xfs: reorganise transaction recovery item code
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_inum.h"
a844f451
NS
26#include "xfs_sb.h"
27#include "xfs_ag.h"
1da177e4 28#include "xfs_mount.h"
57062787 29#include "xfs_da_format.h"
1da177e4 30#include "xfs_inode.h"
239880ef 31#include "xfs_trans.h"
239880ef 32#include "xfs_log.h"
1da177e4 33#include "xfs_log_priv.h"
1da177e4 34#include "xfs_log_recover.h"
a4fbe6ab 35#include "xfs_inode_item.h"
1da177e4
LT
36#include "xfs_extfree_item.h"
37#include "xfs_trans_priv.h"
a4fbe6ab
DC
38#include "xfs_alloc.h"
39#include "xfs_ialloc.h"
1da177e4 40#include "xfs_quota.h"
0e446be4 41#include "xfs_cksum.h"
0b1b213f 42#include "xfs_trace.h"
33479e05 43#include "xfs_icache.h"
a4fbe6ab
DC
44#include "xfs_bmap_btree.h"
45#include "xfs_dinode.h"
46#include "xfs_error.h"
2b9ab5ab 47#include "xfs_dir2.h"
1da177e4 48
fc06c6d0
DC
49#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
50
9a8d2fdb
MT
51STATIC int
52xlog_find_zeroed(
53 struct xlog *,
54 xfs_daddr_t *);
55STATIC int
56xlog_clear_stale_blocks(
57 struct xlog *,
58 xfs_lsn_t);
1da177e4 59#if defined(DEBUG)
9a8d2fdb
MT
60STATIC void
61xlog_recover_check_summary(
62 struct xlog *);
1da177e4
LT
63#else
64#define xlog_recover_check_summary(log)
1da177e4
LT
65#endif
66
d5689eaa
CH
67/*
68 * This structure is used during recovery to record the buf log items which
69 * have been canceled and should not be replayed.
70 */
71struct xfs_buf_cancel {
72 xfs_daddr_t bc_blkno;
73 uint bc_len;
74 int bc_refcount;
75 struct list_head bc_list;
76};
77
1da177e4
LT
78/*
79 * Sector aligned buffer routines for buffer create/read/write/access
80 */
81
ff30a622
AE
82/*
83 * Verify the given count of basic blocks is valid number of blocks
84 * to specify for an operation involving the given XFS log buffer.
85 * Returns nonzero if the count is valid, 0 otherwise.
86 */
87
88static inline int
89xlog_buf_bbcount_valid(
9a8d2fdb 90 struct xlog *log,
ff30a622
AE
91 int bbcount)
92{
93 return bbcount > 0 && bbcount <= log->l_logBBsize;
94}
95
36adecff
AE
96/*
97 * Allocate a buffer to hold log data. The buffer needs to be able
98 * to map to a range of nbblks basic blocks at any valid (basic
99 * block) offset within the log.
100 */
5d77c0dc 101STATIC xfs_buf_t *
1da177e4 102xlog_get_bp(
9a8d2fdb 103 struct xlog *log,
3228149c 104 int nbblks)
1da177e4 105{
c8da0faf
CH
106 struct xfs_buf *bp;
107
ff30a622 108 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 109 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
110 nbblks);
111 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
112 return NULL;
113 }
1da177e4 114
36adecff
AE
115 /*
116 * We do log I/O in units of log sectors (a power-of-2
117 * multiple of the basic block size), so we round up the
25985edc 118 * requested size to accommodate the basic blocks required
36adecff
AE
119 * for complete log sectors.
120 *
121 * In addition, the buffer may be used for a non-sector-
122 * aligned block offset, in which case an I/O of the
123 * requested size could extend beyond the end of the
124 * buffer. If the requested size is only 1 basic block it
125 * will never straddle a sector boundary, so this won't be
126 * an issue. Nor will this be a problem if the log I/O is
127 * done in basic blocks (sector size 1). But otherwise we
128 * extend the buffer by one extra log sector to ensure
25985edc 129 * there's space to accommodate this possibility.
36adecff 130 */
69ce58f0
AE
131 if (nbblks > 1 && log->l_sectBBsize > 1)
132 nbblks += log->l_sectBBsize;
133 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 134
e70b73f8 135 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
136 if (bp)
137 xfs_buf_unlock(bp);
138 return bp;
1da177e4
LT
139}
140
5d77c0dc 141STATIC void
1da177e4
LT
142xlog_put_bp(
143 xfs_buf_t *bp)
144{
145 xfs_buf_free(bp);
146}
147
48389ef1
AE
148/*
149 * Return the address of the start of the given block number's data
150 * in a log buffer. The buffer covers a log sector-aligned region.
151 */
076e6acb
CH
152STATIC xfs_caddr_t
153xlog_align(
9a8d2fdb 154 struct xlog *log,
076e6acb
CH
155 xfs_daddr_t blk_no,
156 int nbblks,
9a8d2fdb 157 struct xfs_buf *bp)
076e6acb 158{
fdc07f44 159 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 160
4e94b71b 161 ASSERT(offset + nbblks <= bp->b_length);
62926044 162 return bp->b_addr + BBTOB(offset);
076e6acb
CH
163}
164
1da177e4
LT
165
166/*
167 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
168 */
076e6acb
CH
169STATIC int
170xlog_bread_noalign(
9a8d2fdb 171 struct xlog *log,
1da177e4
LT
172 xfs_daddr_t blk_no,
173 int nbblks,
9a8d2fdb 174 struct xfs_buf *bp)
1da177e4
LT
175{
176 int error;
177
ff30a622 178 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 179 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
180 nbblks);
181 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 182 return -EFSCORRUPTED;
3228149c
DC
183 }
184
69ce58f0
AE
185 blk_no = round_down(blk_no, log->l_sectBBsize);
186 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
187
188 ASSERT(nbblks > 0);
4e94b71b 189 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
190
191 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
192 XFS_BUF_READ(bp);
aa0e8833 193 bp->b_io_length = nbblks;
0e95f19a 194 bp->b_error = 0;
1da177e4 195
83a0adc3 196 if (XFS_FORCED_SHUTDOWN(log->l_mp))
2451337d 197 return -EIO;
83a0adc3
CH
198
199 xfs_buf_iorequest(bp);
1a1a3e97 200 error = xfs_buf_iowait(bp);
d64e31a2 201 if (error)
901796af 202 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
203 return error;
204}
205
076e6acb
CH
206STATIC int
207xlog_bread(
9a8d2fdb 208 struct xlog *log,
076e6acb
CH
209 xfs_daddr_t blk_no,
210 int nbblks,
9a8d2fdb 211 struct xfs_buf *bp,
076e6acb
CH
212 xfs_caddr_t *offset)
213{
214 int error;
215
216 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
217 if (error)
218 return error;
219
220 *offset = xlog_align(log, blk_no, nbblks, bp);
221 return 0;
222}
223
44396476
DC
224/*
225 * Read at an offset into the buffer. Returns with the buffer in it's original
226 * state regardless of the result of the read.
227 */
228STATIC int
229xlog_bread_offset(
9a8d2fdb 230 struct xlog *log,
44396476
DC
231 xfs_daddr_t blk_no, /* block to read from */
232 int nbblks, /* blocks to read */
9a8d2fdb 233 struct xfs_buf *bp,
44396476
DC
234 xfs_caddr_t offset)
235{
62926044 236 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 237 int orig_len = BBTOB(bp->b_length);
44396476
DC
238 int error, error2;
239
02fe03d9 240 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
241 if (error)
242 return error;
243
244 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
245
246 /* must reset buffer pointer even on error */
02fe03d9 247 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
248 if (error)
249 return error;
250 return error2;
251}
252
1da177e4
LT
253/*
254 * Write out the buffer at the given block for the given number of blocks.
255 * The buffer is kept locked across the write and is returned locked.
256 * This can only be used for synchronous log writes.
257 */
ba0f32d4 258STATIC int
1da177e4 259xlog_bwrite(
9a8d2fdb 260 struct xlog *log,
1da177e4
LT
261 xfs_daddr_t blk_no,
262 int nbblks,
9a8d2fdb 263 struct xfs_buf *bp)
1da177e4
LT
264{
265 int error;
266
ff30a622 267 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 268 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
269 nbblks);
270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 271 return -EFSCORRUPTED;
3228149c
DC
272 }
273
69ce58f0
AE
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
276
277 ASSERT(nbblks > 0);
4e94b71b 278 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
279
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
281 XFS_BUF_ZEROFLAGS(bp);
72790aa1 282 xfs_buf_hold(bp);
0c842ad4 283 xfs_buf_lock(bp);
aa0e8833 284 bp->b_io_length = nbblks;
0e95f19a 285 bp->b_error = 0;
1da177e4 286
c2b006c1 287 error = xfs_bwrite(bp);
901796af
CH
288 if (error)
289 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 290 xfs_buf_relse(bp);
1da177e4
LT
291 return error;
292}
293
1da177e4
LT
294#ifdef DEBUG
295/*
296 * dump debug superblock and log record information
297 */
298STATIC void
299xlog_header_check_dump(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302{
08e96e1a 303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 305 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
307}
308#else
309#define xlog_header_check_dump(mp, head)
310#endif
311
312/*
313 * check log record header for recovery
314 */
315STATIC int
316xlog_header_check_recover(
317 xfs_mount_t *mp,
318 xlog_rec_header_t *head)
319{
69ef921b 320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
321
322 /*
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
326 */
69ef921b 327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
328 xfs_warn(mp,
329 "dirty log written in incompatible format - can't recover");
1da177e4
LT
330 xlog_header_check_dump(mp, head);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH, mp);
2451337d 333 return -EFSCORRUPTED;
1da177e4 334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
335 xfs_warn(mp,
336 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
337 xlog_header_check_dump(mp, head);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH, mp);
2451337d 340 return -EFSCORRUPTED;
1da177e4
LT
341 }
342 return 0;
343}
344
345/*
346 * read the head block of the log and check the header
347 */
348STATIC int
349xlog_header_check_mount(
350 xfs_mount_t *mp,
351 xlog_rec_header_t *head)
352{
69ef921b 353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
354
355 if (uuid_is_nil(&head->h_fs_uuid)) {
356 /*
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is nil, we assume this log was last mounted
359 * by IRIX and continue.
360 */
a0fa2b67 361 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 363 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
364 xlog_header_check_dump(mp, head);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH, mp);
2451337d 367 return -EFSCORRUPTED;
1da177e4
LT
368 }
369 return 0;
370}
371
372STATIC void
373xlog_recover_iodone(
374 struct xfs_buf *bp)
375{
5a52c2a5 376 if (bp->b_error) {
1da177e4
LT
377 /*
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
380 */
901796af 381 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
1da177e4 384 }
cb669ca5 385 bp->b_iodone = NULL;
1a1a3e97 386 xfs_buf_ioend(bp, 0);
1da177e4
LT
387}
388
389/*
390 * This routine finds (to an approximation) the first block in the physical
391 * log which contains the given cycle. It uses a binary search algorithm.
392 * Note that the algorithm can not be perfect because the disk will not
393 * necessarily be perfect.
394 */
a8272ce0 395STATIC int
1da177e4 396xlog_find_cycle_start(
9a8d2fdb
MT
397 struct xlog *log,
398 struct xfs_buf *bp,
1da177e4
LT
399 xfs_daddr_t first_blk,
400 xfs_daddr_t *last_blk,
401 uint cycle)
402{
403 xfs_caddr_t offset;
404 xfs_daddr_t mid_blk;
e3bb2e30 405 xfs_daddr_t end_blk;
1da177e4
LT
406 uint mid_cycle;
407 int error;
408
e3bb2e30
AE
409 end_blk = *last_blk;
410 mid_blk = BLK_AVG(first_blk, end_blk);
411 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
412 error = xlog_bread(log, mid_blk, 1, bp, &offset);
413 if (error)
1da177e4 414 return error;
03bea6fe 415 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
416 if (mid_cycle == cycle)
417 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
418 else
419 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
420 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 421 }
e3bb2e30
AE
422 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
423 (mid_blk == end_blk && mid_blk-1 == first_blk));
424
425 *last_blk = end_blk;
1da177e4
LT
426
427 return 0;
428}
429
430/*
3f943d85
AE
431 * Check that a range of blocks does not contain stop_on_cycle_no.
432 * Fill in *new_blk with the block offset where such a block is
433 * found, or with -1 (an invalid block number) if there is no such
434 * block in the range. The scan needs to occur from front to back
435 * and the pointer into the region must be updated since a later
436 * routine will need to perform another test.
1da177e4
LT
437 */
438STATIC int
439xlog_find_verify_cycle(
9a8d2fdb 440 struct xlog *log,
1da177e4
LT
441 xfs_daddr_t start_blk,
442 int nbblks,
443 uint stop_on_cycle_no,
444 xfs_daddr_t *new_blk)
445{
446 xfs_daddr_t i, j;
447 uint cycle;
448 xfs_buf_t *bp;
449 xfs_daddr_t bufblks;
450 xfs_caddr_t buf = NULL;
451 int error = 0;
452
6881a229
AE
453 /*
454 * Greedily allocate a buffer big enough to handle the full
455 * range of basic blocks we'll be examining. If that fails,
456 * try a smaller size. We need to be able to read at least
457 * a log sector, or we're out of luck.
458 */
1da177e4 459 bufblks = 1 << ffs(nbblks);
81158e0c
DC
460 while (bufblks > log->l_logBBsize)
461 bufblks >>= 1;
1da177e4 462 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 463 bufblks >>= 1;
69ce58f0 464 if (bufblks < log->l_sectBBsize)
2451337d 465 return -ENOMEM;
1da177e4
LT
466 }
467
468 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
469 int bcount;
470
471 bcount = min(bufblks, (start_blk + nbblks - i));
472
076e6acb
CH
473 error = xlog_bread(log, i, bcount, bp, &buf);
474 if (error)
1da177e4
LT
475 goto out;
476
1da177e4 477 for (j = 0; j < bcount; j++) {
03bea6fe 478 cycle = xlog_get_cycle(buf);
1da177e4
LT
479 if (cycle == stop_on_cycle_no) {
480 *new_blk = i+j;
481 goto out;
482 }
483
484 buf += BBSIZE;
485 }
486 }
487
488 *new_blk = -1;
489
490out:
491 xlog_put_bp(bp);
492 return error;
493}
494
495/*
496 * Potentially backup over partial log record write.
497 *
498 * In the typical case, last_blk is the number of the block directly after
499 * a good log record. Therefore, we subtract one to get the block number
500 * of the last block in the given buffer. extra_bblks contains the number
501 * of blocks we would have read on a previous read. This happens when the
502 * last log record is split over the end of the physical log.
503 *
504 * extra_bblks is the number of blocks potentially verified on a previous
505 * call to this routine.
506 */
507STATIC int
508xlog_find_verify_log_record(
9a8d2fdb 509 struct xlog *log,
1da177e4
LT
510 xfs_daddr_t start_blk,
511 xfs_daddr_t *last_blk,
512 int extra_bblks)
513{
514 xfs_daddr_t i;
515 xfs_buf_t *bp;
516 xfs_caddr_t offset = NULL;
517 xlog_rec_header_t *head = NULL;
518 int error = 0;
519 int smallmem = 0;
520 int num_blks = *last_blk - start_blk;
521 int xhdrs;
522
523 ASSERT(start_blk != 0 || *last_blk != start_blk);
524
525 if (!(bp = xlog_get_bp(log, num_blks))) {
526 if (!(bp = xlog_get_bp(log, 1)))
2451337d 527 return -ENOMEM;
1da177e4
LT
528 smallmem = 1;
529 } else {
076e6acb
CH
530 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
531 if (error)
1da177e4 532 goto out;
1da177e4
LT
533 offset += ((num_blks - 1) << BBSHIFT);
534 }
535
536 for (i = (*last_blk) - 1; i >= 0; i--) {
537 if (i < start_blk) {
538 /* valid log record not found */
a0fa2b67
DC
539 xfs_warn(log->l_mp,
540 "Log inconsistent (didn't find previous header)");
1da177e4 541 ASSERT(0);
2451337d 542 error = -EIO;
1da177e4
LT
543 goto out;
544 }
545
546 if (smallmem) {
076e6acb
CH
547 error = xlog_bread(log, i, 1, bp, &offset);
548 if (error)
1da177e4 549 goto out;
1da177e4
LT
550 }
551
552 head = (xlog_rec_header_t *)offset;
553
69ef921b 554 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
555 break;
556
557 if (!smallmem)
558 offset -= BBSIZE;
559 }
560
561 /*
562 * We hit the beginning of the physical log & still no header. Return
563 * to caller. If caller can handle a return of -1, then this routine
564 * will be called again for the end of the physical log.
565 */
566 if (i == -1) {
2451337d 567 error = 1;
1da177e4
LT
568 goto out;
569 }
570
571 /*
572 * We have the final block of the good log (the first block
573 * of the log record _before_ the head. So we check the uuid.
574 */
575 if ((error = xlog_header_check_mount(log->l_mp, head)))
576 goto out;
577
578 /*
579 * We may have found a log record header before we expected one.
580 * last_blk will be the 1st block # with a given cycle #. We may end
581 * up reading an entire log record. In this case, we don't want to
582 * reset last_blk. Only when last_blk points in the middle of a log
583 * record do we update last_blk.
584 */
62118709 585 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 586 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
587
588 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
589 if (h_size % XLOG_HEADER_CYCLE_SIZE)
590 xhdrs++;
591 } else {
592 xhdrs = 1;
593 }
594
b53e675d
CH
595 if (*last_blk - i + extra_bblks !=
596 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
597 *last_blk = i;
598
599out:
600 xlog_put_bp(bp);
601 return error;
602}
603
604/*
605 * Head is defined to be the point of the log where the next log write
0a94da24 606 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
607 * eliminated when calculating the head. We aren't guaranteed that previous
608 * LR have complete transactions. We only know that a cycle number of
609 * current cycle number -1 won't be present in the log if we start writing
610 * from our current block number.
611 *
612 * last_blk contains the block number of the first block with a given
613 * cycle number.
614 *
615 * Return: zero if normal, non-zero if error.
616 */
ba0f32d4 617STATIC int
1da177e4 618xlog_find_head(
9a8d2fdb 619 struct xlog *log,
1da177e4
LT
620 xfs_daddr_t *return_head_blk)
621{
622 xfs_buf_t *bp;
623 xfs_caddr_t offset;
624 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
625 int num_scan_bblks;
626 uint first_half_cycle, last_half_cycle;
627 uint stop_on_cycle;
628 int error, log_bbnum = log->l_logBBsize;
629
630 /* Is the end of the log device zeroed? */
2451337d
DC
631 error = xlog_find_zeroed(log, &first_blk);
632 if (error < 0) {
633 xfs_warn(log->l_mp, "empty log check failed");
634 return error;
635 }
636 if (error == 1) {
1da177e4
LT
637 *return_head_blk = first_blk;
638
639 /* Is the whole lot zeroed? */
640 if (!first_blk) {
641 /* Linux XFS shouldn't generate totally zeroed logs -
642 * mkfs etc write a dummy unmount record to a fresh
643 * log so we can store the uuid in there
644 */
a0fa2b67 645 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
646 }
647
648 return 0;
1da177e4
LT
649 }
650
651 first_blk = 0; /* get cycle # of 1st block */
652 bp = xlog_get_bp(log, 1);
653 if (!bp)
2451337d 654 return -ENOMEM;
076e6acb
CH
655
656 error = xlog_bread(log, 0, 1, bp, &offset);
657 if (error)
1da177e4 658 goto bp_err;
076e6acb 659
03bea6fe 660 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
661
662 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
663 error = xlog_bread(log, last_blk, 1, bp, &offset);
664 if (error)
1da177e4 665 goto bp_err;
076e6acb 666
03bea6fe 667 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
668 ASSERT(last_half_cycle != 0);
669
670 /*
671 * If the 1st half cycle number is equal to the last half cycle number,
672 * then the entire log is stamped with the same cycle number. In this
673 * case, head_blk can't be set to zero (which makes sense). The below
674 * math doesn't work out properly with head_blk equal to zero. Instead,
675 * we set it to log_bbnum which is an invalid block number, but this
676 * value makes the math correct. If head_blk doesn't changed through
677 * all the tests below, *head_blk is set to zero at the very end rather
678 * than log_bbnum. In a sense, log_bbnum and zero are the same block
679 * in a circular file.
