xfs: create a shared header file for format-related information
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
6ca1c906 20#include "xfs_format.h"
70a9883c 21#include "xfs_shared.h"
a844f451 22#include "xfs_bit.h"
1da177e4 23#include "xfs_log.h"
a844f451 24#include "xfs_inum.h"
1da177e4 25#include "xfs_trans.h"
a844f451
NS
26#include "xfs_sb.h"
27#include "xfs_ag.h"
1da177e4
LT
28#include "xfs_mount.h"
29#include "xfs_error.h"
30#include "xfs_bmap_btree.h"
a844f451
NS
31#include "xfs_alloc_btree.h"
32#include "xfs_ialloc_btree.h"
ee1a47ab 33#include "xfs_btree.h"
1da177e4 34#include "xfs_dinode.h"
1da177e4 35#include "xfs_inode.h"
a844f451 36#include "xfs_inode_item.h"
a844f451 37#include "xfs_alloc.h"
1da177e4
LT
38#include "xfs_ialloc.h"
39#include "xfs_log_priv.h"
40#include "xfs_buf_item.h"
1da177e4
LT
41#include "xfs_log_recover.h"
42#include "xfs_extfree_item.h"
43#include "xfs_trans_priv.h"
1da177e4 44#include "xfs_quota.h"
0e446be4 45#include "xfs_cksum.h"
0b1b213f 46#include "xfs_trace.h"
33479e05 47#include "xfs_icache.h"
28c8e41a 48#include "xfs_icreate_item.h"
d75afeb3
DC
49
50/* Need all the magic numbers and buffer ops structures from these headers */
f948dd76 51#include "xfs_symlink.h"
d75afeb3
DC
52#include "xfs_da_btree.h"
53#include "xfs_dir2_format.h"
2b9ab5ab 54#include "xfs_dir2.h"
d75afeb3
DC
55#include "xfs_attr_leaf.h"
56#include "xfs_attr_remote.h"
1da177e4 57
fc06c6d0
DC
58#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
59
9a8d2fdb
MT
60STATIC int
61xlog_find_zeroed(
62 struct xlog *,
63 xfs_daddr_t *);
64STATIC int
65xlog_clear_stale_blocks(
66 struct xlog *,
67 xfs_lsn_t);
1da177e4 68#if defined(DEBUG)
9a8d2fdb
MT
69STATIC void
70xlog_recover_check_summary(
71 struct xlog *);
1da177e4
LT
72#else
73#define xlog_recover_check_summary(log)
1da177e4
LT
74#endif
75
d5689eaa
CH
76/*
77 * This structure is used during recovery to record the buf log items which
78 * have been canceled and should not be replayed.
79 */
80struct xfs_buf_cancel {
81 xfs_daddr_t bc_blkno;
82 uint bc_len;
83 int bc_refcount;
84 struct list_head bc_list;
85};
86
1da177e4
LT
87/*
88 * Sector aligned buffer routines for buffer create/read/write/access
89 */
90
ff30a622
AE
91/*
92 * Verify the given count of basic blocks is valid number of blocks
93 * to specify for an operation involving the given XFS log buffer.
94 * Returns nonzero if the count is valid, 0 otherwise.
95 */
96
97static inline int
98xlog_buf_bbcount_valid(
9a8d2fdb 99 struct xlog *log,
ff30a622
AE
100 int bbcount)
101{
102 return bbcount > 0 && bbcount <= log->l_logBBsize;
103}
104
36adecff
AE
105/*
106 * Allocate a buffer to hold log data. The buffer needs to be able
107 * to map to a range of nbblks basic blocks at any valid (basic
108 * block) offset within the log.
109 */
5d77c0dc 110STATIC xfs_buf_t *
1da177e4 111xlog_get_bp(
9a8d2fdb 112 struct xlog *log,
3228149c 113 int nbblks)
1da177e4 114{
c8da0faf
CH
115 struct xfs_buf *bp;
116
ff30a622 117 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 118 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
119 nbblks);
120 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
121 return NULL;
122 }
1da177e4 123
36adecff
AE
124 /*
125 * We do log I/O in units of log sectors (a power-of-2
126 * multiple of the basic block size), so we round up the
25985edc 127 * requested size to accommodate the basic blocks required
36adecff
AE
128 * for complete log sectors.
129 *
130 * In addition, the buffer may be used for a non-sector-
131 * aligned block offset, in which case an I/O of the
132 * requested size could extend beyond the end of the
133 * buffer. If the requested size is only 1 basic block it
134 * will never straddle a sector boundary, so this won't be
135 * an issue. Nor will this be a problem if the log I/O is
136 * done in basic blocks (sector size 1). But otherwise we
137 * extend the buffer by one extra log sector to ensure
25985edc 138 * there's space to accommodate this possibility.
36adecff 139 */
69ce58f0
AE
140 if (nbblks > 1 && log->l_sectBBsize > 1)
141 nbblks += log->l_sectBBsize;
142 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 143
e70b73f8 144 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
145 if (bp)
146 xfs_buf_unlock(bp);
147 return bp;
1da177e4
LT
148}
149
5d77c0dc 150STATIC void
1da177e4
LT
151xlog_put_bp(
152 xfs_buf_t *bp)
153{
154 xfs_buf_free(bp);
155}
156
48389ef1
AE
157/*
158 * Return the address of the start of the given block number's data
159 * in a log buffer. The buffer covers a log sector-aligned region.
160 */
076e6acb
CH
161STATIC xfs_caddr_t
162xlog_align(
9a8d2fdb 163 struct xlog *log,
076e6acb
CH
164 xfs_daddr_t blk_no,
165 int nbblks,
9a8d2fdb 166 struct xfs_buf *bp)
076e6acb 167{
fdc07f44 168 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 169
4e94b71b 170 ASSERT(offset + nbblks <= bp->b_length);
62926044 171 return bp->b_addr + BBTOB(offset);
076e6acb
CH
172}
173
1da177e4
LT
174
175/*
176 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
177 */
076e6acb
CH
178STATIC int
179xlog_bread_noalign(
9a8d2fdb 180 struct xlog *log,
1da177e4
LT
181 xfs_daddr_t blk_no,
182 int nbblks,
9a8d2fdb 183 struct xfs_buf *bp)
1da177e4
LT
184{
185 int error;
186
ff30a622 187 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 188 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
189 nbblks);
190 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
191 return EFSCORRUPTED;
192 }
193
69ce58f0
AE
194 blk_no = round_down(blk_no, log->l_sectBBsize);
195 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
196
197 ASSERT(nbblks > 0);
4e94b71b 198 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
199
200 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
201 XFS_BUF_READ(bp);
aa0e8833 202 bp->b_io_length = nbblks;
0e95f19a 203 bp->b_error = 0;
1da177e4
LT
204
205 xfsbdstrat(log->l_mp, bp);
1a1a3e97 206 error = xfs_buf_iowait(bp);
d64e31a2 207 if (error)
901796af 208 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
209 return error;
210}
211
076e6acb
CH
212STATIC int
213xlog_bread(
9a8d2fdb 214 struct xlog *log,
076e6acb
CH
215 xfs_daddr_t blk_no,
216 int nbblks,
9a8d2fdb 217 struct xfs_buf *bp,
076e6acb
CH
218 xfs_caddr_t *offset)
219{
220 int error;
221
222 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
223 if (error)
224 return error;
225
226 *offset = xlog_align(log, blk_no, nbblks, bp);
227 return 0;
228}
229
44396476
DC
230/*
231 * Read at an offset into the buffer. Returns with the buffer in it's original
232 * state regardless of the result of the read.
233 */
234STATIC int
235xlog_bread_offset(
9a8d2fdb 236 struct xlog *log,
44396476
DC
237 xfs_daddr_t blk_no, /* block to read from */
238 int nbblks, /* blocks to read */
9a8d2fdb 239 struct xfs_buf *bp,
44396476
DC
240 xfs_caddr_t offset)
241{
62926044 242 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 243 int orig_len = BBTOB(bp->b_length);
44396476
DC
244 int error, error2;
245
02fe03d9 246 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
247 if (error)
248 return error;
249
250 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
251
252 /* must reset buffer pointer even on error */
02fe03d9 253 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
254 if (error)
255 return error;
256 return error2;
257}
258
1da177e4
LT
259/*
260 * Write out the buffer at the given block for the given number of blocks.
261 * The buffer is kept locked across the write and is returned locked.
262 * This can only be used for synchronous log writes.
263 */
ba0f32d4 264STATIC int
1da177e4 265xlog_bwrite(
9a8d2fdb 266 struct xlog *log,
1da177e4
LT
267 xfs_daddr_t blk_no,
268 int nbblks,
9a8d2fdb 269 struct xfs_buf *bp)
1da177e4
LT
270{
271 int error;
272
ff30a622 273 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 274 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
275 nbblks);
276 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
277 return EFSCORRUPTED;
278 }
279
69ce58f0
AE
280 blk_no = round_down(blk_no, log->l_sectBBsize);
281 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
282
283 ASSERT(nbblks > 0);
4e94b71b 284 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
285
286 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
287 XFS_BUF_ZEROFLAGS(bp);
72790aa1 288 xfs_buf_hold(bp);
0c842ad4 289 xfs_buf_lock(bp);
aa0e8833 290 bp->b_io_length = nbblks;
0e95f19a 291 bp->b_error = 0;
1da177e4 292
c2b006c1 293 error = xfs_bwrite(bp);
901796af
CH
294 if (error)
295 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 296 xfs_buf_relse(bp);
1da177e4
LT
297 return error;
298}
299
1da177e4
LT
300#ifdef DEBUG
301/*
302 * dump debug superblock and log record information
303 */
304STATIC void
305xlog_header_check_dump(
306 xfs_mount_t *mp,
307 xlog_rec_header_t *head)
308{
08e96e1a 309 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 310 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 311 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 312 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
313}
314#else
315#define xlog_header_check_dump(mp, head)
316#endif
317
318/*
319 * check log record header for recovery
320 */
321STATIC int
322xlog_header_check_recover(
323 xfs_mount_t *mp,
324 xlog_rec_header_t *head)
325{
69ef921b 326 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
327
328 /*
329 * IRIX doesn't write the h_fmt field and leaves it zeroed
330 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
331 * a dirty log created in IRIX.
332 */
69ef921b 333 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
334 xfs_warn(mp,
335 "dirty log written in incompatible format - can't recover");
1da177e4
LT
336 xlog_header_check_dump(mp, head);
337 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
338 XFS_ERRLEVEL_HIGH, mp);
339 return XFS_ERROR(EFSCORRUPTED);
340 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
341 xfs_warn(mp,
342 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
343 xlog_header_check_dump(mp, head);
344 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
345 XFS_ERRLEVEL_HIGH, mp);
346 return XFS_ERROR(EFSCORRUPTED);
347 }
348 return 0;
349}
350
351/*
352 * read the head block of the log and check the header
353 */
354STATIC int
355xlog_header_check_mount(
356 xfs_mount_t *mp,
357 xlog_rec_header_t *head)
358{
69ef921b 359 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
360
361 if (uuid_is_nil(&head->h_fs_uuid)) {
362 /*
363 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
364 * h_fs_uuid is nil, we assume this log was last mounted
365 * by IRIX and continue.
366 */
a0fa2b67 367 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 368 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 369 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
370 xlog_header_check_dump(mp, head);
371 XFS_ERROR_REPORT("xlog_header_check_mount",
372 XFS_ERRLEVEL_HIGH, mp);
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375 return 0;
376}
377
378STATIC void
379xlog_recover_iodone(
380 struct xfs_buf *bp)
381{
5a52c2a5 382 if (bp->b_error) {
1da177e4
LT
383 /*
384 * We're not going to bother about retrying
385 * this during recovery. One strike!
386 */
901796af 387 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
388 xfs_force_shutdown(bp->b_target->bt_mount,
389 SHUTDOWN_META_IO_ERROR);
1da177e4 390 }
cb669ca5 391 bp->b_iodone = NULL;
1a1a3e97 392 xfs_buf_ioend(bp, 0);
1da177e4
LT
393}
394
395/*
396 * This routine finds (to an approximation) the first block in the physical
397 * log which contains the given cycle. It uses a binary search algorithm.
398 * Note that the algorithm can not be perfect because the disk will not
399 * necessarily be perfect.
400 */
a8272ce0 401STATIC int
1da177e4 402xlog_find_cycle_start(
9a8d2fdb
MT
403 struct xlog *log,
404 struct xfs_buf *bp,
1da177e4
LT
405 xfs_daddr_t first_blk,
406 xfs_daddr_t *last_blk,
407 uint cycle)
408{
409 xfs_caddr_t offset;
410 xfs_daddr_t mid_blk;
e3bb2e30 411 xfs_daddr_t end_blk;
1da177e4
LT
412 uint mid_cycle;
413 int error;
414
e3bb2e30
AE
415 end_blk = *last_blk;
416 mid_blk = BLK_AVG(first_blk, end_blk);
417 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
418 error = xlog_bread(log, mid_blk, 1, bp, &offset);
419 if (error)
1da177e4 420 return error;
03bea6fe 421 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
422 if (mid_cycle == cycle)
423 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
424 else
425 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
426 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 427 }
e3bb2e30
AE
428 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
429 (mid_blk == end_blk && mid_blk-1 == first_blk));
430
431 *last_blk = end_blk;
1da177e4
LT
432
433 return 0;
434}
435
436/*
3f943d85
AE
437 * Check that a range of blocks does not contain stop_on_cycle_no.
438 * Fill in *new_blk with the block offset where such a block is
439 * found, or with -1 (an invalid block number) if there is no such
440 * block in the range. The scan needs to occur from front to back
441 * and the pointer into the region must be updated since a later
442 * routine will need to perform another test.
1da177e4
LT
443 */
444STATIC int
445xlog_find_verify_cycle(
9a8d2fdb 446 struct xlog *log,
1da177e4
LT
447 xfs_daddr_t start_blk,
448 int nbblks,
449 uint stop_on_cycle_no,
450 xfs_daddr_t *new_blk)
451{
452 xfs_daddr_t i, j;
453 uint cycle;
454 xfs_buf_t *bp;
455 xfs_daddr_t bufblks;
456 xfs_caddr_t buf = NULL;
457 int error = 0;
458
6881a229
AE
459 /*
460 * Greedily allocate a buffer big enough to handle the full
461 * range of basic blocks we'll be examining. If that fails,
462 * try a smaller size. We need to be able to read at least
463 * a log sector, or we're out of luck.
464 */
1da177e4 465 bufblks = 1 << ffs(nbblks);
81158e0c
DC
466 while (bufblks > log->l_logBBsize)
467 bufblks >>= 1;
1da177e4 468 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 469 bufblks >>= 1;
69ce58f0 470 if (bufblks < log->l_sectBBsize)
1da177e4
LT
471 return ENOMEM;
472 }
473
474 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
475 int bcount;
476
477 bcount = min(bufblks, (start_blk + nbblks - i));
478
076e6acb
CH
479 error = xlog_bread(log, i, bcount, bp, &buf);
480 if (error)
1da177e4
LT
481 goto out;
482
1da177e4 483 for (j = 0; j < bcount; j++) {
03bea6fe 484 cycle = xlog_get_cycle(buf);
1da177e4
LT
485 if (cycle == stop_on_cycle_no) {
486 *new_blk = i+j;
487 goto out;
488 }
489
490 buf += BBSIZE;
491 }
492 }
493
494 *new_blk = -1;
495
496out:
497 xlog_put_bp(bp);
498 return error;
499}
500
501/*
502 * Potentially backup over partial log record write.
503 *
504 * In the typical case, last_blk is the number of the block directly after
505 * a good log record. Therefore, we subtract one to get the block number
506 * of the last block in the given buffer. extra_bblks contains the number
507 * of blocks we would have read on a previous read. This happens when the
508 * last log record is split over the end of the physical log.
509 *
510 * extra_bblks is the number of blocks potentially verified on a previous
511 * call to this routine.
512 */
513STATIC int
514xlog_find_verify_log_record(
9a8d2fdb 515 struct xlog *log,
1da177e4
LT
516 xfs_daddr_t start_blk,
517 xfs_daddr_t *last_blk,
518 int extra_bblks)
519{
520 xfs_daddr_t i;
521 xfs_buf_t *bp;
522 xfs_caddr_t offset = NULL;
523 xlog_rec_header_t *head = NULL;
524 int error = 0;
525 int smallmem = 0;
526 int num_blks = *last_blk - start_blk;
527 int xhdrs;
528
529 ASSERT(start_blk != 0 || *last_blk != start_blk);
530
531 if (!(bp = xlog_get_bp(log, num_blks))) {
532 if (!(bp = xlog_get_bp(log, 1)))
533 return ENOMEM;
534 smallmem = 1;
535 } else {
076e6acb
CH
536 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
537 if (error)
1da177e4 538 goto out;
1da177e4
LT
539 offset += ((num_blks - 1) << BBSHIFT);
540 }
541
542 for (i = (*last_blk) - 1; i >= 0; i--) {
543 if (i < start_blk) {
544 /* valid log record not found */
a0fa2b67
DC
545 xfs_warn(log->l_mp,
546 "Log inconsistent (didn't find previous header)");
1da177e4
LT
547 ASSERT(0);
548 error = XFS_ERROR(EIO);
549 goto out;
550 }
551
552 if (smallmem) {
076e6acb
CH
553 error = xlog_bread(log, i, 1, bp, &offset);
554 if (error)
1da177e4 555 goto out;
1da177e4
LT
556 }
557
558 head = (xlog_rec_header_t *)offset;
559
69ef921b 560 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
561 break;
562
563 if (!smallmem)
564 offset -= BBSIZE;
565 }
566
567 /*
568 * We hit the beginning of the physical log & still no header. Return
569 * to caller. If caller can handle a return of -1, then this routine
570 * will be called again for the end of the physical log.
571 */
572 if (i == -1) {
573 error = -1;
574 goto out;
575 }
576
577 /*
578 * We have the final block of the good log (the first block
579 * of the log record _before_ the head. So we check the uuid.
580 */
581 if ((error = xlog_header_check_mount(log->l_mp, head)))
582 goto out;
583
584 /*
585 * We may have found a log record header before we expected one.
586 * last_blk will be the 1st block # with a given cycle #. We may end
587 * up reading an entire log record. In this case, we don't want to
588 * reset last_blk. Only when last_blk points in the middle of a log
589 * record do we update last_blk.
590 */
62118709 591 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 592 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
593
594 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
595 if (h_size % XLOG_HEADER_CYCLE_SIZE)
596 xhdrs++;
597 } else {
598 xhdrs = 1;
599 }
600
b53e675d
CH
601 if (*last_blk - i + extra_bblks !=
602 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
603 *last_blk = i;
604
605out:
606 xlog_put_bp(bp);
607 return error;
608}
609
610/*
611 * Head is defined to be the point of the log where the next log write
0a94da24 612 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
613 * eliminated when calculating the head. We aren't guaranteed that previous
614 * LR have complete transactions. We only know that a cycle number of
615 * current cycle number -1 won't be present in the log if we start writing
616 * from our current block number.
617 *
618 * last_blk contains the block number of the first block with a given
619 * cycle number.
620 *
621 * Return: zero if normal, non-zero if error.
