xfs: verify superblocks as they are read from disk
[deliverable/linux.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
211e4d43 25#include "xfs_trans_priv.h"
1da177e4
LT
26#include "xfs_sb.h"
27#include "xfs_ag.h"
1da177e4 28#include "xfs_dir2.h"
1da177e4 29#include "xfs_mount.h"
1da177e4 30#include "xfs_bmap_btree.h"
a844f451 31#include "xfs_alloc_btree.h"
1da177e4 32#include "xfs_ialloc_btree.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_btree.h"
36#include "xfs_ialloc.h"
1da177e4
LT
37#include "xfs_alloc.h"
38#include "xfs_rtalloc.h"
39#include "xfs_bmap.h"
40#include "xfs_error.h"
1da177e4
LT
41#include "xfs_quota.h"
42#include "xfs_fsops.h"
43355099 43#include "xfs_utils.h"
0b1b213f 44#include "xfs_trace.h"
6d8b79cf 45#include "xfs_icache.h"
0b1b213f 46
1da177e4 47
8d280b98 48#ifdef HAVE_PERCPU_SB
20f4ebf2 49STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
45af6c6d
CH
50 int);
51STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
52 int);
36fbe6e6 53STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
8d280b98
DC
54#else
55
45af6c6d
CH
56#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
57#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
8d280b98
DC
58#endif
59
1df84c93 60static const struct {
8d280b98
DC
61 short offset;
62 short type; /* 0 = integer
63 * 1 = binary / string (no translation)
64 */
1da177e4
LT
65} xfs_sb_info[] = {
66 { offsetof(xfs_sb_t, sb_magicnum), 0 },
67 { offsetof(xfs_sb_t, sb_blocksize), 0 },
68 { offsetof(xfs_sb_t, sb_dblocks), 0 },
69 { offsetof(xfs_sb_t, sb_rblocks), 0 },
70 { offsetof(xfs_sb_t, sb_rextents), 0 },
71 { offsetof(xfs_sb_t, sb_uuid), 1 },
72 { offsetof(xfs_sb_t, sb_logstart), 0 },
73 { offsetof(xfs_sb_t, sb_rootino), 0 },
74 { offsetof(xfs_sb_t, sb_rbmino), 0 },
75 { offsetof(xfs_sb_t, sb_rsumino), 0 },
76 { offsetof(xfs_sb_t, sb_rextsize), 0 },
77 { offsetof(xfs_sb_t, sb_agblocks), 0 },
78 { offsetof(xfs_sb_t, sb_agcount), 0 },
79 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
80 { offsetof(xfs_sb_t, sb_logblocks), 0 },
81 { offsetof(xfs_sb_t, sb_versionnum), 0 },
82 { offsetof(xfs_sb_t, sb_sectsize), 0 },
83 { offsetof(xfs_sb_t, sb_inodesize), 0 },
84 { offsetof(xfs_sb_t, sb_inopblock), 0 },
85 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
86 { offsetof(xfs_sb_t, sb_blocklog), 0 },
87 { offsetof(xfs_sb_t, sb_sectlog), 0 },
88 { offsetof(xfs_sb_t, sb_inodelog), 0 },
89 { offsetof(xfs_sb_t, sb_inopblog), 0 },
90 { offsetof(xfs_sb_t, sb_agblklog), 0 },
91 { offsetof(xfs_sb_t, sb_rextslog), 0 },
92 { offsetof(xfs_sb_t, sb_inprogress), 0 },
93 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
94 { offsetof(xfs_sb_t, sb_icount), 0 },
95 { offsetof(xfs_sb_t, sb_ifree), 0 },
96 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
97 { offsetof(xfs_sb_t, sb_frextents), 0 },
98 { offsetof(xfs_sb_t, sb_uquotino), 0 },
99 { offsetof(xfs_sb_t, sb_gquotino), 0 },
100 { offsetof(xfs_sb_t, sb_qflags), 0 },
101 { offsetof(xfs_sb_t, sb_flags), 0 },
102 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
103 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
104 { offsetof(xfs_sb_t, sb_unit), 0 },
105 { offsetof(xfs_sb_t, sb_width), 0 },
106 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
107 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
108 { offsetof(xfs_sb_t, sb_logsectsize),0 },
109 { offsetof(xfs_sb_t, sb_logsunit), 0 },
110 { offsetof(xfs_sb_t, sb_features2), 0 },
ee1c0908 111 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
1da177e4
LT
112 { sizeof(xfs_sb_t), 0 }
113};
114
27174203
CH
115static DEFINE_MUTEX(xfs_uuid_table_mutex);
116static int xfs_uuid_table_size;
117static uuid_t *xfs_uuid_table;
118
119/*
120 * See if the UUID is unique among mounted XFS filesystems.
121 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
122 */
123STATIC int
124xfs_uuid_mount(
125 struct xfs_mount *mp)
126{
127 uuid_t *uuid = &mp->m_sb.sb_uuid;
128 int hole, i;
129
130 if (mp->m_flags & XFS_MOUNT_NOUUID)
131 return 0;
132
133 if (uuid_is_nil(uuid)) {
0b932ccc 134 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
27174203
CH
135 return XFS_ERROR(EINVAL);
136 }
137
138 mutex_lock(&xfs_uuid_table_mutex);
139 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
140 if (uuid_is_nil(&xfs_uuid_table[i])) {
141 hole = i;
142 continue;
143 }
144 if (uuid_equal(uuid, &xfs_uuid_table[i]))
145 goto out_duplicate;
146 }
147
148 if (hole < 0) {
149 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
150 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
151 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
152 KM_SLEEP);
153 hole = xfs_uuid_table_size++;
154 }
155 xfs_uuid_table[hole] = *uuid;
156 mutex_unlock(&xfs_uuid_table_mutex);
157
158 return 0;
159
160 out_duplicate:
161 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 162 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
27174203
CH
163 return XFS_ERROR(EINVAL);
164}
165
166STATIC void
167xfs_uuid_unmount(
168 struct xfs_mount *mp)
169{
170 uuid_t *uuid = &mp->m_sb.sb_uuid;
171 int i;
172
173 if (mp->m_flags & XFS_MOUNT_NOUUID)
174 return;
175
176 mutex_lock(&xfs_uuid_table_mutex);
177 for (i = 0; i < xfs_uuid_table_size; i++) {
178 if (uuid_is_nil(&xfs_uuid_table[i]))
179 continue;
180 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
181 continue;
182 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
183 break;
184 }
185 ASSERT(i < xfs_uuid_table_size);
186 mutex_unlock(&xfs_uuid_table_mutex);
187}
188
189
0fa800fb
DC
190/*
191 * Reference counting access wrappers to the perag structures.
e176579e
DC
192 * Because we never free per-ag structures, the only thing we
193 * have to protect against changes is the tree structure itself.
0fa800fb
DC
194 */
195struct xfs_perag *
196xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
197{
198 struct xfs_perag *pag;
199 int ref = 0;
200
e176579e 201 rcu_read_lock();
0fa800fb
DC
202 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
203 if (pag) {
204 ASSERT(atomic_read(&pag->pag_ref) >= 0);
0fa800fb
DC
205 ref = atomic_inc_return(&pag->pag_ref);
206 }
e176579e 207 rcu_read_unlock();
0fa800fb
DC
208 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
209 return pag;
210}
211
65d0f205
DC
212/*
213 * search from @first to find the next perag with the given tag set.
214 */
215struct xfs_perag *
216xfs_perag_get_tag(
217 struct xfs_mount *mp,
218 xfs_agnumber_t first,
219 int tag)
220{
221 struct xfs_perag *pag;
222 int found;
223 int ref;
224
225 rcu_read_lock();
226 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
227 (void **)&pag, first, 1, tag);
228 if (found <= 0) {
229 rcu_read_unlock();
230 return NULL;
231 }
232 ref = atomic_inc_return(&pag->pag_ref);
233 rcu_read_unlock();
234 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
235 return pag;
236}
237
0fa800fb
DC
238void
239xfs_perag_put(struct xfs_perag *pag)
240{
241 int ref;
242
243 ASSERT(atomic_read(&pag->pag_ref) > 0);
244 ref = atomic_dec_return(&pag->pag_ref);
245 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
246}
247
e176579e
DC
248STATIC void
249__xfs_free_perag(
250 struct rcu_head *head)
251{
252 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
253
254 ASSERT(atomic_read(&pag->pag_ref) == 0);
255 kmem_free(pag);
256}
257
1da177e4 258/*
e176579e 259 * Free up the per-ag resources associated with the mount structure.
1da177e4 260 */
c962fb79 261STATIC void
ff4f038c 262xfs_free_perag(
745f6919 263 xfs_mount_t *mp)
1da177e4 264{
1c1c6ebc
DC
265 xfs_agnumber_t agno;
266 struct xfs_perag *pag;
267
268 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
269 spin_lock(&mp->m_perag_lock);
270 pag = radix_tree_delete(&mp->m_perag_tree, agno);
271 spin_unlock(&mp->m_perag_lock);
e176579e 272 ASSERT(pag);
f83282a8 273 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 274 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 275 }
1da177e4
LT
276}
277
4cc929ee
NS
278/*
279 * Check size of device based on the (data/realtime) block count.
280 * Note: this check is used by the growfs code as well as mount.
281 */
282int
283xfs_sb_validate_fsb_count(
284 xfs_sb_t *sbp,
285 __uint64_t nblocks)
286{
287 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
288 ASSERT(sbp->sb_blocklog >= BBSHIFT);
289
290#if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
291 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
657a4cff 292 return EFBIG;
4cc929ee
NS
293#else /* Limited by UINT_MAX of sectors */
294 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
657a4cff 295 return EFBIG;
4cc929ee
NS
296#endif
297 return 0;
298}
1da177e4
LT
299
300/*
301 * Check the validity of the SB found.
302 */
303STATIC int
304xfs_mount_validate_sb(
305 xfs_mount_t *mp,
764d1f89 306 xfs_sb_t *sbp,
98021821 307 bool check_inprogress)
1da177e4 308{
af34e09d 309
1da177e4
LT
310 /*
311 * If the log device and data device have the
312 * same device number, the log is internal.
313 * Consequently, the sb_logstart should be non-zero. If
314 * we have a zero sb_logstart in this case, we may be trying to mount
315 * a volume filesystem in a non-volume manner.
316 */
317 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
98021821 318 xfs_warn(mp, "bad magic number");
1da177e4
LT
319 return XFS_ERROR(EWRONGFS);
320 }
321
62118709 322 if (!xfs_sb_good_version(sbp)) {
98021821 323 xfs_warn(mp, "bad version");
1da177e4
LT
324 return XFS_ERROR(EWRONGFS);
325 }
326
327 if (unlikely(
328 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
98021821 329 xfs_warn(mp,
af34e09d
DC
330 "filesystem is marked as having an external log; "
331 "specify logdev on the mount command line.");
764d1f89 332 return XFS_ERROR(EINVAL);
1da177e4
LT
333 }
334
335 if (unlikely(
336 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
98021821 337 xfs_warn(mp,
af34e09d
DC
338 "filesystem is marked as having an internal log; "
339 "do not specify logdev on the mount command line.");
764d1f89 340 return XFS_ERROR(EINVAL);
1da177e4
LT
341 }
342
343 /*
c0e090ce 344 * More sanity checking. Most of these were stolen directly from
1da177e4
LT
345 * xfs_repair.