680 */
681 if (first_half_cycle == last_half_cycle) {
682 /*
683 * In this case we believe that the entire log should have
684 * cycle number last_half_cycle. We need to scan backwards
685 * from the end verifying that there are no holes still
686 * containing last_half_cycle - 1. If we find such a hole,
687 * then the start of that hole will be the new head. The
688 * simple case looks like
689 * x | x ... | x - 1 | x
690 * Another case that fits this picture would be
691 * x | x + 1 | x ... | x
c41564b5 692 * In this case the head really is somewhere at the end of the
1da177e4
LT
693 * log, as one of the latest writes at the beginning was
694 * incomplete.
695 * One more case is
696 * x | x + 1 | x ... | x - 1 | x
697 * This is really the combination of the above two cases, and
698 * the head has to end up at the start of the x-1 hole at the
699 * end of the log.
700 *
701 * In the 256k log case, we will read from the beginning to the
702 * end of the log and search for cycle numbers equal to x-1.
703 * We don't worry about the x+1 blocks that we encounter,
704 * because we know that they cannot be the head since the log
705 * started with x.
706 */
707 head_blk = log_bbnum;
708 stop_on_cycle = last_half_cycle - 1;
709 } else {
710 /*
711 * In this case we want to find the first block with cycle
712 * number matching last_half_cycle. We expect the log to be
713 * some variation on
3f943d85 714 * x + 1 ... | x ... | x
1da177e4
LT
715 * The first block with cycle number x (last_half_cycle) will
716 * be where the new head belongs. First we do a binary search
717 * for the first occurrence of last_half_cycle. The binary
718 * search may not be totally accurate, so then we scan back
719 * from there looking for occurrences of last_half_cycle before
720 * us. If that backwards scan wraps around the beginning of
721 * the log, then we look for occurrences of last_half_cycle - 1
722 * at the end of the log. The cases we're looking for look
723 * like
3f943d85
AE
724 * v binary search stopped here
725 * x + 1 ... | x | x + 1 | x ... | x
726 * ^ but we want to locate this spot
1da177e4 727 * or
1da177e4 728 * <---------> less than scan distance
3f943d85
AE
729 * x + 1 ... | x ... | x - 1 | x
730 * ^ we want to locate this spot
1da177e4
LT
731 */
732 stop_on_cycle = last_half_cycle;
733 if ((error = xlog_find_cycle_start(log, bp, first_blk,
734 &head_blk, last_half_cycle)))
735 goto bp_err;
736 }
737
738 /*
739 * Now validate the answer. Scan back some number of maximum possible
740 * blocks and make sure each one has the expected cycle number. The
741 * maximum is determined by the total possible amount of buffering
742 * in the in-core log. The following number can be made tighter if
743 * we actually look at the block size of the filesystem.
744 */
745 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
746 if (head_blk >= num_scan_bblks) {
747 /*
748 * We are guaranteed that the entire check can be performed
749 * in one buffer.
750 */
751 start_blk = head_blk - num_scan_bblks;
752 if ((error = xlog_find_verify_cycle(log,
753 start_blk, num_scan_bblks,
754 stop_on_cycle, &new_blk)))
755 goto bp_err;
756 if (new_blk != -1)
757 head_blk = new_blk;
758 } else { /* need to read 2 parts of log */
759 /*
760 * We are going to scan backwards in the log in two parts.
761 * First we scan the physical end of the log. In this part
762 * of the log, we are looking for blocks with cycle number
763 * last_half_cycle - 1.
764 * If we find one, then we know that the log starts there, as
765 * we've found a hole that didn't get written in going around
766 * the end of the physical log. The simple case for this is
767 * x + 1 ... | x ... | x - 1 | x
768 * <---------> less than scan distance
769 * If all of the blocks at the end of the log have cycle number
770 * last_half_cycle, then we check the blocks at the start of
771 * the log looking for occurrences of last_half_cycle. If we
772 * find one, then our current estimate for the location of the
773 * first occurrence of last_half_cycle is wrong and we move
774 * back to the hole we've found. This case looks like
775 * x + 1 ... | x | x + 1 | x ...
776 * ^ binary search stopped here
777 * Another case we need to handle that only occurs in 256k
778 * logs is
779 * x + 1 ... | x ... | x+1 | x ...
780 * ^ binary search stops here
781 * In a 256k log, the scan at the end of the log will see the
782 * x + 1 blocks. We need to skip past those since that is
783 * certainly not the head of the log. By searching for
784 * last_half_cycle-1 we accomplish that.
785 */
1da177e4 786 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
787 (xfs_daddr_t) num_scan_bblks >= head_blk);
788 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
789 if ((error = xlog_find_verify_cycle(log, start_blk,
790 num_scan_bblks - (int)head_blk,
791 (stop_on_cycle - 1), &new_blk)))
792 goto bp_err;
793 if (new_blk != -1) {
794 head_blk = new_blk;
9db127ed 795 goto validate_head;
1da177e4
LT
796 }
797
798 /*
799 * Scan beginning of log now. The last part of the physical
800 * log is good. This scan needs to verify that it doesn't find
801 * the last_half_cycle.
802 */
803 start_blk = 0;
804 ASSERT(head_blk <= INT_MAX);
805 if ((error = xlog_find_verify_cycle(log,
806 start_blk, (int)head_blk,
807 stop_on_cycle, &new_blk)))
808 goto bp_err;
809 if (new_blk != -1)
810 head_blk = new_blk;
811 }
812
9db127ed 813validate_head:
1da177e4
LT
814 /*
815 * Now we need to make sure head_blk is not pointing to a block in
816 * the middle of a log record.
817 */
818 num_scan_bblks = XLOG_REC_SHIFT(log);
819 if (head_blk >= num_scan_bblks) {
820 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
821
822 /* start ptr at last block ptr before head_blk */
2451337d
DC
823 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
824 if (error == 1)
825 error = -EIO;
826 if (error)
1da177e4
LT
827 goto bp_err;
828 } else {
829 start_blk = 0;
830 ASSERT(head_blk <= INT_MAX);
2451337d
DC
831 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
832 if (error < 0)
833 goto bp_err;
834 if (error == 1) {
1da177e4 835 /* We hit the beginning of the log during our search */
3f943d85 836 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
837 new_blk = log_bbnum;
838 ASSERT(start_blk <= INT_MAX &&
839 (xfs_daddr_t) log_bbnum-start_blk >= 0);
840 ASSERT(head_blk <= INT_MAX);
2451337d
DC
841 error = xlog_find_verify_log_record(log, start_blk,
842 &new_blk, (int)head_blk);
843 if (error == 1)
844 error = -EIO;
845 if (error)
1da177e4
LT
846 goto bp_err;
847 if (new_blk != log_bbnum)
848 head_blk = new_blk;
849 } else if (error)
850 goto bp_err;
851 }
852
853 xlog_put_bp(bp);
854 if (head_blk == log_bbnum)
855 *return_head_blk = 0;
856 else
857 *return_head_blk = head_blk;
858 /*
859 * When returning here, we have a good block number. Bad block
860 * means that during a previous crash, we didn't have a clean break
861 * from cycle number N to cycle number N-1. In this case, we need
862 * to find the first block with cycle number N-1.
863 */
864 return 0;
865
866 bp_err:
867 xlog_put_bp(bp);
868
869 if (error)
a0fa2b67 870 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
871 return error;
872}
873
874/*
875 * Find the sync block number or the tail of the log.
876 *
877 * This will be the block number of the last record to have its
878 * associated buffers synced to disk. Every log record header has
879 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
880 * to get a sync block number. The only concern is to figure out which
881 * log record header to believe.
882 *
883 * The following algorithm uses the log record header with the largest
884 * lsn. The entire log record does not need to be valid. We only care
885 * that the header is valid.
886 *
887 * We could speed up search by using current head_blk buffer, but it is not
888 * available.
889 */
5d77c0dc 890STATIC int
1da177e4 891xlog_find_tail(
9a8d2fdb 892 struct xlog *log,
1da177e4 893 xfs_daddr_t *head_blk,
65be6054 894 xfs_daddr_t *tail_blk)
1da177e4
LT
895{
896 xlog_rec_header_t *rhead;
897 xlog_op_header_t *op_head;
898 xfs_caddr_t offset = NULL;
899 xfs_buf_t *bp;
900 int error, i, found;
901 xfs_daddr_t umount_data_blk;
902 xfs_daddr_t after_umount_blk;
903 xfs_lsn_t tail_lsn;
904 int hblks;
905
906 found = 0;
907
908 /*
909 * Find previous log record
910 */
911 if ((error = xlog_find_head(log, head_blk)))
912 return error;
913
914 bp = xlog_get_bp(log, 1);
915 if (!bp)
2451337d 916 return -ENOMEM;
1da177e4 917 if (*head_blk == 0) { /* special case */
076e6acb
CH
918 error = xlog_bread(log, 0, 1, bp, &offset);
919 if (error)
9db127ed 920 goto done;
076e6acb 921
03bea6fe 922 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
923 *tail_blk = 0;
924 /* leave all other log inited values alone */
9db127ed 925 goto done;
1da177e4
LT
926 }
927 }
928
929 /*
930 * Search backwards looking for log record header block
931 */
932 ASSERT(*head_blk < INT_MAX);
933 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
934 error = xlog_bread(log, i, 1, bp, &offset);
935 if (error)
9db127ed 936 goto done;
076e6acb 937
69ef921b 938 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
939 found = 1;
940 break;
941 }
942 }
943 /*
944 * If we haven't found the log record header block, start looking
945 * again from the end of the physical log. XXXmiken: There should be
946 * a check here to make sure we didn't search more than N blocks in
947 * the previous code.
948 */
949 if (!found) {
950 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
951 error = xlog_bread(log, i, 1, bp, &offset);
952 if (error)
9db127ed 953 goto done;
076e6acb 954
69ef921b
CH
955 if (*(__be32 *)offset ==
956 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
957 found = 2;
958 break;
959 }
960 }
961 }
962 if (!found) {
a0fa2b67 963 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
050a1952 964 xlog_put_bp(bp);
1da177e4 965 ASSERT(0);
2451337d 966 return -EIO;
1da177e4
LT
967 }
968
969 /* find blk_no of tail of log */
970 rhead = (xlog_rec_header_t *)offset;
b53e675d 971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
972
973 /*
974 * Reset log values according to the state of the log when we
975 * crashed. In the case where head_blk == 0, we bump curr_cycle
976 * one because the next write starts a new cycle rather than
977 * continuing the cycle of the last good log record. At this
978 * point we have guaranteed that all partial log records have been
979 * accounted for. Therefore, we know that the last good log record
980 * written was complete and ended exactly on the end boundary
981 * of the physical log.
982 */
983 log->l_prev_block = i;
984 log->l_curr_block = (int)*head_blk;
b53e675d 985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
986 if (found == 2)
987 log->l_curr_cycle++;
1c3cb9ec 988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 991 BBTOB(log->l_curr_block));
28496968 992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 993 BBTOB(log->l_curr_block));
1da177e4
LT
994
995 /*
996 * Look for unmount record. If we find it, then we know there
997 * was a clean unmount. Since 'i' could be the last block in
998 * the physical log, we convert to a log block before comparing
999 * to the head_blk.
1000 *
1001 * Save the current tail lsn to use to pass to
1002 * xlog_clear_stale_blocks() below. We won't want to clear the
1003 * unmount record if there is one, so we pass the lsn of the
1004 * unmount record rather than the block after it.
1005 */
62118709 1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1007 int h_size = be32_to_cpu(rhead->h_size);
1008 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1009
1010 if ((h_version & XLOG_VERSION_2) &&
1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1013 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1014 hblks++;
1015 } else {
1016 hblks = 1;
1017 }
1018 } else {
1019 hblks = 1;
1020 }
1021 after_umount_blk = (i + hblks + (int)
b53e675d 1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1023 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1024 if (*head_blk == after_umount_blk &&
b53e675d 1025 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1026 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1028 if (error)
9db127ed 1029 goto done;
076e6acb 1030
1da177e4
LT
1031 op_head = (xlog_op_header_t *)offset;
1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1033 /*
1034 * Set tail and last sync so that newly written
1035 * log records will point recovery to after the
1036 * current unmount record.
1037 */
1c3cb9ec
DC
1038 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1041 log->l_curr_cycle, after_umount_blk);
1da177e4 1042 *tail_blk = after_umount_blk;
92821e2b
DC
1043
1044 /*
1045 * Note that the unmount was clean. If the unmount
1046 * was not clean, we need to know this to rebuild the
1047 * superblock counters from the perag headers if we
1048 * have a filesystem using non-persistent counters.
1049 */
1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1051 }
1052 }
1053
1054 /*
1055 * Make sure that there are no blocks in front of the head
1056 * with the same cycle number as the head. This can happen
1057 * because we allow multiple outstanding log writes concurrently,
1058 * and the later writes might make it out before earlier ones.
1059 *
1060 * We use the lsn from before modifying it so that we'll never
1061 * overwrite the unmount record after a clean unmount.
1062 *
1063 * Do this only if we are going to recover the filesystem
1064 *
1065 * NOTE: This used to say "if (!readonly)"
1066 * However on Linux, we can & do recover a read-only filesystem.
1067 * We only skip recovery if NORECOVERY is specified on mount,
1068 * in which case we would not be here.
1069 *
1070 * But... if the -device- itself is readonly, just skip this.
1071 * We can't recover this device anyway, so it won't matter.
1072 */
9db127ed 1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1074 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1075
9db127ed 1076done:
1da177e4
LT
1077 xlog_put_bp(bp);
1078
1079 if (error)
a0fa2b67 1080 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1081 return error;
1082}
1083
1084/*
1085 * Is the log zeroed at all?
1086 *
1087 * The last binary search should be changed to perform an X block read
1088 * once X becomes small enough. You can then search linearly through
1089 * the X blocks. This will cut down on the number of reads we need to do.
1090 *
1091 * If the log is partially zeroed, this routine will pass back the blkno
1092 * of the first block with cycle number 0. It won't have a complete LR
1093 * preceding it.
1094 *
1095 * Return:
1096 * 0 => the log is completely written to
2451337d
DC
1097 * 1 => use *blk_no as the first block of the log
1098 * <0 => error has occurred
1da177e4 1099 */
a8272ce0 1100STATIC int
1da177e4 1101xlog_find_zeroed(
9a8d2fdb 1102 struct xlog *log,
1da177e4
LT
1103 xfs_daddr_t *blk_no)
1104{
1105 xfs_buf_t *bp;
1106 xfs_caddr_t offset;
1107 uint first_cycle, last_cycle;
1108 xfs_daddr_t new_blk, last_blk, start_blk;
1109 xfs_daddr_t num_scan_bblks;
1110 int error, log_bbnum = log->l_logBBsize;
1111
6fdf8ccc
NS
1112 *blk_no = 0;
1113
1da177e4
LT
1114 /* check totally zeroed log */
1115 bp = xlog_get_bp(log, 1);
1116 if (!bp)
2451337d 1117 return -ENOMEM;
076e6acb
CH
1118 error = xlog_bread(log, 0, 1, bp, &offset);
1119 if (error)
1da177e4 1120 goto bp_err;
076e6acb 1121
03bea6fe 1122 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1123 if (first_cycle == 0) { /* completely zeroed log */
1124 *blk_no = 0;
1125 xlog_put_bp(bp);
2451337d 1126 return 1;
1da177e4
LT
1127 }
1128
1129 /* check partially zeroed log */
076e6acb
CH
1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1131 if (error)
1da177e4 1132 goto bp_err;
076e6acb 1133
03bea6fe 1134 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1135 if (last_cycle != 0) { /* log completely written to */
1136 xlog_put_bp(bp);
1137 return 0;
1138 } else if (first_cycle != 1) {
1139 /*
1140 * If the cycle of the last block is zero, the cycle of
1141 * the first block must be 1. If it's not, maybe we're
1142 * not looking at a log... Bail out.
1143 */
a0fa2b67
DC
1144 xfs_warn(log->l_mp,
1145 "Log inconsistent or not a log (last==0, first!=1)");
2451337d 1146 error = -EINVAL;
5d0a6549 1147 goto bp_err;
1da177e4
LT
1148 }
1149
1150 /* we have a partially zeroed log */
1151 last_blk = log_bbnum-1;
1152 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1153 goto bp_err;
1154
1155 /*
1156 * Validate the answer. Because there is no way to guarantee that
1157 * the entire log is made up of log records which are the same size,
1158 * we scan over the defined maximum blocks. At this point, the maximum
1159 * is not chosen to mean anything special. XXXmiken
1160 */
1161 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1162 ASSERT(num_scan_bblks <= INT_MAX);
1163
1164 if (last_blk < num_scan_bblks)
1165 num_scan_bblks = last_blk;
1166 start_blk = last_blk - num_scan_bblks;
1167
1168 /*
1169 * We search for any instances of cycle number 0 that occur before
1170 * our current estimate of the head. What we're trying to detect is
1171 * 1 ... | 0 | 1 | 0...
1172 * ^ binary search ends here
1173 */
1174 if ((error = xlog_find_verify_cycle(log, start_blk,
1175 (int)num_scan_bblks, 0, &new_blk)))
1176 goto bp_err;
1177 if (new_blk != -1)
1178 last_blk = new_blk;
1179
1180 /*
1181 * Potentially backup over partial log record write. We don't need
1182 * to search the end of the log because we know it is zero.
1183 */
2451337d
DC
1184 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1185 if (error == 1)
1186 error = -EIO;
1187 if (error)
1188 goto bp_err;
1da177e4
LT
1189
1190 *blk_no = last_blk;
1191bp_err:
1192 xlog_put_bp(bp);
1193 if (error)
1194 return error;
2451337d 1195 return 1;
1da177e4
LT
1196}
1197
1198/*
1199 * These are simple subroutines used by xlog_clear_stale_blocks() below
1200 * to initialize a buffer full of empty log record headers and write
1201 * them into the log.
