These changes clean things up a bit, and improve Solaris cross
[deliverable/binutils-gdb.git] / gas / config / tc-a29k.c
CommitLineData
fecd2382 1/* tc-a29k.c -- Assemble for the AMD 29000.
01170860 2 Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
a39116f1
RP
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
fecd2382 19
fecd2382
RP
20/* John Gilmore has reorganized this module somewhat, to make it easier
21 to convert it to new machines' assemblers as desired. There was too
22 much bloody rewriting required before. There still probably is. */
a39116f1 23
fecd2382 24#include "as.h"
587c4264 25#include "read.h"
fecd2382 26
a1d144c6 27#include "opcode/a29k.h"
fecd2382
RP
28
29/* Make it easier to clone this machine desc into another one. */
30#define machine_opcode a29k_opcode
31#define machine_opcodes a29k_opcodes
32#define machine_ip a29k_ip
33#define machine_it a29k_it
34
35const relax_typeS md_relax_table[] = { 0 };
36
37#define IMMEDIATE_BIT 0x01000000 /* Turns RB into Immediate */
38#define ABSOLUTE_BIT 0x01000000 /* Turns PC-relative to Absolute */
39#define CE_BIT 0x00800000 /* Coprocessor enable in LOAD */
40#define UI_BIT 0x00000080 /* Unsigned integer in CONVERT */
41
42/* handle of the OPCODE hash table */
43static struct hash_control *op_hash = NULL;
44
45struct machine_it {
a39116f1
RP
46 char *error;
47 unsigned long opcode;
48 struct nlist *nlistp;
49 expressionS exp;
50 int pcrel;
51 int reloc_offset; /* Offset of reloc within insn */
c593cf41
SC
52
53 int reloc;
54
55
fecd2382
RP
56} the_insn;
57
a87b3269 58#if __STDC__ == 1
fecd2382
RP
59
60/* static int getExpression(char *str); */
61static void machine_ip(char *str);
62/* static void print_insn(struct machine_it *insn); */
63static void s_data1(void);
64static void s_use(void);
65
a87b3269 66#else /* not __STDC__ */
fecd2382
RP
67
68/* static int getExpression(); */
69static void machine_ip();
70/* static void print_insn(); */
71static void s_data1();
72static void s_use();
73
a87b3269 74#endif /* not __STDC__ */
fecd2382
RP
75
76const pseudo_typeS
a39116f1
RP
77 md_pseudo_table[] = {
78 { "align", s_align_bytes, 4 },
79 { "block", s_space, 0 },
80 { "cputype", s_ignore, 0 }, /* CPU as 29000 or 29050 */
81 { "reg", s_lsym, 0 }, /* Register equate, same as equ */
82 { "space", s_ignore, 0 }, /* Listing control */
83 { "sect", s_ignore, 0 }, /* Creation of coff sections */
c58dbabf
SC
84#ifndef OBJ_COFF
85 /* We can do this right with coff */
a39116f1 86 { "use", s_use, 0 },
c58dbabf 87#endif
a39116f1
RP
88 { "word", cons, 4 },
89 { NULL, 0, 0 },
90 };
fecd2382
RP
91
92int md_short_jump_size = 4;
93int md_long_jump_size = 4;
57574979
SC
94#if defined(BFD_HEADERS)
95#ifdef RELSZ
96int md_reloc_size = RELSZ; /* Coff headers */
97#else
98int md_reloc_size = 12; /* something else headers */
99#endif
100#else
101int md_reloc_size = 12; /* Not bfdized*/
102#endif
fecd2382
RP
103
104/* This array holds the chars that always start a comment. If the
a39116f1 105 pre-processor is disabled, these aren't very useful */
587c4264 106const char comment_chars[] = ";";
fecd2382
RP
107
108/* This array holds the chars that only start a comment at the beginning of
109 a line. If the line seems to have the form '# 123 filename'
110 .line and .file directives will appear in the pre-processed output */
111/* Note that input_file.c hand checks for '#' at the beginning of the
112 first line of the input file. This is because the compiler outputs
113 #NO_APP at the beginning of its output. */
114/* Also note that comments like this one will always work */
587c4264 115const char line_comment_chars[] = "#";
fecd2382
RP
116
117/* We needed an unused char for line separation to work around the
118 lack of macros, using sed and such. */
587c4264 119const char line_separator_chars[] = "@";
fecd2382
RP
120
121/* Chars that can be used to separate mant from exp in floating point nums */
587c4264 122const char EXP_CHARS[] = "eE";
fecd2382
RP
123
124/* Chars that mean this number is a floating point constant */
125/* As in 0f12.456 */
126/* or 0d1.2345e12 */
587c4264 127const char FLT_CHARS[] = "rRsSfFdDxXpP";
fecd2382
RP
128
129/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
130 changed in read.c . Ideally it shouldn't have to know about it at all,
131 but nothing is ideal around here.