346 */
347 if (unlikely(
348 sbp->sb_agcount <= 0 ||
349 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
350 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
351 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
352 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
2ac00af7 353 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
1da177e4
LT
354 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
355 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
356 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
357 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
2ac00af7 358 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
1da177e4
LT
359 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
360 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
9f989c94
NS
361 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
362 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
2ac00af7 363 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
9f989c94 364 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
1da177e4
LT
365 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
366 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
c0e090ce
ES
367 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
368 sbp->sb_dblocks == 0 ||
369 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
370 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
98021821 371 XFS_CORRUPTION_ERROR("SB sanity check failed",
c0e090ce 372 XFS_ERRLEVEL_LOW, mp, sbp);
1da177e4
LT
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375
2edbddd5
LM
376 /*
377 * Until this is fixed only page-sized or smaller data blocks work.
378 */
379 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
98021821 380 xfs_warn(mp,
af34e09d
DC
381 "File system with blocksize %d bytes. "
382 "Only pagesize (%ld) or less will currently work.",
383 sbp->sb_blocksize, PAGE_SIZE);
2edbddd5
LM
384 return XFS_ERROR(ENOSYS);
385 }
386
1a5902c5
CH
387 /*
388 * Currently only very few inode sizes are supported.
389 */
390 switch (sbp->sb_inodesize) {
391 case 256:
392 case 512:
393 case 1024:
394 case 2048:
395 break;
396 default:
98021821 397 xfs_warn(mp, "inode size of %d bytes not supported",
af34e09d 398 sbp->sb_inodesize);
1a5902c5
CH
399 return XFS_ERROR(ENOSYS);
400 }
401
4cc929ee
NS
402 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
403 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
98021821 404 xfs_warn(mp,
af34e09d 405 "file system too large to be mounted on this system.");
657a4cff 406 return XFS_ERROR(EFBIG);
1da177e4
LT
407 }
408
98021821
DC
409 if (check_inprogress && sbp->sb_inprogress) {
410 xfs_warn(mp, "Offline file system operation in progress!");
1da177e4
LT
411 return XFS_ERROR(EFSCORRUPTED);
412 }
413
de20614b
NS
414 /*
415 * Version 1 directory format has never worked on Linux.
416 */
62118709 417 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
98021821 418 xfs_warn(mp, "file system using version 1 directory format");
de20614b
NS
419 return XFS_ERROR(ENOSYS);
420 }
421
1da177e4
LT
422 return 0;
423}
424
1c1c6ebc 425int
c11e2c36 426xfs_initialize_perag(
c11e2c36 427 xfs_mount_t *mp,
1c1c6ebc
DC
428 xfs_agnumber_t agcount,
429 xfs_agnumber_t *maxagi)
1da177e4 430{
2d2194f6 431 xfs_agnumber_t index;
8b26c582 432 xfs_agnumber_t first_initialised = 0;
1da177e4
LT
433 xfs_perag_t *pag;
434 xfs_agino_t agino;
435 xfs_ino_t ino;
436 xfs_sb_t *sbp = &mp->m_sb;
8b26c582 437 int error = -ENOMEM;
1da177e4 438
1c1c6ebc
DC
439 /*
440 * Walk the current per-ag tree so we don't try to initialise AGs
441 * that already exist (growfs case). Allocate and insert all the
442 * AGs we don't find ready for initialisation.
443 */
444 for (index = 0; index < agcount; index++) {
445 pag = xfs_perag_get(mp, index);
446 if (pag) {
447 xfs_perag_put(pag);
448 continue;
449 }
8b26c582
DC
450 if (!first_initialised)
451 first_initialised = index;
fb3b504a 452
1c1c6ebc
DC
453 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
454 if (!pag)
8b26c582 455 goto out_unwind;
fb3b504a
CH
456 pag->pag_agno = index;
457 pag->pag_mount = mp;
1a427ab0 458 spin_lock_init(&pag->pag_ici_lock);
69b491c2 459 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 460 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
461 spin_lock_init(&pag->pag_buf_lock);
462 pag->pag_buf_tree = RB_ROOT;
fb3b504a 463
1c1c6ebc 464 if (radix_tree_preload(GFP_NOFS))
8b26c582 465 goto out_unwind;
fb3b504a 466
1c1c6ebc
DC
467 spin_lock(&mp->m_perag_lock);
468 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
469 BUG();
470 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
471 radix_tree_preload_end();
472 error = -EEXIST;
473 goto out_unwind;
1c1c6ebc
DC
474 }
475 spin_unlock(&mp->m_perag_lock);
476 radix_tree_preload_end();
477 }
478
fb3b504a
CH
479 /*
480 * If we mount with the inode64 option, or no inode overflows
481 * the legacy 32-bit address space clear the inode32 option.
1da177e4 482 */
fb3b504a
CH
483 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
484 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
485
486 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
1da177e4 487 mp->m_flags |= XFS_MOUNT_32BITINODES;
fb3b504a 488 else
1da177e4 489 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
1da177e4 490
2d2194f6
CM
491 if (mp->m_flags & XFS_MOUNT_32BITINODES)
492 index = xfs_set_inode32(mp);
493 else
494 index = xfs_set_inode64(mp);
fb3b504a 495
1c1c6ebc
DC
496 if (maxagi)
497 *maxagi = index;
498 return 0;
8b26c582
DC
499
500out_unwind:
501 kmem_free(pag);
502 for (; index > first_initialised; index--) {
503 pag = radix_tree_delete(&mp->m_perag_tree, index);
504 kmem_free(pag);
505 }
506 return error;
1da177e4
LT
507}
508
2bdf7cd0
CH
509void
510xfs_sb_from_disk(
98021821 511 struct xfs_sb *to,
2bdf7cd0
CH
512 xfs_dsb_t *from)
513{
514 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
515 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
516 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
517 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
518 to->sb_rextents = be64_to_cpu(from->sb_rextents);
519 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
520 to->sb_logstart = be64_to_cpu(from->sb_logstart);
521 to->sb_rootino = be64_to_cpu(from->sb_rootino);
522 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
523 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
524 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
525 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
526 to->sb_agcount = be32_to_cpu(from->sb_agcount);
527 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
528 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
529 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
530 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
531 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
532 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
533 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
534 to->sb_blocklog = from->sb_blocklog;
535 to->sb_sectlog = from->sb_sectlog;
536 to->sb_inodelog = from->sb_inodelog;
537 to->sb_inopblog = from->sb_inopblog;
538 to->sb_agblklog = from->sb_agblklog;
539 to->sb_rextslog = from->sb_rextslog;
540 to->sb_inprogress = from->sb_inprogress;
541 to->sb_imax_pct = from->sb_imax_pct;
542 to->sb_icount = be64_to_cpu(from->sb_icount);
543 to->sb_ifree = be64_to_cpu(from->sb_ifree);
544 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
545 to->sb_frextents = be64_to_cpu(from->sb_frextents);
546 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
547 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
548 to->sb_qflags = be16_to_cpu(from->sb_qflags);
549 to->sb_flags = from->sb_flags;
550 to->sb_shared_vn = from->sb_shared_vn;
551 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
552 to->sb_unit = be32_to_cpu(from->sb_unit);
553 to->sb_width = be32_to_cpu(from->sb_width);
554 to->sb_dirblklog = from->sb_dirblklog;
555 to->sb_logsectlog = from->sb_logsectlog;
556 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
557 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
558 to->sb_features2 = be32_to_cpu(from->sb_features2);
ee1c0908 559 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
2bdf7cd0
CH
560}
561
1da177e4 562/*
2bdf7cd0 563 * Copy in core superblock to ondisk one.
1da177e4 564 *
2bdf7cd0 565 * The fields argument is mask of superblock fields to copy.
1da177e4
LT
566 */
567void
2bdf7cd0
CH
568xfs_sb_to_disk(
569 xfs_dsb_t *to,
570 xfs_sb_t *from,
1da177e4
LT
571 __int64_t fields)
572{
2bdf7cd0
CH
573 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
574 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
1da177e4
LT
575 xfs_sb_field_t f;
576 int first;
577 int size;
578
1da177e4 579 ASSERT(fields);
1da177e4
LT
580 if (!fields)
581 return;
582
1da177e4
LT
583 while (fields) {
584 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
585 first = xfs_sb_info[f].offset;
586 size = xfs_sb_info[f + 1].offset - first;
587
588 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
589
590 if (size == 1 || xfs_sb_info[f].type == 1) {
2bdf7cd0 591 memcpy(to_ptr + first, from_ptr + first, size);
1da177e4
LT
592 } else {
593 switch (size) {
594 case 2:
2bdf7cd0
CH
595 *(__be16 *)(to_ptr + first) =
596 cpu_to_be16(*(__u16 *)(from_ptr + first));
1da177e4
LT
597 break;
598 case 4:
2bdf7cd0
CH
599 *(__be32 *)(to_ptr + first) =
600 cpu_to_be32(*(__u32 *)(from_ptr + first));
1da177e4
LT
601 break;
602 case 8:
2bdf7cd0
CH
603 *(__be64 *)(to_ptr + first) =
604 cpu_to_be64(*(__u64 *)(from_ptr + first));
1da177e4
LT
605 break;
606 default:
607 ASSERT(0);
608 }
609 }
610
611 fields &= ~(1LL << f);
612 }
613}
614
98021821
DC
615void
616xfs_sb_read_verify(
617 struct xfs_buf *bp)
618{
619 struct xfs_mount *mp = bp->b_target->bt_mount;
620 struct xfs_sb sb;
621 int error;
622
623 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
624
625 /*
626 * Only check the in progress field for the primary superblock as
627 * mkfs.xfs doesn't clear it from secondary superblocks.
628 */
629 error = xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR);
630 if (error)
631 xfs_buf_ioerror(bp, error);
632 bp->b_iodone = NULL;
633 xfs_buf_ioend(bp, 0);
634}
635
636/*
637 * We may be probed for a filesystem match, so we may not want to emit
638 * messages when the superblock buffer is not actually an XFS superblock.
639 * If we find an XFS superblock, the run a normal, noisy mount because we are
640 * really going to mount it and want to know about errors.
641 */
642void
643xfs_sb_quiet_read_verify(
644 struct xfs_buf *bp)
645{
646 struct xfs_sb sb;
647
648 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
649
650 if (sb.sb_magicnum == XFS_SB_MAGIC) {
651 /* XFS filesystem, verify noisily! */
652 xfs_sb_read_verify(bp);
653 return;
654 }
655 /* quietly fail */
656 xfs_buf_ioerror(bp, EFSCORRUPTED);
657}
658
1da177e4
LT
659/*
660 * xfs_readsb
661 *
662 * Does the initial read of the superblock.
663 */
664int
764d1f89 665xfs_readsb(xfs_mount_t *mp, int flags)
1da177e4
LT
666{
667 unsigned int sector_size;
1da177e4 668 xfs_buf_t *bp;
1da177e4 669 int error;
af34e09d 670 int loud = !(flags & XFS_MFSI_QUIET);
1da177e4
LT
671
672 ASSERT(mp->m_sb_bp == NULL);
673 ASSERT(mp->m_ddev_targp != NULL);
674
675 /*
676 * Allocate a (locked) buffer to hold the superblock.
