xfs: encapsulate bbcount validity checking
[deliverable/linux.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_bmap_btree.h"
a844f451
NS
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
1da177e4 34#include "xfs_dir2_sf.h"
a844f451 35#include "xfs_attr_sf.h"
1da177e4 36#include "xfs_dinode.h"
1da177e4 37#include "xfs_inode.h"
a844f451 38#include "xfs_inode_item.h"
a844f451 39#include "xfs_alloc.h"
1da177e4
LT
40#include "xfs_ialloc.h"
41#include "xfs_log_priv.h"
42#include "xfs_buf_item.h"
1da177e4
LT
43#include "xfs_log_recover.h"
44#include "xfs_extfree_item.h"
45#include "xfs_trans_priv.h"
1da177e4
LT
46#include "xfs_quota.h"
47#include "xfs_rw.h"
43355099 48#include "xfs_utils.h"
0b1b213f 49#include "xfs_trace.h"
1da177e4
LT
50
51STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
1da177e4
LT
53#if defined(DEBUG)
54STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
55#else
56#define xlog_recover_check_summary(log)
1da177e4
LT
57#endif
58
1da177e4
LT
59/*
60 * Sector aligned buffer routines for buffer create/read/write/access
61 */
62
6881a229
AE
63/* Number of basic blocks in a log sector */
64#define xlog_sectbb(log) (1 << (log)->l_sectbb_log)
65
ff30a622
AE
66/*
67 * Verify the given count of basic blocks is valid number of blocks
68 * to specify for an operation involving the given XFS log buffer.
69 * Returns nonzero if the count is valid, 0 otherwise.
70 */
71
72static inline int
73xlog_buf_bbcount_valid(
74 xlog_t *log,
75 int bbcount)
76{
77 return bbcount > 0 && bbcount <= log->l_logBBsize;
78}
79
5d77c0dc 80STATIC xfs_buf_t *
1da177e4
LT
81xlog_get_bp(
82 xlog_t *log,
3228149c 83 int nbblks)
1da177e4 84{
ff30a622
AE
85 if (!xlog_buf_bbcount_valid(log, nbblks)) {
86 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
87 nbblks);
88 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
89 return NULL;
90 }
1da177e4
LT
91
92 if (log->l_sectbb_log) {
3228149c 93 if (nbblks > 1)
5c17f533
AE
94 nbblks += xlog_sectbb(log);
95 nbblks = round_up(nbblks, xlog_sectbb(log));
1da177e4 96 }
3228149c 97 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
1da177e4
LT
98}
99
5d77c0dc 100STATIC void
1da177e4
LT
101xlog_put_bp(
102 xfs_buf_t *bp)
103{
104 xfs_buf_free(bp);
105}
106
076e6acb
CH
107STATIC xfs_caddr_t
108xlog_align(
109 xlog_t *log,
110 xfs_daddr_t blk_no,
111 int nbblks,
112 xfs_buf_t *bp)
113{
114 xfs_caddr_t ptr;
115
116 if (!log->l_sectbb_log)
117 return XFS_BUF_PTR(bp);
118
119 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
120 ASSERT(XFS_BUF_SIZE(bp) >=
121 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
122 return ptr;
123}
124
1da177e4
LT
125
126/*
127 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
128 */
076e6acb
CH
129STATIC int
130xlog_bread_noalign(
1da177e4
LT
131 xlog_t *log,
132 xfs_daddr_t blk_no,
133 int nbblks,
134 xfs_buf_t *bp)
135{
136 int error;
137
ff30a622
AE
138 if (!xlog_buf_bbcount_valid(log, nbblks)) {
139 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
140 nbblks);
141 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
142 return EFSCORRUPTED;
143 }
144
1da177e4 145 if (log->l_sectbb_log) {
5c17f533
AE
146 blk_no = round_down(blk_no, xlog_sectbb(log));
147 nbblks = round_up(nbblks, xlog_sectbb(log));
1da177e4
LT
148 }
149
150 ASSERT(nbblks > 0);
151 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
152 ASSERT(bp);
153
154 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
155 XFS_BUF_READ(bp);
156 XFS_BUF_BUSY(bp);
157 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
158 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
159
160 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
161 error = xfs_iowait(bp);
162 if (error)
1da177e4
LT
163 xfs_ioerror_alert("xlog_bread", log->l_mp,
164 bp, XFS_BUF_ADDR(bp));
165 return error;
166}
167
076e6acb
CH
168STATIC int
169xlog_bread(
170 xlog_t *log,
171 xfs_daddr_t blk_no,
172 int nbblks,
173 xfs_buf_t *bp,
174 xfs_caddr_t *offset)
175{
176 int error;
177
178 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
179 if (error)
180 return error;
181
182 *offset = xlog_align(log, blk_no, nbblks, bp);
183 return 0;
184}
185
1da177e4
LT
186/*
187 * Write out the buffer at the given block for the given number of blocks.
188 * The buffer is kept locked across the write and is returned locked.
189 * This can only be used for synchronous log writes.
190 */
ba0f32d4 191STATIC int
1da177e4
LT
192xlog_bwrite(
193 xlog_t *log,
194 xfs_daddr_t blk_no,
195 int nbblks,
196 xfs_buf_t *bp)
197{
198 int error;
199
ff30a622
AE
200 if (!xlog_buf_bbcount_valid(log, nbblks)) {
201 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
202 nbblks);
203 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
204 return EFSCORRUPTED;
205 }
206
1da177e4 207 if (log->l_sectbb_log) {
5c17f533
AE
208 blk_no = round_down(blk_no, xlog_sectbb(log));
209 nbblks = round_up(nbblks, xlog_sectbb(log));
1da177e4
LT
210 }
211
212 ASSERT(nbblks > 0);
213 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
214
215 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
216 XFS_BUF_ZEROFLAGS(bp);
217 XFS_BUF_BUSY(bp);
218 XFS_BUF_HOLD(bp);
219 XFS_BUF_PSEMA(bp, PRIBIO);
220 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
221 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
222
223 if ((error = xfs_bwrite(log->l_mp, bp)))
224 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
225 bp, XFS_BUF_ADDR(bp));
226 return error;
227}
228
1da177e4
LT
229#ifdef DEBUG
230/*
231 * dump debug superblock and log record information
232 */
233STATIC void
234xlog_header_check_dump(
235 xfs_mount_t *mp,
236 xlog_rec_header_t *head)
237{
03daa57c
JP
238 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
239 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
240 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
241 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
242}
243#else
244#define xlog_header_check_dump(mp, head)
245#endif
246
247/*
248 * check log record header for recovery
249 */
250STATIC int
251xlog_header_check_recover(
252 xfs_mount_t *mp,
253 xlog_rec_header_t *head)
254{
b53e675d 255 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
256
257 /*
258 * IRIX doesn't write the h_fmt field and leaves it zeroed
259 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
260 * a dirty log created in IRIX.
261 */
b53e675d 262 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
1da177e4
LT
263 xlog_warn(
264 "XFS: dirty log written in incompatible format - can't recover");
265 xlog_header_check_dump(mp, head);
266 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
267 XFS_ERRLEVEL_HIGH, mp);
268 return XFS_ERROR(EFSCORRUPTED);
269 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
270 xlog_warn(
271 "XFS: dirty log entry has mismatched uuid - can't recover");
272 xlog_header_check_dump(mp, head);
273 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
274 XFS_ERRLEVEL_HIGH, mp);
275 return XFS_ERROR(EFSCORRUPTED);
276 }
277 return 0;
278}
279
280/*
281 * read the head block of the log and check the header
282 */
283STATIC int
284xlog_header_check_mount(
285 xfs_mount_t *mp,
286 xlog_rec_header_t *head)
287{
b53e675d 288 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
289
290 if (uuid_is_nil(&head->h_fs_uuid)) {
291 /*
292 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
293 * h_fs_uuid is nil, we assume this log was last mounted
294 * by IRIX and continue.
295 */
296 xlog_warn("XFS: nil uuid in log - IRIX style log");
297 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
298 xlog_warn("XFS: log has mismatched uuid - can't recover");
299 xlog_header_check_dump(mp, head);
300 XFS_ERROR_REPORT("xlog_header_check_mount",
301 XFS_ERRLEVEL_HIGH, mp);
302 return XFS_ERROR(EFSCORRUPTED);
303 }
304 return 0;
305}
306
307STATIC void
308xlog_recover_iodone(
309 struct xfs_buf *bp)
310{
1da177e4
LT
311 if (XFS_BUF_GETERROR(bp)) {
312 /*
313 * We're not going to bother about retrying
314 * this during recovery. One strike!
315 */
1da177e4 316 xfs_ioerror_alert("xlog_recover_iodone",
15ac08a8
CH
317 bp->b_mount, bp, XFS_BUF_ADDR(bp));
318 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1da177e4 319 }
15ac08a8 320 bp->b_mount = NULL;
1da177e4
LT
321 XFS_BUF_CLR_IODONE_FUNC(bp);
322 xfs_biodone(bp);
323}
324
325/*
326 * This routine finds (to an approximation) the first block in the physical
327 * log which contains the given cycle. It uses a binary search algorithm.
328 * Note that the algorithm can not be perfect because the disk will not
329 * necessarily be perfect.
330 */
a8272ce0 331STATIC int
1da177e4
LT
332xlog_find_cycle_start(
333 xlog_t *log,
334 xfs_buf_t *bp,
335 xfs_daddr_t first_blk,
336 xfs_daddr_t *last_blk,
337 uint cycle)
338{
339 xfs_caddr_t offset;
340 xfs_daddr_t mid_blk;
341 uint mid_cycle;
342 int error;
343
344 mid_blk = BLK_AVG(first_blk, *last_blk);
345 while (mid_blk != first_blk && mid_blk != *last_blk) {
076e6acb
CH
346 error = xlog_bread(log, mid_blk, 1, bp, &offset);
347 if (error)
1da177e4 348 return error;
03bea6fe 349 mid_cycle = xlog_get_cycle(offset);
1da177e4
LT
350 if (mid_cycle == cycle) {
351 *last_blk = mid_blk;
352 /* last_half_cycle == mid_cycle */
353 } else {
354 first_blk = mid_blk;
355 /* first_half_cycle == mid_cycle */
356 }
357 mid_blk = BLK_AVG(first_blk, *last_blk);
358 }
359 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
360 (mid_blk == *last_blk && mid_blk-1 == first_blk));
361
362 return 0;
363}
364
365/*
366 * Check that the range of blocks does not contain the cycle number
367 * given. The scan needs to occur from front to back and the ptr into the
368 * region must be updated since a later routine will need to perform another
369 * test. If the region is completely good, we end up returning the same
370 * last block number.
371 *
372 * Set blkno to -1 if we encounter no errors. This is an invalid block number
373 * since we don't ever expect logs to get this large.
374 */
375STATIC int
376xlog_find_verify_cycle(
377 xlog_t *log,
378 xfs_daddr_t start_blk,
379 int nbblks,
380 uint stop_on_cycle_no,
381 xfs_daddr_t *new_blk)
382{
383 xfs_daddr_t i, j;
384 uint cycle;
385 xfs_buf_t *bp;
386 xfs_daddr_t bufblks;
387 xfs_caddr_t buf = NULL;
388 int error = 0;
389
6881a229
AE
390 /*
391 * Greedily allocate a buffer big enough to handle the full
392 * range of basic blocks we'll be examining. If that fails,
393 * try a smaller size. We need to be able to read at least
394 * a log sector, or we're out of luck.
395 */
1da177e4 396 bufblks = 1 << ffs(nbblks);
1da177e4 397 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 398 bufblks >>= 1;
6881a229 399 if (bufblks < xlog_sectbb(log))
1da177e4
LT
400 return ENOMEM;
401 }
402
403 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
404 int bcount;
405
406 bcount = min(bufblks, (start_blk + nbblks - i));
407
076e6acb
CH
408 error = xlog_bread(log, i, bcount, bp, &buf);
409 if (error)
1da177e4
LT
410 goto out;
411
1da177e4 412 for (j = 0; j < bcount; j++) {
03bea6fe 413 cycle = xlog_get_cycle(buf);
1da177e4
LT
414 if (cycle == stop_on_cycle_no) {
415 *new_blk = i+j;
416 goto out;
417 }
418
419 buf += BBSIZE;
420 }
421 }
422
423 *new_blk = -1;
424
425out:
426 xlog_put_bp(bp);
427 return error;
428}
429
430/*
431 * Potentially backup over partial log record write.
432 *
433 * In the typical case, last_blk is the number of the block directly after
434 * a good log record. Therefore, we subtract one to get the block number
435 * of the last block in the given buffer. extra_bblks contains the number
436 * of blocks we would have read on a previous read. This happens when the
437 * last log record is split over the end of the physical log.
438 *
439 * extra_bblks is the number of blocks potentially verified on a previous
440 * call to this routine.
441 */
442STATIC int
443xlog_find_verify_log_record(
444 xlog_t *log,
445 xfs_daddr_t start_blk,
446 xfs_daddr_t *last_blk,
447 int extra_bblks)
448{
449 xfs_daddr_t i;
450 xfs_buf_t *bp;
451 xfs_caddr_t offset = NULL;
452 xlog_rec_header_t *head = NULL;
453 int error = 0;
454 int smallmem = 0;
455 int num_blks = *last_blk - start_blk;
456 int xhdrs;
457
458 ASSERT(start_blk != 0 || *last_blk != start_blk);
459
460 if (!(bp = xlog_get_bp(log, num_blks))) {
461 if (!(bp = xlog_get_bp(log, 1)))
462 return ENOMEM;
463 smallmem = 1;
464 } else {
076e6acb
CH
465 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
466 if (error)
1da177e4 467 goto out;
1da177e4
LT
468 offset += ((num_blks - 1) << BBSHIFT);
469 }
470
471 for (i = (*last_blk) - 1; i >= 0; i--) {
472 if (i < start_blk) {
473 /* valid log record not found */
474 xlog_warn(
475 "XFS: Log inconsistent (didn't find previous header)");
476 ASSERT(0);
477 error = XFS_ERROR(EIO);
478 goto out;
479 }
480
481 if (smallmem) {
076e6acb
CH
482 error = xlog_bread(log, i, 1, bp, &offset);
483 if (error)
1da177e4 484 goto out;
1da177e4
LT
485 }
486
487 head = (xlog_rec_header_t *)offset;
488
b53e675d 489 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
1da177e4
LT
490 break;
491
492 if (!smallmem)
493 offset -= BBSIZE;
494 }
495
496 /*
497 * We hit the beginning of the physical log & still no header. Return
498 * to caller. If caller can handle a return of -1, then this routine
499 * will be called again for the end of the physical log.
500 */
501 if (i == -1) {
502 error = -1;
503 goto out;
504 }
505
506 /*
507 * We have the final block of the good log (the first block
508 * of the log record _before_ the head. So we check the uuid.
509 */
510 if ((error = xlog_header_check_mount(log->l_mp, head)))
511 goto out;
512
513 /*
514 * We may have found a log record header before we expected one.
515 * last_blk will be the 1st block # with a given cycle #. We may end
516 * up reading an entire log record. In this case, we don't want to
517 * reset last_blk. Only when last_blk points in the middle of a log
518 * record do we update last_blk.
519 */
62118709 520 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 521 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
522
523 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
524 if (h_size % XLOG_HEADER_CYCLE_SIZE)
525 xhdrs++;
526 } else {
527 xhdrs = 1;
528 }
529
b53e675d
CH
530 if (*last_blk - i + extra_bblks !=
531 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
532 *last_blk = i;
533
534out:
535 xlog_put_bp(bp);
536 return error;
537}
538
539/*
540 * Head is defined to be the point of the log where the next log write
541 * write could go. This means that incomplete LR writes at the end are
542 * eliminated when calculating the head. We aren't guaranteed that previous
543 * LR have complete transactions. We only know that a cycle number of
544 * current cycle number -1 won't be present in the log if we start writing
545 * from our current block number.
546 *
547 * last_blk contains the block number of the first block with a given
548 * cycle number.
549 *
550 * Return: zero if normal, non-zero if error.
