xfs: move ftype conversion functions to libxfs
[deliverable/linux.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_inum.h"
1da177e4
LT
26#include "xfs_sb.h"
27#include "xfs_ag.h"
1da177e4 28#include "xfs_mount.h"
57062787 29#include "xfs_da_format.h"
1da177e4 30#include "xfs_inode.h"
a4fbe6ab 31#include "xfs_dir2.h"
a844f451 32#include "xfs_ialloc.h"
1da177e4
LT
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
a4fbe6ab
DC
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
1da177e4 39#include "xfs_error.h"
1da177e4
LT
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
0b1b213f 42#include "xfs_trace.h"
6d8b79cf 43#include "xfs_icache.h"
8f80587b 44#include "xfs_dinode.h"
a31b1d3d 45#include "xfs_sysfs.h"
0b1b213f 46
1da177e4 47
8d280b98 48#ifdef HAVE_PERCPU_SB
20f4ebf2 49STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
45af6c6d
CH
50 int);
51STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
52 int);
36fbe6e6 53STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
8d280b98
DC
54#else
55
45af6c6d
CH
56#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
57#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
8d280b98
DC
58#endif
59
27174203
CH
60static DEFINE_MUTEX(xfs_uuid_table_mutex);
61static int xfs_uuid_table_size;
62static uuid_t *xfs_uuid_table;
63
64/*
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
67 */
68STATIC int
69xfs_uuid_mount(
70 struct xfs_mount *mp)
71{
72 uuid_t *uuid = &mp->m_sb.sb_uuid;
73 int hole, i;
74
75 if (mp->m_flags & XFS_MOUNT_NOUUID)
76 return 0;
77
78 if (uuid_is_nil(uuid)) {
0b932ccc 79 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
2451337d 80 return -EINVAL;
27174203
CH
81 }
82
83 mutex_lock(&xfs_uuid_table_mutex);
84 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85 if (uuid_is_nil(&xfs_uuid_table[i])) {
86 hole = i;
87 continue;
88 }
89 if (uuid_equal(uuid, &xfs_uuid_table[i]))
90 goto out_duplicate;
91 }
92
93 if (hole < 0) {
94 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
96 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
97 KM_SLEEP);
98 hole = xfs_uuid_table_size++;
99 }
100 xfs_uuid_table[hole] = *uuid;
101 mutex_unlock(&xfs_uuid_table_mutex);
102
103 return 0;
104
105 out_duplicate:
106 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 107 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 108 return -EINVAL;
27174203
CH
109}
110
111STATIC void
112xfs_uuid_unmount(
113 struct xfs_mount *mp)
114{
115 uuid_t *uuid = &mp->m_sb.sb_uuid;
116 int i;
117
118 if (mp->m_flags & XFS_MOUNT_NOUUID)
119 return;
120
121 mutex_lock(&xfs_uuid_table_mutex);
122 for (i = 0; i < xfs_uuid_table_size; i++) {
123 if (uuid_is_nil(&xfs_uuid_table[i]))
124 continue;
125 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
126 continue;
127 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
128 break;
129 }
130 ASSERT(i < xfs_uuid_table_size);
131 mutex_unlock(&xfs_uuid_table_mutex);
132}
133
134
e176579e
DC
135STATIC void
136__xfs_free_perag(
137 struct rcu_head *head)
138{
139 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
140
141 ASSERT(atomic_read(&pag->pag_ref) == 0);
142 kmem_free(pag);
143}
144
1da177e4 145/*
e176579e 146 * Free up the per-ag resources associated with the mount structure.
1da177e4 147 */
c962fb79 148STATIC void
ff4f038c 149xfs_free_perag(
745f6919 150 xfs_mount_t *mp)
1da177e4 151{
1c1c6ebc
DC
152 xfs_agnumber_t agno;
153 struct xfs_perag *pag;
154
155 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
156 spin_lock(&mp->m_perag_lock);
157 pag = radix_tree_delete(&mp->m_perag_tree, agno);
158 spin_unlock(&mp->m_perag_lock);
e176579e 159 ASSERT(pag);
f83282a8 160 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 161 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 162 }
1da177e4
LT
163}
164
4cc929ee
NS
165/*
166 * Check size of device based on the (data/realtime) block count.
167 * Note: this check is used by the growfs code as well as mount.
168 */
169int
170xfs_sb_validate_fsb_count(
171 xfs_sb_t *sbp,
172 __uint64_t nblocks)
173{
174 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
175 ASSERT(sbp->sb_blocklog >= BBSHIFT);
176
d5cf09ba 177 /* Limited by ULONG_MAX of page cache index */
4cc929ee 178 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 179 return -EFBIG;
4cc929ee
NS
180 return 0;
181}
1da177e4 182
1c1c6ebc 183int
c11e2c36 184xfs_initialize_perag(
c11e2c36 185 xfs_mount_t *mp,
1c1c6ebc
DC
186 xfs_agnumber_t agcount,
187 xfs_agnumber_t *maxagi)
1da177e4 188{
2d2194f6 189 xfs_agnumber_t index;
8b26c582 190 xfs_agnumber_t first_initialised = 0;
1da177e4
LT
191 xfs_perag_t *pag;
192 xfs_agino_t agino;
193 xfs_ino_t ino;
194 xfs_sb_t *sbp = &mp->m_sb;
8b26c582 195 int error = -ENOMEM;
1da177e4 196
1c1c6ebc
DC
197 /*
198 * Walk the current per-ag tree so we don't try to initialise AGs
199 * that already exist (growfs case). Allocate and insert all the
200 * AGs we don't find ready for initialisation.
201 */
202 for (index = 0; index < agcount; index++) {
203 pag = xfs_perag_get(mp, index);
204 if (pag) {
205 xfs_perag_put(pag);
206 continue;
207 }
8b26c582
DC
208 if (!first_initialised)
209 first_initialised = index;
fb3b504a 210
1c1c6ebc
DC
211 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212 if (!pag)
8b26c582 213 goto out_unwind;
fb3b504a
CH
214 pag->pag_agno = index;
215 pag->pag_mount = mp;
1a427ab0 216 spin_lock_init(&pag->pag_ici_lock);
69b491c2 217 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 218 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
219 spin_lock_init(&pag->pag_buf_lock);
220 pag->pag_buf_tree = RB_ROOT;
fb3b504a 221
1c1c6ebc 222 if (radix_tree_preload(GFP_NOFS))
8b26c582 223 goto out_unwind;
fb3b504a 224
1c1c6ebc
DC
225 spin_lock(&mp->m_perag_lock);
226 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
227 BUG();
228 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
229 radix_tree_preload_end();
230 error = -EEXIST;
231 goto out_unwind;
1c1c6ebc
DC
232 }
233 spin_unlock(&mp->m_perag_lock);
234 radix_tree_preload_end();
235 }
236
fb3b504a
CH
237 /*
238 * If we mount with the inode64 option, or no inode overflows
239 * the legacy 32-bit address space clear the inode32 option.
1da177e4 240 */
fb3b504a
CH
241 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
242 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
243
244 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
1da177e4 245 mp->m_flags |= XFS_MOUNT_32BITINODES;
fb3b504a 246 else
1da177e4 247 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
1da177e4 248
2d2194f6 249 if (mp->m_flags & XFS_MOUNT_32BITINODES)
9de67c3b 250 index = xfs_set_inode32(mp, agcount);
2d2194f6 251 else
9de67c3b 252 index = xfs_set_inode64(mp, agcount);
fb3b504a 253
1c1c6ebc
DC
254 if (maxagi)
255 *maxagi = index;
256 return 0;
8b26c582
DC
257
258out_unwind:
259 kmem_free(pag);
260 for (; index > first_initialised; index--) {
261 pag = radix_tree_delete(&mp->m_perag_tree, index);
262 kmem_free(pag);
263 }
264 return error;
1da177e4
LT
265}
266
1da177e4
LT
267/*
268 * xfs_readsb
269 *
270 * Does the initial read of the superblock.
271 */
272int
ff55068c
DC
273xfs_readsb(
274 struct xfs_mount *mp,
275 int flags)
1da177e4
LT
276{
277 unsigned int sector_size;
04a1e6c5
DC
278 struct xfs_buf *bp;
279 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 280 int error;
af34e09d 281 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 282 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
283
284 ASSERT(mp->m_sb_bp == NULL);
285 ASSERT(mp->m_ddev_targp != NULL);
286
daba5427
ES
287 /*
288 * For the initial read, we must guess at the sector
289 * size based on the block device. It's enough to
290 * get the sb_sectsize out of the superblock and
291 * then reread with the proper length.
292 * We don't verify it yet, because it may not be complete.
293 */
294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 buf_ops = NULL;
296
1da177e4
LT
297 /*
298 * Allocate a (locked) buffer to hold the superblock.
299 * This will be kept around at all times to optimize
300 * access to the superblock.
