dwarf: Also match abbrev base when searching abbrev list
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
b3adc24a 3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
7e84b55d
TC
58/* Currently active instruction sequence. */
59static aarch64_instr_sequence *insn_sequence = NULL;
60
a06ea964
NC
61#ifdef OBJ_ELF
62/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
63static symbolS *GOT_symbol;
cec5225b 64
69091a2c
YZ
65/* Which ABI to use. */
66enum aarch64_abi_type
67{
3c0367d0
JW
68 AARCH64_ABI_NONE = 0,
69 AARCH64_ABI_LP64 = 1,
70 AARCH64_ABI_ILP32 = 2
69091a2c
YZ
71};
72
3c0367d0
JW
73#ifndef DEFAULT_ARCH
74#define DEFAULT_ARCH "aarch64"
75#endif
76
77/* DEFAULT_ARCH is initialized in gas/configure.tgt. */
78static const char *default_arch = DEFAULT_ARCH;
79
69091a2c 80/* AArch64 ABI for the output file. */
3c0367d0 81static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
69091a2c 82
cec5225b
YZ
83/* When non-zero, program to a 32-bit model, in which the C data types
84 int, long and all pointer types are 32-bit objects (ILP32); or to a
85 64-bit model, in which the C int type is 32-bits but the C long type
86 and all pointer types are 64-bit objects (LP64). */
69091a2c 87#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
88#endif
89
f06935a5 90enum vector_el_type
a06ea964
NC
91{
92 NT_invtype = -1,
93 NT_b,
94 NT_h,
95 NT_s,
96 NT_d,
d50c751e
RS
97 NT_q,
98 NT_zero,
99 NT_merge
a06ea964
NC
100};
101
8f9a77af 102/* Bits for DEFINED field in vector_type_el. */
f11ad6bc
RS
103#define NTA_HASTYPE 1
104#define NTA_HASINDEX 2
105#define NTA_HASVARWIDTH 4
a06ea964 106
8f9a77af 107struct vector_type_el
a06ea964 108{
f06935a5 109 enum vector_el_type type;
a06ea964
NC
110 unsigned char defined;
111 unsigned width;
112 int64_t index;
113};
114
115#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
116
117struct reloc
118{
119 bfd_reloc_code_real_type type;
120 expressionS exp;
121 int pc_rel;
122 enum aarch64_opnd opnd;
123 uint32_t flags;
124 unsigned need_libopcodes_p : 1;
125};
126
127struct aarch64_instruction
128{
129 /* libopcodes structure for instruction intermediate representation. */
130 aarch64_inst base;
131 /* Record assembly errors found during the parsing. */
132 struct
133 {
134 enum aarch64_operand_error_kind kind;
135 const char *error;
136 } parsing_error;
137 /* The condition that appears in the assembly line. */
138 int cond;
139 /* Relocation information (including the GAS internal fixup). */
140 struct reloc reloc;
141 /* Need to generate an immediate in the literal pool. */
142 unsigned gen_lit_pool : 1;
143};
144
145typedef struct aarch64_instruction aarch64_instruction;
146
147static aarch64_instruction inst;
148
149static bfd_boolean parse_operands (char *, const aarch64_opcode *);
150static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
151
7e84b55d
TC
152#ifdef OBJ_ELF
153# define now_instr_sequence seg_info \
154 (now_seg)->tc_segment_info_data.insn_sequence
155#else
156static struct aarch64_instr_sequence now_instr_sequence;
157#endif
158
33eaf5de 159/* Diagnostics inline function utilities.
a06ea964 160
33eaf5de 161 These are lightweight utilities which should only be called by parse_operands
a06ea964
NC
162 and other parsers. GAS processes each assembly line by parsing it against
163 instruction template(s), in the case of multiple templates (for the same
164 mnemonic name), those templates are tried one by one until one succeeds or
165 all fail. An assembly line may fail a few templates before being
166 successfully parsed; an error saved here in most cases is not a user error
167 but an error indicating the current template is not the right template.
168 Therefore it is very important that errors can be saved at a low cost during
169 the parsing; we don't want to slow down the whole parsing by recording
170 non-user errors in detail.
171
33eaf5de 172 Remember that the objective is to help GAS pick up the most appropriate
a06ea964
NC
173 error message in the case of multiple templates, e.g. FMOV which has 8
174 templates. */
175
176static inline void
177clear_error (void)
178{
179 inst.parsing_error.kind = AARCH64_OPDE_NIL;
180 inst.parsing_error.error = NULL;
181}
182
183static inline bfd_boolean
184error_p (void)
185{
186 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
187}
188
189static inline const char *
190get_error_message (void)
191{
192 return inst.parsing_error.error;
193}
194
a06ea964
NC
195static inline enum aarch64_operand_error_kind
196get_error_kind (void)
197{
198 return inst.parsing_error.kind;
199}
200
a06ea964
NC
201static inline void
202set_error (enum aarch64_operand_error_kind kind, const char *error)
203{
204 inst.parsing_error.kind = kind;
205 inst.parsing_error.error = error;
206}
207
208static inline void
209set_recoverable_error (const char *error)
210{
211 set_error (AARCH64_OPDE_RECOVERABLE, error);
212}
213
214/* Use the DESC field of the corresponding aarch64_operand entry to compose
215 the error message. */
216static inline void
217set_default_error (void)
218{
219 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
220}
221
222static inline void
223set_syntax_error (const char *error)
224{
225 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
226}
227
228static inline void
229set_first_syntax_error (const char *error)
230{
231 if (! error_p ())
232 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
233}
234
235static inline void
236set_fatal_syntax_error (const char *error)
237{
238 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
239}
240\f
a06ea964
NC
241/* Return value for certain parsers when the parsing fails; those parsers
242 return the information of the parsed result, e.g. register number, on
243 success. */
244#define PARSE_FAIL -1
245
246/* This is an invalid condition code that means no conditional field is
247 present. */
248#define COND_ALWAYS 0x10
249
a06ea964
NC
250typedef struct
251{
252 const char *template;
253 uint32_t value;
254} asm_nzcv;
255
256struct reloc_entry
257{
258 char *name;
259 bfd_reloc_code_real_type reloc;
260};
261
a06ea964
NC
262/* Macros to define the register types and masks for the purpose
263 of parsing. */
264
265#undef AARCH64_REG_TYPES
266#define AARCH64_REG_TYPES \
267 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
268 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
269 BASIC_REG_TYPE(SP_32) /* wsp */ \
270 BASIC_REG_TYPE(SP_64) /* sp */ \
271 BASIC_REG_TYPE(Z_32) /* wzr */ \
272 BASIC_REG_TYPE(Z_64) /* xzr */ \
273 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
274 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
275 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
276 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
277 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
a06ea964 278 BASIC_REG_TYPE(VN) /* v[0-31] */ \
f11ad6bc
RS
279 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
280 BASIC_REG_TYPE(PN) /* p[0-15] */ \
e1b988bb 281 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
a06ea964 282 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
4df068de
RS
283 /* Typecheck: same, plus SVE registers. */ \
284 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
285 | REG_TYPE(ZN)) \
e1b988bb
RS
286 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
287 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
4df068de
RS
289 /* Typecheck: same, plus SVE registers. */ \
290 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
291 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
292 | REG_TYPE(ZN)) \
e1b988bb
RS
293 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
294 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
295 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
296 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
a06ea964
NC
297 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
298 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
299 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
300 /* Typecheck: any [BHSDQ]P FP. */ \
301 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
302 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
e1b988bb 303 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
a06ea964
NC
304 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
305 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
306 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
307 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
5b2b928e
JB
308 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
309 be used for SVE instructions, since Zn and Pn are valid symbols \
c0890d26 310 in other contexts. */ \
5b2b928e
JB
311 MULTI_REG_TYPE(R_Z_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
312 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
c0890d26
RS
313 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
314 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
315 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
316 | REG_TYPE(ZN) | REG_TYPE(PN)) \
a06ea964
NC
317 /* Any integer register; used for error messages only. */ \
318 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
319 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
320 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
321 /* Pseudo type to mark the end of the enumerator sequence. */ \
322 BASIC_REG_TYPE(MAX)
323
324#undef BASIC_REG_TYPE
325#define BASIC_REG_TYPE(T) REG_TYPE_##T,
326#undef MULTI_REG_TYPE
327#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
328
329/* Register type enumerators. */
8a0b252a 330typedef enum aarch64_reg_type_
a06ea964
NC
331{
332 /* A list of REG_TYPE_*. */
333 AARCH64_REG_TYPES
334} aarch64_reg_type;
335
336#undef BASIC_REG_TYPE
337#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
338#undef REG_TYPE
339#define REG_TYPE(T) (1 << REG_TYPE_##T)
340#undef MULTI_REG_TYPE
341#define MULTI_REG_TYPE(T,V) V,
342
8a0b252a
TS
343/* Structure for a hash table entry for a register. */
344typedef struct
345{
346 const char *name;
347 unsigned char number;
348 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
349 unsigned char builtin;
350} reg_entry;
351
a06ea964
NC
352/* Values indexed by aarch64_reg_type to assist the type checking. */
353static const unsigned reg_type_masks[] =
354{
355 AARCH64_REG_TYPES
356};
357
358#undef BASIC_REG_TYPE
359#undef REG_TYPE
360#undef MULTI_REG_TYPE
361#undef AARCH64_REG_TYPES
362
363/* Diagnostics used when we don't get a register of the expected type.
364 Note: this has to synchronized with aarch64_reg_type definitions
365 above. */
366static const char *
367get_reg_expected_msg (aarch64_reg_type reg_type)
368{
369 const char *msg;
370
371 switch (reg_type)
372 {
373 case REG_TYPE_R_32:
374 msg = N_("integer 32-bit register expected");
375 break;
376 case REG_TYPE_R_64:
377 msg = N_("integer 64-bit register expected");
378 break;
379 case REG_TYPE_R_N:
380 msg = N_("integer register expected");
381 break;
e1b988bb
RS
382 case REG_TYPE_R64_SP:
383 msg = N_("64-bit integer or SP register expected");
384 break;
4df068de
RS
385 case REG_TYPE_SVE_BASE:
386 msg = N_("base register expected");
387 break;
e1b988bb
RS
388 case REG_TYPE_R_Z:
389 msg = N_("integer or zero register expected");
390 break;
4df068de
RS
391 case REG_TYPE_SVE_OFFSET:
392 msg = N_("offset register expected");
393 break;
e1b988bb
RS
394 case REG_TYPE_R_SP:
395 msg = N_("integer or SP register expected");
396 break;
a06ea964
NC
397 case REG_TYPE_R_Z_SP:
398 msg = N_("integer, zero or SP register expected");
399 break;
400 case REG_TYPE_FP_B:
401 msg = N_("8-bit SIMD scalar register expected");
402 break;
403 case REG_TYPE_FP_H:
404 msg = N_("16-bit SIMD scalar or floating-point half precision "
405 "register expected");
406 break;
407 case REG_TYPE_FP_S:
408 msg = N_("32-bit SIMD scalar or floating-point single precision "
409 "register expected");
410 break;
411 case REG_TYPE_FP_D:
412 msg = N_("64-bit SIMD scalar or floating-point double precision "
413 "register expected");
414 break;
415 case REG_TYPE_FP_Q:
416 msg = N_("128-bit SIMD scalar or floating-point quad precision "
417 "register expected");
418 break;
a06ea964 419 case REG_TYPE_R_Z_BHSDQ_V:
5b2b928e 420 case REG_TYPE_R_Z_SP_BHSDQ_VZP:
a06ea964
NC
421 msg = N_("register expected");
422 break;
423 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
424 msg = N_("SIMD scalar or floating-point register expected");
425 break;
426 case REG_TYPE_VN: /* any V reg */
427 msg = N_("vector register expected");
428 break;
f11ad6bc
RS
429 case REG_TYPE_ZN:
430 msg = N_("SVE vector register expected");
431 break;
432 case REG_TYPE_PN:
433 msg = N_("SVE predicate register expected");
434 break;
a06ea964
NC
435 default:
436 as_fatal (_("invalid register type %d"), reg_type);
437 }
438 return msg;
439}
440
441/* Some well known registers that we refer to directly elsewhere. */
442#define REG_SP 31
c469c864 443#define REG_ZR 31
a06ea964
NC
444
445/* Instructions take 4 bytes in the object file. */
446#define INSN_SIZE 4
447
629310ab
ML
448static htab_t aarch64_ops_hsh;
449static htab_t aarch64_cond_hsh;
450static htab_t aarch64_shift_hsh;
451static htab_t aarch64_sys_regs_hsh;
452static htab_t aarch64_pstatefield_hsh;
453static htab_t aarch64_sys_regs_ic_hsh;
454static htab_t aarch64_sys_regs_dc_hsh;
455static htab_t aarch64_sys_regs_at_hsh;
456static htab_t aarch64_sys_regs_tlbi_hsh;
457static htab_t aarch64_sys_regs_sr_hsh;
458static htab_t aarch64_reg_hsh;
459static htab_t aarch64_barrier_opt_hsh;
460static htab_t aarch64_nzcv_hsh;
461static htab_t aarch64_pldop_hsh;
462static htab_t aarch64_hint_opt_hsh;
a06ea964
NC
463
464/* Stuff needed to resolve the label ambiguity
465 As:
466 ...
467 label: <insn>
468 may differ from:
469 ...
470 label:
471 <insn> */
472
473static symbolS *last_label_seen;
474
475/* Literal pool structure. Held on a per-section
476 and per-sub-section basis. */
477
478#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
479typedef struct literal_expression
480{
481 expressionS exp;
482 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
483 LITTLENUM_TYPE * bignum;
484} literal_expression;
485
a06ea964
NC
486typedef struct literal_pool
487{
55d9b4c1 488 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
489 unsigned int next_free_entry;
490 unsigned int id;
491 symbolS *symbol;
492 segT section;
493 subsegT sub_section;
494 int size;
495 struct literal_pool *next;
496} literal_pool;
497
498/* Pointer to a linked list of literal pools. */
499static literal_pool *list_of_pools = NULL;
500\f
501/* Pure syntax. */
502
503/* This array holds the chars that always start a comment. If the
504 pre-processor is disabled, these aren't very useful. */
505const char comment_chars[] = "";
506
507/* This array holds the chars that only start a comment at the beginning of
508 a line. If the line seems to have the form '# 123 filename'
509 .line and .file directives will appear in the pre-processed output. */
510/* Note that input_file.c hand checks for '#' at the beginning of the
511 first line of the input file. This is because the compiler outputs
512 #NO_APP at the beginning of its output. */
513/* Also note that comments like this one will always work. */
514const char line_comment_chars[] = "#";
515
516const char line_separator_chars[] = ";";
517
518/* Chars that can be used to separate mant
519 from exp in floating point numbers. */
520const char EXP_CHARS[] = "eE";
521
522/* Chars that mean this number is a floating point constant. */
523/* As in 0f12.456 */
524/* or 0d1.2345e12 */
525
b20d3859 526const char FLT_CHARS[] = "rRsSfFdDxXeEpPhH";
a06ea964
NC
527
528/* Prefix character that indicates the start of an immediate value. */
529#define is_immediate_prefix(C) ((C) == '#')
530
531/* Separator character handling. */
532
533#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
534
535static inline bfd_boolean
536skip_past_char (char **str, char c)
537{
538 if (**str == c)
539 {
540 (*str)++;
541 return TRUE;
542 }
543 else
544 return FALSE;
545}
546
547#define skip_past_comma(str) skip_past_char (str, ',')
548
549/* Arithmetic expressions (possibly involving symbols). */
550
a06ea964
NC
551static bfd_boolean in_my_get_expression_p = FALSE;
552
553/* Third argument to my_get_expression. */
554#define GE_NO_PREFIX 0
555#define GE_OPT_PREFIX 1
556
557/* Return TRUE if the string pointed by *STR is successfully parsed
558 as an valid expression; *EP will be filled with the information of
559 such an expression. Otherwise return FALSE. */
560
561static bfd_boolean
562my_get_expression (expressionS * ep, char **str, int prefix_mode,
563 int reject_absent)
564{
565 char *save_in;
566 segT seg;
567 int prefix_present_p = 0;
568
569 switch (prefix_mode)
570 {
571 case GE_NO_PREFIX:
572 break;
573 case GE_OPT_PREFIX:
574 if (is_immediate_prefix (**str))
575 {
576 (*str)++;
577 prefix_present_p = 1;
578 }
579 break;
580 default:
581 abort ();
582 }
583
584 memset (ep, 0, sizeof (expressionS));
585
586 save_in = input_line_pointer;
587 input_line_pointer = *str;
588 in_my_get_expression_p = TRUE;
589 seg = expression (ep);
590 in_my_get_expression_p = FALSE;
591
592 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
593 {
594 /* We found a bad expression in md_operand(). */
595 *str = input_line_pointer;
596 input_line_pointer = save_in;
597 if (prefix_present_p && ! error_p ())
598 set_fatal_syntax_error (_("bad expression"));
599 else
600 set_first_syntax_error (_("bad expression"));
601 return FALSE;
602 }
603
604#ifdef OBJ_AOUT
605 if (seg != absolute_section
606 && seg != text_section
607 && seg != data_section
608 && seg != bss_section && seg != undefined_section)
609 {
610 set_syntax_error (_("bad segment"));
611 *str = input_line_pointer;
612 input_line_pointer = save_in;
613 return FALSE;
614 }
615#else
616 (void) seg;
617#endif
618
a06ea964
NC
619 *str = input_line_pointer;
620 input_line_pointer = save_in;
621 return TRUE;
622}
623
624/* Turn a string in input_line_pointer into a floating point constant
625 of type TYPE, and store the appropriate bytes in *LITP. The number
626 of LITTLENUMS emitted is stored in *SIZEP. An error message is
627 returned, or NULL on OK. */
628
6d4af3c2 629const char *
a06ea964
NC
630md_atof (int type, char *litP, int *sizeP)
631{
eb5bbc48
MM
632 /* If this is a bfloat16 type, then parse it slightly differently -
633 as it does not follow the IEEE standard exactly. */
634 if (type == 'b')
635 {
636 char * t;
637 LITTLENUM_TYPE words[MAX_LITTLENUMS];
638 FLONUM_TYPE generic_float;
639
640 t = atof_ieee_detail (input_line_pointer, 1, 8, words, &generic_float);
641
642 if (t)
643 input_line_pointer = t;
644 else
645 return _("invalid floating point number");
646
647 switch (generic_float.sign)
648 {
649 /* Is +Inf. */
650 case 'P':
651 words[0] = 0x7f80;
652 break;
653
654 /* Is -Inf. */
655 case 'N':
656 words[0] = 0xff80;
657 break;
658
659 /* Is NaN. */
660 /* bfloat16 has two types of NaN - quiet and signalling.
661 Quiet NaN has bit[6] == 1 && faction != 0, whereas
662 signalling Nan's have bit[0] == 0 && fraction != 0.
663 Chose this specific encoding as it is the same form
664 as used by other IEEE 754 encodings in GAS. */
665 case 0:
666 words[0] = 0x7fff;
667 break;
668
669 default:
670 break;
671 }
672
673 *sizeP = 2;
674
675 md_number_to_chars (litP, (valueT) words[0], sizeof (LITTLENUM_TYPE));
676
677 return NULL;
678 }
679
a06ea964
NC
680 return ieee_md_atof (type, litP, sizeP, target_big_endian);
681}
682
683/* We handle all bad expressions here, so that we can report the faulty
684 instruction in the error message. */
685void
686md_operand (expressionS * exp)
687{
688 if (in_my_get_expression_p)
689 exp->X_op = O_illegal;
690}
691
692/* Immediate values. */
693
694/* Errors may be set multiple times during parsing or bit encoding
695 (particularly in the Neon bits), but usually the earliest error which is set
696 will be the most meaningful. Avoid overwriting it with later (cascading)
697 errors by calling this function. */
698
699static void
700first_error (const char *error)
701{
702 if (! error_p ())
703 set_syntax_error (error);
704}
705
2b0f3761 706/* Similar to first_error, but this function accepts formatted error
a06ea964
NC
707 message. */
708static void
709first_error_fmt (const char *format, ...)
710{
711 va_list args;
712 enum
713 { size = 100 };
714 /* N.B. this single buffer will not cause error messages for different
715 instructions to pollute each other; this is because at the end of
716 processing of each assembly line, error message if any will be
717 collected by as_bad. */
718 static char buffer[size];
719
720 if (! error_p ())
721 {
3e0baa28 722 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
723 va_start (args, format);
724 ret = vsnprintf (buffer, size, format, args);
725 know (ret <= size - 1 && ret >= 0);
726 va_end (args);
727 set_syntax_error (buffer);
728 }
729}
730
731/* Register parsing. */
732
733/* Generic register parser which is called by other specialized
734 register parsers.
735 CCP points to what should be the beginning of a register name.
736 If it is indeed a valid register name, advance CCP over it and
737 return the reg_entry structure; otherwise return NULL.
738 It does not issue diagnostics. */
739
740static reg_entry *
741parse_reg (char **ccp)
742{
743 char *start = *ccp;
744 char *p;
745 reg_entry *reg;
746
747#ifdef REGISTER_PREFIX
748 if (*start != REGISTER_PREFIX)
749 return NULL;
750 start++;
751#endif
752
753 p = start;
754 if (!ISALPHA (*p) || !is_name_beginner (*p))
755 return NULL;
756
757 do
758 p++;
759 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
760
629310ab 761 reg = (reg_entry *) str_hash_find_n (aarch64_reg_hsh, start, p - start);
a06ea964
NC
762
763 if (!reg)
764 return NULL;
765
766 *ccp = p;
767 return reg;
768}
769
770/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
771 return FALSE. */
772static bfd_boolean
773aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
774{
e1b988bb 775 return (reg_type_masks[type] & (1 << reg->type)) != 0;
a06ea964
NC
776}
777
4df068de
RS
778/* Try to parse a base or offset register. Allow SVE base and offset
779 registers if REG_TYPE includes SVE registers. Return the register
780 entry on success, setting *QUALIFIER to the register qualifier.
781 Return null otherwise.
e1b988bb 782
a06ea964
NC
783 Note that this function does not issue any diagnostics. */
784
e1b988bb 785static const reg_entry *
4df068de
RS
786aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
787 aarch64_opnd_qualifier_t *qualifier)
a06ea964
NC
788{
789 char *str = *ccp;
790 const reg_entry *reg = parse_reg (&str);
791
792 if (reg == NULL)
e1b988bb 793 return NULL;
a06ea964
NC
794
795 switch (reg->type)
796 {
e1b988bb 797 case REG_TYPE_R_32:
a06ea964 798 case REG_TYPE_SP_32:
e1b988bb
RS
799 case REG_TYPE_Z_32:
800 *qualifier = AARCH64_OPND_QLF_W;
a06ea964 801 break;
e1b988bb 802
a06ea964 803 case REG_TYPE_R_64:
e1b988bb 804 case REG_TYPE_SP_64:
a06ea964 805 case REG_TYPE_Z_64:
e1b988bb 806 *qualifier = AARCH64_OPND_QLF_X;
a06ea964 807 break;
e1b988bb 808
4df068de
RS
809 case REG_TYPE_ZN:
810 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
811 || str[0] != '.')
812 return NULL;
813 switch (TOLOWER (str[1]))
814 {
815 case 's':
816 *qualifier = AARCH64_OPND_QLF_S_S;
817 break;
818 case 'd':
819 *qualifier = AARCH64_OPND_QLF_S_D;
820 break;
821 default:
822 return NULL;
823 }
824 str += 2;
825 break;
826
a06ea964 827 default:
e1b988bb 828 return NULL;
a06ea964
NC
829 }
830
831 *ccp = str;
832
e1b988bb 833 return reg;
a06ea964
NC
834}
835
4df068de
RS
836/* Try to parse a base or offset register. Return the register entry
837 on success, setting *QUALIFIER to the register qualifier. Return null
838 otherwise.
839
840 Note that this function does not issue any diagnostics. */
841
842static const reg_entry *
843aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
844{
845 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
846}
847
f11ad6bc
RS
848/* Parse the qualifier of a vector register or vector element of type
849 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
850 succeeds; otherwise return FALSE.
a06ea964
NC
851
852 Accept only one occurrence of:
65a55fbb 853 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964
NC
854 b h s d q */
855static bfd_boolean
f11ad6bc
RS
856parse_vector_type_for_operand (aarch64_reg_type reg_type,
857 struct vector_type_el *parsed_type, char **str)
a06ea964
NC
858{
859 char *ptr = *str;
860 unsigned width;
861 unsigned element_size;
f06935a5 862 enum vector_el_type type;
a06ea964
NC
863
864 /* skip '.' */
d50c751e 865 gas_assert (*ptr == '.');
a06ea964
NC
866 ptr++;
867
f11ad6bc 868 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
a06ea964
NC
869 {
870 width = 0;
871 goto elt_size;
872 }
873 width = strtoul (ptr, &ptr, 10);
874 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
875 {
876 first_error_fmt (_("bad size %d in vector width specifier"), width);
877 return FALSE;
878 }
879
dc1e8a47 880 elt_size:
a06ea964
NC
881 switch (TOLOWER (*ptr))
882 {
883 case 'b':
884 type = NT_b;
885 element_size = 8;
886 break;
887 case 'h':
888 type = NT_h;
889 element_size = 16;
890 break;
891 case 's':
892 type = NT_s;
893 element_size = 32;
894 break;
895 case 'd':
896 type = NT_d;
897 element_size = 64;
898 break;
899 case 'q':
582e12bf 900 if (reg_type == REG_TYPE_ZN || width == 1)
a06ea964
NC
901 {
902 type = NT_q;
903 element_size = 128;
904 break;
905 }
906 /* fall through. */
907 default:
908 if (*ptr != '\0')
909 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
910 else
911 first_error (_("missing element size"));
912 return FALSE;
913 }
65a55fbb
TC
914 if (width != 0 && width * element_size != 64
915 && width * element_size != 128
916 && !(width == 2 && element_size == 16)
917 && !(width == 4 && element_size == 8))
a06ea964
NC
918 {
919 first_error_fmt (_
920 ("invalid element size %d and vector size combination %c"),
921 width, *ptr);
922 return FALSE;
923 }
924 ptr++;
925
926 parsed_type->type = type;
927 parsed_type->width = width;
928
929 *str = ptr;
930
931 return TRUE;
932}
933
d50c751e
RS
934/* *STR contains an SVE zero/merge predication suffix. Parse it into
935 *PARSED_TYPE and point *STR at the end of the suffix. */
936
937static bfd_boolean
938parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
939{
940 char *ptr = *str;
941
942 /* Skip '/'. */
943 gas_assert (*ptr == '/');
944 ptr++;
945 switch (TOLOWER (*ptr))
946 {
947 case 'z':
948 parsed_type->type = NT_zero;
949 break;
950 case 'm':
951 parsed_type->type = NT_merge;
952 break;
953 default:
954 if (*ptr != '\0' && *ptr != ',')
955 first_error_fmt (_("unexpected character `%c' in predication type"),
956 *ptr);
957 else
958 first_error (_("missing predication type"));
959 return FALSE;
960 }
961 parsed_type->width = 0;
962 *str = ptr + 1;
963 return TRUE;
964}
965
a06ea964
NC
966/* Parse a register of the type TYPE.
967
968 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
969 name or the parsed register is not of TYPE.
970
971 Otherwise return the register number, and optionally fill in the actual
972 type of the register in *RTYPE when multiple alternatives were given, and
973 return the register shape and element index information in *TYPEINFO.
974
975 IN_REG_LIST should be set with TRUE if the caller is parsing a register
976 list. */
977
978static int
979parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
8f9a77af 980 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
a06ea964
NC
981{
982 char *str = *ccp;
983 const reg_entry *reg = parse_reg (&str);
8f9a77af
RS
984 struct vector_type_el atype;
985 struct vector_type_el parsetype;
a06ea964
NC
986 bfd_boolean is_typed_vecreg = FALSE;
987
988 atype.defined = 0;
989 atype.type = NT_invtype;
990 atype.width = -1;
991 atype.index = 0;
992
993 if (reg == NULL)
994 {
995 if (typeinfo)
996 *typeinfo = atype;
997 set_default_error ();
998 return PARSE_FAIL;
999 }
1000
1001 if (! aarch64_check_reg_type (reg, type))
1002 {
1003 DEBUG_TRACE ("reg type check failed");
1004 set_default_error ();
1005 return PARSE_FAIL;
1006 }
1007 type = reg->type;
1008
f11ad6bc 1009 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
d50c751e 1010 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
a06ea964 1011 {
d50c751e
RS
1012 if (*str == '.')
1013 {
1014 if (!parse_vector_type_for_operand (type, &parsetype, &str))
1015 return PARSE_FAIL;
1016 }
1017 else
1018 {
1019 if (!parse_predication_for_operand (&parsetype, &str))
1020 return PARSE_FAIL;
1021 }
a235d3ae 1022
a06ea964
NC
1023 /* Register if of the form Vn.[bhsdq]. */
1024 is_typed_vecreg = TRUE;
1025
f11ad6bc
RS
1026 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
1027 {
1028 /* The width is always variable; we don't allow an integer width
1029 to be specified. */
1030 gas_assert (parsetype.width == 0);
1031 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
1032 }
1033 else if (parsetype.width == 0)
a06ea964
NC
1034 /* Expect index. In the new scheme we cannot have
1035 Vn.[bhsdq] represent a scalar. Therefore any
1036 Vn.[bhsdq] should have an index following it.
33eaf5de 1037 Except in reglists of course. */
a06ea964
NC
1038 atype.defined |= NTA_HASINDEX;
1039 else
1040 atype.defined |= NTA_HASTYPE;
1041
1042 atype.type = parsetype.type;
1043 atype.width = parsetype.width;
1044 }
1045
1046 if (skip_past_char (&str, '['))
1047 {
1048 expressionS exp;
1049
1050 /* Reject Sn[index] syntax. */
1051 if (!is_typed_vecreg)
1052 {
1053 first_error (_("this type of register can't be indexed"));
1054 return PARSE_FAIL;
1055 }
1056
535b785f 1057 if (in_reg_list)
a06ea964
NC
1058 {
1059 first_error (_("index not allowed inside register list"));
1060 return PARSE_FAIL;
1061 }
1062
1063 atype.defined |= NTA_HASINDEX;
1064
1065 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1066
1067 if (exp.X_op != O_constant)
1068 {
1069 first_error (_("constant expression required"));
1070 return PARSE_FAIL;
1071 }
1072
1073 if (! skip_past_char (&str, ']'))
1074 return PARSE_FAIL;
1075
1076 atype.index = exp.X_add_number;
1077 }
1078 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1079 {
1080 /* Indexed vector register expected. */
1081 first_error (_("indexed vector register expected"));
1082 return PARSE_FAIL;
1083 }
1084
1085 /* A vector reg Vn should be typed or indexed. */
1086 if (type == REG_TYPE_VN && atype.defined == 0)
1087 {
1088 first_error (_("invalid use of vector register"));
1089 }
1090
1091 if (typeinfo)
1092 *typeinfo = atype;
1093
1094 if (rtype)
1095 *rtype = type;
1096
1097 *ccp = str;
1098
1099 return reg->number;
1100}
1101
1102/* Parse register.
1103
1104 Return the register number on success; return PARSE_FAIL otherwise.
1105
1106 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1107 the register (e.g. NEON double or quad reg when either has been requested).
1108
1109 If this is a NEON vector register with additional type information, fill
1110 in the struct pointed to by VECTYPE (if non-NULL).
1111
1112 This parser does not handle register list. */
1113
1114static int
1115aarch64_reg_parse (char **ccp, aarch64_reg_type type,
8f9a77af 1116 aarch64_reg_type *rtype, struct vector_type_el *vectype)
a06ea964 1117{
8f9a77af 1118 struct vector_type_el atype;
a06ea964
NC
1119 char *str = *ccp;
1120 int reg = parse_typed_reg (&str, type, rtype, &atype,
1121 /*in_reg_list= */ FALSE);
1122
1123 if (reg == PARSE_FAIL)
1124 return PARSE_FAIL;
1125
1126 if (vectype)
1127 *vectype = atype;
1128
1129 *ccp = str;
1130
1131 return reg;
1132}
1133
1134static inline bfd_boolean
8f9a77af 1135eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
a06ea964
NC
1136{
1137 return
1138 e1.type == e2.type
1139 && e1.defined == e2.defined
1140 && e1.width == e2.width && e1.index == e2.index;
1141}
1142
10d76650
RS
1143/* This function parses a list of vector registers of type TYPE.
1144 On success, it returns the parsed register list information in the
1145 following encoded format:
a06ea964
NC
1146
1147 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1148 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1149
1150 The information of the register shape and/or index is returned in
1151 *VECTYPE.
1152
1153 It returns PARSE_FAIL if the register list is invalid.
1154
1155 The list contains one to four registers.
1156 Each register can be one of:
1157 <Vt>.<T>[<index>]
1158 <Vt>.<T>
1159 All <T> should be identical.
1160 All <index> should be identical.
1161 There are restrictions on <Vt> numbers which are checked later
1162 (by reg_list_valid_p). */
1163
1164static int
10d76650
RS
1165parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1166 struct vector_type_el *vectype)
a06ea964
NC
1167{
1168 char *str = *ccp;
1169 int nb_regs;
8f9a77af 1170 struct vector_type_el typeinfo, typeinfo_first;
a06ea964
NC
1171 int val, val_range;
1172 int in_range;
1173 int ret_val;
1174 int i;
1175 bfd_boolean error = FALSE;
1176 bfd_boolean expect_index = FALSE;
1177
1178 if (*str != '{')
1179 {
1180 set_syntax_error (_("expecting {"));
1181 return PARSE_FAIL;
1182 }
1183 str++;
1184
1185 nb_regs = 0;
1186 typeinfo_first.defined = 0;
1187 typeinfo_first.type = NT_invtype;
1188 typeinfo_first.width = -1;
1189 typeinfo_first.index = 0;
1190 ret_val = 0;
1191 val = -1;
1192 val_range = -1;
1193 in_range = 0;
1194 do
1195 {
1196 if (in_range)
1197 {
1198 str++; /* skip over '-' */
1199 val_range = val;
1200 }
10d76650 1201 val = parse_typed_reg (&str, type, NULL, &typeinfo,
a06ea964
NC
1202 /*in_reg_list= */ TRUE);
1203 if (val == PARSE_FAIL)
1204 {
1205 set_first_syntax_error (_("invalid vector register in list"));
1206 error = TRUE;
1207 continue;
1208 }
1209 /* reject [bhsd]n */
f11ad6bc 1210 if (type == REG_TYPE_VN && typeinfo.defined == 0)
a06ea964
NC
1211 {
1212 set_first_syntax_error (_("invalid scalar register in list"));
1213 error = TRUE;
1214 continue;
1215 }
1216
1217 if (typeinfo.defined & NTA_HASINDEX)
1218 expect_index = TRUE;
1219
1220 if (in_range)
1221 {
1222 if (val < val_range)
1223 {
1224 set_first_syntax_error
1225 (_("invalid range in vector register list"));
1226 error = TRUE;
1227 }
1228 val_range++;
1229 }
1230 else
1231 {
1232 val_range = val;
1233 if (nb_regs == 0)
1234 typeinfo_first = typeinfo;
8f9a77af 1235 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
a06ea964
NC
1236 {
1237 set_first_syntax_error
1238 (_("type mismatch in vector register list"));
1239 error = TRUE;
1240 }
1241 }
1242 if (! error)
1243 for (i = val_range; i <= val; i++)
1244 {
1245 ret_val |= i << (5 * nb_regs);
1246 nb_regs++;
1247 }
1248 in_range = 0;
1249 }
1250 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1251
1252 skip_whitespace (str);
1253 if (*str != '}')
1254 {
1255 set_first_syntax_error (_("end of vector register list not found"));
1256 error = TRUE;
1257 }
1258 str++;
1259
1260 skip_whitespace (str);
1261
1262 if (expect_index)
1263 {
1264 if (skip_past_char (&str, '['))
1265 {
1266 expressionS exp;
1267
1268 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1269 if (exp.X_op != O_constant)
1270 {
1271 set_first_syntax_error (_("constant expression required."));
1272 error = TRUE;
1273 }
1274 if (! skip_past_char (&str, ']'))
1275 error = TRUE;
1276 else
1277 typeinfo_first.index = exp.X_add_number;
1278 }
1279 else
1280 {
1281 set_first_syntax_error (_("expected index"));
1282 error = TRUE;
1283 }
1284 }
1285
1286 if (nb_regs > 4)
1287 {
1288 set_first_syntax_error (_("too many registers in vector register list"));
1289 error = TRUE;
1290 }
1291 else if (nb_regs == 0)
1292 {
1293 set_first_syntax_error (_("empty vector register list"));
1294 error = TRUE;
1295 }
1296
1297 *ccp = str;
1298 if (! error)
1299 *vectype = typeinfo_first;
1300
1301 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1302}
1303
1304/* Directives: register aliases. */
1305
1306static reg_entry *
1307insert_reg_alias (char *str, int number, aarch64_reg_type type)
1308{
1309 reg_entry *new;
1310 const char *name;
1311
629310ab 1312 if ((new = str_hash_find (aarch64_reg_hsh, str)) != 0)
a06ea964
NC
1313 {
1314 if (new->builtin)
1315 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1316 str);
1317
1318 /* Only warn about a redefinition if it's not defined as the
1319 same register. */
1320 else if (new->number != number || new->type != type)
1321 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1322
1323 return NULL;
1324 }
1325
1326 name = xstrdup (str);
add39d23 1327 new = XNEW (reg_entry);
a06ea964
NC
1328
1329 new->name = name;
1330 new->number = number;
1331 new->type = type;
1332 new->builtin = FALSE;
1333
fe0e921f 1334 str_hash_insert (aarch64_reg_hsh, name, new, 0);
a06ea964
NC
1335
1336 return new;
1337}
1338
1339/* Look for the .req directive. This is of the form:
1340
1341 new_register_name .req existing_register_name
1342
1343 If we find one, or if it looks sufficiently like one that we want to
1344 handle any error here, return TRUE. Otherwise return FALSE. */
1345
1346static bfd_boolean
1347create_register_alias (char *newname, char *p)
1348{
1349 const reg_entry *old;
1350 char *oldname, *nbuf;
1351 size_t nlen;
1352
1353 /* The input scrubber ensures that whitespace after the mnemonic is
1354 collapsed to single spaces. */
1355 oldname = p;
1356 if (strncmp (oldname, " .req ", 6) != 0)
1357 return FALSE;
1358
1359 oldname += 6;
1360 if (*oldname == '\0')
1361 return FALSE;
1362
629310ab 1363 old = str_hash_find (aarch64_reg_hsh, oldname);
a06ea964
NC
1364 if (!old)
1365 {
1366 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1367 return TRUE;
1368 }
1369
1370 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1371 the desired alias name, and p points to its end. If not, then
1372 the desired alias name is in the global original_case_string. */
1373#ifdef TC_CASE_SENSITIVE
1374 nlen = p - newname;
1375#else
1376 newname = original_case_string;
1377 nlen = strlen (newname);
1378#endif
1379
29a2809e 1380 nbuf = xmemdup0 (newname, nlen);
a06ea964
NC
1381
1382 /* Create aliases under the new name as stated; an all-lowercase
1383 version of the new name; and an all-uppercase version of the new
1384 name. */
1385 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1386 {
1387 for (p = nbuf; *p; p++)
1388 *p = TOUPPER (*p);
1389
1390 if (strncmp (nbuf, newname, nlen))
1391 {
1392 /* If this attempt to create an additional alias fails, do not bother
1393 trying to create the all-lower case alias. We will fail and issue
1394 a second, duplicate error message. This situation arises when the
1395 programmer does something like:
1396 foo .req r0
1397 Foo .req r1
1398 The second .req creates the "Foo" alias but then fails to create
1399 the artificial FOO alias because it has already been created by the
1400 first .req. */
1401 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
1402 {
1403 free (nbuf);
1404 return TRUE;
1405 }
a06ea964
NC
1406 }
1407
1408 for (p = nbuf; *p; p++)
1409 *p = TOLOWER (*p);
1410
1411 if (strncmp (nbuf, newname, nlen))
1412 insert_reg_alias (nbuf, old->number, old->type);
1413 }
1414
e1fa0163 1415 free (nbuf);
a06ea964
NC
1416 return TRUE;
1417}
1418
1419/* Should never be called, as .req goes between the alias and the
1420 register name, not at the beginning of the line. */
1421static void
1422s_req (int a ATTRIBUTE_UNUSED)
1423{
1424 as_bad (_("invalid syntax for .req directive"));
1425}
1426
1427/* The .unreq directive deletes an alias which was previously defined
1428 by .req. For example:
1429
1430 my_alias .req r11
1431 .unreq my_alias */
1432
1433static void
1434s_unreq (int a ATTRIBUTE_UNUSED)
1435{
1436 char *name;
1437 char saved_char;
1438
1439 name = input_line_pointer;
1440
1441 while (*input_line_pointer != 0
1442 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1443 ++input_line_pointer;
1444
1445 saved_char = *input_line_pointer;
1446 *input_line_pointer = 0;
1447
1448 if (!*name)
1449 as_bad (_("invalid syntax for .unreq directive"));
1450 else
1451 {
629310ab 1452 reg_entry *reg = str_hash_find (aarch64_reg_hsh, name);
a06ea964
NC
1453
1454 if (!reg)
1455 as_bad (_("unknown register alias '%s'"), name);
1456 else if (reg->builtin)
1457 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1458 name);
1459 else
1460 {
1461 char *p;
1462 char *nbuf;
1463
629310ab 1464 str_hash_delete (aarch64_reg_hsh, name);
a06ea964
NC
1465 free ((char *) reg->name);
1466 free (reg);
1467
1468 /* Also locate the all upper case and all lower case versions.
