xfs: remove variables that serve no purpose in xfs_alloc_ag_vextent_exact()
[deliverable/linux.git] / fs / xfs / xfs_trans.c
CommitLineData
1da177e4 1/*
7b718769 2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
e98c414f 3 * Copyright (C) 2010 Red Hat, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 *
7b718769
NS
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
1da177e4
LT
8 * published by the Free Software Foundation.
9 *
7b718769
NS
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
1da177e4 14 *
7b718769
NS
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 18 */
1da177e4 19#include "xfs.h"
a844f451 20#include "xfs_fs.h"
1da177e4 21#include "xfs_types.h"
a844f451 22#include "xfs_bit.h"
1da177e4 23#include "xfs_log.h"
a844f451 24#include "xfs_inum.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_sb.h"
27#include "xfs_ag.h"
1da177e4
LT
28#include "xfs_mount.h"
29#include "xfs_error.h"
a844f451 30#include "xfs_da_btree.h"
1da177e4 31#include "xfs_bmap_btree.h"
a844f451 32#include "xfs_alloc_btree.h"
1da177e4 33#include "xfs_ialloc_btree.h"
1da177e4
LT
34#include "xfs_dinode.h"
35#include "xfs_inode.h"
a844f451
NS
36#include "xfs_btree.h"
37#include "xfs_ialloc.h"
38#include "xfs_alloc.h"
1da177e4 39#include "xfs_bmap.h"
1da177e4 40#include "xfs_quota.h"
a844f451 41#include "xfs_trans_priv.h"
1da177e4 42#include "xfs_trans_space.h"
322ff6b8 43#include "xfs_inode_item.h"
ed3b4d6c 44#include "xfs_trace.h"
1da177e4 45
8f794055 46kmem_zone_t *xfs_trans_zone;
e98c414f 47kmem_zone_t *xfs_log_item_desc_zone;
1da177e4 48
025101dc 49
8f794055 50/*
025101dc
CH
51 * Various log reservation values.
52 *
53 * These are based on the size of the file system block because that is what
54 * most transactions manipulate. Each adds in an additional 128 bytes per
55 * item logged to try to account for the overhead of the transaction mechanism.
56 *
57 * Note: Most of the reservations underestimate the number of allocation
58 * groups into which they could free extents in the xfs_bmap_finish() call.
59 * This is because the number in the worst case is quite high and quite
60 * unusual. In order to fix this we need to change xfs_bmap_finish() to free
61 * extents in only a single AG at a time. This will require changes to the
62 * EFI code as well, however, so that the EFI for the extents not freed is
63 * logged again in each transaction. See SGI PV #261917.
64 *
65 * Reservation functions here avoid a huge stack in xfs_trans_init due to
66 * register overflow from temporaries in the calculations.
67 */
68
69
70/*
71 * In a write transaction we can allocate a maximum of 2
72 * extents. This gives:
73 * the inode getting the new extents: inode size
74 * the inode's bmap btree: max depth * block size
75 * the agfs of the ags from which the extents are allocated: 2 * sector
76 * the superblock free block counter: sector size
77 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
78 * And the bmap_finish transaction can free bmap blocks in a join:
79 * the agfs of the ags containing the blocks: 2 * sector size
80 * the agfls of the ags containing the blocks: 2 * sector size
81 * the super block free block counter: sector size
82 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
8f794055 83 */
8f794055 84STATIC uint
025101dc
CH
85xfs_calc_write_reservation(
86 struct xfs_mount *mp)
8f794055 87{
025101dc
CH
88 return XFS_DQUOT_LOGRES(mp) +
89 MAX((mp->m_sb.sb_inodesize +
90 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
91 2 * mp->m_sb.sb_sectsize +
92 mp->m_sb.sb_sectsize +
93 XFS_ALLOCFREE_LOG_RES(mp, 2) +
94 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
95 XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
96 (2 * mp->m_sb.sb_sectsize +
97 2 * mp->m_sb.sb_sectsize +
98 mp->m_sb.sb_sectsize +
99 XFS_ALLOCFREE_LOG_RES(mp, 2) +
100 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
8f794055
NS
101}
102
025101dc
CH
103/*
104 * In truncating a file we free up to two extents at once. We can modify:
105 * the inode being truncated: inode size
106 * the inode's bmap btree: (max depth + 1) * block size
107 * And the bmap_finish transaction can free the blocks and bmap blocks:
108 * the agf for each of the ags: 4 * sector size
109 * the agfl for each of the ags: 4 * sector size
110 * the super block to reflect the freed blocks: sector size
111 * worst case split in allocation btrees per extent assuming 4 extents:
112 * 4 exts * 2 trees * (2 * max depth - 1) * block size
113 * the inode btree: max depth * blocksize
114 * the allocation btrees: 2 trees * (max depth - 1) * block size
115 */
8f794055 116STATIC uint
025101dc
CH
117xfs_calc_itruncate_reservation(
118 struct xfs_mount *mp)
8f794055 119{
025101dc
CH
120 return XFS_DQUOT_LOGRES(mp) +
121 MAX((mp->m_sb.sb_inodesize +
122 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
123 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
124 (4 * mp->m_sb.sb_sectsize +
125 4 * mp->m_sb.sb_sectsize +
126 mp->m_sb.sb_sectsize +
127 XFS_ALLOCFREE_LOG_RES(mp, 4) +
128 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
129 128 * 5 +
130 XFS_ALLOCFREE_LOG_RES(mp, 1) +
131 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
132 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
8f794055
NS
133}
134
025101dc
CH
135/*
136 * In renaming a files we can modify:
137 * the four inodes involved: 4 * inode size
138 * the two directory btrees: 2 * (max depth + v2) * dir block size
139 * the two directory bmap btrees: 2 * max depth * block size
140 * And the bmap_finish transaction can free dir and bmap blocks (two sets
141 * of bmap blocks) giving:
142 * the agf for the ags in which the blocks live: 3 * sector size
143 * the agfl for the ags in which the blocks live: 3 * sector size
144 * the superblock for the free block count: sector size
145 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
146 */
8f794055 147STATIC uint
025101dc
CH
148xfs_calc_rename_reservation(
149 struct xfs_mount *mp)
8f794055 150{
025101dc
CH
151 return XFS_DQUOT_LOGRES(mp) +
152 MAX((4 * mp->m_sb.sb_inodesize +
153 2 * XFS_DIROP_LOG_RES(mp) +
154 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
155 (3 * mp->m_sb.sb_sectsize +
156 3 * mp->m_sb.sb_sectsize +
157 mp->m_sb.sb_sectsize +
158 XFS_ALLOCFREE_LOG_RES(mp, 3) +
159 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
8f794055
NS
160}
161
025101dc
CH
162/*
163 * For creating a link to an inode:
164 * the parent directory inode: inode size
165 * the linked inode: inode size
166 * the directory btree could split: (max depth + v2) * dir block size
167 * the directory bmap btree could join or split: (max depth + v2) * blocksize
168 * And the bmap_finish transaction can free some bmap blocks giving:
169 * the agf for the ag in which the blocks live: sector size
170 * the agfl for the ag in which the blocks live: sector size
171 * the superblock for the free block count: sector size
172 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
173 */
8f794055 174STATIC uint
025101dc
CH
175xfs_calc_link_reservation(
176 struct xfs_mount *mp)
8f794055 177{
025101dc
CH
178 return XFS_DQUOT_LOGRES(mp) +
179 MAX((mp->m_sb.sb_inodesize +
180 mp->m_sb.sb_inodesize +
181 XFS_DIROP_LOG_RES(mp) +
182 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
183 (mp->m_sb.sb_sectsize +
184 mp->m_sb.sb_sectsize +
185 mp->m_sb.sb_sectsize +
186 XFS_ALLOCFREE_LOG_RES(mp, 1) +
187 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
8f794055
NS
188}
189
025101dc
CH
190/*
191 * For removing a directory entry we can modify:
192 * the parent directory inode: inode size
193 * the removed inode: inode size
194 * the directory btree could join: (max depth + v2) * dir block size
195 * the directory bmap btree could join or split: (max depth + v2) * blocksize
196 * And the bmap_finish transaction can free the dir and bmap blocks giving:
197 * the agf for the ag in which the blocks live: 2 * sector size
198 * the agfl for the ag in which the blocks live: 2 * sector size
199 * the superblock for the free block count: sector size
200 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
201 */
8f794055 202STATIC uint
025101dc
CH
203xfs_calc_remove_reservation(
204 struct xfs_mount *mp)
8f794055 205{
025101dc
CH
206 return XFS_DQUOT_LOGRES(mp) +
207 MAX((mp->m_sb.sb_inodesize +
208 mp->m_sb.sb_inodesize +
209 XFS_DIROP_LOG_RES(mp) +
210 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
211 (2 * mp->m_sb.sb_sectsize +
212 2 * mp->m_sb.sb_sectsize +
213 mp->m_sb.sb_sectsize +
214 XFS_ALLOCFREE_LOG_RES(mp, 2) +
215 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
8f794055
NS
216}
217
025101dc
CH
218/*
219 * For symlink we can modify:
220 * the parent directory inode: inode size
221 * the new inode: inode size
222 * the inode btree entry: 1 block
223 * the directory btree: (max depth + v2) * dir block size
224 * the directory inode's bmap btree: (max depth + v2) * block size
225 * the blocks for the symlink: 1 kB
226 * Or in the first xact we allocate some inodes giving:
227 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
228 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
229 * the inode btree: max depth * blocksize
230 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
231 */
8f794055 232STATIC uint
025101dc
CH
233xfs_calc_symlink_reservation(
234 struct xfs_mount *mp)
8f794055 235{
025101dc
CH
236 return XFS_DQUOT_LOGRES(mp) +
237 MAX((mp->m_sb.sb_inodesize +
238 mp->m_sb.sb_inodesize +
239 XFS_FSB_TO_B(mp, 1) +
240 XFS_DIROP_LOG_RES(mp) +
241 1024 +
242 128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
243 (2 * mp->m_sb.sb_sectsize +
244 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
245 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
246 XFS_ALLOCFREE_LOG_RES(mp, 1) +
247 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
248 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
8f794055
NS
249}
250
025101dc
CH
251/*
252 * For create we can modify:
253 * the parent directory inode: inode size
254 * the new inode: inode size
255 * the inode btree entry: block size
256 * the superblock for the nlink flag: sector size
257 * the directory btree: (max depth + v2) * dir block size
258 * the directory inode's bmap btree: (max depth + v2) * block size
259 * Or in the first xact we allocate some inodes giving:
260 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
261 * the superblock for the nlink flag: sector size
262 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
263 * the inode btree: max depth * blocksize
264 * the allocation btrees: 2 trees * (max depth - 1) * block size
265 */
8f794055 266STATIC uint
025101dc
CH
267xfs_calc_create_reservation(
268 struct xfs_mount *mp)
8f794055 269{
025101dc
CH
270 return XFS_DQUOT_LOGRES(mp) +
271 MAX((mp->m_sb.sb_inodesize +
272 mp->m_sb.sb_inodesize +
273 mp->m_sb.sb_sectsize +
274 XFS_FSB_TO_B(mp, 1) +
275 XFS_DIROP_LOG_RES(mp) +
276 128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
277 (3 * mp->m_sb.sb_sectsize +
278 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
279 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
280 XFS_ALLOCFREE_LOG_RES(mp, 1) +
281 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
282 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
8f794055
NS
283}
284
025101dc
CH
285/*
286 * Making a new directory is the same as creating a new file.
