xfs: refactor log record start detection into a new helper
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
57062787 27#include "xfs_da_format.h"
9a2cc41c 28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
239880ef 31#include "xfs_log.h"
1da177e4 32#include "xfs_log_priv.h"
1da177e4 33#include "xfs_log_recover.h"
a4fbe6ab 34#include "xfs_inode_item.h"
1da177e4
LT
35#include "xfs_extfree_item.h"
36#include "xfs_trans_priv.h"
a4fbe6ab
DC
37#include "xfs_alloc.h"
38#include "xfs_ialloc.h"
1da177e4 39#include "xfs_quota.h"
0e446be4 40#include "xfs_cksum.h"
0b1b213f 41#include "xfs_trace.h"
33479e05 42#include "xfs_icache.h"
a4fbe6ab 43#include "xfs_bmap_btree.h"
a4fbe6ab 44#include "xfs_error.h"
2b9ab5ab 45#include "xfs_dir2.h"
1da177e4 46
fc06c6d0
DC
47#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
48
9a8d2fdb
MT
49STATIC int
50xlog_find_zeroed(
51 struct xlog *,
52 xfs_daddr_t *);
53STATIC int
54xlog_clear_stale_blocks(
55 struct xlog *,
56 xfs_lsn_t);
1da177e4 57#if defined(DEBUG)
9a8d2fdb
MT
58STATIC void
59xlog_recover_check_summary(
60 struct xlog *);
1da177e4
LT
61#else
62#define xlog_recover_check_summary(log)
1da177e4
LT
63#endif
64
d5689eaa
CH
65/*
66 * This structure is used during recovery to record the buf log items which
67 * have been canceled and should not be replayed.
68 */
69struct xfs_buf_cancel {
70 xfs_daddr_t bc_blkno;
71 uint bc_len;
72 int bc_refcount;
73 struct list_head bc_list;
74};
75
1da177e4
LT
76/*
77 * Sector aligned buffer routines for buffer create/read/write/access
78 */
79
ff30a622
AE
80/*
81 * Verify the given count of basic blocks is valid number of blocks
82 * to specify for an operation involving the given XFS log buffer.
83 * Returns nonzero if the count is valid, 0 otherwise.
84 */
85
86static inline int
87xlog_buf_bbcount_valid(
9a8d2fdb 88 struct xlog *log,
ff30a622
AE
89 int bbcount)
90{
91 return bbcount > 0 && bbcount <= log->l_logBBsize;
92}
93
36adecff
AE
94/*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
5d77c0dc 99STATIC xfs_buf_t *
1da177e4 100xlog_get_bp(
9a8d2fdb 101 struct xlog *log,
3228149c 102 int nbblks)
1da177e4 103{
c8da0faf
CH
104 struct xfs_buf *bp;
105
ff30a622 106 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
108 nbblks);
109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
110 return NULL;
111 }
1da177e4 112
36adecff
AE
113 /*
114 * We do log I/O in units of log sectors (a power-of-2
115 * multiple of the basic block size), so we round up the
25985edc 116 * requested size to accommodate the basic blocks required
36adecff
AE
117 * for complete log sectors.
118 *
119 * In addition, the buffer may be used for a non-sector-
120 * aligned block offset, in which case an I/O of the
121 * requested size could extend beyond the end of the
122 * buffer. If the requested size is only 1 basic block it
123 * will never straddle a sector boundary, so this won't be
124 * an issue. Nor will this be a problem if the log I/O is
125 * done in basic blocks (sector size 1). But otherwise we
126 * extend the buffer by one extra log sector to ensure
25985edc 127 * there's space to accommodate this possibility.
36adecff 128 */
69ce58f0
AE
129 if (nbblks > 1 && log->l_sectBBsize > 1)
130 nbblks += log->l_sectBBsize;
131 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 132
e70b73f8 133 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
134 if (bp)
135 xfs_buf_unlock(bp);
136 return bp;
1da177e4
LT
137}
138
5d77c0dc 139STATIC void
1da177e4
LT
140xlog_put_bp(
141 xfs_buf_t *bp)
142{
143 xfs_buf_free(bp);
144}
145
48389ef1
AE
146/*
147 * Return the address of the start of the given block number's data
148 * in a log buffer. The buffer covers a log sector-aligned region.
149 */
b2a922cd 150STATIC char *
076e6acb 151xlog_align(
9a8d2fdb 152 struct xlog *log,
076e6acb
CH
153 xfs_daddr_t blk_no,
154 int nbblks,
9a8d2fdb 155 struct xfs_buf *bp)
076e6acb 156{
fdc07f44 157 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 158
4e94b71b 159 ASSERT(offset + nbblks <= bp->b_length);
62926044 160 return bp->b_addr + BBTOB(offset);
076e6acb
CH
161}
162
1da177e4
LT
163
164/*
165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
166 */
076e6acb
CH
167STATIC int
168xlog_bread_noalign(
9a8d2fdb 169 struct xlog *log,
1da177e4
LT
170 xfs_daddr_t blk_no,
171 int nbblks,
9a8d2fdb 172 struct xfs_buf *bp)
1da177e4
LT
173{
174 int error;
175
ff30a622 176 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 177 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
178 nbblks);
179 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 180 return -EFSCORRUPTED;
3228149c
DC
181 }
182
69ce58f0
AE
183 blk_no = round_down(blk_no, log->l_sectBBsize);
184 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
185
186 ASSERT(nbblks > 0);
4e94b71b 187 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
188
189 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
190 XFS_BUF_READ(bp);
aa0e8833 191 bp->b_io_length = nbblks;
0e95f19a 192 bp->b_error = 0;
1da177e4 193
595bff75
DC
194 error = xfs_buf_submit_wait(bp);
195 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
901796af 196 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
197 return error;
198}
199
076e6acb
CH
200STATIC int
201xlog_bread(
9a8d2fdb 202 struct xlog *log,
076e6acb
CH
203 xfs_daddr_t blk_no,
204 int nbblks,
9a8d2fdb 205 struct xfs_buf *bp,
b2a922cd 206 char **offset)
076e6acb
CH
207{
208 int error;
209
210 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
211 if (error)
212 return error;
213
214 *offset = xlog_align(log, blk_no, nbblks, bp);
215 return 0;
216}
217
44396476
DC
218/*
219 * Read at an offset into the buffer. Returns with the buffer in it's original
220 * state regardless of the result of the read.
221 */
222STATIC int
223xlog_bread_offset(
9a8d2fdb 224 struct xlog *log,
44396476
DC
225 xfs_daddr_t blk_no, /* block to read from */
226 int nbblks, /* blocks to read */
9a8d2fdb 227 struct xfs_buf *bp,
b2a922cd 228 char *offset)
44396476 229{
b2a922cd 230 char *orig_offset = bp->b_addr;
4e94b71b 231 int orig_len = BBTOB(bp->b_length);
44396476
DC
232 int error, error2;
233
02fe03d9 234 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
235 if (error)
236 return error;
237
238 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
239
240 /* must reset buffer pointer even on error */
02fe03d9 241 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
242 if (error)
243 return error;
244 return error2;
245}
246
1da177e4
LT
247/*
248 * Write out the buffer at the given block for the given number of blocks.
249 * The buffer is kept locked across the write and is returned locked.
250 * This can only be used for synchronous log writes.
251 */
ba0f32d4 252STATIC int
1da177e4 253xlog_bwrite(
9a8d2fdb 254 struct xlog *log,
1da177e4
LT
255 xfs_daddr_t blk_no,
256 int nbblks,
9a8d2fdb 257 struct xfs_buf *bp)
1da177e4
LT
258{
259 int error;
260
ff30a622 261 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 262 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
263 nbblks);
264 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 265 return -EFSCORRUPTED;
3228149c
DC
266 }
267
69ce58f0
AE
268 blk_no = round_down(blk_no, log->l_sectBBsize);
269 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
270
271 ASSERT(nbblks > 0);
4e94b71b 272 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
273
274 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
275 XFS_BUF_ZEROFLAGS(bp);
72790aa1 276 xfs_buf_hold(bp);
0c842ad4 277 xfs_buf_lock(bp);
aa0e8833 278 bp->b_io_length = nbblks;
0e95f19a 279 bp->b_error = 0;
1da177e4 280
c2b006c1 281 error = xfs_bwrite(bp);
901796af
CH
282 if (error)
283 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 284 xfs_buf_relse(bp);
1da177e4
LT
285 return error;
286}
287
1da177e4
LT
288#ifdef DEBUG
289/*
290 * dump debug superblock and log record information
291 */
292STATIC void
293xlog_header_check_dump(
294 xfs_mount_t *mp,
295 xlog_rec_header_t *head)
296{
08e96e1a 297 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 298 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 299 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 300 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
301}
302#else
303#define xlog_header_check_dump(mp, head)
304#endif
305
306/*
307 * check log record header for recovery
308 */
309STATIC int
310xlog_header_check_recover(
311 xfs_mount_t *mp,
312 xlog_rec_header_t *head)
313{
69ef921b 314 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
315
316 /*
317 * IRIX doesn't write the h_fmt field and leaves it zeroed
318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
319 * a dirty log created in IRIX.
320 */
69ef921b 321 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
322 xfs_warn(mp,
323 "dirty log written in incompatible format - can't recover");
1da177e4
LT
324 xlog_header_check_dump(mp, head);
325 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
326 XFS_ERRLEVEL_HIGH, mp);
2451337d 327 return -EFSCORRUPTED;
1da177e4 328 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
329 xfs_warn(mp,
330 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
331 xlog_header_check_dump(mp, head);
332 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
333 XFS_ERRLEVEL_HIGH, mp);
2451337d 334 return -EFSCORRUPTED;
1da177e4
LT
335 }
336 return 0;
337}
338
339/*
340 * read the head block of the log and check the header
341 */
342STATIC int
343xlog_header_check_mount(
344 xfs_mount_t *mp,
345 xlog_rec_header_t *head)
346{
69ef921b 347 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
348
349 if (uuid_is_nil(&head->h_fs_uuid)) {
350 /*
351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
352 * h_fs_uuid is nil, we assume this log was last mounted
353 * by IRIX and continue.
354 */
a0fa2b67 355 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 356 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 357 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
358 xlog_header_check_dump(mp, head);
359 XFS_ERROR_REPORT("xlog_header_check_mount",
360 XFS_ERRLEVEL_HIGH, mp);
2451337d 361 return -EFSCORRUPTED;
1da177e4
LT
362 }
363 return 0;
364}
365
366STATIC void
367xlog_recover_iodone(
368 struct xfs_buf *bp)
369{
5a52c2a5 370 if (bp->b_error) {
1da177e4
LT
371 /*
372 * We're not going to bother about retrying
373 * this during recovery. One strike!
374 */
595bff75
DC
375 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
376 xfs_buf_ioerror_alert(bp, __func__);
377 xfs_force_shutdown(bp->b_target->bt_mount,
378 SHUTDOWN_META_IO_ERROR);
379 }
1da177e4 380 }
cb669ca5 381 bp->b_iodone = NULL;
e8aaba9a 382 xfs_buf_ioend(bp);
1da177e4
LT
383}
384
385/*
386 * This routine finds (to an approximation) the first block in the physical
387 * log which contains the given cycle. It uses a binary search algorithm.
388 * Note that the algorithm can not be perfect because the disk will not
389 * necessarily be perfect.
390 */
a8272ce0 391STATIC int
1da177e4 392xlog_find_cycle_start(
9a8d2fdb
MT
393 struct xlog *log,
394 struct xfs_buf *bp,
1da177e4
LT
395 xfs_daddr_t first_blk,
396 xfs_daddr_t *last_blk,
397 uint cycle)
398{
b2a922cd 399 char *offset;
1da177e4 400 xfs_daddr_t mid_blk;
e3bb2e30 401 xfs_daddr_t end_blk;
1da177e4
LT
402 uint mid_cycle;
403 int error;
404
e3bb2e30
AE
405 end_blk = *last_blk;
406 mid_blk = BLK_AVG(first_blk, end_blk);
407 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
408 error = xlog_bread(log, mid_blk, 1, bp, &offset);
409 if (error)
1da177e4 410 return error;
03bea6fe 411 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
412 if (mid_cycle == cycle)
413 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
414 else
415 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
416 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 417 }
e3bb2e30
AE
418 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
419 (mid_blk == end_blk && mid_blk-1 == first_blk));
420
421 *last_blk = end_blk;
1da177e4
LT
422
423 return 0;
424}
425
426/*
3f943d85
AE
427 * Check that a range of blocks does not contain stop_on_cycle_no.
428 * Fill in *new_blk with the block offset where such a block is
429 * found, or with -1 (an invalid block number) if there is no such
430 * block in the range. The scan needs to occur from front to back
431 * and the pointer into the region must be updated since a later
432 * routine will need to perform another test.
1da177e4
LT
433 */
434STATIC int
435xlog_find_verify_cycle(
9a8d2fdb 436 struct xlog *log,
1da177e4
LT
437 xfs_daddr_t start_blk,
438 int nbblks,
439 uint stop_on_cycle_no,
440 xfs_daddr_t *new_blk)
441{
442 xfs_daddr_t i, j;
443 uint cycle;
444 xfs_buf_t *bp;
445 xfs_daddr_t bufblks;
b2a922cd 446 char *buf = NULL;
1da177e4
LT
447 int error = 0;
448
6881a229
AE
449 /*
450 * Greedily allocate a buffer big enough to handle the full
451 * range of basic blocks we'll be examining. If that fails,
452 * try a smaller size. We need to be able to read at least
453 * a log sector, or we're out of luck.
454 */
1da177e4 455 bufblks = 1 << ffs(nbblks);
81158e0c
DC
456 while (bufblks > log->l_logBBsize)
457 bufblks >>= 1;
1da177e4 458 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 459 bufblks >>= 1;
69ce58f0 460 if (bufblks < log->l_sectBBsize)
2451337d 461 return -ENOMEM;
1da177e4
LT
462 }
463
464 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
465 int bcount;
466
467 bcount = min(bufblks, (start_blk + nbblks - i));
468
076e6acb
CH
469 error = xlog_bread(log, i, bcount, bp, &buf);
470 if (error)
1da177e4
LT
471 goto out;
472
1da177e4 473 for (j = 0; j < bcount; j++) {
03bea6fe 474 cycle = xlog_get_cycle(buf);
1da177e4
LT
475 if (cycle == stop_on_cycle_no) {
476 *new_blk = i+j;
477 goto out;
478 }
479
480 buf += BBSIZE;
481 }
482 }
483
484 *new_blk = -1;
485
486out:
487 xlog_put_bp(bp);
488 return error;
489}
490
491/*
492 * Potentially backup over partial log record write.
493 *
494 * In the typical case, last_blk is the number of the block directly after
495 * a good log record. Therefore, we subtract one to get the block number
496 * of the last block in the given buffer. extra_bblks contains the number
497 * of blocks we would have read on a previous read. This happens when the
498 * last log record is split over the end of the physical log.
499 *
500 * extra_bblks is the number of blocks potentially verified on a previous
501 * call to this routine.
502 */
503STATIC int
504xlog_find_verify_log_record(
9a8d2fdb 505 struct xlog *log,
1da177e4
LT
506 xfs_daddr_t start_blk,
507 xfs_daddr_t *last_blk,
508 int extra_bblks)
509{
510 xfs_daddr_t i;
511 xfs_buf_t *bp;
b2a922cd 512 char *offset = NULL;
1da177e4
LT
513 xlog_rec_header_t *head = NULL;
514 int error = 0;
515 int smallmem = 0;
516 int num_blks = *last_blk - start_blk;
517 int xhdrs;
518
519 ASSERT(start_blk != 0 || *last_blk != start_blk);
520
521 if (!(bp = xlog_get_bp(log, num_blks))) {
522 if (!(bp = xlog_get_bp(log, 1)))
2451337d 523 return -ENOMEM;
1da177e4
LT
524 smallmem = 1;
525 } else {
076e6acb
CH
526 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
527 if (error)
1da177e4 528 goto out;
1da177e4
LT
529 offset += ((num_blks - 1) << BBSHIFT);
530 }
531
532 for (i = (*last_blk) - 1; i >= 0; i--) {
533 if (i < start_blk) {
534 /* valid log record not found */
a0fa2b67
DC
535 xfs_warn(log->l_mp,
536 "Log inconsistent (didn't find previous header)");
1da177e4 537 ASSERT(0);
2451337d 538 error = -EIO;
1da177e4
LT
539 goto out;
540 }
541
542 if (smallmem) {
076e6acb
CH
543 error = xlog_bread(log, i, 1, bp, &offset);
544 if (error)
1da177e4 545 goto out;
1da177e4
LT
546 }
547
548 head = (xlog_rec_header_t *)offset;
549
69ef921b 550 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
551 break;
552
553 if (!smallmem)
554 offset -= BBSIZE;
555 }
556
557 /*
558 * We hit the beginning of the physical log & still no header. Return
559 * to caller. If caller can handle a return of -1, then this routine
560 * will be called again for the end of the physical log.
561 */
562 if (i == -1) {
2451337d 563 error = 1;
1da177e4
LT
564 goto out;
565 }
566
567 /*
568 * We have the final block of the good log (the first block
569 * of the log record _before_ the head. So we check the uuid.
570 */
571 if ((error = xlog_header_check_mount(log->l_mp, head)))
572 goto out;
573
574 /*
575 * We may have found a log record header before we expected one.
576 * last_blk will be the 1st block # with a given cycle #. We may end
577 * up reading an entire log record. In this case, we don't want to
578 * reset last_blk. Only when last_blk points in the middle of a log
579 * record do we update last_blk.
580 */
62118709 581 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 582 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
583
584 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
585 if (h_size % XLOG_HEADER_CYCLE_SIZE)
586 xhdrs++;
587 } else {
588 xhdrs = 1;
589 }
590
b53e675d
CH
591 if (*last_blk - i + extra_bblks !=
592 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
593 *last_blk = i;
594
595out:
596 xlog_put_bp(bp);
597 return error;
598}
599
600/*
601 * Head is defined to be the point of the log where the next log write
0a94da24 602 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
603 * eliminated when calculating the head. We aren't guaranteed that previous
604 * LR have complete transactions. We only know that a cycle number of
605 * current cycle number -1 won't be present in the log if we start writing
606 * from our current block number.
607 *
608 * last_blk contains the block number of the first block with a given
609 * cycle number.
610 *
611 * Return: zero if normal, non-zero if error.
612 */
ba0f32d4 613STATIC int
1da177e4 614xlog_find_head(
9a8d2fdb 615 struct xlog *log,
1da177e4
LT
616 xfs_daddr_t *return_head_blk)
617{
618 xfs_buf_t *bp;
b2a922cd 619 char *offset;
1da177e4
LT
620 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
621 int num_scan_bblks;
622 uint first_half_cycle, last_half_cycle;
623 uint stop_on_cycle;
624 int error, log_bbnum = log->l_logBBsize;
625
626 /* Is the end of the log device zeroed? */
2451337d
DC
627 error = xlog_find_zeroed(log, &first_blk);
628 if (error < 0) {
629 xfs_warn(log->l_mp, "empty log check failed");
630 return error;
631 }
632 if (error == 1) {
1da177e4
LT
633 *return_head_blk = first_blk;
634
635 /* Is the whole lot zeroed? */
636 if (!first_blk) {
637 /* Linux XFS shouldn't generate totally zeroed logs -
638 * mkfs etc write a dummy unmount record to a fresh
639 * log so we can store the uuid in there
640 */
a0fa2b67 641 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
642 }
643
644 return 0;
1da177e4
LT
645 }
646
647 first_blk = 0; /* get cycle # of 1st block */
648 bp = xlog_get_bp(log, 1);
649 if (!bp)
2451337d 650 return -ENOMEM;
076e6acb
CH
651
652 error = xlog_bread(log, 0, 1, bp, &offset);
653 if (error)
1da177e4 654 goto bp_err;
076e6acb 655
03bea6fe 656 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
657
658 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
659 error = xlog_bread(log, last_blk, 1, bp, &offset);
660 if (error)
1da177e4 661 goto bp_err;
076e6acb 662
03bea6fe 663 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
664 ASSERT(last_half_cycle != 0);
665
666 /*
667 * If the 1st half cycle number is equal to the last half cycle number,
668 * then the entire log is stamped with the same cycle number. In this
669 * case, head_blk can't be set to zero (which makes sense). The below
670 * math doesn't work out properly with head_blk equal to zero. Instead,
671 * we set it to log_bbnum which is an invalid block number, but this
672 * value makes the math correct. If head_blk doesn't changed through
673 * all the tests below, *head_blk is set to zero at the very end rather
674 * than log_bbnum. In a sense, log_bbnum and zero are the same block
675 * in a circular file.