551 */
ba0f32d4 552STATIC int
1da177e4
LT
553xlog_find_head(
554 xlog_t *log,
555 xfs_daddr_t *return_head_blk)
556{
557 xfs_buf_t *bp;
558 xfs_caddr_t offset;
559 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
560 int num_scan_bblks;
561 uint first_half_cycle, last_half_cycle;
562 uint stop_on_cycle;
563 int error, log_bbnum = log->l_logBBsize;
564
565 /* Is the end of the log device zeroed? */
566 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
567 *return_head_blk = first_blk;
568
569 /* Is the whole lot zeroed? */
570 if (!first_blk) {
571 /* Linux XFS shouldn't generate totally zeroed logs -
572 * mkfs etc write a dummy unmount record to a fresh
573 * log so we can store the uuid in there
574 */
575 xlog_warn("XFS: totally zeroed log");
576 }
577
578 return 0;
579 } else if (error) {
580 xlog_warn("XFS: empty log check failed");
581 return error;
582 }
583
584 first_blk = 0; /* get cycle # of 1st block */
585 bp = xlog_get_bp(log, 1);
586 if (!bp)
587 return ENOMEM;
076e6acb
CH
588
589 error = xlog_bread(log, 0, 1, bp, &offset);
590 if (error)
1da177e4 591 goto bp_err;
076e6acb 592
03bea6fe 593 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
594
595 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
596 error = xlog_bread(log, last_blk, 1, bp, &offset);
597 if (error)
1da177e4 598 goto bp_err;
076e6acb 599
03bea6fe 600 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
601 ASSERT(last_half_cycle != 0);
602
603 /*
604 * If the 1st half cycle number is equal to the last half cycle number,
605 * then the entire log is stamped with the same cycle number. In this
606 * case, head_blk can't be set to zero (which makes sense). The below
607 * math doesn't work out properly with head_blk equal to zero. Instead,
608 * we set it to log_bbnum which is an invalid block number, but this
609 * value makes the math correct. If head_blk doesn't changed through
610 * all the tests below, *head_blk is set to zero at the very end rather
611 * than log_bbnum. In a sense, log_bbnum and zero are the same block
612 * in a circular file.
613 */
614 if (first_half_cycle == last_half_cycle) {
615 /*
616 * In this case we believe that the entire log should have
617 * cycle number last_half_cycle. We need to scan backwards
618 * from the end verifying that there are no holes still
619 * containing last_half_cycle - 1. If we find such a hole,
620 * then the start of that hole will be the new head. The
621 * simple case looks like
622 * x | x ... | x - 1 | x
623 * Another case that fits this picture would be
624 * x | x + 1 | x ... | x
c41564b5 625 * In this case the head really is somewhere at the end of the
1da177e4
LT
626 * log, as one of the latest writes at the beginning was
627 * incomplete.
628 * One more case is
629 * x | x + 1 | x ... | x - 1 | x
630 * This is really the combination of the above two cases, and
631 * the head has to end up at the start of the x-1 hole at the
632 * end of the log.
633 *
634 * In the 256k log case, we will read from the beginning to the
635 * end of the log and search for cycle numbers equal to x-1.
636 * We don't worry about the x+1 blocks that we encounter,
637 * because we know that they cannot be the head since the log
638 * started with x.
639 */
640 head_blk = log_bbnum;
641 stop_on_cycle = last_half_cycle - 1;
642 } else {
643 /*
644 * In this case we want to find the first block with cycle
645 * number matching last_half_cycle. We expect the log to be
646 * some variation on
647 * x + 1 ... | x ...
648 * The first block with cycle number x (last_half_cycle) will
649 * be where the new head belongs. First we do a binary search
650 * for the first occurrence of last_half_cycle. The binary
651 * search may not be totally accurate, so then we scan back
652 * from there looking for occurrences of last_half_cycle before
653 * us. If that backwards scan wraps around the beginning of
654 * the log, then we look for occurrences of last_half_cycle - 1
655 * at the end of the log. The cases we're looking for look
656 * like
657 * x + 1 ... | x | x + 1 | x ...
658 * ^ binary search stopped here
659 * or
660 * x + 1 ... | x ... | x - 1 | x
661 * <---------> less than scan distance
662 */
663 stop_on_cycle = last_half_cycle;
664 if ((error = xlog_find_cycle_start(log, bp, first_blk,
665 &head_blk, last_half_cycle)))
666 goto bp_err;
667 }
668
669 /*
670 * Now validate the answer. Scan back some number of maximum possible
671 * blocks and make sure each one has the expected cycle number. The
672 * maximum is determined by the total possible amount of buffering
673 * in the in-core log. The following number can be made tighter if
674 * we actually look at the block size of the filesystem.
675 */
676 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
677 if (head_blk >= num_scan_bblks) {
678 /*
679 * We are guaranteed that the entire check can be performed
680 * in one buffer.
681 */
682 start_blk = head_blk - num_scan_bblks;
683 if ((error = xlog_find_verify_cycle(log,
684 start_blk, num_scan_bblks,
685 stop_on_cycle, &new_blk)))
686 goto bp_err;
687 if (new_blk != -1)
688 head_blk = new_blk;
689 } else { /* need to read 2 parts of log */
690 /*
691 * We are going to scan backwards in the log in two parts.
692 * First we scan the physical end of the log. In this part
693 * of the log, we are looking for blocks with cycle number
694 * last_half_cycle - 1.
695 * If we find one, then we know that the log starts there, as
696 * we've found a hole that didn't get written in going around
697 * the end of the physical log. The simple case for this is
698 * x + 1 ... | x ... | x - 1 | x
699 * <---------> less than scan distance
700 * If all of the blocks at the end of the log have cycle number
701 * last_half_cycle, then we check the blocks at the start of
702 * the log looking for occurrences of last_half_cycle. If we
703 * find one, then our current estimate for the location of the
704 * first occurrence of last_half_cycle is wrong and we move
705 * back to the hole we've found. This case looks like
706 * x + 1 ... | x | x + 1 | x ...
707 * ^ binary search stopped here
708 * Another case we need to handle that only occurs in 256k
709 * logs is
710 * x + 1 ... | x ... | x+1 | x ...
711 * ^ binary search stops here
712 * In a 256k log, the scan at the end of the log will see the
713 * x + 1 blocks. We need to skip past those since that is
714 * certainly not the head of the log. By searching for
715 * last_half_cycle-1 we accomplish that.
716 */
717 start_blk = log_bbnum - num_scan_bblks + head_blk;
718 ASSERT(head_blk <= INT_MAX &&
719 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
720 if ((error = xlog_find_verify_cycle(log, start_blk,
721 num_scan_bblks - (int)head_blk,
722 (stop_on_cycle - 1), &new_blk)))
723 goto bp_err;
724 if (new_blk != -1) {
725 head_blk = new_blk;
726 goto bad_blk;
727 }
728
729 /*
730 * Scan beginning of log now. The last part of the physical
731 * log is good. This scan needs to verify that it doesn't find
732 * the last_half_cycle.
733 */
734 start_blk = 0;
735 ASSERT(head_blk <= INT_MAX);
736 if ((error = xlog_find_verify_cycle(log,
737 start_blk, (int)head_blk,
738 stop_on_cycle, &new_blk)))
739 goto bp_err;
740 if (new_blk != -1)
741 head_blk = new_blk;
742 }
743
744 bad_blk:
745 /*
746 * Now we need to make sure head_blk is not pointing to a block in
747 * the middle of a log record.
748 */
749 num_scan_bblks = XLOG_REC_SHIFT(log);
750 if (head_blk >= num_scan_bblks) {
751 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
752
753 /* start ptr at last block ptr before head_blk */
754 if ((error = xlog_find_verify_log_record(log, start_blk,
755 &head_blk, 0)) == -1) {
756 error = XFS_ERROR(EIO);
757 goto bp_err;
758 } else if (error)
759 goto bp_err;
760 } else {
761 start_blk = 0;
762 ASSERT(head_blk <= INT_MAX);
763 if ((error = xlog_find_verify_log_record(log, start_blk,
764 &head_blk, 0)) == -1) {
765 /* We hit the beginning of the log during our search */
766 start_blk = log_bbnum - num_scan_bblks + head_blk;
767 new_blk = log_bbnum;
768 ASSERT(start_blk <= INT_MAX &&
769 (xfs_daddr_t) log_bbnum-start_blk >= 0);
770 ASSERT(head_blk <= INT_MAX);
771 if ((error = xlog_find_verify_log_record(log,
772 start_blk, &new_blk,
773 (int)head_blk)) == -1) {
774 error = XFS_ERROR(EIO);
775 goto bp_err;
776 } else if (error)
777 goto bp_err;
778 if (new_blk != log_bbnum)
779 head_blk = new_blk;
780 } else if (error)
781 goto bp_err;
782 }
783
784 xlog_put_bp(bp);
785 if (head_blk == log_bbnum)
786 *return_head_blk = 0;
787 else
788 *return_head_blk = head_blk;
789 /*
790 * When returning here, we have a good block number. Bad block
791 * means that during a previous crash, we didn't have a clean break
792 * from cycle number N to cycle number N-1. In this case, we need
793 * to find the first block with cycle number N-1.
794 */
795 return 0;
796
797 bp_err:
798 xlog_put_bp(bp);
799
800 if (error)
801 xlog_warn("XFS: failed to find log head");
802 return error;
803}
804
805/*
806 * Find the sync block number or the tail of the log.
807 *
808 * This will be the block number of the last record to have its
809 * associated buffers synced to disk. Every log record header has
810 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
811 * to get a sync block number. The only concern is to figure out which
812 * log record header to believe.
813 *
814 * The following algorithm uses the log record header with the largest
815 * lsn. The entire log record does not need to be valid. We only care
816 * that the header is valid.
817 *
818 * We could speed up search by using current head_blk buffer, but it is not
819 * available.
820 */
5d77c0dc 821STATIC int
1da177e4
LT
822xlog_find_tail(
823 xlog_t *log,
824 xfs_daddr_t *head_blk,
65be6054 825 xfs_daddr_t *tail_blk)
1da177e4
LT
826{
827 xlog_rec_header_t *rhead;
828 xlog_op_header_t *op_head;
829 xfs_caddr_t offset = NULL;
830 xfs_buf_t *bp;
831 int error, i, found;
832 xfs_daddr_t umount_data_blk;
833 xfs_daddr_t after_umount_blk;
834 xfs_lsn_t tail_lsn;
835 int hblks;
836
837 found = 0;
838
839 /*
840 * Find previous log record
841 */
842 if ((error = xlog_find_head(log, head_blk)))
843 return error;
844
845 bp = xlog_get_bp(log, 1);
846 if (!bp)
847 return ENOMEM;
848 if (*head_blk == 0) { /* special case */
076e6acb
CH
849 error = xlog_bread(log, 0, 1, bp, &offset);
850 if (error)
1da177e4 851 goto bread_err;
076e6acb 852
03bea6fe 853 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
854 *tail_blk = 0;
855 /* leave all other log inited values alone */
856 goto exit;
857 }
858 }
859
860 /*
861 * Search backwards looking for log record header block
862 */
863 ASSERT(*head_blk < INT_MAX);
864 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
865 error = xlog_bread(log, i, 1, bp, &offset);
866 if (error)
1da177e4 867 goto bread_err;
076e6acb 868
b53e675d 869 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
870 found = 1;
871 break;
872 }
873 }
874 /*
875 * If we haven't found the log record header block, start looking
876 * again from the end of the physical log. XXXmiken: There should be
877 * a check here to make sure we didn't search more than N blocks in
878 * the previous code.
879 */
880 if (!found) {
881 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
882 error = xlog_bread(log, i, 1, bp, &offset);
883 if (error)
1da177e4 884 goto bread_err;
076e6acb 885
1da177e4 886 if (XLOG_HEADER_MAGIC_NUM ==
b53e675d 887 be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
888 found = 2;
889 break;
890 }
891 }
892 }
893 if (!found) {
894 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
895 ASSERT(0);
896 return XFS_ERROR(EIO);
897 }
898
899 /* find blk_no of tail of log */
900 rhead = (xlog_rec_header_t *)offset;
b53e675d 901 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
902
903 /*
904 * Reset log values according to the state of the log when we
905 * crashed. In the case where head_blk == 0, we bump curr_cycle
906 * one because the next write starts a new cycle rather than
907 * continuing the cycle of the last good log record. At this
908 * point we have guaranteed that all partial log records have been
909 * accounted for. Therefore, we know that the last good log record
910 * written was complete and ended exactly on the end boundary
911 * of the physical log.
912 */
913 log->l_prev_block = i;
914 log->l_curr_block = (int)*head_blk;
b53e675d 915 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
916 if (found == 2)
917 log->l_curr_cycle++;
b53e675d
CH
918 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
919 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
1da177e4
LT
920 log->l_grant_reserve_cycle = log->l_curr_cycle;
921 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
922 log->l_grant_write_cycle = log->l_curr_cycle;
923 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
924
925 /*
926 * Look for unmount record. If we find it, then we know there
927 * was a clean unmount. Since 'i' could be the last block in
928 * the physical log, we convert to a log block before comparing
929 * to the head_blk.
930 *
931 * Save the current tail lsn to use to pass to
932 * xlog_clear_stale_blocks() below. We won't want to clear the
933 * unmount record if there is one, so we pass the lsn of the
934 * unmount record rather than the block after it.
935 */
62118709 936 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
937 int h_size = be32_to_cpu(rhead->h_size);
938 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
939
940 if ((h_version & XLOG_VERSION_2) &&
941 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
942 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
943 if (h_size % XLOG_HEADER_CYCLE_SIZE)
944 hblks++;
945 } else {
946 hblks = 1;
947 }
948 } else {
949 hblks = 1;
950 }
951 after_umount_blk = (i + hblks + (int)
b53e675d 952 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1da177e4
LT
953 tail_lsn = log->l_tail_lsn;
954 if (*head_blk == after_umount_blk &&
b53e675d 955 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 956 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
957 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
958 if (error)
1da177e4 959 goto bread_err;
076e6acb 960
1da177e4
LT
961 op_head = (xlog_op_header_t *)offset;
962 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
963 /*
964 * Set tail and last sync so that newly written
965 * log records will point recovery to after the
966 * current unmount record.
967 */
03bea6fe
CH
968 log->l_tail_lsn =
969 xlog_assign_lsn(log->l_curr_cycle,
970 after_umount_blk);
971 log->l_last_sync_lsn =
972 xlog_assign_lsn(log->l_curr_cycle,
973 after_umount_blk);
1da177e4 974 *tail_blk = after_umount_blk;
92821e2b
DC
975
976 /*
977 * Note that the unmount was clean. If the unmount
978 * was not clean, we need to know this to rebuild the
979 * superblock counters from the perag headers if we
980 * have a filesystem using non-persistent counters.
981 */
982 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
983 }
984 }
985
986 /*
987 * Make sure that there are no blocks in front of the head
988 * with the same cycle number as the head. This can happen
989 * because we allow multiple outstanding log writes concurrently,
990 * and the later writes might make it out before earlier ones.
991 *
992 * We use the lsn from before modifying it so that we'll never
993 * overwrite the unmount record after a clean unmount.
994 *
995 * Do this only if we are going to recover the filesystem
996 *
997 * NOTE: This used to say "if (!readonly)"
998 * However on Linux, we can & do recover a read-only filesystem.
999 * We only skip recovery if NORECOVERY is specified on mount,
1000 * in which case we would not be here.
1001 *
1002 * But... if the -device- itself is readonly, just skip this.
1003 * We can't recover this device anyway, so it won't matter.
1004 */
1005 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
1006 error = xlog_clear_stale_blocks(log, tail_lsn);
1007 }
1008
1009bread_err:
1010exit:
1011 xlog_put_bp(bp);
1012
1013 if (error)
1014 xlog_warn("XFS: failed to locate log tail");
1015 return error;
1016}
1017
1018/*
1019 * Is the log zeroed at all?
1020 *
1021 * The last binary search should be changed to perform an X block read
1022 * once X becomes small enough. You can then search linearly through
1023 * the X blocks. This will cut down on the number of reads we need to do.
1024 *
1025 * If the log is partially zeroed, this routine will pass back the blkno
1026 * of the first block with cycle number 0. It won't have a complete LR
1027 * preceding it.
