xfs: add const qualifiers to xfs error function args
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_bmap_btree.h"
a844f451
NS
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
1da177e4 34#include "xfs_dir2_sf.h"
a844f451 35#include "xfs_attr_sf.h"
1da177e4 36#include "xfs_dinode.h"
1da177e4 37#include "xfs_inode.h"
a844f451 38#include "xfs_inode_item.h"
a844f451 39#include "xfs_alloc.h"
1da177e4
LT
40#include "xfs_ialloc.h"
41#include "xfs_log_priv.h"
42#include "xfs_buf_item.h"
1da177e4
LT
43#include "xfs_log_recover.h"
44#include "xfs_extfree_item.h"
45#include "xfs_trans_priv.h"
1da177e4
LT
46#include "xfs_quota.h"
47#include "xfs_rw.h"
43355099 48#include "xfs_utils.h"
0b1b213f 49#include "xfs_trace.h"
1da177e4
LT
50
51STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
1da177e4
LT
53#if defined(DEBUG)
54STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
55#else
56#define xlog_recover_check_summary(log)
1da177e4
LT
57#endif
58
59
60/*
61 * Sector aligned buffer routines for buffer create/read/write/access
62 */
63
64#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
65 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
66 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
67#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
68
5d77c0dc 69STATIC xfs_buf_t *
1da177e4
LT
70xlog_get_bp(
71 xlog_t *log,
3228149c 72 int nbblks)
1da177e4 73{
3228149c
DC
74 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
75 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
76 XFS_ERROR_REPORT("xlog_get_bp(1)",
77 XFS_ERRLEVEL_HIGH, log->l_mp);
78 return NULL;
79 }
1da177e4
LT
80
81 if (log->l_sectbb_log) {
3228149c
DC
82 if (nbblks > 1)
83 nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
84 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
1da177e4 85 }
3228149c 86 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
1da177e4
LT
87}
88
5d77c0dc 89STATIC void
1da177e4
LT
90xlog_put_bp(
91 xfs_buf_t *bp)
92{
93 xfs_buf_free(bp);
94}
95
076e6acb
CH
96STATIC xfs_caddr_t
97xlog_align(
98 xlog_t *log,
99 xfs_daddr_t blk_no,
100 int nbblks,
101 xfs_buf_t *bp)
102{
103 xfs_caddr_t ptr;
104
105 if (!log->l_sectbb_log)
106 return XFS_BUF_PTR(bp);
107
108 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
109 ASSERT(XFS_BUF_SIZE(bp) >=
110 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
111 return ptr;
112}
113
1da177e4
LT
114
115/*
116 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
117 */
076e6acb
CH
118STATIC int
119xlog_bread_noalign(
1da177e4
LT
120 xlog_t *log,
121 xfs_daddr_t blk_no,
122 int nbblks,
123 xfs_buf_t *bp)
124{
125 int error;
126
3228149c
DC
127 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
128 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
129 XFS_ERROR_REPORT("xlog_bread(1)",
130 XFS_ERRLEVEL_HIGH, log->l_mp);
131 return EFSCORRUPTED;
132 }
133
1da177e4
LT
134 if (log->l_sectbb_log) {
135 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
136 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
137 }
138
139 ASSERT(nbblks > 0);
140 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
141 ASSERT(bp);
142
143 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
144 XFS_BUF_READ(bp);
145 XFS_BUF_BUSY(bp);
146 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
147 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
148
149 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
150 error = xfs_iowait(bp);
151 if (error)
1da177e4
LT
152 xfs_ioerror_alert("xlog_bread", log->l_mp,
153 bp, XFS_BUF_ADDR(bp));
154 return error;
155}
156
076e6acb
CH
157STATIC int
158xlog_bread(
159 xlog_t *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 xfs_buf_t *bp,
163 xfs_caddr_t *offset)
164{
165 int error;
166
167 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
168 if (error)
169 return error;
170
171 *offset = xlog_align(log, blk_no, nbblks, bp);
172 return 0;
173}
174
1da177e4
LT
175/*
176 * Write out the buffer at the given block for the given number of blocks.
177 * The buffer is kept locked across the write and is returned locked.
178 * This can only be used for synchronous log writes.
179 */
ba0f32d4 180STATIC int
1da177e4
LT
181xlog_bwrite(
182 xlog_t *log,
183 xfs_daddr_t blk_no,
184 int nbblks,
185 xfs_buf_t *bp)
186{
187 int error;
188
3228149c
DC
189 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
190 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
191 XFS_ERROR_REPORT("xlog_bwrite(1)",
192 XFS_ERRLEVEL_HIGH, log->l_mp);
193 return EFSCORRUPTED;
194 }
195
1da177e4
LT
196 if (log->l_sectbb_log) {
197 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
198 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
199 }
200
201 ASSERT(nbblks > 0);
202 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
203
204 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
205 XFS_BUF_ZEROFLAGS(bp);
206 XFS_BUF_BUSY(bp);
207 XFS_BUF_HOLD(bp);
208 XFS_BUF_PSEMA(bp, PRIBIO);
209 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
210 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
211
212 if ((error = xfs_bwrite(log->l_mp, bp)))
213 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
214 bp, XFS_BUF_ADDR(bp));
215 return error;
216}
217
1da177e4
LT
218#ifdef DEBUG
219/*
220 * dump debug superblock and log record information
221 */
222STATIC void
223xlog_header_check_dump(
224 xfs_mount_t *mp,
225 xlog_rec_header_t *head)
226{
03daa57c
JP
227 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
228 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
229 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
230 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
231}
232#else
233#define xlog_header_check_dump(mp, head)
234#endif
235
236/*
237 * check log record header for recovery
238 */
239STATIC int
240xlog_header_check_recover(
241 xfs_mount_t *mp,
242 xlog_rec_header_t *head)
243{
b53e675d 244 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
245
246 /*
247 * IRIX doesn't write the h_fmt field and leaves it zeroed
248 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
249 * a dirty log created in IRIX.
250 */
b53e675d 251 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
1da177e4
LT
252 xlog_warn(
253 "XFS: dirty log written in incompatible format - can't recover");
254 xlog_header_check_dump(mp, head);
255 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
256 XFS_ERRLEVEL_HIGH, mp);
257 return XFS_ERROR(EFSCORRUPTED);
258 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
259 xlog_warn(
260 "XFS: dirty log entry has mismatched uuid - can't recover");
261 xlog_header_check_dump(mp, head);
262 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
263 XFS_ERRLEVEL_HIGH, mp);
264 return XFS_ERROR(EFSCORRUPTED);
265 }
266 return 0;
267}
268
269/*
270 * read the head block of the log and check the header
271 */
272STATIC int
273xlog_header_check_mount(
274 xfs_mount_t *mp,
275 xlog_rec_header_t *head)
276{
b53e675d 277 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
278
279 if (uuid_is_nil(&head->h_fs_uuid)) {
280 /*
281 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
282 * h_fs_uuid is nil, we assume this log was last mounted
283 * by IRIX and continue.
284 */
285 xlog_warn("XFS: nil uuid in log - IRIX style log");
286 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
287 xlog_warn("XFS: log has mismatched uuid - can't recover");
288 xlog_header_check_dump(mp, head);
289 XFS_ERROR_REPORT("xlog_header_check_mount",
290 XFS_ERRLEVEL_HIGH, mp);
291 return XFS_ERROR(EFSCORRUPTED);
292 }
293 return 0;
294}
295
296STATIC void
297xlog_recover_iodone(
298 struct xfs_buf *bp)
299{
1da177e4
LT
300 if (XFS_BUF_GETERROR(bp)) {
301 /*
302 * We're not going to bother about retrying
303 * this during recovery. One strike!
304 */
1da177e4 305 xfs_ioerror_alert("xlog_recover_iodone",
15ac08a8
CH
306 bp->b_mount, bp, XFS_BUF_ADDR(bp));
307 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1da177e4 308 }
15ac08a8 309 bp->b_mount = NULL;
1da177e4
LT
310 XFS_BUF_CLR_IODONE_FUNC(bp);
311 xfs_biodone(bp);
312}
313
314/*
315 * This routine finds (to an approximation) the first block in the physical
316 * log which contains the given cycle. It uses a binary search algorithm.
317 * Note that the algorithm can not be perfect because the disk will not
318 * necessarily be perfect.
319 */
a8272ce0 320STATIC int
1da177e4
LT
321xlog_find_cycle_start(
322 xlog_t *log,
323 xfs_buf_t *bp,
324 xfs_daddr_t first_blk,
325 xfs_daddr_t *last_blk,
326 uint cycle)
327{
328 xfs_caddr_t offset;
329 xfs_daddr_t mid_blk;
330 uint mid_cycle;
331 int error;
332
333 mid_blk = BLK_AVG(first_blk, *last_blk);
334 while (mid_blk != first_blk && mid_blk != *last_blk) {
076e6acb
CH
335 error = xlog_bread(log, mid_blk, 1, bp, &offset);
336 if (error)
1da177e4 337 return error;
03bea6fe 338 mid_cycle = xlog_get_cycle(offset);
1da177e4
LT
339 if (mid_cycle == cycle) {
340 *last_blk = mid_blk;
341 /* last_half_cycle == mid_cycle */
342 } else {
343 first_blk = mid_blk;
344 /* first_half_cycle == mid_cycle */
345 }
346 mid_blk = BLK_AVG(first_blk, *last_blk);
347 }
348 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
349 (mid_blk == *last_blk && mid_blk-1 == first_blk));
350
351 return 0;
352}
353
354/*
355 * Check that the range of blocks does not contain the cycle number
356 * given. The scan needs to occur from front to back and the ptr into the
357 * region must be updated since a later routine will need to perform another
358 * test. If the region is completely good, we end up returning the same
359 * last block number.
360 *
361 * Set blkno to -1 if we encounter no errors. This is an invalid block number
362 * since we don't ever expect logs to get this large.
363 */
364STATIC int
365xlog_find_verify_cycle(
366 xlog_t *log,
367 xfs_daddr_t start_blk,
368 int nbblks,
369 uint stop_on_cycle_no,
370 xfs_daddr_t *new_blk)
371{
372 xfs_daddr_t i, j;
373 uint cycle;
374 xfs_buf_t *bp;
375 xfs_daddr_t bufblks;
376 xfs_caddr_t buf = NULL;
377 int error = 0;
378
379 bufblks = 1 << ffs(nbblks);
380
381 while (!(bp = xlog_get_bp(log, bufblks))) {
382 /* can't get enough memory to do everything in one big buffer */
383 bufblks >>= 1;
384 if (bufblks <= log->l_sectbb_log)
385 return ENOMEM;
386 }
387
388 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
389 int bcount;
390
391 bcount = min(bufblks, (start_blk + nbblks - i));
392
076e6acb
CH
393 error = xlog_bread(log, i, bcount, bp, &buf);
394 if (error)
1da177e4
LT
395 goto out;
396
1da177e4 397 for (j = 0; j < bcount; j++) {
03bea6fe 398 cycle = xlog_get_cycle(buf);
1da177e4
LT
399 if (cycle == stop_on_cycle_no) {
400 *new_blk = i+j;
401 goto out;
402 }
403
404 buf += BBSIZE;
405 }
406 }
407
408 *new_blk = -1;
409
410out:
411 xlog_put_bp(bp);
412 return error;
413}
414
415/*
416 * Potentially backup over partial log record write.
417 *
418 * In the typical case, last_blk is the number of the block directly after
419 * a good log record. Therefore, we subtract one to get the block number
420 * of the last block in the given buffer. extra_bblks contains the number
421 * of blocks we would have read on a previous read. This happens when the
422 * last log record is split over the end of the physical log.
423 *
424 * extra_bblks is the number of blocks potentially verified on a previous
425 * call to this routine.
426 */
427STATIC int
428xlog_find_verify_log_record(
429 xlog_t *log,
430 xfs_daddr_t start_blk,
431 xfs_daddr_t *last_blk,
432 int extra_bblks)
433{
434 xfs_daddr_t i;
435 xfs_buf_t *bp;
436 xfs_caddr_t offset = NULL;
437 xlog_rec_header_t *head = NULL;
438 int error = 0;
439 int smallmem = 0;
440 int num_blks = *last_blk - start_blk;
441 int xhdrs;
442
443 ASSERT(start_blk != 0 || *last_blk != start_blk);
444
445 if (!(bp = xlog_get_bp(log, num_blks))) {
446 if (!(bp = xlog_get_bp(log, 1)))
447 return ENOMEM;
448 smallmem = 1;
449 } else {
076e6acb
CH
450 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
451 if (error)
1da177e4 452 goto out;
1da177e4
LT
453 offset += ((num_blks - 1) << BBSHIFT);
454 }
455
456 for (i = (*last_blk) - 1; i >= 0; i--) {
457 if (i < start_blk) {
458 /* valid log record not found */
459 xlog_warn(
460 "XFS: Log inconsistent (didn't find previous header)");
461 ASSERT(0);
462 error = XFS_ERROR(EIO);
463 goto out;
464 }
465
466 if (smallmem) {
076e6acb
CH
467 error = xlog_bread(log, i, 1, bp, &offset);
468 if (error)
1da177e4 469 goto out;
1da177e4
LT
470 }
471
472 head = (xlog_rec_header_t *)offset;
473
b53e675d 474 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
1da177e4
LT
475 break;
476
477 if (!smallmem)
478 offset -= BBSIZE;
479 }
480
481 /*
482 * We hit the beginning of the physical log & still no header. Return
483 * to caller. If caller can handle a return of -1, then this routine
484 * will be called again for the end of the physical log.
485 */
486 if (i == -1) {
487 error = -1;
488 goto out;
489 }
490
491 /*
492 * We have the final block of the good log (the first block
493 * of the log record _before_ the head. So we check the uuid.
494 */
495 if ((error = xlog_header_check_mount(log->l_mp, head)))
496 goto out;
497
498 /*
499 * We may have found a log record header before we expected one.
500 * last_blk will be the 1st block # with a given cycle #. We may end
501 * up reading an entire log record. In this case, we don't want to
502 * reset last_blk. Only when last_blk points in the middle of a log
503 * record do we update last_blk.
504 */
62118709 505 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 506 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
507
508 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
509 if (h_size % XLOG_HEADER_CYCLE_SIZE)
510 xhdrs++;
511 } else {
512 xhdrs = 1;
513 }
514
b53e675d
CH
515 if (*last_blk - i + extra_bblks !=
516 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
517 *last_blk = i;
518
519out:
520 xlog_put_bp(bp);
521 return error;
522}
523
524/*
525 * Head is defined to be the point of the log where the next log write
526 * write could go. This means that incomplete LR writes at the end are
527 * eliminated when calculating the head. We aren't guaranteed that previous
528 * LR have complete transactions. We only know that a cycle number of
529 * current cycle number -1 won't be present in the log if we start writing
530 * from our current block number.
531 *
532 * last_blk contains the block number of the first block with a given
533 * cycle number.
534 *
535 * Return: zero if normal, non-zero if error.
536 */
ba0f32d4 537STATIC int
1da177e4
LT
538xlog_find_head(
539 xlog_t *log,
540 xfs_daddr_t *return_head_blk)
541{
542 xfs_buf_t *bp;
543 xfs_caddr_t offset;
544 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
545 int num_scan_bblks;
546 uint first_half_cycle, last_half_cycle;
547 uint stop_on_cycle;
548 int error, log_bbnum = log->l_logBBsize;
549
550 /* Is the end of the log device zeroed? */
551 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
552 *return_head_blk = first_blk;
553
554 /* Is the whole lot zeroed? */
555 if (!first_blk) {
556 /* Linux XFS shouldn't generate totally zeroed logs -
557 * mkfs etc write a dummy unmount record to a fresh
558 * log so we can store the uuid in there
559 */
560 xlog_warn("XFS: totally zeroed log");
561 }
562
563 return 0;
564 } else if (error) {
565 xlog_warn("XFS: empty log check failed");
566 return error;
567 }
568
569 first_blk = 0; /* get cycle # of 1st block */
570 bp = xlog_get_bp(log, 1);
571 if (!bp)
572 return ENOMEM;
076e6acb
CH
573
574 error = xlog_bread(log, 0, 1, bp, &offset);
575 if (error)
1da177e4 576 goto bp_err;
076e6acb 577
03bea6fe 578 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
579
580 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
581 error = xlog_bread(log, last_blk, 1, bp, &offset);
582 if (error)
1da177e4 583 goto bp_err;
076e6acb 584
03bea6fe 585 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
586 ASSERT(last_half_cycle != 0);
587
588 /*
589 * If the 1st half cycle number is equal to the last half cycle number,
590 * then the entire log is stamped with the same cycle number. In this
591 * case, head_blk can't be set to zero (which makes sense). The below
592 * math doesn't work out properly with head_blk equal to zero. Instead,
593 * we set it to log_bbnum which is an invalid block number, but this
594 * value makes the math correct. If head_blk doesn't changed through
595 * all the tests below, *head_blk is set to zero at the very end rather
596 * than log_bbnum. In a sense, log_bbnum and zero are the same block
597 * in a circular file.
