[XFS] Fix realtime subvolume expansion, a porting bug b0rked it. Coverity
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_bmap_btree.h"
a844f451
NS
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
1da177e4 34#include "xfs_dir2_sf.h"
a844f451 35#include "xfs_attr_sf.h"
1da177e4 36#include "xfs_dinode.h"
1da177e4 37#include "xfs_inode.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_imap.h"
40#include "xfs_alloc.h"
1da177e4
LT
41#include "xfs_ialloc.h"
42#include "xfs_log_priv.h"
43#include "xfs_buf_item.h"
1da177e4
LT
44#include "xfs_log_recover.h"
45#include "xfs_extfree_item.h"
46#include "xfs_trans_priv.h"
1da177e4
LT
47#include "xfs_quota.h"
48#include "xfs_rw.h"
49
50STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
51STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
52STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
53 xlog_recover_item_t *item);
54#if defined(DEBUG)
55STATIC void xlog_recover_check_summary(xlog_t *);
56STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
57#else
58#define xlog_recover_check_summary(log)
59#define xlog_recover_check_ail(mp, lip, gen)
60#endif
61
62
63/*
64 * Sector aligned buffer routines for buffer create/read/write/access
65 */
66
67#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
68 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
69 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
70#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
71
72xfs_buf_t *
73xlog_get_bp(
74 xlog_t *log,
75 int num_bblks)
76{
77 ASSERT(num_bblks > 0);
78
79 if (log->l_sectbb_log) {
80 if (num_bblks > 1)
81 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
82 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
83 }
84 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
85}
86
87void
88xlog_put_bp(
89 xfs_buf_t *bp)
90{
91 xfs_buf_free(bp);
92}
93
94
95/*
96 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
97 */
98int
99xlog_bread(
100 xlog_t *log,
101 xfs_daddr_t blk_no,
102 int nbblks,
103 xfs_buf_t *bp)
104{
105 int error;
106
107 if (log->l_sectbb_log) {
108 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
109 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
110 }
111
112 ASSERT(nbblks > 0);
113 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
114 ASSERT(bp);
115
116 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
117 XFS_BUF_READ(bp);
118 XFS_BUF_BUSY(bp);
119 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
120 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
121
122 xfsbdstrat(log->l_mp, bp);
123 if ((error = xfs_iowait(bp)))
124 xfs_ioerror_alert("xlog_bread", log->l_mp,
125 bp, XFS_BUF_ADDR(bp));
126 return error;
127}
128
129/*
130 * Write out the buffer at the given block for the given number of blocks.
131 * The buffer is kept locked across the write and is returned locked.
132 * This can only be used for synchronous log writes.
133 */
ba0f32d4 134STATIC int
1da177e4
LT
135xlog_bwrite(
136 xlog_t *log,
137 xfs_daddr_t blk_no,
138 int nbblks,
139 xfs_buf_t *bp)
140{
141 int error;
142
143 if (log->l_sectbb_log) {
144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146 }
147
148 ASSERT(nbblks > 0);
149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150
151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152 XFS_BUF_ZEROFLAGS(bp);
153 XFS_BUF_BUSY(bp);
154 XFS_BUF_HOLD(bp);
155 XFS_BUF_PSEMA(bp, PRIBIO);
156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158
159 if ((error = xfs_bwrite(log->l_mp, bp)))
160 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161 bp, XFS_BUF_ADDR(bp));
162 return error;
163}
164
ba0f32d4 165STATIC xfs_caddr_t
1da177e4
LT
166xlog_align(
167 xlog_t *log,
168 xfs_daddr_t blk_no,
169 int nbblks,
170 xfs_buf_t *bp)
171{
172 xfs_caddr_t ptr;
173
174 if (!log->l_sectbb_log)
175 return XFS_BUF_PTR(bp);
176
177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178 ASSERT(XFS_BUF_SIZE(bp) >=
179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180 return ptr;
181}
182
183#ifdef DEBUG
184/*
185 * dump debug superblock and log record information
186 */
187STATIC void
188xlog_header_check_dump(
189 xfs_mount_t *mp,
190 xlog_rec_header_t *head)
191{
192 int b;
193
b6574520 194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __FUNCTION__);
1da177e4 195 for (b = 0; b < 16; b++)
b6574520
NS
196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198 cmn_err(CE_DEBUG, " log : uuid = ");
1da177e4 199 for (b = 0; b < 16; b++)
b6574520
NS
200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
201 cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
1da177e4
LT
202}
203#else
204#define xlog_header_check_dump(mp, head)
205#endif
206
207/*
208 * check log record header for recovery
209 */
210STATIC int
211xlog_header_check_recover(
212 xfs_mount_t *mp,
213 xlog_rec_header_t *head)
214{
215 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
216
217 /*
218 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 * a dirty log created in IRIX.
221 */
222 if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
223 xlog_warn(
224 "XFS: dirty log written in incompatible format - can't recover");
225 xlog_header_check_dump(mp, head);
226 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 XFS_ERRLEVEL_HIGH, mp);
228 return XFS_ERROR(EFSCORRUPTED);
229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230 xlog_warn(
231 "XFS: dirty log entry has mismatched uuid - can't recover");
232 xlog_header_check_dump(mp, head);
233 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 XFS_ERRLEVEL_HIGH, mp);
235 return XFS_ERROR(EFSCORRUPTED);
236 }
237 return 0;
238}
239
240/*
241 * read the head block of the log and check the header
242 */
243STATIC int
244xlog_header_check_mount(
245 xfs_mount_t *mp,
246 xlog_rec_header_t *head)
247{
248 ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
249
250 if (uuid_is_nil(&head->h_fs_uuid)) {
251 /*
252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 * h_fs_uuid is nil, we assume this log was last mounted
254 * by IRIX and continue.
255 */
256 xlog_warn("XFS: nil uuid in log - IRIX style log");
257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258 xlog_warn("XFS: log has mismatched uuid - can't recover");
259 xlog_header_check_dump(mp, head);
260 XFS_ERROR_REPORT("xlog_header_check_mount",
261 XFS_ERRLEVEL_HIGH, mp);
262 return XFS_ERROR(EFSCORRUPTED);
263 }
264 return 0;
265}
266
267STATIC void
268xlog_recover_iodone(
269 struct xfs_buf *bp)
270{
271 xfs_mount_t *mp;
272
273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274
275 if (XFS_BUF_GETERROR(bp)) {
276 /*
277 * We're not going to bother about retrying
278 * this during recovery. One strike!
279 */
280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281 xfs_ioerror_alert("xlog_recover_iodone",
282 mp, bp, XFS_BUF_ADDR(bp));
7d04a335 283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1da177e4
LT
284 }
285 XFS_BUF_SET_FSPRIVATE(bp, NULL);
286 XFS_BUF_CLR_IODONE_FUNC(bp);
287 xfs_biodone(bp);
288}
289
290/*
291 * This routine finds (to an approximation) the first block in the physical
292 * log which contains the given cycle. It uses a binary search algorithm.
293 * Note that the algorithm can not be perfect because the disk will not
294 * necessarily be perfect.
295 */
296int
297xlog_find_cycle_start(
298 xlog_t *log,
299 xfs_buf_t *bp,
300 xfs_daddr_t first_blk,
301 xfs_daddr_t *last_blk,
302 uint cycle)
303{
304 xfs_caddr_t offset;
305 xfs_daddr_t mid_blk;
306 uint mid_cycle;
307 int error;
308
309 mid_blk = BLK_AVG(first_blk, *last_blk);
310 while (mid_blk != first_blk && mid_blk != *last_blk) {
311 if ((error = xlog_bread(log, mid_blk, 1, bp)))
312 return error;
313 offset = xlog_align(log, mid_blk, 1, bp);
314 mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
315 if (mid_cycle == cycle) {
316 *last_blk = mid_blk;
317 /* last_half_cycle == mid_cycle */
318 } else {
319 first_blk = mid_blk;
320 /* first_half_cycle == mid_cycle */
321 }
322 mid_blk = BLK_AVG(first_blk, *last_blk);
323 }
324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325 (mid_blk == *last_blk && mid_blk-1 == first_blk));
326
327 return 0;
328}
329
330/*
331 * Check that the range of blocks does not contain the cycle number
332 * given. The scan needs to occur from front to back and the ptr into the
333 * region must be updated since a later routine will need to perform another
334 * test. If the region is completely good, we end up returning the same
335 * last block number.
336 *
337 * Set blkno to -1 if we encounter no errors. This is an invalid block number
338 * since we don't ever expect logs to get this large.
339 */
340STATIC int
341xlog_find_verify_cycle(
342 xlog_t *log,
343 xfs_daddr_t start_blk,
344 int nbblks,
345 uint stop_on_cycle_no,
346 xfs_daddr_t *new_blk)
347{
348 xfs_daddr_t i, j;
349 uint cycle;
350 xfs_buf_t *bp;
351 xfs_daddr_t bufblks;
352 xfs_caddr_t buf = NULL;
353 int error = 0;
354
355 bufblks = 1 << ffs(nbblks);
356
357 while (!(bp = xlog_get_bp(log, bufblks))) {
358 /* can't get enough memory to do everything in one big buffer */
359 bufblks >>= 1;
360 if (bufblks <= log->l_sectbb_log)
361 return ENOMEM;
362 }
363
364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365 int bcount;
366
367 bcount = min(bufblks, (start_blk + nbblks - i));
368
369 if ((error = xlog_bread(log, i, bcount, bp)))
370 goto out;
371
372 buf = xlog_align(log, i, bcount, bp);
373 for (j = 0; j < bcount; j++) {
374 cycle = GET_CYCLE(buf, ARCH_CONVERT);
375 if (cycle == stop_on_cycle_no) {
376 *new_blk = i+j;
377 goto out;
378 }
379
380 buf += BBSIZE;
381 }
382 }
383
384 *new_blk = -1;
385
386out:
387 xlog_put_bp(bp);
388 return error;
389}
390
391/*
392 * Potentially backup over partial log record write.
393 *
394 * In the typical case, last_blk is the number of the block directly after
395 * a good log record. Therefore, we subtract one to get the block number
396 * of the last block in the given buffer. extra_bblks contains the number
397 * of blocks we would have read on a previous read. This happens when the
398 * last log record is split over the end of the physical log.
399 *
400 * extra_bblks is the number of blocks potentially verified on a previous
401 * call to this routine.
402 */
403STATIC int
404xlog_find_verify_log_record(
405 xlog_t *log,
406 xfs_daddr_t start_blk,
407 xfs_daddr_t *last_blk,
408 int extra_bblks)
409{
410 xfs_daddr_t i;
411 xfs_buf_t *bp;
412 xfs_caddr_t offset = NULL;
413 xlog_rec_header_t *head = NULL;
414 int error = 0;
415 int smallmem = 0;
416 int num_blks = *last_blk - start_blk;
417 int xhdrs;
418
419 ASSERT(start_blk != 0 || *last_blk != start_blk);
420
421 if (!(bp = xlog_get_bp(log, num_blks))) {
422 if (!(bp = xlog_get_bp(log, 1)))
423 return ENOMEM;
424 smallmem = 1;
425 } else {
426 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427 goto out;
428 offset = xlog_align(log, start_blk, num_blks, bp);
429 offset += ((num_blks - 1) << BBSHIFT);
430 }
431
432 for (i = (*last_blk) - 1; i >= 0; i--) {
433 if (i < start_blk) {
434 /* valid log record not found */
435 xlog_warn(
436 "XFS: Log inconsistent (didn't find previous header)");
437 ASSERT(0);
438 error = XFS_ERROR(EIO);
439 goto out;
440 }
441
442 if (smallmem) {
443 if ((error = xlog_bread(log, i, 1, bp)))
444 goto out;
445 offset = xlog_align(log, i, 1, bp);
446 }
447
448 head = (xlog_rec_header_t *)offset;
449
450 if (XLOG_HEADER_MAGIC_NUM ==
451 INT_GET(head->h_magicno, ARCH_CONVERT))
452 break;
453
454 if (!smallmem)
455 offset -= BBSIZE;
456 }
457
458 /*
459 * We hit the beginning of the physical log & still no header. Return
460 * to caller. If caller can handle a return of -1, then this routine
461 * will be called again for the end of the physical log.
462 */
463 if (i == -1) {
464 error = -1;
465 goto out;
466 }
467
468 /*
469 * We have the final block of the good log (the first block
470 * of the log record _before_ the head. So we check the uuid.
471 */
472 if ((error = xlog_header_check_mount(log->l_mp, head)))
473 goto out;
474
475 /*
476 * We may have found a log record header before we expected one.
477 * last_blk will be the 1st block # with a given cycle #. We may end
478 * up reading an entire log record. In this case, we don't want to
479 * reset last_blk. Only when last_blk points in the middle of a log
480 * record do we update last_blk.
481 */
482 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
483 uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
484
485 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
486 if (h_size % XLOG_HEADER_CYCLE_SIZE)
487 xhdrs++;
488 } else {
489 xhdrs = 1;
490 }
491
492 if (*last_blk - i + extra_bblks
493 != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
494 *last_blk = i;
495
496out:
497 xlog_put_bp(bp);
498 return error;
499}
500
501/*
502 * Head is defined to be the point of the log where the next log write
503 * write could go. This means that incomplete LR writes at the end are
504 * eliminated when calculating the head. We aren't guaranteed that previous
505 * LR have complete transactions. We only know that a cycle number of
506 * current cycle number -1 won't be present in the log if we start writing
507 * from our current block number.
508 *
509 * last_blk contains the block number of the first block with a given
510 * cycle number.
511 *
512 * Return: zero if normal, non-zero if error.
513 */
ba0f32d4 514STATIC int
1da177e4
LT
515xlog_find_head(
516 xlog_t *log,
517 xfs_daddr_t *return_head_blk)
518{
519 xfs_buf_t *bp;
520 xfs_caddr_t offset;
521 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
522 int num_scan_bblks;
523 uint first_half_cycle, last_half_cycle;
524 uint stop_on_cycle;
525 int error, log_bbnum = log->l_logBBsize;
526
527 /* Is the end of the log device zeroed? */
528 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
529 *return_head_blk = first_blk;
530
531 /* Is the whole lot zeroed? */
532 if (!first_blk) {
533 /* Linux XFS shouldn't generate totally zeroed logs -
534 * mkfs etc write a dummy unmount record to a fresh
535 * log so we can store the uuid in there
536 */
537 xlog_warn("XFS: totally zeroed log");
538 }
539
540 return 0;
541 } else if (error) {
542 xlog_warn("XFS: empty log check failed");
543 return error;
544 }
545
546 first_blk = 0; /* get cycle # of 1st block */
547 bp = xlog_get_bp(log, 1);
548 if (!bp)
549 return ENOMEM;
550 if ((error = xlog_bread(log, 0, 1, bp)))
551 goto bp_err;
552 offset = xlog_align(log, 0, 1, bp);
553 first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
554
555 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
556 if ((error = xlog_bread(log, last_blk, 1, bp)))
557 goto bp_err;
558 offset = xlog_align(log, last_blk, 1, bp);
559 last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
560 ASSERT(last_half_cycle != 0);
561
562 /*
563 * If the 1st half cycle number is equal to the last half cycle number,
564 * then the entire log is stamped with the same cycle number. In this
565 * case, head_blk can't be set to zero (which makes sense). The below
566 * math doesn't work out properly with head_blk equal to zero. Instead,
567 * we set it to log_bbnum which is an invalid block number, but this
568 * value makes the math correct. If head_blk doesn't changed through
569 * all the tests below, *head_blk is set to zero at the very end rather
570 * than log_bbnum. In a sense, log_bbnum and zero are the same block
571 * in a circular file.
572 */
573 if (first_half_cycle == last_half_cycle) {
574 /*
575 * In this case we believe that the entire log should have
576 * cycle number last_half_cycle. We need to scan backwards
577 * from the end verifying that there are no holes still
578 * containing last_half_cycle - 1. If we find such a hole,
579 * then the start of that hole will be the new head. The
580 * simple case looks like
581 * x | x ... | x - 1 | x
582 * Another case that fits this picture would be
583 * x | x + 1 | x ... | x
c41564b5 584 * In this case the head really is somewhere at the end of the
1da177e4
LT
585 * log, as one of the latest writes at the beginning was
586 * incomplete.
