xfs: in btree_lshift, only allocate temporary cursor when needed
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
57062787 27#include "xfs_da_format.h"
9a2cc41c 28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
239880ef 31#include "xfs_log.h"
1da177e4 32#include "xfs_log_priv.h"
1da177e4 33#include "xfs_log_recover.h"
a4fbe6ab 34#include "xfs_inode_item.h"
1da177e4
LT
35#include "xfs_extfree_item.h"
36#include "xfs_trans_priv.h"
a4fbe6ab
DC
37#include "xfs_alloc.h"
38#include "xfs_ialloc.h"
1da177e4 39#include "xfs_quota.h"
0e446be4 40#include "xfs_cksum.h"
0b1b213f 41#include "xfs_trace.h"
33479e05 42#include "xfs_icache.h"
a4fbe6ab 43#include "xfs_bmap_btree.h"
a4fbe6ab 44#include "xfs_error.h"
2b9ab5ab 45#include "xfs_dir2.h"
9e88b5d8 46#include "xfs_rmap_item.h"
1da177e4 47
fc06c6d0
DC
48#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
49
9a8d2fdb
MT
50STATIC int
51xlog_find_zeroed(
52 struct xlog *,
53 xfs_daddr_t *);
54STATIC int
55xlog_clear_stale_blocks(
56 struct xlog *,
57 xfs_lsn_t);
1da177e4 58#if defined(DEBUG)
9a8d2fdb
MT
59STATIC void
60xlog_recover_check_summary(
61 struct xlog *);
1da177e4
LT
62#else
63#define xlog_recover_check_summary(log)
1da177e4 64#endif
7088c413
BF
65STATIC int
66xlog_do_recovery_pass(
67 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
1da177e4 68
d5689eaa
CH
69/*
70 * This structure is used during recovery to record the buf log items which
71 * have been canceled and should not be replayed.
72 */
73struct xfs_buf_cancel {
74 xfs_daddr_t bc_blkno;
75 uint bc_len;
76 int bc_refcount;
77 struct list_head bc_list;
78};
79
1da177e4
LT
80/*
81 * Sector aligned buffer routines for buffer create/read/write/access
82 */
83
ff30a622
AE
84/*
85 * Verify the given count of basic blocks is valid number of blocks
86 * to specify for an operation involving the given XFS log buffer.
87 * Returns nonzero if the count is valid, 0 otherwise.
88 */
89
90static inline int
91xlog_buf_bbcount_valid(
9a8d2fdb 92 struct xlog *log,
ff30a622
AE
93 int bbcount)
94{
95 return bbcount > 0 && bbcount <= log->l_logBBsize;
96}
97
36adecff
AE
98/*
99 * Allocate a buffer to hold log data. The buffer needs to be able
100 * to map to a range of nbblks basic blocks at any valid (basic
101 * block) offset within the log.
102 */
5d77c0dc 103STATIC xfs_buf_t *
1da177e4 104xlog_get_bp(
9a8d2fdb 105 struct xlog *log,
3228149c 106 int nbblks)
1da177e4 107{
c8da0faf
CH
108 struct xfs_buf *bp;
109
ff30a622 110 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
112 nbblks);
113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
114 return NULL;
115 }
1da177e4 116
36adecff
AE
117 /*
118 * We do log I/O in units of log sectors (a power-of-2
119 * multiple of the basic block size), so we round up the
25985edc 120 * requested size to accommodate the basic blocks required
36adecff
AE
121 * for complete log sectors.
122 *
123 * In addition, the buffer may be used for a non-sector-
124 * aligned block offset, in which case an I/O of the
125 * requested size could extend beyond the end of the
126 * buffer. If the requested size is only 1 basic block it
127 * will never straddle a sector boundary, so this won't be
128 * an issue. Nor will this be a problem if the log I/O is
129 * done in basic blocks (sector size 1). But otherwise we
130 * extend the buffer by one extra log sector to ensure
25985edc 131 * there's space to accommodate this possibility.
36adecff 132 */
69ce58f0
AE
133 if (nbblks > 1 && log->l_sectBBsize > 1)
134 nbblks += log->l_sectBBsize;
135 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 136
e70b73f8 137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
138 if (bp)
139 xfs_buf_unlock(bp);
140 return bp;
1da177e4
LT
141}
142
5d77c0dc 143STATIC void
1da177e4
LT
144xlog_put_bp(
145 xfs_buf_t *bp)
146{
147 xfs_buf_free(bp);
148}
149
48389ef1
AE
150/*
151 * Return the address of the start of the given block number's data
152 * in a log buffer. The buffer covers a log sector-aligned region.
153 */
b2a922cd 154STATIC char *
076e6acb 155xlog_align(
9a8d2fdb 156 struct xlog *log,
076e6acb
CH
157 xfs_daddr_t blk_no,
158 int nbblks,
9a8d2fdb 159 struct xfs_buf *bp)
076e6acb 160{
fdc07f44 161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 162
4e94b71b 163 ASSERT(offset + nbblks <= bp->b_length);
62926044 164 return bp->b_addr + BBTOB(offset);
076e6acb
CH
165}
166
1da177e4
LT
167
168/*
169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
170 */
076e6acb
CH
171STATIC int
172xlog_bread_noalign(
9a8d2fdb 173 struct xlog *log,
1da177e4
LT
174 xfs_daddr_t blk_no,
175 int nbblks,
9a8d2fdb 176 struct xfs_buf *bp)
1da177e4
LT
177{
178 int error;
179
ff30a622 180 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 181 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
182 nbblks);
183 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 184 return -EFSCORRUPTED;
3228149c
DC
185 }
186
69ce58f0
AE
187 blk_no = round_down(blk_no, log->l_sectBBsize);
188 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
189
190 ASSERT(nbblks > 0);
4e94b71b 191 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
192
193 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
0cac682f 194 bp->b_flags |= XBF_READ;
aa0e8833 195 bp->b_io_length = nbblks;
0e95f19a 196 bp->b_error = 0;
1da177e4 197
595bff75
DC
198 error = xfs_buf_submit_wait(bp);
199 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
901796af 200 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
201 return error;
202}
203
076e6acb
CH
204STATIC int
205xlog_bread(
9a8d2fdb 206 struct xlog *log,
076e6acb
CH
207 xfs_daddr_t blk_no,
208 int nbblks,
9a8d2fdb 209 struct xfs_buf *bp,
b2a922cd 210 char **offset)
076e6acb
CH
211{
212 int error;
213
214 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
215 if (error)
216 return error;
217
218 *offset = xlog_align(log, blk_no, nbblks, bp);
219 return 0;
220}
221
44396476
DC
222/*
223 * Read at an offset into the buffer. Returns with the buffer in it's original
224 * state regardless of the result of the read.
225 */
226STATIC int
227xlog_bread_offset(
9a8d2fdb 228 struct xlog *log,
44396476
DC
229 xfs_daddr_t blk_no, /* block to read from */
230 int nbblks, /* blocks to read */
9a8d2fdb 231 struct xfs_buf *bp,
b2a922cd 232 char *offset)
44396476 233{
b2a922cd 234 char *orig_offset = bp->b_addr;
4e94b71b 235 int orig_len = BBTOB(bp->b_length);
44396476
DC
236 int error, error2;
237
02fe03d9 238 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
239 if (error)
240 return error;
241
242 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
243
244 /* must reset buffer pointer even on error */
02fe03d9 245 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
246 if (error)
247 return error;
248 return error2;
249}
250
1da177e4
LT
251/*
252 * Write out the buffer at the given block for the given number of blocks.
253 * The buffer is kept locked across the write and is returned locked.
254 * This can only be used for synchronous log writes.
255 */
ba0f32d4 256STATIC int
1da177e4 257xlog_bwrite(
9a8d2fdb 258 struct xlog *log,
1da177e4
LT
259 xfs_daddr_t blk_no,
260 int nbblks,
9a8d2fdb 261 struct xfs_buf *bp)
1da177e4
LT
262{
263 int error;
264
ff30a622 265 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 266 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
267 nbblks);
268 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 269 return -EFSCORRUPTED;
3228149c
DC
270 }
271
69ce58f0
AE
272 blk_no = round_down(blk_no, log->l_sectBBsize);
273 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
274
275 ASSERT(nbblks > 0);
4e94b71b 276 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
277
278 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
72790aa1 279 xfs_buf_hold(bp);
0c842ad4 280 xfs_buf_lock(bp);
aa0e8833 281 bp->b_io_length = nbblks;
0e95f19a 282 bp->b_error = 0;
1da177e4 283
c2b006c1 284 error = xfs_bwrite(bp);
901796af
CH
285 if (error)
286 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 287 xfs_buf_relse(bp);
1da177e4
LT
288 return error;
289}
290
1da177e4
LT
291#ifdef DEBUG
292/*
293 * dump debug superblock and log record information
294 */
295STATIC void
296xlog_header_check_dump(
297 xfs_mount_t *mp,
298 xlog_rec_header_t *head)
299{
08e96e1a 300 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 301 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 302 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 303 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
304}
305#else
306#define xlog_header_check_dump(mp, head)
307#endif
308
309/*
310 * check log record header for recovery
311 */
312STATIC int
313xlog_header_check_recover(
314 xfs_mount_t *mp,
315 xlog_rec_header_t *head)
316{
69ef921b 317 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
318
319 /*
320 * IRIX doesn't write the h_fmt field and leaves it zeroed
321 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
322 * a dirty log created in IRIX.
323 */
69ef921b 324 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
325 xfs_warn(mp,
326 "dirty log written in incompatible format - can't recover");
1da177e4
LT
327 xlog_header_check_dump(mp, head);
328 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
329 XFS_ERRLEVEL_HIGH, mp);
2451337d 330 return -EFSCORRUPTED;
1da177e4 331 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
332 xfs_warn(mp,
333 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
334 xlog_header_check_dump(mp, head);
335 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
336 XFS_ERRLEVEL_HIGH, mp);
2451337d 337 return -EFSCORRUPTED;
1da177e4
LT
338 }
339 return 0;
340}
341
342/*
343 * read the head block of the log and check the header
344 */
345STATIC int
346xlog_header_check_mount(
347 xfs_mount_t *mp,
348 xlog_rec_header_t *head)
349{
69ef921b 350 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
351
352 if (uuid_is_nil(&head->h_fs_uuid)) {
353 /*
354 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
355 * h_fs_uuid is nil, we assume this log was last mounted
356 * by IRIX and continue.
357 */
a0fa2b67 358 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 359 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 360 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
361 xlog_header_check_dump(mp, head);
362 XFS_ERROR_REPORT("xlog_header_check_mount",
363 XFS_ERRLEVEL_HIGH, mp);
2451337d 364 return -EFSCORRUPTED;
1da177e4
LT
365 }
366 return 0;
367}
368
369STATIC void
370xlog_recover_iodone(
371 struct xfs_buf *bp)
372{
5a52c2a5 373 if (bp->b_error) {
1da177e4
LT
374 /*
375 * We're not going to bother about retrying
376 * this during recovery. One strike!
377 */
595bff75
DC
378 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
379 xfs_buf_ioerror_alert(bp, __func__);
380 xfs_force_shutdown(bp->b_target->bt_mount,
381 SHUTDOWN_META_IO_ERROR);
382 }
1da177e4 383 }
cb669ca5 384 bp->b_iodone = NULL;
e8aaba9a 385 xfs_buf_ioend(bp);
1da177e4
LT
386}
387
388/*
389 * This routine finds (to an approximation) the first block in the physical
390 * log which contains the given cycle. It uses a binary search algorithm.
391 * Note that the algorithm can not be perfect because the disk will not
392 * necessarily be perfect.
393 */
a8272ce0 394STATIC int
1da177e4 395xlog_find_cycle_start(
9a8d2fdb
MT
396 struct xlog *log,
397 struct xfs_buf *bp,
1da177e4
LT
398 xfs_daddr_t first_blk,
399 xfs_daddr_t *last_blk,
400 uint cycle)
401{
b2a922cd 402 char *offset;
1da177e4 403 xfs_daddr_t mid_blk;
e3bb2e30 404 xfs_daddr_t end_blk;
1da177e4
LT
405 uint mid_cycle;
406 int error;
407
e3bb2e30
AE
408 end_blk = *last_blk;
409 mid_blk = BLK_AVG(first_blk, end_blk);
410 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
411 error = xlog_bread(log, mid_blk, 1, bp, &offset);
412 if (error)
1da177e4 413 return error;
03bea6fe 414 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
415 if (mid_cycle == cycle)
416 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
417 else
418 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
419 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 420 }
e3bb2e30
AE
421 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
422 (mid_blk == end_blk && mid_blk-1 == first_blk));
423
424 *last_blk = end_blk;
1da177e4
LT
425
426 return 0;
427}
428
429/*
3f943d85
AE
430 * Check that a range of blocks does not contain stop_on_cycle_no.
431 * Fill in *new_blk with the block offset where such a block is
432 * found, or with -1 (an invalid block number) if there is no such
433 * block in the range. The scan needs to occur from front to back
434 * and the pointer into the region must be updated since a later
435 * routine will need to perform another test.
1da177e4
LT
436 */
437STATIC int
438xlog_find_verify_cycle(
9a8d2fdb 439 struct xlog *log,
1da177e4
LT
440 xfs_daddr_t start_blk,
441 int nbblks,
442 uint stop_on_cycle_no,
443 xfs_daddr_t *new_blk)
444{
445 xfs_daddr_t i, j;
446 uint cycle;
447 xfs_buf_t *bp;
448 xfs_daddr_t bufblks;
b2a922cd 449 char *buf = NULL;
1da177e4
LT
450 int error = 0;
451
6881a229
AE
452 /*
453 * Greedily allocate a buffer big enough to handle the full
454 * range of basic blocks we'll be examining. If that fails,
455 * try a smaller size. We need to be able to read at least
456 * a log sector, or we're out of luck.
457 */
1da177e4 458 bufblks = 1 << ffs(nbblks);
81158e0c
DC
459 while (bufblks > log->l_logBBsize)
460 bufblks >>= 1;
1da177e4 461 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 462 bufblks >>= 1;
69ce58f0 463 if (bufblks < log->l_sectBBsize)
2451337d 464 return -ENOMEM;
1da177e4
LT
465 }
466
467 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
468 int bcount;
469
470 bcount = min(bufblks, (start_blk + nbblks - i));
471
076e6acb
CH
472 error = xlog_bread(log, i, bcount, bp, &buf);
473 if (error)
1da177e4
LT
474 goto out;
475
1da177e4 476 for (j = 0; j < bcount; j++) {
03bea6fe 477 cycle = xlog_get_cycle(buf);
1da177e4
LT
478 if (cycle == stop_on_cycle_no) {
479 *new_blk = i+j;
480 goto out;
481 }
482
483 buf += BBSIZE;
484 }
485 }
486
487 *new_blk = -1;
488
489out:
490 xlog_put_bp(bp);
491 return error;
492}
493
494/*
495 * Potentially backup over partial log record write.
496 *
497 * In the typical case, last_blk is the number of the block directly after
498 * a good log record. Therefore, we subtract one to get the block number
499 * of the last block in the given buffer. extra_bblks contains the number
500 * of blocks we would have read on a previous read. This happens when the
501 * last log record is split over the end of the physical log.
502 *
503 * extra_bblks is the number of blocks potentially verified on a previous
504 * call to this routine.
505 */
506STATIC int
507xlog_find_verify_log_record(
9a8d2fdb 508 struct xlog *log,
1da177e4
LT
509 xfs_daddr_t start_blk,
510 xfs_daddr_t *last_blk,
511 int extra_bblks)
512{
513 xfs_daddr_t i;
514 xfs_buf_t *bp;
b2a922cd 515 char *offset = NULL;
1da177e4
LT
516 xlog_rec_header_t *head = NULL;
517 int error = 0;
518 int smallmem = 0;
519 int num_blks = *last_blk - start_blk;
520 int xhdrs;
521
522 ASSERT(start_blk != 0 || *last_blk != start_blk);
523
524 if (!(bp = xlog_get_bp(log, num_blks))) {
525 if (!(bp = xlog_get_bp(log, 1)))
2451337d 526 return -ENOMEM;
1da177e4
LT
527 smallmem = 1;
528 } else {
076e6acb
CH
529 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
530 if (error)
1da177e4 531 goto out;
1da177e4
LT
532 offset += ((num_blks - 1) << BBSHIFT);
533 }
534
535 for (i = (*last_blk) - 1; i >= 0; i--) {
536 if (i < start_blk) {
537 /* valid log record not found */
a0fa2b67
DC
538 xfs_warn(log->l_mp,
539 "Log inconsistent (didn't find previous header)");
1da177e4 540 ASSERT(0);
2451337d 541 error = -EIO;
1da177e4
LT
542 goto out;
543 }
544
545 if (smallmem) {
076e6acb
CH
546 error = xlog_bread(log, i, 1, bp, &offset);
547 if (error)
1da177e4 548 goto out;
1da177e4
LT
549 }
550
551 head = (xlog_rec_header_t *)offset;
552
69ef921b 553 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
554 break;
555
556 if (!smallmem)
557 offset -= BBSIZE;
558 }
559
560 /*
561 * We hit the beginning of the physical log & still no header. Return
562 * to caller. If caller can handle a return of -1, then this routine
563 * will be called again for the end of the physical log.
564 */
565 if (i == -1) {
2451337d 566 error = 1;
1da177e4
LT
567 goto out;
568 }
569
570 /*
571 * We have the final block of the good log (the first block
572 * of the log record _before_ the head. So we check the uuid.
573 */
574 if ((error = xlog_header_check_mount(log->l_mp, head)))
575 goto out;
576
577 /*
578 * We may have found a log record header before we expected one.
579 * last_blk will be the 1st block # with a given cycle #. We may end
580 * up reading an entire log record. In this case, we don't want to
581 * reset last_blk. Only when last_blk points in the middle of a log
582 * record do we update last_blk.
583 */
62118709 584 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 585 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
586
587 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
588 if (h_size % XLOG_HEADER_CYCLE_SIZE)
589 xhdrs++;
590 } else {
591 xhdrs = 1;
592 }
593
b53e675d
CH
594 if (*last_blk - i + extra_bblks !=
595 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
596 *last_blk = i;
597
598out:
599 xlog_put_bp(bp);
600 return error;
601}
602
603/*
604 * Head is defined to be the point of the log where the next log write
0a94da24 605 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
606 * eliminated when calculating the head. We aren't guaranteed that previous
607 * LR have complete transactions. We only know that a cycle number of
608 * current cycle number -1 won't be present in the log if we start writing
609 * from our current block number.
610 *
611 * last_blk contains the block number of the first block with a given
612 * cycle number.
613 *
614 * Return: zero if normal, non-zero if error.
615 */
ba0f32d4 616STATIC int
1da177e4 617xlog_find_head(
9a8d2fdb 618 struct xlog *log,
1da177e4
LT
619 xfs_daddr_t *return_head_blk)
620{
621 xfs_buf_t *bp;
b2a922cd 622 char *offset;
1da177e4
LT
623 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
624 int num_scan_bblks;
625 uint first_half_cycle, last_half_cycle;
626 uint stop_on_cycle;
627 int error, log_bbnum = log->l_logBBsize;
628
629 /* Is the end of the log device zeroed? */
2451337d
DC
630 error = xlog_find_zeroed(log, &first_blk);
631 if (error < 0) {
632 xfs_warn(log->l_mp, "empty log check failed");
633 return error;
634 }
635 if (error == 1) {
1da177e4
LT
636 *return_head_blk = first_blk;
637
638 /* Is the whole lot zeroed? */
639 if (!first_blk) {
640 /* Linux XFS shouldn't generate totally zeroed logs -
641 * mkfs etc write a dummy unmount record to a fresh
642 * log so we can store the uuid in there
643 */
a0fa2b67 644 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
645 }
646
647 return 0;
1da177e4
LT
648 }
649
650 first_blk = 0; /* get cycle # of 1st block */
651 bp = xlog_get_bp(log, 1);
652 if (!bp)
2451337d 653 return -ENOMEM;
076e6acb
CH
654
655 error = xlog_bread(log, 0, 1, bp, &offset);
656 if (error)
1da177e4 657 goto bp_err;
076e6acb 658
03bea6fe 659 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
660
661 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
662 error = xlog_bread(log, last_blk, 1, bp, &offset);
663 if (error)
1da177e4 664 goto bp_err;
076e6acb 665
03bea6fe 666 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
667 ASSERT(last_half_cycle != 0);
668
669 /*
670 * If the 1st half cycle number is equal to the last half cycle number,
671 * then the entire log is stamped with the same cycle number. In this
672 * case, head_blk can't be set to zero (which makes sense). The below
673 * math doesn't work out properly with head_blk equal to zero. Instead,
674 * we set it to log_bbnum which is an invalid block number, but this
675 * value makes the math correct. If head_blk doesn't changed through
676 * all the tests below, *head_blk is set to zero at the very end rather
677 * than log_bbnum. In a sense, log_bbnum and zero are the same block
678 * in a circular file.
679 */
680 if (first_half_cycle == last_half_cycle) {
681 /*
682 * In this case we believe that the entire log should have
683 * cycle number last_half_cycle. We need to scan backwards
684 * from the end verifying that there are no holes still
685 * containing last_half_cycle - 1. If we find such a hole,
686 * then the start of that hole will be the new head. The
687 * simple case looks like
688 * x | x ... | x - 1 | x
689 * Another case that fits this picture would be
690 * x | x + 1 | x ... | x
c41564b5 691 * In this case the head really is somewhere at the end of the
1da177e4
LT
692 * log, as one of the latest writes at the beginning was
693 * incomplete.
694 * One more case is
695 * x | x + 1 | x ... | x - 1 | x
696 * This is really the combination of the above two cases, and
697 * the head has to end up at the start of the x-1 hole at the
698 * end of the log.
699 *
700 * In the 256k log case, we will read from the beginning to the
701 * end of the log and search for cycle numbers equal to x-1.
702 * We don't worry about the x+1 blocks that we encounter,
703 * because we know that they cannot be the head since the log
704 * started with x.
705 */
706 head_blk = log_bbnum;
707 stop_on_cycle = last_half_cycle - 1;
708 } else {
709 /*
710 * In this case we want to find the first block with cycle
711 * number matching last_half_cycle. We expect the log to be
712 * some variation on
3f943d85 713 * x + 1 ... | x ... | x
1da177e4
LT
714 * The first block with cycle number x (last_half_cycle) will
715 * be where the new head belongs. First we do a binary search
716 * for the first occurrence of last_half_cycle. The binary
717 * search may not be totally accurate, so then we scan back
718 * from there looking for occurrences of last_half_cycle before
719 * us. If that backwards scan wraps around the beginning of
720 * the log, then we look for occurrences of last_half_cycle - 1
721 * at the end of the log. The cases we're looking for look
722 * like
3f943d85
AE
723 * v binary search stopped here
724 * x + 1 ... | x | x + 1 | x ... | x
725 * ^ but we want to locate this spot
1da177e4 726 * or
1da177e4 727 * <---------> less than scan distance
3f943d85
AE
728 * x + 1 ... | x ... | x - 1 | x
729 * ^ we want to locate this spot
1da177e4
LT
730 */
731 stop_on_cycle = last_half_cycle;
732 if ((error = xlog_find_cycle_start(log, bp, first_blk,
733 &head_blk, last_half_cycle)))
734 goto bp_err;
735 }
736
737 /*
738 * Now validate the answer. Scan back some number of maximum possible
739 * blocks and make sure each one has the expected cycle number. The
740 * maximum is determined by the total possible amount of buffering
741 * in the in-core log. The following number can be made tighter if
742 * we actually look at the block size of the filesystem.