622 */
ba0f32d4 623STATIC int
1da177e4 624xlog_find_head(
9a8d2fdb 625 struct xlog *log,
1da177e4
LT
626 xfs_daddr_t *return_head_blk)
627{
628 xfs_buf_t *bp;
629 xfs_caddr_t offset;
630 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
631 int num_scan_bblks;
632 uint first_half_cycle, last_half_cycle;
633 uint stop_on_cycle;
634 int error, log_bbnum = log->l_logBBsize;
635
636 /* Is the end of the log device zeroed? */
637 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
638 *return_head_blk = first_blk;
639
640 /* Is the whole lot zeroed? */
641 if (!first_blk) {
642 /* Linux XFS shouldn't generate totally zeroed logs -
643 * mkfs etc write a dummy unmount record to a fresh
644 * log so we can store the uuid in there
645 */
a0fa2b67 646 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
647 }
648
649 return 0;
650 } else if (error) {
a0fa2b67 651 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
652 return error;
653 }
654
655 first_blk = 0; /* get cycle # of 1st block */
656 bp = xlog_get_bp(log, 1);
657 if (!bp)
658 return ENOMEM;
076e6acb
CH
659
660 error = xlog_bread(log, 0, 1, bp, &offset);
661 if (error)
1da177e4 662 goto bp_err;
076e6acb 663
03bea6fe 664 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
665
666 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
667 error = xlog_bread(log, last_blk, 1, bp, &offset);
668 if (error)
1da177e4 669 goto bp_err;
076e6acb 670
03bea6fe 671 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
672 ASSERT(last_half_cycle != 0);
673
674 /*
675 * If the 1st half cycle number is equal to the last half cycle number,
676 * then the entire log is stamped with the same cycle number. In this
677 * case, head_blk can't be set to zero (which makes sense). The below
678 * math doesn't work out properly with head_blk equal to zero. Instead,
679 * we set it to log_bbnum which is an invalid block number, but this
680 * value makes the math correct. If head_blk doesn't changed through
681 * all the tests below, *head_blk is set to zero at the very end rather
682 * than log_bbnum. In a sense, log_bbnum and zero are the same block
683 * in a circular file.
684 */
685 if (first_half_cycle == last_half_cycle) {
686 /*
687 * In this case we believe that the entire log should have
688 * cycle number last_half_cycle. We need to scan backwards
689 * from the end verifying that there are no holes still
690 * containing last_half_cycle - 1. If we find such a hole,
691 * then the start of that hole will be the new head. The
692 * simple case looks like
693 * x | x ... | x - 1 | x
694 * Another case that fits this picture would be
695 * x | x + 1 | x ... | x
c41564b5 696 * In this case the head really is somewhere at the end of the
1da177e4
LT
697 * log, as one of the latest writes at the beginning was
698 * incomplete.
699 * One more case is
700 * x | x + 1 | x ... | x - 1 | x
701 * This is really the combination of the above two cases, and
702 * the head has to end up at the start of the x-1 hole at the
703 * end of the log.
704 *
705 * In the 256k log case, we will read from the beginning to the
706 * end of the log and search for cycle numbers equal to x-1.
707 * We don't worry about the x+1 blocks that we encounter,
708 * because we know that they cannot be the head since the log
709 * started with x.
710 */
711 head_blk = log_bbnum;
712 stop_on_cycle = last_half_cycle - 1;
713 } else {
714 /*
715 * In this case we want to find the first block with cycle
716 * number matching last_half_cycle. We expect the log to be
717 * some variation on
3f943d85 718 * x + 1 ... | x ... | x
1da177e4
LT
719 * The first block with cycle number x (last_half_cycle) will
720 * be where the new head belongs. First we do a binary search
721 * for the first occurrence of last_half_cycle. The binary
722 * search may not be totally accurate, so then we scan back
723 * from there looking for occurrences of last_half_cycle before
724 * us. If that backwards scan wraps around the beginning of
725 * the log, then we look for occurrences of last_half_cycle - 1
726 * at the end of the log. The cases we're looking for look
727 * like
3f943d85
AE
728 * v binary search stopped here
729 * x + 1 ... | x | x + 1 | x ... | x
730 * ^ but we want to locate this spot
1da177e4 731 * or
1da177e4 732 * <---------> less than scan distance
3f943d85
AE
733 * x + 1 ... | x ... | x - 1 | x
734 * ^ we want to locate this spot
1da177e4
LT
735 */
736 stop_on_cycle = last_half_cycle;
737 if ((error = xlog_find_cycle_start(log, bp, first_blk,
738 &head_blk, last_half_cycle)))
739 goto bp_err;
740 }
741
742 /*
743 * Now validate the answer. Scan back some number of maximum possible
744 * blocks and make sure each one has the expected cycle number. The
745 * maximum is determined by the total possible amount of buffering
746 * in the in-core log. The following number can be made tighter if
747 * we actually look at the block size of the filesystem.
748 */
749 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
750 if (head_blk >= num_scan_bblks) {
751 /*
752 * We are guaranteed that the entire check can be performed
753 * in one buffer.
754 */
755 start_blk = head_blk - num_scan_bblks;
756 if ((error = xlog_find_verify_cycle(log,
757 start_blk, num_scan_bblks,
758 stop_on_cycle, &new_blk)))
759 goto bp_err;
760 if (new_blk != -1)
761 head_blk = new_blk;
762 } else { /* need to read 2 parts of log */
763 /*
764 * We are going to scan backwards in the log in two parts.
765 * First we scan the physical end of the log. In this part
766 * of the log, we are looking for blocks with cycle number
767 * last_half_cycle - 1.
768 * If we find one, then we know that the log starts there, as
769 * we've found a hole that didn't get written in going around
770 * the end of the physical log. The simple case for this is
771 * x + 1 ... | x ... | x - 1 | x
772 * <---------> less than scan distance
773 * If all of the blocks at the end of the log have cycle number
774 * last_half_cycle, then we check the blocks at the start of
775 * the log looking for occurrences of last_half_cycle. If we
776 * find one, then our current estimate for the location of the
777 * first occurrence of last_half_cycle is wrong and we move
778 * back to the hole we've found. This case looks like
779 * x + 1 ... | x | x + 1 | x ...
780 * ^ binary search stopped here
781 * Another case we need to handle that only occurs in 256k
782 * logs is
783 * x + 1 ... | x ... | x+1 | x ...
784 * ^ binary search stops here
785 * In a 256k log, the scan at the end of the log will see the
786 * x + 1 blocks. We need to skip past those since that is
787 * certainly not the head of the log. By searching for
788 * last_half_cycle-1 we accomplish that.
789 */
1da177e4 790 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
791 (xfs_daddr_t) num_scan_bblks >= head_blk);
792 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
793 if ((error = xlog_find_verify_cycle(log, start_blk,
794 num_scan_bblks - (int)head_blk,
795 (stop_on_cycle - 1), &new_blk)))
796 goto bp_err;
797 if (new_blk != -1) {
798 head_blk = new_blk;
9db127ed 799 goto validate_head;
1da177e4
LT
800 }
801
802 /*
803 * Scan beginning of log now. The last part of the physical
804 * log is good. This scan needs to verify that it doesn't find
805 * the last_half_cycle.
806 */
807 start_blk = 0;
808 ASSERT(head_blk <= INT_MAX);
809 if ((error = xlog_find_verify_cycle(log,
810 start_blk, (int)head_blk,
811 stop_on_cycle, &new_blk)))
812 goto bp_err;
813 if (new_blk != -1)
814 head_blk = new_blk;
815 }
816
9db127ed 817validate_head:
1da177e4
LT
818 /*
819 * Now we need to make sure head_blk is not pointing to a block in
820 * the middle of a log record.
821 */
822 num_scan_bblks = XLOG_REC_SHIFT(log);
823 if (head_blk >= num_scan_bblks) {
824 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
825
826 /* start ptr at last block ptr before head_blk */
827 if ((error = xlog_find_verify_log_record(log, start_blk,
828 &head_blk, 0)) == -1) {
829 error = XFS_ERROR(EIO);
830 goto bp_err;
831 } else if (error)
832 goto bp_err;
833 } else {
834 start_blk = 0;
835 ASSERT(head_blk <= INT_MAX);
836 if ((error = xlog_find_verify_log_record(log, start_blk,
837 &head_blk, 0)) == -1) {
838 /* We hit the beginning of the log during our search */
3f943d85 839 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
840 new_blk = log_bbnum;
841 ASSERT(start_blk <= INT_MAX &&
842 (xfs_daddr_t) log_bbnum-start_blk >= 0);
843 ASSERT(head_blk <= INT_MAX);
844 if ((error = xlog_find_verify_log_record(log,
845 start_blk, &new_blk,
846 (int)head_blk)) == -1) {
847 error = XFS_ERROR(EIO);
848 goto bp_err;
849 } else if (error)
850 goto bp_err;
851 if (new_blk != log_bbnum)
852 head_blk = new_blk;
853 } else if (error)
854 goto bp_err;
855 }
856
857 xlog_put_bp(bp);
858 if (head_blk == log_bbnum)
859 *return_head_blk = 0;
860 else
861 *return_head_blk = head_blk;
862 /*
863 * When returning here, we have a good block number. Bad block
864 * means that during a previous crash, we didn't have a clean break
865 * from cycle number N to cycle number N-1. In this case, we need
866 * to find the first block with cycle number N-1.
867 */
868 return 0;
869
870 bp_err:
871 xlog_put_bp(bp);
872
873 if (error)
a0fa2b67 874 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
875 return error;
876}
877
878/*
879 * Find the sync block number or the tail of the log.
880 *
881 * This will be the block number of the last record to have its
882 * associated buffers synced to disk. Every log record header has
883 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
884 * to get a sync block number. The only concern is to figure out which
885 * log record header to believe.
886 *
887 * The following algorithm uses the log record header with the largest
888 * lsn. The entire log record does not need to be valid. We only care
889 * that the header is valid.
890 *
891 * We could speed up search by using current head_blk buffer, but it is not
892 * available.
893 */
5d77c0dc 894STATIC int
1da177e4 895xlog_find_tail(
9a8d2fdb 896 struct xlog *log,
1da177e4 897 xfs_daddr_t *head_blk,
65be6054 898 xfs_daddr_t *tail_blk)
1da177e4
LT
899{
900 xlog_rec_header_t *rhead;
901 xlog_op_header_t *op_head;
902 xfs_caddr_t offset = NULL;
903 xfs_buf_t *bp;
904 int error, i, found;
905 xfs_daddr_t umount_data_blk;
906 xfs_daddr_t after_umount_blk;
907 xfs_lsn_t tail_lsn;
908 int hblks;
909
910 found = 0;
911
912 /*
913 * Find previous log record
914 */
915 if ((error = xlog_find_head(log, head_blk)))
916 return error;
917
918 bp = xlog_get_bp(log, 1);
919 if (!bp)
920 return ENOMEM;
921 if (*head_blk == 0) { /* special case */
076e6acb
CH
922 error = xlog_bread(log, 0, 1, bp, &offset);
923 if (error)
9db127ed 924 goto done;
076e6acb 925
03bea6fe 926 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
927 *tail_blk = 0;
928 /* leave all other log inited values alone */
9db127ed 929 goto done;
1da177e4
LT
930 }
931 }
932
933 /*
934 * Search backwards looking for log record header block
935 */
936 ASSERT(*head_blk < INT_MAX);
937 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
938 error = xlog_bread(log, i, 1, bp, &offset);
939 if (error)
9db127ed 940 goto done;
076e6acb 941
69ef921b 942 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
943 found = 1;
944 break;
945 }
946 }
947 /*
948 * If we haven't found the log record header block, start looking
949 * again from the end of the physical log. XXXmiken: There should be
950 * a check here to make sure we didn't search more than N blocks in
951 * the previous code.
952 */
953 if (!found) {
954 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
955 error = xlog_bread(log, i, 1, bp, &offset);
956 if (error)
9db127ed 957 goto done;
076e6acb 958
69ef921b
CH
959 if (*(__be32 *)offset ==
960 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
961 found = 2;
962 break;
963 }
964 }
965 }
966 if (!found) {
a0fa2b67 967 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
050a1952 968 xlog_put_bp(bp);
1da177e4
LT
969 ASSERT(0);
970 return XFS_ERROR(EIO);
971 }
972
973 /* find blk_no of tail of log */
974 rhead = (xlog_rec_header_t *)offset;
b53e675d 975 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
976
977 /*
978 * Reset log values according to the state of the log when we
979 * crashed. In the case where head_blk == 0, we bump curr_cycle
980 * one because the next write starts a new cycle rather than
981 * continuing the cycle of the last good log record. At this
982 * point we have guaranteed that all partial log records have been
983 * accounted for. Therefore, we know that the last good log record
984 * written was complete and ended exactly on the end boundary
985 * of the physical log.
986 */
987 log->l_prev_block = i;
988 log->l_curr_block = (int)*head_blk;
b53e675d 989 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
990 if (found == 2)
991 log->l_curr_cycle++;
1c3cb9ec 992 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 993 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 994 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 995 BBTOB(log->l_curr_block));
28496968 996 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 997 BBTOB(log->l_curr_block));
1da177e4
LT
998
999 /*
1000 * Look for unmount record. If we find it, then we know there
1001 * was a clean unmount. Since 'i' could be the last block in
1002 * the physical log, we convert to a log block before comparing
1003 * to the head_blk.
1004 *
1005 * Save the current tail lsn to use to pass to
1006 * xlog_clear_stale_blocks() below. We won't want to clear the
1007 * unmount record if there is one, so we pass the lsn of the
1008 * unmount record rather than the block after it.
1009 */
62118709 1010 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1011 int h_size = be32_to_cpu(rhead->h_size);
1012 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1013
1014 if ((h_version & XLOG_VERSION_2) &&
1015 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1016 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1017 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1018 hblks++;
1019 } else {
1020 hblks = 1;
1021 }
1022 } else {
1023 hblks = 1;
1024 }
1025 after_umount_blk = (i + hblks + (int)
b53e675d 1026 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1027 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1028 if (*head_blk == after_umount_blk &&
b53e675d 1029 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1030 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1031 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1032 if (error)
9db127ed 1033 goto done;
076e6acb 1034
1da177e4
LT
1035 op_head = (xlog_op_header_t *)offset;
1036 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1037 /*
1038 * Set tail and last sync so that newly written
1039 * log records will point recovery to after the
1040 * current unmount record.
1041 */
1c3cb9ec
DC
1042 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1043 log->l_curr_cycle, after_umount_blk);
1044 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1045 log->l_curr_cycle, after_umount_blk);
1da177e4 1046 *tail_blk = after_umount_blk;
92821e2b
DC
1047
1048 /*
1049 * Note that the unmount was clean. If the unmount
1050 * was not clean, we need to know this to rebuild the
1051 * superblock counters from the perag headers if we
1052 * have a filesystem using non-persistent counters.
1053 */
1054 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1055 }
1056 }
1057
1058 /*
1059 * Make sure that there are no blocks in front of the head
1060 * with the same cycle number as the head. This can happen
1061 * because we allow multiple outstanding log writes concurrently,
1062 * and the later writes might make it out before earlier ones.
1063 *
1064 * We use the lsn from before modifying it so that we'll never
1065 * overwrite the unmount record after a clean unmount.
1066 *
1067 * Do this only if we are going to recover the filesystem
1068 *
1069 * NOTE: This used to say "if (!readonly)"
1070 * However on Linux, we can & do recover a read-only filesystem.
1071 * We only skip recovery if NORECOVERY is specified on mount,
1072 * in which case we would not be here.
1073 *
1074 * But... if the -device- itself is readonly, just skip this.
1075 * We can't recover this device anyway, so it won't matter.
1076 */
9db127ed 1077 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1078 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1079
9db127ed 1080done:
1da177e4
LT
1081 xlog_put_bp(bp);
1082
1083 if (error)
a0fa2b67 1084 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1085 return error;
1086}
1087
1088/*
1089 * Is the log zeroed at all?
1090 *
1091 * The last binary search should be changed to perform an X block read
1092 * once X becomes small enough. You can then search linearly through
1093 * the X blocks. This will cut down on the number of reads we need to do.
1094 *
1095 * If the log is partially zeroed, this routine will pass back the blkno
1096 * of the first block with cycle number 0. It won't have a complete LR
1097 * preceding it.
1098 *
1099 * Return:
1100 * 0 => the log is completely written to
1101 * -1 => use *blk_no as the first block of the log
1102 * >0 => error has occurred
1103 */
a8272ce0 1104STATIC int
1da177e4 1105xlog_find_zeroed(
9a8d2fdb 1106 struct xlog *log,
1da177e4
LT
1107 xfs_daddr_t *blk_no)
1108{
1109 xfs_buf_t *bp;
1110 xfs_caddr_t offset;
1111 uint first_cycle, last_cycle;
1112 xfs_daddr_t new_blk, last_blk, start_blk;
1113 xfs_daddr_t num_scan_bblks;
1114 int error, log_bbnum = log->l_logBBsize;
1115
6fdf8ccc
NS
1116 *blk_no = 0;
1117
1da177e4
LT
1118 /* check totally zeroed log */
1119 bp = xlog_get_bp(log, 1);
1120 if (!bp)
1121 return ENOMEM;
076e6acb
CH
1122 error = xlog_bread(log, 0, 1, bp, &offset);
1123 if (error)
1da177e4 1124 goto bp_err;
076e6acb 1125
03bea6fe 1126 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1127 if (first_cycle == 0) { /* completely zeroed log */
1128 *blk_no = 0;
1129 xlog_put_bp(bp);
1130 return -1;
1131 }
1132
1133 /* check partially zeroed log */
076e6acb
CH
1134 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1135 if (error)
1da177e4 1136 goto bp_err;
076e6acb 1137
03bea6fe 1138 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1139 if (last_cycle != 0) { /* log completely written to */
1140 xlog_put_bp(bp);
1141 return 0;
1142 } else if (first_cycle != 1) {
1143 /*
1144 * If the cycle of the last block is zero, the cycle of
1145 * the first block must be 1. If it's not, maybe we're
1146 * not looking at a log... Bail out.
1147 */
a0fa2b67
DC
1148 xfs_warn(log->l_mp,
1149 "Log inconsistent or not a log (last==0, first!=1)");
5d0a6549
ES
1150 error = XFS_ERROR(EINVAL);
1151 goto bp_err;
1da177e4
LT
1152 }
1153
1154 /* we have a partially zeroed log */
1155 last_blk = log_bbnum-1;
1156 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1157 goto bp_err;
1158
1159 /*
1160 * Validate the answer. Because there is no way to guarantee that
1161 * the entire log is made up of log records which are the same size,
1162 * we scan over the defined maximum blocks. At this point, the maximum
1163 * is not chosen to mean anything special. XXXmiken
1164 */
1165 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1166 ASSERT(num_scan_bblks <= INT_MAX);
1167
1168 if (last_blk < num_scan_bblks)
1169 num_scan_bblks = last_blk;
1170 start_blk = last_blk - num_scan_bblks;
1171
1172 /*
1173 * We search for any instances of cycle number 0 that occur before
1174 * our current estimate of the head. What we're trying to detect is
1175 * 1 ... | 0 | 1 | 0...
1176 * ^ binary search ends here
1177 */
1178 if ((error = xlog_find_verify_cycle(log, start_blk,
1179 (int)num_scan_bblks, 0, &new_blk)))
1180 goto bp_err;
1181 if (new_blk != -1)
1182 last_blk = new_blk;
1183
1184 /*
1185 * Potentially backup over partial log record write. We don't need
1186 * to search the end of the log because we know it is zero.