1202 */
1203STATIC void
1204xlog_add_record(
9a8d2fdb 1205 struct xlog *log,
1da177e4
LT
1206 xfs_caddr_t buf,
1207 int cycle,
1208 int block,
1209 int tail_cycle,
1210 int tail_block)
1211{
1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1213
1214 memset(buf, 0, BBSIZE);
b53e675d
CH
1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1216 recp->h_cycle = cpu_to_be32(cycle);
1217 recp->h_version = cpu_to_be32(
62118709 1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1221 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1223}
1224
1225STATIC int
1226xlog_write_log_records(
9a8d2fdb 1227 struct xlog *log,
1da177e4
LT
1228 int cycle,
1229 int start_block,
1230 int blocks,
1231 int tail_cycle,
1232 int tail_block)
1233{
1234 xfs_caddr_t offset;
1235 xfs_buf_t *bp;
1236 int balign, ealign;
69ce58f0 1237 int sectbb = log->l_sectBBsize;
1da177e4
LT
1238 int end_block = start_block + blocks;
1239 int bufblks;
1240 int error = 0;
1241 int i, j = 0;
1242
6881a229
AE
1243 /*
1244 * Greedily allocate a buffer big enough to handle the full
1245 * range of basic blocks to be written. If that fails, try
1246 * a smaller size. We need to be able to write at least a
1247 * log sector, or we're out of luck.
1248 */
1da177e4 1249 bufblks = 1 << ffs(blocks);
81158e0c
DC
1250 while (bufblks > log->l_logBBsize)
1251 bufblks >>= 1;
1da177e4
LT
1252 while (!(bp = xlog_get_bp(log, bufblks))) {
1253 bufblks >>= 1;
69ce58f0 1254 if (bufblks < sectbb)
2451337d 1255 return -ENOMEM;
1da177e4
LT
1256 }
1257
1258 /* We may need to do a read at the start to fill in part of
1259 * the buffer in the starting sector not covered by the first
1260 * write below.
1261 */
5c17f533 1262 balign = round_down(start_block, sectbb);
1da177e4 1263 if (balign != start_block) {
076e6acb
CH
1264 error = xlog_bread_noalign(log, start_block, 1, bp);
1265 if (error)
1266 goto out_put_bp;
1267
1da177e4
LT
1268 j = start_block - balign;
1269 }
1270
1271 for (i = start_block; i < end_block; i += bufblks) {
1272 int bcount, endcount;
1273
1274 bcount = min(bufblks, end_block - start_block);
1275 endcount = bcount - j;
1276
1277 /* We may need to do a read at the end to fill in part of
1278 * the buffer in the final sector not covered by the write.
1279 * If this is the same sector as the above read, skip it.
1280 */
5c17f533 1281 ealign = round_down(end_block, sectbb);
1da177e4 1282 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1283 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1284 error = xlog_bread_offset(log, ealign, sectbb,
1285 bp, offset);
076e6acb
CH
1286 if (error)
1287 break;
1288
1da177e4
LT
1289 }
1290
1291 offset = xlog_align(log, start_block, endcount, bp);
1292 for (; j < endcount; j++) {
1293 xlog_add_record(log, offset, cycle, i+j,
1294 tail_cycle, tail_block);
1295 offset += BBSIZE;
1296 }
1297 error = xlog_bwrite(log, start_block, endcount, bp);
1298 if (error)
1299 break;
1300 start_block += endcount;
1301 j = 0;
1302 }
076e6acb
CH
1303
1304 out_put_bp:
1da177e4
LT
1305 xlog_put_bp(bp);
1306 return error;
1307}
1308
1309/*
1310 * This routine is called to blow away any incomplete log writes out
1311 * in front of the log head. We do this so that we won't become confused
1312 * if we come up, write only a little bit more, and then crash again.
1313 * If we leave the partial log records out there, this situation could
1314 * cause us to think those partial writes are valid blocks since they
1315 * have the current cycle number. We get rid of them by overwriting them
1316 * with empty log records with the old cycle number rather than the
1317 * current one.
1318 *
1319 * The tail lsn is passed in rather than taken from
1320 * the log so that we will not write over the unmount record after a
1321 * clean unmount in a 512 block log. Doing so would leave the log without
1322 * any valid log records in it until a new one was written. If we crashed
1323 * during that time we would not be able to recover.
1324 */
1325STATIC int
1326xlog_clear_stale_blocks(
9a8d2fdb 1327 struct xlog *log,
1da177e4
LT
1328 xfs_lsn_t tail_lsn)
1329{
1330 int tail_cycle, head_cycle;
1331 int tail_block, head_block;
1332 int tail_distance, max_distance;
1333 int distance;
1334 int error;
1335
1336 tail_cycle = CYCLE_LSN(tail_lsn);
1337 tail_block = BLOCK_LSN(tail_lsn);
1338 head_cycle = log->l_curr_cycle;
1339 head_block = log->l_curr_block;
1340
1341 /*
1342 * Figure out the distance between the new head of the log
1343 * and the tail. We want to write over any blocks beyond the
1344 * head that we may have written just before the crash, but
1345 * we don't want to overwrite the tail of the log.
1346 */
1347 if (head_cycle == tail_cycle) {
1348 /*
1349 * The tail is behind the head in the physical log,
1350 * so the distance from the head to the tail is the
1351 * distance from the head to the end of the log plus
1352 * the distance from the beginning of the log to the
1353 * tail.
1354 */
1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1357 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1358 return -EFSCORRUPTED;
1da177e4
LT
1359 }
1360 tail_distance = tail_block + (log->l_logBBsize - head_block);
1361 } else {
1362 /*
1363 * The head is behind the tail in the physical log,
1364 * so the distance from the head to the tail is just
1365 * the tail block minus the head block.
1366 */
1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1369 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1370 return -EFSCORRUPTED;
1da177e4
LT
1371 }
1372 tail_distance = tail_block - head_block;
1373 }
1374
1375 /*
1376 * If the head is right up against the tail, we can't clear
1377 * anything.
1378 */
1379 if (tail_distance <= 0) {
1380 ASSERT(tail_distance == 0);
1381 return 0;
1382 }
1383
1384 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1385 /*
1386 * Take the smaller of the maximum amount of outstanding I/O
1387 * we could have and the distance to the tail to clear out.
1388 * We take the smaller so that we don't overwrite the tail and
1389 * we don't waste all day writing from the head to the tail
1390 * for no reason.
1391 */
1392 max_distance = MIN(max_distance, tail_distance);
1393
1394 if ((head_block + max_distance) <= log->l_logBBsize) {
1395 /*
1396 * We can stomp all the blocks we need to without
1397 * wrapping around the end of the log. Just do it
1398 * in a single write. Use the cycle number of the
1399 * current cycle minus one so that the log will look like:
1400 * n ... | n - 1 ...
1401 */
1402 error = xlog_write_log_records(log, (head_cycle - 1),
1403 head_block, max_distance, tail_cycle,
1404 tail_block);
1405 if (error)
1406 return error;
1407 } else {
1408 /*
1409 * We need to wrap around the end of the physical log in
1410 * order to clear all the blocks. Do it in two separate
1411 * I/Os. The first write should be from the head to the
1412 * end of the physical log, and it should use the current
1413 * cycle number minus one just like above.
1414 */
1415 distance = log->l_logBBsize - head_block;
1416 error = xlog_write_log_records(log, (head_cycle - 1),
1417 head_block, distance, tail_cycle,
1418 tail_block);
1419
1420 if (error)
1421 return error;
1422
1423 /*
1424 * Now write the blocks at the start of the physical log.
1425 * This writes the remainder of the blocks we want to clear.
1426 * It uses the current cycle number since we're now on the
1427 * same cycle as the head so that we get:
1428 * n ... n ... | n - 1 ...
1429 * ^^^^^ blocks we're writing
1430 */
1431 distance = max_distance - (log->l_logBBsize - head_block);
1432 error = xlog_write_log_records(log, head_cycle, 0, distance,
1433 tail_cycle, tail_block);
1434 if (error)
1435 return error;
1436 }
1437
1438 return 0;
1439}
1440
1441/******************************************************************************
1442 *
1443 * Log recover routines
1444 *
1445 ******************************************************************************
1446 */
1447
f0a76953 1448/*
a775ad77
DC
1449 * Sort the log items in the transaction.
1450 *
1451 * The ordering constraints are defined by the inode allocation and unlink
1452 * behaviour. The rules are:
1453 *
1454 * 1. Every item is only logged once in a given transaction. Hence it
1455 * represents the last logged state of the item. Hence ordering is
1456 * dependent on the order in which operations need to be performed so
1457 * required initial conditions are always met.
1458 *
1459 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1460 * there's nothing to replay from them so we can simply cull them
1461 * from the transaction. However, we can't do that until after we've
1462 * replayed all the other items because they may be dependent on the
1463 * cancelled buffer and replaying the cancelled buffer can remove it
1464 * form the cancelled buffer table. Hence they have tobe done last.
1465 *
1466 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1467 * read the buffer and replay changes into it. For filesystems using the
1468 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1469 * treated the same as inode allocation buffers as they create and
1470 * initialise the buffers directly.
a775ad77
DC
1471 *
1472 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1473 * This ensures that inodes are completely flushed to the inode buffer
1474 * in a "free" state before we remove the unlinked inode list pointer.
1475 *
1476 * Hence the ordering needs to be inode allocation buffers first, inode items
1477 * second, inode unlink buffers third and cancelled buffers last.
1478 *
1479 * But there's a problem with that - we can't tell an inode allocation buffer
1480 * apart from a regular buffer, so we can't separate them. We can, however,
1481 * tell an inode unlink buffer from the others, and so we can separate them out
1482 * from all the other buffers and move them to last.
1483 *
1484 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1485 * - buffer_list for all buffers except cancelled/inode unlink buffers
1486 * - item_list for all non-buffer items
1487 * - inode_buffer_list for inode unlink buffers
1488 * - cancel_list for the cancelled buffers
1489 *
1490 * Note that we add objects to the tail of the lists so that first-to-last
1491 * ordering is preserved within the lists. Adding objects to the head of the
1492 * list means when we traverse from the head we walk them in last-to-first
1493 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1494 * but for all other items there may be specific ordering that we need to
1495 * preserve.
f0a76953 1496 */
1da177e4
LT
1497STATIC int
1498xlog_recover_reorder_trans(
ad223e60
MT
1499 struct xlog *log,
1500 struct xlog_recover *trans,
9abbc539 1501 int pass)
1da177e4 1502{
f0a76953 1503 xlog_recover_item_t *item, *n;
2a84108f 1504 int error = 0;
f0a76953 1505 LIST_HEAD(sort_list);
a775ad77
DC
1506 LIST_HEAD(cancel_list);
1507 LIST_HEAD(buffer_list);
1508 LIST_HEAD(inode_buffer_list);
1509 LIST_HEAD(inode_list);
f0a76953
DC
1510
1511 list_splice_init(&trans->r_itemq, &sort_list);
1512 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1513 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1514
f0a76953 1515 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1516 case XFS_LI_ICREATE:
1517 list_move_tail(&item->ri_list, &buffer_list);
1518 break;
1da177e4 1519 case XFS_LI_BUF:
a775ad77 1520 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1521 trace_xfs_log_recover_item_reorder_head(log,
1522 trans, item, pass);
a775ad77 1523 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1524 break;
1525 }
a775ad77
DC
1526 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1527 list_move(&item->ri_list, &inode_buffer_list);
1528 break;
1529 }
1530 list_move_tail(&item->ri_list, &buffer_list);
1531 break;
1da177e4 1532 case XFS_LI_INODE:
1da177e4
LT
1533 case XFS_LI_DQUOT:
1534 case XFS_LI_QUOTAOFF:
1535 case XFS_LI_EFD:
1536 case XFS_LI_EFI:
9abbc539
DC
1537 trace_xfs_log_recover_item_reorder_tail(log,
1538 trans, item, pass);
a775ad77 1539 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1540 break;
1541 default:
a0fa2b67
DC
1542 xfs_warn(log->l_mp,
1543 "%s: unrecognized type of log operation",
1544 __func__);
1da177e4 1545 ASSERT(0);
2a84108f
MT
1546 /*
1547 * return the remaining items back to the transaction
1548 * item list so they can be freed in caller.
1549 */
1550 if (!list_empty(&sort_list))
1551 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1552 error = -EIO;
2a84108f 1553 goto out;
1da177e4 1554 }
f0a76953 1555 }
2a84108f 1556out:
f0a76953 1557 ASSERT(list_empty(&sort_list));
a775ad77
DC
1558 if (!list_empty(&buffer_list))
1559 list_splice(&buffer_list, &trans->r_itemq);
1560 if (!list_empty(&inode_list))
1561 list_splice_tail(&inode_list, &trans->r_itemq);
1562 if (!list_empty(&inode_buffer_list))
1563 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1564 if (!list_empty(&cancel_list))
1565 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1566 return error;
1da177e4
LT
1567}
1568
1569/*
1570 * Build up the table of buf cancel records so that we don't replay
1571 * cancelled data in the second pass. For buffer records that are
1572 * not cancel records, there is nothing to do here so we just return.
1573 *
1574 * If we get a cancel record which is already in the table, this indicates
1575 * that the buffer was cancelled multiple times. In order to ensure
1576 * that during pass 2 we keep the record in the table until we reach its
1577 * last occurrence in the log, we keep a reference count in the cancel
1578 * record in the table to tell us how many times we expect to see this
1579 * record during the second pass.
1580 */
c9f71f5f
CH
1581STATIC int
1582xlog_recover_buffer_pass1(
ad223e60
MT
1583 struct xlog *log,
1584 struct xlog_recover_item *item)
1da177e4 1585{
c9f71f5f 1586 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1587 struct list_head *bucket;
1588 struct xfs_buf_cancel *bcp;
1da177e4
LT
1589
1590 /*
1591 * If this isn't a cancel buffer item, then just return.
1592 */
e2714bf8 1593 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1594 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1595 return 0;
9abbc539 1596 }
1da177e4
LT
1597
1598 /*
d5689eaa
CH
1599 * Insert an xfs_buf_cancel record into the hash table of them.
1600 * If there is already an identical record, bump its reference count.
1da177e4 1601 */
d5689eaa
CH
1602 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1603 list_for_each_entry(bcp, bucket, bc_list) {
1604 if (bcp->bc_blkno == buf_f->blf_blkno &&
1605 bcp->bc_len == buf_f->blf_len) {
1606 bcp->bc_refcount++;
9abbc539 1607 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1608 return 0;
1da177e4 1609 }
d5689eaa
CH
1610 }
1611
1612 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1613 bcp->bc_blkno = buf_f->blf_blkno;
1614 bcp->bc_len = buf_f->blf_len;
1da177e4 1615 bcp->bc_refcount = 1;
d5689eaa
CH
1616 list_add_tail(&bcp->bc_list, bucket);
1617
9abbc539 1618 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1619 return 0;
1da177e4
LT
1620}
1621
1622/*
1623 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
1624 * entry in the buffer cancel record table. If it is, return the cancel
1625 * buffer structure to the caller.
1da177e4 1626 */
84a5b730
DC
1627STATIC struct xfs_buf_cancel *
1628xlog_peek_buffer_cancelled(
ad223e60 1629 struct xlog *log,
1da177e4
LT
1630 xfs_daddr_t blkno,
1631 uint len,
1632 ushort flags)
1633{
d5689eaa
CH
1634 struct list_head *bucket;
1635 struct xfs_buf_cancel *bcp;
1da177e4 1636
84a5b730
DC
1637 if (!log->l_buf_cancel_table) {
1638 /* empty table means no cancelled buffers in the log */
c1155410 1639 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 1640 return NULL;
1da177e4
LT
1641 }
1642
d5689eaa
CH
1643 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1644 list_for_each_entry(bcp, bucket, bc_list) {
1645 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 1646 return bcp;
1da177e4 1647 }
d5689eaa 1648
1da177e4 1649 /*
d5689eaa
CH
1650 * We didn't find a corresponding entry in the table, so return 0 so
1651 * that the buffer is NOT cancelled.
1da177e4 1652 */
c1155410 1653 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
1654 return NULL;
1655}
1656
1657/*
1658 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1659 * otherwise return 0. If the buffer is actually a buffer cancel item
1660 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1661 * table and remove it from the table if this is the last reference.
1662 *
1663 * We remove the cancel record from the table when we encounter its last
1664 * occurrence in the log so that if the same buffer is re-used again after its
1665 * last cancellation we actually replay the changes made at that point.
1666 */
1667STATIC int
1668xlog_check_buffer_cancelled(
1669 struct xlog *log,
1670 xfs_daddr_t blkno,
1671 uint len,
1672 ushort flags)
1673{
1674 struct xfs_buf_cancel *bcp;
1675
1676 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1677 if (!bcp)
1678 return 0;
d5689eaa 1679
d5689eaa
CH
1680 /*
1681 * We've go a match, so return 1 so that the recovery of this buffer
1682 * is cancelled. If this buffer is actually a buffer cancel log
1683 * item, then decrement the refcount on the one in the table and
1684 * remove it if this is the last reference.
1685 */
1686 if (flags & XFS_BLF_CANCEL) {
1687 if (--bcp->bc_refcount == 0) {
1688 list_del(&bcp->bc_list);
1689 kmem_free(bcp);
1690 }
1691 }
1692 return 1;
1da177e4
LT
1693}
1694
1da177e4 1695/*
e2714bf8
CH
1696 * Perform recovery for a buffer full of inodes. In these buffers, the only
1697 * data which should be recovered is that which corresponds to the
1698 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1699 * data for the inodes is always logged through the inodes themselves rather
1700 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1701 *
e2714bf8
CH
1702 * The only time when buffers full of inodes are fully recovered is when the
1703 * buffer is full of newly allocated inodes. In this case the buffer will
1704 * not be marked as an inode buffer and so will be sent to
1705 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1706 */
1707STATIC int
1708xlog_recover_do_inode_buffer(
e2714bf8 1709 struct xfs_mount *mp,
1da177e4 1710 xlog_recover_item_t *item,
e2714bf8 1711 struct xfs_buf *bp,
1da177e4
LT
1712 xfs_buf_log_format_t *buf_f)
1713{
1714 int i;
e2714bf8
CH
1715 int item_index = 0;
1716 int bit = 0;
1717 int nbits = 0;
1718 int reg_buf_offset = 0;
1719 int reg_buf_bytes = 0;
1da177e4
LT
1720 int next_unlinked_offset;
1721 int inodes_per_buf;
1722 xfs_agino_t *logged_nextp;
1723 xfs_agino_t *buffer_nextp;
1da177e4 1724
9abbc539 1725 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1726
1727 /*
1728 * Post recovery validation only works properly on CRC enabled
1729 * filesystems.
1730 */
1731 if (xfs_sb_version_hascrc(&mp->m_sb))
1732 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1733
aa0e8833 1734 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1735 for (i = 0; i < inodes_per_buf; i++) {
1736 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1737 offsetof(xfs_dinode_t, di_next_unlinked);
1738
1739 while (next_unlinked_offset >=
1740 (reg_buf_offset + reg_buf_bytes)) {
1741 /*
1742 * The next di_next_unlinked field is beyond
1743 * the current logged region. Find the next
1744 * logged region that contains or is beyond
1745 * the current di_next_unlinked field.
1746 */
1747 bit += nbits;
e2714bf8
CH
1748 bit = xfs_next_bit(buf_f->blf_data_map,
1749 buf_f->blf_map_size, bit);
1da177e4
LT
1750
1751 /*
1752 * If there are no more logged regions in the
1753 * buffer, then we're done.