587 * One more case is
588 * x | x + 1 | x ... | x - 1 | x
589 * This is really the combination of the above two cases, and
590 * the head has to end up at the start of the x-1 hole at the
591 * end of the log.
592 *
593 * In the 256k log case, we will read from the beginning to the
594 * end of the log and search for cycle numbers equal to x-1.
595 * We don't worry about the x+1 blocks that we encounter,
596 * because we know that they cannot be the head since the log
597 * started with x.
598 */
599 head_blk = log_bbnum;
600 stop_on_cycle = last_half_cycle - 1;
601 } else {
602 /*
603 * In this case we want to find the first block with cycle
604 * number matching last_half_cycle. We expect the log to be
605 * some variation on
606 * x + 1 ... | x ...
607 * The first block with cycle number x (last_half_cycle) will
608 * be where the new head belongs. First we do a binary search
609 * for the first occurrence of last_half_cycle. The binary
610 * search may not be totally accurate, so then we scan back
611 * from there looking for occurrences of last_half_cycle before
612 * us. If that backwards scan wraps around the beginning of
613 * the log, then we look for occurrences of last_half_cycle - 1
614 * at the end of the log. The cases we're looking for look
615 * like
616 * x + 1 ... | x | x + 1 | x ...
617 * ^ binary search stopped here
618 * or
619 * x + 1 ... | x ... | x - 1 | x
620 * <---------> less than scan distance
621 */
622 stop_on_cycle = last_half_cycle;
623 if ((error = xlog_find_cycle_start(log, bp, first_blk,
624 &head_blk, last_half_cycle)))
625 goto bp_err;
626 }
627
628 /*
629 * Now validate the answer. Scan back some number of maximum possible
630 * blocks and make sure each one has the expected cycle number. The
631 * maximum is determined by the total possible amount of buffering
632 * in the in-core log. The following number can be made tighter if
633 * we actually look at the block size of the filesystem.
634 */
635 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
636 if (head_blk >= num_scan_bblks) {
637 /*
638 * We are guaranteed that the entire check can be performed
639 * in one buffer.
640 */
641 start_blk = head_blk - num_scan_bblks;
642 if ((error = xlog_find_verify_cycle(log,
643 start_blk, num_scan_bblks,
644 stop_on_cycle, &new_blk)))
645 goto bp_err;
646 if (new_blk != -1)
647 head_blk = new_blk;
648 } else { /* need to read 2 parts of log */
649 /*
650 * We are going to scan backwards in the log in two parts.
651 * First we scan the physical end of the log. In this part
652 * of the log, we are looking for blocks with cycle number
653 * last_half_cycle - 1.
654 * If we find one, then we know that the log starts there, as
655 * we've found a hole that didn't get written in going around
656 * the end of the physical log. The simple case for this is
657 * x + 1 ... | x ... | x - 1 | x
658 * <---------> less than scan distance
659 * If all of the blocks at the end of the log have cycle number
660 * last_half_cycle, then we check the blocks at the start of
661 * the log looking for occurrences of last_half_cycle. If we
662 * find one, then our current estimate for the location of the
663 * first occurrence of last_half_cycle is wrong and we move
664 * back to the hole we've found. This case looks like
665 * x + 1 ... | x | x + 1 | x ...
666 * ^ binary search stopped here
667 * Another case we need to handle that only occurs in 256k
668 * logs is
669 * x + 1 ... | x ... | x+1 | x ...
670 * ^ binary search stops here
671 * In a 256k log, the scan at the end of the log will see the
672 * x + 1 blocks. We need to skip past those since that is
673 * certainly not the head of the log. By searching for
674 * last_half_cycle-1 we accomplish that.
675 */
676 start_blk = log_bbnum - num_scan_bblks + head_blk;
677 ASSERT(head_blk <= INT_MAX &&
678 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
679 if ((error = xlog_find_verify_cycle(log, start_blk,
680 num_scan_bblks - (int)head_blk,
681 (stop_on_cycle - 1), &new_blk)))
682 goto bp_err;
683 if (new_blk != -1) {
684 head_blk = new_blk;
685 goto bad_blk;
686 }
687
688 /*
689 * Scan beginning of log now. The last part of the physical
690 * log is good. This scan needs to verify that it doesn't find
691 * the last_half_cycle.
692 */
693 start_blk = 0;
694 ASSERT(head_blk <= INT_MAX);
695 if ((error = xlog_find_verify_cycle(log,
696 start_blk, (int)head_blk,
697 stop_on_cycle, &new_blk)))
698 goto bp_err;
699 if (new_blk != -1)
700 head_blk = new_blk;
701 }
702
703 bad_blk:
704 /*
705 * Now we need to make sure head_blk is not pointing to a block in
706 * the middle of a log record.
707 */
708 num_scan_bblks = XLOG_REC_SHIFT(log);
709 if (head_blk >= num_scan_bblks) {
710 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
711
712 /* start ptr at last block ptr before head_blk */
713 if ((error = xlog_find_verify_log_record(log, start_blk,
714 &head_blk, 0)) == -1) {
715 error = XFS_ERROR(EIO);
716 goto bp_err;
717 } else if (error)
718 goto bp_err;
719 } else {
720 start_blk = 0;
721 ASSERT(head_blk <= INT_MAX);
722 if ((error = xlog_find_verify_log_record(log, start_blk,
723 &head_blk, 0)) == -1) {
724 /* We hit the beginning of the log during our search */
725 start_blk = log_bbnum - num_scan_bblks + head_blk;
726 new_blk = log_bbnum;
727 ASSERT(start_blk <= INT_MAX &&
728 (xfs_daddr_t) log_bbnum-start_blk >= 0);
729 ASSERT(head_blk <= INT_MAX);
730 if ((error = xlog_find_verify_log_record(log,
731 start_blk, &new_blk,
732 (int)head_blk)) == -1) {
733 error = XFS_ERROR(EIO);
734 goto bp_err;
735 } else if (error)
736 goto bp_err;
737 if (new_blk != log_bbnum)
738 head_blk = new_blk;
739 } else if (error)
740 goto bp_err;
741 }
742
743 xlog_put_bp(bp);
744 if (head_blk == log_bbnum)
745 *return_head_blk = 0;
746 else
747 *return_head_blk = head_blk;
748 /*
749 * When returning here, we have a good block number. Bad block
750 * means that during a previous crash, we didn't have a clean break
751 * from cycle number N to cycle number N-1. In this case, we need
752 * to find the first block with cycle number N-1.
753 */
754 return 0;
755
756 bp_err:
757 xlog_put_bp(bp);
758
759 if (error)
760 xlog_warn("XFS: failed to find log head");
761 return error;
762}
763
764/*
765 * Find the sync block number or the tail of the log.
766 *
767 * This will be the block number of the last record to have its
768 * associated buffers synced to disk. Every log record header has
769 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
770 * to get a sync block number. The only concern is to figure out which
771 * log record header to believe.
772 *
773 * The following algorithm uses the log record header with the largest
774 * lsn. The entire log record does not need to be valid. We only care
775 * that the header is valid.
776 *
777 * We could speed up search by using current head_blk buffer, but it is not
778 * available.
779 */
780int
781xlog_find_tail(
782 xlog_t *log,
783 xfs_daddr_t *head_blk,
65be6054 784 xfs_daddr_t *tail_blk)
1da177e4
LT
785{
786 xlog_rec_header_t *rhead;
787 xlog_op_header_t *op_head;
788 xfs_caddr_t offset = NULL;
789 xfs_buf_t *bp;
790 int error, i, found;
791 xfs_daddr_t umount_data_blk;
792 xfs_daddr_t after_umount_blk;
793 xfs_lsn_t tail_lsn;
794 int hblks;
795
796 found = 0;
797
798 /*
799 * Find previous log record
800 */
801 if ((error = xlog_find_head(log, head_blk)))
802 return error;
803
804 bp = xlog_get_bp(log, 1);
805 if (!bp)
806 return ENOMEM;
807 if (*head_blk == 0) { /* special case */
808 if ((error = xlog_bread(log, 0, 1, bp)))
809 goto bread_err;
810 offset = xlog_align(log, 0, 1, bp);
811 if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
812 *tail_blk = 0;
813 /* leave all other log inited values alone */
814 goto exit;
815 }
816 }
817
818 /*
819 * Search backwards looking for log record header block
820 */
821 ASSERT(*head_blk < INT_MAX);
822 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
823 if ((error = xlog_bread(log, i, 1, bp)))
824 goto bread_err;
825 offset = xlog_align(log, i, 1, bp);
826 if (XLOG_HEADER_MAGIC_NUM ==
827 INT_GET(*(uint *)offset, ARCH_CONVERT)) {
828 found = 1;
829 break;
830 }
831 }
832 /*
833 * If we haven't found the log record header block, start looking
834 * again from the end of the physical log. XXXmiken: There should be
835 * a check here to make sure we didn't search more than N blocks in
836 * the previous code.
837 */
838 if (!found) {
839 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
840 if ((error = xlog_bread(log, i, 1, bp)))
841 goto bread_err;
842 offset = xlog_align(log, i, 1, bp);
843 if (XLOG_HEADER_MAGIC_NUM ==
844 INT_GET(*(uint*)offset, ARCH_CONVERT)) {
845 found = 2;
846 break;
847 }
848 }
849 }
850 if (!found) {
851 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
852 ASSERT(0);
853 return XFS_ERROR(EIO);
854 }
855
856 /* find blk_no of tail of log */
857 rhead = (xlog_rec_header_t *)offset;
858 *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
859
860 /*
861 * Reset log values according to the state of the log when we
862 * crashed. In the case where head_blk == 0, we bump curr_cycle
863 * one because the next write starts a new cycle rather than
864 * continuing the cycle of the last good log record. At this
865 * point we have guaranteed that all partial log records have been
866 * accounted for. Therefore, we know that the last good log record
867 * written was complete and ended exactly on the end boundary
868 * of the physical log.
869 */
870 log->l_prev_block = i;
871 log->l_curr_block = (int)*head_blk;
872 log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
873 if (found == 2)
874 log->l_curr_cycle++;
875 log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
876 log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
877 log->l_grant_reserve_cycle = log->l_curr_cycle;
878 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
879 log->l_grant_write_cycle = log->l_curr_cycle;
880 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
881
882 /*
883 * Look for unmount record. If we find it, then we know there
884 * was a clean unmount. Since 'i' could be the last block in
885 * the physical log, we convert to a log block before comparing
886 * to the head_blk.
887 *
888 * Save the current tail lsn to use to pass to
889 * xlog_clear_stale_blocks() below. We won't want to clear the
890 * unmount record if there is one, so we pass the lsn of the
891 * unmount record rather than the block after it.
892 */
893 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
894 int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
895 int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
896
897 if ((h_version & XLOG_VERSION_2) &&
898 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
899 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
900 if (h_size % XLOG_HEADER_CYCLE_SIZE)
901 hblks++;
902 } else {
903 hblks = 1;
904 }
905 } else {
906 hblks = 1;
907 }
908 after_umount_blk = (i + hblks + (int)
909 BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
910 tail_lsn = log->l_tail_lsn;
911 if (*head_blk == after_umount_blk &&
912 INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
913 umount_data_blk = (i + hblks) % log->l_logBBsize;
914 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
915 goto bread_err;
916 }
917 offset = xlog_align(log, umount_data_blk, 1, bp);
918 op_head = (xlog_op_header_t *)offset;
919 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
920 /*
921 * Set tail and last sync so that newly written
922 * log records will point recovery to after the
923 * current unmount record.
924 */
925 ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
926 after_umount_blk);
927 ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
928 after_umount_blk);
929 *tail_blk = after_umount_blk;
930 }
931 }
932
933 /*
934 * Make sure that there are no blocks in front of the head
935 * with the same cycle number as the head. This can happen
936 * because we allow multiple outstanding log writes concurrently,
937 * and the later writes might make it out before earlier ones.
938 *
939 * We use the lsn from before modifying it so that we'll never
940 * overwrite the unmount record after a clean unmount.
941 *
942 * Do this only if we are going to recover the filesystem
943 *
944 * NOTE: This used to say "if (!readonly)"
945 * However on Linux, we can & do recover a read-only filesystem.
946 * We only skip recovery if NORECOVERY is specified on mount,
947 * in which case we would not be here.
948 *
949 * But... if the -device- itself is readonly, just skip this.
950 * We can't recover this device anyway, so it won't matter.
951 */
952 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
953 error = xlog_clear_stale_blocks(log, tail_lsn);
954 }
955
956bread_err:
957exit:
958 xlog_put_bp(bp);
959
960 if (error)
961 xlog_warn("XFS: failed to locate log tail");
962 return error;
963}
964
965/*
966 * Is the log zeroed at all?
967 *
968 * The last binary search should be changed to perform an X block read
969 * once X becomes small enough. You can then search linearly through
970 * the X blocks. This will cut down on the number of reads we need to do.
971 *
972 * If the log is partially zeroed, this routine will pass back the blkno
973 * of the first block with cycle number 0. It won't have a complete LR
974 * preceding it.
975 *
976 * Return:
977 * 0 => the log is completely written to
978 * -1 => use *blk_no as the first block of the log
979 * >0 => error has occurred
980 */
981int
982xlog_find_zeroed(
983 xlog_t *log,
984 xfs_daddr_t *blk_no)
985{
986 xfs_buf_t *bp;
987 xfs_caddr_t offset;
988 uint first_cycle, last_cycle;
989 xfs_daddr_t new_blk, last_blk, start_blk;
990 xfs_daddr_t num_scan_bblks;
991 int error, log_bbnum = log->l_logBBsize;
992
993 /* check totally zeroed log */
994 bp = xlog_get_bp(log, 1);
995 if (!bp)
996 return ENOMEM;
997 if ((error = xlog_bread(log, 0, 1, bp)))
998 goto bp_err;
999 offset = xlog_align(log, 0, 1, bp);
1000 first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1001 if (first_cycle == 0) { /* completely zeroed log */
1002 *blk_no = 0;
1003 xlog_put_bp(bp);
1004 return -1;
1005 }
1006
1007 /* check partially zeroed log */
1008 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1009 goto bp_err;
1010 offset = xlog_align(log, log_bbnum-1, 1, bp);
1011 last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
1012 if (last_cycle != 0) { /* log completely written to */
1013 xlog_put_bp(bp);
1014 return 0;
1015 } else if (first_cycle != 1) {
1016 /*
1017 * If the cycle of the last block is zero, the cycle of
1018 * the first block must be 1. If it's not, maybe we're
1019 * not looking at a log... Bail out.
1020 */
1021 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1022 return XFS_ERROR(EINVAL);
1023 }
1024
1025 /* we have a partially zeroed log */
1026 last_blk = log_bbnum-1;
1027 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1028 goto bp_err;
1029
1030 /*
1031 * Validate the answer. Because there is no way to guarantee that
1032 * the entire log is made up of log records which are the same size,
1033 * we scan over the defined maximum blocks. At this point, the maximum
1034 * is not chosen to mean anything special. XXXmiken
1035 */
1036 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1037 ASSERT(num_scan_bblks <= INT_MAX);
1038
1039 if (last_blk < num_scan_bblks)
1040 num_scan_bblks = last_blk;
1041 start_blk = last_blk - num_scan_bblks;
1042
1043 /*
1044 * We search for any instances of cycle number 0 that occur before
1045 * our current estimate of the head. What we're trying to detect is
1046 * 1 ... | 0 | 1 | 0...
1047 * ^ binary search ends here
1048 */
1049 if ((error = xlog_find_verify_cycle(log, start_blk,
1050 (int)num_scan_bblks, 0, &new_blk)))
1051 goto bp_err;
1052 if (new_blk != -1)
1053 last_blk = new_blk;
1054
1055 /*
1056 * Potentially backup over partial log record write. We don't need
1057 * to search the end of the log because we know it is zero.