676 */
677 if (first_half_cycle == last_half_cycle) {
678 /*
679 * In this case we believe that the entire log should have
680 * cycle number last_half_cycle. We need to scan backwards
681 * from the end verifying that there are no holes still
682 * containing last_half_cycle - 1. If we find such a hole,
683 * then the start of that hole will be the new head. The
684 * simple case looks like
685 * x | x ... | x - 1 | x
686 * Another case that fits this picture would be
687 * x | x + 1 | x ... | x
c41564b5 688 * In this case the head really is somewhere at the end of the
1da177e4
LT
689 * log, as one of the latest writes at the beginning was
690 * incomplete.
691 * One more case is
692 * x | x + 1 | x ... | x - 1 | x
693 * This is really the combination of the above two cases, and
694 * the head has to end up at the start of the x-1 hole at the
695 * end of the log.
696 *
697 * In the 256k log case, we will read from the beginning to the
698 * end of the log and search for cycle numbers equal to x-1.
699 * We don't worry about the x+1 blocks that we encounter,
700 * because we know that they cannot be the head since the log
701 * started with x.
702 */
703 head_blk = log_bbnum;
704 stop_on_cycle = last_half_cycle - 1;
705 } else {
706 /*
707 * In this case we want to find the first block with cycle
708 * number matching last_half_cycle. We expect the log to be
709 * some variation on
3f943d85 710 * x + 1 ... | x ... | x
1da177e4
LT
711 * The first block with cycle number x (last_half_cycle) will
712 * be where the new head belongs. First we do a binary search
713 * for the first occurrence of last_half_cycle. The binary
714 * search may not be totally accurate, so then we scan back
715 * from there looking for occurrences of last_half_cycle before
716 * us. If that backwards scan wraps around the beginning of
717 * the log, then we look for occurrences of last_half_cycle - 1
718 * at the end of the log. The cases we're looking for look
719 * like
3f943d85
AE
720 * v binary search stopped here
721 * x + 1 ... | x | x + 1 | x ... | x
722 * ^ but we want to locate this spot
1da177e4 723 * or
1da177e4 724 * <---------> less than scan distance
3f943d85
AE
725 * x + 1 ... | x ... | x - 1 | x
726 * ^ we want to locate this spot
1da177e4
LT
727 */
728 stop_on_cycle = last_half_cycle;
729 if ((error = xlog_find_cycle_start(log, bp, first_blk,
730 &head_blk, last_half_cycle)))
731 goto bp_err;
732 }
733
734 /*
735 * Now validate the answer. Scan back some number of maximum possible
736 * blocks and make sure each one has the expected cycle number. The
737 * maximum is determined by the total possible amount of buffering
738 * in the in-core log. The following number can be made tighter if
739 * we actually look at the block size of the filesystem.
740 */
741 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
742 if (head_blk >= num_scan_bblks) {
743 /*
744 * We are guaranteed that the entire check can be performed
745 * in one buffer.
746 */
747 start_blk = head_blk - num_scan_bblks;
748 if ((error = xlog_find_verify_cycle(log,
749 start_blk, num_scan_bblks,
750 stop_on_cycle, &new_blk)))
751 goto bp_err;
752 if (new_blk != -1)
753 head_blk = new_blk;
754 } else { /* need to read 2 parts of log */
755 /*
756 * We are going to scan backwards in the log in two parts.
757 * First we scan the physical end of the log. In this part
758 * of the log, we are looking for blocks with cycle number
759 * last_half_cycle - 1.
760 * If we find one, then we know that the log starts there, as
761 * we've found a hole that didn't get written in going around
762 * the end of the physical log. The simple case for this is
763 * x + 1 ... | x ... | x - 1 | x
764 * <---------> less than scan distance
765 * If all of the blocks at the end of the log have cycle number
766 * last_half_cycle, then we check the blocks at the start of
767 * the log looking for occurrences of last_half_cycle. If we
768 * find one, then our current estimate for the location of the
769 * first occurrence of last_half_cycle is wrong and we move
770 * back to the hole we've found. This case looks like
771 * x + 1 ... | x | x + 1 | x ...
772 * ^ binary search stopped here
773 * Another case we need to handle that only occurs in 256k
774 * logs is
775 * x + 1 ... | x ... | x+1 | x ...
776 * ^ binary search stops here
777 * In a 256k log, the scan at the end of the log will see the
778 * x + 1 blocks. We need to skip past those since that is
779 * certainly not the head of the log. By searching for
780 * last_half_cycle-1 we accomplish that.
781 */
1da177e4 782 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
783 (xfs_daddr_t) num_scan_bblks >= head_blk);
784 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
785 if ((error = xlog_find_verify_cycle(log, start_blk,
786 num_scan_bblks - (int)head_blk,
787 (stop_on_cycle - 1), &new_blk)))
788 goto bp_err;
789 if (new_blk != -1) {
790 head_blk = new_blk;
9db127ed 791 goto validate_head;
1da177e4
LT
792 }
793
794 /*
795 * Scan beginning of log now. The last part of the physical
796 * log is good. This scan needs to verify that it doesn't find
797 * the last_half_cycle.
798 */
799 start_blk = 0;
800 ASSERT(head_blk <= INT_MAX);
801 if ((error = xlog_find_verify_cycle(log,
802 start_blk, (int)head_blk,
803 stop_on_cycle, &new_blk)))
804 goto bp_err;
805 if (new_blk != -1)
806 head_blk = new_blk;
807 }
808
9db127ed 809validate_head:
1da177e4
LT
810 /*
811 * Now we need to make sure head_blk is not pointing to a block in
812 * the middle of a log record.
813 */
814 num_scan_bblks = XLOG_REC_SHIFT(log);
815 if (head_blk >= num_scan_bblks) {
816 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
817
818 /* start ptr at last block ptr before head_blk */
2451337d
DC
819 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
820 if (error == 1)
821 error = -EIO;
822 if (error)
1da177e4
LT
823 goto bp_err;
824 } else {
825 start_blk = 0;
826 ASSERT(head_blk <= INT_MAX);
2451337d
DC
827 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
828 if (error < 0)
829 goto bp_err;
830 if (error == 1) {
1da177e4 831 /* We hit the beginning of the log during our search */
3f943d85 832 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
833 new_blk = log_bbnum;
834 ASSERT(start_blk <= INT_MAX &&
835 (xfs_daddr_t) log_bbnum-start_blk >= 0);
836 ASSERT(head_blk <= INT_MAX);
2451337d
DC
837 error = xlog_find_verify_log_record(log, start_blk,
838 &new_blk, (int)head_blk);
839 if (error == 1)
840 error = -EIO;
841 if (error)
1da177e4
LT
842 goto bp_err;
843 if (new_blk != log_bbnum)
844 head_blk = new_blk;
845 } else if (error)
846 goto bp_err;
847 }
848
849 xlog_put_bp(bp);
850 if (head_blk == log_bbnum)
851 *return_head_blk = 0;
852 else
853 *return_head_blk = head_blk;
854 /*
855 * When returning here, we have a good block number. Bad block
856 * means that during a previous crash, we didn't have a clean break
857 * from cycle number N to cycle number N-1. In this case, we need
858 * to find the first block with cycle number N-1.
859 */
860 return 0;
861
862 bp_err:
863 xlog_put_bp(bp);
864
865 if (error)
a0fa2b67 866 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
867 return error;
868}
869
eed6b462
BF
870/*
871 * Seek backwards in the log for log record headers.
872 *
873 * Given a starting log block, walk backwards until we find the provided number
874 * of records or hit the provided tail block. The return value is the number of
875 * records encountered or a negative error code. The log block and buffer
876 * pointer of the last record seen are returned in rblk and rhead respectively.
877 */
878STATIC int
879xlog_rseek_logrec_hdr(
880 struct xlog *log,
881 xfs_daddr_t head_blk,
882 xfs_daddr_t tail_blk,
883 int count,
884 struct xfs_buf *bp,
885 xfs_daddr_t *rblk,
886 struct xlog_rec_header **rhead,
887 bool *wrapped)
888{
889 int i;
890 int error;
891 int found = 0;
892 char *offset = NULL;
893 xfs_daddr_t end_blk;
894
895 *wrapped = false;
896
897 /*
898 * Walk backwards from the head block until we hit the tail or the first
899 * block in the log.
900 */
901 end_blk = head_blk > tail_blk ? tail_blk : 0;
902 for (i = (int) head_blk - 1; i >= end_blk; i--) {
903 error = xlog_bread(log, i, 1, bp, &offset);
904 if (error)
905 goto out_error;
906
907 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
908 *rblk = i;
909 *rhead = (struct xlog_rec_header *) offset;
910 if (++found == count)
911 break;
912 }
913 }
914
915 /*
916 * If we haven't hit the tail block or the log record header count,
917 * start looking again from the end of the physical log. Note that
918 * callers can pass head == tail if the tail is not yet known.
919 */
920 if (tail_blk >= head_blk && found != count) {
921 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
922 error = xlog_bread(log, i, 1, bp, &offset);
923 if (error)
924 goto out_error;
925
926 if (*(__be32 *)offset ==
927 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
928 *wrapped = true;
929 *rblk = i;
930 *rhead = (struct xlog_rec_header *) offset;
931 if (++found == count)
932 break;
933 }
934 }
935 }
936
937 return found;
938
939out_error:
940 return error;
941}
942
1da177e4
LT
943/*
944 * Find the sync block number or the tail of the log.
945 *
946 * This will be the block number of the last record to have its
947 * associated buffers synced to disk. Every log record header has
948 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
949 * to get a sync block number. The only concern is to figure out which
950 * log record header to believe.
951 *
952 * The following algorithm uses the log record header with the largest
953 * lsn. The entire log record does not need to be valid. We only care
954 * that the header is valid.
955 *
956 * We could speed up search by using current head_blk buffer, but it is not
957 * available.
958 */
5d77c0dc 959STATIC int
1da177e4 960xlog_find_tail(
9a8d2fdb 961 struct xlog *log,
1da177e4 962 xfs_daddr_t *head_blk,
65be6054 963 xfs_daddr_t *tail_blk)
1da177e4
LT
964{
965 xlog_rec_header_t *rhead;
966 xlog_op_header_t *op_head;
b2a922cd 967 char *offset = NULL;
1da177e4
LT
968 xfs_buf_t *bp;
969 int error, i, found;
970 xfs_daddr_t umount_data_blk;
971 xfs_daddr_t after_umount_blk;
972 xfs_lsn_t tail_lsn;
973 int hblks;
eed6b462 974 bool wrapped = false;
1da177e4
LT
975
976 /*
977 * Find previous log record
978 */
979 if ((error = xlog_find_head(log, head_blk)))
980 return error;
981
982 bp = xlog_get_bp(log, 1);
983 if (!bp)
2451337d 984 return -ENOMEM;
1da177e4 985 if (*head_blk == 0) { /* special case */
076e6acb
CH
986 error = xlog_bread(log, 0, 1, bp, &offset);
987 if (error)
9db127ed 988 goto done;
076e6acb 989
03bea6fe 990 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
991 *tail_blk = 0;
992 /* leave all other log inited values alone */
9db127ed 993 goto done;
1da177e4
LT
994 }
995 }
996
997 /*
eed6b462
BF
998 * Search backwards through the log looking for the log record header
999 * block. This wraps all the way back around to the head so something is
1000 * seriously wrong if we can't find it.
1da177e4
LT
1001 */
1002 ASSERT(*head_blk < INT_MAX);
eed6b462
BF
1003 found = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp, &i,
1004 &rhead, &wrapped);
1005 if (found < 0) {
1006 error = found;
1007 goto done;
1da177e4
LT
1008 }
1009 if (!found) {
a0fa2b67 1010 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
050a1952 1011 xlog_put_bp(bp);
1da177e4 1012 ASSERT(0);
2451337d 1013 return -EIO;
1da177e4 1014 }
b53e675d 1015 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
1016
1017 /*
1018 * Reset log values according to the state of the log when we
1019 * crashed. In the case where head_blk == 0, we bump curr_cycle
1020 * one because the next write starts a new cycle rather than
1021 * continuing the cycle of the last good log record. At this
1022 * point we have guaranteed that all partial log records have been
1023 * accounted for. Therefore, we know that the last good log record
1024 * written was complete and ended exactly on the end boundary
1025 * of the physical log.
1026 */
1027 log->l_prev_block = i;
1028 log->l_curr_block = (int)*head_blk;
b53e675d 1029 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
eed6b462 1030 if (wrapped)
1da177e4 1031 log->l_curr_cycle++;
1c3cb9ec 1032 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 1033 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 1034 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 1035 BBTOB(log->l_curr_block));
28496968 1036 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 1037 BBTOB(log->l_curr_block));
1da177e4
LT
1038
1039 /*
1040 * Look for unmount record. If we find it, then we know there
1041 * was a clean unmount. Since 'i' could be the last block in
1042 * the physical log, we convert to a log block before comparing
1043 * to the head_blk.
1044 *
1045 * Save the current tail lsn to use to pass to
1046 * xlog_clear_stale_blocks() below. We won't want to clear the
1047 * unmount record if there is one, so we pass the lsn of the
1048 * unmount record rather than the block after it.
1049 */
62118709 1050 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1051 int h_size = be32_to_cpu(rhead->h_size);
1052 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1053
1054 if ((h_version & XLOG_VERSION_2) &&
1055 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1056 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1057 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1058 hblks++;
1059 } else {
1060 hblks = 1;
1061 }
1062 } else {
1063 hblks = 1;
1064 }
1065 after_umount_blk = (i + hblks + (int)
b53e675d 1066 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1067 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1068 if (*head_blk == after_umount_blk &&
b53e675d 1069 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1070 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1071 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1072 if (error)
9db127ed 1073 goto done;
076e6acb 1074
1da177e4
LT
1075 op_head = (xlog_op_header_t *)offset;
1076 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1077 /*
1078 * Set tail and last sync so that newly written
1079 * log records will point recovery to after the
1080 * current unmount record.
1081 */
1c3cb9ec
DC
1082 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1083 log->l_curr_cycle, after_umount_blk);
1084 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1085 log->l_curr_cycle, after_umount_blk);
1da177e4 1086 *tail_blk = after_umount_blk;
92821e2b
DC
1087
1088 /*
1089 * Note that the unmount was clean. If the unmount
1090 * was not clean, we need to know this to rebuild the
1091 * superblock counters from the perag headers if we
1092 * have a filesystem using non-persistent counters.
1093 */
1094 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1095 }
1096 }
1097
1098 /*
1099 * Make sure that there are no blocks in front of the head
1100 * with the same cycle number as the head. This can happen
1101 * because we allow multiple outstanding log writes concurrently,
1102 * and the later writes might make it out before earlier ones.
1103 *
1104 * We use the lsn from before modifying it so that we'll never
1105 * overwrite the unmount record after a clean unmount.
1106 *
1107 * Do this only if we are going to recover the filesystem
1108 *
1109 * NOTE: This used to say "if (!readonly)"
1110 * However on Linux, we can & do recover a read-only filesystem.
1111 * We only skip recovery if NORECOVERY is specified on mount,
1112 * in which case we would not be here.
1113 *
1114 * But... if the -device- itself is readonly, just skip this.
1115 * We can't recover this device anyway, so it won't matter.
1116 */
9db127ed 1117 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1118 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1119
9db127ed 1120done:
1da177e4
LT
1121 xlog_put_bp(bp);
1122
1123 if (error)
a0fa2b67 1124 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1125 return error;
1126}
1127
1128/*
1129 * Is the log zeroed at all?
1130 *
1131 * The last binary search should be changed to perform an X block read
1132 * once X becomes small enough. You can then search linearly through
1133 * the X blocks. This will cut down on the number of reads we need to do.
1134 *
1135 * If the log is partially zeroed, this routine will pass back the blkno
1136 * of the first block with cycle number 0. It won't have a complete LR
1137 * preceding it.
1138 *
1139 * Return:
1140 * 0 => the log is completely written to
2451337d
DC
1141 * 1 => use *blk_no as the first block of the log
1142 * <0 => error has occurred
1da177e4 1143 */
a8272ce0 1144STATIC int
1da177e4 1145xlog_find_zeroed(
9a8d2fdb 1146 struct xlog *log,
1da177e4
LT
1147 xfs_daddr_t *blk_no)
1148{
1149 xfs_buf_t *bp;
b2a922cd 1150 char *offset;
1da177e4
LT
1151 uint first_cycle, last_cycle;
1152 xfs_daddr_t new_blk, last_blk, start_blk;
1153 xfs_daddr_t num_scan_bblks;
1154 int error, log_bbnum = log->l_logBBsize;
1155
6fdf8ccc
NS
1156 *blk_no = 0;
1157
1da177e4
LT
1158 /* check totally zeroed log */
1159 bp = xlog_get_bp(log, 1);
1160 if (!bp)
2451337d 1161 return -ENOMEM;
076e6acb
CH
1162 error = xlog_bread(log, 0, 1, bp, &offset);
1163 if (error)
1da177e4 1164 goto bp_err;
076e6acb 1165
03bea6fe 1166 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1167 if (first_cycle == 0) { /* completely zeroed log */
1168 *blk_no = 0;
1169 xlog_put_bp(bp);
2451337d 1170 return 1;
1da177e4
LT
1171 }
1172
1173 /* check partially zeroed log */
076e6acb
CH
1174 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1175 if (error)
1da177e4 1176 goto bp_err;
076e6acb 1177
03bea6fe 1178 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1179 if (last_cycle != 0) { /* log completely written to */
1180 xlog_put_bp(bp);
1181 return 0;
1182 } else if (first_cycle != 1) {
1183 /*
1184 * If the cycle of the last block is zero, the cycle of
1185 * the first block must be 1. If it's not, maybe we're
1186 * not looking at a log... Bail out.
1187 */
a0fa2b67
DC
1188 xfs_warn(log->l_mp,
1189 "Log inconsistent or not a log (last==0, first!=1)");
2451337d 1190 error = -EINVAL;
5d0a6549 1191 goto bp_err;
1da177e4
LT
1192 }
1193
1194 /* we have a partially zeroed log */
1195 last_blk = log_bbnum-1;
1196 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1197 goto bp_err;
1198
1199 /*
1200 * Validate the answer. Because there is no way to guarantee that
1201 * the entire log is made up of log records which are the same size,
1202 * we scan over the defined maximum blocks. At this point, the maximum
1203 * is not chosen to mean anything special. XXXmiken
1204 */
1205 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1206 ASSERT(num_scan_bblks <= INT_MAX);
1207
1208 if (last_blk < num_scan_bblks)
1209 num_scan_bblks = last_blk;
1210 start_blk = last_blk - num_scan_bblks;
1211
1212 /*
1213 * We search for any instances of cycle number 0 that occur before
1214 * our current estimate of the head. What we're trying to detect is
1215 * 1 ... | 0 | 1 | 0...
1216 * ^ binary search ends here
1217 */
1218 if ((error = xlog_find_verify_cycle(log, start_blk,
1219 (int)num_scan_bblks, 0, &new_blk)))
1220 goto bp_err;
1221 if (new_blk != -1)
1222 last_blk = new_blk;
1223
1224 /*
1225 * Potentially backup over partial log record write. We don't need
1226 * to search the end of the log because we know it is zero.
1227 */
2451337d
DC
1228 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1229 if (error == 1)
1230 error = -EIO;
1231 if (error)
1232 goto bp_err;
1da177e4
LT
1233
1234 *blk_no = last_blk;
1235bp_err:
1236 xlog_put_bp(bp);
1237 if (error)
1238 return error;
2451337d 1239 return 1;
1da177e4
LT
1240}
1241
1242/*
1243 * These are simple subroutines used by xlog_clear_stale_blocks() below
1244 * to initialize a buffer full of empty log record headers and write
1245 * them into the log.
1246 */
1247STATIC void
1248xlog_add_record(
9a8d2fdb 1249 struct xlog *log,
b2a922cd 1250 char *buf,
1da177e4
LT
1251 int cycle,
1252 int block,
1253 int tail_cycle,
1254 int tail_block)
1255{
1256 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1257
1258 memset(buf, 0, BBSIZE);
b53e675d
CH
1259 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1260 recp->h_cycle = cpu_to_be32(cycle);
1261 recp->h_version = cpu_to_be32(
62118709 1262 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1263 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1264 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1265 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1266 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1267}
1268
1269STATIC int
1270xlog_write_log_records(
9a8d2fdb 1271 struct xlog *log,
1da177e4
LT
1272 int cycle,
1273 int start_block,
1274 int blocks,
1275 int tail_cycle,
1276 int tail_block)
1277{
b2a922cd 1278 char *offset;
1da177e4
LT
1279 xfs_buf_t *bp;
1280 int balign, ealign;
69ce58f0 1281 int sectbb = log->l_sectBBsize;
1da177e4
LT
1282 int end_block = start_block + blocks;
1283 int bufblks;
1284 int error = 0;
1285 int i, j = 0;
1286
6881a229
AE
1287 /*
1288 * Greedily allocate a buffer big enough to handle the full
1289 * range of basic blocks to be written. If that fails, try
1290 * a smaller size. We need to be able to write at least a
1291 * log sector, or we're out of luck.