1754 */
e2714bf8 1755 if (bit == -1)
1da177e4 1756 return 0;
1da177e4 1757
e2714bf8
CH
1758 nbits = xfs_contig_bits(buf_f->blf_data_map,
1759 buf_f->blf_map_size, bit);
1da177e4 1760 ASSERT(nbits > 0);
c1155410
DC
1761 reg_buf_offset = bit << XFS_BLF_SHIFT;
1762 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1763 item_index++;
1764 }
1765
1766 /*
1767 * If the current logged region starts after the current
1768 * di_next_unlinked field, then move on to the next
1769 * di_next_unlinked field.
1770 */
e2714bf8 1771 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1772 continue;
1da177e4
LT
1773
1774 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1775 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1776 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1777 BBTOB(bp->b_io_length));
1da177e4
LT
1778
1779 /*
1780 * The current logged region contains a copy of the
1781 * current di_next_unlinked field. Extract its value
1782 * and copy it to the buffer copy.
1783 */
4e0d5f92
CH
1784 logged_nextp = item->ri_buf[item_index].i_addr +
1785 next_unlinked_offset - reg_buf_offset;
1da177e4 1786 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1787 xfs_alert(mp,
1788 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1789 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1790 item, bp);
1791 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1792 XFS_ERRLEVEL_LOW, mp);
2451337d 1793 return -EFSCORRUPTED;
1da177e4
LT
1794 }
1795
1796 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1797 next_unlinked_offset);
87c199c2 1798 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1799
1800 /*
1801 * If necessary, recalculate the CRC in the on-disk inode. We
1802 * have to leave the inode in a consistent state for whoever
1803 * reads it next....
1804 */
1805 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1806 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1807
1da177e4
LT
1808 }
1809
1810 return 0;
1811}
1812
50d5c8d8
DC
1813/*
1814 * V5 filesystems know the age of the buffer on disk being recovered. We can
1815 * have newer objects on disk than we are replaying, and so for these cases we
1816 * don't want to replay the current change as that will make the buffer contents
1817 * temporarily invalid on disk.
1818 *
1819 * The magic number might not match the buffer type we are going to recover
1820 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1821 * extract the LSN of the existing object in the buffer based on it's current
1822 * magic number. If we don't recognise the magic number in the buffer, then
1823 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1824 * so can recover the buffer.
566055d3
DC
1825 *
1826 * Note: we cannot rely solely on magic number matches to determine that the
1827 * buffer has a valid LSN - we also need to verify that it belongs to this
1828 * filesystem, so we need to extract the object's LSN and compare it to that
1829 * which we read from the superblock. If the UUIDs don't match, then we've got a
1830 * stale metadata block from an old filesystem instance that we need to recover
1831 * over the top of.
50d5c8d8
DC
1832 */
1833static xfs_lsn_t
1834xlog_recover_get_buf_lsn(
1835 struct xfs_mount *mp,
1836 struct xfs_buf *bp)
1837{
1838 __uint32_t magic32;
1839 __uint16_t magic16;
1840 __uint16_t magicda;
1841 void *blk = bp->b_addr;
566055d3
DC
1842 uuid_t *uuid;
1843 xfs_lsn_t lsn = -1;
50d5c8d8
DC
1844
1845 /* v4 filesystems always recover immediately */
1846 if (!xfs_sb_version_hascrc(&mp->m_sb))
1847 goto recover_immediately;
1848
1849 magic32 = be32_to_cpu(*(__be32 *)blk);
1850 switch (magic32) {
1851 case XFS_ABTB_CRC_MAGIC:
1852 case XFS_ABTC_CRC_MAGIC:
1853 case XFS_ABTB_MAGIC:
1854 case XFS_ABTC_MAGIC:
1855 case XFS_IBT_CRC_MAGIC:
566055d3
DC
1856 case XFS_IBT_MAGIC: {
1857 struct xfs_btree_block *btb = blk;
1858
1859 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
1860 uuid = &btb->bb_u.s.bb_uuid;
1861 break;
1862 }
50d5c8d8 1863 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
1864 case XFS_BMAP_MAGIC: {
1865 struct xfs_btree_block *btb = blk;
1866
1867 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
1868 uuid = &btb->bb_u.l.bb_uuid;
1869 break;
1870 }
50d5c8d8 1871 case XFS_AGF_MAGIC:
566055d3
DC
1872 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
1873 uuid = &((struct xfs_agf *)blk)->agf_uuid;
1874 break;
50d5c8d8 1875 case XFS_AGFL_MAGIC:
566055d3
DC
1876 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
1877 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
1878 break;
50d5c8d8 1879 case XFS_AGI_MAGIC:
566055d3
DC
1880 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
1881 uuid = &((struct xfs_agi *)blk)->agi_uuid;
1882 break;
50d5c8d8 1883 case XFS_SYMLINK_MAGIC:
566055d3
DC
1884 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
1885 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
1886 break;
50d5c8d8
DC
1887 case XFS_DIR3_BLOCK_MAGIC:
1888 case XFS_DIR3_DATA_MAGIC:
1889 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
1890 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
1891 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
1892 break;
50d5c8d8 1893 case XFS_ATTR3_RMT_MAGIC:
566055d3
DC
1894 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
1895 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
1896 break;
50d5c8d8 1897 case XFS_SB_MAGIC:
566055d3
DC
1898 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
1899 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
1900 break;
50d5c8d8
DC
1901 default:
1902 break;
1903 }
1904
566055d3
DC
1905 if (lsn != (xfs_lsn_t)-1) {
1906 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1907 goto recover_immediately;
1908 return lsn;
1909 }
1910
50d5c8d8
DC
1911 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
1912 switch (magicda) {
1913 case XFS_DIR3_LEAF1_MAGIC:
1914 case XFS_DIR3_LEAFN_MAGIC:
1915 case XFS_DA3_NODE_MAGIC:
566055d3
DC
1916 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
1917 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
1918 break;
50d5c8d8
DC
1919 default:
1920 break;
1921 }
1922
566055d3
DC
1923 if (lsn != (xfs_lsn_t)-1) {
1924 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1925 goto recover_immediately;
1926 return lsn;
1927 }
1928
50d5c8d8
DC
1929 /*
1930 * We do individual object checks on dquot and inode buffers as they
1931 * have their own individual LSN records. Also, we could have a stale
1932 * buffer here, so we have to at least recognise these buffer types.
1933 *
1934 * A notd complexity here is inode unlinked list processing - it logs
1935 * the inode directly in the buffer, but we don't know which inodes have
1936 * been modified, and there is no global buffer LSN. Hence we need to
1937 * recover all inode buffer types immediately. This problem will be
1938 * fixed by logical logging of the unlinked list modifications.
1939 */
1940 magic16 = be16_to_cpu(*(__be16 *)blk);
1941 switch (magic16) {
1942 case XFS_DQUOT_MAGIC:
1943 case XFS_DINODE_MAGIC:
1944 goto recover_immediately;
1945 default:
1946 break;
1947 }
1948
1949 /* unknown buffer contents, recover immediately */
1950
1951recover_immediately:
1952 return (xfs_lsn_t)-1;
1953
1954}
1955
1da177e4 1956/*
d75afeb3
DC
1957 * Validate the recovered buffer is of the correct type and attach the
1958 * appropriate buffer operations to them for writeback. Magic numbers are in a
1959 * few places:
1960 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1961 * the first 32 bits of the buffer (most blocks),
1962 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 1963 */
d75afeb3 1964static void
50d5c8d8 1965xlog_recover_validate_buf_type(
9abbc539 1966 struct xfs_mount *mp,
e2714bf8 1967 struct xfs_buf *bp,
1da177e4
LT
1968 xfs_buf_log_format_t *buf_f)
1969{
d75afeb3
DC
1970 struct xfs_da_blkinfo *info = bp->b_addr;
1971 __uint32_t magic32;
1972 __uint16_t magic16;
1973 __uint16_t magicda;
1974
67dc288c
DC
1975 /*
1976 * We can only do post recovery validation on items on CRC enabled
1977 * fielsystems as we need to know when the buffer was written to be able
1978 * to determine if we should have replayed the item. If we replay old
1979 * metadata over a newer buffer, then it will enter a temporarily
1980 * inconsistent state resulting in verification failures. Hence for now
1981 * just avoid the verification stage for non-crc filesystems
1982 */
1983 if (!xfs_sb_version_hascrc(&mp->m_sb))
1984 return;
1985
d75afeb3
DC
1986 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1987 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1988 magicda = be16_to_cpu(info->magic);
61fe135c
DC
1989 switch (xfs_blft_from_flags(buf_f)) {
1990 case XFS_BLFT_BTREE_BUF:
d75afeb3 1991 switch (magic32) {
ee1a47ab
CH
1992 case XFS_ABTB_CRC_MAGIC:
1993 case XFS_ABTC_CRC_MAGIC:
1994 case XFS_ABTB_MAGIC:
1995 case XFS_ABTC_MAGIC:
1996 bp->b_ops = &xfs_allocbt_buf_ops;
1997 break;
1998 case XFS_IBT_CRC_MAGIC:
aafc3c24 1999 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2000 case XFS_IBT_MAGIC:
aafc3c24 2001 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2002 bp->b_ops = &xfs_inobt_buf_ops;
2003 break;
2004 case XFS_BMAP_CRC_MAGIC:
2005 case XFS_BMAP_MAGIC:
2006 bp->b_ops = &xfs_bmbt_buf_ops;
2007 break;
2008 default:
2009 xfs_warn(mp, "Bad btree block magic!");
2010 ASSERT(0);
2011 break;
2012 }
2013 break;
61fe135c 2014 case XFS_BLFT_AGF_BUF:
d75afeb3 2015 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2016 xfs_warn(mp, "Bad AGF block magic!");
2017 ASSERT(0);
2018 break;
2019 }
2020 bp->b_ops = &xfs_agf_buf_ops;
2021 break;
61fe135c 2022 case XFS_BLFT_AGFL_BUF:
d75afeb3 2023 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2024 xfs_warn(mp, "Bad AGFL block magic!");
2025 ASSERT(0);
2026 break;
2027 }
2028 bp->b_ops = &xfs_agfl_buf_ops;
2029 break;
61fe135c 2030 case XFS_BLFT_AGI_BUF:
d75afeb3 2031 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2032 xfs_warn(mp, "Bad AGI block magic!");
2033 ASSERT(0);
2034 break;
2035 }
2036 bp->b_ops = &xfs_agi_buf_ops;
2037 break;
61fe135c
DC
2038 case XFS_BLFT_UDQUOT_BUF:
2039 case XFS_BLFT_PDQUOT_BUF:
2040 case XFS_BLFT_GDQUOT_BUF:
123887e8 2041#ifdef CONFIG_XFS_QUOTA
d75afeb3 2042 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2043 xfs_warn(mp, "Bad DQUOT block magic!");
2044 ASSERT(0);
2045 break;
2046 }
2047 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2048#else
2049 xfs_alert(mp,
2050 "Trying to recover dquots without QUOTA support built in!");
2051 ASSERT(0);
2052#endif
3fe58f30 2053 break;
61fe135c 2054 case XFS_BLFT_DINO_BUF:
d75afeb3 2055 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2056 xfs_warn(mp, "Bad INODE block magic!");
2057 ASSERT(0);
2058 break;
2059 }
2060 bp->b_ops = &xfs_inode_buf_ops;
2061 break;
61fe135c 2062 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2063 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2064 xfs_warn(mp, "Bad symlink block magic!");
2065 ASSERT(0);
2066 break;
2067 }
2068 bp->b_ops = &xfs_symlink_buf_ops;
2069 break;
61fe135c 2070 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2071 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2072 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2073 xfs_warn(mp, "Bad dir block magic!");
2074 ASSERT(0);
2075 break;
2076 }
2077 bp->b_ops = &xfs_dir3_block_buf_ops;
2078 break;
61fe135c 2079 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2080 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2081 magic32 != XFS_DIR3_DATA_MAGIC) {
2082 xfs_warn(mp, "Bad dir data magic!");
2083 ASSERT(0);
2084 break;
2085 }
2086 bp->b_ops = &xfs_dir3_data_buf_ops;
2087 break;
61fe135c 2088 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2089 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2090 magic32 != XFS_DIR3_FREE_MAGIC) {
2091 xfs_warn(mp, "Bad dir3 free magic!");
2092 ASSERT(0);
2093 break;
2094 }
2095 bp->b_ops = &xfs_dir3_free_buf_ops;
2096 break;
61fe135c 2097 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2098 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2099 magicda != XFS_DIR3_LEAF1_MAGIC) {
2100 xfs_warn(mp, "Bad dir leaf1 magic!");
2101 ASSERT(0);
2102 break;
2103 }
2104 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2105 break;
61fe135c 2106 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2107 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2108 magicda != XFS_DIR3_LEAFN_MAGIC) {
2109 xfs_warn(mp, "Bad dir leafn magic!");
2110 ASSERT(0);
2111 break;
2112 }
2113 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2114 break;
61fe135c 2115 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2116 if (magicda != XFS_DA_NODE_MAGIC &&
2117 magicda != XFS_DA3_NODE_MAGIC) {
2118 xfs_warn(mp, "Bad da node magic!");
2119 ASSERT(0);
2120 break;
2121 }
2122 bp->b_ops = &xfs_da3_node_buf_ops;
2123 break;
61fe135c 2124 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2125 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2126 magicda != XFS_ATTR3_LEAF_MAGIC) {
2127 xfs_warn(mp, "Bad attr leaf magic!");
2128 ASSERT(0);
2129 break;
2130 }
2131 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2132 break;
61fe135c 2133 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2134 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2135 xfs_warn(mp, "Bad attr remote magic!");
2136 ASSERT(0);
2137 break;
2138 }
2139 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2140 break;
04a1e6c5
DC
2141 case XFS_BLFT_SB_BUF:
2142 if (magic32 != XFS_SB_MAGIC) {
2143 xfs_warn(mp, "Bad SB block magic!");
2144 ASSERT(0);
2145 break;
2146 }
2147 bp->b_ops = &xfs_sb_buf_ops;
2148 break;
ee1a47ab 2149 default:
61fe135c
DC
2150 xfs_warn(mp, "Unknown buffer type %d!",
2151 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2152 break;
2153 }
1da177e4
LT
2154}
2155
d75afeb3
DC
2156/*
2157 * Perform a 'normal' buffer recovery. Each logged region of the
2158 * buffer should be copied over the corresponding region in the
2159 * given buffer. The bitmap in the buf log format structure indicates
2160 * where to place the logged data.
2161 */
2162STATIC void
2163xlog_recover_do_reg_buffer(
2164 struct xfs_mount *mp,
2165 xlog_recover_item_t *item,
2166 struct xfs_buf *bp,
2167 xfs_buf_log_format_t *buf_f)
2168{
2169 int i;
2170 int bit;
2171 int nbits;
2172 int error;
2173
2174 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2175
2176 bit = 0;
2177 i = 1; /* 0 is the buf format structure */
2178 while (1) {
2179 bit = xfs_next_bit(buf_f->blf_data_map,
2180 buf_f->blf_map_size, bit);
2181 if (bit == -1)
2182 break;
2183 nbits = xfs_contig_bits(buf_f->blf_data_map,
2184 buf_f->blf_map_size, bit);
2185 ASSERT(nbits > 0);
2186 ASSERT(item->ri_buf[i].i_addr != NULL);
2187 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2188 ASSERT(BBTOB(bp->b_io_length) >=
2189 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2190
709da6a6
DC
2191 /*
2192 * The dirty regions logged in the buffer, even though
2193 * contiguous, may span multiple chunks. This is because the
2194 * dirty region may span a physical page boundary in a buffer
2195 * and hence be split into two separate vectors for writing into
2196 * the log. Hence we need to trim nbits back to the length of
2197 * the current region being copied out of the log.
2198 */
2199 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2200 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2201
d75afeb3
DC
2202 /*
2203 * Do a sanity check if this is a dquot buffer. Just checking
2204 * the first dquot in the buffer should do. XXXThis is
2205 * probably a good thing to do for other buf types also.
2206 */
2207 error = 0;
2208 if (buf_f->blf_flags &
2209 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2210 if (item->ri_buf[i].i_addr == NULL) {
2211 xfs_alert(mp,
2212 "XFS: NULL dquot in %s.", __func__);
2213 goto next;
2214 }
2215 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2216 xfs_alert(mp,
2217 "XFS: dquot too small (%d) in %s.",
2218 item->ri_buf[i].i_len, __func__);
2219 goto next;
2220 }
9aede1d8 2221 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
d75afeb3
DC
2222 -1, 0, XFS_QMOPT_DOWARN,
2223 "dquot_buf_recover");
2224 if (error)
2225 goto next;
2226 }
2227
2228 memcpy(xfs_buf_offset(bp,
2229 (uint)bit << XFS_BLF_SHIFT), /* dest */
2230 item->ri_buf[i].i_addr, /* source */
2231 nbits<<XFS_BLF_SHIFT); /* length */
2232 next:
2233 i++;
2234 bit += nbits;
2235 }
2236
2237 /* Shouldn't be any more regions */
2238 ASSERT(i == item->ri_total);
2239
67dc288c 2240 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2241}
2242
1da177e4
LT
2243/*
2244 * Perform a dquot buffer recovery.
8ba701ee 2245 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2246 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2247 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2248 *
2249 * Return false if the buffer was tossed and true if we recovered the buffer to
2250 * indicate to the caller if the buffer needs writing.
1da177e4 2251 */
ad3714b8 2252STATIC bool
1da177e4 2253xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2254 struct xfs_mount *mp,
2255 struct xlog *log,
2256 struct xlog_recover_item *item,
2257 struct xfs_buf *bp,
2258 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2259{
2260 uint type;
2261
9abbc539
DC
2262 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2263
1da177e4
LT
2264 /*
2265 * Filesystems are required to send in quota flags at mount time.
2266 */
ad3714b8
DC
2267 if (!mp->m_qflags)
2268 return false;
1da177e4
LT
2269
2270 type = 0;
c1155410 2271 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2272 type |= XFS_DQ_USER;
c1155410 2273 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2274 type |= XFS_DQ_PROJ;
c1155410 2275 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2276 type |= XFS_DQ_GROUP;
2277 /*
2278 * This type of quotas was turned off, so ignore this buffer
2279 */
2280 if (log->l_quotaoffs_flag & type)
ad3714b8 2281 return false;
1da177e4 2282
9abbc539 2283 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
ad3714b8 2284 return true;
1da177e4
LT
2285}
2286
2287/*
2288 * This routine replays a modification made to a buffer at runtime.
2289 * There are actually two types of buffer, regular and inode, which
2290 * are handled differently. Inode buffers are handled differently
2291 * in that we only recover a specific set of data from them, namely
2292 * the inode di_next_unlinked fields. This is because all other inode
2293 * data is actually logged via inode records and any data we replay
2294 * here which overlaps that may be stale.
2295 *
2296 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2297 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2298 * of the buffer in the log should not be replayed at recovery time.
2299 * This is so that if the blocks covered by the buffer are reused for
2300 * file data before we crash we don't end up replaying old, freed
2301 * meta-data into a user's file.
2302 *
2303 * To handle the cancellation of buffer log items, we make two passes
2304 * over the log during recovery. During the first we build a table of
2305 * those buffers which have been cancelled, and during the second we
2306 * only replay those buffers which do not have corresponding cancel
34be5ff3 2307 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2308 * for more details on the implementation of the table of cancel records.
