xfs: simplify inode to transaction joining
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
1da177e4 32#include "xfs_dinode.h"
1da177e4 33#include "xfs_inode.h"
a844f451 34#include "xfs_inode_item.h"
a844f451 35#include "xfs_alloc.h"
1da177e4
LT
36#include "xfs_ialloc.h"
37#include "xfs_log_priv.h"
38#include "xfs_buf_item.h"
1da177e4
LT
39#include "xfs_log_recover.h"
40#include "xfs_extfree_item.h"
41#include "xfs_trans_priv.h"
1da177e4
LT
42#include "xfs_quota.h"
43#include "xfs_rw.h"
43355099 44#include "xfs_utils.h"
0b1b213f 45#include "xfs_trace.h"
1da177e4
LT
46
47STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
1da177e4
LT
49#if defined(DEBUG)
50STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
51#else
52#define xlog_recover_check_summary(log)
1da177e4
LT
53#endif
54
1da177e4
LT
55/*
56 * Sector aligned buffer routines for buffer create/read/write/access
57 */
58
ff30a622
AE
59/*
60 * Verify the given count of basic blocks is valid number of blocks
61 * to specify for an operation involving the given XFS log buffer.
62 * Returns nonzero if the count is valid, 0 otherwise.
63 */
64
65static inline int
66xlog_buf_bbcount_valid(
67 xlog_t *log,
68 int bbcount)
69{
70 return bbcount > 0 && bbcount <= log->l_logBBsize;
71}
72
36adecff
AE
73/*
74 * Allocate a buffer to hold log data. The buffer needs to be able
75 * to map to a range of nbblks basic blocks at any valid (basic
76 * block) offset within the log.
77 */
5d77c0dc 78STATIC xfs_buf_t *
1da177e4
LT
79xlog_get_bp(
80 xlog_t *log,
3228149c 81 int nbblks)
1da177e4 82{
ff30a622
AE
83 if (!xlog_buf_bbcount_valid(log, nbblks)) {
84 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
85 nbblks);
86 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
87 return NULL;
88 }
1da177e4 89
36adecff
AE
90 /*
91 * We do log I/O in units of log sectors (a power-of-2
92 * multiple of the basic block size), so we round up the
93 * requested size to acommodate the basic blocks required
94 * for complete log sectors.
95 *
96 * In addition, the buffer may be used for a non-sector-
97 * aligned block offset, in which case an I/O of the
98 * requested size could extend beyond the end of the
99 * buffer. If the requested size is only 1 basic block it
100 * will never straddle a sector boundary, so this won't be
101 * an issue. Nor will this be a problem if the log I/O is
102 * done in basic blocks (sector size 1). But otherwise we
103 * extend the buffer by one extra log sector to ensure
104 * there's space to accomodate this possiblility.
105 */
69ce58f0
AE
106 if (nbblks > 1 && log->l_sectBBsize > 1)
107 nbblks += log->l_sectBBsize;
108 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 109
3228149c 110 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
1da177e4
LT
111}
112
5d77c0dc 113STATIC void
1da177e4
LT
114xlog_put_bp(
115 xfs_buf_t *bp)
116{
117 xfs_buf_free(bp);
118}
119
48389ef1
AE
120/*
121 * Return the address of the start of the given block number's data
122 * in a log buffer. The buffer covers a log sector-aligned region.
123 */
076e6acb
CH
124STATIC xfs_caddr_t
125xlog_align(
126 xlog_t *log,
127 xfs_daddr_t blk_no,
128 int nbblks,
129 xfs_buf_t *bp)
130{
fdc07f44 131 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 132
fdc07f44
CH
133 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
134 return XFS_BUF_PTR(bp) + BBTOB(offset);
076e6acb
CH
135}
136
1da177e4
LT
137
138/*
139 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
140 */
076e6acb
CH
141STATIC int
142xlog_bread_noalign(
1da177e4
LT
143 xlog_t *log,
144 xfs_daddr_t blk_no,
145 int nbblks,
146 xfs_buf_t *bp)
147{
148 int error;
149
ff30a622
AE
150 if (!xlog_buf_bbcount_valid(log, nbblks)) {
151 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
152 nbblks);
153 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
154 return EFSCORRUPTED;
155 }
156
69ce58f0
AE
157 blk_no = round_down(blk_no, log->l_sectBBsize);
158 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
159
160 ASSERT(nbblks > 0);
161 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
1da177e4
LT
162
163 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
164 XFS_BUF_READ(bp);
165 XFS_BUF_BUSY(bp);
166 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
167 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
168
169 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
170 error = xfs_iowait(bp);
171 if (error)
1da177e4
LT
172 xfs_ioerror_alert("xlog_bread", log->l_mp,
173 bp, XFS_BUF_ADDR(bp));
174 return error;
175}
176
076e6acb
CH
177STATIC int
178xlog_bread(
179 xlog_t *log,
180 xfs_daddr_t blk_no,
181 int nbblks,
182 xfs_buf_t *bp,
183 xfs_caddr_t *offset)
184{
185 int error;
186
187 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
188 if (error)
189 return error;
190
191 *offset = xlog_align(log, blk_no, nbblks, bp);
192 return 0;
193}
194
1da177e4
LT
195/*
196 * Write out the buffer at the given block for the given number of blocks.
197 * The buffer is kept locked across the write and is returned locked.
198 * This can only be used for synchronous log writes.
199 */
ba0f32d4 200STATIC int
1da177e4
LT
201xlog_bwrite(
202 xlog_t *log,
203 xfs_daddr_t blk_no,
204 int nbblks,
205 xfs_buf_t *bp)
206{
207 int error;
208
ff30a622
AE
209 if (!xlog_buf_bbcount_valid(log, nbblks)) {
210 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
211 nbblks);
212 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
213 return EFSCORRUPTED;
214 }
215
69ce58f0
AE
216 blk_no = round_down(blk_no, log->l_sectBBsize);
217 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
218
219 ASSERT(nbblks > 0);
220 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
221
222 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
223 XFS_BUF_ZEROFLAGS(bp);
224 XFS_BUF_BUSY(bp);
225 XFS_BUF_HOLD(bp);
226 XFS_BUF_PSEMA(bp, PRIBIO);
227 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
228 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
229
230 if ((error = xfs_bwrite(log->l_mp, bp)))
231 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
232 bp, XFS_BUF_ADDR(bp));
233 return error;
234}
235
1da177e4
LT
236#ifdef DEBUG
237/*
238 * dump debug superblock and log record information
239 */
240STATIC void
241xlog_header_check_dump(
242 xfs_mount_t *mp,
243 xlog_rec_header_t *head)
244{
03daa57c
JP
245 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
246 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
247 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
248 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
249}
250#else
251#define xlog_header_check_dump(mp, head)
252#endif
253
254/*
255 * check log record header for recovery
256 */
257STATIC int
258xlog_header_check_recover(
259 xfs_mount_t *mp,
260 xlog_rec_header_t *head)
261{
b53e675d 262 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
263
264 /*
265 * IRIX doesn't write the h_fmt field and leaves it zeroed
266 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
267 * a dirty log created in IRIX.
268 */
b53e675d 269 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
1da177e4
LT
270 xlog_warn(
271 "XFS: dirty log written in incompatible format - can't recover");
272 xlog_header_check_dump(mp, head);
273 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
274 XFS_ERRLEVEL_HIGH, mp);
275 return XFS_ERROR(EFSCORRUPTED);
276 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
277 xlog_warn(
278 "XFS: dirty log entry has mismatched uuid - can't recover");
279 xlog_header_check_dump(mp, head);
280 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
281 XFS_ERRLEVEL_HIGH, mp);
282 return XFS_ERROR(EFSCORRUPTED);
283 }
284 return 0;
285}
286
287/*
288 * read the head block of the log and check the header
289 */
290STATIC int
291xlog_header_check_mount(
292 xfs_mount_t *mp,
293 xlog_rec_header_t *head)
294{
b53e675d 295 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
296
297 if (uuid_is_nil(&head->h_fs_uuid)) {
298 /*
299 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
300 * h_fs_uuid is nil, we assume this log was last mounted
301 * by IRIX and continue.
302 */
303 xlog_warn("XFS: nil uuid in log - IRIX style log");
304 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
305 xlog_warn("XFS: log has mismatched uuid - can't recover");
306 xlog_header_check_dump(mp, head);
307 XFS_ERROR_REPORT("xlog_header_check_mount",
308 XFS_ERRLEVEL_HIGH, mp);
309 return XFS_ERROR(EFSCORRUPTED);
310 }
311 return 0;
312}
313
314STATIC void
315xlog_recover_iodone(
316 struct xfs_buf *bp)
317{
1da177e4
LT
318 if (XFS_BUF_GETERROR(bp)) {
319 /*
320 * We're not going to bother about retrying
321 * this during recovery. One strike!
322 */
1da177e4 323 xfs_ioerror_alert("xlog_recover_iodone",
15ac08a8
CH
324 bp->b_mount, bp, XFS_BUF_ADDR(bp));
325 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1da177e4 326 }
15ac08a8 327 bp->b_mount = NULL;
1da177e4
LT
328 XFS_BUF_CLR_IODONE_FUNC(bp);
329 xfs_biodone(bp);
330}
331
332/*
333 * This routine finds (to an approximation) the first block in the physical
334 * log which contains the given cycle. It uses a binary search algorithm.
335 * Note that the algorithm can not be perfect because the disk will not
336 * necessarily be perfect.
337 */
a8272ce0 338STATIC int
1da177e4
LT
339xlog_find_cycle_start(
340 xlog_t *log,
341 xfs_buf_t *bp,
342 xfs_daddr_t first_blk,
343 xfs_daddr_t *last_blk,
344 uint cycle)
345{
346 xfs_caddr_t offset;
347 xfs_daddr_t mid_blk;
e3bb2e30 348 xfs_daddr_t end_blk;
1da177e4
LT
349 uint mid_cycle;
350 int error;
351
e3bb2e30
AE
352 end_blk = *last_blk;
353 mid_blk = BLK_AVG(first_blk, end_blk);
354 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
355 error = xlog_bread(log, mid_blk, 1, bp, &offset);
356 if (error)
1da177e4 357 return error;
03bea6fe 358 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
359 if (mid_cycle == cycle)
360 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
361 else
362 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
363 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 364 }
e3bb2e30
AE
365 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
366 (mid_blk == end_blk && mid_blk-1 == first_blk));
367
368 *last_blk = end_blk;
1da177e4
LT
369
370 return 0;
371}
372
373/*
3f943d85
AE
374 * Check that a range of blocks does not contain stop_on_cycle_no.
375 * Fill in *new_blk with the block offset where such a block is
376 * found, or with -1 (an invalid block number) if there is no such
377 * block in the range. The scan needs to occur from front to back
378 * and the pointer into the region must be updated since a later
379 * routine will need to perform another test.
1da177e4
LT
380 */
381STATIC int
382xlog_find_verify_cycle(
383 xlog_t *log,
384 xfs_daddr_t start_blk,
385 int nbblks,
386 uint stop_on_cycle_no,
387 xfs_daddr_t *new_blk)
388{
389 xfs_daddr_t i, j;
390 uint cycle;
391 xfs_buf_t *bp;
392 xfs_daddr_t bufblks;
393 xfs_caddr_t buf = NULL;
394 int error = 0;
395
6881a229
AE
396 /*
397 * Greedily allocate a buffer big enough to handle the full
398 * range of basic blocks we'll be examining. If that fails,
399 * try a smaller size. We need to be able to read at least
400 * a log sector, or we're out of luck.
401 */
1da177e4 402 bufblks = 1 << ffs(nbblks);
1da177e4 403 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 404 bufblks >>= 1;
69ce58f0 405 if (bufblks < log->l_sectBBsize)
1da177e4
LT
406 return ENOMEM;
407 }
408
409 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
410 int bcount;
411
412 bcount = min(bufblks, (start_blk + nbblks - i));
413
076e6acb
CH
414 error = xlog_bread(log, i, bcount, bp, &buf);
415 if (error)
1da177e4
LT
416 goto out;
417
1da177e4 418 for (j = 0; j < bcount; j++) {
03bea6fe 419 cycle = xlog_get_cycle(buf);
1da177e4
LT
420 if (cycle == stop_on_cycle_no) {
421 *new_blk = i+j;
422 goto out;
423 }
424
425 buf += BBSIZE;
426 }
427 }
428
429 *new_blk = -1;
430
431out:
432 xlog_put_bp(bp);
433 return error;
434}
435
436/*
437 * Potentially backup over partial log record write.
438 *
439 * In the typical case, last_blk is the number of the block directly after
440 * a good log record. Therefore, we subtract one to get the block number
441 * of the last block in the given buffer. extra_bblks contains the number
442 * of blocks we would have read on a previous read. This happens when the
443 * last log record is split over the end of the physical log.
444 *
445 * extra_bblks is the number of blocks potentially verified on a previous
446 * call to this routine.
447 */
448STATIC int
449xlog_find_verify_log_record(
450 xlog_t *log,
451 xfs_daddr_t start_blk,
452 xfs_daddr_t *last_blk,
453 int extra_bblks)
454{
455 xfs_daddr_t i;
456 xfs_buf_t *bp;
457 xfs_caddr_t offset = NULL;
458 xlog_rec_header_t *head = NULL;
459 int error = 0;
460 int smallmem = 0;
461 int num_blks = *last_blk - start_blk;
462 int xhdrs;
463
464 ASSERT(start_blk != 0 || *last_blk != start_blk);
465
466 if (!(bp = xlog_get_bp(log, num_blks))) {
467 if (!(bp = xlog_get_bp(log, 1)))
468 return ENOMEM;
469 smallmem = 1;
470 } else {
076e6acb
CH
471 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
472 if (error)
1da177e4 473 goto out;
1da177e4
LT
474 offset += ((num_blks - 1) << BBSHIFT);
475 }
476
477 for (i = (*last_blk) - 1; i >= 0; i--) {
478 if (i < start_blk) {
479 /* valid log record not found */
480 xlog_warn(
481 "XFS: Log inconsistent (didn't find previous header)");
482 ASSERT(0);
483 error = XFS_ERROR(EIO);
484 goto out;
485 }
486
487 if (smallmem) {
076e6acb
CH
488 error = xlog_bread(log, i, 1, bp, &offset);
489 if (error)
1da177e4 490 goto out;
1da177e4
LT
491 }
492
493 head = (xlog_rec_header_t *)offset;
494
b53e675d 495 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
1da177e4
LT
496 break;
497
498 if (!smallmem)
499 offset -= BBSIZE;
500 }
501
502 /*
503 * We hit the beginning of the physical log & still no header. Return
504 * to caller. If caller can handle a return of -1, then this routine
505 * will be called again for the end of the physical log.
506 */
507 if (i == -1) {
508 error = -1;
509 goto out;
510 }
511
512 /*
513 * We have the final block of the good log (the first block
514 * of the log record _before_ the head. So we check the uuid.
515 */
516 if ((error = xlog_header_check_mount(log->l_mp, head)))
517 goto out;
518
519 /*
520 * We may have found a log record header before we expected one.
521 * last_blk will be the 1st block # with a given cycle #. We may end
522 * up reading an entire log record. In this case, we don't want to
523 * reset last_blk. Only when last_blk points in the middle of a log
524 * record do we update last_blk.
525 */
62118709 526 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 527 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
528
529 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
530 if (h_size % XLOG_HEADER_CYCLE_SIZE)
531 xhdrs++;
532 } else {
533 xhdrs = 1;
534 }
535
b53e675d
CH
536 if (*last_blk - i + extra_bblks !=
537 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
538 *last_blk = i;
539
540out:
541 xlog_put_bp(bp);
542 return error;
543}
544
545/*
546 * Head is defined to be the point of the log where the next log write
547 * write could go. This means that incomplete LR writes at the end are
548 * eliminated when calculating the head. We aren't guaranteed that previous
549 * LR have complete transactions. We only know that a cycle number of
550 * current cycle number -1 won't be present in the log if we start writing
551 * from our current block number.
552 *
553 * last_blk contains the block number of the first block with a given
554 * cycle number.
555 *
556 * Return: zero if normal, non-zero if error.