a39116f1 132 */
fecd2382
RP
133
134static unsigned char octal[256];
135#define isoctal(c) octal[c]
a39116f1 136 static unsigned char toHex[256];
fecd2382
RP
137
138/*
139 * anull bit - causes the branch delay slot instructions to not be executed
140 */
141#define ANNUL (1 << 29)
142
143static void
a39116f1 144 s_use()
fecd2382 145{
a39116f1
RP
146
147 if (strncmp(input_line_pointer, ".text", 5) == 0) {
148 input_line_pointer += 5;
149 s_text();
150 return;
151 }
152 if (strncmp(input_line_pointer, ".data", 5) == 0) {
153 input_line_pointer += 5;
154 s_data();
155 return;
156 }
157 if (strncmp(input_line_pointer, ".data1", 6) == 0) {
158 input_line_pointer += 6;
159 s_data1();
160 return;
161 }
162 /* Literals can't go in the text segment because you can't read
163 from instruction memory on some 29k's. So, into initialized data. */
164 if (strncmp(input_line_pointer, ".lit", 4) == 0) {
165 input_line_pointer += 4;
166 subseg_new(SEG_DATA, 200);
167 demand_empty_rest_of_line();
168 return;
169 }
170
171 as_bad("Unknown segment type");
fecd2382
RP
172 demand_empty_rest_of_line();
173 return;
fecd2382
RP
174}
175
176static void
a39116f1 177 s_data1()
fecd2382 178{
a39116f1
RP
179 subseg_new(SEG_DATA, 1);
180 demand_empty_rest_of_line();
181 return;
fecd2382
RP
182}
183
184/* Install symbol definition that maps REGNAME to REGNO.
185 FIXME-SOON: These are not recognized in mixed case. */
186
187static void
a39116f1
RP
188 insert_sreg (regname, regnum)
189char *regname;
190int regnum;
fecd2382
RP
191{
192 /* FIXME-SOON, put something in these syms so they won't be output to the symbol
193 table of the resulting object file. */
194
195 /* Must be large enough to hold the names of the special registers. */
196 char buf[80];
197 int i;
198
199 symbol_table_insert(symbol_new(regname, SEG_REGISTER, regnum, &zero_address_frag));
200 for (i = 0; regname[i]; i++)
201 buf[i] = islower (regname[i]) ? toupper (regname[i]) : regname[i];
202 buf[i] = '\0';
203
204 symbol_table_insert(symbol_new(buf, SEG_REGISTER, regnum, &zero_address_frag));
205} /* insert_sreg() */
206
207/* Install symbol definitions for assorted special registers.
208 See ASM29K Ref page 2-9. */
209
210void define_some_regs() {
211#define SREG 256
212
213 /* Protected special-purpose register names */
214 insert_sreg ("vab", SREG+0);
215 insert_sreg ("ops", SREG+1);
216 insert_sreg ("cps", SREG+2);
217 insert_sreg ("cfg", SREG+3);
218 insert_sreg ("cha", SREG+4);
219 insert_sreg ("chd", SREG+5);
220 insert_sreg ("chc", SREG+6);
221 insert_sreg ("rbp", SREG+7);
222 insert_sreg ("tmc", SREG+8);
223 insert_sreg ("tmr", SREG+9);
224 insert_sreg ("pc0", SREG+10);
225 insert_sreg ("pc1", SREG+11);
226 insert_sreg ("pc2", SREG+12);
227 insert_sreg ("mmu", SREG+13);
228 insert_sreg ("lru", SREG+14);
229
230 /* Unprotected special-purpose register names */
231 insert_sreg ("ipc", SREG+128);
232 insert_sreg ("ipa", SREG+129);
233 insert_sreg ("ipb", SREG+130);
234 insert_sreg ("q", SREG+131);
235 insert_sreg ("alu", SREG+132);
236 insert_sreg ("bp", SREG+133);
237 insert_sreg ("fc", SREG+134);
238 insert_sreg ("cr", SREG+135);
239 insert_sreg ("fpe", SREG+160);
240 insert_sreg ("inte",SREG+161);
241 insert_sreg ("fps", SREG+162);
242 /* "", SREG+163); Reserved */
243 insert_sreg ("exop",SREG+164);
244} /* define_some_regs() */
245
246/* This function is called once, at assembler startup time. It should
247 set up all the tables, etc. that the MD part of the assembler will need. */
248void
a39116f1 249 md_begin()
fecd2382 250{
a39116f1