287 */
8f794055 288STATIC uint
025101dc
CH
289xfs_calc_mkdir_reservation(
290 struct xfs_mount *mp)
8f794055 291{
025101dc 292 return xfs_calc_create_reservation(mp);
8f794055
NS
293}
294
025101dc
CH
295/*
296 * In freeing an inode we can modify:
297 * the inode being freed: inode size
298 * the super block free inode counter: sector size
299 * the agi hash list and counters: sector size
300 * the inode btree entry: block size
301 * the on disk inode before ours in the agi hash list: inode cluster size
302 * the inode btree: max depth * blocksize
303 * the allocation btrees: 2 trees * (max depth - 1) * block size
304 */
8f794055 305STATIC uint
025101dc
CH
306xfs_calc_ifree_reservation(
307 struct xfs_mount *mp)
8f794055 308{
025101dc
CH
309 return XFS_DQUOT_LOGRES(mp) +
310 mp->m_sb.sb_inodesize +
311 mp->m_sb.sb_sectsize +
312 mp->m_sb.sb_sectsize +
313 XFS_FSB_TO_B(mp, 1) +
314 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
315 XFS_INODE_CLUSTER_SIZE(mp)) +
316 128 * 5 +
317 XFS_ALLOCFREE_LOG_RES(mp, 1) +
318 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
319 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
8f794055
NS
320}
321
025101dc
CH
322/*
323 * When only changing the inode we log the inode and possibly the superblock
324 * We also add a bit of slop for the transaction stuff.
325 */
8f794055 326STATIC uint
025101dc
CH
327xfs_calc_ichange_reservation(
328 struct xfs_mount *mp)
8f794055 329{
025101dc
CH
330 return XFS_DQUOT_LOGRES(mp) +
331 mp->m_sb.sb_inodesize +
332 mp->m_sb.sb_sectsize +
333 512;
334
8f794055
NS
335}
336
025101dc
CH
337/*
338 * Growing the data section of the filesystem.
339 * superblock
340 * agi and agf
341 * allocation btrees
342 */
8f794055 343STATIC uint
025101dc
CH
344xfs_calc_growdata_reservation(
345 struct xfs_mount *mp)
8f794055 346{
025101dc
CH
347 return mp->m_sb.sb_sectsize * 3 +
348 XFS_ALLOCFREE_LOG_RES(mp, 1) +
349 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
8f794055
NS
350}
351
025101dc
CH
352/*
353 * Growing the rt section of the filesystem.
354 * In the first set of transactions (ALLOC) we allocate space to the
355 * bitmap or summary files.
356 * superblock: sector size
357 * agf of the ag from which the extent is allocated: sector size
358 * bmap btree for bitmap/summary inode: max depth * blocksize
359 * bitmap/summary inode: inode size
360 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
361 */
8f794055 362STATIC uint
025101dc
CH
363xfs_calc_growrtalloc_reservation(
364 struct xfs_mount *mp)
8f794055 365{
025101dc
CH
366 return 2 * mp->m_sb.sb_sectsize +
367 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
368 mp->m_sb.sb_inodesize +
369 XFS_ALLOCFREE_LOG_RES(mp, 1) +
370 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
371 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
8f794055
NS
372}
373
025101dc
CH
374/*
375 * Growing the rt section of the filesystem.
376 * In the second set of transactions (ZERO) we zero the new metadata blocks.
377 * one bitmap/summary block: blocksize
378 */
8f794055 379STATIC uint
025101dc
CH
380xfs_calc_growrtzero_reservation(
381 struct xfs_mount *mp)
8f794055 382{
025101dc 383 return mp->m_sb.sb_blocksize + 128;
8f794055
NS
384}
385
025101dc
CH
386/*
387 * Growing the rt section of the filesystem.
388 * In the third set of transactions (FREE) we update metadata without
389 * allocating any new blocks.
390 * superblock: sector size
391 * bitmap inode: inode size
392 * summary inode: inode size
393 * one bitmap block: blocksize
394 * summary blocks: new summary size
395 */
8f794055 396STATIC uint
025101dc
CH
397xfs_calc_growrtfree_reservation(
398 struct xfs_mount *mp)
8f794055 399{
025101dc
CH
400 return mp->m_sb.sb_sectsize +
401 2 * mp->m_sb.sb_inodesize +
402 mp->m_sb.sb_blocksize +
403 mp->m_rsumsize +
404 128 * 5;
8f794055
NS
405}
406
025101dc
CH
407/*
408 * Logging the inode modification timestamp on a synchronous write.
409 * inode
410 */
8f794055 411STATIC uint
025101dc
CH
412xfs_calc_swrite_reservation(
413 struct xfs_mount *mp)
8f794055 414{
025101dc 415 return mp->m_sb.sb_inodesize + 128;
8f794055
NS
416}
417
025101dc
CH
418/*
419 * Logging the inode mode bits when writing a setuid/setgid file
420 * inode
421 */
8f794055
NS
422STATIC uint
423xfs_calc_writeid_reservation(xfs_mount_t *mp)
424{
025101dc 425 return mp->m_sb.sb_inodesize + 128;
8f794055
NS
426}
427
025101dc
CH
428/*
429 * Converting the inode from non-attributed to attributed.
430 * the inode being converted: inode size
431 * agf block and superblock (for block allocation)
432 * the new block (directory sized)
433 * bmap blocks for the new directory block
434 * allocation btrees
435 */
8f794055 436STATIC uint
025101dc
CH
437xfs_calc_addafork_reservation(
438 struct xfs_mount *mp)
8f794055 439{
025101dc
CH
440 return XFS_DQUOT_LOGRES(mp) +
441 mp->m_sb.sb_inodesize +
442 mp->m_sb.sb_sectsize * 2 +
443 mp->m_dirblksize +
444 XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
445 XFS_ALLOCFREE_LOG_RES(mp, 1) +
446 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
447 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
8f794055
NS
448}
449
025101dc
CH
450/*
451 * Removing the attribute fork of a file
452 * the inode being truncated: inode size
453 * the inode's bmap btree: max depth * block size
454 * And the bmap_finish transaction can free the blocks and bmap blocks:
455 * the agf for each of the ags: 4 * sector size
456 * the agfl for each of the ags: 4 * sector size
457 * the super block to reflect the freed blocks: sector size
458 * worst case split in allocation btrees per extent assuming 4 extents:
459 * 4 exts * 2 trees * (2 * max depth - 1) * block size
460 */
8f794055 461STATIC uint
025101dc
CH
462xfs_calc_attrinval_reservation(
463 struct xfs_mount *mp)
8f794055 464{
025101dc
CH
465 return MAX((mp->m_sb.sb_inodesize +
466 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
467 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
468 (4 * mp->m_sb.sb_sectsize +
469 4 * mp->m_sb.sb_sectsize +
470 mp->m_sb.sb_sectsize +
471 XFS_ALLOCFREE_LOG_RES(mp, 4) +
472 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
8f794055
NS
473}
474
025101dc
CH
475/*
476 * Setting an attribute.