1187 */
1188 if ((error = xlog_find_verify_log_record(log, start_blk,
1189 &last_blk, 0)) == -1) {
1190 error = XFS_ERROR(EIO);
1191 goto bp_err;
1192 } else if (error)
1193 goto bp_err;
1194
1195 *blk_no = last_blk;
1196bp_err:
1197 xlog_put_bp(bp);
1198 if (error)
1199 return error;
1200 return -1;
1201}
1202
1203/*
1204 * These are simple subroutines used by xlog_clear_stale_blocks() below
1205 * to initialize a buffer full of empty log record headers and write
1206 * them into the log.
1207 */
1208STATIC void
1209xlog_add_record(
9a8d2fdb 1210 struct xlog *log,
1da177e4
LT
1211 xfs_caddr_t buf,
1212 int cycle,
1213 int block,
1214 int tail_cycle,
1215 int tail_block)
1216{
1217 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1218
1219 memset(buf, 0, BBSIZE);
b53e675d
CH
1220 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1221 recp->h_cycle = cpu_to_be32(cycle);
1222 recp->h_version = cpu_to_be32(
62118709 1223 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1224 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1225 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1226 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1227 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1228}
1229
1230STATIC int
1231xlog_write_log_records(
9a8d2fdb 1232 struct xlog *log,
1da177e4
LT
1233 int cycle,
1234 int start_block,
1235 int blocks,
1236 int tail_cycle,
1237 int tail_block)
1238{
1239 xfs_caddr_t offset;
1240 xfs_buf_t *bp;
1241 int balign, ealign;
69ce58f0 1242 int sectbb = log->l_sectBBsize;
1da177e4
LT
1243 int end_block = start_block + blocks;
1244 int bufblks;
1245 int error = 0;
1246 int i, j = 0;
1247
6881a229
AE
1248 /*
1249 * Greedily allocate a buffer big enough to handle the full
1250 * range of basic blocks to be written. If that fails, try
1251 * a smaller size. We need to be able to write at least a
1252 * log sector, or we're out of luck.
1253 */
1da177e4 1254 bufblks = 1 << ffs(blocks);
81158e0c
DC
1255 while (bufblks > log->l_logBBsize)
1256 bufblks >>= 1;
1da177e4
LT
1257 while (!(bp = xlog_get_bp(log, bufblks))) {
1258 bufblks >>= 1;
69ce58f0 1259 if (bufblks < sectbb)
1da177e4
LT
1260 return ENOMEM;
1261 }
1262
1263 /* We may need to do a read at the start to fill in part of
1264 * the buffer in the starting sector not covered by the first
1265 * write below.
1266 */
5c17f533 1267 balign = round_down(start_block, sectbb);
1da177e4 1268 if (balign != start_block) {
076e6acb
CH
1269 error = xlog_bread_noalign(log, start_block, 1, bp);
1270 if (error)
1271 goto out_put_bp;
1272
1da177e4
LT
1273 j = start_block - balign;
1274 }
1275
1276 for (i = start_block; i < end_block; i += bufblks) {
1277 int bcount, endcount;
1278
1279 bcount = min(bufblks, end_block - start_block);
1280 endcount = bcount - j;
1281
1282 /* We may need to do a read at the end to fill in part of
1283 * the buffer in the final sector not covered by the write.
1284 * If this is the same sector as the above read, skip it.
1285 */
5c17f533 1286 ealign = round_down(end_block, sectbb);
1da177e4 1287 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1288 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1289 error = xlog_bread_offset(log, ealign, sectbb,
1290 bp, offset);
076e6acb
CH
1291 if (error)
1292 break;
1293
1da177e4
LT
1294 }
1295
1296 offset = xlog_align(log, start_block, endcount, bp);
1297 for (; j < endcount; j++) {
1298 xlog_add_record(log, offset, cycle, i+j,
1299 tail_cycle, tail_block);
1300 offset += BBSIZE;
1301 }
1302 error = xlog_bwrite(log, start_block, endcount, bp);
1303 if (error)
1304 break;
1305 start_block += endcount;
1306 j = 0;
1307 }
076e6acb
CH
1308
1309 out_put_bp:
1da177e4
LT
1310 xlog_put_bp(bp);
1311 return error;
1312}
1313
1314/*
1315 * This routine is called to blow away any incomplete log writes out
1316 * in front of the log head. We do this so that we won't become confused
1317 * if we come up, write only a little bit more, and then crash again.
1318 * If we leave the partial log records out there, this situation could
1319 * cause us to think those partial writes are valid blocks since they
1320 * have the current cycle number. We get rid of them by overwriting them
1321 * with empty log records with the old cycle number rather than the
1322 * current one.
1323 *
1324 * The tail lsn is passed in rather than taken from
1325 * the log so that we will not write over the unmount record after a
1326 * clean unmount in a 512 block log. Doing so would leave the log without
1327 * any valid log records in it until a new one was written. If we crashed
1328 * during that time we would not be able to recover.
1329 */
1330STATIC int
1331xlog_clear_stale_blocks(
9a8d2fdb 1332 struct xlog *log,
1da177e4
LT
1333 xfs_lsn_t tail_lsn)
1334{
1335 int tail_cycle, head_cycle;
1336 int tail_block, head_block;
1337 int tail_distance, max_distance;
1338 int distance;
1339 int error;
1340
1341 tail_cycle = CYCLE_LSN(tail_lsn);
1342 tail_block = BLOCK_LSN(tail_lsn);
1343 head_cycle = log->l_curr_cycle;
1344 head_block = log->l_curr_block;
1345
1346 /*
1347 * Figure out the distance between the new head of the log
1348 * and the tail. We want to write over any blocks beyond the
1349 * head that we may have written just before the crash, but
1350 * we don't want to overwrite the tail of the log.
1351 */
1352 if (head_cycle == tail_cycle) {
1353 /*
1354 * The tail is behind the head in the physical log,
1355 * so the distance from the head to the tail is the
1356 * distance from the head to the end of the log plus
1357 * the distance from the beginning of the log to the
1358 * tail.
1359 */
1360 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1361 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1362 XFS_ERRLEVEL_LOW, log->l_mp);
1363 return XFS_ERROR(EFSCORRUPTED);
1364 }
1365 tail_distance = tail_block + (log->l_logBBsize - head_block);
1366 } else {
1367 /*
1368 * The head is behind the tail in the physical log,
1369 * so the distance from the head to the tail is just
1370 * the tail block minus the head block.
1371 */
1372 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1373 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1374 XFS_ERRLEVEL_LOW, log->l_mp);
1375 return XFS_ERROR(EFSCORRUPTED);
1376 }
1377 tail_distance = tail_block - head_block;
1378 }
1379
1380 /*
1381 * If the head is right up against the tail, we can't clear
1382 * anything.
1383 */
1384 if (tail_distance <= 0) {
1385 ASSERT(tail_distance == 0);
1386 return 0;
1387 }
1388
1389 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1390 /*
1391 * Take the smaller of the maximum amount of outstanding I/O
1392 * we could have and the distance to the tail to clear out.
1393 * We take the smaller so that we don't overwrite the tail and
1394 * we don't waste all day writing from the head to the tail
1395 * for no reason.
1396 */
1397 max_distance = MIN(max_distance, tail_distance);
1398
1399 if ((head_block + max_distance) <= log->l_logBBsize) {
1400 /*
1401 * We can stomp all the blocks we need to without
1402 * wrapping around the end of the log. Just do it
1403 * in a single write. Use the cycle number of the
1404 * current cycle minus one so that the log will look like:
1405 * n ... | n - 1 ...
1406 */
1407 error = xlog_write_log_records(log, (head_cycle - 1),
1408 head_block, max_distance, tail_cycle,
1409 tail_block);
1410 if (error)
1411 return error;
1412 } else {
1413 /*
1414 * We need to wrap around the end of the physical log in
1415 * order to clear all the blocks. Do it in two separate
1416 * I/Os. The first write should be from the head to the
1417 * end of the physical log, and it should use the current
1418 * cycle number minus one just like above.
1419 */
1420 distance = log->l_logBBsize - head_block;
1421 error = xlog_write_log_records(log, (head_cycle - 1),
1422 head_block, distance, tail_cycle,
1423 tail_block);
1424
1425 if (error)
1426 return error;
1427
1428 /*
1429 * Now write the blocks at the start of the physical log.
1430 * This writes the remainder of the blocks we want to clear.
1431 * It uses the current cycle number since we're now on the
1432 * same cycle as the head so that we get:
1433 * n ... n ... | n - 1 ...
1434 * ^^^^^ blocks we're writing
1435 */
1436 distance = max_distance - (log->l_logBBsize - head_block);
1437 error = xlog_write_log_records(log, head_cycle, 0, distance,
1438 tail_cycle, tail_block);
1439 if (error)
1440 return error;
1441 }
1442
1443 return 0;
1444}
1445
1446/******************************************************************************
1447 *
1448 * Log recover routines
1449 *
1450 ******************************************************************************
1451 */
1452
1453STATIC xlog_recover_t *
1454xlog_recover_find_tid(
f0a76953 1455 struct hlist_head *head,
1da177e4
LT
1456 xlog_tid_t tid)
1457{
f0a76953 1458 xlog_recover_t *trans;
1da177e4 1459
b67bfe0d 1460 hlist_for_each_entry(trans, head, r_list) {
f0a76953
DC
1461 if (trans->r_log_tid == tid)
1462 return trans;
1da177e4 1463 }
f0a76953 1464 return NULL;
1da177e4
LT
1465}
1466
1467STATIC void
f0a76953
DC
1468xlog_recover_new_tid(
1469 struct hlist_head *head,
1470 xlog_tid_t tid,
1471 xfs_lsn_t lsn)
1da177e4 1472{
f0a76953
DC
1473 xlog_recover_t *trans;
1474
1475 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1476 trans->r_log_tid = tid;
1477 trans->r_lsn = lsn;
1478 INIT_LIST_HEAD(&trans->r_itemq);
1479
1480 INIT_HLIST_NODE(&trans->r_list);
1481 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1482}
1483
1484STATIC void
1485xlog_recover_add_item(
f0a76953 1486 struct list_head *head)
1da177e4
LT
1487{
1488 xlog_recover_item_t *item;
1489
1490 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1491 INIT_LIST_HEAD(&item->ri_list);
1492 list_add_tail(&item->ri_list, head);
1da177e4
LT
1493}
1494
1495STATIC int
1496xlog_recover_add_to_cont_trans(
ad223e60
MT
1497 struct xlog *log,
1498 struct xlog_recover *trans,
1da177e4
LT
1499 xfs_caddr_t dp,
1500 int len)
1501{
1502 xlog_recover_item_t *item;
1503 xfs_caddr_t ptr, old_ptr;
1504 int old_len;
1505
f0a76953 1506 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1507 /* finish copying rest of trans header */
1508 xlog_recover_add_item(&trans->r_itemq);
1509 ptr = (xfs_caddr_t) &trans->r_theader +
1510 sizeof(xfs_trans_header_t) - len;
1511 memcpy(ptr, dp, len); /* d, s, l */
1512 return 0;
1513 }
f0a76953
DC
1514 /* take the tail entry */
1515 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1516
1517 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1518 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1519
45053603 1520 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1521 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1522 item->ri_buf[item->ri_cnt-1].i_len += len;
1523 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1524 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1525 return 0;
1526}
1527
1528/*
1529 * The next region to add is the start of a new region. It could be
1530 * a whole region or it could be the first part of a new region. Because
1531 * of this, the assumption here is that the type and size fields of all
1532 * format structures fit into the first 32 bits of the structure.
1533 *
1534 * This works because all regions must be 32 bit aligned. Therefore, we
1535 * either have both fields or we have neither field. In the case we have
1536 * neither field, the data part of the region is zero length. We only have
1537 * a log_op_header and can throw away the header since a new one will appear
1538 * later. If we have at least 4 bytes, then we can determine how many regions
1539 * will appear in the current log item.
1540 */
1541STATIC int
1542xlog_recover_add_to_trans(
ad223e60
MT
1543 struct xlog *log,
1544 struct xlog_recover *trans,
1da177e4
LT
1545 xfs_caddr_t dp,
1546 int len)
1547{
1548 xfs_inode_log_format_t *in_f; /* any will do */
1549 xlog_recover_item_t *item;
1550 xfs_caddr_t ptr;
1551
1552 if (!len)
1553 return 0;
f0a76953 1554 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1555 /* we need to catch log corruptions here */
1556 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1557 xfs_warn(log->l_mp, "%s: bad header magic number",
1558 __func__);
5a792c45
DC
1559 ASSERT(0);
1560 return XFS_ERROR(EIO);
1561 }
1da177e4
LT
1562 if (len == sizeof(xfs_trans_header_t))
1563 xlog_recover_add_item(&trans->r_itemq);
1564 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1565 return 0;
1566 }
1567
1568 ptr = kmem_alloc(len, KM_SLEEP);
1569 memcpy(ptr, dp, len);
1570 in_f = (xfs_inode_log_format_t *)ptr;
1571
f0a76953
DC
1572 /* take the tail entry */
1573 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1574 if (item->ri_total != 0 &&
1575 item->ri_total == item->ri_cnt) {
1576 /* tail item is in use, get a new one */
1da177e4 1577 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1578 item = list_entry(trans->r_itemq.prev,
1579 xlog_recover_item_t, ri_list);
1da177e4 1580 }
1da177e4
LT
1581
1582 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1583 if (in_f->ilf_size == 0 ||
1584 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1585 xfs_warn(log->l_mp,
1586 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1587 in_f->ilf_size);
1588 ASSERT(0);
aaaae980 1589 kmem_free(ptr);
e8fa6b48
CH
1590 return XFS_ERROR(EIO);
1591 }
1592
1593 item->ri_total = in_f->ilf_size;
1594 item->ri_buf =
1595 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1596 KM_SLEEP);
1da177e4
LT
1597 }
1598 ASSERT(item->ri_total > item->ri_cnt);
1599 /* Description region is ri_buf[0] */
1600 item->ri_buf[item->ri_cnt].i_addr = ptr;
1601 item->ri_buf[item->ri_cnt].i_len = len;
1602 item->ri_cnt++;
9abbc539 1603 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1604 return 0;
1605}
1606
f0a76953 1607/*
a775ad77
DC
1608 * Sort the log items in the transaction.
1609 *
1610 * The ordering constraints are defined by the inode allocation and unlink
1611 * behaviour. The rules are:
1612 *
1613 * 1. Every item is only logged once in a given transaction. Hence it
1614 * represents the last logged state of the item. Hence ordering is
1615 * dependent on the order in which operations need to be performed so
1616 * required initial conditions are always met.
1617 *
1618 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1619 * there's nothing to replay from them so we can simply cull them
1620 * from the transaction. However, we can't do that until after we've
1621 * replayed all the other items because they may be dependent on the
1622 * cancelled buffer and replaying the cancelled buffer can remove it
1623 * form the cancelled buffer table. Hence they have tobe done last.
1624 *
1625 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1626 * read the buffer and replay changes into it. For filesystems using the
1627 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1628 * treated the same as inode allocation buffers as they create and
1629 * initialise the buffers directly.
a775ad77
DC
1630 *
1631 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1632 * This ensures that inodes are completely flushed to the inode buffer
1633 * in a "free" state before we remove the unlinked inode list pointer.
1634 *
1635 * Hence the ordering needs to be inode allocation buffers first, inode items
1636 * second, inode unlink buffers third and cancelled buffers last.
1637 *
1638 * But there's a problem with that - we can't tell an inode allocation buffer
1639 * apart from a regular buffer, so we can't separate them. We can, however,
1640 * tell an inode unlink buffer from the others, and so we can separate them out
1641 * from all the other buffers and move them to last.
1642 *
1643 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1644 * - buffer_list for all buffers except cancelled/inode unlink buffers
1645 * - item_list for all non-buffer items
1646 * - inode_buffer_list for inode unlink buffers
1647 * - cancel_list for the cancelled buffers
1648 *
1649 * Note that we add objects to the tail of the lists so that first-to-last
1650 * ordering is preserved within the lists. Adding objects to the head of the
1651 * list means when we traverse from the head we walk them in last-to-first
1652 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1653 * but for all other items there may be specific ordering that we need to
1654 * preserve.
f0a76953 1655 */
1da177e4
LT
1656STATIC int
1657xlog_recover_reorder_trans(
ad223e60
MT
1658 struct xlog *log,
1659 struct xlog_recover *trans,
9abbc539 1660 int pass)
1da177e4 1661{
f0a76953
DC
1662 xlog_recover_item_t *item, *n;
1663 LIST_HEAD(sort_list);
a775ad77
DC
1664 LIST_HEAD(cancel_list);
1665 LIST_HEAD(buffer_list);
1666 LIST_HEAD(inode_buffer_list);
1667 LIST_HEAD(inode_list);
f0a76953
DC
1668
1669 list_splice_init(&trans->r_itemq, &sort_list);
1670 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1671 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1672
f0a76953 1673 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1674 case XFS_LI_ICREATE:
1675 list_move_tail(&item->ri_list, &buffer_list);
1676 break;
1da177e4 1677 case XFS_LI_BUF:
a775ad77 1678 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1679 trace_xfs_log_recover_item_reorder_head(log,
1680 trans, item, pass);
a775ad77 1681 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1682 break;
1683 }
a775ad77
DC
1684 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1685 list_move(&item->ri_list, &inode_buffer_list);
1686 break;
1687 }
1688 list_move_tail(&item->ri_list, &buffer_list);
1689 break;
1da177e4 1690 case XFS_LI_INODE:
1da177e4
LT
1691 case XFS_LI_DQUOT:
1692 case XFS_LI_QUOTAOFF:
1693 case XFS_LI_EFD:
1694 case XFS_LI_EFI:
9abbc539
DC
1695 trace_xfs_log_recover_item_reorder_tail(log,
1696 trans, item, pass);
a775ad77 1697 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1698 break;
1699 default:
a0fa2b67
DC
1700 xfs_warn(log->l_mp,
1701 "%s: unrecognized type of log operation",
1702 __func__);
1da177e4
LT
1703 ASSERT(0);
1704 return XFS_ERROR(EIO);
1705 }
f0a76953
DC
1706 }
1707 ASSERT(list_empty(&sort_list));
a775ad77
DC
1708 if (!list_empty(&buffer_list))
1709 list_splice(&buffer_list, &trans->r_itemq);
1710 if (!list_empty(&inode_list))
1711 list_splice_tail(&inode_list, &trans->r_itemq);
1712 if (!list_empty(&inode_buffer_list))
1713 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1714 if (!list_empty(&cancel_list))
1715 list_splice_tail(&cancel_list, &trans->r_itemq);
1da177e4
LT
1716 return 0;
1717}
1718
1719/*
1720 * Build up the table of buf cancel records so that we don't replay
1721 * cancelled data in the second pass. For buffer records that are
1722 * not cancel records, there is nothing to do here so we just return.
1723 *
1724 * If we get a cancel record which is already in the table, this indicates
1725 * that the buffer was cancelled multiple times. In order to ensure
1726 * that during pass 2 we keep the record in the table until we reach its
1727 * last occurrence in the log, we keep a reference count in the cancel
1728 * record in the table to tell us how many times we expect to see this
1729 * record during the second pass.
1730 */
c9f71f5f
CH
1731STATIC int
1732xlog_recover_buffer_pass1(
ad223e60
MT
1733 struct xlog *log,
1734 struct xlog_recover_item *item)
1da177e4 1735{
c9f71f5f 1736 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1737 struct list_head *bucket;
1738 struct xfs_buf_cancel *bcp;
1da177e4
LT
1739
1740 /*
1741 * If this isn't a cancel buffer item, then just return.