RP
251 register char *retval = NULL;
252 int lose = 0;
253 register int skipnext = 0;
254 register unsigned int i;
255 register char *strend, *strend2;
256
257 /* Hash up all the opcodes for fast use later. */
258
259 op_hash = hash_new();
260 if (op_hash == NULL)
261 as_fatal("Virtual memory exhausted");
262
263 for (i = 0; i < num_opcodes; i++)
264 {
265 const char *name = machine_opcodes[i].name;
266
267 if (skipnext) {
268 skipnext = 0;
269 continue;
270 }
271
272 /* Hack to avoid multiple opcode entries. We pre-locate all the
273 variations (b/i field and P/A field) and handle them. */
274
275 if (!strcmp (name, machine_opcodes[i+1].name)) {
276 if ((machine_opcodes[i].opcode ^ machine_opcodes[i+1].opcode)
277 != 0x01000000)
278 goto bad_table;
279 strend = machine_opcodes[i ].args+strlen(machine_opcodes[i ].args)-1;
280 strend2 = machine_opcodes[i+1].args+strlen(machine_opcodes[i+1].args)-1;
281 switch (*strend) {
282 case 'b':
283 if (*strend2 != 'i') goto bad_table;
284 break;
285 case 'i':
286 if (*strend2 != 'b') goto bad_table;
287 break;
288 case 'P':
289 if (*strend2 != 'A') goto bad_table;
290 break;
291 case 'A':
292 if (*strend2 != 'P') goto bad_table;
293 break;
294 default:
295 bad_table:
296 fprintf (stderr, "internal error: can't handle opcode %s\n", name);
297 lose = 1;
298 }
299
300 /* OK, this is an i/b or A/P pair. We skip the higher-valued one,
301 and let the code for operand checking handle OR-ing in the bit. */
302 if (machine_opcodes[i].opcode & 1)
303 continue;
304 else
305 skipnext = 1;
306 }
307
308 retval = hash_insert (op_hash, name, &machine_opcodes[i]);
309 if (retval != NULL && *retval != '\0')
310 {
311 fprintf (stderr, "internal error: can't hash `%s': %s\n",
312 machine_opcodes[i].name, retval);
313 lose = 1;
314 }
315 }
316
317 if (lose)
318 as_fatal("Broken assembler. No assembly attempted.");
319
320 for (i = '0'; i < '8'; ++i)
321 octal[i] = 1;
322 for (i = '0'; i <= '9'; ++i)
323 toHex[i] = i - '0';
324 for (i = 'a'; i <= 'f'; ++i)
325 toHex[i] = i + 10 - 'a';
326 for (i = 'A'; i <= 'F'; ++i)
327 toHex[i] = i + 10 - 'A';
328
329 define_some_regs ();
fecd2382
RP
330}
331
332void md_end() {
a39116f1 333 return;
fecd2382
RP
334}
335
336/* Assemble a single instruction. Its label has already been handled
337 by the generic front end. We just parse opcode and operands, and
338 produce the bytes of data and relocation. */
339
340void md_assemble(str)
a39116f1 341char *str;
fecd2382 342{
a39116f1
RP
343 char *toP;
344 /* !!!! int rsd; */
345
346 know(str);
347 machine_ip(str);
348 toP = frag_more(4);
349 /* put out the opcode */
350 md_number_to_chars(toP, the_insn.opcode, 4);
351
352 /* put out the symbol-dependent stuff */
353 if (the_insn.reloc != NO_RELOC) {
354 fix_new(
355 frag_now, /* which frag */
356 (toP - frag_now->fr_literal + the_insn.reloc_offset), /* where */
357 4, /* size */
358 the_insn.exp.X_add_symbol,
359 the_insn.exp.X_subtract_symbol,
360 the_insn.exp.X_add_number,
361 the_insn.pcrel,
362 the_insn.reloc
363 );
364 }
fecd2382
RP
365}
366
367char *
a39116f1
RP
368 parse_operand (s, operandp)
369char *s;
370expressionS *operandp;
fecd2382 371{
c58dbabf
SC
372 char *save = input_line_pointer;
373 char *new;
374 segT seg;
a39116f1 375
c58dbabf
SC
376 input_line_pointer = s;
377 seg = expr (0, operandp);
378 new = input_line_pointer;
379 input_line_pointer = save;
380
381 if (seg == SEG_ABSENT)
382 as_bad("Missing operand");
383 return new;
fecd2382
RP
384}
385
386/* Instruction parsing. Takes a string containing the opcode.