477 * the inode getting the attribute
478 * the superblock for allocations
479 * the agfs extents are allocated from
480 * the attribute btree * max depth
481 * the inode allocation btree
482 * Since attribute transaction space is dependent on the size of the attribute,
483 * the calculation is done partially at mount time and partially at runtime.
484 */
8f794055 485STATIC uint
025101dc
CH
486xfs_calc_attrset_reservation(
487 struct xfs_mount *mp)
8f794055 488{
025101dc
CH
489 return XFS_DQUOT_LOGRES(mp) +
490 mp->m_sb.sb_inodesize +
491 mp->m_sb.sb_sectsize +
492 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
493 128 * (2 + XFS_DA_NODE_MAXDEPTH);
8f794055
NS
494}
495
025101dc
CH
496/*
497 * Removing an attribute.
498 * the inode: inode size
499 * the attribute btree could join: max depth * block size
500 * the inode bmap btree could join or split: max depth * block size
501 * And the bmap_finish transaction can free the attr blocks freed giving:
502 * the agf for the ag in which the blocks live: 2 * sector size
503 * the agfl for the ag in which the blocks live: 2 * sector size
504 * the superblock for the free block count: sector size
505 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
506 */
8f794055 507STATIC uint
025101dc
CH
508xfs_calc_attrrm_reservation(
509 struct xfs_mount *mp)
8f794055 510{
025101dc
CH
511 return XFS_DQUOT_LOGRES(mp) +
512 MAX((mp->m_sb.sb_inodesize +
513 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
514 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
515 128 * (1 + XFS_DA_NODE_MAXDEPTH +
516 XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
517 (2 * mp->m_sb.sb_sectsize +
518 2 * mp->m_sb.sb_sectsize +
519 mp->m_sb.sb_sectsize +
520 XFS_ALLOCFREE_LOG_RES(mp, 2) +
521 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
8f794055
NS
522}
523
025101dc
CH
524/*
525 * Clearing a bad agino number in an agi hash bucket.
526 */
8f794055 527STATIC uint
025101dc
CH
528xfs_calc_clear_agi_bucket_reservation(
529 struct xfs_mount *mp)
8f794055 530{
025101dc 531 return mp->m_sb.sb_sectsize + 128;
8f794055
NS
532}
533
1da177e4
LT
534/*
535 * Initialize the precomputed transaction reservation values
536 * in the mount structure.
537 */
538void
539xfs_trans_init(
025101dc 540 struct xfs_mount *mp)
1da177e4 541{
025101dc 542 struct xfs_trans_reservations *resp = &mp->m_reservations;
1da177e4 543
8f794055
NS
544 resp->tr_write = xfs_calc_write_reservation(mp);
545 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
546 resp->tr_rename = xfs_calc_rename_reservation(mp);
547 resp->tr_link = xfs_calc_link_reservation(mp);
548 resp->tr_remove = xfs_calc_remove_reservation(mp);
549 resp->tr_symlink = xfs_calc_symlink_reservation(mp);
550 resp->tr_create = xfs_calc_create_reservation(mp);
551 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
552 resp->tr_ifree = xfs_calc_ifree_reservation(mp);
553 resp->tr_ichange = xfs_calc_ichange_reservation(mp);
554 resp->tr_growdata = xfs_calc_growdata_reservation(mp);
555 resp->tr_swrite = xfs_calc_swrite_reservation(mp);
556 resp->tr_writeid = xfs_calc_writeid_reservation(mp);
557 resp->tr_addafork = xfs_calc_addafork_reservation(mp);
558 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
559 resp->tr_attrset = xfs_calc_attrset_reservation(mp);
560 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
561 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
562 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
563 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
564 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
1da177e4
LT
565}
566
567/*
568 * This routine is called to allocate a transaction structure.
7a249cf8 569 *
1da177e4
LT
570 * The type parameter indicates the type of the transaction. These
571 * are enumerated in xfs_trans.h.
1da177e4 572 */
7a249cf8 573struct xfs_trans *
1da177e4 574_xfs_trans_alloc(
7a249cf8
CH
575 struct xfs_mount *mp,
576 uint type,
577 uint memflags,
578 bool wait_for_freeze)
1da177e4 579{
7a249cf8 580 struct xfs_trans *tp;
1da177e4 581
34327e13 582 atomic_inc(&mp->m_active_trans);
1da177e4 583
7a249cf8
CH
584 if (wait_for_freeze)
585 xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
586
80641dc6 587 tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
1da177e4
LT
588 tp->t_magic = XFS_TRANS_MAGIC;
589 tp->t_type = type;
590 tp->t_mountp = mp;
e98c414f 591 INIT_LIST_HEAD(&tp->t_items);
ed3b4d6c 592 INIT_LIST_HEAD(&tp->t_busy);
34327e13 593 return tp;
1da177e4
LT
594}
595
b1c1b5b6
DC
596/*
597 * Free the transaction structure. If there is more clean up
598 * to do when the structure is freed, add it here.
599 */
600STATIC void
601xfs_trans_free(
ed3b4d6c 602 struct xfs_trans *tp)
b1c1b5b6 603{
8a072a4d 604 xfs_alloc_busy_sort(&tp->t_busy);
e84661aa 605 xfs_alloc_busy_clear(tp->t_mountp, &tp->t_busy, false);
ed3b4d6c 606
b1c1b5b6
DC
607 atomic_dec(&tp->t_mountp->m_active_trans);
608 xfs_trans_free_dqinfo(tp);
609 kmem_zone_free(xfs_trans_zone, tp);
610}
611
1da177e4
LT
612/*
613 * This is called to create a new transaction which will share the
614 * permanent log reservation of the given transaction. The remaining
615 * unused block and rt extent reservations are also inherited. This
616 * implies that the original transaction is no longer allowed to allocate
617 * blocks. Locks and log items, however, are no inherited. They must
618 * be added to the new transaction explicitly.
619 */
620xfs_trans_t *
621xfs_trans_dup(
622 xfs_trans_t *tp)
623{
624 xfs_trans_t *ntp;
625
626 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
627
628 /*
629 * Initialize the new transaction structure.
630 */
631 ntp->t_magic = XFS_TRANS_MAGIC;
632 ntp->t_type = tp->t_type;
633 ntp->t_mountp = tp->t_mountp;
e98c414f 634 INIT_LIST_HEAD(&ntp->t_items);
ed3b4d6c 635 INIT_LIST_HEAD(&ntp->t_busy);
1da177e4
LT
636
637 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 638 ASSERT(tp->t_ticket != NULL);
cfcbbbd0 639
1da177e4 640 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
cc09c0dc 641 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
1da177e4
LT
642 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
643 tp->t_blk_res = tp->t_blk_res_used;
644 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
645 tp->t_rtx_res = tp->t_rtx_res_used;
59c1b082 646 ntp->t_pflags = tp->t_pflags;
1da177e4 647
7d095257 648 xfs_trans_dup_dqinfo(tp, ntp);
1da177e4
LT
649
650 atomic_inc(&tp->t_mountp->m_active_trans);
651 return ntp;
652}
653
654/*
655 * This is called to reserve free disk blocks and log space for the
656 * given transaction. This must be done before allocating any resources
657 * within the transaction.
658 *
659 * This will return ENOSPC if there are not enough blocks available.
660 * It will sleep waiting for available log space.
661 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
662 * is used by long running transactions. If any one of the reservations
663 * fails then they will all be backed out.
664 *
665 * This does not do quota reservations. That typically is done by the
666 * caller afterwards.
667 */
668int
669xfs_trans_reserve(
670 xfs_trans_t *tp,
671 uint blocks,
672 uint logspace,
673 uint rtextents,
674 uint flags,
675 uint logcount)
676{
677 int log_flags;
59c1b082
NS
678 int error = 0;
679 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1da177e4
LT
680
681 /* Mark this thread as being in a transaction */
59c1b082 682 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
1da177e4
LT
683
684 /*
685 * Attempt to reserve the needed disk blocks by decrementing
686 * the number needed from the number available. This will
687 * fail if the count would go below zero.
688 */
689 if (blocks > 0) {
96540c78 690 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
20f4ebf2 691 -((int64_t)blocks), rsvd);
1da177e4 692 if (error != 0) {
59c1b082 693 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1da177e4
LT
694 return (XFS_ERROR(ENOSPC));
695 }
696 tp->t_blk_res += blocks;
697 }
698
699 /*
700 * Reserve the log space needed for this transaction.
701 */
702 if (logspace > 0) {
703 ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace));
704 ASSERT((tp->t_log_count == 0) ||
705 (tp->t_log_count == logcount));
706 if (flags & XFS_TRANS_PERM_LOG_RES) {
707 log_flags = XFS_LOG_PERM_RESERV;
708 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
709 } else {
710 ASSERT(tp->t_ticket == NULL);
711 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
712 log_flags = 0;
713 }
714
715 error = xfs_log_reserve(tp->t_mountp, logspace, logcount,
716 &tp->t_ticket,
7e9c6396 717 XFS_TRANSACTION, log_flags, tp->t_type);
1da177e4
LT
718 if (error) {
719 goto undo_blocks;
720 }
721 tp->t_log_res = logspace;
722 tp->t_log_count = logcount;
723 }
724
725 /*
726 * Attempt to reserve the needed realtime extents by decrementing
727 * the number needed from the number available. This will
728 * fail if the count would go below zero.