1058 */
1059 if ((error = xlog_find_verify_log_record(log, start_blk,
1060 &last_blk, 0)) == -1) {
1061 error = XFS_ERROR(EIO);
1062 goto bp_err;
1063 } else if (error)
1064 goto bp_err;
1065
1066 *blk_no = last_blk;
1067bp_err:
1068 xlog_put_bp(bp);
1069 if (error)
1070 return error;
1071 return -1;
1072}
1073
1074/*
1075 * These are simple subroutines used by xlog_clear_stale_blocks() below
1076 * to initialize a buffer full of empty log record headers and write
1077 * them into the log.
1078 */
1079STATIC void
1080xlog_add_record(
1081 xlog_t *log,
1082 xfs_caddr_t buf,
1083 int cycle,
1084 int block,
1085 int tail_cycle,
1086 int tail_block)
1087{
1088 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1089
1090 memset(buf, 0, BBSIZE);
1091 INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
1092 INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
1093 INT_SET(recp->h_version, ARCH_CONVERT,
1094 XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
1095 ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
1096 ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
1097 INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
1098 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1099}
1100
1101STATIC int
1102xlog_write_log_records(
1103 xlog_t *log,
1104 int cycle,
1105 int start_block,
1106 int blocks,
1107 int tail_cycle,
1108 int tail_block)
1109{
1110 xfs_caddr_t offset;
1111 xfs_buf_t *bp;
1112 int balign, ealign;
1113 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1114 int end_block = start_block + blocks;
1115 int bufblks;
1116 int error = 0;
1117 int i, j = 0;
1118
1119 bufblks = 1 << ffs(blocks);
1120 while (!(bp = xlog_get_bp(log, bufblks))) {
1121 bufblks >>= 1;
1122 if (bufblks <= log->l_sectbb_log)
1123 return ENOMEM;
1124 }
1125
1126 /* We may need to do a read at the start to fill in part of
1127 * the buffer in the starting sector not covered by the first
1128 * write below.
1129 */
1130 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1131 if (balign != start_block) {
1132 if ((error = xlog_bread(log, start_block, 1, bp))) {
1133 xlog_put_bp(bp);
1134 return error;
1135 }
1136 j = start_block - balign;
1137 }
1138
1139 for (i = start_block; i < end_block; i += bufblks) {
1140 int bcount, endcount;
1141
1142 bcount = min(bufblks, end_block - start_block);
1143 endcount = bcount - j;
1144
1145 /* We may need to do a read at the end to fill in part of
1146 * the buffer in the final sector not covered by the write.
1147 * If this is the same sector as the above read, skip it.
1148 */
1149 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1150 if (j == 0 && (start_block + endcount > ealign)) {
1151 offset = XFS_BUF_PTR(bp);
1152 balign = BBTOB(ealign - start_block);
1153 XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
1154 if ((error = xlog_bread(log, ealign, sectbb, bp)))
1155 break;
1156 XFS_BUF_SET_PTR(bp, offset, bufblks);
1157 }
1158
1159 offset = xlog_align(log, start_block, endcount, bp);
1160 for (; j < endcount; j++) {
1161 xlog_add_record(log, offset, cycle, i+j,
1162 tail_cycle, tail_block);
1163 offset += BBSIZE;
1164 }
1165 error = xlog_bwrite(log, start_block, endcount, bp);
1166 if (error)
1167 break;
1168 start_block += endcount;
1169 j = 0;
1170 }
1171 xlog_put_bp(bp);
1172 return error;
1173}
1174
1175/*
1176 * This routine is called to blow away any incomplete log writes out
1177 * in front of the log head. We do this so that we won't become confused
1178 * if we come up, write only a little bit more, and then crash again.
1179 * If we leave the partial log records out there, this situation could
1180 * cause us to think those partial writes are valid blocks since they
1181 * have the current cycle number. We get rid of them by overwriting them
1182 * with empty log records with the old cycle number rather than the
1183 * current one.
1184 *
1185 * The tail lsn is passed in rather than taken from
1186 * the log so that we will not write over the unmount record after a
1187 * clean unmount in a 512 block log. Doing so would leave the log without
1188 * any valid log records in it until a new one was written. If we crashed
1189 * during that time we would not be able to recover.
1190 */
1191STATIC int
1192xlog_clear_stale_blocks(
1193 xlog_t *log,
1194 xfs_lsn_t tail_lsn)
1195{
1196 int tail_cycle, head_cycle;
1197 int tail_block, head_block;
1198 int tail_distance, max_distance;
1199 int distance;
1200 int error;
1201
1202 tail_cycle = CYCLE_LSN(tail_lsn);
1203 tail_block = BLOCK_LSN(tail_lsn);
1204 head_cycle = log->l_curr_cycle;
1205 head_block = log->l_curr_block;
1206
1207 /*
1208 * Figure out the distance between the new head of the log
1209 * and the tail. We want to write over any blocks beyond the
1210 * head that we may have written just before the crash, but
1211 * we don't want to overwrite the tail of the log.
1212 */
1213 if (head_cycle == tail_cycle) {
1214 /*
1215 * The tail is behind the head in the physical log,
1216 * so the distance from the head to the tail is the
1217 * distance from the head to the end of the log plus
1218 * the distance from the beginning of the log to the
1219 * tail.
1220 */
1221 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1222 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1223 XFS_ERRLEVEL_LOW, log->l_mp);
1224 return XFS_ERROR(EFSCORRUPTED);
1225 }
1226 tail_distance = tail_block + (log->l_logBBsize - head_block);
1227 } else {
1228 /*
1229 * The head is behind the tail in the physical log,
1230 * so the distance from the head to the tail is just
1231 * the tail block minus the head block.
1232 */
1233 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1234 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1235 XFS_ERRLEVEL_LOW, log->l_mp);
1236 return XFS_ERROR(EFSCORRUPTED);
1237 }
1238 tail_distance = tail_block - head_block;
1239 }
1240
1241 /*
1242 * If the head is right up against the tail, we can't clear
1243 * anything.
1244 */
1245 if (tail_distance <= 0) {
1246 ASSERT(tail_distance == 0);
1247 return 0;
1248 }
1249
1250 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1251 /*
1252 * Take the smaller of the maximum amount of outstanding I/O
1253 * we could have and the distance to the tail to clear out.
1254 * We take the smaller so that we don't overwrite the tail and
1255 * we don't waste all day writing from the head to the tail
1256 * for no reason.
1257 */
1258 max_distance = MIN(max_distance, tail_distance);
1259
1260 if ((head_block + max_distance) <= log->l_logBBsize) {
1261 /*
1262 * We can stomp all the blocks we need to without
1263 * wrapping around the end of the log. Just do it
1264 * in a single write. Use the cycle number of the
1265 * current cycle minus one so that the log will look like:
1266 * n ... | n - 1 ...
1267 */
1268 error = xlog_write_log_records(log, (head_cycle - 1),
1269 head_block, max_distance, tail_cycle,
1270 tail_block);
1271 if (error)
1272 return error;
1273 } else {
1274 /*
1275 * We need to wrap around the end of the physical log in
1276 * order to clear all the blocks. Do it in two separate
1277 * I/Os. The first write should be from the head to the
1278 * end of the physical log, and it should use the current
1279 * cycle number minus one just like above.
1280 */
1281 distance = log->l_logBBsize - head_block;
1282 error = xlog_write_log_records(log, (head_cycle - 1),
1283 head_block, distance, tail_cycle,
1284 tail_block);
1285
1286 if (error)
1287 return error;
1288
1289 /*
1290 * Now write the blocks at the start of the physical log.
1291 * This writes the remainder of the blocks we want to clear.
1292 * It uses the current cycle number since we're now on the
1293 * same cycle as the head so that we get:
1294 * n ... n ... | n - 1 ...
1295 * ^^^^^ blocks we're writing
1296 */
1297 distance = max_distance - (log->l_logBBsize - head_block);
1298 error = xlog_write_log_records(log, head_cycle, 0, distance,
1299 tail_cycle, tail_block);
1300 if (error)
1301 return error;
1302 }
1303
1304 return 0;
1305}
1306
1307/******************************************************************************
1308 *
1309 * Log recover routines
1310 *
1311 ******************************************************************************
1312 */
1313
1314STATIC xlog_recover_t *
1315xlog_recover_find_tid(
1316 xlog_recover_t *q,
1317 xlog_tid_t tid)
1318{
1319 xlog_recover_t *p = q;
1320
1321 while (p != NULL) {
1322 if (p->r_log_tid == tid)
1323 break;
1324 p = p->r_next;
1325 }
1326 return p;
1327}
1328
1329STATIC void
1330xlog_recover_put_hashq(
1331 xlog_recover_t **q,
1332 xlog_recover_t *trans)
1333{
1334 trans->r_next = *q;
1335 *q = trans;
1336}
1337
1338STATIC void
1339xlog_recover_add_item(
1340 xlog_recover_item_t **itemq)
1341{
1342 xlog_recover_item_t *item;
1343
1344 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1345 xlog_recover_insert_item_backq(itemq, item);
1346}
1347
1348STATIC int
1349xlog_recover_add_to_cont_trans(
1350 xlog_recover_t *trans,
1351 xfs_caddr_t dp,
1352 int len)
1353{
1354 xlog_recover_item_t *item;
1355 xfs_caddr_t ptr, old_ptr;
1356 int old_len;
1357
1358 item = trans->r_itemq;
1359 if (item == 0) {
1360 /* finish copying rest of trans header */
1361 xlog_recover_add_item(&trans->r_itemq);
1362 ptr = (xfs_caddr_t) &trans->r_theader +
1363 sizeof(xfs_trans_header_t) - len;
1364 memcpy(ptr, dp, len); /* d, s, l */
1365 return 0;
1366 }
1367 item = item->ri_prev;
1368
1369 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1370 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1371
760dea67 1372 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1373 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1374 item->ri_buf[item->ri_cnt-1].i_len += len;
1375 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1376 return 0;
1377}
1378
1379/*
1380 * The next region to add is the start of a new region. It could be
1381 * a whole region or it could be the first part of a new region. Because
1382 * of this, the assumption here is that the type and size fields of all
1383 * format structures fit into the first 32 bits of the structure.
1384 *
1385 * This works because all regions must be 32 bit aligned. Therefore, we
1386 * either have both fields or we have neither field. In the case we have
1387 * neither field, the data part of the region is zero length. We only have
1388 * a log_op_header and can throw away the header since a new one will appear
1389 * later. If we have at least 4 bytes, then we can determine how many regions
1390 * will appear in the current log item.
1391 */
1392STATIC int
1393xlog_recover_add_to_trans(
1394 xlog_recover_t *trans,
1395 xfs_caddr_t dp,
1396 int len)
1397{
1398 xfs_inode_log_format_t *in_f; /* any will do */
1399 xlog_recover_item_t *item;
1400 xfs_caddr_t ptr;
1401
1402 if (!len)
1403 return 0;
1404 item = trans->r_itemq;
1405 if (item == 0) {
1406 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1407 if (len == sizeof(xfs_trans_header_t))
1408 xlog_recover_add_item(&trans->r_itemq);
1409 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1410 return 0;
1411 }
1412
1413 ptr = kmem_alloc(len, KM_SLEEP);
1414 memcpy(ptr, dp, len);
1415 in_f = (xfs_inode_log_format_t *)ptr;
1416
1417 if (item->ri_prev->ri_total != 0 &&
1418 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1419 xlog_recover_add_item(&trans->r_itemq);
1420 }
1421 item = trans->r_itemq;
1422 item = item->ri_prev;
1423
1424 if (item->ri_total == 0) { /* first region to be added */
1425 item->ri_total = in_f->ilf_size;
1426 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1427 item->ri_buf = kmem_zalloc((item->ri_total *
1428 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1429 }
1430 ASSERT(item->ri_total > item->ri_cnt);
1431 /* Description region is ri_buf[0] */
1432 item->ri_buf[item->ri_cnt].i_addr = ptr;
1433 item->ri_buf[item->ri_cnt].i_len = len;
1434 item->ri_cnt++;
1435 return 0;
1436}
1437
1438STATIC void
1439xlog_recover_new_tid(
1440 xlog_recover_t **q,
1441 xlog_tid_t tid,
1442 xfs_lsn_t lsn)
1443{
1444 xlog_recover_t *trans;
1445
1446 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1447 trans->r_log_tid = tid;
1448 trans->r_lsn = lsn;
1449 xlog_recover_put_hashq(q, trans);
1450}
1451
1452STATIC int
1453xlog_recover_unlink_tid(
1454 xlog_recover_t **q,
1455 xlog_recover_t *trans)
1456{
1457 xlog_recover_t *tp;
1458 int found = 0;
1459
1460 ASSERT(trans != 0);
1461 if (trans == *q) {
1462 *q = (*q)->r_next;
1463 } else {
1464 tp = *q;
1465 while (tp != 0) {
1466 if (tp->r_next == trans) {
1467 found = 1;
1468 break;
1469 }
1470 tp = tp->r_next;
1471 }
1472 if (!found) {
1473 xlog_warn(
1474 "XFS: xlog_recover_unlink_tid: trans not found");
1475 ASSERT(0);
1476 return XFS_ERROR(EIO);
1477 }
1478 tp->r_next = tp->r_next->r_next;
1479 }
1480 return 0;
1481}
1482
1483STATIC void
1484xlog_recover_insert_item_backq(
1485 xlog_recover_item_t **q,
1486 xlog_recover_item_t *item)
1487{
1488 if (*q == 0) {
1489 item->ri_prev = item->ri_next = item;
1490 *q = item;
1491 } else {
1492 item->ri_next = *q;
1493 item->ri_prev = (*q)->ri_prev;
1494 (*q)->ri_prev = item;
1495 item->ri_prev->ri_next = item;
1496 }
1497}
1498
1499STATIC void
1500xlog_recover_insert_item_frontq(
1501 xlog_recover_item_t **q,
1502 xlog_recover_item_t *item)
1503{
1504 xlog_recover_insert_item_backq(q, item);
1505 *q = item;
1506}
1507
1508STATIC int
1509xlog_recover_reorder_trans(
1510 xlog_t *log,
1511 xlog_recover_t *trans)
1512{
1513 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1514 xfs_buf_log_format_t *buf_f;
1515 xfs_buf_log_format_v1_t *obuf_f;
1516 ushort flags = 0;
1517
1518 first_item = itemq = trans->r_itemq;
1519 trans->r_itemq = NULL;
1520 do {
1521 itemq_next = itemq->ri_next;
1522 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1523 switch (ITEM_TYPE(itemq)) {
1524 case XFS_LI_BUF:
1525 flags = buf_f->blf_flags;
1526 break;
1527 case XFS_LI_6_1_BUF:
1528 case XFS_LI_5_3_BUF:
1529 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1530 flags = obuf_f->blf_flags;
1531 break;
1532 }
1533
1534 switch (ITEM_TYPE(itemq)) {
1535 case XFS_LI_BUF:
1536 case XFS_LI_6_1_BUF:
1537 case XFS_LI_5_3_BUF:
1538 if (!(flags & XFS_BLI_CANCEL)) {
1539 xlog_recover_insert_item_frontq(&trans->r_itemq,
1540 itemq);
1541 break;
1542 }
1543 case XFS_LI_INODE:
1544 case XFS_LI_6_1_INODE:
1545 case XFS_LI_5_3_INODE:
1546 case XFS_LI_DQUOT:
1547 case XFS_LI_QUOTAOFF:
1548 case XFS_LI_EFD:
1549 case XFS_LI_EFI:
1550 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1551 break;
1552 default:
1553 xlog_warn(
1554 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1555 ASSERT(0);
1556 return XFS_ERROR(EIO);
1557 }
1558 itemq = itemq_next;
1559 } while (first_item != itemq);
1560 return 0;
1561}
1562
1563/*
1564 * Build up the table of buf cancel records so that we don't replay
1565 * cancelled data in the second pass. For buffer records that are
1566 * not cancel records, there is nothing to do here so we just return.