598 */
599 if (first_half_cycle == last_half_cycle) {
600 /*
601 * In this case we believe that the entire log should have
602 * cycle number last_half_cycle. We need to scan backwards
603 * from the end verifying that there are no holes still
604 * containing last_half_cycle - 1. If we find such a hole,
605 * then the start of that hole will be the new head. The
606 * simple case looks like
607 * x | x ... | x - 1 | x
608 * Another case that fits this picture would be
609 * x | x + 1 | x ... | x
c41564b5 610 * In this case the head really is somewhere at the end of the
1da177e4
LT
611 * log, as one of the latest writes at the beginning was
612 * incomplete.
613 * One more case is
614 * x | x + 1 | x ... | x - 1 | x
615 * This is really the combination of the above two cases, and
616 * the head has to end up at the start of the x-1 hole at the
617 * end of the log.
618 *
619 * In the 256k log case, we will read from the beginning to the
620 * end of the log and search for cycle numbers equal to x-1.
621 * We don't worry about the x+1 blocks that we encounter,
622 * because we know that they cannot be the head since the log
623 * started with x.
624 */
625 head_blk = log_bbnum;
626 stop_on_cycle = last_half_cycle - 1;
627 } else {
628 /*
629 * In this case we want to find the first block with cycle
630 * number matching last_half_cycle. We expect the log to be
631 * some variation on
632 * x + 1 ... | x ...
633 * The first block with cycle number x (last_half_cycle) will
634 * be where the new head belongs. First we do a binary search
635 * for the first occurrence of last_half_cycle. The binary
636 * search may not be totally accurate, so then we scan back
637 * from there looking for occurrences of last_half_cycle before
638 * us. If that backwards scan wraps around the beginning of
639 * the log, then we look for occurrences of last_half_cycle - 1
640 * at the end of the log. The cases we're looking for look
641 * like
642 * x + 1 ... | x | x + 1 | x ...
643 * ^ binary search stopped here
644 * or
645 * x + 1 ... | x ... | x - 1 | x
646 * <---------> less than scan distance
647 */
648 stop_on_cycle = last_half_cycle;
649 if ((error = xlog_find_cycle_start(log, bp, first_blk,
650 &head_blk, last_half_cycle)))
651 goto bp_err;
652 }
653
654 /*
655 * Now validate the answer. Scan back some number of maximum possible
656 * blocks and make sure each one has the expected cycle number. The
657 * maximum is determined by the total possible amount of buffering
658 * in the in-core log. The following number can be made tighter if
659 * we actually look at the block size of the filesystem.
660 */
661 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
662 if (head_blk >= num_scan_bblks) {
663 /*
664 * We are guaranteed that the entire check can be performed
665 * in one buffer.
666 */
667 start_blk = head_blk - num_scan_bblks;
668 if ((error = xlog_find_verify_cycle(log,
669 start_blk, num_scan_bblks,
670 stop_on_cycle, &new_blk)))
671 goto bp_err;
672 if (new_blk != -1)
673 head_blk = new_blk;
674 } else { /* need to read 2 parts of log */
675 /*
676 * We are going to scan backwards in the log in two parts.
677 * First we scan the physical end of the log. In this part
678 * of the log, we are looking for blocks with cycle number
679 * last_half_cycle - 1.
680 * If we find one, then we know that the log starts there, as
681 * we've found a hole that didn't get written in going around
682 * the end of the physical log. The simple case for this is
683 * x + 1 ... | x ... | x - 1 | x
684 * <---------> less than scan distance
685 * If all of the blocks at the end of the log have cycle number
686 * last_half_cycle, then we check the blocks at the start of
687 * the log looking for occurrences of last_half_cycle. If we
688 * find one, then our current estimate for the location of the
689 * first occurrence of last_half_cycle is wrong and we move
690 * back to the hole we've found. This case looks like
691 * x + 1 ... | x | x + 1 | x ...
692 * ^ binary search stopped here
693 * Another case we need to handle that only occurs in 256k
694 * logs is
695 * x + 1 ... | x ... | x+1 | x ...
696 * ^ binary search stops here
697 * In a 256k log, the scan at the end of the log will see the
698 * x + 1 blocks. We need to skip past those since that is
699 * certainly not the head of the log. By searching for
700 * last_half_cycle-1 we accomplish that.
701 */
702 start_blk = log_bbnum - num_scan_bblks + head_blk;
703 ASSERT(head_blk <= INT_MAX &&
704 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
705 if ((error = xlog_find_verify_cycle(log, start_blk,
706 num_scan_bblks - (int)head_blk,
707 (stop_on_cycle - 1), &new_blk)))
708 goto bp_err;
709 if (new_blk != -1) {
710 head_blk = new_blk;
711 goto bad_blk;
712 }
713
714 /*
715 * Scan beginning of log now. The last part of the physical
716 * log is good. This scan needs to verify that it doesn't find
717 * the last_half_cycle.
718 */
719 start_blk = 0;
720 ASSERT(head_blk <= INT_MAX);
721 if ((error = xlog_find_verify_cycle(log,
722 start_blk, (int)head_blk,
723 stop_on_cycle, &new_blk)))
724 goto bp_err;
725 if (new_blk != -1)
726 head_blk = new_blk;
727 }
728
729 bad_blk:
730 /*
731 * Now we need to make sure head_blk is not pointing to a block in
732 * the middle of a log record.
733 */
734 num_scan_bblks = XLOG_REC_SHIFT(log);
735 if (head_blk >= num_scan_bblks) {
736 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
737
738 /* start ptr at last block ptr before head_blk */
739 if ((error = xlog_find_verify_log_record(log, start_blk,
740 &head_blk, 0)) == -1) {
741 error = XFS_ERROR(EIO);
742 goto bp_err;
743 } else if (error)
744 goto bp_err;
745 } else {
746 start_blk = 0;
747 ASSERT(head_blk <= INT_MAX);
748 if ((error = xlog_find_verify_log_record(log, start_blk,
749 &head_blk, 0)) == -1) {
750 /* We hit the beginning of the log during our search */
751 start_blk = log_bbnum - num_scan_bblks + head_blk;
752 new_blk = log_bbnum;
753 ASSERT(start_blk <= INT_MAX &&
754 (xfs_daddr_t) log_bbnum-start_blk >= 0);
755 ASSERT(head_blk <= INT_MAX);
756 if ((error = xlog_find_verify_log_record(log,
757 start_blk, &new_blk,
758 (int)head_blk)) == -1) {
759 error = XFS_ERROR(EIO);
760 goto bp_err;
761 } else if (error)
762 goto bp_err;
763 if (new_blk != log_bbnum)
764 head_blk = new_blk;
765 } else if (error)
766 goto bp_err;
767 }
768
769 xlog_put_bp(bp);
770 if (head_blk == log_bbnum)
771 *return_head_blk = 0;
772 else
773 *return_head_blk = head_blk;
774 /*
775 * When returning here, we have a good block number. Bad block
776 * means that during a previous crash, we didn't have a clean break
777 * from cycle number N to cycle number N-1. In this case, we need
778 * to find the first block with cycle number N-1.
779 */
780 return 0;
781
782 bp_err:
783 xlog_put_bp(bp);
784
785 if (error)
786 xlog_warn("XFS: failed to find log head");
787 return error;
788}
789
790/*
791 * Find the sync block number or the tail of the log.
792 *
793 * This will be the block number of the last record to have its
794 * associated buffers synced to disk. Every log record header has
795 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
796 * to get a sync block number. The only concern is to figure out which
797 * log record header to believe.
798 *
799 * The following algorithm uses the log record header with the largest
800 * lsn. The entire log record does not need to be valid. We only care
801 * that the header is valid.
802 *
803 * We could speed up search by using current head_blk buffer, but it is not
804 * available.
805 */
5d77c0dc 806STATIC int
1da177e4
LT
807xlog_find_tail(
808 xlog_t *log,
809 xfs_daddr_t *head_blk,
65be6054 810 xfs_daddr_t *tail_blk)
1da177e4
LT
811{
812 xlog_rec_header_t *rhead;
813 xlog_op_header_t *op_head;
814 xfs_caddr_t offset = NULL;
815 xfs_buf_t *bp;
816 int error, i, found;
817 xfs_daddr_t umount_data_blk;
818 xfs_daddr_t after_umount_blk;
819 xfs_lsn_t tail_lsn;
820 int hblks;
821
822 found = 0;
823
824 /*
825 * Find previous log record
826 */
827 if ((error = xlog_find_head(log, head_blk)))
828 return error;
829
830 bp = xlog_get_bp(log, 1);
831 if (!bp)
832 return ENOMEM;
833 if (*head_blk == 0) { /* special case */
076e6acb
CH
834 error = xlog_bread(log, 0, 1, bp, &offset);
835 if (error)
1da177e4 836 goto bread_err;
076e6acb 837
03bea6fe 838 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
839 *tail_blk = 0;
840 /* leave all other log inited values alone */
841 goto exit;
842 }
843 }
844
845 /*
846 * Search backwards looking for log record header block
847 */
848 ASSERT(*head_blk < INT_MAX);
849 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
850 error = xlog_bread(log, i, 1, bp, &offset);
851 if (error)
1da177e4 852 goto bread_err;
076e6acb 853
b53e675d 854 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
855 found = 1;
856 break;
857 }
858 }
859 /*
860 * If we haven't found the log record header block, start looking
861 * again from the end of the physical log. XXXmiken: There should be
862 * a check here to make sure we didn't search more than N blocks in
863 * the previous code.
864 */
865 if (!found) {
866 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
867 error = xlog_bread(log, i, 1, bp, &offset);
868 if (error)
1da177e4 869 goto bread_err;
076e6acb 870
1da177e4 871 if (XLOG_HEADER_MAGIC_NUM ==
b53e675d 872 be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
873 found = 2;
874 break;
875 }
876 }
877 }
878 if (!found) {
879 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
880 ASSERT(0);
881 return XFS_ERROR(EIO);
882 }
883
884 /* find blk_no of tail of log */
885 rhead = (xlog_rec_header_t *)offset;
b53e675d 886 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
887
888 /*
889 * Reset log values according to the state of the log when we
890 * crashed. In the case where head_blk == 0, we bump curr_cycle
891 * one because the next write starts a new cycle rather than
892 * continuing the cycle of the last good log record. At this
893 * point we have guaranteed that all partial log records have been
894 * accounted for. Therefore, we know that the last good log record
895 * written was complete and ended exactly on the end boundary
896 * of the physical log.
897 */
898 log->l_prev_block = i;
899 log->l_curr_block = (int)*head_blk;
b53e675d 900 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
901 if (found == 2)
902 log->l_curr_cycle++;
b53e675d
CH
903 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
904 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
1da177e4
LT
905 log->l_grant_reserve_cycle = log->l_curr_cycle;
906 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
907 log->l_grant_write_cycle = log->l_curr_cycle;
908 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
909
910 /*
911 * Look for unmount record. If we find it, then we know there
912 * was a clean unmount. Since 'i' could be the last block in
913 * the physical log, we convert to a log block before comparing
914 * to the head_blk.
915 *
916 * Save the current tail lsn to use to pass to
917 * xlog_clear_stale_blocks() below. We won't want to clear the
918 * unmount record if there is one, so we pass the lsn of the
919 * unmount record rather than the block after it.
920 */
62118709 921 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
922 int h_size = be32_to_cpu(rhead->h_size);
923 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
924
925 if ((h_version & XLOG_VERSION_2) &&
926 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
927 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
928 if (h_size % XLOG_HEADER_CYCLE_SIZE)
929 hblks++;
930 } else {
931 hblks = 1;
932 }
933 } else {
934 hblks = 1;
935 }
936 after_umount_blk = (i + hblks + (int)
b53e675d 937 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1da177e4
LT
938 tail_lsn = log->l_tail_lsn;
939 if (*head_blk == after_umount_blk &&
b53e675d 940 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 941 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
942 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
943 if (error)
1da177e4 944 goto bread_err;
076e6acb 945
1da177e4
LT
946 op_head = (xlog_op_header_t *)offset;
947 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
948 /*
949 * Set tail and last sync so that newly written
950 * log records will point recovery to after the
951 * current unmount record.
952 */
03bea6fe
CH
953 log->l_tail_lsn =
954 xlog_assign_lsn(log->l_curr_cycle,
955 after_umount_blk);
956 log->l_last_sync_lsn =
957 xlog_assign_lsn(log->l_curr_cycle,
958 after_umount_blk);
1da177e4 959 *tail_blk = after_umount_blk;
92821e2b
DC
960
961 /*
962 * Note that the unmount was clean. If the unmount
963 * was not clean, we need to know this to rebuild the
964 * superblock counters from the perag headers if we
965 * have a filesystem using non-persistent counters.
966 */
967 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
968 }
969 }
970
971 /*
972 * Make sure that there are no blocks in front of the head
973 * with the same cycle number as the head. This can happen
974 * because we allow multiple outstanding log writes concurrently,
975 * and the later writes might make it out before earlier ones.
976 *
977 * We use the lsn from before modifying it so that we'll never
978 * overwrite the unmount record after a clean unmount.
979 *
980 * Do this only if we are going to recover the filesystem
981 *
982 * NOTE: This used to say "if (!readonly)"
983 * However on Linux, we can & do recover a read-only filesystem.
984 * We only skip recovery if NORECOVERY is specified on mount,
985 * in which case we would not be here.
986 *
987 * But... if the -device- itself is readonly, just skip this.
988 * We can't recover this device anyway, so it won't matter.
989 */
990 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
991 error = xlog_clear_stale_blocks(log, tail_lsn);
992 }
993
994bread_err:
995exit:
996 xlog_put_bp(bp);
997
998 if (error)
999 xlog_warn("XFS: failed to locate log tail");
1000 return error;
1001}
1002
1003/*
1004 * Is the log zeroed at all?
1005 *
1006 * The last binary search should be changed to perform an X block read
1007 * once X becomes small enough. You can then search linearly through
1008 * the X blocks. This will cut down on the number of reads we need to do.
1009 *
1010 * If the log is partially zeroed, this routine will pass back the blkno
1011 * of the first block with cycle number 0. It won't have a complete LR
1012 * preceding it.
1013 *
1014 * Return:
1015 * 0 => the log is completely written to
1016 * -1 => use *blk_no as the first block of the log
1017 * >0 => error has occurred
1018 */
a8272ce0 1019STATIC int
1da177e4
LT
1020xlog_find_zeroed(
1021 xlog_t *log,
1022 xfs_daddr_t *blk_no)
1023{
1024 xfs_buf_t *bp;
1025 xfs_caddr_t offset;
1026 uint first_cycle, last_cycle;
1027 xfs_daddr_t new_blk, last_blk, start_blk;
1028 xfs_daddr_t num_scan_bblks;
1029 int error, log_bbnum = log->l_logBBsize;
1030
6fdf8ccc
NS
1031 *blk_no = 0;
1032
1da177e4
LT
1033 /* check totally zeroed log */
1034 bp = xlog_get_bp(log, 1);
1035 if (!bp)
1036 return ENOMEM;
076e6acb
CH
1037 error = xlog_bread(log, 0, 1, bp, &offset);
1038 if (error)
1da177e4 1039 goto bp_err;
076e6acb 1040
03bea6fe 1041 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1042 if (first_cycle == 0) { /* completely zeroed log */
1043 *blk_no = 0;
1044 xlog_put_bp(bp);
1045 return -1;
1046 }
1047
1048 /* check partially zeroed log */
076e6acb
CH
1049 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1050 if (error)
1da177e4 1051 goto bp_err;
076e6acb 1052
03bea6fe 1053 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1054 if (last_cycle != 0) { /* log completely written to */
1055 xlog_put_bp(bp);
1056 return 0;
1057 } else if (first_cycle != 1) {
1058 /*
1059 * If the cycle of the last block is zero, the cycle of
1060 * the first block must be 1. If it's not, maybe we're
1061 * not looking at a log... Bail out.
