Linux 3.7-rc1
[deliverable/linux.git] / fs / xfs / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
fe4fa4b8
DC
21#include "xfs_log.h"
22#include "xfs_inum.h"
23#include "xfs_trans.h"
fd074841 24#include "xfs_trans_priv.h"
fe4fa4b8
DC
25#include "xfs_sb.h"
26#include "xfs_ag.h"
fe4fa4b8
DC
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
fe4fa4b8
DC
29#include "xfs_inode.h"
30#include "xfs_dinode.h"
31#include "xfs_error.h"
fe4fa4b8
DC
32#include "xfs_filestream.h"
33#include "xfs_vnodeops.h"
fe4fa4b8 34#include "xfs_inode_item.h"
7d095257 35#include "xfs_quota.h"
0b1b213f 36#include "xfs_trace.h"
1a387d3b 37#include "xfs_fsops.h"
fe4fa4b8 38
a167b17e
DC
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41
c6d09b66
DC
42struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
43
78ae5256
DC
44/*
45 * The inode lookup is done in batches to keep the amount of lock traffic and
46 * radix tree lookups to a minimum. The batch size is a trade off between
47 * lookup reduction and stack usage. This is in the reclaim path, so we can't
48 * be too greedy.
49 */
50#define XFS_LOOKUP_BATCH 32
51
e13de955
DC
52STATIC int
53xfs_inode_ag_walk_grab(
54 struct xfs_inode *ip)
55{
56 struct inode *inode = VFS_I(ip);
57
1a3e8f3d
DC
58 ASSERT(rcu_read_lock_held());
59
60 /*
61 * check for stale RCU freed inode
62 *
63 * If the inode has been reallocated, it doesn't matter if it's not in
64 * the AG we are walking - we are walking for writeback, so if it
65 * passes all the "valid inode" checks and is dirty, then we'll write
66 * it back anyway. If it has been reallocated and still being
67 * initialised, the XFS_INEW check below will catch it.
68 */
69 spin_lock(&ip->i_flags_lock);
70 if (!ip->i_ino)
71 goto out_unlock_noent;
72
73 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
74 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
75 goto out_unlock_noent;
76 spin_unlock(&ip->i_flags_lock);
77
e13de955
DC
78 /* nothing to sync during shutdown */
79 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
80 return EFSCORRUPTED;
81
e13de955
DC
82 /* If we can't grab the inode, it must on it's way to reclaim. */
83 if (!igrab(inode))
84 return ENOENT;
85
86 if (is_bad_inode(inode)) {
87 IRELE(ip);
88 return ENOENT;
89 }
90
91 /* inode is valid */
92 return 0;
1a3e8f3d
DC
93
94out_unlock_noent:
95 spin_unlock(&ip->i_flags_lock);
96 return ENOENT;
e13de955
DC
97}
98
75f3cb13
DC
99STATIC int
100xfs_inode_ag_walk(
101 struct xfs_mount *mp,
5017e97d 102 struct xfs_perag *pag,
75f3cb13
DC
103 int (*execute)(struct xfs_inode *ip,
104 struct xfs_perag *pag, int flags),
65d0f205 105 int flags)
75f3cb13 106{
75f3cb13
DC
107 uint32_t first_index;
108 int last_error = 0;
109 int skipped;
65d0f205 110 int done;
78ae5256 111 int nr_found;
75f3cb13
DC
112
113restart:
65d0f205 114 done = 0;
75f3cb13
DC
115 skipped = 0;
116 first_index = 0;
78ae5256 117 nr_found = 0;
75f3cb13 118 do {
78ae5256 119 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 120 int error = 0;
78ae5256 121 int i;
75f3cb13 122
1a3e8f3d 123 rcu_read_lock();
65d0f205 124 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
125 (void **)batch, first_index,
126 XFS_LOOKUP_BATCH);
65d0f205 127 if (!nr_found) {
1a3e8f3d 128 rcu_read_unlock();
75f3cb13 129 break;
c8e20be0 130 }
75f3cb13 131
65d0f205 132 /*
78ae5256
DC
133 * Grab the inodes before we drop the lock. if we found
134 * nothing, nr == 0 and the loop will be skipped.