301 */
26af6552 302reread:
ba372674
DC
303 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
304 BTOBB(sector_size), 0, &bp, buf_ops);
305 if (error) {
eab4e633 306 if (loud)
e721f504 307 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 308 /* bad CRC means corrupted metadata */
2451337d
DC
309 if (error == -EFSBADCRC)
310 error = -EFSCORRUPTED;
ba372674 311 return error;
eab4e633 312 }
1da177e4
LT
313
314 /*
315 * Initialize the mount structure from the superblock.
1da177e4 316 */
556b8883 317 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
318
319 /*
320 * If we haven't validated the superblock, do so now before we try
321 * to check the sector size and reread the superblock appropriately.
322 */
323 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
324 if (loud)
325 xfs_warn(mp, "Invalid superblock magic number");
2451337d 326 error = -EINVAL;
556b8883
DC
327 goto release_buf;
328 }
ff55068c 329
1da177e4
LT
330 /*
331 * We must be able to do sector-sized and sector-aligned IO.
332 */
04a1e6c5 333 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
334 if (loud)
335 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 336 sector_size, sbp->sb_sectsize);
2451337d 337 error = -ENOSYS;
26af6552 338 goto release_buf;
1da177e4
LT
339 }
340
daba5427 341 if (buf_ops == NULL) {
556b8883
DC
342 /*
343 * Re-read the superblock so the buffer is correctly sized,
344 * and properly verified.
345 */
1da177e4 346 xfs_buf_relse(bp);
04a1e6c5 347 sector_size = sbp->sb_sectsize;
daba5427 348 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 349 goto reread;
1da177e4
LT
350 }
351
5478eead
LM
352 /* Initialize per-cpu counters */
353 xfs_icsb_reinit_counters(mp);
8d280b98 354
04a1e6c5
DC
355 /* no need to be quiet anymore, so reset the buf ops */
356 bp->b_ops = &xfs_sb_buf_ops;
357
1da177e4 358 mp->m_sb_bp = bp;
26af6552 359 xfs_buf_unlock(bp);
1da177e4
LT
360 return 0;
361
26af6552
DC
362release_buf:
363 xfs_buf_relse(bp);
1da177e4
LT
364 return error;
365}
366
1da177e4 367/*
0771fb45 368 * Update alignment values based on mount options and sb values
1da177e4 369 */
0771fb45 370STATIC int
7884bc86 371xfs_update_alignment(xfs_mount_t *mp)
1da177e4 372{
1da177e4 373 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 374
4249023a 375 if (mp->m_dalign) {
1da177e4
LT
376 /*
377 * If stripe unit and stripe width are not multiples
378 * of the fs blocksize turn off alignment.
379 */
380 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
381 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
382 xfs_warn(mp,
383 "alignment check failed: sunit/swidth vs. blocksize(%d)",
384 sbp->sb_blocksize);
2451337d 385 return -EINVAL;
1da177e4
LT
386 } else {
387 /*
388 * Convert the stripe unit and width to FSBs.
389 */
390 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
391 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 392 xfs_warn(mp,
39a45d84
JL
393 "alignment check failed: sunit/swidth vs. agsize(%d)",
394 sbp->sb_agblocks);
2451337d 395 return -EINVAL;
1da177e4
LT
396 } else if (mp->m_dalign) {
397 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
398 } else {
39a45d84
JL
399 xfs_warn(mp,
400 "alignment check failed: sunit(%d) less than bsize(%d)",
401 mp->m_dalign, sbp->sb_blocksize);
2451337d 402 return -EINVAL;
1da177e4
LT
403 }
404 }
405
406 /*
407 * Update superblock with new values
408 * and log changes
409 */
62118709 410 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
411 if (sbp->sb_unit != mp->m_dalign) {
412 sbp->sb_unit = mp->m_dalign;
7884bc86 413 mp->m_update_flags |= XFS_SB_UNIT;
1da177e4
LT
414 }
415 if (sbp->sb_width != mp->m_swidth) {
416 sbp->sb_width = mp->m_swidth;
7884bc86 417 mp->m_update_flags |= XFS_SB_WIDTH;
1da177e4 418 }
34d7f603
JL
419 } else {
420 xfs_warn(mp,
421 "cannot change alignment: superblock does not support data alignment");
2451337d 422 return -EINVAL;
1da177e4
LT
423 }
424 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 425 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
426 mp->m_dalign = sbp->sb_unit;
427 mp->m_swidth = sbp->sb_width;
428 }
429
0771fb45
ES
430 return 0;
431}
1da177e4 432
0771fb45
ES
433/*
434 * Set the maximum inode count for this filesystem
435 */
436STATIC void
437xfs_set_maxicount(xfs_mount_t *mp)
438{
439 xfs_sb_t *sbp = &(mp->m_sb);
440 __uint64_t icount;
1da177e4 441
0771fb45
ES
442 if (sbp->sb_imax_pct) {
443 /*
444 * Make sure the maximum inode count is a multiple
445 * of the units we allocate inodes in.
1da177e4 446 */
1da177e4
LT
447 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
448 do_div(icount, 100);
449 do_div(icount, mp->m_ialloc_blks);
450 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
451 sbp->sb_inopblog;
0771fb45 452 } else {
1da177e4 453 mp->m_maxicount = 0;
1da177e4 454 }
0771fb45
ES
455}
456
457/*
458 * Set the default minimum read and write sizes unless
459 * already specified in a mount option.
460 * We use smaller I/O sizes when the file system
461 * is being used for NFS service (wsync mount option).
462 */
463STATIC void
464xfs_set_rw_sizes(xfs_mount_t *mp)
465{
466 xfs_sb_t *sbp = &(mp->m_sb);
467 int readio_log, writeio_log;
1da177e4 468
1da177e4
LT
469 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
470 if (mp->m_flags & XFS_MOUNT_WSYNC) {
471 readio_log = XFS_WSYNC_READIO_LOG;
472 writeio_log = XFS_WSYNC_WRITEIO_LOG;
473 } else {
474 readio_log = XFS_READIO_LOG_LARGE;
475 writeio_log = XFS_WRITEIO_LOG_LARGE;
476 }
477 } else {
478 readio_log = mp->m_readio_log;
479 writeio_log = mp->m_writeio_log;
480 }
481
1da177e4
LT
482 if (sbp->sb_blocklog > readio_log) {
483 mp->m_readio_log = sbp->sb_blocklog;
484 } else {
485 mp->m_readio_log = readio_log;
486 }
487 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
488 if (sbp->sb_blocklog > writeio_log) {
489 mp->m_writeio_log = sbp->sb_blocklog;
490 } else {
491 mp->m_writeio_log = writeio_log;
492 }
493 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 494}
1da177e4 495
055388a3
DC
496/*
497 * precalculate the low space thresholds for dynamic speculative preallocation.
498 */
499void
500xfs_set_low_space_thresholds(
501 struct xfs_mount *mp)
502{
503 int i;
504
505 for (i = 0; i < XFS_LOWSP_MAX; i++) {
506 __uint64_t space = mp->m_sb.sb_dblocks;
507
508 do_div(space, 100);
509 mp->m_low_space[i] = space * (i + 1);
510 }
511}
512
513
0771fb45
ES
514/*
515 * Set whether we're using inode alignment.
516 */
517STATIC void
518xfs_set_inoalignment(xfs_mount_t *mp)
519{
62118709 520 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
521 mp->m_sb.sb_inoalignmt >=
522 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
523 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
524 else
525 mp->m_inoalign_mask = 0;
526 /*
527 * If we are using stripe alignment, check whether
528 * the stripe unit is a multiple of the inode alignment
529 */
530 if (mp->m_dalign && mp->m_inoalign_mask &&
531 !(mp->m_dalign & mp->m_inoalign_mask))
532 mp->m_sinoalign = mp->m_dalign;
533 else
534 mp->m_sinoalign = 0;
0771fb45
ES
535}
536
537/*
0471f62e 538 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
539 */
540STATIC int
ba372674
DC
541xfs_check_sizes(
542 struct xfs_mount *mp)
0771fb45 543{
ba372674 544 struct xfs_buf *bp;
0771fb45 545 xfs_daddr_t d;
ba372674 546 int error;
0771fb45 547
1da177e4
LT
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 550 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 551 return -EFBIG;
1da177e4 552 }
ba372674 553 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 554 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
555 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
556 if (error) {
0b932ccc 557 xfs_warn(mp, "last sector read failed");
ba372674 558 return error;
1da177e4 559 }
1922c949 560 xfs_buf_relse(bp);
1da177e4 561
ba372674
DC
562 if (mp->m_logdev_targp == mp->m_ddev_targp)
563 return 0;
564
565 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
566 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
567 xfs_warn(mp, "log size mismatch detected");
568 return -EFBIG;
569 }
570 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 571 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
572 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
573 if (error) {
574 xfs_warn(mp, "log device read failed");
575 return error;
0771fb45 576 }
ba372674 577 xfs_buf_relse(bp);
0771fb45
ES
578 return 0;
579}
580
7d095257
CH
581/*
582 * Clear the quotaflags in memory and in the superblock.