1062 */
1063 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1064 return XFS_ERROR(EINVAL);
1065 }
1066
1067 /* we have a partially zeroed log */
1068 last_blk = log_bbnum-1;
1069 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1070 goto bp_err;
1071
1072 /*
1073 * Validate the answer. Because there is no way to guarantee that
1074 * the entire log is made up of log records which are the same size,
1075 * we scan over the defined maximum blocks. At this point, the maximum
1076 * is not chosen to mean anything special. XXXmiken
1077 */
1078 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1079 ASSERT(num_scan_bblks <= INT_MAX);
1080
1081 if (last_blk < num_scan_bblks)
1082 num_scan_bblks = last_blk;
1083 start_blk = last_blk - num_scan_bblks;
1084
1085 /*
1086 * We search for any instances of cycle number 0 that occur before
1087 * our current estimate of the head. What we're trying to detect is
1088 * 1 ... | 0 | 1 | 0...
1089 * ^ binary search ends here
1090 */
1091 if ((error = xlog_find_verify_cycle(log, start_blk,
1092 (int)num_scan_bblks, 0, &new_blk)))
1093 goto bp_err;
1094 if (new_blk != -1)
1095 last_blk = new_blk;
1096
1097 /*
1098 * Potentially backup over partial log record write. We don't need
1099 * to search the end of the log because we know it is zero.
1100 */
1101 if ((error = xlog_find_verify_log_record(log, start_blk,
1102 &last_blk, 0)) == -1) {
1103 error = XFS_ERROR(EIO);
1104 goto bp_err;
1105 } else if (error)
1106 goto bp_err;
1107
1108 *blk_no = last_blk;
1109bp_err:
1110 xlog_put_bp(bp);
1111 if (error)
1112 return error;
1113 return -1;
1114}
1115
1116/*
1117 * These are simple subroutines used by xlog_clear_stale_blocks() below
1118 * to initialize a buffer full of empty log record headers and write
1119 * them into the log.
1120 */
1121STATIC void
1122xlog_add_record(
1123 xlog_t *log,
1124 xfs_caddr_t buf,
1125 int cycle,
1126 int block,
1127 int tail_cycle,
1128 int tail_block)
1129{
1130 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1131
1132 memset(buf, 0, BBSIZE);
b53e675d
CH
1133 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1134 recp->h_cycle = cpu_to_be32(cycle);
1135 recp->h_version = cpu_to_be32(
62118709 1136 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1137 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1138 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1139 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1140 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1141}
1142
1143STATIC int
1144xlog_write_log_records(
1145 xlog_t *log,
1146 int cycle,
1147 int start_block,
1148 int blocks,
1149 int tail_cycle,
1150 int tail_block)
1151{
1152 xfs_caddr_t offset;
1153 xfs_buf_t *bp;
1154 int balign, ealign;
1155 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1156 int end_block = start_block + blocks;
1157 int bufblks;
1158 int error = 0;
1159 int i, j = 0;
1160
1161 bufblks = 1 << ffs(blocks);
1162 while (!(bp = xlog_get_bp(log, bufblks))) {
1163 bufblks >>= 1;
1164 if (bufblks <= log->l_sectbb_log)
1165 return ENOMEM;
1166 }
1167
1168 /* We may need to do a read at the start to fill in part of
1169 * the buffer in the starting sector not covered by the first
1170 * write below.
1171 */
1172 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1173 if (balign != start_block) {
076e6acb
CH
1174 error = xlog_bread_noalign(log, start_block, 1, bp);
1175 if (error)
1176 goto out_put_bp;
1177
1da177e4
LT
1178 j = start_block - balign;
1179 }
1180
1181 for (i = start_block; i < end_block; i += bufblks) {
1182 int bcount, endcount;
1183
1184 bcount = min(bufblks, end_block - start_block);
1185 endcount = bcount - j;
1186
1187 /* We may need to do a read at the end to fill in part of
1188 * the buffer in the final sector not covered by the write.
1189 * If this is the same sector as the above read, skip it.
1190 */
1191 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1192 if (j == 0 && (start_block + endcount > ealign)) {
1193 offset = XFS_BUF_PTR(bp);
1194 balign = BBTOB(ealign - start_block);
234f56ac
DC
1195 error = XFS_BUF_SET_PTR(bp, offset + balign,
1196 BBTOB(sectbb));
076e6acb
CH
1197 if (error)
1198 break;
1199
1200 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1201 if (error)
1202 break;
1203
1204 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
234f56ac 1205 if (error)
1da177e4 1206 break;
1da177e4
LT
1207 }
1208
1209 offset = xlog_align(log, start_block, endcount, bp);
1210 for (; j < endcount; j++) {
1211 xlog_add_record(log, offset, cycle, i+j,
1212 tail_cycle, tail_block);
1213 offset += BBSIZE;
1214 }
1215 error = xlog_bwrite(log, start_block, endcount, bp);
1216 if (error)
1217 break;
1218 start_block += endcount;
1219 j = 0;
1220 }
076e6acb
CH
1221
1222 out_put_bp:
1da177e4
LT
1223 xlog_put_bp(bp);
1224 return error;
1225}
1226
1227/*
1228 * This routine is called to blow away any incomplete log writes out
1229 * in front of the log head. We do this so that we won't become confused
1230 * if we come up, write only a little bit more, and then crash again.
1231 * If we leave the partial log records out there, this situation could
1232 * cause us to think those partial writes are valid blocks since they
1233 * have the current cycle number. We get rid of them by overwriting them
1234 * with empty log records with the old cycle number rather than the
1235 * current one.
1236 *
1237 * The tail lsn is passed in rather than taken from
1238 * the log so that we will not write over the unmount record after a
1239 * clean unmount in a 512 block log. Doing so would leave the log without
1240 * any valid log records in it until a new one was written. If we crashed
1241 * during that time we would not be able to recover.
1242 */
1243STATIC int
1244xlog_clear_stale_blocks(
1245 xlog_t *log,
1246 xfs_lsn_t tail_lsn)
1247{
1248 int tail_cycle, head_cycle;
1249 int tail_block, head_block;
1250 int tail_distance, max_distance;
1251 int distance;
1252 int error;
1253
1254 tail_cycle = CYCLE_LSN(tail_lsn);
1255 tail_block = BLOCK_LSN(tail_lsn);
1256 head_cycle = log->l_curr_cycle;
1257 head_block = log->l_curr_block;
1258
1259 /*
1260 * Figure out the distance between the new head of the log
1261 * and the tail. We want to write over any blocks beyond the
1262 * head that we may have written just before the crash, but
1263 * we don't want to overwrite the tail of the log.
1264 */
1265 if (head_cycle == tail_cycle) {
1266 /*
1267 * The tail is behind the head in the physical log,
1268 * so the distance from the head to the tail is the
1269 * distance from the head to the end of the log plus
1270 * the distance from the beginning of the log to the
1271 * tail.
1272 */
1273 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1274 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1275 XFS_ERRLEVEL_LOW, log->l_mp);
1276 return XFS_ERROR(EFSCORRUPTED);
1277 }
1278 tail_distance = tail_block + (log->l_logBBsize - head_block);
1279 } else {
1280 /*
1281 * The head is behind the tail in the physical log,
1282 * so the distance from the head to the tail is just
1283 * the tail block minus the head block.
1284 */
1285 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1286 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1287 XFS_ERRLEVEL_LOW, log->l_mp);
1288 return XFS_ERROR(EFSCORRUPTED);
1289 }
1290 tail_distance = tail_block - head_block;
1291 }
1292
1293 /*
1294 * If the head is right up against the tail, we can't clear
1295 * anything.
1296 */
1297 if (tail_distance <= 0) {
1298 ASSERT(tail_distance == 0);
1299 return 0;
1300 }
1301
1302 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1303 /*
1304 * Take the smaller of the maximum amount of outstanding I/O
1305 * we could have and the distance to the tail to clear out.
1306 * We take the smaller so that we don't overwrite the tail and
1307 * we don't waste all day writing from the head to the tail
1308 * for no reason.
1309 */
1310 max_distance = MIN(max_distance, tail_distance);
1311
1312 if ((head_block + max_distance) <= log->l_logBBsize) {
1313 /*
1314 * We can stomp all the blocks we need to without
1315 * wrapping around the end of the log. Just do it
1316 * in a single write. Use the cycle number of the
1317 * current cycle minus one so that the log will look like:
1318 * n ... | n - 1 ...
1319 */
1320 error = xlog_write_log_records(log, (head_cycle - 1),
1321 head_block, max_distance, tail_cycle,
1322 tail_block);
1323 if (error)
1324 return error;
1325 } else {
1326 /*
1327 * We need to wrap around the end of the physical log in
1328 * order to clear all the blocks. Do it in two separate
1329 * I/Os. The first write should be from the head to the
1330 * end of the physical log, and it should use the current
1331 * cycle number minus one just like above.
1332 */
1333 distance = log->l_logBBsize - head_block;
1334 error = xlog_write_log_records(log, (head_cycle - 1),
1335 head_block, distance, tail_cycle,
1336 tail_block);
1337
1338 if (error)
1339 return error;
1340
1341 /*
1342 * Now write the blocks at the start of the physical log.
1343 * This writes the remainder of the blocks we want to clear.
1344 * It uses the current cycle number since we're now on the
1345 * same cycle as the head so that we get:
1346 * n ... n ... | n - 1 ...
1347 * ^^^^^ blocks we're writing
1348 */
1349 distance = max_distance - (log->l_logBBsize - head_block);
1350 error = xlog_write_log_records(log, head_cycle, 0, distance,
1351 tail_cycle, tail_block);
1352 if (error)
1353 return error;
1354 }
1355
1356 return 0;
1357}
1358
1359/******************************************************************************
1360 *
1361 * Log recover routines
1362 *
1363 ******************************************************************************
1364 */
1365
1366STATIC xlog_recover_t *
1367xlog_recover_find_tid(
f0a76953 1368 struct hlist_head *head,
1da177e4
LT
1369 xlog_tid_t tid)
1370{
f0a76953
DC
1371 xlog_recover_t *trans;
1372 struct hlist_node *n;
1da177e4 1373
f0a76953
DC
1374 hlist_for_each_entry(trans, n, head, r_list) {
1375 if (trans->r_log_tid == tid)
1376 return trans;
1da177e4 1377 }
f0a76953 1378 return NULL;
1da177e4
LT
1379}
1380
1381STATIC void
f0a76953
DC
1382xlog_recover_new_tid(
1383 struct hlist_head *head,
1384 xlog_tid_t tid,
1385 xfs_lsn_t lsn)
1da177e4 1386{
f0a76953
DC
1387 xlog_recover_t *trans;
1388
1389 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1390 trans->r_log_tid = tid;
1391 trans->r_lsn = lsn;
1392 INIT_LIST_HEAD(&trans->r_itemq);
1393
1394 INIT_HLIST_NODE(&trans->r_list);
1395 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1396}
1397
1398STATIC void
1399xlog_recover_add_item(
f0a76953 1400 struct list_head *head)
1da177e4
LT
1401{
1402 xlog_recover_item_t *item;
1403
1404 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1405 INIT_LIST_HEAD(&item->ri_list);
1406 list_add_tail(&item->ri_list, head);
1da177e4
LT
1407}
1408
1409STATIC int
1410xlog_recover_add_to_cont_trans(
9abbc539 1411 struct log *log,
1da177e4
LT
1412 xlog_recover_t *trans,
1413 xfs_caddr_t dp,
1414 int len)
1415{
1416 xlog_recover_item_t *item;
1417 xfs_caddr_t ptr, old_ptr;
1418 int old_len;
1419
f0a76953 1420 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1421 /* finish copying rest of trans header */
1422 xlog_recover_add_item(&trans->r_itemq);
1423 ptr = (xfs_caddr_t) &trans->r_theader +
1424 sizeof(xfs_trans_header_t) - len;
1425 memcpy(ptr, dp, len); /* d, s, l */
1426 return 0;
1427 }
f0a76953
DC
1428 /* take the tail entry */
1429 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1430
1431 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1432 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1433
760dea67 1434 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1435 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1436 item->ri_buf[item->ri_cnt-1].i_len += len;
1437 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1438 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1439 return 0;
1440}
1441
1442/*
1443 * The next region to add is the start of a new region. It could be
1444 * a whole region or it could be the first part of a new region. Because
1445 * of this, the assumption here is that the type and size fields of all
1446 * format structures fit into the first 32 bits of the structure.
1447 *
1448 * This works because all regions must be 32 bit aligned. Therefore, we
1449 * either have both fields or we have neither field. In the case we have
1450 * neither field, the data part of the region is zero length. We only have
1451 * a log_op_header and can throw away the header since a new one will appear
1452 * later. If we have at least 4 bytes, then we can determine how many regions
1453 * will appear in the current log item.
1454 */
1455STATIC int
1456xlog_recover_add_to_trans(
9abbc539 1457 struct log *log,
1da177e4
LT
1458 xlog_recover_t *trans,
1459 xfs_caddr_t dp,
1460 int len)
1461{
1462 xfs_inode_log_format_t *in_f; /* any will do */
1463 xlog_recover_item_t *item;
1464 xfs_caddr_t ptr;
1465
1466 if (!len)
1467 return 0;
f0a76953 1468 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1469 /* we need to catch log corruptions here */
1470 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1471 xlog_warn("XFS: xlog_recover_add_to_trans: "
1472 "bad header magic number");
1473 ASSERT(0);
1474 return XFS_ERROR(EIO);
1475 }
1da177e4
LT
1476 if (len == sizeof(xfs_trans_header_t))
1477 xlog_recover_add_item(&trans->r_itemq);
1478 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1479 return 0;
1480 }
1481
1482 ptr = kmem_alloc(len, KM_SLEEP);
1483 memcpy(ptr, dp, len);
1484 in_f = (xfs_inode_log_format_t *)ptr;
1485
f0a76953
DC
1486 /* take the tail entry */
1487 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1488 if (item->ri_total != 0 &&
1489 item->ri_total == item->ri_cnt) {
1490 /* tail item is in use, get a new one */
1da177e4 1491 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1492 item = list_entry(trans->r_itemq.prev,
1493 xlog_recover_item_t, ri_list);
1da177e4 1494 }
1da177e4
LT
1495
1496 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1497 if (in_f->ilf_size == 0 ||
1498 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1499 xlog_warn(
1500 "XFS: bad number of regions (%d) in inode log format",
1501 in_f->ilf_size);
1502 ASSERT(0);
1503 return XFS_ERROR(EIO);
1504 }
1505
1506 item->ri_total = in_f->ilf_size;
1507 item->ri_buf =
1508 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1509 KM_SLEEP);
1da177e4
LT
1510 }
1511 ASSERT(item->ri_total > item->ri_cnt);
1512 /* Description region is ri_buf[0] */
1513 item->ri_buf[item->ri_cnt].i_addr = ptr;
1514 item->ri_buf[item->ri_cnt].i_len = len;
1515 item->ri_cnt++;
9abbc539 1516 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1517 return 0;
1518}
1519
f0a76953
DC
1520/*
1521 * Sort the log items in the transaction. Cancelled buffers need
1522 * to be put first so they are processed before any items that might
1523 * modify the buffers. If they are cancelled, then the modifications
1524 * don't need to be replayed.