65d0f205 135 */
78ae5256
DC
136 for (i = 0; i < nr_found; i++) {
137 struct xfs_inode *ip = batch[i];
138
139 if (done || xfs_inode_ag_walk_grab(ip))
140 batch[i] = NULL;
141
142 /*
1a3e8f3d
DC
143 * Update the index for the next lookup. Catch
144 * overflows into the next AG range which can occur if
145 * we have inodes in the last block of the AG and we
146 * are currently pointing to the last inode.
147 *
148 * Because we may see inodes that are from the wrong AG
149 * due to RCU freeing and reallocation, only update the
150 * index if it lies in this AG. It was a race that lead
151 * us to see this inode, so another lookup from the
152 * same index will not find it again.
78ae5256 153 */
1a3e8f3d
DC
154 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
155 continue;
78ae5256
DC
156 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
157 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
158 done = 1;
e13de955 159 }
78ae5256
DC
160
161 /* unlock now we've grabbed the inodes. */
1a3e8f3d 162 rcu_read_unlock();
e13de955 163
78ae5256
DC
164 for (i = 0; i < nr_found; i++) {
165 if (!batch[i])
166 continue;
167 error = execute(batch[i], pag, flags);
168 IRELE(batch[i]);
169 if (error == EAGAIN) {
170 skipped++;
171 continue;
172 }
173 if (error && last_error != EFSCORRUPTED)
174 last_error = error;
75f3cb13 175 }
c8e20be0
DC
176
177 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
178 if (error == EFSCORRUPTED)
179 break;
180
8daaa831
DC
181 cond_resched();
182
78ae5256 183 } while (nr_found && !done);
75f3cb13
DC
184
185 if (skipped) {
186 delay(1);
187 goto restart;
188 }
75f3cb13
DC
189 return last_error;
190}
191
fe588ed3 192int
75f3cb13
DC
193xfs_inode_ag_iterator(
194 struct xfs_mount *mp,
195 int (*execute)(struct xfs_inode *ip,
196 struct xfs_perag *pag, int flags),
65d0f205 197 int flags)
75f3cb13 198{
16fd5367 199 struct xfs_perag *pag;
75f3cb13
DC
200 int error = 0;
201 int last_error = 0;
202 xfs_agnumber_t ag;
203
16fd5367 204 ag = 0;
65d0f205
DC
205 while ((pag = xfs_perag_get(mp, ag))) {
206 ag = pag->pag_agno + 1;
207 error = xfs_inode_ag_walk(mp, pag, execute, flags);
5017e97d 208 xfs_perag_put(pag);
75f3cb13
DC
209 if (error) {
210 last_error = error;
211 if (error == EFSCORRUPTED)
212 break;
213 }
214 }
215 return XFS_ERROR(last_error);
216}
217
5a34d5cd
DC
218STATIC int
219xfs_sync_inode_data(
220 struct xfs_inode *ip,
75f3cb13 221 struct xfs_perag *pag,
5a34d5cd
DC
222 int flags)
223{
224 struct inode *inode = VFS_I(ip);
225 struct address_space *mapping = inode->i_mapping;
226 int error = 0;
227
228 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
4a06fd26 229 return 0;
5a34d5cd
DC
230
231 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
232 if (flags & SYNC_TRYLOCK)
4a06fd26 233 return 0;
5a34d5cd
DC
234 xfs_ilock(ip, XFS_IOLOCK_SHARED);
235 }
236
237 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
0cadda1c 238 0 : XBF_ASYNC, FI_NONE);
5a34d5cd 239 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
5a34d5cd
DC
240 return error;
241}
242
075fe102
CH
243/*
244 * Write out pagecache data for the whole filesystem.
245 */
64c86149 246STATIC int
075fe102
CH
247xfs_sync_data(
248 struct xfs_mount *mp,
249 int flags)
683a8970 250{
075fe102 251 int error;
fe4fa4b8 252
b0710ccc 253 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
fe4fa4b8 254
65d0f205 255 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
075fe102
CH
256 if (error)
257 return XFS_ERROR(error);
e9f1c6ee 258
a14a348b 259 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
075fe102
CH
260 return 0;
261}
e9f1c6ee 262
5d77c0dc 263STATIC int
2af75df7 264xfs_sync_fsdata(
df308bcf 265 struct xfs_mount *mp)
2af75df7
CH
266{
267 struct xfs_buf *bp;
c2b006c1 268 int error;
2af75df7
CH
269
270 /*
df308bcf
CH
271 * If the buffer is pinned then push on the log so we won't get stuck
272 * waiting in the write for someone, maybe ourselves, to flush the log.