743 */
744 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
745 if (head_blk >= num_scan_bblks) {
746 /*
747 * We are guaranteed that the entire check can be performed
748 * in one buffer.
749 */
750 start_blk = head_blk - num_scan_bblks;
751 if ((error = xlog_find_verify_cycle(log,
752 start_blk, num_scan_bblks,
753 stop_on_cycle, &new_blk)))
754 goto bp_err;
755 if (new_blk != -1)
756 head_blk = new_blk;
757 } else { /* need to read 2 parts of log */
758 /*
759 * We are going to scan backwards in the log in two parts.
760 * First we scan the physical end of the log. In this part
761 * of the log, we are looking for blocks with cycle number
762 * last_half_cycle - 1.
763 * If we find one, then we know that the log starts there, as
764 * we've found a hole that didn't get written in going around
765 * the end of the physical log. The simple case for this is
766 * x + 1 ... | x ... | x - 1 | x
767 * <---------> less than scan distance
768 * If all of the blocks at the end of the log have cycle number
769 * last_half_cycle, then we check the blocks at the start of
770 * the log looking for occurrences of last_half_cycle. If we
771 * find one, then our current estimate for the location of the
772 * first occurrence of last_half_cycle is wrong and we move
773 * back to the hole we've found. This case looks like
774 * x + 1 ... | x | x + 1 | x ...
775 * ^ binary search stopped here
776 * Another case we need to handle that only occurs in 256k
777 * logs is
778 * x + 1 ... | x ... | x+1 | x ...
779 * ^ binary search stops here
780 * In a 256k log, the scan at the end of the log will see the
781 * x + 1 blocks. We need to skip past those since that is
782 * certainly not the head of the log. By searching for
783 * last_half_cycle-1 we accomplish that.
784 */
1da177e4 785 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
786 (xfs_daddr_t) num_scan_bblks >= head_blk);
787 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
788 if ((error = xlog_find_verify_cycle(log, start_blk,
789 num_scan_bblks - (int)head_blk,
790 (stop_on_cycle - 1), &new_blk)))
791 goto bp_err;
792 if (new_blk != -1) {
793 head_blk = new_blk;
9db127ed 794 goto validate_head;
1da177e4
LT
795 }
796
797 /*
798 * Scan beginning of log now. The last part of the physical
799 * log is good. This scan needs to verify that it doesn't find
800 * the last_half_cycle.
801 */
802 start_blk = 0;
803 ASSERT(head_blk <= INT_MAX);
804 if ((error = xlog_find_verify_cycle(log,
805 start_blk, (int)head_blk,
806 stop_on_cycle, &new_blk)))
807 goto bp_err;
808 if (new_blk != -1)
809 head_blk = new_blk;
810 }
811
9db127ed 812validate_head:
1da177e4
LT
813 /*
814 * Now we need to make sure head_blk is not pointing to a block in
815 * the middle of a log record.
816 */
817 num_scan_bblks = XLOG_REC_SHIFT(log);
818 if (head_blk >= num_scan_bblks) {
819 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
820
821 /* start ptr at last block ptr before head_blk */
2451337d
DC
822 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
823 if (error == 1)
824 error = -EIO;
825 if (error)
1da177e4
LT
826 goto bp_err;
827 } else {
828 start_blk = 0;
829 ASSERT(head_blk <= INT_MAX);
2451337d
DC
830 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
831 if (error < 0)
832 goto bp_err;
833 if (error == 1) {
1da177e4 834 /* We hit the beginning of the log during our search */
3f943d85 835 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
836 new_blk = log_bbnum;
837 ASSERT(start_blk <= INT_MAX &&
838 (xfs_daddr_t) log_bbnum-start_blk >= 0);
839 ASSERT(head_blk <= INT_MAX);
2451337d
DC
840 error = xlog_find_verify_log_record(log, start_blk,
841 &new_blk, (int)head_blk);
842 if (error == 1)
843 error = -EIO;
844 if (error)
1da177e4
LT
845 goto bp_err;
846 if (new_blk != log_bbnum)
847 head_blk = new_blk;
848 } else if (error)
849 goto bp_err;
850 }
851
852 xlog_put_bp(bp);
853 if (head_blk == log_bbnum)
854 *return_head_blk = 0;
855 else
856 *return_head_blk = head_blk;
857 /*
858 * When returning here, we have a good block number. Bad block
859 * means that during a previous crash, we didn't have a clean break
860 * from cycle number N to cycle number N-1. In this case, we need
861 * to find the first block with cycle number N-1.
862 */
863 return 0;
864
865 bp_err:
866 xlog_put_bp(bp);
867
868 if (error)
a0fa2b67 869 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
870 return error;
871}
872
eed6b462
BF
873/*
874 * Seek backwards in the log for log record headers.
875 *
876 * Given a starting log block, walk backwards until we find the provided number
877 * of records or hit the provided tail block. The return value is the number of
878 * records encountered or a negative error code. The log block and buffer
879 * pointer of the last record seen are returned in rblk and rhead respectively.
880 */
881STATIC int
882xlog_rseek_logrec_hdr(
883 struct xlog *log,
884 xfs_daddr_t head_blk,
885 xfs_daddr_t tail_blk,
886 int count,
887 struct xfs_buf *bp,
888 xfs_daddr_t *rblk,
889 struct xlog_rec_header **rhead,
890 bool *wrapped)
891{
892 int i;
893 int error;
894 int found = 0;
895 char *offset = NULL;
896 xfs_daddr_t end_blk;
897
898 *wrapped = false;
899
900 /*
901 * Walk backwards from the head block until we hit the tail or the first
902 * block in the log.
903 */
904 end_blk = head_blk > tail_blk ? tail_blk : 0;
905 for (i = (int) head_blk - 1; i >= end_blk; i--) {
906 error = xlog_bread(log, i, 1, bp, &offset);
907 if (error)
908 goto out_error;
909
910 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
911 *rblk = i;
912 *rhead = (struct xlog_rec_header *) offset;
913 if (++found == count)
914 break;
915 }
916 }
917
918 /*
919 * If we haven't hit the tail block or the log record header count,
920 * start looking again from the end of the physical log. Note that
921 * callers can pass head == tail if the tail is not yet known.
922 */
923 if (tail_blk >= head_blk && found != count) {
924 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
925 error = xlog_bread(log, i, 1, bp, &offset);
926 if (error)
927 goto out_error;
928
929 if (*(__be32 *)offset ==
930 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
931 *wrapped = true;
932 *rblk = i;
933 *rhead = (struct xlog_rec_header *) offset;
934 if (++found == count)
935 break;
936 }
937 }
938 }
939
940 return found;
941
942out_error:
943 return error;
944}
945
7088c413
BF
946/*
947 * Seek forward in the log for log record headers.
948 *
949 * Given head and tail blocks, walk forward from the tail block until we find
950 * the provided number of records or hit the head block. The return value is the
951 * number of records encountered or a negative error code. The log block and
952 * buffer pointer of the last record seen are returned in rblk and rhead
953 * respectively.
954 */
955STATIC int
956xlog_seek_logrec_hdr(
957 struct xlog *log,
958 xfs_daddr_t head_blk,
959 xfs_daddr_t tail_blk,
960 int count,
961 struct xfs_buf *bp,
962 xfs_daddr_t *rblk,
963 struct xlog_rec_header **rhead,
964 bool *wrapped)
965{
966 int i;
967 int error;
968 int found = 0;
969 char *offset = NULL;
970 xfs_daddr_t end_blk;
971
972 *wrapped = false;
973
974 /*
975 * Walk forward from the tail block until we hit the head or the last
976 * block in the log.
977 */
978 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
979 for (i = (int) tail_blk; i <= end_blk; i++) {
980 error = xlog_bread(log, i, 1, bp, &offset);
981 if (error)
982 goto out_error;
983
984 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
985 *rblk = i;
986 *rhead = (struct xlog_rec_header *) offset;
987 if (++found == count)
988 break;
989 }
990 }
991
992 /*
993 * If we haven't hit the head block or the log record header count,
994 * start looking again from the start of the physical log.
995 */
996 if (tail_blk > head_blk && found != count) {
997 for (i = 0; i < (int) head_blk; i++) {
998 error = xlog_bread(log, i, 1, bp, &offset);
999 if (error)
1000 goto out_error;
1001
1002 if (*(__be32 *)offset ==
1003 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1004 *wrapped = true;
1005 *rblk = i;
1006 *rhead = (struct xlog_rec_header *) offset;
1007 if (++found == count)
1008 break;
1009 }
1010 }
1011 }
1012
1013 return found;
1014
1015out_error:
1016 return error;
1017}
1018
1019/*
1020 * Check the log tail for torn writes. This is required when torn writes are
1021 * detected at the head and the head had to be walked back to a previous record.
1022 * The tail of the previous record must now be verified to ensure the torn
1023 * writes didn't corrupt the previous tail.
1024 *
1025 * Return an error if CRC verification fails as recovery cannot proceed.
1026 */
1027STATIC int
1028xlog_verify_tail(
1029 struct xlog *log,
1030 xfs_daddr_t head_blk,
1031 xfs_daddr_t tail_blk)
1032{
1033 struct xlog_rec_header *thead;
1034 struct xfs_buf *bp;
1035 xfs_daddr_t first_bad;
1036 int count;
1037 int error = 0;
1038 bool wrapped;
1039 xfs_daddr_t tmp_head;
1040
1041 bp = xlog_get_bp(log, 1);
1042 if (!bp)
1043 return -ENOMEM;
1044
1045 /*
1046 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1047 * a temporary head block that points after the last possible
1048 * concurrently written record of the tail.
1049 */
1050 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1051 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1052 &wrapped);
1053 if (count < 0) {
1054 error = count;
1055 goto out;
1056 }
1057
1058 /*
1059 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1060 * into the actual log head. tmp_head points to the start of the record
1061 * so update it to the actual head block.
1062 */
1063 if (count < XLOG_MAX_ICLOGS + 1)
1064 tmp_head = head_blk;
1065
1066 /*
1067 * We now have a tail and temporary head block that covers at least
1068 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1069 * records were completely written. Run a CRC verification pass from
1070 * tail to head and return the result.
1071 */
1072 error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1073 XLOG_RECOVER_CRCPASS, &first_bad);
1074
1075out:
1076 xlog_put_bp(bp);
1077 return error;
1078}
1079
1080/*
1081 * Detect and trim torn writes from the head of the log.
1082 *
1083 * Storage without sector atomicity guarantees can result in torn writes in the
1084 * log in the event of a crash. Our only means to detect this scenario is via
1085 * CRC verification. While we can't always be certain that CRC verification
1086 * failure is due to a torn write vs. an unrelated corruption, we do know that
1087 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1088 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1089 * the log and treat failures in this range as torn writes as a matter of
1090 * policy. In the event of CRC failure, the head is walked back to the last good
1091 * record in the log and the tail is updated from that record and verified.
1092 */
1093STATIC int
1094xlog_verify_head(
1095 struct xlog *log,
1096 xfs_daddr_t *head_blk, /* in/out: unverified head */
1097 xfs_daddr_t *tail_blk, /* out: tail block */
1098 struct xfs_buf *bp,
1099 xfs_daddr_t *rhead_blk, /* start blk of last record */
1100 struct xlog_rec_header **rhead, /* ptr to last record */
1101 bool *wrapped) /* last rec. wraps phys. log */
1102{
1103 struct xlog_rec_header *tmp_rhead;
1104 struct xfs_buf *tmp_bp;
1105 xfs_daddr_t first_bad;
1106 xfs_daddr_t tmp_rhead_blk;
1107 int found;
1108 int error;
1109 bool tmp_wrapped;
1110
1111 /*
82ff6cc2
BF
1112 * Check the head of the log for torn writes. Search backwards from the
1113 * head until we hit the tail or the maximum number of log record I/Os
1114 * that could have been in flight at one time. Use a temporary buffer so
1115 * we don't trash the rhead/bp pointers from the caller.
7088c413
BF
1116 */
1117 tmp_bp = xlog_get_bp(log, 1);
1118 if (!tmp_bp)
1119 return -ENOMEM;
1120 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1121 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1122 &tmp_rhead, &tmp_wrapped);
1123 xlog_put_bp(tmp_bp);
1124 if (error < 0)
1125 return error;
1126
1127 /*
1128 * Now run a CRC verification pass over the records starting at the
1129 * block found above to the current head. If a CRC failure occurs, the
1130 * log block of the first bad record is saved in first_bad.
1131 */
1132 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1133 XLOG_RECOVER_CRCPASS, &first_bad);
1134 if (error == -EFSBADCRC) {
1135 /*
1136 * We've hit a potential torn write. Reset the error and warn
1137 * about it.
1138 */
1139 error = 0;
1140 xfs_warn(log->l_mp,
1141"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1142 first_bad, *head_blk);
1143
1144 /*
1145 * Get the header block and buffer pointer for the last good
1146 * record before the bad record.
1147 *
1148 * Note that xlog_find_tail() clears the blocks at the new head
1149 * (i.e., the records with invalid CRC) if the cycle number
1150 * matches the the current cycle.
1151 */
1152 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1153 rhead_blk, rhead, wrapped);
1154 if (found < 0)
1155 return found;
1156 if (found == 0) /* XXX: right thing to do here? */
1157 return -EIO;
1158
1159 /*
1160 * Reset the head block to the starting block of the first bad
1161 * log record and set the tail block based on the last good
1162 * record.
1163 *
1164 * Bail out if the updated head/tail match as this indicates
1165 * possible corruption outside of the acceptable
1166 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1167 */
1168 *head_blk = first_bad;
1169 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1170 if (*head_blk == *tail_blk) {
1171 ASSERT(0);
1172 return 0;
1173 }
1174
1175 /*
1176 * Now verify the tail based on the updated head. This is
1177 * required because the torn writes trimmed from the head could
1178 * have been written over the tail of a previous record. Return
1179 * any errors since recovery cannot proceed if the tail is
1180 * corrupt.
1181 *
1182 * XXX: This leaves a gap in truly robust protection from torn
1183 * writes in the log. If the head is behind the tail, the tail
1184 * pushes forward to create some space and then a crash occurs
1185 * causing the writes into the previous record's tail region to
1186 * tear, log recovery isn't able to recover.
1187 *
1188 * How likely is this to occur? If possible, can we do something
1189 * more intelligent here? Is it safe to push the tail forward if
1190 * we can determine that the tail is within the range of the
1191 * torn write (e.g., the kernel can only overwrite the tail if
1192 * it has actually been pushed forward)? Alternatively, could we
1193 * somehow prevent this condition at runtime?
1194 */
1195 error = xlog_verify_tail(log, *head_blk, *tail_blk);
1196 }
1197
1198 return error;
1199}
1200
65b99a08
BF
1201/*
1202 * Check whether the head of the log points to an unmount record. In other
1203 * words, determine whether the log is clean. If so, update the in-core state
1204 * appropriately.
1205 */
1206static int
1207xlog_check_unmount_rec(
1208 struct xlog *log,
1209 xfs_daddr_t *head_blk,
1210 xfs_daddr_t *tail_blk,
1211 struct xlog_rec_header *rhead,
1212 xfs_daddr_t rhead_blk,
1213 struct xfs_buf *bp,
1214 bool *clean)
1215{
1216 struct xlog_op_header *op_head;
1217 xfs_daddr_t umount_data_blk;
1218 xfs_daddr_t after_umount_blk;
1219 int hblks;
1220 int error;
1221 char *offset;
1222
1223 *clean = false;
1224
1225 /*
1226 * Look for unmount record. If we find it, then we know there was a
1227 * clean unmount. Since 'i' could be the last block in the physical
1228 * log, we convert to a log block before comparing to the head_blk.
1229 *
1230 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1231 * below. We won't want to clear the unmount record if there is one, so
1232 * we pass the lsn of the unmount record rather than the block after it.
1233 */
1234 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1235 int h_size = be32_to_cpu(rhead->h_size);
1236 int h_version = be32_to_cpu(rhead->h_version);
1237
1238 if ((h_version & XLOG_VERSION_2) &&
1239 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1240 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1241 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1242 hblks++;
1243 } else {
1244 hblks = 1;
1245 }
1246 } else {
1247 hblks = 1;
1248 }
1249 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1250 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1251 if (*head_blk == after_umount_blk &&
1252 be32_to_cpu(rhead->h_num_logops) == 1) {
1253 umount_data_blk = rhead_blk + hblks;
1254 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1255 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1256 if (error)
1257 return error;
1258
1259 op_head = (struct xlog_op_header *)offset;
1260 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1261 /*
1262 * Set tail and last sync so that newly written log
1263 * records will point recovery to after the current
1264 * unmount record.
1265 */
1266 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1267 log->l_curr_cycle, after_umount_blk);
1268 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1269 log->l_curr_cycle, after_umount_blk);
1270 *tail_blk = after_umount_blk;
1271
1272 *clean = true;
1273 }
1274 }
1275
1276 return 0;
1277}
1278
717bc0eb
BF
1279static void
1280xlog_set_state(
1281 struct xlog *log,
1282 xfs_daddr_t head_blk,
1283 struct xlog_rec_header *rhead,
1284 xfs_daddr_t rhead_blk,
1285 bool bump_cycle)
1286{
1287 /*
1288 * Reset log values according to the state of the log when we
1289 * crashed. In the case where head_blk == 0, we bump curr_cycle
1290 * one because the next write starts a new cycle rather than
1291 * continuing the cycle of the last good log record. At this
1292 * point we have guaranteed that all partial log records have been
1293 * accounted for. Therefore, we know that the last good log record
1294 * written was complete and ended exactly on the end boundary
1295 * of the physical log.
1296 */
1297 log->l_prev_block = rhead_blk;
1298 log->l_curr_block = (int)head_blk;
1299 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1300 if (bump_cycle)
1301 log->l_curr_cycle++;
1302 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1303 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1304 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1305 BBTOB(log->l_curr_block));
1306 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1307 BBTOB(log->l_curr_block));
1308}
1309
1da177e4
LT
1310/*
1311 * Find the sync block number or the tail of the log.
1312 *
1313 * This will be the block number of the last record to have its
1314 * associated buffers synced to disk. Every log record header has
1315 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1316 * to get a sync block number. The only concern is to figure out which
1317 * log record header to believe.
1318 *
1319 * The following algorithm uses the log record header with the largest
1320 * lsn. The entire log record does not need to be valid. We only care
1321 * that the header is valid.
1322 *
1323 * We could speed up search by using current head_blk buffer, but it is not
1324 * available.
1325 */
5d77c0dc 1326STATIC int
1da177e4 1327xlog_find_tail(
9a8d2fdb 1328 struct xlog *log,
1da177e4 1329 xfs_daddr_t *head_blk,
65be6054 1330 xfs_daddr_t *tail_blk)
1da177e4
LT
1331{
1332 xlog_rec_header_t *rhead;
b2a922cd 1333 char *offset = NULL;
1da177e4 1334 xfs_buf_t *bp;
7088c413 1335 int error;
7088c413 1336 xfs_daddr_t rhead_blk;
1da177e4 1337 xfs_lsn_t tail_lsn;
eed6b462 1338 bool wrapped = false;
65b99a08 1339 bool clean = false;
1da177e4
LT
1340
1341 /*
1342 * Find previous log record
1343 */
1344 if ((error = xlog_find_head(log, head_blk)))
1345 return error;
82ff6cc2 1346 ASSERT(*head_blk < INT_MAX);
1da177e4
LT
1347
1348 bp = xlog_get_bp(log, 1);
1349 if (!bp)
2451337d 1350 return -ENOMEM;
1da177e4 1351 if (*head_blk == 0) { /* special case */
076e6acb
CH
1352 error = xlog_bread(log, 0, 1, bp, &offset);
1353 if (error)
9db127ed 1354 goto done;
076e6acb 1355
03bea6fe 1356 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
1357 *tail_blk = 0;
1358 /* leave all other log inited values alone */
9db127ed 1359 goto done;
1da177e4
LT
1360 }
1361 }
1362
1363 /*
82ff6cc2
BF
1364 * Search backwards through the log looking for the log record header
1365 * block. This wraps all the way back around to the head so something is
1366 * seriously wrong if we can't find it.
1da177e4 1367 */
82ff6cc2
BF
1368 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1369 &rhead_blk, &rhead, &wrapped);
1370 if (error < 0)
1371 return error;
1372 if (!error) {
1373 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1374 return -EIO;
1375 }
1376 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
1377
1378 /*
717bc0eb 1379 * Set the log state based on the current head record.
1da177e4 1380 */
717bc0eb 1381 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
65b99a08 1382 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4
LT
1383
1384 /*
65b99a08
BF
1385 * Look for an unmount record at the head of the log. This sets the log
1386 * state to determine whether recovery is necessary.
1da177e4 1387 */
65b99a08
BF
1388 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1389 rhead_blk, bp, &clean);
1390 if (error)
1391 goto done;
1da177e4
LT
1392
1393 /*
7f6aff3a
BF
1394 * Verify the log head if the log is not clean (e.g., we have anything
1395 * but an unmount record at the head). This uses CRC verification to
1396 * detect and trim torn writes. If discovered, CRC failures are
1397 * considered torn writes and the log head is trimmed accordingly.
1da177e4 1398 *
7f6aff3a
BF
1399 * Note that we can only run CRC verification when the log is dirty
1400 * because there's no guarantee that the log data behind an unmount
1401 * record is compatible with the current architecture.
1da177e4 1402 */
7f6aff3a
BF
1403 if (!clean) {
1404 xfs_daddr_t orig_head = *head_blk;
1da177e4 1405
7f6aff3a
BF
1406 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1407 &rhead_blk, &rhead, &wrapped);
076e6acb 1408 if (error)
9db127ed 1409 goto done;
076e6acb 1410
7f6aff3a
BF
1411 /* update in-core state again if the head changed */
1412 if (*head_blk != orig_head) {
1413 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1414 wrapped);
1415 tail_lsn = atomic64_read(&log->l_tail_lsn);
1416 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1417 rhead, rhead_blk, bp,
1418 &clean);
1419 if (error)
1420 goto done;
1da177e4
LT
1421 }
1422 }
1423
65b99a08
BF
1424 /*
1425 * Note that the unmount was clean. If the unmount was not clean, we
1426 * need to know this to rebuild the superblock counters from the perag
1427 * headers if we have a filesystem using non-persistent counters.