1525 */
1da177e4
LT
1526STATIC int
1527xlog_recover_reorder_trans(
9abbc539
DC
1528 struct log *log,
1529 xlog_recover_t *trans,
1530 int pass)
1da177e4 1531{
f0a76953
DC
1532 xlog_recover_item_t *item, *n;
1533 LIST_HEAD(sort_list);
1534
1535 list_splice_init(&trans->r_itemq, &sort_list);
1536 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1537 xfs_buf_log_format_t *buf_f;
1da177e4 1538
f0a76953 1539 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
1da177e4 1540
f0a76953 1541 switch (ITEM_TYPE(item)) {
1da177e4 1542 case XFS_LI_BUF:
f0a76953 1543 if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
9abbc539
DC
1544 trace_xfs_log_recover_item_reorder_head(log,
1545 trans, item, pass);
f0a76953 1546 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1547 break;
1548 }
1549 case XFS_LI_INODE:
1da177e4
LT
1550 case XFS_LI_DQUOT:
1551 case XFS_LI_QUOTAOFF:
1552 case XFS_LI_EFD:
1553 case XFS_LI_EFI:
9abbc539
DC
1554 trace_xfs_log_recover_item_reorder_tail(log,
1555 trans, item, pass);
f0a76953 1556 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1557 break;
1558 default:
1559 xlog_warn(
1560 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1561 ASSERT(0);
1562 return XFS_ERROR(EIO);
1563 }
f0a76953
DC
1564 }
1565 ASSERT(list_empty(&sort_list));
1da177e4
LT
1566 return 0;
1567}
1568
1569/*
1570 * Build up the table of buf cancel records so that we don't replay
1571 * cancelled data in the second pass. For buffer records that are
1572 * not cancel records, there is nothing to do here so we just return.
1573 *
1574 * If we get a cancel record which is already in the table, this indicates
1575 * that the buffer was cancelled multiple times. In order to ensure
1576 * that during pass 2 we keep the record in the table until we reach its
1577 * last occurrence in the log, we keep a reference count in the cancel
1578 * record in the table to tell us how many times we expect to see this
1579 * record during the second pass.
1580 */
1581STATIC void
1582xlog_recover_do_buffer_pass1(
1583 xlog_t *log,
1584 xfs_buf_log_format_t *buf_f)
1585{
1586 xfs_buf_cancel_t *bcp;
1587 xfs_buf_cancel_t *nextp;
1588 xfs_buf_cancel_t *prevp;
1589 xfs_buf_cancel_t **bucket;
1da177e4
LT
1590 xfs_daddr_t blkno = 0;
1591 uint len = 0;
1592 ushort flags = 0;
1593
1594 switch (buf_f->blf_type) {
1595 case XFS_LI_BUF:
1596 blkno = buf_f->blf_blkno;
1597 len = buf_f->blf_len;
1598 flags = buf_f->blf_flags;
1599 break;
1da177e4
LT
1600 }
1601
1602 /*
1603 * If this isn't a cancel buffer item, then just return.
1604 */
9abbc539
DC
1605 if (!(flags & XFS_BLI_CANCEL)) {
1606 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1da177e4 1607 return;
9abbc539 1608 }
1da177e4
LT
1609
1610 /*
1611 * Insert an xfs_buf_cancel record into the hash table of
1612 * them. If there is already an identical record, bump
1613 * its reference count.
1614 */
1615 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1616 XLOG_BC_TABLE_SIZE];
1617 /*
1618 * If the hash bucket is empty then just insert a new record into
1619 * the bucket.
1620 */
1621 if (*bucket == NULL) {
1622 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1623 KM_SLEEP);
1624 bcp->bc_blkno = blkno;
1625 bcp->bc_len = len;
1626 bcp->bc_refcount = 1;
1627 bcp->bc_next = NULL;
1628 *bucket = bcp;
1629 return;
1630 }
1631
1632 /*
1633 * The hash bucket is not empty, so search for duplicates of our
1634 * record. If we find one them just bump its refcount. If not
1635 * then add us at the end of the list.
1636 */
1637 prevp = NULL;
1638 nextp = *bucket;
1639 while (nextp != NULL) {
1640 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1641 nextp->bc_refcount++;
9abbc539 1642 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1da177e4
LT
1643 return;
1644 }
1645 prevp = nextp;
1646 nextp = nextp->bc_next;
1647 }
1648 ASSERT(prevp != NULL);
1649 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1650 KM_SLEEP);
1651 bcp->bc_blkno = blkno;
1652 bcp->bc_len = len;
1653 bcp->bc_refcount = 1;
1654 bcp->bc_next = NULL;
1655 prevp->bc_next = bcp;
9abbc539 1656 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1da177e4
LT
1657}
1658
1659/*
1660 * Check to see whether the buffer being recovered has a corresponding
1661 * entry in the buffer cancel record table. If it does then return 1
1662 * so that it will be cancelled, otherwise return 0. If the buffer is
1663 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1664 * the refcount on the entry in the table and remove it from the table
1665 * if this is the last reference.
1666 *
1667 * We remove the cancel record from the table when we encounter its
1668 * last occurrence in the log so that if the same buffer is re-used
1669 * again after its last cancellation we actually replay the changes
1670 * made at that point.
1671 */
1672STATIC int
1673xlog_check_buffer_cancelled(
1674 xlog_t *log,
1675 xfs_daddr_t blkno,
1676 uint len,
1677 ushort flags)
1678{
1679 xfs_buf_cancel_t *bcp;
1680 xfs_buf_cancel_t *prevp;
1681 xfs_buf_cancel_t **bucket;
1682
1683 if (log->l_buf_cancel_table == NULL) {
1684 /*
1685 * There is nothing in the table built in pass one,
1686 * so this buffer must not be cancelled.
1687 */
1688 ASSERT(!(flags & XFS_BLI_CANCEL));
1689 return 0;
1690 }
1691
1692 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1693 XLOG_BC_TABLE_SIZE];
1694 bcp = *bucket;
1695 if (bcp == NULL) {
1696 /*
1697 * There is no corresponding entry in the table built
1698 * in pass one, so this buffer has not been cancelled.
1699 */
1700 ASSERT(!(flags & XFS_BLI_CANCEL));
1701 return 0;
1702 }
1703
1704 /*
1705 * Search for an entry in the buffer cancel table that
1706 * matches our buffer.
1707 */
1708 prevp = NULL;
1709 while (bcp != NULL) {
1710 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1711 /*
1712 * We've go a match, so return 1 so that the
1713 * recovery of this buffer is cancelled.
1714 * If this buffer is actually a buffer cancel
1715 * log item, then decrement the refcount on the
1716 * one in the table and remove it if this is the
1717 * last reference.
1718 */
1719 if (flags & XFS_BLI_CANCEL) {
1720 bcp->bc_refcount--;
1721 if (bcp->bc_refcount == 0) {
1722 if (prevp == NULL) {
1723 *bucket = bcp->bc_next;
1724 } else {
1725 prevp->bc_next = bcp->bc_next;
1726 }
f0e2d93c 1727 kmem_free(bcp);
1da177e4
LT
1728 }
1729 }
1730 return 1;
1731 }
1732 prevp = bcp;
1733 bcp = bcp->bc_next;
1734 }
1735 /*
1736 * We didn't find a corresponding entry in the table, so
1737 * return 0 so that the buffer is NOT cancelled.
1738 */
1739 ASSERT(!(flags & XFS_BLI_CANCEL));
1740 return 0;
1741}
1742
1743STATIC int
1744xlog_recover_do_buffer_pass2(
1745 xlog_t *log,
1746 xfs_buf_log_format_t *buf_f)
1747{
1da177e4
LT
1748 xfs_daddr_t blkno = 0;
1749 ushort flags = 0;
1750 uint len = 0;
1751
1752 switch (buf_f->blf_type) {
1753 case XFS_LI_BUF:
1754 blkno = buf_f->blf_blkno;
1755 flags = buf_f->blf_flags;
1756 len = buf_f->blf_len;
1757 break;
1da177e4
LT
1758 }
1759
1760 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1761}
1762
1763/*
1764 * Perform recovery for a buffer full of inodes. In these buffers,
1765 * the only data which should be recovered is that which corresponds
1766 * to the di_next_unlinked pointers in the on disk inode structures.
1767 * The rest of the data for the inodes is always logged through the
1768 * inodes themselves rather than the inode buffer and is recovered
1769 * in xlog_recover_do_inode_trans().
1770 *
1771 * The only time when buffers full of inodes are fully recovered is
1772 * when the buffer is full of newly allocated inodes. In this case
1773 * the buffer will not be marked as an inode buffer and so will be
1774 * sent to xlog_recover_do_reg_buffer() below during recovery.
1775 */
1776STATIC int
1777xlog_recover_do_inode_buffer(
1778 xfs_mount_t *mp,
1779 xlog_recover_item_t *item,
1780 xfs_buf_t *bp,
1781 xfs_buf_log_format_t *buf_f)
1782{
1783 int i;
1784 int item_index;
1785 int bit;
1786 int nbits;
1787 int reg_buf_offset;
1788 int reg_buf_bytes;
1789 int next_unlinked_offset;
1790 int inodes_per_buf;
1791 xfs_agino_t *logged_nextp;
1792 xfs_agino_t *buffer_nextp;
1da177e4
LT
1793 unsigned int *data_map = NULL;
1794 unsigned int map_size = 0;
1795
9abbc539
DC
1796 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1797
1da177e4
LT
1798 switch (buf_f->blf_type) {
1799 case XFS_LI_BUF:
1800 data_map = buf_f->blf_data_map;
1801 map_size = buf_f->blf_map_size;
1802 break;
1da177e4
LT
1803 }
1804 /*
1805 * Set the variables corresponding to the current region to
1806 * 0 so that we'll initialize them on the first pass through
1807 * the loop.
1808 */
1809 reg_buf_offset = 0;
1810 reg_buf_bytes = 0;
1811 bit = 0;
1812 nbits = 0;
1813 item_index = 0;
1814 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1815 for (i = 0; i < inodes_per_buf; i++) {
1816 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1817 offsetof(xfs_dinode_t, di_next_unlinked);
1818
1819 while (next_unlinked_offset >=
1820 (reg_buf_offset + reg_buf_bytes)) {
1821 /*
1822 * The next di_next_unlinked field is beyond
1823 * the current logged region. Find the next
1824 * logged region that contains or is beyond
1825 * the current di_next_unlinked field.
1826 */
1827 bit += nbits;
1828 bit = xfs_next_bit(data_map, map_size, bit);
1829
1830 /*
1831 * If there are no more logged regions in the
1832 * buffer, then we're done.
1833 */
1834 if (bit == -1) {
1835 return 0;
1836 }
1837
1838 nbits = xfs_contig_bits(data_map, map_size,
1839 bit);
1840 ASSERT(nbits > 0);
1841 reg_buf_offset = bit << XFS_BLI_SHIFT;
1842 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1843 item_index++;
1844 }
1845
1846 /*
1847 * If the current logged region starts after the current
1848 * di_next_unlinked field, then move on to the next
1849 * di_next_unlinked field.
1850 */
1851 if (next_unlinked_offset < reg_buf_offset) {
1852 continue;
1853 }
1854
1855 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1856 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1857 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1858
1859 /*
1860 * The current logged region contains a copy of the
1861 * current di_next_unlinked field. Extract its value
1862 * and copy it to the buffer copy.
1863 */
1864 logged_nextp = (xfs_agino_t *)
1865 ((char *)(item->ri_buf[item_index].i_addr) +
1866 (next_unlinked_offset - reg_buf_offset));
1867 if (unlikely(*logged_nextp == 0)) {
1868 xfs_fs_cmn_err(CE_ALERT, mp,
1869 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1870 item, bp);
1871 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1872 XFS_ERRLEVEL_LOW, mp);
1873 return XFS_ERROR(EFSCORRUPTED);
1874 }
1875
1876 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1877 next_unlinked_offset);
87c199c2 1878 *buffer_nextp = *logged_nextp;
1da177e4
LT
1879 }
1880
1881 return 0;
1882}
1883
1884/*
1885 * Perform a 'normal' buffer recovery. Each logged region of the
1886 * buffer should be copied over the corresponding region in the
1887 * given buffer. The bitmap in the buf log format structure indicates
1888 * where to place the logged data.
1889 */
1890/*ARGSUSED*/
1891STATIC void
1892xlog_recover_do_reg_buffer(
9abbc539 1893 struct xfs_mount *mp,
1da177e4
LT
1894 xlog_recover_item_t *item,
1895 xfs_buf_t *bp,
1896 xfs_buf_log_format_t *buf_f)
1897{
1898 int i;
1899 int bit;
1900 int nbits;
1da177e4
LT
1901 unsigned int *data_map = NULL;
1902 unsigned int map_size = 0;
1903 int error;
1904
9abbc539
DC
1905 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1906
1da177e4
LT
1907 switch (buf_f->blf_type) {
1908 case XFS_LI_BUF:
1909 data_map = buf_f->blf_data_map;
1910 map_size = buf_f->blf_map_size;
1911 break;
1da177e4
LT
1912 }
1913 bit = 0;
1914 i = 1; /* 0 is the buf format structure */
1915 while (1) {
1916 bit = xfs_next_bit(data_map, map_size, bit);
1917 if (bit == -1)
1918 break;
1919 nbits = xfs_contig_bits(data_map, map_size, bit);
1920 ASSERT(nbits > 0);
4b80916b 1921 ASSERT(item->ri_buf[i].i_addr != NULL);
1da177e4
LT
1922 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1923 ASSERT(XFS_BUF_COUNT(bp) >=
1924 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1925
1926 /*
1927 * Do a sanity check if this is a dquot buffer. Just checking
1928 * the first dquot in the buffer should do. XXXThis is
1929 * probably a good thing to do for other buf types also.
1930 */
1931 error = 0;
c8ad20ff
NS
1932 if (buf_f->blf_flags &
1933 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
0c5e1ce8
CH
1934 if (item->ri_buf[i].i_addr == NULL) {
1935 cmn_err(CE_ALERT,
1936 "XFS: NULL dquot in %s.", __func__);
1937 goto next;
1938 }
8ec6dba2 1939 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
1940 cmn_err(CE_ALERT,
1941 "XFS: dquot too small (%d) in %s.",
1942 item->ri_buf[i].i_len, __func__);
1943 goto next;
1944 }
1da177e4
LT
1945 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1946 item->ri_buf[i].i_addr,
1947 -1, 0, XFS_QMOPT_DOWARN,
1948 "dquot_buf_recover");
0c5e1ce8
CH
1949 if (error)
1950 goto next;
1da177e4 1951 }
0c5e1ce8
CH
1952
1953 memcpy(xfs_buf_offset(bp,
1954 (uint)bit << XFS_BLI_SHIFT), /* dest */
1955 item->ri_buf[i].i_addr, /* source */
1956 nbits<<XFS_BLI_SHIFT); /* length */
1957 next:
1da177e4
LT
1958 i++;
1959 bit += nbits;
1960 }
1961
1962 /* Shouldn't be any more regions */
1963 ASSERT(i == item->ri_total);
1964}
1965
1966/*
1967 * Do some primitive error checking on ondisk dquot data structures.
1968 */
1969int
1970xfs_qm_dqcheck(
1971 xfs_disk_dquot_t *ddq,
1972 xfs_dqid_t id,
1973 uint type, /* used only when IO_dorepair is true */
1974 uint flags,
1975 char *str)
1976{
1977 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1978 int errs = 0;
1979
1980 /*
1981 * We can encounter an uninitialized dquot buffer for 2 reasons:
1982 * 1. If we crash while deleting the quotainode(s), and those blks got
1983 * used for user data. This is because we take the path of regular
1984 * file deletion; however, the size field of quotainodes is never
1985 * updated, so all the tricks that we play in itruncate_finish
1986 * don't quite matter.
1987 *
1988 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1989 * But the allocation will be replayed so we'll end up with an
1990 * uninitialized quota block.
1991 *
1992 * This is all fine; things are still consistent, and we haven't lost
1993 * any quota information. Just don't complain about bad dquot blks.