1567 *
1568 * If we get a cancel record which is already in the table, this indicates
1569 * that the buffer was cancelled multiple times. In order to ensure
1570 * that during pass 2 we keep the record in the table until we reach its
1571 * last occurrence in the log, we keep a reference count in the cancel
1572 * record in the table to tell us how many times we expect to see this
1573 * record during the second pass.
1574 */
1575STATIC void
1576xlog_recover_do_buffer_pass1(
1577 xlog_t *log,
1578 xfs_buf_log_format_t *buf_f)
1579{
1580 xfs_buf_cancel_t *bcp;
1581 xfs_buf_cancel_t *nextp;
1582 xfs_buf_cancel_t *prevp;
1583 xfs_buf_cancel_t **bucket;
1584 xfs_buf_log_format_v1_t *obuf_f;
1585 xfs_daddr_t blkno = 0;
1586 uint len = 0;
1587 ushort flags = 0;
1588
1589 switch (buf_f->blf_type) {
1590 case XFS_LI_BUF:
1591 blkno = buf_f->blf_blkno;
1592 len = buf_f->blf_len;
1593 flags = buf_f->blf_flags;
1594 break;
1595 case XFS_LI_6_1_BUF:
1596 case XFS_LI_5_3_BUF:
1597 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1598 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1599 len = obuf_f->blf_len;
1600 flags = obuf_f->blf_flags;
1601 break;
1602 }
1603
1604 /*
1605 * If this isn't a cancel buffer item, then just return.
1606 */
1607 if (!(flags & XFS_BLI_CANCEL))
1608 return;
1609
1610 /*
1611 * Insert an xfs_buf_cancel record into the hash table of
1612 * them. If there is already an identical record, bump
1613 * its reference count.
1614 */
1615 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1616 XLOG_BC_TABLE_SIZE];
1617 /*
1618 * If the hash bucket is empty then just insert a new record into
1619 * the bucket.
1620 */
1621 if (*bucket == NULL) {
1622 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1623 KM_SLEEP);
1624 bcp->bc_blkno = blkno;
1625 bcp->bc_len = len;
1626 bcp->bc_refcount = 1;
1627 bcp->bc_next = NULL;
1628 *bucket = bcp;
1629 return;
1630 }
1631
1632 /*
1633 * The hash bucket is not empty, so search for duplicates of our
1634 * record. If we find one them just bump its refcount. If not
1635 * then add us at the end of the list.
1636 */
1637 prevp = NULL;
1638 nextp = *bucket;
1639 while (nextp != NULL) {
1640 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1641 nextp->bc_refcount++;
1642 return;
1643 }
1644 prevp = nextp;
1645 nextp = nextp->bc_next;
1646 }
1647 ASSERT(prevp != NULL);
1648 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1649 KM_SLEEP);
1650 bcp->bc_blkno = blkno;
1651 bcp->bc_len = len;
1652 bcp->bc_refcount = 1;
1653 bcp->bc_next = NULL;
1654 prevp->bc_next = bcp;
1655}
1656
1657/*
1658 * Check to see whether the buffer being recovered has a corresponding
1659 * entry in the buffer cancel record table. If it does then return 1
1660 * so that it will be cancelled, otherwise return 0. If the buffer is
1661 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1662 * the refcount on the entry in the table and remove it from the table
1663 * if this is the last reference.
1664 *
1665 * We remove the cancel record from the table when we encounter its
1666 * last occurrence in the log so that if the same buffer is re-used
1667 * again after its last cancellation we actually replay the changes
1668 * made at that point.
1669 */
1670STATIC int
1671xlog_check_buffer_cancelled(
1672 xlog_t *log,
1673 xfs_daddr_t blkno,
1674 uint len,
1675 ushort flags)
1676{
1677 xfs_buf_cancel_t *bcp;
1678 xfs_buf_cancel_t *prevp;
1679 xfs_buf_cancel_t **bucket;
1680
1681 if (log->l_buf_cancel_table == NULL) {
1682 /*
1683 * There is nothing in the table built in pass one,
1684 * so this buffer must not be cancelled.
1685 */
1686 ASSERT(!(flags & XFS_BLI_CANCEL));
1687 return 0;
1688 }
1689
1690 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1691 XLOG_BC_TABLE_SIZE];
1692 bcp = *bucket;
1693 if (bcp == NULL) {
1694 /*
1695 * There is no corresponding entry in the table built
1696 * in pass one, so this buffer has not been cancelled.
1697 */
1698 ASSERT(!(flags & XFS_BLI_CANCEL));
1699 return 0;
1700 }
1701
1702 /*
1703 * Search for an entry in the buffer cancel table that
1704 * matches our buffer.
1705 */
1706 prevp = NULL;
1707 while (bcp != NULL) {
1708 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1709 /*
1710 * We've go a match, so return 1 so that the
1711 * recovery of this buffer is cancelled.
1712 * If this buffer is actually a buffer cancel
1713 * log item, then decrement the refcount on the
1714 * one in the table and remove it if this is the
1715 * last reference.
1716 */
1717 if (flags & XFS_BLI_CANCEL) {
1718 bcp->bc_refcount--;
1719 if (bcp->bc_refcount == 0) {
1720 if (prevp == NULL) {
1721 *bucket = bcp->bc_next;
1722 } else {
1723 prevp->bc_next = bcp->bc_next;
1724 }
1725 kmem_free(bcp,
1726 sizeof(xfs_buf_cancel_t));
1727 }
1728 }
1729 return 1;
1730 }
1731 prevp = bcp;
1732 bcp = bcp->bc_next;
1733 }
1734 /*
1735 * We didn't find a corresponding entry in the table, so
1736 * return 0 so that the buffer is NOT cancelled.
1737 */
1738 ASSERT(!(flags & XFS_BLI_CANCEL));
1739 return 0;
1740}
1741
1742STATIC int
1743xlog_recover_do_buffer_pass2(
1744 xlog_t *log,
1745 xfs_buf_log_format_t *buf_f)
1746{
1747 xfs_buf_log_format_v1_t *obuf_f;
1748 xfs_daddr_t blkno = 0;
1749 ushort flags = 0;
1750 uint len = 0;
1751
1752 switch (buf_f->blf_type) {
1753 case XFS_LI_BUF:
1754 blkno = buf_f->blf_blkno;
1755 flags = buf_f->blf_flags;
1756 len = buf_f->blf_len;
1757 break;
1758 case XFS_LI_6_1_BUF:
1759 case XFS_LI_5_3_BUF:
1760 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1761 blkno = (xfs_daddr_t) obuf_f->blf_blkno;
1762 flags = obuf_f->blf_flags;
1763 len = (xfs_daddr_t) obuf_f->blf_len;
1764 break;
1765 }
1766
1767 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1768}
1769
1770/*
1771 * Perform recovery for a buffer full of inodes. In these buffers,
1772 * the only data which should be recovered is that which corresponds
1773 * to the di_next_unlinked pointers in the on disk inode structures.
1774 * The rest of the data for the inodes is always logged through the
1775 * inodes themselves rather than the inode buffer and is recovered
1776 * in xlog_recover_do_inode_trans().
1777 *
1778 * The only time when buffers full of inodes are fully recovered is
1779 * when the buffer is full of newly allocated inodes. In this case
1780 * the buffer will not be marked as an inode buffer and so will be
1781 * sent to xlog_recover_do_reg_buffer() below during recovery.
1782 */
1783STATIC int
1784xlog_recover_do_inode_buffer(
1785 xfs_mount_t *mp,
1786 xlog_recover_item_t *item,
1787 xfs_buf_t *bp,
1788 xfs_buf_log_format_t *buf_f)
1789{
1790 int i;
1791 int item_index;
1792 int bit;
1793 int nbits;
1794 int reg_buf_offset;
1795 int reg_buf_bytes;
1796 int next_unlinked_offset;
1797 int inodes_per_buf;
1798 xfs_agino_t *logged_nextp;
1799 xfs_agino_t *buffer_nextp;
1800 xfs_buf_log_format_v1_t *obuf_f;
1801 unsigned int *data_map = NULL;
1802 unsigned int map_size = 0;
1803
1804 switch (buf_f->blf_type) {
1805 case XFS_LI_BUF:
1806 data_map = buf_f->blf_data_map;
1807 map_size = buf_f->blf_map_size;
1808 break;
1809 case XFS_LI_6_1_BUF:
1810 case XFS_LI_5_3_BUF:
1811 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1812 data_map = obuf_f->blf_data_map;
1813 map_size = obuf_f->blf_map_size;
1814 break;
1815 }
1816 /*
1817 * Set the variables corresponding to the current region to
1818 * 0 so that we'll initialize them on the first pass through
1819 * the loop.
1820 */
1821 reg_buf_offset = 0;
1822 reg_buf_bytes = 0;
1823 bit = 0;
1824 nbits = 0;
1825 item_index = 0;
1826 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1827 for (i = 0; i < inodes_per_buf; i++) {
1828 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1829 offsetof(xfs_dinode_t, di_next_unlinked);
1830
1831 while (next_unlinked_offset >=
1832 (reg_buf_offset + reg_buf_bytes)) {
1833 /*
1834 * The next di_next_unlinked field is beyond
1835 * the current logged region. Find the next
1836 * logged region that contains or is beyond
1837 * the current di_next_unlinked field.
1838 */
1839 bit += nbits;
1840 bit = xfs_next_bit(data_map, map_size, bit);
1841
1842 /*
1843 * If there are no more logged regions in the
1844 * buffer, then we're done.
1845 */
1846 if (bit == -1) {
1847 return 0;
1848 }
1849
1850 nbits = xfs_contig_bits(data_map, map_size,
1851 bit);
1852 ASSERT(nbits > 0);
1853 reg_buf_offset = bit << XFS_BLI_SHIFT;
1854 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1855 item_index++;
1856 }
1857
1858 /*
1859 * If the current logged region starts after the current
1860 * di_next_unlinked field, then move on to the next
1861 * di_next_unlinked field.
1862 */
1863 if (next_unlinked_offset < reg_buf_offset) {
1864 continue;
1865 }
1866
1867 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1868 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1869 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1870
1871 /*
1872 * The current logged region contains a copy of the
1873 * current di_next_unlinked field. Extract its value
1874 * and copy it to the buffer copy.
1875 */
1876 logged_nextp = (xfs_agino_t *)
1877 ((char *)(item->ri_buf[item_index].i_addr) +
1878 (next_unlinked_offset - reg_buf_offset));
1879 if (unlikely(*logged_nextp == 0)) {
1880 xfs_fs_cmn_err(CE_ALERT, mp,
1881 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1882 item, bp);
1883 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1884 XFS_ERRLEVEL_LOW, mp);
1885 return XFS_ERROR(EFSCORRUPTED);
1886 }
1887
1888 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1889 next_unlinked_offset);
87c199c2 1890 *buffer_nextp = *logged_nextp;
1da177e4
LT
1891 }
1892
1893 return 0;
1894}
1895
1896/*
1897 * Perform a 'normal' buffer recovery. Each logged region of the
1898 * buffer should be copied over the corresponding region in the
1899 * given buffer. The bitmap in the buf log format structure indicates
1900 * where to place the logged data.
1901 */
1902/*ARGSUSED*/
1903STATIC void
1904xlog_recover_do_reg_buffer(
1905 xfs_mount_t *mp,
1906 xlog_recover_item_t *item,
1907 xfs_buf_t *bp,
1908 xfs_buf_log_format_t *buf_f)
1909{
1910 int i;
1911 int bit;
1912 int nbits;
1913 xfs_buf_log_format_v1_t *obuf_f;
1914 unsigned int *data_map = NULL;
1915 unsigned int map_size = 0;
1916 int error;
1917
1918 switch (buf_f->blf_type) {
1919 case XFS_LI_BUF:
1920 data_map = buf_f->blf_data_map;
1921 map_size = buf_f->blf_map_size;
1922 break;
1923 case XFS_LI_6_1_BUF:
1924 case XFS_LI_5_3_BUF:
1925 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
1926 data_map = obuf_f->blf_data_map;
1927 map_size = obuf_f->blf_map_size;
1928 break;
1929 }
1930 bit = 0;
1931 i = 1; /* 0 is the buf format structure */
1932 while (1) {
1933 bit = xfs_next_bit(data_map, map_size, bit);
1934 if (bit == -1)
1935 break;
1936 nbits = xfs_contig_bits(data_map, map_size, bit);
1937 ASSERT(nbits > 0);
1938 ASSERT(item->ri_buf[i].i_addr != 0);
1939 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1940 ASSERT(XFS_BUF_COUNT(bp) >=
1941 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1942
1943 /*
1944 * Do a sanity check if this is a dquot buffer. Just checking
1945 * the first dquot in the buffer should do. XXXThis is
1946 * probably a good thing to do for other buf types also.
1947 */
1948 error = 0;
c8ad20ff
NS
1949 if (buf_f->blf_flags &
1950 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
1951 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1952 item->ri_buf[i].i_addr,
1953 -1, 0, XFS_QMOPT_DOWARN,
1954 "dquot_buf_recover");
1955 }
1956 if (!error)
1957 memcpy(xfs_buf_offset(bp,
1958 (uint)bit << XFS_BLI_SHIFT), /* dest */
1959 item->ri_buf[i].i_addr, /* source */
1960 nbits<<XFS_BLI_SHIFT); /* length */
1961 i++;
1962 bit += nbits;
1963 }
1964
1965 /* Shouldn't be any more regions */
1966 ASSERT(i == item->ri_total);
1967}
1968
1969/*
1970 * Do some primitive error checking on ondisk dquot data structures.
1971 */
1972int
1973xfs_qm_dqcheck(
1974 xfs_disk_dquot_t *ddq,
1975 xfs_dqid_t id,
1976 uint type, /* used only when IO_dorepair is true */
1977 uint flags,
1978 char *str)
1979{
1980 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1981 int errs = 0;
1982
1983 /*
1984 * We can encounter an uninitialized dquot buffer for 2 reasons:
1985 * 1. If we crash while deleting the quotainode(s), and those blks got
1986 * used for user data. This is because we take the path of regular
1987 * file deletion; however, the size field of quotainodes is never
1988 * updated, so all the tricks that we play in itruncate_finish
1989 * don't quite matter.
1990 *
1991 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1992 * But the allocation will be replayed so we'll end up with an
1993 * uninitialized quota block.
1994 *
1995 * This is all fine; things are still consistent, and we haven't lost
1996 * any quota information. Just don't complain about bad dquot blks.
1997 */
1149d96a 1998 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
1999 if (flags & XFS_QMOPT_DOWARN)
2000 cmn_err(CE_ALERT,
2001 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2002 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2003 errs++;
2004 }
1149d96a 2005 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
2006 if (flags & XFS_QMOPT_DOWARN)
2007 cmn_err(CE_ALERT,
2008 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2009 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2010 errs++;
2011 }
2012
1149d96a
CH
2013 if (ddq->d_flags != XFS_DQ_USER &&
2014 ddq->d_flags != XFS_DQ_PROJ &&
2015 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
2016 if (flags & XFS_QMOPT_DOWARN)
2017 cmn_err(CE_ALERT,
2018 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2019 str, id, ddq->d_flags);
1da177e4
LT
2020 errs++;
2021 }
2022
1149d96a 2023 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
2024 if (flags & XFS_QMOPT_DOWARN)
2025 cmn_err(CE_ALERT,
2026 "%s : ondisk-dquot 0x%p, ID mismatch: "
2027 "0x%x expected, found id 0x%x",
1149d96a 2028 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2029 errs++;
2030 }
2031
2032 if (!errs && ddq->d_id) {
1149d96a
CH
2033 if (ddq->d_blk_softlimit &&
2034 be64_to_cpu(ddq->d_bcount) >=
2035 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2036 if (!ddq->d_btimer) {
2037 if (flags & XFS_QMOPT_DOWARN)
2038 cmn_err(CE_ALERT,
2039 "%s : Dquot ID 0x%x (0x%p) "
2040 "BLK TIMER NOT STARTED",
1149d96a 2041 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2042 errs++;
2043 }
2044 }
1149d96a
CH
2045 if (ddq->d_ino_softlimit &&
2046 be64_to_cpu(ddq->d_icount) >=
2047 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2048 if (!ddq->d_itimer) {
2049 if (flags & XFS_QMOPT_DOWARN)
2050 cmn_err(CE_ALERT,
2051 "%s : Dquot ID 0x%x (0x%p) "
2052 "INODE TIMER NOT STARTED",
1149d96a 2053 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2054 errs++;
2055 }
2056 }
1149d96a
CH
2057 if (ddq->d_rtb_softlimit &&
2058 be64_to_cpu(ddq->d_rtbcount) >=
2059 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2060 if (!ddq->d_rtbtimer) {
2061 if (flags & XFS_QMOPT_DOWARN)
2062 cmn_err(CE_ALERT,
2063 "%s : Dquot ID 0x%x (0x%p) "
2064 "RTBLK TIMER NOT STARTED",
1149d96a 2065 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2066 errs++;
2067 }
2068 }
2069 }
2070
2071 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2072 return errs;
2073
2074 if (flags & XFS_QMOPT_DOWARN)
2075 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2076
2077 /*
2078 * Typically, a repair is only requested by quotacheck.