387 Operands are at input_line_pointer. Output is in the_insn.
388 Warnings or errors are generated. */
a39116f1 389
fecd2382 390static void
a39116f1
RP
391 machine_ip(str)
392char *str;
fecd2382 393{
a39116f1
RP
394 char *s;
395 const char *args;
396 /* !!!! char c; */
397 /* !!!! unsigned long i; */
398 struct machine_opcode *insn;
399 char *argsStart;
400 unsigned long opcode;
401 /* !!!! unsigned int mask; */
402 expressionS the_operand;
403 expressionS *operand = &the_operand;
404 unsigned int reg;
405
406 /* Must handle `div0' opcode. */
407 s = str;
408 if (isalpha(*s))
409 for (; isalnum(*s); ++s)
410 if (isupper (*s))
411 *s = tolower (*s);
412
413 switch (*s) {
414 case '\0':
415 break;
416
417 case ' ': /* FIXME-SOMEDAY more whitespace */
418 *s++ = '\0';
419 break;
420
421 default:
422 as_bad("Unknown opcode: `%s'", str);
fecd2382 423 return;
a39116f1
RP
424 }
425 if ((insn = (struct machine_opcode *) hash_find(op_hash, str)) == NULL) {
426 as_bad("Unknown opcode `%s'.", str);
427 return;
428 }
429 argsStart = s;
430 opcode = insn->opcode;
542e1629 431 memset(&the_insn, '\0', sizeof(the_insn));
a39116f1
RP
432 the_insn.reloc = NO_RELOC;
433
434 /*
435 * Build the opcode, checking as we go to make
436 * sure that the operands match.
437 *
438 * If an operand matches, we modify the_insn or opcode appropriately,
439 * and do a "continue". If an operand fails to match, we "break".
440 */
441 if (insn->args[0] != '\0')
442 s = parse_operand (s, operand); /* Prime the pump */
443
444 for (args = insn->args; ; ++args) {
445 switch (*args) {
446
447 case '\0': /* end of args */
448 if (*s == '\0') {
449 /* We are truly done. */
450 the_insn.opcode = opcode;
451 return;
452 }
453 as_bad("Too many operands: %s", s);
454 break;
455
456 case ',': /* Must match a comma */
457 if (*s++ == ',') {
458 s = parse_operand (s, operand); /* Parse next opnd */
459 continue;
460 }
461 break;
462
463 case 'v': /* Trap numbers (immediate field) */
464 if (operand->X_seg == SEG_ABSOLUTE) {
465 if (operand->X_add_number < 256) {
466 opcode |= (operand->X_add_number << 16);
467 continue;
468 } else {
469 as_bad("Immediate value of %d is too large",
470 operand->X_add_number);
471 continue;
472 }
473 }
474 the_insn.reloc = RELOC_8;
475 the_insn.reloc_offset = 1; /* BIG-ENDIAN Byte 1 of insn */
476 the_insn.exp = *operand;
477 continue;
478
479 case 'b': /* A general register or 8-bit immediate */
480 case 'i':
481 /* We treat the two cases identically since we mashed
482 them together in the opcode table. */
483 if (operand->X_seg == SEG_REGISTER)
484 goto general_reg;
485
486 opcode |= IMMEDIATE_BIT;
487 if (operand->X_seg == SEG_ABSOLUTE) {
488 if (operand->X_add_number < 256) {
489 opcode |= operand->X_add_number;
490 continue;
491 } else {
492 as_bad("Immediate value of %d is too large",
493 operand->X_add_number);
494 continue;
495 }
496 }
497 the_insn.reloc = RELOC_8;
498 the_insn.reloc_offset = 3; /* BIG-ENDIAN Byte 3 of insn */
499 the_insn.exp = *operand;
500 continue;
501
502 case 'a': /* next operand must be a register */
503 case 'c':
504 general_reg:
505 /* lrNNN or grNNN or %%expr or a user-def register name */
506 if (operand->X_seg != SEG_REGISTER)
507 break; /* Only registers */
508 know (operand->X_add_symbol == 0);
509 know (operand->X_subtract_symbol == 0);
510 reg = operand->X_add_number;
511 if (reg >= SREG)
512 break; /* No special registers */
513
514 /*
515 * Got the register, now figure out where
516 * it goes in the opcode.