1994 */
1149d96a 1995 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
1996 if (flags & XFS_QMOPT_DOWARN)
1997 cmn_err(CE_ALERT,
1998 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 1999 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2000 errs++;
2001 }
1149d96a 2002 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
2003 if (flags & XFS_QMOPT_DOWARN)
2004 cmn_err(CE_ALERT,
2005 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2006 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2007 errs++;
2008 }
2009
1149d96a
CH
2010 if (ddq->d_flags != XFS_DQ_USER &&
2011 ddq->d_flags != XFS_DQ_PROJ &&
2012 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
2013 if (flags & XFS_QMOPT_DOWARN)
2014 cmn_err(CE_ALERT,
2015 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2016 str, id, ddq->d_flags);
1da177e4
LT
2017 errs++;
2018 }
2019
1149d96a 2020 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
2021 if (flags & XFS_QMOPT_DOWARN)
2022 cmn_err(CE_ALERT,
2023 "%s : ondisk-dquot 0x%p, ID mismatch: "
2024 "0x%x expected, found id 0x%x",
1149d96a 2025 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2026 errs++;
2027 }
2028
2029 if (!errs && ddq->d_id) {
1149d96a
CH
2030 if (ddq->d_blk_softlimit &&
2031 be64_to_cpu(ddq->d_bcount) >=
2032 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2033 if (!ddq->d_btimer) {
2034 if (flags & XFS_QMOPT_DOWARN)
2035 cmn_err(CE_ALERT,
2036 "%s : Dquot ID 0x%x (0x%p) "
2037 "BLK TIMER NOT STARTED",
1149d96a 2038 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2039 errs++;
2040 }
2041 }
1149d96a
CH
2042 if (ddq->d_ino_softlimit &&
2043 be64_to_cpu(ddq->d_icount) >=
2044 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2045 if (!ddq->d_itimer) {
2046 if (flags & XFS_QMOPT_DOWARN)
2047 cmn_err(CE_ALERT,
2048 "%s : Dquot ID 0x%x (0x%p) "
2049 "INODE TIMER NOT STARTED",
1149d96a 2050 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2051 errs++;
2052 }
2053 }
1149d96a
CH
2054 if (ddq->d_rtb_softlimit &&
2055 be64_to_cpu(ddq->d_rtbcount) >=
2056 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2057 if (!ddq->d_rtbtimer) {
2058 if (flags & XFS_QMOPT_DOWARN)
2059 cmn_err(CE_ALERT,
2060 "%s : Dquot ID 0x%x (0x%p) "
2061 "RTBLK TIMER NOT STARTED",
1149d96a 2062 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2063 errs++;
2064 }
2065 }
2066 }
2067
2068 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2069 return errs;
2070
2071 if (flags & XFS_QMOPT_DOWARN)
2072 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2073
2074 /*
2075 * Typically, a repair is only requested by quotacheck.
2076 */
2077 ASSERT(id != -1);
2078 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2079 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2080
2081 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2082 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2083 d->dd_diskdq.d_flags = type;
2084 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2085
2086 return errs;
2087}
2088
2089/*
2090 * Perform a dquot buffer recovery.
2091 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2092 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2093 * Else, treat it as a regular buffer and do recovery.
2094 */
2095STATIC void
2096xlog_recover_do_dquot_buffer(
2097 xfs_mount_t *mp,
2098 xlog_t *log,
2099 xlog_recover_item_t *item,
2100 xfs_buf_t *bp,
2101 xfs_buf_log_format_t *buf_f)
2102{
2103 uint type;
2104
9abbc539
DC
2105 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2106
1da177e4
LT
2107 /*
2108 * Filesystems are required to send in quota flags at mount time.
2109 */
2110 if (mp->m_qflags == 0) {
2111 return;
2112 }
2113
2114 type = 0;
2115 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2116 type |= XFS_DQ_USER;
c8ad20ff
NS
2117 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2118 type |= XFS_DQ_PROJ;
1da177e4
LT
2119 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2120 type |= XFS_DQ_GROUP;
2121 /*
2122 * This type of quotas was turned off, so ignore this buffer
2123 */
2124 if (log->l_quotaoffs_flag & type)
2125 return;
2126
9abbc539 2127 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2128}
2129
2130/*
2131 * This routine replays a modification made to a buffer at runtime.
2132 * There are actually two types of buffer, regular and inode, which
2133 * are handled differently. Inode buffers are handled differently
2134 * in that we only recover a specific set of data from them, namely
2135 * the inode di_next_unlinked fields. This is because all other inode
2136 * data is actually logged via inode records and any data we replay
2137 * here which overlaps that may be stale.
2138 *
2139 * When meta-data buffers are freed at run time we log a buffer item
2140 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2141 * of the buffer in the log should not be replayed at recovery time.
2142 * This is so that if the blocks covered by the buffer are reused for
2143 * file data before we crash we don't end up replaying old, freed
2144 * meta-data into a user's file.
2145 *
2146 * To handle the cancellation of buffer log items, we make two passes
2147 * over the log during recovery. During the first we build a table of
2148 * those buffers which have been cancelled, and during the second we
2149 * only replay those buffers which do not have corresponding cancel
2150 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2151 * for more details on the implementation of the table of cancel records.
2152 */
2153STATIC int
2154xlog_recover_do_buffer_trans(
2155 xlog_t *log,
2156 xlog_recover_item_t *item,
2157 int pass)
2158{
2159 xfs_buf_log_format_t *buf_f;
1da177e4
LT
2160 xfs_mount_t *mp;
2161 xfs_buf_t *bp;
2162 int error;
2163 int cancel;
2164 xfs_daddr_t blkno;
2165 int len;
2166 ushort flags;
6ad112bf 2167 uint buf_flags;
1da177e4
LT
2168
2169 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2170
2171 if (pass == XLOG_RECOVER_PASS1) {
2172 /*
2173 * In this pass we're only looking for buf items
2174 * with the XFS_BLI_CANCEL bit set.
2175 */
2176 xlog_recover_do_buffer_pass1(log, buf_f);
2177 return 0;
2178 } else {
2179 /*
2180 * In this pass we want to recover all the buffers
2181 * which have not been cancelled and are not
2182 * cancellation buffers themselves. The routine
2183 * we call here will tell us whether or not to
2184 * continue with the replay of this buffer.
2185 */
2186 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2187 if (cancel) {
9abbc539 2188 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4
LT
2189 return 0;
2190 }
2191 }
9abbc539 2192 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4
LT
2193 switch (buf_f->blf_type) {
2194 case XFS_LI_BUF:
2195 blkno = buf_f->blf_blkno;
2196 len = buf_f->blf_len;
2197 flags = buf_f->blf_flags;
2198 break;
1da177e4
LT
2199 default:
2200 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2201 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2202 buf_f->blf_type, log->l_mp->m_logname ?
2203 log->l_mp->m_logname : "internal");
1da177e4
LT
2204 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2205 XFS_ERRLEVEL_LOW, log->l_mp);
2206 return XFS_ERROR(EFSCORRUPTED);
2207 }
2208
2209 mp = log->l_mp;
0cadda1c 2210 buf_flags = XBF_LOCK;
6ad112bf 2211 if (!(flags & XFS_BLI_INODE_BUF))
0cadda1c 2212 buf_flags |= XBF_MAPPED;
6ad112bf
CH
2213
2214 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
1da177e4
LT
2215 if (XFS_BUF_ISERROR(bp)) {
2216 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2217 bp, blkno);
2218 error = XFS_BUF_GETERROR(bp);
2219 xfs_buf_relse(bp);
2220 return error;
2221 }
2222
2223 error = 0;
2224 if (flags & XFS_BLI_INODE_BUF) {
2225 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff
NS
2226 } else if (flags &
2227 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
2228 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2229 } else {
9abbc539 2230 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2231 }
2232 if (error)
2233 return XFS_ERROR(error);
2234
2235 /*
2236 * Perform delayed write on the buffer. Asynchronous writes will be
2237 * slower when taking into account all the buffers to be flushed.
2238 *
2239 * Also make sure that only inode buffers with good sizes stay in
2240 * the buffer cache. The kernel moves inodes in buffers of 1 block
2241 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2242 * buffers in the log can be a different size if the log was generated
2243 * by an older kernel using unclustered inode buffers or a newer kernel
2244 * running with a different inode cluster size. Regardless, if the
2245 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2246 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2247 * the buffer out of the buffer cache so that the buffer won't
2248 * overlap with future reads of those inodes.
2249 */
2250 if (XFS_DINODE_MAGIC ==
b53e675d 2251 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2252 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2253 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2254 XFS_BUF_STALE(bp);
2255 error = xfs_bwrite(mp, bp);
2256 } else {
15ac08a8
CH
2257 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2258 bp->b_mount = mp;
1da177e4
LT
2259 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2260 xfs_bdwrite(mp, bp);
2261 }
2262
2263 return (error);
2264}
2265
2266STATIC int
2267xlog_recover_do_inode_trans(
2268 xlog_t *log,
2269 xlog_recover_item_t *item,
2270 int pass)
2271{
2272 xfs_inode_log_format_t *in_f;
2273 xfs_mount_t *mp;
2274 xfs_buf_t *bp;
1da177e4
LT
2275 xfs_dinode_t *dip;
2276 xfs_ino_t ino;
2277 int len;
2278 xfs_caddr_t src;
2279 xfs_caddr_t dest;
2280 int error;
2281 int attr_index;
2282 uint fields;
347d1c01 2283 xfs_icdinode_t *dicp;
6d192a9b 2284 int need_free = 0;
1da177e4
LT
2285
2286 if (pass == XLOG_RECOVER_PASS1) {
2287 return 0;
2288 }
2289
6d192a9b
TS
2290 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2291 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2292 } else {
2293 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2294 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2295 need_free = 1;
2296 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2297 if (error)
2298 goto error;
2299 }
1da177e4
LT
2300 ino = in_f->ilf_ino;
2301 mp = log->l_mp;
1da177e4
LT
2302
2303 /*
2304 * Inode buffers can be freed, look out for it,
2305 * and do not replay the inode.
2306 */
a1941895
CH
2307 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2308 in_f->ilf_len, 0)) {
6d192a9b 2309 error = 0;
9abbc539 2310 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2311 goto error;
2312 }
9abbc539 2313 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2314
6ad112bf 2315 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
0cadda1c 2316 XBF_LOCK);
1da177e4
LT
2317 if (XFS_BUF_ISERROR(bp)) {
2318 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
a1941895 2319 bp, in_f->ilf_blkno);
1da177e4
LT
2320 error = XFS_BUF_GETERROR(bp);
2321 xfs_buf_relse(bp);
6d192a9b 2322 goto error;
1da177e4
LT
2323 }
2324 error = 0;
2325 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2326 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2327
2328 /*
2329 * Make sure the place we're flushing out to really looks
2330 * like an inode!
2331 */
81591fe2 2332 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
1da177e4
LT
2333 xfs_buf_relse(bp);
2334 xfs_fs_cmn_err(CE_ALERT, mp,
2335 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2336 dip, bp, ino);
2337 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2338 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2339 error = EFSCORRUPTED;
2340 goto error;
1da177e4 2341 }
347d1c01 2342 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
1da177e4
LT
2343 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2344 xfs_buf_relse(bp);
2345 xfs_fs_cmn_err(CE_ALERT, mp,
2346 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2347 item, ino);
2348 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2349 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2350 error = EFSCORRUPTED;
2351 goto error;
1da177e4
LT
2352 }
2353
2354 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2355 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2356 /*
2357 * Deal with the wrap case, DI_MAX_FLUSH is less
2358 * than smaller numbers
2359 */
81591fe2 2360 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2361 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2362 /* do nothing */
2363 } else {
2364 xfs_buf_relse(bp);
9abbc539 2365 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2366 error = 0;
2367 goto error;
1da177e4
LT
2368 }
2369 }
2370 /* Take the opportunity to reset the flush iteration count */
2371 dicp->di_flushiter = 0;
2372
2373 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2374 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2375 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2376 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2377 XFS_ERRLEVEL_LOW, mp, dicp);
2378 xfs_buf_relse(bp);
2379 xfs_fs_cmn_err(CE_ALERT, mp,
2380 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2381 item, dip, bp, ino);
6d192a9b
TS
2382 error = EFSCORRUPTED;
2383 goto error;
1da177e4
LT
2384 }
2385 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2386 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2387 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2388 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2389 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2390 XFS_ERRLEVEL_LOW, mp, dicp);
2391 xfs_buf_relse(bp);
2392 xfs_fs_cmn_err(CE_ALERT, mp,
2393 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2394 item, dip, bp, ino);
6d192a9b
TS
2395 error = EFSCORRUPTED;
2396 goto error;
1da177e4
LT
2397 }
2398 }
2399 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2400 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2401 XFS_ERRLEVEL_LOW, mp, dicp);
2402 xfs_buf_relse(bp);
2403 xfs_fs_cmn_err(CE_ALERT, mp,
2404 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2405 item, dip, bp, ino,
2406 dicp->di_nextents + dicp->di_anextents,
2407 dicp->di_nblocks);
6d192a9b
TS
2408 error = EFSCORRUPTED;
2409 goto error;
1da177e4
LT
2410 }
2411 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2412 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2413 XFS_ERRLEVEL_LOW, mp, dicp);
2414 xfs_buf_relse(bp);
2415 xfs_fs_cmn_err(CE_ALERT, mp,
2416 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2417 item, dip, bp, ino, dicp->di_forkoff);
6d192a9b
TS
2418 error = EFSCORRUPTED;
2419 goto error;
1da177e4 2420 }
81591fe2 2421 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
1da177e4
LT
2422 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2423 XFS_ERRLEVEL_LOW, mp, dicp);
2424 xfs_buf_relse(bp);
2425 xfs_fs_cmn_err(CE_ALERT, mp,
2426 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2427 item->ri_buf[1].i_len, item);
6d192a9b
TS
2428 error = EFSCORRUPTED;
2429 goto error;
1da177e4
LT
2430 }
2431
2432 /* The core is in in-core format */
81591fe2 2433 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
1da177e4
LT
2434
2435 /* the rest is in on-disk format */
81591fe2
CH
2436 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2437 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2438 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2439 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2440 }
2441
2442 fields = in_f->ilf_fields;
2443 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2444 case XFS_ILOG_DEV:
81591fe2 2445 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2446 break;
2447 case XFS_ILOG_UUID:
81591fe2
CH
2448 memcpy(XFS_DFORK_DPTR(dip),
2449 &in_f->ilf_u.ilfu_uuid,
2450 sizeof(uuid_t));
1da177e4
LT
2451 break;
2452 }
2453
2454 if (in_f->ilf_size == 2)
2455 goto write_inode_buffer;
2456 len = item->ri_buf[2].i_len;
2457 src = item->ri_buf[2].i_addr;
2458 ASSERT(in_f->ilf_size <= 4);
2459 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2460 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2461 (len == in_f->ilf_dsize));
2462
2463 switch (fields & XFS_ILOG_DFORK) {
2464 case XFS_ILOG_DDATA:
2465 case XFS_ILOG_DEXT:
81591fe2 2466 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2467 break;
2468
2469 case XFS_ILOG_DBROOT:
7cc95a82 2470 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2471 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2472 XFS_DFORK_DSIZE(dip, mp));
2473 break;
2474
2475 default:
2476 /*
2477 * There are no data fork flags set.
2478 */
2479 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2480 break;
2481 }
2482
2483 /*
2484 * If we logged any attribute data, recover it. There may or
2485 * may not have been any other non-core data logged in this
2486 * transaction.
2487 */
2488 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2489 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2490 attr_index = 3;
2491 } else {
2492 attr_index = 2;
2493 }
2494 len = item->ri_buf[attr_index].i_len;
2495 src = item->ri_buf[attr_index].i_addr;
2496 ASSERT(len == in_f->ilf_asize);
2497
2498 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2499 case XFS_ILOG_ADATA:
2500 case XFS_ILOG_AEXT:
2501 dest = XFS_DFORK_APTR(dip);
2502 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2503 memcpy(dest, src, len);
2504 break;
2505
2506 case XFS_ILOG_ABROOT:
2507 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2508 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2509 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2510 XFS_DFORK_ASIZE(dip, mp));
2511 break;
2512
2513 default:
2514 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2515 ASSERT(0);
2516 xfs_buf_relse(bp);
6d192a9b
TS
2517 error = EIO;
2518 goto error;
1da177e4
LT
2519 }
2520 }
2521
2522write_inode_buffer:
dd0bbad8
CH
2523 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2524 bp->b_mount = mp;
2525 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2526 xfs_bdwrite(mp, bp);
6d192a9b
TS
2527error:
2528 if (need_free)
f0e2d93c 2529 kmem_free(in_f);
6d192a9b 2530 return XFS_ERROR(error);
1da177e4
LT
2531}
2532
2533/*
2534 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2535 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2536 * of that type.
2537 */
2538STATIC int
2539xlog_recover_do_quotaoff_trans(
2540 xlog_t *log,
2541 xlog_recover_item_t *item,
2542 int pass)
2543{
2544 xfs_qoff_logformat_t *qoff_f;
2545
2546 if (pass == XLOG_RECOVER_PASS2) {
2547 return (0);
2548 }
2549
2550 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2551 ASSERT(qoff_f);
2552
2553 /*
2554 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2555 * group/project quotaoff or both.