2079 */
2080 ASSERT(id != -1);
2081 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2082 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2083
2084 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2085 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2086 d->dd_diskdq.d_flags = type;
2087 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2088
2089 return errs;
2090}
2091
2092/*
2093 * Perform a dquot buffer recovery.
2094 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2095 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2096 * Else, treat it as a regular buffer and do recovery.
2097 */
2098STATIC void
2099xlog_recover_do_dquot_buffer(
2100 xfs_mount_t *mp,
2101 xlog_t *log,
2102 xlog_recover_item_t *item,
2103 xfs_buf_t *bp,
2104 xfs_buf_log_format_t *buf_f)
2105{
2106 uint type;
2107
2108 /*
2109 * Filesystems are required to send in quota flags at mount time.
2110 */
2111 if (mp->m_qflags == 0) {
2112 return;
2113 }
2114
2115 type = 0;
2116 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2117 type |= XFS_DQ_USER;
c8ad20ff
NS
2118 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2119 type |= XFS_DQ_PROJ;
1da177e4
LT
2120 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2121 type |= XFS_DQ_GROUP;
2122 /*
2123 * This type of quotas was turned off, so ignore this buffer
2124 */
2125 if (log->l_quotaoffs_flag & type)
2126 return;
2127
2128 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2129}
2130
2131/*
2132 * This routine replays a modification made to a buffer at runtime.
2133 * There are actually two types of buffer, regular and inode, which
2134 * are handled differently. Inode buffers are handled differently
2135 * in that we only recover a specific set of data from them, namely
2136 * the inode di_next_unlinked fields. This is because all other inode
2137 * data is actually logged via inode records and any data we replay
2138 * here which overlaps that may be stale.
2139 *
2140 * When meta-data buffers are freed at run time we log a buffer item
2141 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2142 * of the buffer in the log should not be replayed at recovery time.
2143 * This is so that if the blocks covered by the buffer are reused for
2144 * file data before we crash we don't end up replaying old, freed
2145 * meta-data into a user's file.
2146 *
2147 * To handle the cancellation of buffer log items, we make two passes
2148 * over the log during recovery. During the first we build a table of
2149 * those buffers which have been cancelled, and during the second we
2150 * only replay those buffers which do not have corresponding cancel
2151 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2152 * for more details on the implementation of the table of cancel records.
2153 */
2154STATIC int
2155xlog_recover_do_buffer_trans(
2156 xlog_t *log,
2157 xlog_recover_item_t *item,
2158 int pass)
2159{
2160 xfs_buf_log_format_t *buf_f;
2161 xfs_buf_log_format_v1_t *obuf_f;
2162 xfs_mount_t *mp;
2163 xfs_buf_t *bp;
2164 int error;
2165 int cancel;
2166 xfs_daddr_t blkno;
2167 int len;
2168 ushort flags;
2169
2170 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2171
2172 if (pass == XLOG_RECOVER_PASS1) {
2173 /*
2174 * In this pass we're only looking for buf items
2175 * with the XFS_BLI_CANCEL bit set.
2176 */
2177 xlog_recover_do_buffer_pass1(log, buf_f);
2178 return 0;
2179 } else {
2180 /*
2181 * In this pass we want to recover all the buffers
2182 * which have not been cancelled and are not
2183 * cancellation buffers themselves. The routine
2184 * we call here will tell us whether or not to
2185 * continue with the replay of this buffer.
2186 */
2187 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2188 if (cancel) {
2189 return 0;
2190 }
2191 }
2192 switch (buf_f->blf_type) {
2193 case XFS_LI_BUF:
2194 blkno = buf_f->blf_blkno;
2195 len = buf_f->blf_len;
2196 flags = buf_f->blf_flags;
2197 break;
2198 case XFS_LI_6_1_BUF:
2199 case XFS_LI_5_3_BUF:
2200 obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
2201 blkno = obuf_f->blf_blkno;
2202 len = obuf_f->blf_len;
2203 flags = obuf_f->blf_flags;
2204 break;
2205 default:
2206 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2207 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2208 buf_f->blf_type, log->l_mp->m_logname ?
2209 log->l_mp->m_logname : "internal");
1da177e4
LT
2210 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2211 XFS_ERRLEVEL_LOW, log->l_mp);
2212 return XFS_ERROR(EFSCORRUPTED);
2213 }
2214
2215 mp = log->l_mp;
2216 if (flags & XFS_BLI_INODE_BUF) {
2217 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2218 XFS_BUF_LOCK);
2219 } else {
2220 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2221 }
2222 if (XFS_BUF_ISERROR(bp)) {
2223 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2224 bp, blkno);
2225 error = XFS_BUF_GETERROR(bp);
2226 xfs_buf_relse(bp);
2227 return error;
2228 }
2229
2230 error = 0;
2231 if (flags & XFS_BLI_INODE_BUF) {
2232 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff
NS
2233 } else if (flags &
2234 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
2235 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2236 } else {
2237 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2238 }
2239 if (error)
2240 return XFS_ERROR(error);
2241
2242 /*
2243 * Perform delayed write on the buffer. Asynchronous writes will be
2244 * slower when taking into account all the buffers to be flushed.
2245 *
2246 * Also make sure that only inode buffers with good sizes stay in
2247 * the buffer cache. The kernel moves inodes in buffers of 1 block
2248 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2249 * buffers in the log can be a different size if the log was generated
2250 * by an older kernel using unclustered inode buffers or a newer kernel
2251 * running with a different inode cluster size. Regardless, if the
2252 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2253 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2254 * the buffer out of the buffer cache so that the buffer won't
2255 * overlap with future reads of those inodes.
2256 */
2257 if (XFS_DINODE_MAGIC ==
2258 INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
2259 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2260 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2261 XFS_BUF_STALE(bp);
2262 error = xfs_bwrite(mp, bp);
2263 } else {
2264 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2265 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2266 XFS_BUF_SET_FSPRIVATE(bp, mp);
2267 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2268 xfs_bdwrite(mp, bp);
2269 }
2270
2271 return (error);
2272}
2273
2274STATIC int
2275xlog_recover_do_inode_trans(
2276 xlog_t *log,
2277 xlog_recover_item_t *item,
2278 int pass)
2279{
2280 xfs_inode_log_format_t *in_f;
2281 xfs_mount_t *mp;
2282 xfs_buf_t *bp;
2283 xfs_imap_t imap;
2284 xfs_dinode_t *dip;
2285 xfs_ino_t ino;
2286 int len;
2287 xfs_caddr_t src;
2288 xfs_caddr_t dest;
2289 int error;
2290 int attr_index;
2291 uint fields;
2292 xfs_dinode_core_t *dicp;
6d192a9b 2293 int need_free = 0;
1da177e4
LT
2294
2295 if (pass == XLOG_RECOVER_PASS1) {
2296 return 0;
2297 }
2298
6d192a9b
TS
2299 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2300 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2301 } else {
2302 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2303 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2304 need_free = 1;
2305 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2306 if (error)
2307 goto error;
2308 }
1da177e4
LT
2309 ino = in_f->ilf_ino;
2310 mp = log->l_mp;
2311 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2312 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2313 imap.im_len = in_f->ilf_len;
2314 imap.im_boffset = in_f->ilf_boffset;
2315 } else {
2316 /*
2317 * It's an old inode format record. We don't know where
2318 * its cluster is located on disk, and we can't allow
2319 * xfs_imap() to figure it out because the inode btrees
2320 * are not ready to be used. Therefore do not pass the
2321 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2322 * us only the single block in which the inode lives
2323 * rather than its cluster, so we must make sure to
2324 * invalidate the buffer when we write it out below.
2325 */
2326 imap.im_blkno = 0;
2327 xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2328 }
2329
2330 /*
2331 * Inode buffers can be freed, look out for it,
2332 * and do not replay the inode.
2333 */
6d192a9b
TS
2334 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2335 error = 0;
2336 goto error;
2337 }
1da177e4
LT
2338
2339 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2340 XFS_BUF_LOCK);
2341 if (XFS_BUF_ISERROR(bp)) {
2342 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2343 bp, imap.im_blkno);
2344 error = XFS_BUF_GETERROR(bp);
2345 xfs_buf_relse(bp);
6d192a9b 2346 goto error;
1da177e4
LT
2347 }
2348 error = 0;
2349 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2350 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2351
2352 /*
2353 * Make sure the place we're flushing out to really looks
2354 * like an inode!
2355 */
2356 if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
2357 xfs_buf_relse(bp);
2358 xfs_fs_cmn_err(CE_ALERT, mp,
2359 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2360 dip, bp, ino);
2361 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2362 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2363 error = EFSCORRUPTED;
2364 goto error;
1da177e4
LT
2365 }
2366 dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
2367 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2368 xfs_buf_relse(bp);
2369 xfs_fs_cmn_err(CE_ALERT, mp,
2370 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2371 item, ino);
2372 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2373 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2374 error = EFSCORRUPTED;
2375 goto error;
1da177e4
LT
2376 }
2377
2378 /* Skip replay when the on disk inode is newer than the log one */
2379 if (dicp->di_flushiter <
2380 INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
2381 /*
2382 * Deal with the wrap case, DI_MAX_FLUSH is less
2383 * than smaller numbers
2384 */
2385 if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
2386 == DI_MAX_FLUSH) &&
2387 (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
2388 /* do nothing */
2389 } else {
2390 xfs_buf_relse(bp);
6d192a9b
TS
2391 error = 0;
2392 goto error;
1da177e4
LT
2393 }
2394 }
2395 /* Take the opportunity to reset the flush iteration count */
2396 dicp->di_flushiter = 0;
2397
2398 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2399 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2400 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2401 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2402 XFS_ERRLEVEL_LOW, mp, dicp);
2403 xfs_buf_relse(bp);
2404 xfs_fs_cmn_err(CE_ALERT, mp,
2405 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2406 item, dip, bp, ino);
6d192a9b
TS
2407 error = EFSCORRUPTED;
2408 goto error;
1da177e4
LT
2409 }
2410 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2411 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2412 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2413 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2414 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2415 XFS_ERRLEVEL_LOW, mp, dicp);
2416 xfs_buf_relse(bp);
2417 xfs_fs_cmn_err(CE_ALERT, mp,
2418 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2419 item, dip, bp, ino);
6d192a9b
TS
2420 error = EFSCORRUPTED;
2421 goto error;
1da177e4
LT
2422 }
2423 }
2424 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2425 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2426 XFS_ERRLEVEL_LOW, mp, dicp);
2427 xfs_buf_relse(bp);
2428 xfs_fs_cmn_err(CE_ALERT, mp,
2429 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2430 item, dip, bp, ino,
2431 dicp->di_nextents + dicp->di_anextents,
2432 dicp->di_nblocks);
6d192a9b
TS
2433 error = EFSCORRUPTED;
2434 goto error;
1da177e4
LT
2435 }
2436 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2437 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2438 XFS_ERRLEVEL_LOW, mp, dicp);
2439 xfs_buf_relse(bp);
2440 xfs_fs_cmn_err(CE_ALERT, mp,
2441 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2442 item, dip, bp, ino, dicp->di_forkoff);
6d192a9b
TS
2443 error = EFSCORRUPTED;
2444 goto error;
1da177e4
LT
2445 }
2446 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2447 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2448 XFS_ERRLEVEL_LOW, mp, dicp);
2449 xfs_buf_relse(bp);
2450 xfs_fs_cmn_err(CE_ALERT, mp,
2451 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2452 item->ri_buf[1].i_len, item);
6d192a9b
TS
2453 error = EFSCORRUPTED;
2454 goto error;
1da177e4
LT
2455 }
2456
2457 /* The core is in in-core format */
2458 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
2459 (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
2460
2461 /* the rest is in on-disk format */
2462 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2463 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2464 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2465 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2466 }
2467
2468 fields = in_f->ilf_fields;
2469 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2470 case XFS_ILOG_DEV:
2471 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
2472
2473 break;
2474 case XFS_ILOG_UUID:
2475 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2476 break;
2477 }
2478
2479 if (in_f->ilf_size == 2)
2480 goto write_inode_buffer;
2481 len = item->ri_buf[2].i_len;
2482 src = item->ri_buf[2].i_addr;
2483 ASSERT(in_f->ilf_size <= 4);
2484 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2485 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2486 (len == in_f->ilf_dsize));
2487
2488 switch (fields & XFS_ILOG_DFORK) {
2489 case XFS_ILOG_DDATA:
2490 case XFS_ILOG_DEXT:
2491 memcpy(&dip->di_u, src, len);
2492 break;
2493
2494 case XFS_ILOG_DBROOT:
2495 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2496 &(dip->di_u.di_bmbt),
2497 XFS_DFORK_DSIZE(dip, mp));
2498 break;
2499
2500 default:
2501 /*
2502 * There are no data fork flags set.
2503 */
2504 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2505 break;
2506 }
2507
2508 /*
2509 * If we logged any attribute data, recover it. There may or
2510 * may not have been any other non-core data logged in this
2511 * transaction.
2512 */
2513 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2514 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2515 attr_index = 3;
2516 } else {
2517 attr_index = 2;
2518 }
2519 len = item->ri_buf[attr_index].i_len;
2520 src = item->ri_buf[attr_index].i_addr;
2521 ASSERT(len == in_f->ilf_asize);
2522
2523 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2524 case XFS_ILOG_ADATA:
2525 case XFS_ILOG_AEXT:
2526 dest = XFS_DFORK_APTR(dip);
2527 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2528 memcpy(dest, src, len);
2529 break;
2530
2531 case XFS_ILOG_ABROOT:
2532 dest = XFS_DFORK_APTR(dip);
2533 xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
2534 (xfs_bmdr_block_t*)dest,
2535 XFS_DFORK_ASIZE(dip, mp));
2536 break;
2537
2538 default:
2539 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2540 ASSERT(0);
2541 xfs_buf_relse(bp);
6d192a9b
TS
2542 error = EIO;
2543 goto error;
1da177e4
LT
2544 }
2545 }
2546
2547write_inode_buffer:
2548 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2549 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2550 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2551 XFS_BUF_SET_FSPRIVATE(bp, mp);
2552 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2553 xfs_bdwrite(mp, bp);
2554 } else {
2555 XFS_BUF_STALE(bp);
2556 error = xfs_bwrite(mp, bp);
2557 }
2558
6d192a9b
TS
2559error:
2560 if (need_free)
2561 kmem_free(in_f, sizeof(*in_f));
2562 return XFS_ERROR(error);
1da177e4
LT
2563}
2564
2565/*
2566 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2567 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2568 * of that type.