273 *
274 * Even though we just pushed the log above, we did not have the
275 * superblock buffer locked at that point so it can become pinned in
276 * between there and here.
2af75df7 277 */
df308bcf 278 bp = xfs_getsb(mp, 0);
811e64c7 279 if (xfs_buf_ispinned(bp))
df308bcf 280 xfs_log_force(mp, 0);
c2b006c1
CH
281 error = xfs_bwrite(bp);
282 xfs_buf_relse(bp);
283 return error;
e9f1c6ee
DC
284}
285
286/*
a4e4c4f4
DC
287 * When remounting a filesystem read-only or freezing the filesystem, we have
288 * two phases to execute. This first phase is syncing the data before we
289 * quiesce the filesystem, and the second is flushing all the inodes out after
290 * we've waited for all the transactions created by the first phase to
291 * complete. The second phase ensures that the inodes are written to their
292 * location on disk rather than just existing in transactions in the log. This
293 * means after a quiesce there is no log replay required to write the inodes to
294 * disk (this is the main difference between a sync and a quiesce).
295 */
296/*
297 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
298 * so we flush delwri and delalloc buffers here, then wait for all I/O to
299 * complete. Data is frozen at that point. Metadata is not frozen,
211e4d43 300 * transactions can still occur here so don't bother emptying the AIL
a4e4c4f4 301 * because it'll just get dirty again.
e9f1c6ee
DC
302 */
303int
304xfs_quiesce_data(
305 struct xfs_mount *mp)
306{
df308bcf 307 int error, error2 = 0;
e9f1c6ee 308
34625c66 309 /* force out the log */
33b8f7c2
CH
310 xfs_log_force(mp, XFS_LOG_SYNC);
311
a4e4c4f4 312 /* write superblock and hoover up shutdown errors */
df308bcf
CH
313 error = xfs_sync_fsdata(mp);
314
df308bcf
CH
315 /* mark the log as covered if needed */
316 if (xfs_log_need_covered(mp))
c58efdb4 317 error2 = xfs_fs_log_dummy(mp);
e9f1c6ee 318
df308bcf 319 return error ? error : error2;
2af75df7
CH
320}
321
76bf105c
DC
322/*
323 * Second stage of a quiesce. The data is already synced, now we have to take
324 * care of the metadata. New transactions are already blocked, so we need to
25985edc 325 * wait for any remaining transactions to drain out before proceeding.
76bf105c
DC
326 */
327void
328xfs_quiesce_attr(
329 struct xfs_mount *mp)
330{
331 int error = 0;
332
333 /* wait for all modifications to complete */
334 while (atomic_read(&mp->m_active_trans) > 0)
335 delay(100);
336
211e4d43
CH
337 /* reclaim inodes to do any IO before the freeze completes */
338 xfs_reclaim_inodes(mp, 0);
339 xfs_reclaim_inodes(mp, SYNC_WAIT);
340
341 /* flush all pending changes from the AIL */
342 xfs_ail_push_all_sync(mp->m_ail);
76bf105c 343
5e106572
FB
344 /*
345 * Just warn here till VFS can correctly support
346 * read-only remount without racing.
347 */
348 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
349
350 /* Push the superblock and write an unmount record */
adab0f67 351 error = xfs_log_sbcount(mp);
76bf105c 352 if (error)
4f10700a 353 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
76bf105c
DC
354 "Frozen image may not be consistent.");
355 xfs_log_unmount_write(mp);
211e4d43
CH
356
357 /*
358 * At this point we might have modified the superblock again and thus
359 * added an item to the AIL, thus flush it again.
360 */
361 xfs_ail_push_all_sync(mp->m_ail);
9a57fa8e
MT
362
363 /*
364 * The superblock buffer is uncached and xfsaild_push() will lock and
365 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
366 * here but a lock on the superblock buffer will block until iodone()
367 * has completed.