1028 *
1029 * Return:
1030 * 0 => the log is completely written to
1031 * -1 => use *blk_no as the first block of the log
1032 * >0 => error has occurred
1033 */
a8272ce0 1034STATIC int
1da177e4
LT
1035xlog_find_zeroed(
1036 xlog_t *log,
1037 xfs_daddr_t *blk_no)
1038{
1039 xfs_buf_t *bp;
1040 xfs_caddr_t offset;
1041 uint first_cycle, last_cycle;
1042 xfs_daddr_t new_blk, last_blk, start_blk;
1043 xfs_daddr_t num_scan_bblks;
1044 int error, log_bbnum = log->l_logBBsize;
1045
6fdf8ccc
NS
1046 *blk_no = 0;
1047
1da177e4
LT
1048 /* check totally zeroed log */
1049 bp = xlog_get_bp(log, 1);
1050 if (!bp)
1051 return ENOMEM;
076e6acb
CH
1052 error = xlog_bread(log, 0, 1, bp, &offset);
1053 if (error)
1da177e4 1054 goto bp_err;
076e6acb 1055
03bea6fe 1056 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1057 if (first_cycle == 0) { /* completely zeroed log */
1058 *blk_no = 0;
1059 xlog_put_bp(bp);
1060 return -1;
1061 }
1062
1063 /* check partially zeroed log */
076e6acb
CH
1064 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1065 if (error)
1da177e4 1066 goto bp_err;
076e6acb 1067
03bea6fe 1068 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1069 if (last_cycle != 0) { /* log completely written to */
1070 xlog_put_bp(bp);
1071 return 0;
1072 } else if (first_cycle != 1) {
1073 /*
1074 * If the cycle of the last block is zero, the cycle of
1075 * the first block must be 1. If it's not, maybe we're
1076 * not looking at a log... Bail out.
1077 */
1078 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1079 return XFS_ERROR(EINVAL);
1080 }
1081
1082 /* we have a partially zeroed log */
1083 last_blk = log_bbnum-1;
1084 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1085 goto bp_err;
1086
1087 /*
1088 * Validate the answer. Because there is no way to guarantee that
1089 * the entire log is made up of log records which are the same size,
1090 * we scan over the defined maximum blocks. At this point, the maximum
1091 * is not chosen to mean anything special. XXXmiken
1092 */
1093 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1094 ASSERT(num_scan_bblks <= INT_MAX);
1095
1096 if (last_blk < num_scan_bblks)
1097 num_scan_bblks = last_blk;
1098 start_blk = last_blk - num_scan_bblks;
1099
1100 /*
1101 * We search for any instances of cycle number 0 that occur before
1102 * our current estimate of the head. What we're trying to detect is
1103 * 1 ... | 0 | 1 | 0...
1104 * ^ binary search ends here
1105 */
1106 if ((error = xlog_find_verify_cycle(log, start_blk,
1107 (int)num_scan_bblks, 0, &new_blk)))
1108 goto bp_err;
1109 if (new_blk != -1)
1110 last_blk = new_blk;
1111
1112 /*
1113 * Potentially backup over partial log record write. We don't need
1114 * to search the end of the log because we know it is zero.
1115 */
1116 if ((error = xlog_find_verify_log_record(log, start_blk,
1117 &last_blk, 0)) == -1) {
1118 error = XFS_ERROR(EIO);
1119 goto bp_err;
1120 } else if (error)
1121 goto bp_err;
1122
1123 *blk_no = last_blk;
1124bp_err:
1125 xlog_put_bp(bp);
1126 if (error)
1127 return error;
1128 return -1;
1129}
1130
1131/*
1132 * These are simple subroutines used by xlog_clear_stale_blocks() below
1133 * to initialize a buffer full of empty log record headers and write
1134 * them into the log.
1135 */
1136STATIC void
1137xlog_add_record(
1138 xlog_t *log,
1139 xfs_caddr_t buf,
1140 int cycle,
1141 int block,
1142 int tail_cycle,
1143 int tail_block)
1144{
1145 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1146
1147 memset(buf, 0, BBSIZE);
b53e675d
CH
1148 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1149 recp->h_cycle = cpu_to_be32(cycle);
1150 recp->h_version = cpu_to_be32(
62118709 1151 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1152 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1153 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1154 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1155 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1156}
1157
1158STATIC int
1159xlog_write_log_records(
1160 xlog_t *log,
1161 int cycle,
1162 int start_block,
1163 int blocks,
1164 int tail_cycle,
1165 int tail_block)
1166{
1167 xfs_caddr_t offset;
1168 xfs_buf_t *bp;
1169 int balign, ealign;
5c17f533 1170 int sectbb = xlog_sectbb(log);
1da177e4
LT
1171 int end_block = start_block + blocks;
1172 int bufblks;
1173 int error = 0;
1174 int i, j = 0;
1175
6881a229
AE
1176 /*
1177 * Greedily allocate a buffer big enough to handle the full
1178 * range of basic blocks to be written. If that fails, try
1179 * a smaller size. We need to be able to write at least a
1180 * log sector, or we're out of luck.
1181 */
1da177e4
LT
1182 bufblks = 1 << ffs(blocks);
1183 while (!(bp = xlog_get_bp(log, bufblks))) {
1184 bufblks >>= 1;
6881a229 1185 if (bufblks < xlog_sectbb(log))
1da177e4
LT
1186 return ENOMEM;
1187 }
1188
1189 /* We may need to do a read at the start to fill in part of
1190 * the buffer in the starting sector not covered by the first
1191 * write below.
1192 */
5c17f533 1193 balign = round_down(start_block, sectbb);
1da177e4 1194 if (balign != start_block) {
076e6acb
CH
1195 error = xlog_bread_noalign(log, start_block, 1, bp);
1196 if (error)
1197 goto out_put_bp;
1198
1da177e4
LT
1199 j = start_block - balign;
1200 }
1201
1202 for (i = start_block; i < end_block; i += bufblks) {
1203 int bcount, endcount;
1204
1205 bcount = min(bufblks, end_block - start_block);
1206 endcount = bcount - j;
1207
1208 /* We may need to do a read at the end to fill in part of
1209 * the buffer in the final sector not covered by the write.
1210 * If this is the same sector as the above read, skip it.
1211 */
5c17f533 1212 ealign = round_down(end_block, sectbb);
1da177e4
LT
1213 if (j == 0 && (start_block + endcount > ealign)) {
1214 offset = XFS_BUF_PTR(bp);
1215 balign = BBTOB(ealign - start_block);
234f56ac
DC
1216 error = XFS_BUF_SET_PTR(bp, offset + balign,
1217 BBTOB(sectbb));
076e6acb
CH
1218 if (error)
1219 break;
1220
1221 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1222 if (error)
1223 break;
1224
1225 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
234f56ac 1226 if (error)
1da177e4 1227 break;
1da177e4
LT
1228 }
1229
1230 offset = xlog_align(log, start_block, endcount, bp);
1231 for (; j < endcount; j++) {
1232 xlog_add_record(log, offset, cycle, i+j,
1233 tail_cycle, tail_block);
1234 offset += BBSIZE;
1235 }
1236 error = xlog_bwrite(log, start_block, endcount, bp);
1237 if (error)
1238 break;
1239 start_block += endcount;
1240 j = 0;
1241 }
076e6acb
CH
1242
1243 out_put_bp:
1da177e4
LT
1244 xlog_put_bp(bp);
1245 return error;
1246}
1247
1248/*
1249 * This routine is called to blow away any incomplete log writes out
1250 * in front of the log head. We do this so that we won't become confused
1251 * if we come up, write only a little bit more, and then crash again.
1252 * If we leave the partial log records out there, this situation could
1253 * cause us to think those partial writes are valid blocks since they
1254 * have the current cycle number. We get rid of them by overwriting them
1255 * with empty log records with the old cycle number rather than the
1256 * current one.
1257 *
1258 * The tail lsn is passed in rather than taken from
1259 * the log so that we will not write over the unmount record after a
1260 * clean unmount in a 512 block log. Doing so would leave the log without
1261 * any valid log records in it until a new one was written. If we crashed
1262 * during that time we would not be able to recover.
1263 */
1264STATIC int
1265xlog_clear_stale_blocks(
1266 xlog_t *log,
1267 xfs_lsn_t tail_lsn)
1268{
1269 int tail_cycle, head_cycle;
1270 int tail_block, head_block;
1271 int tail_distance, max_distance;
1272 int distance;
1273 int error;
1274
1275 tail_cycle = CYCLE_LSN(tail_lsn);
1276 tail_block = BLOCK_LSN(tail_lsn);
1277 head_cycle = log->l_curr_cycle;
1278 head_block = log->l_curr_block;
1279
1280 /*
1281 * Figure out the distance between the new head of the log
1282 * and the tail. We want to write over any blocks beyond the
1283 * head that we may have written just before the crash, but
1284 * we don't want to overwrite the tail of the log.
1285 */
1286 if (head_cycle == tail_cycle) {
1287 /*
1288 * The tail is behind the head in the physical log,
1289 * so the distance from the head to the tail is the
1290 * distance from the head to the end of the log plus
1291 * the distance from the beginning of the log to the
1292 * tail.
1293 */
1294 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1295 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1296 XFS_ERRLEVEL_LOW, log->l_mp);
1297 return XFS_ERROR(EFSCORRUPTED);
1298 }
1299 tail_distance = tail_block + (log->l_logBBsize - head_block);
1300 } else {
1301 /*
1302 * The head is behind the tail in the physical log,
1303 * so the distance from the head to the tail is just
1304 * the tail block minus the head block.
1305 */
1306 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1307 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1308 XFS_ERRLEVEL_LOW, log->l_mp);
1309 return XFS_ERROR(EFSCORRUPTED);
1310 }
1311 tail_distance = tail_block - head_block;
1312 }
1313
1314 /*
1315 * If the head is right up against the tail, we can't clear
1316 * anything.
1317 */
1318 if (tail_distance <= 0) {
1319 ASSERT(tail_distance == 0);
1320 return 0;
1321 }
1322
1323 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1324 /*
1325 * Take the smaller of the maximum amount of outstanding I/O
1326 * we could have and the distance to the tail to clear out.
1327 * We take the smaller so that we don't overwrite the tail and
1328 * we don't waste all day writing from the head to the tail
1329 * for no reason.
1330 */
1331 max_distance = MIN(max_distance, tail_distance);
1332
1333 if ((head_block + max_distance) <= log->l_logBBsize) {
1334 /*
1335 * We can stomp all the blocks we need to without
1336 * wrapping around the end of the log. Just do it
1337 * in a single write. Use the cycle number of the
1338 * current cycle minus one so that the log will look like:
1339 * n ... | n - 1 ...
1340 */
1341 error = xlog_write_log_records(log, (head_cycle - 1),
1342 head_block, max_distance, tail_cycle,
1343 tail_block);
1344 if (error)
1345 return error;
1346 } else {
1347 /*
1348 * We need to wrap around the end of the physical log in
1349 * order to clear all the blocks. Do it in two separate
1350 * I/Os. The first write should be from the head to the
1351 * end of the physical log, and it should use the current
1352 * cycle number minus one just like above.
1353 */
1354 distance = log->l_logBBsize - head_block;
1355 error = xlog_write_log_records(log, (head_cycle - 1),
1356 head_block, distance, tail_cycle,
1357 tail_block);
1358
1359 if (error)
1360 return error;
1361
1362 /*
1363 * Now write the blocks at the start of the physical log.
1364 * This writes the remainder of the blocks we want to clear.
1365 * It uses the current cycle number since we're now on the
1366 * same cycle as the head so that we get:
1367 * n ... n ... | n - 1 ...
1368 * ^^^^^ blocks we're writing
1369 */
1370 distance = max_distance - (log->l_logBBsize - head_block);
1371 error = xlog_write_log_records(log, head_cycle, 0, distance,
1372 tail_cycle, tail_block);
1373 if (error)
1374 return error;
1375 }
1376
1377 return 0;
1378}
1379
1380/******************************************************************************
1381 *
1382 * Log recover routines
1383 *
1384 ******************************************************************************
1385 */
1386
1387STATIC xlog_recover_t *
1388xlog_recover_find_tid(
f0a76953 1389 struct hlist_head *head,
1da177e4
LT
1390 xlog_tid_t tid)
1391{
f0a76953
DC
1392 xlog_recover_t *trans;
1393 struct hlist_node *n;
1da177e4 1394
f0a76953
DC
1395 hlist_for_each_entry(trans, n, head, r_list) {
1396 if (trans->r_log_tid == tid)
1397 return trans;
1da177e4 1398 }
f0a76953 1399 return NULL;
1da177e4
LT
1400}
1401
1402STATIC void
f0a76953
DC
1403xlog_recover_new_tid(
1404 struct hlist_head *head,
1405 xlog_tid_t tid,
1406 xfs_lsn_t lsn)
1da177e4 1407{
f0a76953
DC
1408 xlog_recover_t *trans;
1409
1410 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1411 trans->r_log_tid = tid;
1412 trans->r_lsn = lsn;
1413 INIT_LIST_HEAD(&trans->r_itemq);
1414
1415 INIT_HLIST_NODE(&trans->r_list);
1416 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1417}
1418
1419STATIC void
1420xlog_recover_add_item(
f0a76953 1421 struct list_head *head)
1da177e4
LT
1422{
1423 xlog_recover_item_t *item;
1424
1425 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1426 INIT_LIST_HEAD(&item->ri_list);
1427 list_add_tail(&item->ri_list, head);
1da177e4
LT
1428}
1429
1430STATIC int
1431xlog_recover_add_to_cont_trans(
9abbc539 1432 struct log *log,
1da177e4
LT
1433 xlog_recover_t *trans,
1434 xfs_caddr_t dp,
1435 int len)
1436{
1437 xlog_recover_item_t *item;
1438 xfs_caddr_t ptr, old_ptr;
1439 int old_len;
1440
f0a76953 1441 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1442 /* finish copying rest of trans header */
1443 xlog_recover_add_item(&trans->r_itemq);
1444 ptr = (xfs_caddr_t) &trans->r_theader +
1445 sizeof(xfs_trans_header_t) - len;
1446 memcpy(ptr, dp, len); /* d, s, l */
1447 return 0;
1448 }
f0a76953
DC
1449 /* take the tail entry */
1450 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1451
1452 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1453 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1454
760dea67 1455 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1456 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1457 item->ri_buf[item->ri_cnt-1].i_len += len;
1458 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1459 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1460 return 0;
1461}
1462
1463/*
1464 * The next region to add is the start of a new region. It could be
1465 * a whole region or it could be the first part of a new region. Because
1466 * of this, the assumption here is that the type and size fields of all
1467 * format structures fit into the first 32 bits of the structure.
1468 *
1469 * This works because all regions must be 32 bit aligned. Therefore, we
1470 * either have both fields or we have neither field. In the case we have
1471 * neither field, the data part of the region is zero length. We only have
1472 * a log_op_header and can throw away the header since a new one will appear
1473 * later. If we have at least 4 bytes, then we can determine how many regions
1474 * will appear in the current log item.
1475 */
1476STATIC int
1477xlog_recover_add_to_trans(
9abbc539 1478 struct log *log,
1da177e4
LT
1479 xlog_recover_t *trans,
1480 xfs_caddr_t dp,
1481 int len)
1482{
1483 xfs_inode_log_format_t *in_f; /* any will do */
1484 xlog_recover_item_t *item;
1485 xfs_caddr_t ptr;
1486
1487 if (!len)
1488 return 0;
f0a76953 1489 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1490 /* we need to catch log corruptions here */
1491 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1492 xlog_warn("XFS: xlog_recover_add_to_trans: "
1493 "bad header magic number");
1494 ASSERT(0);
1495 return XFS_ERROR(EIO);
1496 }
1da177e4
LT
1497 if (len == sizeof(xfs_trans_header_t))
1498 xlog_recover_add_item(&trans->r_itemq);
1499 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1500 return 0;
1501 }
1502
1503 ptr = kmem_alloc(len, KM_SLEEP);
1504 memcpy(ptr, dp, len);
1505 in_f = (xfs_inode_log_format_t *)ptr;
1506
f0a76953
DC
1507 /* take the tail entry */
1508 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1509 if (item->ri_total != 0 &&
1510 item->ri_total == item->ri_cnt) {
1511 /* tail item is in use, get a new one */
1da177e4 1512 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1513 item = list_entry(trans->r_itemq.prev,
1514 xlog_recover_item_t, ri_list);
1da177e4 1515 }
1da177e4
LT
1516
1517 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1518 if (in_f->ilf_size == 0 ||
1519 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1520 xlog_warn(
1521 "XFS: bad number of regions (%d) in inode log format",
1522 in_f->ilf_size);
1523 ASSERT(0);
1524 return XFS_ERROR(EIO);
1525 }
1526
1527 item->ri_total = in_f->ilf_size;
1528 item->ri_buf =
1529 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1530 KM_SLEEP);
1da177e4
LT
1531 }
1532 ASSERT(item->ri_total > item->ri_cnt);
1533 /* Description region is ri_buf[0] */
1534 item->ri_buf[item->ri_cnt].i_addr = ptr;
1535 item->ri_buf[item->ri_cnt].i_len = len;
1536 item->ri_cnt++;
9abbc539 1537 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1538 return 0;
1539}
1540
f0a76953
DC
1541/*
1542 * Sort the log items in the transaction. Cancelled buffers need
1543 * to be put first so they are processed before any items that might
1544 * modify the buffers. If they are cancelled, then the modifications
1545 * don't need to be replayed.