2569 */
2570STATIC int
2571xlog_recover_do_quotaoff_trans(
2572 xlog_t *log,
2573 xlog_recover_item_t *item,
2574 int pass)
2575{
2576 xfs_qoff_logformat_t *qoff_f;
2577
2578 if (pass == XLOG_RECOVER_PASS2) {
2579 return (0);
2580 }
2581
2582 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2583 ASSERT(qoff_f);
2584
2585 /*
2586 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2587 * group/project quotaoff or both.
1da177e4
LT
2588 */
2589 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2590 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2591 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2592 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2593 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2594 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2595
2596 return (0);
2597}
2598
2599/*
2600 * Recover a dquot record
2601 */
2602STATIC int
2603xlog_recover_do_dquot_trans(
2604 xlog_t *log,
2605 xlog_recover_item_t *item,
2606 int pass)
2607{
2608 xfs_mount_t *mp;
2609 xfs_buf_t *bp;
2610 struct xfs_disk_dquot *ddq, *recddq;
2611 int error;
2612 xfs_dq_logformat_t *dq_f;
2613 uint type;
2614
2615 if (pass == XLOG_RECOVER_PASS1) {
2616 return 0;
2617 }
2618 mp = log->l_mp;
2619
2620 /*
2621 * Filesystems are required to send in quota flags at mount time.
2622 */
2623 if (mp->m_qflags == 0)
2624 return (0);
2625
2626 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2627 ASSERT(recddq);
2628 /*
2629 * This type of quotas was turned off, so ignore this record.
2630 */
2631 type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
c8ad20ff 2632 (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2633 ASSERT(type);
2634 if (log->l_quotaoffs_flag & type)
2635 return (0);
2636
2637 /*
2638 * At this point we know that quota was _not_ turned off.
2639 * Since the mount flags are not indicating to us otherwise, this
2640 * must mean that quota is on, and the dquot needs to be replayed.
2641 * Remember that we may not have fully recovered the superblock yet,
2642 * so we can't do the usual trick of looking at the SB quota bits.
2643 *
2644 * The other possibility, of course, is that the quota subsystem was
2645 * removed since the last mount - ENOSYS.
2646 */
2647 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2648 ASSERT(dq_f);
2649 if ((error = xfs_qm_dqcheck(recddq,
2650 dq_f->qlf_id,
2651 0, XFS_QMOPT_DOWARN,
2652 "xlog_recover_do_dquot_trans (log copy)"))) {
2653 return XFS_ERROR(EIO);
2654 }
2655 ASSERT(dq_f->qlf_len == 1);
2656
2657 error = xfs_read_buf(mp, mp->m_ddev_targp,
2658 dq_f->qlf_blkno,
2659 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2660 0, &bp);
2661 if (error) {
2662 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2663 bp, dq_f->qlf_blkno);
2664 return error;
2665 }
2666 ASSERT(bp);
2667 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2668
2669 /*
2670 * At least the magic num portion should be on disk because this
2671 * was among a chunk of dquots created earlier, and we did some
2672 * minimal initialization then.
2673 */
2674 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2675 "xlog_recover_do_dquot_trans")) {
2676 xfs_buf_relse(bp);
2677 return XFS_ERROR(EIO);
2678 }
2679
2680 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2681
2682 ASSERT(dq_f->qlf_size == 2);
2683 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2684 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2685 XFS_BUF_SET_FSPRIVATE(bp, mp);
2686 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2687 xfs_bdwrite(mp, bp);
2688
2689 return (0);
2690}
2691
2692/*
2693 * This routine is called to create an in-core extent free intent
2694 * item from the efi format structure which was logged on disk.
2695 * It allocates an in-core efi, copies the extents from the format
2696 * structure into it, and adds the efi to the AIL with the given
2697 * LSN.
2698 */
6d192a9b 2699STATIC int
1da177e4
LT
2700xlog_recover_do_efi_trans(
2701 xlog_t *log,
2702 xlog_recover_item_t *item,
2703 xfs_lsn_t lsn,
2704 int pass)
2705{
6d192a9b 2706 int error;
1da177e4
LT
2707 xfs_mount_t *mp;
2708 xfs_efi_log_item_t *efip;
2709 xfs_efi_log_format_t *efi_formatp;
2710 SPLDECL(s);
2711
2712 if (pass == XLOG_RECOVER_PASS1) {
6d192a9b 2713 return 0;
1da177e4
LT
2714 }
2715
2716 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
1da177e4
LT
2717
2718 mp = log->l_mp;
2719 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2720 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2721 &(efip->efi_format)))) {
2722 xfs_efi_item_free(efip);
2723 return error;
2724 }
1da177e4
LT
2725 efip->efi_next_extent = efi_formatp->efi_nextents;
2726 efip->efi_flags |= XFS_EFI_COMMITTED;
2727
2728 AIL_LOCK(mp,s);
2729 /*
2730 * xfs_trans_update_ail() drops the AIL lock.
2731 */
2732 xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
6d192a9b 2733 return 0;
1da177e4
LT
2734}
2735
2736
2737/*
2738 * This routine is called when an efd format structure is found in
2739 * a committed transaction in the log. It's purpose is to cancel
2740 * the corresponding efi if it was still in the log. To do this
2741 * it searches the AIL for the efi with an id equal to that in the
2742 * efd format structure. If we find it, we remove the efi from the
2743 * AIL and free it.
2744 */
2745STATIC void
2746xlog_recover_do_efd_trans(
2747 xlog_t *log,
2748 xlog_recover_item_t *item,
2749 int pass)
2750{
2751 xfs_mount_t *mp;
2752 xfs_efd_log_format_t *efd_formatp;
2753 xfs_efi_log_item_t *efip = NULL;
2754 xfs_log_item_t *lip;
2755 int gen;
1da177e4
LT
2756 __uint64_t efi_id;
2757 SPLDECL(s);
2758
2759 if (pass == XLOG_RECOVER_PASS1) {
2760 return;
2761 }
2762
2763 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
6d192a9b
TS
2764 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2765 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2766 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2767 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2768 efi_id = efd_formatp->efd_efi_id;
2769
2770 /*
2771 * Search for the efi with the id in the efd format structure
2772 * in the AIL.
2773 */
2774 mp = log->l_mp;
2775 AIL_LOCK(mp,s);
2776 lip = xfs_trans_first_ail(mp, &gen);
2777 while (lip != NULL) {
2778 if (lip->li_type == XFS_LI_EFI) {
2779 efip = (xfs_efi_log_item_t *)lip;
2780 if (efip->efi_format.efi_id == efi_id) {
2781 /*
2782 * xfs_trans_delete_ail() drops the
2783 * AIL lock.
2784 */
2785 xfs_trans_delete_ail(mp, lip, s);
2786 break;
2787 }
2788 }
2789 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
2790 }
1da177e4
LT
2791
2792 /*
2793 * If we found it, then free it up. If it wasn't there, it
2794 * must have been overwritten in the log. Oh well.
2795 */
2796 if (lip != NULL) {
7d795ca3
CH
2797 xfs_efi_item_free(efip);
2798 } else {
2799 AIL_UNLOCK(mp, s);
1da177e4
LT
2800 }
2801}
2802
2803/*
2804 * Perform the transaction
2805 *
2806 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2807 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2808 */
2809STATIC int
2810xlog_recover_do_trans(
2811 xlog_t *log,
2812 xlog_recover_t *trans,
2813 int pass)
2814{
2815 int error = 0;
2816 xlog_recover_item_t *item, *first_item;
2817
2818 if ((error = xlog_recover_reorder_trans(log, trans)))
2819 return error;
2820 first_item = item = trans->r_itemq;
2821 do {
2822 /*
2823 * we don't need to worry about the block number being
2824 * truncated in > 1 TB buffers because in user-land,
2825 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
c41564b5 2826 * the blknos will get through the user-mode buffer
1da177e4
LT
2827 * cache properly. The only bad case is o32 kernels
2828 * where xfs_daddr_t is 32-bits but mount will warn us
2829 * off a > 1 TB filesystem before we get here.
2830 */
2831 if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
2832 (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
2833 (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
2834 if ((error = xlog_recover_do_buffer_trans(log, item,
2835 pass)))
2836 break;
6d192a9b 2837 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
1da177e4
LT
2838 if ((error = xlog_recover_do_inode_trans(log, item,
2839 pass)))
2840 break;
2841 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
6d192a9b
TS
2842 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2843 pass)))
2844 break;
1da177e4
LT
2845 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2846 xlog_recover_do_efd_trans(log, item, pass);
2847 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2848 if ((error = xlog_recover_do_dquot_trans(log, item,
2849 pass)))
2850 break;
2851 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2852 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2853 pass)))
2854 break;
2855 } else {
2856 xlog_warn("XFS: xlog_recover_do_trans");
2857 ASSERT(0);
2858 error = XFS_ERROR(EIO);
2859 break;
2860 }
2861 item = item->ri_next;
2862 } while (first_item != item);
2863
2864 return error;
2865}
2866
2867/*
2868 * Free up any resources allocated by the transaction
2869 *
2870 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2871 */
2872STATIC void
2873xlog_recover_free_trans(
2874 xlog_recover_t *trans)
2875{
2876 xlog_recover_item_t *first_item, *item, *free_item;
2877 int i;
2878
2879 item = first_item = trans->r_itemq;
2880 do {
2881 free_item = item;
2882 item = item->ri_next;
2883 /* Free the regions in the item. */
2884 for (i = 0; i < free_item->ri_cnt; i++) {
2885 kmem_free(free_item->ri_buf[i].i_addr,
2886 free_item->ri_buf[i].i_len);
2887 }
2888 /* Free the item itself */
2889 kmem_free(free_item->ri_buf,
2890 (free_item->ri_total * sizeof(xfs_log_iovec_t)));
2891 kmem_free(free_item, sizeof(xlog_recover_item_t));
2892 } while (first_item != item);
2893 /* Free the transaction recover structure */
2894 kmem_free(trans, sizeof(xlog_recover_t));
2895}
2896
2897STATIC int
2898xlog_recover_commit_trans(
2899 xlog_t *log,
2900 xlog_recover_t **q,
2901 xlog_recover_t *trans,
2902 int pass)
2903{
2904 int error;
2905
2906 if ((error = xlog_recover_unlink_tid(q, trans)))
2907 return error;
2908 if ((error = xlog_recover_do_trans(log, trans, pass)))
2909 return error;
2910 xlog_recover_free_trans(trans); /* no error */
2911 return 0;
2912}
2913
2914STATIC int
2915xlog_recover_unmount_trans(
2916 xlog_recover_t *trans)
2917{
2918 /* Do nothing now */
2919 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2920 return 0;
2921}
2922
2923/*
2924 * There are two valid states of the r_state field. 0 indicates that the
2925 * transaction structure is in a normal state. We have either seen the
2926 * start of the transaction or the last operation we added was not a partial
2927 * operation. If the last operation we added to the transaction was a
2928 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2929 *
2930 * NOTE: skip LRs with 0 data length.
2931 */
2932STATIC int
2933xlog_recover_process_data(
2934 xlog_t *log,
2935 xlog_recover_t *rhash[],
2936 xlog_rec_header_t *rhead,
2937 xfs_caddr_t dp,
2938 int pass)
2939{
2940 xfs_caddr_t lp;
2941 int num_logops;
2942 xlog_op_header_t *ohead;
2943 xlog_recover_t *trans;
2944 xlog_tid_t tid;
2945 int error;
2946 unsigned long hash;
2947 uint flags;
2948
2949 lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
2950 num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
2951
2952 /* check the log format matches our own - else we can't recover */
2953 if (xlog_header_check_recover(log->l_mp, rhead))
2954 return (XFS_ERROR(EIO));
2955
2956 while ((dp < lp) && num_logops) {
2957 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2958 ohead = (xlog_op_header_t *)dp;
2959 dp += sizeof(xlog_op_header_t);
2960 if (ohead->oh_clientid != XFS_TRANSACTION &&
2961 ohead->oh_clientid != XFS_LOG) {
2962 xlog_warn(
2963 "XFS: xlog_recover_process_data: bad clientid");
2964 ASSERT(0);
2965 return (XFS_ERROR(EIO));
2966 }
2967 tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
2968 hash = XLOG_RHASH(tid);
2969 trans = xlog_recover_find_tid(rhash[hash], tid);
2970 if (trans == NULL) { /* not found; add new tid */
2971 if (ohead->oh_flags & XLOG_START_TRANS)
2972 xlog_recover_new_tid(&rhash[hash], tid,
2973 INT_GET(rhead->h_lsn, ARCH_CONVERT));
2974 } else {
2975 ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
2976 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2977 if (flags & XLOG_WAS_CONT_TRANS)
2978 flags &= ~XLOG_CONTINUE_TRANS;
2979 switch (flags) {
2980 case XLOG_COMMIT_TRANS:
2981 error = xlog_recover_commit_trans(log,
2982 &rhash[hash], trans, pass);
2983 break;
2984 case XLOG_UNMOUNT_TRANS:
2985 error = xlog_recover_unmount_trans(trans);
2986 break;
2987 case XLOG_WAS_CONT_TRANS:
2988 error = xlog_recover_add_to_cont_trans(trans,
2989 dp, INT_GET(ohead->oh_len,
2990 ARCH_CONVERT));
2991 break;
2992 case XLOG_START_TRANS:
2993 xlog_warn(
2994 "XFS: xlog_recover_process_data: bad transaction");
2995 ASSERT(0);
2996 error = XFS_ERROR(EIO);
2997 break;
2998 case 0:
2999 case XLOG_CONTINUE_TRANS:
3000 error = xlog_recover_add_to_trans(trans,
3001 dp, INT_GET(ohead->oh_len,
3002 ARCH_CONVERT));
3003 break;
3004 default:
3005 xlog_warn(
3006 "XFS: xlog_recover_process_data: bad flag");
3007 ASSERT(0);
3008 error = XFS_ERROR(EIO);
3009 break;
3010 }
3011 if (error)
3012 return error;
3013 }
3014 dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
3015 num_logops--;
3016 }
3017 return 0;
3018}
3019
3020/*
3021 * Process an extent free intent item that was recovered from
3022 * the log. We need to free the extents that it describes.
3023 */
3024STATIC void
3025xlog_recover_process_efi(
3026 xfs_mount_t *mp,
3027 xfs_efi_log_item_t *efip)
3028{
3029 xfs_efd_log_item_t *efdp;
3030 xfs_trans_t *tp;
3031 int i;
3032 xfs_extent_t *extp;
3033 xfs_fsblock_t startblock_fsb;
3034
3035 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3036
3037 /*
3038 * First check the validity of the extents described by the
3039 * EFI. If any are bad, then assume that all are bad and
3040 * just toss the EFI.
3041 */
3042 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3043 extp = &(efip->efi_format.efi_extents[i]);
3044 startblock_fsb = XFS_BB_TO_FSB(mp,
3045 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3046 if ((startblock_fsb == 0) ||
3047 (extp->ext_len == 0) ||
3048 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3049 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3050 /*
3051 * This will pull the EFI from the AIL and
3052 * free the memory associated with it.
3053 */
3054 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3055 return;
3056 }
3057 }
3058
3059 tp = xfs_trans_alloc(mp, 0);
3060 xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3061 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3062
3063 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3064 extp = &(efip->efi_format.efi_extents[i]);
3065 xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3066 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3067 extp->ext_len);
3068 }
3069
3070 efip->efi_flags |= XFS_EFI_RECOVERED;
3071 xfs_trans_commit(tp, 0, NULL);
3072}
3073
3074/*
3075 * Verify that once we've encountered something other than an EFI
3076 * in the AIL that there are no more EFIs in the AIL.
3077 */
3078#if defined(DEBUG)
3079STATIC void
3080xlog_recover_check_ail(
3081 xfs_mount_t *mp,
3082 xfs_log_item_t *lip,
3083 int gen)
3084{
3085 int orig_gen = gen;
3086
3087 do {
3088 ASSERT(lip->li_type != XFS_LI_EFI);
3089 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3090 /*
3091 * The check will be bogus if we restart from the
3092 * beginning of the AIL, so ASSERT that we don't.
3093 * We never should since we're holding the AIL lock
3094 * the entire time.