1742 */
e2714bf8 1743 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1744 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1745 return 0;
9abbc539 1746 }
1da177e4
LT
1747
1748 /*
d5689eaa
CH
1749 * Insert an xfs_buf_cancel record into the hash table of them.
1750 * If there is already an identical record, bump its reference count.
1da177e4 1751 */
d5689eaa
CH
1752 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1753 list_for_each_entry(bcp, bucket, bc_list) {
1754 if (bcp->bc_blkno == buf_f->blf_blkno &&
1755 bcp->bc_len == buf_f->blf_len) {
1756 bcp->bc_refcount++;
9abbc539 1757 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1758 return 0;
1da177e4 1759 }
d5689eaa
CH
1760 }
1761
1762 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1763 bcp->bc_blkno = buf_f->blf_blkno;
1764 bcp->bc_len = buf_f->blf_len;
1da177e4 1765 bcp->bc_refcount = 1;
d5689eaa
CH
1766 list_add_tail(&bcp->bc_list, bucket);
1767
9abbc539 1768 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1769 return 0;
1da177e4
LT
1770}
1771
1772/*
1773 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
1774 * entry in the buffer cancel record table. If it is, return the cancel
1775 * buffer structure to the caller.
1da177e4 1776 */
84a5b730
DC
1777STATIC struct xfs_buf_cancel *
1778xlog_peek_buffer_cancelled(
ad223e60 1779 struct xlog *log,
1da177e4
LT
1780 xfs_daddr_t blkno,
1781 uint len,
1782 ushort flags)
1783{
d5689eaa
CH
1784 struct list_head *bucket;
1785 struct xfs_buf_cancel *bcp;
1da177e4 1786
84a5b730
DC
1787 if (!log->l_buf_cancel_table) {
1788 /* empty table means no cancelled buffers in the log */
c1155410 1789 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 1790 return NULL;
1da177e4
LT
1791 }
1792
d5689eaa
CH
1793 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1794 list_for_each_entry(bcp, bucket, bc_list) {
1795 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 1796 return bcp;
1da177e4 1797 }
d5689eaa 1798
1da177e4 1799 /*
d5689eaa
CH
1800 * We didn't find a corresponding entry in the table, so return 0 so
1801 * that the buffer is NOT cancelled.
1da177e4 1802 */
c1155410 1803 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
1804 return NULL;
1805}
1806
1807/*
1808 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1809 * otherwise return 0. If the buffer is actually a buffer cancel item
1810 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1811 * table and remove it from the table if this is the last reference.
1812 *
1813 * We remove the cancel record from the table when we encounter its last
1814 * occurrence in the log so that if the same buffer is re-used again after its
1815 * last cancellation we actually replay the changes made at that point.
1816 */
1817STATIC int
1818xlog_check_buffer_cancelled(
1819 struct xlog *log,
1820 xfs_daddr_t blkno,
1821 uint len,
1822 ushort flags)
1823{
1824 struct xfs_buf_cancel *bcp;
1825
1826 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1827 if (!bcp)
1828 return 0;
d5689eaa 1829
d5689eaa
CH
1830 /*
1831 * We've go a match, so return 1 so that the recovery of this buffer
1832 * is cancelled. If this buffer is actually a buffer cancel log
1833 * item, then decrement the refcount on the one in the table and
1834 * remove it if this is the last reference.
1835 */
1836 if (flags & XFS_BLF_CANCEL) {
1837 if (--bcp->bc_refcount == 0) {
1838 list_del(&bcp->bc_list);
1839 kmem_free(bcp);
1840 }
1841 }
1842 return 1;
1da177e4
LT
1843}
1844
1da177e4 1845/*
e2714bf8
CH
1846 * Perform recovery for a buffer full of inodes. In these buffers, the only
1847 * data which should be recovered is that which corresponds to the
1848 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1849 * data for the inodes is always logged through the inodes themselves rather
1850 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1851 *
e2714bf8
CH
1852 * The only time when buffers full of inodes are fully recovered is when the
1853 * buffer is full of newly allocated inodes. In this case the buffer will
1854 * not be marked as an inode buffer and so will be sent to
1855 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1856 */
1857STATIC int
1858xlog_recover_do_inode_buffer(
e2714bf8 1859 struct xfs_mount *mp,
1da177e4 1860 xlog_recover_item_t *item,
e2714bf8 1861 struct xfs_buf *bp,
1da177e4
LT
1862 xfs_buf_log_format_t *buf_f)
1863{
1864 int i;
e2714bf8
CH
1865 int item_index = 0;
1866 int bit = 0;
1867 int nbits = 0;
1868 int reg_buf_offset = 0;
1869 int reg_buf_bytes = 0;
1da177e4
LT
1870 int next_unlinked_offset;
1871 int inodes_per_buf;
1872 xfs_agino_t *logged_nextp;
1873 xfs_agino_t *buffer_nextp;
1da177e4 1874
9abbc539 1875 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1876
1877 /*
1878 * Post recovery validation only works properly on CRC enabled
1879 * filesystems.
1880 */
1881 if (xfs_sb_version_hascrc(&mp->m_sb))
1882 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1883
aa0e8833 1884 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1885 for (i = 0; i < inodes_per_buf; i++) {
1886 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1887 offsetof(xfs_dinode_t, di_next_unlinked);
1888
1889 while (next_unlinked_offset >=
1890 (reg_buf_offset + reg_buf_bytes)) {
1891 /*
1892 * The next di_next_unlinked field is beyond
1893 * the current logged region. Find the next
1894 * logged region that contains or is beyond
1895 * the current di_next_unlinked field.
1896 */
1897 bit += nbits;
e2714bf8
CH
1898 bit = xfs_next_bit(buf_f->blf_data_map,
1899 buf_f->blf_map_size, bit);
1da177e4
LT
1900
1901 /*
1902 * If there are no more logged regions in the
1903 * buffer, then we're done.
1904 */
e2714bf8 1905 if (bit == -1)
1da177e4 1906 return 0;
1da177e4 1907
e2714bf8
CH
1908 nbits = xfs_contig_bits(buf_f->blf_data_map,
1909 buf_f->blf_map_size, bit);
1da177e4 1910 ASSERT(nbits > 0);
c1155410
DC
1911 reg_buf_offset = bit << XFS_BLF_SHIFT;
1912 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1913 item_index++;
1914 }
1915
1916 /*
1917 * If the current logged region starts after the current
1918 * di_next_unlinked field, then move on to the next
1919 * di_next_unlinked field.
1920 */
e2714bf8 1921 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1922 continue;
1da177e4
LT
1923
1924 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1925 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1926 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1927 BBTOB(bp->b_io_length));
1da177e4
LT
1928
1929 /*
1930 * The current logged region contains a copy of the
1931 * current di_next_unlinked field. Extract its value
1932 * and copy it to the buffer copy.
1933 */
4e0d5f92
CH
1934 logged_nextp = item->ri_buf[item_index].i_addr +
1935 next_unlinked_offset - reg_buf_offset;
1da177e4 1936 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1937 xfs_alert(mp,
1938 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1939 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1940 item, bp);
1941 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1942 XFS_ERRLEVEL_LOW, mp);
1943 return XFS_ERROR(EFSCORRUPTED);
1944 }
1945
1946 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1947 next_unlinked_offset);
87c199c2 1948 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1949
1950 /*
1951 * If necessary, recalculate the CRC in the on-disk inode. We
1952 * have to leave the inode in a consistent state for whoever
1953 * reads it next....
1954 */
1955 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1956 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1957
1da177e4
LT
1958 }
1959
1960 return 0;
1961}
1962
50d5c8d8
DC
1963/*
1964 * V5 filesystems know the age of the buffer on disk being recovered. We can
1965 * have newer objects on disk than we are replaying, and so for these cases we
1966 * don't want to replay the current change as that will make the buffer contents
1967 * temporarily invalid on disk.
1968 *
1969 * The magic number might not match the buffer type we are going to recover
1970 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1971 * extract the LSN of the existing object in the buffer based on it's current
1972 * magic number. If we don't recognise the magic number in the buffer, then
1973 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1974 * so can recover the buffer.
566055d3
DC
1975 *
1976 * Note: we cannot rely solely on magic number matches to determine that the
1977 * buffer has a valid LSN - we also need to verify that it belongs to this
1978 * filesystem, so we need to extract the object's LSN and compare it to that
1979 * which we read from the superblock. If the UUIDs don't match, then we've got a
1980 * stale metadata block from an old filesystem instance that we need to recover
1981 * over the top of.
50d5c8d8
DC
1982 */
1983static xfs_lsn_t
1984xlog_recover_get_buf_lsn(
1985 struct xfs_mount *mp,
1986 struct xfs_buf *bp)
1987{
1988 __uint32_t magic32;
1989 __uint16_t magic16;
1990 __uint16_t magicda;
1991 void *blk = bp->b_addr;
566055d3
DC
1992 uuid_t *uuid;
1993 xfs_lsn_t lsn = -1;
50d5c8d8
DC
1994
1995 /* v4 filesystems always recover immediately */
1996 if (!xfs_sb_version_hascrc(&mp->m_sb))
1997 goto recover_immediately;
1998
1999 magic32 = be32_to_cpu(*(__be32 *)blk);
2000 switch (magic32) {
2001 case XFS_ABTB_CRC_MAGIC:
2002 case XFS_ABTC_CRC_MAGIC:
2003 case XFS_ABTB_MAGIC:
2004 case XFS_ABTC_MAGIC:
2005 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2006 case XFS_IBT_MAGIC: {
2007 struct xfs_btree_block *btb = blk;
2008
2009 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2010 uuid = &btb->bb_u.s.bb_uuid;
2011 break;
2012 }
50d5c8d8 2013 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2014 case XFS_BMAP_MAGIC: {
2015 struct xfs_btree_block *btb = blk;
2016
2017 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2018 uuid = &btb->bb_u.l.bb_uuid;
2019 break;
2020 }
50d5c8d8 2021 case XFS_AGF_MAGIC:
566055d3
DC
2022 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2023 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2024 break;
50d5c8d8 2025 case XFS_AGFL_MAGIC:
566055d3
DC
2026 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2027 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2028 break;
50d5c8d8 2029 case XFS_AGI_MAGIC:
566055d3
DC
2030 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2031 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2032 break;
50d5c8d8 2033 case XFS_SYMLINK_MAGIC:
566055d3
DC
2034 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2035 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2036 break;
50d5c8d8
DC
2037 case XFS_DIR3_BLOCK_MAGIC:
2038 case XFS_DIR3_DATA_MAGIC:
2039 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2040 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2041 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2042 break;
50d5c8d8 2043 case XFS_ATTR3_RMT_MAGIC:
566055d3
DC
2044 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2045 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2046 break;
50d5c8d8 2047 case XFS_SB_MAGIC:
566055d3
DC
2048 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2049 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2050 break;
50d5c8d8
DC
2051 default:
2052 break;
2053 }
2054
566055d3
DC
2055 if (lsn != (xfs_lsn_t)-1) {
2056 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2057 goto recover_immediately;
2058 return lsn;
2059 }
2060
50d5c8d8
DC
2061 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2062 switch (magicda) {
2063 case XFS_DIR3_LEAF1_MAGIC:
2064 case XFS_DIR3_LEAFN_MAGIC:
2065 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2066 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2067 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2068 break;
50d5c8d8
DC
2069 default:
2070 break;
2071 }
2072
566055d3
DC
2073 if (lsn != (xfs_lsn_t)-1) {
2074 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2075 goto recover_immediately;
2076 return lsn;
2077 }
2078
50d5c8d8
DC
2079 /*
2080 * We do individual object checks on dquot and inode buffers as they
2081 * have their own individual LSN records. Also, we could have a stale
2082 * buffer here, so we have to at least recognise these buffer types.
2083 *
2084 * A notd complexity here is inode unlinked list processing - it logs
2085 * the inode directly in the buffer, but we don't know which inodes have
2086 * been modified, and there is no global buffer LSN. Hence we need to
2087 * recover all inode buffer types immediately. This problem will be
2088 * fixed by logical logging of the unlinked list modifications.
2089 */
2090 magic16 = be16_to_cpu(*(__be16 *)blk);
2091 switch (magic16) {
2092 case XFS_DQUOT_MAGIC:
2093 case XFS_DINODE_MAGIC:
2094 goto recover_immediately;
2095 default:
2096 break;
2097 }
2098
2099 /* unknown buffer contents, recover immediately */
2100
2101recover_immediately:
2102 return (xfs_lsn_t)-1;
2103
2104}
2105
1da177e4 2106/*
d75afeb3
DC
2107 * Validate the recovered buffer is of the correct type and attach the
2108 * appropriate buffer operations to them for writeback. Magic numbers are in a
2109 * few places:
2110 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2111 * the first 32 bits of the buffer (most blocks),
2112 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2113 */
d75afeb3 2114static void
50d5c8d8 2115xlog_recover_validate_buf_type(
9abbc539 2116 struct xfs_mount *mp,
e2714bf8 2117 struct xfs_buf *bp,
1da177e4
LT
2118 xfs_buf_log_format_t *buf_f)
2119{
d75afeb3
DC
2120 struct xfs_da_blkinfo *info = bp->b_addr;
2121 __uint32_t magic32;
2122 __uint16_t magic16;
2123 __uint16_t magicda;
2124
2125 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2126 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2127 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2128 switch (xfs_blft_from_flags(buf_f)) {
2129 case XFS_BLFT_BTREE_BUF:
d75afeb3 2130 switch (magic32) {
ee1a47ab
CH
2131 case XFS_ABTB_CRC_MAGIC:
2132 case XFS_ABTC_CRC_MAGIC:
2133 case XFS_ABTB_MAGIC:
2134 case XFS_ABTC_MAGIC:
2135 bp->b_ops = &xfs_allocbt_buf_ops;
2136 break;
2137 case XFS_IBT_CRC_MAGIC:
2138 case XFS_IBT_MAGIC:
2139 bp->b_ops = &xfs_inobt_buf_ops;
2140 break;
2141 case XFS_BMAP_CRC_MAGIC:
2142 case XFS_BMAP_MAGIC:
2143 bp->b_ops = &xfs_bmbt_buf_ops;
2144 break;
2145 default:
2146 xfs_warn(mp, "Bad btree block magic!");
2147 ASSERT(0);
2148 break;
2149 }
2150 break;
61fe135c 2151 case XFS_BLFT_AGF_BUF:
d75afeb3 2152 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2153 xfs_warn(mp, "Bad AGF block magic!");
2154 ASSERT(0);
2155 break;
2156 }
2157 bp->b_ops = &xfs_agf_buf_ops;
2158 break;
61fe135c 2159 case XFS_BLFT_AGFL_BUF:
77c95bba
CH
2160 if (!xfs_sb_version_hascrc(&mp->m_sb))
2161 break;
d75afeb3 2162 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2163 xfs_warn(mp, "Bad AGFL block magic!");
2164 ASSERT(0);
2165 break;
2166 }
2167 bp->b_ops = &xfs_agfl_buf_ops;
2168 break;
61fe135c 2169 case XFS_BLFT_AGI_BUF:
d75afeb3 2170 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2171 xfs_warn(mp, "Bad AGI block magic!");
2172 ASSERT(0);
2173 break;
2174 }
2175 bp->b_ops = &xfs_agi_buf_ops;
2176 break;
61fe135c
DC
2177 case XFS_BLFT_UDQUOT_BUF:
2178 case XFS_BLFT_PDQUOT_BUF:
2179 case XFS_BLFT_GDQUOT_BUF:
123887e8 2180#ifdef CONFIG_XFS_QUOTA
d75afeb3 2181 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2182 xfs_warn(mp, "Bad DQUOT block magic!");
2183 ASSERT(0);
2184 break;
2185 }
2186 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2187#else
2188 xfs_alert(mp,
2189 "Trying to recover dquots without QUOTA support built in!");
2190 ASSERT(0);
2191#endif
3fe58f30 2192 break;
61fe135c 2193 case XFS_BLFT_DINO_BUF:
93848a99
CH
2194 /*
2195 * we get here with inode allocation buffers, not buffers that
2196 * track unlinked list changes.
2197 */
d75afeb3 2198 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2199 xfs_warn(mp, "Bad INODE block magic!");
2200 ASSERT(0);
2201 break;
2202 }
2203 bp->b_ops = &xfs_inode_buf_ops;
2204 break;
61fe135c 2205 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2206 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2207 xfs_warn(mp, "Bad symlink block magic!");
2208 ASSERT(0);
2209 break;
2210 }
2211 bp->b_ops = &xfs_symlink_buf_ops;
2212 break;
61fe135c 2213 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2214 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2215 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2216 xfs_warn(mp, "Bad dir block magic!");
2217 ASSERT(0);
2218 break;
2219 }
2220 bp->b_ops = &xfs_dir3_block_buf_ops;
2221 break;
61fe135c 2222 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2223 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2224 magic32 != XFS_DIR3_DATA_MAGIC) {
2225 xfs_warn(mp, "Bad dir data magic!");
2226 ASSERT(0);
2227 break;
2228 }
2229 bp->b_ops = &xfs_dir3_data_buf_ops;
2230 break;
61fe135c 2231 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2232 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2233 magic32 != XFS_DIR3_FREE_MAGIC) {
2234 xfs_warn(mp, "Bad dir3 free magic!");
2235 ASSERT(0);
2236 break;
2237 }
2238 bp->b_ops = &xfs_dir3_free_buf_ops;
2239 break;
61fe135c 2240 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2241 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2242 magicda != XFS_DIR3_LEAF1_MAGIC) {
2243 xfs_warn(mp, "Bad dir leaf1 magic!");
2244 ASSERT(0);
2245 break;
2246 }
2247 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2248 break;
61fe135c 2249 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2250 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2251 magicda != XFS_DIR3_LEAFN_MAGIC) {
2252 xfs_warn(mp, "Bad dir leafn magic!");
2253 ASSERT(0);
2254 break;
2255 }
2256 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2257 break;
61fe135c 2258 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2259 if (magicda != XFS_DA_NODE_MAGIC &&
2260 magicda != XFS_DA3_NODE_MAGIC) {
2261 xfs_warn(mp, "Bad da node magic!");
2262 ASSERT(0);
2263 break;
2264 }
2265 bp->b_ops = &xfs_da3_node_buf_ops;
2266 break;
61fe135c 2267 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2268 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2269 magicda != XFS_ATTR3_LEAF_MAGIC) {
2270 xfs_warn(mp, "Bad attr leaf magic!");
2271 ASSERT(0);
2272 break;
2273 }
2274 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2275 break;
61fe135c 2276 case XFS_BLFT_ATTR_RMT_BUF:
d75afeb3
DC
2277 if (!xfs_sb_version_hascrc(&mp->m_sb))
2278 break;
cab09a81 2279 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2280 xfs_warn(mp, "Bad attr remote magic!");
2281 ASSERT(0);
2282 break;
2283 }
2284 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2285 break;
04a1e6c5
DC
2286 case XFS_BLFT_SB_BUF:
2287 if (magic32 != XFS_SB_MAGIC) {
2288 xfs_warn(mp, "Bad SB block magic!");
2289 ASSERT(0);
2290 break;
2291 }
2292 bp->b_ops = &xfs_sb_buf_ops;
2293 break;
ee1a47ab 2294 default:
61fe135c
DC
2295 xfs_warn(mp, "Unknown buffer type %d!",
2296 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2297 break;
2298 }
1da177e4
LT
2299}
2300
d75afeb3
DC
2301/*
2302 * Perform a 'normal' buffer recovery. Each logged region of the
2303 * buffer should be copied over the corresponding region in the
2304 * given buffer. The bitmap in the buf log format structure indicates
2305 * where to place the logged data.