557 */
ba0f32d4 558STATIC int
1da177e4
LT
559xlog_find_head(
560 xlog_t *log,
561 xfs_daddr_t *return_head_blk)
562{
563 xfs_buf_t *bp;
564 xfs_caddr_t offset;
565 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
566 int num_scan_bblks;
567 uint first_half_cycle, last_half_cycle;
568 uint stop_on_cycle;
569 int error, log_bbnum = log->l_logBBsize;
570
571 /* Is the end of the log device zeroed? */
572 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
573 *return_head_blk = first_blk;
574
575 /* Is the whole lot zeroed? */
576 if (!first_blk) {
577 /* Linux XFS shouldn't generate totally zeroed logs -
578 * mkfs etc write a dummy unmount record to a fresh
579 * log so we can store the uuid in there
580 */
581 xlog_warn("XFS: totally zeroed log");
582 }
583
584 return 0;
585 } else if (error) {
586 xlog_warn("XFS: empty log check failed");
587 return error;
588 }
589
590 first_blk = 0; /* get cycle # of 1st block */
591 bp = xlog_get_bp(log, 1);
592 if (!bp)
593 return ENOMEM;
076e6acb
CH
594
595 error = xlog_bread(log, 0, 1, bp, &offset);
596 if (error)
1da177e4 597 goto bp_err;
076e6acb 598
03bea6fe 599 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
600
601 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
602 error = xlog_bread(log, last_blk, 1, bp, &offset);
603 if (error)
1da177e4 604 goto bp_err;
076e6acb 605
03bea6fe 606 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
607 ASSERT(last_half_cycle != 0);
608
609 /*
610 * If the 1st half cycle number is equal to the last half cycle number,
611 * then the entire log is stamped with the same cycle number. In this
612 * case, head_blk can't be set to zero (which makes sense). The below
613 * math doesn't work out properly with head_blk equal to zero. Instead,
614 * we set it to log_bbnum which is an invalid block number, but this
615 * value makes the math correct. If head_blk doesn't changed through
616 * all the tests below, *head_blk is set to zero at the very end rather
617 * than log_bbnum. In a sense, log_bbnum and zero are the same block
618 * in a circular file.
619 */
620 if (first_half_cycle == last_half_cycle) {
621 /*
622 * In this case we believe that the entire log should have
623 * cycle number last_half_cycle. We need to scan backwards
624 * from the end verifying that there are no holes still
625 * containing last_half_cycle - 1. If we find such a hole,
626 * then the start of that hole will be the new head. The
627 * simple case looks like
628 * x | x ... | x - 1 | x
629 * Another case that fits this picture would be
630 * x | x + 1 | x ... | x
c41564b5 631 * In this case the head really is somewhere at the end of the
1da177e4
LT
632 * log, as one of the latest writes at the beginning was
633 * incomplete.
634 * One more case is
635 * x | x + 1 | x ... | x - 1 | x
636 * This is really the combination of the above two cases, and
637 * the head has to end up at the start of the x-1 hole at the
638 * end of the log.
639 *
640 * In the 256k log case, we will read from the beginning to the
641 * end of the log and search for cycle numbers equal to x-1.
642 * We don't worry about the x+1 blocks that we encounter,
643 * because we know that they cannot be the head since the log
644 * started with x.
645 */
646 head_blk = log_bbnum;
647 stop_on_cycle = last_half_cycle - 1;
648 } else {
649 /*
650 * In this case we want to find the first block with cycle
651 * number matching last_half_cycle. We expect the log to be
652 * some variation on
3f943d85 653 * x + 1 ... | x ... | x
1da177e4
LT
654 * The first block with cycle number x (last_half_cycle) will
655 * be where the new head belongs. First we do a binary search
656 * for the first occurrence of last_half_cycle. The binary
657 * search may not be totally accurate, so then we scan back
658 * from there looking for occurrences of last_half_cycle before
659 * us. If that backwards scan wraps around the beginning of
660 * the log, then we look for occurrences of last_half_cycle - 1
661 * at the end of the log. The cases we're looking for look
662 * like
3f943d85
AE
663 * v binary search stopped here
664 * x + 1 ... | x | x + 1 | x ... | x
665 * ^ but we want to locate this spot
1da177e4 666 * or
1da177e4 667 * <---------> less than scan distance
3f943d85
AE
668 * x + 1 ... | x ... | x - 1 | x
669 * ^ we want to locate this spot
1da177e4
LT
670 */
671 stop_on_cycle = last_half_cycle;
672 if ((error = xlog_find_cycle_start(log, bp, first_blk,
673 &head_blk, last_half_cycle)))
674 goto bp_err;
675 }
676
677 /*
678 * Now validate the answer. Scan back some number of maximum possible
679 * blocks and make sure each one has the expected cycle number. The
680 * maximum is determined by the total possible amount of buffering
681 * in the in-core log. The following number can be made tighter if
682 * we actually look at the block size of the filesystem.
683 */
684 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
685 if (head_blk >= num_scan_bblks) {
686 /*
687 * We are guaranteed that the entire check can be performed
688 * in one buffer.
689 */
690 start_blk = head_blk - num_scan_bblks;
691 if ((error = xlog_find_verify_cycle(log,
692 start_blk, num_scan_bblks,
693 stop_on_cycle, &new_blk)))
694 goto bp_err;
695 if (new_blk != -1)
696 head_blk = new_blk;
697 } else { /* need to read 2 parts of log */
698 /*
699 * We are going to scan backwards in the log in two parts.
700 * First we scan the physical end of the log. In this part
701 * of the log, we are looking for blocks with cycle number
702 * last_half_cycle - 1.
703 * If we find one, then we know that the log starts there, as
704 * we've found a hole that didn't get written in going around
705 * the end of the physical log. The simple case for this is
706 * x + 1 ... | x ... | x - 1 | x
707 * <---------> less than scan distance
708 * If all of the blocks at the end of the log have cycle number
709 * last_half_cycle, then we check the blocks at the start of
710 * the log looking for occurrences of last_half_cycle. If we
711 * find one, then our current estimate for the location of the
712 * first occurrence of last_half_cycle is wrong and we move
713 * back to the hole we've found. This case looks like
714 * x + 1 ... | x | x + 1 | x ...
715 * ^ binary search stopped here
716 * Another case we need to handle that only occurs in 256k
717 * logs is
718 * x + 1 ... | x ... | x+1 | x ...
719 * ^ binary search stops here
720 * In a 256k log, the scan at the end of the log will see the
721 * x + 1 blocks. We need to skip past those since that is
722 * certainly not the head of the log. By searching for
723 * last_half_cycle-1 we accomplish that.
724 */
1da177e4 725 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
726 (xfs_daddr_t) num_scan_bblks >= head_blk);
727 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
728 if ((error = xlog_find_verify_cycle(log, start_blk,
729 num_scan_bblks - (int)head_blk,
730 (stop_on_cycle - 1), &new_blk)))
731 goto bp_err;
732 if (new_blk != -1) {
733 head_blk = new_blk;
9db127ed 734 goto validate_head;
1da177e4
LT
735 }
736
737 /*
738 * Scan beginning of log now. The last part of the physical
739 * log is good. This scan needs to verify that it doesn't find
740 * the last_half_cycle.
741 */
742 start_blk = 0;
743 ASSERT(head_blk <= INT_MAX);
744 if ((error = xlog_find_verify_cycle(log,
745 start_blk, (int)head_blk,
746 stop_on_cycle, &new_blk)))
747 goto bp_err;
748 if (new_blk != -1)
749 head_blk = new_blk;
750 }
751
9db127ed 752validate_head:
1da177e4
LT
753 /*
754 * Now we need to make sure head_blk is not pointing to a block in
755 * the middle of a log record.
756 */
757 num_scan_bblks = XLOG_REC_SHIFT(log);
758 if (head_blk >= num_scan_bblks) {
759 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
760
761 /* start ptr at last block ptr before head_blk */
762 if ((error = xlog_find_verify_log_record(log, start_blk,
763 &head_blk, 0)) == -1) {
764 error = XFS_ERROR(EIO);
765 goto bp_err;
766 } else if (error)
767 goto bp_err;
768 } else {
769 start_blk = 0;
770 ASSERT(head_blk <= INT_MAX);
771 if ((error = xlog_find_verify_log_record(log, start_blk,
772 &head_blk, 0)) == -1) {
773 /* We hit the beginning of the log during our search */
3f943d85 774 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
775 new_blk = log_bbnum;
776 ASSERT(start_blk <= INT_MAX &&
777 (xfs_daddr_t) log_bbnum-start_blk >= 0);
778 ASSERT(head_blk <= INT_MAX);
779 if ((error = xlog_find_verify_log_record(log,
780 start_blk, &new_blk,
781 (int)head_blk)) == -1) {
782 error = XFS_ERROR(EIO);
783 goto bp_err;
784 } else if (error)
785 goto bp_err;
786 if (new_blk != log_bbnum)
787 head_blk = new_blk;
788 } else if (error)
789 goto bp_err;
790 }
791
792 xlog_put_bp(bp);
793 if (head_blk == log_bbnum)
794 *return_head_blk = 0;
795 else
796 *return_head_blk = head_blk;
797 /*
798 * When returning here, we have a good block number. Bad block
799 * means that during a previous crash, we didn't have a clean break
800 * from cycle number N to cycle number N-1. In this case, we need
801 * to find the first block with cycle number N-1.
802 */
803 return 0;
804
805 bp_err:
806 xlog_put_bp(bp);
807
808 if (error)
809 xlog_warn("XFS: failed to find log head");
810 return error;
811}
812
813/*
814 * Find the sync block number or the tail of the log.
815 *
816 * This will be the block number of the last record to have its
817 * associated buffers synced to disk. Every log record header has
818 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
819 * to get a sync block number. The only concern is to figure out which
820 * log record header to believe.
821 *
822 * The following algorithm uses the log record header with the largest
823 * lsn. The entire log record does not need to be valid. We only care
824 * that the header is valid.
825 *
826 * We could speed up search by using current head_blk buffer, but it is not
827 * available.
828 */
5d77c0dc 829STATIC int
1da177e4
LT
830xlog_find_tail(
831 xlog_t *log,
832 xfs_daddr_t *head_blk,
65be6054 833 xfs_daddr_t *tail_blk)
1da177e4
LT
834{
835 xlog_rec_header_t *rhead;
836 xlog_op_header_t *op_head;
837 xfs_caddr_t offset = NULL;
838 xfs_buf_t *bp;
839 int error, i, found;
840 xfs_daddr_t umount_data_blk;
841 xfs_daddr_t after_umount_blk;
842 xfs_lsn_t tail_lsn;
843 int hblks;
844
845 found = 0;
846
847 /*
848 * Find previous log record
849 */
850 if ((error = xlog_find_head(log, head_blk)))
851 return error;
852
853 bp = xlog_get_bp(log, 1);
854 if (!bp)
855 return ENOMEM;
856 if (*head_blk == 0) { /* special case */
076e6acb
CH
857 error = xlog_bread(log, 0, 1, bp, &offset);
858 if (error)
9db127ed 859 goto done;
076e6acb 860
03bea6fe 861 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
862 *tail_blk = 0;
863 /* leave all other log inited values alone */
9db127ed 864 goto done;
1da177e4
LT
865 }
866 }
867
868 /*
869 * Search backwards looking for log record header block
870 */
871 ASSERT(*head_blk < INT_MAX);
872 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
873 error = xlog_bread(log, i, 1, bp, &offset);
874 if (error)
9db127ed 875 goto done;
076e6acb 876
b53e675d 877 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
878 found = 1;
879 break;
880 }
881 }
882 /*
883 * If we haven't found the log record header block, start looking
884 * again from the end of the physical log. XXXmiken: There should be
885 * a check here to make sure we didn't search more than N blocks in
886 * the previous code.
887 */
888 if (!found) {
889 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
890 error = xlog_bread(log, i, 1, bp, &offset);
891 if (error)
9db127ed 892 goto done;
076e6acb 893
1da177e4 894 if (XLOG_HEADER_MAGIC_NUM ==
b53e675d 895 be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
896 found = 2;
897 break;
898 }
899 }
900 }
901 if (!found) {
902 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
903 ASSERT(0);
904 return XFS_ERROR(EIO);
905 }
906
907 /* find blk_no of tail of log */
908 rhead = (xlog_rec_header_t *)offset;
b53e675d 909 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
910
911 /*
912 * Reset log values according to the state of the log when we
913 * crashed. In the case where head_blk == 0, we bump curr_cycle
914 * one because the next write starts a new cycle rather than
915 * continuing the cycle of the last good log record. At this
916 * point we have guaranteed that all partial log records have been
917 * accounted for. Therefore, we know that the last good log record
918 * written was complete and ended exactly on the end boundary
919 * of the physical log.
920 */
921 log->l_prev_block = i;
922 log->l_curr_block = (int)*head_blk;
b53e675d 923 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
924 if (found == 2)
925 log->l_curr_cycle++;
b53e675d
CH
926 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
927 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
1da177e4
LT
928 log->l_grant_reserve_cycle = log->l_curr_cycle;
929 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
930 log->l_grant_write_cycle = log->l_curr_cycle;
931 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
932
933 /*
934 * Look for unmount record. If we find it, then we know there
935 * was a clean unmount. Since 'i' could be the last block in
936 * the physical log, we convert to a log block before comparing
937 * to the head_blk.
938 *
939 * Save the current tail lsn to use to pass to
940 * xlog_clear_stale_blocks() below. We won't want to clear the
941 * unmount record if there is one, so we pass the lsn of the
942 * unmount record rather than the block after it.
943 */
62118709 944 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
945 int h_size = be32_to_cpu(rhead->h_size);
946 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
947
948 if ((h_version & XLOG_VERSION_2) &&
949 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
950 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
951 if (h_size % XLOG_HEADER_CYCLE_SIZE)
952 hblks++;
953 } else {
954 hblks = 1;
955 }
956 } else {
957 hblks = 1;
958 }
959 after_umount_blk = (i + hblks + (int)
b53e675d 960 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1da177e4
LT
961 tail_lsn = log->l_tail_lsn;
962 if (*head_blk == after_umount_blk &&
b53e675d 963 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 964 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
965 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
966 if (error)
9db127ed 967 goto done;
076e6acb 968
1da177e4
LT
969 op_head = (xlog_op_header_t *)offset;
970 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
971 /*
972 * Set tail and last sync so that newly written
973 * log records will point recovery to after the
974 * current unmount record.
975 */
03bea6fe
CH
976 log->l_tail_lsn =
977 xlog_assign_lsn(log->l_curr_cycle,
978 after_umount_blk);
979 log->l_last_sync_lsn =
980 xlog_assign_lsn(log->l_curr_cycle,
981 after_umount_blk);
1da177e4 982 *tail_blk = after_umount_blk;
92821e2b
DC
983
984 /*
985 * Note that the unmount was clean. If the unmount
986 * was not clean, we need to know this to rebuild the
987 * superblock counters from the perag headers if we
988 * have a filesystem using non-persistent counters.
989 */
990 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
991 }
992 }
993
994 /*
995 * Make sure that there are no blocks in front of the head
996 * with the same cycle number as the head. This can happen
997 * because we allow multiple outstanding log writes concurrently,
998 * and the later writes might make it out before earlier ones.
999 *
1000 * We use the lsn from before modifying it so that we'll never
1001 * overwrite the unmount record after a clean unmount.
1002 *
1003 * Do this only if we are going to recover the filesystem
1004 *
1005 * NOTE: This used to say "if (!readonly)"
1006 * However on Linux, we can & do recover a read-only filesystem.
1007 * We only skip recovery if NORECOVERY is specified on mount,
1008 * in which case we would not be here.
1009 *
1010 * But... if the -device- itself is readonly, just skip this.
1011 * We can't recover this device anyway, so it won't matter.
1012 */
9db127ed 1013 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1014 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1015
9db127ed 1016done:
1da177e4
LT
1017 xlog_put_bp(bp);
1018
1019 if (error)
1020 xlog_warn("XFS: failed to locate log tail");
1021 return error;
1022}
1023
1024/*
1025 * Is the log zeroed at all?
1026 *
1027 * The last binary search should be changed to perform an X block read
1028 * once X becomes small enough. You can then search linearly through
1029 * the X blocks. This will cut down on the number of reads we need to do.