368 */
369 xfs_buf_lock(mp->m_sb_bp);
370 xfs_buf_unlock(mp->m_sb_bp);
76bf105c
DC
371}
372
c6d09b66
DC
373static void
374xfs_syncd_queue_sync(
375 struct xfs_mount *mp)
a167b17e 376{
c6d09b66
DC
377 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
378 msecs_to_jiffies(xfs_syncd_centisecs * 10));
a167b17e
DC
379}
380
aacaa880 381/*
df308bcf
CH
382 * Every sync period we need to unpin all items, reclaim inodes and sync
383 * disk quotas. We might need to cover the log to indicate that the
1a387d3b 384 * filesystem is idle and not frozen.
aacaa880 385 */
a167b17e
DC
386STATIC void
387xfs_sync_worker(
c6d09b66 388 struct work_struct *work)
a167b17e 389{
c6d09b66
DC
390 struct xfs_mount *mp = container_of(to_delayed_work(work),
391 struct xfs_mount, m_sync_work);
a167b17e
DC
392 int error;
393
8a00ebe4
DC
394 /*
395 * We shouldn't write/force the log if we are in the mount/unmount
396 * process or on a read only filesystem. The workqueue still needs to be
397 * active in both cases, however, because it is used for inode reclaim
11159a05
BM
398 * during these times. Use the MS_ACTIVE flag to avoid doing anything
399 * during mount. Doing work during unmount is avoided by calling
400 * cancel_delayed_work_sync on this work queue before tearing down
401 * the ail and the log in xfs_log_unmount.
8a00ebe4 402 */
11159a05
BM
403 if (!(mp->m_super->s_flags & MS_ACTIVE) &&
404 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
405 /* dgc: errors ignored here */
d9457dc0 406 if (mp->m_super->s_writers.frozen == SB_UNFROZEN &&
11159a05
BM
407 xfs_log_need_covered(mp))
408 error = xfs_fs_log_dummy(mp);
409 else
410 xfs_log_force(mp, 0);
411
412 /* start pushing all the metadata that is currently
413 * dirty */
414 xfs_ail_push_all(mp->m_ail);
aacaa880 415 }
c6d09b66
DC
416
417 /* queue us up again */
418 xfs_syncd_queue_sync(mp);
a167b17e
DC
419}
420
a7b339f1
DC
421/*
422 * Queue a new inode reclaim pass if there are reclaimable inodes and there
423 * isn't a reclaim pass already in progress. By default it runs every 5s based
424 * on the xfs syncd work default of 30s. Perhaps this should have it's own
425 * tunable, but that can be done if this method proves to be ineffective or too
426 * aggressive.
427 */
428static void
429xfs_syncd_queue_reclaim(
430 struct xfs_mount *mp)
a167b17e 431{
a167b17e 432
a7b339f1
DC
433 rcu_read_lock();
434 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
435 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
436 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
a167b17e 437 }
a7b339f1
DC
438 rcu_read_unlock();
439}
a167b17e 440
a7b339f1
DC
441/*
442 * This is a fast pass over the inode cache to try to get reclaim moving on as
443 * many inodes as possible in a short period of time. It kicks itself every few
444 * seconds, as well as being kicked by the inode cache shrinker when memory
445 * goes low. It scans as quickly as possible avoiding locked inodes or those
446 * already being flushed, and once done schedules a future pass.
447 */
448STATIC void
449xfs_reclaim_worker(
450 struct work_struct *work)
451{
452 struct xfs_mount *mp = container_of(to_delayed_work(work),
453 struct xfs_mount, m_reclaim_work);
454
455 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
456 xfs_syncd_queue_reclaim(mp);
457}
458
89e4cb55
DC
459/*
460 * Flush delayed allocate data, attempting to free up reserved space
461 * from existing allocations. At this point a new allocation attempt
462 * has failed with ENOSPC and we are in the process of scratching our
463 * heads, looking about for more room.
464 *
465 * Queue a new data flush if there isn't one already in progress and
466 * wait for completion of the flush. This means that we only ever have one
467 * inode flush in progress no matter how many ENOSPC events are occurring and
468 * so will prevent the system from bogging down due to every concurrent
469 * ENOSPC event scanning all the active inodes in the system for writeback.