1469 Do not complain if we cannot find one or the other as it
1470 was probably deleted above. */
1471
1472 nbuf = strdup (name);
1473 for (p = nbuf; *p; p++)
1474 *p = TOUPPER (*p);
629310ab 1475 reg = str_hash_find (aarch64_reg_hsh, nbuf);
a06ea964
NC
1476 if (reg)
1477 {
629310ab 1478 str_hash_delete (aarch64_reg_hsh, nbuf);
a06ea964
NC
1479 free ((char *) reg->name);
1480 free (reg);
1481 }
1482
1483 for (p = nbuf; *p; p++)
1484 *p = TOLOWER (*p);
629310ab 1485 reg = str_hash_find (aarch64_reg_hsh, nbuf);
a06ea964
NC
1486 if (reg)
1487 {
629310ab 1488 str_hash_delete (aarch64_reg_hsh, nbuf);
a06ea964
NC
1489 free ((char *) reg->name);
1490 free (reg);
1491 }
1492
1493 free (nbuf);
1494 }
1495 }
1496
1497 *input_line_pointer = saved_char;
1498 demand_empty_rest_of_line ();
1499}
1500
1501/* Directives: Instruction set selection. */
1502
1503#ifdef OBJ_ELF
1504/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1505 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1506 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1507 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1508
1509/* Create a new mapping symbol for the transition to STATE. */
1510
1511static void
1512make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1513{
1514 symbolS *symbolP;
1515 const char *symname;
1516 int type;
1517
1518 switch (state)
1519 {
1520 case MAP_DATA:
1521 symname = "$d";
1522 type = BSF_NO_FLAGS;
1523 break;
1524 case MAP_INSN:
1525 symname = "$x";
1526 type = BSF_NO_FLAGS;
1527 break;
1528 default:
1529 abort ();
1530 }
1531
e01e1cee 1532 symbolP = symbol_new (symname, now_seg, frag, value);
a06ea964
NC
1533 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1534
1535 /* Save the mapping symbols for future reference. Also check that
1536 we do not place two mapping symbols at the same offset within a
1537 frag. We'll handle overlap between frags in
1538 check_mapping_symbols.
1539
1540 If .fill or other data filling directive generates zero sized data,
1541 the mapping symbol for the following code will have the same value
1542 as the one generated for the data filling directive. In this case,
1543 we replace the old symbol with the new one at the same address. */
1544 if (value == 0)
1545 {
1546 if (frag->tc_frag_data.first_map != NULL)
1547 {
1548 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1549 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1550 &symbol_lastP);
1551 }
1552 frag->tc_frag_data.first_map = symbolP;
1553 }
1554 if (frag->tc_frag_data.last_map != NULL)
1555 {
1556 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1557 S_GET_VALUE (symbolP));
1558 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1559 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1560 &symbol_lastP);
1561 }
1562 frag->tc_frag_data.last_map = symbolP;
1563}
1564
1565/* We must sometimes convert a region marked as code to data during
1566 code alignment, if an odd number of bytes have to be padded. The
1567 code mapping symbol is pushed to an aligned address. */
1568
1569static void
1570insert_data_mapping_symbol (enum mstate state,
1571 valueT value, fragS * frag, offsetT bytes)
1572{
1573 /* If there was already a mapping symbol, remove it. */
1574 if (frag->tc_frag_data.last_map != NULL
1575 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1576 frag->fr_address + value)
1577 {
1578 symbolS *symp = frag->tc_frag_data.last_map;
1579
1580 if (value == 0)
1581 {
1582 know (frag->tc_frag_data.first_map == symp);
1583 frag->tc_frag_data.first_map = NULL;
1584 }
1585 frag->tc_frag_data.last_map = NULL;
1586 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1587 }
1588
1589 make_mapping_symbol (MAP_DATA, value, frag);
1590 make_mapping_symbol (state, value + bytes, frag);
1591}
1592
1593static void mapping_state_2 (enum mstate state, int max_chars);
1594
1595/* Set the mapping state to STATE. Only call this when about to
1596 emit some STATE bytes to the file. */
1597
1598void
1599mapping_state (enum mstate state)
1600{
1601 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1602
a578ef7e
JW
1603 if (state == MAP_INSN)
1604 /* AArch64 instructions require 4-byte alignment. When emitting
1605 instructions into any section, record the appropriate section
1606 alignment. */
1607 record_alignment (now_seg, 2);
1608
448eb63d
RL
1609 if (mapstate == state)
1610 /* The mapping symbol has already been emitted.
1611 There is nothing else to do. */
1612 return;
1613
c1baaddf 1614#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1615 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1616 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1617 evaluated later in the next else. */
a06ea964 1618 return;
c1baaddf
RL
1619 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1620 {
1621 /* Only add the symbol if the offset is > 0:
1622 if we're at the first frag, check it's size > 0;
1623 if we're not at the first frag, then for sure
1624 the offset is > 0. */
1625 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1626 const int add_symbol = (frag_now != frag_first)
1627 || (frag_now_fix () > 0);
1628
1629 if (add_symbol)
1630 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1631 }
1632#undef TRANSITION
a06ea964
NC
1633
1634 mapping_state_2 (state, 0);
a06ea964
NC
1635}
1636
1637/* Same as mapping_state, but MAX_CHARS bytes have already been
1638 allocated. Put the mapping symbol that far back. */
1639
1640static void
1641mapping_state_2 (enum mstate state, int max_chars)
1642{
1643 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1644
1645 if (!SEG_NORMAL (now_seg))
1646 return;
1647
1648 if (mapstate == state)
1649 /* The mapping symbol has already been emitted.
1650 There is nothing else to do. */
1651 return;
1652
1653 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1654 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1655}
1656#else
1657#define mapping_state(x) /* nothing */
1658#define mapping_state_2(x, y) /* nothing */
1659#endif
1660
1661/* Directives: sectioning and alignment. */
1662
1663static void
1664s_bss (int ignore ATTRIBUTE_UNUSED)
1665{
1666 /* We don't support putting frags in the BSS segment, we fake it by
1667 marking in_bss, then looking at s_skip for clues. */
1668 subseg_set (bss_section, 0);
1669 demand_empty_rest_of_line ();
1670 mapping_state (MAP_DATA);
1671}
1672
1673static void
1674s_even (int ignore ATTRIBUTE_UNUSED)
1675{
1676 /* Never make frag if expect extra pass. */
1677 if (!need_pass_2)
1678 frag_align (1, 0, 0);
1679
1680 record_alignment (now_seg, 1);
1681
1682 demand_empty_rest_of_line ();
1683}
1684
1685/* Directives: Literal pools. */
1686
1687static literal_pool *
1688find_literal_pool (int size)
1689{
1690 literal_pool *pool;
1691
1692 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1693 {
1694 if (pool->section == now_seg
1695 && pool->sub_section == now_subseg && pool->size == size)
1696 break;
1697 }
1698
1699 return pool;
1700}
1701
1702static literal_pool *
1703find_or_make_literal_pool (int size)
1704{
1705 /* Next literal pool ID number. */
1706 static unsigned int latest_pool_num = 1;
1707 literal_pool *pool;
1708
1709 pool = find_literal_pool (size);
1710
1711 if (pool == NULL)
1712 {
1713 /* Create a new pool. */
add39d23 1714 pool = XNEW (literal_pool);
a06ea964
NC
1715 if (!pool)
1716 return NULL;
1717
1718 /* Currently we always put the literal pool in the current text
1719 section. If we were generating "small" model code where we
1720 knew that all code and initialised data was within 1MB then
1721 we could output literals to mergeable, read-only data
1722 sections. */
1723
1724 pool->next_free_entry = 0;
1725 pool->section = now_seg;
1726 pool->sub_section = now_subseg;
1727 pool->size = size;
1728 pool->next = list_of_pools;
1729 pool->symbol = NULL;
1730
1731 /* Add it to the list. */
1732 list_of_pools = pool;
1733 }
1734
1735 /* New pools, and emptied pools, will have a NULL symbol. */
1736 if (pool->symbol == NULL)
1737 {
1738 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
e01e1cee 1739 &zero_address_frag, 0);
a06ea964
NC
1740 pool->id = latest_pool_num++;
1741 }
1742
1743 /* Done. */
1744 return pool;
1745}
1746
1747/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1748 Return TRUE on success, otherwise return FALSE. */
1749static bfd_boolean
1750add_to_lit_pool (expressionS *exp, int size)
1751{
1752 literal_pool *pool;
1753 unsigned int entry;
1754
1755 pool = find_or_make_literal_pool (size);
1756
1757 /* Check if this literal value is already in the pool. */
1758 for (entry = 0; entry < pool->next_free_entry; entry++)
1759 {
55d9b4c1
NC
1760 expressionS * litexp = & pool->literals[entry].exp;
1761
1762 if ((litexp->X_op == exp->X_op)
a06ea964 1763 && (exp->X_op == O_constant)
55d9b4c1
NC
1764 && (litexp->X_add_number == exp->X_add_number)
1765 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1766 break;
1767
55d9b4c1 1768 if ((litexp->X_op == exp->X_op)
a06ea964 1769 && (exp->X_op == O_symbol)
55d9b4c1
NC
1770 && (litexp->X_add_number == exp->X_add_number)
1771 && (litexp->X_add_symbol == exp->X_add_symbol)
1772 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1773 break;
1774 }
1775
1776 /* Do we need to create a new entry? */
1777 if (entry == pool->next_free_entry)
1778 {
1779 if (entry >= MAX_LITERAL_POOL_SIZE)
1780 {
1781 set_syntax_error (_("literal pool overflow"));
1782 return FALSE;
1783 }
1784
55d9b4c1 1785 pool->literals[entry].exp = *exp;
a06ea964 1786 pool->next_free_entry += 1;
55d9b4c1
NC
1787 if (exp->X_op == O_big)
1788 {
1789 /* PR 16688: Bignums are held in a single global array. We must
1790 copy and preserve that value now, before it is overwritten. */
add39d23
TS
1791 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1792 exp->X_add_number);
55d9b4c1
NC
1793 memcpy (pool->literals[entry].bignum, generic_bignum,
1794 CHARS_PER_LITTLENUM * exp->X_add_number);
1795 }
1796 else
1797 pool->literals[entry].bignum = NULL;
a06ea964
NC
1798 }
1799
1800 exp->X_op = O_symbol;
1801 exp->X_add_number = ((int) entry) * size;
1802 exp->X_add_symbol = pool->symbol;
1803
1804 return TRUE;
1805}
1806
1807/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 1808 a later date assign it a value. That's what these functions do. */
a06ea964
NC
1809
1810static void
1811symbol_locate (symbolS * symbolP,
1812 const char *name,/* It is copied, the caller can modify. */
1813 segT segment, /* Segment identifier (SEG_<something>). */
1814 valueT valu, /* Symbol value. */
1815 fragS * frag) /* Associated fragment. */
1816{
e57e6ddc 1817 size_t name_length;
a06ea964
NC
1818 char *preserved_copy_of_name;
1819
1820 name_length = strlen (name) + 1; /* +1 for \0. */
1821 obstack_grow (&notes, name, name_length);
1822 preserved_copy_of_name = obstack_finish (&notes);
1823
1824#ifdef tc_canonicalize_symbol_name
1825 preserved_copy_of_name =
1826 tc_canonicalize_symbol_name (preserved_copy_of_name);
1827#endif
1828
1829 S_SET_NAME (symbolP, preserved_copy_of_name);
1830
1831 S_SET_SEGMENT (symbolP, segment);
1832 S_SET_VALUE (symbolP, valu);
1833 symbol_clear_list_pointers (symbolP);
1834
1835 symbol_set_frag (symbolP, frag);
1836
1837 /* Link to end of symbol chain. */
1838 {
1839 extern int symbol_table_frozen;
1840
1841 if (symbol_table_frozen)
1842 abort ();
1843 }
1844
1845 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1846
1847 obj_symbol_new_hook (symbolP);
1848
1849#ifdef tc_symbol_new_hook
1850 tc_symbol_new_hook (symbolP);
1851#endif
1852
1853#ifdef DEBUG_SYMS
1854 verify_symbol_chain (symbol_rootP, symbol_lastP);
1855#endif /* DEBUG_SYMS */
1856}
1857
1858
1859static void
1860s_ltorg (int ignored ATTRIBUTE_UNUSED)
1861{
1862 unsigned int entry;
1863 literal_pool *pool;
1864 char sym_name[20];
1865 int align;
1866
67a32447 1867 for (align = 2; align <= 4; align++)
a06ea964
NC
1868 {
1869 int size = 1 << align;
1870
1871 pool = find_literal_pool (size);
1872 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1873 continue;
1874
a06ea964
NC
1875 /* Align pool as you have word accesses.
1876 Only make a frag if we have to. */
1877 if (!need_pass_2)
1878 frag_align (align, 0, 0);
1879
7ea12e5c
NC
1880 mapping_state (MAP_DATA);
1881
a06ea964
NC
1882 record_alignment (now_seg, align);
1883
1884 sprintf (sym_name, "$$lit_\002%x", pool->id);
1885
1886 symbol_locate (pool->symbol, sym_name, now_seg,
1887 (valueT) frag_now_fix (), frag_now);
1888 symbol_table_insert (pool->symbol);
1889
1890 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1891 {
1892 expressionS * exp = & pool->literals[entry].exp;
1893
1894 if (exp->X_op == O_big)
1895 {
1896 /* PR 16688: Restore the global bignum value. */
1897 gas_assert (pool->literals[entry].bignum != NULL);
1898 memcpy (generic_bignum, pool->literals[entry].bignum,
1899 CHARS_PER_LITTLENUM * exp->X_add_number);
1900 }
1901
1902 /* First output the expression in the instruction to the pool. */
1903 emit_expr (exp, size); /* .word|.xword */
1904
1905 if (exp->X_op == O_big)
1906 {
1907 free (pool->literals[entry].bignum);
1908 pool->literals[entry].bignum = NULL;
1909 }
1910 }
a06ea964
NC
1911
1912 /* Mark the pool as empty. */
1913 pool->next_free_entry = 0;
1914 pool->symbol = NULL;
1915 }
1916}
1917
1918#ifdef OBJ_ELF
1919/* Forward declarations for functions below, in the MD interface
1920 section. */
1921static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1922static struct reloc_table_entry * find_reloc_table_entry (char **);
1923
1924/* Directives: Data. */
1925/* N.B. the support for relocation suffix in this directive needs to be
1926 implemented properly. */
1927
1928static void
1929s_aarch64_elf_cons (int nbytes)
1930{
1931 expressionS exp;
1932
1933#ifdef md_flush_pending_output
1934 md_flush_pending_output ();
1935#endif
1936
1937 if (is_it_end_of_statement ())
1938 {
1939 demand_empty_rest_of_line ();
1940 return;
1941 }
1942
1943#ifdef md_cons_align
1944 md_cons_align (nbytes);
1945#endif
1946
1947 mapping_state (MAP_DATA);
1948 do
1949 {
1950 struct reloc_table_entry *reloc;
1951
1952 expression (&exp);
1953
1954 if (exp.X_op != O_symbol)
1955 emit_expr (&exp, (unsigned int) nbytes);
1956 else
1957 {
1958 skip_past_char (&input_line_pointer, '#');
1959 if (skip_past_char (&input_line_pointer, ':'))
1960 {
1961 reloc = find_reloc_table_entry (&input_line_pointer);
1962 if (reloc == NULL)
1963 as_bad (_("unrecognized relocation suffix"));
1964 else
1965 as_bad (_("unimplemented relocation suffix"));
1966 ignore_rest_of_line ();
1967 return;
1968 }
1969 else
1970 emit_expr (&exp, (unsigned int) nbytes);
1971 }
1972 }
1973 while (*input_line_pointer++ == ',');
1974
1975 /* Put terminator back into stream. */
1976 input_line_pointer--;
1977 demand_empty_rest_of_line ();
1978}
1979
f166ae01
SN
1980/* Mark symbol that it follows a variant PCS convention. */
1981
1982static void
1983s_variant_pcs (int ignored ATTRIBUTE_UNUSED)
1984{
1985 char *name;
1986 char c;
1987 symbolS *sym;
1988 asymbol *bfdsym;
1989 elf_symbol_type *elfsym;
1990
1991 c = get_symbol_name (&name);
1992 if (!*name)
1993 as_bad (_("Missing symbol name in directive"));
1994 sym = symbol_find_or_make (name);
1995 restore_line_pointer (c);
1996 demand_empty_rest_of_line ();
1997 bfdsym = symbol_get_bfdsym (sym);
c1229f84 1998 elfsym = elf_symbol_from (bfdsym);
f166ae01
SN
1999 gas_assert (elfsym);
2000 elfsym->internal_elf_sym.st_other |= STO_AARCH64_VARIANT_PCS;
2001}
a06ea964
NC
2002#endif /* OBJ_ELF */
2003
2004/* Output a 32-bit word, but mark as an instruction. */
2005
2006static void
2007s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
2008{
2009 expressionS exp;
2010
2011#ifdef md_flush_pending_output
2012 md_flush_pending_output ();
2013#endif
2014
2015 if (is_it_end_of_statement ())
2016 {
2017 demand_empty_rest_of_line ();
2018 return;
2019 }
2020
a97902de 2021 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
2022 MAP_DATA symbol pending. So we only align the address during
2023 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 2024 For other sections, this is not guaranteed. */
c1baaddf 2025 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 2026 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 2027 frag_align_code (2, 0);
c1baaddf 2028
a06ea964
NC
2029#ifdef OBJ_ELF
2030 mapping_state (MAP_INSN);
2031#endif
2032
2033 do
2034 {
2035 expression (&exp);
2036 if (exp.X_op != O_constant)
2037 {
2038 as_bad (_("constant expression required"));
2039 ignore_rest_of_line ();
2040 return;
2041 }
2042
2043 if (target_big_endian)
2044 {
2045 unsigned int val = exp.X_add_number;
2046 exp.X_add_number = SWAP_32 (val);
2047 }
2048 emit_expr (&exp, 4);
2049 }
2050 while (*input_line_pointer++ == ',');
2051
2052 /* Put terminator back into stream. */
2053 input_line_pointer--;
2054 demand_empty_rest_of_line ();
2055}
2056
3a67e1a6
ST
2057static void
2058s_aarch64_cfi_b_key_frame (int ignored ATTRIBUTE_UNUSED)
2059{
2060 demand_empty_rest_of_line ();
2061 struct fde_entry *fde = frchain_now->frch_cfi_data->cur_fde_data;
2062 fde->pauth_key = AARCH64_PAUTH_KEY_B;
2063}
2064
a06ea964 2065#ifdef OBJ_ELF
43a357f9
RL
2066/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
2067
2068static void
2069s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
2070{
2071 expressionS exp;
2072
2073 expression (&exp);
2074 frag_grow (4);
2075 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2076 BFD_RELOC_AARCH64_TLSDESC_ADD);
2077
2078 demand_empty_rest_of_line ();
2079}
2080
a06ea964
NC
2081/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2082
2083static void
2084s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2085{
2086 expressionS exp;
2087
2088 /* Since we're just labelling the code, there's no need to define a
2089 mapping symbol. */
2090 expression (&exp);
2091 /* Make sure there is enough room in this frag for the following
2092 blr. This trick only works if the blr follows immediately after
2093 the .tlsdesc directive. */
2094 frag_grow (4);
2095 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2096 BFD_RELOC_AARCH64_TLSDESC_CALL);
2097
2098 demand_empty_rest_of_line ();
2099}
43a357f9
RL
2100
2101/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2102
2103static void
2104s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2105{
2106 expressionS exp;
2107
2108 expression (&exp);
2109 frag_grow (4);
2110 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2111 BFD_RELOC_AARCH64_TLSDESC_LDR);
2112
2113 demand_empty_rest_of_line ();
2114}
a06ea964
NC
2115#endif /* OBJ_ELF */
2116
2117static void s_aarch64_arch (int);
2118static void s_aarch64_cpu (int);
ae527cd8 2119static void s_aarch64_arch_extension (int);
a06ea964
NC
2120
2121/* This table describes all the machine specific pseudo-ops the assembler
2122 has to support. The fields are:
2123 pseudo-op name without dot
2124 function to call to execute this pseudo-op
2125 Integer arg to pass to the function. */
2126
2127const pseudo_typeS md_pseudo_table[] = {
2128 /* Never called because '.req' does not start a line. */
2129 {"req", s_req, 0},
2130 {"unreq", s_unreq, 0},
2131 {"bss", s_bss, 0},
2132 {"even", s_even, 0},
2133 {"ltorg", s_ltorg, 0},
2134 {"pool", s_ltorg, 0},
2135 {"cpu", s_aarch64_cpu, 0},
2136 {"arch", s_aarch64_arch, 0},
ae527cd8 2137 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964 2138 {"inst", s_aarch64_inst, 0},
3a67e1a6 2139 {"cfi_b_key_frame", s_aarch64_cfi_b_key_frame, 0},
a06ea964 2140#ifdef OBJ_ELF
43a357f9 2141 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 2142 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 2143 {"tlsdescldr", s_tlsdescldr, 0},
a06ea964
NC
2144 {"word", s_aarch64_elf_cons, 4},
2145 {"long", s_aarch64_elf_cons, 4},
2146 {"xword", s_aarch64_elf_cons, 8},
2147 {"dword", s_aarch64_elf_cons, 8},
f166ae01 2148 {"variant_pcs", s_variant_pcs, 0},
a06ea964 2149#endif
b20d3859 2150 {"float16", float_cons, 'h'},
eb5bbc48 2151 {"bfloat16", float_cons, 'b'},
a06ea964
NC
2152 {0, 0, 0}
2153};
2154\f
2155
2156/* Check whether STR points to a register name followed by a comma or the
2157 end of line; REG_TYPE indicates which register types are checked
2158 against. Return TRUE if STR is such a register name; otherwise return
2159 FALSE. The function does not intend to produce any diagnostics, but since
2160 the register parser aarch64_reg_parse, which is called by this function,
2161 does produce diagnostics, we call clear_error to clear any diagnostics
2162 that may be generated by aarch64_reg_parse.
2163 Also, the function returns FALSE directly if there is any user error
2164 present at the function entry. This prevents the existing diagnostics
2165 state from being spoiled.
2166 The function currently serves parse_constant_immediate and
2167 parse_big_immediate only. */
2168static bfd_boolean
2169reg_name_p (char *str, aarch64_reg_type reg_type)
2170{
2171 int reg;
2172
2173 /* Prevent the diagnostics state from being spoiled. */
2174 if (error_p ())
2175 return FALSE;
2176
2177 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2178
2179 /* Clear the parsing error that may be set by the reg parser. */
2180 clear_error ();
2181
2182 if (reg == PARSE_FAIL)
2183 return FALSE;
2184
2185 skip_whitespace (str);
f405494f 2186 if (*str == ',' || is_end_of_line[(unsigned char) *str])
a06ea964
NC
2187 return TRUE;
2188
2189 return FALSE;
2190}
2191
2192/* Parser functions used exclusively in instruction operands. */
2193
2194/* Parse an immediate expression which may not be constant.
2195
2196 To prevent the expression parser from pushing a register name
2197 into the symbol table as an undefined symbol, firstly a check is
1799c0d0
RS
2198 done to find out whether STR is a register of type REG_TYPE followed
2199 by a comma or the end of line. Return FALSE if STR is such a string. */
a06ea964
NC
2200
2201static bfd_boolean
1799c0d0
RS
2202parse_immediate_expression (char **str, expressionS *exp,
2203 aarch64_reg_type reg_type)
a06ea964 2204{
1799c0d0 2205 if (reg_name_p (*str, reg_type))
a06ea964
NC
2206 {
2207 set_recoverable_error (_("immediate operand required"));
2208 return FALSE;
2209 }
2210
2211 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2212
2213 if (exp->X_op == O_absent)
2214 {
2215 set_fatal_syntax_error (_("missing immediate expression"));
2216 return FALSE;
2217 }
2218
2219 return TRUE;
2220}
2221
2222/* Constant immediate-value read function for use in insn parsing.
2223 STR points to the beginning of the immediate (with the optional
1799c0d0
RS
2224 leading #); *VAL receives the value. REG_TYPE says which register
2225 names should be treated as registers rather than as symbolic immediates.
a06ea964
NC
2226
2227 Return TRUE on success; otherwise return FALSE. */
2228
2229static bfd_boolean
1799c0d0 2230parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
a06ea964
NC
2231{
2232 expressionS exp;
2233
1799c0d0 2234 if (! parse_immediate_expression (str, &exp, reg_type))
a06ea964
NC
2235 return FALSE;
2236
2237 if (exp.X_op != O_constant)
2238 {
2239 set_syntax_error (_("constant expression required"));
2240 return FALSE;
2241 }
2242
2243 *val = exp.X_add_number;
2244 return TRUE;
2245}
2246
2247static uint32_t
2248encode_imm_float_bits (uint32_t imm)
2249{
2250 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2251 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2252}
2253
62b0d0d5
YZ
2254/* Return TRUE if the single-precision floating-point value encoded in IMM
2255 can be expressed in the AArch64 8-bit signed floating-point format with
2256 3-bit exponent and normalized 4 bits of precision; in other words, the
2257 floating-point value must be expressable as
2258 (+/-) n / 16 * power (2, r)
2259 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2260
a06ea964
NC
2261static bfd_boolean
2262aarch64_imm_float_p (uint32_t imm)
2263{
62b0d0d5
YZ
2264 /* If a single-precision floating-point value has the following bit
2265 pattern, it can be expressed in the AArch64 8-bit floating-point
2266 format:
2267
2268 3 32222222 2221111111111
a06ea964 2269 1 09876543 21098765432109876543210
62b0d0d5
YZ
2270 n Eeeeeexx xxxx0000000000000000000
2271
2272 where n, e and each x are either 0 or 1 independently, with
2273 E == ~ e. */
a06ea964 2274
62b0d0d5
YZ
2275 uint32_t pattern;
2276
2277 /* Prepare the pattern for 'Eeeeee'. */
2278 if (((imm >> 30) & 0x1) == 0)
2279 pattern = 0x3e000000;
a06ea964 2280 else
62b0d0d5
YZ
2281 pattern = 0x40000000;
2282
2283 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2284 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2285}
2286
04a3379a
RS
2287/* Return TRUE if the IEEE double value encoded in IMM can be expressed
2288 as an IEEE float without any loss of precision. Store the value in
2289 *FPWORD if so. */
62b0d0d5 2290
a06ea964 2291static bfd_boolean
04a3379a 2292can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
62b0d0d5
YZ
2293{
2294 /* If a double-precision floating-point value has the following bit
04a3379a 2295 pattern, it can be expressed in a float:
62b0d0d5 2296
04a3379a
RS
2297 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2298 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2299 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
62b0d0d5 2300
04a3379a
RS
2301 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2302 if Eeee_eeee != 1111_1111
2303
2304 where n, e, s and S are either 0 or 1 independently and where ~ is the
2305 inverse of E. */
62b0d0d5
YZ
2306
2307 uint32_t pattern;
2308 uint32_t high32 = imm >> 32;
04a3379a 2309 uint32_t low32 = imm;
62b0d0d5 2310
04a3379a
RS
2311 /* Lower 29 bits need to be 0s. */
2312 if ((imm & 0x1fffffff) != 0)
62b0d0d5
YZ
2313 return FALSE;
2314
2315 /* Prepare the pattern for 'Eeeeeeeee'. */
2316 if (((high32 >> 30) & 0x1) == 0)
04a3379a 2317 pattern = 0x38000000;
62b0d0d5
YZ
2318 else
2319 pattern = 0x40000000;
2320
04a3379a
RS
2321 /* Check E~~~. */
2322 if ((high32 & 0x78000000) != pattern)
62b0d0d5 2323 return FALSE;
04a3379a
RS
2324
2325 /* Check Eeee_eeee != 1111_1111. */
2326 if ((high32 & 0x7ff00000) == 0x47f00000)
2327 return FALSE;
2328
2329 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2330 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2331 | (low32 >> 29)); /* 3 S bits. */
2332 return TRUE;
62b0d0d5
YZ
2333}
2334
165d4950
RS
2335/* Return true if we should treat OPERAND as a double-precision
2336 floating-point operand rather than a single-precision one. */
2337static bfd_boolean
2338double_precision_operand_p (const aarch64_opnd_info *operand)
2339{
2340 /* Check for unsuffixed SVE registers, which are allowed
2341 for LDR and STR but not in instructions that require an
2342 immediate. We get better error messages if we arbitrarily
2343 pick one size, parse the immediate normally, and then
2344 report the match failure in the normal way. */
2345 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2346 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2347}
2348
62b0d0d5
YZ
2349/* Parse a floating-point immediate. Return TRUE on success and return the
2350 value in *IMMED in the format of IEEE754 single-precision encoding.
2351 *CCP points to the start of the string; DP_P is TRUE when the immediate
2352 is expected to be in double-precision (N.B. this only matters when
1799c0d0
RS
2353 hexadecimal representation is involved). REG_TYPE says which register
2354 names should be treated as registers rather than as symbolic immediates.
62b0d0d5 2355
874d7e6e
RS
2356 This routine accepts any IEEE float; it is up to the callers to reject
2357 invalid ones. */
62b0d0d5
YZ
2358
2359static bfd_boolean
1799c0d0
RS
2360parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2361 aarch64_reg_type reg_type)
a06ea964
NC
2362{
2363 char *str = *ccp;
2364 char *fpnum;
2365 LITTLENUM_TYPE words[MAX_LITTLENUMS];
62b0d0d5
YZ
2366 int64_t val = 0;
2367 unsigned fpword = 0;
2368 bfd_boolean hex_p = FALSE;
a06ea964
NC
2369
2370 skip_past_char (&str, '#');
2371
a06ea964
NC
2372 fpnum = str;
2373 skip_whitespace (fpnum);
2374
2375 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2376 {
2377 /* Support the hexadecimal representation of the IEEE754 encoding.
2378 Double-precision is expected when DP_P is TRUE, otherwise the
2379 representation should be in single-precision. */
1799c0d0 2380 if (! parse_constant_immediate (&str, &val, reg_type))
62b0d0d5
YZ
2381 goto invalid_fp;
2382
2383 if (dp_p)
2384 {
04a3379a 2385 if (!can_convert_double_to_float (val, &fpword))
62b0d0d5
YZ
2386 goto invalid_fp;
2387 }
2388 else if ((uint64_t) val > 0xffffffff)
2389 goto invalid_fp;
2390 else
2391 fpword = val;
2392
2393 hex_p = TRUE;
2394 }
66881839
TC
2395 else if (reg_name_p (str, reg_type))
2396 {
2397 set_recoverable_error (_("immediate operand required"));
2398 return FALSE;
a06ea964
NC
2399 }
2400
62b0d0d5 2401 if (! hex_p)
a06ea964 2402 {
a06ea964
NC
2403 int i;
2404
62b0d0d5
YZ
2405 if ((str = atof_ieee (str, 's', words)) == NULL)
2406 goto invalid_fp;
2407
a06ea964
NC
2408 /* Our FP word must be 32 bits (single-precision FP). */
2409 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2410 {
2411 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2412 fpword |= words[i];
2413 }
62b0d0d5 2414 }
a06ea964 2415
874d7e6e
RS
2416 *immed = fpword;
2417 *ccp = str;
2418 return TRUE;
a06ea964 2419
dc1e8a47 2420 invalid_fp:
a06ea964
NC
2421 set_fatal_syntax_error (_("invalid floating-point constant"));
2422 return FALSE;
2423}
2424
2425/* Less-generic immediate-value read function with the possibility of loading
2426 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2427 instructions.
2428
2429 To prevent the expression parser from pushing a register name into the
2430 symbol table as an undefined symbol, a check is firstly done to find
1799c0d0
RS
2431 out whether STR is a register of type REG_TYPE followed by a comma or
2432 the end of line. Return FALSE if STR is such a register. */
a06ea964
NC
2433
2434static bfd_boolean
1799c0d0 2435parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
a06ea964
NC
2436{
2437 char *ptr = *str;
2438
1799c0d0 2439 if (reg_name_p (ptr, reg_type))
a06ea964
NC
2440 {
2441 set_syntax_error (_("immediate operand required"));
2442 return FALSE;
2443 }
2444
2445 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2446
2447 if (inst.reloc.exp.X_op == O_constant)
2448 *imm = inst.reloc.exp.X_add_number;
2449
2450 *str = ptr;
2451
2452 return TRUE;
2453}
2454
2455/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2456 if NEED_LIBOPCODES is non-zero, the fixup will need
2457 assistance from the libopcodes. */
2458
2459static inline void
2460aarch64_set_gas_internal_fixup (struct reloc *reloc,
2461 const aarch64_opnd_info *operand,
2462 int need_libopcodes_p)
2463{
2464 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2465 reloc->opnd = operand->type;
2466 if (need_libopcodes_p)
2467 reloc->need_libopcodes_p = 1;
2468};
2469
2470/* Return TRUE if the instruction needs to be fixed up later internally by
2471 the GAS; otherwise return FALSE. */
2472
2473static inline bfd_boolean
2474aarch64_gas_internal_fixup_p (void)
2475{
2476 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2477}
2478
33eaf5de 2479/* Assign the immediate value to the relevant field in *OPERAND if
a06ea964
NC
2480 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2481 needs an internal fixup in a later stage.