729 */
730 if (rtextents > 0) {
731 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
20f4ebf2 732 -((int64_t)rtextents), rsvd);
1da177e4
LT
733 if (error) {
734 error = XFS_ERROR(ENOSPC);
735 goto undo_log;
736 }
737 tp->t_rtx_res += rtextents;
738 }
739
740 return 0;
741
742 /*
743 * Error cases jump to one of these labels to undo any
744 * reservations which have already been performed.
745 */
746undo_log:
747 if (logspace > 0) {
748 if (flags & XFS_TRANS_PERM_LOG_RES) {
749 log_flags = XFS_LOG_REL_PERM_RESERV;
750 } else {
751 log_flags = 0;
752 }
753 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
754 tp->t_ticket = NULL;
755 tp->t_log_res = 0;
756 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
757 }
758
759undo_blocks:
760 if (blocks > 0) {
96540c78 761 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
20f4ebf2 762 (int64_t)blocks, rsvd);
1da177e4
LT
763 tp->t_blk_res = 0;
764 }
765
59c1b082 766 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1da177e4 767
59c1b082 768 return error;
1da177e4
LT
769}
770
1da177e4
LT
771/*
772 * Record the indicated change to the given field for application
773 * to the file system's superblock when the transaction commits.
774 * For now, just store the change in the transaction structure.
775 *
776 * Mark the transaction structure to indicate that the superblock
777 * needs to be updated before committing.
92821e2b
DC
778 *
779 * Because we may not be keeping track of allocated/free inodes and
780 * used filesystem blocks in the superblock, we do not mark the
781 * superblock dirty in this transaction if we modify these fields.
782 * We still need to update the transaction deltas so that they get
783 * applied to the incore superblock, but we don't want them to
784 * cause the superblock to get locked and logged if these are the
785 * only fields in the superblock that the transaction modifies.
1da177e4
LT
786 */
787void
788xfs_trans_mod_sb(
789 xfs_trans_t *tp,
790 uint field,
20f4ebf2 791 int64_t delta)
1da177e4 792{
92821e2b
DC
793 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
794 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
795
796 switch (field) {
797 case XFS_TRANS_SB_ICOUNT:
798 tp->t_icount_delta += delta;
92821e2b
DC
799 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
800 flags &= ~XFS_TRANS_SB_DIRTY;
1da177e4
LT
801 break;
802 case XFS_TRANS_SB_IFREE:
803 tp->t_ifree_delta += delta;
92821e2b
DC
804 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
805 flags &= ~XFS_TRANS_SB_DIRTY;
1da177e4
LT
806 break;
807 case XFS_TRANS_SB_FDBLOCKS:
808 /*
809 * Track the number of blocks allocated in the
810 * transaction. Make sure it does not exceed the
811 * number reserved.
812 */
813 if (delta < 0) {
814 tp->t_blk_res_used += (uint)-delta;
815 ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
816 }
817 tp->t_fdblocks_delta += delta;
92821e2b
DC
818 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
819 flags &= ~XFS_TRANS_SB_DIRTY;
1da177e4
LT
820 break;
821 case XFS_TRANS_SB_RES_FDBLOCKS:
822 /*
823 * The allocation has already been applied to the
824 * in-core superblock's counter. This should only
825 * be applied to the on-disk superblock.
826 */
827 ASSERT(delta < 0);
828 tp->t_res_fdblocks_delta += delta;
92821e2b
DC
829 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
830 flags &= ~XFS_TRANS_SB_DIRTY;
1da177e4
LT
831 break;
832 case XFS_TRANS_SB_FREXTENTS:
833 /*
834 * Track the number of blocks allocated in the
835 * transaction. Make sure it does not exceed the
836 * number reserved.
837 */
838 if (delta < 0) {
839 tp->t_rtx_res_used += (uint)-delta;
840 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
841 }
842 tp->t_frextents_delta += delta;
843 break;
844 case XFS_TRANS_SB_RES_FREXTENTS:
845 /*
846 * The allocation has already been applied to the
c41564b5 847 * in-core superblock's counter. This should only
1da177e4
LT
848 * be applied to the on-disk superblock.
849 */
850 ASSERT(delta < 0);
851 tp->t_res_frextents_delta += delta;
852 break;
853 case XFS_TRANS_SB_DBLOCKS:
854 ASSERT(delta > 0);
855 tp->t_dblocks_delta += delta;
856 break;
857 case XFS_TRANS_SB_AGCOUNT:
858 ASSERT(delta > 0);
859 tp->t_agcount_delta += delta;
860 break;
861 case XFS_TRANS_SB_IMAXPCT:
862 tp->t_imaxpct_delta += delta;
863 break;
864 case XFS_TRANS_SB_REXTSIZE:
865 tp->t_rextsize_delta += delta;
866 break;
867 case XFS_TRANS_SB_RBMBLOCKS:
868 tp->t_rbmblocks_delta += delta;
869 break;
870 case XFS_TRANS_SB_RBLOCKS:
871 tp->t_rblocks_delta += delta;
872 break;
873 case XFS_TRANS_SB_REXTENTS:
874 tp->t_rextents_delta += delta;
875 break;
876 case XFS_TRANS_SB_REXTSLOG:
877 tp->t_rextslog_delta += delta;
878 break;
879 default:
880 ASSERT(0);
881 return;
882 }
883
210c6f1c 884 tp->t_flags |= flags;
1da177e4
LT
885}
886
887/*
888 * xfs_trans_apply_sb_deltas() is called from the commit code
889 * to bring the superblock buffer into the current transaction
890 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
891 *
892 * For now we just look at each field allowed to change and change
893 * it if necessary.
894 */
895STATIC void
896xfs_trans_apply_sb_deltas(
897 xfs_trans_t *tp)
898{
2bdf7cd0 899 xfs_dsb_t *sbp;
1da177e4
LT
900 xfs_buf_t *bp;
901 int whole = 0;
902
903 bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
904 sbp = XFS_BUF_TO_SBP(bp);
905
906 /*
907 * Check that superblock mods match the mods made to AGF counters.
908 */
909 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
910 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
911 tp->t_ag_btree_delta));
912
92821e2b
DC
913 /*
914 * Only update the superblock counters if we are logging them
915 */
916 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
2bdf7cd0 917 if (tp->t_icount_delta)
413d57c9 918 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
2bdf7cd0 919 if (tp->t_ifree_delta)
413d57c9 920 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
2bdf7cd0 921 if (tp->t_fdblocks_delta)
413d57c9 922 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
2bdf7cd0 923 if (tp->t_res_fdblocks_delta)
413d57c9 924 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
1da177e4
LT
925 }
926
2bdf7cd0 927 if (tp->t_frextents_delta)
413d57c9 928 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
2bdf7cd0 929 if (tp->t_res_frextents_delta)
413d57c9 930 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
2bdf7cd0
CH
931
932 if (tp->t_dblocks_delta) {
413d57c9 933 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
1da177e4
LT
934 whole = 1;
935 }
2bdf7cd0 936 if (tp->t_agcount_delta) {
413d57c9 937 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
1da177e4
LT
938 whole = 1;
939 }
2bdf7cd0
CH
940 if (tp->t_imaxpct_delta) {
941 sbp->sb_imax_pct += tp->t_imaxpct_delta;
1da177e4
LT
942 whole = 1;
943 }
2bdf7cd0 944 if (tp->t_rextsize_delta) {
413d57c9 945 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
1da177e4
LT
946 whole = 1;
947 }
2bdf7cd0 948 if (tp->t_rbmblocks_delta) {
413d57c9 949 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
1da177e4
LT
950 whole = 1;
951 }
2bdf7cd0 952 if (tp->t_rblocks_delta) {
413d57c9 953 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
1da177e4
LT
954 whole = 1;
955 }
2bdf7cd0 956 if (tp->t_rextents_delta) {
413d57c9 957 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
1da177e4
LT
958 whole = 1;
959 }
2bdf7cd0
CH
960 if (tp->t_rextslog_delta) {
961 sbp->sb_rextslog += tp->t_rextslog_delta;
1da177e4
LT
962 whole = 1;
963 }
964
965 if (whole)
966 /*
c41564b5 967 * Log the whole thing, the fields are noncontiguous.
1da177e4 968 */
2bdf7cd0 969 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
1da177e4
LT
970 else
971 /*
972 * Since all the modifiable fields are contiguous, we
973 * can get away with this.
974 */
2bdf7cd0
CH
975 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
976 offsetof(xfs_dsb_t, sb_frextents) +
1da177e4 977 sizeof(sbp->sb_frextents) - 1);
1da177e4
LT
978}
979
980/*
45c34141
DC
981 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
982 * and apply superblock counter changes to the in-core superblock. The
983 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
984 * applied to the in-core superblock. The idea is that that has already been
985 * done.
1da177e4
LT
986 *
987 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
45c34141
DC
988 * However, we have to ensure that we only modify each superblock field only
989 * once because the application of the delta values may not be atomic. That can
990 * lead to ENOSPC races occurring if we have two separate modifcations of the
991 * free space counter to put back the entire reservation and then take away
992 * what we used.
993 *
994 * If we are not logging superblock counters, then the inode allocated/free and
995 * used block counts are not updated in the on disk superblock. In this case,
996 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
997 * still need to update the incore superblock with the changes.