583 */
584int
585xfs_mount_reset_sbqflags(
586 struct xfs_mount *mp)
587{
588 int error;
589 struct xfs_trans *tp;
590
591 mp->m_qflags = 0;
592
593 /*
594 * It is OK to look at sb_qflags here in mount path,
595 * without m_sb_lock.
596 */
597 if (mp->m_sb.sb_qflags == 0)
598 return 0;
599 spin_lock(&mp->m_sb_lock);
600 mp->m_sb.sb_qflags = 0;
601 spin_unlock(&mp->m_sb_lock);
602
603 /*
604 * If the fs is readonly, let the incore superblock run
605 * with quotas off but don't flush the update out to disk
606 */
607 if (mp->m_flags & XFS_MOUNT_RDONLY)
608 return 0;
609
7d095257 610 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
3d3c8b52 611 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
7d095257
CH
612 if (error) {
613 xfs_trans_cancel(tp, 0);
53487786 614 xfs_alert(mp, "%s: Superblock update failed!", __func__);
7d095257
CH
615 return error;
616 }
617
618 xfs_mod_sb(tp, XFS_SB_QFLAGS);
619 return xfs_trans_commit(tp, 0);
620}
621
d5db0f97
ES
622__uint64_t
623xfs_default_resblks(xfs_mount_t *mp)
624{
625 __uint64_t resblks;
626
627 /*
8babd8a2
DC
628 * We default to 5% or 8192 fsbs of space reserved, whichever is
629 * smaller. This is intended to cover concurrent allocation
630 * transactions when we initially hit enospc. These each require a 4
631 * block reservation. Hence by default we cover roughly 2000 concurrent
632 * allocation reservations.
d5db0f97
ES
633 */
634 resblks = mp->m_sb.sb_dblocks;
635 do_div(resblks, 20);
8babd8a2 636 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
637 return resblks;
638}
639
0771fb45 640/*
0771fb45
ES
641 * This function does the following on an initial mount of a file system:
642 * - reads the superblock from disk and init the mount struct
643 * - if we're a 32-bit kernel, do a size check on the superblock
644 * so we don't mount terabyte filesystems
645 * - init mount struct realtime fields
646 * - allocate inode hash table for fs
647 * - init directory manager
648 * - perform recovery and init the log manager
649 */
650int
651xfs_mountfs(
4249023a 652 xfs_mount_t *mp)
0771fb45
ES
653{
654 xfs_sb_t *sbp = &(mp->m_sb);
655 xfs_inode_t *rip;
0771fb45 656 __uint64_t resblks;
7d095257
CH
657 uint quotamount = 0;
658 uint quotaflags = 0;
0771fb45
ES
659 int error = 0;
660
ff55068c 661 xfs_sb_mount_common(mp, sbp);
0771fb45 662
ee1c0908 663 /*
e6957ea4
ES
664 * Check for a mismatched features2 values. Older kernels
665 * read & wrote into the wrong sb offset for sb_features2
666 * on some platforms due to xfs_sb_t not being 64bit size aligned
667 * when sb_features2 was added, which made older superblock
668 * reading/writing routines swap it as a 64-bit value.
ee1c0908 669 *
e6957ea4
ES
670 * For backwards compatibility, we make both slots equal.
671 *
672 * If we detect a mismatched field, we OR the set bits into the
673 * existing features2 field in case it has already been modified; we
674 * don't want to lose any features. We then update the bad location
675 * with the ORed value so that older kernels will see any features2
676 * flags, and mark the two fields as needing updates once the
677 * transaction subsystem is online.
ee1c0908 678 */
e6957ea4 679 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 680 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 681 sbp->sb_features2 |= sbp->sb_bad_features2;
e6957ea4 682 sbp->sb_bad_features2 = sbp->sb_features2;
7884bc86 683 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
e6957ea4
ES
684
685 /*
686 * Re-check for ATTR2 in case it was found in bad_features2
687 * slot.
688 */
7c12f296
TS
689 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
690 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 691 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
692 }
693
694 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
695 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
696 xfs_sb_version_removeattr2(&mp->m_sb);
7884bc86 697 mp->m_update_flags |= XFS_SB_FEATURES2;
e6957ea4 698
7c12f296
TS
699 /* update sb_versionnum for the clearing of the morebits */
700 if (!sbp->sb_features2)
7884bc86 701 mp->m_update_flags |= XFS_SB_VERSIONNUM;
ee1c0908
DC
702 }
703
263997a6
DC
704 /* always use v2 inodes by default now */
705 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
706 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
707 mp->m_update_flags |= XFS_SB_VERSIONNUM;
708 }
709
0771fb45
ES
710 /*
711 * Check if sb_agblocks is aligned at stripe boundary
712 * If sb_agblocks is NOT aligned turn off m_dalign since
713 * allocator alignment is within an ag, therefore ag has
714 * to be aligned at stripe boundary.
715 */
7884bc86 716 error = xfs_update_alignment(mp);
0771fb45 717 if (error)
f9057e3d 718 goto out;
0771fb45
ES
719
720 xfs_alloc_compute_maxlevels(mp);
721 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
722 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
723 xfs_ialloc_compute_maxlevels(mp);
724
725 xfs_set_maxicount(mp);
726
a31b1d3d 727 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
728 if (error)
729 goto out;
1da177e4 730
a31b1d3d
BF
731 error = xfs_uuid_mount(mp);
732 if (error)
733 goto out_remove_sysfs;
734
0771fb45
ES
735 /*
736 * Set the minimum read and write sizes
737 */
738 xfs_set_rw_sizes(mp);
739
055388a3
DC
740 /* set the low space thresholds for dynamic preallocation */
741 xfs_set_low_space_thresholds(mp);
742
0771fb45
ES
743 /*
744 * Set the inode cluster size.
745 * This may still be overridden by the file system
746 * block size if it is larger than the chosen cluster size.
8f80587b
DC
747 *
748 * For v5 filesystems, scale the cluster size with the inode size to
749 * keep a constant ratio of inode per cluster buffer, but only if mkfs
750 * has set the inode alignment value appropriately for larger cluster
751 * sizes.
0771fb45
ES
752 */
753 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
8f80587b
DC
754 if (xfs_sb_version_hascrc(&mp->m_sb)) {
755 int new_size = mp->m_inode_cluster_size;
756
757 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
758 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
759 mp->m_inode_cluster_size = new_size;
8f80587b 760 }
0771fb45
ES
761
762 /*
763 * Set inode alignment fields
764 */
765 xfs_set_inoalignment(mp);
766
767 /*
c2bfbc9b 768 * Check that the data (and log if separate) is an ok size.
0771fb45 769 */
4249023a 770 error = xfs_check_sizes(mp);
0771fb45 771 if (error)
f9057e3d 772 goto out_remove_uuid;
0771fb45 773
1da177e4
LT
774 /*
775 * Initialize realtime fields in the mount structure
776 */
0771fb45
ES
777 error = xfs_rtmount_init(mp);
778 if (error) {
0b932ccc 779 xfs_warn(mp, "RT mount failed");
f9057e3d 780 goto out_remove_uuid;
1da177e4
LT
781 }
782
1da177e4
LT
783 /*
784 * Copies the low order bits of the timestamp and the randomly
785 * set "sequence" number out of a UUID.
786 */
787 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
788
1da177e4
LT
789 mp->m_dmevmask = 0; /* not persistent; set after each mount */
790
0650b554
DC
791 error = xfs_da_mount(mp);
792 if (error) {
793 xfs_warn(mp, "Failed dir/attr init: %d", error);
794 goto out_remove_uuid;
795 }
1da177e4
LT
796
797 /*
798 * Initialize the precomputed transaction reservations values.
799 */
800 xfs_trans_init(mp);
801
1da177e4
LT
802 /*
803 * Allocate and initialize the per-ag data.
804 */
1c1c6ebc 805 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 806 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
807 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
808 if (error) {
0b932ccc 809 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 810 goto out_free_dir;
1c1c6ebc 811 }
1da177e4 812
f9057e3d 813 if (!sbp->sb_logblocks) {
0b932ccc 814 xfs_warn(mp, "no log defined");
f9057e3d 815 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 816 error = -EFSCORRUPTED;
f9057e3d
CH
817 goto out_free_perag;
818 }
819
1da177e4
LT
820 /*
821 * log's mount-time initialization. Perform 1st part recovery if needed
822 */
f9057e3d
CH
823 error = xfs_log_mount(mp, mp->m_logdev_targp,
824 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
825 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
826 if (error) {
0b932ccc 827 xfs_warn(mp, "log mount failed");
d4f3512b 828 goto out_fail_wait;
1da177e4
LT
829 }
830
92821e2b
DC
831 /*
832 * Now the log is mounted, we know if it was an unclean shutdown or
833 * not. If it was, with the first phase of recovery has completed, we
834 * have consistent AG blocks on disk. We have not recovered EFIs yet,
835 * but they are recovered transactionally in the second recovery phase
836 * later.