2482 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2483 IMM.VALUE that may get assigned with the constant. */
2484static inline void
2485assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2486 aarch64_opnd_info *operand,
2487 int addr_off_p,
2488 int need_libopcodes_p,
2489 int skip_p)
2490{
2491 if (reloc->exp.X_op == O_constant)
2492 {
2493 if (addr_off_p)
2494 operand->addr.offset.imm = reloc->exp.X_add_number;
2495 else
2496 operand->imm.value = reloc->exp.X_add_number;
2497 reloc->type = BFD_RELOC_UNUSED;
2498 }
2499 else
2500 {
2501 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2502 /* Tell libopcodes to ignore this operand or not. This is helpful
2503 when one of the operands needs to be fixed up later but we need
2504 libopcodes to check the other operands. */
2505 operand->skip = skip_p;
2506 }
2507}
2508
2509/* Relocation modifiers. Each entry in the table contains the textual
2510 name for the relocation which may be placed before a symbol used as
2511 a load/store offset, or add immediate. It must be surrounded by a
2512 leading and trailing colon, for example:
2513
2514 ldr x0, [x1, #:rello:varsym]
2515 add x0, x1, #:rello:varsym */
2516
2517struct reloc_table_entry
2518{
2519 const char *name;
2520 int pc_rel;
6f4a313b 2521 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2522 bfd_reloc_code_real_type adrp_type;
2523 bfd_reloc_code_real_type movw_type;
2524 bfd_reloc_code_real_type add_type;
2525 bfd_reloc_code_real_type ldst_type;
74ad790c 2526 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2527};
2528
2529static struct reloc_table_entry reloc_table[] = {
2530 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2531 {"lo12", 0,
6f4a313b 2532 0, /* adr_type */
a06ea964
NC
2533 0,
2534 0,
2535 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2536 BFD_RELOC_AARCH64_LDST_LO12,
2537 0},
a06ea964
NC
2538
2539 /* Higher 21 bits of pc-relative page offset: ADRP */
2540 {"pg_hi21", 1,
6f4a313b 2541 0, /* adr_type */
a06ea964
NC
2542 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2543 0,
2544 0,
74ad790c 2545 0,
a06ea964
NC
2546 0},
2547
2548 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2549 {"pg_hi21_nc", 1,
6f4a313b 2550 0, /* adr_type */
a06ea964
NC
2551 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2552 0,
2553 0,
74ad790c 2554 0,
a06ea964
NC
2555 0},
2556
2557 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2558 {"abs_g0", 0,
6f4a313b 2559 0, /* adr_type */
a06ea964
NC
2560 0,
2561 BFD_RELOC_AARCH64_MOVW_G0,
2562 0,
74ad790c 2563 0,
a06ea964
NC
2564 0},
2565
2566 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2567 {"abs_g0_s", 0,
6f4a313b 2568 0, /* adr_type */
a06ea964
NC
2569 0,
2570 BFD_RELOC_AARCH64_MOVW_G0_S,
2571 0,
74ad790c 2572 0,
a06ea964
NC
2573 0},
2574
2575 /* Less significant bits 0-15 of address/value: MOVK, no check */
2576 {"abs_g0_nc", 0,
6f4a313b 2577 0, /* adr_type */
a06ea964
NC
2578 0,
2579 BFD_RELOC_AARCH64_MOVW_G0_NC,
2580 0,
74ad790c 2581 0,
a06ea964
NC
2582 0},
2583
2584 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2585 {"abs_g1", 0,
6f4a313b 2586 0, /* adr_type */
a06ea964
NC
2587 0,
2588 BFD_RELOC_AARCH64_MOVW_G1,
2589 0,
74ad790c 2590 0,
a06ea964
NC
2591 0},
2592
2593 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2594 {"abs_g1_s", 0,
6f4a313b 2595 0, /* adr_type */
a06ea964
NC
2596 0,
2597 BFD_RELOC_AARCH64_MOVW_G1_S,
2598 0,
74ad790c 2599 0,
a06ea964
NC
2600 0},
2601
2602 /* Less significant bits 16-31 of address/value: MOVK, no check */
2603 {"abs_g1_nc", 0,
6f4a313b 2604 0, /* adr_type */
a06ea964
NC
2605 0,
2606 BFD_RELOC_AARCH64_MOVW_G1_NC,
2607 0,
74ad790c 2608 0,
a06ea964
NC
2609 0},
2610
2611 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2612 {"abs_g2", 0,
6f4a313b 2613 0, /* adr_type */
a06ea964
NC
2614 0,
2615 BFD_RELOC_AARCH64_MOVW_G2,
2616 0,
74ad790c 2617 0,
a06ea964
NC
2618 0},
2619
2620 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2621 {"abs_g2_s", 0,
6f4a313b 2622 0, /* adr_type */
a06ea964
NC
2623 0,
2624 BFD_RELOC_AARCH64_MOVW_G2_S,
2625 0,
74ad790c 2626 0,
a06ea964
NC
2627 0},
2628
2629 /* Less significant bits 32-47 of address/value: MOVK, no check */
2630 {"abs_g2_nc", 0,
6f4a313b 2631 0, /* adr_type */
a06ea964
NC
2632 0,
2633 BFD_RELOC_AARCH64_MOVW_G2_NC,
2634 0,
74ad790c 2635 0,
a06ea964
NC
2636 0},
2637
2638 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2639 {"abs_g3", 0,
6f4a313b 2640 0, /* adr_type */
a06ea964
NC
2641 0,
2642 BFD_RELOC_AARCH64_MOVW_G3,
2643 0,
74ad790c 2644 0,
a06ea964 2645 0},
4aa2c5e2 2646
32247401
RL
2647 /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
2648 {"prel_g0", 1,
2649 0, /* adr_type */
2650 0,
2651 BFD_RELOC_AARCH64_MOVW_PREL_G0,
2652 0,
2653 0,
2654 0},
2655
2656 /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
2657 {"prel_g0_nc", 1,
2658 0, /* adr_type */
2659 0,
2660 BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
2661 0,
2662 0,
2663 0},
2664
2665 /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
2666 {"prel_g1", 1,
2667 0, /* adr_type */
2668 0,
2669 BFD_RELOC_AARCH64_MOVW_PREL_G1,
2670 0,
2671 0,
2672 0},
2673
2674 /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
2675 {"prel_g1_nc", 1,
2676 0, /* adr_type */
2677 0,
2678 BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
2679 0,
2680 0,
2681 0},
2682
2683 /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
2684 {"prel_g2", 1,
2685 0, /* adr_type */
2686 0,
2687 BFD_RELOC_AARCH64_MOVW_PREL_G2,
2688 0,
2689 0,
2690 0},
2691
2692 /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
2693 {"prel_g2_nc", 1,
2694 0, /* adr_type */
2695 0,
2696 BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
2697 0,
2698 0,
2699 0},
2700
2701 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2702 {"prel_g3", 1,
2703 0, /* adr_type */
2704 0,
2705 BFD_RELOC_AARCH64_MOVW_PREL_G3,
2706 0,
2707 0,
2708 0},
2709
a06ea964
NC
2710 /* Get to the page containing GOT entry for a symbol. */
2711 {"got", 1,
6f4a313b 2712 0, /* adr_type */
a06ea964
NC
2713 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2714 0,
2715 0,
74ad790c 2716 0,
4aa2c5e2
MS
2717 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2718
a06ea964
NC
2719 /* 12 bit offset into the page containing GOT entry for that symbol. */
2720 {"got_lo12", 0,
6f4a313b 2721 0, /* adr_type */
a06ea964
NC
2722 0,
2723 0,
2724 0,
74ad790c
MS
2725 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2726 0},
a06ea964 2727
ca632371
RL
2728 /* 0-15 bits of address/value: MOVk, no check. */
2729 {"gotoff_g0_nc", 0,
2730 0, /* adr_type */
2731 0,
2732 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2733 0,
2734 0,
2735 0},
2736
654248e7
RL
2737 /* Most significant bits 16-31 of address/value: MOVZ. */
2738 {"gotoff_g1", 0,
2739 0, /* adr_type */
2740 0,
2741 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2742 0,
2743 0,
2744 0},
2745
87f5fbcc
RL
2746 /* 15 bit offset into the page containing GOT entry for that symbol. */
2747 {"gotoff_lo15", 0,
2748 0, /* adr_type */
2749 0,
2750 0,
2751 0,
2752 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2753 0},
2754
3b957e5b
RL
2755 /* Get to the page containing GOT TLS entry for a symbol */
2756 {"gottprel_g0_nc", 0,
2757 0, /* adr_type */
2758 0,
2759 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2760 0,
2761 0,
2762 0},
2763
2764 /* Get to the page containing GOT TLS entry for a symbol */
2765 {"gottprel_g1", 0,
2766 0, /* adr_type */
2767 0,
2768 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2769 0,
2770 0,
2771 0},
2772
a06ea964
NC
2773 /* Get to the page containing GOT TLS entry for a symbol */
2774 {"tlsgd", 0,
3c12b054 2775 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2776 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2777 0,
2778 0,
74ad790c 2779 0,
a06ea964
NC
2780 0},
2781
2782 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2783 {"tlsgd_lo12", 0,
6f4a313b 2784 0, /* adr_type */
a06ea964
NC
2785 0,
2786 0,
2787 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2788 0,
a06ea964
NC
2789 0},
2790
3e8286c0
RL
2791 /* Lower 16 bits address/value: MOVk. */
2792 {"tlsgd_g0_nc", 0,
2793 0, /* adr_type */
2794 0,
2795 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2796 0,
2797 0,
2798 0},
2799
1aa66fb1
RL
2800 /* Most significant bits 16-31 of address/value: MOVZ. */
2801 {"tlsgd_g1", 0,
2802 0, /* adr_type */
2803 0,
2804 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2805 0,
2806 0,
2807 0},
2808
a06ea964
NC
2809 /* Get to the page containing GOT TLS entry for a symbol */
2810 {"tlsdesc", 0,
389b8029 2811 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2812 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2813 0,
2814 0,
74ad790c 2815 0,
1ada945d 2816 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2817
2818 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2819 {"tlsdesc_lo12", 0,
6f4a313b 2820 0, /* adr_type */
a06ea964
NC
2821 0,
2822 0,
f955cccf 2823 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
74ad790c
MS
2824 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2825 0},
a06ea964 2826
6c37fedc
JW
2827 /* Get to the page containing GOT TLS entry for a symbol.
2828 The same as GD, we allocate two consecutive GOT slots
2829 for module index and module offset, the only difference
33eaf5de 2830 with GD is the module offset should be initialized to
6c37fedc
JW
2831 zero without any outstanding runtime relocation. */
2832 {"tlsldm", 0,
2833 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2834 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2835 0,
2836 0,
2837 0,
2838 0},
2839
a12fad50
JW
2840 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2841 {"tlsldm_lo12_nc", 0,
2842 0, /* adr_type */
2843 0,
2844 0,
2845 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2846 0,
2847 0},
2848
70151fb5
JW
2849 /* 12 bit offset into the module TLS base address. */
2850 {"dtprel_lo12", 0,
2851 0, /* adr_type */
2852 0,
2853 0,
2854 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2855 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2856 0},
2857
13289c10
JW
2858 /* Same as dtprel_lo12, no overflow check. */
2859 {"dtprel_lo12_nc", 0,
2860 0, /* adr_type */
2861 0,
2862 0,
2863 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2864 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2865 0},
2866
49df5539
JW
2867 /* bits[23:12] of offset to the module TLS base address. */
2868 {"dtprel_hi12", 0,
2869 0, /* adr_type */
2870 0,
2871 0,
2872 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2873 0,
2874 0},
2875
2876 /* bits[15:0] of offset to the module TLS base address. */
2877 {"dtprel_g0", 0,
2878 0, /* adr_type */
2879 0,
2880 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2881 0,
2882 0,
2883 0},
2884
2885 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2886 {"dtprel_g0_nc", 0,
2887 0, /* adr_type */
2888 0,
2889 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2890 0,
2891 0,
2892 0},
2893
2894 /* bits[31:16] of offset to the module TLS base address. */
2895 {"dtprel_g1", 0,
2896 0, /* adr_type */
2897 0,
2898 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2899 0,
2900 0,
2901 0},
2902
2903 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2904 {"dtprel_g1_nc", 0,
2905 0, /* adr_type */
2906 0,
2907 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2908 0,
2909 0,
2910 0},
2911
2912 /* bits[47:32] of offset to the module TLS base address. */
2913 {"dtprel_g2", 0,
2914 0, /* adr_type */
2915 0,
2916 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2917 0,
2918 0,
2919 0},
2920
43a357f9
RL
2921 /* Lower 16 bit offset into GOT entry for a symbol */
2922 {"tlsdesc_off_g0_nc", 0,
2923 0, /* adr_type */
2924 0,
2925 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2926 0,
2927 0,
2928 0},
2929
2930 /* Higher 16 bit offset into GOT entry for a symbol */
2931 {"tlsdesc_off_g1", 0,
2932 0, /* adr_type */
2933 0,
2934 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2935 0,
2936 0,
2937 0},
2938
a06ea964
NC
2939 /* Get to the page containing GOT TLS entry for a symbol */
2940 {"gottprel", 0,
6f4a313b 2941 0, /* adr_type */
a06ea964
NC
2942 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2943 0,
2944 0,
74ad790c 2945 0,
043bf05a 2946 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2947
2948 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2949 {"gottprel_lo12", 0,
6f4a313b 2950 0, /* adr_type */
a06ea964
NC
2951 0,
2952 0,
2953 0,
74ad790c
MS
2954 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2955 0},
a06ea964
NC
2956
2957 /* Get tp offset for a symbol. */
2958 {"tprel", 0,
6f4a313b 2959 0, /* adr_type */
a06ea964
NC
2960 0,
2961 0,
2962 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2963 0,
a06ea964
NC
2964 0},
2965
2966 /* Get tp offset for a symbol. */
2967 {"tprel_lo12", 0,
6f4a313b 2968 0, /* adr_type */
a06ea964
NC
2969 0,
2970 0,
2971 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
84f1b9fb 2972 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
a06ea964
NC
2973 0},
2974
2975 /* Get tp offset for a symbol. */
2976 {"tprel_hi12", 0,
6f4a313b 2977 0, /* adr_type */
a06ea964
NC
2978 0,
2979 0,
2980 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2981 0,
a06ea964
NC
2982 0},
2983
2984 /* Get tp offset for a symbol. */
2985 {"tprel_lo12_nc", 0,
6f4a313b 2986 0, /* adr_type */
a06ea964
NC
2987 0,
2988 0,
2989 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
84f1b9fb 2990 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
a06ea964
NC
2991 0},
2992
2993 /* Most significant bits 32-47 of address/value: MOVZ. */
2994 {"tprel_g2", 0,
6f4a313b 2995 0, /* adr_type */
a06ea964
NC
2996 0,
2997 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2998 0,
74ad790c 2999 0,
a06ea964
NC
3000 0},
3001
3002 /* Most significant bits 16-31 of address/value: MOVZ. */
3003 {"tprel_g1", 0,
6f4a313b 3004 0, /* adr_type */
a06ea964
NC
3005 0,
3006 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
3007 0,
74ad790c 3008 0,
a06ea964
NC
3009 0},
3010
3011 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
3012 {"tprel_g1_nc", 0,
6f4a313b 3013 0, /* adr_type */
a06ea964
NC
3014 0,
3015 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
3016 0,
74ad790c 3017 0,
a06ea964
NC
3018 0},
3019
3020 /* Most significant bits 0-15 of address/value: MOVZ. */
3021 {"tprel_g0", 0,
6f4a313b 3022 0, /* adr_type */
a06ea964
NC
3023 0,
3024 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
3025 0,
74ad790c 3026 0,
a06ea964
NC
3027 0},
3028
3029 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
3030 {"tprel_g0_nc", 0,
6f4a313b 3031 0, /* adr_type */
a06ea964
NC
3032 0,
3033 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
3034 0,
74ad790c 3035 0,
a06ea964 3036 0},
a921b5bd
JW
3037
3038 /* 15bit offset from got entry to base address of GOT table. */
3039 {"gotpage_lo15", 0,
3040 0,
3041 0,
3042 0,
3043 0,
3044 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
3045 0},
3d715ce4
JW
3046
3047 /* 14bit offset from got entry to base address of GOT table. */
3048 {"gotpage_lo14", 0,
3049 0,
3050 0,
3051 0,
3052 0,
3053 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
3054 0},
a06ea964
NC
3055};
3056
3057/* Given the address of a pointer pointing to the textual name of a
3058 relocation as may appear in assembler source, attempt to find its
3059 details in reloc_table. The pointer will be updated to the character
3060 after the trailing colon. On failure, NULL will be returned;
3061 otherwise return the reloc_table_entry. */
3062
3063static struct reloc_table_entry *
3064find_reloc_table_entry (char **str)
3065{
3066 unsigned int i;
3067 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
3068 {
3069 int length = strlen (reloc_table[i].name);
3070
3071 if (strncasecmp (reloc_table[i].name, *str, length) == 0
3072 && (*str)[length] == ':')
3073 {
3074 *str += (length + 1);
3075 return &reloc_table[i];
3076 }
3077 }
3078
3079 return NULL;
3080}
3081
3082/* Mode argument to parse_shift and parser_shifter_operand. */
3083enum parse_shift_mode
3084{
98907a70 3085 SHIFTED_NONE, /* no shifter allowed */
a06ea964
NC
3086 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
3087 "#imm{,lsl #n}" */
3088 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
3089 "#imm" */
3090 SHIFTED_LSL, /* bare "lsl #n" */
2442d846 3091 SHIFTED_MUL, /* bare "mul #n" */
a06ea964 3092 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
98907a70 3093 SHIFTED_MUL_VL, /* "mul vl" */
a06ea964
NC
3094 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
3095};
3096
3097/* Parse a <shift> operator on an AArch64 data processing instruction.
3098 Return TRUE on success; otherwise return FALSE. */
3099static bfd_boolean
3100parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
3101{
3102 const struct aarch64_name_value_pair *shift_op;
3103 enum aarch64_modifier_kind kind;
3104 expressionS exp;
3105 int exp_has_prefix;
3106 char *s = *str;
3107 char *p = s;
3108
3109 for (p = *str; ISALPHA (*p); p++)
3110 ;
3111
3112 if (p == *str)
3113 {
3114 set_syntax_error (_("shift expression expected"));
3115 return FALSE;
3116 }
3117
629310ab 3118 shift_op = str_hash_find_n (aarch64_shift_hsh, *str, p - *str);
a06ea964
NC
3119
3120 if (shift_op == NULL)
3121 {
3122 set_syntax_error (_("shift operator expected"));
3123 return FALSE;
3124 }
3125
3126 kind = aarch64_get_operand_modifier (shift_op);
3127
3128 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3129 {
3130 set_syntax_error (_("invalid use of 'MSL'"));
3131 return FALSE;
3132 }
3133
2442d846 3134 if (kind == AARCH64_MOD_MUL
98907a70
RS
3135 && mode != SHIFTED_MUL
3136 && mode != SHIFTED_MUL_VL)
2442d846
RS
3137 {
3138 set_syntax_error (_("invalid use of 'MUL'"));
3139 return FALSE;
3140 }
3141
a06ea964
NC
3142 switch (mode)
3143 {
3144 case SHIFTED_LOGIC_IMM:
535b785f 3145 if (aarch64_extend_operator_p (kind))
a06ea964
NC
3146 {
3147 set_syntax_error (_("extending shift is not permitted"));
3148 return FALSE;
3149 }
3150 break;
3151
3152 case SHIFTED_ARITH_IMM:
3153 if (kind == AARCH64_MOD_ROR)
3154 {
3155 set_syntax_error (_("'ROR' shift is not permitted"));
3156 return FALSE;
3157 }
3158 break;
3159
3160 case SHIFTED_LSL:
3161 if (kind != AARCH64_MOD_LSL)
3162 {
3163 set_syntax_error (_("only 'LSL' shift is permitted"));
3164 return FALSE;
3165 }
3166 break;
3167
2442d846
RS
3168 case SHIFTED_MUL:
3169 if (kind != AARCH64_MOD_MUL)
3170 {
3171 set_syntax_error (_("only 'MUL' is permitted"));
3172 return FALSE;
3173 }
3174 break;
3175
98907a70
RS
3176 case SHIFTED_MUL_VL:
3177 /* "MUL VL" consists of two separate tokens. Require the first
3178 token to be "MUL" and look for a following "VL". */
3179 if (kind == AARCH64_MOD_MUL)
3180 {
3181 skip_whitespace (p);
3182 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3183 {
3184 p += 2;
3185 kind = AARCH64_MOD_MUL_VL;
3186 break;
3187 }
3188 }
3189 set_syntax_error (_("only 'MUL VL' is permitted"));
3190 return FALSE;
3191
a06ea964
NC
3192 case SHIFTED_REG_OFFSET:
3193 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3194 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3195 {
3196 set_fatal_syntax_error
3197 (_("invalid shift for the register offset addressing mode"));
3198 return FALSE;
3199 }
3200 break;
3201
3202 case SHIFTED_LSL_MSL:
3203 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3204 {
3205 set_syntax_error (_("invalid shift operator"));
3206 return FALSE;
3207 }
3208 break;
3209
3210 default:
3211 abort ();
3212 }
3213
3214 /* Whitespace can appear here if the next thing is a bare digit. */
3215 skip_whitespace (p);
3216
3217 /* Parse shift amount. */
3218 exp_has_prefix = 0;
98907a70 3219 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
a06ea964
NC
3220 exp.X_op = O_absent;
3221 else
3222 {
3223 if (is_immediate_prefix (*p))
3224 {
3225 p++;
3226 exp_has_prefix = 1;
3227 }
3228 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3229 }
98907a70
RS
3230 if (kind == AARCH64_MOD_MUL_VL)
3231 /* For consistency, give MUL VL the same shift amount as an implicit
3232 MUL #1. */
3233 operand->shifter.amount = 1;
3234 else if (exp.X_op == O_absent)
a06ea964 3235 {
535b785f 3236 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
a06ea964
NC
3237 {
3238 set_syntax_error (_("missing shift amount"));
3239 return FALSE;
3240 }
3241 operand->shifter.amount = 0;
3242 }
3243 else if (exp.X_op != O_constant)
3244 {
3245 set_syntax_error (_("constant shift amount required"));
3246 return FALSE;
3247 }
2442d846
RS
3248 /* For parsing purposes, MUL #n has no inherent range. The range
3249 depends on the operand and will be checked by operand-specific
3250 routines. */
3251 else if (kind != AARCH64_MOD_MUL
3252 && (exp.X_add_number < 0 || exp.X_add_number > 63))
a06ea964
NC
3253 {
3254 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3255 return FALSE;
3256 }
3257 else
3258 {
3259 operand->shifter.amount = exp.X_add_number;
3260 operand->shifter.amount_present = 1;
3261 }
3262
3263 operand->shifter.operator_present = 1;
3264 operand->shifter.kind = kind;
3265
3266 *str = p;
3267 return TRUE;
3268}
3269
3270/* Parse a <shifter_operand> for a data processing instruction:
3271
3272 #<immediate>
3273 #<immediate>, LSL #imm
3274
3275 Validation of immediate operands is deferred to md_apply_fix.
3276
3277 Return TRUE on success; otherwise return FALSE. */
3278
3279static bfd_boolean
3280parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3281 enum parse_shift_mode mode)
3282{
3283 char *p;
3284
3285 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3286 return FALSE;
3287
3288 p = *str;
3289
3290 /* Accept an immediate expression. */
3291 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3292 return FALSE;
3293
3294 /* Accept optional LSL for arithmetic immediate values. */
3295 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3296 if (! parse_shift (&p, operand, SHIFTED_LSL))
3297 return FALSE;
3298
3299 /* Not accept any shifter for logical immediate values. */
3300 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3301 && parse_shift (&p, operand, mode))
3302 {
3303 set_syntax_error (_("unexpected shift operator"));
3304 return FALSE;
3305 }
3306
3307 *str = p;
3308 return TRUE;
3309}
3310
3311/* Parse a <shifter_operand> for a data processing instruction:
3312
3313 <Rm>
3314 <Rm>, <shift>
3315 #<immediate>
3316 #<immediate>, LSL #imm
3317
3318 where <shift> is handled by parse_shift above, and the last two
3319 cases are handled by the function above.
3320
3321 Validation of immediate operands is deferred to md_apply_fix.
3322
3323 Return TRUE on success; otherwise return FALSE. */
3324
3325static bfd_boolean
3326parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3327 enum parse_shift_mode mode)
3328{
e1b988bb
RS
3329 const reg_entry *reg;
3330 aarch64_opnd_qualifier_t qualifier;
a06ea964
NC
3331 enum aarch64_operand_class opd_class
3332 = aarch64_get_operand_class (operand->type);
3333
e1b988bb
RS
3334 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3335 if (reg)
a06ea964
NC
3336 {
3337 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3338 {
3339 set_syntax_error (_("unexpected register in the immediate operand"));
3340 return FALSE;
3341 }
3342
e1b988bb 3343 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
a06ea964 3344 {
e1b988bb 3345 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
a06ea964
NC
3346 return FALSE;
3347 }
3348
e1b988bb
RS
3349 operand->reg.regno = reg->number;
3350 operand->qualifier = qualifier;
a06ea964
NC
3351
3352 /* Accept optional shift operation on register. */
3353 if (! skip_past_comma (str))
3354 return TRUE;
3355
3356 if (! parse_shift (str, operand, mode))
3357 return FALSE;
3358
3359 return TRUE;
3360 }
3361 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3362 {
3363 set_syntax_error
3364 (_("integer register expected in the extended/shifted operand "
3365 "register"));
3366 return FALSE;
3367 }
3368
3369 /* We have a shifted immediate variable. */
3370 return parse_shifter_operand_imm (str, operand, mode);
3371}
3372
3373/* Return TRUE on success; return FALSE otherwise. */
3374
3375static bfd_boolean
3376parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3377 enum parse_shift_mode mode)
3378{
3379 char *p = *str;
3380
3381 /* Determine if we have the sequence of characters #: or just :
3382 coming next. If we do, then we check for a :rello: relocation
3383 modifier. If we don't, punt the whole lot to
3384 parse_shifter_operand. */
3385
3386 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3387 {
3388 struct reloc_table_entry *entry;
3389
3390 if (p[0] == '#')
3391 p += 2;
3392 else
3393 p++;
3394 *str = p;
3395
3396 /* Try to parse a relocation. Anything else is an error. */
3397 if (!(entry = find_reloc_table_entry (str)))
3398 {
3399 set_syntax_error (_("unknown relocation modifier"));
3400 return FALSE;
3401 }
3402
3403 if (entry->add_type == 0)
3404 {
3405 set_syntax_error
3406 (_("this relocation modifier is not allowed on this instruction"));
3407 return FALSE;
3408 }
3409
3410 /* Save str before we decompose it. */
3411 p = *str;
3412
3413 /* Next, we parse the expression. */
3414 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3415 return FALSE;
3416
3417 /* Record the relocation type (use the ADD variant here). */
3418 inst.reloc.type = entry->add_type;
3419 inst.reloc.pc_rel = entry->pc_rel;
3420
3421 /* If str is empty, we've reached the end, stop here. */
3422 if (**str == '\0')
3423 return TRUE;
3424
55d9b4c1 3425 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3426 recover the variable name and continue parsing for the shifter. */
3427 *str = p;
3428 return parse_shifter_operand_imm (str, operand, mode);
3429 }
3430
3431 return parse_shifter_operand (str, operand, mode);
3432}
3433
3434/* Parse all forms of an address expression. Information is written
3435 to *OPERAND and/or inst.reloc.
3436
3437 The A64 instruction set has the following addressing modes:
3438
3439 Offset
4df068de
RS
3440 [base] // in SIMD ld/st structure
3441 [base{,#0}] // in ld/st exclusive
a06ea964
NC
3442 [base{,#imm}]
3443 [base,Xm{,LSL #imm}]
3444 [base,Xm,SXTX {#imm}]
3445 [base,Wm,(S|U)XTW {#imm}]
3446 Pre-indexed
1820262b 3447 [base]! // in ldraa/ldrab exclusive
a06ea964
NC
3448 [base,#imm]!
3449 Post-indexed
3450 [base],#imm
4df068de 3451 [base],Xm // in SIMD ld/st structure
a06ea964
NC
3452 PC-relative (literal)
3453 label
4df068de 3454 SVE:
98907a70 3455 [base,#imm,MUL VL]
4df068de
RS
3456 [base,Zm.D{,LSL #imm}]
3457 [base,Zm.S,(S|U)XTW {#imm}]
3458 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3459 [Zn.S,#imm]
3460 [Zn.D,#imm]
c469c864 3461 [Zn.S{, Xm}]
4df068de
RS
3462 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3463 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3464 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
a06ea964
NC
3465
3466 (As a convenience, the notation "=immediate" is permitted in conjunction
3467 with the pc-relative literal load instructions to automatically place an
3468 immediate value or symbolic address in a nearby literal pool and generate
3469 a hidden label which references it.)
3470
3471 Upon a successful parsing, the address structure in *OPERAND will be
3472 filled in the following way:
3473
3474 .base_regno = <base>
3475 .offset.is_reg // 1 if the offset is a register
3476 .offset.imm = <imm>
3477 .offset.regno = <Rm>
3478
3479 For different addressing modes defined in the A64 ISA:
3480
3481 Offset
3482 .pcrel=0; .preind=1; .postind=0; .writeback=0
3483 Pre-indexed
3484 .pcrel=0; .preind=1; .postind=0; .writeback=1
3485 Post-indexed
3486 .pcrel=0; .preind=0; .postind=1; .writeback=1
3487 PC-relative (literal)
3488 .pcrel=1; .preind=1; .postind=0; .writeback=0
3489
3490 The shift/extension information, if any, will be stored in .shifter.
4df068de
RS
3491 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3492 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3493 corresponding register.
a06ea964 3494
4df068de 3495 BASE_TYPE says which types of base register should be accepted and
98907a70
RS
3496 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3497 is the type of shifter that is allowed for immediate offsets,
3498 or SHIFTED_NONE if none.
3499
3500 In all other respects, it is the caller's responsibility to check
3501 for addressing modes not supported by the instruction, and to set
3502 inst.reloc.type. */
a06ea964
NC
3503
3504static bfd_boolean
4df068de
RS
3505parse_address_main (char **str, aarch64_opnd_info *operand,
3506 aarch64_opnd_qualifier_t *base_qualifier,
3507 aarch64_opnd_qualifier_t *offset_qualifier,
98907a70
RS
3508 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3509 enum parse_shift_mode imm_shift_mode)
a06ea964
NC
3510{
3511 char *p = *str;
e1b988bb 3512 const reg_entry *reg;
a06ea964
NC
3513 expressionS *exp = &inst.reloc.exp;
3514
4df068de
RS
3515 *base_qualifier = AARCH64_OPND_QLF_NIL;
3516 *offset_qualifier = AARCH64_OPND_QLF_NIL;
a06ea964
NC
3517 if (! skip_past_char (&p, '['))
3518 {
3519 /* =immediate or label. */
3520 operand->addr.pcrel = 1;
3521 operand->addr.preind = 1;
3522
f41aef5f
RE
3523 /* #:<reloc_op>:<symbol> */
3524 skip_past_char (&p, '#');
73866052 3525 if (skip_past_char (&p, ':'))
f41aef5f 3526 {
6f4a313b 3527 bfd_reloc_code_real_type ty;
f41aef5f
RE
3528 struct reloc_table_entry *entry;
3529
3530 /* Try to parse a relocation modifier. Anything else is
3531 an error. */
3532 entry = find_reloc_table_entry (&p);
3533 if (! entry)
3534 {
3535 set_syntax_error (_("unknown relocation modifier"));
3536 return FALSE;
3537 }
3538
6f4a313b
MS
3539 switch (operand->type)
3540 {
3541 case AARCH64_OPND_ADDR_PCREL21:
3542 /* adr */
3543 ty = entry->adr_type;
3544 break;
3545
3546 default:
74ad790c 3547 ty = entry->ld_literal_type;
6f4a313b
MS
3548 break;
3549 }
3550
3551 if (ty == 0)
f41aef5f
RE
3552 {
3553 set_syntax_error
3554 (_("this relocation modifier is not allowed on this "
3555 "instruction"));
3556 return FALSE;
3557 }
3558
3559 /* #:<reloc_op>: */
3560 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3561 {
3562 set_syntax_error (_("invalid relocation expression"));
3563 return FALSE;
3564 }
a06ea964 3565
f41aef5f 3566 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3567 /* Record the relocation type. */
3568 inst.reloc.type = ty;
f41aef5f
RE
3569 inst.reloc.pc_rel = entry->pc_rel;
3570 }
3571 else
a06ea964 3572 {
f41aef5f
RE
3573
3574 if (skip_past_char (&p, '='))
3575 /* =immediate; need to generate the literal in the literal pool. */
3576 inst.gen_lit_pool = 1;
3577
3578 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3579 {
3580 set_syntax_error (_("invalid address"));
3581 return FALSE;
3582 }
a06ea964
NC
3583 }
3584
3585 *str = p;
3586 return TRUE;
3587 }
3588
3589 /* [ */
3590
4df068de
RS
3591 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3592 if (!reg || !aarch64_check_reg_type (reg, base_type))
a06ea964 3593 {
4df068de 3594 set_syntax_error (_(get_reg_expected_msg (base_type)));
a06ea964
NC
3595 return FALSE;
3596 }
e1b988bb 3597 operand->addr.base_regno = reg->number;
a06ea964
NC
3598
3599 /* [Xn */
3600 if (skip_past_comma (&p))
3601 {
3602 /* [Xn, */
3603 operand->addr.preind = 1;
3604
4df068de 3605 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
e1b988bb 3606 if (reg)
a06ea964 3607 {
4df068de 3608 if (!aarch64_check_reg_type (reg, offset_type))
e1b988bb 3609 {
4df068de 3610 set_syntax_error (_(get_reg_expected_msg (offset_type)));
e1b988bb
RS
3611 return FALSE;
3612 }
3613
a06ea964 3614 /* [Xn,Rm */
e1b988bb 3615 operand->addr.offset.regno = reg->number;
a06ea964
NC
3616 operand->addr.offset.is_reg = 1;
3617 /* Shifted index. */
3618 if (skip_past_comma (&p))
3619 {
3620 /* [Xn,Rm, */
3621 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3622 /* Use the diagnostics set in parse_shift, so not set new
3623 error message here. */
3624 return FALSE;
3625 }
3626 /* We only accept:
c469c864 3627 [base,Xm] # For vector plus scalar SVE2 indexing.
a06ea964
NC
3628 [base,Xm{,LSL #imm}]
3629 [base,Xm,SXTX {#imm}]
3630 [base,Wm,(S|U)XTW {#imm}] */
3631 if (operand->shifter.kind == AARCH64_MOD_NONE
3632 || operand->shifter.kind == AARCH64_MOD_LSL
3633 || operand->shifter.kind == AARCH64_MOD_SXTX)
3634 {
4df068de 3635 if (*offset_qualifier == AARCH64_OPND_QLF_W)
a06ea964
NC
3636 {
3637 set_syntax_error (_("invalid use of 32-bit register offset"));
3638 return FALSE;
3639 }
4df068de 3640 if (aarch64_get_qualifier_esize (*base_qualifier)
c469c864
MM
3641 != aarch64_get_qualifier_esize (*offset_qualifier)
3642 && (operand->type != AARCH64_OPND_SVE_ADDR_ZX
3643 || *base_qualifier != AARCH64_OPND_QLF_S_S
3644 || *offset_qualifier != AARCH64_OPND_QLF_X))
4df068de
RS
3645 {
3646 set_syntax_error (_("offset has different size from base"));
3647 return FALSE;
3648 }
a06ea964 3649 }
4df068de 3650 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
a06ea964
NC
3651 {
3652 set_syntax_error (_("invalid use of 64-bit register offset"));
3653 return FALSE;
3654 }
3655 }
3656 else
3657 {
3658 /* [Xn,#:<reloc_op>:<symbol> */
3659 skip_past_char (&p, '#');
73866052 3660 if (skip_past_char (&p, ':'))
a06ea964
NC
3661 {
3662 struct reloc_table_entry *entry;
3663
3664 /* Try to parse a relocation modifier. Anything else is
3665 an error. */
3666 if (!(entry = find_reloc_table_entry (&p)))
3667 {
3668 set_syntax_error (_("unknown relocation modifier"));
3669 return FALSE;
3670 }
3671
3672 if (entry->ldst_type == 0)
3673 {
3674 set_syntax_error
3675 (_("this relocation modifier is not allowed on this "
3676 "instruction"));
3677 return FALSE;
3678 }
3679
3680 /* [Xn,#:<reloc_op>: */
3681 /* We now have the group relocation table entry corresponding to
3682 the name in the assembler source. Next, we parse the
3683 expression. */
3684 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3685 {
3686 set_syntax_error (_("invalid relocation expression"));
3687 return FALSE;
3688 }
3689
3690 /* [Xn,#:<reloc_op>:<expr> */
3691 /* Record the load/store relocation type. */
3692 inst.reloc.type = entry->ldst_type;
3693 inst.reloc.pc_rel = entry->pc_rel;
3694 }
98907a70 3695 else
a06ea964 3696 {
98907a70
RS
3697 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3698 {
3699 set_syntax_error (_("invalid expression in the address"));
3700 return FALSE;
3701 }
3702 /* [Xn,<expr> */
3703 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3704 /* [Xn,<expr>,<shifter> */
3705 if (! parse_shift (&p, operand, imm_shift_mode))
3706 return FALSE;
a06ea964 3707 }
a06ea964
NC
3708 }
3709 }
3710
3711 if (! skip_past_char (&p, ']'))
3712 {
3713 set_syntax_error (_("']' expected"));
3714 return FALSE;
3715 }
3716
3717 if (skip_past_char (&p, '!'))