677 * This will be kept around at all times to optimize
678 * access to the superblock.
679 */
680 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
26af6552
DC
681
682reread:
e70b73f8 683 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
98021821
DC
684 BTOBB(sector_size), 0,
685 loud ? xfs_sb_read_verify
686 : xfs_sb_quiet_read_verify);
26af6552 687 if (!bp) {
af34e09d
DC
688 if (loud)
689 xfs_warn(mp, "SB buffer read failed");
26af6552 690 return EIO;
1da177e4 691 }
eab4e633
DC
692 if (bp->b_error) {
693 error = bp->b_error;
694 if (loud)
695 xfs_warn(mp, "SB validate failed");
696 goto release_buf;
697 }
1da177e4
LT
698
699 /*
700 * Initialize the mount structure from the superblock.
1da177e4 701 */
98021821 702 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
1da177e4
LT
703
704 /*
705 * We must be able to do sector-sized and sector-aligned IO.
706 */
707 if (sector_size > mp->m_sb.sb_sectsize) {
af34e09d
DC
708 if (loud)
709 xfs_warn(mp, "device supports %u byte sectors (not %u)",
710 sector_size, mp->m_sb.sb_sectsize);
1da177e4 711 error = ENOSYS;
26af6552 712 goto release_buf;
1da177e4
LT
713 }
714
715 /*
716 * If device sector size is smaller than the superblock size,
717 * re-read the superblock so the buffer is correctly sized.
718 */
719 if (sector_size < mp->m_sb.sb_sectsize) {
1da177e4
LT
720 xfs_buf_relse(bp);
721 sector_size = mp->m_sb.sb_sectsize;
26af6552 722 goto reread;
1da177e4
LT
723 }
724
5478eead
LM
725 /* Initialize per-cpu counters */
726 xfs_icsb_reinit_counters(mp);
8d280b98 727
1da177e4 728 mp->m_sb_bp = bp;
26af6552 729 xfs_buf_unlock(bp);
1da177e4
LT
730 return 0;
731
26af6552
DC
732release_buf:
733 xfs_buf_relse(bp);
1da177e4
LT
734 return error;
735}
736
737
738/*
739 * xfs_mount_common
740 *
741 * Mount initialization code establishing various mount
742 * fields from the superblock associated with the given
743 * mount structure
744 */
ba0f32d4 745STATIC void
1da177e4
LT
746xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
747{
1da177e4 748 mp->m_agfrotor = mp->m_agirotor = 0;
007c61c6 749 spin_lock_init(&mp->m_agirotor_lock);
1da177e4
LT
750 mp->m_maxagi = mp->m_sb.sb_agcount;
751 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
752 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
753 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
754 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
755 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
1da177e4
LT
756 mp->m_blockmask = sbp->sb_blocksize - 1;
757 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
758 mp->m_blockwmask = mp->m_blockwsize - 1;
1da177e4 759
60197e8d
CH
760 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
761 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
762 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
763 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
764
765 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
766 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
767 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
768 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
769
770 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
771 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
772 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
773 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
1da177e4
LT
774
775 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
776 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
777 sbp->sb_inopblock);
778 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
779}
92821e2b
DC
780
781/*
782 * xfs_initialize_perag_data
783 *
784 * Read in each per-ag structure so we can count up the number of
785 * allocated inodes, free inodes and used filesystem blocks as this
786 * information is no longer persistent in the superblock. Once we have
787 * this information, write it into the in-core superblock structure.
788 */
789STATIC int
790xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
791{
792 xfs_agnumber_t index;
793 xfs_perag_t *pag;
794 xfs_sb_t *sbp = &mp->m_sb;
795 uint64_t ifree = 0;
796 uint64_t ialloc = 0;
797 uint64_t bfree = 0;
798 uint64_t bfreelst = 0;
799 uint64_t btree = 0;
800 int error;
92821e2b
DC
801
802 for (index = 0; index < agcount; index++) {
803 /*
804 * read the agf, then the agi. This gets us
9da096fd 805 * all the information we need and populates the
92821e2b
DC
806 * per-ag structures for us.
807 */
808 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
809 if (error)
810 return error;
811
812 error = xfs_ialloc_pagi_init(mp, NULL, index);
813 if (error)
814 return error;
44b56e0a 815 pag = xfs_perag_get(mp, index);
92821e2b
DC
816 ifree += pag->pagi_freecount;
817 ialloc += pag->pagi_count;
818 bfree += pag->pagf_freeblks;
819 bfreelst += pag->pagf_flcount;
820 btree += pag->pagf_btreeblks;
44b56e0a 821 xfs_perag_put(pag);
92821e2b
DC
822 }
823 /*
824 * Overwrite incore superblock counters with just-read data
825 */
3685c2a1 826 spin_lock(&mp->m_sb_lock);
92821e2b
DC
827 sbp->sb_ifree = ifree;
828 sbp->sb_icount = ialloc;
829 sbp->sb_fdblocks = bfree + bfreelst + btree;
3685c2a1 830 spin_unlock(&mp->m_sb_lock);
92821e2b
DC
831
832 /* Fixup the per-cpu counters as well. */
833 xfs_icsb_reinit_counters(mp);
834
835 return 0;
836}
837
1da177e4 838/*
0771fb45 839 * Update alignment values based on mount options and sb values
1da177e4 840 */
0771fb45 841STATIC int
7884bc86 842xfs_update_alignment(xfs_mount_t *mp)
1da177e4 843{
1da177e4 844 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 845
4249023a 846 if (mp->m_dalign) {
1da177e4
LT
847 /*
848 * If stripe unit and stripe width are not multiples
849 * of the fs blocksize turn off alignment.
850 */
851 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
852 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
853 if (mp->m_flags & XFS_MOUNT_RETERR) {
c0e090ce
ES
854 xfs_warn(mp, "alignment check failed: "
855 "(sunit/swidth vs. blocksize)");
0771fb45 856 return XFS_ERROR(EINVAL);
1da177e4
LT
857 }
858 mp->m_dalign = mp->m_swidth = 0;
859 } else {
860 /*
861 * Convert the stripe unit and width to FSBs.
862 */
863 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
864 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
865 if (mp->m_flags & XFS_MOUNT_RETERR) {
c0e090ce
ES
866 xfs_warn(mp, "alignment check failed: "
867 "(sunit/swidth vs. ag size)");
0771fb45 868 return XFS_ERROR(EINVAL);
1da177e4 869 }
53487786
DC
870 xfs_warn(mp,
871 "stripe alignment turned off: sunit(%d)/swidth(%d) "
872 "incompatible with agsize(%d)",
1da177e4
LT
873 mp->m_dalign, mp->m_swidth,
874 sbp->sb_agblocks);
875
876 mp->m_dalign = 0;
877 mp->m_swidth = 0;
878 } else if (mp->m_dalign) {
879 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
880 } else {
881 if (mp->m_flags & XFS_MOUNT_RETERR) {
c0e090ce
ES
882 xfs_warn(mp, "alignment check failed: "
883 "sunit(%d) less than bsize(%d)",
53487786 884 mp->m_dalign,
1da177e4 885 mp->m_blockmask +1);
0771fb45 886 return XFS_ERROR(EINVAL);
1da177e4
LT
887 }
888 mp->m_swidth = 0;
889 }
890 }
891
892 /*
893 * Update superblock with new values
894 * and log changes
895 */
62118709 896 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
897 if (sbp->sb_unit != mp->m_dalign) {
898 sbp->sb_unit = mp->m_dalign;
7884bc86 899 mp->m_update_flags |= XFS_SB_UNIT;
1da177e4
LT
900 }
901 if (sbp->sb_width != mp->m_swidth) {
902 sbp->sb_width = mp->m_swidth;
7884bc86 903 mp->m_update_flags |= XFS_SB_WIDTH;
1da177e4
LT
904 }
905 }
906 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 907 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
908 mp->m_dalign = sbp->sb_unit;
909 mp->m_swidth = sbp->sb_width;
910 }
911
0771fb45
ES
912 return 0;
913}
1da177e4 914
0771fb45
ES
915/*
916 * Set the maximum inode count for this filesystem
917 */
918STATIC void
919xfs_set_maxicount(xfs_mount_t *mp)
920{
921 xfs_sb_t *sbp = &(mp->m_sb);
922 __uint64_t icount;
1da177e4 923
0771fb45
ES
924 if (sbp->sb_imax_pct) {
925 /*
926 * Make sure the maximum inode count is a multiple
927 * of the units we allocate inodes in.
1da177e4 928 */
1da177e4
LT
929 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
930 do_div(icount, 100);
931 do_div(icount, mp->m_ialloc_blks);
932 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
933 sbp->sb_inopblog;
0771fb45 934 } else {
1da177e4 935 mp->m_maxicount = 0;
1da177e4 936 }
0771fb45
ES
937}
938
939/*
940 * Set the default minimum read and write sizes unless
941 * already specified in a mount option.
942 * We use smaller I/O sizes when the file system
943 * is being used for NFS service (wsync mount option).
944 */
945STATIC void
946xfs_set_rw_sizes(xfs_mount_t *mp)
947{
948 xfs_sb_t *sbp = &(mp->m_sb);
949 int readio_log, writeio_log;
1da177e4 950
1da177e4
LT
951 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
952 if (mp->m_flags & XFS_MOUNT_WSYNC) {
953 readio_log = XFS_WSYNC_READIO_LOG;
954 writeio_log = XFS_WSYNC_WRITEIO_LOG;
955 } else {
956 readio_log = XFS_READIO_LOG_LARGE;
957 writeio_log = XFS_WRITEIO_LOG_LARGE;
958 }
959 } else {
960 readio_log = mp->m_readio_log;
961 writeio_log = mp->m_writeio_log;
962 }
963
1da177e4
LT
964 if (sbp->sb_blocklog > readio_log) {
965 mp->m_readio_log = sbp->sb_blocklog;
966 } else {
967 mp->m_readio_log = readio_log;
968 }
969 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
970 if (sbp->sb_blocklog > writeio_log) {
971 mp->m_writeio_log = sbp->sb_blocklog;
972 } else {
973 mp->m_writeio_log = writeio_log;
974 }
975 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 976}
1da177e4 977
055388a3
DC
978/*
979 * precalculate the low space thresholds for dynamic speculative preallocation.
980 */
981void
982xfs_set_low_space_thresholds(
983 struct xfs_mount *mp)
984{
985 int i;
986
987 for (i = 0; i < XFS_LOWSP_MAX; i++) {
988 __uint64_t space = mp->m_sb.sb_dblocks;
989
990 do_div(space, 100);
991 mp->m_low_space[i] = space * (i + 1);
992 }
993}
994
995
0771fb45
ES
996/*
997 * Set whether we're using inode alignment.