1030 *
1031 * If the log is partially zeroed, this routine will pass back the blkno
1032 * of the first block with cycle number 0. It won't have a complete LR
1033 * preceding it.
1034 *
1035 * Return:
1036 * 0 => the log is completely written to
1037 * -1 => use *blk_no as the first block of the log
1038 * >0 => error has occurred
1039 */
a8272ce0 1040STATIC int
1da177e4
LT
1041xlog_find_zeroed(
1042 xlog_t *log,
1043 xfs_daddr_t *blk_no)
1044{
1045 xfs_buf_t *bp;
1046 xfs_caddr_t offset;
1047 uint first_cycle, last_cycle;
1048 xfs_daddr_t new_blk, last_blk, start_blk;
1049 xfs_daddr_t num_scan_bblks;
1050 int error, log_bbnum = log->l_logBBsize;
1051
6fdf8ccc
NS
1052 *blk_no = 0;
1053
1da177e4
LT
1054 /* check totally zeroed log */
1055 bp = xlog_get_bp(log, 1);
1056 if (!bp)
1057 return ENOMEM;
076e6acb
CH
1058 error = xlog_bread(log, 0, 1, bp, &offset);
1059 if (error)
1da177e4 1060 goto bp_err;
076e6acb 1061
03bea6fe 1062 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1063 if (first_cycle == 0) { /* completely zeroed log */
1064 *blk_no = 0;
1065 xlog_put_bp(bp);
1066 return -1;
1067 }
1068
1069 /* check partially zeroed log */
076e6acb
CH
1070 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1071 if (error)
1da177e4 1072 goto bp_err;
076e6acb 1073
03bea6fe 1074 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1075 if (last_cycle != 0) { /* log completely written to */
1076 xlog_put_bp(bp);
1077 return 0;
1078 } else if (first_cycle != 1) {
1079 /*
1080 * If the cycle of the last block is zero, the cycle of
1081 * the first block must be 1. If it's not, maybe we're
1082 * not looking at a log... Bail out.
1083 */
1084 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1085 return XFS_ERROR(EINVAL);
1086 }
1087
1088 /* we have a partially zeroed log */
1089 last_blk = log_bbnum-1;
1090 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1091 goto bp_err;
1092
1093 /*
1094 * Validate the answer. Because there is no way to guarantee that
1095 * the entire log is made up of log records which are the same size,
1096 * we scan over the defined maximum blocks. At this point, the maximum
1097 * is not chosen to mean anything special. XXXmiken
1098 */
1099 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1100 ASSERT(num_scan_bblks <= INT_MAX);
1101
1102 if (last_blk < num_scan_bblks)
1103 num_scan_bblks = last_blk;
1104 start_blk = last_blk - num_scan_bblks;
1105
1106 /*
1107 * We search for any instances of cycle number 0 that occur before
1108 * our current estimate of the head. What we're trying to detect is
1109 * 1 ... | 0 | 1 | 0...
1110 * ^ binary search ends here
1111 */
1112 if ((error = xlog_find_verify_cycle(log, start_blk,
1113 (int)num_scan_bblks, 0, &new_blk)))
1114 goto bp_err;
1115 if (new_blk != -1)
1116 last_blk = new_blk;
1117
1118 /*
1119 * Potentially backup over partial log record write. We don't need
1120 * to search the end of the log because we know it is zero.
1121 */
1122 if ((error = xlog_find_verify_log_record(log, start_blk,
1123 &last_blk, 0)) == -1) {
1124 error = XFS_ERROR(EIO);
1125 goto bp_err;
1126 } else if (error)
1127 goto bp_err;
1128
1129 *blk_no = last_blk;
1130bp_err:
1131 xlog_put_bp(bp);
1132 if (error)
1133 return error;
1134 return -1;
1135}
1136
1137/*
1138 * These are simple subroutines used by xlog_clear_stale_blocks() below
1139 * to initialize a buffer full of empty log record headers and write
1140 * them into the log.
1141 */
1142STATIC void
1143xlog_add_record(
1144 xlog_t *log,
1145 xfs_caddr_t buf,
1146 int cycle,
1147 int block,
1148 int tail_cycle,
1149 int tail_block)
1150{
1151 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1152
1153 memset(buf, 0, BBSIZE);
b53e675d
CH
1154 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1155 recp->h_cycle = cpu_to_be32(cycle);
1156 recp->h_version = cpu_to_be32(
62118709 1157 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1158 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1159 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1160 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1161 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1162}
1163
1164STATIC int
1165xlog_write_log_records(
1166 xlog_t *log,
1167 int cycle,
1168 int start_block,
1169 int blocks,
1170 int tail_cycle,
1171 int tail_block)
1172{
1173 xfs_caddr_t offset;
1174 xfs_buf_t *bp;
1175 int balign, ealign;
69ce58f0 1176 int sectbb = log->l_sectBBsize;
1da177e4
LT
1177 int end_block = start_block + blocks;
1178 int bufblks;
1179 int error = 0;
1180 int i, j = 0;
1181
6881a229
AE
1182 /*
1183 * Greedily allocate a buffer big enough to handle the full
1184 * range of basic blocks to be written. If that fails, try
1185 * a smaller size. We need to be able to write at least a
1186 * log sector, or we're out of luck.
1187 */
1da177e4
LT
1188 bufblks = 1 << ffs(blocks);
1189 while (!(bp = xlog_get_bp(log, bufblks))) {
1190 bufblks >>= 1;
69ce58f0 1191 if (bufblks < sectbb)
1da177e4
LT
1192 return ENOMEM;
1193 }
1194
1195 /* We may need to do a read at the start to fill in part of
1196 * the buffer in the starting sector not covered by the first
1197 * write below.
1198 */
5c17f533 1199 balign = round_down(start_block, sectbb);
1da177e4 1200 if (balign != start_block) {
076e6acb
CH
1201 error = xlog_bread_noalign(log, start_block, 1, bp);
1202 if (error)
1203 goto out_put_bp;
1204
1da177e4
LT
1205 j = start_block - balign;
1206 }
1207
1208 for (i = start_block; i < end_block; i += bufblks) {
1209 int bcount, endcount;
1210
1211 bcount = min(bufblks, end_block - start_block);
1212 endcount = bcount - j;
1213
1214 /* We may need to do a read at the end to fill in part of
1215 * the buffer in the final sector not covered by the write.
1216 * If this is the same sector as the above read, skip it.
1217 */
5c17f533 1218 ealign = round_down(end_block, sectbb);
1da177e4
LT
1219 if (j == 0 && (start_block + endcount > ealign)) {
1220 offset = XFS_BUF_PTR(bp);
1221 balign = BBTOB(ealign - start_block);
234f56ac
DC
1222 error = XFS_BUF_SET_PTR(bp, offset + balign,
1223 BBTOB(sectbb));
076e6acb
CH
1224 if (error)
1225 break;
1226
1227 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1228 if (error)
1229 break;
1230
1231 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
234f56ac 1232 if (error)
1da177e4 1233 break;
1da177e4
LT
1234 }
1235
1236 offset = xlog_align(log, start_block, endcount, bp);
1237 for (; j < endcount; j++) {
1238 xlog_add_record(log, offset, cycle, i+j,
1239 tail_cycle, tail_block);
1240 offset += BBSIZE;
1241 }
1242 error = xlog_bwrite(log, start_block, endcount, bp);
1243 if (error)
1244 break;
1245 start_block += endcount;
1246 j = 0;
1247 }
076e6acb
CH
1248
1249 out_put_bp:
1da177e4
LT
1250 xlog_put_bp(bp);
1251 return error;
1252}
1253
1254/*
1255 * This routine is called to blow away any incomplete log writes out
1256 * in front of the log head. We do this so that we won't become confused
1257 * if we come up, write only a little bit more, and then crash again.
1258 * If we leave the partial log records out there, this situation could
1259 * cause us to think those partial writes are valid blocks since they
1260 * have the current cycle number. We get rid of them by overwriting them
1261 * with empty log records with the old cycle number rather than the
1262 * current one.
1263 *
1264 * The tail lsn is passed in rather than taken from
1265 * the log so that we will not write over the unmount record after a
1266 * clean unmount in a 512 block log. Doing so would leave the log without
1267 * any valid log records in it until a new one was written. If we crashed
1268 * during that time we would not be able to recover.
1269 */
1270STATIC int
1271xlog_clear_stale_blocks(
1272 xlog_t *log,
1273 xfs_lsn_t tail_lsn)
1274{
1275 int tail_cycle, head_cycle;
1276 int tail_block, head_block;
1277 int tail_distance, max_distance;
1278 int distance;
1279 int error;
1280
1281 tail_cycle = CYCLE_LSN(tail_lsn);
1282 tail_block = BLOCK_LSN(tail_lsn);
1283 head_cycle = log->l_curr_cycle;
1284 head_block = log->l_curr_block;
1285
1286 /*
1287 * Figure out the distance between the new head of the log
1288 * and the tail. We want to write over any blocks beyond the
1289 * head that we may have written just before the crash, but
1290 * we don't want to overwrite the tail of the log.
1291 */
1292 if (head_cycle == tail_cycle) {
1293 /*
1294 * The tail is behind the head in the physical log,
1295 * so the distance from the head to the tail is the
1296 * distance from the head to the end of the log plus
1297 * the distance from the beginning of the log to the
1298 * tail.
1299 */
1300 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1301 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1302 XFS_ERRLEVEL_LOW, log->l_mp);
1303 return XFS_ERROR(EFSCORRUPTED);
1304 }
1305 tail_distance = tail_block + (log->l_logBBsize - head_block);
1306 } else {
1307 /*
1308 * The head is behind the tail in the physical log,
1309 * so the distance from the head to the tail is just
1310 * the tail block minus the head block.
1311 */
1312 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1313 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1314 XFS_ERRLEVEL_LOW, log->l_mp);
1315 return XFS_ERROR(EFSCORRUPTED);
1316 }
1317 tail_distance = tail_block - head_block;
1318 }
1319
1320 /*
1321 * If the head is right up against the tail, we can't clear
1322 * anything.
1323 */
1324 if (tail_distance <= 0) {
1325 ASSERT(tail_distance == 0);
1326 return 0;
1327 }
1328
1329 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1330 /*
1331 * Take the smaller of the maximum amount of outstanding I/O
1332 * we could have and the distance to the tail to clear out.
1333 * We take the smaller so that we don't overwrite the tail and
1334 * we don't waste all day writing from the head to the tail
1335 * for no reason.
1336 */
1337 max_distance = MIN(max_distance, tail_distance);
1338
1339 if ((head_block + max_distance) <= log->l_logBBsize) {
1340 /*
1341 * We can stomp all the blocks we need to without
1342 * wrapping around the end of the log. Just do it
1343 * in a single write. Use the cycle number of the
1344 * current cycle minus one so that the log will look like:
1345 * n ... | n - 1 ...
1346 */
1347 error = xlog_write_log_records(log, (head_cycle - 1),
1348 head_block, max_distance, tail_cycle,
1349 tail_block);
1350 if (error)
1351 return error;
1352 } else {
1353 /*
1354 * We need to wrap around the end of the physical log in
1355 * order to clear all the blocks. Do it in two separate
1356 * I/Os. The first write should be from the head to the
1357 * end of the physical log, and it should use the current
1358 * cycle number minus one just like above.
1359 */
1360 distance = log->l_logBBsize - head_block;
1361 error = xlog_write_log_records(log, (head_cycle - 1),
1362 head_block, distance, tail_cycle,
1363 tail_block);
1364
1365 if (error)
1366 return error;
1367
1368 /*
1369 * Now write the blocks at the start of the physical log.
1370 * This writes the remainder of the blocks we want to clear.
1371 * It uses the current cycle number since we're now on the
1372 * same cycle as the head so that we get:
1373 * n ... n ... | n - 1 ...
1374 * ^^^^^ blocks we're writing
1375 */
1376 distance = max_distance - (log->l_logBBsize - head_block);
1377 error = xlog_write_log_records(log, head_cycle, 0, distance,
1378 tail_cycle, tail_block);
1379 if (error)
1380 return error;
1381 }
1382
1383 return 0;
1384}
1385
1386/******************************************************************************
1387 *
1388 * Log recover routines
1389 *
1390 ******************************************************************************
1391 */
1392
1393STATIC xlog_recover_t *
1394xlog_recover_find_tid(
f0a76953 1395 struct hlist_head *head,
1da177e4
LT
1396 xlog_tid_t tid)
1397{
f0a76953
DC
1398 xlog_recover_t *trans;
1399 struct hlist_node *n;
1da177e4 1400
f0a76953
DC
1401 hlist_for_each_entry(trans, n, head, r_list) {
1402 if (trans->r_log_tid == tid)
1403 return trans;
1da177e4 1404 }
f0a76953 1405 return NULL;
1da177e4
LT
1406}
1407
1408STATIC void
f0a76953
DC
1409xlog_recover_new_tid(
1410 struct hlist_head *head,
1411 xlog_tid_t tid,
1412 xfs_lsn_t lsn)
1da177e4 1413{
f0a76953
DC
1414 xlog_recover_t *trans;
1415
1416 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1417 trans->r_log_tid = tid;
1418 trans->r_lsn = lsn;
1419 INIT_LIST_HEAD(&trans->r_itemq);
1420
1421 INIT_HLIST_NODE(&trans->r_list);
1422 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1423}
1424
1425STATIC void
1426xlog_recover_add_item(
f0a76953 1427 struct list_head *head)
1da177e4
LT
1428{
1429 xlog_recover_item_t *item;
1430
1431 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1432 INIT_LIST_HEAD(&item->ri_list);
1433 list_add_tail(&item->ri_list, head);
1da177e4
LT
1434}
1435
1436STATIC int
1437xlog_recover_add_to_cont_trans(
9abbc539 1438 struct log *log,
1da177e4
LT
1439 xlog_recover_t *trans,
1440 xfs_caddr_t dp,
1441 int len)
1442{
1443 xlog_recover_item_t *item;
1444 xfs_caddr_t ptr, old_ptr;
1445 int old_len;
1446
f0a76953 1447 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1448 /* finish copying rest of trans header */
1449 xlog_recover_add_item(&trans->r_itemq);
1450 ptr = (xfs_caddr_t) &trans->r_theader +
1451 sizeof(xfs_trans_header_t) - len;
1452 memcpy(ptr, dp, len); /* d, s, l */
1453 return 0;
1454 }
f0a76953
DC
1455 /* take the tail entry */
1456 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1457
1458 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1459 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1460
760dea67 1461 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1462 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1463 item->ri_buf[item->ri_cnt-1].i_len += len;
1464 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1465 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1466 return 0;
1467}
1468
1469/*
1470 * The next region to add is the start of a new region. It could be
1471 * a whole region or it could be the first part of a new region. Because
1472 * of this, the assumption here is that the type and size fields of all
1473 * format structures fit into the first 32 bits of the structure.
1474 *
1475 * This works because all regions must be 32 bit aligned. Therefore, we
1476 * either have both fields or we have neither field. In the case we have
1477 * neither field, the data part of the region is zero length. We only have
1478 * a log_op_header and can throw away the header since a new one will appear
1479 * later. If we have at least 4 bytes, then we can determine how many regions
1480 * will appear in the current log item.