1546 */
1da177e4
LT
1547STATIC int
1548xlog_recover_reorder_trans(
9abbc539
DC
1549 struct log *log,
1550 xlog_recover_t *trans,
1551 int pass)
1da177e4 1552{
f0a76953
DC
1553 xlog_recover_item_t *item, *n;
1554 LIST_HEAD(sort_list);
1555
1556 list_splice_init(&trans->r_itemq, &sort_list);
1557 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1558 xfs_buf_log_format_t *buf_f;
1da177e4 1559
f0a76953 1560 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
1da177e4 1561
f0a76953 1562 switch (ITEM_TYPE(item)) {
1da177e4 1563 case XFS_LI_BUF:
f0a76953 1564 if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
9abbc539
DC
1565 trace_xfs_log_recover_item_reorder_head(log,
1566 trans, item, pass);
f0a76953 1567 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1568 break;
1569 }
1570 case XFS_LI_INODE:
1da177e4
LT
1571 case XFS_LI_DQUOT:
1572 case XFS_LI_QUOTAOFF:
1573 case XFS_LI_EFD:
1574 case XFS_LI_EFI:
9abbc539
DC
1575 trace_xfs_log_recover_item_reorder_tail(log,
1576 trans, item, pass);
f0a76953 1577 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1578 break;
1579 default:
1580 xlog_warn(
1581 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1582 ASSERT(0);
1583 return XFS_ERROR(EIO);
1584 }
f0a76953
DC
1585 }
1586 ASSERT(list_empty(&sort_list));
1da177e4
LT
1587 return 0;
1588}
1589
1590/*
1591 * Build up the table of buf cancel records so that we don't replay
1592 * cancelled data in the second pass. For buffer records that are
1593 * not cancel records, there is nothing to do here so we just return.
1594 *
1595 * If we get a cancel record which is already in the table, this indicates
1596 * that the buffer was cancelled multiple times. In order to ensure
1597 * that during pass 2 we keep the record in the table until we reach its
1598 * last occurrence in the log, we keep a reference count in the cancel
1599 * record in the table to tell us how many times we expect to see this
1600 * record during the second pass.
1601 */
1602STATIC void
1603xlog_recover_do_buffer_pass1(
1604 xlog_t *log,
1605 xfs_buf_log_format_t *buf_f)
1606{
1607 xfs_buf_cancel_t *bcp;
1608 xfs_buf_cancel_t *nextp;
1609 xfs_buf_cancel_t *prevp;
1610 xfs_buf_cancel_t **bucket;
1da177e4
LT
1611 xfs_daddr_t blkno = 0;
1612 uint len = 0;
1613 ushort flags = 0;
1614
1615 switch (buf_f->blf_type) {
1616 case XFS_LI_BUF:
1617 blkno = buf_f->blf_blkno;
1618 len = buf_f->blf_len;
1619 flags = buf_f->blf_flags;
1620 break;
1da177e4
LT
1621 }
1622
1623 /*
1624 * If this isn't a cancel buffer item, then just return.
1625 */
9abbc539
DC
1626 if (!(flags & XFS_BLI_CANCEL)) {
1627 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1da177e4 1628 return;
9abbc539 1629 }
1da177e4
LT
1630
1631 /*
1632 * Insert an xfs_buf_cancel record into the hash table of
1633 * them. If there is already an identical record, bump
1634 * its reference count.
1635 */
1636 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1637 XLOG_BC_TABLE_SIZE];
1638 /*
1639 * If the hash bucket is empty then just insert a new record into
1640 * the bucket.
1641 */
1642 if (*bucket == NULL) {
1643 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1644 KM_SLEEP);
1645 bcp->bc_blkno = blkno;
1646 bcp->bc_len = len;
1647 bcp->bc_refcount = 1;
1648 bcp->bc_next = NULL;
1649 *bucket = bcp;
1650 return;
1651 }
1652
1653 /*
1654 * The hash bucket is not empty, so search for duplicates of our
1655 * record. If we find one them just bump its refcount. If not
1656 * then add us at the end of the list.
1657 */
1658 prevp = NULL;
1659 nextp = *bucket;
1660 while (nextp != NULL) {
1661 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1662 nextp->bc_refcount++;
9abbc539 1663 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1da177e4
LT
1664 return;
1665 }
1666 prevp = nextp;
1667 nextp = nextp->bc_next;
1668 }
1669 ASSERT(prevp != NULL);
1670 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1671 KM_SLEEP);
1672 bcp->bc_blkno = blkno;
1673 bcp->bc_len = len;
1674 bcp->bc_refcount = 1;
1675 bcp->bc_next = NULL;
1676 prevp->bc_next = bcp;
9abbc539 1677 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1da177e4
LT
1678}
1679
1680/*
1681 * Check to see whether the buffer being recovered has a corresponding
1682 * entry in the buffer cancel record table. If it does then return 1
1683 * so that it will be cancelled, otherwise return 0. If the buffer is
1684 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1685 * the refcount on the entry in the table and remove it from the table
1686 * if this is the last reference.
1687 *
1688 * We remove the cancel record from the table when we encounter its
1689 * last occurrence in the log so that if the same buffer is re-used
1690 * again after its last cancellation we actually replay the changes
1691 * made at that point.
1692 */
1693STATIC int
1694xlog_check_buffer_cancelled(
1695 xlog_t *log,
1696 xfs_daddr_t blkno,
1697 uint len,
1698 ushort flags)
1699{
1700 xfs_buf_cancel_t *bcp;
1701 xfs_buf_cancel_t *prevp;
1702 xfs_buf_cancel_t **bucket;
1703
1704 if (log->l_buf_cancel_table == NULL) {
1705 /*
1706 * There is nothing in the table built in pass one,
1707 * so this buffer must not be cancelled.
1708 */
1709 ASSERT(!(flags & XFS_BLI_CANCEL));
1710 return 0;
1711 }
1712
1713 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1714 XLOG_BC_TABLE_SIZE];
1715 bcp = *bucket;
1716 if (bcp == NULL) {
1717 /*
1718 * There is no corresponding entry in the table built
1719 * in pass one, so this buffer has not been cancelled.
1720 */
1721 ASSERT(!(flags & XFS_BLI_CANCEL));
1722 return 0;
1723 }
1724
1725 /*
1726 * Search for an entry in the buffer cancel table that
1727 * matches our buffer.
1728 */
1729 prevp = NULL;
1730 while (bcp != NULL) {
1731 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1732 /*
1733 * We've go a match, so return 1 so that the
1734 * recovery of this buffer is cancelled.
1735 * If this buffer is actually a buffer cancel
1736 * log item, then decrement the refcount on the
1737 * one in the table and remove it if this is the
1738 * last reference.
1739 */
1740 if (flags & XFS_BLI_CANCEL) {
1741 bcp->bc_refcount--;
1742 if (bcp->bc_refcount == 0) {
1743 if (prevp == NULL) {
1744 *bucket = bcp->bc_next;
1745 } else {
1746 prevp->bc_next = bcp->bc_next;
1747 }
f0e2d93c 1748 kmem_free(bcp);
1da177e4
LT
1749 }
1750 }
1751 return 1;
1752 }
1753 prevp = bcp;
1754 bcp = bcp->bc_next;
1755 }
1756 /*
1757 * We didn't find a corresponding entry in the table, so
1758 * return 0 so that the buffer is NOT cancelled.
1759 */
1760 ASSERT(!(flags & XFS_BLI_CANCEL));
1761 return 0;
1762}
1763
1764STATIC int
1765xlog_recover_do_buffer_pass2(
1766 xlog_t *log,
1767 xfs_buf_log_format_t *buf_f)
1768{
1da177e4
LT
1769 xfs_daddr_t blkno = 0;
1770 ushort flags = 0;
1771 uint len = 0;
1772
1773 switch (buf_f->blf_type) {
1774 case XFS_LI_BUF:
1775 blkno = buf_f->blf_blkno;
1776 flags = buf_f->blf_flags;
1777 len = buf_f->blf_len;
1778 break;
1da177e4
LT
1779 }
1780
1781 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1782}
1783
1784/*
1785 * Perform recovery for a buffer full of inodes. In these buffers,
1786 * the only data which should be recovered is that which corresponds
1787 * to the di_next_unlinked pointers in the on disk inode structures.
1788 * The rest of the data for the inodes is always logged through the
1789 * inodes themselves rather than the inode buffer and is recovered
1790 * in xlog_recover_do_inode_trans().
1791 *
1792 * The only time when buffers full of inodes are fully recovered is
1793 * when the buffer is full of newly allocated inodes. In this case
1794 * the buffer will not be marked as an inode buffer and so will be
1795 * sent to xlog_recover_do_reg_buffer() below during recovery.
1796 */
1797STATIC int
1798xlog_recover_do_inode_buffer(
1799 xfs_mount_t *mp,
1800 xlog_recover_item_t *item,
1801 xfs_buf_t *bp,
1802 xfs_buf_log_format_t *buf_f)
1803{
1804 int i;
1805 int item_index;
1806 int bit;
1807 int nbits;
1808 int reg_buf_offset;
1809 int reg_buf_bytes;
1810 int next_unlinked_offset;
1811 int inodes_per_buf;
1812 xfs_agino_t *logged_nextp;
1813 xfs_agino_t *buffer_nextp;
1da177e4
LT
1814 unsigned int *data_map = NULL;
1815 unsigned int map_size = 0;
1816
9abbc539
DC
1817 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1818
1da177e4
LT
1819 switch (buf_f->blf_type) {
1820 case XFS_LI_BUF:
1821 data_map = buf_f->blf_data_map;
1822 map_size = buf_f->blf_map_size;
1823 break;
1da177e4
LT
1824 }
1825 /*
1826 * Set the variables corresponding to the current region to
1827 * 0 so that we'll initialize them on the first pass through
1828 * the loop.
1829 */
1830 reg_buf_offset = 0;
1831 reg_buf_bytes = 0;
1832 bit = 0;
1833 nbits = 0;
1834 item_index = 0;
1835 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1836 for (i = 0; i < inodes_per_buf; i++) {
1837 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1838 offsetof(xfs_dinode_t, di_next_unlinked);
1839
1840 while (next_unlinked_offset >=
1841 (reg_buf_offset + reg_buf_bytes)) {
1842 /*
1843 * The next di_next_unlinked field is beyond
1844 * the current logged region. Find the next
1845 * logged region that contains or is beyond
1846 * the current di_next_unlinked field.
1847 */
1848 bit += nbits;
1849 bit = xfs_next_bit(data_map, map_size, bit);
1850
1851 /*
1852 * If there are no more logged regions in the
1853 * buffer, then we're done.
1854 */
1855 if (bit == -1) {
1856 return 0;
1857 }
1858
1859 nbits = xfs_contig_bits(data_map, map_size,
1860 bit);
1861 ASSERT(nbits > 0);
1862 reg_buf_offset = bit << XFS_BLI_SHIFT;
1863 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1864 item_index++;
1865 }
1866
1867 /*
1868 * If the current logged region starts after the current
1869 * di_next_unlinked field, then move on to the next
1870 * di_next_unlinked field.
1871 */
1872 if (next_unlinked_offset < reg_buf_offset) {
1873 continue;
1874 }
1875
1876 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1877 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1878 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1879
1880 /*
1881 * The current logged region contains a copy of the
1882 * current di_next_unlinked field. Extract its value
1883 * and copy it to the buffer copy.
1884 */
1885 logged_nextp = (xfs_agino_t *)
1886 ((char *)(item->ri_buf[item_index].i_addr) +
1887 (next_unlinked_offset - reg_buf_offset));
1888 if (unlikely(*logged_nextp == 0)) {
1889 xfs_fs_cmn_err(CE_ALERT, mp,
1890 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1891 item, bp);
1892 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1893 XFS_ERRLEVEL_LOW, mp);
1894 return XFS_ERROR(EFSCORRUPTED);
1895 }
1896
1897 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1898 next_unlinked_offset);
87c199c2 1899 *buffer_nextp = *logged_nextp;
1da177e4
LT
1900 }
1901
1902 return 0;
1903}
1904
1905/*
1906 * Perform a 'normal' buffer recovery. Each logged region of the
1907 * buffer should be copied over the corresponding region in the
1908 * given buffer. The bitmap in the buf log format structure indicates
1909 * where to place the logged data.
1910 */
1911/*ARGSUSED*/
1912STATIC void
1913xlog_recover_do_reg_buffer(
9abbc539 1914 struct xfs_mount *mp,
1da177e4
LT
1915 xlog_recover_item_t *item,
1916 xfs_buf_t *bp,
1917 xfs_buf_log_format_t *buf_f)
1918{
1919 int i;
1920 int bit;
1921 int nbits;
1da177e4
LT
1922 unsigned int *data_map = NULL;
1923 unsigned int map_size = 0;
1924 int error;
1925
9abbc539
DC
1926 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1927
1da177e4
LT
1928 switch (buf_f->blf_type) {
1929 case XFS_LI_BUF:
1930 data_map = buf_f->blf_data_map;
1931 map_size = buf_f->blf_map_size;
1932 break;
1da177e4
LT
1933 }
1934 bit = 0;
1935 i = 1; /* 0 is the buf format structure */
1936 while (1) {
1937 bit = xfs_next_bit(data_map, map_size, bit);
1938 if (bit == -1)
1939 break;
1940 nbits = xfs_contig_bits(data_map, map_size, bit);
1941 ASSERT(nbits > 0);
4b80916b 1942 ASSERT(item->ri_buf[i].i_addr != NULL);
1da177e4
LT
1943 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1944 ASSERT(XFS_BUF_COUNT(bp) >=
1945 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1946
1947 /*
1948 * Do a sanity check if this is a dquot buffer. Just checking
1949 * the first dquot in the buffer should do. XXXThis is
1950 * probably a good thing to do for other buf types also.
1951 */
1952 error = 0;
c8ad20ff
NS
1953 if (buf_f->blf_flags &
1954 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
0c5e1ce8
CH
1955 if (item->ri_buf[i].i_addr == NULL) {
1956 cmn_err(CE_ALERT,
1957 "XFS: NULL dquot in %s.", __func__);
1958 goto next;
1959 }
8ec6dba2 1960 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
1961 cmn_err(CE_ALERT,
1962 "XFS: dquot too small (%d) in %s.",
1963 item->ri_buf[i].i_len, __func__);
1964 goto next;
1965 }
1da177e4
LT
1966 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1967 item->ri_buf[i].i_addr,
1968 -1, 0, XFS_QMOPT_DOWARN,
1969 "dquot_buf_recover");
0c5e1ce8
CH
1970 if (error)
1971 goto next;
1da177e4 1972 }
0c5e1ce8
CH
1973
1974 memcpy(xfs_buf_offset(bp,
1975 (uint)bit << XFS_BLI_SHIFT), /* dest */
1976 item->ri_buf[i].i_addr, /* source */
1977 nbits<<XFS_BLI_SHIFT); /* length */
1978 next:
1da177e4
LT
1979 i++;
1980 bit += nbits;
1981 }
1982
1983 /* Shouldn't be any more regions */
1984 ASSERT(i == item->ri_total);
1985}
1986
1987/*
1988 * Do some primitive error checking on ondisk dquot data structures.
1989 */
1990int
1991xfs_qm_dqcheck(
1992 xfs_disk_dquot_t *ddq,
1993 xfs_dqid_t id,
1994 uint type, /* used only when IO_dorepair is true */
1995 uint flags,
1996 char *str)
1997{
1998 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1999 int errs = 0;
2000
2001 /*
2002 * We can encounter an uninitialized dquot buffer for 2 reasons:
2003 * 1. If we crash while deleting the quotainode(s), and those blks got
2004 * used for user data. This is because we take the path of regular
2005 * file deletion; however, the size field of quotainodes is never
2006 * updated, so all the tricks that we play in itruncate_finish
2007 * don't quite matter.
2008 *
2009 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2010 * But the allocation will be replayed so we'll end up with an
2011 * uninitialized quota block.
2012 *
2013 * This is all fine; things are still consistent, and we haven't lost
2014 * any quota information. Just don't complain about bad dquot blks.