998 */
999STATIC void
1000xfs_set_inoalignment(xfs_mount_t *mp)
1001{
62118709 1002 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
1003 mp->m_sb.sb_inoalignmt >=
1004 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1005 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1006 else
1007 mp->m_inoalign_mask = 0;
1008 /*
1009 * If we are using stripe alignment, check whether
1010 * the stripe unit is a multiple of the inode alignment
1011 */
1012 if (mp->m_dalign && mp->m_inoalign_mask &&
1013 !(mp->m_dalign & mp->m_inoalign_mask))
1014 mp->m_sinoalign = mp->m_dalign;
1015 else
1016 mp->m_sinoalign = 0;
0771fb45
ES
1017}
1018
1019/*
1020 * Check that the data (and log if separate) are an ok size.
1021 */
1022STATIC int
4249023a 1023xfs_check_sizes(xfs_mount_t *mp)
0771fb45
ES
1024{
1025 xfs_buf_t *bp;
1026 xfs_daddr_t d;
0771fb45 1027
1da177e4
LT
1028 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1029 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 1030 xfs_warn(mp, "filesystem size mismatch detected");
657a4cff 1031 return XFS_ERROR(EFBIG);
1da177e4 1032 }
e70b73f8 1033 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 1034 d - XFS_FSS_TO_BB(mp, 1),
c3f8fc73 1035 XFS_FSS_TO_BB(mp, 1), 0, NULL);
1922c949 1036 if (!bp) {
0b932ccc 1037 xfs_warn(mp, "last sector read failed");
1922c949 1038 return EIO;
1da177e4 1039 }
1922c949 1040 xfs_buf_relse(bp);
1da177e4 1041
4249023a 1042 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1da177e4
LT
1043 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1044 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
0b932ccc 1045 xfs_warn(mp, "log size mismatch detected");
657a4cff 1046 return XFS_ERROR(EFBIG);
1da177e4 1047 }
e70b73f8 1048 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 1049 d - XFS_FSB_TO_BB(mp, 1),
c3f8fc73 1050 XFS_FSB_TO_BB(mp, 1), 0, NULL);
1922c949 1051 if (!bp) {
0b932ccc 1052 xfs_warn(mp, "log device read failed");
1922c949 1053 return EIO;
0771fb45 1054 }
1922c949 1055 xfs_buf_relse(bp);
0771fb45
ES
1056 }
1057 return 0;
1058}
1059
7d095257
CH
1060/*
1061 * Clear the quotaflags in memory and in the superblock.
1062 */
1063int
1064xfs_mount_reset_sbqflags(
1065 struct xfs_mount *mp)
1066{
1067 int error;
1068 struct xfs_trans *tp;
1069
1070 mp->m_qflags = 0;
1071
1072 /*
1073 * It is OK to look at sb_qflags here in mount path,
1074 * without m_sb_lock.
1075 */
1076 if (mp->m_sb.sb_qflags == 0)
1077 return 0;
1078 spin_lock(&mp->m_sb_lock);
1079 mp->m_sb.sb_qflags = 0;
1080 spin_unlock(&mp->m_sb_lock);
1081
1082 /*
1083 * If the fs is readonly, let the incore superblock run
1084 * with quotas off but don't flush the update out to disk
1085 */
1086 if (mp->m_flags & XFS_MOUNT_RDONLY)
1087 return 0;
1088
7d095257
CH
1089 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1090 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1091 XFS_DEFAULT_LOG_COUNT);
1092 if (error) {
1093 xfs_trans_cancel(tp, 0);
53487786 1094 xfs_alert(mp, "%s: Superblock update failed!", __func__);
7d095257
CH
1095 return error;
1096 }
1097
1098 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1099 return xfs_trans_commit(tp, 0);
1100}
1101
d5db0f97
ES
1102__uint64_t
1103xfs_default_resblks(xfs_mount_t *mp)
1104{
1105 __uint64_t resblks;
1106
1107 /*
8babd8a2
DC
1108 * We default to 5% or 8192 fsbs of space reserved, whichever is
1109 * smaller. This is intended to cover concurrent allocation
1110 * transactions when we initially hit enospc. These each require a 4
1111 * block reservation. Hence by default we cover roughly 2000 concurrent
1112 * allocation reservations.
d5db0f97
ES
1113 */
1114 resblks = mp->m_sb.sb_dblocks;
1115 do_div(resblks, 20);
8babd8a2 1116 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
1117 return resblks;
1118}
1119
0771fb45 1120/*
0771fb45
ES
1121 * This function does the following on an initial mount of a file system:
1122 * - reads the superblock from disk and init the mount struct
1123 * - if we're a 32-bit kernel, do a size check on the superblock
1124 * so we don't mount terabyte filesystems
1125 * - init mount struct realtime fields
1126 * - allocate inode hash table for fs
1127 * - init directory manager
1128 * - perform recovery and init the log manager
1129 */
1130int
1131xfs_mountfs(
4249023a 1132 xfs_mount_t *mp)
0771fb45
ES
1133{
1134 xfs_sb_t *sbp = &(mp->m_sb);
1135 xfs_inode_t *rip;
0771fb45 1136 __uint64_t resblks;
7d095257
CH
1137 uint quotamount = 0;
1138 uint quotaflags = 0;
0771fb45
ES
1139 int error = 0;
1140
0771fb45
ES
1141 xfs_mount_common(mp, sbp);
1142
ee1c0908 1143 /*
e6957ea4
ES
1144 * Check for a mismatched features2 values. Older kernels
1145 * read & wrote into the wrong sb offset for sb_features2
1146 * on some platforms due to xfs_sb_t not being 64bit size aligned
1147 * when sb_features2 was added, which made older superblock
1148 * reading/writing routines swap it as a 64-bit value.
ee1c0908 1149 *
e6957ea4
ES
1150 * For backwards compatibility, we make both slots equal.
1151 *
1152 * If we detect a mismatched field, we OR the set bits into the
1153 * existing features2 field in case it has already been modified; we
1154 * don't want to lose any features. We then update the bad location
1155 * with the ORed value so that older kernels will see any features2
1156 * flags, and mark the two fields as needing updates once the
1157 * transaction subsystem is online.
ee1c0908 1158 */
e6957ea4 1159 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 1160 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 1161 sbp->sb_features2 |= sbp->sb_bad_features2;
e6957ea4 1162 sbp->sb_bad_features2 = sbp->sb_features2;
7884bc86 1163 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
e6957ea4
ES
1164
1165 /*
1166 * Re-check for ATTR2 in case it was found in bad_features2
1167 * slot.
1168 */
7c12f296
TS
1169 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1170 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 1171 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
1172 }
1173
1174 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1175 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1176 xfs_sb_version_removeattr2(&mp->m_sb);
7884bc86 1177 mp->m_update_flags |= XFS_SB_FEATURES2;
e6957ea4 1178
7c12f296
TS
1179 /* update sb_versionnum for the clearing of the morebits */
1180 if (!sbp->sb_features2)
7884bc86 1181 mp->m_update_flags |= XFS_SB_VERSIONNUM;
ee1c0908
DC
1182 }
1183
0771fb45
ES
1184 /*
1185 * Check if sb_agblocks is aligned at stripe boundary
1186 * If sb_agblocks is NOT aligned turn off m_dalign since
1187 * allocator alignment is within an ag, therefore ag has
1188 * to be aligned at stripe boundary.
1189 */
7884bc86 1190 error = xfs_update_alignment(mp);
0771fb45 1191 if (error)
f9057e3d 1192 goto out;
0771fb45
ES
1193
1194 xfs_alloc_compute_maxlevels(mp);
1195 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1196 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1197 xfs_ialloc_compute_maxlevels(mp);
1198
1199 xfs_set_maxicount(mp);
1200
27174203
CH
1201 error = xfs_uuid_mount(mp);
1202 if (error)
1203 goto out;
1da177e4 1204
0771fb45
ES
1205 /*
1206 * Set the minimum read and write sizes
1207 */
1208 xfs_set_rw_sizes(mp);
1209
055388a3
DC
1210 /* set the low space thresholds for dynamic preallocation */
1211 xfs_set_low_space_thresholds(mp);
1212
0771fb45
ES
1213 /*
1214 * Set the inode cluster size.
1215 * This may still be overridden by the file system
1216 * block size if it is larger than the chosen cluster size.
1217 */
1218 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1219
1220 /*
1221 * Set inode alignment fields
1222 */
1223 xfs_set_inoalignment(mp);
1224
1225 /*
1226 * Check that the data (and log if separate) are an ok size.
1227 */
4249023a 1228 error = xfs_check_sizes(mp);
0771fb45 1229 if (error)
f9057e3d 1230 goto out_remove_uuid;
0771fb45 1231
1da177e4
LT
1232 /*
1233 * Initialize realtime fields in the mount structure
1234 */
0771fb45
ES
1235 error = xfs_rtmount_init(mp);
1236 if (error) {
0b932ccc 1237 xfs_warn(mp, "RT mount failed");
f9057e3d 1238 goto out_remove_uuid;
1da177e4
LT
1239 }
1240
1da177e4
LT
1241 /*
1242 * Copies the low order bits of the timestamp and the randomly
1243 * set "sequence" number out of a UUID.
1244 */
1245 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1246
1da177e4
LT
1247 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1248
f6c2d1fa 1249 xfs_dir_mount(mp);
1da177e4
LT
1250
1251 /*
1252 * Initialize the attribute manager's entries.
1253 */
1254 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1255
1256 /*
1257 * Initialize the precomputed transaction reservations values.
1258 */
1259 xfs_trans_init(mp);
1260
1da177e4
LT
1261 /*
1262 * Allocate and initialize the per-ag data.
1263 */
1c1c6ebc 1264 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 1265 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
1266 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1267 if (error) {
0b932ccc 1268 xfs_warn(mp, "Failed per-ag init: %d", error);
f9057e3d 1269 goto out_remove_uuid;
1c1c6ebc 1270 }
1da177e4 1271
f9057e3d 1272 if (!sbp->sb_logblocks) {
0b932ccc 1273 xfs_warn(mp, "no log defined");
f9057e3d
CH
1274 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1275 error = XFS_ERROR(EFSCORRUPTED);
1276 goto out_free_perag;
1277 }
1278
1da177e4
LT
1279 /*
1280 * log's mount-time initialization. Perform 1st part recovery if needed
1281 */
f9057e3d
CH
1282 error = xfs_log_mount(mp, mp->m_logdev_targp,
1283 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1284 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1285 if (error) {
0b932ccc 1286 xfs_warn(mp, "log mount failed");
d4f3512b 1287 goto out_fail_wait;
1da177e4
LT
1288 }
1289
92821e2b
DC
1290 /*
1291 * Now the log is mounted, we know if it was an unclean shutdown or
1292 * not. If it was, with the first phase of recovery has completed, we
1293 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1294 * but they are recovered transactionally in the second recovery phase
1295 * later.
1296 *
1297 * Hence we can safely re-initialise incore superblock counters from
1298 * the per-ag data. These may not be correct if the filesystem was not
1299 * cleanly unmounted, so we need to wait for recovery to finish before
1300 * doing this.
1301 *
1302 * If the filesystem was cleanly unmounted, then we can trust the
1303 * values in the superblock to be correct and we don't need to do
1304 * anything here.
1305 *
1306 * If we are currently making the filesystem, the initialisation will
1307 * fail as the perag data is in an undefined state.