1481 */
1482STATIC int
1483xlog_recover_add_to_trans(
9abbc539 1484 struct log *log,
1da177e4
LT
1485 xlog_recover_t *trans,
1486 xfs_caddr_t dp,
1487 int len)
1488{
1489 xfs_inode_log_format_t *in_f; /* any will do */
1490 xlog_recover_item_t *item;
1491 xfs_caddr_t ptr;
1492
1493 if (!len)
1494 return 0;
f0a76953 1495 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1496 /* we need to catch log corruptions here */
1497 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1498 xlog_warn("XFS: xlog_recover_add_to_trans: "
1499 "bad header magic number");
1500 ASSERT(0);
1501 return XFS_ERROR(EIO);
1502 }
1da177e4
LT
1503 if (len == sizeof(xfs_trans_header_t))
1504 xlog_recover_add_item(&trans->r_itemq);
1505 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1506 return 0;
1507 }
1508
1509 ptr = kmem_alloc(len, KM_SLEEP);
1510 memcpy(ptr, dp, len);
1511 in_f = (xfs_inode_log_format_t *)ptr;
1512
f0a76953
DC
1513 /* take the tail entry */
1514 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1515 if (item->ri_total != 0 &&
1516 item->ri_total == item->ri_cnt) {
1517 /* tail item is in use, get a new one */
1da177e4 1518 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1519 item = list_entry(trans->r_itemq.prev,
1520 xlog_recover_item_t, ri_list);
1da177e4 1521 }
1da177e4
LT
1522
1523 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1524 if (in_f->ilf_size == 0 ||
1525 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1526 xlog_warn(
1527 "XFS: bad number of regions (%d) in inode log format",
1528 in_f->ilf_size);
1529 ASSERT(0);
1530 return XFS_ERROR(EIO);
1531 }
1532
1533 item->ri_total = in_f->ilf_size;
1534 item->ri_buf =
1535 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1536 KM_SLEEP);
1da177e4
LT
1537 }
1538 ASSERT(item->ri_total > item->ri_cnt);
1539 /* Description region is ri_buf[0] */
1540 item->ri_buf[item->ri_cnt].i_addr = ptr;
1541 item->ri_buf[item->ri_cnt].i_len = len;
1542 item->ri_cnt++;
9abbc539 1543 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1544 return 0;
1545}
1546
f0a76953
DC
1547/*
1548 * Sort the log items in the transaction. Cancelled buffers need
1549 * to be put first so they are processed before any items that might
1550 * modify the buffers. If they are cancelled, then the modifications
1551 * don't need to be replayed.
1552 */
1da177e4
LT
1553STATIC int
1554xlog_recover_reorder_trans(
9abbc539
DC
1555 struct log *log,
1556 xlog_recover_t *trans,
1557 int pass)
1da177e4 1558{
f0a76953
DC
1559 xlog_recover_item_t *item, *n;
1560 LIST_HEAD(sort_list);
1561
1562 list_splice_init(&trans->r_itemq, &sort_list);
1563 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1564 xfs_buf_log_format_t *buf_f;
1da177e4 1565
f0a76953 1566 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
1da177e4 1567
f0a76953 1568 switch (ITEM_TYPE(item)) {
1da177e4 1569 case XFS_LI_BUF:
c1155410 1570 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539
DC
1571 trace_xfs_log_recover_item_reorder_head(log,
1572 trans, item, pass);
f0a76953 1573 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1574 break;
1575 }
1576 case XFS_LI_INODE:
1da177e4
LT
1577 case XFS_LI_DQUOT:
1578 case XFS_LI_QUOTAOFF:
1579 case XFS_LI_EFD:
1580 case XFS_LI_EFI:
9abbc539
DC
1581 trace_xfs_log_recover_item_reorder_tail(log,
1582 trans, item, pass);
f0a76953 1583 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1584 break;
1585 default:
1586 xlog_warn(
1587 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1588 ASSERT(0);
1589 return XFS_ERROR(EIO);
1590 }
f0a76953
DC
1591 }
1592 ASSERT(list_empty(&sort_list));
1da177e4
LT
1593 return 0;
1594}
1595
1596/*
1597 * Build up the table of buf cancel records so that we don't replay
1598 * cancelled data in the second pass. For buffer records that are
1599 * not cancel records, there is nothing to do here so we just return.
1600 *
1601 * If we get a cancel record which is already in the table, this indicates
1602 * that the buffer was cancelled multiple times. In order to ensure
1603 * that during pass 2 we keep the record in the table until we reach its
1604 * last occurrence in the log, we keep a reference count in the cancel
1605 * record in the table to tell us how many times we expect to see this
1606 * record during the second pass.
1607 */
1608STATIC void
1609xlog_recover_do_buffer_pass1(
1610 xlog_t *log,
1611 xfs_buf_log_format_t *buf_f)
1612{
1613 xfs_buf_cancel_t *bcp;
1614 xfs_buf_cancel_t *nextp;
1615 xfs_buf_cancel_t *prevp;
1616 xfs_buf_cancel_t **bucket;
1da177e4
LT
1617 xfs_daddr_t blkno = 0;
1618 uint len = 0;
1619 ushort flags = 0;
1620
1621 switch (buf_f->blf_type) {
1622 case XFS_LI_BUF:
1623 blkno = buf_f->blf_blkno;
1624 len = buf_f->blf_len;
1625 flags = buf_f->blf_flags;
1626 break;
1da177e4
LT
1627 }
1628
1629 /*
1630 * If this isn't a cancel buffer item, then just return.
1631 */
c1155410 1632 if (!(flags & XFS_BLF_CANCEL)) {
9abbc539 1633 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1da177e4 1634 return;
9abbc539 1635 }
1da177e4
LT
1636
1637 /*
1638 * Insert an xfs_buf_cancel record into the hash table of
1639 * them. If there is already an identical record, bump
1640 * its reference count.
1641 */
1642 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1643 XLOG_BC_TABLE_SIZE];
1644 /*
1645 * If the hash bucket is empty then just insert a new record into
1646 * the bucket.
1647 */
1648 if (*bucket == NULL) {
1649 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1650 KM_SLEEP);
1651 bcp->bc_blkno = blkno;
1652 bcp->bc_len = len;
1653 bcp->bc_refcount = 1;
1654 bcp->bc_next = NULL;
1655 *bucket = bcp;
1656 return;
1657 }
1658
1659 /*
1660 * The hash bucket is not empty, so search for duplicates of our
1661 * record. If we find one them just bump its refcount. If not
1662 * then add us at the end of the list.
1663 */
1664 prevp = NULL;
1665 nextp = *bucket;
1666 while (nextp != NULL) {
1667 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1668 nextp->bc_refcount++;
9abbc539 1669 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1da177e4
LT
1670 return;
1671 }
1672 prevp = nextp;
1673 nextp = nextp->bc_next;
1674 }
1675 ASSERT(prevp != NULL);
1676 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1677 KM_SLEEP);
1678 bcp->bc_blkno = blkno;
1679 bcp->bc_len = len;
1680 bcp->bc_refcount = 1;
1681 bcp->bc_next = NULL;
1682 prevp->bc_next = bcp;
9abbc539 1683 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1da177e4
LT
1684}
1685
1686/*
1687 * Check to see whether the buffer being recovered has a corresponding
1688 * entry in the buffer cancel record table. If it does then return 1
1689 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1690 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1691 * the refcount on the entry in the table and remove it from the table
1692 * if this is the last reference.
1693 *
1694 * We remove the cancel record from the table when we encounter its
1695 * last occurrence in the log so that if the same buffer is re-used
1696 * again after its last cancellation we actually replay the changes
1697 * made at that point.
1698 */
1699STATIC int
1700xlog_check_buffer_cancelled(
1701 xlog_t *log,
1702 xfs_daddr_t blkno,
1703 uint len,
1704 ushort flags)
1705{
1706 xfs_buf_cancel_t *bcp;
1707 xfs_buf_cancel_t *prevp;
1708 xfs_buf_cancel_t **bucket;
1709
1710 if (log->l_buf_cancel_table == NULL) {
1711 /*
1712 * There is nothing in the table built in pass one,
1713 * so this buffer must not be cancelled.
1714 */
c1155410 1715 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1716 return 0;
1717 }
1718
1719 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1720 XLOG_BC_TABLE_SIZE];
1721 bcp = *bucket;
1722 if (bcp == NULL) {
1723 /*
1724 * There is no corresponding entry in the table built
1725 * in pass one, so this buffer has not been cancelled.
1726 */
c1155410 1727 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1728 return 0;
1729 }
1730
1731 /*
1732 * Search for an entry in the buffer cancel table that
1733 * matches our buffer.
1734 */
1735 prevp = NULL;
1736 while (bcp != NULL) {
1737 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1738 /*
1739 * We've go a match, so return 1 so that the
1740 * recovery of this buffer is cancelled.
1741 * If this buffer is actually a buffer cancel
1742 * log item, then decrement the refcount on the
1743 * one in the table and remove it if this is the
1744 * last reference.
1745 */
c1155410 1746 if (flags & XFS_BLF_CANCEL) {
1da177e4
LT
1747 bcp->bc_refcount--;
1748 if (bcp->bc_refcount == 0) {
1749 if (prevp == NULL) {
1750 *bucket = bcp->bc_next;
1751 } else {
1752 prevp->bc_next = bcp->bc_next;
1753 }
f0e2d93c 1754 kmem_free(bcp);
1da177e4
LT
1755 }
1756 }
1757 return 1;
1758 }
1759 prevp = bcp;
1760 bcp = bcp->bc_next;
1761 }
1762 /*
1763 * We didn't find a corresponding entry in the table, so
1764 * return 0 so that the buffer is NOT cancelled.
1765 */
c1155410 1766 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1767 return 0;
1768}
1769
1770STATIC int
1771xlog_recover_do_buffer_pass2(
1772 xlog_t *log,
1773 xfs_buf_log_format_t *buf_f)
1774{
1da177e4
LT
1775 xfs_daddr_t blkno = 0;
1776 ushort flags = 0;
1777 uint len = 0;
1778
1779 switch (buf_f->blf_type) {
1780 case XFS_LI_BUF:
1781 blkno = buf_f->blf_blkno;
1782 flags = buf_f->blf_flags;
1783 len = buf_f->blf_len;
1784 break;
1da177e4
LT
1785 }
1786
1787 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1788}
1789
1790/*
1791 * Perform recovery for a buffer full of inodes. In these buffers,
1792 * the only data which should be recovered is that which corresponds
1793 * to the di_next_unlinked pointers in the on disk inode structures.
1794 * The rest of the data for the inodes is always logged through the
1795 * inodes themselves rather than the inode buffer and is recovered
1796 * in xlog_recover_do_inode_trans().
1797 *
1798 * The only time when buffers full of inodes are fully recovered is
1799 * when the buffer is full of newly allocated inodes. In this case
1800 * the buffer will not be marked as an inode buffer and so will be
1801 * sent to xlog_recover_do_reg_buffer() below during recovery.
1802 */
1803STATIC int
1804xlog_recover_do_inode_buffer(
1805 xfs_mount_t *mp,
1806 xlog_recover_item_t *item,
1807 xfs_buf_t *bp,
1808 xfs_buf_log_format_t *buf_f)
1809{
1810 int i;
1811 int item_index;
1812 int bit;
1813 int nbits;
1814 int reg_buf_offset;
1815 int reg_buf_bytes;
1816 int next_unlinked_offset;
1817 int inodes_per_buf;
1818 xfs_agino_t *logged_nextp;
1819 xfs_agino_t *buffer_nextp;
1da177e4
LT
1820 unsigned int *data_map = NULL;
1821 unsigned int map_size = 0;
1822
9abbc539
DC
1823 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1824
1da177e4
LT
1825 switch (buf_f->blf_type) {
1826 case XFS_LI_BUF:
1827 data_map = buf_f->blf_data_map;
1828 map_size = buf_f->blf_map_size;
1829 break;
1da177e4
LT
1830 }
1831 /*
1832 * Set the variables corresponding to the current region to
1833 * 0 so that we'll initialize them on the first pass through
1834 * the loop.
1835 */
1836 reg_buf_offset = 0;
1837 reg_buf_bytes = 0;
1838 bit = 0;
1839 nbits = 0;
1840 item_index = 0;
1841 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1842 for (i = 0; i < inodes_per_buf; i++) {
1843 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1844 offsetof(xfs_dinode_t, di_next_unlinked);
1845
1846 while (next_unlinked_offset >=
1847 (reg_buf_offset + reg_buf_bytes)) {
1848 /*
1849 * The next di_next_unlinked field is beyond
1850 * the current logged region. Find the next
1851 * logged region that contains or is beyond
1852 * the current di_next_unlinked field.
1853 */
1854 bit += nbits;
1855 bit = xfs_next_bit(data_map, map_size, bit);
1856
1857 /*
1858 * If there are no more logged regions in the
1859 * buffer, then we're done.
1860 */
1861 if (bit == -1) {
1862 return 0;
1863 }
1864
1865 nbits = xfs_contig_bits(data_map, map_size,
1866 bit);
1867 ASSERT(nbits > 0);
c1155410
DC
1868 reg_buf_offset = bit << XFS_BLF_SHIFT;
1869 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1870 item_index++;
1871 }
1872
1873 /*
1874 * If the current logged region starts after the current
1875 * di_next_unlinked field, then move on to the next
1876 * di_next_unlinked field.
1877 */
1878 if (next_unlinked_offset < reg_buf_offset) {
1879 continue;
1880 }
1881
1882 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1883 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1da177e4
LT
1884 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1885
1886 /*
1887 * The current logged region contains a copy of the
1888 * current di_next_unlinked field. Extract its value
1889 * and copy it to the buffer copy.
1890 */
1891 logged_nextp = (xfs_agino_t *)
1892 ((char *)(item->ri_buf[item_index].i_addr) +
1893 (next_unlinked_offset - reg_buf_offset));
1894 if (unlikely(*logged_nextp == 0)) {
1895 xfs_fs_cmn_err(CE_ALERT, mp,
1896 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1897 item, bp);
1898 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1899 XFS_ERRLEVEL_LOW, mp);
1900 return XFS_ERROR(EFSCORRUPTED);
1901 }
1902
1903 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1904 next_unlinked_offset);
87c199c2 1905 *buffer_nextp = *logged_nextp;
1da177e4
LT
1906 }
1907
1908 return 0;
1909}
1910
1911/*
1912 * Perform a 'normal' buffer recovery. Each logged region of the
1913 * buffer should be copied over the corresponding region in the
1914 * given buffer. The bitmap in the buf log format structure indicates
1915 * where to place the logged data.
1916 */
1917/*ARGSUSED*/
1918STATIC void
1919xlog_recover_do_reg_buffer(
9abbc539 1920 struct xfs_mount *mp,
1da177e4
LT
1921 xlog_recover_item_t *item,
1922 xfs_buf_t *bp,
1923 xfs_buf_log_format_t *buf_f)
1924{
1925 int i;
1926 int bit;
1927 int nbits;
1da177e4
LT
1928 unsigned int *data_map = NULL;
1929 unsigned int map_size = 0;
1930 int error;
1931
9abbc539
DC
1932 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1933
1da177e4
LT
1934 switch (buf_f->blf_type) {
1935 case XFS_LI_BUF:
1936 data_map = buf_f->blf_data_map;
1937 map_size = buf_f->blf_map_size;
1938 break;
1da177e4
LT
1939 }
1940 bit = 0;
1941 i = 1; /* 0 is the buf format structure */
1942 while (1) {
1943 bit = xfs_next_bit(data_map, map_size, bit);
1944 if (bit == -1)
1945 break;
1946 nbits = xfs_contig_bits(data_map, map_size, bit);
1947 ASSERT(nbits > 0);
4b80916b 1948 ASSERT(item->ri_buf[i].i_addr != NULL);
c1155410 1949 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1da177e4 1950 ASSERT(XFS_BUF_COUNT(bp) >=
c1155410 1951 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1da177e4
LT
1952
1953 /*
1954 * Do a sanity check if this is a dquot buffer. Just checking
1955 * the first dquot in the buffer should do. XXXThis is
1956 * probably a good thing to do for other buf types also.
1957 */
1958 error = 0;
c8ad20ff 1959 if (buf_f->blf_flags &
c1155410 1960 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
0c5e1ce8
CH
1961 if (item->ri_buf[i].i_addr == NULL) {
1962 cmn_err(CE_ALERT,
1963 "XFS: NULL dquot in %s.", __func__);
1964 goto next;
1965 }
8ec6dba2 1966 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
1967 cmn_err(CE_ALERT,
1968 "XFS: dquot too small (%d) in %s.",
1969 item->ri_buf[i].i_len, __func__);
1970 goto next;
1971 }
1da177e4
LT
1972 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1973 item->ri_buf[i].i_addr,
1974 -1, 0, XFS_QMOPT_DOWARN,
1975 "dquot_buf_recover");
0c5e1ce8
CH
1976 if (error)
1977 goto next;
1da177e4 1978 }
0c5e1ce8
CH
1979
1980 memcpy(xfs_buf_offset(bp,
c1155410 1981 (uint)bit << XFS_BLF_SHIFT), /* dest */
0c5e1ce8 1982 item->ri_buf[i].i_addr, /* source */
c1155410 1983 nbits<<XFS_BLF_SHIFT); /* length */
0c5e1ce8 1984 next:
1da177e4
LT
1985 i++;
1986 bit += nbits;
1987 }
1988
1989 /* Shouldn't be any more regions */
1990 ASSERT(i == item->ri_total);
1991}
1992
1993/*
1994 * Do some primitive error checking on ondisk dquot data structures.