1292 */
1da177e4 1293 bufblks = 1 << ffs(blocks);
81158e0c
DC
1294 while (bufblks > log->l_logBBsize)
1295 bufblks >>= 1;
1da177e4
LT
1296 while (!(bp = xlog_get_bp(log, bufblks))) {
1297 bufblks >>= 1;
69ce58f0 1298 if (bufblks < sectbb)
2451337d 1299 return -ENOMEM;
1da177e4
LT
1300 }
1301
1302 /* We may need to do a read at the start to fill in part of
1303 * the buffer in the starting sector not covered by the first
1304 * write below.
1305 */
5c17f533 1306 balign = round_down(start_block, sectbb);
1da177e4 1307 if (balign != start_block) {
076e6acb
CH
1308 error = xlog_bread_noalign(log, start_block, 1, bp);
1309 if (error)
1310 goto out_put_bp;
1311
1da177e4
LT
1312 j = start_block - balign;
1313 }
1314
1315 for (i = start_block; i < end_block; i += bufblks) {
1316 int bcount, endcount;
1317
1318 bcount = min(bufblks, end_block - start_block);
1319 endcount = bcount - j;
1320
1321 /* We may need to do a read at the end to fill in part of
1322 * the buffer in the final sector not covered by the write.
1323 * If this is the same sector as the above read, skip it.
1324 */
5c17f533 1325 ealign = round_down(end_block, sectbb);
1da177e4 1326 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1327 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1328 error = xlog_bread_offset(log, ealign, sectbb,
1329 bp, offset);
076e6acb
CH
1330 if (error)
1331 break;
1332
1da177e4
LT
1333 }
1334
1335 offset = xlog_align(log, start_block, endcount, bp);
1336 for (; j < endcount; j++) {
1337 xlog_add_record(log, offset, cycle, i+j,
1338 tail_cycle, tail_block);
1339 offset += BBSIZE;
1340 }
1341 error = xlog_bwrite(log, start_block, endcount, bp);
1342 if (error)
1343 break;
1344 start_block += endcount;
1345 j = 0;
1346 }
076e6acb
CH
1347
1348 out_put_bp:
1da177e4
LT
1349 xlog_put_bp(bp);
1350 return error;
1351}
1352
1353/*
1354 * This routine is called to blow away any incomplete log writes out
1355 * in front of the log head. We do this so that we won't become confused
1356 * if we come up, write only a little bit more, and then crash again.
1357 * If we leave the partial log records out there, this situation could
1358 * cause us to think those partial writes are valid blocks since they
1359 * have the current cycle number. We get rid of them by overwriting them
1360 * with empty log records with the old cycle number rather than the
1361 * current one.
1362 *
1363 * The tail lsn is passed in rather than taken from
1364 * the log so that we will not write over the unmount record after a
1365 * clean unmount in a 512 block log. Doing so would leave the log without
1366 * any valid log records in it until a new one was written. If we crashed
1367 * during that time we would not be able to recover.
1368 */
1369STATIC int
1370xlog_clear_stale_blocks(
9a8d2fdb 1371 struct xlog *log,
1da177e4
LT
1372 xfs_lsn_t tail_lsn)
1373{
1374 int tail_cycle, head_cycle;
1375 int tail_block, head_block;
1376 int tail_distance, max_distance;
1377 int distance;
1378 int error;
1379
1380 tail_cycle = CYCLE_LSN(tail_lsn);
1381 tail_block = BLOCK_LSN(tail_lsn);
1382 head_cycle = log->l_curr_cycle;
1383 head_block = log->l_curr_block;
1384
1385 /*
1386 * Figure out the distance between the new head of the log
1387 * and the tail. We want to write over any blocks beyond the
1388 * head that we may have written just before the crash, but
1389 * we don't want to overwrite the tail of the log.
1390 */
1391 if (head_cycle == tail_cycle) {
1392 /*
1393 * The tail is behind the head in the physical log,
1394 * so the distance from the head to the tail is the
1395 * distance from the head to the end of the log plus
1396 * the distance from the beginning of the log to the
1397 * tail.
1398 */
1399 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1400 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1401 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1402 return -EFSCORRUPTED;
1da177e4
LT
1403 }
1404 tail_distance = tail_block + (log->l_logBBsize - head_block);
1405 } else {
1406 /*
1407 * The head is behind the tail in the physical log,
1408 * so the distance from the head to the tail is just
1409 * the tail block minus the head block.
1410 */
1411 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1412 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1413 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1414 return -EFSCORRUPTED;
1da177e4
LT
1415 }
1416 tail_distance = tail_block - head_block;
1417 }
1418
1419 /*
1420 * If the head is right up against the tail, we can't clear
1421 * anything.
1422 */
1423 if (tail_distance <= 0) {
1424 ASSERT(tail_distance == 0);
1425 return 0;
1426 }
1427
1428 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1429 /*
1430 * Take the smaller of the maximum amount of outstanding I/O
1431 * we could have and the distance to the tail to clear out.
1432 * We take the smaller so that we don't overwrite the tail and
1433 * we don't waste all day writing from the head to the tail
1434 * for no reason.
1435 */
1436 max_distance = MIN(max_distance, tail_distance);
1437
1438 if ((head_block + max_distance) <= log->l_logBBsize) {
1439 /*
1440 * We can stomp all the blocks we need to without
1441 * wrapping around the end of the log. Just do it
1442 * in a single write. Use the cycle number of the
1443 * current cycle minus one so that the log will look like:
1444 * n ... | n - 1 ...
1445 */
1446 error = xlog_write_log_records(log, (head_cycle - 1),
1447 head_block, max_distance, tail_cycle,
1448 tail_block);
1449 if (error)
1450 return error;
1451 } else {
1452 /*
1453 * We need to wrap around the end of the physical log in
1454 * order to clear all the blocks. Do it in two separate
1455 * I/Os. The first write should be from the head to the
1456 * end of the physical log, and it should use the current
1457 * cycle number minus one just like above.
1458 */
1459 distance = log->l_logBBsize - head_block;
1460 error = xlog_write_log_records(log, (head_cycle - 1),
1461 head_block, distance, tail_cycle,
1462 tail_block);
1463
1464 if (error)
1465 return error;
1466
1467 /*
1468 * Now write the blocks at the start of the physical log.
1469 * This writes the remainder of the blocks we want to clear.
1470 * It uses the current cycle number since we're now on the
1471 * same cycle as the head so that we get:
1472 * n ... n ... | n - 1 ...
1473 * ^^^^^ blocks we're writing
1474 */
1475 distance = max_distance - (log->l_logBBsize - head_block);
1476 error = xlog_write_log_records(log, head_cycle, 0, distance,
1477 tail_cycle, tail_block);
1478 if (error)
1479 return error;
1480 }
1481
1482 return 0;
1483}
1484
1485/******************************************************************************
1486 *
1487 * Log recover routines
1488 *
1489 ******************************************************************************
1490 */
1491
f0a76953 1492/*
a775ad77
DC
1493 * Sort the log items in the transaction.
1494 *
1495 * The ordering constraints are defined by the inode allocation and unlink
1496 * behaviour. The rules are:
1497 *
1498 * 1. Every item is only logged once in a given transaction. Hence it
1499 * represents the last logged state of the item. Hence ordering is
1500 * dependent on the order in which operations need to be performed so
1501 * required initial conditions are always met.
1502 *
1503 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1504 * there's nothing to replay from them so we can simply cull them
1505 * from the transaction. However, we can't do that until after we've
1506 * replayed all the other items because they may be dependent on the
1507 * cancelled buffer and replaying the cancelled buffer can remove it
1508 * form the cancelled buffer table. Hence they have tobe done last.
1509 *
1510 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1511 * read the buffer and replay changes into it. For filesystems using the
1512 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1513 * treated the same as inode allocation buffers as they create and
1514 * initialise the buffers directly.
a775ad77
DC
1515 *
1516 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1517 * This ensures that inodes are completely flushed to the inode buffer
1518 * in a "free" state before we remove the unlinked inode list pointer.
1519 *
1520 * Hence the ordering needs to be inode allocation buffers first, inode items
1521 * second, inode unlink buffers third and cancelled buffers last.
1522 *
1523 * But there's a problem with that - we can't tell an inode allocation buffer
1524 * apart from a regular buffer, so we can't separate them. We can, however,
1525 * tell an inode unlink buffer from the others, and so we can separate them out
1526 * from all the other buffers and move them to last.
1527 *
1528 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1529 * - buffer_list for all buffers except cancelled/inode unlink buffers
1530 * - item_list for all non-buffer items
1531 * - inode_buffer_list for inode unlink buffers
1532 * - cancel_list for the cancelled buffers
1533 *
1534 * Note that we add objects to the tail of the lists so that first-to-last
1535 * ordering is preserved within the lists. Adding objects to the head of the
1536 * list means when we traverse from the head we walk them in last-to-first
1537 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1538 * but for all other items there may be specific ordering that we need to
1539 * preserve.
f0a76953 1540 */
1da177e4
LT
1541STATIC int
1542xlog_recover_reorder_trans(
ad223e60
MT
1543 struct xlog *log,
1544 struct xlog_recover *trans,
9abbc539 1545 int pass)
1da177e4 1546{
f0a76953 1547 xlog_recover_item_t *item, *n;
2a84108f 1548 int error = 0;
f0a76953 1549 LIST_HEAD(sort_list);
a775ad77
DC
1550 LIST_HEAD(cancel_list);
1551 LIST_HEAD(buffer_list);
1552 LIST_HEAD(inode_buffer_list);
1553 LIST_HEAD(inode_list);
f0a76953
DC
1554
1555 list_splice_init(&trans->r_itemq, &sort_list);
1556 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1557 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1558
f0a76953 1559 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1560 case XFS_LI_ICREATE:
1561 list_move_tail(&item->ri_list, &buffer_list);
1562 break;
1da177e4 1563 case XFS_LI_BUF:
a775ad77 1564 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1565 trace_xfs_log_recover_item_reorder_head(log,
1566 trans, item, pass);
a775ad77 1567 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1568 break;
1569 }
a775ad77
DC
1570 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1571 list_move(&item->ri_list, &inode_buffer_list);
1572 break;
1573 }
1574 list_move_tail(&item->ri_list, &buffer_list);
1575 break;
1da177e4 1576 case XFS_LI_INODE:
1da177e4
LT
1577 case XFS_LI_DQUOT:
1578 case XFS_LI_QUOTAOFF:
1579 case XFS_LI_EFD:
1580 case XFS_LI_EFI:
9abbc539
DC
1581 trace_xfs_log_recover_item_reorder_tail(log,
1582 trans, item, pass);
a775ad77 1583 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1584 break;
1585 default:
a0fa2b67
DC
1586 xfs_warn(log->l_mp,
1587 "%s: unrecognized type of log operation",
1588 __func__);
1da177e4 1589 ASSERT(0);
2a84108f
MT
1590 /*
1591 * return the remaining items back to the transaction
1592 * item list so they can be freed in caller.
1593 */
1594 if (!list_empty(&sort_list))
1595 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1596 error = -EIO;
2a84108f 1597 goto out;
1da177e4 1598 }
f0a76953 1599 }
2a84108f 1600out:
f0a76953 1601 ASSERT(list_empty(&sort_list));
a775ad77
DC
1602 if (!list_empty(&buffer_list))
1603 list_splice(&buffer_list, &trans->r_itemq);
1604 if (!list_empty(&inode_list))
1605 list_splice_tail(&inode_list, &trans->r_itemq);
1606 if (!list_empty(&inode_buffer_list))
1607 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1608 if (!list_empty(&cancel_list))
1609 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1610 return error;
1da177e4
LT
1611}
1612
1613/*
1614 * Build up the table of buf cancel records so that we don't replay
1615 * cancelled data in the second pass. For buffer records that are
1616 * not cancel records, there is nothing to do here so we just return.
1617 *
1618 * If we get a cancel record which is already in the table, this indicates
1619 * that the buffer was cancelled multiple times. In order to ensure
1620 * that during pass 2 we keep the record in the table until we reach its
1621 * last occurrence in the log, we keep a reference count in the cancel
1622 * record in the table to tell us how many times we expect to see this
1623 * record during the second pass.
1624 */
c9f71f5f
CH
1625STATIC int
1626xlog_recover_buffer_pass1(
ad223e60
MT
1627 struct xlog *log,
1628 struct xlog_recover_item *item)
1da177e4 1629{
c9f71f5f 1630 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1631 struct list_head *bucket;
1632 struct xfs_buf_cancel *bcp;
1da177e4
LT
1633
1634 /*
1635 * If this isn't a cancel buffer item, then just return.
1636 */
e2714bf8 1637 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1638 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1639 return 0;
9abbc539 1640 }
1da177e4
LT
1641
1642 /*
d5689eaa
CH
1643 * Insert an xfs_buf_cancel record into the hash table of them.
1644 * If there is already an identical record, bump its reference count.
1da177e4 1645 */
d5689eaa
CH
1646 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1647 list_for_each_entry(bcp, bucket, bc_list) {
1648 if (bcp->bc_blkno == buf_f->blf_blkno &&
1649 bcp->bc_len == buf_f->blf_len) {
1650 bcp->bc_refcount++;
9abbc539 1651 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1652 return 0;
1da177e4 1653 }
d5689eaa
CH
1654 }
1655
1656 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1657 bcp->bc_blkno = buf_f->blf_blkno;
1658 bcp->bc_len = buf_f->blf_len;
1da177e4 1659 bcp->bc_refcount = 1;
d5689eaa
CH
1660 list_add_tail(&bcp->bc_list, bucket);
1661
9abbc539 1662 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1663 return 0;
1da177e4
LT
1664}
1665
1666/*
1667 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
1668 * entry in the buffer cancel record table. If it is, return the cancel
1669 * buffer structure to the caller.
1da177e4 1670 */
84a5b730
DC
1671STATIC struct xfs_buf_cancel *
1672xlog_peek_buffer_cancelled(
ad223e60 1673 struct xlog *log,
1da177e4
LT
1674 xfs_daddr_t blkno,
1675 uint len,
1676 ushort flags)
1677{
d5689eaa
CH
1678 struct list_head *bucket;
1679 struct xfs_buf_cancel *bcp;
1da177e4 1680
84a5b730
DC
1681 if (!log->l_buf_cancel_table) {
1682 /* empty table means no cancelled buffers in the log */
c1155410 1683 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 1684 return NULL;
1da177e4
LT
1685 }
1686
d5689eaa
CH
1687 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1688 list_for_each_entry(bcp, bucket, bc_list) {
1689 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 1690 return bcp;
1da177e4 1691 }
d5689eaa 1692
1da177e4 1693 /*
d5689eaa
CH
1694 * We didn't find a corresponding entry in the table, so return 0 so
1695 * that the buffer is NOT cancelled.
1da177e4 1696 */
c1155410 1697 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
1698 return NULL;
1699}
1700
1701/*
1702 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1703 * otherwise return 0. If the buffer is actually a buffer cancel item
1704 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1705 * table and remove it from the table if this is the last reference.
1706 *
1707 * We remove the cancel record from the table when we encounter its last
1708 * occurrence in the log so that if the same buffer is re-used again after its
1709 * last cancellation we actually replay the changes made at that point.
1710 */
1711STATIC int
1712xlog_check_buffer_cancelled(
1713 struct xlog *log,
1714 xfs_daddr_t blkno,
1715 uint len,
1716 ushort flags)
1717{
1718 struct xfs_buf_cancel *bcp;
1719
1720 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1721 if (!bcp)
1722 return 0;
d5689eaa 1723
d5689eaa
CH
1724 /*
1725 * We've go a match, so return 1 so that the recovery of this buffer
1726 * is cancelled. If this buffer is actually a buffer cancel log
1727 * item, then decrement the refcount on the one in the table and
1728 * remove it if this is the last reference.
1729 */
1730 if (flags & XFS_BLF_CANCEL) {
1731 if (--bcp->bc_refcount == 0) {
1732 list_del(&bcp->bc_list);
1733 kmem_free(bcp);
1734 }
1735 }
1736 return 1;
1da177e4
LT
1737}
1738
1da177e4 1739/*
e2714bf8
CH
1740 * Perform recovery for a buffer full of inodes. In these buffers, the only
1741 * data which should be recovered is that which corresponds to the
1742 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1743 * data for the inodes is always logged through the inodes themselves rather
1744 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1745 *
e2714bf8
CH
1746 * The only time when buffers full of inodes are fully recovered is when the
1747 * buffer is full of newly allocated inodes. In this case the buffer will
1748 * not be marked as an inode buffer and so will be sent to
1749 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1750 */
1751STATIC int
1752xlog_recover_do_inode_buffer(
e2714bf8 1753 struct xfs_mount *mp,
1da177e4 1754 xlog_recover_item_t *item,
e2714bf8 1755 struct xfs_buf *bp,
1da177e4
LT
1756 xfs_buf_log_format_t *buf_f)
1757{
1758 int i;
e2714bf8
CH
1759 int item_index = 0;
1760 int bit = 0;
1761 int nbits = 0;
1762 int reg_buf_offset = 0;
1763 int reg_buf_bytes = 0;
1da177e4
LT
1764 int next_unlinked_offset;
1765 int inodes_per_buf;
1766 xfs_agino_t *logged_nextp;
1767 xfs_agino_t *buffer_nextp;
1da177e4 1768
9abbc539 1769 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1770
1771 /*
1772 * Post recovery validation only works properly on CRC enabled
1773 * filesystems.
1774 */
1775 if (xfs_sb_version_hascrc(&mp->m_sb))
1776 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1777
aa0e8833 1778 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1779 for (i = 0; i < inodes_per_buf; i++) {
1780 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1781 offsetof(xfs_dinode_t, di_next_unlinked);
1782
1783 while (next_unlinked_offset >=
1784 (reg_buf_offset + reg_buf_bytes)) {
1785 /*
1786 * The next di_next_unlinked field is beyond
1787 * the current logged region. Find the next
1788 * logged region that contains or is beyond
1789 * the current di_next_unlinked field.
1790 */
1791 bit += nbits;
e2714bf8
CH
1792 bit = xfs_next_bit(buf_f->blf_data_map,
1793 buf_f->blf_map_size, bit);
1da177e4
LT
1794
1795 /*
1796 * If there are no more logged regions in the
1797 * buffer, then we're done.
1798 */
e2714bf8 1799 if (bit == -1)
1da177e4 1800 return 0;
1da177e4 1801
e2714bf8
CH
1802 nbits = xfs_contig_bits(buf_f->blf_data_map,
1803 buf_f->blf_map_size, bit);
1da177e4 1804 ASSERT(nbits > 0);
c1155410
DC
1805 reg_buf_offset = bit << XFS_BLF_SHIFT;
1806 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1807 item_index++;
1808 }
1809
1810 /*
1811 * If the current logged region starts after the current
1812 * di_next_unlinked field, then move on to the next
1813 * di_next_unlinked field.
1814 */
e2714bf8 1815 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1816 continue;
1da177e4
LT
1817
1818 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1819 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1820 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1821 BBTOB(bp->b_io_length));
1da177e4
LT
1822
1823 /*
1824 * The current logged region contains a copy of the
1825 * current di_next_unlinked field. Extract its value
1826 * and copy it to the buffer copy.
1827 */
4e0d5f92
CH
1828 logged_nextp = item->ri_buf[item_index].i_addr +
1829 next_unlinked_offset - reg_buf_offset;
1da177e4 1830 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1831 xfs_alert(mp,
1832 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1833 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1834 item, bp);
1835 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1836 XFS_ERRLEVEL_LOW, mp);
2451337d 1837 return -EFSCORRUPTED;
1da177e4
LT
1838 }
1839
88ee2df7 1840 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
87c199c2 1841 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1842
1843 /*
1844 * If necessary, recalculate the CRC in the on-disk inode. We
1845 * have to leave the inode in a consistent state for whoever
1846 * reads it next....
1847 */
88ee2df7 1848 xfs_dinode_calc_crc(mp,
0a32c26e
DC
1849 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1850
1da177e4
LT
1851 }
1852
1853 return 0;
1854}
1855
50d5c8d8
DC
1856/*
1857 * V5 filesystems know the age of the buffer on disk being recovered. We can
1858 * have newer objects on disk than we are replaying, and so for these cases we
1859 * don't want to replay the current change as that will make the buffer contents
1860 * temporarily invalid on disk.