837 *
838 * Hence we can safely re-initialise incore superblock counters from
839 * the per-ag data. These may not be correct if the filesystem was not
840 * cleanly unmounted, so we need to wait for recovery to finish before
841 * doing this.
842 *
843 * If the filesystem was cleanly unmounted, then we can trust the
844 * values in the superblock to be correct and we don't need to do
845 * anything here.
846 *
847 * If we are currently making the filesystem, the initialisation will
848 * fail as the perag data is in an undefined state.
849 */
92821e2b
DC
850 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
851 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
852 !mp->m_sb.sb_inprogress) {
853 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 854 if (error)
6eee8972 855 goto out_log_dealloc;
92821e2b 856 }
f9057e3d 857
1da177e4
LT
858 /*
859 * Get and sanity-check the root inode.
860 * Save the pointer to it in the mount structure.
861 */
7b6259e7 862 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 863 if (error) {
0b932ccc 864 xfs_warn(mp, "failed to read root inode");
f9057e3d 865 goto out_log_dealloc;
1da177e4
LT
866 }
867
868 ASSERT(rip != NULL);
1da177e4 869
abbede1b 870 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
0b932ccc 871 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 872 (unsigned long long)rip->i_ino);
1da177e4
LT
873 xfs_iunlock(rip, XFS_ILOCK_EXCL);
874 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
875 mp);
2451337d 876 error = -EFSCORRUPTED;
f9057e3d 877 goto out_rele_rip;
1da177e4
LT
878 }
879 mp->m_rootip = rip; /* save it */
880
881 xfs_iunlock(rip, XFS_ILOCK_EXCL);
882
883 /*
884 * Initialize realtime inode pointers in the mount structure
885 */
0771fb45
ES
886 error = xfs_rtmount_inodes(mp);
887 if (error) {
1da177e4
LT
888 /*
889 * Free up the root inode.
890 */
0b932ccc 891 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 892 goto out_rele_rip;
1da177e4
LT
893 }
894
895 /*
7884bc86
CH
896 * If this is a read-only mount defer the superblock updates until
897 * the next remount into writeable mode. Otherwise we would never
898 * perform the update e.g. for the root filesystem.
1da177e4 899 */
7884bc86
CH
900 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
901 error = xfs_mount_log_sb(mp, mp->m_update_flags);
e5720eec 902 if (error) {
0b932ccc 903 xfs_warn(mp, "failed to write sb changes");
b93b6e43 904 goto out_rtunmount;
e5720eec
DC
905 }
906 }
1da177e4
LT
907
908 /*
909 * Initialise the XFS quota management subsystem for this mount
910 */
7d095257
CH
911 if (XFS_IS_QUOTA_RUNNING(mp)) {
912 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
913 if (error)
914 goto out_rtunmount;
915 } else {
916 ASSERT(!XFS_IS_QUOTA_ON(mp));
917
918 /*
919 * If a file system had quotas running earlier, but decided to
920 * mount without -o uquota/pquota/gquota options, revoke the
921 * quotachecked license.
922 */
923 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 924 xfs_notice(mp, "resetting quota flags");
7d095257
CH
925 error = xfs_mount_reset_sbqflags(mp);
926 if (error)
a70a4fa5 927 goto out_rtunmount;
7d095257
CH
928 }
929 }
1da177e4
LT
930
931 /*
932 * Finish recovering the file system. This part needed to be
933 * delayed until after the root and real-time bitmap inodes
934 * were consistently read in.
935 */
4249023a 936 error = xfs_log_mount_finish(mp);
1da177e4 937 if (error) {
0b932ccc 938 xfs_warn(mp, "log mount finish failed");
b93b6e43 939 goto out_rtunmount;
1da177e4
LT
940 }
941
942 /*
943 * Complete the quota initialisation, post-log-replay component.
944 */
7d095257
CH
945 if (quotamount) {
946 ASSERT(mp->m_qflags == 0);
947 mp->m_qflags = quotaflags;
948
949 xfs_qm_mount_quotas(mp);
950 }
951
84e1e99f
DC
952 /*
953 * Now we are mounted, reserve a small amount of unused space for
954 * privileged transactions. This is needed so that transaction
955 * space required for critical operations can dip into this pool
956 * when at ENOSPC. This is needed for operations like create with
957 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
958 * are not allowed to use this reserved space.
8babd8a2
DC
959 *
960 * This may drive us straight to ENOSPC on mount, but that implies
961 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 962 */
d5db0f97
ES
963 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
964 resblks = xfs_default_resblks(mp);
965 error = xfs_reserve_blocks(mp, &resblks, NULL);
966 if (error)
0b932ccc
DC
967 xfs_warn(mp,
968 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 969 }
84e1e99f 970
1da177e4
LT
971 return 0;
972
b93b6e43
CH
973 out_rtunmount:
974 xfs_rtunmount_inodes(mp);
f9057e3d 975 out_rele_rip:
43355099 976 IRELE(rip);
f9057e3d 977 out_log_dealloc:
21b699c8 978 xfs_log_unmount(mp);
d4f3512b
DC
979 out_fail_wait:
980 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
981 xfs_wait_buftarg(mp->m_logdev_targp);
982 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 983 out_free_perag:
ff4f038c 984 xfs_free_perag(mp);
0650b554
DC
985 out_free_dir:
986 xfs_da_unmount(mp);
f9057e3d 987 out_remove_uuid:
27174203 988 xfs_uuid_unmount(mp);
a31b1d3d
BF
989 out_remove_sysfs:
990 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 991 out:
1da177e4
LT
992 return error;
993}
994
995/*
1da177e4
LT
996 * This flushes out the inodes,dquots and the superblock, unmounts the
997 * log and makes sure that incore structures are freed.
998 */
41b5c2e7
CH
999void
1000xfs_unmountfs(
1001 struct xfs_mount *mp)
1da177e4 1002{
41b5c2e7
CH
1003 __uint64_t resblks;
1004 int error;
1da177e4 1005
579b62fa
BF
1006 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1007
7d095257 1008 xfs_qm_unmount_quotas(mp);
b93b6e43 1009 xfs_rtunmount_inodes(mp);
77508ec8
CH
1010 IRELE(mp->m_rootip);
1011
641c56fb
DC
1012 /*
1013 * We can potentially deadlock here if we have an inode cluster
9da096fd 1014 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1015 * the transaction is still sitting in a iclog. The stale inodes
1016 * on that buffer will have their flush locks held until the
1017 * transaction hits the disk and the callbacks run. the inode
1018 * flush takes the flush lock unconditionally and with nothing to
1019 * push out the iclog we will never get that unlocked. hence we
1020 * need to force the log first.
1021 */
a14a348b 1022 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e
DC
1023
1024 /*
211e4d43
CH
1025 * Flush all pending changes from the AIL.
1026 */
1027 xfs_ail_push_all_sync(mp->m_ail);
1028
1029 /*
1030 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1031 * inodes and none should be pinned or locked, but use synchronous
1032 * reclaim just to be sure. We can stop background inode reclaim
1033 * here as well if it is still running.
c854363e 1034 */
7e18530b 1035 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1036 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1037
7d095257 1038 xfs_qm_unmount(mp);
a357a121 1039
84e1e99f
DC
1040 /*
1041 * Unreserve any blocks we have so that when we unmount we don't account
1042 * the reserved free space as used. This is really only necessary for
1043 * lazy superblock counting because it trusts the incore superblock
9da096fd 1044 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1045 *
1046 * We don't bother correcting this elsewhere for lazy superblock
1047 * counting because on mount of an unclean filesystem we reconstruct the
1048 * correct counter value and this is irrelevant.
1049 *
1050 * For non-lazy counter filesystems, this doesn't matter at all because
1051 * we only every apply deltas to the superblock and hence the incore
1052 * value does not matter....
1053 */
1054 resblks = 0;
714082bc
DC
1055 error = xfs_reserve_blocks(mp, &resblks, NULL);
1056 if (error)
0b932ccc 1057 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1058 "Freespace may not be correct on next mount.");
1059
adab0f67 1060 error = xfs_log_sbcount(mp);
e5720eec 1061 if (error)
0b932ccc 1062 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1063 "Freespace may not be correct on next mount.");
87c7bec7 1064
21b699c8 1065 xfs_log_unmount(mp);
0650b554 1066 xfs_da_unmount(mp);
27174203 1067 xfs_uuid_unmount(mp);
1da177e4 1068
1550d0b0 1069#if defined(DEBUG)
0ce4cfd4 1070 xfs_errortag_clearall(mp, 0);
1da177e4 1071#endif
ff4f038c 1072 xfs_free_perag(mp);
a31b1d3d
BF
1073
1074 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1075}
1076
91ee575f
BF
1077/*
1078 * Determine whether modifications can proceed. The caller specifies the minimum
1079 * freeze level for which modifications should not be allowed. This allows
1080 * certain operations to proceed while the freeze sequence is in progress, if
1081 * necessary.