1995 */
1996int
1997xfs_qm_dqcheck(
1998 xfs_disk_dquot_t *ddq,
1999 xfs_dqid_t id,
2000 uint type, /* used only when IO_dorepair is true */
2001 uint flags,
2002 char *str)
2003{
2004 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2005 int errs = 0;
2006
2007 /*
2008 * We can encounter an uninitialized dquot buffer for 2 reasons:
2009 * 1. If we crash while deleting the quotainode(s), and those blks got
2010 * used for user data. This is because we take the path of regular
2011 * file deletion; however, the size field of quotainodes is never
2012 * updated, so all the tricks that we play in itruncate_finish
2013 * don't quite matter.
2014 *
2015 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2016 * But the allocation will be replayed so we'll end up with an
2017 * uninitialized quota block.
2018 *
2019 * This is all fine; things are still consistent, and we haven't lost
2020 * any quota information. Just don't complain about bad dquot blks.
2021 */
1149d96a 2022 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
2023 if (flags & XFS_QMOPT_DOWARN)
2024 cmn_err(CE_ALERT,
2025 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2026 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2027 errs++;
2028 }
1149d96a 2029 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
2030 if (flags & XFS_QMOPT_DOWARN)
2031 cmn_err(CE_ALERT,
2032 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2033 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2034 errs++;
2035 }
2036
1149d96a
CH
2037 if (ddq->d_flags != XFS_DQ_USER &&
2038 ddq->d_flags != XFS_DQ_PROJ &&
2039 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
2040 if (flags & XFS_QMOPT_DOWARN)
2041 cmn_err(CE_ALERT,
2042 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2043 str, id, ddq->d_flags);
1da177e4
LT
2044 errs++;
2045 }
2046
1149d96a 2047 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
2048 if (flags & XFS_QMOPT_DOWARN)
2049 cmn_err(CE_ALERT,
2050 "%s : ondisk-dquot 0x%p, ID mismatch: "
2051 "0x%x expected, found id 0x%x",
1149d96a 2052 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2053 errs++;
2054 }
2055
2056 if (!errs && ddq->d_id) {
1149d96a
CH
2057 if (ddq->d_blk_softlimit &&
2058 be64_to_cpu(ddq->d_bcount) >=
2059 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2060 if (!ddq->d_btimer) {
2061 if (flags & XFS_QMOPT_DOWARN)
2062 cmn_err(CE_ALERT,
2063 "%s : Dquot ID 0x%x (0x%p) "
2064 "BLK TIMER NOT STARTED",
1149d96a 2065 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2066 errs++;
2067 }
2068 }
1149d96a
CH
2069 if (ddq->d_ino_softlimit &&
2070 be64_to_cpu(ddq->d_icount) >=
2071 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2072 if (!ddq->d_itimer) {
2073 if (flags & XFS_QMOPT_DOWARN)
2074 cmn_err(CE_ALERT,
2075 "%s : Dquot ID 0x%x (0x%p) "
2076 "INODE TIMER NOT STARTED",
1149d96a 2077 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2078 errs++;
2079 }
2080 }
1149d96a
CH
2081 if (ddq->d_rtb_softlimit &&
2082 be64_to_cpu(ddq->d_rtbcount) >=
2083 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2084 if (!ddq->d_rtbtimer) {
2085 if (flags & XFS_QMOPT_DOWARN)
2086 cmn_err(CE_ALERT,
2087 "%s : Dquot ID 0x%x (0x%p) "
2088 "RTBLK TIMER NOT STARTED",
1149d96a 2089 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2090 errs++;
2091 }
2092 }
2093 }
2094
2095 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2096 return errs;
2097
2098 if (flags & XFS_QMOPT_DOWARN)
2099 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2100
2101 /*
2102 * Typically, a repair is only requested by quotacheck.
2103 */
2104 ASSERT(id != -1);
2105 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2106 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2107
2108 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2109 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2110 d->dd_diskdq.d_flags = type;
2111 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2112
2113 return errs;
2114}
2115
2116/*
2117 * Perform a dquot buffer recovery.
2118 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2119 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2120 * Else, treat it as a regular buffer and do recovery.
2121 */
2122STATIC void
2123xlog_recover_do_dquot_buffer(
2124 xfs_mount_t *mp,
2125 xlog_t *log,
2126 xlog_recover_item_t *item,
2127 xfs_buf_t *bp,
2128 xfs_buf_log_format_t *buf_f)
2129{
2130 uint type;
2131
9abbc539
DC
2132 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2133
1da177e4
LT
2134 /*
2135 * Filesystems are required to send in quota flags at mount time.
2136 */
2137 if (mp->m_qflags == 0) {
2138 return;
2139 }
2140
2141 type = 0;
c1155410 2142 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2143 type |= XFS_DQ_USER;
c1155410 2144 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2145 type |= XFS_DQ_PROJ;
c1155410 2146 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2147 type |= XFS_DQ_GROUP;
2148 /*
2149 * This type of quotas was turned off, so ignore this buffer
2150 */
2151 if (log->l_quotaoffs_flag & type)
2152 return;
2153
9abbc539 2154 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2155}
2156
2157/*
2158 * This routine replays a modification made to a buffer at runtime.
2159 * There are actually two types of buffer, regular and inode, which
2160 * are handled differently. Inode buffers are handled differently
2161 * in that we only recover a specific set of data from them, namely
2162 * the inode di_next_unlinked fields. This is because all other inode
2163 * data is actually logged via inode records and any data we replay
2164 * here which overlaps that may be stale.
2165 *
2166 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2167 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2168 * of the buffer in the log should not be replayed at recovery time.
2169 * This is so that if the blocks covered by the buffer are reused for
2170 * file data before we crash we don't end up replaying old, freed
2171 * meta-data into a user's file.
2172 *
2173 * To handle the cancellation of buffer log items, we make two passes
2174 * over the log during recovery. During the first we build a table of
2175 * those buffers which have been cancelled, and during the second we
2176 * only replay those buffers which do not have corresponding cancel
2177 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2178 * for more details on the implementation of the table of cancel records.
2179 */
2180STATIC int
2181xlog_recover_do_buffer_trans(
2182 xlog_t *log,
2183 xlog_recover_item_t *item,
2184 int pass)
2185{
2186 xfs_buf_log_format_t *buf_f;
1da177e4
LT
2187 xfs_mount_t *mp;
2188 xfs_buf_t *bp;
2189 int error;
2190 int cancel;
2191 xfs_daddr_t blkno;
2192 int len;
2193 ushort flags;
6ad112bf 2194 uint buf_flags;
1da177e4
LT
2195
2196 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2197
2198 if (pass == XLOG_RECOVER_PASS1) {
2199 /*
2200 * In this pass we're only looking for buf items
c1155410 2201 * with the XFS_BLF_CANCEL bit set.
1da177e4
LT
2202 */
2203 xlog_recover_do_buffer_pass1(log, buf_f);
2204 return 0;
2205 } else {
2206 /*
2207 * In this pass we want to recover all the buffers
2208 * which have not been cancelled and are not
2209 * cancellation buffers themselves. The routine
2210 * we call here will tell us whether or not to
2211 * continue with the replay of this buffer.
2212 */
2213 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2214 if (cancel) {
9abbc539 2215 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4
LT
2216 return 0;
2217 }
2218 }
9abbc539 2219 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4
LT
2220 switch (buf_f->blf_type) {
2221 case XFS_LI_BUF:
2222 blkno = buf_f->blf_blkno;
2223 len = buf_f->blf_len;
2224 flags = buf_f->blf_flags;
2225 break;
1da177e4
LT
2226 default:
2227 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2228 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2229 buf_f->blf_type, log->l_mp->m_logname ?
2230 log->l_mp->m_logname : "internal");
1da177e4
LT
2231 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2232 XFS_ERRLEVEL_LOW, log->l_mp);
2233 return XFS_ERROR(EFSCORRUPTED);
2234 }
2235
2236 mp = log->l_mp;
0cadda1c 2237 buf_flags = XBF_LOCK;
c1155410 2238 if (!(flags & XFS_BLF_INODE_BUF))
0cadda1c 2239 buf_flags |= XBF_MAPPED;
6ad112bf
CH
2240
2241 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
1da177e4
LT
2242 if (XFS_BUF_ISERROR(bp)) {
2243 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2244 bp, blkno);
2245 error = XFS_BUF_GETERROR(bp);
2246 xfs_buf_relse(bp);
2247 return error;
2248 }
2249
2250 error = 0;
c1155410 2251 if (flags & XFS_BLF_INODE_BUF) {
1da177e4 2252 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff 2253 } else if (flags &
c1155410 2254 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2255 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2256 } else {
9abbc539 2257 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2258 }
2259 if (error)
2260 return XFS_ERROR(error);
2261
2262 /*
2263 * Perform delayed write on the buffer. Asynchronous writes will be
2264 * slower when taking into account all the buffers to be flushed.
2265 *
2266 * Also make sure that only inode buffers with good sizes stay in
2267 * the buffer cache. The kernel moves inodes in buffers of 1 block
2268 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2269 * buffers in the log can be a different size if the log was generated
2270 * by an older kernel using unclustered inode buffers or a newer kernel
2271 * running with a different inode cluster size. Regardless, if the
2272 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2273 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2274 * the buffer out of the buffer cache so that the buffer won't
2275 * overlap with future reads of those inodes.
2276 */
2277 if (XFS_DINODE_MAGIC ==
b53e675d 2278 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2279 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2280 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2281 XFS_BUF_STALE(bp);
2282 error = xfs_bwrite(mp, bp);
2283 } else {
15ac08a8
CH
2284 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2285 bp->b_mount = mp;
1da177e4
LT
2286 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2287 xfs_bdwrite(mp, bp);
2288 }
2289
2290 return (error);
2291}
2292
2293STATIC int
2294xlog_recover_do_inode_trans(
2295 xlog_t *log,
2296 xlog_recover_item_t *item,
2297 int pass)
2298{
2299 xfs_inode_log_format_t *in_f;
2300 xfs_mount_t *mp;
2301 xfs_buf_t *bp;
1da177e4
LT
2302 xfs_dinode_t *dip;
2303 xfs_ino_t ino;
2304 int len;
2305 xfs_caddr_t src;
2306 xfs_caddr_t dest;
2307 int error;
2308 int attr_index;
2309 uint fields;
347d1c01 2310 xfs_icdinode_t *dicp;
6d192a9b 2311 int need_free = 0;
1da177e4
LT
2312
2313 if (pass == XLOG_RECOVER_PASS1) {
2314 return 0;
2315 }
2316
6d192a9b
TS
2317 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2318 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2319 } else {
2320 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2321 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2322 need_free = 1;
2323 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2324 if (error)
2325 goto error;
2326 }
1da177e4
LT
2327 ino = in_f->ilf_ino;
2328 mp = log->l_mp;
1da177e4
LT
2329
2330 /*
2331 * Inode buffers can be freed, look out for it,
2332 * and do not replay the inode.
2333 */
a1941895
CH
2334 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2335 in_f->ilf_len, 0)) {
6d192a9b 2336 error = 0;
9abbc539 2337 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2338 goto error;
2339 }
9abbc539 2340 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2341
6ad112bf 2342 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
0cadda1c 2343 XBF_LOCK);
1da177e4
LT
2344 if (XFS_BUF_ISERROR(bp)) {
2345 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
a1941895 2346 bp, in_f->ilf_blkno);
1da177e4
LT
2347 error = XFS_BUF_GETERROR(bp);
2348 xfs_buf_relse(bp);
6d192a9b 2349 goto error;
1da177e4
LT
2350 }
2351 error = 0;
2352 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2353 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2354
2355 /*
2356 * Make sure the place we're flushing out to really looks
2357 * like an inode!
2358 */
81591fe2 2359 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
1da177e4
LT
2360 xfs_buf_relse(bp);
2361 xfs_fs_cmn_err(CE_ALERT, mp,
2362 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2363 dip, bp, ino);
2364 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2365 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2366 error = EFSCORRUPTED;
2367 goto error;
1da177e4 2368 }
347d1c01 2369 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
1da177e4
LT
2370 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2371 xfs_buf_relse(bp);
2372 xfs_fs_cmn_err(CE_ALERT, mp,
2373 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2374 item, ino);
2375 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2376 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2377 error = EFSCORRUPTED;
2378 goto error;
1da177e4
LT
2379 }
2380
2381 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2382 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2383 /*
2384 * Deal with the wrap case, DI_MAX_FLUSH is less
2385 * than smaller numbers
2386 */
81591fe2 2387 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2388 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2389 /* do nothing */
2390 } else {
2391 xfs_buf_relse(bp);
9abbc539 2392 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2393 error = 0;
2394 goto error;
1da177e4
LT
2395 }
2396 }
2397 /* Take the opportunity to reset the flush iteration count */
2398 dicp->di_flushiter = 0;
2399
2400 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2401 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2402 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2403 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2404 XFS_ERRLEVEL_LOW, mp, dicp);
2405 xfs_buf_relse(bp);
2406 xfs_fs_cmn_err(CE_ALERT, mp,
2407 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2408 item, dip, bp, ino);
6d192a9b
TS
2409 error = EFSCORRUPTED;
2410 goto error;
1da177e4
LT
2411 }
2412 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2413 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2414 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2415 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2416 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2417 XFS_ERRLEVEL_LOW, mp, dicp);
2418 xfs_buf_relse(bp);
2419 xfs_fs_cmn_err(CE_ALERT, mp,
2420 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2421 item, dip, bp, ino);
6d192a9b
TS
2422 error = EFSCORRUPTED;
2423 goto error;
1da177e4
LT
2424 }
2425 }
2426 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2427 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2428 XFS_ERRLEVEL_LOW, mp, dicp);
2429 xfs_buf_relse(bp);
2430 xfs_fs_cmn_err(CE_ALERT, mp,
2431 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2432 item, dip, bp, ino,
2433 dicp->di_nextents + dicp->di_anextents,
2434 dicp->di_nblocks);
6d192a9b
TS
2435 error = EFSCORRUPTED;
2436 goto error;
1da177e4
LT
2437 }
2438 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2439 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2440 XFS_ERRLEVEL_LOW, mp, dicp);
2441 xfs_buf_relse(bp);
2442 xfs_fs_cmn_err(CE_ALERT, mp,
2443 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2444 item, dip, bp, ino, dicp->di_forkoff);
6d192a9b
TS
2445 error = EFSCORRUPTED;
2446 goto error;
1da177e4 2447 }
81591fe2 2448 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
1da177e4
LT
2449 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2450 XFS_ERRLEVEL_LOW, mp, dicp);
2451 xfs_buf_relse(bp);
2452 xfs_fs_cmn_err(CE_ALERT, mp,
2453 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2454 item->ri_buf[1].i_len, item);
6d192a9b
TS
2455 error = EFSCORRUPTED;
2456 goto error;
1da177e4
LT
2457 }
2458
2459 /* The core is in in-core format */
81591fe2 2460 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
1da177e4
LT
2461
2462 /* the rest is in on-disk format */
81591fe2
CH
2463 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2464 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2465 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2466 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2467 }
2468
2469 fields = in_f->ilf_fields;
2470 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2471 case XFS_ILOG_DEV:
81591fe2 2472 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2473 break;
2474 case XFS_ILOG_UUID:
81591fe2
CH
2475 memcpy(XFS_DFORK_DPTR(dip),
2476 &in_f->ilf_u.ilfu_uuid,
2477 sizeof(uuid_t));
1da177e4
LT
2478 break;
2479 }
2480
2481 if (in_f->ilf_size == 2)
2482 goto write_inode_buffer;
2483 len = item->ri_buf[2].i_len;
2484 src = item->ri_buf[2].i_addr;
2485 ASSERT(in_f->ilf_size <= 4);
2486 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2487 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2488 (len == in_f->ilf_dsize));
2489
2490 switch (fields & XFS_ILOG_DFORK) {
2491 case XFS_ILOG_DDATA:
2492 case XFS_ILOG_DEXT:
81591fe2 2493 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2494 break;
2495
2496 case XFS_ILOG_DBROOT:
7cc95a82 2497 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2498 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2499 XFS_DFORK_DSIZE(dip, mp));
2500 break;
2501
2502 default:
2503 /*
2504 * There are no data fork flags set.