1da177e4 998 */
71e330b5 999void
1da177e4
LT
1000xfs_trans_unreserve_and_mod_sb(
1001 xfs_trans_t *tp)
1002{
1b040712 1003 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */
1da177e4 1004 xfs_mod_sb_t *msbp;
92821e2b 1005 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1006 /* REFERENCED */
1007 int error;
1008 int rsvd;
45c34141
DC
1009 int64_t blkdelta = 0;
1010 int64_t rtxdelta = 0;
1b040712
CH
1011 int64_t idelta = 0;
1012 int64_t ifreedelta = 0;
1da177e4
LT
1013
1014 msbp = msb;
1015 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1016
1b040712 1017 /* calculate deltas */
45c34141
DC
1018 if (tp->t_blk_res > 0)
1019 blkdelta = tp->t_blk_res;
45c34141
DC
1020 if ((tp->t_fdblocks_delta != 0) &&
1021 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1022 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1023 blkdelta += tp->t_fdblocks_delta;
1024
45c34141
DC
1025 if (tp->t_rtx_res > 0)
1026 rtxdelta = tp->t_rtx_res;
45c34141
DC
1027 if ((tp->t_frextents_delta != 0) &&
1028 (tp->t_flags & XFS_TRANS_SB_DIRTY))
1029 rtxdelta += tp->t_frextents_delta;
1030
1b040712
CH
1031 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1032 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1033 idelta = tp->t_icount_delta;
1034 ifreedelta = tp->t_ifree_delta;
1035 }
1036
1037 /* apply the per-cpu counters */
1038 if (blkdelta) {
1039 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1040 blkdelta, rsvd);
1041 if (error)
1042 goto out;
1043 }
1044
1045 if (idelta) {
1046 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1047 idelta, rsvd);
1048 if (error)
1049 goto out_undo_fdblocks;
1050 }
1051
1052 if (ifreedelta) {
1053 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1054 ifreedelta, rsvd);
1055 if (error)
1056 goto out_undo_icount;
1057 }
1058
1059 /* apply remaining deltas */
45c34141 1060 if (rtxdelta != 0) {
1da177e4 1061 msbp->msb_field = XFS_SBS_FREXTENTS;
45c34141 1062 msbp->msb_delta = rtxdelta;
1da177e4
LT
1063 msbp++;
1064 }
1065
92821e2b 1066 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1da177e4
LT
1067 if (tp->t_dblocks_delta != 0) {
1068 msbp->msb_field = XFS_SBS_DBLOCKS;
20f4ebf2 1069 msbp->msb_delta = tp->t_dblocks_delta;
1da177e4
LT
1070 msbp++;
1071 }
1072 if (tp->t_agcount_delta != 0) {
1073 msbp->msb_field = XFS_SBS_AGCOUNT;
20f4ebf2 1074 msbp->msb_delta = tp->t_agcount_delta;
1da177e4
LT
1075 msbp++;
1076 }
1077 if (tp->t_imaxpct_delta != 0) {
1078 msbp->msb_field = XFS_SBS_IMAX_PCT;
20f4ebf2 1079 msbp->msb_delta = tp->t_imaxpct_delta;
1da177e4
LT
1080 msbp++;
1081 }
1082 if (tp->t_rextsize_delta != 0) {
1083 msbp->msb_field = XFS_SBS_REXTSIZE;
20f4ebf2 1084 msbp->msb_delta = tp->t_rextsize_delta;
1da177e4
LT
1085 msbp++;
1086 }
1087 if (tp->t_rbmblocks_delta != 0) {
1088 msbp->msb_field = XFS_SBS_RBMBLOCKS;
20f4ebf2 1089 msbp->msb_delta = tp->t_rbmblocks_delta;
1da177e4
LT
1090 msbp++;
1091 }
1092 if (tp->t_rblocks_delta != 0) {
1093 msbp->msb_field = XFS_SBS_RBLOCKS;
20f4ebf2 1094 msbp->msb_delta = tp->t_rblocks_delta;
1da177e4
LT
1095 msbp++;
1096 }
1097 if (tp->t_rextents_delta != 0) {
1098 msbp->msb_field = XFS_SBS_REXTENTS;
20f4ebf2 1099 msbp->msb_delta = tp->t_rextents_delta;
1da177e4
LT
1100 msbp++;
1101 }
1102 if (tp->t_rextslog_delta != 0) {
1103 msbp->msb_field = XFS_SBS_REXTSLOG;
20f4ebf2 1104 msbp->msb_delta = tp->t_rextslog_delta;
1da177e4
LT
1105 msbp++;
1106 }
1107 }
1108
1109 /*
1110 * If we need to change anything, do it.
1111 */
1112 if (msbp > msb) {
1113 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1114 (uint)(msbp - msb), rsvd);
1b040712
CH
1115 if (error)
1116 goto out_undo_ifreecount;
1da177e4 1117 }
1b040712
CH
1118
1119 return;
1120
1121out_undo_ifreecount:
1122 if (ifreedelta)
1123 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1124out_undo_icount:
1125 if (idelta)
1126 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1127out_undo_fdblocks:
1128 if (blkdelta)
1129 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1130out:
1884bd83 1131 ASSERT(error == 0);
1b040712 1132 return;
1da177e4
LT
1133}
1134
e98c414f
CH
1135/*
1136 * Add the given log item to the transaction's list of log items.
1137 *
1138 * The log item will now point to its new descriptor with its li_desc field.
1139 */
1140void
1141xfs_trans_add_item(
1142 struct xfs_trans *tp,
1143 struct xfs_log_item *lip)
1144{
1145 struct xfs_log_item_desc *lidp;
1146
1147 ASSERT(lip->li_mountp = tp->t_mountp);
1148 ASSERT(lip->li_ailp = tp->t_mountp->m_ail);
1149
43869706 1150 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
e98c414f
CH
1151
1152 lidp->lid_item = lip;
1153 lidp->lid_flags = 0;
1154 lidp->lid_size = 0;
1155 list_add_tail(&lidp->lid_trans, &tp->t_items);
1156
1157 lip->li_desc = lidp;
1158}
1159
1160STATIC void
1161xfs_trans_free_item_desc(
1162 struct xfs_log_item_desc *lidp)
1163{
1164 list_del_init(&lidp->lid_trans);
1165 kmem_zone_free(xfs_log_item_desc_zone, lidp);
1166}
1167
1168/*
1169 * Unlink and free the given descriptor.
1170 */
1171void
1172xfs_trans_del_item(
1173 struct xfs_log_item *lip)
1174{
1175 xfs_trans_free_item_desc(lip->li_desc);
1176 lip->li_desc = NULL;
1177}
1178
1179/*
1180 * Unlock all of the items of a transaction and free all the descriptors
1181 * of that transaction.
1182 */
d17c701c 1183void
e98c414f
CH
1184xfs_trans_free_items(
1185 struct xfs_trans *tp,
1186 xfs_lsn_t commit_lsn,
1187 int flags)
1188{
1189 struct xfs_log_item_desc *lidp, *next;
1190
1191 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1192 struct xfs_log_item *lip = lidp->lid_item;
1193
1194 lip->li_desc = NULL;
1195
1196 if (commit_lsn != NULLCOMMITLSN)
1197 IOP_COMMITTING(lip, commit_lsn);
1198 if (flags & XFS_TRANS_ABORT)
1199 lip->li_flags |= XFS_LI_ABORTED;
1200 IOP_UNLOCK(lip);
1201
1202 xfs_trans_free_item_desc(lidp);
1203 }
1204}
1205
1206/*
1207 * Unlock the items associated with a transaction.
1208 *
1209 * Items which were not logged should be freed. Those which were logged must
1210 * still be tracked so they can be unpinned when the transaction commits.
1211 */
1212STATIC void
1213xfs_trans_unlock_items(
1214 struct xfs_trans *tp,
1215 xfs_lsn_t commit_lsn)
1216{
1217 struct xfs_log_item_desc *lidp, *next;
1218
1219 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1220 struct xfs_log_item *lip = lidp->lid_item;
1221
1222 lip->li_desc = NULL;
1223
1224 if (commit_lsn != NULLCOMMITLSN)
1225 IOP_COMMITTING(lip, commit_lsn);
1226 IOP_UNLOCK(lip);
1227
1228 /*
1229 * Free the descriptor if the item is not dirty
1230 * within this transaction.
1231 */
1232 if (!(lidp->lid_flags & XFS_LID_DIRTY))
1233 xfs_trans_free_item_desc(lidp);
1234 }
1235}
1236
1da177e4 1237/*
0924378a
DC
1238 * Total up the number of log iovecs needed to commit this
1239 * transaction. The transaction itself needs one for the
1240 * transaction header. Ask each dirty item in turn how many
1241 * it needs to get the total.
1da177e4 1242 */
0924378a
DC
1243static uint
1244xfs_trans_count_vecs(
b1c1b5b6 1245 struct xfs_trans *tp)
1da177e4 1246{
0924378a 1247 int nvecs;
e98c414f 1248 struct xfs_log_item_desc *lidp;
1da177e4 1249
0924378a 1250 nvecs = 1;
1da177e4 1251
0924378a
DC
1252 /* In the non-debug case we need to start bailing out if we
1253 * didn't find a log_item here, return zero and let trans_commit
1254 * deal with it.