2015 */
1149d96a 2016 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
2017 if (flags & XFS_QMOPT_DOWARN)
2018 cmn_err(CE_ALERT,
2019 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2020 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2021 errs++;
2022 }
1149d96a 2023 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
2024 if (flags & XFS_QMOPT_DOWARN)
2025 cmn_err(CE_ALERT,
2026 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2027 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2028 errs++;
2029 }
2030
1149d96a
CH
2031 if (ddq->d_flags != XFS_DQ_USER &&
2032 ddq->d_flags != XFS_DQ_PROJ &&
2033 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
2034 if (flags & XFS_QMOPT_DOWARN)
2035 cmn_err(CE_ALERT,
2036 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2037 str, id, ddq->d_flags);
1da177e4
LT
2038 errs++;
2039 }
2040
1149d96a 2041 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
2042 if (flags & XFS_QMOPT_DOWARN)
2043 cmn_err(CE_ALERT,
2044 "%s : ondisk-dquot 0x%p, ID mismatch: "
2045 "0x%x expected, found id 0x%x",
1149d96a 2046 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2047 errs++;
2048 }
2049
2050 if (!errs && ddq->d_id) {
1149d96a
CH
2051 if (ddq->d_blk_softlimit &&
2052 be64_to_cpu(ddq->d_bcount) >=
2053 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2054 if (!ddq->d_btimer) {
2055 if (flags & XFS_QMOPT_DOWARN)
2056 cmn_err(CE_ALERT,
2057 "%s : Dquot ID 0x%x (0x%p) "
2058 "BLK TIMER NOT STARTED",
1149d96a 2059 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2060 errs++;
2061 }
2062 }
1149d96a
CH
2063 if (ddq->d_ino_softlimit &&
2064 be64_to_cpu(ddq->d_icount) >=
2065 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2066 if (!ddq->d_itimer) {
2067 if (flags & XFS_QMOPT_DOWARN)
2068 cmn_err(CE_ALERT,
2069 "%s : Dquot ID 0x%x (0x%p) "
2070 "INODE TIMER NOT STARTED",
1149d96a 2071 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2072 errs++;
2073 }
2074 }
1149d96a
CH
2075 if (ddq->d_rtb_softlimit &&
2076 be64_to_cpu(ddq->d_rtbcount) >=
2077 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2078 if (!ddq->d_rtbtimer) {
2079 if (flags & XFS_QMOPT_DOWARN)
2080 cmn_err(CE_ALERT,
2081 "%s : Dquot ID 0x%x (0x%p) "
2082 "RTBLK TIMER NOT STARTED",
1149d96a 2083 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2084 errs++;
2085 }
2086 }
2087 }
2088
2089 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2090 return errs;
2091
2092 if (flags & XFS_QMOPT_DOWARN)
2093 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2094
2095 /*
2096 * Typically, a repair is only requested by quotacheck.
2097 */
2098 ASSERT(id != -1);
2099 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2100 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2101
2102 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2103 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2104 d->dd_diskdq.d_flags = type;
2105 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2106
2107 return errs;
2108}
2109
2110/*
2111 * Perform a dquot buffer recovery.
2112 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2113 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2114 * Else, treat it as a regular buffer and do recovery.
2115 */
2116STATIC void
2117xlog_recover_do_dquot_buffer(
2118 xfs_mount_t *mp,
2119 xlog_t *log,
2120 xlog_recover_item_t *item,
2121 xfs_buf_t *bp,
2122 xfs_buf_log_format_t *buf_f)
2123{
2124 uint type;
2125
9abbc539
DC
2126 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2127
1da177e4
LT
2128 /*
2129 * Filesystems are required to send in quota flags at mount time.
2130 */
2131 if (mp->m_qflags == 0) {
2132 return;
2133 }
2134
2135 type = 0;
2136 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2137 type |= XFS_DQ_USER;
c8ad20ff
NS
2138 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2139 type |= XFS_DQ_PROJ;
1da177e4
LT
2140 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2141 type |= XFS_DQ_GROUP;
2142 /*
2143 * This type of quotas was turned off, so ignore this buffer
2144 */
2145 if (log->l_quotaoffs_flag & type)
2146 return;
2147
9abbc539 2148 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2149}
2150
2151/*
2152 * This routine replays a modification made to a buffer at runtime.
2153 * There are actually two types of buffer, regular and inode, which
2154 * are handled differently. Inode buffers are handled differently
2155 * in that we only recover a specific set of data from them, namely
2156 * the inode di_next_unlinked fields. This is because all other inode
2157 * data is actually logged via inode records and any data we replay
2158 * here which overlaps that may be stale.
2159 *
2160 * When meta-data buffers are freed at run time we log a buffer item
2161 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2162 * of the buffer in the log should not be replayed at recovery time.
2163 * This is so that if the blocks covered by the buffer are reused for
2164 * file data before we crash we don't end up replaying old, freed
2165 * meta-data into a user's file.
2166 *
2167 * To handle the cancellation of buffer log items, we make two passes
2168 * over the log during recovery. During the first we build a table of
2169 * those buffers which have been cancelled, and during the second we
2170 * only replay those buffers which do not have corresponding cancel
2171 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2172 * for more details on the implementation of the table of cancel records.
2173 */
2174STATIC int
2175xlog_recover_do_buffer_trans(
2176 xlog_t *log,
2177 xlog_recover_item_t *item,
2178 int pass)
2179{
2180 xfs_buf_log_format_t *buf_f;
1da177e4
LT
2181 xfs_mount_t *mp;
2182 xfs_buf_t *bp;
2183 int error;
2184 int cancel;
2185 xfs_daddr_t blkno;
2186 int len;
2187 ushort flags;
6ad112bf 2188 uint buf_flags;
1da177e4
LT
2189
2190 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2191
2192 if (pass == XLOG_RECOVER_PASS1) {
2193 /*
2194 * In this pass we're only looking for buf items
2195 * with the XFS_BLI_CANCEL bit set.
2196 */
2197 xlog_recover_do_buffer_pass1(log, buf_f);
2198 return 0;
2199 } else {
2200 /*
2201 * In this pass we want to recover all the buffers
2202 * which have not been cancelled and are not
2203 * cancellation buffers themselves. The routine
2204 * we call here will tell us whether or not to
2205 * continue with the replay of this buffer.
2206 */
2207 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2208 if (cancel) {
9abbc539 2209 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4
LT
2210 return 0;
2211 }
2212 }
9abbc539 2213 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4
LT
2214 switch (buf_f->blf_type) {
2215 case XFS_LI_BUF:
2216 blkno = buf_f->blf_blkno;
2217 len = buf_f->blf_len;
2218 flags = buf_f->blf_flags;
2219 break;
1da177e4
LT
2220 default:
2221 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2222 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2223 buf_f->blf_type, log->l_mp->m_logname ?
2224 log->l_mp->m_logname : "internal");
1da177e4
LT
2225 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2226 XFS_ERRLEVEL_LOW, log->l_mp);
2227 return XFS_ERROR(EFSCORRUPTED);
2228 }
2229
2230 mp = log->l_mp;
0cadda1c 2231 buf_flags = XBF_LOCK;
6ad112bf 2232 if (!(flags & XFS_BLI_INODE_BUF))
0cadda1c 2233 buf_flags |= XBF_MAPPED;
6ad112bf
CH
2234
2235 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
1da177e4
LT
2236 if (XFS_BUF_ISERROR(bp)) {
2237 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2238 bp, blkno);
2239 error = XFS_BUF_GETERROR(bp);
2240 xfs_buf_relse(bp);
2241 return error;
2242 }
2243
2244 error = 0;
2245 if (flags & XFS_BLI_INODE_BUF) {
2246 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff
NS
2247 } else if (flags &
2248 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
2249 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2250 } else {
9abbc539 2251 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2252 }
2253 if (error)
2254 return XFS_ERROR(error);
2255
2256 /*
2257 * Perform delayed write on the buffer. Asynchronous writes will be
2258 * slower when taking into account all the buffers to be flushed.
2259 *
2260 * Also make sure that only inode buffers with good sizes stay in
2261 * the buffer cache. The kernel moves inodes in buffers of 1 block
2262 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2263 * buffers in the log can be a different size if the log was generated
2264 * by an older kernel using unclustered inode buffers or a newer kernel
2265 * running with a different inode cluster size. Regardless, if the
2266 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2267 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2268 * the buffer out of the buffer cache so that the buffer won't
2269 * overlap with future reads of those inodes.
2270 */
2271 if (XFS_DINODE_MAGIC ==
b53e675d 2272 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2273 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2274 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2275 XFS_BUF_STALE(bp);
2276 error = xfs_bwrite(mp, bp);
2277 } else {
15ac08a8
CH
2278 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2279 bp->b_mount = mp;
1da177e4
LT
2280 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2281 xfs_bdwrite(mp, bp);
2282 }
2283
2284 return (error);
2285}
2286
2287STATIC int
2288xlog_recover_do_inode_trans(
2289 xlog_t *log,
2290 xlog_recover_item_t *item,
2291 int pass)
2292{
2293 xfs_inode_log_format_t *in_f;
2294 xfs_mount_t *mp;
2295 xfs_buf_t *bp;
1da177e4
LT
2296 xfs_dinode_t *dip;
2297 xfs_ino_t ino;
2298 int len;
2299 xfs_caddr_t src;
2300 xfs_caddr_t dest;
2301 int error;
2302 int attr_index;
2303 uint fields;
347d1c01 2304 xfs_icdinode_t *dicp;
6d192a9b 2305 int need_free = 0;
1da177e4
LT
2306
2307 if (pass == XLOG_RECOVER_PASS1) {
2308 return 0;
2309 }
2310
6d192a9b
TS
2311 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2312 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2313 } else {
2314 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2315 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2316 need_free = 1;
2317 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2318 if (error)
2319 goto error;
2320 }
1da177e4
LT
2321 ino = in_f->ilf_ino;
2322 mp = log->l_mp;
1da177e4
LT
2323
2324 /*
2325 * Inode buffers can be freed, look out for it,
2326 * and do not replay the inode.
2327 */
a1941895
CH
2328 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2329 in_f->ilf_len, 0)) {
6d192a9b 2330 error = 0;
9abbc539 2331 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2332 goto error;
2333 }
9abbc539 2334 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2335
6ad112bf 2336 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
0cadda1c 2337 XBF_LOCK);
1da177e4
LT
2338 if (XFS_BUF_ISERROR(bp)) {
2339 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
a1941895 2340 bp, in_f->ilf_blkno);
1da177e4
LT
2341 error = XFS_BUF_GETERROR(bp);
2342 xfs_buf_relse(bp);
6d192a9b 2343 goto error;
1da177e4
LT
2344 }
2345 error = 0;
2346 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2347 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2348
2349 /*
2350 * Make sure the place we're flushing out to really looks
2351 * like an inode!
2352 */
81591fe2 2353 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
1da177e4
LT
2354 xfs_buf_relse(bp);
2355 xfs_fs_cmn_err(CE_ALERT, mp,
2356 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2357 dip, bp, ino);
2358 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2359 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2360 error = EFSCORRUPTED;
2361 goto error;
1da177e4 2362 }
347d1c01 2363 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
1da177e4
LT
2364 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2365 xfs_buf_relse(bp);
2366 xfs_fs_cmn_err(CE_ALERT, mp,
2367 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2368 item, ino);
2369 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2370 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2371 error = EFSCORRUPTED;
2372 goto error;
1da177e4
LT
2373 }
2374
2375 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2376 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2377 /*
2378 * Deal with the wrap case, DI_MAX_FLUSH is less
2379 * than smaller numbers
2380 */
81591fe2 2381 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2382 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2383 /* do nothing */
2384 } else {
2385 xfs_buf_relse(bp);
9abbc539 2386 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2387 error = 0;
2388 goto error;
1da177e4
LT
2389 }
2390 }
2391 /* Take the opportunity to reset the flush iteration count */
2392 dicp->di_flushiter = 0;
2393
2394 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2395 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2396 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2397 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2398 XFS_ERRLEVEL_LOW, mp, dicp);
2399 xfs_buf_relse(bp);
2400 xfs_fs_cmn_err(CE_ALERT, mp,
2401 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2402 item, dip, bp, ino);
6d192a9b
TS
2403 error = EFSCORRUPTED;
2404 goto error;
1da177e4
LT
2405 }
2406 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2407 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2408 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2409 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2410 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2411 XFS_ERRLEVEL_LOW, mp, dicp);
2412 xfs_buf_relse(bp);
2413 xfs_fs_cmn_err(CE_ALERT, mp,
2414 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2415 item, dip, bp, ino);
6d192a9b
TS
2416 error = EFSCORRUPTED;
2417 goto error;
1da177e4
LT
2418 }
2419 }
2420 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2421 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2422 XFS_ERRLEVEL_LOW, mp, dicp);
2423 xfs_buf_relse(bp);
2424 xfs_fs_cmn_err(CE_ALERT, mp,
2425 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2426 item, dip, bp, ino,
2427 dicp->di_nextents + dicp->di_anextents,
2428 dicp->di_nblocks);
6d192a9b
TS
2429 error = EFSCORRUPTED;
2430 goto error;
1da177e4
LT
2431 }
2432 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2433 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2434 XFS_ERRLEVEL_LOW, mp, dicp);
2435 xfs_buf_relse(bp);
2436 xfs_fs_cmn_err(CE_ALERT, mp,
2437 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2438 item, dip, bp, ino, dicp->di_forkoff);
6d192a9b
TS
2439 error = EFSCORRUPTED;
2440 goto error;
1da177e4 2441 }
81591fe2 2442 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
1da177e4
LT
2443 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2444 XFS_ERRLEVEL_LOW, mp, dicp);
2445 xfs_buf_relse(bp);
2446 xfs_fs_cmn_err(CE_ALERT, mp,
2447 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2448 item->ri_buf[1].i_len, item);
6d192a9b
TS
2449 error = EFSCORRUPTED;
2450 goto error;
1da177e4
LT
2451 }
2452
2453 /* The core is in in-core format */
81591fe2 2454 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
1da177e4
LT
2455
2456 /* the rest is in on-disk format */
81591fe2
CH
2457 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2458 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2459 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2460 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2461 }
2462
2463 fields = in_f->ilf_fields;
2464 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2465 case XFS_ILOG_DEV:
81591fe2 2466 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2467 break;
2468 case XFS_ILOG_UUID:
81591fe2
CH
2469 memcpy(XFS_DFORK_DPTR(dip),
2470 &in_f->ilf_u.ilfu_uuid,
2471 sizeof(uuid_t));
1da177e4
LT
2472 break;
2473 }
2474
2475 if (in_f->ilf_size == 2)
2476 goto write_inode_buffer;
2477 len = item->ri_buf[2].i_len;
2478 src = item->ri_buf[2].i_addr;
2479 ASSERT(in_f->ilf_size <= 4);
2480 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2481 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2482 (len == in_f->ilf_dsize));
2483
2484 switch (fields & XFS_ILOG_DFORK) {
2485 case XFS_ILOG_DDATA:
2486 case XFS_ILOG_DEXT:
81591fe2 2487 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2488 break;
2489
2490 case XFS_ILOG_DBROOT:
7cc95a82 2491 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2492 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2493 XFS_DFORK_DSIZE(dip, mp));
2494 break;
2495
2496 default:
2497 /*
2498 * There are no data fork flags set.
2499 */
2500 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2501 break;
2502 }
2503
2504 /*
2505 * If we logged any attribute data, recover it. There may or
2506 * may not have been any other non-core data logged in this
2507 * transaction.
2508 */
2509 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2510 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2511 attr_index = 3;
2512 } else {
2513 attr_index = 2;
2514 }
2515 len = item->ri_buf[attr_index].i_len;
2516 src = item->ri_buf[attr_index].i_addr;
2517 ASSERT(len == in_f->ilf_asize);
2518
2519 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2520 case XFS_ILOG_ADATA:
2521 case XFS_ILOG_AEXT:
2522 dest = XFS_DFORK_APTR(dip);
2523 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2524 memcpy(dest, src, len);
2525 break;
2526
2527 case XFS_ILOG_ABROOT:
2528 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2529 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2530 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2531 XFS_DFORK_ASIZE(dip, mp));
2532 break;
2533
2534 default:
2535 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2536 ASSERT(0);
2537 xfs_buf_relse(bp);
6d192a9b
TS
2538 error = EIO;
2539 goto error;
1da177e4
LT
2540 }
2541 }
2542
2543write_inode_buffer:
dd0bbad8
CH
2544 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2545 bp->b_mount = mp;
2546 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2547 xfs_bdwrite(mp, bp);
6d192a9b
TS
2548error:
2549 if (need_free)
f0e2d93c 2550 kmem_free(in_f);
6d192a9b 2551 return XFS_ERROR(error);
1da177e4
LT
2552}
2553
2554/*
2555 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2556 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2557 * of that type.