2505 */
2506 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2507 break;
2508 }
2509
2510 /*
2511 * If we logged any attribute data, recover it. There may or
2512 * may not have been any other non-core data logged in this
2513 * transaction.
2514 */
2515 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2516 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2517 attr_index = 3;
2518 } else {
2519 attr_index = 2;
2520 }
2521 len = item->ri_buf[attr_index].i_len;
2522 src = item->ri_buf[attr_index].i_addr;
2523 ASSERT(len == in_f->ilf_asize);
2524
2525 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2526 case XFS_ILOG_ADATA:
2527 case XFS_ILOG_AEXT:
2528 dest = XFS_DFORK_APTR(dip);
2529 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2530 memcpy(dest, src, len);
2531 break;
2532
2533 case XFS_ILOG_ABROOT:
2534 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2535 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2536 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2537 XFS_DFORK_ASIZE(dip, mp));
2538 break;
2539
2540 default:
2541 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2542 ASSERT(0);
2543 xfs_buf_relse(bp);
6d192a9b
TS
2544 error = EIO;
2545 goto error;
1da177e4
LT
2546 }
2547 }
2548
2549write_inode_buffer:
dd0bbad8
CH
2550 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2551 bp->b_mount = mp;
2552 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2553 xfs_bdwrite(mp, bp);
6d192a9b
TS
2554error:
2555 if (need_free)
f0e2d93c 2556 kmem_free(in_f);
6d192a9b 2557 return XFS_ERROR(error);
1da177e4
LT
2558}
2559
2560/*
2561 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2562 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2563 * of that type.
2564 */
2565STATIC int
2566xlog_recover_do_quotaoff_trans(
2567 xlog_t *log,
2568 xlog_recover_item_t *item,
2569 int pass)
2570{
2571 xfs_qoff_logformat_t *qoff_f;
2572
2573 if (pass == XLOG_RECOVER_PASS2) {
2574 return (0);
2575 }
2576
2577 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2578 ASSERT(qoff_f);
2579
2580 /*
2581 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2582 * group/project quotaoff or both.
1da177e4
LT
2583 */
2584 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2585 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2586 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2587 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2588 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2589 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2590
2591 return (0);
2592}
2593
2594/*
2595 * Recover a dquot record
2596 */
2597STATIC int
2598xlog_recover_do_dquot_trans(
2599 xlog_t *log,
2600 xlog_recover_item_t *item,
2601 int pass)
2602{
2603 xfs_mount_t *mp;
2604 xfs_buf_t *bp;
2605 struct xfs_disk_dquot *ddq, *recddq;
2606 int error;
2607 xfs_dq_logformat_t *dq_f;
2608 uint type;
2609
2610 if (pass == XLOG_RECOVER_PASS1) {
2611 return 0;
2612 }
2613 mp = log->l_mp;
2614
2615 /*
2616 * Filesystems are required to send in quota flags at mount time.
2617 */
2618 if (mp->m_qflags == 0)
2619 return (0);
2620
2621 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
0c5e1ce8
CH
2622
2623 if (item->ri_buf[1].i_addr == NULL) {
2624 cmn_err(CE_ALERT,
2625 "XFS: NULL dquot in %s.", __func__);
2626 return XFS_ERROR(EIO);
2627 }
8ec6dba2 2628 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
2629 cmn_err(CE_ALERT,
2630 "XFS: dquot too small (%d) in %s.",
2631 item->ri_buf[1].i_len, __func__);
2632 return XFS_ERROR(EIO);
2633 }
2634
1da177e4
LT
2635 /*
2636 * This type of quotas was turned off, so ignore this record.
2637 */
b53e675d 2638 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2639 ASSERT(type);
2640 if (log->l_quotaoffs_flag & type)
2641 return (0);
2642
2643 /*
2644 * At this point we know that quota was _not_ turned off.
2645 * Since the mount flags are not indicating to us otherwise, this
2646 * must mean that quota is on, and the dquot needs to be replayed.
2647 * Remember that we may not have fully recovered the superblock yet,
2648 * so we can't do the usual trick of looking at the SB quota bits.
2649 *
2650 * The other possibility, of course, is that the quota subsystem was
2651 * removed since the last mount - ENOSYS.
2652 */
2653 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2654 ASSERT(dq_f);
2655 if ((error = xfs_qm_dqcheck(recddq,
2656 dq_f->qlf_id,
2657 0, XFS_QMOPT_DOWARN,
2658 "xlog_recover_do_dquot_trans (log copy)"))) {
2659 return XFS_ERROR(EIO);
2660 }
2661 ASSERT(dq_f->qlf_len == 1);
2662
2663 error = xfs_read_buf(mp, mp->m_ddev_targp,
2664 dq_f->qlf_blkno,
2665 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2666 0, &bp);
2667 if (error) {
2668 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2669 bp, dq_f->qlf_blkno);
2670 return error;
2671 }
2672 ASSERT(bp);
2673 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2674
2675 /*
2676 * At least the magic num portion should be on disk because this
2677 * was among a chunk of dquots created earlier, and we did some
2678 * minimal initialization then.
2679 */
2680 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2681 "xlog_recover_do_dquot_trans")) {
2682 xfs_buf_relse(bp);
2683 return XFS_ERROR(EIO);
2684 }
2685
2686 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2687
2688 ASSERT(dq_f->qlf_size == 2);
15ac08a8
CH
2689 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2690 bp->b_mount = mp;
1da177e4
LT
2691 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2692 xfs_bdwrite(mp, bp);
2693
2694 return (0);
2695}
2696
2697/*
2698 * This routine is called to create an in-core extent free intent
2699 * item from the efi format structure which was logged on disk.
2700 * It allocates an in-core efi, copies the extents from the format
2701 * structure into it, and adds the efi to the AIL with the given
2702 * LSN.
2703 */
6d192a9b 2704STATIC int
1da177e4
LT
2705xlog_recover_do_efi_trans(
2706 xlog_t *log,
2707 xlog_recover_item_t *item,
2708 xfs_lsn_t lsn,
2709 int pass)
2710{
6d192a9b 2711 int error;
1da177e4
LT
2712 xfs_mount_t *mp;
2713 xfs_efi_log_item_t *efip;
2714 xfs_efi_log_format_t *efi_formatp;
1da177e4
LT
2715
2716 if (pass == XLOG_RECOVER_PASS1) {
6d192a9b 2717 return 0;
1da177e4
LT
2718 }
2719
2720 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
1da177e4
LT
2721
2722 mp = log->l_mp;
2723 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2724 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2725 &(efip->efi_format)))) {
2726 xfs_efi_item_free(efip);
2727 return error;
2728 }
1da177e4
LT
2729 efip->efi_next_extent = efi_formatp->efi_nextents;
2730 efip->efi_flags |= XFS_EFI_COMMITTED;
2731
a9c21c1b 2732 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2733 /*
783a2f65 2734 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2735 */
783a2f65 2736 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
6d192a9b 2737 return 0;
1da177e4
LT
2738}
2739
2740
2741/*
2742 * This routine is called when an efd format structure is found in
2743 * a committed transaction in the log. It's purpose is to cancel
2744 * the corresponding efi if it was still in the log. To do this
2745 * it searches the AIL for the efi with an id equal to that in the
2746 * efd format structure. If we find it, we remove the efi from the
2747 * AIL and free it.
2748 */
2749STATIC void
2750xlog_recover_do_efd_trans(
2751 xlog_t *log,
2752 xlog_recover_item_t *item,
2753 int pass)
2754{
1da177e4
LT
2755 xfs_efd_log_format_t *efd_formatp;
2756 xfs_efi_log_item_t *efip = NULL;
2757 xfs_log_item_t *lip;
1da177e4 2758 __uint64_t efi_id;
27d8d5fe 2759 struct xfs_ail_cursor cur;
783a2f65 2760 struct xfs_ail *ailp = log->l_ailp;
1da177e4
LT
2761
2762 if (pass == XLOG_RECOVER_PASS1) {
2763 return;
2764 }
2765
2766 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
6d192a9b
TS
2767 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2768 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2769 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2770 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2771 efi_id = efd_formatp->efd_efi_id;
2772
2773 /*
2774 * Search for the efi with the id in the efd format structure
2775 * in the AIL.
2776 */
a9c21c1b
DC
2777 spin_lock(&ailp->xa_lock);
2778 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2779 while (lip != NULL) {
2780 if (lip->li_type == XFS_LI_EFI) {
2781 efip = (xfs_efi_log_item_t *)lip;
2782 if (efip->efi_format.efi_id == efi_id) {
2783 /*
783a2f65 2784 * xfs_trans_ail_delete() drops the
1da177e4
LT
2785 * AIL lock.
2786 */
783a2f65 2787 xfs_trans_ail_delete(ailp, lip);
8ae2c0f6 2788 xfs_efi_item_free(efip);
a9c21c1b 2789 spin_lock(&ailp->xa_lock);
27d8d5fe 2790 break;
1da177e4
LT
2791 }
2792 }
a9c21c1b 2793 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2794 }
a9c21c1b
DC
2795 xfs_trans_ail_cursor_done(ailp, &cur);
2796 spin_unlock(&ailp->xa_lock);
1da177e4
LT
2797}
2798
2799/*
2800 * Perform the transaction
2801 *
2802 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2803 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2804 */
2805STATIC int
2806xlog_recover_do_trans(
2807 xlog_t *log,
2808 xlog_recover_t *trans,
2809 int pass)
2810{
2811 int error = 0;
f0a76953 2812 xlog_recover_item_t *item;
1da177e4 2813
9abbc539 2814 error = xlog_recover_reorder_trans(log, trans, pass);
ff0205e0 2815 if (error)
1da177e4 2816 return error;
ff0205e0 2817
f0a76953 2818 list_for_each_entry(item, &trans->r_itemq, ri_list) {
9abbc539 2819 trace_xfs_log_recover_item_recover(log, trans, item, pass);
ff0205e0
CH
2820 switch (ITEM_TYPE(item)) {
2821 case XFS_LI_BUF:
2822 error = xlog_recover_do_buffer_trans(log, item, pass);
2823 break;
2824 case XFS_LI_INODE:
2825 error = xlog_recover_do_inode_trans(log, item, pass);
2826 break;
2827 case XFS_LI_EFI:
2828 error = xlog_recover_do_efi_trans(log, item,
2829 trans->r_lsn, pass);
2830 break;
2831 case XFS_LI_EFD:
1da177e4 2832 xlog_recover_do_efd_trans(log, item, pass);
ff0205e0
CH
2833 error = 0;
2834 break;
2835 case XFS_LI_DQUOT:
2836 error = xlog_recover_do_dquot_trans(log, item, pass);
2837 break;
2838 case XFS_LI_QUOTAOFF:
2839 error = xlog_recover_do_quotaoff_trans(log, item,
2840 pass);
2841 break;
2842 default:
2843 xlog_warn(
2844 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
1da177e4
LT
2845 ASSERT(0);
2846 error = XFS_ERROR(EIO);
2847 break;
2848 }
ff0205e0
CH
2849
2850 if (error)
2851 return error;
f0a76953 2852 }
1da177e4 2853
ff0205e0 2854 return 0;
1da177e4
LT
2855}
2856
2857/*
2858 * Free up any resources allocated by the transaction
2859 *
2860 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2861 */
2862STATIC void
2863xlog_recover_free_trans(
2864 xlog_recover_t *trans)
2865{
f0a76953 2866 xlog_recover_item_t *item, *n;
1da177e4
LT
2867 int i;
2868
f0a76953
DC
2869 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2870 /* Free the regions in the item. */
2871 list_del(&item->ri_list);
2872 for (i = 0; i < item->ri_cnt; i++)
2873 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2874 /* Free the item itself */
f0a76953
DC
2875 kmem_free(item->ri_buf);
2876 kmem_free(item);
2877 }
1da177e4 2878 /* Free the transaction recover structure */
f0e2d93c 2879 kmem_free(trans);
1da177e4
LT
2880}
2881
2882STATIC int
2883xlog_recover_commit_trans(
2884 xlog_t *log,
1da177e4
LT
2885 xlog_recover_t *trans,
2886 int pass)
2887{
2888 int error;
2889
f0a76953 2890 hlist_del(&trans->r_list);
1da177e4
LT
2891 if ((error = xlog_recover_do_trans(log, trans, pass)))
2892 return error;
2893 xlog_recover_free_trans(trans); /* no error */
2894 return 0;
2895}
2896
2897STATIC int
2898xlog_recover_unmount_trans(
2899 xlog_recover_t *trans)
2900{
2901 /* Do nothing now */
2902 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2903 return 0;
2904}
2905
2906/*
2907 * There are two valid states of the r_state field. 0 indicates that the
2908 * transaction structure is in a normal state. We have either seen the
2909 * start of the transaction or the last operation we added was not a partial
2910 * operation. If the last operation we added to the transaction was a
2911 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2912 *
2913 * NOTE: skip LRs with 0 data length.
2914 */
2915STATIC int
2916xlog_recover_process_data(
2917 xlog_t *log,
f0a76953 2918 struct hlist_head rhash[],
1da177e4
LT
2919 xlog_rec_header_t *rhead,
2920 xfs_caddr_t dp,
2921 int pass)
2922{
2923 xfs_caddr_t lp;
2924 int num_logops;
2925 xlog_op_header_t *ohead;
2926 xlog_recover_t *trans;
2927 xlog_tid_t tid;
2928 int error;
2929 unsigned long hash;
2930 uint flags;
2931
b53e675d
CH
2932 lp = dp + be32_to_cpu(rhead->h_len);
2933 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2934
2935 /* check the log format matches our own - else we can't recover */
2936 if (xlog_header_check_recover(log->l_mp, rhead))
2937 return (XFS_ERROR(EIO));
2938
2939 while ((dp < lp) && num_logops) {
2940 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2941 ohead = (xlog_op_header_t *)dp;
2942 dp += sizeof(xlog_op_header_t);
2943 if (ohead->oh_clientid != XFS_TRANSACTION &&
2944 ohead->oh_clientid != XFS_LOG) {
2945 xlog_warn(
2946 "XFS: xlog_recover_process_data: bad clientid");
2947 ASSERT(0);
2948 return (XFS_ERROR(EIO));
2949 }
67fcb7bf 2950 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2951 hash = XLOG_RHASH(tid);
f0a76953 2952 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2953 if (trans == NULL) { /* not found; add new tid */
2954 if (ohead->oh_flags & XLOG_START_TRANS)
2955 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2956 be64_to_cpu(rhead->h_lsn));
1da177e4 2957 } else {
9742bb93
LM
2958 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2959 xlog_warn(
2960 "XFS: xlog_recover_process_data: bad length");
2961 WARN_ON(1);
2962 return (XFS_ERROR(EIO));
2963 }
1da177e4
LT
2964 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2965 if (flags & XLOG_WAS_CONT_TRANS)
2966 flags &= ~XLOG_CONTINUE_TRANS;
2967 switch (flags) {
2968 case XLOG_COMMIT_TRANS:
2969 error = xlog_recover_commit_trans(log,
f0a76953 2970 trans, pass);
1da177e4
LT
2971 break;
2972 case XLOG_UNMOUNT_TRANS:
2973 error = xlog_recover_unmount_trans(trans);
2974 break;
2975 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
2976 error = xlog_recover_add_to_cont_trans(log,
2977 trans, dp,
2978 be32_to_cpu(ohead->oh_len));
1da177e4
LT
2979 break;
2980 case XLOG_START_TRANS:
2981 xlog_warn(
2982 "XFS: xlog_recover_process_data: bad transaction");
2983 ASSERT(0);
2984 error = XFS_ERROR(EIO);
2985 break;
2986 case 0:
2987 case XLOG_CONTINUE_TRANS:
9abbc539 2988 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 2989 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2990 break;
2991 default:
2992 xlog_warn(
2993 "XFS: xlog_recover_process_data: bad flag");
2994 ASSERT(0);
2995 error = XFS_ERROR(EIO);
2996 break;
2997 }
2998 if (error)
2999 return error;
3000 }
67fcb7bf 3001 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3002 num_logops--;
3003 }
3004 return 0;
3005}
3006
3007/*
3008 * Process an extent free intent item that was recovered from
3009 * the log. We need to free the extents that it describes.