517 */
518 switch (*args) {
519 case 'a':
520 opcode |= reg << 8;
521 continue;
522
523 case 'b':
524 case 'i':
525 opcode |= reg;
526 continue;
527
528 case 'c':
529 opcode |= reg << 16;
530 continue;
531 }
532 as_fatal("failed sanity check.");
533 break;
534
535 case 'x': /* 16 bit constant, zero-extended */
536 case 'X': /* 16 bit constant, one-extended */
537 if (operand->X_seg == SEG_ABSOLUTE) {
538 opcode |= (operand->X_add_number & 0xFF) << 0 |
539 ((operand->X_add_number & 0xFF00) << 8);
540 continue;
541 }
542 the_insn.reloc = RELOC_CONST;
543 the_insn.exp = *operand;
544 continue;
545
546 case 'h':
547 if (operand->X_seg == SEG_ABSOLUTE) {
548 opcode |= (operand->X_add_number & 0x00FF0000) >> 16 |
549 (((unsigned long)operand->X_add_number
550 /* avoid sign ext */ & 0xFF000000) >> 8);
551 continue;
552 }
553 the_insn.reloc = RELOC_CONSTH;
554 the_insn.exp = *operand;
555 continue;
556
557 case 'P': /* PC-relative jump address */
558 case 'A': /* Absolute jump address */
559 /* These two are treated together since we folded the
560 opcode table entries together. */
561 if (operand->X_seg == SEG_ABSOLUTE) {
562 opcode |= ABSOLUTE_BIT |
563 (operand->X_add_number & 0x0003FC00) << 6 |
564 ((operand->X_add_number & 0x000003FC) >> 2);
565 continue;
566 }
567 the_insn.reloc = RELOC_JUMPTARG;
568 the_insn.exp = *operand;
569 the_insn.pcrel = 1; /* Assume PC-relative jump */
570 /* FIXME-SOON, Do we figure out whether abs later, after know sym val? */
571 continue;
572
573 case 'e': /* Coprocessor enable bit for LOAD/STORE insn */
574 if (operand->X_seg == SEG_ABSOLUTE) {
575 if (operand->X_add_number == 0)
576 continue;
577 if (operand->X_add_number == 1) {
578 opcode |= CE_BIT;
579 continue;
580 }
581 }
582 break;
583
584 case 'n': /* Control bits for LOAD/STORE instructions */
585 if (operand->X_seg == SEG_ABSOLUTE &&
586 operand->X_add_number < 128) {
587 opcode |= (operand->X_add_number << 16);
588 continue;
589 }
590 break;
591
592 case 's': /* Special register number */
593 if (operand->X_seg != SEG_REGISTER)
594 break; /* Only registers */
595 if (operand->X_add_number < SREG)
596 break; /* Not a special register */
597 opcode |= (operand->X_add_number & 0xFF) << 8;
598 continue;
599
600 case 'u': /* UI bit of CONVERT */
601 if (operand->X_seg == SEG_ABSOLUTE) {
602 if (operand->X_add_number == 0)
603 continue;
604 if (operand->X_add_number == 1) {
605 opcode |= UI_BIT;
606 continue;
607 }
608 }
609 break;
610
611 case 'r': /* RND bits of CONVERT */
612 if (operand->X_seg == SEG_ABSOLUTE &&
613 operand->X_add_number < 8) {
614 opcode |= operand->X_add_number << 4;
615 continue;
616 }
617 break;
618
619 case 'd': /* FD bits of CONVERT */
620 if (operand->X_seg == SEG_ABSOLUTE &&
621 operand->X_add_number < 4) {
622 opcode |= operand->X_add_number << 2;
623 continue;
624 }
625 break;
626
627
628 case 'f': /* FS bits of CONVERT */
629 if (operand->X_seg == SEG_ABSOLUTE &&
630 operand->X_add_number < 4) {
631 opcode |= operand->X_add_number << 0;
632 continue;
633 }
634 break;
635
636 case 'C':
637 if (operand->X_seg == SEG_ABSOLUTE &&
638 operand->X_add_number < 4) {
639 opcode |= operand->X_add_number << 16;
640 continue;
641 }
642 break;
643
644 case 'F':
645 if (operand->X_seg == SEG_ABSOLUTE &&
646 operand->X_add_number < 16) {
647 opcode |= operand->X_add_number << 18;
648 continue;
649 }
650 break;
651
652 default:
653 BAD_CASE (*args);
fecd2382 654 }
a39116f1
RP
655 /* Types or values of args don't match. */
656 as_bad("Invalid operands");
657 return;
fecd2382 658 }
fecd2382
RP
659}
660
661/*
a39116f1
RP
662 This is identical to the md_atof in m68k.c. I think this is right,
663 but I'm not sure.
664
665 Turn a string in input_line_pointer into a floating point constant of type
666 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
667 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
668 */
fecd2382
RP
669
670/* Equal to MAX_PRECISION in atof-ieee.c */
671#define MAX_LITTLENUMS 6
672
673char *
a39116f1
RP
674 md_atof(type,litP,sizeP)
675char type;
676char *litP;
677int *sizeP;
fecd2382 678{
a39116f1
RP
679 int prec;
680 LITTLENUM_TYPE words[MAX_LITTLENUMS];
681 LITTLENUM_TYPE *wordP;
682 char *t;
683
684 switch(type) {
685
686 case 'f':
687 case 'F':
688 case 's':
689 case 'S':
690 prec = 2;
691 break;
692
693 case 'd':
694 case 'D':
695 case 'r':
696 case 'R':
697 prec = 4;
698 break;
699
700 case 'x':
701 case 'X':
702 prec = 6;
703 break;
704
705 case 'p':
706 case 'P':
707 prec = 6;
708 break;
709
710 default:
711 *sizeP=0;
712 return "Bad call to MD_ATOF()";
713 }
714 t=atof_ieee(input_line_pointer,type,words);
715 if(t)
716 input_line_pointer=t;
717 *sizeP=prec * sizeof(LITTLENUM_TYPE);
718 for(wordP=words;prec--;) {
719 md_number_to_chars(litP,(long)(*wordP++),sizeof(LITTLENUM_TYPE));
720 litP+=sizeof(LITTLENUM_TYPE);
721 }
722 return ""; /* Someone should teach Dean about null pointers */
fecd2382
RP
723}
724
725/*
726 * Write out big-endian.