2309 */
2310STATIC int
c9f71f5f 2311xlog_recover_buffer_pass2(
9a8d2fdb
MT
2312 struct xlog *log,
2313 struct list_head *buffer_list,
50d5c8d8
DC
2314 struct xlog_recover_item *item,
2315 xfs_lsn_t current_lsn)
1da177e4 2316{
4e0d5f92 2317 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2318 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2319 xfs_buf_t *bp;
2320 int error;
6ad112bf 2321 uint buf_flags;
50d5c8d8 2322 xfs_lsn_t lsn;
1da177e4 2323
c9f71f5f
CH
2324 /*
2325 * In this pass we only want to recover all the buffers which have
2326 * not been cancelled and are not cancellation buffers themselves.
2327 */
2328 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2329 buf_f->blf_len, buf_f->blf_flags)) {
2330 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2331 return 0;
1da177e4 2332 }
c9f71f5f 2333
9abbc539 2334 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2335
a8acad70 2336 buf_flags = 0;
611c9946
DC
2337 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2338 buf_flags |= XBF_UNMAPPED;
6ad112bf 2339
e2714bf8 2340 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2341 buf_flags, NULL);
ac4d6888 2342 if (!bp)
2451337d 2343 return -ENOMEM;
e5702805 2344 error = bp->b_error;
5a52c2a5 2345 if (error) {
901796af 2346 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2347 goto out_release;
1da177e4
LT
2348 }
2349
50d5c8d8 2350 /*
67dc288c 2351 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2352 * the lsn of the transaction we are replaying.
67dc288c
DC
2353 *
2354 * Note that we have to be extremely careful of readahead here.
2355 * Readahead does not attach verfiers to the buffers so if we don't
2356 * actually do any replay after readahead because of the LSN we found
2357 * in the buffer if more recent than that current transaction then we
2358 * need to attach the verifier directly. Failure to do so can lead to
2359 * future recovery actions (e.g. EFI and unlinked list recovery) can
2360 * operate on the buffers and they won't get the verifier attached. This
2361 * can lead to blocks on disk having the correct content but a stale
2362 * CRC.
2363 *
2364 * It is safe to assume these clean buffers are currently up to date.
2365 * If the buffer is dirtied by a later transaction being replayed, then
2366 * the verifier will be reset to match whatever recover turns that
2367 * buffer into.
50d5c8d8
DC
2368 */
2369 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c
DC
2370 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2371 xlog_recover_validate_buf_type(mp, bp, buf_f);
50d5c8d8 2372 goto out_release;
67dc288c 2373 }
50d5c8d8 2374
e2714bf8 2375 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2376 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2377 if (error)
2378 goto out_release;
e2714bf8 2379 } else if (buf_f->blf_flags &
c1155410 2380 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2381 bool dirty;
2382
2383 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2384 if (!dirty)
2385 goto out_release;
1da177e4 2386 } else {
9abbc539 2387 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4 2388 }
1da177e4
LT
2389
2390 /*
2391 * Perform delayed write on the buffer. Asynchronous writes will be
2392 * slower when taking into account all the buffers to be flushed.
2393 *
2394 * Also make sure that only inode buffers with good sizes stay in
2395 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2396 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2397 * buffers in the log can be a different size if the log was generated
2398 * by an older kernel using unclustered inode buffers or a newer kernel
2399 * running with a different inode cluster size. Regardless, if the
0f49efd8
JL
2400 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2401 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2402 * the buffer out of the buffer cache so that the buffer won't
2403 * overlap with future reads of those inodes.
2404 */
2405 if (XFS_DINODE_MAGIC ==
b53e675d 2406 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2407 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
0f49efd8 2408 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2409 xfs_buf_stale(bp);
c2b006c1 2410 error = xfs_bwrite(bp);
1da177e4 2411 } else {
ebad861b 2412 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2413 bp->b_iodone = xlog_recover_iodone;
43ff2122 2414 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2415 }
2416
50d5c8d8 2417out_release:
c2b006c1
CH
2418 xfs_buf_relse(bp);
2419 return error;
1da177e4
LT
2420}
2421
638f4416
DC
2422/*
2423 * Inode fork owner changes
2424 *
2425 * If we have been told that we have to reparent the inode fork, it's because an
2426 * extent swap operation on a CRC enabled filesystem has been done and we are
2427 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2428 * owners of it.
2429 *
2430 * The complexity here is that we don't have an inode context to work with, so
2431 * after we've replayed the inode we need to instantiate one. This is where the
2432 * fun begins.
2433 *
2434 * We are in the middle of log recovery, so we can't run transactions. That
2435 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2436 * that will result in the corresponding iput() running the inode through
2437 * xfs_inactive(). If we've just replayed an inode core that changes the link
2438 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2439 * transactions (bad!).
2440 *
2441 * So, to avoid this, we instantiate an inode directly from the inode core we've
2442 * just recovered. We have the buffer still locked, and all we really need to
2443 * instantiate is the inode core and the forks being modified. We can do this
2444 * manually, then run the inode btree owner change, and then tear down the
2445 * xfs_inode without having to run any transactions at all.
2446 *
2447 * Also, because we don't have a transaction context available here but need to
2448 * gather all the buffers we modify for writeback so we pass the buffer_list
2449 * instead for the operation to use.
2450 */
2451
2452STATIC int
2453xfs_recover_inode_owner_change(
2454 struct xfs_mount *mp,
2455 struct xfs_dinode *dip,
2456 struct xfs_inode_log_format *in_f,
2457 struct list_head *buffer_list)
2458{
2459 struct xfs_inode *ip;
2460 int error;
2461
2462 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2463
2464 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2465 if (!ip)
2451337d 2466 return -ENOMEM;
638f4416
DC
2467
2468 /* instantiate the inode */
2469 xfs_dinode_from_disk(&ip->i_d, dip);
2470 ASSERT(ip->i_d.di_version >= 3);
2471
2472 error = xfs_iformat_fork(ip, dip);
2473 if (error)
2474 goto out_free_ip;
2475
2476
2477 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2478 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2479 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2480 ip->i_ino, buffer_list);
2481 if (error)
2482 goto out_free_ip;
2483 }
2484
2485 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2486 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2487 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2488 ip->i_ino, buffer_list);
2489 if (error)
2490 goto out_free_ip;
2491 }
2492
2493out_free_ip:
2494 xfs_inode_free(ip);
2495 return error;
2496}
2497
1da177e4 2498STATIC int
c9f71f5f 2499xlog_recover_inode_pass2(
9a8d2fdb
MT
2500 struct xlog *log,
2501 struct list_head *buffer_list,
50d5c8d8
DC
2502 struct xlog_recover_item *item,
2503 xfs_lsn_t current_lsn)
1da177e4
LT
2504{
2505 xfs_inode_log_format_t *in_f;
c9f71f5f 2506 xfs_mount_t *mp = log->l_mp;
1da177e4 2507 xfs_buf_t *bp;
1da177e4 2508 xfs_dinode_t *dip;
1da177e4
LT
2509 int len;
2510 xfs_caddr_t src;
2511 xfs_caddr_t dest;
2512 int error;
2513 int attr_index;
2514 uint fields;
347d1c01 2515 xfs_icdinode_t *dicp;
93848a99 2516 uint isize;
6d192a9b 2517 int need_free = 0;
1da177e4 2518
6d192a9b 2519 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2520 in_f = item->ri_buf[0].i_addr;
6d192a9b 2521 } else {
4e0d5f92 2522 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2523 need_free = 1;
2524 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2525 if (error)
2526 goto error;
2527 }
1da177e4
LT
2528
2529 /*
2530 * Inode buffers can be freed, look out for it,
2531 * and do not replay the inode.
2532 */
a1941895
CH
2533 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2534 in_f->ilf_len, 0)) {
6d192a9b 2535 error = 0;
9abbc539 2536 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2537 goto error;
2538 }
9abbc539 2539 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2540
c3f8fc73 2541 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2542 &xfs_inode_buf_ops);
ac4d6888 2543 if (!bp) {
2451337d 2544 error = -ENOMEM;
ac4d6888
CS
2545 goto error;
2546 }
e5702805 2547 error = bp->b_error;
5a52c2a5 2548 if (error) {
901796af 2549 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2550 goto out_release;
1da177e4 2551 }
1da177e4 2552 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2553 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2554
2555 /*
2556 * Make sure the place we're flushing out to really looks
2557 * like an inode!
2558 */
69ef921b 2559 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2560 xfs_alert(mp,
2561 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2562 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2563 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2564 XFS_ERRLEVEL_LOW, mp);
2451337d 2565 error = -EFSCORRUPTED;
638f4416 2566 goto out_release;
1da177e4 2567 }
4e0d5f92 2568 dicp = item->ri_buf[1].i_addr;
1da177e4 2569 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2570 xfs_alert(mp,
2571 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2572 __func__, item, in_f->ilf_ino);
c9f71f5f 2573 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2574 XFS_ERRLEVEL_LOW, mp);
2451337d 2575 error = -EFSCORRUPTED;
638f4416 2576 goto out_release;
1da177e4
LT
2577 }
2578
50d5c8d8
DC
2579 /*
2580 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2581 * than the lsn of the transaction we are replaying. Note: we still
2582 * need to replay an owner change even though the inode is more recent
2583 * than the transaction as there is no guarantee that all the btree
2584 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2585 */
2586 if (dip->di_version >= 3) {
2587 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2588
2589 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2590 trace_xfs_log_recover_inode_skip(log, in_f);
2591 error = 0;
638f4416 2592 goto out_owner_change;
50d5c8d8
DC
2593 }
2594 }
2595
e60896d8
DC
2596 /*
2597 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2598 * are transactional and if ordering is necessary we can determine that
2599 * more accurately by the LSN field in the V3 inode core. Don't trust
2600 * the inode versions we might be changing them here - use the
2601 * superblock flag to determine whether we need to look at di_flushiter
2602 * to skip replay when the on disk inode is newer than the log one
2603 */
2604 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2605 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2606 /*
2607 * Deal with the wrap case, DI_MAX_FLUSH is less
2608 * than smaller numbers
2609 */
81591fe2 2610 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2611 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2612 /* do nothing */
2613 } else {
9abbc539 2614 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 2615 error = 0;
638f4416 2616 goto out_release;
1da177e4
LT
2617 }
2618 }
e60896d8 2619
1da177e4
LT
2620 /* Take the opportunity to reset the flush iteration count */
2621 dicp->di_flushiter = 0;
2622
abbede1b 2623 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2624 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2625 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2626 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4 2627 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2628 xfs_alert(mp,
2629 "%s: Bad regular inode log record, rec ptr 0x%p, "
2630 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2631 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 2632 error = -EFSCORRUPTED;
638f4416 2633 goto out_release;
1da177e4 2634 }
abbede1b 2635 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2636 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2637 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2638 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2639 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4 2640 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2641 xfs_alert(mp,
2642 "%s: Bad dir inode log record, rec ptr 0x%p, "
2643 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2644 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 2645 error = -EFSCORRUPTED;
638f4416 2646 goto out_release;
1da177e4
LT
2647 }
2648 }
2649 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2650 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4 2651 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2652 xfs_alert(mp,
2653 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2654 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2655 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2656 dicp->di_nextents + dicp->di_anextents,
2657 dicp->di_nblocks);
2451337d 2658 error = -EFSCORRUPTED;
638f4416 2659 goto out_release;
1da177e4
LT
2660 }
2661 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2662 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4 2663 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2664 xfs_alert(mp,
2665 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2666 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2667 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2451337d 2668 error = -EFSCORRUPTED;
638f4416 2669 goto out_release;
1da177e4 2670 }
93848a99
CH
2671 isize = xfs_icdinode_size(dicp->di_version);
2672 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2673 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4 2674 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2675 xfs_alert(mp,
2676 "%s: Bad inode log record length %d, rec ptr 0x%p",
2677 __func__, item->ri_buf[1].i_len, item);
2451337d 2678 error = -EFSCORRUPTED;
638f4416 2679 goto out_release;
1da177e4
LT
2680 }
2681
2682 /* The core is in in-core format */
93848a99 2683 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2684
2685 /* the rest is in on-disk format */
93848a99
CH
2686 if (item->ri_buf[1].i_len > isize) {
2687 memcpy((char *)dip + isize,
2688 item->ri_buf[1].i_addr + isize,
2689 item->ri_buf[1].i_len - isize);
1da177e4
LT
2690 }
2691
2692 fields = in_f->ilf_fields;
2693 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2694 case XFS_ILOG_DEV:
81591fe2 2695 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2696 break;
2697 case XFS_ILOG_UUID:
81591fe2
CH
2698 memcpy(XFS_DFORK_DPTR(dip),
2699 &in_f->ilf_u.ilfu_uuid,
2700 sizeof(uuid_t));
1da177e4
LT
2701 break;
2702 }
2703
2704 if (in_f->ilf_size == 2)
638f4416 2705 goto out_owner_change;
1da177e4
LT
2706 len = item->ri_buf[2].i_len;
2707 src = item->ri_buf[2].i_addr;
2708 ASSERT(in_f->ilf_size <= 4);
2709 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2710 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2711 (len == in_f->ilf_dsize));
2712
2713 switch (fields & XFS_ILOG_DFORK) {
2714 case XFS_ILOG_DDATA:
2715 case XFS_ILOG_DEXT:
81591fe2 2716 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2717 break;
2718
2719 case XFS_ILOG_DBROOT:
7cc95a82 2720 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2721 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2722 XFS_DFORK_DSIZE(dip, mp));
2723 break;
2724
2725 default:
2726 /*
2727 * There are no data fork flags set.
2728 */
2729 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2730 break;
2731 }
2732
2733 /*
2734 * If we logged any attribute data, recover it. There may or
2735 * may not have been any other non-core data logged in this
2736 * transaction.
2737 */
2738 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2739 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2740 attr_index = 3;
2741 } else {
2742 attr_index = 2;
2743 }
2744 len = item->ri_buf[attr_index].i_len;
2745 src = item->ri_buf[attr_index].i_addr;
2746 ASSERT(len == in_f->ilf_asize);
2747
2748 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2749 case XFS_ILOG_ADATA:
2750 case XFS_ILOG_AEXT:
2751 dest = XFS_DFORK_APTR(dip);
2752 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2753 memcpy(dest, src, len);
2754 break;
2755
2756 case XFS_ILOG_ABROOT:
2757 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2758 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2759 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2760 XFS_DFORK_ASIZE(dip, mp));
2761 break;
2762
2763 default:
a0fa2b67 2764 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 2765 ASSERT(0);
2451337d 2766 error = -EIO;
638f4416 2767 goto out_release;
1da177e4
LT
2768 }
2769 }
2770
638f4416
DC
2771out_owner_change:
2772 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2773 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2774 buffer_list);
93848a99
CH
2775 /* re-generate the checksum. */
2776 xfs_dinode_calc_crc(log->l_mp, dip);
2777
ebad861b 2778 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2779 bp->b_iodone = xlog_recover_iodone;
43ff2122 2780 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
2781
2782out_release:
61551f1e 2783 xfs_buf_relse(bp);
6d192a9b
TS
2784error:
2785 if (need_free)
f0e2d93c 2786 kmem_free(in_f);
b474c7ae 2787 return error;
1da177e4
LT
2788}
2789
2790/*
9a8d2fdb 2791 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2792 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2793 * of that type.
2794 */
2795STATIC int
c9f71f5f 2796xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2797 struct xlog *log,
2798 struct xlog_recover_item *item)
1da177e4 2799{
c9f71f5f 2800 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2801 ASSERT(qoff_f);
2802
2803 /*
2804 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2805 * group/project quotaoff or both.
1da177e4
LT
2806 */
2807 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2808 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2809 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2810 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2811 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2812 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2813
d99831ff 2814 return 0;
1da177e4
LT
2815}
2816
2817/*
2818 * Recover a dquot record
2819 */
2820STATIC int
c9f71f5f 2821xlog_recover_dquot_pass2(
9a8d2fdb
MT
2822 struct xlog *log,
2823 struct list_head *buffer_list,
50d5c8d8
DC
2824 struct xlog_recover_item *item,
2825 xfs_lsn_t current_lsn)
1da177e4 2826{
c9f71f5f 2827 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2828 xfs_buf_t *bp;
2829 struct xfs_disk_dquot *ddq, *recddq;
2830 int error;
2831 xfs_dq_logformat_t *dq_f;
2832 uint type;
2833
1da177e4
LT
2834
2835 /*
2836 * Filesystems are required to send in quota flags at mount time.
2837 */
2838 if (mp->m_qflags == 0)
d99831ff 2839 return 0;
1da177e4 2840
4e0d5f92
CH
2841 recddq = item->ri_buf[1].i_addr;
2842 if (recddq == NULL) {
a0fa2b67 2843 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 2844 return -EIO;
0c5e1ce8 2845 }
8ec6dba2 2846 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2847 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 2848 item->ri_buf[1].i_len, __func__);
2451337d 2849 return -EIO;
0c5e1ce8
CH
2850 }
2851
1da177e4
LT
2852 /*
2853 * This type of quotas was turned off, so ignore this record.
2854 */
b53e675d 2855 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2856 ASSERT(type);
2857 if (log->l_quotaoffs_flag & type)
d99831ff 2858 return 0;
1da177e4
LT
2859
2860 /*
2861 * At this point we know that quota was _not_ turned off.
2862 * Since the mount flags are not indicating to us otherwise, this
2863 * must mean that quota is on, and the dquot needs to be replayed.
2864 * Remember that we may not have fully recovered the superblock yet,
2865 * so we can't do the usual trick of looking at the SB quota bits.
2866 *
2867 * The other possibility, of course, is that the quota subsystem was
2868 * removed since the last mount - ENOSYS.
2869 */
4e0d5f92 2870 dq_f = item->ri_buf[0].i_addr;
1da177e4 2871 ASSERT(dq_f);
9aede1d8 2872 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
a0fa2b67
DC
2873 "xlog_recover_dquot_pass2 (log copy)");
2874 if (error)
2451337d 2875 return -EIO;
1da177e4
LT
2876 ASSERT(dq_f->qlf_len == 1);
2877
ad3714b8
DC
2878 /*
2879 * At this point we are assuming that the dquots have been allocated
2880 * and hence the buffer has valid dquots stamped in it. It should,
2881 * therefore, pass verifier validation. If the dquot is bad, then the
2882 * we'll return an error here, so we don't need to specifically check
2883 * the dquot in the buffer after the verifier has run.
2884 */
7ca790a5 2885 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 2886 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 2887 &xfs_dquot_buf_ops);
7ca790a5 2888 if (error)
1da177e4 2889 return error;
7ca790a5 2890
1da177e4
LT
2891 ASSERT(bp);
2892 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2893
50d5c8d8
DC
2894 /*
2895 * If the dquot has an LSN in it, recover the dquot only if it's less
2896 * than the lsn of the transaction we are replaying.
2897 */
2898 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2899 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
2900 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
2901
2902 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2903 goto out_release;
2904 }
2905 }
2906
1da177e4 2907 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
2908 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2909 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2910 XFS_DQUOT_CRC_OFF);
2911 }
1da177e4
LT
2912
2913 ASSERT(dq_f->qlf_size == 2);
ebad861b 2914 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2915 bp->b_iodone = xlog_recover_iodone;
43ff2122 2916 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 2917
50d5c8d8
DC
2918out_release:
2919 xfs_buf_relse(bp);
2920 return 0;
1da177e4
LT
2921}
2922
2923/*
2924 * This routine is called to create an in-core extent free intent
2925 * item from the efi format structure which was logged on disk.