1428 */
1429 if (clean)
1430 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1431
1432 /*
1433 * Make sure that there are no blocks in front of the head
1434 * with the same cycle number as the head. This can happen
1435 * because we allow multiple outstanding log writes concurrently,
1436 * and the later writes might make it out before earlier ones.
1437 *
1438 * We use the lsn from before modifying it so that we'll never
1439 * overwrite the unmount record after a clean unmount.
1440 *
1441 * Do this only if we are going to recover the filesystem
1442 *
1443 * NOTE: This used to say "if (!readonly)"
1444 * However on Linux, we can & do recover a read-only filesystem.
1445 * We only skip recovery if NORECOVERY is specified on mount,
1446 * in which case we would not be here.
1447 *
1448 * But... if the -device- itself is readonly, just skip this.
1449 * We can't recover this device anyway, so it won't matter.
1450 */
9db127ed 1451 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1452 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1453
9db127ed 1454done:
1da177e4
LT
1455 xlog_put_bp(bp);
1456
1457 if (error)
a0fa2b67 1458 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1459 return error;
1460}
1461
1462/*
1463 * Is the log zeroed at all?
1464 *
1465 * The last binary search should be changed to perform an X block read
1466 * once X becomes small enough. You can then search linearly through
1467 * the X blocks. This will cut down on the number of reads we need to do.
1468 *
1469 * If the log is partially zeroed, this routine will pass back the blkno
1470 * of the first block with cycle number 0. It won't have a complete LR
1471 * preceding it.
1472 *
1473 * Return:
1474 * 0 => the log is completely written to
2451337d
DC
1475 * 1 => use *blk_no as the first block of the log
1476 * <0 => error has occurred
1da177e4 1477 */
a8272ce0 1478STATIC int
1da177e4 1479xlog_find_zeroed(
9a8d2fdb 1480 struct xlog *log,
1da177e4
LT
1481 xfs_daddr_t *blk_no)
1482{
1483 xfs_buf_t *bp;
b2a922cd 1484 char *offset;
1da177e4
LT
1485 uint first_cycle, last_cycle;
1486 xfs_daddr_t new_blk, last_blk, start_blk;
1487 xfs_daddr_t num_scan_bblks;
1488 int error, log_bbnum = log->l_logBBsize;
1489
6fdf8ccc
NS
1490 *blk_no = 0;
1491
1da177e4
LT
1492 /* check totally zeroed log */
1493 bp = xlog_get_bp(log, 1);
1494 if (!bp)
2451337d 1495 return -ENOMEM;
076e6acb
CH
1496 error = xlog_bread(log, 0, 1, bp, &offset);
1497 if (error)
1da177e4 1498 goto bp_err;
076e6acb 1499
03bea6fe 1500 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1501 if (first_cycle == 0) { /* completely zeroed log */
1502 *blk_no = 0;
1503 xlog_put_bp(bp);
2451337d 1504 return 1;
1da177e4
LT
1505 }
1506
1507 /* check partially zeroed log */
076e6acb
CH
1508 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1509 if (error)
1da177e4 1510 goto bp_err;
076e6acb 1511
03bea6fe 1512 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1513 if (last_cycle != 0) { /* log completely written to */
1514 xlog_put_bp(bp);
1515 return 0;
1516 } else if (first_cycle != 1) {
1517 /*
1518 * If the cycle of the last block is zero, the cycle of
1519 * the first block must be 1. If it's not, maybe we're
1520 * not looking at a log... Bail out.
1521 */
a0fa2b67
DC
1522 xfs_warn(log->l_mp,
1523 "Log inconsistent or not a log (last==0, first!=1)");
2451337d 1524 error = -EINVAL;
5d0a6549 1525 goto bp_err;
1da177e4
LT
1526 }
1527
1528 /* we have a partially zeroed log */
1529 last_blk = log_bbnum-1;
1530 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1531 goto bp_err;
1532
1533 /*
1534 * Validate the answer. Because there is no way to guarantee that
1535 * the entire log is made up of log records which are the same size,
1536 * we scan over the defined maximum blocks. At this point, the maximum
1537 * is not chosen to mean anything special. XXXmiken
1538 */
1539 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1540 ASSERT(num_scan_bblks <= INT_MAX);
1541
1542 if (last_blk < num_scan_bblks)
1543 num_scan_bblks = last_blk;
1544 start_blk = last_blk - num_scan_bblks;
1545
1546 /*
1547 * We search for any instances of cycle number 0 that occur before
1548 * our current estimate of the head. What we're trying to detect is
1549 * 1 ... | 0 | 1 | 0...
1550 * ^ binary search ends here
1551 */
1552 if ((error = xlog_find_verify_cycle(log, start_blk,
1553 (int)num_scan_bblks, 0, &new_blk)))
1554 goto bp_err;
1555 if (new_blk != -1)
1556 last_blk = new_blk;
1557
1558 /*
1559 * Potentially backup over partial log record write. We don't need
1560 * to search the end of the log because we know it is zero.
1561 */
2451337d
DC
1562 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1563 if (error == 1)
1564 error = -EIO;
1565 if (error)
1566 goto bp_err;
1da177e4
LT
1567
1568 *blk_no = last_blk;
1569bp_err:
1570 xlog_put_bp(bp);
1571 if (error)
1572 return error;
2451337d 1573 return 1;
1da177e4
LT
1574}
1575
1576/*
1577 * These are simple subroutines used by xlog_clear_stale_blocks() below
1578 * to initialize a buffer full of empty log record headers and write
1579 * them into the log.
1580 */
1581STATIC void
1582xlog_add_record(
9a8d2fdb 1583 struct xlog *log,
b2a922cd 1584 char *buf,
1da177e4
LT
1585 int cycle,
1586 int block,
1587 int tail_cycle,
1588 int tail_block)
1589{
1590 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1591
1592 memset(buf, 0, BBSIZE);
b53e675d
CH
1593 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1594 recp->h_cycle = cpu_to_be32(cycle);
1595 recp->h_version = cpu_to_be32(
62118709 1596 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1597 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1598 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1599 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1600 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1601}
1602
1603STATIC int
1604xlog_write_log_records(
9a8d2fdb 1605 struct xlog *log,
1da177e4
LT
1606 int cycle,
1607 int start_block,
1608 int blocks,
1609 int tail_cycle,
1610 int tail_block)
1611{
b2a922cd 1612 char *offset;
1da177e4
LT
1613 xfs_buf_t *bp;
1614 int balign, ealign;
69ce58f0 1615 int sectbb = log->l_sectBBsize;
1da177e4
LT
1616 int end_block = start_block + blocks;
1617 int bufblks;
1618 int error = 0;
1619 int i, j = 0;
1620
6881a229
AE
1621 /*
1622 * Greedily allocate a buffer big enough to handle the full
1623 * range of basic blocks to be written. If that fails, try
1624 * a smaller size. We need to be able to write at least a
1625 * log sector, or we're out of luck.
1626 */
1da177e4 1627 bufblks = 1 << ffs(blocks);
81158e0c
DC
1628 while (bufblks > log->l_logBBsize)
1629 bufblks >>= 1;
1da177e4
LT
1630 while (!(bp = xlog_get_bp(log, bufblks))) {
1631 bufblks >>= 1;
69ce58f0 1632 if (bufblks < sectbb)
2451337d 1633 return -ENOMEM;
1da177e4
LT
1634 }
1635
1636 /* We may need to do a read at the start to fill in part of
1637 * the buffer in the starting sector not covered by the first
1638 * write below.
1639 */
5c17f533 1640 balign = round_down(start_block, sectbb);
1da177e4 1641 if (balign != start_block) {
076e6acb
CH
1642 error = xlog_bread_noalign(log, start_block, 1, bp);
1643 if (error)
1644 goto out_put_bp;
1645
1da177e4
LT
1646 j = start_block - balign;
1647 }
1648
1649 for (i = start_block; i < end_block; i += bufblks) {
1650 int bcount, endcount;
1651
1652 bcount = min(bufblks, end_block - start_block);
1653 endcount = bcount - j;
1654
1655 /* We may need to do a read at the end to fill in part of
1656 * the buffer in the final sector not covered by the write.
1657 * If this is the same sector as the above read, skip it.
1658 */
5c17f533 1659 ealign = round_down(end_block, sectbb);
1da177e4 1660 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1661 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1662 error = xlog_bread_offset(log, ealign, sectbb,
1663 bp, offset);
076e6acb
CH
1664 if (error)
1665 break;
1666
1da177e4
LT
1667 }
1668
1669 offset = xlog_align(log, start_block, endcount, bp);
1670 for (; j < endcount; j++) {
1671 xlog_add_record(log, offset, cycle, i+j,
1672 tail_cycle, tail_block);
1673 offset += BBSIZE;
1674 }
1675 error = xlog_bwrite(log, start_block, endcount, bp);
1676 if (error)
1677 break;
1678 start_block += endcount;
1679 j = 0;
1680 }
076e6acb
CH
1681
1682 out_put_bp:
1da177e4
LT
1683 xlog_put_bp(bp);
1684 return error;
1685}
1686
1687/*
1688 * This routine is called to blow away any incomplete log writes out
1689 * in front of the log head. We do this so that we won't become confused
1690 * if we come up, write only a little bit more, and then crash again.
1691 * If we leave the partial log records out there, this situation could
1692 * cause us to think those partial writes are valid blocks since they
1693 * have the current cycle number. We get rid of them by overwriting them
1694 * with empty log records with the old cycle number rather than the
1695 * current one.
1696 *
1697 * The tail lsn is passed in rather than taken from
1698 * the log so that we will not write over the unmount record after a
1699 * clean unmount in a 512 block log. Doing so would leave the log without
1700 * any valid log records in it until a new one was written. If we crashed
1701 * during that time we would not be able to recover.
1702 */
1703STATIC int
1704xlog_clear_stale_blocks(
9a8d2fdb 1705 struct xlog *log,
1da177e4
LT
1706 xfs_lsn_t tail_lsn)
1707{
1708 int tail_cycle, head_cycle;
1709 int tail_block, head_block;
1710 int tail_distance, max_distance;
1711 int distance;
1712 int error;
1713
1714 tail_cycle = CYCLE_LSN(tail_lsn);
1715 tail_block = BLOCK_LSN(tail_lsn);
1716 head_cycle = log->l_curr_cycle;
1717 head_block = log->l_curr_block;
1718
1719 /*
1720 * Figure out the distance between the new head of the log
1721 * and the tail. We want to write over any blocks beyond the
1722 * head that we may have written just before the crash, but
1723 * we don't want to overwrite the tail of the log.
1724 */
1725 if (head_cycle == tail_cycle) {
1726 /*
1727 * The tail is behind the head in the physical log,
1728 * so the distance from the head to the tail is the
1729 * distance from the head to the end of the log plus
1730 * the distance from the beginning of the log to the
1731 * tail.
1732 */
1733 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1734 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1735 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1736 return -EFSCORRUPTED;
1da177e4
LT
1737 }
1738 tail_distance = tail_block + (log->l_logBBsize - head_block);
1739 } else {
1740 /*
1741 * The head is behind the tail in the physical log,
1742 * so the distance from the head to the tail is just
1743 * the tail block minus the head block.
1744 */
1745 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1747 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1748 return -EFSCORRUPTED;
1da177e4
LT
1749 }
1750 tail_distance = tail_block - head_block;
1751 }
1752
1753 /*
1754 * If the head is right up against the tail, we can't clear
1755 * anything.
1756 */
1757 if (tail_distance <= 0) {
1758 ASSERT(tail_distance == 0);
1759 return 0;
1760 }
1761
1762 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1763 /*
1764 * Take the smaller of the maximum amount of outstanding I/O
1765 * we could have and the distance to the tail to clear out.
1766 * We take the smaller so that we don't overwrite the tail and
1767 * we don't waste all day writing from the head to the tail
1768 * for no reason.
1769 */
1770 max_distance = MIN(max_distance, tail_distance);
1771
1772 if ((head_block + max_distance) <= log->l_logBBsize) {
1773 /*
1774 * We can stomp all the blocks we need to without
1775 * wrapping around the end of the log. Just do it
1776 * in a single write. Use the cycle number of the
1777 * current cycle minus one so that the log will look like:
1778 * n ... | n - 1 ...
1779 */
1780 error = xlog_write_log_records(log, (head_cycle - 1),
1781 head_block, max_distance, tail_cycle,
1782 tail_block);
1783 if (error)
1784 return error;
1785 } else {
1786 /*
1787 * We need to wrap around the end of the physical log in
1788 * order to clear all the blocks. Do it in two separate
1789 * I/Os. The first write should be from the head to the
1790 * end of the physical log, and it should use the current
1791 * cycle number minus one just like above.
1792 */
1793 distance = log->l_logBBsize - head_block;
1794 error = xlog_write_log_records(log, (head_cycle - 1),
1795 head_block, distance, tail_cycle,
1796 tail_block);
1797
1798 if (error)
1799 return error;
1800
1801 /*
1802 * Now write the blocks at the start of the physical log.
1803 * This writes the remainder of the blocks we want to clear.
1804 * It uses the current cycle number since we're now on the
1805 * same cycle as the head so that we get:
1806 * n ... n ... | n - 1 ...
1807 * ^^^^^ blocks we're writing
1808 */
1809 distance = max_distance - (log->l_logBBsize - head_block);
1810 error = xlog_write_log_records(log, head_cycle, 0, distance,
1811 tail_cycle, tail_block);
1812 if (error)
1813 return error;
1814 }
1815
1816 return 0;
1817}
1818
1819/******************************************************************************
1820 *
1821 * Log recover routines
1822 *
1823 ******************************************************************************
1824 */
1825
f0a76953 1826/*
a775ad77
DC
1827 * Sort the log items in the transaction.
1828 *
1829 * The ordering constraints are defined by the inode allocation and unlink
1830 * behaviour. The rules are:
1831 *
1832 * 1. Every item is only logged once in a given transaction. Hence it
1833 * represents the last logged state of the item. Hence ordering is
1834 * dependent on the order in which operations need to be performed so
1835 * required initial conditions are always met.
1836 *
1837 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1838 * there's nothing to replay from them so we can simply cull them
1839 * from the transaction. However, we can't do that until after we've
1840 * replayed all the other items because they may be dependent on the
1841 * cancelled buffer and replaying the cancelled buffer can remove it
1842 * form the cancelled buffer table. Hence they have tobe done last.
1843 *
1844 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1845 * read the buffer and replay changes into it. For filesystems using the
1846 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1847 * treated the same as inode allocation buffers as they create and
1848 * initialise the buffers directly.
a775ad77
DC
1849 *
1850 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1851 * This ensures that inodes are completely flushed to the inode buffer
1852 * in a "free" state before we remove the unlinked inode list pointer.
1853 *
1854 * Hence the ordering needs to be inode allocation buffers first, inode items
1855 * second, inode unlink buffers third and cancelled buffers last.
1856 *
1857 * But there's a problem with that - we can't tell an inode allocation buffer
1858 * apart from a regular buffer, so we can't separate them. We can, however,
1859 * tell an inode unlink buffer from the others, and so we can separate them out
1860 * from all the other buffers and move them to last.
1861 *
1862 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1863 * - buffer_list for all buffers except cancelled/inode unlink buffers
1864 * - item_list for all non-buffer items
1865 * - inode_buffer_list for inode unlink buffers
1866 * - cancel_list for the cancelled buffers
1867 *
1868 * Note that we add objects to the tail of the lists so that first-to-last
1869 * ordering is preserved within the lists. Adding objects to the head of the
1870 * list means when we traverse from the head we walk them in last-to-first
1871 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1872 * but for all other items there may be specific ordering that we need to
1873 * preserve.
f0a76953 1874 */
1da177e4
LT
1875STATIC int
1876xlog_recover_reorder_trans(
ad223e60
MT
1877 struct xlog *log,
1878 struct xlog_recover *trans,
9abbc539 1879 int pass)
1da177e4 1880{
f0a76953 1881 xlog_recover_item_t *item, *n;
2a84108f 1882 int error = 0;
f0a76953 1883 LIST_HEAD(sort_list);
a775ad77
DC
1884 LIST_HEAD(cancel_list);
1885 LIST_HEAD(buffer_list);
1886 LIST_HEAD(inode_buffer_list);
1887 LIST_HEAD(inode_list);
f0a76953
DC
1888
1889 list_splice_init(&trans->r_itemq, &sort_list);
1890 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1891 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1892
f0a76953 1893 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1894 case XFS_LI_ICREATE:
1895 list_move_tail(&item->ri_list, &buffer_list);
1896 break;
1da177e4 1897 case XFS_LI_BUF:
a775ad77 1898 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1899 trace_xfs_log_recover_item_reorder_head(log,
1900 trans, item, pass);
a775ad77 1901 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1902 break;
1903 }
a775ad77
DC
1904 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1905 list_move(&item->ri_list, &inode_buffer_list);
1906 break;
1907 }
1908 list_move_tail(&item->ri_list, &buffer_list);
1909 break;
1da177e4 1910 case XFS_LI_INODE:
1da177e4
LT
1911 case XFS_LI_DQUOT:
1912 case XFS_LI_QUOTAOFF:
1913 case XFS_LI_EFD:
1914 case XFS_LI_EFI:
9e88b5d8
DW
1915 case XFS_LI_RUI:
1916 case XFS_LI_RUD:
9abbc539
DC
1917 trace_xfs_log_recover_item_reorder_tail(log,
1918 trans, item, pass);
a775ad77 1919 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1920 break;
1921 default:
a0fa2b67
DC
1922 xfs_warn(log->l_mp,
1923 "%s: unrecognized type of log operation",
1924 __func__);
1da177e4 1925 ASSERT(0);
2a84108f
MT
1926 /*
1927 * return the remaining items back to the transaction
1928 * item list so they can be freed in caller.
1929 */
1930 if (!list_empty(&sort_list))
1931 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1932 error = -EIO;
2a84108f 1933 goto out;
1da177e4 1934 }
f0a76953 1935 }
2a84108f 1936out:
f0a76953 1937 ASSERT(list_empty(&sort_list));
a775ad77
DC
1938 if (!list_empty(&buffer_list))
1939 list_splice(&buffer_list, &trans->r_itemq);
1940 if (!list_empty(&inode_list))
1941 list_splice_tail(&inode_list, &trans->r_itemq);
1942 if (!list_empty(&inode_buffer_list))
1943 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1944 if (!list_empty(&cancel_list))
1945 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1946 return error;
1da177e4
LT
1947}
1948
1949/*
1950 * Build up the table of buf cancel records so that we don't replay
1951 * cancelled data in the second pass. For buffer records that are
1952 * not cancel records, there is nothing to do here so we just return.
1953 *
1954 * If we get a cancel record which is already in the table, this indicates
1955 * that the buffer was cancelled multiple times. In order to ensure
1956 * that during pass 2 we keep the record in the table until we reach its
1957 * last occurrence in the log, we keep a reference count in the cancel
1958 * record in the table to tell us how many times we expect to see this
1959 * record during the second pass.
1960 */
c9f71f5f
CH
1961STATIC int
1962xlog_recover_buffer_pass1(
ad223e60
MT
1963 struct xlog *log,
1964 struct xlog_recover_item *item)
1da177e4 1965{
c9f71f5f 1966 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1967 struct list_head *bucket;
1968 struct xfs_buf_cancel *bcp;
1da177e4
LT
1969
1970 /*
1971 * If this isn't a cancel buffer item, then just return.
1972 */
e2714bf8 1973 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1974 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1975 return 0;
9abbc539 1976 }
1da177e4
LT
1977
1978 /*
d5689eaa
CH
1979 * Insert an xfs_buf_cancel record into the hash table of them.
1980 * If there is already an identical record, bump its reference count.
1da177e4 1981 */
d5689eaa
CH
1982 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1983 list_for_each_entry(bcp, bucket, bc_list) {
1984 if (bcp->bc_blkno == buf_f->blf_blkno &&
1985 bcp->bc_len == buf_f->blf_len) {
1986 bcp->bc_refcount++;
9abbc539 1987 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1988 return 0;
1da177e4 1989 }
d5689eaa
CH
1990 }
1991
1992 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1993 bcp->bc_blkno = buf_f->blf_blkno;
1994 bcp->bc_len = buf_f->blf_len;
1da177e4 1995 bcp->bc_refcount = 1;
d5689eaa
CH
1996 list_add_tail(&bcp->bc_list, bucket);
1997
9abbc539 1998 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1999 return 0;
1da177e4
LT
2000}
2001
2002/*
2003 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
2004 * entry in the buffer cancel record table. If it is, return the cancel
2005 * buffer structure to the caller.
1da177e4 2006 */
84a5b730
DC
2007STATIC struct xfs_buf_cancel *
2008xlog_peek_buffer_cancelled(
ad223e60 2009 struct xlog *log,
1da177e4
LT
2010 xfs_daddr_t blkno,
2011 uint len,
2012 ushort flags)
2013{
d5689eaa
CH
2014 struct list_head *bucket;
2015 struct xfs_buf_cancel *bcp;
1da177e4 2016
84a5b730
DC
2017 if (!log->l_buf_cancel_table) {
2018 /* empty table means no cancelled buffers in the log */
c1155410 2019 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 2020 return NULL;
1da177e4
LT
2021 }
2022
d5689eaa
CH
2023 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2024 list_for_each_entry(bcp, bucket, bc_list) {
2025 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 2026 return bcp;
1da177e4 2027 }
d5689eaa 2028
1da177e4 2029 /*
d5689eaa
CH
2030 * We didn't find a corresponding entry in the table, so return 0 so
2031 * that the buffer is NOT cancelled.
1da177e4 2032 */
c1155410 2033 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
2034 return NULL;
2035}
2036
2037/*
2038 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2039 * otherwise return 0. If the buffer is actually a buffer cancel item
2040 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2041 * table and remove it from the table if this is the last reference.
2042 *
2043 * We remove the cancel record from the table when we encounter its last
2044 * occurrence in the log so that if the same buffer is re-used again after its
2045 * last cancellation we actually replay the changes made at that point.
2046 */
2047STATIC int
2048xlog_check_buffer_cancelled(
2049 struct xlog *log,
2050 xfs_daddr_t blkno,
2051 uint len,
2052 ushort flags)
2053{
2054 struct xfs_buf_cancel *bcp;
2055
2056 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2057 if (!bcp)
2058 return 0;
d5689eaa 2059
d5689eaa
CH
2060 /*
2061 * We've go a match, so return 1 so that the recovery of this buffer
2062 * is cancelled. If this buffer is actually a buffer cancel log
2063 * item, then decrement the refcount on the one in the table and
2064 * remove it if this is the last reference.