727 */
728void
a39116f1
RP
729 md_number_to_chars(buf,val,n)
730char *buf;
731long val;
732int n;
fecd2382 733{
a39116f1
RP
734
735 switch(n) {
736
737 case 4:
738 *buf++ = val >> 24;
739 *buf++ = val >> 16;
740 case 2:
741 *buf++ = val >> 8;
742 case 1:
743 *buf = val;
744 break;
745
746 default:
747 as_fatal("failed sanity check.");
748 }
749 return;
fecd2382
RP
750}
751
752void md_apply_fix(fixP, val)
a39116f1
RP
753fixS *fixP;
754long val;
fecd2382 755{
a39116f1
RP
756 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
757
758 fixP->fx_addnumber = val; /* Remember value for emit_reloc */
759
760
761 know(fixP->fx_size == 4);
762 know(fixP->fx_r_type < NO_RELOC);
763
764 /*
765 * This is a hack. There should be a better way to
766 * handle this.
767 */
768 if (fixP->fx_r_type == RELOC_WDISP30 && fixP->fx_addsy) {
769 val += fixP->fx_where + fixP->fx_frag->fr_address;
770 }
771
772 switch (fixP->fx_r_type) {
773
774 case RELOC_32:
775 buf[0] = val >> 24;
776 buf[1] = val >> 16;
777 buf[2] = val >> 8;
778 buf[3] = val;
779 break;
780
781 case RELOC_8:
782 buf[0] = val;
783 break;
784
785 case RELOC_WDISP30:
786 val = (val >>= 2) + 1;
787 buf[0] |= (val >> 24) & 0x3f;
788 buf[1]= (val >> 16);
789 buf[2] = val >> 8;
790 buf[3] = val;
791 break;
792
793 case RELOC_HI22:
794 buf[1] |= (val >> 26) & 0x3f;
795 buf[2] = val >> 18;
796 buf[3] = val >> 10;
797 break;
798
799 case RELOC_LO10:
800 buf[2] |= (val >> 8) & 0x03;
801 buf[3] = val;
802 break;
803
804 case RELOC_BASE13:
805 buf[2] |= (val >> 8) & 0x1f;
806 buf[3] = val;
807 break;
808
809 case RELOC_WDISP22:
810 val = (val >>= 2) + 1;
811 /* FALLTHROUGH */
812 case RELOC_BASE22:
813 buf[1] |= (val >> 16) & 0x3f;
814 buf[2] = val >> 8;
815 buf[3] = val;
816 break;
817
fecd2382 818#if 0
a39116f1
RP
819 case RELOC_PC10:
820 case RELOC_PC22:
821 case RELOC_JMP_TBL:
822 case RELOC_SEGOFF16:
823 case RELOC_GLOB_DAT:
824 case RELOC_JMP_SLOT:
825 case RELOC_RELATIVE:
fecd2382 826#endif
a39116f1
RP
827 case RELOC_JUMPTARG: /* 00XX00XX pattern in a word */
828 buf[1] = val >> 10; /* Holds bits 0003FFFC of address */
829 buf[3] = val >> 2;
830 break;
831
832 case RELOC_CONST: /* 00XX00XX pattern in a word */
833 buf[1] = val >> 8; /* Holds bits 0000XXXX */
834 buf[3] = val;
835 break;
836
837 case RELOC_CONSTH: /* 00XX00XX pattern in a word */
838 buf[1] = val >> 24; /* Holds bits XXXX0000 */
839 buf[3] = val >> 16;
840 break;
841
842 case NO_RELOC:
843 default:
844 as_bad("bad relocation type: 0x%02x", fixP->fx_r_type);
845 break;
846 }
847 return;
fecd2382
RP
848}
849
850#ifdef OBJ_COFF
851short tc_coff_fix2rtype(fixP)
852fixS *fixP;
853{
a39116f1 854
fecd2382
RP
855 switch (fixP->fx_r_type) {
856 case RELOC_32: return(R_WORD);
857 case RELOC_8: return(R_BYTE);
57574979
SC
858 case RELOC_CONST: return (R_ILOHALF);
859 case RELOC_CONSTH: return (R_IHIHALF);