2926 * It allocates an in-core efi, copies the extents from the format
2927 * structure into it, and adds the efi to the AIL with the given
2928 * LSN.
2929 */
6d192a9b 2930STATIC int
c9f71f5f 2931xlog_recover_efi_pass2(
9a8d2fdb
MT
2932 struct xlog *log,
2933 struct xlog_recover_item *item,
2934 xfs_lsn_t lsn)
1da177e4 2935{
6d192a9b 2936 int error;
c9f71f5f 2937 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2938 xfs_efi_log_item_t *efip;
2939 xfs_efi_log_format_t *efi_formatp;
1da177e4 2940
4e0d5f92 2941 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2942
1da177e4 2943 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2944 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2945 &(efip->efi_format)))) {
2946 xfs_efi_item_free(efip);
2947 return error;
2948 }
b199c8a4 2949 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2950
a9c21c1b 2951 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2952 /*
783a2f65 2953 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2954 */
e6059949 2955 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2956 return 0;
1da177e4
LT
2957}
2958
2959
2960/*
2961 * This routine is called when an efd format structure is found in
2962 * a committed transaction in the log. It's purpose is to cancel
2963 * the corresponding efi if it was still in the log. To do this
2964 * it searches the AIL for the efi with an id equal to that in the
2965 * efd format structure. If we find it, we remove the efi from the
2966 * AIL and free it.
2967 */
c9f71f5f
CH
2968STATIC int
2969xlog_recover_efd_pass2(
9a8d2fdb
MT
2970 struct xlog *log,
2971 struct xlog_recover_item *item)
1da177e4 2972{
1da177e4
LT
2973 xfs_efd_log_format_t *efd_formatp;
2974 xfs_efi_log_item_t *efip = NULL;
2975 xfs_log_item_t *lip;
1da177e4 2976 __uint64_t efi_id;
27d8d5fe 2977 struct xfs_ail_cursor cur;
783a2f65 2978 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2979
4e0d5f92 2980 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2981 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2982 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2983 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2984 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2985 efi_id = efd_formatp->efd_efi_id;
2986
2987 /*
2988 * Search for the efi with the id in the efd format structure
2989 * in the AIL.
2990 */
a9c21c1b
DC
2991 spin_lock(&ailp->xa_lock);
2992 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2993 while (lip != NULL) {
2994 if (lip->li_type == XFS_LI_EFI) {
2995 efip = (xfs_efi_log_item_t *)lip;
2996 if (efip->efi_format.efi_id == efi_id) {
2997 /*
783a2f65 2998 * xfs_trans_ail_delete() drops the
1da177e4
LT
2999 * AIL lock.
3000 */
04913fdd
DC
3001 xfs_trans_ail_delete(ailp, lip,
3002 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 3003 xfs_efi_item_free(efip);
a9c21c1b 3004 spin_lock(&ailp->xa_lock);
27d8d5fe 3005 break;
1da177e4
LT
3006 }
3007 }
a9c21c1b 3008 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3009 }
e4a1e29c 3010 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3011 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3012
3013 return 0;
1da177e4
LT
3014}
3015
28c8e41a
DC
3016/*
3017 * This routine is called when an inode create format structure is found in a
3018 * committed transaction in the log. It's purpose is to initialise the inodes
3019 * being allocated on disk. This requires us to get inode cluster buffers that
3020 * match the range to be intialised, stamped with inode templates and written
3021 * by delayed write so that subsequent modifications will hit the cached buffer
3022 * and only need writing out at the end of recovery.
3023 */
3024STATIC int
3025xlog_recover_do_icreate_pass2(
3026 struct xlog *log,
3027 struct list_head *buffer_list,
3028 xlog_recover_item_t *item)
3029{
3030 struct xfs_mount *mp = log->l_mp;
3031 struct xfs_icreate_log *icl;
3032 xfs_agnumber_t agno;
3033 xfs_agblock_t agbno;
3034 unsigned int count;
3035 unsigned int isize;
3036 xfs_agblock_t length;
3037
3038 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3039 if (icl->icl_type != XFS_LI_ICREATE) {
3040 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3041 return -EINVAL;
28c8e41a
DC
3042 }
3043
3044 if (icl->icl_size != 1) {
3045 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3046 return -EINVAL;
28c8e41a
DC
3047 }
3048
3049 agno = be32_to_cpu(icl->icl_ag);
3050 if (agno >= mp->m_sb.sb_agcount) {
3051 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3052 return -EINVAL;
28c8e41a
DC
3053 }
3054 agbno = be32_to_cpu(icl->icl_agbno);
3055 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3056 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3057 return -EINVAL;
28c8e41a
DC
3058 }
3059 isize = be32_to_cpu(icl->icl_isize);
3060 if (isize != mp->m_sb.sb_inodesize) {
3061 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3062 return -EINVAL;
28c8e41a
DC
3063 }
3064 count = be32_to_cpu(icl->icl_count);
3065 if (!count) {
3066 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3067 return -EINVAL;
28c8e41a
DC
3068 }
3069 length = be32_to_cpu(icl->icl_length);
3070 if (!length || length >= mp->m_sb.sb_agblocks) {
3071 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3072 return -EINVAL;
28c8e41a
DC
3073 }
3074
3075 /* existing allocation is fixed value */
71783438 3076 ASSERT(count == mp->m_ialloc_inos);
126cd105 3077 ASSERT(length == mp->m_ialloc_blks);
71783438 3078 if (count != mp->m_ialloc_inos ||
126cd105 3079 length != mp->m_ialloc_blks) {
28c8e41a 3080 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
2451337d 3081 return -EINVAL;
28c8e41a
DC
3082 }
3083
3084 /*
3085 * Inode buffers can be freed. Do not replay the inode initialisation as
3086 * we could be overwriting something written after this inode buffer was
3087 * cancelled.
3088 *
3089 * XXX: we need to iterate all buffers and only init those that are not
3090 * cancelled. I think that a more fine grained factoring of
3091 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3092 * done easily.
3093 */
3094 if (xlog_check_buffer_cancelled(log,
3095 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3096 return 0;
3097
3098 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3099 be32_to_cpu(icl->icl_gen));
3100 return 0;
3101}
3102
00574da1
ZYW
3103STATIC void
3104xlog_recover_buffer_ra_pass2(
3105 struct xlog *log,
3106 struct xlog_recover_item *item)
3107{
3108 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3109 struct xfs_mount *mp = log->l_mp;
3110
84a5b730 3111 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3112 buf_f->blf_len, buf_f->blf_flags)) {
3113 return;
3114 }
3115
3116 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3117 buf_f->blf_len, NULL);
3118}
3119
3120STATIC void
3121xlog_recover_inode_ra_pass2(
3122 struct xlog *log,
3123 struct xlog_recover_item *item)
3124{
3125 struct xfs_inode_log_format ilf_buf;
3126 struct xfs_inode_log_format *ilfp;
3127 struct xfs_mount *mp = log->l_mp;
3128 int error;
3129
3130 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3131 ilfp = item->ri_buf[0].i_addr;
3132 } else {
3133 ilfp = &ilf_buf;
3134 memset(ilfp, 0, sizeof(*ilfp));
3135 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3136 if (error)
3137 return;
3138 }
3139
84a5b730 3140 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3141 return;
3142
3143 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3144 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3145}
3146
3147STATIC void
3148xlog_recover_dquot_ra_pass2(
3149 struct xlog *log,
3150 struct xlog_recover_item *item)
3151{
3152 struct xfs_mount *mp = log->l_mp;
3153 struct xfs_disk_dquot *recddq;
3154 struct xfs_dq_logformat *dq_f;
3155 uint type;
3156
3157
3158 if (mp->m_qflags == 0)
3159 return;
3160
3161 recddq = item->ri_buf[1].i_addr;
3162 if (recddq == NULL)
3163 return;
3164 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3165 return;
3166
3167 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3168 ASSERT(type);
3169 if (log->l_quotaoffs_flag & type)
3170 return;
3171
3172 dq_f = item->ri_buf[0].i_addr;
3173 ASSERT(dq_f);
3174 ASSERT(dq_f->qlf_len == 1);
3175
3176 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
0f0d3345 3177 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
00574da1
ZYW
3178}
3179
3180STATIC void
3181xlog_recover_ra_pass2(
3182 struct xlog *log,
3183 struct xlog_recover_item *item)
3184{
3185 switch (ITEM_TYPE(item)) {
3186 case XFS_LI_BUF:
3187 xlog_recover_buffer_ra_pass2(log, item);
3188 break;
3189 case XFS_LI_INODE:
3190 xlog_recover_inode_ra_pass2(log, item);
3191 break;
3192 case XFS_LI_DQUOT:
3193 xlog_recover_dquot_ra_pass2(log, item);
3194 break;
3195 case XFS_LI_EFI:
3196 case XFS_LI_EFD:
3197 case XFS_LI_QUOTAOFF:
3198 default:
3199 break;
3200 }
3201}
3202
d0450948 3203STATIC int
c9f71f5f 3204xlog_recover_commit_pass1(
ad223e60
MT
3205 struct xlog *log,
3206 struct xlog_recover *trans,
3207 struct xlog_recover_item *item)
d0450948 3208{
c9f71f5f 3209 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3210
3211 switch (ITEM_TYPE(item)) {
3212 case XFS_LI_BUF:
c9f71f5f
CH
3213 return xlog_recover_buffer_pass1(log, item);
3214 case XFS_LI_QUOTAOFF:
3215 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3216 case XFS_LI_INODE:
d0450948 3217 case XFS_LI_EFI:
d0450948 3218 case XFS_LI_EFD:
c9f71f5f 3219 case XFS_LI_DQUOT:
28c8e41a 3220 case XFS_LI_ICREATE:
c9f71f5f 3221 /* nothing to do in pass 1 */
d0450948 3222 return 0;
c9f71f5f 3223 default:
a0fa2b67
DC
3224 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3225 __func__, ITEM_TYPE(item));
c9f71f5f 3226 ASSERT(0);
2451337d 3227 return -EIO;
c9f71f5f
CH
3228 }
3229}
3230
3231STATIC int
3232xlog_recover_commit_pass2(
ad223e60
MT
3233 struct xlog *log,
3234 struct xlog_recover *trans,
3235 struct list_head *buffer_list,
3236 struct xlog_recover_item *item)
c9f71f5f
CH
3237{
3238 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3239
3240 switch (ITEM_TYPE(item)) {
3241 case XFS_LI_BUF:
50d5c8d8
DC
3242 return xlog_recover_buffer_pass2(log, buffer_list, item,
3243 trans->r_lsn);
c9f71f5f 3244 case XFS_LI_INODE:
50d5c8d8
DC
3245 return xlog_recover_inode_pass2(log, buffer_list, item,
3246 trans->r_lsn);
c9f71f5f
CH
3247 case XFS_LI_EFI:
3248 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3249 case XFS_LI_EFD:
3250 return xlog_recover_efd_pass2(log, item);
d0450948 3251 case XFS_LI_DQUOT:
50d5c8d8
DC
3252 return xlog_recover_dquot_pass2(log, buffer_list, item,
3253 trans->r_lsn);
28c8e41a
DC
3254 case XFS_LI_ICREATE:
3255 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3256 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3257 /* nothing to do in pass2 */
3258 return 0;
d0450948 3259 default:
a0fa2b67
DC
3260 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3261 __func__, ITEM_TYPE(item));
d0450948 3262 ASSERT(0);
2451337d 3263 return -EIO;
d0450948
CH
3264 }
3265}
3266
00574da1
ZYW
3267STATIC int
3268xlog_recover_items_pass2(
3269 struct xlog *log,
3270 struct xlog_recover *trans,
3271 struct list_head *buffer_list,
3272 struct list_head *item_list)
3273{
3274 struct xlog_recover_item *item;
3275 int error = 0;
3276
3277 list_for_each_entry(item, item_list, ri_list) {
3278 error = xlog_recover_commit_pass2(log, trans,
3279 buffer_list, item);
3280 if (error)
3281 return error;
3282 }
3283
3284 return error;
3285}
3286
d0450948
CH
3287/*
3288 * Perform the transaction.
3289 *
3290 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3291 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3292 */
1da177e4
LT
3293STATIC int
3294xlog_recover_commit_trans(
ad223e60 3295 struct xlog *log,
d0450948 3296 struct xlog_recover *trans,
1da177e4
LT
3297 int pass)
3298{
00574da1
ZYW
3299 int error = 0;
3300 int error2;
3301 int items_queued = 0;
3302 struct xlog_recover_item *item;
3303 struct xlog_recover_item *next;
3304 LIST_HEAD (buffer_list);
3305 LIST_HEAD (ra_list);
3306 LIST_HEAD (done_list);
3307
3308 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3309
f0a76953 3310 hlist_del(&trans->r_list);
d0450948
CH
3311
3312 error = xlog_recover_reorder_trans(log, trans, pass);
3313 if (error)
1da177e4 3314 return error;
d0450948 3315
00574da1 3316 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3317 switch (pass) {
3318 case XLOG_RECOVER_PASS1:
c9f71f5f 3319 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3320 break;
3321 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3322 xlog_recover_ra_pass2(log, item);
3323 list_move_tail(&item->ri_list, &ra_list);
3324 items_queued++;
3325 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3326 error = xlog_recover_items_pass2(log, trans,
3327 &buffer_list, &ra_list);
3328 list_splice_tail_init(&ra_list, &done_list);
3329 items_queued = 0;
3330 }
3331
43ff2122
CH
3332 break;
3333 default:
3334 ASSERT(0);
3335 }
3336
d0450948 3337 if (error)
43ff2122 3338 goto out;
d0450948
CH
3339 }
3340
00574da1
ZYW
3341out:
3342 if (!list_empty(&ra_list)) {
3343 if (!error)
3344 error = xlog_recover_items_pass2(log, trans,
3345 &buffer_list, &ra_list);
3346 list_splice_tail_init(&ra_list, &done_list);
3347 }
3348
3349 if (!list_empty(&done_list))
3350 list_splice_init(&done_list, &trans->r_itemq);
3351
43ff2122
CH
3352 error2 = xfs_buf_delwri_submit(&buffer_list);
3353 return error ? error : error2;
1da177e4
LT
3354}
3355
76560669
DC
3356
3357STATIC xlog_recover_t *
3358xlog_recover_find_tid(
3359 struct hlist_head *head,
3360 xlog_tid_t tid)
3361{
3362 xlog_recover_t *trans;
3363
3364 hlist_for_each_entry(trans, head, r_list) {
3365 if (trans->r_log_tid == tid)
3366 return trans;
3367 }
3368 return NULL;
3369}
3370
3371STATIC void
3372xlog_recover_new_tid(
3373 struct hlist_head *head,
3374 xlog_tid_t tid,
3375 xfs_lsn_t lsn)
3376{
3377 xlog_recover_t *trans;
3378
3379 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
3380 trans->r_log_tid = tid;
3381 trans->r_lsn = lsn;
3382 INIT_LIST_HEAD(&trans->r_itemq);
3383
3384 INIT_HLIST_NODE(&trans->r_list);
3385 hlist_add_head(&trans->r_list, head);
3386}
3387
3388STATIC void
3389xlog_recover_add_item(
3390 struct list_head *head)
3391{
3392 xlog_recover_item_t *item;
3393
3394 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3395 INIT_LIST_HEAD(&item->ri_list);
3396 list_add_tail(&item->ri_list, head);
3397}
3398
3399STATIC int
3400xlog_recover_add_to_cont_trans(
3401 struct xlog *log,
3402 struct xlog_recover *trans,
3403 xfs_caddr_t dp,
3404 int len)
3405{
3406 xlog_recover_item_t *item;
3407 xfs_caddr_t ptr, old_ptr;
3408 int old_len;
3409
3410 if (list_empty(&trans->r_itemq)) {
3411 /* finish copying rest of trans header */
3412 xlog_recover_add_item(&trans->r_itemq);
3413 ptr = (xfs_caddr_t) &trans->r_theader +
3414 sizeof(xfs_trans_header_t) - len;
3415 memcpy(ptr, dp, len);
3416 return 0;
3417 }
3418 /* take the tail entry */
3419 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3420
3421 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3422 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3423
3424 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3425 memcpy(&ptr[old_len], dp, len);
3426 item->ri_buf[item->ri_cnt-1].i_len += len;
3427 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3428 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
3429 return 0;
3430}
3431
3432/*
3433 * The next region to add is the start of a new region. It could be
3434 * a whole region or it could be the first part of a new region. Because
3435 * of this, the assumption here is that the type and size fields of all
3436 * format structures fit into the first 32 bits of the structure.
3437 *
3438 * This works because all regions must be 32 bit aligned. Therefore, we
3439 * either have both fields or we have neither field. In the case we have
3440 * neither field, the data part of the region is zero length. We only have
3441 * a log_op_header and can throw away the header since a new one will appear
3442 * later. If we have at least 4 bytes, then we can determine how many regions
3443 * will appear in the current log item.
3444 */
3445STATIC int
3446xlog_recover_add_to_trans(
3447 struct xlog *log,
3448 struct xlog_recover *trans,
3449 xfs_caddr_t dp,
3450 int len)
3451{
3452 xfs_inode_log_format_t *in_f; /* any will do */
3453 xlog_recover_item_t *item;
3454 xfs_caddr_t ptr;
3455
3456 if (!len)
3457 return 0;
3458 if (list_empty(&trans->r_itemq)) {
3459 /* we need to catch log corruptions here */
3460 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3461 xfs_warn(log->l_mp, "%s: bad header magic number",
3462 __func__);
3463 ASSERT(0);
3464 return -EIO;
3465 }
3466 if (len == sizeof(xfs_trans_header_t))
3467 xlog_recover_add_item(&trans->r_itemq);
3468 memcpy(&trans->r_theader, dp, len);
3469 return 0;
3470 }
3471
3472 ptr = kmem_alloc(len, KM_SLEEP);
3473 memcpy(ptr, dp, len);
3474 in_f = (xfs_inode_log_format_t *)ptr;
3475
3476 /* take the tail entry */
3477 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3478 if (item->ri_total != 0 &&
3479 item->ri_total == item->ri_cnt) {
3480 /* tail item is in use, get a new one */
3481 xlog_recover_add_item(&trans->r_itemq);
3482 item = list_entry(trans->r_itemq.prev,
3483 xlog_recover_item_t, ri_list);
3484 }
3485
3486 if (item->ri_total == 0) { /* first region to be added */
3487 if (in_f->ilf_size == 0 ||
3488 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3489 xfs_warn(log->l_mp,
3490 "bad number of regions (%d) in inode log format",
3491 in_f->ilf_size);
3492 ASSERT(0);
3493 kmem_free(ptr);
3494 return -EIO;
3495 }
3496
3497 item->ri_total = in_f->ilf_size;
3498 item->ri_buf =
3499 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3500 KM_SLEEP);
3501 }
3502 ASSERT(item->ri_total > item->ri_cnt);
3503 /* Description region is ri_buf[0] */
3504 item->ri_buf[item->ri_cnt].i_addr = ptr;
3505 item->ri_buf[item->ri_cnt].i_len = len;
3506 item->ri_cnt++;
3507 trace_xfs_log_recover_item_add(log, trans, item, 0);
3508 return 0;
3509}
3510/*
3511 * Free up any resources allocated by the transaction
3512 *
3513 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3514 */
3515STATIC void
3516xlog_recover_free_trans(
3517 struct xlog_recover *trans)
3518{
3519 xlog_recover_item_t *item, *n;
3520 int i;
3521
3522 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3523 /* Free the regions in the item. */
3524 list_del(&item->ri_list);
3525 for (i = 0; i < item->ri_cnt; i++)
3526 kmem_free(item->ri_buf[i].i_addr);
3527 /* Free the item itself */
3528 kmem_free(item->ri_buf);
3529 kmem_free(item);
3530 }
3531 /* Free the transaction recover structure */
3532 kmem_free(trans);
3533}
3534
e9131e50
DC
3535/*
3536 * On error or completion, trans is freed.