2558 */
2559STATIC int
2560xlog_recover_do_quotaoff_trans(
2561 xlog_t *log,
2562 xlog_recover_item_t *item,
2563 int pass)
2564{
2565 xfs_qoff_logformat_t *qoff_f;
2566
2567 if (pass == XLOG_RECOVER_PASS2) {
2568 return (0);
2569 }
2570
2571 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2572 ASSERT(qoff_f);
2573
2574 /*
2575 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2576 * group/project quotaoff or both.
1da177e4
LT
2577 */
2578 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2579 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2580 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2581 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2582 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2583 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2584
2585 return (0);
2586}
2587
2588/*
2589 * Recover a dquot record
2590 */
2591STATIC int
2592xlog_recover_do_dquot_trans(
2593 xlog_t *log,
2594 xlog_recover_item_t *item,
2595 int pass)
2596{
2597 xfs_mount_t *mp;
2598 xfs_buf_t *bp;
2599 struct xfs_disk_dquot *ddq, *recddq;
2600 int error;
2601 xfs_dq_logformat_t *dq_f;
2602 uint type;
2603
2604 if (pass == XLOG_RECOVER_PASS1) {
2605 return 0;
2606 }
2607 mp = log->l_mp;
2608
2609 /*
2610 * Filesystems are required to send in quota flags at mount time.
2611 */
2612 if (mp->m_qflags == 0)
2613 return (0);
2614
2615 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
0c5e1ce8
CH
2616
2617 if (item->ri_buf[1].i_addr == NULL) {
2618 cmn_err(CE_ALERT,
2619 "XFS: NULL dquot in %s.", __func__);
2620 return XFS_ERROR(EIO);
2621 }
8ec6dba2 2622 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
2623 cmn_err(CE_ALERT,
2624 "XFS: dquot too small (%d) in %s.",
2625 item->ri_buf[1].i_len, __func__);
2626 return XFS_ERROR(EIO);
2627 }
2628
1da177e4
LT
2629 /*
2630 * This type of quotas was turned off, so ignore this record.
2631 */
b53e675d 2632 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2633 ASSERT(type);
2634 if (log->l_quotaoffs_flag & type)
2635 return (0);
2636
2637 /*
2638 * At this point we know that quota was _not_ turned off.
2639 * Since the mount flags are not indicating to us otherwise, this
2640 * must mean that quota is on, and the dquot needs to be replayed.
2641 * Remember that we may not have fully recovered the superblock yet,
2642 * so we can't do the usual trick of looking at the SB quota bits.
2643 *
2644 * The other possibility, of course, is that the quota subsystem was
2645 * removed since the last mount - ENOSYS.
2646 */
2647 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2648 ASSERT(dq_f);
2649 if ((error = xfs_qm_dqcheck(recddq,
2650 dq_f->qlf_id,
2651 0, XFS_QMOPT_DOWARN,
2652 "xlog_recover_do_dquot_trans (log copy)"))) {
2653 return XFS_ERROR(EIO);
2654 }
2655 ASSERT(dq_f->qlf_len == 1);
2656
2657 error = xfs_read_buf(mp, mp->m_ddev_targp,
2658 dq_f->qlf_blkno,
2659 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2660 0, &bp);
2661 if (error) {
2662 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2663 bp, dq_f->qlf_blkno);
2664 return error;
2665 }
2666 ASSERT(bp);
2667 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2668
2669 /*
2670 * At least the magic num portion should be on disk because this
2671 * was among a chunk of dquots created earlier, and we did some
2672 * minimal initialization then.
2673 */
2674 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2675 "xlog_recover_do_dquot_trans")) {
2676 xfs_buf_relse(bp);
2677 return XFS_ERROR(EIO);
2678 }
2679
2680 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2681
2682 ASSERT(dq_f->qlf_size == 2);
15ac08a8
CH
2683 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2684 bp->b_mount = mp;
1da177e4
LT
2685 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2686 xfs_bdwrite(mp, bp);
2687
2688 return (0);
2689}
2690
2691/*
2692 * This routine is called to create an in-core extent free intent
2693 * item from the efi format structure which was logged on disk.
2694 * It allocates an in-core efi, copies the extents from the format
2695 * structure into it, and adds the efi to the AIL with the given
2696 * LSN.
2697 */
6d192a9b 2698STATIC int
1da177e4
LT
2699xlog_recover_do_efi_trans(
2700 xlog_t *log,
2701 xlog_recover_item_t *item,
2702 xfs_lsn_t lsn,
2703 int pass)
2704{
6d192a9b 2705 int error;
1da177e4
LT
2706 xfs_mount_t *mp;
2707 xfs_efi_log_item_t *efip;
2708 xfs_efi_log_format_t *efi_formatp;
1da177e4
LT
2709
2710 if (pass == XLOG_RECOVER_PASS1) {
6d192a9b 2711 return 0;
1da177e4
LT
2712 }
2713
2714 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
1da177e4
LT
2715
2716 mp = log->l_mp;
2717 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2718 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2719 &(efip->efi_format)))) {
2720 xfs_efi_item_free(efip);
2721 return error;
2722 }
1da177e4
LT
2723 efip->efi_next_extent = efi_formatp->efi_nextents;
2724 efip->efi_flags |= XFS_EFI_COMMITTED;
2725
a9c21c1b 2726 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2727 /*
783a2f65 2728 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2729 */
783a2f65 2730 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
6d192a9b 2731 return 0;
1da177e4
LT
2732}
2733
2734
2735/*
2736 * This routine is called when an efd format structure is found in
2737 * a committed transaction in the log. It's purpose is to cancel
2738 * the corresponding efi if it was still in the log. To do this
2739 * it searches the AIL for the efi with an id equal to that in the
2740 * efd format structure. If we find it, we remove the efi from the
2741 * AIL and free it.
2742 */
2743STATIC void
2744xlog_recover_do_efd_trans(
2745 xlog_t *log,
2746 xlog_recover_item_t *item,
2747 int pass)
2748{
1da177e4
LT
2749 xfs_efd_log_format_t *efd_formatp;
2750 xfs_efi_log_item_t *efip = NULL;
2751 xfs_log_item_t *lip;
1da177e4 2752 __uint64_t efi_id;
27d8d5fe 2753 struct xfs_ail_cursor cur;
783a2f65 2754 struct xfs_ail *ailp = log->l_ailp;
1da177e4
LT
2755
2756 if (pass == XLOG_RECOVER_PASS1) {
2757 return;
2758 }
2759
2760 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
6d192a9b
TS
2761 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2762 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2763 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2764 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2765 efi_id = efd_formatp->efd_efi_id;
2766
2767 /*
2768 * Search for the efi with the id in the efd format structure
2769 * in the AIL.
2770 */
a9c21c1b
DC
2771 spin_lock(&ailp->xa_lock);
2772 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2773 while (lip != NULL) {
2774 if (lip->li_type == XFS_LI_EFI) {
2775 efip = (xfs_efi_log_item_t *)lip;
2776 if (efip->efi_format.efi_id == efi_id) {
2777 /*
783a2f65 2778 * xfs_trans_ail_delete() drops the
1da177e4
LT
2779 * AIL lock.
2780 */
783a2f65 2781 xfs_trans_ail_delete(ailp, lip);
8ae2c0f6 2782 xfs_efi_item_free(efip);
a9c21c1b 2783 spin_lock(&ailp->xa_lock);
27d8d5fe 2784 break;
1da177e4
LT
2785 }
2786 }
a9c21c1b 2787 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2788 }
a9c21c1b
DC
2789 xfs_trans_ail_cursor_done(ailp, &cur);
2790 spin_unlock(&ailp->xa_lock);
1da177e4
LT
2791}
2792
2793/*
2794 * Perform the transaction
2795 *
2796 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2797 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2798 */
2799STATIC int
2800xlog_recover_do_trans(
2801 xlog_t *log,
2802 xlog_recover_t *trans,
2803 int pass)
2804{
2805 int error = 0;
f0a76953 2806 xlog_recover_item_t *item;
1da177e4 2807
9abbc539 2808 error = xlog_recover_reorder_trans(log, trans, pass);
ff0205e0 2809 if (error)
1da177e4 2810 return error;
ff0205e0 2811
f0a76953 2812 list_for_each_entry(item, &trans->r_itemq, ri_list) {
9abbc539 2813 trace_xfs_log_recover_item_recover(log, trans, item, pass);
ff0205e0
CH
2814 switch (ITEM_TYPE(item)) {
2815 case XFS_LI_BUF:
2816 error = xlog_recover_do_buffer_trans(log, item, pass);
2817 break;
2818 case XFS_LI_INODE:
2819 error = xlog_recover_do_inode_trans(log, item, pass);
2820 break;
2821 case XFS_LI_EFI:
2822 error = xlog_recover_do_efi_trans(log, item,
2823 trans->r_lsn, pass);
2824 break;
2825 case XFS_LI_EFD:
1da177e4 2826 xlog_recover_do_efd_trans(log, item, pass);
ff0205e0
CH
2827 error = 0;
2828 break;
2829 case XFS_LI_DQUOT:
2830 error = xlog_recover_do_dquot_trans(log, item, pass);
2831 break;
2832 case XFS_LI_QUOTAOFF:
2833 error = xlog_recover_do_quotaoff_trans(log, item,
2834 pass);
2835 break;
2836 default:
2837 xlog_warn(
2838 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
1da177e4
LT
2839 ASSERT(0);
2840 error = XFS_ERROR(EIO);
2841 break;
2842 }
ff0205e0
CH
2843
2844 if (error)
2845 return error;
f0a76953 2846 }
1da177e4 2847
ff0205e0 2848 return 0;
1da177e4
LT
2849}
2850
2851/*
2852 * Free up any resources allocated by the transaction
2853 *
2854 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2855 */
2856STATIC void
2857xlog_recover_free_trans(
2858 xlog_recover_t *trans)
2859{
f0a76953 2860 xlog_recover_item_t *item, *n;
1da177e4
LT
2861 int i;
2862
f0a76953
DC
2863 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2864 /* Free the regions in the item. */
2865 list_del(&item->ri_list);
2866 for (i = 0; i < item->ri_cnt; i++)
2867 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2868 /* Free the item itself */
f0a76953
DC
2869 kmem_free(item->ri_buf);
2870 kmem_free(item);
2871 }
1da177e4 2872 /* Free the transaction recover structure */
f0e2d93c 2873 kmem_free(trans);
1da177e4
LT
2874}
2875
2876STATIC int
2877xlog_recover_commit_trans(
2878 xlog_t *log,
1da177e4
LT
2879 xlog_recover_t *trans,
2880 int pass)
2881{
2882 int error;
2883
f0a76953 2884 hlist_del(&trans->r_list);
1da177e4
LT
2885 if ((error = xlog_recover_do_trans(log, trans, pass)))
2886 return error;
2887 xlog_recover_free_trans(trans); /* no error */
2888 return 0;
2889}
2890
2891STATIC int
2892xlog_recover_unmount_trans(
2893 xlog_recover_t *trans)
2894{
2895 /* Do nothing now */
2896 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2897 return 0;
2898}
2899
2900/*
2901 * There are two valid states of the r_state field. 0 indicates that the
2902 * transaction structure is in a normal state. We have either seen the
2903 * start of the transaction or the last operation we added was not a partial
2904 * operation. If the last operation we added to the transaction was a
2905 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2906 *
2907 * NOTE: skip LRs with 0 data length.
2908 */
2909STATIC int
2910xlog_recover_process_data(
2911 xlog_t *log,
f0a76953 2912 struct hlist_head rhash[],
1da177e4
LT
2913 xlog_rec_header_t *rhead,
2914 xfs_caddr_t dp,
2915 int pass)
2916{
2917 xfs_caddr_t lp;
2918 int num_logops;
2919 xlog_op_header_t *ohead;
2920 xlog_recover_t *trans;
2921 xlog_tid_t tid;
2922 int error;
2923 unsigned long hash;
2924 uint flags;
2925
b53e675d
CH
2926 lp = dp + be32_to_cpu(rhead->h_len);
2927 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2928
2929 /* check the log format matches our own - else we can't recover */
2930 if (xlog_header_check_recover(log->l_mp, rhead))
2931 return (XFS_ERROR(EIO));
2932
2933 while ((dp < lp) && num_logops) {
2934 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2935 ohead = (xlog_op_header_t *)dp;
2936 dp += sizeof(xlog_op_header_t);
2937 if (ohead->oh_clientid != XFS_TRANSACTION &&
2938 ohead->oh_clientid != XFS_LOG) {
2939 xlog_warn(
2940 "XFS: xlog_recover_process_data: bad clientid");
2941 ASSERT(0);
2942 return (XFS_ERROR(EIO));
2943 }
67fcb7bf 2944 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2945 hash = XLOG_RHASH(tid);
f0a76953 2946 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2947 if (trans == NULL) { /* not found; add new tid */
2948 if (ohead->oh_flags & XLOG_START_TRANS)
2949 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2950 be64_to_cpu(rhead->h_lsn));
1da177e4 2951 } else {
9742bb93
LM
2952 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2953 xlog_warn(
2954 "XFS: xlog_recover_process_data: bad length");
2955 WARN_ON(1);
2956 return (XFS_ERROR(EIO));
2957 }
1da177e4
LT
2958 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2959 if (flags & XLOG_WAS_CONT_TRANS)
2960 flags &= ~XLOG_CONTINUE_TRANS;
2961 switch (flags) {
2962 case XLOG_COMMIT_TRANS:
2963 error = xlog_recover_commit_trans(log,
f0a76953 2964 trans, pass);
1da177e4
LT
2965 break;
2966 case XLOG_UNMOUNT_TRANS:
2967 error = xlog_recover_unmount_trans(trans);
2968 break;
2969 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
2970 error = xlog_recover_add_to_cont_trans(log,
2971 trans, dp,
2972 be32_to_cpu(ohead->oh_len));
1da177e4
LT
2973 break;
2974 case XLOG_START_TRANS:
2975 xlog_warn(
2976 "XFS: xlog_recover_process_data: bad transaction");
2977 ASSERT(0);
2978 error = XFS_ERROR(EIO);
2979 break;
2980 case 0:
2981 case XLOG_CONTINUE_TRANS:
9abbc539 2982 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 2983 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2984 break;
2985 default:
2986 xlog_warn(
2987 "XFS: xlog_recover_process_data: bad flag");
2988 ASSERT(0);
2989 error = XFS_ERROR(EIO);
2990 break;
2991 }
2992 if (error)
2993 return error;
2994 }
67fcb7bf 2995 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2996 num_logops--;
2997 }
2998 return 0;
2999}
3000
3001/*
3002 * Process an extent free intent item that was recovered from
3003 * the log. We need to free the extents that it describes.
3004 */
3c1e2bbe 3005STATIC int
1da177e4
LT
3006xlog_recover_process_efi(
3007 xfs_mount_t *mp,
3008 xfs_efi_log_item_t *efip)
3009{
3010 xfs_efd_log_item_t *efdp;
3011 xfs_trans_t *tp;
3012 int i;
3c1e2bbe 3013 int error = 0;
1da177e4
LT
3014 xfs_extent_t *extp;
3015 xfs_fsblock_t startblock_fsb;
3016
3017 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3018
3019 /*
3020 * First check the validity of the extents described by the
3021 * EFI. If any are bad, then assume that all are bad and
3022 * just toss the EFI.
3023 */
3024 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3025 extp = &(efip->efi_format.efi_extents[i]);
3026 startblock_fsb = XFS_BB_TO_FSB(mp,
3027 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3028 if ((startblock_fsb == 0) ||
3029 (extp->ext_len == 0) ||
3030 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3031 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3032 /*
3033 * This will pull the EFI from the AIL and
3034 * free the memory associated with it.
3035 */
3036 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3037 return XFS_ERROR(EIO);
1da177e4
LT
3038 }
3039 }
3040
3041 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 3042 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
3043 if (error)
3044 goto abort_error;
1da177e4
LT
3045 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3046
3047 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3048 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3049 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3050 if (error)
3051 goto abort_error;
1da177e4
LT
3052 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3053 extp->ext_len);
3054 }
3055
3056 efip->efi_flags |= XFS_EFI_RECOVERED;
e5720eec 3057 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3058 return error;
fc6149d8
DC
3059
3060abort_error:
3061 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3062 return error;
1da177e4
LT
3063}
3064
1da177e4
LT
3065/*
3066 * When this is called, all of the EFIs which did not have
3067 * corresponding EFDs should be in the AIL. What we do now
3068 * is free the extents associated with each one.