1da177e4
LT
2556 */
2557 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2558 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2559 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2560 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2561 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2562 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2563
2564 return (0);
2565}
2566
2567/*
2568 * Recover a dquot record
2569 */
2570STATIC int
2571xlog_recover_do_dquot_trans(
2572 xlog_t *log,
2573 xlog_recover_item_t *item,
2574 int pass)
2575{
2576 xfs_mount_t *mp;
2577 xfs_buf_t *bp;
2578 struct xfs_disk_dquot *ddq, *recddq;
2579 int error;
2580 xfs_dq_logformat_t *dq_f;
2581 uint type;
2582
2583 if (pass == XLOG_RECOVER_PASS1) {
2584 return 0;
2585 }
2586 mp = log->l_mp;
2587
2588 /*
2589 * Filesystems are required to send in quota flags at mount time.
2590 */
2591 if (mp->m_qflags == 0)
2592 return (0);
2593
2594 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
0c5e1ce8
CH
2595
2596 if (item->ri_buf[1].i_addr == NULL) {
2597 cmn_err(CE_ALERT,
2598 "XFS: NULL dquot in %s.", __func__);
2599 return XFS_ERROR(EIO);
2600 }
8ec6dba2 2601 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
2602 cmn_err(CE_ALERT,
2603 "XFS: dquot too small (%d) in %s.",
2604 item->ri_buf[1].i_len, __func__);
2605 return XFS_ERROR(EIO);
2606 }
2607
1da177e4
LT
2608 /*
2609 * This type of quotas was turned off, so ignore this record.
2610 */
b53e675d 2611 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2612 ASSERT(type);
2613 if (log->l_quotaoffs_flag & type)
2614 return (0);
2615
2616 /*
2617 * At this point we know that quota was _not_ turned off.
2618 * Since the mount flags are not indicating to us otherwise, this
2619 * must mean that quota is on, and the dquot needs to be replayed.
2620 * Remember that we may not have fully recovered the superblock yet,
2621 * so we can't do the usual trick of looking at the SB quota bits.
2622 *
2623 * The other possibility, of course, is that the quota subsystem was
2624 * removed since the last mount - ENOSYS.
2625 */
2626 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2627 ASSERT(dq_f);
2628 if ((error = xfs_qm_dqcheck(recddq,
2629 dq_f->qlf_id,
2630 0, XFS_QMOPT_DOWARN,
2631 "xlog_recover_do_dquot_trans (log copy)"))) {
2632 return XFS_ERROR(EIO);
2633 }
2634 ASSERT(dq_f->qlf_len == 1);
2635
2636 error = xfs_read_buf(mp, mp->m_ddev_targp,
2637 dq_f->qlf_blkno,
2638 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2639 0, &bp);
2640 if (error) {
2641 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2642 bp, dq_f->qlf_blkno);
2643 return error;
2644 }
2645 ASSERT(bp);
2646 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2647
2648 /*
2649 * At least the magic num portion should be on disk because this
2650 * was among a chunk of dquots created earlier, and we did some
2651 * minimal initialization then.
2652 */
2653 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2654 "xlog_recover_do_dquot_trans")) {
2655 xfs_buf_relse(bp);
2656 return XFS_ERROR(EIO);
2657 }
2658
2659 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2660
2661 ASSERT(dq_f->qlf_size == 2);
15ac08a8
CH
2662 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2663 bp->b_mount = mp;
1da177e4
LT
2664 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2665 xfs_bdwrite(mp, bp);
2666
2667 return (0);
2668}
2669
2670/*
2671 * This routine is called to create an in-core extent free intent
2672 * item from the efi format structure which was logged on disk.
2673 * It allocates an in-core efi, copies the extents from the format
2674 * structure into it, and adds the efi to the AIL with the given
2675 * LSN.
2676 */
6d192a9b 2677STATIC int
1da177e4
LT
2678xlog_recover_do_efi_trans(
2679 xlog_t *log,
2680 xlog_recover_item_t *item,
2681 xfs_lsn_t lsn,
2682 int pass)
2683{
6d192a9b 2684 int error;
1da177e4
LT
2685 xfs_mount_t *mp;
2686 xfs_efi_log_item_t *efip;
2687 xfs_efi_log_format_t *efi_formatp;
1da177e4
LT
2688
2689 if (pass == XLOG_RECOVER_PASS1) {
6d192a9b 2690 return 0;
1da177e4
LT
2691 }
2692
2693 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
1da177e4
LT
2694
2695 mp = log->l_mp;
2696 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2697 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2698 &(efip->efi_format)))) {
2699 xfs_efi_item_free(efip);
2700 return error;
2701 }
1da177e4
LT
2702 efip->efi_next_extent = efi_formatp->efi_nextents;
2703 efip->efi_flags |= XFS_EFI_COMMITTED;
2704
a9c21c1b 2705 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2706 /*
783a2f65 2707 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2708 */
783a2f65 2709 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
6d192a9b 2710 return 0;
1da177e4
LT
2711}
2712
2713
2714/*
2715 * This routine is called when an efd format structure is found in
2716 * a committed transaction in the log. It's purpose is to cancel
2717 * the corresponding efi if it was still in the log. To do this
2718 * it searches the AIL for the efi with an id equal to that in the
2719 * efd format structure. If we find it, we remove the efi from the
2720 * AIL and free it.
2721 */
2722STATIC void
2723xlog_recover_do_efd_trans(
2724 xlog_t *log,
2725 xlog_recover_item_t *item,
2726 int pass)
2727{
1da177e4
LT
2728 xfs_efd_log_format_t *efd_formatp;
2729 xfs_efi_log_item_t *efip = NULL;
2730 xfs_log_item_t *lip;
1da177e4 2731 __uint64_t efi_id;
27d8d5fe 2732 struct xfs_ail_cursor cur;
783a2f65 2733 struct xfs_ail *ailp = log->l_ailp;
1da177e4
LT
2734
2735 if (pass == XLOG_RECOVER_PASS1) {
2736 return;
2737 }
2738
2739 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
6d192a9b
TS
2740 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2741 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2742 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2743 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2744 efi_id = efd_formatp->efd_efi_id;
2745
2746 /*
2747 * Search for the efi with the id in the efd format structure
2748 * in the AIL.
2749 */
a9c21c1b
DC
2750 spin_lock(&ailp->xa_lock);
2751 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2752 while (lip != NULL) {
2753 if (lip->li_type == XFS_LI_EFI) {
2754 efip = (xfs_efi_log_item_t *)lip;
2755 if (efip->efi_format.efi_id == efi_id) {
2756 /*
783a2f65 2757 * xfs_trans_ail_delete() drops the
1da177e4
LT
2758 * AIL lock.
2759 */
783a2f65 2760 xfs_trans_ail_delete(ailp, lip);
8ae2c0f6 2761 xfs_efi_item_free(efip);
a9c21c1b 2762 spin_lock(&ailp->xa_lock);
27d8d5fe 2763 break;
1da177e4
LT
2764 }
2765 }
a9c21c1b 2766 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2767 }
a9c21c1b
DC
2768 xfs_trans_ail_cursor_done(ailp, &cur);
2769 spin_unlock(&ailp->xa_lock);
1da177e4
LT
2770}
2771
2772/*
2773 * Perform the transaction
2774 *
2775 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2776 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2777 */
2778STATIC int
2779xlog_recover_do_trans(
2780 xlog_t *log,
2781 xlog_recover_t *trans,
2782 int pass)
2783{
2784 int error = 0;
f0a76953 2785 xlog_recover_item_t *item;
1da177e4 2786
9abbc539 2787 error = xlog_recover_reorder_trans(log, trans, pass);
ff0205e0 2788 if (error)
1da177e4 2789 return error;
ff0205e0 2790
f0a76953 2791 list_for_each_entry(item, &trans->r_itemq, ri_list) {
9abbc539 2792 trace_xfs_log_recover_item_recover(log, trans, item, pass);
ff0205e0
CH
2793 switch (ITEM_TYPE(item)) {
2794 case XFS_LI_BUF:
2795 error = xlog_recover_do_buffer_trans(log, item, pass);
2796 break;
2797 case XFS_LI_INODE:
2798 error = xlog_recover_do_inode_trans(log, item, pass);
2799 break;
2800 case XFS_LI_EFI:
2801 error = xlog_recover_do_efi_trans(log, item,
2802 trans->r_lsn, pass);
2803 break;
2804 case XFS_LI_EFD:
1da177e4 2805 xlog_recover_do_efd_trans(log, item, pass);
ff0205e0
CH
2806 error = 0;
2807 break;
2808 case XFS_LI_DQUOT:
2809 error = xlog_recover_do_dquot_trans(log, item, pass);
2810 break;
2811 case XFS_LI_QUOTAOFF:
2812 error = xlog_recover_do_quotaoff_trans(log, item,
2813 pass);
2814 break;
2815 default:
2816 xlog_warn(
2817 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
1da177e4
LT
2818 ASSERT(0);
2819 error = XFS_ERROR(EIO);
2820 break;
2821 }
ff0205e0
CH
2822
2823 if (error)
2824 return error;
f0a76953 2825 }
1da177e4 2826
ff0205e0 2827 return 0;
1da177e4
LT
2828}
2829
2830/*
2831 * Free up any resources allocated by the transaction
2832 *
2833 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2834 */
2835STATIC void
2836xlog_recover_free_trans(
2837 xlog_recover_t *trans)
2838{
f0a76953 2839 xlog_recover_item_t *item, *n;
1da177e4
LT
2840 int i;
2841
f0a76953
DC
2842 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2843 /* Free the regions in the item. */
2844 list_del(&item->ri_list);
2845 for (i = 0; i < item->ri_cnt; i++)
2846 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2847 /* Free the item itself */
f0a76953
DC
2848 kmem_free(item->ri_buf);
2849 kmem_free(item);
2850 }
1da177e4 2851 /* Free the transaction recover structure */
f0e2d93c 2852 kmem_free(trans);
1da177e4
LT
2853}
2854
2855STATIC int
2856xlog_recover_commit_trans(
2857 xlog_t *log,
1da177e4
LT
2858 xlog_recover_t *trans,
2859 int pass)
2860{
2861 int error;
2862
f0a76953 2863 hlist_del(&trans->r_list);
1da177e4
LT
2864 if ((error = xlog_recover_do_trans(log, trans, pass)))
2865 return error;
2866 xlog_recover_free_trans(trans); /* no error */
2867 return 0;
2868}
2869
2870STATIC int
2871xlog_recover_unmount_trans(
2872 xlog_recover_t *trans)
2873{
2874 /* Do nothing now */
2875 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2876 return 0;
2877}
2878
2879/*
2880 * There are two valid states of the r_state field. 0 indicates that the
2881 * transaction structure is in a normal state. We have either seen the
2882 * start of the transaction or the last operation we added was not a partial
2883 * operation. If the last operation we added to the transaction was a
2884 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2885 *
2886 * NOTE: skip LRs with 0 data length.
2887 */
2888STATIC int
2889xlog_recover_process_data(
2890 xlog_t *log,
f0a76953 2891 struct hlist_head rhash[],
1da177e4
LT
2892 xlog_rec_header_t *rhead,
2893 xfs_caddr_t dp,
2894 int pass)
2895{
2896 xfs_caddr_t lp;
2897 int num_logops;
2898 xlog_op_header_t *ohead;
2899 xlog_recover_t *trans;
2900 xlog_tid_t tid;
2901 int error;
2902 unsigned long hash;
2903 uint flags;
2904
b53e675d
CH
2905 lp = dp + be32_to_cpu(rhead->h_len);
2906 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2907
2908 /* check the log format matches our own - else we can't recover */
2909 if (xlog_header_check_recover(log->l_mp, rhead))
2910 return (XFS_ERROR(EIO));
2911
2912 while ((dp < lp) && num_logops) {
2913 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2914 ohead = (xlog_op_header_t *)dp;
2915 dp += sizeof(xlog_op_header_t);
2916 if (ohead->oh_clientid != XFS_TRANSACTION &&
2917 ohead->oh_clientid != XFS_LOG) {
2918 xlog_warn(
2919 "XFS: xlog_recover_process_data: bad clientid");
2920 ASSERT(0);
2921 return (XFS_ERROR(EIO));
2922 }
67fcb7bf 2923 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2924 hash = XLOG_RHASH(tid);
f0a76953 2925 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2926 if (trans == NULL) { /* not found; add new tid */
2927 if (ohead->oh_flags & XLOG_START_TRANS)
2928 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2929 be64_to_cpu(rhead->h_lsn));
1da177e4 2930 } else {
9742bb93
LM
2931 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2932 xlog_warn(
2933 "XFS: xlog_recover_process_data: bad length");
2934 WARN_ON(1);
2935 return (XFS_ERROR(EIO));
2936 }
1da177e4
LT
2937 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2938 if (flags & XLOG_WAS_CONT_TRANS)
2939 flags &= ~XLOG_CONTINUE_TRANS;
2940 switch (flags) {
2941 case XLOG_COMMIT_TRANS:
2942 error = xlog_recover_commit_trans(log,
f0a76953 2943 trans, pass);
1da177e4
LT
2944 break;
2945 case XLOG_UNMOUNT_TRANS:
2946 error = xlog_recover_unmount_trans(trans);
2947 break;
2948 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
2949 error = xlog_recover_add_to_cont_trans(log,
2950 trans, dp,
2951 be32_to_cpu(ohead->oh_len));
1da177e4
LT
2952 break;
2953 case XLOG_START_TRANS:
2954 xlog_warn(
2955 "XFS: xlog_recover_process_data: bad transaction");
2956 ASSERT(0);
2957 error = XFS_ERROR(EIO);
2958 break;
2959 case 0:
2960 case XLOG_CONTINUE_TRANS:
9abbc539 2961 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 2962 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2963 break;
2964 default:
2965 xlog_warn(
2966 "XFS: xlog_recover_process_data: bad flag");
2967 ASSERT(0);
2968 error = XFS_ERROR(EIO);
2969 break;
2970 }
2971 if (error)
2972 return error;
2973 }
67fcb7bf 2974 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2975 num_logops--;
2976 }
2977 return 0;
2978}
2979
2980/*
2981 * Process an extent free intent item that was recovered from
2982 * the log. We need to free the extents that it describes.
2983 */
3c1e2bbe 2984STATIC int
1da177e4
LT
2985xlog_recover_process_efi(
2986 xfs_mount_t *mp,
2987 xfs_efi_log_item_t *efip)
2988{
2989 xfs_efd_log_item_t *efdp;
2990 xfs_trans_t *tp;
2991 int i;
3c1e2bbe 2992 int error = 0;
1da177e4
LT
2993 xfs_extent_t *extp;
2994 xfs_fsblock_t startblock_fsb;
2995
2996 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2997
2998 /*
2999 * First check the validity of the extents described by the
3000 * EFI. If any are bad, then assume that all are bad and
3001 * just toss the EFI.
3002 */
3003 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3004 extp = &(efip->efi_format.efi_extents[i]);
3005 startblock_fsb = XFS_BB_TO_FSB(mp,
3006 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3007 if ((startblock_fsb == 0) ||
3008 (extp->ext_len == 0) ||
3009 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3010 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3011 /*
3012 * This will pull the EFI from the AIL and
3013 * free the memory associated with it.
3014 */
3015 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3016 return XFS_ERROR(EIO);
1da177e4
LT
3017 }
3018 }
3019
3020 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 3021 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
3022 if (error)
3023 goto abort_error;
1da177e4
LT
3024 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3025
3026 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3027 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3028 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3029 if (error)
3030 goto abort_error;
1da177e4
LT
3031 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3032 extp->ext_len);
3033 }
3034
3035 efip->efi_flags |= XFS_EFI_RECOVERED;
e5720eec 3036 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3037 return error;
fc6149d8
DC
3038
3039abort_error:
3040 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3041 return error;
1da177e4
LT
3042}
3043
1da177e4
LT
3044/*
3045 * When this is called, all of the EFIs which did not have
3046 * corresponding EFDs should be in the AIL. What we do now
3047 * is free the extents associated with each one.
3048 *
3049 * Since we process the EFIs in normal transactions, they
3050 * will be removed at some point after the commit. This prevents
3051 * us from just walking down the list processing each one.