2065 */
2066 if (flags & XFS_BLF_CANCEL) {
2067 if (--bcp->bc_refcount == 0) {
2068 list_del(&bcp->bc_list);
2069 kmem_free(bcp);
2070 }
2071 }
2072 return 1;
1da177e4
LT
2073}
2074
1da177e4 2075/*
e2714bf8
CH
2076 * Perform recovery for a buffer full of inodes. In these buffers, the only
2077 * data which should be recovered is that which corresponds to the
2078 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2079 * data for the inodes is always logged through the inodes themselves rather
2080 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 2081 *
e2714bf8
CH
2082 * The only time when buffers full of inodes are fully recovered is when the
2083 * buffer is full of newly allocated inodes. In this case the buffer will
2084 * not be marked as an inode buffer and so will be sent to
2085 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
2086 */
2087STATIC int
2088xlog_recover_do_inode_buffer(
e2714bf8 2089 struct xfs_mount *mp,
1da177e4 2090 xlog_recover_item_t *item,
e2714bf8 2091 struct xfs_buf *bp,
1da177e4
LT
2092 xfs_buf_log_format_t *buf_f)
2093{
2094 int i;
e2714bf8
CH
2095 int item_index = 0;
2096 int bit = 0;
2097 int nbits = 0;
2098 int reg_buf_offset = 0;
2099 int reg_buf_bytes = 0;
1da177e4
LT
2100 int next_unlinked_offset;
2101 int inodes_per_buf;
2102 xfs_agino_t *logged_nextp;
2103 xfs_agino_t *buffer_nextp;
1da177e4 2104
9abbc539 2105 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
2106
2107 /*
2108 * Post recovery validation only works properly on CRC enabled
2109 * filesystems.
2110 */
2111 if (xfs_sb_version_hascrc(&mp->m_sb))
2112 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 2113
aa0e8833 2114 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
2115 for (i = 0; i < inodes_per_buf; i++) {
2116 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2117 offsetof(xfs_dinode_t, di_next_unlinked);
2118
2119 while (next_unlinked_offset >=
2120 (reg_buf_offset + reg_buf_bytes)) {
2121 /*
2122 * The next di_next_unlinked field is beyond
2123 * the current logged region. Find the next
2124 * logged region that contains or is beyond
2125 * the current di_next_unlinked field.
2126 */
2127 bit += nbits;
e2714bf8
CH
2128 bit = xfs_next_bit(buf_f->blf_data_map,
2129 buf_f->blf_map_size, bit);
1da177e4
LT
2130
2131 /*
2132 * If there are no more logged regions in the
2133 * buffer, then we're done.
2134 */
e2714bf8 2135 if (bit == -1)
1da177e4 2136 return 0;
1da177e4 2137
e2714bf8
CH
2138 nbits = xfs_contig_bits(buf_f->blf_data_map,
2139 buf_f->blf_map_size, bit);
1da177e4 2140 ASSERT(nbits > 0);
c1155410
DC
2141 reg_buf_offset = bit << XFS_BLF_SHIFT;
2142 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
2143 item_index++;
2144 }
2145
2146 /*
2147 * If the current logged region starts after the current
2148 * di_next_unlinked field, then move on to the next
2149 * di_next_unlinked field.
2150 */
e2714bf8 2151 if (next_unlinked_offset < reg_buf_offset)
1da177e4 2152 continue;
1da177e4
LT
2153
2154 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 2155 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
2156 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2157 BBTOB(bp->b_io_length));
1da177e4
LT
2158
2159 /*
2160 * The current logged region contains a copy of the
2161 * current di_next_unlinked field. Extract its value
2162 * and copy it to the buffer copy.
2163 */
4e0d5f92
CH
2164 logged_nextp = item->ri_buf[item_index].i_addr +
2165 next_unlinked_offset - reg_buf_offset;
1da177e4 2166 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
2167 xfs_alert(mp,
2168 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2169 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
2170 item, bp);
2171 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2172 XFS_ERRLEVEL_LOW, mp);
2451337d 2173 return -EFSCORRUPTED;
1da177e4
LT
2174 }
2175
88ee2df7 2176 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
87c199c2 2177 *buffer_nextp = *logged_nextp;
0a32c26e
DC
2178
2179 /*
2180 * If necessary, recalculate the CRC in the on-disk inode. We
2181 * have to leave the inode in a consistent state for whoever
2182 * reads it next....
2183 */
88ee2df7 2184 xfs_dinode_calc_crc(mp,
0a32c26e
DC
2185 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2186
1da177e4
LT
2187 }
2188
2189 return 0;
2190}
2191
50d5c8d8
DC
2192/*
2193 * V5 filesystems know the age of the buffer on disk being recovered. We can
2194 * have newer objects on disk than we are replaying, and so for these cases we
2195 * don't want to replay the current change as that will make the buffer contents
2196 * temporarily invalid on disk.
2197 *
2198 * The magic number might not match the buffer type we are going to recover
2199 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2200 * extract the LSN of the existing object in the buffer based on it's current
2201 * magic number. If we don't recognise the magic number in the buffer, then
2202 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2203 * so can recover the buffer.
566055d3
DC
2204 *
2205 * Note: we cannot rely solely on magic number matches to determine that the
2206 * buffer has a valid LSN - we also need to verify that it belongs to this
2207 * filesystem, so we need to extract the object's LSN and compare it to that
2208 * which we read from the superblock. If the UUIDs don't match, then we've got a
2209 * stale metadata block from an old filesystem instance that we need to recover
2210 * over the top of.
50d5c8d8
DC
2211 */
2212static xfs_lsn_t
2213xlog_recover_get_buf_lsn(
2214 struct xfs_mount *mp,
2215 struct xfs_buf *bp)
2216{
2217 __uint32_t magic32;
2218 __uint16_t magic16;
2219 __uint16_t magicda;
2220 void *blk = bp->b_addr;
566055d3
DC
2221 uuid_t *uuid;
2222 xfs_lsn_t lsn = -1;
50d5c8d8
DC
2223
2224 /* v4 filesystems always recover immediately */
2225 if (!xfs_sb_version_hascrc(&mp->m_sb))
2226 goto recover_immediately;
2227
2228 magic32 = be32_to_cpu(*(__be32 *)blk);
2229 switch (magic32) {
2230 case XFS_ABTB_CRC_MAGIC:
2231 case XFS_ABTC_CRC_MAGIC:
2232 case XFS_ABTB_MAGIC:
2233 case XFS_ABTC_MAGIC:
a650e8f9 2234 case XFS_RMAP_CRC_MAGIC:
50d5c8d8 2235 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2236 case XFS_IBT_MAGIC: {
2237 struct xfs_btree_block *btb = blk;
2238
2239 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2240 uuid = &btb->bb_u.s.bb_uuid;
2241 break;
2242 }
50d5c8d8 2243 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2244 case XFS_BMAP_MAGIC: {
2245 struct xfs_btree_block *btb = blk;
2246
2247 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2248 uuid = &btb->bb_u.l.bb_uuid;
2249 break;
2250 }
50d5c8d8 2251 case XFS_AGF_MAGIC:
566055d3
DC
2252 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2253 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2254 break;
50d5c8d8 2255 case XFS_AGFL_MAGIC:
566055d3
DC
2256 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2257 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2258 break;
50d5c8d8 2259 case XFS_AGI_MAGIC:
566055d3
DC
2260 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2261 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2262 break;
50d5c8d8 2263 case XFS_SYMLINK_MAGIC:
566055d3
DC
2264 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2265 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2266 break;
50d5c8d8
DC
2267 case XFS_DIR3_BLOCK_MAGIC:
2268 case XFS_DIR3_DATA_MAGIC:
2269 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2270 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2271 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2272 break;
50d5c8d8 2273 case XFS_ATTR3_RMT_MAGIC:
e3c32ee9
DC
2274 /*
2275 * Remote attr blocks are written synchronously, rather than
2276 * being logged. That means they do not contain a valid LSN
2277 * (i.e. transactionally ordered) in them, and hence any time we
2278 * see a buffer to replay over the top of a remote attribute
2279 * block we should simply do so.
2280 */
2281 goto recover_immediately;
50d5c8d8 2282 case XFS_SB_MAGIC:
fcfbe2c4
DC
2283 /*
2284 * superblock uuids are magic. We may or may not have a
2285 * sb_meta_uuid on disk, but it will be set in the in-core
2286 * superblock. We set the uuid pointer for verification
2287 * according to the superblock feature mask to ensure we check
2288 * the relevant UUID in the superblock.
2289 */
566055d3 2290 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
fcfbe2c4
DC
2291 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2292 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2293 else
2294 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
566055d3 2295 break;
50d5c8d8
DC
2296 default:
2297 break;
2298 }
2299
566055d3 2300 if (lsn != (xfs_lsn_t)-1) {
fcfbe2c4 2301 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
566055d3
DC
2302 goto recover_immediately;
2303 return lsn;
2304 }
2305
50d5c8d8
DC
2306 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2307 switch (magicda) {
2308 case XFS_DIR3_LEAF1_MAGIC:
2309 case XFS_DIR3_LEAFN_MAGIC:
2310 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2311 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2312 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2313 break;
50d5c8d8
DC
2314 default:
2315 break;
2316 }
2317
566055d3
DC
2318 if (lsn != (xfs_lsn_t)-1) {
2319 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2320 goto recover_immediately;
2321 return lsn;
2322 }
2323
50d5c8d8
DC
2324 /*
2325 * We do individual object checks on dquot and inode buffers as they
2326 * have their own individual LSN records. Also, we could have a stale
2327 * buffer here, so we have to at least recognise these buffer types.
2328 *
2329 * A notd complexity here is inode unlinked list processing - it logs
2330 * the inode directly in the buffer, but we don't know which inodes have
2331 * been modified, and there is no global buffer LSN. Hence we need to
2332 * recover all inode buffer types immediately. This problem will be
2333 * fixed by logical logging of the unlinked list modifications.
2334 */
2335 magic16 = be16_to_cpu(*(__be16 *)blk);
2336 switch (magic16) {
2337 case XFS_DQUOT_MAGIC:
2338 case XFS_DINODE_MAGIC:
2339 goto recover_immediately;
2340 default:
2341 break;
2342 }
2343
2344 /* unknown buffer contents, recover immediately */
2345
2346recover_immediately:
2347 return (xfs_lsn_t)-1;
2348
2349}
2350
1da177e4 2351/*
d75afeb3
DC
2352 * Validate the recovered buffer is of the correct type and attach the
2353 * appropriate buffer operations to them for writeback. Magic numbers are in a
2354 * few places:
2355 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2356 * the first 32 bits of the buffer (most blocks),
2357 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2358 */
d75afeb3 2359static void
50d5c8d8 2360xlog_recover_validate_buf_type(
9abbc539 2361 struct xfs_mount *mp,
e2714bf8 2362 struct xfs_buf *bp,
1da177e4
LT
2363 xfs_buf_log_format_t *buf_f)
2364{
d75afeb3
DC
2365 struct xfs_da_blkinfo *info = bp->b_addr;
2366 __uint32_t magic32;
2367 __uint16_t magic16;
2368 __uint16_t magicda;
2369
67dc288c
DC
2370 /*
2371 * We can only do post recovery validation on items on CRC enabled
2372 * fielsystems as we need to know when the buffer was written to be able
2373 * to determine if we should have replayed the item. If we replay old
2374 * metadata over a newer buffer, then it will enter a temporarily
2375 * inconsistent state resulting in verification failures. Hence for now
2376 * just avoid the verification stage for non-crc filesystems
2377 */
2378 if (!xfs_sb_version_hascrc(&mp->m_sb))
2379 return;
2380
d75afeb3
DC
2381 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2382 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2383 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2384 switch (xfs_blft_from_flags(buf_f)) {
2385 case XFS_BLFT_BTREE_BUF:
d75afeb3 2386 switch (magic32) {
ee1a47ab
CH
2387 case XFS_ABTB_CRC_MAGIC:
2388 case XFS_ABTC_CRC_MAGIC:
2389 case XFS_ABTB_MAGIC:
2390 case XFS_ABTC_MAGIC:
2391 bp->b_ops = &xfs_allocbt_buf_ops;
2392 break;
2393 case XFS_IBT_CRC_MAGIC:
aafc3c24 2394 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2395 case XFS_IBT_MAGIC:
aafc3c24 2396 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2397 bp->b_ops = &xfs_inobt_buf_ops;
2398 break;
2399 case XFS_BMAP_CRC_MAGIC:
2400 case XFS_BMAP_MAGIC:
2401 bp->b_ops = &xfs_bmbt_buf_ops;
2402 break;
a650e8f9
DW
2403 case XFS_RMAP_CRC_MAGIC:
2404 bp->b_ops = &xfs_rmapbt_buf_ops;
2405 break;
ee1a47ab
CH
2406 default:
2407 xfs_warn(mp, "Bad btree block magic!");
2408 ASSERT(0);
2409 break;
2410 }
2411 break;
61fe135c 2412 case XFS_BLFT_AGF_BUF:
d75afeb3 2413 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2414 xfs_warn(mp, "Bad AGF block magic!");
2415 ASSERT(0);
2416 break;
2417 }
2418 bp->b_ops = &xfs_agf_buf_ops;
2419 break;
61fe135c 2420 case XFS_BLFT_AGFL_BUF:
d75afeb3 2421 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2422 xfs_warn(mp, "Bad AGFL block magic!");
2423 ASSERT(0);
2424 break;
2425 }
2426 bp->b_ops = &xfs_agfl_buf_ops;
2427 break;
61fe135c 2428 case XFS_BLFT_AGI_BUF:
d75afeb3 2429 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2430 xfs_warn(mp, "Bad AGI block magic!");
2431 ASSERT(0);
2432 break;
2433 }
2434 bp->b_ops = &xfs_agi_buf_ops;
2435 break;
61fe135c
DC
2436 case XFS_BLFT_UDQUOT_BUF:
2437 case XFS_BLFT_PDQUOT_BUF:
2438 case XFS_BLFT_GDQUOT_BUF:
123887e8 2439#ifdef CONFIG_XFS_QUOTA
d75afeb3 2440 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2441 xfs_warn(mp, "Bad DQUOT block magic!");
2442 ASSERT(0);
2443 break;
2444 }
2445 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2446#else
2447 xfs_alert(mp,
2448 "Trying to recover dquots without QUOTA support built in!");
2449 ASSERT(0);
2450#endif
3fe58f30 2451 break;
61fe135c 2452 case XFS_BLFT_DINO_BUF:
d75afeb3 2453 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2454 xfs_warn(mp, "Bad INODE block magic!");
2455 ASSERT(0);
2456 break;
2457 }
2458 bp->b_ops = &xfs_inode_buf_ops;
2459 break;
61fe135c 2460 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2461 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2462 xfs_warn(mp, "Bad symlink block magic!");
2463 ASSERT(0);
2464 break;
2465 }
2466 bp->b_ops = &xfs_symlink_buf_ops;
2467 break;
61fe135c 2468 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2469 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2470 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2471 xfs_warn(mp, "Bad dir block magic!");
2472 ASSERT(0);
2473 break;
2474 }
2475 bp->b_ops = &xfs_dir3_block_buf_ops;
2476 break;
61fe135c 2477 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2478 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2479 magic32 != XFS_DIR3_DATA_MAGIC) {
2480 xfs_warn(mp, "Bad dir data magic!");
2481 ASSERT(0);
2482 break;
2483 }
2484 bp->b_ops = &xfs_dir3_data_buf_ops;
2485 break;
61fe135c 2486 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2487 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2488 magic32 != XFS_DIR3_FREE_MAGIC) {
2489 xfs_warn(mp, "Bad dir3 free magic!");
2490 ASSERT(0);
2491 break;
2492 }
2493 bp->b_ops = &xfs_dir3_free_buf_ops;
2494 break;
61fe135c 2495 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2496 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2497 magicda != XFS_DIR3_LEAF1_MAGIC) {
2498 xfs_warn(mp, "Bad dir leaf1 magic!");
2499 ASSERT(0);
2500 break;
2501 }
2502 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2503 break;
61fe135c 2504 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2505 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2506 magicda != XFS_DIR3_LEAFN_MAGIC) {
2507 xfs_warn(mp, "Bad dir leafn magic!");
2508 ASSERT(0);
2509 break;
2510 }
2511 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2512 break;
61fe135c 2513 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2514 if (magicda != XFS_DA_NODE_MAGIC &&
2515 magicda != XFS_DA3_NODE_MAGIC) {
2516 xfs_warn(mp, "Bad da node magic!");
2517 ASSERT(0);
2518 break;
2519 }
2520 bp->b_ops = &xfs_da3_node_buf_ops;
2521 break;
61fe135c 2522 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2523 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2524 magicda != XFS_ATTR3_LEAF_MAGIC) {
2525 xfs_warn(mp, "Bad attr leaf magic!");
2526 ASSERT(0);
2527 break;
2528 }
2529 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2530 break;
61fe135c 2531 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2532 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2533 xfs_warn(mp, "Bad attr remote magic!");
2534 ASSERT(0);
2535 break;
2536 }
2537 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2538 break;
04a1e6c5
DC
2539 case XFS_BLFT_SB_BUF:
2540 if (magic32 != XFS_SB_MAGIC) {
2541 xfs_warn(mp, "Bad SB block magic!");
2542 ASSERT(0);
2543 break;
2544 }
2545 bp->b_ops = &xfs_sb_buf_ops;
2546 break;
f67ca6ec
DC
2547#ifdef CONFIG_XFS_RT
2548 case XFS_BLFT_RTBITMAP_BUF:
2549 case XFS_BLFT_RTSUMMARY_BUF:
bf85e099
DC
2550 /* no magic numbers for verification of RT buffers */
2551 bp->b_ops = &xfs_rtbuf_ops;
f67ca6ec
DC
2552 break;
2553#endif /* CONFIG_XFS_RT */
ee1a47ab 2554 default:
61fe135c
DC
2555 xfs_warn(mp, "Unknown buffer type %d!",
2556 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2557 break;
2558 }
1da177e4
LT
2559}
2560
d75afeb3
DC
2561/*
2562 * Perform a 'normal' buffer recovery. Each logged region of the
2563 * buffer should be copied over the corresponding region in the
2564 * given buffer. The bitmap in the buf log format structure indicates
2565 * where to place the logged data.
2566 */
2567STATIC void
2568xlog_recover_do_reg_buffer(
2569 struct xfs_mount *mp,
2570 xlog_recover_item_t *item,
2571 struct xfs_buf *bp,
2572 xfs_buf_log_format_t *buf_f)
2573{
2574 int i;
2575 int bit;
2576 int nbits;
2577 int error;
2578
2579 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2580
2581 bit = 0;
2582 i = 1; /* 0 is the buf format structure */
2583 while (1) {
2584 bit = xfs_next_bit(buf_f->blf_data_map,
2585 buf_f->blf_map_size, bit);
2586 if (bit == -1)
2587 break;
2588 nbits = xfs_contig_bits(buf_f->blf_data_map,
2589 buf_f->blf_map_size, bit);
2590 ASSERT(nbits > 0);
2591 ASSERT(item->ri_buf[i].i_addr != NULL);
2592 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2593 ASSERT(BBTOB(bp->b_io_length) >=
2594 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2595
709da6a6
DC
2596 /*
2597 * The dirty regions logged in the buffer, even though
2598 * contiguous, may span multiple chunks. This is because the
2599 * dirty region may span a physical page boundary in a buffer
2600 * and hence be split into two separate vectors for writing into
2601 * the log. Hence we need to trim nbits back to the length of
2602 * the current region being copied out of the log.
2603 */
2604 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2605 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2606
d75afeb3
DC
2607 /*
2608 * Do a sanity check if this is a dquot buffer. Just checking
2609 * the first dquot in the buffer should do. XXXThis is
2610 * probably a good thing to do for other buf types also.
2611 */
2612 error = 0;
2613 if (buf_f->blf_flags &
2614 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2615 if (item->ri_buf[i].i_addr == NULL) {
2616 xfs_alert(mp,
2617 "XFS: NULL dquot in %s.", __func__);
2618 goto next;
2619 }
2620 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2621 xfs_alert(mp,
2622 "XFS: dquot too small (%d) in %s.",
2623 item->ri_buf[i].i_len, __func__);
2624 goto next;
2625 }
9aede1d8 2626 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
d75afeb3
DC
2627 -1, 0, XFS_QMOPT_DOWARN,
2628 "dquot_buf_recover");
2629 if (error)
2630 goto next;
2631 }
2632
2633 memcpy(xfs_buf_offset(bp,
2634 (uint)bit << XFS_BLF_SHIFT), /* dest */
2635 item->ri_buf[i].i_addr, /* source */
2636 nbits<<XFS_BLF_SHIFT); /* length */
2637 next:
2638 i++;
2639 bit += nbits;
2640 }
2641
2642 /* Shouldn't be any more regions */
2643 ASSERT(i == item->ri_total);
2644
67dc288c 2645 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2646}
2647
1da177e4
LT
2648/*
2649 * Perform a dquot buffer recovery.
8ba701ee 2650 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2651 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2652 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2653 *
2654 * Return false if the buffer was tossed and true if we recovered the buffer to
2655 * indicate to the caller if the buffer needs writing.
1da177e4 2656 */
ad3714b8 2657STATIC bool
1da177e4 2658xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2659 struct xfs_mount *mp,
2660 struct xlog *log,
2661 struct xlog_recover_item *item,
2662 struct xfs_buf *bp,
2663 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2664{
2665 uint type;
2666
9abbc539
DC
2667 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2668
1da177e4
LT
2669 /*
2670 * Filesystems are required to send in quota flags at mount time.
2671 */
ad3714b8
DC
2672 if (!mp->m_qflags)
2673 return false;
1da177e4
LT
2674
2675 type = 0;
c1155410 2676 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2677 type |= XFS_DQ_USER;
c1155410 2678 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2679 type |= XFS_DQ_PROJ;
c1155410 2680 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2681 type |= XFS_DQ_GROUP;
2682 /*
2683 * This type of quotas was turned off, so ignore this buffer
2684 */
2685 if (log->l_quotaoffs_flag & type)
ad3714b8 2686 return false;
1da177e4 2687
9abbc539 2688 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
ad3714b8 2689 return true;
1da177e4
LT
2690}
2691
2692/*
2693 * This routine replays a modification made to a buffer at runtime.
2694 * There are actually two types of buffer, regular and inode, which
2695 * are handled differently. Inode buffers are handled differently
2696 * in that we only recover a specific set of data from them, namely
2697 * the inode di_next_unlinked fields. This is because all other inode
2698 * data is actually logged via inode records and any data we replay
2699 * here which overlaps that may be stale.
2700 *
2701 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2702 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2703 * of the buffer in the log should not be replayed at recovery time.
2704 * This is so that if the blocks covered by the buffer are reused for
2705 * file data before we crash we don't end up replaying old, freed
2706 * meta-data into a user's file.