470 */
471void
472xfs_flush_inodes(
473 struct xfs_inode *ip)
474{
475 struct xfs_mount *mp = ip->i_mount;
476
477 queue_work(xfs_syncd_wq, &mp->m_flush_work);
43829731 478 flush_work(&mp->m_flush_work);
89e4cb55
DC
479}
480
481STATIC void
482xfs_flush_worker(
483 struct work_struct *work)
484{
485 struct xfs_mount *mp = container_of(work,
486 struct xfs_mount, m_flush_work);
487
488 xfs_sync_data(mp, SYNC_TRYLOCK);
489 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
a167b17e
DC
490}
491
492int
493xfs_syncd_init(
494 struct xfs_mount *mp)
495{
89e4cb55 496 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
c6d09b66 497 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
a7b339f1
DC
498 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
499
c6d09b66
DC
500 xfs_syncd_queue_sync(mp);
501
a167b17e
DC
502 return 0;
503}
504
505void
506xfs_syncd_stop(
507 struct xfs_mount *mp)
508{
c6d09b66 509 cancel_delayed_work_sync(&mp->m_sync_work);
a7b339f1 510 cancel_delayed_work_sync(&mp->m_reclaim_work);
89e4cb55 511 cancel_work_sync(&mp->m_flush_work);
a167b17e
DC
512}
513
bc990f5c
CH
514void
515__xfs_inode_set_reclaim_tag(
516 struct xfs_perag *pag,
517 struct xfs_inode *ip)
518{
519 radix_tree_tag_set(&pag->pag_ici_root,
520 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
521 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
522
523 if (!pag->pag_ici_reclaimable) {
524 /* propagate the reclaim tag up into the perag radix tree */
525 spin_lock(&ip->i_mount->m_perag_lock);
526 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
527 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
528 XFS_ICI_RECLAIM_TAG);
529 spin_unlock(&ip->i_mount->m_perag_lock);
a7b339f1
DC
530
531 /* schedule periodic background inode reclaim */
532 xfs_syncd_queue_reclaim(ip->i_mount);
533
16fd5367
DC
534 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
535 -1, _RET_IP_);
536 }
9bf729c0 537 pag->pag_ici_reclaimable++;
bc990f5c
CH
538}
539
11654513
DC
540/*
541 * We set the inode flag atomically with the radix tree tag.
542 * Once we get tag lookups on the radix tree, this inode flag
543 * can go away.
544 */
396beb85
DC
545void
546xfs_inode_set_reclaim_tag(
547 xfs_inode_t *ip)
548{
5017e97d
DC
549 struct xfs_mount *mp = ip->i_mount;
550 struct xfs_perag *pag;
396beb85 551
5017e97d 552 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 553 spin_lock(&pag->pag_ici_lock);
396beb85 554 spin_lock(&ip->i_flags_lock);
bc990f5c 555 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 556 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 557 spin_unlock(&ip->i_flags_lock);
1a427ab0 558 spin_unlock(&pag->pag_ici_lock);
5017e97d 559 xfs_perag_put(pag);
396beb85
DC
560}
561
081003ff
JW
562STATIC void
563__xfs_inode_clear_reclaim(
396beb85
DC
564 xfs_perag_t *pag,
565 xfs_inode_t *ip)
566{
9bf729c0 567 pag->pag_ici_reclaimable--;
16fd5367
DC
568 if (!pag->pag_ici_reclaimable) {
569 /* clear the reclaim tag from the perag radix tree */
570 spin_lock(&ip->i_mount->m_perag_lock);
571 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
572 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
573 XFS_ICI_RECLAIM_TAG);
574 spin_unlock(&ip->i_mount->m_perag_lock);
575 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
576 -1, _RET_IP_);
577 }
396beb85
DC
578}
579
081003ff
JW
580void
581__xfs_inode_clear_reclaim_tag(
582 xfs_mount_t *mp,
583 xfs_perag_t *pag,
584 xfs_inode_t *ip)
585{
586 radix_tree_tag_clear(&pag->pag_ici_root,
587 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
588 __xfs_inode_clear_reclaim(pag, ip);
589}
590
e3a20c0b
DC
591/*
592 * Grab the inode for reclaim exclusively.
593 * Return 0 if we grabbed it, non-zero otherwise.
594 */
595STATIC int
596xfs_reclaim_inode_grab(
597 struct xfs_inode *ip,
598 int flags)
599{
1a3e8f3d
DC
600 ASSERT(rcu_read_lock_held());
601
602 /* quick check for stale RCU freed inode */
603 if (!ip->i_ino)
604 return 1;
e3a20c0b
DC
605
606 /*
474fce06
CH
607 * If we are asked for non-blocking operation, do unlocked checks to
608 * see if the inode already is being flushed or in reclaim to avoid
609 * lock traffic.