2306 */
2307STATIC void
2308xlog_recover_do_reg_buffer(
2309 struct xfs_mount *mp,
2310 xlog_recover_item_t *item,
2311 struct xfs_buf *bp,
2312 xfs_buf_log_format_t *buf_f)
2313{
2314 int i;
2315 int bit;
2316 int nbits;
2317 int error;
2318
2319 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2320
2321 bit = 0;
2322 i = 1; /* 0 is the buf format structure */
2323 while (1) {
2324 bit = xfs_next_bit(buf_f->blf_data_map,
2325 buf_f->blf_map_size, bit);
2326 if (bit == -1)
2327 break;
2328 nbits = xfs_contig_bits(buf_f->blf_data_map,
2329 buf_f->blf_map_size, bit);
2330 ASSERT(nbits > 0);
2331 ASSERT(item->ri_buf[i].i_addr != NULL);
2332 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2333 ASSERT(BBTOB(bp->b_io_length) >=
2334 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2335
709da6a6
DC
2336 /*
2337 * The dirty regions logged in the buffer, even though
2338 * contiguous, may span multiple chunks. This is because the
2339 * dirty region may span a physical page boundary in a buffer
2340 * and hence be split into two separate vectors for writing into
2341 * the log. Hence we need to trim nbits back to the length of
2342 * the current region being copied out of the log.
2343 */
2344 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2345 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2346
d75afeb3
DC
2347 /*
2348 * Do a sanity check if this is a dquot buffer. Just checking
2349 * the first dquot in the buffer should do. XXXThis is
2350 * probably a good thing to do for other buf types also.
2351 */
2352 error = 0;
2353 if (buf_f->blf_flags &
2354 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2355 if (item->ri_buf[i].i_addr == NULL) {
2356 xfs_alert(mp,
2357 "XFS: NULL dquot in %s.", __func__);
2358 goto next;
2359 }
2360 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2361 xfs_alert(mp,
2362 "XFS: dquot too small (%d) in %s.",
2363 item->ri_buf[i].i_len, __func__);
2364 goto next;
2365 }
2366 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2367 -1, 0, XFS_QMOPT_DOWARN,
2368 "dquot_buf_recover");
2369 if (error)
2370 goto next;
2371 }
2372
2373 memcpy(xfs_buf_offset(bp,
2374 (uint)bit << XFS_BLF_SHIFT), /* dest */
2375 item->ri_buf[i].i_addr, /* source */
2376 nbits<<XFS_BLF_SHIFT); /* length */
2377 next:
2378 i++;
2379 bit += nbits;
2380 }
2381
2382 /* Shouldn't be any more regions */
2383 ASSERT(i == item->ri_total);
2384
9222a9cf
DC
2385 /*
2386 * We can only do post recovery validation on items on CRC enabled
2387 * fielsystems as we need to know when the buffer was written to be able
2388 * to determine if we should have replayed the item. If we replay old
2389 * metadata over a newer buffer, then it will enter a temporarily
2390 * inconsistent state resulting in verification failures. Hence for now
2391 * just avoid the verification stage for non-crc filesystems
2392 */
2393 if (xfs_sb_version_hascrc(&mp->m_sb))
50d5c8d8 2394 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2395}
2396
1da177e4
LT
2397/*
2398 * Do some primitive error checking on ondisk dquot data structures.
2399 */
2400int
2401xfs_qm_dqcheck(
a0fa2b67 2402 struct xfs_mount *mp,
1da177e4
LT
2403 xfs_disk_dquot_t *ddq,
2404 xfs_dqid_t id,
2405 uint type, /* used only when IO_dorepair is true */
2406 uint flags,
2407 char *str)
2408{
2409 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2410 int errs = 0;
2411
2412 /*
2413 * We can encounter an uninitialized dquot buffer for 2 reasons:
2414 * 1. If we crash while deleting the quotainode(s), and those blks got
2415 * used for user data. This is because we take the path of regular
2416 * file deletion; however, the size field of quotainodes is never
2417 * updated, so all the tricks that we play in itruncate_finish
2418 * don't quite matter.
2419 *
2420 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2421 * But the allocation will be replayed so we'll end up with an
2422 * uninitialized quota block.
2423 *
2424 * This is all fine; things are still consistent, and we haven't lost
2425 * any quota information. Just don't complain about bad dquot blks.
2426 */
69ef921b 2427 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 2428 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2429 xfs_alert(mp,
1da177e4 2430 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2431 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2432 errs++;
2433 }
1149d96a 2434 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 2435 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2436 xfs_alert(mp,
1da177e4 2437 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2438 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2439 errs++;
2440 }
2441
1149d96a
CH
2442 if (ddq->d_flags != XFS_DQ_USER &&
2443 ddq->d_flags != XFS_DQ_PROJ &&
2444 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 2445 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2446 xfs_alert(mp,
1da177e4 2447 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2448 str, id, ddq->d_flags);
1da177e4
LT
2449 errs++;
2450 }
2451
1149d96a 2452 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 2453 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2454 xfs_alert(mp,
1da177e4
LT
2455 "%s : ondisk-dquot 0x%p, ID mismatch: "
2456 "0x%x expected, found id 0x%x",
1149d96a 2457 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2458 errs++;
2459 }
2460
2461 if (!errs && ddq->d_id) {
1149d96a 2462 if (ddq->d_blk_softlimit &&
d0a3fe67 2463 be64_to_cpu(ddq->d_bcount) >
1149d96a 2464 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2465 if (!ddq->d_btimer) {
2466 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2467 xfs_alert(mp,
2468 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 2469 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2470 errs++;
2471 }
2472 }
1149d96a 2473 if (ddq->d_ino_softlimit &&
d0a3fe67 2474 be64_to_cpu(ddq->d_icount) >
1149d96a 2475 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2476 if (!ddq->d_itimer) {
2477 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2478 xfs_alert(mp,
2479 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2480 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2481 errs++;
2482 }
2483 }
1149d96a 2484 if (ddq->d_rtb_softlimit &&
d0a3fe67 2485 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2486 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2487 if (!ddq->d_rtbtimer) {
2488 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2489 xfs_alert(mp,
2490 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2491 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2492 errs++;
2493 }
2494 }
2495 }
2496
2497 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2498 return errs;
2499
2500 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2501 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2502
2503 /*
2504 * Typically, a repair is only requested by quotacheck.
2505 */
2506 ASSERT(id != -1);
2507 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2508 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2509
2510 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2511 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2512 d->dd_diskdq.d_flags = type;
2513 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4 2514
6fcdc59d
DC
2515 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2516 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2517 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2518 XFS_DQUOT_CRC_OFF);
2519 }
2520
1da177e4
LT
2521 return errs;
2522}
2523
2524/*
2525 * Perform a dquot buffer recovery.
8ba701ee 2526 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2527 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2528 * Else, treat it as a regular buffer and do recovery.
2529 */
2530STATIC void
2531xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2532 struct xfs_mount *mp,
2533 struct xlog *log,
2534 struct xlog_recover_item *item,
2535 struct xfs_buf *bp,
2536 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2537{
2538 uint type;
2539
9abbc539
DC
2540 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2541
1da177e4
LT
2542 /*
2543 * Filesystems are required to send in quota flags at mount time.
2544 */
2545 if (mp->m_qflags == 0) {
2546 return;
2547 }
2548
2549 type = 0;
c1155410 2550 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2551 type |= XFS_DQ_USER;
c1155410 2552 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2553 type |= XFS_DQ_PROJ;
c1155410 2554 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2555 type |= XFS_DQ_GROUP;
2556 /*
2557 * This type of quotas was turned off, so ignore this buffer
2558 */
2559 if (log->l_quotaoffs_flag & type)
2560 return;
2561
9abbc539 2562 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2563}
2564
2565/*
2566 * This routine replays a modification made to a buffer at runtime.
2567 * There are actually two types of buffer, regular and inode, which
2568 * are handled differently. Inode buffers are handled differently
2569 * in that we only recover a specific set of data from them, namely
2570 * the inode di_next_unlinked fields. This is because all other inode
2571 * data is actually logged via inode records and any data we replay
2572 * here which overlaps that may be stale.
2573 *
2574 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2575 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2576 * of the buffer in the log should not be replayed at recovery time.
2577 * This is so that if the blocks covered by the buffer are reused for
2578 * file data before we crash we don't end up replaying old, freed
2579 * meta-data into a user's file.
2580 *
2581 * To handle the cancellation of buffer log items, we make two passes
2582 * over the log during recovery. During the first we build a table of
2583 * those buffers which have been cancelled, and during the second we
2584 * only replay those buffers which do not have corresponding cancel
34be5ff3 2585 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2586 * for more details on the implementation of the table of cancel records.
2587 */
2588STATIC int
c9f71f5f 2589xlog_recover_buffer_pass2(
9a8d2fdb
MT
2590 struct xlog *log,
2591 struct list_head *buffer_list,
50d5c8d8
DC
2592 struct xlog_recover_item *item,
2593 xfs_lsn_t current_lsn)
1da177e4 2594{
4e0d5f92 2595 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2596 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2597 xfs_buf_t *bp;
2598 int error;
6ad112bf 2599 uint buf_flags;
50d5c8d8 2600 xfs_lsn_t lsn;
1da177e4 2601
c9f71f5f
CH
2602 /*
2603 * In this pass we only want to recover all the buffers which have
2604 * not been cancelled and are not cancellation buffers themselves.
2605 */
2606 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2607 buf_f->blf_len, buf_f->blf_flags)) {
2608 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2609 return 0;
1da177e4 2610 }
c9f71f5f 2611
9abbc539 2612 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2613
a8acad70 2614 buf_flags = 0;
611c9946
DC
2615 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2616 buf_flags |= XBF_UNMAPPED;
6ad112bf 2617
e2714bf8 2618 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2619 buf_flags, NULL);
ac4d6888
CS
2620 if (!bp)
2621 return XFS_ERROR(ENOMEM);
e5702805 2622 error = bp->b_error;
5a52c2a5 2623 if (error) {
901796af 2624 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2625 goto out_release;
1da177e4
LT
2626 }
2627
50d5c8d8
DC
2628 /*
2629 * recover the buffer only if we get an LSN from it and it's less than
2630 * the lsn of the transaction we are replaying.
2631 */
2632 lsn = xlog_recover_get_buf_lsn(mp, bp);
2633 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2634 goto out_release;
2635
e2714bf8 2636 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2637 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2638 } else if (buf_f->blf_flags &
c1155410 2639 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2640 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2641 } else {
9abbc539 2642 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2643 }
2644 if (error)
50d5c8d8 2645 goto out_release;
1da177e4
LT
2646
2647 /*
2648 * Perform delayed write on the buffer. Asynchronous writes will be
2649 * slower when taking into account all the buffers to be flushed.
2650 *
2651 * Also make sure that only inode buffers with good sizes stay in
2652 * the buffer cache. The kernel moves inodes in buffers of 1 block
2653 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2654 * buffers in the log can be a different size if the log was generated
2655 * by an older kernel using unclustered inode buffers or a newer kernel
2656 * running with a different inode cluster size. Regardless, if the
2657 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2658 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2659 * the buffer out of the buffer cache so that the buffer won't
2660 * overlap with future reads of those inodes.
2661 */
2662 if (XFS_DINODE_MAGIC ==
b53e675d 2663 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2664 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
1da177e4 2665 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2666 xfs_buf_stale(bp);
c2b006c1 2667 error = xfs_bwrite(bp);
1da177e4 2668 } else {
ebad861b 2669 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2670 bp->b_iodone = xlog_recover_iodone;
43ff2122 2671 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2672 }
2673
50d5c8d8 2674out_release:
c2b006c1
CH
2675 xfs_buf_relse(bp);
2676 return error;
1da177e4
LT
2677}
2678
638f4416
DC
2679/*
2680 * Inode fork owner changes
2681 *
2682 * If we have been told that we have to reparent the inode fork, it's because an
2683 * extent swap operation on a CRC enabled filesystem has been done and we are
2684 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2685 * owners of it.
2686 *
2687 * The complexity here is that we don't have an inode context to work with, so
2688 * after we've replayed the inode we need to instantiate one. This is where the
2689 * fun begins.
2690 *
2691 * We are in the middle of log recovery, so we can't run transactions. That
2692 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2693 * that will result in the corresponding iput() running the inode through
2694 * xfs_inactive(). If we've just replayed an inode core that changes the link
2695 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2696 * transactions (bad!).
2697 *
2698 * So, to avoid this, we instantiate an inode directly from the inode core we've
2699 * just recovered. We have the buffer still locked, and all we really need to
2700 * instantiate is the inode core and the forks being modified. We can do this
2701 * manually, then run the inode btree owner change, and then tear down the
2702 * xfs_inode without having to run any transactions at all.
2703 *
2704 * Also, because we don't have a transaction context available here but need to
2705 * gather all the buffers we modify for writeback so we pass the buffer_list
2706 * instead for the operation to use.
2707 */
2708
2709STATIC int
2710xfs_recover_inode_owner_change(
2711 struct xfs_mount *mp,
2712 struct xfs_dinode *dip,
2713 struct xfs_inode_log_format *in_f,
2714 struct list_head *buffer_list)
2715{
2716 struct xfs_inode *ip;
2717 int error;
2718
2719 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2720
2721 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2722 if (!ip)
2723 return ENOMEM;
2724
2725 /* instantiate the inode */
2726 xfs_dinode_from_disk(&ip->i_d, dip);
2727 ASSERT(ip->i_d.di_version >= 3);
2728
2729 error = xfs_iformat_fork(ip, dip);
2730 if (error)
2731 goto out_free_ip;
2732
2733
2734 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2735 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2736 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2737 ip->i_ino, buffer_list);
2738 if (error)
2739 goto out_free_ip;
2740 }
2741
2742 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2743 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2744 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2745 ip->i_ino, buffer_list);
2746 if (error)
2747 goto out_free_ip;
2748 }
2749
2750out_free_ip:
2751 xfs_inode_free(ip);
2752 return error;
2753}
2754
1da177e4 2755STATIC int
c9f71f5f 2756xlog_recover_inode_pass2(
9a8d2fdb
MT
2757 struct xlog *log,
2758 struct list_head *buffer_list,
50d5c8d8
DC
2759 struct xlog_recover_item *item,
2760 xfs_lsn_t current_lsn)
1da177e4
LT
2761{
2762 xfs_inode_log_format_t *in_f;
c9f71f5f 2763 xfs_mount_t *mp = log->l_mp;
1da177e4 2764 xfs_buf_t *bp;
1da177e4 2765 xfs_dinode_t *dip;
1da177e4
LT
2766 int len;
2767 xfs_caddr_t src;
2768 xfs_caddr_t dest;
2769 int error;
2770 int attr_index;
2771 uint fields;
347d1c01 2772 xfs_icdinode_t *dicp;
93848a99 2773 uint isize;
6d192a9b 2774 int need_free = 0;
1da177e4 2775
6d192a9b 2776 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2777 in_f = item->ri_buf[0].i_addr;
6d192a9b 2778 } else {
4e0d5f92 2779 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2780 need_free = 1;
2781 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2782 if (error)
2783 goto error;
2784 }
1da177e4
LT
2785
2786 /*
2787 * Inode buffers can be freed, look out for it,
2788 * and do not replay the inode.
2789 */
a1941895
CH
2790 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2791 in_f->ilf_len, 0)) {
6d192a9b 2792 error = 0;
9abbc539 2793 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2794 goto error;
2795 }
9abbc539 2796 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2797
c3f8fc73 2798 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2799 &xfs_inode_buf_ops);
ac4d6888
CS
2800 if (!bp) {
2801 error = ENOMEM;
2802 goto error;
2803 }
e5702805 2804 error = bp->b_error;
5a52c2a5 2805 if (error) {
901796af 2806 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2807 goto out_release;
1da177e4 2808 }
1da177e4 2809 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2810 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2811
2812 /*
2813 * Make sure the place we're flushing out to really looks
2814 * like an inode!
2815 */
69ef921b 2816 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2817 xfs_alert(mp,
2818 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2819 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2820 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2821 XFS_ERRLEVEL_LOW, mp);
6d192a9b 2822 error = EFSCORRUPTED;
638f4416 2823 goto out_release;
1da177e4 2824 }
4e0d5f92 2825 dicp = item->ri_buf[1].i_addr;
1da177e4 2826 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2827 xfs_alert(mp,
2828 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2829 __func__, item, in_f->ilf_ino);
c9f71f5f 2830 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2831 XFS_ERRLEVEL_LOW, mp);
6d192a9b 2832 error = EFSCORRUPTED;
638f4416 2833 goto out_release;
1da177e4
LT
2834 }
2835
50d5c8d8
DC
2836 /*
2837 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2838 * than the lsn of the transaction we are replaying. Note: we still
2839 * need to replay an owner change even though the inode is more recent
2840 * than the transaction as there is no guarantee that all the btree
2841 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2842 */
2843 if (dip->di_version >= 3) {
2844 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2845
2846 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2847 trace_xfs_log_recover_inode_skip(log, in_f);
2848 error = 0;
638f4416 2849 goto out_owner_change;
50d5c8d8
DC
2850 }
2851 }
2852
e60896d8
DC
2853 /*
2854 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2855 * are transactional and if ordering is necessary we can determine that
2856 * more accurately by the LSN field in the V3 inode core. Don't trust
2857 * the inode versions we might be changing them here - use the
2858 * superblock flag to determine whether we need to look at di_flushiter
2859 * to skip replay when the on disk inode is newer than the log one
2860 */
2861 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2862 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2863 /*
2864 * Deal with the wrap case, DI_MAX_FLUSH is less
2865 * than smaller numbers
2866 */
81591fe2 2867 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2868 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2869 /* do nothing */
2870 } else {
9abbc539 2871 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 2872 error = 0;
638f4416 2873 goto out_release;
1da177e4
LT
2874 }
2875 }
e60896d8 2876
1da177e4
LT
2877 /* Take the opportunity to reset the flush iteration count */
2878 dicp->di_flushiter = 0;
2879
abbede1b 2880 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2881 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2882 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2883 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4 2884 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2885 xfs_alert(mp,
2886 "%s: Bad regular inode log record, rec ptr 0x%p, "
2887 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2888 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b 2889 error = EFSCORRUPTED;
638f4416 2890 goto out_release;
1da177e4 2891 }
abbede1b 2892 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2893 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2894 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2895 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2896 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4 2897 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2898 xfs_alert(mp,
2899 "%s: Bad dir inode log record, rec ptr 0x%p, "
2900 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2901 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b 2902 error = EFSCORRUPTED;
638f4416 2903 goto out_release;
1da177e4
LT
2904 }
2905 }
2906 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2907 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4 2908 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2909 xfs_alert(mp,
2910 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2911 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2912 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2913 dicp->di_nextents + dicp->di_anextents,
2914 dicp->di_nblocks);
6d192a9b 2915 error = EFSCORRUPTED;
638f4416 2916 goto out_release;
1da177e4
LT
2917 }
2918 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2919 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4 2920 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2921 xfs_alert(mp,
2922 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2923 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2924 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b 2925 error = EFSCORRUPTED;
638f4416 2926 goto out_release;
1da177e4 2927 }
93848a99
CH
2928 isize = xfs_icdinode_size(dicp->di_version);
2929 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2930 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4 2931 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2932 xfs_alert(mp,
2933 "%s: Bad inode log record length %d, rec ptr 0x%p",
2934 __func__, item->ri_buf[1].i_len, item);
6d192a9b 2935 error = EFSCORRUPTED;
638f4416 2936 goto out_release;
1da177e4
LT
2937 }
2938
2939 /* The core is in in-core format */
93848a99 2940 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2941
2942 /* the rest is in on-disk format */
93848a99
CH
2943 if (item->ri_buf[1].i_len > isize) {
2944 memcpy((char *)dip + isize,
2945 item->ri_buf[1].i_addr + isize,
2946 item->ri_buf[1].i_len - isize);
1da177e4
LT
2947 }
2948
2949 fields = in_f->ilf_fields;
2950 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2951 case XFS_ILOG_DEV:
81591fe2 2952 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2953 break;
2954 case XFS_ILOG_UUID:
81591fe2
CH
2955 memcpy(XFS_DFORK_DPTR(dip),
2956 &in_f->ilf_u.ilfu_uuid,
2957 sizeof(uuid_t));
1da177e4
LT
2958 break;
2959 }
2960
2961 if (in_f->ilf_size == 2)
638f4416 2962 goto out_owner_change;
1da177e4
LT
2963 len = item->ri_buf[2].i_len;
2964 src = item->ri_buf[2].i_addr;
2965 ASSERT(in_f->ilf_size <= 4);
2966 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2967 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2968 (len == in_f->ilf_dsize));
2969
2970 switch (fields & XFS_ILOG_DFORK) {
2971 case XFS_ILOG_DDATA:
2972 case XFS_ILOG_DEXT:
81591fe2 2973 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2974 break;
2975
2976 case XFS_ILOG_DBROOT:
7cc95a82 2977 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2978 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2979 XFS_DFORK_DSIZE(dip, mp));
2980 break;
2981
2982 default:
2983 /*
2984 * There are no data fork flags set.