2707 *
2708 * To handle the cancellation of buffer log items, we make two passes
2709 * over the log during recovery. During the first we build a table of
2710 * those buffers which have been cancelled, and during the second we
2711 * only replay those buffers which do not have corresponding cancel
34be5ff3 2712 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2713 * for more details on the implementation of the table of cancel records.
2714 */
2715STATIC int
c9f71f5f 2716xlog_recover_buffer_pass2(
9a8d2fdb
MT
2717 struct xlog *log,
2718 struct list_head *buffer_list,
50d5c8d8
DC
2719 struct xlog_recover_item *item,
2720 xfs_lsn_t current_lsn)
1da177e4 2721{
4e0d5f92 2722 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2723 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2724 xfs_buf_t *bp;
2725 int error;
6ad112bf 2726 uint buf_flags;
50d5c8d8 2727 xfs_lsn_t lsn;
1da177e4 2728
c9f71f5f
CH
2729 /*
2730 * In this pass we only want to recover all the buffers which have
2731 * not been cancelled and are not cancellation buffers themselves.
2732 */
2733 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2734 buf_f->blf_len, buf_f->blf_flags)) {
2735 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2736 return 0;
1da177e4 2737 }
c9f71f5f 2738
9abbc539 2739 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2740
a8acad70 2741 buf_flags = 0;
611c9946
DC
2742 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2743 buf_flags |= XBF_UNMAPPED;
6ad112bf 2744
e2714bf8 2745 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2746 buf_flags, NULL);
ac4d6888 2747 if (!bp)
2451337d 2748 return -ENOMEM;
e5702805 2749 error = bp->b_error;
5a52c2a5 2750 if (error) {
901796af 2751 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2752 goto out_release;
1da177e4
LT
2753 }
2754
50d5c8d8 2755 /*
67dc288c 2756 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2757 * the lsn of the transaction we are replaying.
67dc288c
DC
2758 *
2759 * Note that we have to be extremely careful of readahead here.
2760 * Readahead does not attach verfiers to the buffers so if we don't
2761 * actually do any replay after readahead because of the LSN we found
2762 * in the buffer if more recent than that current transaction then we
2763 * need to attach the verifier directly. Failure to do so can lead to
2764 * future recovery actions (e.g. EFI and unlinked list recovery) can
2765 * operate on the buffers and they won't get the verifier attached. This
2766 * can lead to blocks on disk having the correct content but a stale
2767 * CRC.
2768 *
2769 * It is safe to assume these clean buffers are currently up to date.
2770 * If the buffer is dirtied by a later transaction being replayed, then
2771 * the verifier will be reset to match whatever recover turns that
2772 * buffer into.
50d5c8d8
DC
2773 */
2774 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c
DC
2775 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2776 xlog_recover_validate_buf_type(mp, bp, buf_f);
50d5c8d8 2777 goto out_release;
67dc288c 2778 }
50d5c8d8 2779
e2714bf8 2780 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2781 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2782 if (error)
2783 goto out_release;
e2714bf8 2784 } else if (buf_f->blf_flags &
c1155410 2785 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2786 bool dirty;
2787
2788 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2789 if (!dirty)
2790 goto out_release;
1da177e4 2791 } else {
9abbc539 2792 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4 2793 }
1da177e4
LT
2794
2795 /*
2796 * Perform delayed write on the buffer. Asynchronous writes will be
2797 * slower when taking into account all the buffers to be flushed.
2798 *
2799 * Also make sure that only inode buffers with good sizes stay in
2800 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2801 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2802 * buffers in the log can be a different size if the log was generated
2803 * by an older kernel using unclustered inode buffers or a newer kernel
2804 * running with a different inode cluster size. Regardless, if the
0f49efd8
JL
2805 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2806 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2807 * the buffer out of the buffer cache so that the buffer won't
2808 * overlap with future reads of those inodes.
2809 */
2810 if (XFS_DINODE_MAGIC ==
b53e675d 2811 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2812 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
0f49efd8 2813 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2814 xfs_buf_stale(bp);
c2b006c1 2815 error = xfs_bwrite(bp);
1da177e4 2816 } else {
ebad861b 2817 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2818 bp->b_iodone = xlog_recover_iodone;
43ff2122 2819 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2820 }
2821
50d5c8d8 2822out_release:
c2b006c1
CH
2823 xfs_buf_relse(bp);
2824 return error;
1da177e4
LT
2825}
2826
638f4416
DC
2827/*
2828 * Inode fork owner changes
2829 *
2830 * If we have been told that we have to reparent the inode fork, it's because an
2831 * extent swap operation on a CRC enabled filesystem has been done and we are
2832 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2833 * owners of it.
2834 *
2835 * The complexity here is that we don't have an inode context to work with, so
2836 * after we've replayed the inode we need to instantiate one. This is where the
2837 * fun begins.
2838 *
2839 * We are in the middle of log recovery, so we can't run transactions. That
2840 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2841 * that will result in the corresponding iput() running the inode through
2842 * xfs_inactive(). If we've just replayed an inode core that changes the link
2843 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2844 * transactions (bad!).
2845 *
2846 * So, to avoid this, we instantiate an inode directly from the inode core we've
2847 * just recovered. We have the buffer still locked, and all we really need to
2848 * instantiate is the inode core and the forks being modified. We can do this
2849 * manually, then run the inode btree owner change, and then tear down the
2850 * xfs_inode without having to run any transactions at all.
2851 *
2852 * Also, because we don't have a transaction context available here but need to
2853 * gather all the buffers we modify for writeback so we pass the buffer_list
2854 * instead for the operation to use.
2855 */
2856
2857STATIC int
2858xfs_recover_inode_owner_change(
2859 struct xfs_mount *mp,
2860 struct xfs_dinode *dip,
2861 struct xfs_inode_log_format *in_f,
2862 struct list_head *buffer_list)
2863{
2864 struct xfs_inode *ip;
2865 int error;
2866
2867 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2868
2869 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2870 if (!ip)
2451337d 2871 return -ENOMEM;
638f4416
DC
2872
2873 /* instantiate the inode */
3987848c 2874 xfs_inode_from_disk(ip, dip);
638f4416
DC
2875 ASSERT(ip->i_d.di_version >= 3);
2876
2877 error = xfs_iformat_fork(ip, dip);
2878 if (error)
2879 goto out_free_ip;
2880
2881
2882 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2883 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2884 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2885 ip->i_ino, buffer_list);
2886 if (error)
2887 goto out_free_ip;
2888 }
2889
2890 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2891 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2892 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2893 ip->i_ino, buffer_list);
2894 if (error)
2895 goto out_free_ip;
2896 }
2897
2898out_free_ip:
2899 xfs_inode_free(ip);
2900 return error;
2901}
2902
1da177e4 2903STATIC int
c9f71f5f 2904xlog_recover_inode_pass2(
9a8d2fdb
MT
2905 struct xlog *log,
2906 struct list_head *buffer_list,
50d5c8d8
DC
2907 struct xlog_recover_item *item,
2908 xfs_lsn_t current_lsn)
1da177e4
LT
2909{
2910 xfs_inode_log_format_t *in_f;
c9f71f5f 2911 xfs_mount_t *mp = log->l_mp;
1da177e4 2912 xfs_buf_t *bp;
1da177e4 2913 xfs_dinode_t *dip;
1da177e4 2914 int len;
b2a922cd
CH
2915 char *src;
2916 char *dest;
1da177e4
LT
2917 int error;
2918 int attr_index;
2919 uint fields;
f8d55aa0 2920 struct xfs_log_dinode *ldip;
93848a99 2921 uint isize;
6d192a9b 2922 int need_free = 0;
1da177e4 2923
6d192a9b 2924 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2925 in_f = item->ri_buf[0].i_addr;
6d192a9b 2926 } else {
4e0d5f92 2927 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2928 need_free = 1;
2929 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2930 if (error)
2931 goto error;
2932 }
1da177e4
LT
2933
2934 /*
2935 * Inode buffers can be freed, look out for it,
2936 * and do not replay the inode.
2937 */
a1941895
CH
2938 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2939 in_f->ilf_len, 0)) {
6d192a9b 2940 error = 0;
9abbc539 2941 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2942 goto error;
2943 }
9abbc539 2944 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2945
c3f8fc73 2946 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2947 &xfs_inode_buf_ops);
ac4d6888 2948 if (!bp) {
2451337d 2949 error = -ENOMEM;
ac4d6888
CS
2950 goto error;
2951 }
e5702805 2952 error = bp->b_error;
5a52c2a5 2953 if (error) {
901796af 2954 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2955 goto out_release;
1da177e4 2956 }
1da177e4 2957 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
88ee2df7 2958 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2959
2960 /*
2961 * Make sure the place we're flushing out to really looks
2962 * like an inode!
2963 */
69ef921b 2964 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2965 xfs_alert(mp,
2966 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2967 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2968 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2969 XFS_ERRLEVEL_LOW, mp);
2451337d 2970 error = -EFSCORRUPTED;
638f4416 2971 goto out_release;
1da177e4 2972 }
f8d55aa0
DC
2973 ldip = item->ri_buf[1].i_addr;
2974 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2975 xfs_alert(mp,
2976 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2977 __func__, item, in_f->ilf_ino);
c9f71f5f 2978 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2979 XFS_ERRLEVEL_LOW, mp);
2451337d 2980 error = -EFSCORRUPTED;
638f4416 2981 goto out_release;
1da177e4
LT
2982 }
2983
50d5c8d8
DC
2984 /*
2985 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2986 * than the lsn of the transaction we are replaying. Note: we still
2987 * need to replay an owner change even though the inode is more recent
2988 * than the transaction as there is no guarantee that all the btree
2989 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2990 */
2991 if (dip->di_version >= 3) {
2992 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2993
2994 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2995 trace_xfs_log_recover_inode_skip(log, in_f);
2996 error = 0;
638f4416 2997 goto out_owner_change;
50d5c8d8
DC
2998 }
2999 }
3000
e60896d8
DC
3001 /*
3002 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3003 * are transactional and if ordering is necessary we can determine that
3004 * more accurately by the LSN field in the V3 inode core. Don't trust
3005 * the inode versions we might be changing them here - use the
3006 * superblock flag to determine whether we need to look at di_flushiter
3007 * to skip replay when the on disk inode is newer than the log one
3008 */
3009 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
f8d55aa0 3010 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
3011 /*
3012 * Deal with the wrap case, DI_MAX_FLUSH is less
3013 * than smaller numbers
3014 */
81591fe2 3015 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
f8d55aa0 3016 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
3017 /* do nothing */
3018 } else {
9abbc539 3019 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 3020 error = 0;
638f4416 3021 goto out_release;
1da177e4
LT
3022 }
3023 }
e60896d8 3024
1da177e4 3025 /* Take the opportunity to reset the flush iteration count */
f8d55aa0 3026 ldip->di_flushiter = 0;
1da177e4 3027
f8d55aa0
DC
3028 if (unlikely(S_ISREG(ldip->di_mode))) {
3029 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3030 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 3031 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
f8d55aa0 3032 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3033 xfs_alert(mp,
3034 "%s: Bad regular inode log record, rec ptr 0x%p, "
3035 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3036 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3037 error = -EFSCORRUPTED;
638f4416 3038 goto out_release;
1da177e4 3039 }
f8d55aa0
DC
3040 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3041 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3042 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3043 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 3044 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
f8d55aa0 3045 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3046 xfs_alert(mp,
3047 "%s: Bad dir inode log record, rec ptr 0x%p, "
3048 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3049 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3050 error = -EFSCORRUPTED;
638f4416 3051 goto out_release;
1da177e4
LT
3052 }
3053 }
f8d55aa0 3054 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
c9f71f5f 3055 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
f8d55aa0 3056 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3057 xfs_alert(mp,
3058 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3059 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3060 __func__, item, dip, bp, in_f->ilf_ino,
f8d55aa0
DC
3061 ldip->di_nextents + ldip->di_anextents,
3062 ldip->di_nblocks);
2451337d 3063 error = -EFSCORRUPTED;
638f4416 3064 goto out_release;
1da177e4 3065 }
f8d55aa0 3066 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 3067 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
f8d55aa0 3068 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3069 xfs_alert(mp,
3070 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3071 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
f8d55aa0 3072 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
2451337d 3073 error = -EFSCORRUPTED;
638f4416 3074 goto out_release;
1da177e4 3075 }
f8d55aa0 3076 isize = xfs_log_dinode_size(ldip->di_version);
93848a99 3077 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 3078 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
f8d55aa0 3079 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67
DC
3080 xfs_alert(mp,
3081 "%s: Bad inode log record length %d, rec ptr 0x%p",
3082 __func__, item->ri_buf[1].i_len, item);
2451337d 3083 error = -EFSCORRUPTED;
638f4416 3084 goto out_release;
1da177e4
LT
3085 }
3086
3987848c
DC
3087 /* recover the log dinode inode into the on disk inode */
3088 xfs_log_dinode_to_disk(ldip, dip);
1da177e4
LT
3089
3090 /* the rest is in on-disk format */
93848a99
CH
3091 if (item->ri_buf[1].i_len > isize) {
3092 memcpy((char *)dip + isize,
3093 item->ri_buf[1].i_addr + isize,
3094 item->ri_buf[1].i_len - isize);
1da177e4
LT
3095 }
3096
3097 fields = in_f->ilf_fields;
3098 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3099 case XFS_ILOG_DEV:
81591fe2 3100 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
3101 break;
3102 case XFS_ILOG_UUID:
81591fe2
CH
3103 memcpy(XFS_DFORK_DPTR(dip),
3104 &in_f->ilf_u.ilfu_uuid,
3105 sizeof(uuid_t));
1da177e4
LT
3106 break;
3107 }
3108
3109 if (in_f->ilf_size == 2)
638f4416 3110 goto out_owner_change;
1da177e4
LT
3111 len = item->ri_buf[2].i_len;
3112 src = item->ri_buf[2].i_addr;
3113 ASSERT(in_f->ilf_size <= 4);
3114 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3115 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3116 (len == in_f->ilf_dsize));
3117
3118 switch (fields & XFS_ILOG_DFORK) {
3119 case XFS_ILOG_DDATA:
3120 case XFS_ILOG_DEXT:
81591fe2 3121 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
3122 break;
3123
3124 case XFS_ILOG_DBROOT:
7cc95a82 3125 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 3126 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
3127 XFS_DFORK_DSIZE(dip, mp));
3128 break;
3129
3130 default:
3131 /*
3132 * There are no data fork flags set.
3133 */
3134 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3135 break;
3136 }
3137
3138 /*
3139 * If we logged any attribute data, recover it. There may or
3140 * may not have been any other non-core data logged in this
3141 * transaction.
3142 */
3143 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3144 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3145 attr_index = 3;
3146 } else {
3147 attr_index = 2;
3148 }
3149 len = item->ri_buf[attr_index].i_len;
3150 src = item->ri_buf[attr_index].i_addr;
3151 ASSERT(len == in_f->ilf_asize);
3152
3153 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3154 case XFS_ILOG_ADATA:
3155 case XFS_ILOG_AEXT:
3156 dest = XFS_DFORK_APTR(dip);
3157 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3158 memcpy(dest, src, len);
3159 break;
3160
3161 case XFS_ILOG_ABROOT:
3162 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
3163 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3164 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
3165 XFS_DFORK_ASIZE(dip, mp));
3166 break;
3167
3168 default:
a0fa2b67 3169 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 3170 ASSERT(0);
2451337d 3171 error = -EIO;
638f4416 3172 goto out_release;
1da177e4
LT
3173 }
3174 }
3175
638f4416
DC
3176out_owner_change:
3177 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3178 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3179 buffer_list);
93848a99
CH
3180 /* re-generate the checksum. */
3181 xfs_dinode_calc_crc(log->l_mp, dip);
3182
ebad861b 3183 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3184 bp->b_iodone = xlog_recover_iodone;
43ff2122 3185 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
3186
3187out_release:
61551f1e 3188 xfs_buf_relse(bp);
6d192a9b
TS
3189error:
3190 if (need_free)
f0e2d93c 3191 kmem_free(in_f);
b474c7ae 3192 return error;
1da177e4
LT
3193}
3194
3195/*
9a8d2fdb 3196 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
3197 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3198 * of that type.
3199 */
3200STATIC int
c9f71f5f 3201xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
3202 struct xlog *log,
3203 struct xlog_recover_item *item)
1da177e4 3204{
c9f71f5f 3205 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
3206 ASSERT(qoff_f);
3207
3208 /*
3209 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 3210 * group/project quotaoff or both.
1da177e4
LT
3211 */
3212 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3213 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
3214 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3215 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
3216 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3217 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3218
d99831ff 3219 return 0;
1da177e4
LT
3220}
3221
3222/*
3223 * Recover a dquot record
3224 */
3225STATIC int
c9f71f5f 3226xlog_recover_dquot_pass2(
9a8d2fdb
MT
3227 struct xlog *log,
3228 struct list_head *buffer_list,
50d5c8d8
DC
3229 struct xlog_recover_item *item,
3230 xfs_lsn_t current_lsn)
1da177e4 3231{
c9f71f5f 3232 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3233 xfs_buf_t *bp;
3234 struct xfs_disk_dquot *ddq, *recddq;
3235 int error;
3236 xfs_dq_logformat_t *dq_f;
3237 uint type;
3238
1da177e4
LT
3239
3240 /*
3241 * Filesystems are required to send in quota flags at mount time.
3242 */
3243 if (mp->m_qflags == 0)
d99831ff 3244 return 0;
1da177e4 3245
4e0d5f92
CH
3246 recddq = item->ri_buf[1].i_addr;
3247 if (recddq == NULL) {
a0fa2b67 3248 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 3249 return -EIO;
0c5e1ce8 3250 }
8ec6dba2 3251 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 3252 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 3253 item->ri_buf[1].i_len, __func__);
2451337d 3254 return -EIO;
0c5e1ce8
CH
3255 }
3256
1da177e4
LT
3257 /*
3258 * This type of quotas was turned off, so ignore this record.
3259 */
b53e675d 3260 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
3261 ASSERT(type);
3262 if (log->l_quotaoffs_flag & type)
d99831ff 3263 return 0;
1da177e4
LT
3264
3265 /*
3266 * At this point we know that quota was _not_ turned off.
3267 * Since the mount flags are not indicating to us otherwise, this
3268 * must mean that quota is on, and the dquot needs to be replayed.
3269 * Remember that we may not have fully recovered the superblock yet,
3270 * so we can't do the usual trick of looking at the SB quota bits.
3271 *
3272 * The other possibility, of course, is that the quota subsystem was
3273 * removed since the last mount - ENOSYS.
3274 */
4e0d5f92 3275 dq_f = item->ri_buf[0].i_addr;
1da177e4 3276 ASSERT(dq_f);
9aede1d8 3277 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
a0fa2b67
DC
3278 "xlog_recover_dquot_pass2 (log copy)");
3279 if (error)
2451337d 3280 return -EIO;
1da177e4
LT
3281 ASSERT(dq_f->qlf_len == 1);
3282
ad3714b8
DC
3283 /*
3284 * At this point we are assuming that the dquots have been allocated
3285 * and hence the buffer has valid dquots stamped in it. It should,
3286 * therefore, pass verifier validation. If the dquot is bad, then the
3287 * we'll return an error here, so we don't need to specifically check
3288 * the dquot in the buffer after the verifier has run.
3289 */
7ca790a5 3290 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 3291 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 3292 &xfs_dquot_buf_ops);
7ca790a5 3293 if (error)
1da177e4 3294 return error;
7ca790a5 3295
1da177e4 3296 ASSERT(bp);
88ee2df7 3297 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
1da177e4 3298
50d5c8d8
DC
3299 /*
3300 * If the dquot has an LSN in it, recover the dquot only if it's less
3301 * than the lsn of the transaction we are replaying.
3302 */
3303 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3304 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3305 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3306
3307 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3308 goto out_release;
3309 }
3310 }
3311
1da177e4 3312 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3313 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3314 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3315 XFS_DQUOT_CRC_OFF);
3316 }
1da177e4
LT
3317
3318 ASSERT(dq_f->qlf_size == 2);
ebad861b 3319 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3320 bp->b_iodone = xlog_recover_iodone;
43ff2122 3321 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3322
50d5c8d8
DC
3323out_release:
3324 xfs_buf_relse(bp);
3325 return 0;
1da177e4
LT
3326}
3327
3328/*
3329 * This routine is called to create an in-core extent free intent
3330 * item from the efi format structure which was logged on disk.
3331 * It allocates an in-core efi, copies the extents from the format
3332 * structure into it, and adds the efi to the AIL with the given
3333 * LSN.
3334 */
6d192a9b 3335STATIC int
c9f71f5f 3336xlog_recover_efi_pass2(
9a8d2fdb
MT
3337 struct xlog *log,
3338 struct xlog_recover_item *item,
3339 xfs_lsn_t lsn)
1da177e4 3340{
e32a1d1f
BF
3341 int error;
3342 struct xfs_mount *mp = log->l_mp;
3343 struct xfs_efi_log_item *efip;
3344 struct xfs_efi_log_format *efi_formatp;
1da177e4 3345
4e0d5f92 3346 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3347
1da177e4 3348 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
e32a1d1f
BF
3349 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3350 if (error) {
6d192a9b
TS
3351 xfs_efi_item_free(efip);
3352 return error;
3353 }
b199c8a4 3354 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3355
a9c21c1b 3356 spin_lock(&log->l_ailp->xa_lock);
1da177e4 3357 /*
e32a1d1f
BF
3358 * The EFI has two references. One for the EFD and one for EFI to ensure
3359 * it makes it into the AIL. Insert the EFI into the AIL directly and
3360 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3361 * AIL lock.
1da177e4 3362 */
e6059949 3363 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
e32a1d1f 3364 xfs_efi_release(efip);
6d192a9b 3365 return 0;
1da177e4
LT
3366}
3367
3368
3369/*
e32a1d1f
BF
3370 * This routine is called when an EFD format structure is found in a committed
3371 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3372 * was still in the log. To do this it searches the AIL for the EFI with an id
3373 * equal to that in the EFD format structure. If we find it we drop the EFD
3374 * reference, which removes the EFI from the AIL and frees it.
1da177e4 3375 */
c9f71f5f
CH
3376STATIC int
3377xlog_recover_efd_pass2(
9a8d2fdb
MT
3378 struct xlog *log,
3379 struct xlog_recover_item *item)
1da177e4 3380{
1da177e4
LT
3381 xfs_efd_log_format_t *efd_formatp;
3382 xfs_efi_log_item_t *efip = NULL;
3383 xfs_log_item_t *lip;
1da177e4 3384 __uint64_t efi_id;
27d8d5fe 3385 struct xfs_ail_cursor cur;
783a2f65 3386 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3387
4e0d5f92 3388 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3389 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3390 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3391 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3392 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3393 efi_id = efd_formatp->efd_efi_id;
3394
3395 /*
e32a1d1f
BF
3396 * Search for the EFI with the id in the EFD format structure in the
3397 * AIL.