e3a20c0b
DC
610 */
611 if ((flags & SYNC_TRYLOCK) &&
474fce06 612 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 613 return 1;
e3a20c0b
DC
614
615 /*
616 * The radix tree lock here protects a thread in xfs_iget from racing
617 * with us starting reclaim on the inode. Once we have the
618 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
619 *
620 * Due to RCU lookup, we may find inodes that have been freed and only
621 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
622 * aren't candidates for reclaim at all, so we must check the
623 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
624 */
625 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
626 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
627 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
628 /* not a reclaim candidate. */
e3a20c0b
DC
629 spin_unlock(&ip->i_flags_lock);
630 return 1;
631 }
632 __xfs_iflags_set(ip, XFS_IRECLAIM);
633 spin_unlock(&ip->i_flags_lock);
634 return 0;
635}
636
777df5af 637/*
8a48088f
CH
638 * Inodes in different states need to be treated differently. The following
639 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
640 *
641 * inode state iflush ret required action
642 * --------------- ---------- ---------------
643 * bad - reclaim
644 * shutdown EIO unpin and reclaim
645 * clean, unpinned 0 reclaim
646 * stale, unpinned 0 reclaim
c854363e
DC
647 * clean, pinned(*) 0 requeue
648 * stale, pinned EAGAIN requeue
8a48088f
CH
649 * dirty, async - requeue
650 * dirty, sync 0 reclaim
777df5af
DC
651 *
652 * (*) dgc: I don't think the clean, pinned state is possible but it gets
653 * handled anyway given the order of checks implemented.
654 *
c854363e
DC
655 * Also, because we get the flush lock first, we know that any inode that has
656 * been flushed delwri has had the flush completed by the time we check that
8a48088f 657 * the inode is clean.
c854363e 658 *
8a48088f
CH
659 * Note that because the inode is flushed delayed write by AIL pushing, the
660 * flush lock may already be held here and waiting on it can result in very
661 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
662 * the caller should push the AIL first before trying to reclaim inodes to
663 * minimise the amount of time spent waiting. For background relaim, we only
664 * bother to reclaim clean inodes anyway.
c854363e 665 *
777df5af
DC
666 * Hence the order of actions after gaining the locks should be:
667 * bad => reclaim
668 * shutdown => unpin and reclaim
8a48088f 669 * pinned, async => requeue
c854363e 670 * pinned, sync => unpin
777df5af
DC
671 * stale => reclaim
672 * clean => reclaim
8a48088f 673 * dirty, async => requeue
c854363e 674 * dirty, sync => flush, wait and reclaim
777df5af 675 */
75f3cb13 676STATIC int
c8e20be0 677xfs_reclaim_inode(
75f3cb13
DC
678 struct xfs_inode *ip,
679 struct xfs_perag *pag,
c8e20be0 680 int sync_mode)
fce08f2f 681{
4c46819a
CH
682 struct xfs_buf *bp = NULL;
683 int error;
777df5af 684
1bfd8d04
DC
685restart:
686 error = 0;
c8e20be0 687 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
688 if (!xfs_iflock_nowait(ip)) {
689 if (!(sync_mode & SYNC_WAIT))
690 goto out;
691 xfs_iflock(ip);
692 }
7a3be02b 693
777df5af
DC
694 if (is_bad_inode(VFS_I(ip)))
695 goto reclaim;
696 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
697 xfs_iunpin_wait(ip);
04913fdd 698 xfs_iflush_abort(ip, false);
777df5af
DC
699 goto reclaim;
700 }
c854363e 701 if (xfs_ipincount(ip)) {
8a48088f
CH
702 if (!(sync_mode & SYNC_WAIT))
703 goto out_ifunlock;
777df5af 704 xfs_iunpin_wait(ip);
c854363e 705 }
777df5af
DC
706 if (xfs_iflags_test(ip, XFS_ISTALE))
707 goto reclaim;
708 if (xfs_inode_clean(ip))
709 goto reclaim;
710
8a48088f
CH
711 /*
712 * Never flush out dirty data during non-blocking reclaim, as it would
713 * just contend with AIL pushing trying to do the same job.
714 */
715 if (!(sync_mode & SYNC_WAIT))
716 goto out_ifunlock;
717
1bfd8d04
DC
718 /*
719 * Now we have an inode that needs flushing.
720 *
4c46819a 721 * Note that xfs_iflush will never block on the inode buffer lock, as
1bfd8d04 722 * xfs_ifree_cluster() can lock the inode buffer before it locks the
4c46819a 723 * ip->i_lock, and we are doing the exact opposite here. As a result,
475ee413
CH
724 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
725 * result in an ABBA deadlock with xfs_ifree_cluster().