3010 */
3c1e2bbe 3011STATIC int
1da177e4
LT
3012xlog_recover_process_efi(
3013 xfs_mount_t *mp,
3014 xfs_efi_log_item_t *efip)
3015{
3016 xfs_efd_log_item_t *efdp;
3017 xfs_trans_t *tp;
3018 int i;
3c1e2bbe 3019 int error = 0;
1da177e4
LT
3020 xfs_extent_t *extp;
3021 xfs_fsblock_t startblock_fsb;
3022
3023 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3024
3025 /*
3026 * First check the validity of the extents described by the
3027 * EFI. If any are bad, then assume that all are bad and
3028 * just toss the EFI.
3029 */
3030 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3031 extp = &(efip->efi_format.efi_extents[i]);
3032 startblock_fsb = XFS_BB_TO_FSB(mp,
3033 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3034 if ((startblock_fsb == 0) ||
3035 (extp->ext_len == 0) ||
3036 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3037 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3038 /*
3039 * This will pull the EFI from the AIL and
3040 * free the memory associated with it.
3041 */
3042 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3043 return XFS_ERROR(EIO);
1da177e4
LT
3044 }
3045 }
3046
3047 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 3048 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
3049 if (error)
3050 goto abort_error;
1da177e4
LT
3051 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3052
3053 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3054 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3055 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3056 if (error)
3057 goto abort_error;
1da177e4
LT
3058 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3059 extp->ext_len);
3060 }
3061
3062 efip->efi_flags |= XFS_EFI_RECOVERED;
e5720eec 3063 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3064 return error;
fc6149d8
DC
3065
3066abort_error:
3067 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3068 return error;
1da177e4
LT
3069}
3070
1da177e4
LT
3071/*
3072 * When this is called, all of the EFIs which did not have
3073 * corresponding EFDs should be in the AIL. What we do now
3074 * is free the extents associated with each one.
3075 *
3076 * Since we process the EFIs in normal transactions, they
3077 * will be removed at some point after the commit. This prevents
3078 * us from just walking down the list processing each one.
3079 * We'll use a flag in the EFI to skip those that we've already
3080 * processed and use the AIL iteration mechanism's generation
3081 * count to try to speed this up at least a bit.
3082 *
3083 * When we start, we know that the EFIs are the only things in
3084 * the AIL. As we process them, however, other items are added
3085 * to the AIL. Since everything added to the AIL must come after
3086 * everything already in the AIL, we stop processing as soon as
3087 * we see something other than an EFI in the AIL.
3088 */
3c1e2bbe 3089STATIC int
1da177e4
LT
3090xlog_recover_process_efis(
3091 xlog_t *log)
3092{
3093 xfs_log_item_t *lip;
3094 xfs_efi_log_item_t *efip;
3c1e2bbe 3095 int error = 0;
27d8d5fe 3096 struct xfs_ail_cursor cur;
a9c21c1b 3097 struct xfs_ail *ailp;
1da177e4 3098
a9c21c1b
DC
3099 ailp = log->l_ailp;
3100 spin_lock(&ailp->xa_lock);
3101 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3102 while (lip != NULL) {
3103 /*
3104 * We're done when we see something other than an EFI.
27d8d5fe 3105 * There should be no EFIs left in the AIL now.
1da177e4
LT
3106 */
3107 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3108#ifdef DEBUG
a9c21c1b 3109 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3110 ASSERT(lip->li_type != XFS_LI_EFI);
3111#endif
1da177e4
LT
3112 break;
3113 }
3114
3115 /*
3116 * Skip EFIs that we've already processed.
3117 */
3118 efip = (xfs_efi_log_item_t *)lip;
3119 if (efip->efi_flags & XFS_EFI_RECOVERED) {
a9c21c1b 3120 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3121 continue;
3122 }
3123
a9c21c1b
DC
3124 spin_unlock(&ailp->xa_lock);
3125 error = xlog_recover_process_efi(log->l_mp, efip);
3126 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3127 if (error)
3128 goto out;
a9c21c1b 3129 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3130 }
27d8d5fe 3131out:
a9c21c1b
DC
3132 xfs_trans_ail_cursor_done(ailp, &cur);
3133 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3134 return error;
1da177e4
LT
3135}
3136
3137/*
3138 * This routine performs a transaction to null out a bad inode pointer
3139 * in an agi unlinked inode hash bucket.
3140 */
3141STATIC void
3142xlog_recover_clear_agi_bucket(
3143 xfs_mount_t *mp,
3144 xfs_agnumber_t agno,
3145 int bucket)
3146{
3147 xfs_trans_t *tp;
3148 xfs_agi_t *agi;
3149 xfs_buf_t *agibp;
3150 int offset;
3151 int error;
3152
3153 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3154 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3155 0, 0, 0);
e5720eec
DC
3156 if (error)
3157 goto out_abort;
1da177e4 3158
5e1be0fb
CH
3159 error = xfs_read_agi(mp, tp, agno, &agibp);
3160 if (error)
e5720eec 3161 goto out_abort;
1da177e4 3162
5e1be0fb 3163 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3164 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3165 offset = offsetof(xfs_agi_t, agi_unlinked) +
3166 (sizeof(xfs_agino_t) * bucket);
3167 xfs_trans_log_buf(tp, agibp, offset,
3168 (offset + sizeof(xfs_agino_t) - 1));
3169
e5720eec
DC
3170 error = xfs_trans_commit(tp, 0);
3171 if (error)
3172 goto out_error;
3173 return;
3174
3175out_abort:
3176 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3177out_error:
3178 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3179 "failed to clear agi %d. Continuing.", agno);
3180 return;
1da177e4
LT
3181}
3182
23fac50f
CH
3183STATIC xfs_agino_t
3184xlog_recover_process_one_iunlink(
3185 struct xfs_mount *mp,
3186 xfs_agnumber_t agno,
3187 xfs_agino_t agino,
3188 int bucket)
3189{
3190 struct xfs_buf *ibp;
3191 struct xfs_dinode *dip;
3192 struct xfs_inode *ip;
3193 xfs_ino_t ino;
3194 int error;
3195
3196 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3197 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3198 if (error)
3199 goto fail;
3200
3201 /*
3202 * Get the on disk inode to find the next inode in the bucket.
3203 */
0cadda1c 3204 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
23fac50f 3205 if (error)
0e446673 3206 goto fail_iput;
23fac50f 3207
23fac50f 3208 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3209 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3210
3211 /* setup for the next pass */
3212 agino = be32_to_cpu(dip->di_next_unlinked);
3213 xfs_buf_relse(ibp);
3214
3215 /*
3216 * Prevent any DMAPI event from being sent when the reference on
3217 * the inode is dropped.
3218 */
3219 ip->i_d.di_dmevmask = 0;
3220
0e446673 3221 IRELE(ip);
23fac50f
CH
3222 return agino;
3223
0e446673
CH
3224 fail_iput:
3225 IRELE(ip);
23fac50f
CH
3226 fail:
3227 /*
3228 * We can't read in the inode this bucket points to, or this inode
3229 * is messed up. Just ditch this bucket of inodes. We will lose
3230 * some inodes and space, but at least we won't hang.
3231 *
3232 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3233 * clear the inode pointer in the bucket.
3234 */
3235 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3236 return NULLAGINO;
3237}
3238
1da177e4
LT
3239/*
3240 * xlog_iunlink_recover
3241 *
3242 * This is called during recovery to process any inodes which
3243 * we unlinked but not freed when the system crashed. These
3244 * inodes will be on the lists in the AGI blocks. What we do
3245 * here is scan all the AGIs and fully truncate and free any
3246 * inodes found on the lists. Each inode is removed from the
3247 * lists when it has been fully truncated and is freed. The
3248 * freeing of the inode and its removal from the list must be
3249 * atomic.
3250 */
d96f8f89 3251STATIC void
1da177e4
LT
3252xlog_recover_process_iunlinks(
3253 xlog_t *log)
3254{
3255 xfs_mount_t *mp;
3256 xfs_agnumber_t agno;
3257 xfs_agi_t *agi;
3258 xfs_buf_t *agibp;
1da177e4 3259 xfs_agino_t agino;
1da177e4
LT
3260 int bucket;
3261 int error;
3262 uint mp_dmevmask;
3263
3264 mp = log->l_mp;
3265
3266 /*
3267 * Prevent any DMAPI event from being sent while in this function.
3268 */
3269 mp_dmevmask = mp->m_dmevmask;
3270 mp->m_dmevmask = 0;
3271
3272 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3273 /*
3274 * Find the agi for this ag.
3275 */
5e1be0fb
CH
3276 error = xfs_read_agi(mp, NULL, agno, &agibp);
3277 if (error) {
3278 /*
3279 * AGI is b0rked. Don't process it.
3280 *
3281 * We should probably mark the filesystem as corrupt
3282 * after we've recovered all the ag's we can....
3283 */
3284 continue;
1da177e4
LT
3285 }
3286 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3287
3288 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3289 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3290 while (agino != NULLAGINO) {
1da177e4
LT
3291 /*
3292 * Release the agi buffer so that it can
3293 * be acquired in the normal course of the
3294 * transaction to truncate and free the inode.
3295 */
3296 xfs_buf_relse(agibp);
3297
23fac50f
CH
3298 agino = xlog_recover_process_one_iunlink(mp,
3299 agno, agino, bucket);
1da177e4
LT
3300
3301 /*
3302 * Reacquire the agibuffer and continue around
5e1be0fb
CH
3303 * the loop. This should never fail as we know
3304 * the buffer was good earlier on.
1da177e4 3305 */
5e1be0fb
CH
3306 error = xfs_read_agi(mp, NULL, agno, &agibp);
3307 ASSERT(error == 0);
1da177e4 3308 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3309 }
3310 }
3311
3312 /*
3313 * Release the buffer for the current agi so we can
3314 * go on to the next one.
3315 */
3316 xfs_buf_relse(agibp);
3317 }
3318
3319 mp->m_dmevmask = mp_dmevmask;
3320}
3321
3322
3323#ifdef DEBUG
3324STATIC void
3325xlog_pack_data_checksum(
3326 xlog_t *log,
3327 xlog_in_core_t *iclog,
3328 int size)
3329{
3330 int i;
b53e675d 3331 __be32 *up;
1da177e4
LT
3332 uint chksum = 0;
3333
b53e675d 3334 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3335 /* divide length by 4 to get # words */
3336 for (i = 0; i < (size >> 2); i++) {
b53e675d 3337 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3338 up++;
3339 }
b53e675d 3340 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3341}
3342#else
3343#define xlog_pack_data_checksum(log, iclog, size)
3344#endif
3345
3346/*
3347 * Stamp cycle number in every block
3348 */
3349void
3350xlog_pack_data(
3351 xlog_t *log,
3352 xlog_in_core_t *iclog,
3353 int roundoff)
3354{
3355 int i, j, k;
3356 int size = iclog->ic_offset + roundoff;
b53e675d 3357 __be32 cycle_lsn;
1da177e4 3358 xfs_caddr_t dp;
1da177e4
LT
3359
3360 xlog_pack_data_checksum(log, iclog, size);
3361
3362 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3363
3364 dp = iclog->ic_datap;
3365 for (i = 0; i < BTOBB(size) &&
3366 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3367 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3368 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3369 dp += BBSIZE;
3370 }
3371
62118709 3372 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6
CH
3373 xlog_in_core_2_t *xhdr = iclog->ic_data;
3374
1da177e4
LT
3375 for ( ; i < BTOBB(size); i++) {
3376 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3377 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3378 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3379 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3380 dp += BBSIZE;
3381 }
3382
3383 for (i = 1; i < log->l_iclog_heads; i++) {
3384 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3385 }
3386 }
3387}
3388
1da177e4
LT
3389STATIC void
3390xlog_unpack_data(
3391 xlog_rec_header_t *rhead,
3392 xfs_caddr_t dp,
3393 xlog_t *log)
3394{
3395 int i, j, k;
1da177e4 3396
b53e675d 3397 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3398 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3399 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3400 dp += BBSIZE;
3401 }
3402
62118709 3403 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3404 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3405 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3406 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3407 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3408 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3409 dp += BBSIZE;
3410 }
3411 }
1da177e4
LT
3412}
3413
3414STATIC int
3415xlog_valid_rec_header(
3416 xlog_t *log,
3417 xlog_rec_header_t *rhead,
3418 xfs_daddr_t blkno)
3419{
3420 int hlen;
3421
b53e675d 3422 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
3423 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3424 XFS_ERRLEVEL_LOW, log->l_mp);
3425 return XFS_ERROR(EFSCORRUPTED);
3426 }
3427 if (unlikely(
3428 (!rhead->h_version ||
b53e675d 3429 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
1da177e4 3430 xlog_warn("XFS: %s: unrecognised log version (%d).",
34a622b2 3431 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3432 return XFS_ERROR(EIO);
3433 }
3434
3435 /* LR body must have data or it wouldn't have been written */
b53e675d 3436 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3437 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3438 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3439 XFS_ERRLEVEL_LOW, log->l_mp);
3440 return XFS_ERROR(EFSCORRUPTED);
3441 }
3442 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3443 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3444 XFS_ERRLEVEL_LOW, log->l_mp);
3445 return XFS_ERROR(EFSCORRUPTED);
3446 }
3447 return 0;
3448}
3449
3450/*
3451 * Read the log from tail to head and process the log records found.
3452 * Handle the two cases where the tail and head are in the same cycle
3453 * and where the active portion of the log wraps around the end of
3454 * the physical log separately. The pass parameter is passed through
3455 * to the routines called to process the data and is not looked at
3456 * here.
3457 */
3458STATIC int
3459xlog_do_recovery_pass(
3460 xlog_t *log,
3461 xfs_daddr_t head_blk,
3462 xfs_daddr_t tail_blk,
3463 int pass)
3464{
3465 xlog_rec_header_t *rhead;
3466 xfs_daddr_t blk_no;
fc5bc4c8 3467 xfs_caddr_t offset;
1da177e4
LT
3468 xfs_buf_t *hbp, *dbp;
3469 int error = 0, h_size;
3470 int bblks, split_bblks;
3471 int hblks, split_hblks, wrapped_hblks;
f0a76953 3472 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3473
3474 ASSERT(head_blk != tail_blk);
3475
3476 /*
3477 * Read the header of the tail block and get the iclog buffer size from
3478 * h_size. Use this to tell how many sectors make up the log header.
3479 */
62118709 3480 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3481 /*
3482 * When using variable length iclogs, read first sector of
3483 * iclog header and extract the header size from it. Get a
3484 * new hbp that is the correct size.
3485 */
3486 hbp = xlog_get_bp(log, 1);
3487 if (!hbp)
3488 return ENOMEM;
076e6acb
CH
3489
3490 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3491 if (error)
1da177e4 3492 goto bread_err1;
076e6acb 3493
1da177e4
LT
3494 rhead = (xlog_rec_header_t *)offset;
3495 error = xlog_valid_rec_header(log, rhead, tail_blk);
3496 if (error)
3497 goto bread_err1;
b53e675d
CH
3498 h_size = be32_to_cpu(rhead->h_size);
3499 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3500 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3501 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3502 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3503 hblks++;
3504 xlog_put_bp(hbp);
3505 hbp = xlog_get_bp(log, hblks);
3506 } else {
3507 hblks = 1;
3508 }
3509 } else {
69ce58f0 3510 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3511 hblks = 1;
3512 hbp = xlog_get_bp(log, 1);
3513 h_size = XLOG_BIG_RECORD_BSIZE;
3514 }
3515
3516 if (!hbp)
3517 return ENOMEM;
3518 dbp = xlog_get_bp(log, BTOBB(h_size));
3519 if (!dbp) {
3520 xlog_put_bp(hbp);
3521 return ENOMEM;
3522 }
3523
3524 memset(rhash, 0, sizeof(rhash));
3525 if (tail_blk <= head_blk) {
3526 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3527 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3528 if (error)
1da177e4 3529 goto bread_err2;
076e6acb 3530
1da177e4
LT
3531 rhead = (xlog_rec_header_t *)offset;
3532 error = xlog_valid_rec_header(log, rhead, blk_no);
3533 if (error)
3534 goto bread_err2;
3535
3536 /* blocks in data section */
b53e675d 3537 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3538 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3539 &offset);
1da177e4
LT
3540 if (error)
3541 goto bread_err2;
076e6acb 3542
1da177e4
LT
3543 xlog_unpack_data(rhead, offset, log);
3544 if ((error = xlog_recover_process_data(log,
3545 rhash, rhead, offset, pass)))
3546 goto bread_err2;
3547 blk_no += bblks + hblks;
3548 }
3549 } else {
3550 /*
3551 * Perform recovery around the end of the physical log.