1861 *
1862 * The magic number might not match the buffer type we are going to recover
1863 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1864 * extract the LSN of the existing object in the buffer based on it's current
1865 * magic number. If we don't recognise the magic number in the buffer, then
1866 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1867 * so can recover the buffer.
566055d3
DC
1868 *
1869 * Note: we cannot rely solely on magic number matches to determine that the
1870 * buffer has a valid LSN - we also need to verify that it belongs to this
1871 * filesystem, so we need to extract the object's LSN and compare it to that
1872 * which we read from the superblock. If the UUIDs don't match, then we've got a
1873 * stale metadata block from an old filesystem instance that we need to recover
1874 * over the top of.
50d5c8d8
DC
1875 */
1876static xfs_lsn_t
1877xlog_recover_get_buf_lsn(
1878 struct xfs_mount *mp,
1879 struct xfs_buf *bp)
1880{
1881 __uint32_t magic32;
1882 __uint16_t magic16;
1883 __uint16_t magicda;
1884 void *blk = bp->b_addr;
566055d3
DC
1885 uuid_t *uuid;
1886 xfs_lsn_t lsn = -1;
50d5c8d8
DC
1887
1888 /* v4 filesystems always recover immediately */
1889 if (!xfs_sb_version_hascrc(&mp->m_sb))
1890 goto recover_immediately;
1891
1892 magic32 = be32_to_cpu(*(__be32 *)blk);
1893 switch (magic32) {
1894 case XFS_ABTB_CRC_MAGIC:
1895 case XFS_ABTC_CRC_MAGIC:
1896 case XFS_ABTB_MAGIC:
1897 case XFS_ABTC_MAGIC:
1898 case XFS_IBT_CRC_MAGIC:
566055d3
DC
1899 case XFS_IBT_MAGIC: {
1900 struct xfs_btree_block *btb = blk;
1901
1902 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
1903 uuid = &btb->bb_u.s.bb_uuid;
1904 break;
1905 }
50d5c8d8 1906 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
1907 case XFS_BMAP_MAGIC: {
1908 struct xfs_btree_block *btb = blk;
1909
1910 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
1911 uuid = &btb->bb_u.l.bb_uuid;
1912 break;
1913 }
50d5c8d8 1914 case XFS_AGF_MAGIC:
566055d3
DC
1915 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
1916 uuid = &((struct xfs_agf *)blk)->agf_uuid;
1917 break;
50d5c8d8 1918 case XFS_AGFL_MAGIC:
566055d3
DC
1919 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
1920 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
1921 break;
50d5c8d8 1922 case XFS_AGI_MAGIC:
566055d3
DC
1923 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
1924 uuid = &((struct xfs_agi *)blk)->agi_uuid;
1925 break;
50d5c8d8 1926 case XFS_SYMLINK_MAGIC:
566055d3
DC
1927 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
1928 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
1929 break;
50d5c8d8
DC
1930 case XFS_DIR3_BLOCK_MAGIC:
1931 case XFS_DIR3_DATA_MAGIC:
1932 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
1933 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
1934 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
1935 break;
50d5c8d8 1936 case XFS_ATTR3_RMT_MAGIC:
e3c32ee9
DC
1937 /*
1938 * Remote attr blocks are written synchronously, rather than
1939 * being logged. That means they do not contain a valid LSN
1940 * (i.e. transactionally ordered) in them, and hence any time we
1941 * see a buffer to replay over the top of a remote attribute
1942 * block we should simply do so.
1943 */
1944 goto recover_immediately;
50d5c8d8 1945 case XFS_SB_MAGIC:
fcfbe2c4
DC
1946 /*
1947 * superblock uuids are magic. We may or may not have a
1948 * sb_meta_uuid on disk, but it will be set in the in-core
1949 * superblock. We set the uuid pointer for verification
1950 * according to the superblock feature mask to ensure we check
1951 * the relevant UUID in the superblock.
1952 */
566055d3 1953 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
fcfbe2c4
DC
1954 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
1955 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
1956 else
1957 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
566055d3 1958 break;
50d5c8d8
DC
1959 default:
1960 break;
1961 }
1962
566055d3 1963 if (lsn != (xfs_lsn_t)-1) {
fcfbe2c4 1964 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
566055d3
DC
1965 goto recover_immediately;
1966 return lsn;
1967 }
1968
50d5c8d8
DC
1969 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
1970 switch (magicda) {
1971 case XFS_DIR3_LEAF1_MAGIC:
1972 case XFS_DIR3_LEAFN_MAGIC:
1973 case XFS_DA3_NODE_MAGIC:
566055d3
DC
1974 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
1975 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
1976 break;
50d5c8d8
DC
1977 default:
1978 break;
1979 }
1980
566055d3
DC
1981 if (lsn != (xfs_lsn_t)-1) {
1982 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
1983 goto recover_immediately;
1984 return lsn;
1985 }
1986
50d5c8d8
DC
1987 /*
1988 * We do individual object checks on dquot and inode buffers as they
1989 * have their own individual LSN records. Also, we could have a stale
1990 * buffer here, so we have to at least recognise these buffer types.
1991 *
1992 * A notd complexity here is inode unlinked list processing - it logs
1993 * the inode directly in the buffer, but we don't know which inodes have
1994 * been modified, and there is no global buffer LSN. Hence we need to
1995 * recover all inode buffer types immediately. This problem will be
1996 * fixed by logical logging of the unlinked list modifications.
1997 */
1998 magic16 = be16_to_cpu(*(__be16 *)blk);
1999 switch (magic16) {
2000 case XFS_DQUOT_MAGIC:
2001 case XFS_DINODE_MAGIC:
2002 goto recover_immediately;
2003 default:
2004 break;
2005 }
2006
2007 /* unknown buffer contents, recover immediately */
2008
2009recover_immediately:
2010 return (xfs_lsn_t)-1;
2011
2012}
2013
1da177e4 2014/*
d75afeb3
DC
2015 * Validate the recovered buffer is of the correct type and attach the
2016 * appropriate buffer operations to them for writeback. Magic numbers are in a
2017 * few places:
2018 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2019 * the first 32 bits of the buffer (most blocks),
2020 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2021 */
d75afeb3 2022static void
50d5c8d8 2023xlog_recover_validate_buf_type(
9abbc539 2024 struct xfs_mount *mp,
e2714bf8 2025 struct xfs_buf *bp,
1da177e4
LT
2026 xfs_buf_log_format_t *buf_f)
2027{
d75afeb3
DC
2028 struct xfs_da_blkinfo *info = bp->b_addr;
2029 __uint32_t magic32;
2030 __uint16_t magic16;
2031 __uint16_t magicda;
2032
67dc288c
DC
2033 /*
2034 * We can only do post recovery validation on items on CRC enabled
2035 * fielsystems as we need to know when the buffer was written to be able
2036 * to determine if we should have replayed the item. If we replay old
2037 * metadata over a newer buffer, then it will enter a temporarily
2038 * inconsistent state resulting in verification failures. Hence for now
2039 * just avoid the verification stage for non-crc filesystems
2040 */
2041 if (!xfs_sb_version_hascrc(&mp->m_sb))
2042 return;
2043
d75afeb3
DC
2044 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2045 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2046 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2047 switch (xfs_blft_from_flags(buf_f)) {
2048 case XFS_BLFT_BTREE_BUF:
d75afeb3 2049 switch (magic32) {
ee1a47ab
CH
2050 case XFS_ABTB_CRC_MAGIC:
2051 case XFS_ABTC_CRC_MAGIC:
2052 case XFS_ABTB_MAGIC:
2053 case XFS_ABTC_MAGIC:
2054 bp->b_ops = &xfs_allocbt_buf_ops;
2055 break;
2056 case XFS_IBT_CRC_MAGIC:
aafc3c24 2057 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2058 case XFS_IBT_MAGIC:
aafc3c24 2059 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2060 bp->b_ops = &xfs_inobt_buf_ops;
2061 break;
2062 case XFS_BMAP_CRC_MAGIC:
2063 case XFS_BMAP_MAGIC:
2064 bp->b_ops = &xfs_bmbt_buf_ops;
2065 break;
2066 default:
2067 xfs_warn(mp, "Bad btree block magic!");
2068 ASSERT(0);
2069 break;
2070 }
2071 break;
61fe135c 2072 case XFS_BLFT_AGF_BUF:
d75afeb3 2073 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2074 xfs_warn(mp, "Bad AGF block magic!");
2075 ASSERT(0);
2076 break;
2077 }
2078 bp->b_ops = &xfs_agf_buf_ops;
2079 break;
61fe135c 2080 case XFS_BLFT_AGFL_BUF:
d75afeb3 2081 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2082 xfs_warn(mp, "Bad AGFL block magic!");
2083 ASSERT(0);
2084 break;
2085 }
2086 bp->b_ops = &xfs_agfl_buf_ops;
2087 break;
61fe135c 2088 case XFS_BLFT_AGI_BUF:
d75afeb3 2089 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2090 xfs_warn(mp, "Bad AGI block magic!");
2091 ASSERT(0);
2092 break;
2093 }
2094 bp->b_ops = &xfs_agi_buf_ops;
2095 break;
61fe135c
DC
2096 case XFS_BLFT_UDQUOT_BUF:
2097 case XFS_BLFT_PDQUOT_BUF:
2098 case XFS_BLFT_GDQUOT_BUF:
123887e8 2099#ifdef CONFIG_XFS_QUOTA
d75afeb3 2100 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2101 xfs_warn(mp, "Bad DQUOT block magic!");
2102 ASSERT(0);
2103 break;
2104 }
2105 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2106#else
2107 xfs_alert(mp,
2108 "Trying to recover dquots without QUOTA support built in!");
2109 ASSERT(0);
2110#endif
3fe58f30 2111 break;
61fe135c 2112 case XFS_BLFT_DINO_BUF:
d75afeb3 2113 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2114 xfs_warn(mp, "Bad INODE block magic!");
2115 ASSERT(0);
2116 break;
2117 }
2118 bp->b_ops = &xfs_inode_buf_ops;
2119 break;
61fe135c 2120 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2121 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2122 xfs_warn(mp, "Bad symlink block magic!");
2123 ASSERT(0);
2124 break;
2125 }
2126 bp->b_ops = &xfs_symlink_buf_ops;
2127 break;
61fe135c 2128 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2129 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2130 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2131 xfs_warn(mp, "Bad dir block magic!");
2132 ASSERT(0);
2133 break;
2134 }
2135 bp->b_ops = &xfs_dir3_block_buf_ops;
2136 break;
61fe135c 2137 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2138 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2139 magic32 != XFS_DIR3_DATA_MAGIC) {
2140 xfs_warn(mp, "Bad dir data magic!");
2141 ASSERT(0);
2142 break;
2143 }
2144 bp->b_ops = &xfs_dir3_data_buf_ops;
2145 break;
61fe135c 2146 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2147 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2148 magic32 != XFS_DIR3_FREE_MAGIC) {
2149 xfs_warn(mp, "Bad dir3 free magic!");
2150 ASSERT(0);
2151 break;
2152 }
2153 bp->b_ops = &xfs_dir3_free_buf_ops;
2154 break;
61fe135c 2155 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2156 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2157 magicda != XFS_DIR3_LEAF1_MAGIC) {
2158 xfs_warn(mp, "Bad dir leaf1 magic!");
2159 ASSERT(0);
2160 break;
2161 }
2162 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2163 break;
61fe135c 2164 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2165 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2166 magicda != XFS_DIR3_LEAFN_MAGIC) {
2167 xfs_warn(mp, "Bad dir leafn magic!");
2168 ASSERT(0);
2169 break;
2170 }
2171 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2172 break;
61fe135c 2173 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2174 if (magicda != XFS_DA_NODE_MAGIC &&
2175 magicda != XFS_DA3_NODE_MAGIC) {
2176 xfs_warn(mp, "Bad da node magic!");
2177 ASSERT(0);
2178 break;
2179 }
2180 bp->b_ops = &xfs_da3_node_buf_ops;
2181 break;
61fe135c 2182 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2183 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2184 magicda != XFS_ATTR3_LEAF_MAGIC) {
2185 xfs_warn(mp, "Bad attr leaf magic!");
2186 ASSERT(0);
2187 break;
2188 }
2189 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2190 break;
61fe135c 2191 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2192 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2193 xfs_warn(mp, "Bad attr remote magic!");
2194 ASSERT(0);
2195 break;
2196 }
2197 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2198 break;
04a1e6c5
DC
2199 case XFS_BLFT_SB_BUF:
2200 if (magic32 != XFS_SB_MAGIC) {
2201 xfs_warn(mp, "Bad SB block magic!");
2202 ASSERT(0);
2203 break;
2204 }
2205 bp->b_ops = &xfs_sb_buf_ops;
2206 break;
ee1a47ab 2207 default:
61fe135c
DC
2208 xfs_warn(mp, "Unknown buffer type %d!",
2209 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2210 break;
2211 }
1da177e4
LT
2212}
2213
d75afeb3
DC
2214/*
2215 * Perform a 'normal' buffer recovery. Each logged region of the
2216 * buffer should be copied over the corresponding region in the
2217 * given buffer. The bitmap in the buf log format structure indicates
2218 * where to place the logged data.
2219 */
2220STATIC void
2221xlog_recover_do_reg_buffer(
2222 struct xfs_mount *mp,
2223 xlog_recover_item_t *item,
2224 struct xfs_buf *bp,
2225 xfs_buf_log_format_t *buf_f)
2226{
2227 int i;
2228 int bit;
2229 int nbits;
2230 int error;
2231
2232 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2233
2234 bit = 0;
2235 i = 1; /* 0 is the buf format structure */
2236 while (1) {
2237 bit = xfs_next_bit(buf_f->blf_data_map,
2238 buf_f->blf_map_size, bit);
2239 if (bit == -1)
2240 break;
2241 nbits = xfs_contig_bits(buf_f->blf_data_map,
2242 buf_f->blf_map_size, bit);
2243 ASSERT(nbits > 0);
2244 ASSERT(item->ri_buf[i].i_addr != NULL);
2245 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2246 ASSERT(BBTOB(bp->b_io_length) >=
2247 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2248
709da6a6
DC
2249 /*
2250 * The dirty regions logged in the buffer, even though
2251 * contiguous, may span multiple chunks. This is because the
2252 * dirty region may span a physical page boundary in a buffer
2253 * and hence be split into two separate vectors for writing into
2254 * the log. Hence we need to trim nbits back to the length of
2255 * the current region being copied out of the log.
2256 */
2257 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2258 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2259
d75afeb3
DC
2260 /*
2261 * Do a sanity check if this is a dquot buffer. Just checking
2262 * the first dquot in the buffer should do. XXXThis is
2263 * probably a good thing to do for other buf types also.
2264 */
2265 error = 0;
2266 if (buf_f->blf_flags &
2267 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2268 if (item->ri_buf[i].i_addr == NULL) {
2269 xfs_alert(mp,
2270 "XFS: NULL dquot in %s.", __func__);
2271 goto next;
2272 }
2273 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2274 xfs_alert(mp,
2275 "XFS: dquot too small (%d) in %s.",
2276 item->ri_buf[i].i_len, __func__);
2277 goto next;
2278 }
9aede1d8 2279 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
d75afeb3
DC
2280 -1, 0, XFS_QMOPT_DOWARN,
2281 "dquot_buf_recover");
2282 if (error)
2283 goto next;
2284 }
2285
2286 memcpy(xfs_buf_offset(bp,
2287 (uint)bit << XFS_BLF_SHIFT), /* dest */
2288 item->ri_buf[i].i_addr, /* source */
2289 nbits<<XFS_BLF_SHIFT); /* length */
2290 next:
2291 i++;
2292 bit += nbits;
2293 }
2294
2295 /* Shouldn't be any more regions */
2296 ASSERT(i == item->ri_total);
2297
67dc288c 2298 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2299}
2300
1da177e4
LT
2301/*
2302 * Perform a dquot buffer recovery.
8ba701ee 2303 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2304 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2305 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2306 *
2307 * Return false if the buffer was tossed and true if we recovered the buffer to
2308 * indicate to the caller if the buffer needs writing.
1da177e4 2309 */
ad3714b8 2310STATIC bool
1da177e4 2311xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2312 struct xfs_mount *mp,
2313 struct xlog *log,
2314 struct xlog_recover_item *item,
2315 struct xfs_buf *bp,
2316 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2317{
2318 uint type;
2319
9abbc539
DC
2320 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2321
1da177e4
LT
2322 /*
2323 * Filesystems are required to send in quota flags at mount time.
2324 */
ad3714b8
DC
2325 if (!mp->m_qflags)
2326 return false;
1da177e4
LT
2327
2328 type = 0;
c1155410 2329 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2330 type |= XFS_DQ_USER;
c1155410 2331 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2332 type |= XFS_DQ_PROJ;
c1155410 2333 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2334 type |= XFS_DQ_GROUP;
2335 /*
2336 * This type of quotas was turned off, so ignore this buffer
2337 */
2338 if (log->l_quotaoffs_flag & type)
ad3714b8 2339 return false;
1da177e4 2340
9abbc539 2341 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
ad3714b8 2342 return true;
1da177e4
LT
2343}
2344
2345/*
2346 * This routine replays a modification made to a buffer at runtime.
2347 * There are actually two types of buffer, regular and inode, which
2348 * are handled differently. Inode buffers are handled differently
2349 * in that we only recover a specific set of data from them, namely
2350 * the inode di_next_unlinked fields. This is because all other inode
2351 * data is actually logged via inode records and any data we replay
2352 * here which overlaps that may be stale.
2353 *
2354 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2355 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2356 * of the buffer in the log should not be replayed at recovery time.
2357 * This is so that if the blocks covered by the buffer are reused for
2358 * file data before we crash we don't end up replaying old, freed
2359 * meta-data into a user's file.
2360 *
2361 * To handle the cancellation of buffer log items, we make two passes
2362 * over the log during recovery. During the first we build a table of
2363 * those buffers which have been cancelled, and during the second we
2364 * only replay those buffers which do not have corresponding cancel
34be5ff3 2365 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2366 * for more details on the implementation of the table of cancel records.
2367 */
2368STATIC int
c9f71f5f 2369xlog_recover_buffer_pass2(
9a8d2fdb
MT
2370 struct xlog *log,
2371 struct list_head *buffer_list,
50d5c8d8
DC
2372 struct xlog_recover_item *item,
2373 xfs_lsn_t current_lsn)
1da177e4 2374{
4e0d5f92 2375 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2376 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2377 xfs_buf_t *bp;
2378 int error;
6ad112bf 2379 uint buf_flags;
50d5c8d8 2380 xfs_lsn_t lsn;
1da177e4 2381
c9f71f5f
CH
2382 /*
2383 * In this pass we only want to recover all the buffers which have
2384 * not been cancelled and are not cancellation buffers themselves.
2385 */
2386 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2387 buf_f->blf_len, buf_f->blf_flags)) {
2388 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2389 return 0;
1da177e4 2390 }
c9f71f5f 2391
9abbc539 2392 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2393
a8acad70 2394 buf_flags = 0;
611c9946
DC
2395 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2396 buf_flags |= XBF_UNMAPPED;
6ad112bf 2397
e2714bf8 2398 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2399 buf_flags, NULL);
ac4d6888 2400 if (!bp)
2451337d 2401 return -ENOMEM;
e5702805 2402 error = bp->b_error;
5a52c2a5 2403 if (error) {
901796af 2404 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2405 goto out_release;
1da177e4
LT
2406 }
2407
50d5c8d8 2408 /*
67dc288c 2409 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2410 * the lsn of the transaction we are replaying.
67dc288c
DC
2411 *
2412 * Note that we have to be extremely careful of readahead here.
2413 * Readahead does not attach verfiers to the buffers so if we don't
2414 * actually do any replay after readahead because of the LSN we found
2415 * in the buffer if more recent than that current transaction then we
2416 * need to attach the verifier directly. Failure to do so can lead to
2417 * future recovery actions (e.g. EFI and unlinked list recovery) can
2418 * operate on the buffers and they won't get the verifier attached. This
2419 * can lead to blocks on disk having the correct content but a stale
2420 * CRC.
2421 *
2422 * It is safe to assume these clean buffers are currently up to date.
2423 * If the buffer is dirtied by a later transaction being replayed, then
2424 * the verifier will be reset to match whatever recover turns that
2425 * buffer into.