3537 */
1da177e4 3538STATIC int
eeb11688
DC
3539xlog_recovery_process_trans(
3540 struct xlog *log,
3541 struct xlog_recover *trans,
3542 xfs_caddr_t dp,
3543 unsigned int len,
3544 unsigned int flags,
3545 int pass)
1da177e4 3546{
e9131e50
DC
3547 int error = 0;
3548 bool freeit = false;
eeb11688
DC
3549
3550 /* mask off ophdr transaction container flags */
3551 flags &= ~XLOG_END_TRANS;
3552 if (flags & XLOG_WAS_CONT_TRANS)
3553 flags &= ~XLOG_CONTINUE_TRANS;
3554
88b863db
DC
3555 /*
3556 * Callees must not free the trans structure. We'll decide if we need to
3557 * free it or not based on the operation being done and it's result.
3558 */
eeb11688
DC
3559 switch (flags) {
3560 /* expected flag values */
3561 case 0:
3562 case XLOG_CONTINUE_TRANS:
3563 error = xlog_recover_add_to_trans(log, trans, dp, len);
3564 break;
3565 case XLOG_WAS_CONT_TRANS:
3566 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3567 break;
3568 case XLOG_COMMIT_TRANS:
3569 error = xlog_recover_commit_trans(log, trans, pass);
88b863db
DC
3570 /* success or fail, we are now done with this transaction. */
3571 freeit = true;
eeb11688
DC
3572 break;
3573
3574 /* unexpected flag values */
3575 case XLOG_UNMOUNT_TRANS:
e9131e50 3576 /* just skip trans */
eeb11688 3577 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
e9131e50 3578 freeit = true;
eeb11688
DC
3579 break;
3580 case XLOG_START_TRANS:
eeb11688
DC
3581 default:
3582 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
3583 ASSERT(0);
e9131e50 3584 error = -EIO;
eeb11688
DC
3585 break;
3586 }
e9131e50
DC
3587 if (error || freeit)
3588 xlog_recover_free_trans(trans);
eeb11688
DC
3589 return error;
3590}
3591
3592STATIC struct xlog_recover *
3593xlog_recover_ophdr_to_trans(
3594 struct hlist_head rhash[],
3595 struct xlog_rec_header *rhead,
3596 struct xlog_op_header *ohead)
3597{
3598 struct xlog_recover *trans;
3599 xlog_tid_t tid;
3600 struct hlist_head *rhp;
3601
3602 tid = be32_to_cpu(ohead->oh_tid);
3603 rhp = &rhash[XLOG_RHASH(tid)];
3604 trans = xlog_recover_find_tid(rhp, tid);
3605 if (trans)
3606 return trans;
3607
3608 /*
3609 * If this is a new transaction, the ophdr only contains the
3610 * start record. In that case, the only processing we need to do
3611 * on this opheader is allocate a new recovery container to hold
3612 * the recovery ops that will follow.
3613 */
3614 if (ohead->oh_flags & XLOG_START_TRANS) {
3615 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
3616 xlog_recover_new_tid(rhp, tid, be64_to_cpu(rhead->h_lsn));
3617 }
3618 return NULL;
3619}
3620
3621STATIC int
3622xlog_recover_process_ophdr(
3623 struct xlog *log,
3624 struct hlist_head rhash[],
3625 struct xlog_rec_header *rhead,
3626 struct xlog_op_header *ohead,
3627 xfs_caddr_t dp,
3628 xfs_caddr_t end,
3629 int pass)
3630{
3631 struct xlog_recover *trans;
eeb11688
DC
3632 unsigned int len;
3633
3634 /* Do we understand who wrote this op? */
3635 if (ohead->oh_clientid != XFS_TRANSACTION &&
3636 ohead->oh_clientid != XFS_LOG) {
3637 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3638 __func__, ohead->oh_clientid);
3639 ASSERT(0);
3640 return -EIO;
3641 }
3642
3643 /*
3644 * Check the ophdr contains all the data it is supposed to contain.
3645 */
3646 len = be32_to_cpu(ohead->oh_len);
3647 if (dp + len > end) {
3648 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
3649 WARN_ON(1);
3650 return -EIO;
3651 }
3652
3653 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
3654 if (!trans) {
3655 /* nothing to do, so skip over this ophdr */
3656 return 0;
3657 }
3658
e9131e50
DC
3659 return xlog_recovery_process_trans(log, trans, dp, len,
3660 ohead->oh_flags, pass);
1da177e4
LT
3661}
3662
3663/*
3664 * There are two valid states of the r_state field. 0 indicates that the
3665 * transaction structure is in a normal state. We have either seen the
3666 * start of the transaction or the last operation we added was not a partial
3667 * operation. If the last operation we added to the transaction was a
3668 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3669 *
3670 * NOTE: skip LRs with 0 data length.
3671 */
3672STATIC int
3673xlog_recover_process_data(
9a8d2fdb 3674 struct xlog *log,
f0a76953 3675 struct hlist_head rhash[],
9a8d2fdb 3676 struct xlog_rec_header *rhead,
1da177e4
LT
3677 xfs_caddr_t dp,
3678 int pass)
3679{
eeb11688
DC
3680 struct xlog_op_header *ohead;
3681 xfs_caddr_t end;
1da177e4 3682 int num_logops;
1da177e4 3683 int error;
1da177e4 3684
eeb11688 3685 end = dp + be32_to_cpu(rhead->h_len);
b53e675d 3686 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3687
3688 /* check the log format matches our own - else we can't recover */
3689 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 3690 return -EIO;
1da177e4 3691
eeb11688
DC
3692 while ((dp < end) && num_logops) {
3693
3694 ohead = (struct xlog_op_header *)dp;
3695 dp += sizeof(*ohead);
3696 ASSERT(dp <= end);
3697
3698 /* errors will abort recovery */
3699 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
3700 dp, end, pass);
3701 if (error)
3702 return error;
3703
67fcb7bf 3704 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3705 num_logops--;
3706 }
3707 return 0;
3708}
3709
3710/*
3711 * Process an extent free intent item that was recovered from
3712 * the log. We need to free the extents that it describes.
3713 */
3c1e2bbe 3714STATIC int
1da177e4
LT
3715xlog_recover_process_efi(
3716 xfs_mount_t *mp,
3717 xfs_efi_log_item_t *efip)
3718{
3719 xfs_efd_log_item_t *efdp;
3720 xfs_trans_t *tp;
3721 int i;
3c1e2bbe 3722 int error = 0;
1da177e4
LT
3723 xfs_extent_t *extp;
3724 xfs_fsblock_t startblock_fsb;
3725
b199c8a4 3726 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3727
3728 /*
3729 * First check the validity of the extents described by the
3730 * EFI. If any are bad, then assume that all are bad and
3731 * just toss the EFI.
3732 */
3733 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3734 extp = &(efip->efi_format.efi_extents[i]);
3735 startblock_fsb = XFS_BB_TO_FSB(mp,
3736 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3737 if ((startblock_fsb == 0) ||
3738 (extp->ext_len == 0) ||
3739 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3740 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3741 /*
3742 * This will pull the EFI from the AIL and
3743 * free the memory associated with it.
3744 */
666d644c 3745 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3746 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2451337d 3747 return -EIO;
1da177e4
LT
3748 }
3749 }
3750
3751 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 3752 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
3753 if (error)
3754 goto abort_error;
1da177e4
LT
3755 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3756
3757 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3758 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3759 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3760 if (error)
3761 goto abort_error;
1da177e4
LT
3762 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3763 extp->ext_len);
3764 }
3765
b199c8a4 3766 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3767 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3768 return error;
fc6149d8
DC
3769
3770abort_error:
3771 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3772 return error;
1da177e4
LT
3773}
3774
1da177e4
LT
3775/*
3776 * When this is called, all of the EFIs which did not have
3777 * corresponding EFDs should be in the AIL. What we do now
3778 * is free the extents associated with each one.
3779 *
3780 * Since we process the EFIs in normal transactions, they
3781 * will be removed at some point after the commit. This prevents
3782 * us from just walking down the list processing each one.
3783 * We'll use a flag in the EFI to skip those that we've already
3784 * processed and use the AIL iteration mechanism's generation
3785 * count to try to speed this up at least a bit.
3786 *
3787 * When we start, we know that the EFIs are the only things in
3788 * the AIL. As we process them, however, other items are added
3789 * to the AIL. Since everything added to the AIL must come after
3790 * everything already in the AIL, we stop processing as soon as
3791 * we see something other than an EFI in the AIL.
3792 */
3c1e2bbe 3793STATIC int
1da177e4 3794xlog_recover_process_efis(
9a8d2fdb 3795 struct xlog *log)
1da177e4
LT
3796{
3797 xfs_log_item_t *lip;
3798 xfs_efi_log_item_t *efip;
3c1e2bbe 3799 int error = 0;
27d8d5fe 3800 struct xfs_ail_cursor cur;
a9c21c1b 3801 struct xfs_ail *ailp;
1da177e4 3802
a9c21c1b
DC
3803 ailp = log->l_ailp;
3804 spin_lock(&ailp->xa_lock);
3805 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3806 while (lip != NULL) {
3807 /*
3808 * We're done when we see something other than an EFI.
27d8d5fe 3809 * There should be no EFIs left in the AIL now.
1da177e4
LT
3810 */
3811 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3812#ifdef DEBUG
a9c21c1b 3813 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3814 ASSERT(lip->li_type != XFS_LI_EFI);
3815#endif
1da177e4
LT
3816 break;
3817 }
3818
3819 /*
3820 * Skip EFIs that we've already processed.
3821 */
3822 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3823 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3824 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3825 continue;
3826 }
3827
a9c21c1b
DC
3828 spin_unlock(&ailp->xa_lock);
3829 error = xlog_recover_process_efi(log->l_mp, efip);
3830 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3831 if (error)
3832 goto out;
a9c21c1b 3833 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3834 }
27d8d5fe 3835out:
e4a1e29c 3836 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3837 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3838 return error;
1da177e4
LT
3839}
3840
3841/*
3842 * This routine performs a transaction to null out a bad inode pointer
3843 * in an agi unlinked inode hash bucket.
3844 */
3845STATIC void
3846xlog_recover_clear_agi_bucket(
3847 xfs_mount_t *mp,
3848 xfs_agnumber_t agno,
3849 int bucket)
3850{
3851 xfs_trans_t *tp;
3852 xfs_agi_t *agi;
3853 xfs_buf_t *agibp;
3854 int offset;
3855 int error;
3856
3857 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 3858 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
3859 if (error)
3860 goto out_abort;
1da177e4 3861
5e1be0fb
CH
3862 error = xfs_read_agi(mp, tp, agno, &agibp);
3863 if (error)
e5720eec 3864 goto out_abort;
1da177e4 3865
5e1be0fb 3866 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3867 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3868 offset = offsetof(xfs_agi_t, agi_unlinked) +
3869 (sizeof(xfs_agino_t) * bucket);
3870 xfs_trans_log_buf(tp, agibp, offset,
3871 (offset + sizeof(xfs_agino_t) - 1));
3872
e5720eec
DC
3873 error = xfs_trans_commit(tp, 0);
3874 if (error)
3875 goto out_error;
3876 return;
3877
3878out_abort:
3879 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3880out_error:
a0fa2b67 3881 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3882 return;
1da177e4
LT
3883}
3884
23fac50f
CH
3885STATIC xfs_agino_t
3886xlog_recover_process_one_iunlink(
3887 struct xfs_mount *mp,
3888 xfs_agnumber_t agno,
3889 xfs_agino_t agino,
3890 int bucket)
3891{
3892 struct xfs_buf *ibp;
3893 struct xfs_dinode *dip;
3894 struct xfs_inode *ip;
3895 xfs_ino_t ino;
3896 int error;
3897
3898 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3899 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3900 if (error)
3901 goto fail;
3902
3903 /*
3904 * Get the on disk inode to find the next inode in the bucket.
3905 */
475ee413 3906 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3907 if (error)
0e446673 3908 goto fail_iput;
23fac50f 3909
23fac50f 3910 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3911 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3912
3913 /* setup for the next pass */
3914 agino = be32_to_cpu(dip->di_next_unlinked);
3915 xfs_buf_relse(ibp);
3916
3917 /*
3918 * Prevent any DMAPI event from being sent when the reference on
3919 * the inode is dropped.
3920 */
3921 ip->i_d.di_dmevmask = 0;
3922
0e446673 3923 IRELE(ip);
23fac50f
CH
3924 return agino;
3925
0e446673
CH
3926 fail_iput:
3927 IRELE(ip);
23fac50f
CH
3928 fail:
3929 /*
3930 * We can't read in the inode this bucket points to, or this inode
3931 * is messed up. Just ditch this bucket of inodes. We will lose
3932 * some inodes and space, but at least we won't hang.
3933 *
3934 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3935 * clear the inode pointer in the bucket.
3936 */
3937 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3938 return NULLAGINO;
3939}
3940
1da177e4
LT
3941/*
3942 * xlog_iunlink_recover
3943 *
3944 * This is called during recovery to process any inodes which
3945 * we unlinked but not freed when the system crashed. These
3946 * inodes will be on the lists in the AGI blocks. What we do
3947 * here is scan all the AGIs and fully truncate and free any
3948 * inodes found on the lists. Each inode is removed from the
3949 * lists when it has been fully truncated and is freed. The
3950 * freeing of the inode and its removal from the list must be
3951 * atomic.
3952 */
d96f8f89 3953STATIC void
1da177e4 3954xlog_recover_process_iunlinks(
9a8d2fdb 3955 struct xlog *log)
1da177e4
LT
3956{
3957 xfs_mount_t *mp;
3958 xfs_agnumber_t agno;
3959 xfs_agi_t *agi;
3960 xfs_buf_t *agibp;
1da177e4 3961 xfs_agino_t agino;
1da177e4
LT
3962 int bucket;
3963 int error;
3964 uint mp_dmevmask;
3965
3966 mp = log->l_mp;
3967
3968 /*
3969 * Prevent any DMAPI event from being sent while in this function.
3970 */
3971 mp_dmevmask = mp->m_dmevmask;
3972 mp->m_dmevmask = 0;
3973
3974 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3975 /*
3976 * Find the agi for this ag.
3977 */
5e1be0fb
CH
3978 error = xfs_read_agi(mp, NULL, agno, &agibp);
3979 if (error) {
3980 /*
3981 * AGI is b0rked. Don't process it.
3982 *
3983 * We should probably mark the filesystem as corrupt
3984 * after we've recovered all the ag's we can....
3985 */
3986 continue;
1da177e4 3987 }
d97d32ed
JK
3988 /*
3989 * Unlock the buffer so that it can be acquired in the normal
3990 * course of the transaction to truncate and free each inode.
3991 * Because we are not racing with anyone else here for the AGI
3992 * buffer, we don't even need to hold it locked to read the
3993 * initial unlinked bucket entries out of the buffer. We keep
3994 * buffer reference though, so that it stays pinned in memory
3995 * while we need the buffer.
3996 */
1da177e4 3997 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3998 xfs_buf_unlock(agibp);
1da177e4
LT
3999
4000 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 4001 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 4002 while (agino != NULLAGINO) {
23fac50f
CH
4003 agino = xlog_recover_process_one_iunlink(mp,
4004 agno, agino, bucket);
1da177e4
LT
4005 }
4006 }
d97d32ed 4007 xfs_buf_rele(agibp);
1da177e4
LT
4008 }
4009
4010 mp->m_dmevmask = mp_dmevmask;
4011}
4012
1da177e4 4013/*
0e446be4
CH
4014 * Upack the log buffer data and crc check it. If the check fails, issue a
4015 * warning if and only if the CRC in the header is non-zero. This makes the
4016 * check an advisory warning, and the zero CRC check will prevent failure
4017 * warnings from being emitted when upgrading the kernel from one that does not
4018 * add CRCs by default.
4019 *
4020 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4021 * corruption failure
1da177e4 4022 */
0e446be4
CH
4023STATIC int
4024xlog_unpack_data_crc(
4025 struct xlog_rec_header *rhead,
4026 xfs_caddr_t dp,
4027 struct xlog *log)
1da177e4 4028{
f9668a09 4029 __le32 crc;
0e446be4
CH
4030
4031 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4032 if (crc != rhead->h_crc) {
4033 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4034 xfs_alert(log->l_mp,
08e96e1a 4035 "log record CRC mismatch: found 0x%x, expected 0x%x.",
f9668a09
DC
4036 le32_to_cpu(rhead->h_crc),
4037 le32_to_cpu(crc));
0e446be4 4038 xfs_hex_dump(dp, 32);
1da177e4
LT
4039 }
4040
0e446be4
CH
4041 /*
4042 * If we've detected a log record corruption, then we can't
4043 * recover past this point. Abort recovery if we are enforcing
4044 * CRC protection by punting an error back up the stack.
4045 */
4046 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
2451337d 4047 return -EFSCORRUPTED;
1da177e4 4048 }
0e446be4
CH
4049
4050 return 0;
1da177e4
LT
4051}
4052
0e446be4 4053STATIC int
1da177e4 4054xlog_unpack_data(
9a8d2fdb 4055 struct xlog_rec_header *rhead,
1da177e4 4056 xfs_caddr_t dp,
9a8d2fdb 4057 struct xlog *log)
1da177e4
LT
4058{
4059 int i, j, k;
0e446be4
CH
4060 int error;
4061
4062 error = xlog_unpack_data_crc(rhead, dp, log);
4063 if (error)
4064 return error;
1da177e4 4065
b53e675d 4066 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 4067 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 4068 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
4069 dp += BBSIZE;
4070 }
4071
62118709 4072 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 4073 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 4074 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4075 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4076 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4077 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4078 dp += BBSIZE;
4079 }
4080 }
0e446be4
CH
4081
4082 return 0;
1da177e4
LT
4083}
4084
4085STATIC int
4086xlog_valid_rec_header(
9a8d2fdb
MT
4087 struct xlog *log,
4088 struct xlog_rec_header *rhead,
1da177e4
LT
4089 xfs_daddr_t blkno)
4090{
4091 int hlen;
4092
69ef921b 4093 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4094 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4095 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4096 return -EFSCORRUPTED;
1da177e4
LT
4097 }
4098 if (unlikely(
4099 (!rhead->h_version ||
b53e675d 4100 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4101 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4102 __func__, be32_to_cpu(rhead->h_version));
2451337d 4103 return -EIO;
1da177e4
LT
4104 }
4105
4106 /* LR body must have data or it wouldn't have been written */
b53e675d 4107 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4108 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4109 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4110 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4111 return -EFSCORRUPTED;
1da177e4
LT
4112 }
4113 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4114 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4115 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4116 return -EFSCORRUPTED;
1da177e4
LT
4117 }
4118 return 0;
4119}
4120
4121/*
4122 * Read the log from tail to head and process the log records found.