1da177e4 3398 */
a9c21c1b
DC
3399 spin_lock(&ailp->xa_lock);
3400 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3401 while (lip != NULL) {
3402 if (lip->li_type == XFS_LI_EFI) {
3403 efip = (xfs_efi_log_item_t *)lip;
3404 if (efip->efi_format.efi_id == efi_id) {
3405 /*
e32a1d1f
BF
3406 * Drop the EFD reference to the EFI. This
3407 * removes the EFI from the AIL and frees it.
1da177e4 3408 */
e32a1d1f
BF
3409 spin_unlock(&ailp->xa_lock);
3410 xfs_efi_release(efip);
a9c21c1b 3411 spin_lock(&ailp->xa_lock);
27d8d5fe 3412 break;
1da177e4
LT
3413 }
3414 }
a9c21c1b 3415 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3416 }
e32a1d1f 3417
e4a1e29c 3418 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3419 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3420
3421 return 0;
1da177e4
LT
3422}
3423
9e88b5d8
DW
3424/*
3425 * This routine is called to create an in-core extent rmap update
3426 * item from the rui format structure which was logged on disk.
3427 * It allocates an in-core rui, copies the extents from the format
3428 * structure into it, and adds the rui to the AIL with the given
3429 * LSN.
3430 */
3431STATIC int
3432xlog_recover_rui_pass2(
3433 struct xlog *log,
3434 struct xlog_recover_item *item,
3435 xfs_lsn_t lsn)
3436{
3437 int error;
3438 struct xfs_mount *mp = log->l_mp;
3439 struct xfs_rui_log_item *ruip;
3440 struct xfs_rui_log_format *rui_formatp;
3441
3442 rui_formatp = item->ri_buf[0].i_addr;
3443
3444 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3445 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3446 if (error) {
3447 xfs_rui_item_free(ruip);
3448 return error;
3449 }
3450 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3451
3452 spin_lock(&log->l_ailp->xa_lock);
3453 /*
3454 * The RUI has two references. One for the RUD and one for RUI to ensure
3455 * it makes it into the AIL. Insert the RUI into the AIL directly and
3456 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3457 * AIL lock.
3458 */
3459 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3460 xfs_rui_release(ruip);
3461 return 0;
3462}
3463
3464
3465/*
3466 * This routine is called when an RUD format structure is found in a committed
3467 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3468 * was still in the log. To do this it searches the AIL for the RUI with an id
3469 * equal to that in the RUD format structure. If we find it we drop the RUD
3470 * reference, which removes the RUI from the AIL and frees it.
3471 */
3472STATIC int
3473xlog_recover_rud_pass2(
3474 struct xlog *log,
3475 struct xlog_recover_item *item)
3476{
3477 struct xfs_rud_log_format *rud_formatp;
3478 struct xfs_rui_log_item *ruip = NULL;
3479 struct xfs_log_item *lip;
3480 __uint64_t rui_id;
3481 struct xfs_ail_cursor cur;
3482 struct xfs_ail *ailp = log->l_ailp;
3483
3484 rud_formatp = item->ri_buf[0].i_addr;
3485 ASSERT(item->ri_buf[0].i_len == (sizeof(struct xfs_rud_log_format) +
3486 ((rud_formatp->rud_nextents - 1) *
3487 sizeof(struct xfs_map_extent))));
3488 rui_id = rud_formatp->rud_rui_id;
3489
3490 /*
3491 * Search for the RUI with the id in the RUD format structure in the
3492 * AIL.
3493 */
3494 spin_lock(&ailp->xa_lock);
3495 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3496 while (lip != NULL) {
3497 if (lip->li_type == XFS_LI_RUI) {
3498 ruip = (struct xfs_rui_log_item *)lip;
3499 if (ruip->rui_format.rui_id == rui_id) {
3500 /*
3501 * Drop the RUD reference to the RUI. This
3502 * removes the RUI from the AIL and frees it.
3503 */
3504 spin_unlock(&ailp->xa_lock);
3505 xfs_rui_release(ruip);
3506 spin_lock(&ailp->xa_lock);
3507 break;
3508 }
3509 }
3510 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3511 }
3512
3513 xfs_trans_ail_cursor_done(&cur);
3514 spin_unlock(&ailp->xa_lock);
3515
3516 return 0;
3517}
3518
28c8e41a
DC
3519/*
3520 * This routine is called when an inode create format structure is found in a
3521 * committed transaction in the log. It's purpose is to initialise the inodes
3522 * being allocated on disk. This requires us to get inode cluster buffers that
3523 * match the range to be intialised, stamped with inode templates and written
3524 * by delayed write so that subsequent modifications will hit the cached buffer
3525 * and only need writing out at the end of recovery.
3526 */
3527STATIC int
3528xlog_recover_do_icreate_pass2(
3529 struct xlog *log,
3530 struct list_head *buffer_list,
3531 xlog_recover_item_t *item)
3532{
3533 struct xfs_mount *mp = log->l_mp;
3534 struct xfs_icreate_log *icl;
3535 xfs_agnumber_t agno;
3536 xfs_agblock_t agbno;
3537 unsigned int count;
3538 unsigned int isize;
3539 xfs_agblock_t length;
fc0d1656
BF
3540 int blks_per_cluster;
3541 int bb_per_cluster;
3542 int cancel_count;
3543 int nbufs;
3544 int i;
28c8e41a
DC
3545
3546 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3547 if (icl->icl_type != XFS_LI_ICREATE) {
3548 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3549 return -EINVAL;
28c8e41a
DC
3550 }
3551
3552 if (icl->icl_size != 1) {
3553 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3554 return -EINVAL;
28c8e41a
DC
3555 }
3556
3557 agno = be32_to_cpu(icl->icl_ag);
3558 if (agno >= mp->m_sb.sb_agcount) {
3559 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3560 return -EINVAL;
28c8e41a
DC
3561 }
3562 agbno = be32_to_cpu(icl->icl_agbno);
3563 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3564 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3565 return -EINVAL;
28c8e41a
DC
3566 }
3567 isize = be32_to_cpu(icl->icl_isize);
3568 if (isize != mp->m_sb.sb_inodesize) {
3569 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3570 return -EINVAL;
28c8e41a
DC
3571 }
3572 count = be32_to_cpu(icl->icl_count);
3573 if (!count) {
3574 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3575 return -EINVAL;
28c8e41a
DC
3576 }
3577 length = be32_to_cpu(icl->icl_length);
3578 if (!length || length >= mp->m_sb.sb_agblocks) {
3579 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3580 return -EINVAL;
28c8e41a
DC
3581 }
3582
7f43c907
BF
3583 /*
3584 * The inode chunk is either full or sparse and we only support
3585 * m_ialloc_min_blks sized sparse allocations at this time.
3586 */
3587 if (length != mp->m_ialloc_blks &&
3588 length != mp->m_ialloc_min_blks) {
3589 xfs_warn(log->l_mp,
3590 "%s: unsupported chunk length", __FUNCTION__);
3591 return -EINVAL;
3592 }
3593
3594 /* verify inode count is consistent with extent length */
3595 if ((count >> mp->m_sb.sb_inopblog) != length) {
3596 xfs_warn(log->l_mp,
3597 "%s: inconsistent inode count and chunk length",
3598 __FUNCTION__);
2451337d 3599 return -EINVAL;
28c8e41a
DC
3600 }
3601
3602 /*
fc0d1656
BF
3603 * The icreate transaction can cover multiple cluster buffers and these
3604 * buffers could have been freed and reused. Check the individual
3605 * buffers for cancellation so we don't overwrite anything written after
3606 * a cancellation.
3607 */
3608 blks_per_cluster = xfs_icluster_size_fsb(mp);
3609 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3610 nbufs = length / blks_per_cluster;
3611 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3612 xfs_daddr_t daddr;
3613
3614 daddr = XFS_AGB_TO_DADDR(mp, agno,
3615 agbno + i * blks_per_cluster);
3616 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3617 cancel_count++;
3618 }
3619
3620 /*
3621 * We currently only use icreate for a single allocation at a time. This
3622 * means we should expect either all or none of the buffers to be
3623 * cancelled. Be conservative and skip replay if at least one buffer is
3624 * cancelled, but warn the user that something is awry if the buffers
3625 * are not consistent.
28c8e41a 3626 *
fc0d1656
BF
3627 * XXX: This must be refined to only skip cancelled clusters once we use
3628 * icreate for multiple chunk allocations.
28c8e41a 3629 */
fc0d1656
BF
3630 ASSERT(!cancel_count || cancel_count == nbufs);
3631 if (cancel_count) {
3632 if (cancel_count != nbufs)
3633 xfs_warn(mp,
3634 "WARNING: partial inode chunk cancellation, skipped icreate.");
78d57e45 3635 trace_xfs_log_recover_icreate_cancel(log, icl);
28c8e41a 3636 return 0;
78d57e45 3637 }
28c8e41a 3638
78d57e45 3639 trace_xfs_log_recover_icreate_recover(log, icl);
fc0d1656
BF
3640 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3641 length, be32_to_cpu(icl->icl_gen));
28c8e41a
DC
3642}
3643
00574da1
ZYW
3644STATIC void
3645xlog_recover_buffer_ra_pass2(
3646 struct xlog *log,
3647 struct xlog_recover_item *item)
3648{
3649 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3650 struct xfs_mount *mp = log->l_mp;
3651
84a5b730 3652 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3653 buf_f->blf_len, buf_f->blf_flags)) {
3654 return;
3655 }
3656
3657 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3658 buf_f->blf_len, NULL);
3659}
3660
3661STATIC void
3662xlog_recover_inode_ra_pass2(
3663 struct xlog *log,
3664 struct xlog_recover_item *item)
3665{
3666 struct xfs_inode_log_format ilf_buf;
3667 struct xfs_inode_log_format *ilfp;
3668 struct xfs_mount *mp = log->l_mp;
3669 int error;
3670
3671 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3672 ilfp = item->ri_buf[0].i_addr;
3673 } else {
3674 ilfp = &ilf_buf;
3675 memset(ilfp, 0, sizeof(*ilfp));
3676 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3677 if (error)
3678 return;
3679 }
3680
84a5b730 3681 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3682 return;
3683
3684 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3685 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3686}
3687
3688STATIC void
3689xlog_recover_dquot_ra_pass2(
3690 struct xlog *log,
3691 struct xlog_recover_item *item)
3692{
3693 struct xfs_mount *mp = log->l_mp;
3694 struct xfs_disk_dquot *recddq;
3695 struct xfs_dq_logformat *dq_f;
3696 uint type;
7d6a13f0 3697 int len;
00574da1
ZYW
3698
3699
3700 if (mp->m_qflags == 0)
3701 return;
3702
3703 recddq = item->ri_buf[1].i_addr;
3704 if (recddq == NULL)
3705 return;
3706 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3707 return;
3708
3709 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3710 ASSERT(type);
3711 if (log->l_quotaoffs_flag & type)
3712 return;
3713
3714 dq_f = item->ri_buf[0].i_addr;
3715 ASSERT(dq_f);
3716 ASSERT(dq_f->qlf_len == 1);
3717
7d6a13f0
DC
3718 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3719 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3720 return;
3721
3722 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3723 &xfs_dquot_buf_ra_ops);
00574da1
ZYW
3724}
3725
3726STATIC void
3727xlog_recover_ra_pass2(
3728 struct xlog *log,
3729 struct xlog_recover_item *item)
3730{
3731 switch (ITEM_TYPE(item)) {
3732 case XFS_LI_BUF:
3733 xlog_recover_buffer_ra_pass2(log, item);
3734 break;
3735 case XFS_LI_INODE:
3736 xlog_recover_inode_ra_pass2(log, item);
3737 break;
3738 case XFS_LI_DQUOT:
3739 xlog_recover_dquot_ra_pass2(log, item);
3740 break;
3741 case XFS_LI_EFI:
3742 case XFS_LI_EFD:
3743 case XFS_LI_QUOTAOFF:
9e88b5d8
DW
3744 case XFS_LI_RUI:
3745 case XFS_LI_RUD:
00574da1
ZYW
3746 default:
3747 break;
3748 }
3749}
3750
d0450948 3751STATIC int
c9f71f5f 3752xlog_recover_commit_pass1(
ad223e60
MT
3753 struct xlog *log,
3754 struct xlog_recover *trans,
3755 struct xlog_recover_item *item)
d0450948 3756{
c9f71f5f 3757 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3758
3759 switch (ITEM_TYPE(item)) {
3760 case XFS_LI_BUF:
c9f71f5f
CH
3761 return xlog_recover_buffer_pass1(log, item);
3762 case XFS_LI_QUOTAOFF:
3763 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3764 case XFS_LI_INODE:
d0450948 3765 case XFS_LI_EFI:
d0450948 3766 case XFS_LI_EFD:
c9f71f5f 3767 case XFS_LI_DQUOT:
28c8e41a 3768 case XFS_LI_ICREATE:
9e88b5d8
DW
3769 case XFS_LI_RUI:
3770 case XFS_LI_RUD:
c9f71f5f 3771 /* nothing to do in pass 1 */
d0450948 3772 return 0;
c9f71f5f 3773 default:
a0fa2b67
DC
3774 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3775 __func__, ITEM_TYPE(item));
c9f71f5f 3776 ASSERT(0);
2451337d 3777 return -EIO;
c9f71f5f
CH
3778 }
3779}
3780
3781STATIC int
3782xlog_recover_commit_pass2(
ad223e60
MT
3783 struct xlog *log,
3784 struct xlog_recover *trans,
3785 struct list_head *buffer_list,
3786 struct xlog_recover_item *item)
c9f71f5f
CH
3787{
3788 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3789
3790 switch (ITEM_TYPE(item)) {
3791 case XFS_LI_BUF:
50d5c8d8
DC
3792 return xlog_recover_buffer_pass2(log, buffer_list, item,
3793 trans->r_lsn);
c9f71f5f 3794 case XFS_LI_INODE:
50d5c8d8
DC
3795 return xlog_recover_inode_pass2(log, buffer_list, item,
3796 trans->r_lsn);
c9f71f5f
CH
3797 case XFS_LI_EFI:
3798 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3799 case XFS_LI_EFD:
3800 return xlog_recover_efd_pass2(log, item);
9e88b5d8
DW
3801 case XFS_LI_RUI:
3802 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
3803 case XFS_LI_RUD:
3804 return xlog_recover_rud_pass2(log, item);
d0450948 3805 case XFS_LI_DQUOT:
50d5c8d8
DC
3806 return xlog_recover_dquot_pass2(log, buffer_list, item,
3807 trans->r_lsn);
28c8e41a
DC
3808 case XFS_LI_ICREATE:
3809 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3810 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3811 /* nothing to do in pass2 */
3812 return 0;
d0450948 3813 default:
a0fa2b67
DC
3814 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3815 __func__, ITEM_TYPE(item));
d0450948 3816 ASSERT(0);
2451337d 3817 return -EIO;
d0450948
CH
3818 }
3819}
3820
00574da1
ZYW
3821STATIC int
3822xlog_recover_items_pass2(
3823 struct xlog *log,
3824 struct xlog_recover *trans,
3825 struct list_head *buffer_list,
3826 struct list_head *item_list)
3827{
3828 struct xlog_recover_item *item;
3829 int error = 0;
3830
3831 list_for_each_entry(item, item_list, ri_list) {
3832 error = xlog_recover_commit_pass2(log, trans,
3833 buffer_list, item);
3834 if (error)
3835 return error;
3836 }
3837
3838 return error;
3839}
3840
d0450948
CH
3841/*
3842 * Perform the transaction.
3843 *
3844 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3845 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3846 */
1da177e4
LT
3847STATIC int
3848xlog_recover_commit_trans(
ad223e60 3849 struct xlog *log,
d0450948 3850 struct xlog_recover *trans,
1da177e4
LT
3851 int pass)
3852{
00574da1
ZYW
3853 int error = 0;
3854 int error2;
3855 int items_queued = 0;
3856 struct xlog_recover_item *item;
3857 struct xlog_recover_item *next;
3858 LIST_HEAD (buffer_list);
3859 LIST_HEAD (ra_list);
3860 LIST_HEAD (done_list);
3861
3862 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3863
f0a76953 3864 hlist_del(&trans->r_list);
d0450948
CH
3865
3866 error = xlog_recover_reorder_trans(log, trans, pass);
3867 if (error)
1da177e4 3868 return error;
d0450948 3869
00574da1 3870 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3871 switch (pass) {
3872 case XLOG_RECOVER_PASS1:
c9f71f5f 3873 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3874 break;
3875 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3876 xlog_recover_ra_pass2(log, item);
3877 list_move_tail(&item->ri_list, &ra_list);
3878 items_queued++;
3879 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3880 error = xlog_recover_items_pass2(log, trans,
3881 &buffer_list, &ra_list);
3882 list_splice_tail_init(&ra_list, &done_list);
3883 items_queued = 0;
3884 }
3885
43ff2122
CH
3886 break;
3887 default:
3888 ASSERT(0);
3889 }
3890
d0450948 3891 if (error)
43ff2122 3892 goto out;
d0450948
CH
3893 }
3894
00574da1
ZYW
3895out:
3896 if (!list_empty(&ra_list)) {
3897 if (!error)
3898 error = xlog_recover_items_pass2(log, trans,
3899 &buffer_list, &ra_list);
3900 list_splice_tail_init(&ra_list, &done_list);
3901 }
3902
3903 if (!list_empty(&done_list))
3904 list_splice_init(&done_list, &trans->r_itemq);
3905
43ff2122
CH
3906 error2 = xfs_buf_delwri_submit(&buffer_list);
3907 return error ? error : error2;
1da177e4
LT
3908}
3909
76560669
DC
3910STATIC void
3911xlog_recover_add_item(
3912 struct list_head *head)
3913{
3914 xlog_recover_item_t *item;
3915
3916 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3917 INIT_LIST_HEAD(&item->ri_list);
3918 list_add_tail(&item->ri_list, head);
3919}
3920
1da177e4 3921STATIC int
76560669
DC
3922xlog_recover_add_to_cont_trans(
3923 struct xlog *log,
3924 struct xlog_recover *trans,
b2a922cd 3925 char *dp,
76560669 3926 int len)
1da177e4 3927{
76560669 3928 xlog_recover_item_t *item;
b2a922cd 3929 char *ptr, *old_ptr;
76560669
DC
3930 int old_len;
3931
89cebc84
BF
3932 /*
3933 * If the transaction is empty, the header was split across this and the
3934 * previous record. Copy the rest of the header.
3935 */
76560669 3936 if (list_empty(&trans->r_itemq)) {
848ccfc8 3937 ASSERT(len <= sizeof(struct xfs_trans_header));
89cebc84
BF
3938 if (len > sizeof(struct xfs_trans_header)) {
3939 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3940 return -EIO;
3941 }
3942
76560669 3943 xlog_recover_add_item(&trans->r_itemq);
b2a922cd 3944 ptr = (char *)&trans->r_theader +
89cebc84 3945 sizeof(struct xfs_trans_header) - len;
76560669
DC
3946 memcpy(ptr, dp, len);
3947 return 0;
3948 }
89cebc84 3949
76560669
DC
3950 /* take the tail entry */
3951 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3952
3953 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3954 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3955
664b60f6 3956 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
76560669
DC
3957 memcpy(&ptr[old_len], dp, len);
3958 item->ri_buf[item->ri_cnt-1].i_len += len;
3959 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3960 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
3961 return 0;
3962}
3963
76560669
DC
3964/*
3965 * The next region to add is the start of a new region. It could be
3966 * a whole region or it could be the first part of a new region. Because
3967 * of this, the assumption here is that the type and size fields of all
3968 * format structures fit into the first 32 bits of the structure.
3969 *
3970 * This works because all regions must be 32 bit aligned. Therefore, we
3971 * either have both fields or we have neither field. In the case we have
3972 * neither field, the data part of the region is zero length. We only have
3973 * a log_op_header and can throw away the header since a new one will appear
3974 * later. If we have at least 4 bytes, then we can determine how many regions
3975 * will appear in the current log item.
3976 */
3977STATIC int
3978xlog_recover_add_to_trans(
3979 struct xlog *log,
3980 struct xlog_recover *trans,
b2a922cd 3981 char *dp,
76560669
DC
3982 int len)
3983{
3984 xfs_inode_log_format_t *in_f; /* any will do */
3985 xlog_recover_item_t *item;
b2a922cd 3986 char *ptr;
76560669
DC
3987
3988 if (!len)
3989 return 0;
3990 if (list_empty(&trans->r_itemq)) {
3991 /* we need to catch log corruptions here */
3992 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3993 xfs_warn(log->l_mp, "%s: bad header magic number",
3994 __func__);
3995 ASSERT(0);
3996 return -EIO;
3997 }
89cebc84
BF
3998
3999 if (len > sizeof(struct xfs_trans_header)) {
4000 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4001 ASSERT(0);
4002 return -EIO;
4003 }
4004
4005 /*
4006 * The transaction header can be arbitrarily split across op
4007 * records. If we don't have the whole thing here, copy what we
4008 * do have and handle the rest in the next record.
4009 */
4010 if (len == sizeof(struct xfs_trans_header))
76560669
DC
4011 xlog_recover_add_item(&trans->r_itemq);
4012 memcpy(&trans->r_theader, dp, len);
4013 return 0;
4014 }
4015
4016 ptr = kmem_alloc(len, KM_SLEEP);
4017 memcpy(ptr, dp, len);
4018 in_f = (xfs_inode_log_format_t *)ptr;
4019
4020 /* take the tail entry */
4021 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4022 if (item->ri_total != 0 &&
4023 item->ri_total == item->ri_cnt) {
4024 /* tail item is in use, get a new one */
4025 xlog_recover_add_item(&trans->r_itemq);
4026 item = list_entry(trans->r_itemq.prev,
4027 xlog_recover_item_t, ri_list);
4028 }
4029
4030 if (item->ri_total == 0) { /* first region to be added */
4031 if (in_f->ilf_size == 0 ||
4032 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4033 xfs_warn(log->l_mp,
4034 "bad number of regions (%d) in inode log format",
4035 in_f->ilf_size);
4036 ASSERT(0);
4037 kmem_free(ptr);
4038 return -EIO;
4039 }
4040
4041 item->ri_total = in_f->ilf_size;
4042 item->ri_buf =
4043 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4044 KM_SLEEP);
4045 }
4046 ASSERT(item->ri_total > item->ri_cnt);
4047 /* Description region is ri_buf[0] */
4048 item->ri_buf[item->ri_cnt].i_addr = ptr;
4049 item->ri_buf[item->ri_cnt].i_len = len;
4050 item->ri_cnt++;
4051 trace_xfs_log_recover_item_add(log, trans, item, 0);
4052 return 0;
4053}
b818cca1 4054
76560669
DC
4055/*
4056 * Free up any resources allocated by the transaction
4057 *
4058 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4059 */
4060STATIC void
4061xlog_recover_free_trans(
4062 struct xlog_recover *trans)
4063{
4064 xlog_recover_item_t *item, *n;
4065 int i;
4066
4067 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4068 /* Free the regions in the item. */
4069 list_del(&item->ri_list);
4070 for (i = 0; i < item->ri_cnt; i++)
4071 kmem_free(item->ri_buf[i].i_addr);
4072 /* Free the item itself */
4073 kmem_free(item->ri_buf);
4074 kmem_free(item);
4075 }
4076 /* Free the transaction recover structure */
4077 kmem_free(trans);
4078}
4079
e9131e50
DC
4080/*
4081 * On error or completion, trans is freed.