50d5c8d8
DC
2426 */
2427 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c
DC
2428 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2429 xlog_recover_validate_buf_type(mp, bp, buf_f);
50d5c8d8 2430 goto out_release;
67dc288c 2431 }
50d5c8d8 2432
e2714bf8 2433 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2434 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2435 if (error)
2436 goto out_release;
e2714bf8 2437 } else if (buf_f->blf_flags &
c1155410 2438 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2439 bool dirty;
2440
2441 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2442 if (!dirty)
2443 goto out_release;
1da177e4 2444 } else {
9abbc539 2445 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4 2446 }
1da177e4
LT
2447
2448 /*
2449 * Perform delayed write on the buffer. Asynchronous writes will be
2450 * slower when taking into account all the buffers to be flushed.
2451 *
2452 * Also make sure that only inode buffers with good sizes stay in
2453 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2454 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2455 * buffers in the log can be a different size if the log was generated
2456 * by an older kernel using unclustered inode buffers or a newer kernel
2457 * running with a different inode cluster size. Regardless, if the
0f49efd8
JL
2458 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2459 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2460 * the buffer out of the buffer cache so that the buffer won't
2461 * overlap with future reads of those inodes.
2462 */
2463 if (XFS_DINODE_MAGIC ==
b53e675d 2464 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2465 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
0f49efd8 2466 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2467 xfs_buf_stale(bp);
c2b006c1 2468 error = xfs_bwrite(bp);
1da177e4 2469 } else {
ebad861b 2470 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2471 bp->b_iodone = xlog_recover_iodone;
43ff2122 2472 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2473 }
2474
50d5c8d8 2475out_release:
c2b006c1
CH
2476 xfs_buf_relse(bp);
2477 return error;
1da177e4
LT
2478}
2479
638f4416
DC
2480/*
2481 * Inode fork owner changes
2482 *
2483 * If we have been told that we have to reparent the inode fork, it's because an
2484 * extent swap operation on a CRC enabled filesystem has been done and we are
2485 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2486 * owners of it.
2487 *
2488 * The complexity here is that we don't have an inode context to work with, so
2489 * after we've replayed the inode we need to instantiate one. This is where the
2490 * fun begins.
2491 *
2492 * We are in the middle of log recovery, so we can't run transactions. That
2493 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2494 * that will result in the corresponding iput() running the inode through
2495 * xfs_inactive(). If we've just replayed an inode core that changes the link
2496 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2497 * transactions (bad!).
2498 *
2499 * So, to avoid this, we instantiate an inode directly from the inode core we've
2500 * just recovered. We have the buffer still locked, and all we really need to
2501 * instantiate is the inode core and the forks being modified. We can do this
2502 * manually, then run the inode btree owner change, and then tear down the
2503 * xfs_inode without having to run any transactions at all.
2504 *
2505 * Also, because we don't have a transaction context available here but need to
2506 * gather all the buffers we modify for writeback so we pass the buffer_list
2507 * instead for the operation to use.
2508 */
2509
2510STATIC int
2511xfs_recover_inode_owner_change(
2512 struct xfs_mount *mp,
2513 struct xfs_dinode *dip,
2514 struct xfs_inode_log_format *in_f,
2515 struct list_head *buffer_list)
2516{
2517 struct xfs_inode *ip;
2518 int error;
2519
2520 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2521
2522 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2523 if (!ip)
2451337d 2524 return -ENOMEM;
638f4416
DC
2525
2526 /* instantiate the inode */
2527 xfs_dinode_from_disk(&ip->i_d, dip);
2528 ASSERT(ip->i_d.di_version >= 3);
2529
2530 error = xfs_iformat_fork(ip, dip);
2531 if (error)
2532 goto out_free_ip;
2533
2534
2535 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2536 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2537 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2538 ip->i_ino, buffer_list);
2539 if (error)
2540 goto out_free_ip;
2541 }
2542
2543 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2544 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2545 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2546 ip->i_ino, buffer_list);
2547 if (error)
2548 goto out_free_ip;
2549 }
2550
2551out_free_ip:
2552 xfs_inode_free(ip);
2553 return error;
2554}
2555
1da177e4 2556STATIC int
c9f71f5f 2557xlog_recover_inode_pass2(
9a8d2fdb
MT
2558 struct xlog *log,
2559 struct list_head *buffer_list,
50d5c8d8
DC
2560 struct xlog_recover_item *item,
2561 xfs_lsn_t current_lsn)
1da177e4
LT
2562{
2563 xfs_inode_log_format_t *in_f;
c9f71f5f 2564 xfs_mount_t *mp = log->l_mp;
1da177e4 2565 xfs_buf_t *bp;
1da177e4 2566 xfs_dinode_t *dip;
1da177e4 2567 int len;
b2a922cd
CH
2568 char *src;
2569 char *dest;
1da177e4
LT
2570 int error;
2571 int attr_index;
2572 uint fields;
347d1c01 2573 xfs_icdinode_t *dicp;
93848a99 2574 uint isize;
6d192a9b 2575 int need_free = 0;
1da177e4 2576
6d192a9b 2577 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2578 in_f = item->ri_buf[0].i_addr;
6d192a9b 2579 } else {
4e0d5f92 2580 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2581 need_free = 1;
2582 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2583 if (error)
2584 goto error;
2585 }
1da177e4
LT
2586
2587 /*
2588 * Inode buffers can be freed, look out for it,
2589 * and do not replay the inode.
2590 */
a1941895
CH
2591 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2592 in_f->ilf_len, 0)) {
6d192a9b 2593 error = 0;
9abbc539 2594 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2595 goto error;
2596 }
9abbc539 2597 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2598
c3f8fc73 2599 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2600 &xfs_inode_buf_ops);
ac4d6888 2601 if (!bp) {
2451337d 2602 error = -ENOMEM;
ac4d6888
CS
2603 goto error;
2604 }
e5702805 2605 error = bp->b_error;
5a52c2a5 2606 if (error) {
901796af 2607 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2608 goto out_release;
1da177e4 2609 }
1da177e4 2610 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
88ee2df7 2611 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2612
2613 /*
2614 * Make sure the place we're flushing out to really looks
2615 * like an inode!
2616 */
69ef921b 2617 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2618 xfs_alert(mp,
2619 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2620 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2621 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2622 XFS_ERRLEVEL_LOW, mp);
2451337d 2623 error = -EFSCORRUPTED;
638f4416 2624 goto out_release;
1da177e4 2625 }
4e0d5f92 2626 dicp = item->ri_buf[1].i_addr;
1da177e4 2627 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2628 xfs_alert(mp,
2629 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2630 __func__, item, in_f->ilf_ino);
c9f71f5f 2631 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2632 XFS_ERRLEVEL_LOW, mp);
2451337d 2633 error = -EFSCORRUPTED;
638f4416 2634 goto out_release;
1da177e4
LT
2635 }
2636
50d5c8d8
DC
2637 /*
2638 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2639 * than the lsn of the transaction we are replaying. Note: we still
2640 * need to replay an owner change even though the inode is more recent
2641 * than the transaction as there is no guarantee that all the btree
2642 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2643 */
2644 if (dip->di_version >= 3) {
2645 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2646
2647 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2648 trace_xfs_log_recover_inode_skip(log, in_f);
2649 error = 0;
638f4416 2650 goto out_owner_change;
50d5c8d8
DC
2651 }
2652 }
2653
e60896d8
DC
2654 /*
2655 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2656 * are transactional and if ordering is necessary we can determine that
2657 * more accurately by the LSN field in the V3 inode core. Don't trust
2658 * the inode versions we might be changing them here - use the
2659 * superblock flag to determine whether we need to look at di_flushiter
2660 * to skip replay when the on disk inode is newer than the log one
2661 */
2662 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2663 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2664 /*
2665 * Deal with the wrap case, DI_MAX_FLUSH is less
2666 * than smaller numbers
2667 */
81591fe2 2668 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2669 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2670 /* do nothing */
2671 } else {
9abbc539 2672 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 2673 error = 0;
638f4416 2674 goto out_release;
1da177e4
LT
2675 }
2676 }
e60896d8 2677
1da177e4
LT
2678 /* Take the opportunity to reset the flush iteration count */
2679 dicp->di_flushiter = 0;
2680
abbede1b 2681 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2682 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2683 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2684 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4 2685 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2686 xfs_alert(mp,
2687 "%s: Bad regular inode log record, rec ptr 0x%p, "
2688 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2689 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 2690 error = -EFSCORRUPTED;
638f4416 2691 goto out_release;
1da177e4 2692 }
abbede1b 2693 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2694 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2695 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2696 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2697 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4 2698 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2699 xfs_alert(mp,
2700 "%s: Bad dir inode log record, rec ptr 0x%p, "
2701 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2702 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 2703 error = -EFSCORRUPTED;
638f4416 2704 goto out_release;
1da177e4
LT
2705 }
2706 }
2707 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2708 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4 2709 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2710 xfs_alert(mp,
2711 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2712 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2713 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2714 dicp->di_nextents + dicp->di_anextents,
2715 dicp->di_nblocks);
2451337d 2716 error = -EFSCORRUPTED;
638f4416 2717 goto out_release;
1da177e4
LT
2718 }
2719 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2720 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4 2721 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2722 xfs_alert(mp,
2723 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2724 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2725 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2451337d 2726 error = -EFSCORRUPTED;
638f4416 2727 goto out_release;
1da177e4 2728 }
93848a99
CH
2729 isize = xfs_icdinode_size(dicp->di_version);
2730 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2731 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4 2732 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2733 xfs_alert(mp,
2734 "%s: Bad inode log record length %d, rec ptr 0x%p",
2735 __func__, item->ri_buf[1].i_len, item);
2451337d 2736 error = -EFSCORRUPTED;
638f4416 2737 goto out_release;
1da177e4
LT
2738 }
2739
2740 /* The core is in in-core format */
93848a99 2741 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2742
2743 /* the rest is in on-disk format */
93848a99
CH
2744 if (item->ri_buf[1].i_len > isize) {
2745 memcpy((char *)dip + isize,
2746 item->ri_buf[1].i_addr + isize,
2747 item->ri_buf[1].i_len - isize);
1da177e4
LT
2748 }
2749
2750 fields = in_f->ilf_fields;
2751 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2752 case XFS_ILOG_DEV:
81591fe2 2753 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2754 break;
2755 case XFS_ILOG_UUID:
81591fe2
CH
2756 memcpy(XFS_DFORK_DPTR(dip),
2757 &in_f->ilf_u.ilfu_uuid,
2758 sizeof(uuid_t));
1da177e4
LT
2759 break;
2760 }
2761
2762 if (in_f->ilf_size == 2)
638f4416 2763 goto out_owner_change;
1da177e4
LT
2764 len = item->ri_buf[2].i_len;
2765 src = item->ri_buf[2].i_addr;
2766 ASSERT(in_f->ilf_size <= 4);
2767 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2768 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2769 (len == in_f->ilf_dsize));
2770
2771 switch (fields & XFS_ILOG_DFORK) {
2772 case XFS_ILOG_DDATA:
2773 case XFS_ILOG_DEXT:
81591fe2 2774 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2775 break;
2776
2777 case XFS_ILOG_DBROOT:
7cc95a82 2778 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2779 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2780 XFS_DFORK_DSIZE(dip, mp));
2781 break;
2782
2783 default:
2784 /*
2785 * There are no data fork flags set.
2786 */
2787 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2788 break;
2789 }
2790
2791 /*
2792 * If we logged any attribute data, recover it. There may or
2793 * may not have been any other non-core data logged in this
2794 * transaction.
2795 */
2796 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2797 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2798 attr_index = 3;
2799 } else {
2800 attr_index = 2;
2801 }
2802 len = item->ri_buf[attr_index].i_len;
2803 src = item->ri_buf[attr_index].i_addr;
2804 ASSERT(len == in_f->ilf_asize);
2805
2806 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2807 case XFS_ILOG_ADATA:
2808 case XFS_ILOG_AEXT:
2809 dest = XFS_DFORK_APTR(dip);
2810 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2811 memcpy(dest, src, len);
2812 break;
2813
2814 case XFS_ILOG_ABROOT:
2815 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2816 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2817 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2818 XFS_DFORK_ASIZE(dip, mp));
2819 break;
2820
2821 default:
a0fa2b67 2822 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 2823 ASSERT(0);
2451337d 2824 error = -EIO;
638f4416 2825 goto out_release;
1da177e4
LT
2826 }
2827 }
2828
638f4416
DC
2829out_owner_change:
2830 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2831 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2832 buffer_list);
93848a99
CH
2833 /* re-generate the checksum. */
2834 xfs_dinode_calc_crc(log->l_mp, dip);
2835
ebad861b 2836 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2837 bp->b_iodone = xlog_recover_iodone;
43ff2122 2838 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
2839
2840out_release:
61551f1e 2841 xfs_buf_relse(bp);
6d192a9b
TS
2842error:
2843 if (need_free)
f0e2d93c 2844 kmem_free(in_f);
b474c7ae 2845 return error;
1da177e4
LT
2846}
2847
2848/*
9a8d2fdb 2849 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2850 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2851 * of that type.
2852 */
2853STATIC int
c9f71f5f 2854xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2855 struct xlog *log,
2856 struct xlog_recover_item *item)
1da177e4 2857{
c9f71f5f 2858 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2859 ASSERT(qoff_f);
2860
2861 /*
2862 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2863 * group/project quotaoff or both.
1da177e4
LT
2864 */
2865 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2866 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2867 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2868 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2869 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2870 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2871
d99831ff 2872 return 0;
1da177e4
LT
2873}
2874
2875/*
2876 * Recover a dquot record
2877 */
2878STATIC int
c9f71f5f 2879xlog_recover_dquot_pass2(
9a8d2fdb
MT
2880 struct xlog *log,
2881 struct list_head *buffer_list,
50d5c8d8
DC
2882 struct xlog_recover_item *item,
2883 xfs_lsn_t current_lsn)
1da177e4 2884{
c9f71f5f 2885 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2886 xfs_buf_t *bp;
2887 struct xfs_disk_dquot *ddq, *recddq;
2888 int error;
2889 xfs_dq_logformat_t *dq_f;
2890 uint type;
2891
1da177e4
LT
2892
2893 /*
2894 * Filesystems are required to send in quota flags at mount time.
2895 */
2896 if (mp->m_qflags == 0)
d99831ff 2897 return 0;
1da177e4 2898
4e0d5f92
CH
2899 recddq = item->ri_buf[1].i_addr;
2900 if (recddq == NULL) {
a0fa2b67 2901 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 2902 return -EIO;
0c5e1ce8 2903 }
8ec6dba2 2904 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2905 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 2906 item->ri_buf[1].i_len, __func__);
2451337d 2907 return -EIO;
0c5e1ce8
CH
2908 }
2909
1da177e4
LT
2910 /*
2911 * This type of quotas was turned off, so ignore this record.
2912 */
b53e675d 2913 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2914 ASSERT(type);
2915 if (log->l_quotaoffs_flag & type)
d99831ff 2916 return 0;
1da177e4
LT
2917
2918 /*
2919 * At this point we know that quota was _not_ turned off.
2920 * Since the mount flags are not indicating to us otherwise, this
2921 * must mean that quota is on, and the dquot needs to be replayed.
2922 * Remember that we may not have fully recovered the superblock yet,
2923 * so we can't do the usual trick of looking at the SB quota bits.
2924 *
2925 * The other possibility, of course, is that the quota subsystem was
2926 * removed since the last mount - ENOSYS.
2927 */
4e0d5f92 2928 dq_f = item->ri_buf[0].i_addr;
1da177e4 2929 ASSERT(dq_f);
9aede1d8 2930 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
a0fa2b67
DC
2931 "xlog_recover_dquot_pass2 (log copy)");
2932 if (error)
2451337d 2933 return -EIO;
1da177e4
LT
2934 ASSERT(dq_f->qlf_len == 1);
2935
ad3714b8
DC
2936 /*
2937 * At this point we are assuming that the dquots have been allocated
2938 * and hence the buffer has valid dquots stamped in it. It should,
2939 * therefore, pass verifier validation. If the dquot is bad, then the
2940 * we'll return an error here, so we don't need to specifically check
2941 * the dquot in the buffer after the verifier has run.
2942 */
7ca790a5 2943 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 2944 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 2945 &xfs_dquot_buf_ops);
7ca790a5 2946 if (error)
1da177e4 2947 return error;
7ca790a5 2948
1da177e4 2949 ASSERT(bp);
88ee2df7 2950 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
1da177e4 2951
50d5c8d8
DC
2952 /*
2953 * If the dquot has an LSN in it, recover the dquot only if it's less
2954 * than the lsn of the transaction we are replaying.
2955 */
2956 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2957 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
2958 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
2959
2960 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2961 goto out_release;
2962 }
2963 }
2964
1da177e4 2965 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
2966 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2967 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2968 XFS_DQUOT_CRC_OFF);
2969 }
1da177e4
LT
2970
2971 ASSERT(dq_f->qlf_size == 2);
ebad861b 2972 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2973 bp->b_iodone = xlog_recover_iodone;
43ff2122 2974 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 2975
50d5c8d8
DC
2976out_release:
2977 xfs_buf_relse(bp);
2978 return 0;
1da177e4
LT
2979}
2980
2981/*
2982 * This routine is called to create an in-core extent free intent
2983 * item from the efi format structure which was logged on disk.
2984 * It allocates an in-core efi, copies the extents from the format
2985 * structure into it, and adds the efi to the AIL with the given
2986 * LSN.
2987 */
6d192a9b 2988STATIC int
c9f71f5f 2989xlog_recover_efi_pass2(
9a8d2fdb
MT
2990 struct xlog *log,
2991 struct xlog_recover_item *item,
2992 xfs_lsn_t lsn)
1da177e4 2993{
e32a1d1f
BF
2994 int error;
2995 struct xfs_mount *mp = log->l_mp;
2996 struct xfs_efi_log_item *efip;
2997 struct xfs_efi_log_format *efi_formatp;
1da177e4 2998
4e0d5f92 2999 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3000
1da177e4 3001 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
e32a1d1f
BF
3002 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3003 if (error) {
6d192a9b
TS
3004 xfs_efi_item_free(efip);
3005 return error;
3006 }
b199c8a4 3007 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3008
a9c21c1b 3009 spin_lock(&log->l_ailp->xa_lock);
1da177e4 3010 /*
e32a1d1f
BF
3011 * The EFI has two references. One for the EFD and one for EFI to ensure
3012 * it makes it into the AIL. Insert the EFI into the AIL directly and
3013 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3014 * AIL lock.
1da177e4 3015 */
e6059949 3016 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
e32a1d1f 3017 xfs_efi_release(efip);
6d192a9b 3018 return 0;
1da177e4
LT
3019}
3020
3021
3022/*
e32a1d1f
BF
3023 * This routine is called when an EFD format structure is found in a committed
3024 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3025 * was still in the log. To do this it searches the AIL for the EFI with an id
3026 * equal to that in the EFD format structure. If we find it we drop the EFD
3027 * reference, which removes the EFI from the AIL and frees it.
1da177e4 3028 */
c9f71f5f
CH
3029STATIC int
3030xlog_recover_efd_pass2(
9a8d2fdb
MT
3031 struct xlog *log,
3032 struct xlog_recover_item *item)
1da177e4 3033{
1da177e4
LT
3034 xfs_efd_log_format_t *efd_formatp;
3035 xfs_efi_log_item_t *efip = NULL;
3036 xfs_log_item_t *lip;
1da177e4 3037 __uint64_t efi_id;
27d8d5fe 3038 struct xfs_ail_cursor cur;
783a2f65 3039 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3040
4e0d5f92 3041 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3042 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3043 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3044 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3045 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3046 efi_id = efd_formatp->efd_efi_id;
3047
3048 /*
e32a1d1f
BF
3049 * Search for the EFI with the id in the EFD format structure in the
3050 * AIL.
1da177e4 3051 */
a9c21c1b
DC
3052 spin_lock(&ailp->xa_lock);
3053 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3054 while (lip != NULL) {
3055 if (lip->li_type == XFS_LI_EFI) {
3056 efip = (xfs_efi_log_item_t *)lip;
3057 if (efip->efi_format.efi_id == efi_id) {
3058 /*
e32a1d1f
BF
3059 * Drop the EFD reference to the EFI. This
3060 * removes the EFI from the AIL and frees it.
1da177e4 3061 */
e32a1d1f
BF
3062 spin_unlock(&ailp->xa_lock);
3063 xfs_efi_release(efip);
a9c21c1b 3064 spin_lock(&ailp->xa_lock);
27d8d5fe 3065 break;
1da177e4
LT
3066 }
3067 }
a9c21c1b 3068 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3069 }
e32a1d1f 3070
e4a1e29c 3071 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3072 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3073
3074 return 0;
1da177e4
LT
3075}
3076
28c8e41a
DC
3077/*
3078 * This routine is called when an inode create format structure is found in a
3079 * committed transaction in the log. It's purpose is to initialise the inodes
3080 * being allocated on disk. This requires us to get inode cluster buffers that
3081 * match the range to be intialised, stamped with inode templates and written
3082 * by delayed write so that subsequent modifications will hit the cached buffer
3083 * and only need writing out at the end of recovery.