1308 */
92821e2b
DC
1309 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1310 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1311 !mp->m_sb.sb_inprogress) {
1312 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 1313 if (error)
d4f3512b 1314 goto out_fail_wait;
92821e2b 1315 }
f9057e3d 1316
1da177e4
LT
1317 /*
1318 * Get and sanity-check the root inode.
1319 * Save the pointer to it in the mount structure.
1320 */
7b6259e7 1321 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 1322 if (error) {
0b932ccc 1323 xfs_warn(mp, "failed to read root inode");
f9057e3d 1324 goto out_log_dealloc;
1da177e4
LT
1325 }
1326
1327 ASSERT(rip != NULL);
1da177e4 1328
abbede1b 1329 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
0b932ccc 1330 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 1331 (unsigned long long)rip->i_ino);
1da177e4
LT
1332 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1333 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1334 mp);
1335 error = XFS_ERROR(EFSCORRUPTED);
f9057e3d 1336 goto out_rele_rip;
1da177e4
LT
1337 }
1338 mp->m_rootip = rip; /* save it */
1339
1340 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1341
1342 /*
1343 * Initialize realtime inode pointers in the mount structure
1344 */
0771fb45
ES
1345 error = xfs_rtmount_inodes(mp);
1346 if (error) {
1da177e4
LT
1347 /*
1348 * Free up the root inode.
1349 */
0b932ccc 1350 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 1351 goto out_rele_rip;
1da177e4
LT
1352 }
1353
1354 /*
7884bc86
CH
1355 * If this is a read-only mount defer the superblock updates until
1356 * the next remount into writeable mode. Otherwise we would never
1357 * perform the update e.g. for the root filesystem.
1da177e4 1358 */
7884bc86
CH
1359 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1360 error = xfs_mount_log_sb(mp, mp->m_update_flags);
e5720eec 1361 if (error) {
0b932ccc 1362 xfs_warn(mp, "failed to write sb changes");
b93b6e43 1363 goto out_rtunmount;
e5720eec
DC
1364 }
1365 }
1da177e4
LT
1366
1367 /*
1368 * Initialise the XFS quota management subsystem for this mount
1369 */
7d095257
CH
1370 if (XFS_IS_QUOTA_RUNNING(mp)) {
1371 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1372 if (error)
1373 goto out_rtunmount;
1374 } else {
1375 ASSERT(!XFS_IS_QUOTA_ON(mp));
1376
1377 /*
1378 * If a file system had quotas running earlier, but decided to
1379 * mount without -o uquota/pquota/gquota options, revoke the
1380 * quotachecked license.
1381 */
1382 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 1383 xfs_notice(mp, "resetting quota flags");
7d095257
CH
1384 error = xfs_mount_reset_sbqflags(mp);
1385 if (error)
1386 return error;
1387 }
1388 }
1da177e4
LT
1389
1390 /*
1391 * Finish recovering the file system. This part needed to be
1392 * delayed until after the root and real-time bitmap inodes
1393 * were consistently read in.
1394 */
4249023a 1395 error = xfs_log_mount_finish(mp);
1da177e4 1396 if (error) {
0b932ccc 1397 xfs_warn(mp, "log mount finish failed");
b93b6e43 1398 goto out_rtunmount;
1da177e4
LT
1399 }
1400
1401 /*
1402 * Complete the quota initialisation, post-log-replay component.
1403 */
7d095257
CH
1404 if (quotamount) {
1405 ASSERT(mp->m_qflags == 0);
1406 mp->m_qflags = quotaflags;
1407
1408 xfs_qm_mount_quotas(mp);
1409 }
1410
84e1e99f
DC
1411 /*
1412 * Now we are mounted, reserve a small amount of unused space for
1413 * privileged transactions. This is needed so that transaction
1414 * space required for critical operations can dip into this pool
1415 * when at ENOSPC. This is needed for operations like create with
1416 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1417 * are not allowed to use this reserved space.
8babd8a2
DC
1418 *
1419 * This may drive us straight to ENOSPC on mount, but that implies
1420 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 1421 */
d5db0f97
ES
1422 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1423 resblks = xfs_default_resblks(mp);
1424 error = xfs_reserve_blocks(mp, &resblks, NULL);
1425 if (error)
0b932ccc
DC
1426 xfs_warn(mp,
1427 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 1428 }
84e1e99f 1429
1da177e4
LT
1430 return 0;
1431
b93b6e43
CH
1432 out_rtunmount:
1433 xfs_rtunmount_inodes(mp);
f9057e3d 1434 out_rele_rip:
43355099 1435 IRELE(rip);
f9057e3d 1436 out_log_dealloc:
21b699c8 1437 xfs_log_unmount(mp);
d4f3512b
DC
1438 out_fail_wait:
1439 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1440 xfs_wait_buftarg(mp->m_logdev_targp);
1441 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 1442 out_free_perag:
ff4f038c 1443 xfs_free_perag(mp);
f9057e3d 1444 out_remove_uuid:
27174203 1445 xfs_uuid_unmount(mp);
f9057e3d 1446 out:
1da177e4
LT
1447 return error;
1448}
1449
1450/*
1da177e4
LT
1451 * This flushes out the inodes,dquots and the superblock, unmounts the
1452 * log and makes sure that incore structures are freed.
1453 */
41b5c2e7
CH
1454void
1455xfs_unmountfs(
1456 struct xfs_mount *mp)
1da177e4 1457{
41b5c2e7
CH
1458 __uint64_t resblks;
1459 int error;
1da177e4 1460
579b62fa
BF
1461 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1462
7d095257 1463 xfs_qm_unmount_quotas(mp);
b93b6e43 1464 xfs_rtunmount_inodes(mp);
77508ec8
CH
1465 IRELE(mp->m_rootip);
1466
641c56fb
DC
1467 /*
1468 * We can potentially deadlock here if we have an inode cluster
9da096fd 1469 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1470 * the transaction is still sitting in a iclog. The stale inodes
1471 * on that buffer will have their flush locks held until the
1472 * transaction hits the disk and the callbacks run. the inode
1473 * flush takes the flush lock unconditionally and with nothing to
1474 * push out the iclog we will never get that unlocked. hence we
1475 * need to force the log first.
1476 */
a14a348b 1477 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e
DC
1478
1479 /*
211e4d43
CH
1480 * Flush all pending changes from the AIL.
1481 */
1482 xfs_ail_push_all_sync(mp->m_ail);
1483
1484 /*
1485 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1486 * inodes and none should be pinned or locked, but use synchronous
1487 * reclaim just to be sure. We can stop background inode reclaim
1488 * here as well if it is still running.
c854363e 1489 */
7e18530b 1490 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1491 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1492
7d095257 1493 xfs_qm_unmount(mp);
a357a121 1494
84e1e99f
DC
1495 /*
1496 * Unreserve any blocks we have so that when we unmount we don't account
1497 * the reserved free space as used. This is really only necessary for
1498 * lazy superblock counting because it trusts the incore superblock
9da096fd 1499 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1500 *
1501 * We don't bother correcting this elsewhere for lazy superblock
1502 * counting because on mount of an unclean filesystem we reconstruct the
1503 * correct counter value and this is irrelevant.
1504 *
1505 * For non-lazy counter filesystems, this doesn't matter at all because
1506 * we only every apply deltas to the superblock and hence the incore
1507 * value does not matter....
1508 */
1509 resblks = 0;
714082bc
DC
1510 error = xfs_reserve_blocks(mp, &resblks, NULL);
1511 if (error)
0b932ccc 1512 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1513 "Freespace may not be correct on next mount.");
1514
adab0f67 1515 error = xfs_log_sbcount(mp);
e5720eec 1516 if (error)
0b932ccc 1517 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1518 "Freespace may not be correct on next mount.");
87c7bec7 1519
21b699c8 1520 xfs_log_unmount(mp);
27174203 1521 xfs_uuid_unmount(mp);
1da177e4 1522
1550d0b0 1523#if defined(DEBUG)
0ce4cfd4 1524 xfs_errortag_clearall(mp, 0);
1da177e4 1525#endif
ff4f038c 1526 xfs_free_perag(mp);
1da177e4
LT
1527}
1528
92821e2b
DC
1529int
1530xfs_fs_writable(xfs_mount_t *mp)
1531{
d9457dc0 1532 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
bd186aa9 1533 (mp->m_flags & XFS_MOUNT_RDONLY));
92821e2b
DC
1534}
1535
1536/*
b2ce3974
AE
1537 * xfs_log_sbcount
1538 *
adab0f67 1539 * Sync the superblock counters to disk.
b2ce3974
AE
1540 *
1541 * Note this code can be called during the process of freezing, so
adab0f67 1542 * we may need to use the transaction allocator which does not
b2ce3974 1543 * block when the transaction subsystem is in its frozen state.
92821e2b
DC
1544 */
1545int
adab0f67 1546xfs_log_sbcount(xfs_mount_t *mp)
92821e2b
DC
1547{
1548 xfs_trans_t *tp;
1549 int error;
1550
1551 if (!xfs_fs_writable(mp))
1552 return 0;
1553
d4d90b57 1554 xfs_icsb_sync_counters(mp, 0);
92821e2b
DC
1555
1556 /*
1557 * we don't need to do this if we are updating the superblock
1558 * counters on every modification.
1559 */
1560 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1561 return 0;
1562
b2ce3974 1563 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
92821e2b
DC
1564 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1565 XFS_DEFAULT_LOG_COUNT);
1566 if (error) {
1567 xfs_trans_cancel(tp, 0);
1568 return error;
1569 }
1570
1571 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
adab0f67 1572 xfs_trans_set_sync(tp);
e5720eec
DC
1573 error = xfs_trans_commit(tp, 0);
1574 return error;
92821e2b
DC
1575}
1576
1da177e4
LT
1577/*
1578 * xfs_mod_sb() can be used to copy arbitrary changes to the
1579 * in-core superblock into the superblock buffer to be logged.
1580 * It does not provide the higher level of locking that is
1581 * needed to protect the in-core superblock from concurrent
1582 * access.
1583 */
1584void
1585xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1586{
1587 xfs_buf_t *bp;
1588 int first;
1589 int last;
1590 xfs_mount_t *mp;
1da177e4
LT
1591 xfs_sb_field_t f;
1592
1593 ASSERT(fields);
1594 if (!fields)
1595 return;
1596 mp = tp->t_mountp;
1597 bp = xfs_trans_getsb(tp, mp, 0);
1da177e4
LT
1598 first = sizeof(xfs_sb_t);
1599 last = 0;
1600
1601 /* translate/copy */
1602
2bdf7cd0 1603 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1da177e4
LT
1604
1605 /* find modified range */
587aa0fe
DC
1606 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1607 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1608 last = xfs_sb_info[f + 1].offset - 1;
1da177e4
LT
1609
1610 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1611 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1612 first = xfs_sb_info[f].offset;
1613
1da177e4
LT
1614 xfs_trans_log_buf(tp, bp, first, last);
1615}
d210a28c 1616
d210a28c 1617
1da177e4
LT
1618/*
1619 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1620 * a delta to a specified field in the in-core superblock. Simply
1621 * switch on the field indicated and apply the delta to that field.