2985 */
2986 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2987 break;
2988 }
2989
2990 /*
2991 * If we logged any attribute data, recover it. There may or
2992 * may not have been any other non-core data logged in this
2993 * transaction.
2994 */
2995 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2996 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2997 attr_index = 3;
2998 } else {
2999 attr_index = 2;
3000 }
3001 len = item->ri_buf[attr_index].i_len;
3002 src = item->ri_buf[attr_index].i_addr;
3003 ASSERT(len == in_f->ilf_asize);
3004
3005 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3006 case XFS_ILOG_ADATA:
3007 case XFS_ILOG_AEXT:
3008 dest = XFS_DFORK_APTR(dip);
3009 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3010 memcpy(dest, src, len);
3011 break;
3012
3013 case XFS_ILOG_ABROOT:
3014 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
3015 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3016 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
3017 XFS_DFORK_ASIZE(dip, mp));
3018 break;
3019
3020 default:
a0fa2b67 3021 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 3022 ASSERT(0);
6d192a9b 3023 error = EIO;
638f4416 3024 goto out_release;
1da177e4
LT
3025 }
3026 }
3027
638f4416
DC
3028out_owner_change:
3029 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3030 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3031 buffer_list);
93848a99
CH
3032 /* re-generate the checksum. */
3033 xfs_dinode_calc_crc(log->l_mp, dip);
3034
ebad861b 3035 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3036 bp->b_iodone = xlog_recover_iodone;
43ff2122 3037 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
3038
3039out_release:
61551f1e 3040 xfs_buf_relse(bp);
6d192a9b
TS
3041error:
3042 if (need_free)
f0e2d93c 3043 kmem_free(in_f);
6d192a9b 3044 return XFS_ERROR(error);
1da177e4
LT
3045}
3046
3047/*
9a8d2fdb 3048 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
3049 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3050 * of that type.
3051 */
3052STATIC int
c9f71f5f 3053xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
3054 struct xlog *log,
3055 struct xlog_recover_item *item)
1da177e4 3056{
c9f71f5f 3057 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
3058 ASSERT(qoff_f);
3059
3060 /*
3061 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 3062 * group/project quotaoff or both.
1da177e4
LT
3063 */
3064 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3065 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
3066 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3067 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
3068 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3069 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3070
3071 return (0);
3072}
3073
3074/*
3075 * Recover a dquot record
3076 */
3077STATIC int
c9f71f5f 3078xlog_recover_dquot_pass2(
9a8d2fdb
MT
3079 struct xlog *log,
3080 struct list_head *buffer_list,
50d5c8d8
DC
3081 struct xlog_recover_item *item,
3082 xfs_lsn_t current_lsn)
1da177e4 3083{
c9f71f5f 3084 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3085 xfs_buf_t *bp;
3086 struct xfs_disk_dquot *ddq, *recddq;
3087 int error;
3088 xfs_dq_logformat_t *dq_f;
3089 uint type;
3090
1da177e4
LT
3091
3092 /*
3093 * Filesystems are required to send in quota flags at mount time.
3094 */
3095 if (mp->m_qflags == 0)
3096 return (0);
3097
4e0d5f92
CH
3098 recddq = item->ri_buf[1].i_addr;
3099 if (recddq == NULL) {
a0fa2b67 3100 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
3101 return XFS_ERROR(EIO);
3102 }
8ec6dba2 3103 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 3104 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
3105 item->ri_buf[1].i_len, __func__);
3106 return XFS_ERROR(EIO);
3107 }
3108
1da177e4
LT
3109 /*
3110 * This type of quotas was turned off, so ignore this record.
3111 */
b53e675d 3112 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
3113 ASSERT(type);
3114 if (log->l_quotaoffs_flag & type)
3115 return (0);
3116
3117 /*
3118 * At this point we know that quota was _not_ turned off.
3119 * Since the mount flags are not indicating to us otherwise, this
3120 * must mean that quota is on, and the dquot needs to be replayed.
3121 * Remember that we may not have fully recovered the superblock yet,
3122 * so we can't do the usual trick of looking at the SB quota bits.
3123 *
3124 * The other possibility, of course, is that the quota subsystem was
3125 * removed since the last mount - ENOSYS.
3126 */
4e0d5f92 3127 dq_f = item->ri_buf[0].i_addr;
1da177e4 3128 ASSERT(dq_f);
a0fa2b67
DC
3129 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3130 "xlog_recover_dquot_pass2 (log copy)");
3131 if (error)
1da177e4 3132 return XFS_ERROR(EIO);
1da177e4
LT
3133 ASSERT(dq_f->qlf_len == 1);
3134
7ca790a5 3135 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73
DC
3136 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3137 NULL);
7ca790a5 3138 if (error)
1da177e4 3139 return error;
7ca790a5 3140
1da177e4
LT
3141 ASSERT(bp);
3142 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3143
3144 /*
3145 * At least the magic num portion should be on disk because this
3146 * was among a chunk of dquots created earlier, and we did some
3147 * minimal initialization then.
3148 */
a0fa2b67
DC
3149 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3150 "xlog_recover_dquot_pass2");
3151 if (error) {
1da177e4
LT
3152 xfs_buf_relse(bp);
3153 return XFS_ERROR(EIO);
3154 }
3155
50d5c8d8
DC
3156 /*
3157 * If the dquot has an LSN in it, recover the dquot only if it's less
3158 * than the lsn of the transaction we are replaying.
3159 */
3160 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3161 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3162 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3163
3164 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3165 goto out_release;
3166 }
3167 }
3168
1da177e4 3169 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3170 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3171 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3172 XFS_DQUOT_CRC_OFF);
3173 }
1da177e4
LT
3174
3175 ASSERT(dq_f->qlf_size == 2);
ebad861b 3176 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3177 bp->b_iodone = xlog_recover_iodone;
43ff2122 3178 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3179
50d5c8d8
DC
3180out_release:
3181 xfs_buf_relse(bp);
3182 return 0;
1da177e4
LT
3183}
3184
3185/*
3186 * This routine is called to create an in-core extent free intent
3187 * item from the efi format structure which was logged on disk.
3188 * It allocates an in-core efi, copies the extents from the format
3189 * structure into it, and adds the efi to the AIL with the given
3190 * LSN.
3191 */
6d192a9b 3192STATIC int
c9f71f5f 3193xlog_recover_efi_pass2(
9a8d2fdb
MT
3194 struct xlog *log,
3195 struct xlog_recover_item *item,
3196 xfs_lsn_t lsn)
1da177e4 3197{
6d192a9b 3198 int error;
c9f71f5f 3199 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3200 xfs_efi_log_item_t *efip;
3201 xfs_efi_log_format_t *efi_formatp;
1da177e4 3202
4e0d5f92 3203 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3204
1da177e4 3205 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
3206 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3207 &(efip->efi_format)))) {
3208 xfs_efi_item_free(efip);
3209 return error;
3210 }
b199c8a4 3211 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3212
a9c21c1b 3213 spin_lock(&log->l_ailp->xa_lock);
1da177e4 3214 /*
783a2f65 3215 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 3216 */
e6059949 3217 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 3218 return 0;
1da177e4
LT
3219}
3220
3221
3222/*
3223 * This routine is called when an efd format structure is found in
3224 * a committed transaction in the log. It's purpose is to cancel
3225 * the corresponding efi if it was still in the log. To do this
3226 * it searches the AIL for the efi with an id equal to that in the
3227 * efd format structure. If we find it, we remove the efi from the
3228 * AIL and free it.
3229 */
c9f71f5f
CH
3230STATIC int
3231xlog_recover_efd_pass2(
9a8d2fdb
MT
3232 struct xlog *log,
3233 struct xlog_recover_item *item)
1da177e4 3234{
1da177e4
LT
3235 xfs_efd_log_format_t *efd_formatp;
3236 xfs_efi_log_item_t *efip = NULL;
3237 xfs_log_item_t *lip;
1da177e4 3238 __uint64_t efi_id;
27d8d5fe 3239 struct xfs_ail_cursor cur;
783a2f65 3240 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3241
4e0d5f92 3242 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3243 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3244 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3245 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3246 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3247 efi_id = efd_formatp->efd_efi_id;
3248
3249 /*
3250 * Search for the efi with the id in the efd format structure
3251 * in the AIL.
3252 */
a9c21c1b
DC
3253 spin_lock(&ailp->xa_lock);
3254 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3255 while (lip != NULL) {
3256 if (lip->li_type == XFS_LI_EFI) {
3257 efip = (xfs_efi_log_item_t *)lip;
3258 if (efip->efi_format.efi_id == efi_id) {
3259 /*
783a2f65 3260 * xfs_trans_ail_delete() drops the
1da177e4
LT
3261 * AIL lock.
3262 */
04913fdd
DC
3263 xfs_trans_ail_delete(ailp, lip,
3264 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 3265 xfs_efi_item_free(efip);
a9c21c1b 3266 spin_lock(&ailp->xa_lock);
27d8d5fe 3267 break;
1da177e4
LT
3268 }
3269 }
a9c21c1b 3270 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3271 }
a9c21c1b
DC
3272 xfs_trans_ail_cursor_done(ailp, &cur);
3273 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3274
3275 return 0;
1da177e4
LT
3276}
3277
28c8e41a
DC
3278/*
3279 * This routine is called when an inode create format structure is found in a
3280 * committed transaction in the log. It's purpose is to initialise the inodes
3281 * being allocated on disk. This requires us to get inode cluster buffers that
3282 * match the range to be intialised, stamped with inode templates and written
3283 * by delayed write so that subsequent modifications will hit the cached buffer
3284 * and only need writing out at the end of recovery.
3285 */
3286STATIC int
3287xlog_recover_do_icreate_pass2(
3288 struct xlog *log,
3289 struct list_head *buffer_list,
3290 xlog_recover_item_t *item)
3291{
3292 struct xfs_mount *mp = log->l_mp;
3293 struct xfs_icreate_log *icl;
3294 xfs_agnumber_t agno;
3295 xfs_agblock_t agbno;
3296 unsigned int count;
3297 unsigned int isize;
3298 xfs_agblock_t length;
3299
3300 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3301 if (icl->icl_type != XFS_LI_ICREATE) {
3302 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3303 return EINVAL;
3304 }
3305
3306 if (icl->icl_size != 1) {
3307 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3308 return EINVAL;
3309 }
3310
3311 agno = be32_to_cpu(icl->icl_ag);
3312 if (agno >= mp->m_sb.sb_agcount) {
3313 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3314 return EINVAL;
3315 }
3316 agbno = be32_to_cpu(icl->icl_agbno);
3317 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3318 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3319 return EINVAL;
3320 }
3321 isize = be32_to_cpu(icl->icl_isize);
3322 if (isize != mp->m_sb.sb_inodesize) {
3323 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3324 return EINVAL;
3325 }
3326 count = be32_to_cpu(icl->icl_count);
3327 if (!count) {
3328 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3329 return EINVAL;
3330 }
3331 length = be32_to_cpu(icl->icl_length);
3332 if (!length || length >= mp->m_sb.sb_agblocks) {
3333 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3334 return EINVAL;
3335 }
3336
3337 /* existing allocation is fixed value */
3338 ASSERT(count == XFS_IALLOC_INODES(mp));
3339 ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3340 if (count != XFS_IALLOC_INODES(mp) ||
3341 length != XFS_IALLOC_BLOCKS(mp)) {
3342 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3343 return EINVAL;
3344 }
3345
3346 /*
3347 * Inode buffers can be freed. Do not replay the inode initialisation as
3348 * we could be overwriting something written after this inode buffer was
3349 * cancelled.
3350 *
3351 * XXX: we need to iterate all buffers and only init those that are not
3352 * cancelled. I think that a more fine grained factoring of
3353 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3354 * done easily.
3355 */
3356 if (xlog_check_buffer_cancelled(log,
3357 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3358 return 0;
3359
3360 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3361 be32_to_cpu(icl->icl_gen));
3362 return 0;
3363}
3364
1da177e4
LT
3365/*
3366 * Free up any resources allocated by the transaction
3367 *
3368 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3369 */
3370STATIC void
3371xlog_recover_free_trans(
d0450948 3372 struct xlog_recover *trans)
1da177e4 3373{
f0a76953 3374 xlog_recover_item_t *item, *n;
1da177e4
LT
3375 int i;
3376
f0a76953
DC
3377 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3378 /* Free the regions in the item. */
3379 list_del(&item->ri_list);
3380 for (i = 0; i < item->ri_cnt; i++)
3381 kmem_free(item->ri_buf[i].i_addr);
1da177e4 3382 /* Free the item itself */
f0a76953
DC
3383 kmem_free(item->ri_buf);
3384 kmem_free(item);
3385 }
1da177e4 3386 /* Free the transaction recover structure */
f0e2d93c 3387 kmem_free(trans);
1da177e4
LT
3388}
3389
00574da1
ZYW
3390STATIC void
3391xlog_recover_buffer_ra_pass2(
3392 struct xlog *log,
3393 struct xlog_recover_item *item)
3394{
3395 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3396 struct xfs_mount *mp = log->l_mp;
3397
84a5b730 3398 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3399 buf_f->blf_len, buf_f->blf_flags)) {
3400 return;
3401 }
3402
3403 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3404 buf_f->blf_len, NULL);
3405}
3406
3407STATIC void
3408xlog_recover_inode_ra_pass2(
3409 struct xlog *log,
3410 struct xlog_recover_item *item)
3411{
3412 struct xfs_inode_log_format ilf_buf;
3413 struct xfs_inode_log_format *ilfp;
3414 struct xfs_mount *mp = log->l_mp;
3415 int error;
3416
3417 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3418 ilfp = item->ri_buf[0].i_addr;
3419 } else {
3420 ilfp = &ilf_buf;
3421 memset(ilfp, 0, sizeof(*ilfp));
3422 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3423 if (error)
3424 return;
3425 }
3426
84a5b730 3427 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3428 return;
3429
3430 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3431 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3432}
3433
3434STATIC void
3435xlog_recover_dquot_ra_pass2(
3436 struct xlog *log,
3437 struct xlog_recover_item *item)
3438{
3439 struct xfs_mount *mp = log->l_mp;
3440 struct xfs_disk_dquot *recddq;
3441 struct xfs_dq_logformat *dq_f;
3442 uint type;
3443
3444
3445 if (mp->m_qflags == 0)
3446 return;
3447
3448 recddq = item->ri_buf[1].i_addr;
3449 if (recddq == NULL)
3450 return;
3451 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3452 return;
3453
3454 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3455 ASSERT(type);
3456 if (log->l_quotaoffs_flag & type)
3457 return;
3458
3459 dq_f = item->ri_buf[0].i_addr;
3460 ASSERT(dq_f);
3461 ASSERT(dq_f->qlf_len == 1);
3462
3463 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
0f0d3345 3464 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
00574da1
ZYW
3465}
3466
3467STATIC void
3468xlog_recover_ra_pass2(
3469 struct xlog *log,
3470 struct xlog_recover_item *item)
3471{
3472 switch (ITEM_TYPE(item)) {
3473 case XFS_LI_BUF:
3474 xlog_recover_buffer_ra_pass2(log, item);
3475 break;
3476 case XFS_LI_INODE:
3477 xlog_recover_inode_ra_pass2(log, item);
3478 break;
3479 case XFS_LI_DQUOT:
3480 xlog_recover_dquot_ra_pass2(log, item);
3481 break;
3482 case XFS_LI_EFI:
3483 case XFS_LI_EFD:
3484 case XFS_LI_QUOTAOFF:
3485 default:
3486 break;
3487 }
3488}
3489
d0450948 3490STATIC int
c9f71f5f 3491xlog_recover_commit_pass1(
ad223e60
MT
3492 struct xlog *log,
3493 struct xlog_recover *trans,
3494 struct xlog_recover_item *item)
d0450948 3495{
c9f71f5f 3496 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3497
3498 switch (ITEM_TYPE(item)) {
3499 case XFS_LI_BUF:
c9f71f5f
CH
3500 return xlog_recover_buffer_pass1(log, item);
3501 case XFS_LI_QUOTAOFF:
3502 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3503 case XFS_LI_INODE:
d0450948 3504 case XFS_LI_EFI:
d0450948 3505 case XFS_LI_EFD:
c9f71f5f 3506 case XFS_LI_DQUOT:
28c8e41a 3507 case XFS_LI_ICREATE:
c9f71f5f 3508 /* nothing to do in pass 1 */
d0450948 3509 return 0;
c9f71f5f 3510 default:
a0fa2b67
DC
3511 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3512 __func__, ITEM_TYPE(item));
c9f71f5f
CH
3513 ASSERT(0);
3514 return XFS_ERROR(EIO);
3515 }
3516}
3517
3518STATIC int
3519xlog_recover_commit_pass2(
ad223e60
MT
3520 struct xlog *log,
3521 struct xlog_recover *trans,
3522 struct list_head *buffer_list,
3523 struct xlog_recover_item *item)
c9f71f5f
CH
3524{
3525 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3526
3527 switch (ITEM_TYPE(item)) {
3528 case XFS_LI_BUF:
50d5c8d8
DC
3529 return xlog_recover_buffer_pass2(log, buffer_list, item,
3530 trans->r_lsn);
c9f71f5f 3531 case XFS_LI_INODE:
50d5c8d8
DC
3532 return xlog_recover_inode_pass2(log, buffer_list, item,
3533 trans->r_lsn);
c9f71f5f
CH
3534 case XFS_LI_EFI:
3535 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3536 case XFS_LI_EFD:
3537 return xlog_recover_efd_pass2(log, item);
d0450948 3538 case XFS_LI_DQUOT:
50d5c8d8
DC
3539 return xlog_recover_dquot_pass2(log, buffer_list, item,
3540 trans->r_lsn);
28c8e41a
DC
3541 case XFS_LI_ICREATE:
3542 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3543 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3544 /* nothing to do in pass2 */
3545 return 0;
d0450948 3546 default:
a0fa2b67
DC
3547 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3548 __func__, ITEM_TYPE(item));
d0450948
CH
3549 ASSERT(0);
3550 return XFS_ERROR(EIO);
3551 }
3552}
3553
00574da1
ZYW
3554STATIC int
3555xlog_recover_items_pass2(
3556 struct xlog *log,
3557 struct xlog_recover *trans,
3558 struct list_head *buffer_list,
3559 struct list_head *item_list)
3560{
3561 struct xlog_recover_item *item;
3562 int error = 0;
3563
3564 list_for_each_entry(item, item_list, ri_list) {
3565 error = xlog_recover_commit_pass2(log, trans,
3566 buffer_list, item);
3567 if (error)
3568 return error;
3569 }
3570
3571 return error;
3572}
3573
d0450948
CH
3574/*
3575 * Perform the transaction.