1bfd8d04
DC
726 *
727 * As xfs_ifree_cluser() must gather all inodes that are active in the
728 * cache to mark them stale, if we hit this case we don't actually want
729 * to do IO here - we want the inode marked stale so we can simply
4c46819a
CH
730 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
731 * inode, back off and try again. Hopefully the next pass through will
732 * see the stale flag set on the inode.
1bfd8d04 733 */
4c46819a 734 error = xfs_iflush(ip, &bp);
8a48088f
CH
735 if (error == EAGAIN) {
736 xfs_iunlock(ip, XFS_ILOCK_EXCL);
737 /* backoff longer than in xfs_ifree_cluster */
738 delay(2);
739 goto restart;
c854363e 740 }
c854363e 741
4c46819a
CH
742 if (!error) {
743 error = xfs_bwrite(bp);
744 xfs_buf_relse(bp);
745 }
746
747 xfs_iflock(ip);
777df5af
DC
748reclaim:
749 xfs_ifunlock(ip);
c8e20be0 750 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
751
752 XFS_STATS_INC(xs_ig_reclaims);
753 /*
754 * Remove the inode from the per-AG radix tree.
755 *
756 * Because radix_tree_delete won't complain even if the item was never
757 * added to the tree assert that it's been there before to catch
758 * problems with the inode life time early on.
759 */
1a427ab0 760 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
761 if (!radix_tree_delete(&pag->pag_ici_root,
762 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
763 ASSERT(0);
081003ff 764 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 765 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
766
767 /*
768 * Here we do an (almost) spurious inode lock in order to coordinate
769 * with inode cache radix tree lookups. This is because the lookup
770 * can reference the inodes in the cache without taking references.
771 *
772 * We make that OK here by ensuring that we wait until the inode is
ad637a10 773 * unlocked after the lookup before we go ahead and free it.
2f11feab 774 */
ad637a10 775 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 776 xfs_qm_dqdetach(ip);
ad637a10 777 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
778
779 xfs_inode_free(ip);
ad637a10 780 return error;
8a48088f
CH
781
782out_ifunlock:
783 xfs_ifunlock(ip);
784out:
785 xfs_iflags_clear(ip, XFS_IRECLAIM);
786 xfs_iunlock(ip, XFS_ILOCK_EXCL);
787 /*
788 * We could return EAGAIN here to make reclaim rescan the inode tree in
789 * a short while. However, this just burns CPU time scanning the tree
790 * waiting for IO to complete and xfssyncd never goes back to the idle
791 * state. Instead, return 0 to let the next scheduled background reclaim
792 * attempt to reclaim the inode again.
793 */
794 return 0;
7a3be02b
DC
795}
796
65d0f205
DC
797/*
798 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
799 * corrupted, we still want to try to reclaim all the inodes. If we don't,
800 * then a shut down during filesystem unmount reclaim walk leak all the
801 * unreclaimed inodes.
802 */
803int
804xfs_reclaim_inodes_ag(
805 struct xfs_mount *mp,
806 int flags,
807 int *nr_to_scan)
808{
809 struct xfs_perag *pag;
810 int error = 0;
811 int last_error = 0;
812 xfs_agnumber_t ag;
69b491c2
DC
813 int trylock = flags & SYNC_TRYLOCK;
814 int skipped;
65d0f205 815
69b491c2 816restart:
65d0f205 817 ag = 0;
69b491c2 818 skipped = 0;
65d0f205
DC
819 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
820 unsigned long first_index = 0;
821 int done = 0;
e3a20c0b 822 int nr_found = 0;
65d0f205
DC
823
824 ag = pag->pag_agno + 1;
825
69b491c2
DC
826 if (trylock) {
827 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
828 skipped++;
f83282a8 829 xfs_perag_put(pag);
69b491c2
DC
830 continue;
831 }
832 first_index = pag->pag_ici_reclaim_cursor;
833 } else
834 mutex_lock(&pag->pag_ici_reclaim_lock);
835
65d0f205 836 do {
e3a20c0b
DC
837 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
838 int i;
65d0f205 839
1a3e8f3d 840 rcu_read_lock();
e3a20c0b
DC
841 nr_found = radix_tree_gang_lookup_tag(
842 &pag->pag_ici_root,
843 (void **)batch, first_index,
844 XFS_LOOKUP_BATCH,
65d0f205
DC
845 XFS_ICI_RECLAIM_TAG);
846 if (!nr_found) {
b2232219 847 done = 1;
1a3e8f3d 848 rcu_read_unlock();
65d0f205
DC
849 break;
850 }
851
852 /*
e3a20c0b
DC
853 * Grab the inodes before we drop the lock. if we found
854 * nothing, nr == 0 and the loop will be skipped.