1082 */
1083bool
1084xfs_fs_writable(
1085 struct xfs_mount *mp,
1086 int level)
92821e2b 1087{
91ee575f
BF
1088 ASSERT(level > SB_UNFROZEN);
1089 if ((mp->m_super->s_writers.frozen >= level) ||
1090 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1091 return false;
1092
1093 return true;
92821e2b
DC
1094}
1095
1096/*
b2ce3974
AE
1097 * xfs_log_sbcount
1098 *
adab0f67 1099 * Sync the superblock counters to disk.
b2ce3974 1100 *
91ee575f
BF
1101 * Note this code can be called during the process of freezing, so we use the
1102 * transaction allocator that does not block when the transaction subsystem is
1103 * in its frozen state.
92821e2b
DC
1104 */
1105int
adab0f67 1106xfs_log_sbcount(xfs_mount_t *mp)
92821e2b
DC
1107{
1108 xfs_trans_t *tp;
1109 int error;
1110
91ee575f
BF
1111 /* allow this to proceed during the freeze sequence... */
1112 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1113 return 0;
1114
d4d90b57 1115 xfs_icsb_sync_counters(mp, 0);
92821e2b
DC
1116
1117 /*
1118 * we don't need to do this if we are updating the superblock
1119 * counters on every modification.
1120 */
1121 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1122 return 0;
1123
b2ce3974 1124 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
3d3c8b52 1125 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
92821e2b
DC
1126 if (error) {
1127 xfs_trans_cancel(tp, 0);
1128 return error;
1129 }
1130
1131 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
adab0f67 1132 xfs_trans_set_sync(tp);
e5720eec
DC
1133 error = xfs_trans_commit(tp, 0);
1134 return error;
92821e2b
DC
1135}
1136
1da177e4 1137/*
99e738b7 1138 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1da177e4
LT
1139 * a delta to a specified field in the in-core superblock. Simply
1140 * switch on the field indicated and apply the delta to that field.
1141 * Fields are not allowed to dip below zero, so if the delta would
1142 * do this do not apply it and return EINVAL.
1143 *
3685c2a1 1144 * The m_sb_lock must be held when this routine is called.
1da177e4 1145 */
d96f8f89 1146STATIC int
20f4ebf2
DC
1147xfs_mod_incore_sb_unlocked(
1148 xfs_mount_t *mp,
1149 xfs_sb_field_t field,
1150 int64_t delta,
1151 int rsvd)
1da177e4
LT
1152{
1153 int scounter; /* short counter for 32 bit fields */
1154 long long lcounter; /* long counter for 64 bit fields */
1155 long long res_used, rem;
1156
1157 /*
1158 * With the in-core superblock spin lock held, switch
1159 * on the indicated field. Apply the delta to the
1160 * proper field. If the fields value would dip below
1161 * 0, then do not apply the delta and return EINVAL.
1162 */
1163 switch (field) {
1164 case XFS_SBS_ICOUNT:
1165 lcounter = (long long)mp->m_sb.sb_icount;
1166 lcounter += delta;
1167 if (lcounter < 0) {
1168 ASSERT(0);
2451337d 1169 return -EINVAL;
1da177e4
LT
1170 }
1171 mp->m_sb.sb_icount = lcounter;
014c2544 1172 return 0;
1da177e4
LT
1173 case XFS_SBS_IFREE:
1174 lcounter = (long long)mp->m_sb.sb_ifree;
1175 lcounter += delta;
1176 if (lcounter < 0) {
1177 ASSERT(0);
2451337d 1178 return -EINVAL;
1da177e4
LT
1179 }
1180 mp->m_sb.sb_ifree = lcounter;
014c2544 1181 return 0;
1da177e4 1182 case XFS_SBS_FDBLOCKS:
4be536de
DC
1183 lcounter = (long long)
1184 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1da177e4
LT
1185 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1186
1187 if (delta > 0) { /* Putting blocks back */
1188 if (res_used > delta) {
1189 mp->m_resblks_avail += delta;
1190 } else {
1191 rem = delta - res_used;
1192 mp->m_resblks_avail = mp->m_resblks;
1193 lcounter += rem;
1194 }
1195 } else { /* Taking blocks away */
1da177e4 1196 lcounter += delta;
8babd8a2
DC
1197 if (lcounter >= 0) {
1198 mp->m_sb.sb_fdblocks = lcounter +
1199 XFS_ALLOC_SET_ASIDE(mp);
1200 return 0;
1201 }
1da177e4 1202
8babd8a2
DC
1203 /*
1204 * We are out of blocks, use any available reserved
1205 * blocks if were allowed to.
1206 */
1207 if (!rsvd)
2451337d 1208 return -ENOSPC;
1da177e4 1209
8babd8a2
DC
1210 lcounter = (long long)mp->m_resblks_avail + delta;
1211 if (lcounter >= 0) {
1212 mp->m_resblks_avail = lcounter;
1213 return 0;
1da177e4 1214 }
8babd8a2
DC
1215 printk_once(KERN_WARNING
1216 "Filesystem \"%s\": reserve blocks depleted! "
1217 "Consider increasing reserve pool size.",
1218 mp->m_fsname);
2451337d 1219 return -ENOSPC;
1da177e4
LT
1220 }
1221
4be536de 1222 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
014c2544 1223 return 0;
1da177e4
LT
1224 case XFS_SBS_FREXTENTS:
1225 lcounter = (long long)mp->m_sb.sb_frextents;
1226 lcounter += delta;
1227 if (lcounter < 0) {
2451337d 1228 return -ENOSPC;
1da177e4
LT
1229 }
1230 mp->m_sb.sb_frextents = lcounter;
014c2544 1231 return 0;
1da177e4
LT
1232 case XFS_SBS_DBLOCKS:
1233 lcounter = (long long)mp->m_sb.sb_dblocks;
1234 lcounter += delta;
1235 if (lcounter < 0) {
1236 ASSERT(0);
2451337d 1237 return -EINVAL;
1da177e4
LT
1238 }
1239 mp->m_sb.sb_dblocks = lcounter;
014c2544 1240 return 0;
1da177e4
LT
1241 case XFS_SBS_AGCOUNT:
1242 scounter = mp->m_sb.sb_agcount;
1243 scounter += delta;
1244 if (scounter < 0) {
1245 ASSERT(0);
2451337d 1246 return -EINVAL;
1da177e4
LT
1247 }
1248 mp->m_sb.sb_agcount = scounter;
014c2544 1249 return 0;
1da177e4
LT
1250 case XFS_SBS_IMAX_PCT:
1251 scounter = mp->m_sb.sb_imax_pct;
1252 scounter += delta;
1253 if (scounter < 0) {
1254 ASSERT(0);
2451337d 1255 return -EINVAL;
1da177e4
LT
1256 }
1257 mp->m_sb.sb_imax_pct = scounter;
014c2544 1258 return 0;
1da177e4
LT
1259 case XFS_SBS_REXTSIZE:
1260 scounter = mp->m_sb.sb_rextsize;
1261 scounter += delta;
1262 if (scounter < 0) {
1263 ASSERT(0);
2451337d 1264 return -EINVAL;
1da177e4
LT
1265 }
1266 mp->m_sb.sb_rextsize = scounter;
014c2544 1267 return 0;
1da177e4
LT
1268 case XFS_SBS_RBMBLOCKS:
1269 scounter = mp->m_sb.sb_rbmblocks;
1270 scounter += delta;
1271 if (scounter < 0) {
1272 ASSERT(0);
2451337d 1273 return -EINVAL;
1da177e4
LT
1274 }
1275 mp->m_sb.sb_rbmblocks = scounter;
014c2544 1276 return 0;
1da177e4
LT
1277 case XFS_SBS_RBLOCKS:
1278 lcounter = (long long)mp->m_sb.sb_rblocks;
1279 lcounter += delta;
1280 if (lcounter < 0) {
1281 ASSERT(0);
2451337d 1282 return -EINVAL;
1da177e4
LT
1283 }
1284 mp->m_sb.sb_rblocks = lcounter;
014c2544 1285 return 0;
1da177e4
LT
1286 case XFS_SBS_REXTENTS:
1287 lcounter = (long long)mp->m_sb.sb_rextents;
1288 lcounter += delta;
1289 if (lcounter < 0) {
1290 ASSERT(0);
2451337d 1291 return -EINVAL;
1da177e4
LT
1292 }
1293 mp->m_sb.sb_rextents = lcounter;
014c2544 1294 return 0;
1da177e4
LT
1295 case XFS_SBS_REXTSLOG:
1296 scounter = mp->m_sb.sb_rextslog;
1297 scounter += delta;
1298 if (scounter < 0) {
1299 ASSERT(0);
2451337d 1300 return -EINVAL;
1da177e4
LT
1301 }
1302 mp->m_sb.sb_rextslog = scounter;
014c2544 1303 return 0;
1da177e4
LT
1304 default:
1305 ASSERT(0);
2451337d 1306 return -EINVAL;
1da177e4
LT
1307 }
1308}
1309
1310/*
1311 * xfs_mod_incore_sb() is used to change a field in the in-core
1312 * superblock structure by the specified delta. This modification
3685c2a1 1313 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1da177e4
LT
1314 * routine to do the work.