1622 * Fields are not allowed to dip below zero, so if the delta would
1623 * do this do not apply it and return EINVAL.
1624 *
3685c2a1 1625 * The m_sb_lock must be held when this routine is called.
1da177e4 1626 */
d96f8f89 1627STATIC int
20f4ebf2
DC
1628xfs_mod_incore_sb_unlocked(
1629 xfs_mount_t *mp,
1630 xfs_sb_field_t field,
1631 int64_t delta,
1632 int rsvd)
1da177e4
LT
1633{
1634 int scounter; /* short counter for 32 bit fields */
1635 long long lcounter; /* long counter for 64 bit fields */
1636 long long res_used, rem;
1637
1638 /*
1639 * With the in-core superblock spin lock held, switch
1640 * on the indicated field. Apply the delta to the
1641 * proper field. If the fields value would dip below
1642 * 0, then do not apply the delta and return EINVAL.
1643 */
1644 switch (field) {
1645 case XFS_SBS_ICOUNT:
1646 lcounter = (long long)mp->m_sb.sb_icount;
1647 lcounter += delta;
1648 if (lcounter < 0) {
1649 ASSERT(0);
014c2544 1650 return XFS_ERROR(EINVAL);
1da177e4
LT
1651 }
1652 mp->m_sb.sb_icount = lcounter;
014c2544 1653 return 0;
1da177e4
LT
1654 case XFS_SBS_IFREE:
1655 lcounter = (long long)mp->m_sb.sb_ifree;
1656 lcounter += delta;
1657 if (lcounter < 0) {
1658 ASSERT(0);
014c2544 1659 return XFS_ERROR(EINVAL);
1da177e4
LT
1660 }
1661 mp->m_sb.sb_ifree = lcounter;
014c2544 1662 return 0;
1da177e4 1663 case XFS_SBS_FDBLOCKS:
4be536de
DC
1664 lcounter = (long long)
1665 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1da177e4
LT
1666 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1667
1668 if (delta > 0) { /* Putting blocks back */
1669 if (res_used > delta) {
1670 mp->m_resblks_avail += delta;
1671 } else {
1672 rem = delta - res_used;
1673 mp->m_resblks_avail = mp->m_resblks;
1674 lcounter += rem;
1675 }
1676 } else { /* Taking blocks away */
1da177e4 1677 lcounter += delta;
8babd8a2
DC
1678 if (lcounter >= 0) {
1679 mp->m_sb.sb_fdblocks = lcounter +
1680 XFS_ALLOC_SET_ASIDE(mp);
1681 return 0;
1682 }
1da177e4 1683
8babd8a2
DC
1684 /*
1685 * We are out of blocks, use any available reserved
1686 * blocks if were allowed to.
1687 */
1688 if (!rsvd)
1689 return XFS_ERROR(ENOSPC);
1da177e4 1690
8babd8a2
DC
1691 lcounter = (long long)mp->m_resblks_avail + delta;
1692 if (lcounter >= 0) {
1693 mp->m_resblks_avail = lcounter;
1694 return 0;
1da177e4 1695 }
8babd8a2
DC
1696 printk_once(KERN_WARNING
1697 "Filesystem \"%s\": reserve blocks depleted! "
1698 "Consider increasing reserve pool size.",
1699 mp->m_fsname);
1700 return XFS_ERROR(ENOSPC);
1da177e4
LT
1701 }
1702
4be536de 1703 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
014c2544 1704 return 0;
1da177e4
LT
1705 case XFS_SBS_FREXTENTS:
1706 lcounter = (long long)mp->m_sb.sb_frextents;
1707 lcounter += delta;
1708 if (lcounter < 0) {
014c2544 1709 return XFS_ERROR(ENOSPC);
1da177e4
LT
1710 }
1711 mp->m_sb.sb_frextents = lcounter;
014c2544 1712 return 0;
1da177e4
LT
1713 case XFS_SBS_DBLOCKS:
1714 lcounter = (long long)mp->m_sb.sb_dblocks;
1715 lcounter += delta;
1716 if (lcounter < 0) {
1717 ASSERT(0);
014c2544 1718 return XFS_ERROR(EINVAL);
1da177e4
LT
1719 }
1720 mp->m_sb.sb_dblocks = lcounter;
014c2544 1721 return 0;
1da177e4
LT
1722 case XFS_SBS_AGCOUNT:
1723 scounter = mp->m_sb.sb_agcount;
1724 scounter += delta;
1725 if (scounter < 0) {
1726 ASSERT(0);
014c2544 1727 return XFS_ERROR(EINVAL);
1da177e4
LT
1728 }
1729 mp->m_sb.sb_agcount = scounter;
014c2544 1730 return 0;
1da177e4
LT
1731 case XFS_SBS_IMAX_PCT:
1732 scounter = mp->m_sb.sb_imax_pct;
1733 scounter += delta;
1734 if (scounter < 0) {
1735 ASSERT(0);
014c2544 1736 return XFS_ERROR(EINVAL);
1da177e4
LT
1737 }
1738 mp->m_sb.sb_imax_pct = scounter;
014c2544 1739 return 0;
1da177e4
LT
1740 case XFS_SBS_REXTSIZE:
1741 scounter = mp->m_sb.sb_rextsize;
1742 scounter += delta;
1743 if (scounter < 0) {
1744 ASSERT(0);
014c2544 1745 return XFS_ERROR(EINVAL);
1da177e4
LT
1746 }
1747 mp->m_sb.sb_rextsize = scounter;
014c2544 1748 return 0;
1da177e4
LT
1749 case XFS_SBS_RBMBLOCKS:
1750 scounter = mp->m_sb.sb_rbmblocks;
1751 scounter += delta;
1752 if (scounter < 0) {
1753 ASSERT(0);
014c2544 1754 return XFS_ERROR(EINVAL);
1da177e4
LT
1755 }
1756 mp->m_sb.sb_rbmblocks = scounter;
014c2544 1757 return 0;
1da177e4
LT
1758 case XFS_SBS_RBLOCKS:
1759 lcounter = (long long)mp->m_sb.sb_rblocks;
1760 lcounter += delta;
1761 if (lcounter < 0) {
1762 ASSERT(0);
014c2544 1763 return XFS_ERROR(EINVAL);
1da177e4
LT
1764 }
1765 mp->m_sb.sb_rblocks = lcounter;
014c2544 1766 return 0;
1da177e4
LT
1767 case XFS_SBS_REXTENTS:
1768 lcounter = (long long)mp->m_sb.sb_rextents;
1769 lcounter += delta;
1770 if (lcounter < 0) {
1771 ASSERT(0);
014c2544 1772 return XFS_ERROR(EINVAL);
1da177e4
LT
1773 }
1774 mp->m_sb.sb_rextents = lcounter;
014c2544 1775 return 0;
1da177e4
LT
1776 case XFS_SBS_REXTSLOG:
1777 scounter = mp->m_sb.sb_rextslog;
1778 scounter += delta;
1779 if (scounter < 0) {
1780 ASSERT(0);
014c2544 1781 return XFS_ERROR(EINVAL);
1da177e4
LT
1782 }
1783 mp->m_sb.sb_rextslog = scounter;
014c2544 1784 return 0;
1da177e4
LT
1785 default:
1786 ASSERT(0);
014c2544 1787 return XFS_ERROR(EINVAL);
1da177e4
LT
1788 }
1789}
1790
1791/*
1792 * xfs_mod_incore_sb() is used to change a field in the in-core
1793 * superblock structure by the specified delta. This modification
3685c2a1 1794 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1da177e4
LT
1795 * routine to do the work.
1796 */
1797int
20f4ebf2 1798xfs_mod_incore_sb(
96540c78
CH
1799 struct xfs_mount *mp,
1800 xfs_sb_field_t field,
1801 int64_t delta,
1802 int rsvd)
1da177e4 1803{
96540c78 1804 int status;
1da177e4 1805
8d280b98 1806#ifdef HAVE_PERCPU_SB
96540c78 1807 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
8d280b98 1808#endif
96540c78
CH
1809 spin_lock(&mp->m_sb_lock);
1810 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1811 spin_unlock(&mp->m_sb_lock);
8d280b98 1812
014c2544 1813 return status;
1da177e4
LT
1814}
1815
1816/*
1b040712 1817 * Change more than one field in the in-core superblock structure at a time.
1da177e4 1818 *
1b040712
CH
1819 * The fields and changes to those fields are specified in the array of
1820 * xfs_mod_sb structures passed in. Either all of the specified deltas
1821 * will be applied or none of them will. If any modified field dips below 0,
1822 * then all modifications will be backed out and EINVAL will be returned.
1823 *
1824 * Note that this function may not be used for the superblock values that
1825 * are tracked with the in-memory per-cpu counters - a direct call to
1826 * xfs_icsb_modify_counters is required for these.
1da177e4
LT
1827 */
1828int
1b040712
CH
1829xfs_mod_incore_sb_batch(
1830 struct xfs_mount *mp,
1831 xfs_mod_sb_t *msb,
1832 uint nmsb,
1833 int rsvd)
1da177e4 1834{
45c51b99 1835 xfs_mod_sb_t *msbp;
1b040712 1836 int error = 0;
1da177e4
LT
1837
1838 /*
1b040712
CH
1839 * Loop through the array of mod structures and apply each individually.
1840 * If any fail, then back out all those which have already been applied.
1841 * Do all of this within the scope of the m_sb_lock so that all of the
1842 * changes will be atomic.
1da177e4 1843 */
3685c2a1 1844 spin_lock(&mp->m_sb_lock);
45c51b99 1845 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1b040712
CH
1846 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1847 msbp->msb_field > XFS_SBS_FDBLOCKS);
8d280b98 1848
1b040712
CH
1849 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1850 msbp->msb_delta, rsvd);
1851 if (error)
1852 goto unwind;
1da177e4 1853 }
1b040712
CH
1854 spin_unlock(&mp->m_sb_lock);
1855 return 0;
1da177e4 1856
1b040712
CH
1857unwind:
1858 while (--msbp >= msb) {
1859 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1860 -msbp->msb_delta, rsvd);
1861 ASSERT(error == 0);
1da177e4 1862 }
3685c2a1 1863 spin_unlock(&mp->m_sb_lock);
1b040712 1864 return error;
1da177e4
LT
1865}
1866
1867/*
1868 * xfs_getsb() is called to obtain the buffer for the superblock.
1869 * The buffer is returned locked and read in from disk.
1870 * The buffer should be released with a call to xfs_brelse().
1871 *
1872 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1873 * the superblock buffer if it can be locked without sleeping.
1874 * If it can't then we'll return NULL.
1875 */
0c842ad4 1876struct xfs_buf *
1da177e4 1877xfs_getsb(
0c842ad4
CH
1878 struct xfs_mount *mp,
1879 int flags)
1da177e4 1880{
0c842ad4 1881 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1882
0c842ad4
CH
1883 if (!xfs_buf_trylock(bp)) {
1884 if (flags & XBF_TRYLOCK)
1da177e4 1885 return NULL;
0c842ad4 1886 xfs_buf_lock(bp);
1da177e4 1887 }
0c842ad4 1888
72790aa1 1889 xfs_buf_hold(bp);
1da177e4 1890 ASSERT(XFS_BUF_ISDONE(bp));
014c2544 1891 return bp;
1da177e4
LT
1892}
1893
1894/*
1895 * Used to free the superblock along various error paths.