1da177e4 1255 */
e98c414f
CH
1256 if (list_empty(&tp->t_items)) {
1257 ASSERT(0);
0924378a 1258 return 0;
e98c414f 1259 }
0924378a 1260
e98c414f 1261 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
0924378a
DC
1262 /*
1263 * Skip items which aren't dirty in this transaction.
1264 */
e98c414f 1265 if (!(lidp->lid_flags & XFS_LID_DIRTY))
0924378a 1266 continue;
0924378a
DC
1267 lidp->lid_size = IOP_SIZE(lidp->lid_item);
1268 nvecs += lidp->lid_size;
1da177e4 1269 }
0924378a
DC
1270
1271 return nvecs;
1272}
1273
1274/*
1275 * Fill in the vector with pointers to data to be logged
1276 * by this transaction. The transaction header takes
1277 * the first vector, and then each dirty item takes the
1278 * number of vectors it indicated it needed in xfs_trans_count_vecs().
1279 *
1280 * As each item fills in the entries it needs, also pin the item
1281 * so that it cannot be flushed out until the log write completes.
1282 */
1283static void
1284xfs_trans_fill_vecs(
1285 struct xfs_trans *tp,
1286 struct xfs_log_iovec *log_vector)
1287{
e98c414f 1288 struct xfs_log_item_desc *lidp;
0924378a
DC
1289 struct xfs_log_iovec *vecp;
1290 uint nitems;
1da177e4
LT
1291
1292 /*
0924378a
DC
1293 * Skip over the entry for the transaction header, we'll
1294 * fill that in at the end.
1da177e4 1295 */
0924378a
DC
1296 vecp = log_vector + 1;
1297
1298 nitems = 0;
e98c414f
CH
1299 ASSERT(!list_empty(&tp->t_items));
1300 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
0924378a 1301 /* Skip items which aren't dirty in this transaction. */
e98c414f 1302 if (!(lidp->lid_flags & XFS_LID_DIRTY))
0924378a 1303 continue;
0924378a 1304
1da177e4 1305 /*
0924378a
DC
1306 * The item may be marked dirty but not log anything. This can
1307 * be used to get called when a transaction is committed.
1da177e4 1308 */
0924378a
DC
1309 if (lidp->lid_size)
1310 nitems++;
1311 IOP_FORMAT(lidp->lid_item, vecp);
1312 vecp += lidp->lid_size;
1313 IOP_PIN(lidp->lid_item);
1da177e4 1314 }
1da177e4
LT
1315
1316 /*
0924378a
DC
1317 * Now that we've counted the number of items in this transaction, fill
1318 * in the transaction header. Note that the transaction header does not
1319 * have a log item.
1da177e4 1320 */
0924378a
DC
1321 tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC;
1322 tp->t_header.th_type = tp->t_type;
1323 tp->t_header.th_num_items = nitems;
1324 log_vector->i_addr = (xfs_caddr_t)&tp->t_header;
1325 log_vector->i_len = sizeof(xfs_trans_header_t);
1326 log_vector->i_type = XLOG_REG_TYPE_TRANSHDR;
1327}
1328
b1c1b5b6
DC
1329/*
1330 * The committed item processing consists of calling the committed routine of
1331 * each logged item, updating the item's position in the AIL if necessary, and
1332 * unpinning each item. If the committed routine returns -1, then do nothing
1333 * further with the item because it may have been freed.
1334 *
1335 * Since items are unlocked when they are copied to the incore log, it is
1336 * possible for two transactions to be completing and manipulating the same
1337 * item simultaneously. The AIL lock will protect the lsn field of each item.
1338 * The value of this field can never go backwards.
1339 *
1340 * We unpin the items after repositioning them in the AIL, because otherwise
1341 * they could be immediately flushed and we'd have to race with the flusher
1342 * trying to pull the item from the AIL as we add it.
1343 */
0e57f6a3 1344static void
b1c1b5b6
DC
1345xfs_trans_item_committed(
1346 struct xfs_log_item *lip,
1347 xfs_lsn_t commit_lsn,
1348 int aborted)
1349{
1350 xfs_lsn_t item_lsn;
1351 struct xfs_ail *ailp;
1352
1353 if (aborted)
1354 lip->li_flags |= XFS_LI_ABORTED;
1355 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1356
1316d4da 1357 /* item_lsn of -1 means the item needs no further processing */
b1c1b5b6
DC
1358 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1359 return;
1360
1361 /*
1362 * If the returned lsn is greater than what it contained before, update
1363 * the location of the item in the AIL. If it is not, then do nothing.
1364 * Items can never move backwards in the AIL.
1365 *
1366 * While the new lsn should usually be greater, it is possible that a
1367 * later transaction completing simultaneously with an earlier one
1368 * using the same item could complete first with a higher lsn. This
1369 * would cause the earlier transaction to fail the test below.
1370 */
1371 ailp = lip->li_ailp;
1372 spin_lock(&ailp->xa_lock);
1373 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) {
1374 /*
1375 * This will set the item's lsn to item_lsn and update the
1376 * position of the item in the AIL.
1377 *
1378 * xfs_trans_ail_update() drops the AIL lock.
1379 */
1380 xfs_trans_ail_update(ailp, lip, item_lsn);
1381 } else {
1382 spin_unlock(&ailp->xa_lock);
1383 }
1384
1385 /*
1386 * Now that we've repositioned the item in the AIL, unpin it so it can
1387 * be flushed. Pass information about buffer stale state down from the
1388 * log item flags, if anyone else stales the buffer we do not want to
1389 * pay any attention to it.
1390 */
9412e318 1391 IOP_UNPIN(lip, 0);
b1c1b5b6
DC
1392}
1393
b1c1b5b6
DC
1394/*
1395 * This is typically called by the LM when a transaction has been fully
1396 * committed to disk. It needs to unpin the items which have
1397 * been logged by the transaction and update their positions
1398 * in the AIL if necessary.
1399 *
1400 * This also gets called when the transactions didn't get written out
1401 * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then.
1402 */
1403STATIC void
1404xfs_trans_committed(
4957a449 1405 void *arg,
b1c1b5b6
DC
1406 int abortflag)
1407{
4957a449 1408 struct xfs_trans *tp = arg;
e98c414f 1409 struct xfs_log_item_desc *lidp, *next;
b1c1b5b6 1410
e98c414f 1411 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
b1c1b5b6 1412 xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag);
e98c414f 1413 xfs_trans_free_item_desc(lidp);
b1c1b5b6
DC
1414 }
1415
b1c1b5b6
DC
1416 xfs_trans_free(tp);
1417}
1418
0e57f6a3
DC
1419static inline void
1420xfs_log_item_batch_insert(
1421 struct xfs_ail *ailp,
1422 struct xfs_log_item **log_items,
1423 int nr_items,
1424 xfs_lsn_t commit_lsn)
1425{
1426 int i;
1427
1428 spin_lock(&ailp->xa_lock);
1429 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1430 xfs_trans_ail_update_bulk(ailp, log_items, nr_items, commit_lsn);
1431
1432 for (i = 0; i < nr_items; i++)
1433 IOP_UNPIN(log_items[i], 0);
1434}
1435
1436/*
1437 * Bulk operation version of xfs_trans_committed that takes a log vector of
1438 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1439 * minimise lock traffic.
e34a314c
DC
1440 *
1441 * If we are called with the aborted flag set, it is because a log write during
1442 * a CIL checkpoint commit has failed. In this case, all the items in the
1443 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1444 * means that checkpoint commit abort handling is treated exactly the same
1445 * as an iclog write error even though we haven't started any IO yet. Hence in
1446 * this case all we need to do is IOP_COMMITTED processing, followed by an
1447 * IOP_UNPIN(aborted) call.
0e57f6a3
DC
1448 */
1449void
1450xfs_trans_committed_bulk(
1451 struct xfs_ail *ailp,
1452 struct xfs_log_vec *log_vector,
1453 xfs_lsn_t commit_lsn,
1454 int aborted)
1455{
1456#define LOG_ITEM_BATCH_SIZE 32
1457 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
1458 struct xfs_log_vec *lv;
1459 int i = 0;
1460
1461 /* unpin all the log items */
1462 for (lv = log_vector; lv; lv = lv->lv_next ) {
1463 struct xfs_log_item *lip = lv->lv_item;
1464 xfs_lsn_t item_lsn;
1465
1466 if (aborted)
1467 lip->li_flags |= XFS_LI_ABORTED;
1468 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1469
1316d4da 1470 /* item_lsn of -1 means the item needs no further processing */
0e57f6a3
DC
1471 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1472 continue;
1473
e34a314c
DC
1474 /*
1475 * if we are aborting the operation, no point in inserting the
1476 * object into the AIL as we are in a shutdown situation.
1477 */
1478 if (aborted) {
1479 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1480 IOP_UNPIN(lip, 1);
1481 continue;
1482 }
1483
0e57f6a3
DC
1484 if (item_lsn != commit_lsn) {
1485
1486 /*
1487 * Not a bulk update option due to unusual item_lsn.
1488 * Push into AIL immediately, rechecking the lsn once
1489 * we have the ail lock. Then unpin the item.