3718 {
3719 if (operand->addr.preind && operand->addr.offset.is_reg)
3720 {
3721 set_syntax_error (_("register offset not allowed in pre-indexed "
3722 "addressing mode"));
3723 return FALSE;
3724 }
3725 /* [Xn]! */
3726 operand->addr.writeback = 1;
3727 }
3728 else if (skip_past_comma (&p))
3729 {
3730 /* [Xn], */
3731 operand->addr.postind = 1;
3732 operand->addr.writeback = 1;
3733
3734 if (operand->addr.preind)
3735 {
3736 set_syntax_error (_("cannot combine pre- and post-indexing"));
3737 return FALSE;
3738 }
3739
4df068de 3740 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
73866052 3741 if (reg)
a06ea964
NC
3742 {
3743 /* [Xn],Xm */
e1b988bb 3744 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
a06ea964 3745 {
e1b988bb 3746 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
a06ea964
NC
3747 return FALSE;
3748 }
e1b988bb
RS
3749
3750 operand->addr.offset.regno = reg->number;
a06ea964
NC
3751 operand->addr.offset.is_reg = 1;
3752 }
3753 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3754 {
3755 /* [Xn],#expr */
3756 set_syntax_error (_("invalid expression in the address"));
3757 return FALSE;
3758 }
3759 }
3760
3761 /* If at this point neither .preind nor .postind is set, we have a
1820262b
DB
3762 bare [Rn]{!}; only accept [Rn]! as a shorthand for [Rn,#0]! for ldraa and
3763 ldrab, accept [Rn] as a shorthand for [Rn,#0].
c469c864
MM
3764 For SVE2 vector plus scalar offsets, allow [Zn.<T>] as shorthand for
3765 [Zn.<T>, xzr]. */
a06ea964
NC
3766 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3767 {
550fd7bf 3768 if (operand->addr.writeback)
a06ea964 3769 {
1820262b
DB
3770 if (operand->type == AARCH64_OPND_ADDR_SIMM10)
3771 {
3772 /* Accept [Rn]! as a shorthand for [Rn,#0]! */
3773 operand->addr.offset.is_reg = 0;
3774 operand->addr.offset.imm = 0;
3775 operand->addr.preind = 1;
3776 }
3777 else
3778 {
3779 /* Reject [Rn]! */
3780 set_syntax_error (_("missing offset in the pre-indexed address"));
3781 return FALSE;
3782 }
a06ea964 3783 }
1820262b 3784 else
c469c864 3785 {
1820262b
DB
3786 operand->addr.preind = 1;
3787 if (operand->type == AARCH64_OPND_SVE_ADDR_ZX)
3788 {
3789 operand->addr.offset.is_reg = 1;
3790 operand->addr.offset.regno = REG_ZR;
3791 *offset_qualifier = AARCH64_OPND_QLF_X;
3792 }
3793 else
3794 {
3795 inst.reloc.exp.X_op = O_constant;
3796 inst.reloc.exp.X_add_number = 0;
3797 }
c469c864 3798 }
a06ea964
NC
3799 }
3800
3801 *str = p;
3802 return TRUE;
3803}
3804
73866052
RS
3805/* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3806 on success. */
a06ea964 3807static bfd_boolean
73866052 3808parse_address (char **str, aarch64_opnd_info *operand)
a06ea964 3809{
4df068de
RS
3810 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3811 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
98907a70 3812 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
4df068de
RS
3813}
3814
98907a70 3815/* Parse an address in which SVE vector registers and MUL VL are allowed.
4df068de
RS
3816 The arguments have the same meaning as for parse_address_main.
3817 Return TRUE on success. */
3818static bfd_boolean
3819parse_sve_address (char **str, aarch64_opnd_info *operand,
3820 aarch64_opnd_qualifier_t *base_qualifier,
3821 aarch64_opnd_qualifier_t *offset_qualifier)
3822{
3823 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
98907a70
RS
3824 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3825 SHIFTED_MUL_VL);
a06ea964
NC
3826}
3827
3828/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3829 Return TRUE on success; otherwise return FALSE. */
3830static bfd_boolean
3831parse_half (char **str, int *internal_fixup_p)
3832{
671eeb28 3833 char *p = *str;
a06ea964 3834
a06ea964
NC
3835 skip_past_char (&p, '#');
3836
3837 gas_assert (internal_fixup_p);
3838 *internal_fixup_p = 0;
3839
3840 if (*p == ':')
3841 {
3842 struct reloc_table_entry *entry;
3843
3844 /* Try to parse a relocation. Anything else is an error. */
3845 ++p;
3846 if (!(entry = find_reloc_table_entry (&p)))
3847 {
3848 set_syntax_error (_("unknown relocation modifier"));
3849 return FALSE;
3850 }
3851
3852 if (entry->movw_type == 0)
3853 {
3854 set_syntax_error
3855 (_("this relocation modifier is not allowed on this instruction"));
3856 return FALSE;
3857 }
3858
3859 inst.reloc.type = entry->movw_type;
3860 }
3861 else
3862 *internal_fixup_p = 1;
3863
a06ea964
NC
3864 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3865 return FALSE;
3866
3867 *str = p;
3868 return TRUE;
3869}
3870
3871/* Parse an operand for an ADRP instruction:
3872 ADRP <Xd>, <label>
3873 Return TRUE on success; otherwise return FALSE. */
3874
3875static bfd_boolean
3876parse_adrp (char **str)
3877{
3878 char *p;
3879
3880 p = *str;
3881 if (*p == ':')
3882 {
3883 struct reloc_table_entry *entry;
3884
3885 /* Try to parse a relocation. Anything else is an error. */
3886 ++p;
3887 if (!(entry = find_reloc_table_entry (&p)))
3888 {
3889 set_syntax_error (_("unknown relocation modifier"));
3890 return FALSE;
3891 }
3892
3893 if (entry->adrp_type == 0)
3894 {
3895 set_syntax_error
3896 (_("this relocation modifier is not allowed on this instruction"));
3897 return FALSE;
3898 }
3899
3900 inst.reloc.type = entry->adrp_type;
3901 }
3902 else
3903 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3904
3905 inst.reloc.pc_rel = 1;
3906
3907 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3908 return FALSE;
3909
3910 *str = p;
3911 return TRUE;
3912}
3913
3914/* Miscellaneous. */
3915
245d2e3f
RS
3916/* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3917 of SIZE tokens in which index I gives the token for field value I,
3918 or is null if field value I is invalid. REG_TYPE says which register
3919 names should be treated as registers rather than as symbolic immediates.
3920
3921 Return true on success, moving *STR past the operand and storing the
3922 field value in *VAL. */
3923
3924static int
3925parse_enum_string (char **str, int64_t *val, const char *const *array,
3926 size_t size, aarch64_reg_type reg_type)
3927{
3928 expressionS exp;
3929 char *p, *q;
3930 size_t i;
3931
3932 /* Match C-like tokens. */
3933 p = q = *str;
3934 while (ISALNUM (*q))
3935 q++;
3936
3937 for (i = 0; i < size; ++i)
3938 if (array[i]
3939 && strncasecmp (array[i], p, q - p) == 0
3940 && array[i][q - p] == 0)
3941 {
3942 *val = i;
3943 *str = q;
3944 return TRUE;
3945 }
3946
3947 if (!parse_immediate_expression (&p, &exp, reg_type))
3948 return FALSE;
3949
3950 if (exp.X_op == O_constant
3951 && (uint64_t) exp.X_add_number < size)
3952 {
3953 *val = exp.X_add_number;
3954 *str = p;
3955 return TRUE;
3956 }
3957
3958 /* Use the default error for this operand. */
3959 return FALSE;
3960}
3961
a06ea964
NC
3962/* Parse an option for a preload instruction. Returns the encoding for the
3963 option, or PARSE_FAIL. */
3964
3965static int
3966parse_pldop (char **str)
3967{
3968 char *p, *q;
3969 const struct aarch64_name_value_pair *o;
3970
3971 p = q = *str;
3972 while (ISALNUM (*q))
3973 q++;
3974
629310ab 3975 o = str_hash_find_n (aarch64_pldop_hsh, p, q - p);
a06ea964
NC
3976 if (!o)
3977 return PARSE_FAIL;
3978
3979 *str = q;
3980 return o->value;
3981}
3982
3983/* Parse an option for a barrier instruction. Returns the encoding for the
3984 option, or PARSE_FAIL. */
3985
3986static int
3987parse_barrier (char **str)
3988{
3989 char *p, *q;
05cfb0d8 3990 const struct aarch64_name_value_pair *o;
a06ea964
NC
3991
3992 p = q = *str;
3993 while (ISALPHA (*q))
3994 q++;
3995
629310ab 3996 o = str_hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
a06ea964
NC
3997 if (!o)
3998 return PARSE_FAIL;
3999
4000 *str = q;
4001 return o->value;
4002}
4003
1e6f4800
MW
4004/* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
4005 return 0 if successful. Otherwise return PARSE_FAIL. */
4006
4007static int
4008parse_barrier_psb (char **str,
4009 const struct aarch64_name_value_pair ** hint_opt)
4010{
4011 char *p, *q;
4012 const struct aarch64_name_value_pair *o;
4013
4014 p = q = *str;
4015 while (ISALPHA (*q))
4016 q++;
4017
629310ab 4018 o = str_hash_find_n (aarch64_hint_opt_hsh, p, q - p);
1e6f4800
MW
4019 if (!o)
4020 {
4021 set_fatal_syntax_error
c2e5c986 4022 ( _("unknown or missing option to PSB/TSB"));
1e6f4800
MW
4023 return PARSE_FAIL;
4024 }
4025
4026 if (o->value != 0x11)
4027 {
4028 /* PSB only accepts option name 'CSYNC'. */
4029 set_syntax_error
c2e5c986 4030 (_("the specified option is not accepted for PSB/TSB"));
1e6f4800
MW
4031 return PARSE_FAIL;
4032 }
4033
4034 *str = q;
4035 *hint_opt = o;
4036 return 0;
4037}
4038
dd4a72c8
PW
4039/* Parse an operand for CSR (CSRE instruction). */
4040
4041static int
4042parse_csr_operand (char **str)
4043{
4044 char *p, *q;
4045
4046 p = q = *str;
4047 while (ISALPHA (*q))
4048 q++;
4049
4050 /* Instruction has only one operand PDEC which encodes Rt field of the
4051 operation to 0b11111. */
4052 if (strcasecmp(p, "pdec"))
4053 {
4054 set_syntax_error (_("CSR instruction accepts only PDEC"));
4055 return PARSE_FAIL;
4056 }
4057
4058 *str = q;
4059 return 0;
4060}
4061
ff605452
SD
4062/* Parse an operand for BTI. Set *HINT_OPT to the hint-option record
4063 return 0 if successful. Otherwise return PARSE_FAIL. */
4064
4065static int
4066parse_bti_operand (char **str,
4067 const struct aarch64_name_value_pair ** hint_opt)
4068{
4069 char *p, *q;
4070 const struct aarch64_name_value_pair *o;
4071
4072 p = q = *str;
4073 while (ISALPHA (*q))
4074 q++;
4075
629310ab 4076 o = str_hash_find_n (aarch64_hint_opt_hsh, p, q - p);
ff605452
SD
4077 if (!o)
4078 {
4079 set_fatal_syntax_error
4080 ( _("unknown option to BTI"));
4081 return PARSE_FAIL;
4082 }
4083
4084 switch (o->value)
4085 {
4086 /* Valid BTI operands. */
4087 case HINT_OPD_C:
4088 case HINT_OPD_J:
4089 case HINT_OPD_JC:
4090 break;
4091
4092 default:
4093 set_syntax_error
4094 (_("unknown option to BTI"));
4095 return PARSE_FAIL;
4096 }
4097
4098 *str = q;
4099 *hint_opt = o;
4100 return 0;
4101}
4102
a06ea964 4103/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 4104 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
4105
4106 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
4107 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
4108
4109 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
4110 field, otherwise as a system register.
4111*/
a06ea964
NC
4112
4113static int
629310ab 4114parse_sys_reg (char **str, htab_t sys_regs,
561a72d4
TC
4115 int imple_defined_p, int pstatefield_p,
4116 uint32_t* flags)
a06ea964
NC
4117{
4118 char *p, *q;
fa63795f 4119 char buf[AARCH64_MAX_SYSREG_NAME_LEN];
49eec193 4120 const aarch64_sys_reg *o;
a06ea964
NC
4121 int value;
4122
4123 p = buf;
4124 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
fa63795f 4125 if (p < buf + (sizeof (buf) - 1))
a06ea964
NC
4126 *p++ = TOLOWER (*q);
4127 *p = '\0';
fa63795f
AC
4128
4129 /* If the name is longer than AARCH64_MAX_SYSREG_NAME_LEN then it cannot be a
4130 valid system register. This is enforced by construction of the hash
4131 table. */
4132 if (p - buf != q - *str)
4133 return PARSE_FAIL;
a06ea964 4134
629310ab 4135 o = str_hash_find (sys_regs, buf);
a06ea964
NC
4136 if (!o)
4137 {
4138 if (!imple_defined_p)
4139 return PARSE_FAIL;
4140 else
4141 {
df7b4545 4142 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 4143 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
4144
4145 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
4146 != 5)
a06ea964 4147 return PARSE_FAIL;
df7b4545 4148 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
4149 return PARSE_FAIL;
4150 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
561a72d4
TC
4151 if (flags)
4152 *flags = 0;
a06ea964
NC
4153 }
4154 }
4155 else
49eec193 4156 {
72ca8fad
MW
4157 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
4158 as_bad (_("selected processor does not support PSTATE field "
4159 "name '%s'"), buf);
f7cb161e 4160 if (!pstatefield_p
38cf07a6
AC
4161 && !aarch64_sys_ins_reg_supported_p (cpu_variant, o->name,
4162 o->value, o->flags, o->features))
72ca8fad
MW
4163 as_bad (_("selected processor does not support system register "
4164 "name '%s'"), buf);
f7cb161e 4165 if (aarch64_sys_reg_deprecated_p (o->flags))
49eec193 4166 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 4167 "removed in a future release"), buf);
49eec193 4168 value = o->value;
561a72d4
TC
4169 if (flags)
4170 *flags = o->flags;
49eec193 4171 }
a06ea964
NC
4172
4173 *str = q;
4174 return value;
4175}
4176
4177/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
4178 for the option, or NULL. */
4179
4180static const aarch64_sys_ins_reg *
629310ab 4181parse_sys_ins_reg (char **str, htab_t sys_ins_regs)
a06ea964
NC
4182{
4183 char *p, *q;
fa63795f 4184 char buf[AARCH64_MAX_SYSREG_NAME_LEN];
a06ea964
NC
4185 const aarch64_sys_ins_reg *o;
4186
4187 p = buf;
4188 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
fa63795f 4189 if (p < buf + (sizeof (buf) - 1))
a06ea964
NC
4190 *p++ = TOLOWER (*q);
4191 *p = '\0';
4192
fa63795f
AC
4193 /* If the name is longer than AARCH64_MAX_SYSREG_NAME_LEN then it cannot be a
4194 valid system register. This is enforced by construction of the hash
4195 table. */
4196 if (p - buf != q - *str)
4197 return NULL;
4198
629310ab 4199 o = str_hash_find (sys_ins_regs, buf);
a06ea964
NC
4200 if (!o)
4201 return NULL;
4202
38cf07a6
AC
4203 if (!aarch64_sys_ins_reg_supported_p (cpu_variant,
4204 o->name, o->value, o->flags, 0))
d6bf7ce6
MW
4205 as_bad (_("selected processor does not support system register "
4206 "name '%s'"), buf);
f7cb161e
PW
4207 if (aarch64_sys_reg_deprecated_p (o->flags))
4208 as_warn (_("system register name '%s' is deprecated and may be "
4209 "removed in a future release"), buf);
d6bf7ce6 4210
a06ea964
NC
4211 *str = q;
4212 return o;
4213}
4214\f
4215#define po_char_or_fail(chr) do { \
4216 if (! skip_past_char (&str, chr)) \
4217 goto failure; \
4218} while (0)
4219
4220#define po_reg_or_fail(regtype) do { \
4221 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
4222 if (val == PARSE_FAIL) \
4223 { \
4224 set_default_error (); \
4225 goto failure; \
4226 } \
4227 } while (0)
4228
e1b988bb
RS
4229#define po_int_reg_or_fail(reg_type) do { \
4230 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
4231 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
a06ea964
NC
4232 { \
4233 set_default_error (); \
4234 goto failure; \
4235 } \
e1b988bb
RS
4236 info->reg.regno = reg->number; \
4237 info->qualifier = qualifier; \
a06ea964
NC
4238 } while (0)
4239
4240#define po_imm_nc_or_fail() do { \
1799c0d0 4241 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4242 goto failure; \
4243 } while (0)
4244
4245#define po_imm_or_fail(min, max) do { \
1799c0d0 4246 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
a06ea964
NC
4247 goto failure; \
4248 if (val < min || val > max) \
4249 { \
4250 set_fatal_syntax_error (_("immediate value out of range "\
4251#min " to "#max)); \
4252 goto failure; \
4253 } \
4254 } while (0)
4255
245d2e3f
RS
4256#define po_enum_or_fail(array) do { \
4257 if (!parse_enum_string (&str, &val, array, \
4258 ARRAY_SIZE (array), imm_reg_type)) \
4259 goto failure; \
4260 } while (0)
4261
a06ea964
NC
4262#define po_misc_or_fail(expr) do { \
4263 if (!expr) \
4264 goto failure; \
4265 } while (0)
4266\f
4267/* encode the 12-bit imm field of Add/sub immediate */
4268static inline uint32_t
4269encode_addsub_imm (uint32_t imm)
4270{
4271 return imm << 10;
4272}
4273
4274/* encode the shift amount field of Add/sub immediate */
4275static inline uint32_t
4276encode_addsub_imm_shift_amount (uint32_t cnt)
4277{
4278 return cnt << 22;
4279}
4280
4281
4282/* encode the imm field of Adr instruction */
4283static inline uint32_t
4284encode_adr_imm (uint32_t imm)
4285{
4286 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4287 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4288}
4289
4290/* encode the immediate field of Move wide immediate */
4291static inline uint32_t
4292encode_movw_imm (uint32_t imm)
4293{
4294 return imm << 5;
4295}
4296
4297/* encode the 26-bit offset of unconditional branch */
4298static inline uint32_t
4299encode_branch_ofs_26 (uint32_t ofs)
4300{
4301 return ofs & ((1 << 26) - 1);
4302}
4303
4304/* encode the 19-bit offset of conditional branch and compare & branch */
4305static inline uint32_t
4306encode_cond_branch_ofs_19 (uint32_t ofs)
4307{
4308 return (ofs & ((1 << 19) - 1)) << 5;
4309}
4310
4311/* encode the 19-bit offset of ld literal */
4312static inline uint32_t
4313encode_ld_lit_ofs_19 (uint32_t ofs)
4314{
4315 return (ofs & ((1 << 19) - 1)) << 5;
4316}
4317
4318/* Encode the 14-bit offset of test & branch. */
4319static inline uint32_t
4320encode_tst_branch_ofs_14 (uint32_t ofs)
4321{
4322 return (ofs & ((1 << 14) - 1)) << 5;
4323}
4324
4325/* Encode the 16-bit imm field of svc/hvc/smc. */
4326static inline uint32_t
4327encode_svc_imm (uint32_t imm)
4328{
4329 return imm << 5;
4330}
4331
4332/* Reencode add(s) to sub(s), or sub(s) to add(s). */
4333static inline uint32_t
4334reencode_addsub_switch_add_sub (uint32_t opcode)
4335{
4336 return opcode ^ (1 << 30);
4337}
4338
4339static inline uint32_t
4340reencode_movzn_to_movz (uint32_t opcode)
4341{
4342 return opcode | (1 << 30);
4343}
4344
4345static inline uint32_t
4346reencode_movzn_to_movn (uint32_t opcode)
4347{
4348 return opcode & ~(1 << 30);
4349}
4350
4351/* Overall per-instruction processing. */
4352
4353/* We need to be able to fix up arbitrary expressions in some statements.
4354 This is so that we can handle symbols that are an arbitrary distance from
4355 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4356 which returns part of an address in a form which will be valid for
4357 a data instruction. We do this by pushing the expression into a symbol
4358 in the expr_section, and creating a fix for that. */
4359
4360static fixS *
4361fix_new_aarch64 (fragS * frag,
4362 int where,
f7cb161e
PW
4363 short int size,
4364 expressionS * exp,
4365 int pc_rel,
4366 int reloc)
a06ea964
NC
4367{
4368 fixS *new_fix;
4369
4370 switch (exp->X_op)
4371 {
4372 case O_constant:
4373 case O_symbol:
4374 case O_add:
4375 case O_subtract:
4376 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4377 break;
4378
4379 default:
4380 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4381 pc_rel, reloc);
4382 break;
4383 }
4384 return new_fix;
4385}
4386\f
4387/* Diagnostics on operands errors. */
4388
a52e6fd3
YZ
4389/* By default, output verbose error message.
4390 Disable the verbose error message by -mno-verbose-error. */
4391static int verbose_error_p = 1;
a06ea964
NC
4392
4393#ifdef DEBUG_AARCH64
4394/* N.B. this is only for the purpose of debugging. */
4395const char* operand_mismatch_kind_names[] =
4396{
4397 "AARCH64_OPDE_NIL",
4398 "AARCH64_OPDE_RECOVERABLE",
4399 "AARCH64_OPDE_SYNTAX_ERROR",
4400 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4401 "AARCH64_OPDE_INVALID_VARIANT",
4402 "AARCH64_OPDE_OUT_OF_RANGE",
4403 "AARCH64_OPDE_UNALIGNED",
4404 "AARCH64_OPDE_REG_LIST",
4405 "AARCH64_OPDE_OTHER_ERROR",
4406};
4407#endif /* DEBUG_AARCH64 */
4408
4409/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4410
4411 When multiple errors of different kinds are found in the same assembly
4412 line, only the error of the highest severity will be picked up for
4413 issuing the diagnostics. */
4414
4415static inline bfd_boolean
4416operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4417 enum aarch64_operand_error_kind rhs)
4418{
4419 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4420 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4421 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4422 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4423 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4424 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4425 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4426 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4427 return lhs > rhs;
4428}
4429
4430/* Helper routine to get the mnemonic name from the assembly instruction
4431 line; should only be called for the diagnosis purpose, as there is
4432 string copy operation involved, which may affect the runtime
4433 performance if used in elsewhere. */
4434
4435static const char*
4436get_mnemonic_name (const char *str)
4437{
4438 static char mnemonic[32];
4439 char *ptr;
4440
4441 /* Get the first 15 bytes and assume that the full name is included. */
4442 strncpy (mnemonic, str, 31);
4443 mnemonic[31] = '\0';
4444
4445 /* Scan up to the end of the mnemonic, which must end in white space,
4446 '.', or end of string. */
4447 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4448 ;
4449
4450 *ptr = '\0';
4451
4452 /* Append '...' to the truncated long name. */
4453 if (ptr - mnemonic == 31)
4454 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4455
4456 return mnemonic;
4457}
4458
4459static void
4460reset_aarch64_instruction (aarch64_instruction *instruction)
4461{
4462 memset (instruction, '\0', sizeof (aarch64_instruction));
4463 instruction->reloc.type = BFD_RELOC_UNUSED;
4464}
4465
33eaf5de 4466/* Data structures storing one user error in the assembly code related to
a06ea964
NC
4467 operands. */
4468
4469struct operand_error_record
4470{
4471 const aarch64_opcode *opcode;
4472 aarch64_operand_error detail;
4473 struct operand_error_record *next;
4474};
4475
4476typedef struct operand_error_record operand_error_record;
4477
4478struct operand_errors
4479{
4480 operand_error_record *head;
4481 operand_error_record *tail;
4482};
4483
4484typedef struct operand_errors operand_errors;
4485
4486/* Top-level data structure reporting user errors for the current line of
4487 the assembly code.
4488 The way md_assemble works is that all opcodes sharing the same mnemonic
4489 name are iterated to find a match to the assembly line. In this data
4490 structure, each of the such opcodes will have one operand_error_record
4491 allocated and inserted. In other words, excessive errors related with
4492 a single opcode are disregarded. */
4493operand_errors operand_error_report;
4494
4495/* Free record nodes. */
4496static operand_error_record *free_opnd_error_record_nodes = NULL;
4497
4498/* Initialize the data structure that stores the operand mismatch
4499 information on assembling one line of the assembly code. */
4500static void
4501init_operand_error_report (void)
4502{
4503 if (operand_error_report.head != NULL)
4504 {
4505 gas_assert (operand_error_report.tail != NULL);
4506 operand_error_report.tail->next = free_opnd_error_record_nodes;
4507 free_opnd_error_record_nodes = operand_error_report.head;
4508 operand_error_report.head = NULL;
4509 operand_error_report.tail = NULL;
4510 return;
4511 }
4512 gas_assert (operand_error_report.tail == NULL);
4513}
4514
4515/* Return TRUE if some operand error has been recorded during the
4516 parsing of the current assembly line using the opcode *OPCODE;
4517 otherwise return FALSE. */
4518static inline bfd_boolean
4519opcode_has_operand_error_p (const aarch64_opcode *opcode)
4520{
4521 operand_error_record *record = operand_error_report.head;
4522 return record && record->opcode == opcode;
4523}
4524
4525/* Add the error record *NEW_RECORD to operand_error_report. The record's
4526 OPCODE field is initialized with OPCODE.
4527 N.B. only one record for each opcode, i.e. the maximum of one error is
4528 recorded for each instruction template. */
4529
4530static void
4531add_operand_error_record (const operand_error_record* new_record)
4532{
4533 const aarch64_opcode *opcode = new_record->opcode;
4534 operand_error_record* record = operand_error_report.head;
4535
4536 /* The record may have been created for this opcode. If not, we need
4537 to prepare one. */
4538 if (! opcode_has_operand_error_p (opcode))
4539 {
4540 /* Get one empty record. */
4541 if (free_opnd_error_record_nodes == NULL)
4542 {
325801bd 4543 record = XNEW (operand_error_record);
a06ea964
NC
4544 }
4545 else
4546 {
4547 record = free_opnd_error_record_nodes;
4548 free_opnd_error_record_nodes = record->next;
4549 }
4550 record->opcode = opcode;
4551 /* Insert at the head. */
4552 record->next = operand_error_report.head;
4553 operand_error_report.head = record;
4554 if (operand_error_report.tail == NULL)
4555 operand_error_report.tail = record;
4556 }
4557 else if (record->detail.kind != AARCH64_OPDE_NIL
4558 && record->detail.index <= new_record->detail.index
4559 && operand_error_higher_severity_p (record->detail.kind,
4560 new_record->detail.kind))
4561 {
4562 /* In the case of multiple errors found on operands related with a
4563 single opcode, only record the error of the leftmost operand and
4564 only if the error is of higher severity. */
4565 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4566 " the existing error %s on operand %d",
4567 operand_mismatch_kind_names[new_record->detail.kind],
4568 new_record->detail.index,
4569 operand_mismatch_kind_names[record->detail.kind],
4570 record->detail.index);
4571 return;
4572 }
4573
4574 record->detail = new_record->detail;
4575}
4576
4577static inline void
4578record_operand_error_info (const aarch64_opcode *opcode,
4579 aarch64_operand_error *error_info)
4580{
4581 operand_error_record record;
4582 record.opcode = opcode;
4583 record.detail = *error_info;
4584 add_operand_error_record (&record);
4585}
4586
4587/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4588 error message *ERROR, for operand IDX (count from 0). */
4589
4590static void
4591record_operand_error (const aarch64_opcode *opcode, int idx,
4592 enum aarch64_operand_error_kind kind,
4593 const char* error)
4594{
4595 aarch64_operand_error info;
4596 memset(&info, 0, sizeof (info));
4597 info.index = idx;
4598 info.kind = kind;
4599 info.error = error;
2a9b2c1a 4600 info.non_fatal = FALSE;
a06ea964
NC
4601 record_operand_error_info (opcode, &info);
4602}
4603
4604static void
4605record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4606 enum aarch64_operand_error_kind kind,
4607 const char* error, const int *extra_data)
4608{
4609 aarch64_operand_error info;
4610 info.index = idx;
4611 info.kind = kind;
4612 info.error = error;
4613 info.data[0] = extra_data[0];
4614 info.data[1] = extra_data[1];
4615 info.data[2] = extra_data[2];
2a9b2c1a 4616 info.non_fatal = FALSE;
a06ea964
NC
4617 record_operand_error_info (opcode, &info);
4618}
4619
4620static void
4621record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4622 const char* error, int lower_bound,
4623 int upper_bound)
4624{
4625 int data[3] = {lower_bound, upper_bound, 0};
4626 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4627 error, data);
4628}
4629
4630/* Remove the operand error record for *OPCODE. */
4631static void ATTRIBUTE_UNUSED
4632remove_operand_error_record (const aarch64_opcode *opcode)
4633{
4634 if (opcode_has_operand_error_p (opcode))
4635 {
4636 operand_error_record* record = operand_error_report.head;
4637 gas_assert (record != NULL && operand_error_report.tail != NULL);
4638 operand_error_report.head = record->next;
4639 record->next = free_opnd_error_record_nodes;
4640 free_opnd_error_record_nodes = record;
4641 if (operand_error_report.head == NULL)
4642 {
4643 gas_assert (operand_error_report.tail == record);
4644 operand_error_report.tail = NULL;
4645 }
4646 }
4647}
4648
4649/* Given the instruction in *INSTR, return the index of the best matched
4650 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4651
4652 Return -1 if there is no qualifier sequence; return the first match
4653 if there is multiple matches found. */
4654
4655static int
4656find_best_match (const aarch64_inst *instr,
4657 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4658{
4659 int i, num_opnds, max_num_matched, idx;
4660
4661 num_opnds = aarch64_num_of_operands (instr->opcode);
4662 if (num_opnds == 0)
4663 {
4664 DEBUG_TRACE ("no operand");
4665 return -1;
4666 }
4667
4668 max_num_matched = 0;
4989adac 4669 idx = 0;
a06ea964
NC
4670
4671 /* For each pattern. */
4672 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4673 {
4674 int j, num_matched;
4675 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4676
4677 /* Most opcodes has much fewer patterns in the list. */
535b785f 4678 if (empty_qualifier_sequence_p (qualifiers))
a06ea964
NC
4679 {
4680 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
a06ea964
NC
4681 break;
4682 }
4683
4684 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4685 if (*qualifiers == instr->operands[j].qualifier)
4686 ++num_matched;
4687
4688 if (num_matched > max_num_matched)
4689 {
4690 max_num_matched = num_matched;
4691 idx = i;
4692 }
4693 }
4694
4695 DEBUG_TRACE ("return with %d", idx);
4696 return idx;
4697}
4698
33eaf5de 4699/* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
a06ea964
NC
4700 corresponding operands in *INSTR. */
4701
4702static inline void
4703assign_qualifier_sequence (aarch64_inst *instr,
4704 const aarch64_opnd_qualifier_t *qualifiers)
4705{
4706 int i = 0;
4707 int num_opnds = aarch64_num_of_operands (instr->opcode);
4708 gas_assert (num_opnds);
4709 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4710 instr->operands[i].qualifier = *qualifiers;
4711}
4712
4713/* Print operands for the diagnosis purpose. */
4714
4715static void
4716print_operands (char *buf, const aarch64_opcode *opcode,
4717 const aarch64_opnd_info *opnds)
4718{
4719 int i;
4720
4721 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4722 {
08d3b0cc 4723 char str[128];
a06ea964
NC
4724
4725 /* We regard the opcode operand info more, however we also look into
4726 the inst->operands to support the disassembling of the optional
4727 operand.
4728 The two operand code should be the same in all cases, apart from
4729 when the operand can be optional. */
4730 if (opcode->operands[i] == AARCH64_OPND_NIL
4731 || opnds[i].type == AARCH64_OPND_NIL)
4732 break;
4733
4734 /* Generate the operand string in STR. */
7d02540a 4735 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL,
38cf07a6 4736 NULL, cpu_variant);
a06ea964
NC
4737
4738 /* Delimiter. */
4739 if (str[0] != '\0')
ad43e107 4740 strcat (buf, i == 0 ? " " : ", ");
a06ea964
NC
4741
4742 /* Append the operand string. */
4743 strcat (buf, str);
4744 }
4745}
4746
4747/* Send to stderr a string as information. */
4748
4749static void
4750output_info (const char *format, ...)
4751{
3b4dbbbf 4752 const char *file;
a06ea964
NC
4753 unsigned int line;
4754 va_list args;
4755
3b4dbbbf 4756 file = as_where (&line);
a06ea964
NC
4757 if (file)
4758 {
4759 if (line != 0)
4760 fprintf (stderr, "%s:%u: ", file, line);
4761 else
4762 fprintf (stderr, "%s: ", file);
4763 }
4764 fprintf (stderr, _("Info: "));
4765 va_start (args, format);
4766 vfprintf (stderr, format, args);
4767 va_end (args);
4768 (void) putc ('\n', stderr);
4769}
4770
4771/* Output one operand error record. */
4772
4773static void
4774output_operand_error_record (const operand_error_record *record, char *str)
4775{
28f013d5
JB
4776 const aarch64_operand_error *detail = &record->detail;
4777 int idx = detail->index;
a06ea964 4778 const aarch64_opcode *opcode = record->opcode;
28f013d5 4779 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4780 : AARCH64_OPND_NIL);
a06ea964 4781
7d02540a
TC
4782 typedef void (*handler_t)(const char *format, ...);
4783 handler_t handler = detail->non_fatal ? as_warn : as_bad;
4784
a06ea964
NC
4785 switch (detail->kind)
4786 {
4787 case AARCH64_OPDE_NIL:
4788 gas_assert (0);
4789 break;
a06ea964
NC
4790 case AARCH64_OPDE_SYNTAX_ERROR:
4791 case AARCH64_OPDE_RECOVERABLE:
4792 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4793 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4794 /* Use the prepared error message if there is, otherwise use the
4795 operand description string to describe the error. */
4796 if (detail->error != NULL)
4797 {
28f013d5 4798 if (idx < 0)
7d02540a 4799 handler (_("%s -- `%s'"), detail->error, str);
a06ea964 4800 else
7d02540a
TC
4801 handler (_("%s at operand %d -- `%s'"),
4802 detail->error, idx + 1, str);
a06ea964
NC
4803 }
4804 else
28f013d5
JB
4805 {
4806 gas_assert (idx >= 0);
7d02540a
TC
4807 handler (_("operand %d must be %s -- `%s'"), idx + 1,
4808 aarch64_get_operand_desc (opd_code), str);
28f013d5 4809 }
a06ea964
NC
4810 break;
4811
4812 case AARCH64_OPDE_INVALID_VARIANT:
7d02540a 4813 handler (_("operand mismatch -- `%s'"), str);
a06ea964
NC
4814 if (verbose_error_p)
4815 {
4816 /* We will try to correct the erroneous instruction and also provide
4817 more information e.g. all other valid variants.
4818
4819 The string representation of the corrected instruction and other
4820 valid variants are generated by
4821
4822 1) obtaining the intermediate representation of the erroneous
4823 instruction;
4824 2) manipulating the IR, e.g. replacing the operand qualifier;
4825 3) printing out the instruction by calling the printer functions
4826 shared with the disassembler.
4827
4828 The limitation of this method is that the exact input assembly
4829 line cannot be accurately reproduced in some cases, for example an
4830 optional operand present in the actual assembly line will be
4831 omitted in the output; likewise for the optional syntax rules,
4832 e.g. the # before the immediate. Another limitation is that the
4833 assembly symbols and relocation operations in the assembly line
4834 currently cannot be printed out in the error report. Last but not
4835 least, when there is other error(s) co-exist with this error, the
4836 'corrected' instruction may be still incorrect, e.g. given
4837 'ldnp h0,h1,[x0,#6]!'
4838 this diagnosis will provide the version:
4839 'ldnp s0,s1,[x0,#6]!'
4840 which is still not right. */
4841 size_t len = strlen (get_mnemonic_name (str));
4842 int i, qlf_idx;
4843 bfd_boolean result;
08d3b0cc 4844 char buf[2048];
a06ea964
NC
4845 aarch64_inst *inst_base = &inst.base;
4846 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4847
4848 /* Init inst. */
4849 reset_aarch64_instruction (&inst);
4850 inst_base->opcode = opcode;
4851
4852 /* Reset the error report so that there is no side effect on the
4853 following operand parsing. */
4854 init_operand_error_report ();
4855
4856 /* Fill inst. */
4857 result = parse_operands (str + len, opcode)
4858 && programmer_friendly_fixup (&inst);
4859 gas_assert (result);
4860 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
7e84b55d 4861 NULL, NULL, insn_sequence);
a06ea964
NC
4862 gas_assert (!result);
4863
4864 /* Find the most matched qualifier sequence. */
4865 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4866 gas_assert (qlf_idx > -1);
4867
4868 /* Assign the qualifiers. */
4869 assign_qualifier_sequence (inst_base,
4870 opcode->qualifiers_list[qlf_idx]);
4871
4872 /* Print the hint. */
4873 output_info (_(" did you mean this?"));
08d3b0cc 4874 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4875 print_operands (buf, opcode, inst_base->operands);
4876 output_info (_(" %s"), buf);
4877
4878 /* Print out other variant(s) if there is any. */
4879 if (qlf_idx != 0 ||
4880 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4881 output_info (_(" other valid variant(s):"));
4882
4883 /* For each pattern. */
4884 qualifiers_list = opcode->qualifiers_list;
4885 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4886 {
4887 /* Most opcodes has much fewer patterns in the list.
4888 First NIL qualifier indicates the end in the list. */
535b785f 4889 if (empty_qualifier_sequence_p (*qualifiers_list))
a06ea964
NC
4890 break;
4891
4892 if (i != qlf_idx)
4893 {
4894 /* Mnemonics name. */
08d3b0cc 4895 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
a06ea964
NC
4896
4897 /* Assign the qualifiers. */
4898 assign_qualifier_sequence (inst_base, *qualifiers_list);
4899
4900 /* Print instruction. */
4901 print_operands (buf, opcode, inst_base->operands);
4902
4903 output_info (_(" %s"), buf);
4904 }
4905 }
4906 }
4907 break;
4908
0c608d6b 4909 case AARCH64_OPDE_UNTIED_OPERAND:
7d02540a
TC
4910 handler (_("operand %d must be the same register as operand 1 -- `%s'"),
4911 detail->index + 1, str);
0c608d6b
RS
4912 break;
4913
a06ea964 4914 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712 4915 if (detail->data[0] != detail->data[1])
7d02540a
TC
4916 handler (_("%s out of range %d to %d at operand %d -- `%s'"),
4917 detail->error ? detail->error : _("immediate value"),
4918 detail->data[0], detail->data[1], idx + 1, str);
f5555712 4919 else
7d02540a
TC
4920 handler (_("%s must be %d at operand %d -- `%s'"),
4921 detail->error ? detail->error : _("immediate value"),
4922 detail->data[0], idx + 1, str);
a06ea964
NC
4923 break;
4924
4925 case AARCH64_OPDE_REG_LIST:
4926 if (detail->data[0] == 1)
7d02540a
TC
4927 handler (_("invalid number of registers in the list; "
4928 "only 1 register is expected at operand %d -- `%s'"),
4929 idx + 1, str);
a06ea964 4930 else
7d02540a
TC
4931 handler (_("invalid number of registers in the list; "
4932 "%d registers are expected at operand %d -- `%s'"),
4933 detail->data[0], idx + 1, str);
a06ea964
NC
4934 break;
4935
4936 case AARCH64_OPDE_UNALIGNED:
7d02540a
TC
4937 handler (_("immediate value must be a multiple of "
4938 "%d at operand %d -- `%s'"),
4939 detail->data[0], idx + 1, str);
a06ea964
NC
4940 break;
4941
4942 default:
4943 gas_assert (0);
4944 break;
4945 }
4946}
4947
4948/* Process and output the error message about the operand mismatching.