3069 *
3070 * Since we process the EFIs in normal transactions, they
3071 * will be removed at some point after the commit. This prevents
3072 * us from just walking down the list processing each one.
3073 * We'll use a flag in the EFI to skip those that we've already
3074 * processed and use the AIL iteration mechanism's generation
3075 * count to try to speed this up at least a bit.
3076 *
3077 * When we start, we know that the EFIs are the only things in
3078 * the AIL. As we process them, however, other items are added
3079 * to the AIL. Since everything added to the AIL must come after
3080 * everything already in the AIL, we stop processing as soon as
3081 * we see something other than an EFI in the AIL.
3082 */
3c1e2bbe 3083STATIC int
1da177e4
LT
3084xlog_recover_process_efis(
3085 xlog_t *log)
3086{
3087 xfs_log_item_t *lip;
3088 xfs_efi_log_item_t *efip;
3c1e2bbe 3089 int error = 0;
27d8d5fe 3090 struct xfs_ail_cursor cur;
a9c21c1b 3091 struct xfs_ail *ailp;
1da177e4 3092
a9c21c1b
DC
3093 ailp = log->l_ailp;
3094 spin_lock(&ailp->xa_lock);
3095 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3096 while (lip != NULL) {
3097 /*
3098 * We're done when we see something other than an EFI.
27d8d5fe 3099 * There should be no EFIs left in the AIL now.
1da177e4
LT
3100 */
3101 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3102#ifdef DEBUG
a9c21c1b 3103 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3104 ASSERT(lip->li_type != XFS_LI_EFI);
3105#endif
1da177e4
LT
3106 break;
3107 }
3108
3109 /*
3110 * Skip EFIs that we've already processed.
3111 */
3112 efip = (xfs_efi_log_item_t *)lip;
3113 if (efip->efi_flags & XFS_EFI_RECOVERED) {
a9c21c1b 3114 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3115 continue;
3116 }
3117
a9c21c1b
DC
3118 spin_unlock(&ailp->xa_lock);
3119 error = xlog_recover_process_efi(log->l_mp, efip);
3120 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3121 if (error)
3122 goto out;
a9c21c1b 3123 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3124 }
27d8d5fe 3125out:
a9c21c1b
DC
3126 xfs_trans_ail_cursor_done(ailp, &cur);
3127 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3128 return error;
1da177e4
LT
3129}
3130
3131/*
3132 * This routine performs a transaction to null out a bad inode pointer
3133 * in an agi unlinked inode hash bucket.
3134 */
3135STATIC void
3136xlog_recover_clear_agi_bucket(
3137 xfs_mount_t *mp,
3138 xfs_agnumber_t agno,
3139 int bucket)
3140{
3141 xfs_trans_t *tp;
3142 xfs_agi_t *agi;
3143 xfs_buf_t *agibp;
3144 int offset;
3145 int error;
3146
3147 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3148 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3149 0, 0, 0);
e5720eec
DC
3150 if (error)
3151 goto out_abort;
1da177e4 3152
5e1be0fb
CH
3153 error = xfs_read_agi(mp, tp, agno, &agibp);
3154 if (error)
e5720eec 3155 goto out_abort;
1da177e4 3156
5e1be0fb 3157 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3158 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3159 offset = offsetof(xfs_agi_t, agi_unlinked) +
3160 (sizeof(xfs_agino_t) * bucket);
3161 xfs_trans_log_buf(tp, agibp, offset,
3162 (offset + sizeof(xfs_agino_t) - 1));
3163
e5720eec
DC
3164 error = xfs_trans_commit(tp, 0);
3165 if (error)
3166 goto out_error;
3167 return;
3168
3169out_abort:
3170 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3171out_error:
3172 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3173 "failed to clear agi %d. Continuing.", agno);
3174 return;
1da177e4
LT
3175}
3176
23fac50f
CH
3177STATIC xfs_agino_t
3178xlog_recover_process_one_iunlink(
3179 struct xfs_mount *mp,
3180 xfs_agnumber_t agno,
3181 xfs_agino_t agino,
3182 int bucket)
3183{
3184 struct xfs_buf *ibp;
3185 struct xfs_dinode *dip;
3186 struct xfs_inode *ip;
3187 xfs_ino_t ino;
3188 int error;
3189
3190 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3191 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3192 if (error)
3193 goto fail;
3194
3195 /*
3196 * Get the on disk inode to find the next inode in the bucket.
3197 */
0cadda1c 3198 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
23fac50f 3199 if (error)
0e446673 3200 goto fail_iput;
23fac50f 3201
23fac50f 3202 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3203 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3204
3205 /* setup for the next pass */
3206 agino = be32_to_cpu(dip->di_next_unlinked);
3207 xfs_buf_relse(ibp);
3208
3209 /*
3210 * Prevent any DMAPI event from being sent when the reference on
3211 * the inode is dropped.
3212 */
3213 ip->i_d.di_dmevmask = 0;
3214
0e446673 3215 IRELE(ip);
23fac50f
CH
3216 return agino;
3217
0e446673
CH
3218 fail_iput:
3219 IRELE(ip);
23fac50f
CH
3220 fail:
3221 /*
3222 * We can't read in the inode this bucket points to, or this inode
3223 * is messed up. Just ditch this bucket of inodes. We will lose
3224 * some inodes and space, but at least we won't hang.
3225 *
3226 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3227 * clear the inode pointer in the bucket.
3228 */
3229 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3230 return NULLAGINO;
3231}
3232
1da177e4
LT
3233/*
3234 * xlog_iunlink_recover
3235 *
3236 * This is called during recovery to process any inodes which
3237 * we unlinked but not freed when the system crashed. These
3238 * inodes will be on the lists in the AGI blocks. What we do
3239 * here is scan all the AGIs and fully truncate and free any
3240 * inodes found on the lists. Each inode is removed from the
3241 * lists when it has been fully truncated and is freed. The
3242 * freeing of the inode and its removal from the list must be
3243 * atomic.
3244 */
d96f8f89 3245STATIC void
1da177e4
LT
3246xlog_recover_process_iunlinks(
3247 xlog_t *log)
3248{
3249 xfs_mount_t *mp;
3250 xfs_agnumber_t agno;
3251 xfs_agi_t *agi;
3252 xfs_buf_t *agibp;
1da177e4 3253 xfs_agino_t agino;
1da177e4
LT
3254 int bucket;
3255 int error;
3256 uint mp_dmevmask;
3257
3258 mp = log->l_mp;
3259
3260 /*
3261 * Prevent any DMAPI event from being sent while in this function.
3262 */
3263 mp_dmevmask = mp->m_dmevmask;
3264 mp->m_dmevmask = 0;
3265
3266 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3267 /*
3268 * Find the agi for this ag.
3269 */
5e1be0fb
CH
3270 error = xfs_read_agi(mp, NULL, agno, &agibp);
3271 if (error) {
3272 /*
3273 * AGI is b0rked. Don't process it.
3274 *
3275 * We should probably mark the filesystem as corrupt
3276 * after we've recovered all the ag's we can....
3277 */
3278 continue;
1da177e4
LT
3279 }
3280 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3281
3282 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3283 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3284 while (agino != NULLAGINO) {
1da177e4
LT
3285 /*
3286 * Release the agi buffer so that it can
3287 * be acquired in the normal course of the
3288 * transaction to truncate and free the inode.
3289 */
3290 xfs_buf_relse(agibp);
3291
23fac50f
CH
3292 agino = xlog_recover_process_one_iunlink(mp,
3293 agno, agino, bucket);
1da177e4
LT
3294
3295 /*
3296 * Reacquire the agibuffer and continue around
5e1be0fb
CH
3297 * the loop. This should never fail as we know
3298 * the buffer was good earlier on.
1da177e4 3299 */
5e1be0fb
CH
3300 error = xfs_read_agi(mp, NULL, agno, &agibp);
3301 ASSERT(error == 0);
1da177e4 3302 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3303 }
3304 }
3305
3306 /*
3307 * Release the buffer for the current agi so we can
3308 * go on to the next one.
3309 */
3310 xfs_buf_relse(agibp);
3311 }
3312
3313 mp->m_dmevmask = mp_dmevmask;
3314}
3315
3316
3317#ifdef DEBUG
3318STATIC void
3319xlog_pack_data_checksum(
3320 xlog_t *log,
3321 xlog_in_core_t *iclog,
3322 int size)
3323{
3324 int i;
b53e675d 3325 __be32 *up;
1da177e4
LT
3326 uint chksum = 0;
3327
b53e675d 3328 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3329 /* divide length by 4 to get # words */
3330 for (i = 0; i < (size >> 2); i++) {
b53e675d 3331 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3332 up++;
3333 }
b53e675d 3334 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3335}
3336#else
3337#define xlog_pack_data_checksum(log, iclog, size)
3338#endif
3339
3340/*
3341 * Stamp cycle number in every block
3342 */
3343void
3344xlog_pack_data(
3345 xlog_t *log,
3346 xlog_in_core_t *iclog,
3347 int roundoff)
3348{
3349 int i, j, k;
3350 int size = iclog->ic_offset + roundoff;
b53e675d 3351 __be32 cycle_lsn;
1da177e4 3352 xfs_caddr_t dp;
1da177e4
LT
3353
3354 xlog_pack_data_checksum(log, iclog, size);
3355
3356 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3357
3358 dp = iclog->ic_datap;
3359 for (i = 0; i < BTOBB(size) &&
3360 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3361 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3362 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3363 dp += BBSIZE;
3364 }
3365
62118709 3366 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6
CH
3367 xlog_in_core_2_t *xhdr = iclog->ic_data;
3368
1da177e4
LT
3369 for ( ; i < BTOBB(size); i++) {
3370 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3371 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3372 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3373 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3374 dp += BBSIZE;
3375 }
3376
3377 for (i = 1; i < log->l_iclog_heads; i++) {
3378 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3379 }
3380 }
3381}
3382
3383#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3384STATIC void
3385xlog_unpack_data_checksum(
3386 xlog_rec_header_t *rhead,
3387 xfs_caddr_t dp,
3388 xlog_t *log)
3389{
b53e675d 3390 __be32 *up = (__be32 *)dp;
1da177e4
LT
3391 uint chksum = 0;
3392 int i;
3393
3394 /* divide length by 4 to get # words */
b53e675d
CH
3395 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3396 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3397 up++;
3398 }
b53e675d 3399 if (chksum != be32_to_cpu(rhead->h_chksum)) {
1da177e4
LT
3400 if (rhead->h_chksum ||
3401 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3402 cmn_err(CE_DEBUG,
b6574520 3403 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
b53e675d 3404 be32_to_cpu(rhead->h_chksum), chksum);
1da177e4
LT
3405 cmn_err(CE_DEBUG,
3406"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
62118709 3407 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3408 cmn_err(CE_DEBUG,
b6574520 3409 "XFS: LogR this is a LogV2 filesystem\n");
1da177e4
LT
3410 }
3411 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3412 }
3413 }
3414}
3415#else
3416#define xlog_unpack_data_checksum(rhead, dp, log)
3417#endif
3418
3419STATIC void
3420xlog_unpack_data(
3421 xlog_rec_header_t *rhead,
3422 xfs_caddr_t dp,
3423 xlog_t *log)
3424{
3425 int i, j, k;
1da177e4 3426
b53e675d 3427 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3428 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3429 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3430 dp += BBSIZE;
3431 }
3432
62118709 3433 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3434 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3435 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3436 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3437 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3438 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3439 dp += BBSIZE;
3440 }
3441 }
3442
3443 xlog_unpack_data_checksum(rhead, dp, log);
3444}
3445
3446STATIC int
3447xlog_valid_rec_header(
3448 xlog_t *log,
3449 xlog_rec_header_t *rhead,
3450 xfs_daddr_t blkno)
3451{
3452 int hlen;
3453
b53e675d 3454 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
3455 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3456 XFS_ERRLEVEL_LOW, log->l_mp);
3457 return XFS_ERROR(EFSCORRUPTED);
3458 }
3459 if (unlikely(
3460 (!rhead->h_version ||
b53e675d 3461 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
1da177e4 3462 xlog_warn("XFS: %s: unrecognised log version (%d).",
34a622b2 3463 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3464 return XFS_ERROR(EIO);
3465 }
3466
3467 /* LR body must have data or it wouldn't have been written */
b53e675d 3468 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3469 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3470 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3471 XFS_ERRLEVEL_LOW, log->l_mp);
3472 return XFS_ERROR(EFSCORRUPTED);
3473 }
3474 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3475 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3476 XFS_ERRLEVEL_LOW, log->l_mp);
3477 return XFS_ERROR(EFSCORRUPTED);
3478 }
3479 return 0;
3480}
3481
3482/*
3483 * Read the log from tail to head and process the log records found.
3484 * Handle the two cases where the tail and head are in the same cycle
3485 * and where the active portion of the log wraps around the end of
3486 * the physical log separately. The pass parameter is passed through
3487 * to the routines called to process the data and is not looked at
3488 * here.
3489 */
3490STATIC int
3491xlog_do_recovery_pass(
3492 xlog_t *log,
3493 xfs_daddr_t head_blk,
3494 xfs_daddr_t tail_blk,
3495 int pass)
3496{
3497 xlog_rec_header_t *rhead;
3498 xfs_daddr_t blk_no;
fc5bc4c8 3499 xfs_caddr_t offset;
1da177e4
LT
3500 xfs_buf_t *hbp, *dbp;
3501 int error = 0, h_size;
3502 int bblks, split_bblks;
3503 int hblks, split_hblks, wrapped_hblks;
f0a76953 3504 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3505
3506 ASSERT(head_blk != tail_blk);
3507
3508 /*
3509 * Read the header of the tail block and get the iclog buffer size from
3510 * h_size. Use this to tell how many sectors make up the log header.
3511 */
62118709 3512 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3513 /*
3514 * When using variable length iclogs, read first sector of
3515 * iclog header and extract the header size from it. Get a
3516 * new hbp that is the correct size.
3517 */
3518 hbp = xlog_get_bp(log, 1);
3519 if (!hbp)
3520 return ENOMEM;
076e6acb
CH
3521
3522 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3523 if (error)
1da177e4 3524 goto bread_err1;
076e6acb 3525
1da177e4
LT
3526 rhead = (xlog_rec_header_t *)offset;
3527 error = xlog_valid_rec_header(log, rhead, tail_blk);
3528 if (error)
3529 goto bread_err1;
b53e675d
CH
3530 h_size = be32_to_cpu(rhead->h_size);
3531 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3532 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3533 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3534 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3535 hblks++;
3536 xlog_put_bp(hbp);
3537 hbp = xlog_get_bp(log, hblks);
3538 } else {
3539 hblks = 1;
3540 }
3541 } else {
3542 ASSERT(log->l_sectbb_log == 0);
3543 hblks = 1;
3544 hbp = xlog_get_bp(log, 1);
3545 h_size = XLOG_BIG_RECORD_BSIZE;
3546 }
3547
3548 if (!hbp)
3549 return ENOMEM;
3550 dbp = xlog_get_bp(log, BTOBB(h_size));
3551 if (!dbp) {
3552 xlog_put_bp(hbp);
3553 return ENOMEM;
3554 }
3555
3556 memset(rhash, 0, sizeof(rhash));
3557 if (tail_blk <= head_blk) {
3558 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3559 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3560 if (error)
1da177e4 3561 goto bread_err2;
076e6acb 3562
1da177e4
LT
3563 rhead = (xlog_rec_header_t *)offset;
3564 error = xlog_valid_rec_header(log, rhead, blk_no);
3565 if (error)
3566 goto bread_err2;
3567
3568 /* blocks in data section */
b53e675d 3569 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3570 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3571 &offset);
1da177e4
LT
3572 if (error)
3573 goto bread_err2;
076e6acb 3574
1da177e4
LT
3575 xlog_unpack_data(rhead, offset, log);
3576 if ((error = xlog_recover_process_data(log,
3577 rhash, rhead, offset, pass)))
3578 goto bread_err2;
3579 blk_no += bblks + hblks;
3580 }
3581 } else {
3582 /*
3583 * Perform recovery around the end of the physical log.
3584 * When the head is not on the same cycle number as the tail,
3585 * we can't do a sequential recovery as above.