1315 */
1316int
20f4ebf2 1317xfs_mod_incore_sb(
96540c78
CH
1318 struct xfs_mount *mp,
1319 xfs_sb_field_t field,
1320 int64_t delta,
1321 int rsvd)
1da177e4 1322{
96540c78 1323 int status;
1da177e4 1324
8d280b98 1325#ifdef HAVE_PERCPU_SB
96540c78 1326 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
8d280b98 1327#endif
96540c78
CH
1328 spin_lock(&mp->m_sb_lock);
1329 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1330 spin_unlock(&mp->m_sb_lock);
8d280b98 1331
014c2544 1332 return status;
1da177e4
LT
1333}
1334
1335/*
1b040712 1336 * Change more than one field in the in-core superblock structure at a time.
1da177e4 1337 *
1b040712
CH
1338 * The fields and changes to those fields are specified in the array of
1339 * xfs_mod_sb structures passed in. Either all of the specified deltas
1340 * will be applied or none of them will. If any modified field dips below 0,
1341 * then all modifications will be backed out and EINVAL will be returned.
1342 *
1343 * Note that this function may not be used for the superblock values that
1344 * are tracked with the in-memory per-cpu counters - a direct call to
1345 * xfs_icsb_modify_counters is required for these.
1da177e4
LT
1346 */
1347int
1b040712
CH
1348xfs_mod_incore_sb_batch(
1349 struct xfs_mount *mp,
1350 xfs_mod_sb_t *msb,
1351 uint nmsb,
1352 int rsvd)
1da177e4 1353{
45c51b99 1354 xfs_mod_sb_t *msbp;
1b040712 1355 int error = 0;
1da177e4
LT
1356
1357 /*
1b040712
CH
1358 * Loop through the array of mod structures and apply each individually.
1359 * If any fail, then back out all those which have already been applied.
1360 * Do all of this within the scope of the m_sb_lock so that all of the
1361 * changes will be atomic.
1da177e4 1362 */
3685c2a1 1363 spin_lock(&mp->m_sb_lock);
45c51b99 1364 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1b040712
CH
1365 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1366 msbp->msb_field > XFS_SBS_FDBLOCKS);
8d280b98 1367
1b040712
CH
1368 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1369 msbp->msb_delta, rsvd);
1370 if (error)
1371 goto unwind;
1da177e4 1372 }
1b040712
CH
1373 spin_unlock(&mp->m_sb_lock);
1374 return 0;
1da177e4 1375
1b040712
CH
1376unwind:
1377 while (--msbp >= msb) {
1378 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1379 -msbp->msb_delta, rsvd);
1380 ASSERT(error == 0);
1da177e4 1381 }
3685c2a1 1382 spin_unlock(&mp->m_sb_lock);
1b040712 1383 return error;
1da177e4
LT
1384}
1385
1386/*
1387 * xfs_getsb() is called to obtain the buffer for the superblock.
1388 * The buffer is returned locked and read in from disk.
1389 * The buffer should be released with a call to xfs_brelse().
1390 *
1391 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1392 * the superblock buffer if it can be locked without sleeping.
1393 * If it can't then we'll return NULL.
1394 */
0c842ad4 1395struct xfs_buf *
1da177e4 1396xfs_getsb(
0c842ad4
CH
1397 struct xfs_mount *mp,
1398 int flags)
1da177e4 1399{
0c842ad4 1400 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1401
0c842ad4
CH
1402 if (!xfs_buf_trylock(bp)) {
1403 if (flags & XBF_TRYLOCK)
1da177e4 1404 return NULL;
0c842ad4 1405 xfs_buf_lock(bp);
1da177e4 1406 }
0c842ad4 1407
72790aa1 1408 xfs_buf_hold(bp);
1da177e4 1409 ASSERT(XFS_BUF_ISDONE(bp));
014c2544 1410 return bp;
1da177e4
LT
1411}
1412
1413/*
1414 * Used to free the superblock along various error paths.
1415 */
1416void
1417xfs_freesb(
26af6552 1418 struct xfs_mount *mp)
1da177e4 1419{
26af6552 1420 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1421
26af6552 1422 xfs_buf_lock(bp);
1da177e4 1423 mp->m_sb_bp = NULL;
26af6552 1424 xfs_buf_relse(bp);
1da177e4
LT
1425}
1426
1da177e4
LT
1427/*
1428 * Used to log changes to the superblock unit and width fields which could
e6957ea4
ES
1429 * be altered by the mount options, as well as any potential sb_features2
1430 * fixup. Only the first superblock is updated.
1da177e4 1431 */
7884bc86 1432int
ee1c0908 1433xfs_mount_log_sb(
1da177e4
LT
1434 xfs_mount_t *mp,
1435 __int64_t fields)
1436{
1437 xfs_trans_t *tp;
e5720eec 1438 int error;
1da177e4 1439
ee1c0908 1440 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
4b166de0
DC
1441 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1442 XFS_SB_VERSIONNUM));
1da177e4
LT
1443
1444 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
3d3c8b52 1445 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
e5720eec 1446 if (error) {
1da177e4 1447 xfs_trans_cancel(tp, 0);
e5720eec 1448 return error;
1da177e4
LT
1449 }
1450 xfs_mod_sb(tp, fields);
e5720eec
DC
1451 error = xfs_trans_commit(tp, 0);
1452 return error;
1da177e4 1453}
8d280b98 1454
dda35b8f
CH
1455/*
1456 * If the underlying (data/log/rt) device is readonly, there are some
1457 * operations that cannot proceed.
1458 */
1459int
1460xfs_dev_is_read_only(
1461 struct xfs_mount *mp,
1462 char *message)
1463{
1464 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1465 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1466 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1467 xfs_notice(mp, "%s required on read-only device.", message);
1468 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1469 return -EROFS;
dda35b8f
CH
1470 }
1471 return 0;
1472}
8d280b98
DC
1473
1474#ifdef HAVE_PERCPU_SB
1475/*
1476 * Per-cpu incore superblock counters
1477 *
1478 * Simple concept, difficult implementation
1479 *
1480 * Basically, replace the incore superblock counters with a distributed per cpu
1481 * counter for contended fields (e.g. free block count).
1482 *
1483 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1484 * hence needs to be accurately read when we are running low on space. Hence
1485 * there is a method to enable and disable the per-cpu counters based on how
1486 * much "stuff" is available in them.
1487 *
1488 * Basically, a counter is enabled if there is enough free resource to justify
1489 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1490 * ENOSPC), then we disable the counters to synchronise all callers and
1491 * re-distribute the available resources.
1492 *
1493 * If, once we redistributed the available resources, we still get a failure,
1494 * we disable the per-cpu counter and go through the slow path.
1495 *
1496 * The slow path is the current xfs_mod_incore_sb() function. This means that
9da096fd 1497 * when we disable a per-cpu counter, we need to drain its resources back to
8d280b98
DC
1498 * the global superblock. We do this after disabling the counter to prevent
1499 * more threads from queueing up on the counter.
1500 *
1501 * Essentially, this means that we still need a lock in the fast path to enable
1502 * synchronisation between the global counters and the per-cpu counters. This
1503 * is not a problem because the lock will be local to a CPU almost all the time
1504 * and have little contention except when we get to ENOSPC conditions.
1505 *
1506 * Basically, this lock becomes a barrier that enables us to lock out the fast
1507 * path while we do things like enabling and disabling counters and
1508 * synchronising the counters.
1509 *
1510 * Locking rules:
1511 *
3685c2a1 1512 * 1. m_sb_lock before picking up per-cpu locks
8d280b98 1513 * 2. per-cpu locks always picked up via for_each_online_cpu() order
3685c2a1 1514 * 3. accurate counter sync requires m_sb_lock + per cpu locks
8d280b98 1515 * 4. modifying per-cpu counters requires holding per-cpu lock
3685c2a1
ES
1516 * 5. modifying global counters requires holding m_sb_lock
1517 * 6. enabling or disabling a counter requires holding the m_sb_lock
8d280b98
DC
1518 * and _none_ of the per-cpu locks.
1519 *
1520 * Disabled counters are only ever re-enabled by a balance operation
1521 * that results in more free resources per CPU than a given threshold.
1522 * To ensure counters don't remain disabled, they are rebalanced when
1523 * the global resource goes above a higher threshold (i.e. some hysteresis
1524 * is present to prevent thrashing).
e8234a68
DC
1525 */
1526
5a67e4c5 1527#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
1528/*
1529 * hot-plug CPU notifier support.