4949
4950 When this function is called, the operand error information had
4951 been collected for an assembly line and there will be multiple
33eaf5de 4952 errors in the case of multiple instruction templates; output the
7d02540a
TC
4953 error message that most closely describes the problem.
4954
4955 The errors to be printed can be filtered on printing all errors
4956 or only non-fatal errors. This distinction has to be made because
4957 the error buffer may already be filled with fatal errors we don't want to
4958 print due to the different instruction templates. */
a06ea964
NC
4959
4960static void
7d02540a 4961output_operand_error_report (char *str, bfd_boolean non_fatal_only)
a06ea964
NC
4962{
4963 int largest_error_pos;
4964 const char *msg = NULL;
4965 enum aarch64_operand_error_kind kind;
4966 operand_error_record *curr;
4967 operand_error_record *head = operand_error_report.head;
4968 operand_error_record *record = NULL;
4969
4970 /* No error to report. */
4971 if (head == NULL)
4972 return;
4973
4974 gas_assert (head != NULL && operand_error_report.tail != NULL);
4975
4976 /* Only one error. */
4977 if (head == operand_error_report.tail)
4978 {
7d02540a
TC
4979 /* If the only error is a non-fatal one and we don't want to print it,
4980 just exit. */
4981 if (!non_fatal_only || head->detail.non_fatal)
4982 {
4983 DEBUG_TRACE ("single opcode entry with error kind: %s",
4984 operand_mismatch_kind_names[head->detail.kind]);
4985 output_operand_error_record (head, str);
4986 }
a06ea964
NC
4987 return;
4988 }
4989
4990 /* Find the error kind of the highest severity. */
33eaf5de 4991 DEBUG_TRACE ("multiple opcode entries with error kind");
a06ea964
NC
4992 kind = AARCH64_OPDE_NIL;
4993 for (curr = head; curr != NULL; curr = curr->next)
4994 {
4995 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4996 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
a68f4cd2
TC
4997 if (operand_error_higher_severity_p (curr->detail.kind, kind)
4998 && (!non_fatal_only || (non_fatal_only && curr->detail.non_fatal)))
a06ea964
NC
4999 kind = curr->detail.kind;
5000 }
a68f4cd2
TC
5001
5002 gas_assert (kind != AARCH64_OPDE_NIL || non_fatal_only);
a06ea964
NC
5003
5004 /* Pick up one of errors of KIND to report. */
5005 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
5006 for (curr = head; curr != NULL; curr = curr->next)
5007 {
7d02540a
TC
5008 /* If we don't want to print non-fatal errors then don't consider them
5009 at all. */
5010 if (curr->detail.kind != kind
af81c43b 5011 || (non_fatal_only && !curr->detail.non_fatal))
a06ea964
NC
5012 continue;
5013 /* If there are multiple errors, pick up the one with the highest
5014 mismatching operand index. In the case of multiple errors with
5015 the equally highest operand index, pick up the first one or the
5016 first one with non-NULL error message. */
5017 if (curr->detail.index > largest_error_pos
5018 || (curr->detail.index == largest_error_pos && msg == NULL
5019 && curr->detail.error != NULL))
5020 {
5021 largest_error_pos = curr->detail.index;
5022 record = curr;
5023 msg = record->detail.error;
5024 }
5025 }
5026
7d02540a
TC
5027 /* The way errors are collected in the back-end is a bit non-intuitive. But
5028 essentially, because each operand template is tried recursively you may
5029 always have errors collected from the previous tried OPND. These are
5030 usually skipped if there is one successful match. However now with the
5031 non-fatal errors we have to ignore those previously collected hard errors
5032 when we're only interested in printing the non-fatal ones. This condition
5033 prevents us from printing errors that are not appropriate, since we did
5034 match a condition, but it also has warnings that it wants to print. */
5035 if (non_fatal_only && !record)
5036 return;
5037
a06ea964
NC
5038 gas_assert (largest_error_pos != -2 && record != NULL);
5039 DEBUG_TRACE ("Pick up error kind %s to report",
5040 operand_mismatch_kind_names[record->detail.kind]);
5041
5042 /* Output. */
5043 output_operand_error_record (record, str);
5044}
5045\f
5046/* Write an AARCH64 instruction to buf - always little-endian. */
5047static void
5048put_aarch64_insn (char *buf, uint32_t insn)
5049{
5050 unsigned char *where = (unsigned char *) buf;
5051 where[0] = insn;
5052 where[1] = insn >> 8;
5053 where[2] = insn >> 16;
5054 where[3] = insn >> 24;
5055}
5056
5057static uint32_t
5058get_aarch64_insn (char *buf)
5059{
5060 unsigned char *where = (unsigned char *) buf;
5061 uint32_t result;
4f7cc141
AM
5062 result = ((where[0] | (where[1] << 8) | (where[2] << 16)
5063 | ((uint32_t) where[3] << 24)));
a06ea964
NC
5064 return result;
5065}
5066
5067static void
5068output_inst (struct aarch64_inst *new_inst)
5069{
5070 char *to = NULL;
5071
5072 to = frag_more (INSN_SIZE);
5073
5074 frag_now->tc_frag_data.recorded = 1;
5075
5076 put_aarch64_insn (to, inst.base.value);
5077
5078 if (inst.reloc.type != BFD_RELOC_UNUSED)
5079 {
5080 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
5081 INSN_SIZE, &inst.reloc.exp,
5082 inst.reloc.pc_rel,
5083 inst.reloc.type);
5084 DEBUG_TRACE ("Prepared relocation fix up");
5085 /* Don't check the addend value against the instruction size,
5086 that's the job of our code in md_apply_fix(). */
5087 fixp->fx_no_overflow = 1;
5088 if (new_inst != NULL)
5089 fixp->tc_fix_data.inst = new_inst;
5090 if (aarch64_gas_internal_fixup_p ())
5091 {
5092 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
5093 fixp->tc_fix_data.opnd = inst.reloc.opnd;
5094 fixp->fx_addnumber = inst.reloc.flags;
5095 }
5096 }
5097
5098 dwarf2_emit_insn (INSN_SIZE);
5099}
5100
5101/* Link together opcodes of the same name. */
5102
5103struct templates
5104{
5105 aarch64_opcode *opcode;
5106 struct templates *next;
5107};
5108
5109typedef struct templates templates;
5110
5111static templates *
5112lookup_mnemonic (const char *start, int len)
5113{
5114 templates *templ = NULL;
5115
629310ab 5116 templ = str_hash_find_n (aarch64_ops_hsh, start, len);
a06ea964
NC
5117 return templ;
5118}
5119
5120/* Subroutine of md_assemble, responsible for looking up the primary
5121 opcode from the mnemonic the user wrote. STR points to the
5122 beginning of the mnemonic. */
5123
5124static templates *
5125opcode_lookup (char **str)
5126{
bb7eff52 5127 char *end, *base, *dot;
a06ea964
NC
5128 const aarch64_cond *cond;
5129 char condname[16];
5130 int len;
5131
5132 /* Scan up to the end of the mnemonic, which must end in white space,
5133 '.', or end of string. */
bb7eff52 5134 dot = 0;
a06ea964 5135 for (base = end = *str; is_part_of_name(*end); end++)
bb7eff52
RS
5136 if (*end == '.' && !dot)
5137 dot = end;
a06ea964 5138
bb7eff52 5139 if (end == base || dot == base)
a06ea964
NC
5140 return 0;
5141
5142 inst.cond = COND_ALWAYS;
5143
5144 /* Handle a possible condition. */
bb7eff52 5145 if (dot)
a06ea964 5146 {
629310ab 5147 cond = str_hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
a06ea964
NC
5148 if (cond)
5149 {
5150 inst.cond = cond->value;
bb7eff52 5151 *str = end;
a06ea964
NC
5152 }
5153 else
5154 {
bb7eff52 5155 *str = dot;
a06ea964
NC
5156 return 0;
5157 }
bb7eff52 5158 len = dot - base;
a06ea964
NC
5159 }
5160 else
bb7eff52
RS
5161 {
5162 *str = end;
5163 len = end - base;
5164 }
a06ea964
NC
5165
5166 if (inst.cond == COND_ALWAYS)
5167 {
5168 /* Look for unaffixed mnemonic. */
5169 return lookup_mnemonic (base, len);
5170 }
5171 else if (len <= 13)
5172 {
5173 /* append ".c" to mnemonic if conditional */
5174 memcpy (condname, base, len);
5175 memcpy (condname + len, ".c", 2);
5176 base = condname;
5177 len += 2;
5178 return lookup_mnemonic (base, len);
5179 }
5180
5181 return NULL;
5182}
5183
8f9a77af
RS
5184/* Internal helper routine converting a vector_type_el structure *VECTYPE
5185 to a corresponding operand qualifier. */
a06ea964
NC
5186
5187static inline aarch64_opnd_qualifier_t
8f9a77af 5188vectype_to_qualifier (const struct vector_type_el *vectype)
a06ea964 5189{
f06935a5 5190 /* Element size in bytes indexed by vector_el_type. */
a06ea964
NC
5191 const unsigned char ele_size[5]
5192 = {1, 2, 4, 8, 16};
65f2205d
MW
5193 const unsigned int ele_base [5] =
5194 {
a3b3345a 5195 AARCH64_OPND_QLF_V_4B,
3067d3b9 5196 AARCH64_OPND_QLF_V_2H,
65f2205d
MW
5197 AARCH64_OPND_QLF_V_2S,
5198 AARCH64_OPND_QLF_V_1D,
5199 AARCH64_OPND_QLF_V_1Q
5200 };
a06ea964
NC
5201
5202 if (!vectype->defined || vectype->type == NT_invtype)
5203 goto vectype_conversion_fail;
5204
d50c751e
RS
5205 if (vectype->type == NT_zero)
5206 return AARCH64_OPND_QLF_P_Z;
5207 if (vectype->type == NT_merge)
5208 return AARCH64_OPND_QLF_P_M;
5209
a06ea964
NC
5210 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
5211
f11ad6bc 5212 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
00c2093f
TC
5213 {
5214 /* Special case S_4B. */
5215 if (vectype->type == NT_b && vectype->width == 4)
5216 return AARCH64_OPND_QLF_S_4B;
5217
df678013
MM
5218 /* Special case S_2H. */
5219 if (vectype->type == NT_h && vectype->width == 2)
5220 return AARCH64_OPND_QLF_S_2H;
5221
00c2093f
TC
5222 /* Vector element register. */
5223 return AARCH64_OPND_QLF_S_B + vectype->type;
5224 }
a06ea964
NC
5225 else
5226 {
5227 /* Vector register. */
5228 int reg_size = ele_size[vectype->type] * vectype->width;
5229 unsigned offset;
65f2205d 5230 unsigned shift;
3067d3b9 5231 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
a06ea964 5232 goto vectype_conversion_fail;
65f2205d
MW
5233
5234 /* The conversion is by calculating the offset from the base operand
5235 qualifier for the vector type. The operand qualifiers are regular
5236 enough that the offset can established by shifting the vector width by
5237 a vector-type dependent amount. */
5238 shift = 0;
5239 if (vectype->type == NT_b)
a3b3345a 5240 shift = 3;
3067d3b9 5241 else if (vectype->type == NT_h || vectype->type == NT_s)
65f2205d
MW
5242 shift = 2;
5243 else if (vectype->type >= NT_d)
5244 shift = 1;
5245 else
5246 gas_assert (0);
5247
5248 offset = ele_base [vectype->type] + (vectype->width >> shift);
a3b3345a 5249 gas_assert (AARCH64_OPND_QLF_V_4B <= offset
65f2205d
MW
5250 && offset <= AARCH64_OPND_QLF_V_1Q);
5251 return offset;
a06ea964
NC
5252 }
5253
dc1e8a47 5254 vectype_conversion_fail:
a06ea964
NC
5255 first_error (_("bad vector arrangement type"));
5256 return AARCH64_OPND_QLF_NIL;
5257}
5258
5259/* Process an optional operand that is found omitted from the assembly line.
5260 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
5261 instruction's opcode entry while IDX is the index of this omitted operand.
5262 */
5263
5264static void
5265process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
5266 int idx, aarch64_opnd_info *operand)
5267{
5268 aarch64_insn default_value = get_optional_operand_default_value (opcode);
5269 gas_assert (optional_operand_p (opcode, idx));
5270 gas_assert (!operand->present);
5271
5272 switch (type)
5273 {
5274 case AARCH64_OPND_Rd:
5275 case AARCH64_OPND_Rn:
5276 case AARCH64_OPND_Rm:
5277 case AARCH64_OPND_Rt:
5278 case AARCH64_OPND_Rt2:
bd7ceb8d 5279 case AARCH64_OPND_Rt_SP:
a06ea964
NC
5280 case AARCH64_OPND_Rs:
5281 case AARCH64_OPND_Ra:
5282 case AARCH64_OPND_Rt_SYS:
5283 case AARCH64_OPND_Rd_SP:
5284 case AARCH64_OPND_Rn_SP:
c84364ec 5285 case AARCH64_OPND_Rm_SP:
a06ea964
NC
5286 case AARCH64_OPND_Fd:
5287 case AARCH64_OPND_Fn:
5288 case AARCH64_OPND_Fm:
5289 case AARCH64_OPND_Fa:
5290 case AARCH64_OPND_Ft:
5291 case AARCH64_OPND_Ft2:
5292 case AARCH64_OPND_Sd:
5293 case AARCH64_OPND_Sn:
5294 case AARCH64_OPND_Sm:
f42f1a1d 5295 case AARCH64_OPND_Va:
a06ea964
NC
5296 case AARCH64_OPND_Vd:
5297 case AARCH64_OPND_Vn:
5298 case AARCH64_OPND_Vm:
5299 case AARCH64_OPND_VdD1:
5300 case AARCH64_OPND_VnD1:
5301 operand->reg.regno = default_value;
5302 break;
5303
5304 case AARCH64_OPND_Ed:
5305 case AARCH64_OPND_En:
5306 case AARCH64_OPND_Em:
369c9167 5307 case AARCH64_OPND_Em16:
f42f1a1d 5308 case AARCH64_OPND_SM3_IMM2:
a06ea964
NC
5309 operand->reglane.regno = default_value;
5310 break;
5311
5312 case AARCH64_OPND_IDX:
5313 case AARCH64_OPND_BIT_NUM:
5314 case AARCH64_OPND_IMMR:
5315 case AARCH64_OPND_IMMS:
5316 case AARCH64_OPND_SHLL_IMM:
5317 case AARCH64_OPND_IMM_VLSL:
5318 case AARCH64_OPND_IMM_VLSR:
5319 case AARCH64_OPND_CCMP_IMM:
5320 case AARCH64_OPND_FBITS:
5321 case AARCH64_OPND_UIMM4:
5322 case AARCH64_OPND_UIMM3_OP1:
5323 case AARCH64_OPND_UIMM3_OP2:
5324 case AARCH64_OPND_IMM:
f42f1a1d 5325 case AARCH64_OPND_IMM_2:
a06ea964
NC
5326 case AARCH64_OPND_WIDTH:
5327 case AARCH64_OPND_UIMM7:
5328 case AARCH64_OPND_NZCV:
245d2e3f
RS
5329 case AARCH64_OPND_SVE_PATTERN:
5330 case AARCH64_OPND_SVE_PRFOP:
a06ea964
NC
5331 operand->imm.value = default_value;
5332 break;
5333
2442d846
RS
5334 case AARCH64_OPND_SVE_PATTERN_SCALED:
5335 operand->imm.value = default_value;
5336 operand->shifter.kind = AARCH64_MOD_MUL;
5337 operand->shifter.amount = 1;
5338 break;
5339
a06ea964
NC
5340 case AARCH64_OPND_EXCEPTION:
5341 inst.reloc.type = BFD_RELOC_UNUSED;
5342 break;
5343
5344 case AARCH64_OPND_BARRIER_ISB:
5345 operand->barrier = aarch64_barrier_options + default_value;
ff605452
SD
5346 break;
5347
5348 case AARCH64_OPND_BTI_TARGET:
5349 operand->hint_option = aarch64_hint_options + default_value;
5350 break;
a06ea964
NC
5351
5352 default:
5353 break;
5354 }
5355}
5356
5357/* Process the relocation type for move wide instructions.
5358 Return TRUE on success; otherwise return FALSE. */
5359
5360static bfd_boolean
5361process_movw_reloc_info (void)
5362{
5363 int is32;
5364 unsigned shift;
5365
5366 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5367
5368 if (inst.base.opcode->op == OP_MOVK)
5369 switch (inst.reloc.type)
5370 {
5371 case BFD_RELOC_AARCH64_MOVW_G0_S:
5372 case BFD_RELOC_AARCH64_MOVW_G1_S:
5373 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
5374 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5375 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5376 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5377 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
1aa66fb1 5378 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 5379 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 5380 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
5381 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5382 set_syntax_error
5383 (_("the specified relocation type is not allowed for MOVK"));
5384 return FALSE;
5385 default:
5386 break;
5387 }
5388
5389 switch (inst.reloc.type)
5390 {
5391 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 5392 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 5393 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 5394 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
5395 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5396 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
43a357f9 5397 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 5398 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 5399 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
5400 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5401 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
5402 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5403 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5404 shift = 0;
5405 break;
5406 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 5407 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 5408 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 5409 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
5410 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5411 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
43a357f9 5412 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 5413 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 5414 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
5415 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5416 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
5417 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5418 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5419 shift = 16;
5420 break;
5421 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 5422 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 5423 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
5424 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5425 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
49df5539 5426 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
5427 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5428 if (is32)
5429 {
5430 set_fatal_syntax_error
5431 (_("the specified relocation type is not allowed for 32-bit "
5432 "register"));
5433 return FALSE;
5434 }
5435 shift = 32;
5436 break;
5437 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 5438 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
5439 if (is32)
5440 {
5441 set_fatal_syntax_error
5442 (_("the specified relocation type is not allowed for 32-bit "
5443 "register"));
5444 return FALSE;
5445 }
5446 shift = 48;
5447 break;
5448 default:
5449 /* More cases should be added when more MOVW-related relocation types
5450 are supported in GAS. */
5451 gas_assert (aarch64_gas_internal_fixup_p ());
5452 /* The shift amount should have already been set by the parser. */
5453 return TRUE;
5454 }
5455 inst.base.operands[1].shifter.amount = shift;
5456 return TRUE;
5457}
5458
33eaf5de 5459/* A primitive log calculator. */
a06ea964
NC
5460
5461static inline unsigned int
5462get_logsz (unsigned int size)
5463{
5464 const unsigned char ls[16] =
5465 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5466 if (size > 16)
5467 {
5468 gas_assert (0);
5469 return -1;
5470 }
5471 gas_assert (ls[size - 1] != (unsigned char)-1);
5472 return ls[size - 1];
5473}
5474
5475/* Determine and return the real reloc type code for an instruction
5476 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5477
5478static inline bfd_reloc_code_real_type
5479ldst_lo12_determine_real_reloc_type (void)
5480{
4c562523 5481 unsigned logsz;
a06ea964
NC
5482 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5483 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5484
84f1b9fb 5485 const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
4c562523
JW
5486 {
5487 BFD_RELOC_AARCH64_LDST8_LO12,
5488 BFD_RELOC_AARCH64_LDST16_LO12,
5489 BFD_RELOC_AARCH64_LDST32_LO12,
5490 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 5491 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
5492 },
5493 {
5494 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5495 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5496 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5497 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5498 BFD_RELOC_AARCH64_NONE
5499 },
5500 {
5501 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5502 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5503 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5504 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5505 BFD_RELOC_AARCH64_NONE
84f1b9fb
RL
5506 },
5507 {
5508 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
5509 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
5510 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
5511 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
5512 BFD_RELOC_AARCH64_NONE
5513 },
5514 {
5515 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
5516 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
5517 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
5518 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
5519 BFD_RELOC_AARCH64_NONE
4c562523 5520 }
a06ea964
NC
5521 };
5522
4c562523
JW
5523 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5524 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5525 || (inst.reloc.type
84f1b9fb
RL
5526 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5527 || (inst.reloc.type
5528 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
5529 || (inst.reloc.type
5530 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
a06ea964
NC
5531 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5532
5533 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5534 opd1_qlf =
5535 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5536 1, opd0_qlf, 0);
5537 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5538
5539 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523 5540 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
84f1b9fb
RL
5541 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
5542 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
5543 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
4c562523
JW
5544 gas_assert (logsz <= 3);
5545 else
5546 gas_assert (logsz <= 4);
a06ea964 5547
4c562523 5548 /* In reloc.c, these pseudo relocation types should be defined in similar
33eaf5de 5549 order as above reloc_ldst_lo12 array. Because the array index calculation
4c562523
JW
5550 below relies on this. */
5551 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
5552}
5553
5554/* Check whether a register list REGINFO is valid. The registers must be
5555 numbered in increasing order (modulo 32), in increments of one or two.
5556
5557 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5558 increments of two.
5559
5560 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5561
5562static bfd_boolean
5563reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5564{
5565 uint32_t i, nb_regs, prev_regno, incr;
5566
5567 nb_regs = 1 + (reginfo & 0x3);
5568 reginfo >>= 2;
5569 prev_regno = reginfo & 0x1f;
5570 incr = accept_alternate ? 2 : 1;
5571
5572 for (i = 1; i < nb_regs; ++i)
5573 {
5574 uint32_t curr_regno;
5575 reginfo >>= 5;
5576 curr_regno = reginfo & 0x1f;
5577 if (curr_regno != ((prev_regno + incr) & 0x1f))
5578 return FALSE;
5579 prev_regno = curr_regno;
5580 }
5581
5582 return TRUE;
5583}
5584
5585/* Generic instruction operand parser. This does no encoding and no
5586 semantic validation; it merely squirrels values away in the inst
5587 structure. Returns TRUE or FALSE depending on whether the
5588 specified grammar matched. */
5589
5590static bfd_boolean
5591parse_operands (char *str, const aarch64_opcode *opcode)
5592{
5593 int i;
5594 char *backtrack_pos = 0;
5595 const enum aarch64_opnd *operands = opcode->operands;
1799c0d0 5596 aarch64_reg_type imm_reg_type;
a06ea964
NC
5597
5598 clear_error ();
5599 skip_whitespace (str);
5600
c0890d26 5601 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5b2b928e 5602 imm_reg_type = REG_TYPE_R_Z_SP_BHSDQ_VZP;
c0890d26
RS
5603 else
5604 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
1799c0d0 5605
a06ea964
NC
5606 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5607 {
5608 int64_t val;
e1b988bb 5609 const reg_entry *reg;
a06ea964
NC
5610 int comma_skipped_p = 0;
5611 aarch64_reg_type rtype;
8f9a77af 5612 struct vector_type_el vectype;
4df068de 5613 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
a06ea964 5614 aarch64_opnd_info *info = &inst.base.operands[i];
f11ad6bc 5615 aarch64_reg_type reg_type;
a06ea964
NC
5616
5617 DEBUG_TRACE ("parse operand %d", i);
5618
5619 /* Assign the operand code. */
5620 info->type = operands[i];
5621
5622 if (optional_operand_p (opcode, i))
5623 {
5624 /* Remember where we are in case we need to backtrack. */
5625 gas_assert (!backtrack_pos);
5626 backtrack_pos = str;
5627 }
5628
33eaf5de 5629 /* Expect comma between operands; the backtrack mechanism will take
a06ea964
NC
5630 care of cases of omitted optional operand. */
5631 if (i > 0 && ! skip_past_char (&str, ','))
5632 {
5633 set_syntax_error (_("comma expected between operands"));
5634 goto failure;
5635 }
5636 else
5637 comma_skipped_p = 1;
5638
5639 switch (operands[i])
5640 {
5641 case AARCH64_OPND_Rd:
5642 case AARCH64_OPND_Rn:
5643 case AARCH64_OPND_Rm:
5644 case AARCH64_OPND_Rt:
5645 case AARCH64_OPND_Rt2:
5646 case AARCH64_OPND_Rs:
5647 case AARCH64_OPND_Ra:
5648 case AARCH64_OPND_Rt_SYS:
ee804238 5649 case AARCH64_OPND_PAIRREG:
047cd301 5650 case AARCH64_OPND_SVE_Rm:
e1b988bb 5651 po_int_reg_or_fail (REG_TYPE_R_Z);
a06ea964
NC
5652 break;
5653
5654 case AARCH64_OPND_Rd_SP:
5655 case AARCH64_OPND_Rn_SP:
bd7ceb8d 5656 case AARCH64_OPND_Rt_SP:
047cd301 5657 case AARCH64_OPND_SVE_Rn_SP:
c84364ec 5658 case AARCH64_OPND_Rm_SP:
e1b988bb 5659 po_int_reg_or_fail (REG_TYPE_R_SP);
a06ea964
NC
5660 break;
5661
5662 case AARCH64_OPND_Rm_EXT:
5663 case AARCH64_OPND_Rm_SFT:
5664 po_misc_or_fail (parse_shifter_operand
5665 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5666 ? SHIFTED_ARITH_IMM
5667 : SHIFTED_LOGIC_IMM)));
5668 if (!info->shifter.operator_present)
5669 {
5670 /* Default to LSL if not present. Libopcodes prefers shifter
5671 kind to be explicit. */
5672 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5673 info->shifter.kind = AARCH64_MOD_LSL;
5674 /* For Rm_EXT, libopcodes will carry out further check on whether
5675 or not stack pointer is used in the instruction (Recall that
5676 "the extend operator is not optional unless at least one of
5677 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5678 }
5679 break;
5680
5681 case AARCH64_OPND_Fd:
5682 case AARCH64_OPND_Fn:
5683 case AARCH64_OPND_Fm:
5684 case AARCH64_OPND_Fa:
5685 case AARCH64_OPND_Ft:
5686 case AARCH64_OPND_Ft2:
5687 case AARCH64_OPND_Sd:
5688 case AARCH64_OPND_Sn:
5689 case AARCH64_OPND_Sm:
047cd301
RS
5690 case AARCH64_OPND_SVE_VZn:
5691 case AARCH64_OPND_SVE_Vd:
5692 case AARCH64_OPND_SVE_Vm:
5693 case AARCH64_OPND_SVE_Vn:
a06ea964
NC
5694 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5695 if (val == PARSE_FAIL)
5696 {
5697 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5698 goto failure;
5699 }
5700 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5701
5702 info->reg.regno = val;
5703 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5704 break;
5705
f11ad6bc
RS
5706 case AARCH64_OPND_SVE_Pd:
5707 case AARCH64_OPND_SVE_Pg3:
5708 case AARCH64_OPND_SVE_Pg4_5:
5709 case AARCH64_OPND_SVE_Pg4_10:
5710 case AARCH64_OPND_SVE_Pg4_16:
5711 case AARCH64_OPND_SVE_Pm:
5712 case AARCH64_OPND_SVE_Pn:
5713 case AARCH64_OPND_SVE_Pt:
5714 reg_type = REG_TYPE_PN;
5715 goto vector_reg;
5716
5717 case AARCH64_OPND_SVE_Za_5:
5718 case AARCH64_OPND_SVE_Za_16:
5719 case AARCH64_OPND_SVE_Zd:
5720 case AARCH64_OPND_SVE_Zm_5:
5721 case AARCH64_OPND_SVE_Zm_16:
5722 case AARCH64_OPND_SVE_Zn:
5723 case AARCH64_OPND_SVE_Zt:
5724 reg_type = REG_TYPE_ZN;
5725 goto vector_reg;
5726
f42f1a1d 5727 case AARCH64_OPND_Va:
a06ea964
NC
5728 case AARCH64_OPND_Vd:
5729 case AARCH64_OPND_Vn:
5730 case AARCH64_OPND_Vm:
f11ad6bc
RS
5731 reg_type = REG_TYPE_VN;
5732 vector_reg:
5733 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5734 if (val == PARSE_FAIL)
5735 {
f11ad6bc 5736 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5737 goto failure;
5738 }
5739 if (vectype.defined & NTA_HASINDEX)
5740 goto failure;
5741
5742 info->reg.regno = val;
f11ad6bc
RS
5743 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5744 && vectype.type == NT_invtype)
5745 /* Unqualified Pn and Zn registers are allowed in certain
5746 contexts. Rely on F_STRICT qualifier checking to catch
5747 invalid uses. */
5748 info->qualifier = AARCH64_OPND_QLF_NIL;
5749 else
5750 {
5751 info->qualifier = vectype_to_qualifier (&vectype);
5752 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5753 goto failure;
5754 }
a06ea964
NC
5755 break;
5756
5757 case AARCH64_OPND_VdD1:
5758 case AARCH64_OPND_VnD1:
5759 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5760 if (val == PARSE_FAIL)
5761 {
5762 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5763 goto failure;
5764 }
5765 if (vectype.type != NT_d || vectype.index != 1)
5766 {
5767 set_fatal_syntax_error
5768 (_("the top half of a 128-bit FP/SIMD register is expected"));
5769 goto failure;
5770 }
5771 info->reg.regno = val;
5772 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5773 here; it is correct for the purpose of encoding/decoding since
5774 only the register number is explicitly encoded in the related
5775 instructions, although this appears a bit hacky. */
5776 info->qualifier = AARCH64_OPND_QLF_S_D;
5777 break;
5778
582e12bf
RS
5779 case AARCH64_OPND_SVE_Zm3_INDEX:
5780 case AARCH64_OPND_SVE_Zm3_22_INDEX:
116adc27 5781 case AARCH64_OPND_SVE_Zm3_11_INDEX:
31e36ab3 5782 case AARCH64_OPND_SVE_Zm4_11_INDEX:
582e12bf 5783 case AARCH64_OPND_SVE_Zm4_INDEX:
f11ad6bc
RS
5784 case AARCH64_OPND_SVE_Zn_INDEX:
5785 reg_type = REG_TYPE_ZN;
5786 goto vector_reg_index;
5787
a06ea964
NC
5788 case AARCH64_OPND_Ed:
5789 case AARCH64_OPND_En:
5790 case AARCH64_OPND_Em:
369c9167 5791 case AARCH64_OPND_Em16:
f42f1a1d 5792 case AARCH64_OPND_SM3_IMM2:
f11ad6bc
RS
5793 reg_type = REG_TYPE_VN;
5794 vector_reg_index:
5795 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
a06ea964
NC
5796 if (val == PARSE_FAIL)
5797 {
f11ad6bc 5798 first_error (_(get_reg_expected_msg (reg_type)));
a06ea964
NC
5799 goto failure;
5800 }
5801 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5802 goto failure;
5803
5804 info->reglane.regno = val;
5805 info->reglane.index = vectype.index;
5806 info->qualifier = vectype_to_qualifier (&vectype);
5807 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5808 goto failure;
5809 break;
5810
f11ad6bc
RS
5811 case AARCH64_OPND_SVE_ZnxN:
5812 case AARCH64_OPND_SVE_ZtxN:
5813 reg_type = REG_TYPE_ZN;
5814 goto vector_reg_list;
5815
a06ea964
NC
5816 case AARCH64_OPND_LVn:
5817 case AARCH64_OPND_LVt:
5818 case AARCH64_OPND_LVt_AL:
5819 case AARCH64_OPND_LEt:
f11ad6bc
RS
5820 reg_type = REG_TYPE_VN;
5821 vector_reg_list:
5822 if (reg_type == REG_TYPE_ZN
5823 && get_opcode_dependent_value (opcode) == 1
5824 && *str != '{')
a06ea964 5825 {
f11ad6bc
RS
5826 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5827 if (val == PARSE_FAIL)
5828 {
5829 first_error (_(get_reg_expected_msg (reg_type)));
5830 goto failure;
5831 }
5832 info->reglist.first_regno = val;
5833 info->reglist.num_regs = 1;
5834 }
5835 else
5836 {
5837 val = parse_vector_reg_list (&str, reg_type, &vectype);
5838 if (val == PARSE_FAIL)
5839 goto failure;
163b2c58 5840
f11ad6bc
RS
5841 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5842 {
5843 set_fatal_syntax_error (_("invalid register list"));
5844 goto failure;
5845 }
163b2c58
BW
5846
5847 if (vectype.width != 0 && *str != ',')
5848 {
5849 set_fatal_syntax_error
5850 (_("expected element type rather than vector type"));
5851 goto failure;
5852 }
5853
f11ad6bc
RS
5854 info->reglist.first_regno = (val >> 2) & 0x1f;
5855 info->reglist.num_regs = (val & 0x3) + 1;
a06ea964 5856 }
a06ea964
NC
5857 if (operands[i] == AARCH64_OPND_LEt)
5858 {
5859 if (!(vectype.defined & NTA_HASINDEX))
5860 goto failure;
5861 info->reglist.has_index = 1;
5862 info->reglist.index = vectype.index;
5863 }
f11ad6bc
RS
5864 else
5865 {
5866 if (vectype.defined & NTA_HASINDEX)
5867 goto failure;
5868 if (!(vectype.defined & NTA_HASTYPE))
5869 {
5870 if (reg_type == REG_TYPE_ZN)
5871 set_fatal_syntax_error (_("missing type suffix"));
5872 goto failure;
5873 }
5874 }
a06ea964
NC
5875 info->qualifier = vectype_to_qualifier (&vectype);
5876 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5877 goto failure;
5878 break;
5879
a6a51754
RL
5880 case AARCH64_OPND_CRn:
5881 case AARCH64_OPND_CRm:
a06ea964 5882 {
a6a51754
RL
5883 char prefix = *(str++);
5884 if (prefix != 'c' && prefix != 'C')
5885 goto failure;
5886
5887 po_imm_nc_or_fail ();
5888 if (val > 15)
5889 {
5890 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5891 goto failure;
5892 }
5893 info->qualifier = AARCH64_OPND_QLF_CR;
5894 info->imm.value = val;
5895 break;
a06ea964 5896 }
a06ea964
NC
5897
5898 case AARCH64_OPND_SHLL_IMM:
5899 case AARCH64_OPND_IMM_VLSR:
5900 po_imm_or_fail (1, 64);
5901 info->imm.value = val;
5902 break;
5903
5904 case AARCH64_OPND_CCMP_IMM:
e950b345 5905 case AARCH64_OPND_SIMM5:
a06ea964 5906 case AARCH64_OPND_FBITS:
b83b4b13 5907 case AARCH64_OPND_TME_UIMM16:
a06ea964 5908 case AARCH64_OPND_UIMM4:
193614f2
SD
5909 case AARCH64_OPND_UIMM4_ADDG:
5910 case AARCH64_OPND_UIMM10:
a06ea964
NC
5911 case AARCH64_OPND_UIMM3_OP1:
5912 case AARCH64_OPND_UIMM3_OP2:
5913 case AARCH64_OPND_IMM_VLSL:
5914 case AARCH64_OPND_IMM:
f42f1a1d 5915 case AARCH64_OPND_IMM_2:
a06ea964 5916 case AARCH64_OPND_WIDTH:
e950b345
RS
5917 case AARCH64_OPND_SVE_INV_LIMM:
5918 case AARCH64_OPND_SVE_LIMM:
5919 case AARCH64_OPND_SVE_LIMM_MOV:
5920 case AARCH64_OPND_SVE_SHLIMM_PRED:
5921 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
28ed815a 5922 case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
e950b345
RS
5923 case AARCH64_OPND_SVE_SHRIMM_PRED:
5924 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
3c17238b 5925 case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
e950b345
RS
5926 case AARCH64_OPND_SVE_SIMM5:
5927 case AARCH64_OPND_SVE_SIMM5B:
5928 case AARCH64_OPND_SVE_SIMM6:
5929 case AARCH64_OPND_SVE_SIMM8:
5930 case AARCH64_OPND_SVE_UIMM3:
5931 case AARCH64_OPND_SVE_UIMM7:
5932 case AARCH64_OPND_SVE_UIMM8:
5933 case AARCH64_OPND_SVE_UIMM8_53:
c2c4ff8d
SN
5934 case AARCH64_OPND_IMM_ROT1:
5935 case AARCH64_OPND_IMM_ROT2:
5936 case AARCH64_OPND_IMM_ROT3:
582e12bf
RS
5937 case AARCH64_OPND_SVE_IMM_ROT1:
5938 case AARCH64_OPND_SVE_IMM_ROT2:
adccc507 5939 case AARCH64_OPND_SVE_IMM_ROT3:
a06ea964
NC
5940 po_imm_nc_or_fail ();
5941 info->imm.value = val;
5942 break;
5943
e950b345
RS
5944 case AARCH64_OPND_SVE_AIMM:
5945 case AARCH64_OPND_SVE_ASIMM:
5946 po_imm_nc_or_fail ();
5947 info->imm.value = val;
5948 skip_whitespace (str);
5949 if (skip_past_comma (&str))
5950 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5951 else
5952 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5953 break;
5954
245d2e3f
RS
5955 case AARCH64_OPND_SVE_PATTERN:
5956 po_enum_or_fail (aarch64_sve_pattern_array);
5957 info->imm.value = val;
5958 break;
5959
2442d846
RS
5960 case AARCH64_OPND_SVE_PATTERN_SCALED:
5961 po_enum_or_fail (aarch64_sve_pattern_array);
5962 info->imm.value = val;
5963 if (skip_past_comma (&str)
5964 && !parse_shift (&str, info, SHIFTED_MUL))
5965 goto failure;
5966 if (!info->shifter.operator_present)
5967 {
5968 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5969 info->shifter.kind = AARCH64_MOD_MUL;
5970 info->shifter.amount = 1;
5971 }
5972 break;
5973
245d2e3f
RS
5974 case AARCH64_OPND_SVE_PRFOP:
5975 po_enum_or_fail (aarch64_sve_prfop_array);
5976 info->imm.value = val;
5977 break;
5978
a06ea964
NC
5979 case AARCH64_OPND_UIMM7:
5980 po_imm_or_fail (0, 127);
5981 info->imm.value = val;
5982 break;
5983
5984 case AARCH64_OPND_IDX:
f42f1a1d 5985 case AARCH64_OPND_MASK:
a06ea964
NC
5986 case AARCH64_OPND_BIT_NUM:
5987 case AARCH64_OPND_IMMR:
5988 case AARCH64_OPND_IMMS:
5989 po_imm_or_fail (0, 63);
5990 info->imm.value = val;
5991 break;
5992
5993 case AARCH64_OPND_IMM0:
5994 po_imm_nc_or_fail ();
5995 if (val != 0)
5996 {
5997 set_fatal_syntax_error (_("immediate zero expected"));
5998 goto failure;
5999 }
6000 info->imm.value = 0;
6001 break;
6002
6003 case AARCH64_OPND_FPIMM0:
6004 {
6005 int qfloat;
6006 bfd_boolean res1 = FALSE, res2 = FALSE;
6007 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
6008 it is probably not worth the effort to support it. */
1799c0d0
RS
6009 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
6010 imm_reg_type))
6a9deabe
RS
6011 && (error_p ()
6012 || !(res2 = parse_constant_immediate (&str, &val,
6013 imm_reg_type))))
a06ea964
NC
6014 goto failure;
6015 if ((res1 && qfloat == 0) || (res2 && val == 0))
6016 {
6017 info->imm.value = 0;
6018 info->imm.is_fp = 1;
6019 break;
6020 }
6021 set_fatal_syntax_error (_("immediate zero expected"));
6022 goto failure;
6023 }
6024
6025 case AARCH64_OPND_IMM_MOV:
6026 {
6027 char *saved = str;
8db49cc2
WN
6028 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
6029 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
6030 goto failure;
6031 str = saved;
6032 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6033 GE_OPT_PREFIX, 1));
6034 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
6035 later. fix_mov_imm_insn will try to determine a machine
6036 instruction (MOVZ, MOVN or ORR) for it and will issue an error
6037 message if the immediate cannot be moved by a single
6038 instruction. */
6039 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6040 inst.base.operands[i].skip = 1;
6041 }
6042 break;
6043
6044 case AARCH64_OPND_SIMD_IMM:
6045 case AARCH64_OPND_SIMD_IMM_SFT:
1799c0d0 6046 if (! parse_big_immediate (&str, &val, imm_reg_type))
a06ea964
NC
6047 goto failure;
6048 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6049 /* addr_off_p */ 0,
6050 /* need_libopcodes_p */ 1,
6051 /* skip_p */ 1);
6052 /* Parse shift.