3084 */
3085STATIC int
3086xlog_recover_do_icreate_pass2(
3087 struct xlog *log,
3088 struct list_head *buffer_list,
3089 xlog_recover_item_t *item)
3090{
3091 struct xfs_mount *mp = log->l_mp;
3092 struct xfs_icreate_log *icl;
3093 xfs_agnumber_t agno;
3094 xfs_agblock_t agbno;
3095 unsigned int count;
3096 unsigned int isize;
3097 xfs_agblock_t length;
fc0d1656
BF
3098 int blks_per_cluster;
3099 int bb_per_cluster;
3100 int cancel_count;
3101 int nbufs;
3102 int i;
28c8e41a
DC
3103
3104 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3105 if (icl->icl_type != XFS_LI_ICREATE) {
3106 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3107 return -EINVAL;
28c8e41a
DC
3108 }
3109
3110 if (icl->icl_size != 1) {
3111 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3112 return -EINVAL;
28c8e41a
DC
3113 }
3114
3115 agno = be32_to_cpu(icl->icl_ag);
3116 if (agno >= mp->m_sb.sb_agcount) {
3117 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3118 return -EINVAL;
28c8e41a
DC
3119 }
3120 agbno = be32_to_cpu(icl->icl_agbno);
3121 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3122 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3123 return -EINVAL;
28c8e41a
DC
3124 }
3125 isize = be32_to_cpu(icl->icl_isize);
3126 if (isize != mp->m_sb.sb_inodesize) {
3127 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3128 return -EINVAL;
28c8e41a
DC
3129 }
3130 count = be32_to_cpu(icl->icl_count);
3131 if (!count) {
3132 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3133 return -EINVAL;
28c8e41a
DC
3134 }
3135 length = be32_to_cpu(icl->icl_length);
3136 if (!length || length >= mp->m_sb.sb_agblocks) {
3137 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3138 return -EINVAL;
28c8e41a
DC
3139 }
3140
7f43c907
BF
3141 /*
3142 * The inode chunk is either full or sparse and we only support
3143 * m_ialloc_min_blks sized sparse allocations at this time.
3144 */
3145 if (length != mp->m_ialloc_blks &&
3146 length != mp->m_ialloc_min_blks) {
3147 xfs_warn(log->l_mp,
3148 "%s: unsupported chunk length", __FUNCTION__);
3149 return -EINVAL;
3150 }
3151
3152 /* verify inode count is consistent with extent length */
3153 if ((count >> mp->m_sb.sb_inopblog) != length) {
3154 xfs_warn(log->l_mp,
3155 "%s: inconsistent inode count and chunk length",
3156 __FUNCTION__);
2451337d 3157 return -EINVAL;
28c8e41a
DC
3158 }
3159
3160 /*
fc0d1656
BF
3161 * The icreate transaction can cover multiple cluster buffers and these
3162 * buffers could have been freed and reused. Check the individual
3163 * buffers for cancellation so we don't overwrite anything written after
3164 * a cancellation.
3165 */
3166 blks_per_cluster = xfs_icluster_size_fsb(mp);
3167 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3168 nbufs = length / blks_per_cluster;
3169 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3170 xfs_daddr_t daddr;
3171
3172 daddr = XFS_AGB_TO_DADDR(mp, agno,
3173 agbno + i * blks_per_cluster);
3174 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3175 cancel_count++;
3176 }
3177
3178 /*
3179 * We currently only use icreate for a single allocation at a time. This
3180 * means we should expect either all or none of the buffers to be
3181 * cancelled. Be conservative and skip replay if at least one buffer is
3182 * cancelled, but warn the user that something is awry if the buffers
3183 * are not consistent.
28c8e41a 3184 *
fc0d1656
BF
3185 * XXX: This must be refined to only skip cancelled clusters once we use
3186 * icreate for multiple chunk allocations.
28c8e41a 3187 */
fc0d1656
BF
3188 ASSERT(!cancel_count || cancel_count == nbufs);
3189 if (cancel_count) {
3190 if (cancel_count != nbufs)
3191 xfs_warn(mp,
3192 "WARNING: partial inode chunk cancellation, skipped icreate.");
78d57e45 3193 trace_xfs_log_recover_icreate_cancel(log, icl);
28c8e41a 3194 return 0;
78d57e45 3195 }
28c8e41a 3196
78d57e45 3197 trace_xfs_log_recover_icreate_recover(log, icl);
fc0d1656
BF
3198 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3199 length, be32_to_cpu(icl->icl_gen));
28c8e41a
DC
3200}
3201
00574da1
ZYW
3202STATIC void
3203xlog_recover_buffer_ra_pass2(
3204 struct xlog *log,
3205 struct xlog_recover_item *item)
3206{
3207 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3208 struct xfs_mount *mp = log->l_mp;
3209
84a5b730 3210 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3211 buf_f->blf_len, buf_f->blf_flags)) {
3212 return;
3213 }
3214
3215 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3216 buf_f->blf_len, NULL);
3217}
3218
3219STATIC void
3220xlog_recover_inode_ra_pass2(
3221 struct xlog *log,
3222 struct xlog_recover_item *item)
3223{
3224 struct xfs_inode_log_format ilf_buf;
3225 struct xfs_inode_log_format *ilfp;
3226 struct xfs_mount *mp = log->l_mp;
3227 int error;
3228
3229 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3230 ilfp = item->ri_buf[0].i_addr;
3231 } else {
3232 ilfp = &ilf_buf;
3233 memset(ilfp, 0, sizeof(*ilfp));
3234 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3235 if (error)
3236 return;
3237 }
3238
84a5b730 3239 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3240 return;
3241
3242 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3243 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3244}
3245
3246STATIC void
3247xlog_recover_dquot_ra_pass2(
3248 struct xlog *log,
3249 struct xlog_recover_item *item)
3250{
3251 struct xfs_mount *mp = log->l_mp;
3252 struct xfs_disk_dquot *recddq;
3253 struct xfs_dq_logformat *dq_f;
3254 uint type;
3255
3256
3257 if (mp->m_qflags == 0)
3258 return;
3259
3260 recddq = item->ri_buf[1].i_addr;
3261 if (recddq == NULL)
3262 return;
3263 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3264 return;
3265
3266 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3267 ASSERT(type);
3268 if (log->l_quotaoffs_flag & type)
3269 return;
3270
3271 dq_f = item->ri_buf[0].i_addr;
3272 ASSERT(dq_f);
3273 ASSERT(dq_f->qlf_len == 1);
3274
3275 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
0f0d3345 3276 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
00574da1
ZYW
3277}
3278
3279STATIC void
3280xlog_recover_ra_pass2(
3281 struct xlog *log,
3282 struct xlog_recover_item *item)
3283{
3284 switch (ITEM_TYPE(item)) {
3285 case XFS_LI_BUF:
3286 xlog_recover_buffer_ra_pass2(log, item);
3287 break;
3288 case XFS_LI_INODE:
3289 xlog_recover_inode_ra_pass2(log, item);
3290 break;
3291 case XFS_LI_DQUOT:
3292 xlog_recover_dquot_ra_pass2(log, item);
3293 break;
3294 case XFS_LI_EFI:
3295 case XFS_LI_EFD:
3296 case XFS_LI_QUOTAOFF:
3297 default:
3298 break;
3299 }
3300}
3301
d0450948 3302STATIC int
c9f71f5f 3303xlog_recover_commit_pass1(
ad223e60
MT
3304 struct xlog *log,
3305 struct xlog_recover *trans,
3306 struct xlog_recover_item *item)
d0450948 3307{
c9f71f5f 3308 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3309
3310 switch (ITEM_TYPE(item)) {
3311 case XFS_LI_BUF:
c9f71f5f
CH
3312 return xlog_recover_buffer_pass1(log, item);
3313 case XFS_LI_QUOTAOFF:
3314 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3315 case XFS_LI_INODE:
d0450948 3316 case XFS_LI_EFI:
d0450948 3317 case XFS_LI_EFD:
c9f71f5f 3318 case XFS_LI_DQUOT:
28c8e41a 3319 case XFS_LI_ICREATE:
c9f71f5f 3320 /* nothing to do in pass 1 */
d0450948 3321 return 0;
c9f71f5f 3322 default:
a0fa2b67
DC
3323 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3324 __func__, ITEM_TYPE(item));
c9f71f5f 3325 ASSERT(0);
2451337d 3326 return -EIO;
c9f71f5f
CH
3327 }
3328}
3329
3330STATIC int
3331xlog_recover_commit_pass2(
ad223e60
MT
3332 struct xlog *log,
3333 struct xlog_recover *trans,
3334 struct list_head *buffer_list,
3335 struct xlog_recover_item *item)
c9f71f5f
CH
3336{
3337 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3338
3339 switch (ITEM_TYPE(item)) {
3340 case XFS_LI_BUF:
50d5c8d8
DC
3341 return xlog_recover_buffer_pass2(log, buffer_list, item,
3342 trans->r_lsn);
c9f71f5f 3343 case XFS_LI_INODE:
50d5c8d8
DC
3344 return xlog_recover_inode_pass2(log, buffer_list, item,
3345 trans->r_lsn);
c9f71f5f
CH
3346 case XFS_LI_EFI:
3347 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3348 case XFS_LI_EFD:
3349 return xlog_recover_efd_pass2(log, item);
d0450948 3350 case XFS_LI_DQUOT:
50d5c8d8
DC
3351 return xlog_recover_dquot_pass2(log, buffer_list, item,
3352 trans->r_lsn);
28c8e41a
DC
3353 case XFS_LI_ICREATE:
3354 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3355 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3356 /* nothing to do in pass2 */
3357 return 0;
d0450948 3358 default:
a0fa2b67
DC
3359 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3360 __func__, ITEM_TYPE(item));
d0450948 3361 ASSERT(0);
2451337d 3362 return -EIO;
d0450948
CH
3363 }
3364}
3365
00574da1
ZYW
3366STATIC int
3367xlog_recover_items_pass2(
3368 struct xlog *log,
3369 struct xlog_recover *trans,
3370 struct list_head *buffer_list,
3371 struct list_head *item_list)
3372{
3373 struct xlog_recover_item *item;
3374 int error = 0;
3375
3376 list_for_each_entry(item, item_list, ri_list) {
3377 error = xlog_recover_commit_pass2(log, trans,
3378 buffer_list, item);
3379 if (error)
3380 return error;
3381 }
3382
3383 return error;
3384}
3385
d0450948
CH
3386/*
3387 * Perform the transaction.
3388 *
3389 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3390 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3391 */
1da177e4
LT
3392STATIC int
3393xlog_recover_commit_trans(
ad223e60 3394 struct xlog *log,
d0450948 3395 struct xlog_recover *trans,
1da177e4
LT
3396 int pass)
3397{
00574da1
ZYW
3398 int error = 0;
3399 int error2;
3400 int items_queued = 0;
3401 struct xlog_recover_item *item;
3402 struct xlog_recover_item *next;
3403 LIST_HEAD (buffer_list);
3404 LIST_HEAD (ra_list);
3405 LIST_HEAD (done_list);
3406
3407 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3408
f0a76953 3409 hlist_del(&trans->r_list);
d0450948
CH
3410
3411 error = xlog_recover_reorder_trans(log, trans, pass);
3412 if (error)
1da177e4 3413 return error;
d0450948 3414
00574da1 3415 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3416 switch (pass) {
3417 case XLOG_RECOVER_PASS1:
c9f71f5f 3418 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3419 break;
3420 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3421 xlog_recover_ra_pass2(log, item);
3422 list_move_tail(&item->ri_list, &ra_list);
3423 items_queued++;
3424 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3425 error = xlog_recover_items_pass2(log, trans,
3426 &buffer_list, &ra_list);
3427 list_splice_tail_init(&ra_list, &done_list);
3428 items_queued = 0;
3429 }
3430
43ff2122
CH
3431 break;
3432 default:
3433 ASSERT(0);
3434 }
3435
d0450948 3436 if (error)
43ff2122 3437 goto out;
d0450948
CH
3438 }
3439
00574da1
ZYW
3440out:
3441 if (!list_empty(&ra_list)) {
3442 if (!error)
3443 error = xlog_recover_items_pass2(log, trans,
3444 &buffer_list, &ra_list);
3445 list_splice_tail_init(&ra_list, &done_list);
3446 }
3447
3448 if (!list_empty(&done_list))
3449 list_splice_init(&done_list, &trans->r_itemq);
3450
43ff2122
CH
3451 error2 = xfs_buf_delwri_submit(&buffer_list);
3452 return error ? error : error2;
1da177e4
LT
3453}
3454
76560669
DC
3455STATIC void
3456xlog_recover_add_item(
3457 struct list_head *head)
3458{
3459 xlog_recover_item_t *item;
3460
3461 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
3462 INIT_LIST_HEAD(&item->ri_list);
3463 list_add_tail(&item->ri_list, head);
3464}
3465
1da177e4 3466STATIC int
76560669
DC
3467xlog_recover_add_to_cont_trans(
3468 struct xlog *log,
3469 struct xlog_recover *trans,
b2a922cd 3470 char *dp,
76560669 3471 int len)
1da177e4 3472{
76560669 3473 xlog_recover_item_t *item;
b2a922cd 3474 char *ptr, *old_ptr;
76560669
DC
3475 int old_len;
3476
89cebc84
BF
3477 /*
3478 * If the transaction is empty, the header was split across this and the
3479 * previous record. Copy the rest of the header.
3480 */
76560669 3481 if (list_empty(&trans->r_itemq)) {
848ccfc8 3482 ASSERT(len <= sizeof(struct xfs_trans_header));
89cebc84
BF
3483 if (len > sizeof(struct xfs_trans_header)) {
3484 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3485 return -EIO;
3486 }
3487
76560669 3488 xlog_recover_add_item(&trans->r_itemq);
b2a922cd 3489 ptr = (char *)&trans->r_theader +
89cebc84 3490 sizeof(struct xfs_trans_header) - len;
76560669
DC
3491 memcpy(ptr, dp, len);
3492 return 0;
3493 }
89cebc84 3494
76560669
DC
3495 /* take the tail entry */
3496 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3497
3498 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
3499 old_len = item->ri_buf[item->ri_cnt-1].i_len;
3500
3501 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
3502 memcpy(&ptr[old_len], dp, len);
3503 item->ri_buf[item->ri_cnt-1].i_len += len;
3504 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
3505 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
3506 return 0;
3507}
3508
76560669
DC
3509/*
3510 * The next region to add is the start of a new region. It could be
3511 * a whole region or it could be the first part of a new region. Because
3512 * of this, the assumption here is that the type and size fields of all
3513 * format structures fit into the first 32 bits of the structure.
3514 *
3515 * This works because all regions must be 32 bit aligned. Therefore, we
3516 * either have both fields or we have neither field. In the case we have
3517 * neither field, the data part of the region is zero length. We only have
3518 * a log_op_header and can throw away the header since a new one will appear
3519 * later. If we have at least 4 bytes, then we can determine how many regions
3520 * will appear in the current log item.
3521 */
3522STATIC int
3523xlog_recover_add_to_trans(
3524 struct xlog *log,
3525 struct xlog_recover *trans,
b2a922cd 3526 char *dp,
76560669
DC
3527 int len)
3528{
3529 xfs_inode_log_format_t *in_f; /* any will do */
3530 xlog_recover_item_t *item;
b2a922cd 3531 char *ptr;
76560669
DC
3532
3533 if (!len)
3534 return 0;
3535 if (list_empty(&trans->r_itemq)) {
3536 /* we need to catch log corruptions here */
3537 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
3538 xfs_warn(log->l_mp, "%s: bad header magic number",
3539 __func__);
3540 ASSERT(0);
3541 return -EIO;
3542 }
89cebc84
BF
3543
3544 if (len > sizeof(struct xfs_trans_header)) {
3545 xfs_warn(log->l_mp, "%s: bad header length", __func__);
3546 ASSERT(0);
3547 return -EIO;
3548 }
3549
3550 /*
3551 * The transaction header can be arbitrarily split across op
3552 * records. If we don't have the whole thing here, copy what we
3553 * do have and handle the rest in the next record.
3554 */
3555 if (len == sizeof(struct xfs_trans_header))
76560669
DC
3556 xlog_recover_add_item(&trans->r_itemq);
3557 memcpy(&trans->r_theader, dp, len);
3558 return 0;
3559 }
3560
3561 ptr = kmem_alloc(len, KM_SLEEP);
3562 memcpy(ptr, dp, len);
3563 in_f = (xfs_inode_log_format_t *)ptr;
3564
3565 /* take the tail entry */
3566 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
3567 if (item->ri_total != 0 &&
3568 item->ri_total == item->ri_cnt) {
3569 /* tail item is in use, get a new one */
3570 xlog_recover_add_item(&trans->r_itemq);
3571 item = list_entry(trans->r_itemq.prev,
3572 xlog_recover_item_t, ri_list);
3573 }
3574
3575 if (item->ri_total == 0) { /* first region to be added */
3576 if (in_f->ilf_size == 0 ||
3577 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
3578 xfs_warn(log->l_mp,
3579 "bad number of regions (%d) in inode log format",
3580 in_f->ilf_size);
3581 ASSERT(0);
3582 kmem_free(ptr);
3583 return -EIO;
3584 }
3585
3586 item->ri_total = in_f->ilf_size;
3587 item->ri_buf =
3588 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
3589 KM_SLEEP);
3590 }
3591 ASSERT(item->ri_total > item->ri_cnt);
3592 /* Description region is ri_buf[0] */
3593 item->ri_buf[item->ri_cnt].i_addr = ptr;
3594 item->ri_buf[item->ri_cnt].i_len = len;
3595 item->ri_cnt++;
3596 trace_xfs_log_recover_item_add(log, trans, item, 0);
3597 return 0;
3598}
b818cca1 3599
76560669
DC
3600/*
3601 * Free up any resources allocated by the transaction
3602 *
3603 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3604 */
3605STATIC void
3606xlog_recover_free_trans(
3607 struct xlog_recover *trans)
3608{
3609 xlog_recover_item_t *item, *n;
3610 int i;
3611
3612 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3613 /* Free the regions in the item. */
3614 list_del(&item->ri_list);
3615 for (i = 0; i < item->ri_cnt; i++)
3616 kmem_free(item->ri_buf[i].i_addr);
3617 /* Free the item itself */
3618 kmem_free(item->ri_buf);
3619 kmem_free(item);
3620 }
3621 /* Free the transaction recover structure */
3622 kmem_free(trans);
3623}
3624
e9131e50
DC
3625/*
3626 * On error or completion, trans is freed.
3627 */
1da177e4 3628STATIC int
eeb11688
DC
3629xlog_recovery_process_trans(
3630 struct xlog *log,
3631 struct xlog_recover *trans,
b2a922cd 3632 char *dp,
eeb11688
DC
3633 unsigned int len,
3634 unsigned int flags,
3635 int pass)
1da177e4 3636{
e9131e50
DC
3637 int error = 0;
3638 bool freeit = false;
eeb11688
DC
3639
3640 /* mask off ophdr transaction container flags */
3641 flags &= ~XLOG_END_TRANS;
3642 if (flags & XLOG_WAS_CONT_TRANS)
3643 flags &= ~XLOG_CONTINUE_TRANS;
3644
88b863db
DC
3645 /*
3646 * Callees must not free the trans structure. We'll decide if we need to
3647 * free it or not based on the operation being done and it's result.
3648 */
eeb11688
DC
3649 switch (flags) {
3650 /* expected flag values */
3651 case 0:
3652 case XLOG_CONTINUE_TRANS:
3653 error = xlog_recover_add_to_trans(log, trans, dp, len);
3654 break;
3655 case XLOG_WAS_CONT_TRANS:
3656 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
3657 break;
3658 case XLOG_COMMIT_TRANS:
3659 error = xlog_recover_commit_trans(log, trans, pass);
88b863db
DC
3660 /* success or fail, we are now done with this transaction. */
3661 freeit = true;
eeb11688
DC
3662 break;
3663
3664 /* unexpected flag values */
3665 case XLOG_UNMOUNT_TRANS:
e9131e50 3666 /* just skip trans */
eeb11688 3667 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
e9131e50 3668 freeit = true;
eeb11688
DC
3669 break;
3670 case XLOG_START_TRANS:
eeb11688
DC
3671 default:
3672 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
3673 ASSERT(0);
e9131e50 3674 error = -EIO;
eeb11688
DC
3675 break;
3676 }
e9131e50
DC
3677 if (error || freeit)
3678 xlog_recover_free_trans(trans);
eeb11688
DC
3679 return error;
3680}
3681
b818cca1
DC
3682/*
3683 * Lookup the transaction recovery structure associated with the ID in the
3684 * current ophdr. If the transaction doesn't exist and the start flag is set in
3685 * the ophdr, then allocate a new transaction for future ID matches to find.
