af 4121 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
4122 ASSERT(0);
4123 xfs_buf_relse(bp);
4124 return error;
4125 }
4126
4127 /* Convert superblock from on-disk format */
4128 sbp = &log->l_mp->m_sb;
98021821 4129 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4130 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4131 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
4132 xfs_buf_relse(bp);
4133
5478eead
LM
4134 /* We've re-read the superblock so re-initialize per-cpu counters */
4135 xfs_icsb_reinit_counters(log->l_mp);
4136
1da177e4
LT
4137 xlog_recover_check_summary(log);
4138
4139 /* Normal transactions can now occur */
4140 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4141 return 0;
4142}
4143
4144/*
4145 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4146 *
4147 * Return error or zero.
4148 */
4149int
4150xlog_recover(
9a8d2fdb 4151 struct xlog *log)
1da177e4
LT
4152{
4153 xfs_daddr_t head_blk, tail_blk;
4154 int error;
4155
4156 /* find the tail of the log */
65be6054 4157 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
4158 return error;
4159
4160 if (tail_blk != head_blk) {
4161 /* There used to be a comment here:
4162 *
4163 * disallow recovery on read-only mounts. note -- mount
4164 * checks for ENOSPC and turns it into an intelligent
4165 * error message.
4166 * ...but this is no longer true. Now, unless you specify
4167 * NORECOVERY (in which case this function would never be
4168 * called), we just go ahead and recover. We do this all
4169 * under the vfs layer, so we can get away with it unless
4170 * the device itself is read-only, in which case we fail.
4171 */
3a02ee18 4172 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4173 return error;
4174 }
4175
e721f504
DC
4176 /*
4177 * Version 5 superblock log feature mask validation. We know the
4178 * log is dirty so check if there are any unknown log features
4179 * in what we need to recover. If there are unknown features
4180 * (e.g. unsupported transactions, then simply reject the
4181 * attempt at recovery before touching anything.
4182 */
4183 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4184 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4185 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4186 xfs_warn(log->l_mp,
4187"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4188"The log can not be fully and/or safely recovered by this kernel.\n"
4189"Please recover the log on a kernel that supports the unknown features.",
4190 (log->l_mp->m_sb.sb_features_log_incompat &
4191 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4192 return EINVAL;
4193 }
4194
a0fa2b67
DC
4195 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4196 log->l_mp->m_logname ? log->l_mp->m_logname
4197 : "internal");
1da177e4
LT
4198
4199 error = xlog_do_recover(log, head_blk, tail_blk);
4200 log->l_flags |= XLOG_RECOVERY_NEEDED;
4201 }
4202 return error;
4203}
4204
4205/*
4206 * In the first part of recovery we replay inodes and buffers and build
4207 * up the list of extent free items which need to be processed. Here
4208 * we process the extent free items and clean up the on disk unlinked
4209 * inode lists. This is separated from the first part of recovery so
4210 * that the root and real-time bitmap inodes can be read in from disk in
4211 * between the two stages. This is necessary so that we can free space
4212 * in the real-time portion of the file system.
4213 */
4214int
4215xlog_recover_finish(
9a8d2fdb 4216 struct xlog *log)
1da177e4
LT
4217{
4218 /*
4219 * Now we're ready to do the transactions needed for the
4220 * rest of recovery. Start with completing all the extent
4221 * free intent records and then process the unlinked inode
4222 * lists. At this point, we essentially run in normal mode
4223 * except that we're still performing recovery actions
4224 * rather than accepting new requests.
4225 */
4226 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4227 int error;
4228 error = xlog_recover_process_efis(log);
4229 if (error) {
a0fa2b67 4230 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4231 return error;
4232 }
1da177e4
LT
4233 /*
4234 * Sync the log to get all the EFIs out of the AIL.
4235 * This isn't absolutely necessary, but it helps in
4236 * case the unlink transactions would have problems
4237 * pushing the EFIs out of the way.
4238 */
a14a348b 4239 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4240
4249023a 4241 xlog_recover_process_iunlinks(log);
1da177e4
LT
4242
4243 xlog_recover_check_summary(log);
4244
a0fa2b67
DC
4245 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4246 log->l_mp->m_logname ? log->l_mp->m_logname
4247 : "internal");
1da177e4
LT
4248 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4249 } else {
a0fa2b67 4250 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4251 }
4252 return 0;
4253}
4254
4255
4256#if defined(DEBUG)
4257/*
4258 * Read all of the agf and agi counters and check that they
4259 * are consistent with the superblock counters.
4260 */
4261void
4262xlog_recover_check_summary(
9a8d2fdb 4263 struct xlog *log)
1da177e4
LT
4264{
4265 xfs_mount_t *mp;
4266 xfs_agf_t *agfp;
1da177e4
LT
4267 xfs_buf_t *agfbp;
4268 xfs_buf_t *agibp;
1da177e4
LT
4269 xfs_agnumber_t agno;
4270 __uint64_t freeblks;
4271 __uint64_t itotal;
4272 __uint64_t ifree;
5e1be0fb 4273 int error;
1da177e4
LT
4274
4275 mp = log->l_mp;
4276
4277 freeblks = 0LL;
4278 itotal = 0LL;
4279 ifree = 0LL;
4280 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
4281 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4282 if (error) {
a0fa2b67
DC
4283 xfs_alert(mp, "%s agf read failed agno %d error %d",
4284 __func__, agno, error);
4805621a
FCH
4285 } else {
4286 agfp = XFS_BUF_TO_AGF(agfbp);
4287 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4288 be32_to_cpu(agfp->agf_flcount);
4289 xfs_buf_relse(agfbp);
1da177e4 4290 }
1da177e4 4291
5e1be0fb 4292 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4293 if (error) {
4294 xfs_alert(mp, "%s agi read failed agno %d error %d",
4295 __func__, agno, error);
4296 } else {
5e1be0fb 4297 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4298
5e1be0fb
CH
4299 itotal += be32_to_cpu(agi->agi_count);
4300 ifree += be32_to_cpu(agi->agi_freecount);
4301 xfs_buf_relse(agibp);
4302 }
1da177e4 4303 }
1da177e4
LT
4304}
4305#endif /* DEBUG */
This page took 0.934166 seconds and 5 git commands to generate.