3576 *
3577 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3578 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3579 */
1da177e4
LT
3580STATIC int
3581xlog_recover_commit_trans(
ad223e60 3582 struct xlog *log,
d0450948 3583 struct xlog_recover *trans,
1da177e4
LT
3584 int pass)
3585{
00574da1
ZYW
3586 int error = 0;
3587 int error2;
3588 int items_queued = 0;
3589 struct xlog_recover_item *item;
3590 struct xlog_recover_item *next;
3591 LIST_HEAD (buffer_list);
3592 LIST_HEAD (ra_list);
3593 LIST_HEAD (done_list);
3594
3595 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3596
f0a76953 3597 hlist_del(&trans->r_list);
d0450948
CH
3598
3599 error = xlog_recover_reorder_trans(log, trans, pass);
3600 if (error)
1da177e4 3601 return error;
d0450948 3602
00574da1 3603 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3604 switch (pass) {
3605 case XLOG_RECOVER_PASS1:
c9f71f5f 3606 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3607 break;
3608 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3609 xlog_recover_ra_pass2(log, item);
3610 list_move_tail(&item->ri_list, &ra_list);
3611 items_queued++;
3612 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3613 error = xlog_recover_items_pass2(log, trans,
3614 &buffer_list, &ra_list);
3615 list_splice_tail_init(&ra_list, &done_list);
3616 items_queued = 0;
3617 }
3618
43ff2122
CH
3619 break;
3620 default:
3621 ASSERT(0);
3622 }
3623
d0450948 3624 if (error)
43ff2122 3625 goto out;
d0450948
CH
3626 }
3627
00574da1
ZYW
3628out:
3629 if (!list_empty(&ra_list)) {
3630 if (!error)
3631 error = xlog_recover_items_pass2(log, trans,
3632 &buffer_list, &ra_list);
3633 list_splice_tail_init(&ra_list, &done_list);
3634 }
3635
3636 if (!list_empty(&done_list))
3637 list_splice_init(&done_list, &trans->r_itemq);
3638
d0450948 3639 xlog_recover_free_trans(trans);
43ff2122 3640
43ff2122
CH
3641 error2 = xfs_buf_delwri_submit(&buffer_list);
3642 return error ? error : error2;
1da177e4
LT
3643}
3644
3645STATIC int
3646xlog_recover_unmount_trans(
ad223e60
MT
3647 struct xlog *log,
3648 struct xlog_recover *trans)
1da177e4
LT
3649{
3650 /* Do nothing now */
a0fa2b67 3651 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
3652 return 0;
3653}
3654
3655/*
3656 * There are two valid states of the r_state field. 0 indicates that the
3657 * transaction structure is in a normal state. We have either seen the
3658 * start of the transaction or the last operation we added was not a partial
3659 * operation. If the last operation we added to the transaction was a
3660 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3661 *
3662 * NOTE: skip LRs with 0 data length.
3663 */
3664STATIC int
3665xlog_recover_process_data(
9a8d2fdb 3666 struct xlog *log,
f0a76953 3667 struct hlist_head rhash[],
9a8d2fdb 3668 struct xlog_rec_header *rhead,
1da177e4
LT
3669 xfs_caddr_t dp,
3670 int pass)
3671{
3672 xfs_caddr_t lp;
3673 int num_logops;
3674 xlog_op_header_t *ohead;
3675 xlog_recover_t *trans;
3676 xlog_tid_t tid;
3677 int error;
3678 unsigned long hash;
3679 uint flags;
3680
b53e675d
CH
3681 lp = dp + be32_to_cpu(rhead->h_len);
3682 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3683
3684 /* check the log format matches our own - else we can't recover */
3685 if (xlog_header_check_recover(log->l_mp, rhead))
3686 return (XFS_ERROR(EIO));
3687
3688 while ((dp < lp) && num_logops) {
3689 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3690 ohead = (xlog_op_header_t *)dp;
3691 dp += sizeof(xlog_op_header_t);
3692 if (ohead->oh_clientid != XFS_TRANSACTION &&
3693 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
3694 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3695 __func__, ohead->oh_clientid);
1da177e4
LT
3696 ASSERT(0);
3697 return (XFS_ERROR(EIO));
3698 }
67fcb7bf 3699 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 3700 hash = XLOG_RHASH(tid);
f0a76953 3701 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
3702 if (trans == NULL) { /* not found; add new tid */
3703 if (ohead->oh_flags & XLOG_START_TRANS)
3704 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 3705 be64_to_cpu(rhead->h_lsn));
1da177e4 3706 } else {
9742bb93 3707 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
3708 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3709 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
3710 WARN_ON(1);
3711 return (XFS_ERROR(EIO));
3712 }
1da177e4
LT
3713 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3714 if (flags & XLOG_WAS_CONT_TRANS)
3715 flags &= ~XLOG_CONTINUE_TRANS;
3716 switch (flags) {
3717 case XLOG_COMMIT_TRANS:
3718 error = xlog_recover_commit_trans(log,
f0a76953 3719 trans, pass);
1da177e4
LT
3720 break;
3721 case XLOG_UNMOUNT_TRANS:
a0fa2b67 3722 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
3723 break;
3724 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
3725 error = xlog_recover_add_to_cont_trans(log,
3726 trans, dp,
3727 be32_to_cpu(ohead->oh_len));
1da177e4
LT
3728 break;
3729 case XLOG_START_TRANS:
a0fa2b67
DC
3730 xfs_warn(log->l_mp, "%s: bad transaction",
3731 __func__);
1da177e4
LT
3732 ASSERT(0);
3733 error = XFS_ERROR(EIO);
3734 break;
3735 case 0:
3736 case XLOG_CONTINUE_TRANS:
9abbc539 3737 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 3738 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
3739 break;
3740 default:
a0fa2b67
DC
3741 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3742 __func__, flags);
1da177e4
LT
3743 ASSERT(0);
3744 error = XFS_ERROR(EIO);
3745 break;
3746 }
3747 if (error)
3748 return error;
3749 }
67fcb7bf 3750 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3751 num_logops--;
3752 }
3753 return 0;
3754}
3755
3756/*
3757 * Process an extent free intent item that was recovered from
3758 * the log. We need to free the extents that it describes.
3759 */
3c1e2bbe 3760STATIC int
1da177e4
LT
3761xlog_recover_process_efi(
3762 xfs_mount_t *mp,
3763 xfs_efi_log_item_t *efip)
3764{
3765 xfs_efd_log_item_t *efdp;
3766 xfs_trans_t *tp;
3767 int i;
3c1e2bbe 3768 int error = 0;
1da177e4
LT
3769 xfs_extent_t *extp;
3770 xfs_fsblock_t startblock_fsb;
3771
b199c8a4 3772 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3773
3774 /*
3775 * First check the validity of the extents described by the
3776 * EFI. If any are bad, then assume that all are bad and
3777 * just toss the EFI.
3778 */
3779 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3780 extp = &(efip->efi_format.efi_extents[i]);
3781 startblock_fsb = XFS_BB_TO_FSB(mp,
3782 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3783 if ((startblock_fsb == 0) ||
3784 (extp->ext_len == 0) ||
3785 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3786 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3787 /*
3788 * This will pull the EFI from the AIL and
3789 * free the memory associated with it.
3790 */
666d644c 3791 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3792 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3793 return XFS_ERROR(EIO);
1da177e4
LT
3794 }
3795 }
3796
3797 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 3798 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
3799 if (error)
3800 goto abort_error;
1da177e4
LT
3801 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3802
3803 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3804 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3805 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3806 if (error)
3807 goto abort_error;
1da177e4
LT
3808 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3809 extp->ext_len);
3810 }
3811
b199c8a4 3812 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3813 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3814 return error;
fc6149d8
DC
3815
3816abort_error:
3817 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3818 return error;
1da177e4
LT
3819}
3820
1da177e4
LT
3821/*
3822 * When this is called, all of the EFIs which did not have
3823 * corresponding EFDs should be in the AIL. What we do now
3824 * is free the extents associated with each one.
3825 *
3826 * Since we process the EFIs in normal transactions, they
3827 * will be removed at some point after the commit. This prevents
3828 * us from just walking down the list processing each one.
3829 * We'll use a flag in the EFI to skip those that we've already
3830 * processed and use the AIL iteration mechanism's generation
3831 * count to try to speed this up at least a bit.
3832 *
3833 * When we start, we know that the EFIs are the only things in
3834 * the AIL. As we process them, however, other items are added
3835 * to the AIL. Since everything added to the AIL must come after
3836 * everything already in the AIL, we stop processing as soon as
3837 * we see something other than an EFI in the AIL.
3838 */
3c1e2bbe 3839STATIC int
1da177e4 3840xlog_recover_process_efis(
9a8d2fdb 3841 struct xlog *log)
1da177e4
LT
3842{
3843 xfs_log_item_t *lip;
3844 xfs_efi_log_item_t *efip;
3c1e2bbe 3845 int error = 0;
27d8d5fe 3846 struct xfs_ail_cursor cur;
a9c21c1b 3847 struct xfs_ail *ailp;
1da177e4 3848
a9c21c1b
DC
3849 ailp = log->l_ailp;
3850 spin_lock(&ailp->xa_lock);
3851 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3852 while (lip != NULL) {
3853 /*
3854 * We're done when we see something other than an EFI.
27d8d5fe 3855 * There should be no EFIs left in the AIL now.
1da177e4
LT
3856 */
3857 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3858#ifdef DEBUG
a9c21c1b 3859 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3860 ASSERT(lip->li_type != XFS_LI_EFI);
3861#endif
1da177e4
LT
3862 break;
3863 }
3864
3865 /*
3866 * Skip EFIs that we've already processed.
3867 */
3868 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3869 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3870 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3871 continue;
3872 }
3873
a9c21c1b
DC
3874 spin_unlock(&ailp->xa_lock);
3875 error = xlog_recover_process_efi(log->l_mp, efip);
3876 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3877 if (error)
3878 goto out;
a9c21c1b 3879 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3880 }
27d8d5fe 3881out:
a9c21c1b
DC
3882 xfs_trans_ail_cursor_done(ailp, &cur);
3883 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3884 return error;
1da177e4
LT
3885}
3886
3887/*
3888 * This routine performs a transaction to null out a bad inode pointer
3889 * in an agi unlinked inode hash bucket.
3890 */
3891STATIC void
3892xlog_recover_clear_agi_bucket(
3893 xfs_mount_t *mp,
3894 xfs_agnumber_t agno,
3895 int bucket)
3896{
3897 xfs_trans_t *tp;
3898 xfs_agi_t *agi;
3899 xfs_buf_t *agibp;
3900 int offset;
3901 int error;
3902
3903 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 3904 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
3905 if (error)
3906 goto out_abort;
1da177e4 3907
5e1be0fb
CH
3908 error = xfs_read_agi(mp, tp, agno, &agibp);
3909 if (error)
e5720eec 3910 goto out_abort;
1da177e4 3911
5e1be0fb 3912 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3913 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3914 offset = offsetof(xfs_agi_t, agi_unlinked) +
3915 (sizeof(xfs_agino_t) * bucket);
3916 xfs_trans_log_buf(tp, agibp, offset,
3917 (offset + sizeof(xfs_agino_t) - 1));
3918
e5720eec
DC
3919 error = xfs_trans_commit(tp, 0);
3920 if (error)
3921 goto out_error;
3922 return;
3923
3924out_abort:
3925 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3926out_error:
a0fa2b67 3927 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3928 return;
1da177e4
LT
3929}
3930
23fac50f
CH
3931STATIC xfs_agino_t
3932xlog_recover_process_one_iunlink(
3933 struct xfs_mount *mp,
3934 xfs_agnumber_t agno,
3935 xfs_agino_t agino,
3936 int bucket)
3937{
3938 struct xfs_buf *ibp;
3939 struct xfs_dinode *dip;
3940 struct xfs_inode *ip;
3941 xfs_ino_t ino;
3942 int error;
3943
3944 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3945 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3946 if (error)
3947 goto fail;
3948
3949 /*
3950 * Get the on disk inode to find the next inode in the bucket.
3951 */
475ee413 3952 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3953 if (error)
0e446673 3954 goto fail_iput;
23fac50f 3955
23fac50f 3956 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3957 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3958
3959 /* setup for the next pass */
3960 agino = be32_to_cpu(dip->di_next_unlinked);
3961 xfs_buf_relse(ibp);
3962
3963 /*
3964 * Prevent any DMAPI event from being sent when the reference on
3965 * the inode is dropped.
3966 */
3967 ip->i_d.di_dmevmask = 0;
3968
0e446673 3969 IRELE(ip);
23fac50f
CH
3970 return agino;
3971
0e446673
CH
3972 fail_iput:
3973 IRELE(ip);
23fac50f
CH
3974 fail:
3975 /*
3976 * We can't read in the inode this bucket points to, or this inode
3977 * is messed up. Just ditch this bucket of inodes. We will lose
3978 * some inodes and space, but at least we won't hang.
3979 *
3980 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3981 * clear the inode pointer in the bucket.
3982 */
3983 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3984 return NULLAGINO;
3985}
3986
1da177e4
LT
3987/*
3988 * xlog_iunlink_recover
3989 *
3990 * This is called during recovery to process any inodes which
3991 * we unlinked but not freed when the system crashed. These
3992 * inodes will be on the lists in the AGI blocks. What we do
3993 * here is scan all the AGIs and fully truncate and free any
3994 * inodes found on the lists. Each inode is removed from the
3995 * lists when it has been fully truncated and is freed. The
3996 * freeing of the inode and its removal from the list must be
3997 * atomic.
3998 */
d96f8f89 3999STATIC void
1da177e4 4000xlog_recover_process_iunlinks(
9a8d2fdb 4001 struct xlog *log)
1da177e4
LT
4002{
4003 xfs_mount_t *mp;
4004 xfs_agnumber_t agno;
4005 xfs_agi_t *agi;
4006 xfs_buf_t *agibp;
1da177e4 4007 xfs_agino_t agino;
1da177e4
LT
4008 int bucket;
4009 int error;
4010 uint mp_dmevmask;
4011
4012 mp = log->l_mp;
4013
4014 /*
4015 * Prevent any DMAPI event from being sent while in this function.
4016 */
4017 mp_dmevmask = mp->m_dmevmask;
4018 mp->m_dmevmask = 0;
4019
4020 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4021 /*
4022 * Find the agi for this ag.
4023 */
5e1be0fb
CH
4024 error = xfs_read_agi(mp, NULL, agno, &agibp);
4025 if (error) {
4026 /*
4027 * AGI is b0rked. Don't process it.
4028 *
4029 * We should probably mark the filesystem as corrupt
4030 * after we've recovered all the ag's we can....
4031 */
4032 continue;
1da177e4 4033 }
d97d32ed
JK
4034 /*
4035 * Unlock the buffer so that it can be acquired in the normal
4036 * course of the transaction to truncate and free each inode.
4037 * Because we are not racing with anyone else here for the AGI
4038 * buffer, we don't even need to hold it locked to read the
4039 * initial unlinked bucket entries out of the buffer. We keep
4040 * buffer reference though, so that it stays pinned in memory
4041 * while we need the buffer.
4042 */
1da177e4 4043 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 4044 xfs_buf_unlock(agibp);
1da177e4
LT
4045
4046 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 4047 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 4048 while (agino != NULLAGINO) {
23fac50f
CH
4049 agino = xlog_recover_process_one_iunlink(mp,
4050 agno, agino, bucket);
1da177e4
LT
4051 }
4052 }
d97d32ed 4053 xfs_buf_rele(agibp);
1da177e4
LT
4054 }
4055
4056 mp->m_dmevmask = mp_dmevmask;
4057}
4058
1da177e4 4059/*
0e446be4
CH
4060 * Upack the log buffer data and crc check it. If the check fails, issue a
4061 * warning if and only if the CRC in the header is non-zero. This makes the
4062 * check an advisory warning, and the zero CRC check will prevent failure
4063 * warnings from being emitted when upgrading the kernel from one that does not
4064 * add CRCs by default.
4065 *
4066 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4067 * corruption failure
1da177e4 4068 */
0e446be4
CH
4069STATIC int
4070xlog_unpack_data_crc(
4071 struct xlog_rec_header *rhead,
4072 xfs_caddr_t dp,
4073 struct xlog *log)
1da177e4 4074{
f9668a09 4075 __le32 crc;
0e446be4
CH
4076
4077 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4078 if (crc != rhead->h_crc) {
4079 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4080 xfs_alert(log->l_mp,
08e96e1a 4081 "log record CRC mismatch: found 0x%x, expected 0x%x.",
f9668a09
DC
4082 le32_to_cpu(rhead->h_crc),
4083 le32_to_cpu(crc));
0e446be4 4084 xfs_hex_dump(dp, 32);
1da177e4
LT
4085 }
4086
0e446be4
CH
4087 /*
4088 * If we've detected a log record corruption, then we can't
4089 * recover past this point. Abort recovery if we are enforcing
4090 * CRC protection by punting an error back up the stack.
4091 */
4092 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4093 return EFSCORRUPTED;
1da177e4 4094 }
0e446be4
CH
4095
4096 return 0;
1da177e4
LT
4097}
4098
0e446be4 4099STATIC int
1da177e4 4100xlog_unpack_data(
9a8d2fdb 4101 struct xlog_rec_header *rhead,
1da177e4 4102 xfs_caddr_t dp,
9a8d2fdb 4103 struct xlog *log)
1da177e4
LT
4104{
4105 int i, j, k;
0e446be4
CH
4106 int error;
4107
4108 error = xlog_unpack_data_crc(rhead, dp, log);
4109 if (error)
4110 return error;
1da177e4 4111
b53e675d 4112 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 4113 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 4114 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
4115 dp += BBSIZE;
4116 }
4117
62118709 4118 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 4119 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 4120 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4121 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4122 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4123 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4124 dp += BBSIZE;
4125 }
4126 }
0e446be4
CH
4127
4128 return 0;
1da177e4
LT
4129}
4130
4131STATIC int
4132xlog_valid_rec_header(
9a8d2fdb
MT
4133 struct xlog *log,
4134 struct xlog_rec_header *rhead,
1da177e4
LT
4135 xfs_daddr_t blkno)
4136{
4137 int hlen;
4138
69ef921b 4139 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4140 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4141 XFS_ERRLEVEL_LOW, log->l_mp);
4142 return XFS_ERROR(EFSCORRUPTED);
4143 }
4144 if (unlikely(
4145 (!rhead->h_version ||
b53e675d 4146 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4147 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4148 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
4149 return XFS_ERROR(EIO);
4150 }
4151
4152 /* LR body must have data or it wouldn't have been written */
b53e675d 4153 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4154 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4155 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4156 XFS_ERRLEVEL_LOW, log->l_mp);
4157 return XFS_ERROR(EFSCORRUPTED);
4158 }
4159 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4160 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4161 XFS_ERRLEVEL_LOW, log->l_mp);
4162 return XFS_ERROR(EFSCORRUPTED);
4163 }
4164 return 0;
4165}
4166
4167/*
4168 * Read the log from tail to head and process the log records found.