3095 */
3096 ASSERT(gen == orig_gen);
3097 } while (lip != NULL);
3098}
3099#endif /* DEBUG */
3100
3101/*
3102 * When this is called, all of the EFIs which did not have
3103 * corresponding EFDs should be in the AIL. What we do now
3104 * is free the extents associated with each one.
3105 *
3106 * Since we process the EFIs in normal transactions, they
3107 * will be removed at some point after the commit. This prevents
3108 * us from just walking down the list processing each one.
3109 * We'll use a flag in the EFI to skip those that we've already
3110 * processed and use the AIL iteration mechanism's generation
3111 * count to try to speed this up at least a bit.
3112 *
3113 * When we start, we know that the EFIs are the only things in
3114 * the AIL. As we process them, however, other items are added
3115 * to the AIL. Since everything added to the AIL must come after
3116 * everything already in the AIL, we stop processing as soon as
3117 * we see something other than an EFI in the AIL.
3118 */
3119STATIC void
3120xlog_recover_process_efis(
3121 xlog_t *log)
3122{
3123 xfs_log_item_t *lip;
3124 xfs_efi_log_item_t *efip;
3125 int gen;
3126 xfs_mount_t *mp;
3127 SPLDECL(s);
3128
3129 mp = log->l_mp;
3130 AIL_LOCK(mp,s);
3131
3132 lip = xfs_trans_first_ail(mp, &gen);
3133 while (lip != NULL) {
3134 /*
3135 * We're done when we see something other than an EFI.
3136 */
3137 if (lip->li_type != XFS_LI_EFI) {
3138 xlog_recover_check_ail(mp, lip, gen);
3139 break;
3140 }
3141
3142 /*
3143 * Skip EFIs that we've already processed.
3144 */
3145 efip = (xfs_efi_log_item_t *)lip;
3146 if (efip->efi_flags & XFS_EFI_RECOVERED) {
3147 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3148 continue;
3149 }
3150
3151 AIL_UNLOCK(mp, s);
3152 xlog_recover_process_efi(mp, efip);
3153 AIL_LOCK(mp,s);
3154 lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
3155 }
3156 AIL_UNLOCK(mp, s);
3157}
3158
3159/*
3160 * This routine performs a transaction to null out a bad inode pointer
3161 * in an agi unlinked inode hash bucket.
3162 */
3163STATIC void
3164xlog_recover_clear_agi_bucket(
3165 xfs_mount_t *mp,
3166 xfs_agnumber_t agno,
3167 int bucket)
3168{
3169 xfs_trans_t *tp;
3170 xfs_agi_t *agi;
3171 xfs_buf_t *agibp;
3172 int offset;
3173 int error;
3174
3175 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3176 xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3177
3178 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3179 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3180 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
3181 if (error) {
3182 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3183 return;
3184 }
3185
3186 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3187 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
1da177e4
LT
3188 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3189 return;
3190 }
1da177e4 3191
16259e7d 3192 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3193 offset = offsetof(xfs_agi_t, agi_unlinked) +
3194 (sizeof(xfs_agino_t) * bucket);
3195 xfs_trans_log_buf(tp, agibp, offset,
3196 (offset + sizeof(xfs_agino_t) - 1));
3197
3198 (void) xfs_trans_commit(tp, 0, NULL);
3199}
3200
3201/*
3202 * xlog_iunlink_recover
3203 *
3204 * This is called during recovery to process any inodes which
3205 * we unlinked but not freed when the system crashed. These
3206 * inodes will be on the lists in the AGI blocks. What we do
3207 * here is scan all the AGIs and fully truncate and free any
3208 * inodes found on the lists. Each inode is removed from the
3209 * lists when it has been fully truncated and is freed. The
3210 * freeing of the inode and its removal from the list must be
3211 * atomic.
3212 */
3213void
3214xlog_recover_process_iunlinks(
3215 xlog_t *log)
3216{
3217 xfs_mount_t *mp;
3218 xfs_agnumber_t agno;
3219 xfs_agi_t *agi;
3220 xfs_buf_t *agibp;
3221 xfs_buf_t *ibp;
3222 xfs_dinode_t *dip;
3223 xfs_inode_t *ip;
3224 xfs_agino_t agino;
3225 xfs_ino_t ino;
3226 int bucket;
3227 int error;
3228 uint mp_dmevmask;
3229
3230 mp = log->l_mp;
3231
3232 /*
3233 * Prevent any DMAPI event from being sent while in this function.
3234 */
3235 mp_dmevmask = mp->m_dmevmask;
3236 mp->m_dmevmask = 0;
3237
3238 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3239 /*
3240 * Find the agi for this ag.
3241 */
3242 agibp = xfs_buf_read(mp->m_ddev_targp,
3243 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3244 XFS_FSS_TO_BB(mp, 1), 0);
3245 if (XFS_BUF_ISERROR(agibp)) {
3246 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3247 log->l_mp, agibp,
3248 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3249 }
3250 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3251 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
1da177e4
LT
3252
3253 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3254
16259e7d 3255 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4
LT
3256 while (agino != NULLAGINO) {
3257
3258 /*
3259 * Release the agi buffer so that it can
3260 * be acquired in the normal course of the
3261 * transaction to truncate and free the inode.
3262 */
3263 xfs_buf_relse(agibp);
3264
3265 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3266 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3267 ASSERT(error || (ip != NULL));
3268
3269 if (!error) {
3270 /*
3271 * Get the on disk inode to find the
3272 * next inode in the bucket.
3273 */
3274 error = xfs_itobp(mp, NULL, ip, &dip,
b12dd342 3275 &ibp, 0, 0);
1da177e4
LT
3276 ASSERT(error || (dip != NULL));
3277 }
3278
3279 if (!error) {
3280 ASSERT(ip->i_d.di_nlink == 0);
3281
3282 /* setup for the next pass */
3283 agino = INT_GET(dip->di_next_unlinked,
3284 ARCH_CONVERT);
3285 xfs_buf_relse(ibp);
3286 /*
3287 * Prevent any DMAPI event from
3288 * being sent when the
3289 * reference on the inode is
3290 * dropped.
3291 */
3292 ip->i_d.di_dmevmask = 0;
3293
3294 /*
3295 * If this is a new inode, handle
3296 * it specially. Otherwise,
3297 * just drop our reference to the
3298 * inode. If there are no
3299 * other references, this will
3300 * send the inode to
3301 * xfs_inactive() which will
3302 * truncate the file and free
3303 * the inode.
3304 */
3305 if (ip->i_d.di_mode == 0)
3306 xfs_iput_new(ip, 0);
3307 else
3308 VN_RELE(XFS_ITOV(ip));
3309 } else {
3310 /*
3311 * We can't read in the inode
3312 * this bucket points to, or
3313 * this inode is messed up. Just
3314 * ditch this bucket of inodes. We
3315 * will lose some inodes and space,
3316 * but at least we won't hang. Call
3317 * xlog_recover_clear_agi_bucket()
3318 * to perform a transaction to clear
3319 * the inode pointer in the bucket.
3320 */
3321 xlog_recover_clear_agi_bucket(mp, agno,
3322 bucket);
3323
3324 agino = NULLAGINO;
3325 }
3326
3327 /*
3328 * Reacquire the agibuffer and continue around
3329 * the loop.
3330 */
3331 agibp = xfs_buf_read(mp->m_ddev_targp,
3332 XFS_AG_DADDR(mp, agno,
3333 XFS_AGI_DADDR(mp)),
3334 XFS_FSS_TO_BB(mp, 1), 0);
3335 if (XFS_BUF_ISERROR(agibp)) {
3336 xfs_ioerror_alert(
3337 "xlog_recover_process_iunlinks(#2)",
3338 log->l_mp, agibp,
3339 XFS_AG_DADDR(mp, agno,
3340 XFS_AGI_DADDR(mp)));
3341 }
3342 agi = XFS_BUF_TO_AGI(agibp);
16259e7d
CH
3343 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3344 agi->agi_magicnum));
1da177e4
LT
3345 }
3346 }
3347
3348 /*
3349 * Release the buffer for the current agi so we can
3350 * go on to the next one.
3351 */
3352 xfs_buf_relse(agibp);
3353 }
3354
3355 mp->m_dmevmask = mp_dmevmask;
3356}
3357
3358
3359#ifdef DEBUG
3360STATIC void
3361xlog_pack_data_checksum(
3362 xlog_t *log,
3363 xlog_in_core_t *iclog,
3364 int size)
3365{
3366 int i;
3367 uint *up;
3368 uint chksum = 0;
3369
3370 up = (uint *)iclog->ic_datap;
3371 /* divide length by 4 to get # words */
3372 for (i = 0; i < (size >> 2); i++) {
3373 chksum ^= INT_GET(*up, ARCH_CONVERT);
3374 up++;
3375 }
3376 INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
3377}
3378#else
3379#define xlog_pack_data_checksum(log, iclog, size)
3380#endif
3381
3382/*
3383 * Stamp cycle number in every block
3384 */
3385void
3386xlog_pack_data(
3387 xlog_t *log,
3388 xlog_in_core_t *iclog,
3389 int roundoff)
3390{
3391 int i, j, k;
3392 int size = iclog->ic_offset + roundoff;
3393 uint cycle_lsn;
3394 xfs_caddr_t dp;
3395 xlog_in_core_2_t *xhdr;
3396
3397 xlog_pack_data_checksum(log, iclog, size);
3398
3399 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3400
3401 dp = iclog->ic_datap;
3402 for (i = 0; i < BTOBB(size) &&
3403 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3404 iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
3405 *(uint *)dp = cycle_lsn;
3406 dp += BBSIZE;
3407 }
3408
3409 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3410 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3411 for ( ; i < BTOBB(size); i++) {
3412 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3413 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3414 xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
3415 *(uint *)dp = cycle_lsn;
3416 dp += BBSIZE;
3417 }
3418
3419 for (i = 1; i < log->l_iclog_heads; i++) {
3420 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3421 }
3422 }
3423}
3424
3425#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3426STATIC void
3427xlog_unpack_data_checksum(
3428 xlog_rec_header_t *rhead,
3429 xfs_caddr_t dp,
3430 xlog_t *log)
3431{
3432 uint *up = (uint *)dp;
3433 uint chksum = 0;
3434 int i;
3435
3436 /* divide length by 4 to get # words */
3437 for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
3438 chksum ^= INT_GET(*up, ARCH_CONVERT);
3439 up++;
3440 }
3441 if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
3442 if (rhead->h_chksum ||
3443 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3444 cmn_err(CE_DEBUG,
b6574520 3445 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
1da177e4
LT
3446 INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
3447 cmn_err(CE_DEBUG,
3448"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
3449 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3450 cmn_err(CE_DEBUG,
b6574520 3451 "XFS: LogR this is a LogV2 filesystem\n");
1da177e4
LT
3452 }
3453 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3454 }
3455 }
3456}
3457#else
3458#define xlog_unpack_data_checksum(rhead, dp, log)
3459#endif
3460
3461STATIC void
3462xlog_unpack_data(
3463 xlog_rec_header_t *rhead,
3464 xfs_caddr_t dp,
3465 xlog_t *log)
3466{
3467 int i, j, k;
3468 xlog_in_core_2_t *xhdr;
3469
3470 for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
3471 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3472 *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
3473 dp += BBSIZE;
3474 }
3475
3476 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3477 xhdr = (xlog_in_core_2_t *)rhead;
3478 for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
3479 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3480 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3481 *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3482 dp += BBSIZE;
3483 }
3484 }
3485
3486 xlog_unpack_data_checksum(rhead, dp, log);
3487}
3488
3489STATIC int
3490xlog_valid_rec_header(
3491 xlog_t *log,
3492 xlog_rec_header_t *rhead,
3493 xfs_daddr_t blkno)
3494{
3495 int hlen;
3496
3497 if (unlikely(
3498 (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
3499 XLOG_HEADER_MAGIC_NUM))) {
3500 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3501 XFS_ERRLEVEL_LOW, log->l_mp);
3502 return XFS_ERROR(EFSCORRUPTED);
3503 }
3504 if (unlikely(
3505 (!rhead->h_version ||
3506 (INT_GET(rhead->h_version, ARCH_CONVERT) &
3507 (~XLOG_VERSION_OKBITS)) != 0))) {
3508 xlog_warn("XFS: %s: unrecognised log version (%d).",
3509 __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
3510 return XFS_ERROR(EIO);
3511 }
3512
3513 /* LR body must have data or it wouldn't have been written */
3514 hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
3515 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3516 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3517 XFS_ERRLEVEL_LOW, log->l_mp);
3518 return XFS_ERROR(EFSCORRUPTED);
3519 }
3520 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3521 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3522 XFS_ERRLEVEL_LOW, log->l_mp);
3523 return XFS_ERROR(EFSCORRUPTED);
3524 }
3525 return 0;
3526}
3527
3528/*
3529 * Read the log from tail to head and process the log records found.
3530 * Handle the two cases where the tail and head are in the same cycle
3531 * and where the active portion of the log wraps around the end of
3532 * the physical log separately. The pass parameter is passed through
3533 * to the routines called to process the data and is not looked at
3534 * here.
3535 */
3536STATIC int
3537xlog_do_recovery_pass(
3538 xlog_t *log,
3539 xfs_daddr_t head_blk,
3540 xfs_daddr_t tail_blk,
3541 int pass)
3542{
3543 xlog_rec_header_t *rhead;
3544 xfs_daddr_t blk_no;
3545 xfs_caddr_t bufaddr, offset;
3546 xfs_buf_t *hbp, *dbp;
3547 int error = 0, h_size;
3548 int bblks, split_bblks;
3549 int hblks, split_hblks, wrapped_hblks;
3550 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3551
3552 ASSERT(head_blk != tail_blk);
3553
3554 /*
3555 * Read the header of the tail block and get the iclog buffer size from
3556 * h_size. Use this to tell how many sectors make up the log header.
3557 */
3558 if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
3559 /*
3560 * When using variable length iclogs, read first sector of
3561 * iclog header and extract the header size from it. Get a
3562 * new hbp that is the correct size.
3563 */
3564 hbp = xlog_get_bp(log, 1);
3565 if (!hbp)
3566 return ENOMEM;
3567 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3568 goto bread_err1;
3569 offset = xlog_align(log, tail_blk, 1, hbp);
3570 rhead = (xlog_rec_header_t *)offset;
3571 error = xlog_valid_rec_header(log, rhead, tail_blk);
3572 if (error)
3573 goto bread_err1;
3574 h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
3575 if ((INT_GET(rhead->h_version, ARCH_CONVERT)
3576 & XLOG_VERSION_2) &&
3577 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3578 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3579 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3580 hblks++;
3581 xlog_put_bp(hbp);
3582 hbp = xlog_get_bp(log, hblks);
3583 } else {
3584 hblks = 1;
3585 }
3586 } else {
3587 ASSERT(log->l_sectbb_log == 0);
3588 hblks = 1;
3589 hbp = xlog_get_bp(log, 1);
3590 h_size = XLOG_BIG_RECORD_BSIZE;
3591 }
3592
3593 if (!hbp)
3594 return ENOMEM;
3595 dbp = xlog_get_bp(log, BTOBB(h_size));
3596 if (!dbp) {
3597 xlog_put_bp(hbp);
3598 return ENOMEM;
3599 }
3600
3601 memset(rhash, 0, sizeof(rhash));
3602 if (tail_blk <= head_blk) {
3603 for (blk_no = tail_blk; blk_no < head_blk; ) {
3604 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3605 goto bread_err2;
3606 offset = xlog_align(log, blk_no, hblks, hbp);
3607 rhead = (xlog_rec_header_t *)offset;
3608 error = xlog_valid_rec_header(log, rhead, blk_no);
3609 if (error)
3610 goto bread_err2;
3611
3612 /* blocks in data section */
3613 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3614 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3615 if (error)
3616 goto bread_err2;
3617 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3618 xlog_unpack_data(rhead, offset, log);
3619 if ((error = xlog_recover_process_data(log,
3620 rhash, rhead, offset, pass)))
3621 goto bread_err2;
3622 blk_no += bblks + hblks;
3623 }
3624 } else {
3625 /*
3626 * Perform recovery around the end of the physical log.