860 case RELOC_JUMPTARG: return (R_IREL);
861 default: printf("need %o3\n", fixP->fx_r_type);
d312e231 862 abort();
fecd2382 863 } /* switch on type */
a39116f1 864
fecd2382
RP
865 return(0);
866} /* tc_coff_fix2rtype() */
867#endif /* OBJ_COFF */
868
869/* should never be called for sparc */
870void md_create_short_jump(ptr, from_addr, to_addr, frag, to_symbol)
a39116f1
RP
871char *ptr;
872long from_addr, to_addr;
fecd2382
RP
873fragS *frag;
874symbolS *to_symbol;
875{
a39116f1 876 as_fatal("a29k_create_short_jmp\n");
fecd2382
RP
877}
878
fecd2382 879/* should never be called for 29k */
f6e504fe
RP
880void md_convert_frag(headers, fragP)
881object_headers *headers;
a39116f1 882register fragS *fragP;
fecd2382 883{
a39116f1 884 as_fatal("sparc_convert_frag\n");
fecd2382
RP
885}
886
887/* should never be called for 29k */
888void md_create_long_jump(ptr, from_addr, to_addr, frag, to_symbol)
a39116f1 889char *ptr;
542e1629
RP
890long from_addr;
891long to_addr;
a39116f1
RP
892fragS *frag;
893symbolS *to_symbol;
fecd2382 894{
ac1ac0cd 895 as_fatal("sparc_create_long_jump\n");
fecd2382
RP
896}
897
542e1629 898/* should never be called for a29k */
fecd2382 899int md_estimate_size_before_relax(fragP, segtype)
a39116f1 900register fragS *fragP;
fecd2382
RP
901segT segtype;
902{
a39116f1 903 as_fatal("sparc_estimate_size_before_relax\n");
542e1629 904 return(0);
fecd2382
RP
905}
906
907#if 0
908/* for debugging only */
909static void
a39116f1
RP
910 print_insn(insn)
911struct machine_it *insn;
fecd2382 912{
a39116f1
RP
913 char *Reloc[] = {
914 "RELOC_8",
915 "RELOC_16",
916 "RELOC_32",
917 "RELOC_DISP8",
918 "RELOC_DISP16",
919 "RELOC_DISP32",
920 "RELOC_WDISP30",
921 "RELOC_WDISP22",
922 "RELOC_HI22",
923 "RELOC_22",
924 "RELOC_13",
925 "RELOC_LO10",
926 "RELOC_SFA_BASE",
927 "RELOC_SFA_OFF13",
928 "RELOC_BASE10",
929 "RELOC_BASE13",
930 "RELOC_BASE22",
931 "RELOC_PC10",
932 "RELOC_PC22",
933 "RELOC_JMP_TBL",
934 "RELOC_SEGOFF16",
935 "RELOC_GLOB_DAT",
936 "RELOC_JMP_SLOT",
937 "RELOC_RELATIVE",
938 "NO_RELOC"
939 };
940
941 if (insn->error) {
942 fprintf(stderr, "ERROR: %s\n");
943 }
944 fprintf(stderr, "opcode=0x%08x\n", insn->opcode);
945 fprintf(stderr, "reloc = %s\n", Reloc[insn->reloc]);
946 fprintf(stderr, "exp = {\n");
947 fprintf(stderr, "\t\tX_add_symbol = %s\n",
948 insn->exp.X_add_symbol ?
949 (S_GET_NAME(insn->exp.X_add_symbol) ?
950 S_GET_NAME(insn->exp.X_add_symbol) : "???") : "0");
951 fprintf(stderr, "\t\tX_sub_symbol = %s\n",
952 insn->exp.X_subtract_symbol ?
953 (S_GET_NAME(insn->exp.X_subtract_symbol) ?
954 S_GET_NAME(insn->exp.X_subtract_symbol) : "???") : "0");
955 fprintf(stderr, "\t\tX_add_number = %d\n",
956 insn->exp.X_add_number);
957 fprintf(stderr, "}\n");
958 return;
fecd2382
RP
959}
960#endif
961
a79c6033 962/* Translate internal representation of relocation info to target format.