4169 * Handle the two cases where the tail and head are in the same cycle
4170 * and where the active portion of the log wraps around the end of
4171 * the physical log separately. The pass parameter is passed through
4172 * to the routines called to process the data and is not looked at
4173 * here.
4174 */
4175STATIC int
4176xlog_do_recovery_pass(
9a8d2fdb 4177 struct xlog *log,
1da177e4
LT
4178 xfs_daddr_t head_blk,
4179 xfs_daddr_t tail_blk,
4180 int pass)
4181{
4182 xlog_rec_header_t *rhead;
4183 xfs_daddr_t blk_no;
fc5bc4c8 4184 xfs_caddr_t offset;
1da177e4
LT
4185 xfs_buf_t *hbp, *dbp;
4186 int error = 0, h_size;
4187 int bblks, split_bblks;
4188 int hblks, split_hblks, wrapped_hblks;
f0a76953 4189 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4190
4191 ASSERT(head_blk != tail_blk);
4192
4193 /*
4194 * Read the header of the tail block and get the iclog buffer size from
4195 * h_size. Use this to tell how many sectors make up the log header.
4196 */
62118709 4197 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4198 /*
4199 * When using variable length iclogs, read first sector of
4200 * iclog header and extract the header size from it. Get a
4201 * new hbp that is the correct size.
4202 */
4203 hbp = xlog_get_bp(log, 1);
4204 if (!hbp)
4205 return ENOMEM;
076e6acb
CH
4206
4207 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4208 if (error)
1da177e4 4209 goto bread_err1;
076e6acb 4210
1da177e4
LT
4211 rhead = (xlog_rec_header_t *)offset;
4212 error = xlog_valid_rec_header(log, rhead, tail_blk);
4213 if (error)
4214 goto bread_err1;
b53e675d
CH
4215 h_size = be32_to_cpu(rhead->h_size);
4216 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4217 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4218 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4219 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4220 hblks++;
4221 xlog_put_bp(hbp);
4222 hbp = xlog_get_bp(log, hblks);
4223 } else {
4224 hblks = 1;
4225 }
4226 } else {
69ce58f0 4227 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4228 hblks = 1;
4229 hbp = xlog_get_bp(log, 1);
4230 h_size = XLOG_BIG_RECORD_BSIZE;
4231 }
4232
4233 if (!hbp)
4234 return ENOMEM;
4235 dbp = xlog_get_bp(log, BTOBB(h_size));
4236 if (!dbp) {
4237 xlog_put_bp(hbp);
4238 return ENOMEM;
4239 }
4240
4241 memset(rhash, 0, sizeof(rhash));
4242 if (tail_blk <= head_blk) {
4243 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
4244 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4245 if (error)
1da177e4 4246 goto bread_err2;
076e6acb 4247
1da177e4
LT
4248 rhead = (xlog_rec_header_t *)offset;
4249 error = xlog_valid_rec_header(log, rhead, blk_no);
4250 if (error)
4251 goto bread_err2;
4252
4253 /* blocks in data section */
b53e675d 4254 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4255 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4256 &offset);
1da177e4
LT
4257 if (error)
4258 goto bread_err2;
076e6acb 4259
0e446be4
CH
4260 error = xlog_unpack_data(rhead, offset, log);
4261 if (error)
4262 goto bread_err2;
4263
4264 error = xlog_recover_process_data(log,
4265 rhash, rhead, offset, pass);
4266 if (error)
1da177e4
LT
4267 goto bread_err2;
4268 blk_no += bblks + hblks;
4269 }
4270 } else {
4271 /*
4272 * Perform recovery around the end of the physical log.
4273 * When the head is not on the same cycle number as the tail,
4274 * we can't do a sequential recovery as above.
4275 */
4276 blk_no = tail_blk;
4277 while (blk_no < log->l_logBBsize) {
4278 /*
4279 * Check for header wrapping around physical end-of-log
4280 */
62926044 4281 offset = hbp->b_addr;
1da177e4
LT
4282 split_hblks = 0;
4283 wrapped_hblks = 0;
4284 if (blk_no + hblks <= log->l_logBBsize) {
4285 /* Read header in one read */
076e6acb
CH
4286 error = xlog_bread(log, blk_no, hblks, hbp,
4287 &offset);
1da177e4
LT
4288 if (error)
4289 goto bread_err2;
1da177e4
LT
4290 } else {
4291 /* This LR is split across physical log end */
4292 if (blk_no != log->l_logBBsize) {
4293 /* some data before physical log end */
4294 ASSERT(blk_no <= INT_MAX);
4295 split_hblks = log->l_logBBsize - (int)blk_no;
4296 ASSERT(split_hblks > 0);
076e6acb
CH
4297 error = xlog_bread(log, blk_no,
4298 split_hblks, hbp,
4299 &offset);
4300 if (error)
1da177e4 4301 goto bread_err2;
1da177e4 4302 }
076e6acb 4303
1da177e4
LT
4304 /*
4305 * Note: this black magic still works with
4306 * large sector sizes (non-512) only because:
4307 * - we increased the buffer size originally
4308 * by 1 sector giving us enough extra space
4309 * for the second read;
4310 * - the log start is guaranteed to be sector
4311 * aligned;
4312 * - we read the log end (LR header start)
4313 * _first_, then the log start (LR header end)
4314 * - order is important.
4315 */
234f56ac 4316 wrapped_hblks = hblks - split_hblks;
44396476
DC
4317 error = xlog_bread_offset(log, 0,
4318 wrapped_hblks, hbp,
4319 offset + BBTOB(split_hblks));
1da177e4
LT
4320 if (error)
4321 goto bread_err2;
1da177e4
LT
4322 }
4323 rhead = (xlog_rec_header_t *)offset;
4324 error = xlog_valid_rec_header(log, rhead,
4325 split_hblks ? blk_no : 0);
4326 if (error)
4327 goto bread_err2;
4328
b53e675d 4329 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4330 blk_no += hblks;
4331
4332 /* Read in data for log record */
4333 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4334 error = xlog_bread(log, blk_no, bblks, dbp,
4335 &offset);
1da177e4
LT
4336 if (error)
4337 goto bread_err2;
1da177e4
LT
4338 } else {
4339 /* This log record is split across the
4340 * physical end of log */
62926044 4341 offset = dbp->b_addr;
1da177e4
LT
4342 split_bblks = 0;
4343 if (blk_no != log->l_logBBsize) {
4344 /* some data is before the physical
4345 * end of log */
4346 ASSERT(!wrapped_hblks);
4347 ASSERT(blk_no <= INT_MAX);
4348 split_bblks =
4349 log->l_logBBsize - (int)blk_no;
4350 ASSERT(split_bblks > 0);
076e6acb
CH
4351 error = xlog_bread(log, blk_no,
4352 split_bblks, dbp,
4353 &offset);
4354 if (error)
1da177e4 4355 goto bread_err2;
1da177e4 4356 }
076e6acb 4357
1da177e4
LT
4358 /*
4359 * Note: this black magic still works with
4360 * large sector sizes (non-512) only because:
4361 * - we increased the buffer size originally
4362 * by 1 sector giving us enough extra space
4363 * for the second read;
4364 * - the log start is guaranteed to be sector
4365 * aligned;
4366 * - we read the log end (LR header start)
4367 * _first_, then the log start (LR header end)
4368 * - order is important.
4369 */
44396476 4370 error = xlog_bread_offset(log, 0,
009507b0 4371 bblks - split_bblks, dbp,
44396476 4372 offset + BBTOB(split_bblks));
076e6acb
CH
4373 if (error)
4374 goto bread_err2;
1da177e4 4375 }
0e446be4
CH
4376
4377 error = xlog_unpack_data(rhead, offset, log);
4378 if (error)
4379 goto bread_err2;
4380
4381 error = xlog_recover_process_data(log, rhash,
4382 rhead, offset, pass);
4383 if (error)
1da177e4
LT
4384 goto bread_err2;
4385 blk_no += bblks;
4386 }
4387
4388 ASSERT(blk_no >= log->l_logBBsize);
4389 blk_no -= log->l_logBBsize;
4390
4391 /* read first part of physical log */
4392 while (blk_no < head_blk) {
076e6acb
CH
4393 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4394 if (error)
1da177e4 4395 goto bread_err2;
076e6acb 4396
1da177e4
LT
4397 rhead = (xlog_rec_header_t *)offset;
4398 error = xlog_valid_rec_header(log, rhead, blk_no);
4399 if (error)
4400 goto bread_err2;
076e6acb 4401
b53e675d 4402 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4403 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4404 &offset);
4405 if (error)
1da177e4 4406 goto bread_err2;
076e6acb 4407
0e446be4
CH
4408 error = xlog_unpack_data(rhead, offset, log);
4409 if (error)
4410 goto bread_err2;
4411
4412 error = xlog_recover_process_data(log, rhash,
4413 rhead, offset, pass);
4414 if (error)
1da177e4
LT
4415 goto bread_err2;
4416 blk_no += bblks + hblks;
4417 }
4418 }
4419
4420 bread_err2:
4421 xlog_put_bp(dbp);
4422 bread_err1:
4423 xlog_put_bp(hbp);
4424 return error;
4425}
4426
4427/*
4428 * Do the recovery of the log. We actually do this in two phases.
4429 * The two passes are necessary in order to implement the function
4430 * of cancelling a record written into the log. The first pass
4431 * determines those things which have been cancelled, and the
4432 * second pass replays log items normally except for those which
4433 * have been cancelled. The handling of the replay and cancellations
4434 * takes place in the log item type specific routines.
4435 *
4436 * The table of items which have cancel records in the log is allocated
4437 * and freed at this level, since only here do we know when all of
4438 * the log recovery has been completed.
4439 */
4440STATIC int
4441xlog_do_log_recovery(
9a8d2fdb 4442 struct xlog *log,
1da177e4
LT
4443 xfs_daddr_t head_blk,
4444 xfs_daddr_t tail_blk)
4445{
d5689eaa 4446 int error, i;
1da177e4
LT
4447
4448 ASSERT(head_blk != tail_blk);
4449
4450 /*
4451 * First do a pass to find all of the cancelled buf log items.
4452 * Store them in the buf_cancel_table for use in the second pass.
4453 */
d5689eaa
CH
4454 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4455 sizeof(struct list_head),
1da177e4 4456 KM_SLEEP);
d5689eaa
CH
4457 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4458 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4459
1da177e4
LT
4460 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4461 XLOG_RECOVER_PASS1);
4462 if (error != 0) {
f0e2d93c 4463 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4464 log->l_buf_cancel_table = NULL;
4465 return error;
4466 }
4467 /*
4468 * Then do a second pass to actually recover the items in the log.
4469 * When it is complete free the table of buf cancel items.
4470 */
4471 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4472 XLOG_RECOVER_PASS2);
4473#ifdef DEBUG
6d192a9b 4474 if (!error) {
1da177e4
LT
4475 int i;
4476
4477 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4478 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4479 }
4480#endif /* DEBUG */
4481
f0e2d93c 4482 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4483 log->l_buf_cancel_table = NULL;
4484
4485 return error;
4486}
4487
4488/*
4489 * Do the actual recovery
4490 */
4491STATIC int
4492xlog_do_recover(
9a8d2fdb 4493 struct xlog *log,
1da177e4
LT
4494 xfs_daddr_t head_blk,
4495 xfs_daddr_t tail_blk)
4496{
4497 int error;
4498 xfs_buf_t *bp;
4499 xfs_sb_t *sbp;
4500
4501 /*
4502 * First replay the images in the log.
4503 */
4504 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4505 if (error)
1da177e4 4506 return error;
1da177e4
LT
4507
4508 /*
4509 * If IO errors happened during recovery, bail out.
4510 */
4511 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4512 return (EIO);
4513 }
4514
4515 /*
4516 * We now update the tail_lsn since much of the recovery has completed
4517 * and there may be space available to use. If there were no extent
4518 * or iunlinks, we can free up the entire log and set the tail_lsn to
4519 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4520 * lsn of the last known good LR on disk. If there are extent frees
4521 * or iunlinks they will have some entries in the AIL; so we look at
4522 * the AIL to determine how to set the tail_lsn.
4523 */
4524 xlog_assign_tail_lsn(log->l_mp);
4525
4526 /*
4527 * Now that we've finished replaying all buffer and inode
98021821 4528 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4529 */
4530 bp = xfs_getsb(log->l_mp, 0);
4531 XFS_BUF_UNDONE(bp);
bebf963f 4532 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4533 XFS_BUF_READ(bp);
bebf963f 4534 XFS_BUF_UNASYNC(bp);
1813dd64 4535 bp->b_ops = &xfs_sb_buf_ops;
1da177e4 4536 xfsbdstrat(log->l_mp, bp);
1a1a3e97 4537 error = xfs_buf_iowait(bp);
d64e31a2 4538 if (error) {
901796af 4539 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
4540 ASSERT(0);
4541 xfs_buf_relse(bp);
4542 return error;
4543 }
4544
4545 /* Convert superblock from on-disk format */
4546 sbp = &log->l_mp->m_sb;
98021821 4547 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4548 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4549 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
4550 xfs_buf_relse(bp);
4551
5478eead
LM
4552 /* We've re-read the superblock so re-initialize per-cpu counters */
4553 xfs_icsb_reinit_counters(log->l_mp);
4554
1da177e4
LT
4555 xlog_recover_check_summary(log);
4556
4557 /* Normal transactions can now occur */
4558 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4559 return 0;
4560}
4561
4562/*
4563 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4564 *
4565 * Return error or zero.
4566 */
4567int
4568xlog_recover(
9a8d2fdb 4569 struct xlog *log)
1da177e4
LT
4570{
4571 xfs_daddr_t head_blk, tail_blk;
4572 int error;
4573
4574 /* find the tail of the log */
65be6054 4575 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
4576 return error;
4577
4578 if (tail_blk != head_blk) {
4579 /* There used to be a comment here:
4580 *
4581 * disallow recovery on read-only mounts. note -- mount
4582 * checks for ENOSPC and turns it into an intelligent
4583 * error message.
4584 * ...but this is no longer true. Now, unless you specify
4585 * NORECOVERY (in which case this function would never be
4586 * called), we just go ahead and recover. We do this all
4587 * under the vfs layer, so we can get away with it unless
4588 * the device itself is read-only, in which case we fail.
4589 */
3a02ee18 4590 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4591 return error;
4592 }
4593
e721f504
DC
4594 /*
4595 * Version 5 superblock log feature mask validation. We know the
4596 * log is dirty so check if there are any unknown log features
4597 * in what we need to recover. If there are unknown features
4598 * (e.g. unsupported transactions, then simply reject the
4599 * attempt at recovery before touching anything.
4600 */
4601 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4602 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4603 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4604 xfs_warn(log->l_mp,
4605"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4606"The log can not be fully and/or safely recovered by this kernel.\n"
4607"Please recover the log on a kernel that supports the unknown features.",
4608 (log->l_mp->m_sb.sb_features_log_incompat &
4609 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4610 return EINVAL;
4611 }
4612
a0fa2b67
DC
4613 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4614 log->l_mp->m_logname ? log->l_mp->m_logname
4615 : "internal");
1da177e4
LT
4616
4617 error = xlog_do_recover(log, head_blk, tail_blk);
4618 log->l_flags |= XLOG_RECOVERY_NEEDED;
4619 }
4620 return error;
4621}
4622
4623/*
4624 * In the first part of recovery we replay inodes and buffers and build
4625 * up the list of extent free items which need to be processed. Here
4626 * we process the extent free items and clean up the on disk unlinked
4627 * inode lists. This is separated from the first part of recovery so
4628 * that the root and real-time bitmap inodes can be read in from disk in
4629 * between the two stages. This is necessary so that we can free space
4630 * in the real-time portion of the file system.
4631 */
4632int
4633xlog_recover_finish(
9a8d2fdb 4634 struct xlog *log)
1da177e4
LT
4635{
4636 /*
4637 * Now we're ready to do the transactions needed for the
4638 * rest of recovery. Start with completing all the extent
4639 * free intent records and then process the unlinked inode
4640 * lists. At this point, we essentially run in normal mode
4641 * except that we're still performing recovery actions
4642 * rather than accepting new requests.
4643 */
4644 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4645 int error;
4646 error = xlog_recover_process_efis(log);
4647 if (error) {
a0fa2b67 4648 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4649 return error;
4650 }
1da177e4
LT
4651 /*
4652 * Sync the log to get all the EFIs out of the AIL.
4653 * This isn't absolutely necessary, but it helps in
4654 * case the unlink transactions would have problems
4655 * pushing the EFIs out of the way.
4656 */
a14a348b 4657 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4658
4249023a 4659 xlog_recover_process_iunlinks(log);
1da177e4
LT
4660
4661 xlog_recover_check_summary(log);
4662
a0fa2b67
DC
4663 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4664 log->l_mp->m_logname ? log->l_mp->m_logname
4665 : "internal");
1da177e4
LT
4666 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4667 } else {
a0fa2b67 4668 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4669 }
4670 return 0;
4671}
4672
4673
4674#if defined(DEBUG)
4675/*
4676 * Read all of the agf and agi counters and check that they
4677 * are consistent with the superblock counters.
4678 */
4679void
4680xlog_recover_check_summary(
9a8d2fdb 4681 struct xlog *log)
1da177e4
LT
4682{
4683 xfs_mount_t *mp;
4684 xfs_agf_t *agfp;
1da177e4
LT
4685 xfs_buf_t *agfbp;
4686 xfs_buf_t *agibp;
1da177e4
LT
4687 xfs_agnumber_t agno;
4688 __uint64_t freeblks;
4689 __uint64_t itotal;
4690 __uint64_t ifree;
5e1be0fb 4691 int error;
1da177e4
LT
4692
4693 mp = log->l_mp;
4694
4695 freeblks = 0LL;
4696 itotal = 0LL;
4697 ifree = 0LL;
4698 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
4699 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4700 if (error) {
a0fa2b67
DC
4701 xfs_alert(mp, "%s agf read failed agno %d error %d",
4702 __func__, agno, error);
4805621a
FCH
4703 } else {
4704 agfp = XFS_BUF_TO_AGF(agfbp);
4705 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4706 be32_to_cpu(agfp->agf_flcount);
4707 xfs_buf_relse(agfbp);
1da177e4 4708 }
1da177e4 4709
5e1be0fb 4710 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4711 if (error) {
4712 xfs_alert(mp, "%s agi read failed agno %d error %d",
4713 __func__, agno, error);
4714 } else {
5e1be0fb 4715 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4716
5e1be0fb
CH
4717 itotal += be32_to_cpu(agi->agi_count);
4718 ifree += be32_to_cpu(agi->agi_freecount);
4719 xfs_buf_relse(agibp);
4720 }
1da177e4 4721 }
1da177e4
LT
4722}
4723#endif /* DEBUG */
This page took 2.882007 seconds and 5 git commands to generate.