1896 */
1897void
1898xfs_freesb(
26af6552 1899 struct xfs_mount *mp)
1da177e4 1900{
26af6552 1901 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1902
26af6552 1903 xfs_buf_lock(bp);
1da177e4 1904 mp->m_sb_bp = NULL;
26af6552 1905 xfs_buf_relse(bp);
1da177e4
LT
1906}
1907
1da177e4
LT
1908/*
1909 * Used to log changes to the superblock unit and width fields which could
e6957ea4
ES
1910 * be altered by the mount options, as well as any potential sb_features2
1911 * fixup. Only the first superblock is updated.
1da177e4 1912 */
7884bc86 1913int
ee1c0908 1914xfs_mount_log_sb(
1da177e4
LT
1915 xfs_mount_t *mp,
1916 __int64_t fields)
1917{
1918 xfs_trans_t *tp;
e5720eec 1919 int error;
1da177e4 1920
ee1c0908 1921 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
4b166de0
DC
1922 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1923 XFS_SB_VERSIONNUM));
1da177e4
LT
1924
1925 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
e5720eec
DC
1926 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1927 XFS_DEFAULT_LOG_COUNT);
1928 if (error) {
1da177e4 1929 xfs_trans_cancel(tp, 0);
e5720eec 1930 return error;
1da177e4
LT
1931 }
1932 xfs_mod_sb(tp, fields);
e5720eec
DC
1933 error = xfs_trans_commit(tp, 0);
1934 return error;
1da177e4 1935}
8d280b98 1936
dda35b8f
CH
1937/*
1938 * If the underlying (data/log/rt) device is readonly, there are some
1939 * operations that cannot proceed.
1940 */
1941int
1942xfs_dev_is_read_only(
1943 struct xfs_mount *mp,
1944 char *message)
1945{
1946 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1947 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1948 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1949 xfs_notice(mp, "%s required on read-only device.", message);
1950 xfs_notice(mp, "write access unavailable, cannot proceed.");
dda35b8f
CH
1951 return EROFS;
1952 }
1953 return 0;
1954}
8d280b98
DC
1955
1956#ifdef HAVE_PERCPU_SB
1957/*
1958 * Per-cpu incore superblock counters
1959 *
1960 * Simple concept, difficult implementation
1961 *
1962 * Basically, replace the incore superblock counters with a distributed per cpu
1963 * counter for contended fields (e.g. free block count).
1964 *
1965 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1966 * hence needs to be accurately read when we are running low on space. Hence
1967 * there is a method to enable and disable the per-cpu counters based on how
1968 * much "stuff" is available in them.
1969 *
1970 * Basically, a counter is enabled if there is enough free resource to justify
1971 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1972 * ENOSPC), then we disable the counters to synchronise all callers and
1973 * re-distribute the available resources.
1974 *
1975 * If, once we redistributed the available resources, we still get a failure,
1976 * we disable the per-cpu counter and go through the slow path.
1977 *
1978 * The slow path is the current xfs_mod_incore_sb() function. This means that
9da096fd 1979 * when we disable a per-cpu counter, we need to drain its resources back to
8d280b98
DC
1980 * the global superblock. We do this after disabling the counter to prevent
1981 * more threads from queueing up on the counter.
1982 *
1983 * Essentially, this means that we still need a lock in the fast path to enable
1984 * synchronisation between the global counters and the per-cpu counters. This
1985 * is not a problem because the lock will be local to a CPU almost all the time
1986 * and have little contention except when we get to ENOSPC conditions.
1987 *
1988 * Basically, this lock becomes a barrier that enables us to lock out the fast
1989 * path while we do things like enabling and disabling counters and
1990 * synchronising the counters.
1991 *
1992 * Locking rules:
1993 *
3685c2a1 1994 * 1. m_sb_lock before picking up per-cpu locks
8d280b98 1995 * 2. per-cpu locks always picked up via for_each_online_cpu() order
3685c2a1 1996 * 3. accurate counter sync requires m_sb_lock + per cpu locks
8d280b98 1997 * 4. modifying per-cpu counters requires holding per-cpu lock
3685c2a1
ES
1998 * 5. modifying global counters requires holding m_sb_lock
1999 * 6. enabling or disabling a counter requires holding the m_sb_lock
8d280b98
DC
2000 * and _none_ of the per-cpu locks.
2001 *
2002 * Disabled counters are only ever re-enabled by a balance operation
2003 * that results in more free resources per CPU than a given threshold.
2004 * To ensure counters don't remain disabled, they are rebalanced when
2005 * the global resource goes above a higher threshold (i.e. some hysteresis
2006 * is present to prevent thrashing).
e8234a68
DC
2007 */
2008
5a67e4c5 2009#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2010/*
2011 * hot-plug CPU notifier support.
8d280b98 2012 *
5a67e4c5
CS
2013 * We need a notifier per filesystem as we need to be able to identify
2014 * the filesystem to balance the counters out. This is achieved by
2015 * having a notifier block embedded in the xfs_mount_t and doing pointer
2016 * magic to get the mount pointer from the notifier block address.
8d280b98 2017 */
e8234a68
DC
2018STATIC int
2019xfs_icsb_cpu_notify(
2020 struct notifier_block *nfb,
2021 unsigned long action,
2022 void *hcpu)
2023{
2024 xfs_icsb_cnts_t *cntp;
2025 xfs_mount_t *mp;
e8234a68
DC
2026
2027 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2028 cntp = (xfs_icsb_cnts_t *)
2029 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2030 switch (action) {
2031 case CPU_UP_PREPARE:
8bb78442 2032 case CPU_UP_PREPARE_FROZEN:
e8234a68
DC
2033 /* Easy Case - initialize the area and locks, and
2034 * then rebalance when online does everything else for us. */
01e1b69c 2035 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68
DC
2036 break;
2037 case CPU_ONLINE:
8bb78442 2038 case CPU_ONLINE_FROZEN:
03135cf7 2039 xfs_icsb_lock(mp);
45af6c6d
CH
2040 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2041 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2042 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
03135cf7 2043 xfs_icsb_unlock(mp);
e8234a68
DC
2044 break;
2045 case CPU_DEAD:
8bb78442 2046 case CPU_DEAD_FROZEN:
e8234a68
DC
2047 /* Disable all the counters, then fold the dead cpu's
2048 * count into the total on the global superblock and
2049 * re-enable the counters. */
03135cf7 2050 xfs_icsb_lock(mp);
3685c2a1 2051 spin_lock(&mp->m_sb_lock);
e8234a68
DC
2052 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2053 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2054 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2055
2056 mp->m_sb.sb_icount += cntp->icsb_icount;
2057 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2058 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2059
01e1b69c 2060 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68 2061
45af6c6d
CH
2062 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2063 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2064 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
3685c2a1 2065 spin_unlock(&mp->m_sb_lock);
03135cf7 2066 xfs_icsb_unlock(mp);
e8234a68
DC
2067 break;
2068 }
2069
2070 return NOTIFY_OK;
2071}
5a67e4c5 2072#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2073
8d280b98
DC
2074int
2075xfs_icsb_init_counters(
2076 xfs_mount_t *mp)
2077{
2078 xfs_icsb_cnts_t *cntp;
2079 int i;
2080
2081 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2082 if (mp->m_sb_cnts == NULL)
2083 return -ENOMEM;
2084
5a67e4c5 2085#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2086 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2087 mp->m_icsb_notifier.priority = 0;
5a67e4c5
CS
2088 register_hotcpu_notifier(&mp->m_icsb_notifier);
2089#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2090
8d280b98
DC
2091 for_each_online_cpu(i) {
2092 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2093 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
8d280b98 2094 }
20b64285
DC
2095
2096 mutex_init(&mp->m_icsb_mutex);
2097
8d280b98
DC
2098 /*
2099 * start with all counters disabled so that the
2100 * initial balance kicks us off correctly
2101 */
2102 mp->m_icsb_counters = -1;
2103 return 0;
2104}
2105
5478eead
LM
2106void
2107xfs_icsb_reinit_counters(
2108 xfs_mount_t *mp)
2109{
2110 xfs_icsb_lock(mp);
2111 /*
2112 * start with all counters disabled so that the
2113 * initial balance kicks us off correctly
2114 */
2115 mp->m_icsb_counters = -1;
45af6c6d
CH
2116 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2117 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2118 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
5478eead
LM
2119 xfs_icsb_unlock(mp);
2120}
2121
c962fb79 2122void
8d280b98
DC
2123xfs_icsb_destroy_counters(
2124 xfs_mount_t *mp)
2125{
e8234a68 2126 if (mp->m_sb_cnts) {
5a67e4c5 2127 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
8d280b98 2128 free_percpu(mp->m_sb_cnts);
e8234a68 2129 }
03135cf7 2130 mutex_destroy(&mp->m_icsb_mutex);
8d280b98
DC
2131}
2132
b8f82a4a 2133STATIC void
01e1b69c
DC
2134xfs_icsb_lock_cntr(
2135 xfs_icsb_cnts_t *icsbp)
2136{
2137 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2138 ndelay(1000);
2139 }
2140}
2141
b8f82a4a 2142STATIC void
01e1b69c
DC
2143xfs_icsb_unlock_cntr(
2144 xfs_icsb_cnts_t *icsbp)
2145{
2146 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2147}
2148
8d280b98 2149
b8f82a4a 2150STATIC void
8d280b98
DC
2151xfs_icsb_lock_all_counters(
2152 xfs_mount_t *mp)
2153{
2154 xfs_icsb_cnts_t *cntp;
2155 int i;
2156
2157 for_each_online_cpu(i) {
2158 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2159 xfs_icsb_lock_cntr(cntp);
8d280b98
DC
2160 }
2161}
2162
b8f82a4a 2163STATIC void
8d280b98
DC
2164xfs_icsb_unlock_all_counters(
2165 xfs_mount_t *mp)
2166{
2167 xfs_icsb_cnts_t *cntp;
2168 int i;
2169
2170 for_each_online_cpu(i) {
2171 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2172 xfs_icsb_unlock_cntr(cntp);
8d280b98
DC
2173 }
2174}
2175
2176STATIC void
2177xfs_icsb_count(
2178 xfs_mount_t *mp,
2179 xfs_icsb_cnts_t *cnt,
2180 int flags)
2181{
2182 xfs_icsb_cnts_t *cntp;
2183 int i;
2184
2185 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2186
2187 if (!(flags & XFS_ICSB_LAZY_COUNT))
2188 xfs_icsb_lock_all_counters(mp);
2189
2190 for_each_online_cpu(i) {
2191 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2192 cnt->icsb_icount += cntp->icsb_icount;
2193 cnt->icsb_ifree += cntp->icsb_ifree;
2194 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2195 }
2196
2197 if (!(flags & XFS_ICSB_LAZY_COUNT))
2198 xfs_icsb_unlock_all_counters(mp);
2199}
2200
2201STATIC int
2202xfs_icsb_counter_disabled(
2203 xfs_mount_t *mp,
2204 xfs_sb_field_t field)
2205{
2206 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2207 return test_bit(field, &mp->m_icsb_counters);
2208}
2209
36fbe6e6 2210STATIC void
8d280b98
DC
2211xfs_icsb_disable_counter(
2212 xfs_mount_t *mp,
2213 xfs_sb_field_t field)
2214{
2215 xfs_icsb_cnts_t cnt;
2216
2217 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2218
20b64285
DC
2219 /*
2220 * If we are already disabled, then there is nothing to do
2221 * here. We check before locking all the counters to avoid
2222 * the expensive lock operation when being called in the
2223 * slow path and the counter is already disabled. This is
2224 * safe because the only time we set or clear this state is under
2225 * the m_icsb_mutex.