8d280b98 1530 *
5a67e4c5
CS
1531 * We need a notifier per filesystem as we need to be able to identify
1532 * the filesystem to balance the counters out. This is achieved by
1533 * having a notifier block embedded in the xfs_mount_t and doing pointer
1534 * magic to get the mount pointer from the notifier block address.
8d280b98 1535 */
e8234a68
DC
1536STATIC int
1537xfs_icsb_cpu_notify(
1538 struct notifier_block *nfb,
1539 unsigned long action,
1540 void *hcpu)
1541{
1542 xfs_icsb_cnts_t *cntp;
1543 xfs_mount_t *mp;
e8234a68
DC
1544
1545 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1546 cntp = (xfs_icsb_cnts_t *)
1547 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1548 switch (action) {
1549 case CPU_UP_PREPARE:
8bb78442 1550 case CPU_UP_PREPARE_FROZEN:
e8234a68
DC
1551 /* Easy Case - initialize the area and locks, and
1552 * then rebalance when online does everything else for us. */
01e1b69c 1553 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68
DC
1554 break;
1555 case CPU_ONLINE:
8bb78442 1556 case CPU_ONLINE_FROZEN:
03135cf7 1557 xfs_icsb_lock(mp);
45af6c6d
CH
1558 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1559 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1560 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
03135cf7 1561 xfs_icsb_unlock(mp);
e8234a68
DC
1562 break;
1563 case CPU_DEAD:
8bb78442 1564 case CPU_DEAD_FROZEN:
e8234a68
DC
1565 /* Disable all the counters, then fold the dead cpu's
1566 * count into the total on the global superblock and
1567 * re-enable the counters. */
03135cf7 1568 xfs_icsb_lock(mp);
3685c2a1 1569 spin_lock(&mp->m_sb_lock);
e8234a68
DC
1570 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1571 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1572 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1573
1574 mp->m_sb.sb_icount += cntp->icsb_icount;
1575 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1576 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1577
01e1b69c 1578 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68 1579
45af6c6d
CH
1580 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1581 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1582 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
3685c2a1 1583 spin_unlock(&mp->m_sb_lock);
03135cf7 1584 xfs_icsb_unlock(mp);
e8234a68
DC
1585 break;
1586 }
1587
1588 return NOTIFY_OK;
1589}
5a67e4c5 1590#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 1591
8d280b98
DC
1592int
1593xfs_icsb_init_counters(
1594 xfs_mount_t *mp)
1595{
1596 xfs_icsb_cnts_t *cntp;
1597 int i;
1598
1599 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1600 if (mp->m_sb_cnts == NULL)
1601 return -ENOMEM;
1602
1603 for_each_online_cpu(i) {
1604 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 1605 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
8d280b98 1606 }
20b64285
DC
1607
1608 mutex_init(&mp->m_icsb_mutex);
1609
8d280b98
DC
1610 /*
1611 * start with all counters disabled so that the
1612 * initial balance kicks us off correctly
1613 */
1614 mp->m_icsb_counters = -1;
46677e67
RW
1615
1616#ifdef CONFIG_HOTPLUG_CPU
1617 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1618 mp->m_icsb_notifier.priority = 0;
1619 register_hotcpu_notifier(&mp->m_icsb_notifier);
1620#endif /* CONFIG_HOTPLUG_CPU */
1621
8d280b98
DC
1622 return 0;
1623}
1624
5478eead
LM
1625void
1626xfs_icsb_reinit_counters(
1627 xfs_mount_t *mp)
1628{
1629 xfs_icsb_lock(mp);
1630 /*
1631 * start with all counters disabled so that the
1632 * initial balance kicks us off correctly
1633 */
1634 mp->m_icsb_counters = -1;
45af6c6d
CH
1635 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1636 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1637 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
5478eead
LM
1638 xfs_icsb_unlock(mp);
1639}
1640
c962fb79 1641void
8d280b98
DC
1642xfs_icsb_destroy_counters(
1643 xfs_mount_t *mp)
1644{
e8234a68 1645 if (mp->m_sb_cnts) {
5a67e4c5 1646 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
8d280b98 1647 free_percpu(mp->m_sb_cnts);
e8234a68 1648 }
03135cf7 1649 mutex_destroy(&mp->m_icsb_mutex);
8d280b98
DC
1650}
1651
b8f82a4a 1652STATIC void
01e1b69c
DC
1653xfs_icsb_lock_cntr(
1654 xfs_icsb_cnts_t *icsbp)
1655{
1656 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1657 ndelay(1000);
1658 }
1659}
1660
b8f82a4a 1661STATIC void
01e1b69c
DC
1662xfs_icsb_unlock_cntr(
1663 xfs_icsb_cnts_t *icsbp)
1664{
1665 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1666}
1667
8d280b98 1668
b8f82a4a 1669STATIC void
8d280b98
DC
1670xfs_icsb_lock_all_counters(
1671 xfs_mount_t *mp)
1672{
1673 xfs_icsb_cnts_t *cntp;
1674 int i;
1675
1676 for_each_online_cpu(i) {
1677 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 1678 xfs_icsb_lock_cntr(cntp);
8d280b98
DC
1679 }
1680}
1681
b8f82a4a 1682STATIC void
8d280b98
DC
1683xfs_icsb_unlock_all_counters(
1684 xfs_mount_t *mp)
1685{
1686 xfs_icsb_cnts_t *cntp;
1687 int i;
1688
1689 for_each_online_cpu(i) {
1690 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 1691 xfs_icsb_unlock_cntr(cntp);
8d280b98
DC
1692 }
1693}
1694
1695STATIC void
1696xfs_icsb_count(
1697 xfs_mount_t *mp,
1698 xfs_icsb_cnts_t *cnt,
1699 int flags)
1700{
1701 xfs_icsb_cnts_t *cntp;
1702 int i;
1703
1704 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1705
1706 if (!(flags & XFS_ICSB_LAZY_COUNT))
1707 xfs_icsb_lock_all_counters(mp);
1708
1709 for_each_online_cpu(i) {
1710 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1711 cnt->icsb_icount += cntp->icsb_icount;
1712 cnt->icsb_ifree += cntp->icsb_ifree;
1713 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1714 }
1715
1716 if (!(flags & XFS_ICSB_LAZY_COUNT))
1717 xfs_icsb_unlock_all_counters(mp);
1718}
1719
1720STATIC int
1721xfs_icsb_counter_disabled(
1722 xfs_mount_t *mp,
1723 xfs_sb_field_t field)
1724{
1725 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1726 return test_bit(field, &mp->m_icsb_counters);
1727}
1728
36fbe6e6 1729STATIC void
8d280b98
DC
1730xfs_icsb_disable_counter(
1731 xfs_mount_t *mp,
1732 xfs_sb_field_t field)
1733{
1734 xfs_icsb_cnts_t cnt;
1735
1736 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1737
20b64285
DC
1738 /*
1739 * If we are already disabled, then there is nothing to do
1740 * here. We check before locking all the counters to avoid
1741 * the expensive lock operation when being called in the
1742 * slow path and the counter is already disabled. This is
1743 * safe because the only time we set or clear this state is under
1744 * the m_icsb_mutex.
1745 */
1746 if (xfs_icsb_counter_disabled(mp, field))
36fbe6e6 1747 return;
20b64285 1748
8d280b98
DC
1749 xfs_icsb_lock_all_counters(mp);
1750 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1751 /* drain back to superblock */
1752
ce46193b 1753 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
8d280b98
DC
1754 switch(field) {
1755 case XFS_SBS_ICOUNT:
1756 mp->m_sb.sb_icount = cnt.icsb_icount;
1757 break;
1758 case XFS_SBS_IFREE:
1759 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1760 break;
1761 case XFS_SBS_FDBLOCKS:
1762 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1763 break;
1764 default:
1765 BUG();
1766 }
1767 }
1768
1769 xfs_icsb_unlock_all_counters(mp);
8d280b98
DC
1770}
1771
1772STATIC void
1773xfs_icsb_enable_counter(
1774 xfs_mount_t *mp,
1775 xfs_sb_field_t field,
1776 uint64_t count,
1777 uint64_t resid)
1778{
1779 xfs_icsb_cnts_t *cntp;
1780 int i;
1781
1782 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1783
1784 xfs_icsb_lock_all_counters(mp);
1785 for_each_online_cpu(i) {
1786 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1787 switch (field) {
1788 case XFS_SBS_ICOUNT:
1789 cntp->icsb_icount = count + resid;
1790 break;
1791 case XFS_SBS_IFREE:
1792 cntp->icsb_ifree = count + resid;
1793 break;
1794 case XFS_SBS_FDBLOCKS:
1795 cntp->icsb_fdblocks = count + resid;
1796 break;
1797 default:
1798 BUG();
1799 break;
1800 }
1801 resid = 0;
1802 }
1803 clear_bit(field, &mp->m_icsb_counters);
1804 xfs_icsb_unlock_all_counters(mp);
1805}
1806
dbcabad1 1807void
d4d90b57 1808xfs_icsb_sync_counters_locked(
8d280b98
DC
1809 xfs_mount_t *mp,
1810 int flags)
1811{
1812 xfs_icsb_cnts_t cnt;
8d280b98 1813
8d280b98
DC
1814 xfs_icsb_count(mp, &cnt, flags);
1815
8d280b98
DC
1816 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1817 mp->m_sb.sb_icount = cnt.icsb_icount;
1818 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1819 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1820 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1821 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
8d280b98
DC
1822}
1823
1824/*
1825 * Accurate update of per-cpu counters to incore superblock
1826 */
d4d90b57 1827void
8d280b98 1828xfs_icsb_sync_counters(
d4d90b57
CH
1829 xfs_mount_t *mp,
1830 int flags)
8d280b98 1831{
d4d90b57
CH
1832 spin_lock(&mp->m_sb_lock);
1833 xfs_icsb_sync_counters_locked(mp, flags);
1834 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
1835}
1836
1837/*
1838 * Balance and enable/disable counters as necessary.