3052 * We'll use a flag in the EFI to skip those that we've already
3053 * processed and use the AIL iteration mechanism's generation
3054 * count to try to speed this up at least a bit.
3055 *
3056 * When we start, we know that the EFIs are the only things in
3057 * the AIL. As we process them, however, other items are added
3058 * to the AIL. Since everything added to the AIL must come after
3059 * everything already in the AIL, we stop processing as soon as
3060 * we see something other than an EFI in the AIL.
3061 */
3c1e2bbe 3062STATIC int
1da177e4
LT
3063xlog_recover_process_efis(
3064 xlog_t *log)
3065{
3066 xfs_log_item_t *lip;
3067 xfs_efi_log_item_t *efip;
3c1e2bbe 3068 int error = 0;
27d8d5fe 3069 struct xfs_ail_cursor cur;
a9c21c1b 3070 struct xfs_ail *ailp;
1da177e4 3071
a9c21c1b
DC
3072 ailp = log->l_ailp;
3073 spin_lock(&ailp->xa_lock);
3074 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3075 while (lip != NULL) {
3076 /*
3077 * We're done when we see something other than an EFI.
27d8d5fe 3078 * There should be no EFIs left in the AIL now.
1da177e4
LT
3079 */
3080 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3081#ifdef DEBUG
a9c21c1b 3082 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3083 ASSERT(lip->li_type != XFS_LI_EFI);
3084#endif
1da177e4
LT
3085 break;
3086 }
3087
3088 /*
3089 * Skip EFIs that we've already processed.
3090 */
3091 efip = (xfs_efi_log_item_t *)lip;
3092 if (efip->efi_flags & XFS_EFI_RECOVERED) {
a9c21c1b 3093 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3094 continue;
3095 }
3096
a9c21c1b
DC
3097 spin_unlock(&ailp->xa_lock);
3098 error = xlog_recover_process_efi(log->l_mp, efip);
3099 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3100 if (error)
3101 goto out;
a9c21c1b 3102 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3103 }
27d8d5fe 3104out:
a9c21c1b
DC
3105 xfs_trans_ail_cursor_done(ailp, &cur);
3106 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3107 return error;
1da177e4
LT
3108}
3109
3110/*
3111 * This routine performs a transaction to null out a bad inode pointer
3112 * in an agi unlinked inode hash bucket.
3113 */
3114STATIC void
3115xlog_recover_clear_agi_bucket(
3116 xfs_mount_t *mp,
3117 xfs_agnumber_t agno,
3118 int bucket)
3119{
3120 xfs_trans_t *tp;
3121 xfs_agi_t *agi;
3122 xfs_buf_t *agibp;
3123 int offset;
3124 int error;
3125
3126 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3127 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3128 0, 0, 0);
e5720eec
DC
3129 if (error)
3130 goto out_abort;
1da177e4 3131
5e1be0fb
CH
3132 error = xfs_read_agi(mp, tp, agno, &agibp);
3133 if (error)
e5720eec 3134 goto out_abort;
1da177e4 3135
5e1be0fb 3136 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3137 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3138 offset = offsetof(xfs_agi_t, agi_unlinked) +
3139 (sizeof(xfs_agino_t) * bucket);
3140 xfs_trans_log_buf(tp, agibp, offset,
3141 (offset + sizeof(xfs_agino_t) - 1));
3142
e5720eec
DC
3143 error = xfs_trans_commit(tp, 0);
3144 if (error)
3145 goto out_error;
3146 return;
3147
3148out_abort:
3149 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3150out_error:
3151 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3152 "failed to clear agi %d. Continuing.", agno);
3153 return;
1da177e4
LT
3154}
3155
23fac50f
CH
3156STATIC xfs_agino_t
3157xlog_recover_process_one_iunlink(
3158 struct xfs_mount *mp,
3159 xfs_agnumber_t agno,
3160 xfs_agino_t agino,
3161 int bucket)
3162{
3163 struct xfs_buf *ibp;
3164 struct xfs_dinode *dip;
3165 struct xfs_inode *ip;
3166 xfs_ino_t ino;
3167 int error;
3168
3169 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3170 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3171 if (error)
3172 goto fail;
3173
3174 /*
3175 * Get the on disk inode to find the next inode in the bucket.
3176 */
0cadda1c 3177 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
23fac50f 3178 if (error)
0e446673 3179 goto fail_iput;
23fac50f 3180
23fac50f 3181 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3182 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3183
3184 /* setup for the next pass */
3185 agino = be32_to_cpu(dip->di_next_unlinked);
3186 xfs_buf_relse(ibp);
3187
3188 /*
3189 * Prevent any DMAPI event from being sent when the reference on
3190 * the inode is dropped.
3191 */
3192 ip->i_d.di_dmevmask = 0;
3193
0e446673 3194 IRELE(ip);
23fac50f
CH
3195 return agino;
3196
0e446673
CH
3197 fail_iput:
3198 IRELE(ip);
23fac50f
CH
3199 fail:
3200 /*
3201 * We can't read in the inode this bucket points to, or this inode
3202 * is messed up. Just ditch this bucket of inodes. We will lose
3203 * some inodes and space, but at least we won't hang.
3204 *
3205 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3206 * clear the inode pointer in the bucket.
3207 */
3208 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3209 return NULLAGINO;
3210}
3211
1da177e4
LT
3212/*
3213 * xlog_iunlink_recover
3214 *
3215 * This is called during recovery to process any inodes which
3216 * we unlinked but not freed when the system crashed. These
3217 * inodes will be on the lists in the AGI blocks. What we do
3218 * here is scan all the AGIs and fully truncate and free any
3219 * inodes found on the lists. Each inode is removed from the
3220 * lists when it has been fully truncated and is freed. The
3221 * freeing of the inode and its removal from the list must be
3222 * atomic.
3223 */
d96f8f89 3224STATIC void
1da177e4
LT
3225xlog_recover_process_iunlinks(
3226 xlog_t *log)
3227{
3228 xfs_mount_t *mp;
3229 xfs_agnumber_t agno;
3230 xfs_agi_t *agi;
3231 xfs_buf_t *agibp;
1da177e4 3232 xfs_agino_t agino;
1da177e4
LT
3233 int bucket;
3234 int error;
3235 uint mp_dmevmask;
3236
3237 mp = log->l_mp;
3238
3239 /*
3240 * Prevent any DMAPI event from being sent while in this function.
3241 */
3242 mp_dmevmask = mp->m_dmevmask;
3243 mp->m_dmevmask = 0;
3244
3245 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3246 /*
3247 * Find the agi for this ag.
3248 */
5e1be0fb
CH
3249 error = xfs_read_agi(mp, NULL, agno, &agibp);
3250 if (error) {
3251 /*
3252 * AGI is b0rked. Don't process it.
3253 *
3254 * We should probably mark the filesystem as corrupt
3255 * after we've recovered all the ag's we can....
3256 */
3257 continue;
1da177e4
LT
3258 }
3259 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3260
3261 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3262 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3263 while (agino != NULLAGINO) {
1da177e4
LT
3264 /*
3265 * Release the agi buffer so that it can
3266 * be acquired in the normal course of the
3267 * transaction to truncate and free the inode.
3268 */
3269 xfs_buf_relse(agibp);
3270
23fac50f
CH
3271 agino = xlog_recover_process_one_iunlink(mp,
3272 agno, agino, bucket);
1da177e4
LT
3273
3274 /*
3275 * Reacquire the agibuffer and continue around
5e1be0fb
CH
3276 * the loop. This should never fail as we know
3277 * the buffer was good earlier on.
1da177e4 3278 */
5e1be0fb
CH
3279 error = xfs_read_agi(mp, NULL, agno, &agibp);
3280 ASSERT(error == 0);
1da177e4 3281 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3282 }
3283 }
3284
3285 /*
3286 * Release the buffer for the current agi so we can
3287 * go on to the next one.
3288 */
3289 xfs_buf_relse(agibp);
3290 }
3291
3292 mp->m_dmevmask = mp_dmevmask;
3293}
3294
3295
3296#ifdef DEBUG
3297STATIC void
3298xlog_pack_data_checksum(
3299 xlog_t *log,
3300 xlog_in_core_t *iclog,
3301 int size)
3302{
3303 int i;
b53e675d 3304 __be32 *up;
1da177e4
LT
3305 uint chksum = 0;
3306
b53e675d 3307 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3308 /* divide length by 4 to get # words */
3309 for (i = 0; i < (size >> 2); i++) {
b53e675d 3310 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3311 up++;
3312 }
b53e675d 3313 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3314}
3315#else
3316#define xlog_pack_data_checksum(log, iclog, size)
3317#endif
3318
3319/*
3320 * Stamp cycle number in every block
3321 */
3322void
3323xlog_pack_data(
3324 xlog_t *log,
3325 xlog_in_core_t *iclog,
3326 int roundoff)
3327{
3328 int i, j, k;
3329 int size = iclog->ic_offset + roundoff;
b53e675d 3330 __be32 cycle_lsn;
1da177e4 3331 xfs_caddr_t dp;
1da177e4
LT
3332
3333 xlog_pack_data_checksum(log, iclog, size);
3334
3335 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3336
3337 dp = iclog->ic_datap;
3338 for (i = 0; i < BTOBB(size) &&
3339 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3340 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3341 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3342 dp += BBSIZE;
3343 }
3344
62118709 3345 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6
CH
3346 xlog_in_core_2_t *xhdr = iclog->ic_data;
3347
1da177e4
LT
3348 for ( ; i < BTOBB(size); i++) {
3349 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3350 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3351 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3352 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3353 dp += BBSIZE;
3354 }
3355
3356 for (i = 1; i < log->l_iclog_heads; i++) {
3357 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3358 }
3359 }
3360}
3361
3362#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3363STATIC void
3364xlog_unpack_data_checksum(
3365 xlog_rec_header_t *rhead,
3366 xfs_caddr_t dp,
3367 xlog_t *log)
3368{
b53e675d 3369 __be32 *up = (__be32 *)dp;
1da177e4
LT
3370 uint chksum = 0;
3371 int i;
3372
3373 /* divide length by 4 to get # words */
b53e675d
CH
3374 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3375 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3376 up++;
3377 }
b53e675d 3378 if (chksum != be32_to_cpu(rhead->h_chksum)) {
1da177e4
LT
3379 if (rhead->h_chksum ||
3380 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3381 cmn_err(CE_DEBUG,
b6574520 3382 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
b53e675d 3383 be32_to_cpu(rhead->h_chksum), chksum);
1da177e4
LT
3384 cmn_err(CE_DEBUG,
3385"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
62118709 3386 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3387 cmn_err(CE_DEBUG,
b6574520 3388 "XFS: LogR this is a LogV2 filesystem\n");
1da177e4
LT
3389 }
3390 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3391 }
3392 }
3393}
3394#else
3395#define xlog_unpack_data_checksum(rhead, dp, log)
3396#endif
3397
3398STATIC void
3399xlog_unpack_data(
3400 xlog_rec_header_t *rhead,
3401 xfs_caddr_t dp,
3402 xlog_t *log)
3403{
3404 int i, j, k;
1da177e4 3405
b53e675d 3406 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3407 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3408 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3409 dp += BBSIZE;
3410 }
3411
62118709 3412 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3413 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3414 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3415 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3416 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3417 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3418 dp += BBSIZE;
3419 }
3420 }
3421
3422 xlog_unpack_data_checksum(rhead, dp, log);
3423}
3424
3425STATIC int
3426xlog_valid_rec_header(
3427 xlog_t *log,
3428 xlog_rec_header_t *rhead,
3429 xfs_daddr_t blkno)
3430{
3431 int hlen;
3432
b53e675d 3433 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
3434 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3435 XFS_ERRLEVEL_LOW, log->l_mp);
3436 return XFS_ERROR(EFSCORRUPTED);
3437 }
3438 if (unlikely(
3439 (!rhead->h_version ||
b53e675d 3440 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
1da177e4 3441 xlog_warn("XFS: %s: unrecognised log version (%d).",
34a622b2 3442 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3443 return XFS_ERROR(EIO);
3444 }
3445
3446 /* LR body must have data or it wouldn't have been written */
b53e675d 3447 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3448 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3449 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3450 XFS_ERRLEVEL_LOW, log->l_mp);
3451 return XFS_ERROR(EFSCORRUPTED);
3452 }
3453 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3454 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3455 XFS_ERRLEVEL_LOW, log->l_mp);
3456 return XFS_ERROR(EFSCORRUPTED);
3457 }
3458 return 0;
3459}
3460
3461/*
3462 * Read the log from tail to head and process the log records found.
3463 * Handle the two cases where the tail and head are in the same cycle
3464 * and where the active portion of the log wraps around the end of
3465 * the physical log separately. The pass parameter is passed through
3466 * to the routines called to process the data and is not looked at
3467 * here.
3468 */
3469STATIC int
3470xlog_do_recovery_pass(
3471 xlog_t *log,
3472 xfs_daddr_t head_blk,
3473 xfs_daddr_t tail_blk,
3474 int pass)
3475{
3476 xlog_rec_header_t *rhead;
3477 xfs_daddr_t blk_no;
fc5bc4c8 3478 xfs_caddr_t offset;
1da177e4
LT
3479 xfs_buf_t *hbp, *dbp;
3480 int error = 0, h_size;
3481 int bblks, split_bblks;
3482 int hblks, split_hblks, wrapped_hblks;
f0a76953 3483 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3484
3485 ASSERT(head_blk != tail_blk);
3486
3487 /*
3488 * Read the header of the tail block and get the iclog buffer size from
3489 * h_size. Use this to tell how many sectors make up the log header.
3490 */
62118709 3491 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3492 /*
3493 * When using variable length iclogs, read first sector of
3494 * iclog header and extract the header size from it. Get a
3495 * new hbp that is the correct size.
3496 */
3497 hbp = xlog_get_bp(log, 1);
3498 if (!hbp)
3499 return ENOMEM;
076e6acb
CH
3500
3501 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3502 if (error)
1da177e4 3503 goto bread_err1;
076e6acb 3504
1da177e4
LT
3505 rhead = (xlog_rec_header_t *)offset;
3506 error = xlog_valid_rec_header(log, rhead, tail_blk);
3507 if (error)
3508 goto bread_err1;
b53e675d
CH
3509 h_size = be32_to_cpu(rhead->h_size);
3510 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3511 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3512 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3513 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3514 hblks++;
3515 xlog_put_bp(hbp);
3516 hbp = xlog_get_bp(log, hblks);
3517 } else {
3518 hblks = 1;
3519 }
3520 } else {
3521 ASSERT(log->l_sectbb_log == 0);
3522 hblks = 1;
3523 hbp = xlog_get_bp(log, 1);
3524 h_size = XLOG_BIG_RECORD_BSIZE;
3525 }
3526
3527 if (!hbp)
3528 return ENOMEM;
3529 dbp = xlog_get_bp(log, BTOBB(h_size));
3530 if (!dbp) {
3531 xlog_put_bp(hbp);
3532 return ENOMEM;
3533 }
3534
3535 memset(rhash, 0, sizeof(rhash));
3536 if (tail_blk <= head_blk) {
3537 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3538 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3539 if (error)
1da177e4 3540 goto bread_err2;
076e6acb 3541
1da177e4
LT
3542 rhead = (xlog_rec_header_t *)offset;
3543 error = xlog_valid_rec_header(log, rhead, blk_no);
3544 if (error)
3545 goto bread_err2;
3546
3547 /* blocks in data section */
b53e675d 3548 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3549 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3550 &offset);
1da177e4
LT
3551 if (error)
3552 goto bread_err2;
076e6acb 3553
1da177e4
LT
3554 xlog_unpack_data(rhead, offset, log);
3555 if ((error = xlog_recover_process_data(log,
3556 rhash, rhead, offset, pass)))
3557 goto bread_err2;
3558 blk_no += bblks + hblks;
3559 }
3560 } else {
3561 /*
3562 * Perform recovery around the end of the physical log.
3563 * When the head is not on the same cycle number as the tail,
3564 * we can't do a sequential recovery as above.