2226 */
2227 if (xfs_icsb_counter_disabled(mp, field))
36fbe6e6 2228 return;
20b64285 2229
8d280b98
DC
2230 xfs_icsb_lock_all_counters(mp);
2231 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2232 /* drain back to superblock */
2233
ce46193b 2234 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
8d280b98
DC
2235 switch(field) {
2236 case XFS_SBS_ICOUNT:
2237 mp->m_sb.sb_icount = cnt.icsb_icount;
2238 break;
2239 case XFS_SBS_IFREE:
2240 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2241 break;
2242 case XFS_SBS_FDBLOCKS:
2243 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2244 break;
2245 default:
2246 BUG();
2247 }
2248 }
2249
2250 xfs_icsb_unlock_all_counters(mp);
8d280b98
DC
2251}
2252
2253STATIC void
2254xfs_icsb_enable_counter(
2255 xfs_mount_t *mp,
2256 xfs_sb_field_t field,
2257 uint64_t count,
2258 uint64_t resid)
2259{
2260 xfs_icsb_cnts_t *cntp;
2261 int i;
2262
2263 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2264
2265 xfs_icsb_lock_all_counters(mp);
2266 for_each_online_cpu(i) {
2267 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2268 switch (field) {
2269 case XFS_SBS_ICOUNT:
2270 cntp->icsb_icount = count + resid;
2271 break;
2272 case XFS_SBS_IFREE:
2273 cntp->icsb_ifree = count + resid;
2274 break;
2275 case XFS_SBS_FDBLOCKS:
2276 cntp->icsb_fdblocks = count + resid;
2277 break;
2278 default:
2279 BUG();
2280 break;
2281 }
2282 resid = 0;
2283 }
2284 clear_bit(field, &mp->m_icsb_counters);
2285 xfs_icsb_unlock_all_counters(mp);
2286}
2287
dbcabad1 2288void
d4d90b57 2289xfs_icsb_sync_counters_locked(
8d280b98
DC
2290 xfs_mount_t *mp,
2291 int flags)
2292{
2293 xfs_icsb_cnts_t cnt;
8d280b98 2294
8d280b98
DC
2295 xfs_icsb_count(mp, &cnt, flags);
2296
8d280b98
DC
2297 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2298 mp->m_sb.sb_icount = cnt.icsb_icount;
2299 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2300 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2301 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2302 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
8d280b98
DC
2303}
2304
2305/*
2306 * Accurate update of per-cpu counters to incore superblock
2307 */
d4d90b57 2308void
8d280b98 2309xfs_icsb_sync_counters(
d4d90b57
CH
2310 xfs_mount_t *mp,
2311 int flags)
8d280b98 2312{
d4d90b57
CH
2313 spin_lock(&mp->m_sb_lock);
2314 xfs_icsb_sync_counters_locked(mp, flags);
2315 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2316}
2317
2318/*
2319 * Balance and enable/disable counters as necessary.
2320 *
20b64285
DC
2321 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2322 * chosen to be the same number as single on disk allocation chunk per CPU, and
2323 * free blocks is something far enough zero that we aren't going thrash when we
2324 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2325 * prevent looping endlessly when xfs_alloc_space asks for more than will
2326 * be distributed to a single CPU but each CPU has enough blocks to be
2327 * reenabled.
2328 *
2329 * Note that we can be called when counters are already disabled.
2330 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2331 * prevent locking every per-cpu counter needlessly.
8d280b98 2332 */
20b64285
DC
2333
2334#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
4be536de 2335#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
20b64285 2336 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
8d280b98 2337STATIC void
45af6c6d 2338xfs_icsb_balance_counter_locked(
8d280b98
DC
2339 xfs_mount_t *mp,
2340 xfs_sb_field_t field,
20b64285 2341 int min_per_cpu)
8d280b98 2342{
6fdf8ccc 2343 uint64_t count, resid;
8d280b98 2344 int weight = num_online_cpus();
20b64285 2345 uint64_t min = (uint64_t)min_per_cpu;
8d280b98 2346
8d280b98
DC
2347 /* disable counter and sync counter */
2348 xfs_icsb_disable_counter(mp, field);
2349
2350 /* update counters - first CPU gets residual*/
2351 switch (field) {
2352 case XFS_SBS_ICOUNT:
2353 count = mp->m_sb.sb_icount;
2354 resid = do_div(count, weight);
20b64285 2355 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2356 return;
8d280b98
DC
2357 break;
2358 case XFS_SBS_IFREE:
2359 count = mp->m_sb.sb_ifree;
2360 resid = do_div(count, weight);
20b64285 2361 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2362 return;
8d280b98
DC
2363 break;
2364 case XFS_SBS_FDBLOCKS:
2365 count = mp->m_sb.sb_fdblocks;
2366 resid = do_div(count, weight);
20b64285 2367 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
45af6c6d 2368 return;
8d280b98
DC
2369 break;
2370 default:
2371 BUG();
6fdf8ccc 2372 count = resid = 0; /* quiet, gcc */
8d280b98
DC
2373 break;
2374 }
2375
2376 xfs_icsb_enable_counter(mp, field, count, resid);
45af6c6d
CH
2377}
2378
2379STATIC void
2380xfs_icsb_balance_counter(
2381 xfs_mount_t *mp,
2382 xfs_sb_field_t fields,
2383 int min_per_cpu)
2384{
2385 spin_lock(&mp->m_sb_lock);
2386 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2387 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2388}
2389
1b040712 2390int
20b64285 2391xfs_icsb_modify_counters(
8d280b98
DC
2392 xfs_mount_t *mp,
2393 xfs_sb_field_t field,
20f4ebf2 2394 int64_t delta,
20b64285 2395 int rsvd)
8d280b98
DC
2396{
2397 xfs_icsb_cnts_t *icsbp;
2398 long long lcounter; /* long counter for 64 bit fields */
7a9e02d6 2399 int ret = 0;
8d280b98 2400
20b64285 2401 might_sleep();
8d280b98 2402again:
7a9e02d6
CL
2403 preempt_disable();
2404 icsbp = this_cpu_ptr(mp->m_sb_cnts);
20b64285
DC
2405
2406 /*
2407 * if the counter is disabled, go to slow path
2408 */
8d280b98
DC
2409 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2410 goto slow_path;
20b64285
DC
2411 xfs_icsb_lock_cntr(icsbp);
2412 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2413 xfs_icsb_unlock_cntr(icsbp);
2414 goto slow_path;
2415 }
8d280b98
DC
2416
2417 switch (field) {
2418 case XFS_SBS_ICOUNT:
2419 lcounter = icsbp->icsb_icount;
2420 lcounter += delta;
2421 if (unlikely(lcounter < 0))
20b64285 2422 goto balance_counter;
8d280b98
DC
2423 icsbp->icsb_icount = lcounter;
2424 break;
2425
2426 case XFS_SBS_IFREE:
2427 lcounter = icsbp->icsb_ifree;
2428 lcounter += delta;
2429 if (unlikely(lcounter < 0))
20b64285 2430 goto balance_counter;
8d280b98
DC
2431 icsbp->icsb_ifree = lcounter;
2432 break;
2433
2434 case XFS_SBS_FDBLOCKS:
2435 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2436
4be536de 2437 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2438 lcounter += delta;
2439 if (unlikely(lcounter < 0))
20b64285 2440 goto balance_counter;
4be536de 2441 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2442 break;
2443 default:
2444 BUG();
2445 break;
2446 }
01e1b69c 2447 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2448 preempt_enable();
8d280b98
DC
2449 return 0;
2450
8d280b98 2451slow_path:
7a9e02d6 2452 preempt_enable();
8d280b98 2453
20b64285
DC
2454 /*
2455 * serialise with a mutex so we don't burn lots of cpu on
2456 * the superblock lock. We still need to hold the superblock
2457 * lock, however, when we modify the global structures.
2458 */
03135cf7 2459 xfs_icsb_lock(mp);
20b64285
DC
2460
2461 /*
2462 * Now running atomically.
2463 *
2464 * If the counter is enabled, someone has beaten us to rebalancing.
2465 * Drop the lock and try again in the fast path....
2466 */
2467 if (!(xfs_icsb_counter_disabled(mp, field))) {
03135cf7 2468 xfs_icsb_unlock(mp);
8d280b98 2469 goto again;
8d280b98
DC
2470 }
2471
20b64285
DC
2472 /*
2473 * The counter is currently disabled. Because we are
2474 * running atomically here, we know a rebalance cannot
2475 * be in progress. Hence we can go straight to operating
2476 * on the global superblock. We do not call xfs_mod_incore_sb()
3685c2a1 2477 * here even though we need to get the m_sb_lock. Doing so
20b64285 2478 * will cause us to re-enter this function and deadlock.
3685c2a1 2479 * Hence we get the m_sb_lock ourselves and then call
20b64285
DC
2480 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2481 * directly on the global counters.
2482 */
3685c2a1 2483 spin_lock(&mp->m_sb_lock);
8d280b98 2484 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
3685c2a1 2485 spin_unlock(&mp->m_sb_lock);
8d280b98 2486
20b64285
DC
2487 /*
2488 * Now that we've modified the global superblock, we
2489 * may be able to re-enable the distributed counters
2490 * (e.g. lots of space just got freed). After that
2491 * we are done.
2492 */
2493 if (ret != ENOSPC)
45af6c6d 2494 xfs_icsb_balance_counter(mp, field, 0);
03135cf7 2495 xfs_icsb_unlock(mp);
8d280b98 2496 return ret;
8d280b98 2497
20b64285
DC
2498balance_counter:
2499 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2500 preempt_enable();
8d280b98 2501
20b64285
DC
2502 /*
2503 * We may have multiple threads here if multiple per-cpu
2504 * counters run dry at the same time. This will mean we can
2505 * do more balances than strictly necessary but it is not
2506 * the common slowpath case.
2507 */
03135cf7 2508 xfs_icsb_lock(mp);
20b64285
DC
2509
2510 /*
2511 * running atomically.
2512 *
2513 * This will leave the counter in the correct state for future
2514 * accesses. After the rebalance, we simply try again and our retry
2515 * will either succeed through the fast path or slow path without
2516 * another balance operation being required.
2517 */
45af6c6d 2518 xfs_icsb_balance_counter(mp, field, delta);
03135cf7 2519 xfs_icsb_unlock(mp);
20b64285 2520 goto again;
8d280b98 2521}
20b64285 2522
8d280b98 2523#endif
This page took 0.672539 seconds and 5 git commands to generate.