6053 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
6054 shift, we don't check it here; we leave the checking to
6055 the libopcodes (operand_general_constraint_met_p). By
6056 doing this, we achieve better diagnostics. */
6057 if (skip_past_comma (&str)
6058 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
6059 goto failure;
6060 if (!info->shifter.operator_present
6061 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
6062 {
6063 /* Default to LSL if not present. Libopcodes prefers shifter
6064 kind to be explicit. */
6065 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6066 info->shifter.kind = AARCH64_MOD_LSL;
6067 }
6068 break;
6069
6070 case AARCH64_OPND_FPIMM:
6071 case AARCH64_OPND_SIMD_FPIMM:
165d4950 6072 case AARCH64_OPND_SVE_FPIMM8:
a06ea964
NC
6073 {
6074 int qfloat;
165d4950
RS
6075 bfd_boolean dp_p;
6076
6077 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6a9deabe 6078 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
874d7e6e 6079 || !aarch64_imm_float_p (qfloat))
a06ea964 6080 {
6a9deabe
RS
6081 if (!error_p ())
6082 set_fatal_syntax_error (_("invalid floating-point"
6083 " constant"));
a06ea964
NC
6084 goto failure;
6085 }
6086 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
6087 inst.base.operands[i].imm.is_fp = 1;
6088 }
6089 break;
6090
165d4950
RS
6091 case AARCH64_OPND_SVE_I1_HALF_ONE:
6092 case AARCH64_OPND_SVE_I1_HALF_TWO:
6093 case AARCH64_OPND_SVE_I1_ZERO_ONE:
6094 {
6095 int qfloat;
6096 bfd_boolean dp_p;
6097
6098 dp_p = double_precision_operand_p (&inst.base.operands[0]);
6099 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
6100 {
6101 if (!error_p ())
6102 set_fatal_syntax_error (_("invalid floating-point"
6103 " constant"));
6104 goto failure;
6105 }
6106 inst.base.operands[i].imm.value = qfloat;
6107 inst.base.operands[i].imm.is_fp = 1;
6108 }
6109 break;
6110
a06ea964
NC
6111 case AARCH64_OPND_LIMM:
6112 po_misc_or_fail (parse_shifter_operand (&str, info,
6113 SHIFTED_LOGIC_IMM));
6114 if (info->shifter.operator_present)
6115 {
6116 set_fatal_syntax_error
6117 (_("shift not allowed for bitmask immediate"));
6118 goto failure;
6119 }
6120 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6121 /* addr_off_p */ 0,
6122 /* need_libopcodes_p */ 1,
6123 /* skip_p */ 1);
6124 break;
6125
6126 case AARCH64_OPND_AIMM:
6127 if (opcode->op == OP_ADD)
6128 /* ADD may have relocation types. */
6129 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
6130 SHIFTED_ARITH_IMM));
6131 else
6132 po_misc_or_fail (parse_shifter_operand (&str, info,
6133 SHIFTED_ARITH_IMM));
6134 switch (inst.reloc.type)
6135 {
6136 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6137 info->shifter.amount = 12;
6138 break;
6139 case BFD_RELOC_UNUSED:
6140 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
6141 if (info->shifter.kind != AARCH64_MOD_NONE)
6142 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
6143 inst.reloc.pc_rel = 0;
6144 break;
6145 default:
6146 break;
6147 }
6148 info->imm.value = 0;
6149 if (!info->shifter.operator_present)
6150 {
6151 /* Default to LSL if not present. Libopcodes prefers shifter
6152 kind to be explicit. */
6153 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6154 info->shifter.kind = AARCH64_MOD_LSL;
6155 }
6156 break;
6157
6158 case AARCH64_OPND_HALF:
6159 {
6160 /* #<imm16> or relocation. */
6161 int internal_fixup_p;
6162 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
6163 if (internal_fixup_p)
6164 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
6165 skip_whitespace (str);
6166 if (skip_past_comma (&str))
6167 {
6168 /* {, LSL #<shift>} */
6169 if (! aarch64_gas_internal_fixup_p ())
6170 {
6171 set_fatal_syntax_error (_("can't mix relocation modifier "
6172 "with explicit shift"));
6173 goto failure;
6174 }
6175 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
6176 }
6177 else
6178 inst.base.operands[i].shifter.amount = 0;
6179 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
6180 inst.base.operands[i].imm.value = 0;
6181 if (! process_movw_reloc_info ())
6182 goto failure;
6183 }
6184 break;
6185
6186 case AARCH64_OPND_EXCEPTION:
09c1e68a 6187 case AARCH64_OPND_UNDEFINED:
1799c0d0
RS
6188 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
6189 imm_reg_type));
a06ea964
NC
6190 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6191 /* addr_off_p */ 0,
6192 /* need_libopcodes_p */ 0,
6193 /* skip_p */ 1);
6194 break;
6195
6196 case AARCH64_OPND_NZCV:
6197 {
629310ab 6198 const asm_nzcv *nzcv = str_hash_find_n (aarch64_nzcv_hsh, str, 4);
a06ea964
NC
6199 if (nzcv != NULL)
6200 {
6201 str += 4;
6202 info->imm.value = nzcv->value;
6203 break;
6204 }
6205 po_imm_or_fail (0, 15);
6206 info->imm.value = val;
6207 }
6208 break;
6209
6210 case AARCH64_OPND_COND:
68a64283 6211 case AARCH64_OPND_COND1:
bb7eff52
RS
6212 {
6213 char *start = str;
6214 do
6215 str++;
6216 while (ISALPHA (*str));
629310ab 6217 info->cond = str_hash_find_n (aarch64_cond_hsh, start, str - start);
bb7eff52
RS
6218 if (info->cond == NULL)
6219 {
6220 set_syntax_error (_("invalid condition"));
6221 goto failure;
6222 }
6223 else if (operands[i] == AARCH64_OPND_COND1
6224 && (info->cond->value & 0xe) == 0xe)
6225 {
6226 /* Do not allow AL or NV. */
6227 set_default_error ();
6228 goto failure;
6229 }
6230 }
a06ea964
NC
6231 break;
6232
6233 case AARCH64_OPND_ADDR_ADRP:
6234 po_misc_or_fail (parse_adrp (&str));
6235 /* Clear the value as operand needs to be relocated. */
6236 info->imm.value = 0;
6237 break;
6238
6239 case AARCH64_OPND_ADDR_PCREL14:
6240 case AARCH64_OPND_ADDR_PCREL19:
6241 case AARCH64_OPND_ADDR_PCREL21:
6242 case AARCH64_OPND_ADDR_PCREL26:
73866052 6243 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6244 if (!info->addr.pcrel)
6245 {
6246 set_syntax_error (_("invalid pc-relative address"));
6247 goto failure;
6248 }
6249 if (inst.gen_lit_pool
6250 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
6251 {
6252 /* Only permit "=value" in the literal load instructions.
6253 The literal will be generated by programmer_friendly_fixup. */
6254 set_syntax_error (_("invalid use of \"=immediate\""));
6255 goto failure;
6256 }
6257 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
6258 {
6259 set_syntax_error (_("unrecognized relocation suffix"));
6260 goto failure;
6261 }
6262 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
6263 {
6264 info->imm.value = inst.reloc.exp.X_add_number;
6265 inst.reloc.type = BFD_RELOC_UNUSED;
6266 }
6267 else
6268 {
6269 info->imm.value = 0;
f41aef5f
RE
6270 if (inst.reloc.type == BFD_RELOC_UNUSED)
6271 switch (opcode->iclass)
6272 {
6273 case compbranch:
6274 case condbranch:
6275 /* e.g. CBZ or B.COND */
6276 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6277 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
6278 break;
6279 case testbranch:
6280 /* e.g. TBZ */
6281 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
6282 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
6283 break;
6284 case branch_imm:
6285 /* e.g. B or BL */
6286 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
6287 inst.reloc.type =
6288 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
6289 : BFD_RELOC_AARCH64_JUMP26;
6290 break;
6291 case loadlit:
6292 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6293 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
6294 break;
6295 case pcreladdr:
6296 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
6297 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
6298 break;
6299 default:
6300 gas_assert (0);
6301 abort ();
6302 }
a06ea964
NC
6303 inst.reloc.pc_rel = 1;
6304 }
6305 break;
6306
6307 case AARCH64_OPND_ADDR_SIMPLE:
6308 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
e1b988bb
RS
6309 {
6310 /* [<Xn|SP>{, #<simm>}] */
6311 char *start = str;
6312 /* First use the normal address-parsing routines, to get
6313 the usual syntax errors. */
73866052 6314 po_misc_or_fail (parse_address (&str, info));
e1b988bb
RS
6315 if (info->addr.pcrel || info->addr.offset.is_reg
6316 || !info->addr.preind || info->addr.postind
550fd7bf 6317 || info->addr.writeback)
e1b988bb
RS
6318 {
6319 set_syntax_error (_("invalid addressing mode"));
6320 goto failure;
6321 }
6322
6323 /* Then retry, matching the specific syntax of these addresses. */
6324 str = start;
6325 po_char_or_fail ('[');
6326 po_reg_or_fail (REG_TYPE_R64_SP);
6327 /* Accept optional ", #0". */
6328 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
6329 && skip_past_char (&str, ','))
6330 {
6331 skip_past_char (&str, '#');
6332 if (! skip_past_char (&str, '0'))
6333 {
6334 set_fatal_syntax_error
6335 (_("the optional immediate offset can only be 0"));
6336 goto failure;
6337 }
6338 }
6339 po_char_or_fail (']');
6340 break;
6341 }
a06ea964
NC
6342
6343 case AARCH64_OPND_ADDR_REGOFF:
6344 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
73866052 6345 po_misc_or_fail (parse_address (&str, info));
4df068de 6346 regoff_addr:
a06ea964
NC
6347 if (info->addr.pcrel || !info->addr.offset.is_reg
6348 || !info->addr.preind || info->addr.postind
6349 || info->addr.writeback)
6350 {
6351 set_syntax_error (_("invalid addressing mode"));
6352 goto failure;
6353 }
6354 if (!info->shifter.operator_present)
6355 {
6356 /* Default to LSL if not present. Libopcodes prefers shifter
6357 kind to be explicit. */
6358 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6359 info->shifter.kind = AARCH64_MOD_LSL;
6360 }
6361 /* Qualifier to be deduced by libopcodes. */
6362 break;
6363
6364 case AARCH64_OPND_ADDR_SIMM7:
73866052 6365 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6366 if (info->addr.pcrel || info->addr.offset.is_reg
6367 || (!info->addr.preind && !info->addr.postind))
6368 {
6369 set_syntax_error (_("invalid addressing mode"));
6370 goto failure;
6371 }
73866052
RS
6372 if (inst.reloc.type != BFD_RELOC_UNUSED)
6373 {
6374 set_syntax_error (_("relocation not allowed"));
6375 goto failure;
6376 }
a06ea964
NC
6377 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6378 /* addr_off_p */ 1,
6379 /* need_libopcodes_p */ 1,
6380 /* skip_p */ 0);
6381 break;
6382
6383 case AARCH64_OPND_ADDR_SIMM9:
6384 case AARCH64_OPND_ADDR_SIMM9_2:
fb3265b3
SD
6385 case AARCH64_OPND_ADDR_SIMM11:
6386 case AARCH64_OPND_ADDR_SIMM13:
73866052 6387 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6388 if (info->addr.pcrel || info->addr.offset.is_reg
6389 || (!info->addr.preind && !info->addr.postind)
6390 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6391 && info->addr.writeback))
6392 {
6393 set_syntax_error (_("invalid addressing mode"));
6394 goto failure;
6395 }
6396 if (inst.reloc.type != BFD_RELOC_UNUSED)
6397 {
6398 set_syntax_error (_("relocation not allowed"));
6399 goto failure;
6400 }
6401 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6402 /* addr_off_p */ 1,
6403 /* need_libopcodes_p */ 1,
6404 /* skip_p */ 0);
6405 break;
6406
3f06e550 6407 case AARCH64_OPND_ADDR_SIMM10:
f42f1a1d 6408 case AARCH64_OPND_ADDR_OFFSET:
3f06e550
SN
6409 po_misc_or_fail (parse_address (&str, info));
6410 if (info->addr.pcrel || info->addr.offset.is_reg
6411 || !info->addr.preind || info->addr.postind)
6412 {
6413 set_syntax_error (_("invalid addressing mode"));
6414 goto failure;
6415 }
6416 if (inst.reloc.type != BFD_RELOC_UNUSED)
6417 {
6418 set_syntax_error (_("relocation not allowed"));
6419 goto failure;
6420 }
6421 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6422 /* addr_off_p */ 1,
6423 /* need_libopcodes_p */ 1,
6424 /* skip_p */ 0);
6425 break;
6426
a06ea964 6427 case AARCH64_OPND_ADDR_UIMM12:
73866052 6428 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6429 if (info->addr.pcrel || info->addr.offset.is_reg
6430 || !info->addr.preind || info->addr.writeback)
6431 {
6432 set_syntax_error (_("invalid addressing mode"));
6433 goto failure;
6434 }
6435 if (inst.reloc.type == BFD_RELOC_UNUSED)
6436 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
6437 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6438 || (inst.reloc.type
6439 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6440 || (inst.reloc.type
84f1b9fb
RL
6441 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
6442 || (inst.reloc.type
6443 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
6444 || (inst.reloc.type
6445 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
a06ea964
NC
6446 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6447 /* Leave qualifier to be determined by libopcodes. */
6448 break;
6449
6450 case AARCH64_OPND_SIMD_ADDR_POST:
6451 /* [<Xn|SP>], <Xm|#<amount>> */
73866052 6452 po_misc_or_fail (parse_address (&str, info));
a06ea964
NC
6453 if (!info->addr.postind || !info->addr.writeback)
6454 {
6455 set_syntax_error (_("invalid addressing mode"));
6456 goto failure;
6457 }
6458 if (!info->addr.offset.is_reg)
6459 {
6460 if (inst.reloc.exp.X_op == O_constant)
6461 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6462 else
6463 {
6464 set_fatal_syntax_error
ab3b8fcf 6465 (_("writeback value must be an immediate constant"));
a06ea964
NC
6466 goto failure;
6467 }
6468 }
6469 /* No qualifier. */
6470 break;
6471
582e12bf 6472 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
8382113f 6473 case AARCH64_OPND_SVE_ADDR_RI_S4x32:
98907a70
RS
6474 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6475 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6476 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6477 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6478 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6479 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
4df068de
RS
6480 case AARCH64_OPND_SVE_ADDR_RI_U6:
6481 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6482 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6483 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
98907a70
RS
6484 /* [X<n>{, #imm, MUL VL}]
6485 [X<n>{, #imm}]
4df068de
RS
6486 but recognizing SVE registers. */
6487 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6488 &offset_qualifier));
6489 if (base_qualifier != AARCH64_OPND_QLF_X)
6490 {
6491 set_syntax_error (_("invalid addressing mode"));
6492 goto failure;
6493 }
6494 sve_regimm:
6495 if (info->addr.pcrel || info->addr.offset.is_reg
6496 || !info->addr.preind || info->addr.writeback)
6497 {
6498 set_syntax_error (_("invalid addressing mode"));
6499 goto failure;
6500 }
6501 if (inst.reloc.type != BFD_RELOC_UNUSED
6502 || inst.reloc.exp.X_op != O_constant)
6503 {
6504 /* Make sure this has priority over
6505 "invalid addressing mode". */
6506 set_fatal_syntax_error (_("constant offset required"));
6507 goto failure;
6508 }
6509 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6510 break;
6511
c8d59609
NC
6512 case AARCH64_OPND_SVE_ADDR_R:
6513 /* [<Xn|SP>{, <R><m>}]
6514 but recognizing SVE registers. */
6515 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6516 &offset_qualifier));
6517 if (offset_qualifier == AARCH64_OPND_QLF_NIL)
6518 {
6519 offset_qualifier = AARCH64_OPND_QLF_X;
6520 info->addr.offset.is_reg = 1;
6521 info->addr.offset.regno = 31;
6522 }
6523 else if (base_qualifier != AARCH64_OPND_QLF_X
6524 || offset_qualifier != AARCH64_OPND_QLF_X)
6525 {
6526 set_syntax_error (_("invalid addressing mode"));
6527 goto failure;
6528 }
6529 goto regoff_addr;
6530
4df068de
RS
6531 case AARCH64_OPND_SVE_ADDR_RR:
6532 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6533 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6534 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6535 case AARCH64_OPND_SVE_ADDR_RX:
6536 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6537 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6538 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6539 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6540 but recognizing SVE registers. */
6541 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6542 &offset_qualifier));
6543 if (base_qualifier != AARCH64_OPND_QLF_X
6544 || offset_qualifier != AARCH64_OPND_QLF_X)
6545 {
6546 set_syntax_error (_("invalid addressing mode"));
6547 goto failure;
6548 }
6549 goto regoff_addr;
6550
6551 case AARCH64_OPND_SVE_ADDR_RZ:
6552 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6553 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6554 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6555 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6556 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6557 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6558 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6559 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6560 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6561 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6562 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6563 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6564 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6565 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6566 &offset_qualifier));
6567 if (base_qualifier != AARCH64_OPND_QLF_X
6568 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6569 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6570 {
6571 set_syntax_error (_("invalid addressing mode"));
6572 goto failure;
6573 }
6574 info->qualifier = offset_qualifier;
6575 goto regoff_addr;
6576
c469c864
MM
6577 case AARCH64_OPND_SVE_ADDR_ZX:
6578 /* [Zn.<T>{, <Xm>}]. */
6579 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6580 &offset_qualifier));
6581 /* Things to check:
6582 base_qualifier either S_S or S_D
6583 offset_qualifier must be X
6584 */
6585 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6586 && base_qualifier != AARCH64_OPND_QLF_S_D)
6587 || offset_qualifier != AARCH64_OPND_QLF_X)
6588 {
6589 set_syntax_error (_("invalid addressing mode"));
6590 goto failure;
6591 }
6592 info->qualifier = base_qualifier;
6593 if (!info->addr.offset.is_reg || info->addr.pcrel
6594 || !info->addr.preind || info->addr.writeback
6595 || info->shifter.operator_present != 0)
6596 {
6597 set_syntax_error (_("invalid addressing mode"));
6598 goto failure;
6599 }
6600 info->shifter.kind = AARCH64_MOD_LSL;
6601 break;
6602
6603
4df068de
RS
6604 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6605 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6606 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6607 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6608 /* [Z<n>.<T>{, #imm}] */
6609 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6610 &offset_qualifier));
6611 if (base_qualifier != AARCH64_OPND_QLF_S_S
6612 && base_qualifier != AARCH64_OPND_QLF_S_D)
6613 {
6614 set_syntax_error (_("invalid addressing mode"));
6615 goto failure;
6616 }
6617 info->qualifier = base_qualifier;
6618 goto sve_regimm;
6619
6620 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6621 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6622 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6623 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6624 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6625
6626 We don't reject:
6627
6628 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6629
6630 here since we get better error messages by leaving it to
6631 the qualifier checking routines. */
6632 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6633 &offset_qualifier));
6634 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6635 && base_qualifier != AARCH64_OPND_QLF_S_D)
6636 || offset_qualifier != base_qualifier)
6637 {
6638 set_syntax_error (_("invalid addressing mode"));
6639 goto failure;
6640 }
6641 info->qualifier = base_qualifier;
6642 goto regoff_addr;
6643
a06ea964 6644 case AARCH64_OPND_SYSREG:
7d02540a
TC
6645 {
6646 uint32_t sysreg_flags;
6647 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0,
6648 &sysreg_flags)) == PARSE_FAIL)
6649 {
6650 set_syntax_error (_("unknown or missing system register name"));
6651 goto failure;
6652 }
6653 inst.base.operands[i].sysreg.value = val;
6654 inst.base.operands[i].sysreg.flags = sysreg_flags;
6655 break;
6656 }
a06ea964
NC
6657
6658 case AARCH64_OPND_PSTATEFIELD:
561a72d4 6659 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1, NULL))
a3251895 6660 == PARSE_FAIL)
a06ea964
NC
6661 {
6662 set_syntax_error (_("unknown or missing PSTATE field name"));
6663 goto failure;
6664 }
6665 inst.base.operands[i].pstatefield = val;
6666 break;
6667
6668 case AARCH64_OPND_SYSREG_IC:
6669 inst.base.operands[i].sysins_op =
6670 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6671 goto sys_reg_ins;
2ac435d4 6672
a06ea964
NC
6673 case AARCH64_OPND_SYSREG_DC:
6674 inst.base.operands[i].sysins_op =
6675 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6676 goto sys_reg_ins;
2ac435d4 6677
a06ea964
NC
6678 case AARCH64_OPND_SYSREG_AT:
6679 inst.base.operands[i].sysins_op =
6680 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6681 goto sys_reg_ins;
2ac435d4
SD
6682
6683 case AARCH64_OPND_SYSREG_SR:
6684 inst.base.operands[i].sysins_op =
6685 parse_sys_ins_reg (&str, aarch64_sys_regs_sr_hsh);
6686 goto sys_reg_ins;
6687
a06ea964
NC
6688 case AARCH64_OPND_SYSREG_TLBI:
6689 inst.base.operands[i].sysins_op =
6690 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
dc1e8a47 6691 sys_reg_ins:
a06ea964
NC
6692 if (inst.base.operands[i].sysins_op == NULL)
6693 {
6694 set_fatal_syntax_error ( _("unknown or missing operation name"));
6695 goto failure;
6696 }
6697 break;
6698
6699 case AARCH64_OPND_BARRIER:
6700 case AARCH64_OPND_BARRIER_ISB:
6701 val = parse_barrier (&str);
6702 if (val != PARSE_FAIL
6703 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6704 {
6705 /* ISB only accepts options name 'sy'. */
6706 set_syntax_error
6707 (_("the specified option is not accepted in ISB"));
6708 /* Turn off backtrack as this optional operand is present. */
6709 backtrack_pos = 0;
6710 goto failure;
6711 }
fd195909
PW
6712 if (val != PARSE_FAIL
6713 && operands[i] == AARCH64_OPND_BARRIER)
6714 {
6715 /* Regular barriers accept options CRm (C0-C15).
6716 DSB nXS barrier variant accepts values > 15. */
6717 po_imm_or_fail (0, 15);
6718 }
a06ea964
NC
6719 /* This is an extension to accept a 0..15 immediate. */
6720 if (val == PARSE_FAIL)
6721 po_imm_or_fail (0, 15);
6722 info->barrier = aarch64_barrier_options + val;
6723 break;
6724
fd195909
PW
6725 case AARCH64_OPND_BARRIER_DSB_NXS:
6726 val = parse_barrier (&str);
6727 if (val != PARSE_FAIL)
6728 {
6729 /* DSB nXS barrier variant accept only <option>nXS qualifiers. */
6730 if (!(val == 16 || val == 20 || val == 24 || val == 28))
6731 {
6732 set_syntax_error (_("the specified option is not accepted in DSB"));
6733 /* Turn off backtrack as this optional operand is present. */
6734 backtrack_pos = 0;
6735 goto failure;
6736 }
6737 }
6738 else
6739 {
6740 /* DSB nXS barrier variant accept 5-bit unsigned immediate, with
6741 possible values 16, 20, 24 or 28 , encoded as val<3:2>. */
6742 if (! parse_constant_immediate (&str, &val, imm_reg_type))
6743 goto failure;
6744 if (!(val == 16 || val == 20 || val == 24 || val == 28))
6745 {
6746 set_syntax_error (_("immediate value must be 16, 20, 24, 28"));
6747 goto failure;
6748 }
6749 }
6750 /* Option index is encoded as 2-bit value in val<3:2>. */
6751 val = (val >> 2) - 4;
6752 info->barrier = aarch64_barrier_dsb_nxs_options + val;
6753 break;
6754
a06ea964
NC
6755 case AARCH64_OPND_PRFOP:
6756 val = parse_pldop (&str);
6757 /* This is an extension to accept a 0..31 immediate. */
6758 if (val == PARSE_FAIL)
6759 po_imm_or_fail (0, 31);
6760 inst.base.operands[i].prfop = aarch64_prfops + val;
6761 break;
6762
1e6f4800
MW
6763 case AARCH64_OPND_BARRIER_PSB:
6764 val = parse_barrier_psb (&str, &(info->hint_option));
6765 if (val == PARSE_FAIL)
6766 goto failure;
6767 break;
6768
ff605452
SD
6769 case AARCH64_OPND_BTI_TARGET:
6770 val = parse_bti_operand (&str, &(info->hint_option));
6771 if (val == PARSE_FAIL)
6772 goto failure;
6773 break;
6774
dd4a72c8
PW
6775 case AARCH64_OPND_CSRE_CSR:
6776 val = parse_csr_operand (&str);
6777 if (val == PARSE_FAIL)
6778 goto failure;
6779 break;
6780
a06ea964
NC
6781 default:
6782 as_fatal (_("unhandled operand code %d"), operands[i]);
6783 }
6784
6785 /* If we get here, this operand was successfully parsed. */
6786 inst.base.operands[i].present = 1;
6787 continue;
6788
dc1e8a47 6789 failure:
a06ea964
NC
6790 /* The parse routine should already have set the error, but in case
6791 not, set a default one here. */
6792 if (! error_p ())
6793 set_default_error ();
6794
6795 if (! backtrack_pos)
6796 goto parse_operands_return;
6797
f4c51f60
JW
6798 {
6799 /* We reach here because this operand is marked as optional, and
6800 either no operand was supplied or the operand was supplied but it
6801 was syntactically incorrect. In the latter case we report an
6802 error. In the former case we perform a few more checks before
6803 dropping through to the code to insert the default operand. */
6804
6805 char *tmp = backtrack_pos;
6806 char endchar = END_OF_INSN;
6807
6808 if (i != (aarch64_num_of_operands (opcode) - 1))
6809 endchar = ',';
6810 skip_past_char (&tmp, ',');
6811
6812 if (*tmp != endchar)
6813 /* The user has supplied an operand in the wrong format. */
6814 goto parse_operands_return;
6815
6816 /* Make sure there is not a comma before the optional operand.
6817 For example the fifth operand of 'sys' is optional:
6818
6819 sys #0,c0,c0,#0, <--- wrong
6820 sys #0,c0,c0,#0 <--- correct. */
6821 if (comma_skipped_p && i && endchar == END_OF_INSN)
6822 {
6823 set_fatal_syntax_error
6824 (_("unexpected comma before the omitted optional operand"));
6825 goto parse_operands_return;
6826 }
6827 }
6828
a06ea964
NC
6829 /* Reaching here means we are dealing with an optional operand that is
6830 omitted from the assembly line. */
6831 gas_assert (optional_operand_p (opcode, i));
6832 info->present = 0;
6833 process_omitted_operand (operands[i], opcode, i, info);
6834
6835 /* Try again, skipping the optional operand at backtrack_pos. */
6836 str = backtrack_pos;
6837 backtrack_pos = 0;
6838
a06ea964
NC
6839 /* Clear any error record after the omitted optional operand has been
6840 successfully handled. */
6841 clear_error ();
6842 }
6843
6844 /* Check if we have parsed all the operands. */
6845 if (*str != '\0' && ! error_p ())
6846 {
6847 /* Set I to the index of the last present operand; this is
6848 for the purpose of diagnostics. */
6849 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6850 ;
6851 set_fatal_syntax_error
6852 (_("unexpected characters following instruction"));
6853 }
6854
dc1e8a47 6855 parse_operands_return:
a06ea964
NC
6856
6857 if (error_p ())
6858 {
6859 DEBUG_TRACE ("parsing FAIL: %s - %s",
6860 operand_mismatch_kind_names[get_error_kind ()],
6861 get_error_message ());
6862 /* Record the operand error properly; this is useful when there
6863 are multiple instruction templates for a mnemonic name, so that
6864 later on, we can select the error that most closely describes
6865 the problem. */
6866 record_operand_error (opcode, i, get_error_kind (),
6867 get_error_message ());
6868 return FALSE;
6869 }
6870 else
6871 {
6872 DEBUG_TRACE ("parsing SUCCESS");
6873 return TRUE;
6874 }
6875}
6876
6877/* It does some fix-up to provide some programmer friendly feature while
6878 keeping the libopcodes happy, i.e. libopcodes only accepts
6879 the preferred architectural syntax.
6880 Return FALSE if there is any failure; otherwise return TRUE. */
6881
6882static bfd_boolean
6883programmer_friendly_fixup (aarch64_instruction *instr)
6884{
6885 aarch64_inst *base = &instr->base;
6886 const aarch64_opcode *opcode = base->opcode;
6887 enum aarch64_op op = opcode->op;
6888 aarch64_opnd_info *operands = base->operands;
6889
6890 DEBUG_TRACE ("enter");
6891
6892 switch (opcode->iclass)
6893 {
6894 case testbranch:
6895 /* TBNZ Xn|Wn, #uimm6, label
6896 Test and Branch Not Zero: conditionally jumps to label if bit number
6897 uimm6 in register Xn is not zero. The bit number implies the width of
6898 the register, which may be written and should be disassembled as Wn if
6899 uimm is less than 32. */
6900 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6901 {
6902 if (operands[1].imm.value >= 32)
6903 {
6904 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6905 0, 31);
6906 return FALSE;
6907 }
6908 operands[0].qualifier = AARCH64_OPND_QLF_X;
6909 }
6910 break;
6911 case loadlit:
6912 /* LDR Wt, label | =value
6913 As a convenience assemblers will typically permit the notation
6914 "=value" in conjunction with the pc-relative literal load instructions
6915 to automatically place an immediate value or symbolic address in a
6916 nearby literal pool and generate a hidden label which references it.
6917 ISREG has been set to 0 in the case of =value. */
6918 if (instr->gen_lit_pool
6919 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6920 {
6921 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6922 if (op == OP_LDRSW_LIT)
6923 size = 4;
6924 if (instr->reloc.exp.X_op != O_constant
67a32447 6925 && instr->reloc.exp.X_op != O_big
a06ea964
NC
6926 && instr->reloc.exp.X_op != O_symbol)
6927 {
6928 record_operand_error (opcode, 1,
6929 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6930 _("constant expression expected"));
6931 return FALSE;
6932 }
6933 if (! add_to_lit_pool (&instr->reloc.exp, size))
6934 {
6935 record_operand_error (opcode, 1,
6936 AARCH64_OPDE_OTHER_ERROR,
6937 _("literal pool insertion failed"));
6938 return FALSE;
6939 }
6940 }
6941 break;
a06ea964
NC
6942 case log_shift:
6943 case bitfield:
6944 /* UXT[BHW] Wd, Wn
6945 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6946 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6947 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6948 A programmer-friendly assembler should accept a destination Xd in
6949 place of Wd, however that is not the preferred form for disassembly.
6950 */
6951 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6952 && operands[1].qualifier == AARCH64_OPND_QLF_W
6953 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6954 operands[0].qualifier = AARCH64_OPND_QLF_W;
6955 break;
6956
6957 case addsub_ext:
6958 {
6959 /* In the 64-bit form, the final register operand is written as Wm
6960 for all but the (possibly omitted) UXTX/LSL and SXTX
6961 operators.
6962 As a programmer-friendly assembler, we accept e.g.
6963 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6964 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6965 int idx = aarch64_operand_index (opcode->operands,
6966 AARCH64_OPND_Rm_EXT);
6967 gas_assert (idx == 1 || idx == 2);
6968 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6969 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6970 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6971 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6972 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6973 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6974 }
6975 break;
6976
6977 default:
6978 break;
6979 }
6980
6981 DEBUG_TRACE ("exit with SUCCESS");
6982 return TRUE;
6983}
6984
5c47e525 6985/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
6986
6987static void
6988warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6989{
6990 aarch64_inst *base = &instr->base;
6991 const aarch64_opcode *opcode = base->opcode;
6992 const aarch64_opnd_info *opnds = base->operands;
6993 switch (opcode->iclass)
6994 {
6995 case ldst_pos:
6996 case ldst_imm9:
3f06e550 6997 case ldst_imm10:
54a28c4c
JW
6998 case ldst_unscaled:
6999 case ldst_unpriv:
5c47e525
RE
7000 /* Loading/storing the base register is unpredictable if writeback. */
7001 if ((aarch64_get_operand_class (opnds[0].type)
7002 == AARCH64_OPND_CLASS_INT_REG)
7003 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 7004 && opnds[1].addr.base_regno != REG_SP
69105ce4
SD
7005 /* Exempt STG/STZG/ST2G/STZ2G. */
7006 && !(opnds[1].type == AARCH64_OPND_ADDR_SIMM13)
54a28c4c 7007 && opnds[1].addr.writeback)
5c47e525 7008 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c 7009 break;
503ba600 7010
54a28c4c
JW
7011 case ldstpair_off:
7012 case ldstnapair_offs:
7013 case ldstpair_indexed:
5c47e525
RE
7014 /* Loading/storing the base register is unpredictable if writeback. */
7015 if ((aarch64_get_operand_class (opnds[0].type)
7016 == AARCH64_OPND_CLASS_INT_REG)
7017 && (opnds[0].reg.regno == opnds[2].addr.base_regno
7018 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 7019 && opnds[2].addr.base_regno != REG_SP
fb3265b3
SD
7020 /* Exempt STGP. */
7021 && !(opnds[2].type == AARCH64_OPND_ADDR_SIMM11)
54a28c4c 7022 && opnds[2].addr.writeback)
5c47e525
RE
7023 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
7024 /* Load operations must load different registers. */
54a28c4c
JW
7025 if ((opcode->opcode & (1 << 22))
7026 && opnds[0].reg.regno == opnds[1].reg.regno)
7027 as_warn (_("unpredictable load of register pair -- `%s'"), str);
7028 break;
ee943970
RR
7029
7030 case ldstexcl:
7031 /* It is unpredictable if the destination and status registers are the
7032 same. */
7033 if ((aarch64_get_operand_class (opnds[0].type)
7034 == AARCH64_OPND_CLASS_INT_REG)
7035 && (aarch64_get_operand_class (opnds[1].type)
7036 == AARCH64_OPND_CLASS_INT_REG)
7037 && (opnds[0].reg.regno == opnds[1].reg.regno
7038 || opnds[0].reg.regno == opnds[2].reg.regno))
7039 as_warn (_("unpredictable: identical transfer and status registers"
7040 " --`%s'"),
7041 str);
7042
7043 break;
7044
54a28c4c
JW
7045 default:
7046 break;
7047 }
7048}
7049
4f5d2536
TC
7050static void
7051force_automatic_sequence_close (void)
7052{
7053 if (now_instr_sequence.instr)
7054 {
7055 as_warn (_("previous `%s' sequence has not been closed"),
7056 now_instr_sequence.instr->opcode->name);
7057 init_insn_sequence (NULL, &now_instr_sequence);
7058 }
7059}
7060
a06ea964
NC
7061/* A wrapper function to interface with libopcodes on encoding and
7062 record the error message if there is any.