3586 */
3587 blk_no = tail_blk;
3588 while (blk_no < log->l_logBBsize) {
3589 /*
3590 * Check for header wrapping around physical end-of-log
3591 */
fc5bc4c8 3592 offset = XFS_BUF_PTR(hbp);
1da177e4
LT
3593 split_hblks = 0;
3594 wrapped_hblks = 0;
3595 if (blk_no + hblks <= log->l_logBBsize) {
3596 /* Read header in one read */
076e6acb
CH
3597 error = xlog_bread(log, blk_no, hblks, hbp,
3598 &offset);
1da177e4
LT
3599 if (error)
3600 goto bread_err2;
1da177e4
LT
3601 } else {
3602 /* This LR is split across physical log end */
3603 if (blk_no != log->l_logBBsize) {
3604 /* some data before physical log end */
3605 ASSERT(blk_no <= INT_MAX);
3606 split_hblks = log->l_logBBsize - (int)blk_no;
3607 ASSERT(split_hblks > 0);
076e6acb
CH
3608 error = xlog_bread(log, blk_no,
3609 split_hblks, hbp,
3610 &offset);
3611 if (error)
1da177e4 3612 goto bread_err2;
1da177e4 3613 }
076e6acb 3614
1da177e4
LT
3615 /*
3616 * Note: this black magic still works with
3617 * large sector sizes (non-512) only because:
3618 * - we increased the buffer size originally
3619 * by 1 sector giving us enough extra space
3620 * for the second read;
3621 * - the log start is guaranteed to be sector
3622 * aligned;
3623 * - we read the log end (LR header start)
3624 * _first_, then the log start (LR header end)
3625 * - order is important.
3626 */
234f56ac 3627 wrapped_hblks = hblks - split_hblks;
234f56ac 3628 error = XFS_BUF_SET_PTR(hbp,
fc5bc4c8 3629 offset + BBTOB(split_hblks),
1da177e4 3630 BBTOB(hblks - split_hblks));
076e6acb
CH
3631 if (error)
3632 goto bread_err2;
3633
3634 error = xlog_bread_noalign(log, 0,
3635 wrapped_hblks, hbp);
3636 if (error)
3637 goto bread_err2;
3638
fc5bc4c8 3639 error = XFS_BUF_SET_PTR(hbp, offset,
234f56ac 3640 BBTOB(hblks));
1da177e4
LT
3641 if (error)
3642 goto bread_err2;
1da177e4
LT
3643 }
3644 rhead = (xlog_rec_header_t *)offset;
3645 error = xlog_valid_rec_header(log, rhead,
3646 split_hblks ? blk_no : 0);
3647 if (error)
3648 goto bread_err2;
3649
b53e675d 3650 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3651 blk_no += hblks;
3652
3653 /* Read in data for log record */
3654 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3655 error = xlog_bread(log, blk_no, bblks, dbp,
3656 &offset);
1da177e4
LT
3657 if (error)
3658 goto bread_err2;
1da177e4
LT
3659 } else {
3660 /* This log record is split across the
3661 * physical end of log */
fc5bc4c8 3662 offset = XFS_BUF_PTR(dbp);
1da177e4
LT
3663 split_bblks = 0;
3664 if (blk_no != log->l_logBBsize) {
3665 /* some data is before the physical
3666 * end of log */
3667 ASSERT(!wrapped_hblks);
3668 ASSERT(blk_no <= INT_MAX);
3669 split_bblks =
3670 log->l_logBBsize - (int)blk_no;
3671 ASSERT(split_bblks > 0);
076e6acb
CH
3672 error = xlog_bread(log, blk_no,
3673 split_bblks, dbp,
3674 &offset);
3675 if (error)
1da177e4 3676 goto bread_err2;
1da177e4 3677 }
076e6acb 3678
1da177e4
LT
3679 /*
3680 * Note: this black magic still works with
3681 * large sector sizes (non-512) only because:
3682 * - we increased the buffer size originally
3683 * by 1 sector giving us enough extra space
3684 * for the second read;
3685 * - the log start is guaranteed to be sector
3686 * aligned;
3687 * - we read the log end (LR header start)
3688 * _first_, then the log start (LR header end)
3689 * - order is important.
3690 */
234f56ac 3691 error = XFS_BUF_SET_PTR(dbp,
fc5bc4c8 3692 offset + BBTOB(split_bblks),
1da177e4 3693 BBTOB(bblks - split_bblks));
234f56ac 3694 if (error)
1da177e4 3695 goto bread_err2;
076e6acb
CH
3696
3697 error = xlog_bread_noalign(log, wrapped_hblks,
3698 bblks - split_bblks,
3699 dbp);
3700 if (error)
3701 goto bread_err2;
3702
fc5bc4c8 3703 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
076e6acb
CH
3704 if (error)
3705 goto bread_err2;
1da177e4
LT
3706 }
3707 xlog_unpack_data(rhead, offset, log);
3708 if ((error = xlog_recover_process_data(log, rhash,
3709 rhead, offset, pass)))
3710 goto bread_err2;
3711 blk_no += bblks;
3712 }
3713
3714 ASSERT(blk_no >= log->l_logBBsize);
3715 blk_no -= log->l_logBBsize;
3716
3717 /* read first part of physical log */
3718 while (blk_no < head_blk) {
076e6acb
CH
3719 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3720 if (error)
1da177e4 3721 goto bread_err2;
076e6acb 3722
1da177e4
LT
3723 rhead = (xlog_rec_header_t *)offset;
3724 error = xlog_valid_rec_header(log, rhead, blk_no);
3725 if (error)
3726 goto bread_err2;
076e6acb 3727
b53e675d 3728 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3729 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3730 &offset);
3731 if (error)
1da177e4 3732 goto bread_err2;
076e6acb 3733
1da177e4
LT
3734 xlog_unpack_data(rhead, offset, log);
3735 if ((error = xlog_recover_process_data(log, rhash,
3736 rhead, offset, pass)))
3737 goto bread_err2;
3738 blk_no += bblks + hblks;
3739 }
3740 }
3741
3742 bread_err2:
3743 xlog_put_bp(dbp);
3744 bread_err1:
3745 xlog_put_bp(hbp);
3746 return error;
3747}
3748
3749/*
3750 * Do the recovery of the log. We actually do this in two phases.
3751 * The two passes are necessary in order to implement the function
3752 * of cancelling a record written into the log. The first pass
3753 * determines those things which have been cancelled, and the
3754 * second pass replays log items normally except for those which
3755 * have been cancelled. The handling of the replay and cancellations
3756 * takes place in the log item type specific routines.
3757 *
3758 * The table of items which have cancel records in the log is allocated
3759 * and freed at this level, since only here do we know when all of
3760 * the log recovery has been completed.
3761 */
3762STATIC int
3763xlog_do_log_recovery(
3764 xlog_t *log,
3765 xfs_daddr_t head_blk,
3766 xfs_daddr_t tail_blk)
3767{
3768 int error;
3769
3770 ASSERT(head_blk != tail_blk);
3771
3772 /*
3773 * First do a pass to find all of the cancelled buf log items.
3774 * Store them in the buf_cancel_table for use in the second pass.
3775 */
3776 log->l_buf_cancel_table =
3777 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3778 sizeof(xfs_buf_cancel_t*),
3779 KM_SLEEP);
3780 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3781 XLOG_RECOVER_PASS1);
3782 if (error != 0) {
f0e2d93c 3783 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3784 log->l_buf_cancel_table = NULL;
3785 return error;
3786 }
3787 /*
3788 * Then do a second pass to actually recover the items in the log.
3789 * When it is complete free the table of buf cancel items.
3790 */
3791 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3792 XLOG_RECOVER_PASS2);
3793#ifdef DEBUG
6d192a9b 3794 if (!error) {
1da177e4
LT
3795 int i;
3796
3797 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3798 ASSERT(log->l_buf_cancel_table[i] == NULL);
3799 }
3800#endif /* DEBUG */
3801
f0e2d93c 3802 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3803 log->l_buf_cancel_table = NULL;
3804
3805 return error;
3806}
3807
3808/*
3809 * Do the actual recovery
3810 */
3811STATIC int
3812xlog_do_recover(
3813 xlog_t *log,
3814 xfs_daddr_t head_blk,
3815 xfs_daddr_t tail_blk)
3816{
3817 int error;
3818 xfs_buf_t *bp;
3819 xfs_sb_t *sbp;
3820
3821 /*
3822 * First replay the images in the log.
3823 */
3824 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3825 if (error) {
3826 return error;
3827 }
3828
3829 XFS_bflush(log->l_mp->m_ddev_targp);
3830
3831 /*
3832 * If IO errors happened during recovery, bail out.
3833 */
3834 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3835 return (EIO);
3836 }
3837
3838 /*
3839 * We now update the tail_lsn since much of the recovery has completed
3840 * and there may be space available to use. If there were no extent
3841 * or iunlinks, we can free up the entire log and set the tail_lsn to
3842 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3843 * lsn of the last known good LR on disk. If there are extent frees
3844 * or iunlinks they will have some entries in the AIL; so we look at
3845 * the AIL to determine how to set the tail_lsn.
3846 */
3847 xlog_assign_tail_lsn(log->l_mp);
3848
3849 /*
3850 * Now that we've finished replaying all buffer and inode
3851 * updates, re-read in the superblock.
3852 */
3853 bp = xfs_getsb(log->l_mp, 0);
3854 XFS_BUF_UNDONE(bp);
bebf963f
LM
3855 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3856 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
1da177e4 3857 XFS_BUF_READ(bp);
bebf963f 3858 XFS_BUF_UNASYNC(bp);
1da177e4 3859 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
3860 error = xfs_iowait(bp);
3861 if (error) {
1da177e4
LT
3862 xfs_ioerror_alert("xlog_do_recover",
3863 log->l_mp, bp, XFS_BUF_ADDR(bp));
3864 ASSERT(0);
3865 xfs_buf_relse(bp);
3866 return error;
3867 }
3868
3869 /* Convert superblock from on-disk format */
3870 sbp = &log->l_mp->m_sb;
2bdf7cd0 3871 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3872 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3873 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3874 xfs_buf_relse(bp);
3875
5478eead
LM
3876 /* We've re-read the superblock so re-initialize per-cpu counters */
3877 xfs_icsb_reinit_counters(log->l_mp);
3878
1da177e4
LT
3879 xlog_recover_check_summary(log);
3880
3881 /* Normal transactions can now occur */
3882 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3883 return 0;
3884}
3885
3886/*
3887 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3888 *
3889 * Return error or zero.
3890 */
3891int
3892xlog_recover(
65be6054 3893 xlog_t *log)
1da177e4
LT
3894{
3895 xfs_daddr_t head_blk, tail_blk;
3896 int error;
3897
3898 /* find the tail of the log */
65be6054 3899 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3900 return error;
3901
3902 if (tail_blk != head_blk) {
3903 /* There used to be a comment here:
3904 *
3905 * disallow recovery on read-only mounts. note -- mount
3906 * checks for ENOSPC and turns it into an intelligent
3907 * error message.
3908 * ...but this is no longer true. Now, unless you specify
3909 * NORECOVERY (in which case this function would never be
3910 * called), we just go ahead and recover. We do this all
3911 * under the vfs layer, so we can get away with it unless
3912 * the device itself is read-only, in which case we fail.
3913 */
3a02ee18 3914 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3915 return error;
3916 }
3917
3918 cmn_err(CE_NOTE,
fc1f8c1c
NS
3919 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3920 log->l_mp->m_fsname, log->l_mp->m_logname ?
3921 log->l_mp->m_logname : "internal");
1da177e4
LT
3922
3923 error = xlog_do_recover(log, head_blk, tail_blk);
3924 log->l_flags |= XLOG_RECOVERY_NEEDED;
3925 }
3926 return error;
3927}
3928
3929/*
3930 * In the first part of recovery we replay inodes and buffers and build
3931 * up the list of extent free items which need to be processed. Here
3932 * we process the extent free items and clean up the on disk unlinked
3933 * inode lists. This is separated from the first part of recovery so
3934 * that the root and real-time bitmap inodes can be read in from disk in
3935 * between the two stages. This is necessary so that we can free space
3936 * in the real-time portion of the file system.
3937 */
3938int
3939xlog_recover_finish(
4249023a 3940 xlog_t *log)
1da177e4
LT
3941{
3942 /*
3943 * Now we're ready to do the transactions needed for the
3944 * rest of recovery. Start with completing all the extent
3945 * free intent records and then process the unlinked inode
3946 * lists. At this point, we essentially run in normal mode
3947 * except that we're still performing recovery actions
3948 * rather than accepting new requests.
3949 */
3950 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3951 int error;
3952 error = xlog_recover_process_efis(log);
3953 if (error) {
3954 cmn_err(CE_ALERT,
3955 "Failed to recover EFIs on filesystem: %s",
3956 log->l_mp->m_fsname);
3957 return error;
3958 }
1da177e4
LT
3959 /*
3960 * Sync the log to get all the EFIs out of the AIL.
3961 * This isn't absolutely necessary, but it helps in
3962 * case the unlink transactions would have problems
3963 * pushing the EFIs out of the way.
3964 */
a14a348b 3965 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 3966
4249023a 3967 xlog_recover_process_iunlinks(log);
1da177e4
LT
3968
3969 xlog_recover_check_summary(log);
3970
3971 cmn_err(CE_NOTE,
fc1f8c1c
NS
3972 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3973 log->l_mp->m_fsname, log->l_mp->m_logname ?
3974 log->l_mp->m_logname : "internal");
1da177e4
LT
3975 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3976 } else {
3977 cmn_err(CE_DEBUG,
b6574520 3978 "!Ending clean XFS mount for filesystem: %s\n",
1da177e4
LT
3979 log->l_mp->m_fsname);
3980 }
3981 return 0;
3982}
3983
3984
3985#if defined(DEBUG)
3986/*
3987 * Read all of the agf and agi counters and check that they
3988 * are consistent with the superblock counters.
3989 */
3990void
3991xlog_recover_check_summary(
3992 xlog_t *log)
3993{
3994 xfs_mount_t *mp;
3995 xfs_agf_t *agfp;
1da177e4
LT
3996 xfs_buf_t *agfbp;
3997 xfs_buf_t *agibp;
1da177e4
LT
3998 xfs_buf_t *sbbp;
3999#ifdef XFS_LOUD_RECOVERY
4000 xfs_sb_t *sbp;
4001#endif
4002 xfs_agnumber_t agno;
4003 __uint64_t freeblks;
4004 __uint64_t itotal;
4005 __uint64_t ifree;
5e1be0fb 4006 int error;
1da177e4
LT
4007
4008 mp = log->l_mp;
4009
4010 freeblks = 0LL;
4011 itotal = 0LL;
4012 ifree = 0LL;
4013 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
4014 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4015 if (error) {
4016 xfs_fs_cmn_err(CE_ALERT, mp,
4017 "xlog_recover_check_summary(agf)"
4018 "agf read failed agno %d error %d",
4019 agno, error);
4020 } else {
4021 agfp = XFS_BUF_TO_AGF(agfbp);
4022 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4023 be32_to_cpu(agfp->agf_flcount);
4024 xfs_buf_relse(agfbp);
1da177e4 4025 }
1da177e4 4026
5e1be0fb
CH
4027 error = xfs_read_agi(mp, NULL, agno, &agibp);
4028 if (!error) {
4029 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4030
5e1be0fb
CH
4031 itotal += be32_to_cpu(agi->agi_count);
4032 ifree += be32_to_cpu(agi->agi_freecount);
4033 xfs_buf_relse(agibp);
4034 }
1da177e4
LT
4035 }
4036
4037 sbbp = xfs_getsb(mp, 0);
4038#ifdef XFS_LOUD_RECOVERY
4039 sbp = &mp->m_sb;
2bdf7cd0 4040 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
1da177e4
LT
4041 cmn_err(CE_NOTE,
4042 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4043 sbp->sb_icount, itotal);
4044 cmn_err(CE_NOTE,
4045 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4046 sbp->sb_ifree, ifree);
4047 cmn_err(CE_NOTE,
4048 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4049 sbp->sb_fdblocks, freeblks);
4050#if 0
4051 /*
4052 * This is turned off until I account for the allocation
4053 * btree blocks which live in free space.
4054 */
4055 ASSERT(sbp->sb_icount == itotal);
4056 ASSERT(sbp->sb_ifree == ifree);
4057 ASSERT(sbp->sb_fdblocks == freeblks);
4058#endif
4059#endif
4060 xfs_buf_relse(sbbp);
4061}
4062#endif /* DEBUG */
This page took 0.695184 seconds and 5 git commands to generate.