3552 * When the head is not on the same cycle number as the tail,
3553 * we can't do a sequential recovery as above.
3554 */
3555 blk_no = tail_blk;
3556 while (blk_no < log->l_logBBsize) {
3557 /*
3558 * Check for header wrapping around physical end-of-log
3559 */
fc5bc4c8 3560 offset = XFS_BUF_PTR(hbp);
1da177e4
LT
3561 split_hblks = 0;
3562 wrapped_hblks = 0;
3563 if (blk_no + hblks <= log->l_logBBsize) {
3564 /* Read header in one read */
076e6acb
CH
3565 error = xlog_bread(log, blk_no, hblks, hbp,
3566 &offset);
1da177e4
LT
3567 if (error)
3568 goto bread_err2;
1da177e4
LT
3569 } else {
3570 /* This LR is split across physical log end */
3571 if (blk_no != log->l_logBBsize) {
3572 /* some data before physical log end */
3573 ASSERT(blk_no <= INT_MAX);
3574 split_hblks = log->l_logBBsize - (int)blk_no;
3575 ASSERT(split_hblks > 0);
076e6acb
CH
3576 error = xlog_bread(log, blk_no,
3577 split_hblks, hbp,
3578 &offset);
3579 if (error)
1da177e4 3580 goto bread_err2;
1da177e4 3581 }
076e6acb 3582
1da177e4
LT
3583 /*
3584 * Note: this black magic still works with
3585 * large sector sizes (non-512) only because:
3586 * - we increased the buffer size originally
3587 * by 1 sector giving us enough extra space
3588 * for the second read;
3589 * - the log start is guaranteed to be sector
3590 * aligned;
3591 * - we read the log end (LR header start)
3592 * _first_, then the log start (LR header end)
3593 * - order is important.
3594 */
234f56ac 3595 wrapped_hblks = hblks - split_hblks;
234f56ac 3596 error = XFS_BUF_SET_PTR(hbp,
fc5bc4c8 3597 offset + BBTOB(split_hblks),
1da177e4 3598 BBTOB(hblks - split_hblks));
076e6acb
CH
3599 if (error)
3600 goto bread_err2;
3601
3602 error = xlog_bread_noalign(log, 0,
3603 wrapped_hblks, hbp);
3604 if (error)
3605 goto bread_err2;
3606
fc5bc4c8 3607 error = XFS_BUF_SET_PTR(hbp, offset,
234f56ac 3608 BBTOB(hblks));
1da177e4
LT
3609 if (error)
3610 goto bread_err2;
1da177e4
LT
3611 }
3612 rhead = (xlog_rec_header_t *)offset;
3613 error = xlog_valid_rec_header(log, rhead,
3614 split_hblks ? blk_no : 0);
3615 if (error)
3616 goto bread_err2;
3617
b53e675d 3618 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3619 blk_no += hblks;
3620
3621 /* Read in data for log record */
3622 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3623 error = xlog_bread(log, blk_no, bblks, dbp,
3624 &offset);
1da177e4
LT
3625 if (error)
3626 goto bread_err2;
1da177e4
LT
3627 } else {
3628 /* This log record is split across the
3629 * physical end of log */
fc5bc4c8 3630 offset = XFS_BUF_PTR(dbp);
1da177e4
LT
3631 split_bblks = 0;
3632 if (blk_no != log->l_logBBsize) {
3633 /* some data is before the physical
3634 * end of log */
3635 ASSERT(!wrapped_hblks);
3636 ASSERT(blk_no <= INT_MAX);
3637 split_bblks =
3638 log->l_logBBsize - (int)blk_no;
3639 ASSERT(split_bblks > 0);
076e6acb
CH
3640 error = xlog_bread(log, blk_no,
3641 split_bblks, dbp,
3642 &offset);
3643 if (error)
1da177e4 3644 goto bread_err2;
1da177e4 3645 }
076e6acb 3646
1da177e4
LT
3647 /*
3648 * Note: this black magic still works with
3649 * large sector sizes (non-512) only because:
3650 * - we increased the buffer size originally
3651 * by 1 sector giving us enough extra space
3652 * for the second read;
3653 * - the log start is guaranteed to be sector
3654 * aligned;
3655 * - we read the log end (LR header start)
3656 * _first_, then the log start (LR header end)
3657 * - order is important.
3658 */
234f56ac 3659 error = XFS_BUF_SET_PTR(dbp,
fc5bc4c8 3660 offset + BBTOB(split_bblks),
1da177e4 3661 BBTOB(bblks - split_bblks));
234f56ac 3662 if (error)
1da177e4 3663 goto bread_err2;
076e6acb
CH
3664
3665 error = xlog_bread_noalign(log, wrapped_hblks,
3666 bblks - split_bblks,
3667 dbp);
3668 if (error)
3669 goto bread_err2;
3670
fc5bc4c8 3671 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
076e6acb
CH
3672 if (error)
3673 goto bread_err2;
1da177e4
LT
3674 }
3675 xlog_unpack_data(rhead, offset, log);
3676 if ((error = xlog_recover_process_data(log, rhash,
3677 rhead, offset, pass)))
3678 goto bread_err2;
3679 blk_no += bblks;
3680 }
3681
3682 ASSERT(blk_no >= log->l_logBBsize);
3683 blk_no -= log->l_logBBsize;
3684
3685 /* read first part of physical log */
3686 while (blk_no < head_blk) {
076e6acb
CH
3687 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3688 if (error)
1da177e4 3689 goto bread_err2;
076e6acb 3690
1da177e4
LT
3691 rhead = (xlog_rec_header_t *)offset;
3692 error = xlog_valid_rec_header(log, rhead, blk_no);
3693 if (error)
3694 goto bread_err2;
076e6acb 3695
b53e675d 3696 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3697 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3698 &offset);
3699 if (error)
1da177e4 3700 goto bread_err2;
076e6acb 3701
1da177e4
LT
3702 xlog_unpack_data(rhead, offset, log);
3703 if ((error = xlog_recover_process_data(log, rhash,
3704 rhead, offset, pass)))
3705 goto bread_err2;
3706 blk_no += bblks + hblks;
3707 }
3708 }
3709
3710 bread_err2:
3711 xlog_put_bp(dbp);
3712 bread_err1:
3713 xlog_put_bp(hbp);
3714 return error;
3715}
3716
3717/*
3718 * Do the recovery of the log. We actually do this in two phases.
3719 * The two passes are necessary in order to implement the function
3720 * of cancelling a record written into the log. The first pass
3721 * determines those things which have been cancelled, and the
3722 * second pass replays log items normally except for those which
3723 * have been cancelled. The handling of the replay and cancellations
3724 * takes place in the log item type specific routines.
3725 *
3726 * The table of items which have cancel records in the log is allocated
3727 * and freed at this level, since only here do we know when all of
3728 * the log recovery has been completed.
3729 */
3730STATIC int
3731xlog_do_log_recovery(
3732 xlog_t *log,
3733 xfs_daddr_t head_blk,
3734 xfs_daddr_t tail_blk)
3735{
3736 int error;
3737
3738 ASSERT(head_blk != tail_blk);
3739
3740 /*
3741 * First do a pass to find all of the cancelled buf log items.
3742 * Store them in the buf_cancel_table for use in the second pass.
3743 */
3744 log->l_buf_cancel_table =
3745 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3746 sizeof(xfs_buf_cancel_t*),
3747 KM_SLEEP);
3748 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3749 XLOG_RECOVER_PASS1);
3750 if (error != 0) {
f0e2d93c 3751 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3752 log->l_buf_cancel_table = NULL;
3753 return error;
3754 }
3755 /*
3756 * Then do a second pass to actually recover the items in the log.
3757 * When it is complete free the table of buf cancel items.
3758 */
3759 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3760 XLOG_RECOVER_PASS2);
3761#ifdef DEBUG
6d192a9b 3762 if (!error) {
1da177e4
LT
3763 int i;
3764
3765 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3766 ASSERT(log->l_buf_cancel_table[i] == NULL);
3767 }
3768#endif /* DEBUG */
3769
f0e2d93c 3770 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3771 log->l_buf_cancel_table = NULL;
3772
3773 return error;
3774}
3775
3776/*
3777 * Do the actual recovery
3778 */
3779STATIC int
3780xlog_do_recover(
3781 xlog_t *log,
3782 xfs_daddr_t head_blk,
3783 xfs_daddr_t tail_blk)
3784{
3785 int error;
3786 xfs_buf_t *bp;
3787 xfs_sb_t *sbp;
3788
3789 /*
3790 * First replay the images in the log.
3791 */
3792 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3793 if (error) {
3794 return error;
3795 }
3796
3797 XFS_bflush(log->l_mp->m_ddev_targp);
3798
3799 /*
3800 * If IO errors happened during recovery, bail out.
3801 */
3802 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3803 return (EIO);
3804 }
3805
3806 /*
3807 * We now update the tail_lsn since much of the recovery has completed
3808 * and there may be space available to use. If there were no extent
3809 * or iunlinks, we can free up the entire log and set the tail_lsn to
3810 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3811 * lsn of the last known good LR on disk. If there are extent frees
3812 * or iunlinks they will have some entries in the AIL; so we look at
3813 * the AIL to determine how to set the tail_lsn.
3814 */
3815 xlog_assign_tail_lsn(log->l_mp);
3816
3817 /*
3818 * Now that we've finished replaying all buffer and inode
3819 * updates, re-read in the superblock.
3820 */
3821 bp = xfs_getsb(log->l_mp, 0);
3822 XFS_BUF_UNDONE(bp);
bebf963f
LM
3823 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3824 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
1da177e4 3825 XFS_BUF_READ(bp);
bebf963f 3826 XFS_BUF_UNASYNC(bp);
1da177e4 3827 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
3828 error = xfs_iowait(bp);
3829 if (error) {
1da177e4
LT
3830 xfs_ioerror_alert("xlog_do_recover",
3831 log->l_mp, bp, XFS_BUF_ADDR(bp));
3832 ASSERT(0);
3833 xfs_buf_relse(bp);
3834 return error;
3835 }
3836
3837 /* Convert superblock from on-disk format */
3838 sbp = &log->l_mp->m_sb;
2bdf7cd0 3839 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3840 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3841 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3842 xfs_buf_relse(bp);
3843
5478eead
LM
3844 /* We've re-read the superblock so re-initialize per-cpu counters */
3845 xfs_icsb_reinit_counters(log->l_mp);
3846
1da177e4
LT
3847 xlog_recover_check_summary(log);
3848
3849 /* Normal transactions can now occur */
3850 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3851 return 0;
3852}
3853
3854/*
3855 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3856 *
3857 * Return error or zero.
3858 */
3859int
3860xlog_recover(
65be6054 3861 xlog_t *log)
1da177e4
LT
3862{
3863 xfs_daddr_t head_blk, tail_blk;
3864 int error;
3865
3866 /* find the tail of the log */
65be6054 3867 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3868 return error;
3869
3870 if (tail_blk != head_blk) {
3871 /* There used to be a comment here:
3872 *
3873 * disallow recovery on read-only mounts. note -- mount
3874 * checks for ENOSPC and turns it into an intelligent
3875 * error message.
3876 * ...but this is no longer true. Now, unless you specify
3877 * NORECOVERY (in which case this function would never be
3878 * called), we just go ahead and recover. We do this all
3879 * under the vfs layer, so we can get away with it unless
3880 * the device itself is read-only, in which case we fail.
3881 */
3a02ee18 3882 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3883 return error;
3884 }
3885
3886 cmn_err(CE_NOTE,
fc1f8c1c
NS
3887 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3888 log->l_mp->m_fsname, log->l_mp->m_logname ?
3889 log->l_mp->m_logname : "internal");
1da177e4
LT
3890
3891 error = xlog_do_recover(log, head_blk, tail_blk);
3892 log->l_flags |= XLOG_RECOVERY_NEEDED;
3893 }
3894 return error;
3895}
3896
3897/*
3898 * In the first part of recovery we replay inodes and buffers and build
3899 * up the list of extent free items which need to be processed. Here
3900 * we process the extent free items and clean up the on disk unlinked
3901 * inode lists. This is separated from the first part of recovery so
3902 * that the root and real-time bitmap inodes can be read in from disk in
3903 * between the two stages. This is necessary so that we can free space
3904 * in the real-time portion of the file system.
3905 */
3906int
3907xlog_recover_finish(
4249023a 3908 xlog_t *log)
1da177e4
LT
3909{
3910 /*
3911 * Now we're ready to do the transactions needed for the
3912 * rest of recovery. Start with completing all the extent
3913 * free intent records and then process the unlinked inode
3914 * lists. At this point, we essentially run in normal mode
3915 * except that we're still performing recovery actions
3916 * rather than accepting new requests.
3917 */
3918 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3919 int error;
3920 error = xlog_recover_process_efis(log);
3921 if (error) {
3922 cmn_err(CE_ALERT,
3923 "Failed to recover EFIs on filesystem: %s",
3924 log->l_mp->m_fsname);
3925 return error;
3926 }
1da177e4
LT
3927 /*
3928 * Sync the log to get all the EFIs out of the AIL.
3929 * This isn't absolutely necessary, but it helps in
3930 * case the unlink transactions would have problems
3931 * pushing the EFIs out of the way.
3932 */
a14a348b 3933 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 3934
4249023a 3935 xlog_recover_process_iunlinks(log);
1da177e4
LT
3936
3937 xlog_recover_check_summary(log);
3938
3939 cmn_err(CE_NOTE,
fc1f8c1c
NS
3940 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3941 log->l_mp->m_fsname, log->l_mp->m_logname ?
3942 log->l_mp->m_logname : "internal");
1da177e4
LT
3943 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3944 } else {
3945 cmn_err(CE_DEBUG,
b6574520 3946 "!Ending clean XFS mount for filesystem: %s\n",
1da177e4
LT
3947 log->l_mp->m_fsname);
3948 }
3949 return 0;
3950}
3951
3952
3953#if defined(DEBUG)
3954/*
3955 * Read all of the agf and agi counters and check that they
3956 * are consistent with the superblock counters.
3957 */
3958void
3959xlog_recover_check_summary(
3960 xlog_t *log)
3961{
3962 xfs_mount_t *mp;
3963 xfs_agf_t *agfp;
1da177e4
LT
3964 xfs_buf_t *agfbp;
3965 xfs_buf_t *agibp;
1da177e4
LT
3966 xfs_agnumber_t agno;
3967 __uint64_t freeblks;
3968 __uint64_t itotal;
3969 __uint64_t ifree;
5e1be0fb 3970 int error;
1da177e4
LT
3971
3972 mp = log->l_mp;
3973
3974 freeblks = 0LL;
3975 itotal = 0LL;
3976 ifree = 0LL;
3977 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
3978 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3979 if (error) {
3980 xfs_fs_cmn_err(CE_ALERT, mp,
3981 "xlog_recover_check_summary(agf)"
3982 "agf read failed agno %d error %d",
3983 agno, error);
3984 } else {
3985 agfp = XFS_BUF_TO_AGF(agfbp);
3986 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3987 be32_to_cpu(agfp->agf_flcount);
3988 xfs_buf_relse(agfbp);
1da177e4 3989 }
1da177e4 3990
5e1be0fb
CH
3991 error = xfs_read_agi(mp, NULL, agno, &agibp);
3992 if (!error) {
3993 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3994
5e1be0fb
CH
3995 itotal += be32_to_cpu(agi->agi_count);
3996 ifree += be32_to_cpu(agi->agi_freecount);
3997 xfs_buf_relse(agibp);
3998 }
1da177e4 3999 }
1da177e4
LT
4000}
4001#endif /* DEBUG */
This page took 0.678691 seconds and 5 git commands to generate.