4082 */
1da177e4 4083STATIC int
eeb11688
DC
4084xlog_recovery_process_trans(
4085 struct xlog *log,
4086 struct xlog_recover *trans,
b2a922cd 4087 char *dp,
eeb11688
DC
4088 unsigned int len,
4089 unsigned int flags,
4090 int pass)
1da177e4 4091{
e9131e50
DC
4092 int error = 0;
4093 bool freeit = false;
eeb11688
DC
4094
4095 /* mask off ophdr transaction container flags */
4096 flags &= ~XLOG_END_TRANS;
4097 if (flags & XLOG_WAS_CONT_TRANS)
4098 flags &= ~XLOG_CONTINUE_TRANS;
4099
88b863db
DC
4100 /*
4101 * Callees must not free the trans structure. We'll decide if we need to
4102 * free it or not based on the operation being done and it's result.
4103 */
eeb11688
DC
4104 switch (flags) {
4105 /* expected flag values */
4106 case 0:
4107 case XLOG_CONTINUE_TRANS:
4108 error = xlog_recover_add_to_trans(log, trans, dp, len);
4109 break;
4110 case XLOG_WAS_CONT_TRANS:
4111 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4112 break;
4113 case XLOG_COMMIT_TRANS:
4114 error = xlog_recover_commit_trans(log, trans, pass);
88b863db
DC
4115 /* success or fail, we are now done with this transaction. */
4116 freeit = true;
eeb11688
DC
4117 break;
4118
4119 /* unexpected flag values */
4120 case XLOG_UNMOUNT_TRANS:
e9131e50 4121 /* just skip trans */
eeb11688 4122 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
e9131e50 4123 freeit = true;
eeb11688
DC
4124 break;
4125 case XLOG_START_TRANS:
eeb11688
DC
4126 default:
4127 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4128 ASSERT(0);
e9131e50 4129 error = -EIO;
eeb11688
DC
4130 break;
4131 }
e9131e50
DC
4132 if (error || freeit)
4133 xlog_recover_free_trans(trans);
eeb11688
DC
4134 return error;
4135}
4136
b818cca1
DC
4137/*
4138 * Lookup the transaction recovery structure associated with the ID in the
4139 * current ophdr. If the transaction doesn't exist and the start flag is set in
4140 * the ophdr, then allocate a new transaction for future ID matches to find.
4141 * Either way, return what we found during the lookup - an existing transaction
4142 * or nothing.
4143 */
eeb11688
DC
4144STATIC struct xlog_recover *
4145xlog_recover_ophdr_to_trans(
4146 struct hlist_head rhash[],
4147 struct xlog_rec_header *rhead,
4148 struct xlog_op_header *ohead)
4149{
4150 struct xlog_recover *trans;
4151 xlog_tid_t tid;
4152 struct hlist_head *rhp;
4153
4154 tid = be32_to_cpu(ohead->oh_tid);
4155 rhp = &rhash[XLOG_RHASH(tid)];
b818cca1
DC
4156 hlist_for_each_entry(trans, rhp, r_list) {
4157 if (trans->r_log_tid == tid)
4158 return trans;
4159 }
eeb11688
DC
4160
4161 /*
b818cca1
DC
4162 * skip over non-start transaction headers - we could be
4163 * processing slack space before the next transaction starts
4164 */
4165 if (!(ohead->oh_flags & XLOG_START_TRANS))
4166 return NULL;
4167
4168 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4169
4170 /*
4171 * This is a new transaction so allocate a new recovery container to
4172 * hold the recovery ops that will follow.
4173 */
4174 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4175 trans->r_log_tid = tid;
4176 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4177 INIT_LIST_HEAD(&trans->r_itemq);
4178 INIT_HLIST_NODE(&trans->r_list);
4179 hlist_add_head(&trans->r_list, rhp);
4180
4181 /*
4182 * Nothing more to do for this ophdr. Items to be added to this new
4183 * transaction will be in subsequent ophdr containers.
eeb11688 4184 */
eeb11688
DC
4185 return NULL;
4186}
4187
4188STATIC int
4189xlog_recover_process_ophdr(
4190 struct xlog *log,
4191 struct hlist_head rhash[],
4192 struct xlog_rec_header *rhead,
4193 struct xlog_op_header *ohead,
b2a922cd
CH
4194 char *dp,
4195 char *end,
eeb11688
DC
4196 int pass)
4197{
4198 struct xlog_recover *trans;
eeb11688
DC
4199 unsigned int len;
4200
4201 /* Do we understand who wrote this op? */
4202 if (ohead->oh_clientid != XFS_TRANSACTION &&
4203 ohead->oh_clientid != XFS_LOG) {
4204 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4205 __func__, ohead->oh_clientid);
4206 ASSERT(0);
4207 return -EIO;
4208 }
4209
4210 /*
4211 * Check the ophdr contains all the data it is supposed to contain.
4212 */
4213 len = be32_to_cpu(ohead->oh_len);
4214 if (dp + len > end) {
4215 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4216 WARN_ON(1);
4217 return -EIO;
4218 }
4219
4220 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4221 if (!trans) {
4222 /* nothing to do, so skip over this ophdr */
4223 return 0;
4224 }
4225
e9131e50
DC
4226 return xlog_recovery_process_trans(log, trans, dp, len,
4227 ohead->oh_flags, pass);
1da177e4
LT
4228}
4229
4230/*
4231 * There are two valid states of the r_state field. 0 indicates that the
4232 * transaction structure is in a normal state. We have either seen the
4233 * start of the transaction or the last operation we added was not a partial
4234 * operation. If the last operation we added to the transaction was a
4235 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4236 *
4237 * NOTE: skip LRs with 0 data length.
4238 */
4239STATIC int
4240xlog_recover_process_data(
9a8d2fdb 4241 struct xlog *log,
f0a76953 4242 struct hlist_head rhash[],
9a8d2fdb 4243 struct xlog_rec_header *rhead,
b2a922cd 4244 char *dp,
1da177e4
LT
4245 int pass)
4246{
eeb11688 4247 struct xlog_op_header *ohead;
b2a922cd 4248 char *end;
1da177e4 4249 int num_logops;
1da177e4 4250 int error;
1da177e4 4251
eeb11688 4252 end = dp + be32_to_cpu(rhead->h_len);
b53e675d 4253 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
4254
4255 /* check the log format matches our own - else we can't recover */
4256 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 4257 return -EIO;
1da177e4 4258
eeb11688
DC
4259 while ((dp < end) && num_logops) {
4260
4261 ohead = (struct xlog_op_header *)dp;
4262 dp += sizeof(*ohead);
4263 ASSERT(dp <= end);
4264
4265 /* errors will abort recovery */
4266 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4267 dp, end, pass);
4268 if (error)
4269 return error;
4270
67fcb7bf 4271 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
4272 num_logops--;
4273 }
4274 return 0;
4275}
4276
dc42375d 4277/* Recover the EFI if necessary. */
3c1e2bbe 4278STATIC int
1da177e4 4279xlog_recover_process_efi(
dc42375d
DW
4280 struct xfs_mount *mp,
4281 struct xfs_ail *ailp,
4282 struct xfs_log_item *lip)
1da177e4 4283{
dc42375d
DW
4284 struct xfs_efi_log_item *efip;
4285 int error;
1da177e4
LT
4286
4287 /*
dc42375d 4288 * Skip EFIs that we've already processed.
1da177e4 4289 */
dc42375d
DW
4290 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4291 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4292 return 0;
1da177e4 4293
dc42375d
DW
4294 spin_unlock(&ailp->xa_lock);
4295 error = xfs_efi_recover(mp, efip);
4296 spin_lock(&ailp->xa_lock);
1da177e4 4297
dc42375d
DW
4298 return error;
4299}
6bc43af3 4300
dc42375d
DW
4301/* Release the EFI since we're cancelling everything. */
4302STATIC void
4303xlog_recover_cancel_efi(
4304 struct xfs_mount *mp,
4305 struct xfs_ail *ailp,
4306 struct xfs_log_item *lip)
4307{
4308 struct xfs_efi_log_item *efip;
1da177e4 4309
dc42375d 4310 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
fc6149d8 4311
dc42375d
DW
4312 spin_unlock(&ailp->xa_lock);
4313 xfs_efi_release(efip);
4314 spin_lock(&ailp->xa_lock);
4315}
4316
9e88b5d8
DW
4317/* Recover the RUI if necessary. */
4318STATIC int
4319xlog_recover_process_rui(
4320 struct xfs_mount *mp,
4321 struct xfs_ail *ailp,
4322 struct xfs_log_item *lip)
4323{
4324 struct xfs_rui_log_item *ruip;
4325 int error;
4326
4327 /*
4328 * Skip RUIs that we've already processed.
4329 */
4330 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4331 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4332 return 0;
4333
4334 spin_unlock(&ailp->xa_lock);
4335 error = xfs_rui_recover(mp, ruip);
4336 spin_lock(&ailp->xa_lock);
4337
4338 return error;
4339}
4340
4341/* Release the RUI since we're cancelling everything. */
4342STATIC void
4343xlog_recover_cancel_rui(
4344 struct xfs_mount *mp,
4345 struct xfs_ail *ailp,
4346 struct xfs_log_item *lip)
4347{
4348 struct xfs_rui_log_item *ruip;
4349
4350 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4351
4352 spin_unlock(&ailp->xa_lock);
4353 xfs_rui_release(ruip);
4354 spin_lock(&ailp->xa_lock);
4355}
4356
dc42375d
DW
4357/* Is this log item a deferred action intent? */
4358static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4359{
4360 switch (lip->li_type) {
4361 case XFS_LI_EFI:
9e88b5d8 4362 case XFS_LI_RUI:
dc42375d
DW
4363 return true;
4364 default:
4365 return false;
4366 }
1da177e4
LT
4367}
4368
1da177e4 4369/*
dc42375d
DW
4370 * When this is called, all of the log intent items which did not have
4371 * corresponding log done items should be in the AIL. What we do now
4372 * is update the data structures associated with each one.
1da177e4 4373 *
dc42375d
DW
4374 * Since we process the log intent items in normal transactions, they
4375 * will be removed at some point after the commit. This prevents us
4376 * from just walking down the list processing each one. We'll use a
4377 * flag in the intent item to skip those that we've already processed
4378 * and use the AIL iteration mechanism's generation count to try to
4379 * speed this up at least a bit.
1da177e4 4380 *
dc42375d
DW
4381 * When we start, we know that the intents are the only things in the
4382 * AIL. As we process them, however, other items are added to the
4383 * AIL.
1da177e4 4384 */
3c1e2bbe 4385STATIC int
dc42375d 4386xlog_recover_process_intents(
f0b2efad 4387 struct xlog *log)
1da177e4 4388{
f0b2efad 4389 struct xfs_log_item *lip;
3c1e2bbe 4390 int error = 0;
27d8d5fe 4391 struct xfs_ail_cursor cur;
a9c21c1b 4392 struct xfs_ail *ailp;
dc42375d 4393 xfs_lsn_t last_lsn;
1da177e4 4394
a9c21c1b
DC
4395 ailp = log->l_ailp;
4396 spin_lock(&ailp->xa_lock);
4397 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
dc42375d 4398 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
1da177e4
LT
4399 while (lip != NULL) {
4400 /*
dc42375d
DW
4401 * We're done when we see something other than an intent.
4402 * There should be no intents left in the AIL now.
1da177e4 4403 */
dc42375d 4404 if (!xlog_item_is_intent(lip)) {
27d8d5fe 4405#ifdef DEBUG
a9c21c1b 4406 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
dc42375d 4407 ASSERT(!xlog_item_is_intent(lip));
27d8d5fe 4408#endif
1da177e4
LT
4409 break;
4410 }
4411
4412 /*
dc42375d
DW
4413 * We should never see a redo item with a LSN higher than
4414 * the last transaction we found in the log at the start
4415 * of recovery.
1da177e4 4416 */
dc42375d 4417 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
1da177e4 4418
dc42375d
DW
4419 switch (lip->li_type) {
4420 case XFS_LI_EFI:
4421 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4422 break;
9e88b5d8
DW
4423 case XFS_LI_RUI:
4424 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4425 break;
dc42375d 4426 }
27d8d5fe
DC
4427 if (error)
4428 goto out;
a9c21c1b 4429 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 4430 }
27d8d5fe 4431out:
e4a1e29c 4432 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 4433 spin_unlock(&ailp->xa_lock);
3c1e2bbe 4434 return error;
1da177e4
LT
4435}
4436
f0b2efad 4437/*
dc42375d
DW
4438 * A cancel occurs when the mount has failed and we're bailing out.
4439 * Release all pending log intent items so they don't pin the AIL.
f0b2efad
BF
4440 */
4441STATIC int
dc42375d 4442xlog_recover_cancel_intents(
f0b2efad
BF
4443 struct xlog *log)
4444{
4445 struct xfs_log_item *lip;
f0b2efad
BF
4446 int error = 0;
4447 struct xfs_ail_cursor cur;
4448 struct xfs_ail *ailp;
4449
4450 ailp = log->l_ailp;
4451 spin_lock(&ailp->xa_lock);
4452 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4453 while (lip != NULL) {
4454 /*
dc42375d
DW
4455 * We're done when we see something other than an intent.
4456 * There should be no intents left in the AIL now.
f0b2efad 4457 */
dc42375d 4458 if (!xlog_item_is_intent(lip)) {
f0b2efad
BF
4459#ifdef DEBUG
4460 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
dc42375d 4461 ASSERT(!xlog_item_is_intent(lip));
f0b2efad
BF
4462#endif
4463 break;
4464 }
4465
dc42375d
DW
4466 switch (lip->li_type) {
4467 case XFS_LI_EFI:
4468 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4469 break;
9e88b5d8
DW
4470 case XFS_LI_RUI:
4471 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4472 break;
dc42375d 4473 }
f0b2efad
BF
4474
4475 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4476 }
4477
4478 xfs_trans_ail_cursor_done(&cur);
4479 spin_unlock(&ailp->xa_lock);
4480 return error;
4481}
4482
1da177e4
LT
4483/*
4484 * This routine performs a transaction to null out a bad inode pointer
4485 * in an agi unlinked inode hash bucket.
4486 */
4487STATIC void
4488xlog_recover_clear_agi_bucket(
4489 xfs_mount_t *mp,
4490 xfs_agnumber_t agno,
4491 int bucket)
4492{
4493 xfs_trans_t *tp;
4494 xfs_agi_t *agi;
4495 xfs_buf_t *agibp;
4496 int offset;
4497 int error;
4498
253f4911 4499 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
e5720eec 4500 if (error)
253f4911 4501 goto out_error;
1da177e4 4502
5e1be0fb
CH
4503 error = xfs_read_agi(mp, tp, agno, &agibp);
4504 if (error)
e5720eec 4505 goto out_abort;
1da177e4 4506
5e1be0fb 4507 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4508 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
4509 offset = offsetof(xfs_agi_t, agi_unlinked) +
4510 (sizeof(xfs_agino_t) * bucket);
4511 xfs_trans_log_buf(tp, agibp, offset,
4512 (offset + sizeof(xfs_agino_t) - 1));
4513
70393313 4514 error = xfs_trans_commit(tp);
e5720eec
DC
4515 if (error)
4516 goto out_error;
4517 return;
4518
4519out_abort:
4906e215 4520 xfs_trans_cancel(tp);
e5720eec 4521out_error:
a0fa2b67 4522 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 4523 return;
1da177e4
LT
4524}
4525
23fac50f
CH
4526STATIC xfs_agino_t
4527xlog_recover_process_one_iunlink(
4528 struct xfs_mount *mp,
4529 xfs_agnumber_t agno,
4530 xfs_agino_t agino,
4531 int bucket)
4532{
4533 struct xfs_buf *ibp;
4534 struct xfs_dinode *dip;
4535 struct xfs_inode *ip;
4536 xfs_ino_t ino;
4537 int error;
4538
4539 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 4540 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
4541 if (error)
4542 goto fail;
4543
4544 /*
4545 * Get the on disk inode to find the next inode in the bucket.
4546 */
475ee413 4547 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 4548 if (error)
0e446673 4549 goto fail_iput;
23fac50f 4550
54d7b5c1 4551 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 4552 ASSERT(VFS_I(ip)->i_mode != 0);
23fac50f
CH
4553
4554 /* setup for the next pass */
4555 agino = be32_to_cpu(dip->di_next_unlinked);
4556 xfs_buf_relse(ibp);
4557
4558 /*
4559 * Prevent any DMAPI event from being sent when the reference on
4560 * the inode is dropped.
4561 */
4562 ip->i_d.di_dmevmask = 0;
4563
0e446673 4564 IRELE(ip);
23fac50f
CH
4565 return agino;
4566
0e446673
CH
4567 fail_iput:
4568 IRELE(ip);
23fac50f
CH
4569 fail:
4570 /*
4571 * We can't read in the inode this bucket points to, or this inode
4572 * is messed up. Just ditch this bucket of inodes. We will lose
4573 * some inodes and space, but at least we won't hang.
4574 *
4575 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4576 * clear the inode pointer in the bucket.
4577 */
4578 xlog_recover_clear_agi_bucket(mp, agno, bucket);
4579 return NULLAGINO;
4580}
4581
1da177e4
LT
4582/*
4583 * xlog_iunlink_recover
4584 *
4585 * This is called during recovery to process any inodes which
4586 * we unlinked but not freed when the system crashed. These
4587 * inodes will be on the lists in the AGI blocks. What we do
4588 * here is scan all the AGIs and fully truncate and free any
4589 * inodes found on the lists. Each inode is removed from the
4590 * lists when it has been fully truncated and is freed. The
4591 * freeing of the inode and its removal from the list must be
4592 * atomic.
4593 */
d96f8f89 4594STATIC void
1da177e4 4595xlog_recover_process_iunlinks(
9a8d2fdb 4596 struct xlog *log)
1da177e4
LT
4597{
4598 xfs_mount_t *mp;
4599 xfs_agnumber_t agno;
4600 xfs_agi_t *agi;
4601 xfs_buf_t *agibp;
1da177e4 4602 xfs_agino_t agino;
1da177e4
LT
4603 int bucket;
4604 int error;
4605 uint mp_dmevmask;
4606
4607 mp = log->l_mp;
4608
4609 /*
4610 * Prevent any DMAPI event from being sent while in this function.
4611 */
4612 mp_dmevmask = mp->m_dmevmask;
4613 mp->m_dmevmask = 0;
4614
4615 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4616 /*
4617 * Find the agi for this ag.
4618 */
5e1be0fb
CH
4619 error = xfs_read_agi(mp, NULL, agno, &agibp);
4620 if (error) {
4621 /*
4622 * AGI is b0rked. Don't process it.
4623 *
4624 * We should probably mark the filesystem as corrupt
4625 * after we've recovered all the ag's we can....
4626 */
4627 continue;
1da177e4 4628 }
d97d32ed
JK
4629 /*
4630 * Unlock the buffer so that it can be acquired in the normal
4631 * course of the transaction to truncate and free each inode.
4632 * Because we are not racing with anyone else here for the AGI
4633 * buffer, we don't even need to hold it locked to read the
4634 * initial unlinked bucket entries out of the buffer. We keep
4635 * buffer reference though, so that it stays pinned in memory
4636 * while we need the buffer.
4637 */
1da177e4 4638 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 4639 xfs_buf_unlock(agibp);
1da177e4
LT
4640
4641 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 4642 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 4643 while (agino != NULLAGINO) {
23fac50f
CH
4644 agino = xlog_recover_process_one_iunlink(mp,
4645 agno, agino, bucket);
1da177e4
LT
4646 }
4647 }
d97d32ed 4648 xfs_buf_rele(agibp);
1da177e4
LT
4649 }
4650
4651 mp->m_dmevmask = mp_dmevmask;
4652}
4653
0e446be4 4654STATIC int
1da177e4 4655xlog_unpack_data(
9a8d2fdb 4656 struct xlog_rec_header *rhead,
b2a922cd 4657 char *dp,
9a8d2fdb 4658 struct xlog *log)
1da177e4
LT
4659{
4660 int i, j, k;
1da177e4 4661
b53e675d 4662 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 4663 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 4664 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
4665 dp += BBSIZE;
4666 }
4667
62118709 4668 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 4669 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 4670 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4671 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4672 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4673 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4674 dp += BBSIZE;
4675 }
4676 }
0e446be4
CH
4677
4678 return 0;
1da177e4
LT
4679}
4680
9d94901f 4681/*
b94fb2d1 4682 * CRC check, unpack and process a log record.
9d94901f
BF
4683 */
4684STATIC int
4685xlog_recover_process(
4686 struct xlog *log,
4687 struct hlist_head rhash[],
4688 struct xlog_rec_header *rhead,
4689 char *dp,
4690 int pass)
4691{
4692 int error;
b94fb2d1
BF
4693 __le32 crc;
4694
6528250b
BF
4695 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4696
b94fb2d1 4697 /*
6528250b
BF
4698 * Nothing else to do if this is a CRC verification pass. Just return
4699 * if this a record with a non-zero crc. Unfortunately, mkfs always
4700 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4701 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4702 * know precisely what failed.
4703 */
4704 if (pass == XLOG_RECOVER_CRCPASS) {
8e0bd492 4705 if (rhead->h_crc && crc != rhead->h_crc)
6528250b
BF
4706 return -EFSBADCRC;
4707 return 0;
4708 }
4709
4710 /*
4711 * We're in the normal recovery path. Issue a warning if and only if the
4712 * CRC in the header is non-zero. This is an advisory warning and the
4713 * zero CRC check prevents warnings from being emitted when upgrading
4714 * the kernel from one that does not add CRCs by default.
b94fb2d1 4715 */
8e0bd492 4716 if (crc != rhead->h_crc) {
b94fb2d1
BF
4717 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4718 xfs_alert(log->l_mp,
4719 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4720 le32_to_cpu(rhead->h_crc),
4721 le32_to_cpu(crc));
4722 xfs_hex_dump(dp, 32);
4723 }
4724
4725 /*
4726 * If the filesystem is CRC enabled, this mismatch becomes a
4727 * fatal log corruption failure.