3565 */
3566 blk_no = tail_blk;
3567 while (blk_no < log->l_logBBsize) {
3568 /*
3569 * Check for header wrapping around physical end-of-log
3570 */
fc5bc4c8 3571 offset = XFS_BUF_PTR(hbp);
1da177e4
LT
3572 split_hblks = 0;
3573 wrapped_hblks = 0;
3574 if (blk_no + hblks <= log->l_logBBsize) {
3575 /* Read header in one read */
076e6acb
CH
3576 error = xlog_bread(log, blk_no, hblks, hbp,
3577 &offset);
1da177e4
LT
3578 if (error)
3579 goto bread_err2;
1da177e4
LT
3580 } else {
3581 /* This LR is split across physical log end */
3582 if (blk_no != log->l_logBBsize) {
3583 /* some data before physical log end */
3584 ASSERT(blk_no <= INT_MAX);
3585 split_hblks = log->l_logBBsize - (int)blk_no;
3586 ASSERT(split_hblks > 0);
076e6acb
CH
3587 error = xlog_bread(log, blk_no,
3588 split_hblks, hbp,
3589 &offset);
3590 if (error)
1da177e4 3591 goto bread_err2;
1da177e4 3592 }
076e6acb 3593
1da177e4
LT
3594 /*
3595 * Note: this black magic still works with
3596 * large sector sizes (non-512) only because:
3597 * - we increased the buffer size originally
3598 * by 1 sector giving us enough extra space
3599 * for the second read;
3600 * - the log start is guaranteed to be sector
3601 * aligned;
3602 * - we read the log end (LR header start)
3603 * _first_, then the log start (LR header end)
3604 * - order is important.
3605 */
234f56ac 3606 wrapped_hblks = hblks - split_hblks;
234f56ac 3607 error = XFS_BUF_SET_PTR(hbp,
fc5bc4c8 3608 offset + BBTOB(split_hblks),
1da177e4 3609 BBTOB(hblks - split_hblks));
076e6acb
CH
3610 if (error)
3611 goto bread_err2;
3612
3613 error = xlog_bread_noalign(log, 0,
3614 wrapped_hblks, hbp);
3615 if (error)
3616 goto bread_err2;
3617
fc5bc4c8 3618 error = XFS_BUF_SET_PTR(hbp, offset,
234f56ac 3619 BBTOB(hblks));
1da177e4
LT
3620 if (error)
3621 goto bread_err2;
1da177e4
LT
3622 }
3623 rhead = (xlog_rec_header_t *)offset;
3624 error = xlog_valid_rec_header(log, rhead,
3625 split_hblks ? blk_no : 0);
3626 if (error)
3627 goto bread_err2;
3628
b53e675d 3629 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3630 blk_no += hblks;
3631
3632 /* Read in data for log record */
3633 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3634 error = xlog_bread(log, blk_no, bblks, dbp,
3635 &offset);
1da177e4
LT
3636 if (error)
3637 goto bread_err2;
1da177e4
LT
3638 } else {
3639 /* This log record is split across the
3640 * physical end of log */
fc5bc4c8 3641 offset = XFS_BUF_PTR(dbp);
1da177e4
LT
3642 split_bblks = 0;
3643 if (blk_no != log->l_logBBsize) {
3644 /* some data is before the physical
3645 * end of log */
3646 ASSERT(!wrapped_hblks);
3647 ASSERT(blk_no <= INT_MAX);
3648 split_bblks =
3649 log->l_logBBsize - (int)blk_no;
3650 ASSERT(split_bblks > 0);
076e6acb
CH
3651 error = xlog_bread(log, blk_no,
3652 split_bblks, dbp,
3653 &offset);
3654 if (error)
1da177e4 3655 goto bread_err2;
1da177e4 3656 }
076e6acb 3657
1da177e4
LT
3658 /*
3659 * Note: this black magic still works with
3660 * large sector sizes (non-512) only because:
3661 * - we increased the buffer size originally
3662 * by 1 sector giving us enough extra space
3663 * for the second read;
3664 * - the log start is guaranteed to be sector
3665 * aligned;
3666 * - we read the log end (LR header start)
3667 * _first_, then the log start (LR header end)
3668 * - order is important.
3669 */
234f56ac 3670 error = XFS_BUF_SET_PTR(dbp,
fc5bc4c8 3671 offset + BBTOB(split_bblks),
1da177e4 3672 BBTOB(bblks - split_bblks));
234f56ac 3673 if (error)
1da177e4 3674 goto bread_err2;
076e6acb
CH
3675
3676 error = xlog_bread_noalign(log, wrapped_hblks,
3677 bblks - split_bblks,
3678 dbp);
3679 if (error)
3680 goto bread_err2;
3681
fc5bc4c8 3682 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
076e6acb
CH
3683 if (error)
3684 goto bread_err2;
1da177e4
LT
3685 }
3686 xlog_unpack_data(rhead, offset, log);
3687 if ((error = xlog_recover_process_data(log, rhash,
3688 rhead, offset, pass)))
3689 goto bread_err2;
3690 blk_no += bblks;
3691 }
3692
3693 ASSERT(blk_no >= log->l_logBBsize);
3694 blk_no -= log->l_logBBsize;
3695
3696 /* read first part of physical log */
3697 while (blk_no < head_blk) {
076e6acb
CH
3698 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3699 if (error)
1da177e4 3700 goto bread_err2;
076e6acb 3701
1da177e4
LT
3702 rhead = (xlog_rec_header_t *)offset;
3703 error = xlog_valid_rec_header(log, rhead, blk_no);
3704 if (error)
3705 goto bread_err2;
076e6acb 3706
b53e675d 3707 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3708 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3709 &offset);
3710 if (error)
1da177e4 3711 goto bread_err2;
076e6acb 3712
1da177e4
LT
3713 xlog_unpack_data(rhead, offset, log);
3714 if ((error = xlog_recover_process_data(log, rhash,
3715 rhead, offset, pass)))
3716 goto bread_err2;
3717 blk_no += bblks + hblks;
3718 }
3719 }
3720
3721 bread_err2:
3722 xlog_put_bp(dbp);
3723 bread_err1:
3724 xlog_put_bp(hbp);
3725 return error;
3726}
3727
3728/*
3729 * Do the recovery of the log. We actually do this in two phases.
3730 * The two passes are necessary in order to implement the function
3731 * of cancelling a record written into the log. The first pass
3732 * determines those things which have been cancelled, and the
3733 * second pass replays log items normally except for those which
3734 * have been cancelled. The handling of the replay and cancellations
3735 * takes place in the log item type specific routines.
3736 *
3737 * The table of items which have cancel records in the log is allocated
3738 * and freed at this level, since only here do we know when all of
3739 * the log recovery has been completed.
3740 */
3741STATIC int
3742xlog_do_log_recovery(
3743 xlog_t *log,
3744 xfs_daddr_t head_blk,
3745 xfs_daddr_t tail_blk)
3746{
3747 int error;
3748
3749 ASSERT(head_blk != tail_blk);
3750
3751 /*
3752 * First do a pass to find all of the cancelled buf log items.
3753 * Store them in the buf_cancel_table for use in the second pass.
3754 */
3755 log->l_buf_cancel_table =
3756 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3757 sizeof(xfs_buf_cancel_t*),
3758 KM_SLEEP);
3759 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3760 XLOG_RECOVER_PASS1);
3761 if (error != 0) {
f0e2d93c 3762 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3763 log->l_buf_cancel_table = NULL;
3764 return error;
3765 }
3766 /*
3767 * Then do a second pass to actually recover the items in the log.
3768 * When it is complete free the table of buf cancel items.
3769 */
3770 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3771 XLOG_RECOVER_PASS2);
3772#ifdef DEBUG
6d192a9b 3773 if (!error) {
1da177e4
LT
3774 int i;
3775
3776 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3777 ASSERT(log->l_buf_cancel_table[i] == NULL);
3778 }
3779#endif /* DEBUG */
3780
f0e2d93c 3781 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3782 log->l_buf_cancel_table = NULL;
3783
3784 return error;
3785}
3786
3787/*
3788 * Do the actual recovery
3789 */
3790STATIC int
3791xlog_do_recover(
3792 xlog_t *log,
3793 xfs_daddr_t head_blk,
3794 xfs_daddr_t tail_blk)
3795{
3796 int error;
3797 xfs_buf_t *bp;
3798 xfs_sb_t *sbp;
3799
3800 /*
3801 * First replay the images in the log.
3802 */
3803 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3804 if (error) {
3805 return error;
3806 }
3807
3808 XFS_bflush(log->l_mp->m_ddev_targp);
3809
3810 /*
3811 * If IO errors happened during recovery, bail out.
3812 */
3813 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3814 return (EIO);
3815 }
3816
3817 /*
3818 * We now update the tail_lsn since much of the recovery has completed
3819 * and there may be space available to use. If there were no extent
3820 * or iunlinks, we can free up the entire log and set the tail_lsn to
3821 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3822 * lsn of the last known good LR on disk. If there are extent frees
3823 * or iunlinks they will have some entries in the AIL; so we look at
3824 * the AIL to determine how to set the tail_lsn.
3825 */
3826 xlog_assign_tail_lsn(log->l_mp);
3827
3828 /*
3829 * Now that we've finished replaying all buffer and inode
3830 * updates, re-read in the superblock.
3831 */
3832 bp = xfs_getsb(log->l_mp, 0);
3833 XFS_BUF_UNDONE(bp);
bebf963f
LM
3834 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3835 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
1da177e4 3836 XFS_BUF_READ(bp);
bebf963f 3837 XFS_BUF_UNASYNC(bp);
1da177e4 3838 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
3839 error = xfs_iowait(bp);
3840 if (error) {
1da177e4
LT
3841 xfs_ioerror_alert("xlog_do_recover",
3842 log->l_mp, bp, XFS_BUF_ADDR(bp));
3843 ASSERT(0);
3844 xfs_buf_relse(bp);
3845 return error;
3846 }
3847
3848 /* Convert superblock from on-disk format */
3849 sbp = &log->l_mp->m_sb;
2bdf7cd0 3850 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3851 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3852 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3853 xfs_buf_relse(bp);
3854
5478eead
LM
3855 /* We've re-read the superblock so re-initialize per-cpu counters */
3856 xfs_icsb_reinit_counters(log->l_mp);
3857
1da177e4
LT
3858 xlog_recover_check_summary(log);
3859
3860 /* Normal transactions can now occur */
3861 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3862 return 0;
3863}
3864
3865/*
3866 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3867 *
3868 * Return error or zero.
3869 */
3870int
3871xlog_recover(
65be6054 3872 xlog_t *log)
1da177e4
LT
3873{
3874 xfs_daddr_t head_blk, tail_blk;
3875 int error;
3876
3877 /* find the tail of the log */
65be6054 3878 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3879 return error;
3880
3881 if (tail_blk != head_blk) {
3882 /* There used to be a comment here:
3883 *
3884 * disallow recovery on read-only mounts. note -- mount
3885 * checks for ENOSPC and turns it into an intelligent
3886 * error message.
3887 * ...but this is no longer true. Now, unless you specify
3888 * NORECOVERY (in which case this function would never be
3889 * called), we just go ahead and recover. We do this all
3890 * under the vfs layer, so we can get away with it unless
3891 * the device itself is read-only, in which case we fail.
3892 */
3a02ee18 3893 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3894 return error;
3895 }
3896
3897 cmn_err(CE_NOTE,
fc1f8c1c
NS
3898 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3899 log->l_mp->m_fsname, log->l_mp->m_logname ?
3900 log->l_mp->m_logname : "internal");
1da177e4
LT
3901
3902 error = xlog_do_recover(log, head_blk, tail_blk);
3903 log->l_flags |= XLOG_RECOVERY_NEEDED;
3904 }
3905 return error;
3906}
3907
3908/*
3909 * In the first part of recovery we replay inodes and buffers and build
3910 * up the list of extent free items which need to be processed. Here
3911 * we process the extent free items and clean up the on disk unlinked
3912 * inode lists. This is separated from the first part of recovery so
3913 * that the root and real-time bitmap inodes can be read in from disk in
3914 * between the two stages. This is necessary so that we can free space
3915 * in the real-time portion of the file system.
3916 */
3917int
3918xlog_recover_finish(
4249023a 3919 xlog_t *log)
1da177e4
LT
3920{
3921 /*
3922 * Now we're ready to do the transactions needed for the
3923 * rest of recovery. Start with completing all the extent
3924 * free intent records and then process the unlinked inode
3925 * lists. At this point, we essentially run in normal mode
3926 * except that we're still performing recovery actions
3927 * rather than accepting new requests.
3928 */
3929 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3930 int error;
3931 error = xlog_recover_process_efis(log);
3932 if (error) {
3933 cmn_err(CE_ALERT,
3934 "Failed to recover EFIs on filesystem: %s",
3935 log->l_mp->m_fsname);
3936 return error;
3937 }
1da177e4
LT
3938 /*
3939 * Sync the log to get all the EFIs out of the AIL.
3940 * This isn't absolutely necessary, but it helps in
3941 * case the unlink transactions would have problems
3942 * pushing the EFIs out of the way.
3943 */
a14a348b 3944 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 3945
4249023a 3946 xlog_recover_process_iunlinks(log);
1da177e4
LT
3947
3948 xlog_recover_check_summary(log);
3949
3950 cmn_err(CE_NOTE,
fc1f8c1c
NS
3951 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3952 log->l_mp->m_fsname, log->l_mp->m_logname ?
3953 log->l_mp->m_logname : "internal");
1da177e4
LT
3954 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3955 } else {
3956 cmn_err(CE_DEBUG,
b6574520 3957 "!Ending clean XFS mount for filesystem: %s\n",
1da177e4
LT
3958 log->l_mp->m_fsname);
3959 }
3960 return 0;
3961}
3962
3963
3964#if defined(DEBUG)
3965/*
3966 * Read all of the agf and agi counters and check that they
3967 * are consistent with the superblock counters.
3968 */
3969void
3970xlog_recover_check_summary(
3971 xlog_t *log)
3972{
3973 xfs_mount_t *mp;
3974 xfs_agf_t *agfp;
1da177e4
LT
3975 xfs_buf_t *agfbp;
3976 xfs_buf_t *agibp;
1da177e4
LT
3977 xfs_buf_t *sbbp;
3978#ifdef XFS_LOUD_RECOVERY
3979 xfs_sb_t *sbp;
3980#endif
3981 xfs_agnumber_t agno;
3982 __uint64_t freeblks;
3983 __uint64_t itotal;
3984 __uint64_t ifree;
5e1be0fb 3985 int error;
1da177e4
LT
3986
3987 mp = log->l_mp;
3988
3989 freeblks = 0LL;
3990 itotal = 0LL;
3991 ifree = 0LL;
3992 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
3993 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3994 if (error) {
3995 xfs_fs_cmn_err(CE_ALERT, mp,
3996 "xlog_recover_check_summary(agf)"
3997 "agf read failed agno %d error %d",
3998 agno, error);
3999 } else {
4000 agfp = XFS_BUF_TO_AGF(agfbp);
4001 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4002 be32_to_cpu(agfp->agf_flcount);
4003 xfs_buf_relse(agfbp);
1da177e4 4004 }
1da177e4 4005
5e1be0fb
CH
4006 error = xfs_read_agi(mp, NULL, agno, &agibp);
4007 if (!error) {
4008 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4009
5e1be0fb
CH
4010 itotal += be32_to_cpu(agi->agi_count);
4011 ifree += be32_to_cpu(agi->agi_freecount);
4012 xfs_buf_relse(agibp);
4013 }
1da177e4
LT
4014 }
4015
4016 sbbp = xfs_getsb(mp, 0);
4017#ifdef XFS_LOUD_RECOVERY
4018 sbp = &mp->m_sb;
2bdf7cd0 4019 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
1da177e4
LT
4020 cmn_err(CE_NOTE,
4021 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4022 sbp->sb_icount, itotal);
4023 cmn_err(CE_NOTE,
4024 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4025 sbp->sb_ifree, ifree);
4026 cmn_err(CE_NOTE,
4027 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4028 sbp->sb_fdblocks, freeblks);
4029#if 0
4030 /*
4031 * This is turned off until I account for the allocation
4032 * btree blocks which live in free space.
4033 */
4034 ASSERT(sbp->sb_icount == itotal);
4035 ASSERT(sbp->sb_ifree == ifree);
4036 ASSERT(sbp->sb_fdblocks == freeblks);
4037#endif
4038#endif
4039 xfs_buf_relse(sbbp);
4040}
4041#endif /* DEBUG */
This page took 0.894602 seconds and 5 git commands to generate.