7063
7064 Return TRUE on success; otherwise return FALSE. */
7065
7066static bfd_boolean
7067do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
7068 aarch64_insn *code)
7069{
7070 aarch64_operand_error error_info;
7d02540a 7071 memset (&error_info, '\0', sizeof (error_info));
a06ea964 7072 error_info.kind = AARCH64_OPDE_NIL;
7e84b55d 7073 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info, insn_sequence)
7d02540a 7074 && !error_info.non_fatal)
a06ea964 7075 return TRUE;
7d02540a
TC
7076
7077 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
7078 record_operand_error_info (opcode, &error_info);
7079 return error_info.non_fatal;
a06ea964
NC
7080}
7081
7082#ifdef DEBUG_AARCH64
7083static inline void
7084dump_opcode_operands (const aarch64_opcode *opcode)
7085{
7086 int i = 0;
7087 while (opcode->operands[i] != AARCH64_OPND_NIL)
7088 {
7089 aarch64_verbose ("\t\t opnd%d: %s", i,
7090 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
7091 ? aarch64_get_operand_name (opcode->operands[i])
7092 : aarch64_get_operand_desc (opcode->operands[i]));
7093 ++i;
7094 }
7095}
7096#endif /* DEBUG_AARCH64 */
7097
7098/* This is the guts of the machine-dependent assembler. STR points to a
7099 machine dependent instruction. This function is supposed to emit
7100 the frags/bytes it assembles to. */
7101
7102void
7103md_assemble (char *str)
7104{
7105 char *p = str;
7106 templates *template;
7107 aarch64_opcode *opcode;
7108 aarch64_inst *inst_base;
7109 unsigned saved_cond;
7110
7111 /* Align the previous label if needed. */
7112 if (last_label_seen != NULL)
7113 {
7114 symbol_set_frag (last_label_seen, frag_now);
7115 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
7116 S_SET_SEGMENT (last_label_seen, now_seg);
7117 }
7118
7e84b55d
TC
7119 /* Update the current insn_sequence from the segment. */
7120 insn_sequence = &seg_info (now_seg)->tc_segment_info_data.insn_sequence;
7121
a06ea964
NC
7122 inst.reloc.type = BFD_RELOC_UNUSED;
7123
7124 DEBUG_TRACE ("\n\n");
7125 DEBUG_TRACE ("==============================");
7126 DEBUG_TRACE ("Enter md_assemble with %s", str);
7127
7128 template = opcode_lookup (&p);
7129 if (!template)
7130 {
7131 /* It wasn't an instruction, but it might be a register alias of
7132 the form alias .req reg directive. */
7133 if (!create_register_alias (str, p))
7134 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
7135 str);
7136 return;
7137 }
7138
7139 skip_whitespace (p);
7140 if (*p == ',')
7141 {
7142 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
7143 get_mnemonic_name (str), str);
7144 return;
7145 }
7146
7147 init_operand_error_report ();
7148
eb9d6cc9
RL
7149 /* Sections are assumed to start aligned. In executable section, there is no
7150 MAP_DATA symbol pending. So we only align the address during
7151 MAP_DATA --> MAP_INSN transition.
7152 For other sections, this is not guaranteed. */
7153 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
7154 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
7155 frag_align_code (2, 0);
7156
a06ea964
NC
7157 saved_cond = inst.cond;
7158 reset_aarch64_instruction (&inst);
7159 inst.cond = saved_cond;
7160
7161 /* Iterate through all opcode entries with the same mnemonic name. */
7162 do
7163 {
7164 opcode = template->opcode;
7165
7166 DEBUG_TRACE ("opcode %s found", opcode->name);
7167#ifdef DEBUG_AARCH64
7168 if (debug_dump)
7169 dump_opcode_operands (opcode);
7170#endif /* DEBUG_AARCH64 */
7171
a06ea964
NC
7172 mapping_state (MAP_INSN);
7173
7174 inst_base = &inst.base;
7175 inst_base->opcode = opcode;
7176
7177 /* Truly conditionally executed instructions, e.g. b.cond. */
7178 if (opcode->flags & F_COND)
7179 {
7180 gas_assert (inst.cond != COND_ALWAYS);
7181 inst_base->cond = get_cond_from_value (inst.cond);
7182 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
7183 }
7184 else if (inst.cond != COND_ALWAYS)
7185 {
7186 /* It shouldn't arrive here, where the assembly looks like a
7187 conditional instruction but the found opcode is unconditional. */
7188 gas_assert (0);
7189 continue;
7190 }
7191
7192 if (parse_operands (p, opcode)
7193 && programmer_friendly_fixup (&inst)
7194 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
7195 {
3f06bfce
YZ
7196 /* Check that this instruction is supported for this CPU. */
7197 if (!opcode->avariant
93d8990c 7198 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
3f06bfce
YZ
7199 {
7200 as_bad (_("selected processor does not support `%s'"), str);
7201 return;
7202 }
7203
54a28c4c
JW
7204 warn_unpredictable_ldst (&inst, str);
7205
a06ea964
NC
7206 if (inst.reloc.type == BFD_RELOC_UNUSED
7207 || !inst.reloc.need_libopcodes_p)
7208 output_inst (NULL);
7209 else
7210 {
7211 /* If there is relocation generated for the instruction,
7212 store the instruction information for the future fix-up. */
7213 struct aarch64_inst *copy;
7214 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
325801bd 7215 copy = XNEW (struct aarch64_inst);
a06ea964
NC
7216 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
7217 output_inst (copy);
7218 }
7d02540a
TC
7219
7220 /* Issue non-fatal messages if any. */
7221 output_operand_error_report (str, TRUE);
a06ea964
NC
7222 return;
7223 }
7224
7225 template = template->next;
7226 if (template != NULL)
7227 {
7228 reset_aarch64_instruction (&inst);
7229 inst.cond = saved_cond;
7230 }
7231 }
7232 while (template != NULL);
7233
7234 /* Issue the error messages if any. */
7d02540a 7235 output_operand_error_report (str, FALSE);
a06ea964
NC
7236}
7237
7238/* Various frobbings of labels and their addresses. */
7239
7240void
7241aarch64_start_line_hook (void)
7242{
7243 last_label_seen = NULL;
7244}
7245
7246void
7247aarch64_frob_label (symbolS * sym)
7248{
7249 last_label_seen = sym;
7250
7251 dwarf2_emit_label (sym);
7252}
7253
4f5d2536
TC
7254void
7255aarch64_frob_section (asection *sec ATTRIBUTE_UNUSED)
7256{
7257 /* Check to see if we have a block to close. */
7258 force_automatic_sequence_close ();
7259}
7260
a06ea964
NC
7261int
7262aarch64_data_in_code (void)
7263{
7264 if (!strncmp (input_line_pointer + 1, "data:", 5))
7265 {
7266 *input_line_pointer = '/';
7267 input_line_pointer += 5;
7268 *input_line_pointer = 0;
7269 return 1;
7270 }
7271
7272 return 0;
7273}
7274
7275char *
7276aarch64_canonicalize_symbol_name (char *name)
7277{
7278 int len;
7279
7280 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
7281 *(name + len - 5) = 0;
7282
7283 return name;
7284}
7285\f
7286/* Table of all register names defined by default. The user can
7287 define additional names with .req. Note that all register names
7288 should appear in both upper and lowercase variants. Some registers
7289 also have mixed-case names. */
7290
7291#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
8975f864 7292#define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, FALSE}
a06ea964 7293#define REGNUM(p,n,t) REGDEF(p##n, n, t)
f11ad6bc 7294#define REGSET16(p,t) \
a06ea964
NC
7295 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
7296 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
7297 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
f11ad6bc
RS
7298 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
7299#define REGSET31(p,t) \
7300 REGSET16(p, t), \
a06ea964
NC
7301 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
7302 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
7303 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
7304 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
7305#define REGSET(p,t) \
7306 REGSET31(p,t), REGNUM(p,31,t)
7307
7308/* These go into aarch64_reg_hsh hash-table. */
7309static const reg_entry reg_names[] = {
7310 /* Integer registers. */
7311 REGSET31 (x, R_64), REGSET31 (X, R_64),
7312 REGSET31 (w, R_32), REGSET31 (W, R_32),
7313
8975f864 7314 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
f10e937a 7315 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
8975f864
RR
7316 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
7317 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
a06ea964
NC
7318 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
7319 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
7320
7321 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
7322 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
7323
a06ea964
NC
7324 /* Floating-point single precision registers. */
7325 REGSET (s, FP_S), REGSET (S, FP_S),
7326
7327 /* Floating-point double precision registers. */
7328 REGSET (d, FP_D), REGSET (D, FP_D),
7329
7330 /* Floating-point half precision registers. */
7331 REGSET (h, FP_H), REGSET (H, FP_H),
7332
7333 /* Floating-point byte precision registers. */
7334 REGSET (b, FP_B), REGSET (B, FP_B),
7335
7336 /* Floating-point quad precision registers. */
7337 REGSET (q, FP_Q), REGSET (Q, FP_Q),
7338
7339 /* FP/SIMD registers. */
7340 REGSET (v, VN), REGSET (V, VN),
f11ad6bc
RS
7341
7342 /* SVE vector registers. */
7343 REGSET (z, ZN), REGSET (Z, ZN),
7344
7345 /* SVE predicate registers. */
7346 REGSET16 (p, PN), REGSET16 (P, PN)
a06ea964
NC
7347};
7348
7349#undef REGDEF
8975f864 7350#undef REGDEF_ALIAS
a06ea964 7351#undef REGNUM
f11ad6bc
RS
7352#undef REGSET16
7353#undef REGSET31
a06ea964
NC
7354#undef REGSET
7355
7356#define N 1
7357#define n 0
7358#define Z 1
7359#define z 0
7360#define C 1
7361#define c 0
7362#define V 1
7363#define v 0
7364#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
7365static const asm_nzcv nzcv_names[] = {
7366 {"nzcv", B (n, z, c, v)},
7367 {"nzcV", B (n, z, c, V)},
7368 {"nzCv", B (n, z, C, v)},
7369 {"nzCV", B (n, z, C, V)},
7370 {"nZcv", B (n, Z, c, v)},
7371 {"nZcV", B (n, Z, c, V)},
7372 {"nZCv", B (n, Z, C, v)},
7373 {"nZCV", B (n, Z, C, V)},
7374 {"Nzcv", B (N, z, c, v)},
7375 {"NzcV", B (N, z, c, V)},
7376 {"NzCv", B (N, z, C, v)},
7377 {"NzCV", B (N, z, C, V)},
7378 {"NZcv", B (N, Z, c, v)},
7379 {"NZcV", B (N, Z, c, V)},
7380 {"NZCv", B (N, Z, C, v)},
7381 {"NZCV", B (N, Z, C, V)}
7382};
7383
7384#undef N
7385#undef n
7386#undef Z
7387#undef z
7388#undef C
7389#undef c
7390#undef V
7391#undef v
7392#undef B
7393\f
7394/* MD interface: bits in the object file. */
7395
7396/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
7397 for use in the a.out file, and stores them in the array pointed to by buf.
7398 This knows about the endian-ness of the target machine and does
7399 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
7400 2 (short) and 4 (long) Floating numbers are put out as a series of
7401 LITTLENUMS (shorts, here at least). */
7402
7403void
7404md_number_to_chars (char *buf, valueT val, int n)
7405{
7406 if (target_big_endian)
7407 number_to_chars_bigendian (buf, val, n);
7408 else
7409 number_to_chars_littleendian (buf, val, n);
7410}
7411
7412/* MD interface: Sections. */
7413
7414/* Estimate the size of a frag before relaxing. Assume everything fits in
7415 4 bytes. */
7416
7417int
7418md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
7419{
7420 fragp->fr_var = 4;
7421 return 4;
7422}
7423
7424/* Round up a section size to the appropriate boundary. */
7425
7426valueT
7427md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
7428{
7429 return size;
7430}
7431
7432/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
7433 of an rs_align_code fragment.
7434
7435 Here we fill the frag with the appropriate info for padding the
7436 output stream. The resulting frag will consist of a fixed (fr_fix)
7437 and of a repeating (fr_var) part.
7438
7439 The fixed content is always emitted before the repeating content and
7440 these two parts are used as follows in constructing the output:
7441 - the fixed part will be used to align to a valid instruction word
7442 boundary, in case that we start at a misaligned address; as no
7443 executable instruction can live at the misaligned location, we
7444 simply fill with zeros;
7445 - the variable part will be used to cover the remaining padding and
7446 we fill using the AArch64 NOP instruction.
7447
7448 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
7449 enough storage space for up to 3 bytes for padding the back to a valid
7450 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
7451
7452void
7453aarch64_handle_align (fragS * fragP)
7454{
7455 /* NOP = d503201f */
7456 /* AArch64 instructions are always little-endian. */
d9235011 7457 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
a06ea964
NC
7458
7459 int bytes, fix, noop_size;
7460 char *p;
a06ea964
NC
7461
7462 if (fragP->fr_type != rs_align_code)
7463 return;
7464
7465 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
7466 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
7467
7468#ifdef OBJ_ELF
7469 gas_assert (fragP->tc_frag_data.recorded);
7470#endif
7471
a06ea964 7472 noop_size = sizeof (aarch64_noop);
a06ea964 7473
f803aa8e
DPT
7474 fix = bytes & (noop_size - 1);
7475 if (fix)
a06ea964 7476 {
a06ea964
NC
7477#ifdef OBJ_ELF
7478 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
7479#endif
7480 memset (p, 0, fix);
7481 p += fix;
f803aa8e 7482 fragP->fr_fix += fix;
a06ea964
NC
7483 }
7484
f803aa8e
DPT
7485 if (noop_size)
7486 memcpy (p, aarch64_noop, noop_size);
7487 fragP->fr_var = noop_size;
a06ea964
NC
7488}
7489
7490/* Perform target specific initialisation of a frag.
7491 Note - despite the name this initialisation is not done when the frag
7492 is created, but only when its type is assigned. A frag can be created
7493 and used a long time before its type is set, so beware of assuming that
33eaf5de 7494 this initialisation is performed first. */
a06ea964
NC
7495
7496#ifndef OBJ_ELF
7497void
7498aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
7499 int max_chars ATTRIBUTE_UNUSED)
7500{
7501}
7502
7503#else /* OBJ_ELF is defined. */
7504void
7505aarch64_init_frag (fragS * fragP, int max_chars)
7506{
7507 /* Record a mapping symbol for alignment frags. We will delete this
7508 later if the alignment ends up empty. */
7509 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
7510 fragP->tc_frag_data.recorded = 1;
7511
e8d84ca1
NC
7512 /* PR 21809: Do not set a mapping state for debug sections
7513 - it just confuses other tools. */
fd361982 7514 if (bfd_section_flags (now_seg) & SEC_DEBUGGING)
e8d84ca1
NC
7515 return;
7516
c7ad08e6 7517 switch (fragP->fr_type)
a06ea964 7518 {
c7ad08e6
RL
7519 case rs_align_test:
7520 case rs_fill:
7521 mapping_state_2 (MAP_DATA, max_chars);
7522 break;
7ea12e5c
NC
7523 case rs_align:
7524 /* PR 20364: We can get alignment frags in code sections,
7525 so do not just assume that we should use the MAP_DATA state. */
7526 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7527 break;
c7ad08e6
RL
7528 case rs_align_code:
7529 mapping_state_2 (MAP_INSN, max_chars);
7530 break;
7531 default:
7532 break;
a06ea964
NC
7533 }
7534}
7535\f
7536/* Initialize the DWARF-2 unwind information for this procedure. */
7537
7538void
7539tc_aarch64_frame_initial_instructions (void)
7540{
7541 cfi_add_CFA_def_cfa (REG_SP, 0);
7542}
7543#endif /* OBJ_ELF */
7544
7545/* Convert REGNAME to a DWARF-2 register number. */
7546
7547int
7548tc_aarch64_regname_to_dw2regnum (char *regname)
7549{
7550 const reg_entry *reg = parse_reg (&regname);
7551 if (reg == NULL)
7552 return -1;
7553
7554 switch (reg->type)
7555 {
7556 case REG_TYPE_SP_32:
7557 case REG_TYPE_SP_64:
7558 case REG_TYPE_R_32:
7559 case REG_TYPE_R_64:
a2cac51c
RH
7560 return reg->number;
7561
a06ea964
NC
7562 case REG_TYPE_FP_B:
7563 case REG_TYPE_FP_H:
7564 case REG_TYPE_FP_S:
7565 case REG_TYPE_FP_D:
7566 case REG_TYPE_FP_Q:
a2cac51c
RH
7567 return reg->number + 64;
7568
a06ea964
NC
7569 default:
7570 break;
7571 }
7572 return -1;
7573}
7574
cec5225b
YZ
7575/* Implement DWARF2_ADDR_SIZE. */
7576
7577int
7578aarch64_dwarf2_addr_size (void)
7579{
7580#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7581 if (ilp32_p)
7582 return 4;
7583#endif
7584 return bfd_arch_bits_per_address (stdoutput) / 8;
7585}
7586
a06ea964
NC
7587/* MD interface: Symbol and relocation handling. */
7588
7589/* Return the address within the segment that a PC-relative fixup is
7590 relative to. For AArch64 PC-relative fixups applied to instructions
7591 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7592
7593long
7594md_pcrel_from_section (fixS * fixP, segT seg)
7595{
7596 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7597
7598 /* If this is pc-relative and we are going to emit a relocation
7599 then we just want to put out any pipeline compensation that the linker
7600 will need. Otherwise we want to use the calculated base. */
7601 if (fixP->fx_pcrel
7602 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7603 || aarch64_force_relocation (fixP)))
7604 base = 0;
7605
7606 /* AArch64 should be consistent for all pc-relative relocations. */
7607 return base + AARCH64_PCREL_OFFSET;
7608}
7609
7610/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7611 Otherwise we have no need to default values of symbols. */
7612
7613symbolS *
7614md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7615{
7616#ifdef OBJ_ELF
7617 if (name[0] == '_' && name[1] == 'G'
7618 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7619 {
7620 if (!GOT_symbol)
7621 {
7622 if (symbol_find (name))
7623 as_bad (_("GOT already in the symbol table"));
7624
7625 GOT_symbol = symbol_new (name, undefined_section,
e01e1cee 7626 &zero_address_frag, 0);
a06ea964
NC
7627 }
7628
7629 return GOT_symbol;
7630 }
7631#endif
7632
7633 return 0;
7634}
7635
7636/* Return non-zero if the indicated VALUE has overflowed the maximum
7637 range expressible by a unsigned number with the indicated number of
7638 BITS. */
7639
7640static bfd_boolean
7641unsigned_overflow (valueT value, unsigned bits)
7642{
7643 valueT lim;
7644 if (bits >= sizeof (valueT) * 8)
7645 return FALSE;
7646 lim = (valueT) 1 << bits;
7647 return (value >= lim);
7648}
7649
7650
7651/* Return non-zero if the indicated VALUE has overflowed the maximum
7652 range expressible by an signed number with the indicated number of
7653 BITS. */
7654
7655static bfd_boolean
7656signed_overflow (offsetT value, unsigned bits)
7657{
7658 offsetT lim;
7659 if (bits >= sizeof (offsetT) * 8)
7660 return FALSE;
7661 lim = (offsetT) 1 << (bits - 1);
7662 return (value < -lim || value >= lim);
7663}
7664
7665/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7666 unsigned immediate offset load/store instruction, try to encode it as
7667 an unscaled, 9-bit, signed immediate offset load/store instruction.
7668 Return TRUE if it is successful; otherwise return FALSE.
7669
7670 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7671 in response to the standard LDR/STR mnemonics when the immediate offset is
7672 unambiguous, i.e. when it is negative or unaligned. */
7673
7674static bfd_boolean
7675try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7676{
7677 int idx;
7678 enum aarch64_op new_op;
7679 const aarch64_opcode *new_opcode;
7680
7681 gas_assert (instr->opcode->iclass == ldst_pos);
7682
7683 switch (instr->opcode->op)
7684 {
7685 case OP_LDRB_POS:new_op = OP_LDURB; break;
7686 case OP_STRB_POS: new_op = OP_STURB; break;
7687 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7688 case OP_LDRH_POS: new_op = OP_LDURH; break;
7689 case OP_STRH_POS: new_op = OP_STURH; break;
7690 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7691 case OP_LDR_POS: new_op = OP_LDUR; break;
7692 case OP_STR_POS: new_op = OP_STUR; break;
7693 case OP_LDRF_POS: new_op = OP_LDURV; break;
7694 case OP_STRF_POS: new_op = OP_STURV; break;
7695 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7696 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7697 default: new_op = OP_NIL; break;
7698 }
7699
7700 if (new_op == OP_NIL)
7701 return FALSE;
7702
7703 new_opcode = aarch64_get_opcode (new_op);
7704 gas_assert (new_opcode != NULL);
7705
7706 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7707 instr->opcode->op, new_opcode->op);
7708
7709 aarch64_replace_opcode (instr, new_opcode);
7710
7711 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7712 qualifier matching may fail because the out-of-date qualifier will
7713 prevent the operand being updated with a new and correct qualifier. */
7714 idx = aarch64_operand_index (instr->opcode->operands,
7715 AARCH64_OPND_ADDR_SIMM9);
7716 gas_assert (idx == 1);
7717 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7718
7719 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7720
7e84b55d
TC
7721 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL,
7722 insn_sequence))
a06ea964
NC
7723 return FALSE;
7724
7725 return TRUE;
7726}
7727
7728/* Called by fix_insn to fix a MOV immediate alias instruction.
7729
7730 Operand for a generic move immediate instruction, which is an alias
7731 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7732 a 32-bit/64-bit immediate value into general register. An assembler error
7733 shall result if the immediate cannot be created by a single one of these
7734 instructions. If there is a choice, then to ensure reversability an
7735 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7736
7737static void
7738fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7739{
7740 const aarch64_opcode *opcode;
7741
7742 /* Need to check if the destination is SP/ZR. The check has to be done
7743 before any aarch64_replace_opcode. */
7744 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7745 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7746
7747 instr->operands[1].imm.value = value;
7748 instr->operands[1].skip = 0;
7749
7750 if (try_mov_wide_p)
7751 {
7752 /* Try the MOVZ alias. */
7753 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7754 aarch64_replace_opcode (instr, opcode);
7755 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 7756 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
7757 {
7758 put_aarch64_insn (buf, instr->value);
7759 return;
7760 }
7761 /* Try the MOVK alias. */
7762 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7763 aarch64_replace_opcode (instr, opcode);
7764 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 7765 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
7766 {
7767 put_aarch64_insn (buf, instr->value);
7768 return;
7769 }
7770 }
7771
7772 if (try_mov_bitmask_p)
7773 {
7774 /* Try the ORR alias. */
7775 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7776 aarch64_replace_opcode (instr, opcode);
7777 if (aarch64_opcode_encode (instr->opcode, instr,
7e84b55d 7778 &instr->value, NULL, NULL, insn_sequence))
a06ea964
NC
7779 {
7780 put_aarch64_insn (buf, instr->value);
7781 return;
7782 }
7783 }
7784
7785 as_bad_where (fixP->fx_file, fixP->fx_line,
7786 _("immediate cannot be moved by a single instruction"));
7787}
7788
7789/* An instruction operand which is immediate related may have symbol used
7790 in the assembly, e.g.
7791
7792 mov w0, u32
7793 .set u32, 0x00ffff00
7794
7795 At the time when the assembly instruction is parsed, a referenced symbol,
7796 like 'u32' in the above example may not have been seen; a fixS is created
7797 in such a case and is handled here after symbols have been resolved.
7798 Instruction is fixed up with VALUE using the information in *FIXP plus
7799 extra information in FLAGS.
7800
7801 This function is called by md_apply_fix to fix up instructions that need
7802 a fix-up described above but does not involve any linker-time relocation. */
7803
7804static void
7805fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7806{
7807 int idx;
7808 uint32_t insn;
7809 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7810 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7811 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7812
7813 if (new_inst)
7814 {
7815 /* Now the instruction is about to be fixed-up, so the operand that
7816 was previously marked as 'ignored' needs to be unmarked in order
7817 to get the encoding done properly. */
7818 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7819 new_inst->operands[idx].skip = 0;
7820 }
7821
7822 gas_assert (opnd != AARCH64_OPND_NIL);
7823
7824 switch (opnd)
7825 {
7826 case AARCH64_OPND_EXCEPTION:
09c1e68a 7827 case AARCH64_OPND_UNDEFINED:
a06ea964
NC
7828 if (unsigned_overflow (value, 16))
7829 as_bad_where (fixP->fx_file, fixP->fx_line,
7830 _("immediate out of range"));
7831 insn = get_aarch64_insn (buf);
09c1e68a 7832 insn |= (opnd == AARCH64_OPND_EXCEPTION) ? encode_svc_imm (value) : value;
a06ea964
NC
7833 put_aarch64_insn (buf, insn);
7834 break;
7835
7836 case AARCH64_OPND_AIMM:
7837 /* ADD or SUB with immediate.
7838 NOTE this assumes we come here with a add/sub shifted reg encoding
7839 3 322|2222|2 2 2 21111 111111
7840 1 098|7654|3 2 1 09876 543210 98765 43210
7841 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7842 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7843 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7844 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7845 ->
7846 3 322|2222|2 2 221111111111
7847 1 098|7654|3 2 109876543210 98765 43210
7848 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7849 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7850 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7851 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7852 Fields sf Rn Rd are already set. */
7853 insn = get_aarch64_insn (buf);
7854 if (value < 0)
7855 {
7856 /* Add <-> sub. */
7857 insn = reencode_addsub_switch_add_sub (insn);
7858 value = -value;
7859 }
7860
7861 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7862 && unsigned_overflow (value, 12))
7863 {
7864 /* Try to shift the value by 12 to make it fit. */
7865 if (((value >> 12) << 12) == value
7866 && ! unsigned_overflow (value, 12 + 12))
7867 {
7868 value >>= 12;
7869 insn |= encode_addsub_imm_shift_amount (1);
7870 }
7871 }
7872
7873 if (unsigned_overflow (value, 12))
7874 as_bad_where (fixP->fx_file, fixP->fx_line,
7875 _("immediate out of range"));
7876
7877 insn |= encode_addsub_imm (value);
7878
7879 put_aarch64_insn (buf, insn);
7880 break;
7881
7882 case AARCH64_OPND_SIMD_IMM:
7883 case AARCH64_OPND_SIMD_IMM_SFT:
7884 case AARCH64_OPND_LIMM:
7885 /* Bit mask immediate. */
7886 gas_assert (new_inst != NULL);
7887 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7888 new_inst->operands[idx].imm.value = value;
7889 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7e84b55d 7890 &new_inst->value, NULL, NULL, insn_sequence))
a06ea964
NC
7891 put_aarch64_insn (buf, new_inst->value);
7892 else
7893 as_bad_where (fixP->fx_file, fixP->fx_line,
7894 _("invalid immediate"));
7895 break;
7896
7897 case AARCH64_OPND_HALF:
7898 /* 16-bit unsigned immediate. */
7899 if (unsigned_overflow (value, 16))
7900 as_bad_where (fixP->fx_file, fixP->fx_line,
7901 _("immediate out of range"));
7902 insn = get_aarch64_insn (buf);
7903 insn |= encode_movw_imm (value & 0xffff);
7904 put_aarch64_insn (buf, insn);
7905 break;
7906
7907 case AARCH64_OPND_IMM_MOV:
7908 /* Operand for a generic move immediate instruction, which is
7909 an alias instruction that generates a single MOVZ, MOVN or ORR
7910 instruction to loads a 32-bit/64-bit immediate value into general
7911 register. An assembler error shall result if the immediate cannot be
7912 created by a single one of these instructions. If there is a choice,
7913 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7914 and MOVZ or MOVN to ORR. */
7915 gas_assert (new_inst != NULL);
7916 fix_mov_imm_insn (fixP, buf, new_inst, value);
7917 break;
7918
7919 case AARCH64_OPND_ADDR_SIMM7:
7920 case AARCH64_OPND_ADDR_SIMM9:
7921 case AARCH64_OPND_ADDR_SIMM9_2:
3f06e550 7922 case AARCH64_OPND_ADDR_SIMM10:
a06ea964 7923 case AARCH64_OPND_ADDR_UIMM12:
fb3265b3
SD
7924 case AARCH64_OPND_ADDR_SIMM11:
7925 case AARCH64_OPND_ADDR_SIMM13:
a06ea964
NC
7926 /* Immediate offset in an address. */
7927 insn = get_aarch64_insn (buf);
7928
7929 gas_assert (new_inst != NULL && new_inst->value == insn);
7930 gas_assert (new_inst->opcode->operands[1] == opnd
7931 || new_inst->opcode->operands[2] == opnd);
7932
7933 /* Get the index of the address operand. */
7934 if (new_inst->opcode->operands[1] == opnd)
7935 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7936 idx = 1;
7937 else
7938 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7939 idx = 2;
7940
7941 /* Update the resolved offset value. */
7942 new_inst->operands[idx].addr.offset.imm = value;
7943
7944 /* Encode/fix-up. */
7945 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7e84b55d 7946 &new_inst->value, NULL, NULL, insn_sequence))
a06ea964
NC
7947 {
7948 put_aarch64_insn (buf, new_inst->value);
7949 break;
7950 }
7951 else if (new_inst->opcode->iclass == ldst_pos
7952 && try_to_encode_as_unscaled_ldst (new_inst))
7953 {
7954 put_aarch64_insn (buf, new_inst->value);
7955 break;
7956 }
7957
7958 as_bad_where (fixP->fx_file, fixP->fx_line,
7959 _("immediate offset out of range"));
7960 break;
7961
7962 default:
7963 gas_assert (0);
7964 as_fatal (_("unhandled operand code %d"), opnd);
7965 }
7966}
7967
7968/* Apply a fixup (fixP) to segment data, once it has been determined
7969 by our caller that we have all the info we need to fix it up.
7970
7971 Parameter valP is the pointer to the value of the bits. */
7972
7973void
7974md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7975{
7976 offsetT value = *valP;
7977 uint32_t insn;
7978 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7979 int scale;
7980 unsigned flags = fixP->fx_addnumber;
7981
7982 DEBUG_TRACE ("\n\n");
7983 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7984 DEBUG_TRACE ("Enter md_apply_fix");
7985
7986 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7987
7988 /* Note whether this will delete the relocation. */
7989
7990 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7991 fixP->fx_done = 1;
7992
7993 /* Process the relocations. */
7994 switch (fixP->fx_r_type)
7995 {
7996 case BFD_RELOC_NONE:
7997 /* This will need to go in the object file. */
7998 fixP->fx_done = 0;
7999 break;
8000
8001 case BFD_RELOC_8:
8002 case BFD_RELOC_8_PCREL:
8003 if (fixP->fx_done || !seg->use_rela_p)
8004 md_number_to_chars (buf, value, 1);
8005 break;
8006
8007 case BFD_RELOC_16:
8008 case BFD_RELOC_16_PCREL:
8009 if (fixP->fx_done || !seg->use_rela_p)
8010 md_number_to_chars (buf, value, 2);
8011 break;
8012
8013 case BFD_RELOC_32:
8014 case BFD_RELOC_32_PCREL:
8015 if (fixP->fx_done || !seg->use_rela_p)
8016 md_number_to_chars (buf, value, 4);
8017 break;
8018
8019 case BFD_RELOC_64:
8020 case BFD_RELOC_64_PCREL:
8021 if (fixP->fx_done || !seg->use_rela_p)
8022 md_number_to_chars (buf, value, 8);
8023 break;
8024
8025 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
8026 /* We claim that these fixups have been processed here, even if
8027 in fact we generate an error because we do not have a reloc
8028 for them, so tc_gen_reloc() will reject them. */
8029 fixP->fx_done = 1;
8030 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
8031 {
8032 as_bad_where (fixP->fx_file, fixP->fx_line,
8033 _("undefined symbol %s used as an immediate value"),
8034 S_GET_NAME (fixP->fx_addsy));
8035 goto apply_fix_return;
8036 }
8037 fix_insn (fixP, flags, value);
8038 break;
8039
8040 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
8041 if (fixP->fx_done || !seg->use_rela_p)
8042 {
89d2a2a3
MS
8043 if (value & 3)
8044 as_bad_where (fixP->fx_file, fixP->fx_line,
8045 _("pc-relative load offset not word aligned"));
8046 if (signed_overflow (value, 21))
8047 as_bad_where (fixP->fx_file, fixP->fx_line,
8048 _("pc-relative load offset out of range"));
a06ea964
NC
8049 insn = get_aarch64_insn (buf);
8050 insn |= encode_ld_lit_ofs_19 (value >> 2);
8051 put_aarch64_insn (buf, insn);
8052 }
8053 break;
8054
8055 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
8056 if (fixP->fx_done || !seg->use_rela_p)
8057 {
89d2a2a3
MS
8058 if (signed_overflow (value, 21))
8059 as_bad_where (fixP->fx_file, fixP->fx_line,
8060 _("pc-relative address offset out of range"));
a06ea964
NC
8061 insn = get_aarch64_insn (buf);
8062 insn |= encode_adr_imm (value);
8063 put_aarch64_insn (buf, insn);
8064 }
8065 break;
8066
8067 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
8068 if (fixP->fx_done || !seg->use_rela_p)
8069 {
89d2a2a3
MS
8070 if (value & 3)
8071 as_bad_where (fixP->fx_file, fixP->fx_line,
8072 _("conditional branch target not word aligned"));
8073 if (signed_overflow (value, 21))
8074 as_bad_where (fixP->fx_file, fixP->fx_line,
8075 _("conditional branch out of range"));
a06ea964
NC
8076 insn = get_aarch64_insn (buf);
8077 insn |= encode_cond_branch_ofs_19 (value >> 2);
8078 put_aarch64_insn (buf, insn);
8079 }
8080 break;
8081
8082 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
8083 if (fixP->fx_done || !seg->use_rela_p)
8084 {
89d2a2a3
MS
8085 if (value & 3)
8086 as_bad_where (fixP->fx_file, fixP->fx_line,
8087 _("conditional branch target not word aligned"));
8088 if (signed_overflow (value, 16))
8089 as_bad_where (fixP->fx_file, fixP->fx_line,
8090 _("conditional branch out of range"));
a06ea964
NC
8091 insn = get_aarch64_insn (buf);
8092 insn |= encode_tst_branch_ofs_14 (value >> 2);
8093 put_aarch64_insn (buf, insn);
8094 }
8095 break;
8096
a06ea964 8097 case BFD_RELOC_AARCH64_CALL26:
f09c556a 8098 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
8099 if (fixP->fx_done || !seg->use_rela_p)
8100 {
89d2a2a3
MS
8101 if (value & 3)
8102 as_bad_where (fixP->fx_file, fixP->fx_line,
8103 _("branch target not word aligned"));
8104 if (signed_overflow (value, 28))
8105 as_bad_where (fixP->fx_file, fixP->fx_line,
8106 _("branch out of range"));
a06ea964
NC
8107 insn = get_aarch64_insn (buf);
8108 insn |= encode_branch_ofs_26 (value >> 2);
8109 put_aarch64_insn (buf, insn);
8110 }
8111 break;
8112
8113 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 8114 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 8115 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 8116 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
32247401
RL
8117 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
8118 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
a06ea964
NC
8119 scale = 0;
8120 goto movw_common;
8121 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 8122 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 8123 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 8124 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
32247401
RL
8125 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
8126 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
a06ea964
NC
8127 scale = 16;
8128 goto movw_common;
43a357f9
RL
8129 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8130 scale = 0;
8131 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8132 /* Should always be exported to object file, see
8133 aarch64_force_relocation(). */
8134 gas_assert (!fixP->fx_done);
8135 gas_assert (seg->use_rela_p);
8136 goto movw_common;
8137 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
8138 scale = 16;
8139 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8140 /* Should always be exported to object file, see
8141 aarch64_force_relocation(). */
8142 gas_assert (!fixP->fx_done);
8143 gas_assert (seg->use_rela_p);
8144 goto movw_common;
a06ea964 8145 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 8146 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 8147 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
8148 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
8149 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
a06ea964
NC
8150 scale = 32;
8151 goto movw_common;
8152 case BFD_RELOC_AARCH64_MOVW_G3:
32247401 8153 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
a06ea964
NC
8154 scale = 48;
8155 movw_common:
8156 if (fixP->fx_done || !seg->use_rela_p)
8157 {
8158 insn = get_aarch64_insn (buf);
8159
8160 if (!fixP->fx_done)
8161 {
8162 /* REL signed addend must fit in 16 bits */
8163 if (signed_overflow (value, 16))
8164 as_bad_where (fixP->fx_file, fixP->fx_line,
8165 _("offset out of range"));
8166 }
8167 else
8168 {
8169 /* Check for overflow and scale. */
8170 switch (fixP->fx_r_type)
8171 {
8172 case BFD_RELOC_AARCH64_MOVW_G0:
8173 case BFD_RELOC_AARCH64_MOVW_G1:
8174 case BFD_RELOC_AARCH64_MOVW_G2:
8175 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 8176 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 8177 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
8178 if (unsigned_overflow (value, scale + 16))
8179 as_bad_where (fixP->fx_file, fixP->fx_line,
8180 _("unsigned value out of range"));
8181 break;
8182 case BFD_RELOC_AARCH64_MOVW_G0_S:
8183 case BFD_RELOC_AARCH64_MOVW_G1_S:
8184 case BFD_RELOC_AARCH64_MOVW_G2_S:
32247401
RL
8185 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
8186 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
8187 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
a06ea964
NC
8188 /* NOTE: We can only come here with movz or movn. */
8189 if (signed_overflow (value, scale + 16))
8190 as_bad_where (fixP->fx_file, fixP->fx_line,
8191 _("signed value out of range"));
8192 if (value < 0)
8193 {
8194 /* Force use of MOVN. */
8195 value = ~value;
8196 insn = reencode_movzn_to_movn (insn);
8197 }
8198 else
8199 {
8200 /* Force use of MOVZ. */
8201 insn = reencode_movzn_to_movz (insn);
8202 }
8203 break;
8204 default:
8205 /* Unchecked relocations. */
8206 break;
8207 }
8208 value >>= scale;
8209 }
8210
8211 /* Insert value into MOVN/MOVZ/MOVK instruction. */
8212 insn |= encode_movw_imm (value & 0xffff);
8213
8214 put_aarch64_insn (buf, insn);
8215 }
8216 break;
8217
a6bb11b2
YZ
8218 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
8219 fixP->fx_r_type = (ilp32_p
8220 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
8221 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
8222 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8223 /* Should always be exported to object file, see
8224 aarch64_force_relocation(). */
8225 gas_assert (!fixP->fx_done);
8226 gas_assert (seg->use_rela_p);
8227 break;
8228
8229 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8230 fixP->fx_r_type = (ilp32_p
8231 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
f955cccf 8232 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
a6bb11b2
YZ
8233 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8234 /* Should always be exported to object file, see
8235 aarch64_force_relocation(). */
8236 gas_assert (!fixP->fx_done);
8237 gas_assert (seg->use_rela_p);
8238 break;
8239
f955cccf 8240 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
2c0a3565 8241 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 8242 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565 8243 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 8244 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 8245 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 8246 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 8247 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 8248 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 8249 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 8250 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 8251 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 8252 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 8253 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 8254 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
8255 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8256 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 8257 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 8258 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 8259 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 8260 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 8261 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 8262 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
8263 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8264 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8265 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8266 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8267 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8268 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8269 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8270 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
8271 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8272 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8273 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8274 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8275 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
84f1b9fb
RL
8276 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8277 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8278 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8279 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8280 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8281 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8282 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8283 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
a06ea964 8284 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 8285 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 8286 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
8287 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8288 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
8289 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8290 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8291 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
8292 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8293 /* Should always be exported to object file, see
8294 aarch64_force_relocation(). */
8295 gas_assert (!fixP->fx_done);
8296 gas_assert (seg->use_rela_p);
8297 break;
8298
a6bb11b2
YZ
8299 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
8300 /* Should always be exported to object file, see
8301 aarch64_force_relocation(). */
8302 fixP->fx_r_type = (ilp32_p
8303 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
8304 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
8305 gas_assert (!fixP->fx_done);
8306 gas_assert (seg->use_rela_p);
8307 break;
8308
a06ea964 8309 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
8310 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8311 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8312 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8313 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8314 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 8315 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 8316 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 8317 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
8318 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8319 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
8320 case BFD_RELOC_AARCH64_LDST16_LO12:
8321 case BFD_RELOC_AARCH64_LDST32_LO12:
8322 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 8323 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
8324 /* Should always be exported to object file, see
8325 aarch64_force_relocation(). */
8326 gas_assert (!fixP->fx_done);
8327 gas_assert (seg->use_rela_p);
8328 break;
8329
8330 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 8331 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 8332 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
8333 break;
8334
b97e87cc
NC
8335 case BFD_RELOC_UNUSED:
8336 /* An error will already have been reported. */
8337 break;
8338
a06ea964
NC
8339 default:
8340 as_bad_where (fixP->fx_file, fixP->fx_line,
8341 _("unexpected %s fixup"),
8342 bfd_get_reloc_code_name (fixP->fx_r_type));
8343 break;
8344 }
8345
dc1e8a47 8346 apply_fix_return:
a06ea964
NC
8347 /* Free the allocated the struct aarch64_inst.