3627 * When the head is not on the same cycle number as the tail,
3628 * we can't do a sequential recovery as above.
3629 */
3630 blk_no = tail_blk;
3631 while (blk_no < log->l_logBBsize) {
3632 /*
3633 * Check for header wrapping around physical end-of-log
3634 */
3635 offset = NULL;
3636 split_hblks = 0;
3637 wrapped_hblks = 0;
3638 if (blk_no + hblks <= log->l_logBBsize) {
3639 /* Read header in one read */
3640 error = xlog_bread(log, blk_no, hblks, hbp);
3641 if (error)
3642 goto bread_err2;
3643 offset = xlog_align(log, blk_no, hblks, hbp);
3644 } else {
3645 /* This LR is split across physical log end */
3646 if (blk_no != log->l_logBBsize) {
3647 /* some data before physical log end */
3648 ASSERT(blk_no <= INT_MAX);
3649 split_hblks = log->l_logBBsize - (int)blk_no;
3650 ASSERT(split_hblks > 0);
3651 if ((error = xlog_bread(log, blk_no,
3652 split_hblks, hbp)))
3653 goto bread_err2;
3654 offset = xlog_align(log, blk_no,
3655 split_hblks, hbp);
3656 }
3657 /*
3658 * Note: this black magic still works with
3659 * large sector sizes (non-512) only because:
3660 * - we increased the buffer size originally
3661 * by 1 sector giving us enough extra space
3662 * for the second read;
3663 * - the log start is guaranteed to be sector
3664 * aligned;
3665 * - we read the log end (LR header start)
3666 * _first_, then the log start (LR header end)
3667 * - order is important.
3668 */
3669 bufaddr = XFS_BUF_PTR(hbp);
3670 XFS_BUF_SET_PTR(hbp,
3671 bufaddr + BBTOB(split_hblks),
3672 BBTOB(hblks - split_hblks));
3673 wrapped_hblks = hblks - split_hblks;
3674 error = xlog_bread(log, 0, wrapped_hblks, hbp);
3675 if (error)
3676 goto bread_err2;
3677 XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
3678 if (!offset)
3679 offset = xlog_align(log, 0,
3680 wrapped_hblks, hbp);
3681 }
3682 rhead = (xlog_rec_header_t *)offset;
3683 error = xlog_valid_rec_header(log, rhead,
3684 split_hblks ? blk_no : 0);
3685 if (error)
3686 goto bread_err2;
3687
3688 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3689 blk_no += hblks;
3690
3691 /* Read in data for log record */
3692 if (blk_no + bblks <= log->l_logBBsize) {
3693 error = xlog_bread(log, blk_no, bblks, dbp);
3694 if (error)
3695 goto bread_err2;
3696 offset = xlog_align(log, blk_no, bblks, dbp);
3697 } else {
3698 /* This log record is split across the
3699 * physical end of log */
3700 offset = NULL;
3701 split_bblks = 0;
3702 if (blk_no != log->l_logBBsize) {
3703 /* some data is before the physical
3704 * end of log */
3705 ASSERT(!wrapped_hblks);
3706 ASSERT(blk_no <= INT_MAX);
3707 split_bblks =
3708 log->l_logBBsize - (int)blk_no;
3709 ASSERT(split_bblks > 0);
3710 if ((error = xlog_bread(log, blk_no,
3711 split_bblks, dbp)))
3712 goto bread_err2;
3713 offset = xlog_align(log, blk_no,
3714 split_bblks, dbp);
3715 }
3716 /*
3717 * Note: this black magic still works with
3718 * large sector sizes (non-512) only because:
3719 * - we increased the buffer size originally
3720 * by 1 sector giving us enough extra space
3721 * for the second read;
3722 * - the log start is guaranteed to be sector
3723 * aligned;
3724 * - we read the log end (LR header start)
3725 * _first_, then the log start (LR header end)
3726 * - order is important.
3727 */
3728 bufaddr = XFS_BUF_PTR(dbp);
3729 XFS_BUF_SET_PTR(dbp,
3730 bufaddr + BBTOB(split_bblks),
3731 BBTOB(bblks - split_bblks));
3732 if ((error = xlog_bread(log, wrapped_hblks,
3733 bblks - split_bblks, dbp)))
3734 goto bread_err2;
3735 XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
3736 if (!offset)
3737 offset = xlog_align(log, wrapped_hblks,
3738 bblks - split_bblks, dbp);
3739 }
3740 xlog_unpack_data(rhead, offset, log);
3741 if ((error = xlog_recover_process_data(log, rhash,
3742 rhead, offset, pass)))
3743 goto bread_err2;
3744 blk_no += bblks;
3745 }
3746
3747 ASSERT(blk_no >= log->l_logBBsize);
3748 blk_no -= log->l_logBBsize;
3749
3750 /* read first part of physical log */
3751 while (blk_no < head_blk) {
3752 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3753 goto bread_err2;
3754 offset = xlog_align(log, blk_no, hblks, hbp);
3755 rhead = (xlog_rec_header_t *)offset;
3756 error = xlog_valid_rec_header(log, rhead, blk_no);
3757 if (error)
3758 goto bread_err2;
3759 bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
3760 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3761 goto bread_err2;
3762 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3763 xlog_unpack_data(rhead, offset, log);
3764 if ((error = xlog_recover_process_data(log, rhash,
3765 rhead, offset, pass)))
3766 goto bread_err2;
3767 blk_no += bblks + hblks;
3768 }
3769 }
3770
3771 bread_err2:
3772 xlog_put_bp(dbp);
3773 bread_err1:
3774 xlog_put_bp(hbp);
3775 return error;
3776}
3777
3778/*
3779 * Do the recovery of the log. We actually do this in two phases.
3780 * The two passes are necessary in order to implement the function
3781 * of cancelling a record written into the log. The first pass
3782 * determines those things which have been cancelled, and the
3783 * second pass replays log items normally except for those which
3784 * have been cancelled. The handling of the replay and cancellations
3785 * takes place in the log item type specific routines.
3786 *
3787 * The table of items which have cancel records in the log is allocated
3788 * and freed at this level, since only here do we know when all of
3789 * the log recovery has been completed.
3790 */
3791STATIC int
3792xlog_do_log_recovery(
3793 xlog_t *log,
3794 xfs_daddr_t head_blk,
3795 xfs_daddr_t tail_blk)
3796{
3797 int error;
3798
3799 ASSERT(head_blk != tail_blk);
3800
3801 /*
3802 * First do a pass to find all of the cancelled buf log items.
3803 * Store them in the buf_cancel_table for use in the second pass.
3804 */
3805 log->l_buf_cancel_table =
3806 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3807 sizeof(xfs_buf_cancel_t*),
3808 KM_SLEEP);
3809 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3810 XLOG_RECOVER_PASS1);
3811 if (error != 0) {
3812 kmem_free(log->l_buf_cancel_table,
3813 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3814 log->l_buf_cancel_table = NULL;
3815 return error;
3816 }
3817 /*
3818 * Then do a second pass to actually recover the items in the log.
3819 * When it is complete free the table of buf cancel items.
3820 */
3821 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3822 XLOG_RECOVER_PASS2);
3823#ifdef DEBUG
6d192a9b 3824 if (!error) {
1da177e4
LT
3825 int i;
3826
3827 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3828 ASSERT(log->l_buf_cancel_table[i] == NULL);
3829 }
3830#endif /* DEBUG */
3831
3832 kmem_free(log->l_buf_cancel_table,
3833 XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
3834 log->l_buf_cancel_table = NULL;
3835
3836 return error;
3837}
3838
3839/*
3840 * Do the actual recovery
3841 */
3842STATIC int
3843xlog_do_recover(
3844 xlog_t *log,
3845 xfs_daddr_t head_blk,
3846 xfs_daddr_t tail_blk)
3847{
3848 int error;
3849 xfs_buf_t *bp;
3850 xfs_sb_t *sbp;
3851
3852 /*
3853 * First replay the images in the log.
3854 */
3855 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3856 if (error) {
3857 return error;
3858 }
3859
3860 XFS_bflush(log->l_mp->m_ddev_targp);
3861
3862 /*
3863 * If IO errors happened during recovery, bail out.
3864 */
3865 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3866 return (EIO);
3867 }
3868
3869 /*
3870 * We now update the tail_lsn since much of the recovery has completed
3871 * and there may be space available to use. If there were no extent
3872 * or iunlinks, we can free up the entire log and set the tail_lsn to
3873 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3874 * lsn of the last known good LR on disk. If there are extent frees
3875 * or iunlinks they will have some entries in the AIL; so we look at
3876 * the AIL to determine how to set the tail_lsn.
3877 */
3878 xlog_assign_tail_lsn(log->l_mp);
3879
3880 /*
3881 * Now that we've finished replaying all buffer and inode
3882 * updates, re-read in the superblock.
3883 */
3884 bp = xfs_getsb(log->l_mp, 0);
3885 XFS_BUF_UNDONE(bp);
3886 XFS_BUF_READ(bp);
3887 xfsbdstrat(log->l_mp, bp);
3888 if ((error = xfs_iowait(bp))) {
3889 xfs_ioerror_alert("xlog_do_recover",
3890 log->l_mp, bp, XFS_BUF_ADDR(bp));
3891 ASSERT(0);
3892 xfs_buf_relse(bp);
3893 return error;
3894 }
3895
3896 /* Convert superblock from on-disk format */
3897 sbp = &log->l_mp->m_sb;
3898 xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
3899 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3900 ASSERT(XFS_SB_GOOD_VERSION(sbp));
3901 xfs_buf_relse(bp);
3902
3903 xlog_recover_check_summary(log);
3904
3905 /* Normal transactions can now occur */
3906 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3907 return 0;
3908}
3909
3910/*
3911 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3912 *
3913 * Return error or zero.
3914 */
3915int
3916xlog_recover(
65be6054 3917 xlog_t *log)
1da177e4
LT
3918{
3919 xfs_daddr_t head_blk, tail_blk;
3920 int error;
3921
3922 /* find the tail of the log */
65be6054 3923 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3924 return error;
3925
3926 if (tail_blk != head_blk) {
3927 /* There used to be a comment here:
3928 *
3929 * disallow recovery on read-only mounts. note -- mount
3930 * checks for ENOSPC and turns it into an intelligent
3931 * error message.
3932 * ...but this is no longer true. Now, unless you specify
3933 * NORECOVERY (in which case this function would never be
3934 * called), we just go ahead and recover. We do this all
3935 * under the vfs layer, so we can get away with it unless
3936 * the device itself is read-only, in which case we fail.
3937 */
3938 if ((error = xfs_dev_is_read_only(log->l_mp,
3939 "recovery required"))) {
3940 return error;
3941 }
3942
3943 cmn_err(CE_NOTE,
fc1f8c1c
NS
3944 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3945 log->l_mp->m_fsname, log->l_mp->m_logname ?
3946 log->l_mp->m_logname : "internal");
1da177e4
LT
3947
3948 error = xlog_do_recover(log, head_blk, tail_blk);
3949 log->l_flags |= XLOG_RECOVERY_NEEDED;
3950 }
3951 return error;
3952}
3953
3954/*
3955 * In the first part of recovery we replay inodes and buffers and build
3956 * up the list of extent free items which need to be processed. Here
3957 * we process the extent free items and clean up the on disk unlinked
3958 * inode lists. This is separated from the first part of recovery so
3959 * that the root and real-time bitmap inodes can be read in from disk in
3960 * between the two stages. This is necessary so that we can free space
3961 * in the real-time portion of the file system.
3962 */
3963int
3964xlog_recover_finish(
3965 xlog_t *log,
3966 int mfsi_flags)
3967{
3968 /*
3969 * Now we're ready to do the transactions needed for the
3970 * rest of recovery. Start with completing all the extent
3971 * free intent records and then process the unlinked inode
3972 * lists. At this point, we essentially run in normal mode
3973 * except that we're still performing recovery actions
3974 * rather than accepting new requests.
3975 */
3976 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3977 xlog_recover_process_efis(log);
3978 /*
3979 * Sync the log to get all the EFIs out of the AIL.
3980 * This isn't absolutely necessary, but it helps in
3981 * case the unlink transactions would have problems
3982 * pushing the EFIs out of the way.
3983 */
3984 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3985 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3986
3987 if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
3988 xlog_recover_process_iunlinks(log);
3989 }
3990
3991 xlog_recover_check_summary(log);
3992
3993 cmn_err(CE_NOTE,
fc1f8c1c
NS
3994 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3995 log->l_mp->m_fsname, log->l_mp->m_logname ?
3996 log->l_mp->m_logname : "internal");
1da177e4
LT
3997 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3998 } else {
3999 cmn_err(CE_DEBUG,
b6574520 4000 "!Ending clean XFS mount for filesystem: %s\n",
1da177e4
LT
4001 log->l_mp->m_fsname);
4002 }
4003 return 0;
4004}
4005
4006
4007#if defined(DEBUG)
4008/*
4009 * Read all of the agf and agi counters and check that they
4010 * are consistent with the superblock counters.
4011 */
4012void
4013xlog_recover_check_summary(
4014 xlog_t *log)
4015{
4016 xfs_mount_t *mp;
4017 xfs_agf_t *agfp;
4018 xfs_agi_t *agip;
4019 xfs_buf_t *agfbp;
4020 xfs_buf_t *agibp;
4021 xfs_daddr_t agfdaddr;
4022 xfs_daddr_t agidaddr;
4023 xfs_buf_t *sbbp;
4024#ifdef XFS_LOUD_RECOVERY
4025 xfs_sb_t *sbp;
4026#endif
4027 xfs_agnumber_t agno;
4028 __uint64_t freeblks;
4029 __uint64_t itotal;
4030 __uint64_t ifree;
4031
4032 mp = log->l_mp;
4033
4034 freeblks = 0LL;
4035 itotal = 0LL;
4036 ifree = 0LL;
4037 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4038 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
4039 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
4040 XFS_FSS_TO_BB(mp, 1), 0);
4041 if (XFS_BUF_ISERROR(agfbp)) {
4042 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4043 mp, agfbp, agfdaddr);
4044 }
4045 agfp = XFS_BUF_TO_AGF(agfbp);
16259e7d
CH
4046 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4047 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4048 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4049
4050 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4051 be32_to_cpu(agfp->agf_flcount);
1da177e4
LT
4052 xfs_buf_relse(agfbp);
4053
4054 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4055 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4056 XFS_FSS_TO_BB(mp, 1), 0);
4057 if (XFS_BUF_ISERROR(agibp)) {
4058 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4059 mp, agibp, agidaddr);
4060 }
4061 agip = XFS_BUF_TO_AGI(agibp);
16259e7d
CH
4062 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4063 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4064 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4065
4066 itotal += be32_to_cpu(agip->agi_count);
4067 ifree += be32_to_cpu(agip->agi_freecount);
1da177e4
LT
4068 xfs_buf_relse(agibp);
4069 }
4070
4071 sbbp = xfs_getsb(mp, 0);
4072#ifdef XFS_LOUD_RECOVERY
4073 sbp = &mp->m_sb;
4074 xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
4075 cmn_err(CE_NOTE,
4076 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4077 sbp->sb_icount, itotal);
4078 cmn_err(CE_NOTE,
4079 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4080 sbp->sb_ifree, ifree);
4081 cmn_err(CE_NOTE,
4082 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4083 sbp->sb_fdblocks, freeblks);
4084#if 0
4085 /*
4086 * This is turned off until I account for the allocation
4087 * btree blocks which live in free space.
4088 */
4089 ASSERT(sbp->sb_icount == itotal);
4090 ASSERT(sbp->sb_ifree == ifree);
4091 ASSERT(sbp->sb_fdblocks == freeblks);
4092#endif
4093#endif
4094 xfs_buf_relse(sbbp);
4095}
4096#endif /* DEBUG */
This page took 0.311428 seconds and 5 git commands to generate.