4728 */
4729 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4730 return -EFSCORRUPTED;
4731 }
9d94901f
BF
4732
4733 error = xlog_unpack_data(rhead, dp, log);
4734 if (error)
4735 return error;
4736
4737 return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4738}
4739
1da177e4
LT
4740STATIC int
4741xlog_valid_rec_header(
9a8d2fdb
MT
4742 struct xlog *log,
4743 struct xlog_rec_header *rhead,
1da177e4
LT
4744 xfs_daddr_t blkno)
4745{
4746 int hlen;
4747
69ef921b 4748 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4749 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4750 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4751 return -EFSCORRUPTED;
1da177e4
LT
4752 }
4753 if (unlikely(
4754 (!rhead->h_version ||
b53e675d 4755 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4756 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4757 __func__, be32_to_cpu(rhead->h_version));
2451337d 4758 return -EIO;
1da177e4
LT
4759 }
4760
4761 /* LR body must have data or it wouldn't have been written */
b53e675d 4762 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4763 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4764 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4765 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4766 return -EFSCORRUPTED;
1da177e4
LT
4767 }
4768 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4769 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4770 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4771 return -EFSCORRUPTED;
1da177e4
LT
4772 }
4773 return 0;
4774}
4775
4776/*
4777 * Read the log from tail to head and process the log records found.
4778 * Handle the two cases where the tail and head are in the same cycle
4779 * and where the active portion of the log wraps around the end of
4780 * the physical log separately. The pass parameter is passed through
4781 * to the routines called to process the data and is not looked at
4782 * here.
4783 */
4784STATIC int
4785xlog_do_recovery_pass(
9a8d2fdb 4786 struct xlog *log,
1da177e4
LT
4787 xfs_daddr_t head_blk,
4788 xfs_daddr_t tail_blk,
d7f37692
BF
4789 int pass,
4790 xfs_daddr_t *first_bad) /* out: first bad log rec */
1da177e4
LT
4791{
4792 xlog_rec_header_t *rhead;
4793 xfs_daddr_t blk_no;
d7f37692 4794 xfs_daddr_t rhead_blk;
b2a922cd 4795 char *offset;
1da177e4 4796 xfs_buf_t *hbp, *dbp;
a70f9fe5 4797 int error = 0, h_size, h_len;
1da177e4
LT
4798 int bblks, split_bblks;
4799 int hblks, split_hblks, wrapped_hblks;
f0a76953 4800 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4801
4802 ASSERT(head_blk != tail_blk);
d7f37692 4803 rhead_blk = 0;
1da177e4
LT
4804
4805 /*
4806 * Read the header of the tail block and get the iclog buffer size from
4807 * h_size. Use this to tell how many sectors make up the log header.
4808 */
62118709 4809 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4810 /*
4811 * When using variable length iclogs, read first sector of
4812 * iclog header and extract the header size from it. Get a
4813 * new hbp that is the correct size.
4814 */
4815 hbp = xlog_get_bp(log, 1);
4816 if (!hbp)
2451337d 4817 return -ENOMEM;
076e6acb
CH
4818
4819 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4820 if (error)
1da177e4 4821 goto bread_err1;
076e6acb 4822
1da177e4
LT
4823 rhead = (xlog_rec_header_t *)offset;
4824 error = xlog_valid_rec_header(log, rhead, tail_blk);
4825 if (error)
4826 goto bread_err1;
a70f9fe5
BF
4827
4828 /*
4829 * xfsprogs has a bug where record length is based on lsunit but
4830 * h_size (iclog size) is hardcoded to 32k. Now that we
4831 * unconditionally CRC verify the unmount record, this means the
4832 * log buffer can be too small for the record and cause an
4833 * overrun.
4834 *
4835 * Detect this condition here. Use lsunit for the buffer size as
4836 * long as this looks like the mkfs case. Otherwise, return an
4837 * error to avoid a buffer overrun.
4838 */
b53e675d 4839 h_size = be32_to_cpu(rhead->h_size);
a70f9fe5
BF
4840 h_len = be32_to_cpu(rhead->h_len);
4841 if (h_len > h_size) {
4842 if (h_len <= log->l_mp->m_logbsize &&
4843 be32_to_cpu(rhead->h_num_logops) == 1) {
4844 xfs_warn(log->l_mp,
4845 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4846 h_size, log->l_mp->m_logbsize);
4847 h_size = log->l_mp->m_logbsize;
4848 } else
4849 return -EFSCORRUPTED;
4850 }
4851
b53e675d 4852 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4853 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4854 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4855 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4856 hblks++;
4857 xlog_put_bp(hbp);
4858 hbp = xlog_get_bp(log, hblks);
4859 } else {
4860 hblks = 1;
4861 }
4862 } else {
69ce58f0 4863 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4864 hblks = 1;
4865 hbp = xlog_get_bp(log, 1);
4866 h_size = XLOG_BIG_RECORD_BSIZE;
4867 }
4868
4869 if (!hbp)
2451337d 4870 return -ENOMEM;
1da177e4
LT
4871 dbp = xlog_get_bp(log, BTOBB(h_size));
4872 if (!dbp) {
4873 xlog_put_bp(hbp);
2451337d 4874 return -ENOMEM;
1da177e4
LT
4875 }
4876
4877 memset(rhash, 0, sizeof(rhash));
d7f37692 4878 blk_no = rhead_blk = tail_blk;
970fd3f0 4879 if (tail_blk > head_blk) {
1da177e4
LT
4880 /*
4881 * Perform recovery around the end of the physical log.
4882 * When the head is not on the same cycle number as the tail,
970fd3f0 4883 * we can't do a sequential recovery.
1da177e4 4884 */
1da177e4
LT
4885 while (blk_no < log->l_logBBsize) {
4886 /*
4887 * Check for header wrapping around physical end-of-log
4888 */
62926044 4889 offset = hbp->b_addr;
1da177e4
LT
4890 split_hblks = 0;
4891 wrapped_hblks = 0;
4892 if (blk_no + hblks <= log->l_logBBsize) {
4893 /* Read header in one read */
076e6acb
CH
4894 error = xlog_bread(log, blk_no, hblks, hbp,
4895 &offset);
1da177e4
LT
4896 if (error)
4897 goto bread_err2;
1da177e4
LT
4898 } else {
4899 /* This LR is split across physical log end */
4900 if (blk_no != log->l_logBBsize) {
4901 /* some data before physical log end */
4902 ASSERT(blk_no <= INT_MAX);
4903 split_hblks = log->l_logBBsize - (int)blk_no;
4904 ASSERT(split_hblks > 0);
076e6acb
CH
4905 error = xlog_bread(log, blk_no,
4906 split_hblks, hbp,
4907 &offset);
4908 if (error)
1da177e4 4909 goto bread_err2;
1da177e4 4910 }
076e6acb 4911
1da177e4
LT
4912 /*
4913 * Note: this black magic still works with
4914 * large sector sizes (non-512) only because:
4915 * - we increased the buffer size originally
4916 * by 1 sector giving us enough extra space
4917 * for the second read;
4918 * - the log start is guaranteed to be sector
4919 * aligned;
4920 * - we read the log end (LR header start)
4921 * _first_, then the log start (LR header end)
4922 * - order is important.
4923 */
234f56ac 4924 wrapped_hblks = hblks - split_hblks;
44396476
DC
4925 error = xlog_bread_offset(log, 0,
4926 wrapped_hblks, hbp,
4927 offset + BBTOB(split_hblks));
1da177e4
LT
4928 if (error)
4929 goto bread_err2;
1da177e4
LT
4930 }
4931 rhead = (xlog_rec_header_t *)offset;
4932 error = xlog_valid_rec_header(log, rhead,
4933 split_hblks ? blk_no : 0);
4934 if (error)
4935 goto bread_err2;
4936
b53e675d 4937 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4938 blk_no += hblks;
4939
4940 /* Read in data for log record */
4941 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4942 error = xlog_bread(log, blk_no, bblks, dbp,
4943 &offset);
1da177e4
LT
4944 if (error)
4945 goto bread_err2;
1da177e4
LT
4946 } else {
4947 /* This log record is split across the
4948 * physical end of log */
62926044 4949 offset = dbp->b_addr;
1da177e4
LT
4950 split_bblks = 0;
4951 if (blk_no != log->l_logBBsize) {
4952 /* some data is before the physical
4953 * end of log */
4954 ASSERT(!wrapped_hblks);
4955 ASSERT(blk_no <= INT_MAX);
4956 split_bblks =
4957 log->l_logBBsize - (int)blk_no;
4958 ASSERT(split_bblks > 0);
076e6acb
CH
4959 error = xlog_bread(log, blk_no,
4960 split_bblks, dbp,
4961 &offset);
4962 if (error)
1da177e4 4963 goto bread_err2;
1da177e4 4964 }
076e6acb 4965
1da177e4
LT
4966 /*
4967 * Note: this black magic still works with
4968 * large sector sizes (non-512) only because:
4969 * - we increased the buffer size originally
4970 * by 1 sector giving us enough extra space
4971 * for the second read;
4972 * - the log start is guaranteed to be sector
4973 * aligned;
4974 * - we read the log end (LR header start)
4975 * _first_, then the log start (LR header end)
4976 * - order is important.
4977 */
44396476 4978 error = xlog_bread_offset(log, 0,
009507b0 4979 bblks - split_bblks, dbp,
44396476 4980 offset + BBTOB(split_bblks));
076e6acb
CH
4981 if (error)
4982 goto bread_err2;
1da177e4 4983 }
0e446be4 4984
9d94901f
BF
4985 error = xlog_recover_process(log, rhash, rhead, offset,
4986 pass);
0e446be4 4987 if (error)
1da177e4 4988 goto bread_err2;
d7f37692 4989
1da177e4 4990 blk_no += bblks;
d7f37692 4991 rhead_blk = blk_no;
1da177e4
LT
4992 }
4993
4994 ASSERT(blk_no >= log->l_logBBsize);
4995 blk_no -= log->l_logBBsize;
d7f37692 4996 rhead_blk = blk_no;
970fd3f0 4997 }
1da177e4 4998
970fd3f0
ES
4999 /* read first part of physical log */
5000 while (blk_no < head_blk) {
5001 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5002 if (error)
5003 goto bread_err2;
076e6acb 5004
970fd3f0
ES
5005 rhead = (xlog_rec_header_t *)offset;
5006 error = xlog_valid_rec_header(log, rhead, blk_no);
5007 if (error)
5008 goto bread_err2;
076e6acb 5009
970fd3f0
ES
5010 /* blocks in data section */
5011 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5012 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5013 &offset);
5014 if (error)
5015 goto bread_err2;
076e6acb 5016
9d94901f 5017 error = xlog_recover_process(log, rhash, rhead, offset, pass);
970fd3f0
ES
5018 if (error)
5019 goto bread_err2;
d7f37692 5020
970fd3f0 5021 blk_no += bblks + hblks;
d7f37692 5022 rhead_blk = blk_no;
1da177e4
LT
5023 }
5024
5025 bread_err2:
5026 xlog_put_bp(dbp);
5027 bread_err1:
5028 xlog_put_bp(hbp);
d7f37692
BF
5029
5030 if (error && first_bad)
5031 *first_bad = rhead_blk;
5032
1da177e4
LT
5033 return error;
5034}
5035
5036/*
5037 * Do the recovery of the log. We actually do this in two phases.
5038 * The two passes are necessary in order to implement the function
5039 * of cancelling a record written into the log. The first pass
5040 * determines those things which have been cancelled, and the
5041 * second pass replays log items normally except for those which
5042 * have been cancelled. The handling of the replay and cancellations
5043 * takes place in the log item type specific routines.
5044 *
5045 * The table of items which have cancel records in the log is allocated
5046 * and freed at this level, since only here do we know when all of
5047 * the log recovery has been completed.
5048 */
5049STATIC int
5050xlog_do_log_recovery(
9a8d2fdb 5051 struct xlog *log,
1da177e4
LT
5052 xfs_daddr_t head_blk,
5053 xfs_daddr_t tail_blk)
5054{
d5689eaa 5055 int error, i;
1da177e4
LT
5056
5057 ASSERT(head_blk != tail_blk);
5058
5059 /*
5060 * First do a pass to find all of the cancelled buf log items.
5061 * Store them in the buf_cancel_table for use in the second pass.
5062 */
d5689eaa
CH
5063 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5064 sizeof(struct list_head),
1da177e4 5065 KM_SLEEP);
d5689eaa
CH
5066 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5067 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5068
1da177e4 5069 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 5070 XLOG_RECOVER_PASS1, NULL);
1da177e4 5071 if (error != 0) {
f0e2d93c 5072 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
5073 log->l_buf_cancel_table = NULL;
5074 return error;
5075 }
5076 /*
5077 * Then do a second pass to actually recover the items in the log.
5078 * When it is complete free the table of buf cancel items.
5079 */
5080 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 5081 XLOG_RECOVER_PASS2, NULL);
1da177e4 5082#ifdef DEBUG
6d192a9b 5083 if (!error) {
1da177e4
LT
5084 int i;
5085
5086 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 5087 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
5088 }
5089#endif /* DEBUG */
5090
f0e2d93c 5091 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
5092 log->l_buf_cancel_table = NULL;
5093
5094 return error;
5095}
5096
5097/*
5098 * Do the actual recovery
5099 */
5100STATIC int
5101xlog_do_recover(
9a8d2fdb 5102 struct xlog *log,
1da177e4
LT
5103 xfs_daddr_t head_blk,
5104 xfs_daddr_t tail_blk)
5105{
a798011c 5106 struct xfs_mount *mp = log->l_mp;
1da177e4
LT
5107 int error;
5108 xfs_buf_t *bp;
5109 xfs_sb_t *sbp;
5110
5111 /*
5112 * First replay the images in the log.
5113 */
5114 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 5115 if (error)
1da177e4 5116 return error;
1da177e4
LT
5117
5118 /*
5119 * If IO errors happened during recovery, bail out.
5120 */
a798011c 5121 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 5122 return -EIO;
1da177e4
LT
5123 }
5124
5125 /*
5126 * We now update the tail_lsn since much of the recovery has completed
5127 * and there may be space available to use. If there were no extent
5128 * or iunlinks, we can free up the entire log and set the tail_lsn to
5129 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5130 * lsn of the last known good LR on disk. If there are extent frees
5131 * or iunlinks they will have some entries in the AIL; so we look at
5132 * the AIL to determine how to set the tail_lsn.
5133 */
a798011c 5134 xlog_assign_tail_lsn(mp);
1da177e4
LT
5135
5136 /*
5137 * Now that we've finished replaying all buffer and inode
98021821 5138 * updates, re-read in the superblock and reverify it.
1da177e4 5139 */
a798011c 5140 bp = xfs_getsb(mp, 0);
1157b32c 5141 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
b68c0821 5142 ASSERT(!(bp->b_flags & XBF_WRITE));
0cac682f 5143 bp->b_flags |= XBF_READ;
1813dd64 5144 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3 5145
595bff75 5146 error = xfs_buf_submit_wait(bp);
d64e31a2 5147 if (error) {
a798011c 5148 if (!XFS_FORCED_SHUTDOWN(mp)) {
595bff75
DC
5149 xfs_buf_ioerror_alert(bp, __func__);
5150 ASSERT(0);
5151 }
1da177e4
LT
5152 xfs_buf_relse(bp);
5153 return error;
5154 }
5155
5156 /* Convert superblock from on-disk format */
a798011c 5157 sbp = &mp->m_sb;
98021821 5158 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4
LT
5159 xfs_buf_relse(bp);
5160
a798011c
DC
5161 /* re-initialise in-core superblock and geometry structures */
5162 xfs_reinit_percpu_counters(mp);
5163 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5164 if (error) {
5165 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5166 return error;
5167 }
52548852 5168 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5478eead 5169
1da177e4
LT
5170 xlog_recover_check_summary(log);
5171
5172 /* Normal transactions can now occur */
5173 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5174 return 0;
5175}
5176
5177/*
5178 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5179 *
5180 * Return error or zero.
5181 */
5182int
5183xlog_recover(
9a8d2fdb 5184 struct xlog *log)
1da177e4
LT
5185{
5186 xfs_daddr_t head_blk, tail_blk;
5187 int error;
5188
5189 /* find the tail of the log */
a45086e2
BF
5190 error = xlog_find_tail(log, &head_blk, &tail_blk);
5191 if (error)
1da177e4
LT
5192 return error;
5193
a45086e2
BF
5194 /*
5195 * The superblock was read before the log was available and thus the LSN
5196 * could not be verified. Check the superblock LSN against the current
5197 * LSN now that it's known.
5198 */
5199 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5200 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5201 return -EINVAL;
5202
1da177e4
LT
5203 if (tail_blk != head_blk) {
5204 /* There used to be a comment here:
5205 *
5206 * disallow recovery on read-only mounts. note -- mount
5207 * checks for ENOSPC and turns it into an intelligent
5208 * error message.
5209 * ...but this is no longer true. Now, unless you specify
5210 * NORECOVERY (in which case this function would never be
5211 * called), we just go ahead and recover. We do this all
5212 * under the vfs layer, so we can get away with it unless
5213 * the device itself is read-only, in which case we fail.
5214 */
3a02ee18 5215 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
5216 return error;
5217 }
5218
e721f504
DC
5219 /*
5220 * Version 5 superblock log feature mask validation. We know the
5221 * log is dirty so check if there are any unknown log features
5222 * in what we need to recover. If there are unknown features
5223 * (e.g. unsupported transactions, then simply reject the
5224 * attempt at recovery before touching anything.
5225 */
5226 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5227 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5228 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5229 xfs_warn(log->l_mp,
f41febd2 5230"Superblock has unknown incompatible log features (0x%x) enabled.",
e721f504
DC
5231 (log->l_mp->m_sb.sb_features_log_incompat &
5232 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
f41febd2
JP
5233 xfs_warn(log->l_mp,
5234"The log can not be fully and/or safely recovered by this kernel.");
5235 xfs_warn(log->l_mp,
5236"Please recover the log on a kernel that supports the unknown features.");
2451337d 5237 return -EINVAL;
e721f504
DC
5238 }
5239
2e227178
BF
5240 /*
5241 * Delay log recovery if the debug hook is set. This is debug
5242 * instrumention to coordinate simulation of I/O failures with
5243 * log recovery.
5244 */
5245 if (xfs_globals.log_recovery_delay) {
5246 xfs_notice(log->l_mp,
5247 "Delaying log recovery for %d seconds.",
5248 xfs_globals.log_recovery_delay);
5249 msleep(xfs_globals.log_recovery_delay * 1000);
5250 }
5251
a0fa2b67
DC
5252 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5253 log->l_mp->m_logname ? log->l_mp->m_logname
5254 : "internal");
1da177e4
LT
5255
5256 error = xlog_do_recover(log, head_blk, tail_blk);
5257 log->l_flags |= XLOG_RECOVERY_NEEDED;
5258 }
5259 return error;
5260}
5261
5262/*
5263 * In the first part of recovery we replay inodes and buffers and build
5264 * up the list of extent free items which need to be processed. Here
5265 * we process the extent free items and clean up the on disk unlinked
5266 * inode lists. This is separated from the first part of recovery so
5267 * that the root and real-time bitmap inodes can be read in from disk in
5268 * between the two stages. This is necessary so that we can free space
5269 * in the real-time portion of the file system.
5270 */
5271int
5272xlog_recover_finish(
9a8d2fdb 5273 struct xlog *log)
1da177e4
LT
5274{
5275 /*
5276 * Now we're ready to do the transactions needed for the
5277 * rest of recovery. Start with completing all the extent
5278 * free intent records and then process the unlinked inode
5279 * lists. At this point, we essentially run in normal mode
5280 * except that we're still performing recovery actions
5281 * rather than accepting new requests.
5282 */
5283 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe 5284 int error;
dc42375d 5285 error = xlog_recover_process_intents(log);
3c1e2bbe 5286 if (error) {
dc42375d 5287 xfs_alert(log->l_mp, "Failed to recover intents");
3c1e2bbe
DC
5288 return error;
5289 }
9e88b5d8 5290
1da177e4 5291 /*
dc42375d 5292 * Sync the log to get all the intents out of the AIL.
1da177e4
LT
5293 * This isn't absolutely necessary, but it helps in
5294 * case the unlink transactions would have problems
dc42375d 5295 * pushing the intents out of the way.
1da177e4 5296 */
a14a348b 5297 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 5298
4249023a 5299 xlog_recover_process_iunlinks(log);
1da177e4
LT
5300
5301 xlog_recover_check_summary(log);
5302
a0fa2b67
DC
5303 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5304 log->l_mp->m_logname ? log->l_mp->m_logname
5305 : "internal");
1da177e4
LT
5306 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5307 } else {
a0fa2b67 5308 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
5309 }
5310 return 0;
5311}
5312
f0b2efad
BF
5313int
5314xlog_recover_cancel(
5315 struct xlog *log)
5316{
5317 int error = 0;
5318
5319 if (log->l_flags & XLOG_RECOVERY_NEEDED)
dc42375d 5320 error = xlog_recover_cancel_intents(log);
f0b2efad
BF
5321
5322 return error;
5323}
1da177e4
LT
5324
5325#if defined(DEBUG)
5326/*
5327 * Read all of the agf and agi counters and check that they
5328 * are consistent with the superblock counters.
5329 */
5330void
5331xlog_recover_check_summary(
9a8d2fdb 5332 struct xlog *log)
1da177e4
LT
5333{
5334 xfs_mount_t *mp;
5335 xfs_agf_t *agfp;
1da177e4
LT
5336 xfs_buf_t *agfbp;
5337 xfs_buf_t *agibp;
1da177e4
LT
5338 xfs_agnumber_t agno;
5339 __uint64_t freeblks;
5340 __uint64_t itotal;
5341 __uint64_t ifree;
5e1be0fb 5342 int error;
1da177e4
LT
5343
5344 mp = log->l_mp;
5345
5346 freeblks = 0LL;
5347 itotal = 0LL;
5348 ifree = 0LL;
5349 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
5350 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5351 if (error) {
a0fa2b67
DC
5352 xfs_alert(mp, "%s agf read failed agno %d error %d",
5353 __func__, agno, error);
4805621a
FCH
5354 } else {
5355 agfp = XFS_BUF_TO_AGF(agfbp);
5356 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5357 be32_to_cpu(agfp->agf_flcount);
5358 xfs_buf_relse(agfbp);
1da177e4 5359 }
1da177e4 5360
5e1be0fb 5361 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
5362 if (error) {
5363 xfs_alert(mp, "%s agi read failed agno %d error %d",
5364 __func__, agno, error);
5365 } else {
5e1be0fb 5366 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 5367
5e1be0fb
CH
5368 itotal += be32_to_cpu(agi->agi_count);
5369 ifree += be32_to_cpu(agi->agi_freecount);
5370 xfs_buf_relse(agibp);
5371 }
1da177e4 5372 }
1da177e4
LT
5373}
5374#endif /* DEBUG */
This page took 1.762895 seconds and 5 git commands to generate.