a39116f1 963
a79c6033
RP
964 On sparc/29k: first 4 bytes are normal unsigned long address, next three
965 bytes are index, most sig. byte first. Byte 7 is broken up with
966 bit 7 as external, bits 6 & 5 unused, and the lower
967 five bits as relocation type. Next 4 bytes are long addend. */
968/* Thanx and a tip of the hat to Michael Bloom, mb@ttidca.tti.com */
fecd2382 969
a79c6033 970#ifdef OBJ_AOUT
fecd2382 971
a79c6033
RP
972void tc_aout_fix_to_chars(where, fixP, segment_address_in_file)
973char *where;
974fixS *fixP;
975relax_addressT segment_address_in_file;
976{
542e1629 977 long r_symbolnum;
a79c6033
RP
978
979 know(fixP->fx_r_type < NO_RELOC);
980 know(fixP->fx_addsy != NULL);
981
a79c6033
RP
982 md_number_to_chars(where,
983 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
984 4);
985
542e1629
RP
986 r_symbolnum = (S_IS_DEFINED(fixP->fx_addsy)
987 ? S_GET_TYPE(fixP->fx_addsy)
988 : fixP->fx_addsy->sy_number);
989
990 where[4] = (r_symbolnum >> 16) & 0x0ff;
991 where[5] = (r_symbolnum >> 8) & 0x0ff;
992 where[6] = r_symbolnum & 0x0ff;
a79c6033
RP
993 where[7] = (((!S_IS_DEFINED(fixP->fx_addsy)) << 7) & 0x80) | (0 & 0x60) | (fixP->fx_r_type & 0x1F);
994 /* Also easy */
995 md_number_to_chars(&where[8], fixP->fx_addnumber, 4);
a39116f1 996
a79c6033
RP
997 return;
998} /* tc_aout_fix_to_chars() */
fecd2382
RP
999
1000#endif /* OBJ_AOUT */
1001
1002int
a39116f1
RP
1003 md_parse_option(argP,cntP,vecP)
1004char **argP;
1005int *cntP;
1006char ***vecP;
fecd2382 1007{
a39116f1 1008 return(0);
fecd2382
RP
1009}
1010
1011
1012/* Default the values of symbols known that should be "predefined". We
1013 don't bother to predefine them unless you actually use one, since there
1014 are a lot of them. */
1015
1016symbolS *md_undefined_symbol (name)
a39116f1 1017char *name;
fecd2382 1018{
a39116f1
RP
1019 long regnum;
1020 char testbuf[5+ /*SLOP*/ 5];
1021
1022 if (name[0] == 'g' || name[0] == 'G' || name[0] == 'l' || name[0] == 'L')
1023 {
1024 /* Perhaps a global or local register name */
1025 if (name[1] == 'r' || name[1] == 'R')
1026 {
1027 /* Parse the number, make sure it has no extra zeroes or trailing
1028 chars */
1029 regnum = atol(&name[2]);
1030 if (regnum > 127)
1031 return 0;
1032 sprintf(testbuf, "%ld", regnum);
1033 if (strcmp (testbuf, &name[2]) != 0)
1034 return 0; /* gr007 or lr7foo or whatever */
1035
1036 /* We have a wiener! Define and return a new symbol for it. */
1037 if (name[0] == 'l' || name[0] == 'L')
1038 regnum += 128;
1039 return(symbol_new(name, SEG_REGISTER, regnum, &zero_address_frag));
1040 }
1041 }
1042
1043 return 0;
fecd2382
RP
1044}
1045
1046/* Parse an operand that is machine-specific. */
1047
1048void md_operand(expressionP)
a39116f1 1049expressionS *expressionP;
fecd2382 1050{
a39116f1
RP
1051
1052 if (input_line_pointer[0] == '%' && input_line_pointer[1] == '%')
1053 {
1054 /* We have a numeric register expression. No biggy. */
1055 input_line_pointer += 2; /* Skip %% */
1056 (void)expression (expressionP);
1057 if (expressionP->X_seg != SEG_ABSOLUTE
1058 || expressionP->X_add_number > 255)
1059 as_bad("Invalid expression after %%%%\n");
1060 expressionP->X_seg = SEG_REGISTER;
1061 }
1062 else if (input_line_pointer[0] == '&')
1063 {
1064 /* We are taking the 'address' of a register...this one is not
1065 in the manual, but it *is* in traps/fpsymbol.h! What they
1066 seem to want is the register number, as an absolute number. */
1067 input_line_pointer++; /* Skip & */
1068 (void)expression (expressionP);
1069 if (expressionP->X_seg != SEG_REGISTER)
1070 as_bad("Invalid register in & expression");
1071 else
1072 expressionP->X_seg = SEG_ABSOLUTE;
1073 }
fecd2382
RP
1074}
1075
1076/* Round up a section size to the appropriate boundary. */
1077long
a39116f1
RP
1078 md_section_align (segment, size)
1079segT segment;
1080long size;
fecd2382 1081{
a39116f1 1082 return size; /* Byte alignment is fine */
fecd2382
RP
1083}
1084
1085/* Exactly what point is a PC-relative offset relative TO?
1086 On the 29000, they're relative to the address of the instruction,
1087 which we have set up as the address of the fixup too. */
1088long md_pcrel_from (fixP)
a39116f1 1089fixS *fixP;
fecd2382 1090{
a39116f1 1091 return fixP->fx_where + fixP->fx_frag->fr_address;
fecd2382
RP
1092}
1093
1094/*
1095 * Local Variables:
1096 * comment-column: 0
1097 * End:
1098 */
1099
1100/* end of tc-a29k.c */
This page took 0.100798 seconds and 4 git commands to generate.