1490 */
1491 spin_lock(&ailp->xa_lock);
1492 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1493 xfs_trans_ail_update(ailp, lip, item_lsn);
1494 else
1495 spin_unlock(&ailp->xa_lock);
1496 IOP_UNPIN(lip, 0);
1497 continue;
1498 }
1499
1500 /* Item is a candidate for bulk AIL insert. */
1501 log_items[i++] = lv->lv_item;
1502 if (i >= LOG_ITEM_BATCH_SIZE) {
1503 xfs_log_item_batch_insert(ailp, log_items,
1504 LOG_ITEM_BATCH_SIZE, commit_lsn);
1505 i = 0;
1506 }
1507 }
1508
1509 /* make sure we insert the remainder! */
1510 if (i)
1511 xfs_log_item_batch_insert(ailp, log_items, i, commit_lsn);
1512}
1513
b1c1b5b6 1514/*
e34a314c
DC
1515 * Called from the trans_commit code when we notice that the filesystem is in
1516 * the middle of a forced shutdown.
1517 *
1518 * When we are called here, we have already pinned all the items in the
1519 * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called
1520 * so we can simply walk the items in the transaction, unpin them with an abort
1521 * flag and then free the items. Note that unpinning the items can result in
1522 * them being freed immediately, so we need to use a safe list traversal method
1523 * here.
b1c1b5b6
DC
1524 */
1525STATIC void
1526xfs_trans_uncommit(
1527 struct xfs_trans *tp,
1528 uint flags)
1529{
e34a314c 1530 struct xfs_log_item_desc *lidp, *n;
b1c1b5b6 1531
e34a314c 1532 list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) {
b1c1b5b6 1533 if (lidp->lid_flags & XFS_LID_DIRTY)
9412e318 1534 IOP_UNPIN(lidp->lid_item, 1);
b1c1b5b6
DC
1535 }
1536
1537 xfs_trans_unreserve_and_mod_sb(tp);
1538 xfs_trans_unreserve_and_mod_dquots(tp);
1539
71e330b5 1540 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
b1c1b5b6
DC
1541 xfs_trans_free(tp);
1542}
1543
0924378a
DC
1544/*
1545 * Format the transaction direct to the iclog. This isolates the physical
1546 * transaction commit operation from the logical operation and hence allows
1547 * other methods to be introduced without affecting the existing commit path.
1548 */
1549static int
1550xfs_trans_commit_iclog(
1551 struct xfs_mount *mp,
1552 struct xfs_trans *tp,
1553 xfs_lsn_t *commit_lsn,
1554 int flags)
1555{
1556 int shutdown;
1557 int error;
1558 int log_flags = 0;
1559 struct xlog_in_core *commit_iclog;
1560#define XFS_TRANS_LOGVEC_COUNT 16
1561 struct xfs_log_iovec log_vector_fast[XFS_TRANS_LOGVEC_COUNT];
1562 struct xfs_log_iovec *log_vector;
1563 uint nvec;
1564
1da177e4
LT
1565
1566 /*
1567 * Ask each log item how many log_vector entries it will
1568 * need so we can figure out how many to allocate.
1569 * Try to avoid the kmem_alloc() call in the common case
1570 * by using a vector from the stack when it fits.
1571 */
1572 nvec = xfs_trans_count_vecs(tp);
1da177e4 1573 if (nvec == 0) {
0924378a 1574 return ENOMEM; /* triggers a shutdown! */
cfcbbbd0 1575 } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) {
1da177e4
LT
1576 log_vector = log_vector_fast;
1577 } else {
1578 log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec *
1579 sizeof(xfs_log_iovec_t),
1580 KM_SLEEP);
1581 }
1582
1583 /*
1584 * Fill in the log_vector and pin the logged items, and
1585 * then write the transaction to the log.
1586 */
1587 xfs_trans_fill_vecs(tp, log_vector);
1588
0924378a
DC
1589 if (flags & XFS_TRANS_RELEASE_LOG_RES)
1590 log_flags = XFS_LOG_REL_PERM_RESERV;
1591
cfcbbbd0 1592 error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn));
1da177e4 1593
1da177e4 1594 /*
cfcbbbd0
NS
1595 * The transaction is committed incore here, and can go out to disk
1596 * at any time after this call. However, all the items associated
1597 * with the transaction are still locked and pinned in memory.
1da177e4 1598 */
0924378a 1599 *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags);
1da177e4 1600
0924378a 1601 tp->t_commit_lsn = *commit_lsn;
ed3b4d6c
DC
1602 trace_xfs_trans_commit_lsn(tp);
1603
0924378a 1604 if (nvec > XFS_TRANS_LOGVEC_COUNT)
f0e2d93c 1605 kmem_free(log_vector);
1da177e4 1606
1da177e4
LT
1607 /*
1608 * If we got a log write error. Unpin the logitems that we
1609 * had pinned, clean up, free trans structure, and return error.
1610 */
0924378a 1611 if (error || *commit_lsn == -1) {
59c1b082 1612 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1da177e4
LT
1613 xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT);
1614 return XFS_ERROR(EIO);
1615 }
1616
1617 /*
1618 * Once the transaction has committed, unused
1619 * reservations need to be released and changes to
1620 * the superblock need to be reflected in the in-core
1621 * version. Do that now.
1622 */
1623 xfs_trans_unreserve_and_mod_sb(tp);
1624
1da177e4
LT
1625 /*
1626 * Tell the LM to call the transaction completion routine
1627 * when the log write with LSN commit_lsn completes (e.g.
1628 * when the transaction commit really hits the on-disk log).
1629 * After this call we cannot reference tp, because the call
1630 * can happen at any time and the call will free the transaction
1631 * structure pointed to by tp. The only case where we call
1632 * the completion routine (xfs_trans_committed) directly is
1633 * if the log is turned off on a debug kernel or we're
1634 * running in simulation mode (the log is explicitly turned
1635 * off).
1636 */
4957a449 1637 tp->t_logcb.cb_func = xfs_trans_committed;
1da177e4
LT
1638 tp->t_logcb.cb_arg = tp;
1639
1640 /*
1641 * We need to pass the iclog buffer which was used for the
1642 * transaction commit record into this function, and attach
1643 * the callback to it. The callback must be attached before
1644 * the items are unlocked to avoid racing with other threads
1645 * waiting for an item to unlock.
1646 */
1647 shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb));
1648
1649 /*
1650 * Mark this thread as no longer being in a transaction
1651 */
59c1b082 1652 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1da177e4
LT
1653
1654 /*
1655 * Once all the items of the transaction have been copied
1656 * to the in core log and the callback is attached, the
1657 * items can be unlocked.
1658 *
1659 * This will free descriptors pointing to items which were
1660 * not logged since there is nothing more to do with them.
1661 * For items which were logged, we will keep pointers to them
1662 * so they can be unpinned after the transaction commits to disk.
1663 * This will also stamp each modified meta-data item with
1664 * the commit lsn of this transaction for dependency tracking
1665 * purposes.
1666 */
0924378a 1667 xfs_trans_unlock_items(tp, *commit_lsn);
1da177e4
LT
1668
1669 /*
1670 * If we detected a log error earlier, finish committing
1671 * the transaction now (unpin log items, etc).
1672 *
1673 * Order is critical here, to avoid using the transaction
1674 * pointer after its been freed (by xfs_trans_committed
1675 * either here now, or as a callback). We cannot do this
1676 * step inside xfs_log_notify as was done earlier because
1677 * of this issue.
1678 */
1679 if (shutdown)
1680 xfs_trans_committed(tp, XFS_LI_ABORTED);
1681
1682 /*
1683 * Now that the xfs_trans_committed callback has been attached,
1684 * and the items are released we can finally allow the iclog to
1685 * go to disk.
1686 */
0924378a
DC
1687 return xfs_log_release_iclog(mp, commit_iclog);
1688}
1689
71e330b5
DC
1690/*
1691 * Walk the log items and allocate log vector structures for
1692 * each item large enough to fit all the vectors they require.
1693 * Note that this format differs from the old log vector format in
1694 * that there is no transaction header in these log vectors.
1695 */
1696STATIC struct xfs_log_vec *
1697xfs_trans_alloc_log_vecs(
1698 xfs_trans_t *tp)
1699{
e98c414f 1700 struct xfs_log_item_desc *lidp;
71e330b5
DC
1701 struct xfs_log_vec *lv = NULL;
1702 struct xfs_log_vec *ret_lv = NULL;
1703
71e330b5
DC
1704
1705 /* Bail out if we didn't find a log item. */
e98c414f 1706 if (list_empty(&tp->t_items)) {
71e330b5
DC
1707 ASSERT(0);
1708 return NULL;
1709 }
1710
e98c414f 1711 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
71e330b5
DC
1712 struct xfs_log_vec *new_lv;
1713
1714 /* Skip items which aren't dirty in this transaction. */
e98c414f 1715 if (!(lidp->lid_flags & XFS_LID_DIRTY))
71e330b5 1716 continue;
71e330b5
DC
1717
1718 /* Skip items that do not have any vectors for writing */
1719 lidp->lid_size = IOP_SIZE(lidp->lid_item);
e98c414f 1720 if (!lidp->lid_size)
71e330b5 1721 continue;
71e330b5
DC
1722
1723 new_lv = kmem_zalloc(sizeof(*new_lv) +
1724 lidp->lid_size * sizeof(struct xfs_log_iovec),
1725 KM_SLEEP);
1726
1727 /* The allocated iovec region lies beyond the log vector. */
1728 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
1729 new_lv->lv_niovecs = lidp->lid_size;
1730 new_lv->lv_item = lidp->lid_item;
1731 if (!ret_lv)
1732 ret_lv = new_lv;
1733 else
1734 lv->lv_next = new_lv;
1735 lv = new_lv;
71e330b5
DC
1736 }
1737
1738 return ret_lv;
1739}
1740
1741static int
1742xfs_trans_commit_cil(
1743 struct xfs_mount *mp,
1744 struct xfs_trans *tp,
1745 xfs_lsn_t *commit_lsn,
1746 int flags)
1747{
1748 struct xfs_log_vec *log_vector;
71e330b5
DC
1749
1750 /*
1751 * Get each log item to allocate a vector structure for
1752 * the log item to to pass to the log write code. The
1753 * CIL commit code will format the vector and save it away.