3686 * Either way, return what we found during the lookup - an existing transaction
3687 * or nothing.
3688 */
eeb11688
DC
3689STATIC struct xlog_recover *
3690xlog_recover_ophdr_to_trans(
3691 struct hlist_head rhash[],
3692 struct xlog_rec_header *rhead,
3693 struct xlog_op_header *ohead)
3694{
3695 struct xlog_recover *trans;
3696 xlog_tid_t tid;
3697 struct hlist_head *rhp;
3698
3699 tid = be32_to_cpu(ohead->oh_tid);
3700 rhp = &rhash[XLOG_RHASH(tid)];
b818cca1
DC
3701 hlist_for_each_entry(trans, rhp, r_list) {
3702 if (trans->r_log_tid == tid)
3703 return trans;
3704 }
eeb11688
DC
3705
3706 /*
b818cca1
DC
3707 * skip over non-start transaction headers - we could be
3708 * processing slack space before the next transaction starts
3709 */
3710 if (!(ohead->oh_flags & XLOG_START_TRANS))
3711 return NULL;
3712
3713 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
3714
3715 /*
3716 * This is a new transaction so allocate a new recovery container to
3717 * hold the recovery ops that will follow.
3718 */
3719 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
3720 trans->r_log_tid = tid;
3721 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
3722 INIT_LIST_HEAD(&trans->r_itemq);
3723 INIT_HLIST_NODE(&trans->r_list);
3724 hlist_add_head(&trans->r_list, rhp);
3725
3726 /*
3727 * Nothing more to do for this ophdr. Items to be added to this new
3728 * transaction will be in subsequent ophdr containers.
eeb11688 3729 */
eeb11688
DC
3730 return NULL;
3731}
3732
3733STATIC int
3734xlog_recover_process_ophdr(
3735 struct xlog *log,
3736 struct hlist_head rhash[],
3737 struct xlog_rec_header *rhead,
3738 struct xlog_op_header *ohead,
b2a922cd
CH
3739 char *dp,
3740 char *end,
eeb11688
DC
3741 int pass)
3742{
3743 struct xlog_recover *trans;
eeb11688
DC
3744 unsigned int len;
3745
3746 /* Do we understand who wrote this op? */
3747 if (ohead->oh_clientid != XFS_TRANSACTION &&
3748 ohead->oh_clientid != XFS_LOG) {
3749 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3750 __func__, ohead->oh_clientid);
3751 ASSERT(0);
3752 return -EIO;
3753 }
3754
3755 /*
3756 * Check the ophdr contains all the data it is supposed to contain.
3757 */
3758 len = be32_to_cpu(ohead->oh_len);
3759 if (dp + len > end) {
3760 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
3761 WARN_ON(1);
3762 return -EIO;
3763 }
3764
3765 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
3766 if (!trans) {
3767 /* nothing to do, so skip over this ophdr */
3768 return 0;
3769 }
3770
e9131e50
DC
3771 return xlog_recovery_process_trans(log, trans, dp, len,
3772 ohead->oh_flags, pass);
1da177e4
LT
3773}
3774
3775/*
3776 * There are two valid states of the r_state field. 0 indicates that the
3777 * transaction structure is in a normal state. We have either seen the
3778 * start of the transaction or the last operation we added was not a partial
3779 * operation. If the last operation we added to the transaction was a
3780 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3781 *
3782 * NOTE: skip LRs with 0 data length.
3783 */
3784STATIC int
3785xlog_recover_process_data(
9a8d2fdb 3786 struct xlog *log,
f0a76953 3787 struct hlist_head rhash[],
9a8d2fdb 3788 struct xlog_rec_header *rhead,
b2a922cd 3789 char *dp,
1da177e4
LT
3790 int pass)
3791{
eeb11688 3792 struct xlog_op_header *ohead;
b2a922cd 3793 char *end;
1da177e4 3794 int num_logops;
1da177e4 3795 int error;
1da177e4 3796
eeb11688 3797 end = dp + be32_to_cpu(rhead->h_len);
b53e675d 3798 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3799
3800 /* check the log format matches our own - else we can't recover */
3801 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 3802 return -EIO;
1da177e4 3803
eeb11688
DC
3804 while ((dp < end) && num_logops) {
3805
3806 ohead = (struct xlog_op_header *)dp;
3807 dp += sizeof(*ohead);
3808 ASSERT(dp <= end);
3809
3810 /* errors will abort recovery */
3811 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
3812 dp, end, pass);
3813 if (error)
3814 return error;
3815
67fcb7bf 3816 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3817 num_logops--;
3818 }
3819 return 0;
3820}
3821
3822/*
3823 * Process an extent free intent item that was recovered from
3824 * the log. We need to free the extents that it describes.
3825 */
3c1e2bbe 3826STATIC int
1da177e4
LT
3827xlog_recover_process_efi(
3828 xfs_mount_t *mp,
3829 xfs_efi_log_item_t *efip)
3830{
3831 xfs_efd_log_item_t *efdp;
3832 xfs_trans_t *tp;
3833 int i;
3c1e2bbe 3834 int error = 0;
1da177e4
LT
3835 xfs_extent_t *extp;
3836 xfs_fsblock_t startblock_fsb;
3837
b199c8a4 3838 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3839
3840 /*
3841 * First check the validity of the extents described by the
3842 * EFI. If any are bad, then assume that all are bad and
3843 * just toss the EFI.
3844 */
3845 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3846 extp = &(efip->efi_format.efi_extents[i]);
3847 startblock_fsb = XFS_BB_TO_FSB(mp,
3848 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3849 if ((startblock_fsb == 0) ||
3850 (extp->ext_len == 0) ||
3851 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3852 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3853 /*
3854 * This will pull the EFI from the AIL and
3855 * free the memory associated with it.
3856 */
666d644c 3857 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
5e4b5386 3858 xfs_efi_release(efip);
2451337d 3859 return -EIO;
1da177e4
LT
3860 }
3861 }
3862
3863 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 3864 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
3865 if (error)
3866 goto abort_error;
1da177e4
LT
3867 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3868
3869 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3870 extp = &(efip->efi_format.efi_extents[i]);
6bc43af3
BF
3871 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
3872 extp->ext_len);
fc6149d8
DC
3873 if (error)
3874 goto abort_error;
6bc43af3 3875
1da177e4
LT
3876 }
3877
b199c8a4 3878 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
70393313 3879 error = xfs_trans_commit(tp);
3c1e2bbe 3880 return error;
fc6149d8
DC
3881
3882abort_error:
4906e215 3883 xfs_trans_cancel(tp);
fc6149d8 3884 return error;
1da177e4
LT
3885}
3886
1da177e4
LT
3887/*
3888 * When this is called, all of the EFIs which did not have
3889 * corresponding EFDs should be in the AIL. What we do now
3890 * is free the extents associated with each one.
3891 *
3892 * Since we process the EFIs in normal transactions, they
3893 * will be removed at some point after the commit. This prevents
3894 * us from just walking down the list processing each one.
3895 * We'll use a flag in the EFI to skip those that we've already
3896 * processed and use the AIL iteration mechanism's generation
3897 * count to try to speed this up at least a bit.
3898 *
3899 * When we start, we know that the EFIs are the only things in
3900 * the AIL. As we process them, however, other items are added
3901 * to the AIL. Since everything added to the AIL must come after
3902 * everything already in the AIL, we stop processing as soon as
3903 * we see something other than an EFI in the AIL.
3904 */
3c1e2bbe 3905STATIC int
1da177e4 3906xlog_recover_process_efis(
f0b2efad 3907 struct xlog *log)
1da177e4 3908{
f0b2efad
BF
3909 struct xfs_log_item *lip;
3910 struct xfs_efi_log_item *efip;
3c1e2bbe 3911 int error = 0;
27d8d5fe 3912 struct xfs_ail_cursor cur;
a9c21c1b 3913 struct xfs_ail *ailp;
1da177e4 3914
a9c21c1b
DC
3915 ailp = log->l_ailp;
3916 spin_lock(&ailp->xa_lock);
3917 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3918 while (lip != NULL) {
3919 /*
3920 * We're done when we see something other than an EFI.
27d8d5fe 3921 * There should be no EFIs left in the AIL now.
1da177e4
LT
3922 */
3923 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3924#ifdef DEBUG
a9c21c1b 3925 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3926 ASSERT(lip->li_type != XFS_LI_EFI);
3927#endif
1da177e4
LT
3928 break;
3929 }
3930
3931 /*
3932 * Skip EFIs that we've already processed.
3933 */
f0b2efad 3934 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
b199c8a4 3935 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3936 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3937 continue;
3938 }
3939
a9c21c1b
DC
3940 spin_unlock(&ailp->xa_lock);
3941 error = xlog_recover_process_efi(log->l_mp, efip);
3942 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3943 if (error)
3944 goto out;
a9c21c1b 3945 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3946 }
27d8d5fe 3947out:
e4a1e29c 3948 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3949 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3950 return error;
1da177e4
LT
3951}
3952
f0b2efad
BF
3953/*
3954 * A cancel occurs when the mount has failed and we're bailing out. Release all
3955 * pending EFIs so they don't pin the AIL.
3956 */
3957STATIC int
3958xlog_recover_cancel_efis(
3959 struct xlog *log)
3960{
3961 struct xfs_log_item *lip;
3962 struct xfs_efi_log_item *efip;
3963 int error = 0;
3964 struct xfs_ail_cursor cur;
3965 struct xfs_ail *ailp;
3966
3967 ailp = log->l_ailp;
3968 spin_lock(&ailp->xa_lock);
3969 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3970 while (lip != NULL) {
3971 /*
3972 * We're done when we see something other than an EFI.
3973 * There should be no EFIs left in the AIL now.
3974 */
3975 if (lip->li_type != XFS_LI_EFI) {
3976#ifdef DEBUG
3977 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3978 ASSERT(lip->li_type != XFS_LI_EFI);
3979#endif
3980 break;
3981 }
3982
3983 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
3984
3985 spin_unlock(&ailp->xa_lock);
3986 xfs_efi_release(efip);
3987 spin_lock(&ailp->xa_lock);
3988
3989 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3990 }
3991
3992 xfs_trans_ail_cursor_done(&cur);
3993 spin_unlock(&ailp->xa_lock);
3994 return error;
3995}
3996
1da177e4
LT
3997/*
3998 * This routine performs a transaction to null out a bad inode pointer
3999 * in an agi unlinked inode hash bucket.
4000 */
4001STATIC void
4002xlog_recover_clear_agi_bucket(
4003 xfs_mount_t *mp,
4004 xfs_agnumber_t agno,
4005 int bucket)
4006{
4007 xfs_trans_t *tp;
4008 xfs_agi_t *agi;
4009 xfs_buf_t *agibp;
4010 int offset;
4011 int error;
4012
4013 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 4014 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
4015 if (error)
4016 goto out_abort;
1da177e4 4017
5e1be0fb
CH
4018 error = xfs_read_agi(mp, tp, agno, &agibp);
4019 if (error)
e5720eec 4020 goto out_abort;
1da177e4 4021
5e1be0fb 4022 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4023 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
4024 offset = offsetof(xfs_agi_t, agi_unlinked) +
4025 (sizeof(xfs_agino_t) * bucket);
4026 xfs_trans_log_buf(tp, agibp, offset,
4027 (offset + sizeof(xfs_agino_t) - 1));
4028
70393313 4029 error = xfs_trans_commit(tp);
e5720eec
DC
4030 if (error)
4031 goto out_error;
4032 return;
4033
4034out_abort:
4906e215 4035 xfs_trans_cancel(tp);
e5720eec 4036out_error:
a0fa2b67 4037 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 4038 return;
1da177e4
LT
4039}
4040
23fac50f
CH
4041STATIC xfs_agino_t
4042xlog_recover_process_one_iunlink(
4043 struct xfs_mount *mp,
4044 xfs_agnumber_t agno,
4045 xfs_agino_t agino,
4046 int bucket)
4047{
4048 struct xfs_buf *ibp;
4049 struct xfs_dinode *dip;
4050 struct xfs_inode *ip;
4051 xfs_ino_t ino;
4052 int error;
4053
4054 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 4055 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
4056 if (error)
4057 goto fail;
4058
4059 /*
4060 * Get the on disk inode to find the next inode in the bucket.
4061 */
475ee413 4062 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 4063 if (error)
0e446673 4064 goto fail_iput;
23fac50f 4065
23fac50f 4066 ASSERT(ip->i_d.di_nlink == 0);
0e446673 4067 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
4068
4069 /* setup for the next pass */
4070 agino = be32_to_cpu(dip->di_next_unlinked);
4071 xfs_buf_relse(ibp);
4072
4073 /*
4074 * Prevent any DMAPI event from being sent when the reference on
4075 * the inode is dropped.
4076 */
4077 ip->i_d.di_dmevmask = 0;
4078
0e446673 4079 IRELE(ip);
23fac50f
CH
4080 return agino;
4081
0e446673
CH
4082 fail_iput:
4083 IRELE(ip);
23fac50f
CH
4084 fail:
4085 /*
4086 * We can't read in the inode this bucket points to, or this inode
4087 * is messed up. Just ditch this bucket of inodes. We will lose
4088 * some inodes and space, but at least we won't hang.
4089 *
4090 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4091 * clear the inode pointer in the bucket.
4092 */
4093 xlog_recover_clear_agi_bucket(mp, agno, bucket);
4094 return NULLAGINO;
4095}
4096
1da177e4
LT
4097/*
4098 * xlog_iunlink_recover
4099 *
4100 * This is called during recovery to process any inodes which
4101 * we unlinked but not freed when the system crashed. These
4102 * inodes will be on the lists in the AGI blocks. What we do
4103 * here is scan all the AGIs and fully truncate and free any
4104 * inodes found on the lists. Each inode is removed from the
4105 * lists when it has been fully truncated and is freed. The
4106 * freeing of the inode and its removal from the list must be
4107 * atomic.
4108 */
d96f8f89 4109STATIC void
1da177e4 4110xlog_recover_process_iunlinks(
9a8d2fdb 4111 struct xlog *log)
1da177e4
LT
4112{
4113 xfs_mount_t *mp;
4114 xfs_agnumber_t agno;
4115 xfs_agi_t *agi;
4116 xfs_buf_t *agibp;
1da177e4 4117 xfs_agino_t agino;
1da177e4
LT
4118 int bucket;
4119 int error;
4120 uint mp_dmevmask;
4121
4122 mp = log->l_mp;
4123
4124 /*
4125 * Prevent any DMAPI event from being sent while in this function.
4126 */
4127 mp_dmevmask = mp->m_dmevmask;
4128 mp->m_dmevmask = 0;
4129
4130 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4131 /*
4132 * Find the agi for this ag.
4133 */
5e1be0fb
CH
4134 error = xfs_read_agi(mp, NULL, agno, &agibp);
4135 if (error) {
4136 /*
4137 * AGI is b0rked. Don't process it.
4138 *
4139 * We should probably mark the filesystem as corrupt
4140 * after we've recovered all the ag's we can....
4141 */
4142 continue;
1da177e4 4143 }
d97d32ed
JK
4144 /*
4145 * Unlock the buffer so that it can be acquired in the normal
4146 * course of the transaction to truncate and free each inode.
4147 * Because we are not racing with anyone else here for the AGI
4148 * buffer, we don't even need to hold it locked to read the
4149 * initial unlinked bucket entries out of the buffer. We keep
4150 * buffer reference though, so that it stays pinned in memory
4151 * while we need the buffer.
4152 */
1da177e4 4153 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 4154 xfs_buf_unlock(agibp);
1da177e4
LT
4155
4156 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 4157 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 4158 while (agino != NULLAGINO) {
23fac50f
CH
4159 agino = xlog_recover_process_one_iunlink(mp,
4160 agno, agino, bucket);
1da177e4
LT
4161 }
4162 }
d97d32ed 4163 xfs_buf_rele(agibp);
1da177e4
LT
4164 }
4165
4166 mp->m_dmevmask = mp_dmevmask;
4167}
4168
0e446be4 4169STATIC int
1da177e4 4170xlog_unpack_data(
9a8d2fdb 4171 struct xlog_rec_header *rhead,
b2a922cd 4172 char *dp,
9a8d2fdb 4173 struct xlog *log)
1da177e4
LT
4174{
4175 int i, j, k;
1da177e4 4176
b53e675d 4177 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 4178 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 4179 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
4180 dp += BBSIZE;
4181 }
4182
62118709 4183 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 4184 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 4185 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4186 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4187 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4188 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4189 dp += BBSIZE;
4190 }
4191 }
0e446be4
CH
4192
4193 return 0;
1da177e4
LT
4194}
4195
9d94901f 4196/*
b94fb2d1 4197 * CRC check, unpack and process a log record.
9d94901f
BF
4198 */
4199STATIC int
4200xlog_recover_process(
4201 struct xlog *log,
4202 struct hlist_head rhash[],
4203 struct xlog_rec_header *rhead,
4204 char *dp,
4205 int pass)
4206{
4207 int error;
b94fb2d1
BF
4208 __le32 crc;
4209
6528250b
BF
4210 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4211
b94fb2d1 4212 /*
6528250b
BF
4213 * Nothing else to do if this is a CRC verification pass. Just return
4214 * if this a record with a non-zero crc. Unfortunately, mkfs always
4215 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4216 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4217 * know precisely what failed.
4218 */
4219 if (pass == XLOG_RECOVER_CRCPASS) {
4220 if (rhead->h_crc && crc != le32_to_cpu(rhead->h_crc))
4221 return -EFSBADCRC;
4222 return 0;
4223 }
4224
4225 /*
4226 * We're in the normal recovery path. Issue a warning if and only if the
4227 * CRC in the header is non-zero. This is an advisory warning and the
4228 * zero CRC check prevents warnings from being emitted when upgrading
4229 * the kernel from one that does not add CRCs by default.
b94fb2d1 4230 */
b94fb2d1
BF
4231 if (crc != le32_to_cpu(rhead->h_crc)) {
4232 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4233 xfs_alert(log->l_mp,
4234 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4235 le32_to_cpu(rhead->h_crc),
4236 le32_to_cpu(crc));
4237 xfs_hex_dump(dp, 32);
4238 }
4239
4240 /*
4241 * If the filesystem is CRC enabled, this mismatch becomes a
4242 * fatal log corruption failure.
4243 */
4244 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4245 return -EFSCORRUPTED;
4246 }
9d94901f
BF
4247
4248 error = xlog_unpack_data(rhead, dp, log);
4249 if (error)
4250 return error;
4251
4252 return xlog_recover_process_data(log, rhash, rhead, dp, pass);
4253}
4254
1da177e4
LT
4255STATIC int
4256xlog_valid_rec_header(
9a8d2fdb
MT
4257 struct xlog *log,
4258 struct xlog_rec_header *rhead,
1da177e4
LT
4259 xfs_daddr_t blkno)
4260{
4261 int hlen;
4262
69ef921b 4263 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4264 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4265 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4266 return -EFSCORRUPTED;
1da177e4
LT
4267 }
4268 if (unlikely(
4269 (!rhead->h_version ||
b53e675d 4270 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4271 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4272 __func__, be32_to_cpu(rhead->h_version));
2451337d 4273 return -EIO;
1da177e4
LT
4274 }
4275
4276 /* LR body must have data or it wouldn't have been written */
b53e675d 4277 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4278 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4279 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4280 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4281 return -EFSCORRUPTED;
1da177e4
LT
4282 }
4283 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4284 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4285 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 4286 return -EFSCORRUPTED;
1da177e4
LT
4287 }
4288 return 0;
4289}
4290
4291/*
4292 * Read the log from tail to head and process the log records found.
4293 * Handle the two cases where the tail and head are in the same cycle
4294 * and where the active portion of the log wraps around the end of
4295 * the physical log separately. The pass parameter is passed through
4296 * to the routines called to process the data and is not looked at
4297 * here.