1839 *
20b64285
DC
1840 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1841 * chosen to be the same number as single on disk allocation chunk per CPU, and
1842 * free blocks is something far enough zero that we aren't going thrash when we
1843 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1844 * prevent looping endlessly when xfs_alloc_space asks for more than will
1845 * be distributed to a single CPU but each CPU has enough blocks to be
1846 * reenabled.
1847 *
1848 * Note that we can be called when counters are already disabled.
1849 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1850 * prevent locking every per-cpu counter needlessly.
8d280b98 1851 */
20b64285
DC
1852
1853#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
4be536de 1854#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
20b64285 1855 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
8d280b98 1856STATIC void
45af6c6d 1857xfs_icsb_balance_counter_locked(
8d280b98
DC
1858 xfs_mount_t *mp,
1859 xfs_sb_field_t field,
20b64285 1860 int min_per_cpu)
8d280b98 1861{
6fdf8ccc 1862 uint64_t count, resid;
8d280b98 1863 int weight = num_online_cpus();
20b64285 1864 uint64_t min = (uint64_t)min_per_cpu;
8d280b98 1865
8d280b98
DC
1866 /* disable counter and sync counter */
1867 xfs_icsb_disable_counter(mp, field);
1868
1869 /* update counters - first CPU gets residual*/
1870 switch (field) {
1871 case XFS_SBS_ICOUNT:
1872 count = mp->m_sb.sb_icount;
1873 resid = do_div(count, weight);
20b64285 1874 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 1875 return;
8d280b98
DC
1876 break;
1877 case XFS_SBS_IFREE:
1878 count = mp->m_sb.sb_ifree;
1879 resid = do_div(count, weight);
20b64285 1880 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 1881 return;
8d280b98
DC
1882 break;
1883 case XFS_SBS_FDBLOCKS:
1884 count = mp->m_sb.sb_fdblocks;
1885 resid = do_div(count, weight);
20b64285 1886 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
45af6c6d 1887 return;
8d280b98
DC
1888 break;
1889 default:
1890 BUG();
6fdf8ccc 1891 count = resid = 0; /* quiet, gcc */
8d280b98
DC
1892 break;
1893 }
1894
1895 xfs_icsb_enable_counter(mp, field, count, resid);
45af6c6d
CH
1896}
1897
1898STATIC void
1899xfs_icsb_balance_counter(
1900 xfs_mount_t *mp,
1901 xfs_sb_field_t fields,
1902 int min_per_cpu)
1903{
1904 spin_lock(&mp->m_sb_lock);
1905 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1906 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
1907}
1908
1b040712 1909int
20b64285 1910xfs_icsb_modify_counters(
8d280b98
DC
1911 xfs_mount_t *mp,
1912 xfs_sb_field_t field,
20f4ebf2 1913 int64_t delta,
20b64285 1914 int rsvd)
8d280b98
DC
1915{
1916 xfs_icsb_cnts_t *icsbp;
1917 long long lcounter; /* long counter for 64 bit fields */
7a9e02d6 1918 int ret = 0;
8d280b98 1919
20b64285 1920 might_sleep();
8d280b98 1921again:
7a9e02d6
CL
1922 preempt_disable();
1923 icsbp = this_cpu_ptr(mp->m_sb_cnts);
20b64285
DC
1924
1925 /*
1926 * if the counter is disabled, go to slow path
1927 */
8d280b98
DC
1928 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1929 goto slow_path;
20b64285
DC
1930 xfs_icsb_lock_cntr(icsbp);
1931 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1932 xfs_icsb_unlock_cntr(icsbp);
1933 goto slow_path;
1934 }
8d280b98
DC
1935
1936 switch (field) {
1937 case XFS_SBS_ICOUNT:
1938 lcounter = icsbp->icsb_icount;
1939 lcounter += delta;
1940 if (unlikely(lcounter < 0))
20b64285 1941 goto balance_counter;
8d280b98
DC
1942 icsbp->icsb_icount = lcounter;
1943 break;
1944
1945 case XFS_SBS_IFREE:
1946 lcounter = icsbp->icsb_ifree;
1947 lcounter += delta;
1948 if (unlikely(lcounter < 0))
20b64285 1949 goto balance_counter;
8d280b98
DC
1950 icsbp->icsb_ifree = lcounter;
1951 break;
1952
1953 case XFS_SBS_FDBLOCKS:
1954 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1955
4be536de 1956 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
1957 lcounter += delta;
1958 if (unlikely(lcounter < 0))
20b64285 1959 goto balance_counter;
4be536de 1960 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
1961 break;
1962 default:
1963 BUG();
1964 break;
1965 }
01e1b69c 1966 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 1967 preempt_enable();
8d280b98
DC
1968 return 0;
1969
8d280b98 1970slow_path:
7a9e02d6 1971 preempt_enable();
8d280b98 1972
20b64285
DC
1973 /*
1974 * serialise with a mutex so we don't burn lots of cpu on
1975 * the superblock lock. We still need to hold the superblock
1976 * lock, however, when we modify the global structures.
1977 */
03135cf7 1978 xfs_icsb_lock(mp);
20b64285
DC
1979
1980 /*
1981 * Now running atomically.
1982 *
1983 * If the counter is enabled, someone has beaten us to rebalancing.
1984 * Drop the lock and try again in the fast path....
1985 */
1986 if (!(xfs_icsb_counter_disabled(mp, field))) {
03135cf7 1987 xfs_icsb_unlock(mp);
8d280b98 1988 goto again;
8d280b98
DC
1989 }
1990
20b64285
DC
1991 /*
1992 * The counter is currently disabled. Because we are
1993 * running atomically here, we know a rebalance cannot
1994 * be in progress. Hence we can go straight to operating
1995 * on the global superblock. We do not call xfs_mod_incore_sb()
3685c2a1 1996 * here even though we need to get the m_sb_lock. Doing so
20b64285 1997 * will cause us to re-enter this function and deadlock.
3685c2a1 1998 * Hence we get the m_sb_lock ourselves and then call
20b64285
DC
1999 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2000 * directly on the global counters.
2001 */
3685c2a1 2002 spin_lock(&mp->m_sb_lock);
8d280b98 2003 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
3685c2a1 2004 spin_unlock(&mp->m_sb_lock);
8d280b98 2005
20b64285
DC
2006 /*
2007 * Now that we've modified the global superblock, we
2008 * may be able to re-enable the distributed counters
2009 * (e.g. lots of space just got freed). After that
2010 * we are done.
2011 */
2451337d 2012 if (ret != -ENOSPC)
45af6c6d 2013 xfs_icsb_balance_counter(mp, field, 0);
03135cf7 2014 xfs_icsb_unlock(mp);
8d280b98 2015 return ret;
8d280b98 2016
20b64285
DC
2017balance_counter:
2018 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2019 preempt_enable();
8d280b98 2020
20b64285
DC
2021 /*
2022 * We may have multiple threads here if multiple per-cpu
2023 * counters run dry at the same time. This will mean we can
2024 * do more balances than strictly necessary but it is not
2025 * the common slowpath case.
2026 */
03135cf7 2027 xfs_icsb_lock(mp);
20b64285
DC
2028
2029 /*
2030 * running atomically.
2031 *
2032 * This will leave the counter in the correct state for future
2033 * accesses. After the rebalance, we simply try again and our retry
2034 * will either succeed through the fast path or slow path without
2035 * another balance operation being required.
2036 */
45af6c6d 2037 xfs_icsb_balance_counter(mp, field, delta);
03135cf7 2038 xfs_icsb_unlock(mp);
20b64285 2039 goto again;
8d280b98 2040}
20b64285 2041
8d280b98 2042#endif
This page took 0.731977 seconds and 5 git commands to generate.