1754 */
1755 log_vector = xfs_trans_alloc_log_vecs(tp);
1756 if (!log_vector)
1757 return ENOMEM;
1758
c6f990d1 1759 xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags);
71e330b5
DC
1760
1761 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
71e330b5
DC
1762 xfs_trans_free(tp);
1763 return 0;
1764}
0924378a
DC
1765
1766/*
1767 * xfs_trans_commit
1768 *
1769 * Commit the given transaction to the log a/synchronously.
1770 *
1771 * XFS disk error handling mechanism is not based on a typical
1772 * transaction abort mechanism. Logically after the filesystem
1773 * gets marked 'SHUTDOWN', we can't let any new transactions
1774 * be durable - ie. committed to disk - because some metadata might
1775 * be inconsistent. In such cases, this returns an error, and the
1776 * caller may assume that all locked objects joined to the transaction
1777 * have already been unlocked as if the commit had succeeded.
1778 * Do not reference the transaction structure after this call.
1779 */
0924378a
DC
1780int
1781_xfs_trans_commit(
a3ccd2ca
CH
1782 struct xfs_trans *tp,
1783 uint flags,
1784 int *log_flushed)
0924378a 1785{
a3ccd2ca 1786 struct xfs_mount *mp = tp->t_mountp;
0924378a 1787 xfs_lsn_t commit_lsn = -1;
a3ccd2ca 1788 int error = 0;
0924378a
DC
1789 int log_flags = 0;
1790 int sync = tp->t_flags & XFS_TRANS_SYNC;
0924378a
DC
1791
1792 /*
1793 * Determine whether this commit is releasing a permanent
1794 * log reservation or not.
1795 */
1796 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1797 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1798 log_flags = XFS_LOG_REL_PERM_RESERV;
1799 }
1800
1801 /*
1802 * If there is nothing to be logged by the transaction,
1803 * then unlock all of the items associated with the
1804 * transaction and free the transaction structure.
1805 * Also make sure to return any reserved blocks to
1806 * the free pool.
1807 */
a3ccd2ca
CH
1808 if (!(tp->t_flags & XFS_TRANS_DIRTY))
1809 goto out_unreserve;
1810
1811 if (XFS_FORCED_SHUTDOWN(mp)) {
1812 error = XFS_ERROR(EIO);
1813 goto out_unreserve;
0924378a 1814 }
a3ccd2ca 1815
0924378a
DC
1816 ASSERT(tp->t_ticket != NULL);
1817
1818 /*
1819 * If we need to update the superblock, then do it now.
1820 */
1821 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1822 xfs_trans_apply_sb_deltas(tp);
1823 xfs_trans_apply_dquot_deltas(tp);
1824
71e330b5
DC
1825 if (mp->m_flags & XFS_MOUNT_DELAYLOG)
1826 error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags);
1827 else
1828 error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags);
1829
0924378a
DC
1830 if (error == ENOMEM) {
1831 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
a3ccd2ca
CH
1832 error = XFS_ERROR(EIO);
1833 goto out_unreserve;
0924378a 1834 }
1da177e4
LT
1835
1836 /*
1837 * If the transaction needs to be synchronous, then force the
1838 * log out now and wait for it.
1839 */
1840 if (sync) {
f538d4da 1841 if (!error) {
a14a348b
CH
1842 error = _xfs_log_force_lsn(mp, commit_lsn,
1843 XFS_LOG_SYNC, log_flushed);
f538d4da 1844 }
1da177e4
LT
1845 XFS_STATS_INC(xs_trans_sync);
1846 } else {
1847 XFS_STATS_INC(xs_trans_async);
1848 }
1849
a3ccd2ca
CH
1850 return error;
1851
1852out_unreserve:
1853 xfs_trans_unreserve_and_mod_sb(tp);
1854
1855 /*
1856 * It is indeed possible for the transaction to be not dirty but
1857 * the dqinfo portion to be. All that means is that we have some
1858 * (non-persistent) quota reservations that need to be unreserved.
1859 */
1860 xfs_trans_unreserve_and_mod_dquots(tp);
1861 if (tp->t_ticket) {
1862 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1863 if (commit_lsn == -1 && !error)
1864 error = XFS_ERROR(EIO);
1865 }
1866 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
71e330b5 1867 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
a3ccd2ca
CH
1868 xfs_trans_free(tp);
1869
1870 XFS_STATS_INC(xs_trans_empty);
1871 return error;
1da177e4
LT
1872}
1873
1da177e4
LT
1874/*
1875 * Unlock all of the transaction's items and free the transaction.
1876 * The transaction must not have modified any of its items, because
1877 * there is no way to restore them to their previous state.
1878 *
1879 * If the transaction has made a log reservation, make sure to release
1880 * it as well.
1881 */
1882void
1883xfs_trans_cancel(
1884 xfs_trans_t *tp,
1885 int flags)
1886{
1887 int log_flags;
0733af21 1888 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1889
1890 /*
1891 * See if the caller is being too lazy to figure out if
1892 * the transaction really needs an abort.
1893 */
1894 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1895 flags &= ~XFS_TRANS_ABORT;
1896 /*
1897 * See if the caller is relying on us to shut down the
1898 * filesystem. This happens in paths where we detect
1899 * corruption and decide to give up.
1900 */
60a204f0 1901 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
0733af21 1902 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
7d04a335 1903 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
60a204f0 1904 }
1da177e4 1905#ifdef DEBUG
e98c414f
CH
1906 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1907 struct xfs_log_item_desc *lidp;
1908
1909 list_for_each_entry(lidp, &tp->t_items, lid_trans)
1910 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1da177e4
LT
1911 }
1912#endif
1913 xfs_trans_unreserve_and_mod_sb(tp);
7d095257 1914 xfs_trans_unreserve_and_mod_dquots(tp);
1da177e4
LT
1915
1916 if (tp->t_ticket) {
1917 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1918 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1919 log_flags = XFS_LOG_REL_PERM_RESERV;
1920 } else {
1921 log_flags = 0;
1922 }
0733af21 1923 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1da177e4
LT
1924 }
1925
1926 /* mark this thread as no longer being in a transaction */
59c1b082 1927 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1da177e4 1928
71e330b5 1929 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1da177e4
LT
1930 xfs_trans_free(tp);
1931}
1932
322ff6b8
NS
1933/*
1934 * Roll from one trans in the sequence of PERMANENT transactions to
1935 * the next: permanent transactions are only flushed out when
1936 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1937 * as possible to let chunks of it go to the log. So we commit the
1938 * chunk we've been working on and get a new transaction to continue.
1939 */
1940int
1941xfs_trans_roll(
1942 struct xfs_trans **tpp,
1943 struct xfs_inode *dp)
1944{
1945 struct xfs_trans *trans;
1946 unsigned int logres, count;
1947 int error;
1948
1949 /*
1950 * Ensure that the inode is always logged.
1951 */
1952 trans = *tpp;
1953 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1954
1955 /*
1956 * Copy the critical parameters from one trans to the next.
1957 */
1958 logres = trans->t_log_res;
1959 count = trans->t_log_count;
1960 *tpp = xfs_trans_dup(trans);
1961
1962 /*
1963 * Commit the current transaction.
1964 * If this commit failed, then it'd just unlock those items that
1965 * are not marked ihold. That also means that a filesystem shutdown
1966 * is in progress. The caller takes the responsibility to cancel
1967 * the duplicate transaction that gets returned.
1968 */
1969 error = xfs_trans_commit(trans, 0);
1970 if (error)
1971 return (error);
1972
1973 trans = *tpp;
1974
cc09c0dc
DC
1975 /*
1976 * transaction commit worked ok so we can drop the extra ticket
1977 * reference that we gained in xfs_trans_dup()
1978 */
1979 xfs_log_ticket_put(trans->t_ticket);
1980
1981
322ff6b8
NS
1982 /*
1983 * Reserve space in the log for th next transaction.
1984 * This also pushes items in the "AIL", the list of logged items,
1985 * out to disk if they are taking up space at the tail of the log
1986 * that we want to use. This requires that either nothing be locked
1987 * across this call, or that anything that is locked be logged in
1988 * the prior and the next transactions.
1989 */
1990 error = xfs_trans_reserve(trans, 0, logres, 0,
1991 XFS_TRANS_PERM_LOG_RES, count);
1992 /*
1993 * Ensure that the inode is in the new transaction and locked.
1994 */
1995 if (error)
1996 return error;
1997
898621d5 1998 xfs_trans_ijoin(trans, dp);
322ff6b8
NS
1999 return 0;
2000}
This page took 1.025247 seconds and 5 git commands to generate.