4298 */
4299STATIC int
4300xlog_do_recovery_pass(
9a8d2fdb 4301 struct xlog *log,
1da177e4
LT
4302 xfs_daddr_t head_blk,
4303 xfs_daddr_t tail_blk,
d7f37692
BF
4304 int pass,
4305 xfs_daddr_t *first_bad) /* out: first bad log rec */
1da177e4
LT
4306{
4307 xlog_rec_header_t *rhead;
4308 xfs_daddr_t blk_no;
d7f37692 4309 xfs_daddr_t rhead_blk;
b2a922cd 4310 char *offset;
1da177e4 4311 xfs_buf_t *hbp, *dbp;
a70f9fe5 4312 int error = 0, h_size, h_len;
1da177e4
LT
4313 int bblks, split_bblks;
4314 int hblks, split_hblks, wrapped_hblks;
f0a76953 4315 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4316
4317 ASSERT(head_blk != tail_blk);
d7f37692 4318 rhead_blk = 0;
1da177e4
LT
4319
4320 /*
4321 * Read the header of the tail block and get the iclog buffer size from
4322 * h_size. Use this to tell how many sectors make up the log header.
4323 */
62118709 4324 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4325 /*
4326 * When using variable length iclogs, read first sector of
4327 * iclog header and extract the header size from it. Get a
4328 * new hbp that is the correct size.
4329 */
4330 hbp = xlog_get_bp(log, 1);
4331 if (!hbp)
2451337d 4332 return -ENOMEM;
076e6acb
CH
4333
4334 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4335 if (error)
1da177e4 4336 goto bread_err1;
076e6acb 4337
1da177e4
LT
4338 rhead = (xlog_rec_header_t *)offset;
4339 error = xlog_valid_rec_header(log, rhead, tail_blk);
4340 if (error)
4341 goto bread_err1;
a70f9fe5
BF
4342
4343 /*
4344 * xfsprogs has a bug where record length is based on lsunit but
4345 * h_size (iclog size) is hardcoded to 32k. Now that we
4346 * unconditionally CRC verify the unmount record, this means the
4347 * log buffer can be too small for the record and cause an
4348 * overrun.
4349 *
4350 * Detect this condition here. Use lsunit for the buffer size as
4351 * long as this looks like the mkfs case. Otherwise, return an
4352 * error to avoid a buffer overrun.
4353 */
b53e675d 4354 h_size = be32_to_cpu(rhead->h_size);
a70f9fe5
BF
4355 h_len = be32_to_cpu(rhead->h_len);
4356 if (h_len > h_size) {
4357 if (h_len <= log->l_mp->m_logbsize &&
4358 be32_to_cpu(rhead->h_num_logops) == 1) {
4359 xfs_warn(log->l_mp,
4360 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4361 h_size, log->l_mp->m_logbsize);
4362 h_size = log->l_mp->m_logbsize;
4363 } else
4364 return -EFSCORRUPTED;
4365 }
4366
b53e675d 4367 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4368 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4369 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4370 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4371 hblks++;
4372 xlog_put_bp(hbp);
4373 hbp = xlog_get_bp(log, hblks);
4374 } else {
4375 hblks = 1;
4376 }
4377 } else {
69ce58f0 4378 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4379 hblks = 1;
4380 hbp = xlog_get_bp(log, 1);
4381 h_size = XLOG_BIG_RECORD_BSIZE;
4382 }
4383
4384 if (!hbp)
2451337d 4385 return -ENOMEM;
1da177e4
LT
4386 dbp = xlog_get_bp(log, BTOBB(h_size));
4387 if (!dbp) {
4388 xlog_put_bp(hbp);
2451337d 4389 return -ENOMEM;
1da177e4
LT
4390 }
4391
4392 memset(rhash, 0, sizeof(rhash));
d7f37692 4393 blk_no = rhead_blk = tail_blk;
970fd3f0 4394 if (tail_blk > head_blk) {
1da177e4
LT
4395 /*
4396 * Perform recovery around the end of the physical log.
4397 * When the head is not on the same cycle number as the tail,
970fd3f0 4398 * we can't do a sequential recovery.
1da177e4 4399 */
1da177e4
LT
4400 while (blk_no < log->l_logBBsize) {
4401 /*
4402 * Check for header wrapping around physical end-of-log
4403 */
62926044 4404 offset = hbp->b_addr;
1da177e4
LT
4405 split_hblks = 0;
4406 wrapped_hblks = 0;
4407 if (blk_no + hblks <= log->l_logBBsize) {
4408 /* Read header in one read */
076e6acb
CH
4409 error = xlog_bread(log, blk_no, hblks, hbp,
4410 &offset);
1da177e4
LT
4411 if (error)
4412 goto bread_err2;
1da177e4
LT
4413 } else {
4414 /* This LR is split across physical log end */
4415 if (blk_no != log->l_logBBsize) {
4416 /* some data before physical log end */
4417 ASSERT(blk_no <= INT_MAX);
4418 split_hblks = log->l_logBBsize - (int)blk_no;
4419 ASSERT(split_hblks > 0);
076e6acb
CH
4420 error = xlog_bread(log, blk_no,
4421 split_hblks, hbp,
4422 &offset);
4423 if (error)
1da177e4 4424 goto bread_err2;
1da177e4 4425 }
076e6acb 4426
1da177e4
LT
4427 /*
4428 * Note: this black magic still works with
4429 * large sector sizes (non-512) only because:
4430 * - we increased the buffer size originally
4431 * by 1 sector giving us enough extra space
4432 * for the second read;
4433 * - the log start is guaranteed to be sector
4434 * aligned;
4435 * - we read the log end (LR header start)
4436 * _first_, then the log start (LR header end)
4437 * - order is important.
4438 */
234f56ac 4439 wrapped_hblks = hblks - split_hblks;
44396476
DC
4440 error = xlog_bread_offset(log, 0,
4441 wrapped_hblks, hbp,
4442 offset + BBTOB(split_hblks));
1da177e4
LT
4443 if (error)
4444 goto bread_err2;
1da177e4
LT
4445 }
4446 rhead = (xlog_rec_header_t *)offset;
4447 error = xlog_valid_rec_header(log, rhead,
4448 split_hblks ? blk_no : 0);
4449 if (error)
4450 goto bread_err2;
4451
b53e675d 4452 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4453 blk_no += hblks;
4454
4455 /* Read in data for log record */
4456 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4457 error = xlog_bread(log, blk_no, bblks, dbp,
4458 &offset);
1da177e4
LT
4459 if (error)
4460 goto bread_err2;
1da177e4
LT
4461 } else {
4462 /* This log record is split across the
4463 * physical end of log */
62926044 4464 offset = dbp->b_addr;
1da177e4
LT
4465 split_bblks = 0;
4466 if (blk_no != log->l_logBBsize) {
4467 /* some data is before the physical
4468 * end of log */
4469 ASSERT(!wrapped_hblks);
4470 ASSERT(blk_no <= INT_MAX);
4471 split_bblks =
4472 log->l_logBBsize - (int)blk_no;
4473 ASSERT(split_bblks > 0);
076e6acb
CH
4474 error = xlog_bread(log, blk_no,
4475 split_bblks, dbp,
4476 &offset);
4477 if (error)
1da177e4 4478 goto bread_err2;
1da177e4 4479 }
076e6acb 4480
1da177e4
LT
4481 /*
4482 * Note: this black magic still works with
4483 * large sector sizes (non-512) only because:
4484 * - we increased the buffer size originally
4485 * by 1 sector giving us enough extra space
4486 * for the second read;
4487 * - the log start is guaranteed to be sector
4488 * aligned;
4489 * - we read the log end (LR header start)
4490 * _first_, then the log start (LR header end)
4491 * - order is important.
4492 */
44396476 4493 error = xlog_bread_offset(log, 0,
009507b0 4494 bblks - split_bblks, dbp,
44396476 4495 offset + BBTOB(split_bblks));
076e6acb
CH
4496 if (error)
4497 goto bread_err2;
1da177e4 4498 }
0e446be4 4499
9d94901f
BF
4500 error = xlog_recover_process(log, rhash, rhead, offset,
4501 pass);
0e446be4 4502 if (error)
1da177e4 4503 goto bread_err2;
d7f37692 4504
1da177e4 4505 blk_no += bblks;
d7f37692 4506 rhead_blk = blk_no;
1da177e4
LT
4507 }
4508
4509 ASSERT(blk_no >= log->l_logBBsize);
4510 blk_no -= log->l_logBBsize;
d7f37692 4511 rhead_blk = blk_no;
970fd3f0 4512 }
1da177e4 4513
970fd3f0
ES
4514 /* read first part of physical log */
4515 while (blk_no < head_blk) {
4516 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4517 if (error)
4518 goto bread_err2;
076e6acb 4519
970fd3f0
ES
4520 rhead = (xlog_rec_header_t *)offset;
4521 error = xlog_valid_rec_header(log, rhead, blk_no);
4522 if (error)
4523 goto bread_err2;
076e6acb 4524
970fd3f0
ES
4525 /* blocks in data section */
4526 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
4527 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4528 &offset);
4529 if (error)
4530 goto bread_err2;
076e6acb 4531
9d94901f 4532 error = xlog_recover_process(log, rhash, rhead, offset, pass);
970fd3f0
ES
4533 if (error)
4534 goto bread_err2;
d7f37692 4535
970fd3f0 4536 blk_no += bblks + hblks;
d7f37692 4537 rhead_blk = blk_no;
1da177e4
LT
4538 }
4539
4540 bread_err2:
4541 xlog_put_bp(dbp);
4542 bread_err1:
4543 xlog_put_bp(hbp);
d7f37692
BF
4544
4545 if (error && first_bad)
4546 *first_bad = rhead_blk;
4547
1da177e4
LT
4548 return error;
4549}
4550
4551/*
4552 * Do the recovery of the log. We actually do this in two phases.
4553 * The two passes are necessary in order to implement the function
4554 * of cancelling a record written into the log. The first pass
4555 * determines those things which have been cancelled, and the
4556 * second pass replays log items normally except for those which
4557 * have been cancelled. The handling of the replay and cancellations
4558 * takes place in the log item type specific routines.
4559 *
4560 * The table of items which have cancel records in the log is allocated
4561 * and freed at this level, since only here do we know when all of
4562 * the log recovery has been completed.
4563 */
4564STATIC int
4565xlog_do_log_recovery(
9a8d2fdb 4566 struct xlog *log,
1da177e4
LT
4567 xfs_daddr_t head_blk,
4568 xfs_daddr_t tail_blk)
4569{
d5689eaa 4570 int error, i;
1da177e4
LT
4571
4572 ASSERT(head_blk != tail_blk);
4573
4574 /*
4575 * First do a pass to find all of the cancelled buf log items.
4576 * Store them in the buf_cancel_table for use in the second pass.
4577 */
d5689eaa
CH
4578 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4579 sizeof(struct list_head),
1da177e4 4580 KM_SLEEP);
d5689eaa
CH
4581 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4582 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4583
1da177e4 4584 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 4585 XLOG_RECOVER_PASS1, NULL);
1da177e4 4586 if (error != 0) {
f0e2d93c 4587 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4588 log->l_buf_cancel_table = NULL;
4589 return error;
4590 }
4591 /*
4592 * Then do a second pass to actually recover the items in the log.
4593 * When it is complete free the table of buf cancel items.
4594 */
4595 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 4596 XLOG_RECOVER_PASS2, NULL);
1da177e4 4597#ifdef DEBUG
6d192a9b 4598 if (!error) {
1da177e4
LT
4599 int i;
4600
4601 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4602 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4603 }
4604#endif /* DEBUG */
4605
f0e2d93c 4606 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4607 log->l_buf_cancel_table = NULL;
4608
4609 return error;
4610}
4611
4612/*
4613 * Do the actual recovery
4614 */
4615STATIC int
4616xlog_do_recover(
9a8d2fdb 4617 struct xlog *log,
1da177e4
LT
4618 xfs_daddr_t head_blk,
4619 xfs_daddr_t tail_blk)
4620{
4621 int error;
4622 xfs_buf_t *bp;
4623 xfs_sb_t *sbp;
4624
4625 /*
4626 * First replay the images in the log.
4627 */
4628 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4629 if (error)
1da177e4 4630 return error;
1da177e4
LT
4631
4632 /*
4633 * If IO errors happened during recovery, bail out.
4634 */
4635 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
2451337d 4636 return -EIO;
1da177e4
LT
4637 }
4638
4639 /*
4640 * We now update the tail_lsn since much of the recovery has completed
4641 * and there may be space available to use. If there were no extent
4642 * or iunlinks, we can free up the entire log and set the tail_lsn to
4643 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4644 * lsn of the last known good LR on disk. If there are extent frees
4645 * or iunlinks they will have some entries in the AIL; so we look at
4646 * the AIL to determine how to set the tail_lsn.
4647 */
4648 xlog_assign_tail_lsn(log->l_mp);
4649
4650 /*
4651 * Now that we've finished replaying all buffer and inode
98021821 4652 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4653 */
4654 bp = xfs_getsb(log->l_mp, 0);
4655 XFS_BUF_UNDONE(bp);
bebf963f 4656 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4657 XFS_BUF_READ(bp);
bebf963f 4658 XFS_BUF_UNASYNC(bp);
1813dd64 4659 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3 4660
595bff75 4661 error = xfs_buf_submit_wait(bp);
d64e31a2 4662 if (error) {
595bff75
DC
4663 if (!XFS_FORCED_SHUTDOWN(log->l_mp)) {
4664 xfs_buf_ioerror_alert(bp, __func__);
4665 ASSERT(0);
4666 }
1da177e4
LT
4667 xfs_buf_relse(bp);
4668 return error;
4669 }
4670
4671 /* Convert superblock from on-disk format */
4672 sbp = &log->l_mp->m_sb;
98021821 4673 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4674 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4675 ASSERT(xfs_sb_good_version(sbp));
5681ca40
DC
4676 xfs_reinit_percpu_counters(log->l_mp);
4677
1da177e4
LT
4678 xfs_buf_relse(bp);
4679
5478eead 4680
1da177e4
LT
4681 xlog_recover_check_summary(log);
4682
4683 /* Normal transactions can now occur */
4684 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4685 return 0;
4686}
4687
4688/*
4689 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4690 *
4691 * Return error or zero.
4692 */
4693int
4694xlog_recover(
9a8d2fdb 4695 struct xlog *log)
1da177e4
LT
4696{
4697 xfs_daddr_t head_blk, tail_blk;
4698 int error;
4699
4700 /* find the tail of the log */
a45086e2
BF
4701 error = xlog_find_tail(log, &head_blk, &tail_blk);
4702 if (error)
1da177e4
LT
4703 return error;
4704
a45086e2
BF
4705 /*
4706 * The superblock was read before the log was available and thus the LSN
4707 * could not be verified. Check the superblock LSN against the current
4708 * LSN now that it's known.
4709 */
4710 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
4711 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
4712 return -EINVAL;
4713
1da177e4
LT
4714 if (tail_blk != head_blk) {
4715 /* There used to be a comment here:
4716 *
4717 * disallow recovery on read-only mounts. note -- mount
4718 * checks for ENOSPC and turns it into an intelligent
4719 * error message.
4720 * ...but this is no longer true. Now, unless you specify
4721 * NORECOVERY (in which case this function would never be
4722 * called), we just go ahead and recover. We do this all
4723 * under the vfs layer, so we can get away with it unless
4724 * the device itself is read-only, in which case we fail.
4725 */
3a02ee18 4726 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4727 return error;
4728 }
4729
e721f504
DC
4730 /*
4731 * Version 5 superblock log feature mask validation. We know the
4732 * log is dirty so check if there are any unknown log features
4733 * in what we need to recover. If there are unknown features
4734 * (e.g. unsupported transactions, then simply reject the
4735 * attempt at recovery before touching anything.
4736 */
4737 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4738 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4739 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4740 xfs_warn(log->l_mp,
f41febd2 4741"Superblock has unknown incompatible log features (0x%x) enabled.",
e721f504
DC
4742 (log->l_mp->m_sb.sb_features_log_incompat &
4743 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
f41febd2
JP
4744 xfs_warn(log->l_mp,
4745"The log can not be fully and/or safely recovered by this kernel.");
4746 xfs_warn(log->l_mp,
4747"Please recover the log on a kernel that supports the unknown features.");
2451337d 4748 return -EINVAL;
e721f504
DC
4749 }
4750
2e227178
BF
4751 /*
4752 * Delay log recovery if the debug hook is set. This is debug
4753 * instrumention to coordinate simulation of I/O failures with
4754 * log recovery.
4755 */
4756 if (xfs_globals.log_recovery_delay) {
4757 xfs_notice(log->l_mp,
4758 "Delaying log recovery for %d seconds.",
4759 xfs_globals.log_recovery_delay);
4760 msleep(xfs_globals.log_recovery_delay * 1000);
4761 }
4762
a0fa2b67
DC
4763 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4764 log->l_mp->m_logname ? log->l_mp->m_logname
4765 : "internal");
1da177e4
LT
4766
4767 error = xlog_do_recover(log, head_blk, tail_blk);
4768 log->l_flags |= XLOG_RECOVERY_NEEDED;
4769 }
4770 return error;
4771}
4772
4773/*
4774 * In the first part of recovery we replay inodes and buffers and build
4775 * up the list of extent free items which need to be processed. Here
4776 * we process the extent free items and clean up the on disk unlinked
4777 * inode lists. This is separated from the first part of recovery so
4778 * that the root and real-time bitmap inodes can be read in from disk in
4779 * between the two stages. This is necessary so that we can free space
4780 * in the real-time portion of the file system.
4781 */
4782int
4783xlog_recover_finish(
9a8d2fdb 4784 struct xlog *log)
1da177e4
LT
4785{
4786 /*
4787 * Now we're ready to do the transactions needed for the
4788 * rest of recovery. Start with completing all the extent
4789 * free intent records and then process the unlinked inode
4790 * lists. At this point, we essentially run in normal mode
4791 * except that we're still performing recovery actions
4792 * rather than accepting new requests.
4793 */
4794 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4795 int error;
4796 error = xlog_recover_process_efis(log);
4797 if (error) {
a0fa2b67 4798 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4799 return error;
4800 }
1da177e4
LT
4801 /*
4802 * Sync the log to get all the EFIs out of the AIL.
4803 * This isn't absolutely necessary, but it helps in
4804 * case the unlink transactions would have problems
4805 * pushing the EFIs out of the way.
4806 */
a14a348b 4807 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4808
4249023a 4809 xlog_recover_process_iunlinks(log);
1da177e4
LT
4810
4811 xlog_recover_check_summary(log);
4812
a0fa2b67
DC
4813 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4814 log->l_mp->m_logname ? log->l_mp->m_logname
4815 : "internal");
1da177e4
LT
4816 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4817 } else {
a0fa2b67 4818 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4819 }
4820 return 0;
4821}
4822
f0b2efad
BF
4823int
4824xlog_recover_cancel(
4825 struct xlog *log)
4826{
4827 int error = 0;
4828
4829 if (log->l_flags & XLOG_RECOVERY_NEEDED)
4830 error = xlog_recover_cancel_efis(log);
4831
4832 return error;
4833}
1da177e4
LT
4834
4835#if defined(DEBUG)
4836/*
4837 * Read all of the agf and agi counters and check that they
4838 * are consistent with the superblock counters.
4839 */
4840void
4841xlog_recover_check_summary(
9a8d2fdb 4842 struct xlog *log)
1da177e4
LT
4843{
4844 xfs_mount_t *mp;
4845 xfs_agf_t *agfp;
1da177e4
LT
4846 xfs_buf_t *agfbp;
4847 xfs_buf_t *agibp;
1da177e4
LT
4848 xfs_agnumber_t agno;
4849 __uint64_t freeblks;
4850 __uint64_t itotal;
4851 __uint64_t ifree;
5e1be0fb 4852 int error;
1da177e4
LT
4853
4854 mp = log->l_mp;
4855
4856 freeblks = 0LL;
4857 itotal = 0LL;
4858 ifree = 0LL;
4859 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
4860 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4861 if (error) {
a0fa2b67
DC
4862 xfs_alert(mp, "%s agf read failed agno %d error %d",
4863 __func__, agno, error);
4805621a
FCH
4864 } else {
4865 agfp = XFS_BUF_TO_AGF(agfbp);
4866 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4867 be32_to_cpu(agfp->agf_flcount);
4868 xfs_buf_relse(agfbp);
1da177e4 4869 }
1da177e4 4870
5e1be0fb 4871 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4872 if (error) {
4873 xfs_alert(mp, "%s agi read failed agno %d error %d",
4874 __func__, agno, error);
4875 } else {
5e1be0fb 4876 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4877
5e1be0fb
CH
4878 itotal += be32_to_cpu(agi->agi_count);
4879 ifree += be32_to_cpu(agi->agi_freecount);
4880 xfs_buf_relse(agibp);
4881 }
1da177e4 4882 }
1da177e4
LT
4883}
4884#endif /* DEBUG */
This page took 1.024987 seconds and 5 git commands to generate.