4123 * Handle the two cases where the tail and head are in the same cycle
4124 * and where the active portion of the log wraps around the end of
4125 * the physical log separately. The pass parameter is passed through
4126 * to the routines called to process the data and is not looked at
4127 * here.
4128 */
4129STATIC int
4130xlog_do_recovery_pass(
9a8d2fdb 4131 struct xlog *log,
1da177e4
LT
4132 xfs_daddr_t head_blk,
4133 xfs_daddr_t tail_blk,
4134 int pass)
4135{
4136 xlog_rec_header_t *rhead;
4137 xfs_daddr_t blk_no;
fc5bc4c8 4138 xfs_caddr_t offset;
1da177e4
LT
4139 xfs_buf_t *hbp, *dbp;
4140 int error = 0, h_size;
4141 int bblks, split_bblks;
4142 int hblks, split_hblks, wrapped_hblks;
f0a76953 4143 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4144
4145 ASSERT(head_blk != tail_blk);
4146
4147 /*
4148 * Read the header of the tail block and get the iclog buffer size from
4149 * h_size. Use this to tell how many sectors make up the log header.
4150 */
62118709 4151 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4152 /*
4153 * When using variable length iclogs, read first sector of
4154 * iclog header and extract the header size from it. Get a
4155 * new hbp that is the correct size.
4156 */
4157 hbp = xlog_get_bp(log, 1);
4158 if (!hbp)
2451337d 4159 return -ENOMEM;
076e6acb
CH
4160
4161 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4162 if (error)
1da177e4 4163 goto bread_err1;
076e6acb 4164
1da177e4
LT
4165 rhead = (xlog_rec_header_t *)offset;
4166 error = xlog_valid_rec_header(log, rhead, tail_blk);
4167 if (error)
4168 goto bread_err1;
b53e675d
CH
4169 h_size = be32_to_cpu(rhead->h_size);
4170 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4171 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4172 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4173 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4174 hblks++;
4175 xlog_put_bp(hbp);
4176 hbp = xlog_get_bp(log, hblks);
4177 } else {
4178 hblks = 1;
4179 }
4180 } else {
69ce58f0 4181 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4182 hblks = 1;
4183 hbp = xlog_get_bp(log, 1);
4184 h_size = XLOG_BIG_RECORD_BSIZE;
4185 }
4186
4187 if (!hbp)
2451337d 4188 return -ENOMEM;
1da177e4
LT
4189 dbp = xlog_get_bp(log, BTOBB(h_size));
4190 if (!dbp) {
4191 xlog_put_bp(hbp);
2451337d 4192 return -ENOMEM;
1da177e4
LT
4193 }
4194
4195 memset(rhash, 0, sizeof(rhash));
4196 if (tail_blk <= head_blk) {
4197 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
4198 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4199 if (error)
1da177e4 4200 goto bread_err2;
076e6acb 4201
1da177e4
LT
4202 rhead = (xlog_rec_header_t *)offset;
4203 error = xlog_valid_rec_header(log, rhead, blk_no);
4204 if (error)
4205 goto bread_err2;
4206
4207 /* blocks in data section */
b53e675d 4208 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4209 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4210 &offset);
1da177e4
LT
4211 if (error)
4212 goto bread_err2;
076e6acb 4213
0e446be4
CH
4214 error = xlog_unpack_data(rhead, offset, log);
4215 if (error)
4216 goto bread_err2;
4217
4218 error = xlog_recover_process_data(log,
4219 rhash, rhead, offset, pass);
4220 if (error)
1da177e4
LT
4221 goto bread_err2;
4222 blk_no += bblks + hblks;
4223 }
4224 } else {
4225 /*
4226 * Perform recovery around the end of the physical log.
4227 * When the head is not on the same cycle number as the tail,
4228 * we can't do a sequential recovery as above.
4229 */
4230 blk_no = tail_blk;
4231 while (blk_no < log->l_logBBsize) {
4232 /*
4233 * Check for header wrapping around physical end-of-log
4234 */
62926044 4235 offset = hbp->b_addr;
1da177e4
LT
4236 split_hblks = 0;
4237 wrapped_hblks = 0;
4238 if (blk_no + hblks <= log->l_logBBsize) {
4239 /* Read header in one read */
076e6acb
CH
4240 error = xlog_bread(log, blk_no, hblks, hbp,
4241 &offset);
1da177e4
LT
4242 if (error)
4243 goto bread_err2;
1da177e4
LT
4244 } else {
4245 /* This LR is split across physical log end */
4246 if (blk_no != log->l_logBBsize) {
4247 /* some data before physical log end */
4248 ASSERT(blk_no <= INT_MAX);
4249 split_hblks = log->l_logBBsize - (int)blk_no;
4250 ASSERT(split_hblks > 0);
076e6acb
CH
4251 error = xlog_bread(log, blk_no,
4252 split_hblks, hbp,
4253 &offset);
4254 if (error)
1da177e4 4255 goto bread_err2;
1da177e4 4256 }
076e6acb 4257
1da177e4
LT
4258 /*
4259 * Note: this black magic still works with
4260 * large sector sizes (non-512) only because:
4261 * - we increased the buffer size originally
4262 * by 1 sector giving us enough extra space
4263 * for the second read;
4264 * - the log start is guaranteed to be sector
4265 * aligned;
4266 * - we read the log end (LR header start)
4267 * _first_, then the log start (LR header end)
4268 * - order is important.
4269 */
234f56ac 4270 wrapped_hblks = hblks - split_hblks;
44396476
DC
4271 error = xlog_bread_offset(log, 0,
4272 wrapped_hblks, hbp,
4273 offset + BBTOB(split_hblks));
1da177e4
LT
4274 if (error)
4275 goto bread_err2;
1da177e4
LT
4276 }
4277 rhead = (xlog_rec_header_t *)offset;
4278 error = xlog_valid_rec_header(log, rhead,
4279 split_hblks ? blk_no : 0);
4280 if (error)
4281 goto bread_err2;
4282
b53e675d 4283 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4284 blk_no += hblks;
4285
4286 /* Read in data for log record */
4287 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4288 error = xlog_bread(log, blk_no, bblks, dbp,
4289 &offset);
1da177e4
LT
4290 if (error)
4291 goto bread_err2;
1da177e4
LT
4292 } else {
4293 /* This log record is split across the
4294 * physical end of log */
62926044 4295 offset = dbp->b_addr;
1da177e4
LT
4296 split_bblks = 0;
4297 if (blk_no != log->l_logBBsize) {
4298 /* some data is before the physical
4299 * end of log */
4300 ASSERT(!wrapped_hblks);
4301 ASSERT(blk_no <= INT_MAX);
4302 split_bblks =
4303 log->l_logBBsize - (int)blk_no;
4304 ASSERT(split_bblks > 0);
076e6acb
CH
4305 error = xlog_bread(log, blk_no,
4306 split_bblks, dbp,
4307 &offset);
4308 if (error)
1da177e4 4309 goto bread_err2;
1da177e4 4310 }
076e6acb 4311
1da177e4
LT
4312 /*
4313 * Note: this black magic still works with
4314 * large sector sizes (non-512) only because:
4315 * - we increased the buffer size originally
4316 * by 1 sector giving us enough extra space
4317 * for the second read;
4318 * - the log start is guaranteed to be sector
4319 * aligned;
4320 * - we read the log end (LR header start)
4321 * _first_, then the log start (LR header end)
4322 * - order is important.
4323 */
44396476 4324 error = xlog_bread_offset(log, 0,
009507b0 4325 bblks - split_bblks, dbp,
44396476 4326 offset + BBTOB(split_bblks));
076e6acb
CH
4327 if (error)
4328 goto bread_err2;
1da177e4 4329 }
0e446be4
CH
4330
4331 error = xlog_unpack_data(rhead, offset, log);
4332 if (error)
4333 goto bread_err2;
4334
4335 error = xlog_recover_process_data(log, rhash,
4336 rhead, offset, pass);
4337 if (error)
1da177e4
LT
4338 goto bread_err2;
4339 blk_no += bblks;
4340 }
4341
4342 ASSERT(blk_no >= log->l_logBBsize);
4343 blk_no -= log->l_logBBsize;
4344
4345 /* read first part of physical log */
4346 while (blk_no < head_blk) {
076e6acb
CH
4347 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4348 if (error)
1da177e4 4349 goto bread_err2;
076e6acb 4350
1da177e4
LT
4351 rhead = (xlog_rec_header_t *)offset;
4352 error = xlog_valid_rec_header(log, rhead, blk_no);
4353 if (error)
4354 goto bread_err2;
076e6acb 4355
b53e675d 4356 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4357 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4358 &offset);
4359 if (error)
1da177e4 4360 goto bread_err2;
076e6acb 4361
0e446be4
CH
4362 error = xlog_unpack_data(rhead, offset, log);
4363 if (error)
4364 goto bread_err2;
4365
4366 error = xlog_recover_process_data(log, rhash,
4367 rhead, offset, pass);
4368 if (error)
1da177e4
LT
4369 goto bread_err2;
4370 blk_no += bblks + hblks;
4371 }
4372 }
4373
4374 bread_err2:
4375 xlog_put_bp(dbp);
4376 bread_err1:
4377 xlog_put_bp(hbp);
4378 return error;
4379}
4380
4381/*
4382 * Do the recovery of the log. We actually do this in two phases.
4383 * The two passes are necessary in order to implement the function
4384 * of cancelling a record written into the log. The first pass
4385 * determines those things which have been cancelled, and the
4386 * second pass replays log items normally except for those which
4387 * have been cancelled. The handling of the replay and cancellations
4388 * takes place in the log item type specific routines.
4389 *
4390 * The table of items which have cancel records in the log is allocated
4391 * and freed at this level, since only here do we know when all of
4392 * the log recovery has been completed.
4393 */
4394STATIC int
4395xlog_do_log_recovery(
9a8d2fdb 4396 struct xlog *log,
1da177e4
LT
4397 xfs_daddr_t head_blk,
4398 xfs_daddr_t tail_blk)
4399{
d5689eaa 4400 int error, i;
1da177e4
LT
4401
4402 ASSERT(head_blk != tail_blk);
4403
4404 /*
4405 * First do a pass to find all of the cancelled buf log items.
4406 * Store them in the buf_cancel_table for use in the second pass.
4407 */
d5689eaa
CH
4408 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4409 sizeof(struct list_head),
1da177e4 4410 KM_SLEEP);
d5689eaa
CH
4411 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4412 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4413
1da177e4
LT
4414 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4415 XLOG_RECOVER_PASS1);
4416 if (error != 0) {
f0e2d93c 4417 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4418 log->l_buf_cancel_table = NULL;
4419 return error;
4420 }
4421 /*
4422 * Then do a second pass to actually recover the items in the log.
4423 * When it is complete free the table of buf cancel items.
4424 */
4425 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4426 XLOG_RECOVER_PASS2);
4427#ifdef DEBUG
6d192a9b 4428 if (!error) {
1da177e4
LT
4429 int i;
4430
4431 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4432 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4433 }
4434#endif /* DEBUG */
4435
f0e2d93c 4436 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4437 log->l_buf_cancel_table = NULL;
4438
4439 return error;
4440}
4441
4442/*
4443 * Do the actual recovery
4444 */
4445STATIC int
4446xlog_do_recover(
9a8d2fdb 4447 struct xlog *log,
1da177e4
LT
4448 xfs_daddr_t head_blk,
4449 xfs_daddr_t tail_blk)
4450{
4451 int error;
4452 xfs_buf_t *bp;
4453 xfs_sb_t *sbp;
4454
4455 /*
4456 * First replay the images in the log.
4457 */
4458 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4459 if (error)
1da177e4 4460 return error;
1da177e4
LT
4461
4462 /*
4463 * If IO errors happened during recovery, bail out.
4464 */
4465 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
2451337d 4466 return -EIO;
1da177e4
LT
4467 }
4468
4469 /*
4470 * We now update the tail_lsn since much of the recovery has completed
4471 * and there may be space available to use. If there were no extent
4472 * or iunlinks, we can free up the entire log and set the tail_lsn to
4473 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4474 * lsn of the last known good LR on disk. If there are extent frees
4475 * or iunlinks they will have some entries in the AIL; so we look at
4476 * the AIL to determine how to set the tail_lsn.
4477 */
4478 xlog_assign_tail_lsn(log->l_mp);
4479
4480 /*
4481 * Now that we've finished replaying all buffer and inode
98021821 4482 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4483 */
4484 bp = xfs_getsb(log->l_mp, 0);
4485 XFS_BUF_UNDONE(bp);
bebf963f 4486 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4487 XFS_BUF_READ(bp);
bebf963f 4488 XFS_BUF_UNASYNC(bp);
1813dd64 4489 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3
CH
4490
4491 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4492 xfs_buf_relse(bp);
2451337d 4493 return -EIO;
83a0adc3
CH
4494 }
4495
4496 xfs_buf_iorequest(bp);
1a1a3e97 4497 error = xfs_buf_iowait(bp);
d64e31a2 4498 if (error) {
901796af 4499 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
4500 ASSERT(0);
4501 xfs_buf_relse(bp);
4502 return error;
4503 }
4504
4505 /* Convert superblock from on-disk format */
4506 sbp = &log->l_mp->m_sb;
98021821 4507 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4508 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4509 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
4510 xfs_buf_relse(bp);
4511
5478eead
LM
4512 /* We've re-read the superblock so re-initialize per-cpu counters */
4513 xfs_icsb_reinit_counters(log->l_mp);
4514
1da177e4
LT
4515 xlog_recover_check_summary(log);
4516
4517 /* Normal transactions can now occur */
4518 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4519 return 0;
4520}
4521
4522/*
4523 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4524 *
4525 * Return error or zero.
4526 */
4527int
4528xlog_recover(
9a8d2fdb 4529 struct xlog *log)
1da177e4
LT
4530{
4531 xfs_daddr_t head_blk, tail_blk;
4532 int error;
4533
4534 /* find the tail of the log */
65be6054 4535 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
4536 return error;
4537
4538 if (tail_blk != head_blk) {
4539 /* There used to be a comment here:
4540 *
4541 * disallow recovery on read-only mounts. note -- mount
4542 * checks for ENOSPC and turns it into an intelligent
4543 * error message.
4544 * ...but this is no longer true. Now, unless you specify
4545 * NORECOVERY (in which case this function would never be
4546 * called), we just go ahead and recover. We do this all
4547 * under the vfs layer, so we can get away with it unless
4548 * the device itself is read-only, in which case we fail.
4549 */
3a02ee18 4550 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4551 return error;
4552 }
4553
e721f504
DC
4554 /*
4555 * Version 5 superblock log feature mask validation. We know the
4556 * log is dirty so check if there are any unknown log features
4557 * in what we need to recover. If there are unknown features
4558 * (e.g. unsupported transactions, then simply reject the
4559 * attempt at recovery before touching anything.
4560 */
4561 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4562 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4563 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4564 xfs_warn(log->l_mp,
4565"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4566"The log can not be fully and/or safely recovered by this kernel.\n"
4567"Please recover the log on a kernel that supports the unknown features.",
4568 (log->l_mp->m_sb.sb_features_log_incompat &
4569 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
2451337d 4570 return -EINVAL;
e721f504
DC
4571 }
4572
a0fa2b67
DC
4573 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4574 log->l_mp->m_logname ? log->l_mp->m_logname
4575 : "internal");
1da177e4
LT
4576
4577 error = xlog_do_recover(log, head_blk, tail_blk);
4578 log->l_flags |= XLOG_RECOVERY_NEEDED;
4579 }
4580 return error;
4581}
4582
4583/*
4584 * In the first part of recovery we replay inodes and buffers and build
4585 * up the list of extent free items which need to be processed. Here
4586 * we process the extent free items and clean up the on disk unlinked
4587 * inode lists. This is separated from the first part of recovery so
4588 * that the root and real-time bitmap inodes can be read in from disk in
4589 * between the two stages. This is necessary so that we can free space
4590 * in the real-time portion of the file system.
4591 */
4592int
4593xlog_recover_finish(
9a8d2fdb 4594 struct xlog *log)
1da177e4
LT
4595{
4596 /*
4597 * Now we're ready to do the transactions needed for the
4598 * rest of recovery. Start with completing all the extent
4599 * free intent records and then process the unlinked inode
4600 * lists. At this point, we essentially run in normal mode
4601 * except that we're still performing recovery actions
4602 * rather than accepting new requests.
4603 */
4604 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4605 int error;
4606 error = xlog_recover_process_efis(log);
4607 if (error) {
a0fa2b67 4608 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4609 return error;
4610 }
1da177e4
LT
4611 /*
4612 * Sync the log to get all the EFIs out of the AIL.
4613 * This isn't absolutely necessary, but it helps in
4614 * case the unlink transactions would have problems
4615 * pushing the EFIs out of the way.
4616 */
a14a348b 4617 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4618
4249023a 4619 xlog_recover_process_iunlinks(log);
1da177e4
LT
4620
4621 xlog_recover_check_summary(log);
4622
a0fa2b67
DC
4623 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4624 log->l_mp->m_logname ? log->l_mp->m_logname
4625 : "internal");
1da177e4
LT
4626 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4627 } else {
a0fa2b67 4628 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4629 }
4630 return 0;
4631}
4632
4633
4634#if defined(DEBUG)
4635/*
4636 * Read all of the agf and agi counters and check that they
4637 * are consistent with the superblock counters.
4638 */
4639void
4640xlog_recover_check_summary(
9a8d2fdb 4641 struct xlog *log)
1da177e4
LT
4642{
4643 xfs_mount_t *mp;
4644 xfs_agf_t *agfp;
1da177e4
LT
4645 xfs_buf_t *agfbp;
4646 xfs_buf_t *agibp;
1da177e4
LT
4647 xfs_agnumber_t agno;
4648 __uint64_t freeblks;
4649 __uint64_t itotal;
4650 __uint64_t ifree;
5e1be0fb 4651 int error;
1da177e4
LT
4652
4653 mp = log->l_mp;
4654
4655 freeblks = 0LL;
4656 itotal = 0LL;
4657 ifree = 0LL;
4658 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
4659 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4660 if (error) {
a0fa2b67
DC
4661 xfs_alert(mp, "%s agf read failed agno %d error %d",
4662 __func__, agno, error);
4805621a
FCH
4663 } else {
4664 agfp = XFS_BUF_TO_AGF(agfbp);
4665 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4666 be32_to_cpu(agfp->agf_flcount);
4667 xfs_buf_relse(agfbp);
1da177e4 4668 }
1da177e4 4669
5e1be0fb 4670 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4671 if (error) {
4672 xfs_alert(mp, "%s agi read failed agno %d error %d",
4673 __func__, agno, error);
4674 } else {
5e1be0fb 4675 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4676
5e1be0fb
CH
4677 itotal += be32_to_cpu(agi->agi_count);
4678 ifree += be32_to_cpu(agi->agi_freecount);
4679 xfs_buf_relse(agibp);
4680 }
1da177e4 4681 }
1da177e4
LT
4682}
4683#endif /* DEBUG */
This page took 0.96044 seconds and 5 git commands to generate.