65d0f205 855 */
e3a20c0b
DC
856 for (i = 0; i < nr_found; i++) {
857 struct xfs_inode *ip = batch[i];
858
859 if (done || xfs_reclaim_inode_grab(ip, flags))
860 batch[i] = NULL;
861
862 /*
863 * Update the index for the next lookup. Catch
864 * overflows into the next AG range which can
865 * occur if we have inodes in the last block of
866 * the AG and we are currently pointing to the
867 * last inode.
1a3e8f3d
DC
868 *
869 * Because we may see inodes that are from the
870 * wrong AG due to RCU freeing and
871 * reallocation, only update the index if it
872 * lies in this AG. It was a race that lead us
873 * to see this inode, so another lookup from
874 * the same index will not find it again.
e3a20c0b 875 */
1a3e8f3d
DC
876 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
877 pag->pag_agno)
878 continue;
e3a20c0b
DC
879 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
880 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
881 done = 1;
882 }
65d0f205 883
e3a20c0b 884 /* unlock now we've grabbed the inodes. */
1a3e8f3d 885 rcu_read_unlock();
e3a20c0b
DC
886
887 for (i = 0; i < nr_found; i++) {
888 if (!batch[i])
889 continue;
890 error = xfs_reclaim_inode(batch[i], pag, flags);
891 if (error && last_error != EFSCORRUPTED)
892 last_error = error;
893 }
894
895 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 896
8daaa831
DC
897 cond_resched();
898
e3a20c0b 899 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 900
69b491c2
DC
901 if (trylock && !done)
902 pag->pag_ici_reclaim_cursor = first_index;
903 else
904 pag->pag_ici_reclaim_cursor = 0;
905 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
906 xfs_perag_put(pag);
907 }
69b491c2
DC
908
909 /*
910 * if we skipped any AG, and we still have scan count remaining, do
911 * another pass this time using blocking reclaim semantics (i.e
912 * waiting on the reclaim locks and ignoring the reclaim cursors). This
913 * ensure that when we get more reclaimers than AGs we block rather
914 * than spin trying to execute reclaim.
915 */
8daaa831 916 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
917 trylock = 0;
918 goto restart;
919 }
65d0f205
DC
920 return XFS_ERROR(last_error);
921}
922
7a3be02b
DC
923int
924xfs_reclaim_inodes(
925 xfs_mount_t *mp,
7a3be02b
DC
926 int mode)
927{
65d0f205
DC
928 int nr_to_scan = INT_MAX;
929
930 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
931}
932
933/*
8daaa831 934 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
935 *
936 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 937 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
938 * reclaim of inodes. That means if we come across dirty inodes, we wait for
939 * them to be cleaned, which we hope will not be very long due to the
940 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 941 */
8daaa831
DC
942void
943xfs_reclaim_inodes_nr(
944 struct xfs_mount *mp,
945 int nr_to_scan)
9bf729c0 946{
8daaa831
DC
947 /* kick background reclaimer and push the AIL */
948 xfs_syncd_queue_reclaim(mp);
949 xfs_ail_push_all(mp->m_ail);
a7b339f1 950
8daaa831
DC
951 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
952}
9bf729c0 953
8daaa831
DC
954/*
955 * Return the number of reclaimable inodes in the filesystem for
956 * the shrinker to determine how much to reclaim.
957 */
958int
959xfs_reclaim_inodes_count(
960 struct xfs_mount *mp)
961{
962 struct xfs_perag *pag;
963 xfs_agnumber_t ag = 0;
964 int reclaimable = 0;
9bf729c0 965
65d0f205
DC
966 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
967 ag = pag->pag_agno + 1;
70e60ce7
DC
968 reclaimable += pag->pag_ici_reclaimable;
969 xfs_perag_put(pag);
9bf729c0 970 }
9bf729c0
DC
971 return reclaimable;
972}
973
This page took 0.401665 seconds and 5 git commands to generate.