8348 N.B. currently there are very limited number of fix-up types actually use
8349 this field, so the impact on the performance should be minimal . */
9fbb53c7 8350 free (fixP->tc_fix_data.inst);
a06ea964
NC
8351
8352 return;
8353}
8354
8355/* Translate internal representation of relocation info to BFD target
8356 format. */
8357
8358arelent *
8359tc_gen_reloc (asection * section, fixS * fixp)
8360{
8361 arelent *reloc;
8362 bfd_reloc_code_real_type code;
8363
325801bd 8364 reloc = XNEW (arelent);
a06ea964 8365
325801bd 8366 reloc->sym_ptr_ptr = XNEW (asymbol *);
a06ea964
NC
8367 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8368 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
8369
8370 if (fixp->fx_pcrel)
8371 {
8372 if (section->use_rela_p)
8373 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
8374 else
8375 fixp->fx_offset = reloc->address;
8376 }
8377 reloc->addend = fixp->fx_offset;
8378
8379 code = fixp->fx_r_type;
8380 switch (code)
8381 {
8382 case BFD_RELOC_16:
8383 if (fixp->fx_pcrel)
8384 code = BFD_RELOC_16_PCREL;
8385 break;
8386
8387 case BFD_RELOC_32:
8388 if (fixp->fx_pcrel)
8389 code = BFD_RELOC_32_PCREL;
8390 break;
8391
8392 case BFD_RELOC_64:
8393 if (fixp->fx_pcrel)
8394 code = BFD_RELOC_64_PCREL;
8395 break;
8396
8397 default:
8398 break;
8399 }
8400
8401 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
8402 if (reloc->howto == NULL)
8403 {
8404 as_bad_where (fixp->fx_file, fixp->fx_line,
8405 _
8406 ("cannot represent %s relocation in this object file format"),
8407 bfd_get_reloc_code_name (code));
8408 return NULL;
8409 }
8410
8411 return reloc;
8412}
8413
8414/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
8415
8416void
8417cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
8418{
8419 bfd_reloc_code_real_type type;
8420 int pcrel = 0;
8421
8422 /* Pick a reloc.
8423 FIXME: @@ Should look at CPU word size. */
8424 switch (size)
8425 {
8426 case 1:
8427 type = BFD_RELOC_8;
8428 break;
8429 case 2:
8430 type = BFD_RELOC_16;
8431 break;
8432 case 4:
8433 type = BFD_RELOC_32;
8434 break;
8435 case 8:
8436 type = BFD_RELOC_64;
8437 break;
8438 default:
8439 as_bad (_("cannot do %u-byte relocation"), size);
8440 type = BFD_RELOC_UNUSED;
8441 break;
8442 }
8443
8444 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
8445}
8446
8447int
8448aarch64_force_relocation (struct fix *fixp)
8449{
8450 switch (fixp->fx_r_type)
8451 {
8452 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
8453 /* Perform these "immediate" internal relocations
8454 even if the symbol is extern or weak. */
8455 return 0;
8456
a6bb11b2 8457 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
8458 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8459 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
8460 /* Pseudo relocs that need to be fixed up according to
8461 ilp32_p. */
8462 return 0;
8463
2c0a3565
MS
8464 case BFD_RELOC_AARCH64_ADD_LO12:
8465 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8466 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8467 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8468 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8469 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 8470 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 8471 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 8472 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
8473 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8474 case BFD_RELOC_AARCH64_LDST128_LO12:
8475 case BFD_RELOC_AARCH64_LDST16_LO12:
8476 case BFD_RELOC_AARCH64_LDST32_LO12:
8477 case BFD_RELOC_AARCH64_LDST64_LO12:
8478 case BFD_RELOC_AARCH64_LDST8_LO12:
f955cccf 8479 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
2c0a3565 8480 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 8481 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565 8482 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
f955cccf 8483 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
1ada945d 8484 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
43a357f9
RL
8485 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8486 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964 8487 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 8488 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 8489 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 8490 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 8491 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 8492 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 8493 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 8494 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 8495 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
8496 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8497 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8498 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 8499 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 8500 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 8501 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 8502 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 8503 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
8504 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8505 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8506 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8507 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8508 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8509 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8510 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8511 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
8512 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8513 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8514 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8515 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8516 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
84f1b9fb
RL
8517 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8518 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8519 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8520 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8521 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8522 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8523 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8524 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
a06ea964 8525 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 8526 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 8527 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
8528 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8529 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
8530 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8531 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8532 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
8533 /* Always leave these relocations for the linker. */
8534 return 1;
8535
8536 default:
8537 break;
8538 }
8539
8540 return generic_force_reloc (fixp);
8541}
8542
8543#ifdef OBJ_ELF
8544
3c0367d0
JW
8545/* Implement md_after_parse_args. This is the earliest time we need to decide
8546 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
8547
8548void
8549aarch64_after_parse_args (void)
8550{
8551 if (aarch64_abi != AARCH64_ABI_NONE)
8552 return;
8553
8554 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8555 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8556 aarch64_abi = AARCH64_ABI_ILP32;
8557 else
8558 aarch64_abi = AARCH64_ABI_LP64;
8559}
8560
a06ea964
NC
8561const char *
8562elf64_aarch64_target_format (void)
8563{
12400dcc
AM
8564#ifdef TE_CLOUDABI
8565 /* FIXME: What to do for ilp32_p ? */
8566 if (target_big_endian)
8567 return "elf64-bigaarch64-cloudabi";
8568 else
8569 return "elf64-littleaarch64-cloudabi";
8570#else
a06ea964 8571 if (target_big_endian)
cec5225b 8572 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 8573 else
cec5225b 8574 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
12400dcc 8575#endif
a06ea964
NC
8576}
8577
8578void
8579aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8580{
8581 elf_frob_symbol (symp, puntp);
8582}
8583#endif
8584
8585/* MD interface: Finalization. */
8586
8587/* A good place to do this, although this was probably not intended
8588 for this kind of use. We need to dump the literal pool before
8589 references are made to a null symbol pointer. */
8590
8591void
8592aarch64_cleanup (void)
8593{
8594 literal_pool *pool;
8595
8596 for (pool = list_of_pools; pool; pool = pool->next)
8597 {
8598 /* Put it at the end of the relevant section. */
8599 subseg_set (pool->section, pool->sub_section);
8600 s_ltorg (0);
8601 }
8602}
8603
8604#ifdef OBJ_ELF
8605/* Remove any excess mapping symbols generated for alignment frags in
8606 SEC. We may have created a mapping symbol before a zero byte
8607 alignment; remove it if there's a mapping symbol after the
8608 alignment. */
8609static void
8610check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8611 void *dummy ATTRIBUTE_UNUSED)
8612{
8613 segment_info_type *seginfo = seg_info (sec);
8614 fragS *fragp;
8615
8616 if (seginfo == NULL || seginfo->frchainP == NULL)
8617 return;
8618
8619 for (fragp = seginfo->frchainP->frch_root;
8620 fragp != NULL; fragp = fragp->fr_next)
8621 {
8622 symbolS *sym = fragp->tc_frag_data.last_map;
8623 fragS *next = fragp->fr_next;
8624
8625 /* Variable-sized frags have been converted to fixed size by
8626 this point. But if this was variable-sized to start with,
8627 there will be a fixed-size frag after it. So don't handle
8628 next == NULL. */
8629 if (sym == NULL || next == NULL)
8630 continue;
8631
8632 if (S_GET_VALUE (sym) < next->fr_address)
8633 /* Not at the end of this frag. */
8634 continue;
8635 know (S_GET_VALUE (sym) == next->fr_address);
8636
8637 do
8638 {
8639 if (next->tc_frag_data.first_map != NULL)
8640 {
8641 /* Next frag starts with a mapping symbol. Discard this
8642 one. */
8643 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8644 break;
8645 }
8646
8647 if (next->fr_next == NULL)
8648 {
8649 /* This mapping symbol is at the end of the section. Discard
8650 it. */
8651 know (next->fr_fix == 0 && next->fr_var == 0);
8652 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8653 break;
8654 }
8655
8656 /* As long as we have empty frags without any mapping symbols,
8657 keep looking. */
8658 /* If the next frag is non-empty and does not start with a
8659 mapping symbol, then this mapping symbol is required. */
8660 if (next->fr_address != next->fr_next->fr_address)
8661 break;
8662
8663 next = next->fr_next;
8664 }
8665 while (next != NULL);
8666 }
8667}
8668#endif
8669
8670/* Adjust the symbol table. */
8671
8672void
8673aarch64_adjust_symtab (void)
8674{
8675#ifdef OBJ_ELF
8676 /* Remove any overlapping mapping symbols generated by alignment frags. */
8677 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8678 /* Now do generic ELF adjustments. */
8679 elf_adjust_symtab ();
8680#endif
8681}
8682
8683static void
629310ab 8684checked_hash_insert (htab_t table, const char *key, void *value)
a06ea964 8685{
fe0e921f 8686 str_hash_insert (table, key, value, 0);
a06ea964
NC
8687}
8688
fa63795f 8689static void
629310ab 8690sysreg_hash_insert (htab_t table, const char *key, void *value)
fa63795f
AC
8691{
8692 gas_assert (strlen (key) < AARCH64_MAX_SYSREG_NAME_LEN);
8693 checked_hash_insert (table, key, value);
8694}
8695
a06ea964
NC
8696static void
8697fill_instruction_hash_table (void)
8698{
8699 aarch64_opcode *opcode = aarch64_opcode_table;
8700
8701 while (opcode->name != NULL)
8702 {
8703 templates *templ, *new_templ;
629310ab 8704 templ = str_hash_find (aarch64_ops_hsh, opcode->name);
a06ea964 8705
add39d23 8706 new_templ = XNEW (templates);
a06ea964
NC
8707 new_templ->opcode = opcode;
8708 new_templ->next = NULL;
8709
8710 if (!templ)
8711 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8712 else
8713 {
8714 new_templ->next = templ->next;
8715 templ->next = new_templ;
8716 }
8717 ++opcode;
8718 }
8719}
8720
8721static inline void
8722convert_to_upper (char *dst, const char *src, size_t num)
8723{
8724 unsigned int i;
8725 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8726 *dst = TOUPPER (*src);
8727 *dst = '\0';
8728}
8729
8730/* Assume STR point to a lower-case string, allocate, convert and return
8731 the corresponding upper-case string. */
8732static inline const char*
8733get_upper_str (const char *str)
8734{
8735 char *ret;
8736 size_t len = strlen (str);
325801bd 8737 ret = XNEWVEC (char, len + 1);
a06ea964
NC
8738 convert_to_upper (ret, str, len);
8739 return ret;
8740}
8741
8742/* MD interface: Initialization. */
8743
8744void
8745md_begin (void)
8746{
8747 unsigned mach;
8748 unsigned int i;
8749
f16c3d4f
AM
8750 aarch64_ops_hsh = str_htab_create ();
8751 aarch64_cond_hsh = str_htab_create ();
8752 aarch64_shift_hsh = str_htab_create ();
8753 aarch64_sys_regs_hsh = str_htab_create ();
8754 aarch64_pstatefield_hsh = str_htab_create ();
8755 aarch64_sys_regs_ic_hsh = str_htab_create ();
8756 aarch64_sys_regs_dc_hsh = str_htab_create ();
8757 aarch64_sys_regs_at_hsh = str_htab_create ();
8758 aarch64_sys_regs_tlbi_hsh = str_htab_create ();
8759 aarch64_sys_regs_sr_hsh = str_htab_create ();
8760 aarch64_reg_hsh = str_htab_create ();
8761 aarch64_barrier_opt_hsh = str_htab_create ();
8762 aarch64_nzcv_hsh = str_htab_create ();
8763 aarch64_pldop_hsh = str_htab_create ();
8764 aarch64_hint_opt_hsh = str_htab_create ();
a06ea964
NC
8765
8766 fill_instruction_hash_table ();
8767
8768 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
fa63795f 8769 sysreg_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
a06ea964
NC
8770 (void *) (aarch64_sys_regs + i));
8771
8772 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
fa63795f 8773 sysreg_hash_insert (aarch64_pstatefield_hsh,
a06ea964
NC
8774 aarch64_pstatefields[i].name,
8775 (void *) (aarch64_pstatefields + i));
8776
875880c6 8777 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
fa63795f 8778 sysreg_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 8779 aarch64_sys_regs_ic[i].name,
a06ea964
NC
8780 (void *) (aarch64_sys_regs_ic + i));
8781
875880c6 8782 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
fa63795f 8783 sysreg_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 8784 aarch64_sys_regs_dc[i].name,
a06ea964
NC
8785 (void *) (aarch64_sys_regs_dc + i));
8786
875880c6 8787 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
fa63795f 8788 sysreg_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 8789 aarch64_sys_regs_at[i].name,
a06ea964
NC
8790 (void *) (aarch64_sys_regs_at + i));
8791
875880c6 8792 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
fa63795f 8793 sysreg_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 8794 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
8795 (void *) (aarch64_sys_regs_tlbi + i));
8796
2ac435d4 8797 for (i = 0; aarch64_sys_regs_sr[i].name != NULL; i++)
fa63795f 8798 sysreg_hash_insert (aarch64_sys_regs_sr_hsh,
2ac435d4
SD
8799 aarch64_sys_regs_sr[i].name,
8800 (void *) (aarch64_sys_regs_sr + i));
8801
a06ea964
NC
8802 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8803 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8804 (void *) (reg_names + i));
8805
8806 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8807 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8808 (void *) (nzcv_names + i));
8809
8810 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8811 {
8812 const char *name = aarch64_operand_modifiers[i].name;
8813 checked_hash_insert (aarch64_shift_hsh, name,
8814 (void *) (aarch64_operand_modifiers + i));
8815 /* Also hash the name in the upper case. */
8816 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8817 (void *) (aarch64_operand_modifiers + i));
8818 }
8819
8820 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8821 {
8822 unsigned int j;
8823 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8824 the same condition code. */
8825 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8826 {
8827 const char *name = aarch64_conds[i].names[j];
8828 if (name == NULL)
8829 break;
8830 checked_hash_insert (aarch64_cond_hsh, name,
8831 (void *) (aarch64_conds + i));
8832 /* Also hash the name in the upper case. */
8833 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8834 (void *) (aarch64_conds + i));
8835 }
8836 }
8837
8838 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8839 {
8840 const char *name = aarch64_barrier_options[i].name;
8841 /* Skip xx00 - the unallocated values of option. */
8842 if ((i & 0x3) == 0)
8843 continue;
8844 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8845 (void *) (aarch64_barrier_options + i));
8846 /* Also hash the name in the upper case. */
8847 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8848 (void *) (aarch64_barrier_options + i));
8849 }
8850
fd195909
PW
8851 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_dsb_nxs_options); i++)
8852 {
8853 const char *name = aarch64_barrier_dsb_nxs_options[i].name;
8854 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8855 (void *) (aarch64_barrier_dsb_nxs_options + i));
8856 /* Also hash the name in the upper case. */
8857 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8858 (void *) (aarch64_barrier_dsb_nxs_options + i));
8859 }
8860
a06ea964
NC
8861 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8862 {
8863 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
8864 /* Skip the unallocated hint encodings. */
8865 if (name == NULL)
a06ea964
NC
8866 continue;
8867 checked_hash_insert (aarch64_pldop_hsh, name,
8868 (void *) (aarch64_prfops + i));
8869 /* Also hash the name in the upper case. */
8870 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8871 (void *) (aarch64_prfops + i));
8872 }
8873
1e6f4800
MW
8874 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8875 {
8876 const char* name = aarch64_hint_options[i].name;
0a821c4f 8877 const char* upper_name = get_upper_str(name);
1e6f4800
MW
8878
8879 checked_hash_insert (aarch64_hint_opt_hsh, name,
8880 (void *) (aarch64_hint_options + i));
0a821c4f
AP
8881
8882 /* Also hash the name in the upper case if not the same. */
8883 if (strcmp (name, upper_name) != 0)
8884 checked_hash_insert (aarch64_hint_opt_hsh, upper_name,
8885 (void *) (aarch64_hint_options + i));
1e6f4800
MW
8886 }
8887
a06ea964
NC
8888 /* Set the cpu variant based on the command-line options. */
8889 if (!mcpu_cpu_opt)
8890 mcpu_cpu_opt = march_cpu_opt;
8891
8892 if (!mcpu_cpu_opt)
8893 mcpu_cpu_opt = &cpu_default;
8894
8895 cpu_variant = *mcpu_cpu_opt;
8896
8897 /* Record the CPU type. */
cec5225b 8898 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
8899
8900 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8901}
8902
8903/* Command line processing. */
8904
8905const char *md_shortopts = "m:";
8906
8907#ifdef AARCH64_BI_ENDIAN
8908#define OPTION_EB (OPTION_MD_BASE + 0)
8909#define OPTION_EL (OPTION_MD_BASE + 1)
8910#else
8911#if TARGET_BYTES_BIG_ENDIAN
8912#define OPTION_EB (OPTION_MD_BASE + 0)
8913#else
8914#define OPTION_EL (OPTION_MD_BASE + 1)
8915#endif
8916#endif
8917
8918struct option md_longopts[] = {
8919#ifdef OPTION_EB
8920 {"EB", no_argument, NULL, OPTION_EB},
8921#endif
8922#ifdef OPTION_EL
8923 {"EL", no_argument, NULL, OPTION_EL},
8924#endif
8925 {NULL, no_argument, NULL, 0}
8926};
8927
8928size_t md_longopts_size = sizeof (md_longopts);
8929
8930struct aarch64_option_table
8931{
e0471c16
TS
8932 const char *option; /* Option name to match. */
8933 const char *help; /* Help information. */
a06ea964
NC
8934 int *var; /* Variable to change. */
8935 int value; /* What to change it to. */
8936 char *deprecated; /* If non-null, print this message. */
8937};
8938
8939static struct aarch64_option_table aarch64_opts[] = {
8940 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8941 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8942 NULL},
8943#ifdef DEBUG_AARCH64
8944 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8945#endif /* DEBUG_AARCH64 */
8946 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8947 NULL},
a52e6fd3
YZ
8948 {"mno-verbose-error", N_("do not output verbose error messages"),
8949 &verbose_error_p, 0, NULL},
a06ea964
NC
8950 {NULL, NULL, NULL, 0, NULL}
8951};
8952
8953struct aarch64_cpu_option_table
8954{
e0471c16 8955 const char *name;
a06ea964
NC
8956 const aarch64_feature_set value;
8957 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8958 case. */
8959 const char *canonical_name;
8960};
8961
8962/* This list should, at a minimum, contain all the cpu names
8963 recognized by GCC. */
8964static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8965 {"all", AARCH64_ANY, NULL},
546053ac
DZ
8966 {"cortex-a34", AARCH64_FEATURE (AARCH64_ARCH_V8,
8967 AARCH64_FEATURE_CRC), "Cortex-A34"},
9c352f1c
JG
8968 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8969 AARCH64_FEATURE_CRC), "Cortex-A35"},
aa31c464
JW
8970 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8971 AARCH64_FEATURE_CRC), "Cortex-A53"},
8972 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8973 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
8974 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8975 AARCH64_FEATURE_CRC), "Cortex-A72"},
1aa70332
KT
8976 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8977 AARCH64_FEATURE_CRC), "Cortex-A73"},
1e292627 8978 {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
1c5c938a 8979 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
1e292627
JG
8980 "Cortex-A55"},
8981 {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
1c5c938a 8982 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
1e292627 8983 "Cortex-A75"},
c2a0f929 8984 {"cortex-a76", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8985 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8986 "Cortex-A76"},
546053ac
DZ
8987 {"cortex-a76ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8988 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8989 | AARCH64_FEATURE_DOTPROD
8990 | AARCH64_FEATURE_SSBS),
8991 "Cortex-A76AE"},
8992 {"cortex-a77", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8993 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8994 | AARCH64_FEATURE_DOTPROD
8995 | AARCH64_FEATURE_SSBS),
8996 "Cortex-A77"},
8997 {"cortex-a65", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8998 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
8999 | AARCH64_FEATURE_DOTPROD
9000 | AARCH64_FEATURE_SSBS),
9001 "Cortex-A65"},
9002 {"cortex-a65ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
9003 AARCH64_FEATURE_F16 | AARCH64_FEATURE_RCPC
9004 | AARCH64_FEATURE_DOTPROD
9005 | AARCH64_FEATURE_SSBS),
9006 "Cortex-A65AE"},
77718e5b
PW
9007 {"cortex-a78", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
9008 AARCH64_FEATURE_F16
9009 | AARCH64_FEATURE_RCPC
9010 | AARCH64_FEATURE_DOTPROD
9011 | AARCH64_FEATURE_SSBS
9012 | AARCH64_FEATURE_PROFILE),
9013 "Cortex-A78"},
9014 {"cortex-a78ae", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
9015 AARCH64_FEATURE_F16
9016 | AARCH64_FEATURE_RCPC
9017 | AARCH64_FEATURE_DOTPROD
9018 | AARCH64_FEATURE_SSBS
9019 | AARCH64_FEATURE_PROFILE),
9020 "Cortex-A78AE"},
c8fcc360
KT
9021 {"ares", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
9022 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
9023 | AARCH64_FEATURE_DOTPROD
9024 | AARCH64_FEATURE_PROFILE),
9025 "Ares"},
2412d878
EM
9026 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
9027 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
9028 "Samsung Exynos M1"},
2fe9c2a0 9029 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
e58ff055
JW
9030 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
9031 | AARCH64_FEATURE_RDMA),
2fe9c2a0 9032 "Qualcomm Falkor"},
516dbc44
KT
9033 {"neoverse-e1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
9034 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
9035 | AARCH64_FEATURE_DOTPROD
9036 | AARCH64_FEATURE_SSBS),
9037 "Neoverse E1"},
38e75bf2
KT
9038 {"neoverse-n1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
9039 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
9040 | AARCH64_FEATURE_DOTPROD
9041 | AARCH64_FEATURE_PROFILE),
9042 "Neoverse N1"},
990e5268
AC
9043 {"neoverse-n2", AARCH64_FEATURE (AARCH64_ARCH_V8_5,
9044 AARCH64_FEATURE_BFLOAT16
9045 | AARCH64_FEATURE_I8MM
9046 | AARCH64_FEATURE_F16
9047 | AARCH64_FEATURE_SVE
9048 | AARCH64_FEATURE_SVE2
9049 | AARCH64_FEATURE_SVE2_BITPERM
9050 | AARCH64_FEATURE_MEMTAG
9051 | AARCH64_FEATURE_RNG),
9052 "Neoverse N2"},
c769fd6a
AC
9053 {"neoverse-v1", AARCH64_FEATURE (AARCH64_ARCH_V8_4,
9054 AARCH64_FEATURE_PROFILE
9055 | AARCH64_FEATURE_CVADP
9056 | AARCH64_FEATURE_SVE
9057 | AARCH64_FEATURE_SSBS
9058 | AARCH64_FEATURE_RNG
9059 | AARCH64_FEATURE_F16
9060 | AARCH64_FEATURE_BFLOAT16
9061 | AARCH64_FEATURE_I8MM), "Neoverse V1"},
6b21c2bf 9062 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
e58ff055
JW
9063 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
9064 | AARCH64_FEATURE_RDMA),
6b21c2bf 9065 "Qualcomm QDF24XX"},
eb5c42e5 9066 {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_4,
7605d944
SP
9067 AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
9068 "Qualcomm Saphira"},
faade851
JW
9069 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
9070 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
9071 "Cavium ThunderX"},
9f99c22e
VP
9072 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
9073 AARCH64_FEATURE_CRYPTO),
0a8be2fe 9074 "Broadcom Vulcan"},
070cb956
PT
9075 /* The 'xgene-1' name is an older name for 'xgene1', which was used
9076 in earlier releases and is superseded by 'xgene1' in all
9077 tools. */
9877c63c 9078 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 9079 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
9080 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
9081 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
f1363b0f 9082 {"cortex-r82", AARCH64_ARCH_V8_R, "Cortex-R82"},
47e1f9de 9083 {"cortex-x1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
f9b1d75e
PW
9084 AARCH64_FEATURE_F16
9085 | AARCH64_FEATURE_RCPC
9086 | AARCH64_FEATURE_DOTPROD
9087 | AARCH64_FEATURE_SSBS
9088 | AARCH64_FEATURE_PROFILE),
9089 "Cortex-X1"},
a06ea964
NC
9090 {"generic", AARCH64_ARCH_V8, NULL},
9091
a06ea964
NC
9092 {NULL, AARCH64_ARCH_NONE, NULL}
9093};
9094
9095struct aarch64_arch_option_table
9096{
e0471c16 9097 const char *name;
a06ea964
NC
9098 const aarch64_feature_set value;
9099};
9100
9101/* This list should, at a minimum, contain all the architecture names
9102 recognized by GCC. */
9103static const struct aarch64_arch_option_table aarch64_archs[] = {
9104 {"all", AARCH64_ANY},
5a1ad39d 9105 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 9106 {"armv8.1-a", AARCH64_ARCH_V8_1},
acb787b0 9107 {"armv8.2-a", AARCH64_ARCH_V8_2},
1924ff75 9108 {"armv8.3-a", AARCH64_ARCH_V8_3},
b6b9ca0c 9109 {"armv8.4-a", AARCH64_ARCH_V8_4},
70d56181 9110 {"armv8.5-a", AARCH64_ARCH_V8_5},
8ae2d3d9 9111 {"armv8.6-a", AARCH64_ARCH_V8_6},
8926e54e 9112 {"armv8.7-a", AARCH64_ARCH_V8_7},
95830c98 9113 {"armv8-r", AARCH64_ARCH_V8_R},
a06ea964
NC
9114 {NULL, AARCH64_ARCH_NONE}
9115};
9116
9117/* ISA extensions. */
9118struct aarch64_option_cpu_value_table
9119{
e0471c16 9120 const char *name;
a06ea964 9121 const aarch64_feature_set value;
93d8990c 9122 const aarch64_feature_set require; /* Feature dependencies. */
a06ea964
NC
9123};
9124
9125static const struct aarch64_option_cpu_value_table aarch64_features[] = {
93d8990c
SN
9126 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
9127 AARCH64_ARCH_NONE},
2dc4b12f 9128 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0),
fa09f4ea 9129 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
93d8990c
SN
9130 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
9131 AARCH64_ARCH_NONE},
9132 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
9133 AARCH64_ARCH_NONE},
9134 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
fa09f4ea 9135 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
93d8990c
SN
9136 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
9137 AARCH64_ARCH_NONE},
9138 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
9139 AARCH64_ARCH_NONE},
9140 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
9141 AARCH64_ARCH_NONE},
9142 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
9143 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
9144 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
9145 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
d0f7791c
TC
9146 {"fp16fml", AARCH64_FEATURE (AARCH64_FEATURE_F16_FML, 0),
9147 AARCH64_FEATURE (AARCH64_FEATURE_FP
9148 | AARCH64_FEATURE_F16, 0)},
93d8990c
SN
9149 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
9150 AARCH64_ARCH_NONE},
c0890d26 9151 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
582e12bf
RS
9152 AARCH64_FEATURE (AARCH64_FEATURE_F16
9153 | AARCH64_FEATURE_SIMD
9154 | AARCH64_FEATURE_COMPNUM, 0)},
b83b4b13
SD
9155 {"tme", AARCH64_FEATURE (AARCH64_FEATURE_TME, 0),
9156 AARCH64_ARCH_NONE},
f482d304
RS
9157 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
9158 AARCH64_FEATURE (AARCH64_FEATURE_F16
9159 | AARCH64_FEATURE_SIMD, 0)},
d74d4880
SN
9160 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
9161 AARCH64_ARCH_NONE},
65a55fbb
TC
9162 {"dotprod", AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
9163 AARCH64_ARCH_NONE},
c0e7cef7
NC
9164 {"sha2", AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
9165 AARCH64_ARCH_NONE},
68dfbb92
SD
9166 {"sb", AARCH64_FEATURE (AARCH64_FEATURE_SB, 0),
9167 AARCH64_ARCH_NONE},
2ac435d4
SD
9168 {"predres", AARCH64_FEATURE (AARCH64_FEATURE_PREDRES, 0),
9169 AARCH64_ARCH_NONE},
c0e7cef7
NC
9170 {"aes", AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
9171 AARCH64_ARCH_NONE},
b6b9ca0c
TC
9172 {"sm4", AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
9173 AARCH64_ARCH_NONE},
d4340f89
JB
9174 {"sha3", AARCH64_FEATURE (AARCH64_FEATURE_SHA3, 0),
9175 AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0)},
af4bcb4c
SD
9176 {"rng", AARCH64_FEATURE (AARCH64_FEATURE_RNG, 0),
9177 AARCH64_ARCH_NONE},
104fefee
SD
9178 {"ssbs", AARCH64_FEATURE (AARCH64_FEATURE_SSBS, 0),
9179 AARCH64_ARCH_NONE},
73b605ec
SD
9180 {"memtag", AARCH64_FEATURE (AARCH64_FEATURE_MEMTAG, 0),
9181 AARCH64_ARCH_NONE},
7ce2460a
MM
9182 {"sve2", AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0),
9183 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
9184 {"sve2-sm4", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SM4, 0),
9185 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
9186 | AARCH64_FEATURE_SM4, 0)},
9187 {"sve2-aes", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_AES, 0),
9188 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
9189 | AARCH64_FEATURE_AES, 0)},
9190 {"sve2-sha3", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SHA3, 0),
9191 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
9192 | AARCH64_FEATURE_SHA3, 0)},
ccbdd22f 9193 {"sve2-bitperm", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_BITPERM, 0),
7ce2460a 9194 AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0)},
df678013
MM
9195 {"bf16", AARCH64_FEATURE (AARCH64_FEATURE_BFLOAT16, 0),
9196 AARCH64_ARCH_NONE},
8382113f
MM
9197 {"i8mm", AARCH64_FEATURE (AARCH64_FEATURE_I8MM, 0),
9198 AARCH64_ARCH_NONE},
9199 {"f32mm", AARCH64_FEATURE (AARCH64_FEATURE_F32MM, 0),
82e9597c 9200 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
8382113f 9201 {"f64mm", AARCH64_FEATURE (AARCH64_FEATURE_F64MM, 0),
82e9597c 9202 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
dd4a72c8
PW
9203 {"csre", AARCH64_FEATURE (AARCH64_FEATURE_CSRE, 0),
9204 AARCH64_ARCH_NONE},
93d8990c 9205 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
a06ea964
NC
9206};
9207
9208struct aarch64_long_option_table
9209{
e0471c16
TS
9210 const char *option; /* Substring to match. */
9211 const char *help; /* Help information. */
17b9d67d 9212 int (*func) (const char *subopt); /* Function to decode sub-option. */
a06ea964
NC
9213 char *deprecated; /* If non-null, print this message. */
9214};
9215
93d8990c
SN
9216/* Transitive closure of features depending on set. */
9217static aarch64_feature_set
9218aarch64_feature_disable_set (aarch64_feature_set set)
9219{
9220 const struct aarch64_option_cpu_value_table *opt;
9221 aarch64_feature_set prev = 0;
9222
9223 while (prev != set) {
9224 prev = set;
9225 for (opt = aarch64_features; opt->name != NULL; opt++)
9226 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
9227 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
9228 }
9229 return set;
9230}
9231
9232/* Transitive closure of dependencies of set. */
9233static aarch64_feature_set
9234aarch64_feature_enable_set (aarch64_feature_set set)
9235{
9236 const struct aarch64_option_cpu_value_table *opt;
9237 aarch64_feature_set prev = 0;
9238
9239 while (prev != set) {
9240 prev = set;
9241 for (opt = aarch64_features; opt->name != NULL; opt++)
9242 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
9243 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
9244 }
9245 return set;
9246}
9247
a06ea964 9248static int
82b8a785 9249aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
ae527cd8 9250 bfd_boolean ext_only)
a06ea964
NC
9251{
9252 /* We insist on extensions being added before being removed. We achieve
9253 this by using the ADDING_VALUE variable to indicate whether we are
9254 adding an extension (1) or removing it (0) and only allowing it to
9255 change in the order -1 -> 1 -> 0. */
9256 int adding_value = -1;
325801bd 9257 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
a06ea964
NC
9258
9259 /* Copy the feature set, so that we can modify it. */
9260 *ext_set = **opt_p;
9261 *opt_p = ext_set;
9262
9263 while (str != NULL && *str != 0)
9264 {
9265 const struct aarch64_option_cpu_value_table *opt;
82b8a785 9266 const char *ext = NULL;
a06ea964
NC
9267 int optlen;
9268
ae527cd8 9269 if (!ext_only)
a06ea964 9270 {
ae527cd8
JB
9271 if (*str != '+')
9272 {
9273 as_bad (_("invalid architectural extension"));
9274 return 0;
9275 }
a06ea964 9276
ae527cd8
JB
9277 ext = strchr (++str, '+');
9278 }
a06ea964
NC
9279
9280 if (ext != NULL)
9281 optlen = ext - str;
9282 else
9283 optlen = strlen (str);
9284
9285 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
9286 {
9287 if (adding_value != 0)
9288 adding_value = 0;
9289 optlen -= 2;
9290 str += 2;
9291 }
9292 else if (optlen > 0)
9293 {
9294 if (adding_value == -1)
9295 adding_value = 1;
9296 else if (adding_value != 1)
9297 {
9298 as_bad (_("must specify extensions to add before specifying "
9299 "those to remove"));
9300 return FALSE;
9301 }
9302 }
9303
9304 if (optlen == 0)
9305 {
9306 as_bad (_("missing architectural extension"));
9307 return 0;
9308 }
9309
9310 gas_assert (adding_value != -1);
9311
9312 for (opt = aarch64_features; opt->name != NULL; opt++)
9313 if (strncmp (opt->name, str, optlen) == 0)
9314 {
93d8990c
SN
9315 aarch64_feature_set set;
9316
a06ea964
NC
9317 /* Add or remove the extension. */
9318 if (adding_value)
93d8990c
SN
9319 {
9320 set = aarch64_feature_enable_set (opt->value);
9321 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
9322 }
a06ea964 9323 else
93d8990c
SN
9324 {
9325 set = aarch64_feature_disable_set (opt->value);
9326 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
9327 }
a06ea964
NC
9328 break;
9329 }
9330
9331 if (opt->name == NULL)
9332 {
9333 as_bad (_("unknown architectural extension `%s'"), str);
9334 return 0;
9335 }
9336
9337 str = ext;
9338 };
9339
9340 return 1;
9341}
9342
9343static int
17b9d67d 9344aarch64_parse_cpu (const char *str)
a06ea964
NC
9345{
9346 const struct aarch64_cpu_option_table *opt;
82b8a785 9347 const char *ext = strchr (str, '+');
a06ea964
NC
9348 size_t optlen;
9349
9350 if (ext != NULL)
9351 optlen = ext - str;
9352 else
9353 optlen = strlen (str);
9354
9355 if (optlen == 0)
9356 {
9357 as_bad (_("missing cpu name `%s'"), str);
9358 return 0;
9359 }
9360
9361 for (opt = aarch64_cpus; opt->name != NULL; opt++)
9362 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
9363 {
9364 mcpu_cpu_opt = &opt->value;
9365 if (ext != NULL)
ae527cd8 9366 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
9367
9368 return 1;
9369 }
9370
9371 as_bad (_("unknown cpu `%s'"), str);
9372 return 0;
9373}
9374
9375static int
17b9d67d 9376aarch64_parse_arch (const char *str)
a06ea964
NC
9377{
9378 const struct aarch64_arch_option_table *opt;
82b8a785 9379 const char *ext = strchr (str, '+');
a06ea964
NC
9380 size_t optlen;
9381
9382 if (ext != NULL)
9383 optlen = ext - str;
9384 else
9385 optlen = strlen (str);
9386
9387 if (optlen == 0)
9388 {
9389 as_bad (_("missing architecture name `%s'"), str);
9390 return 0;
9391 }
9392
9393 for (opt = aarch64_archs; opt->name != NULL; opt++)
9394 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
9395 {
9396 march_cpu_opt = &opt->value;
9397 if (ext != NULL)
ae527cd8 9398 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
9399
9400 return 1;
9401 }
9402
9403 as_bad (_("unknown architecture `%s'\n"), str);
9404 return 0;
9405}
9406
69091a2c
YZ
9407/* ABIs. */
9408struct aarch64_option_abi_value_table
9409{
e0471c16 9410 const char *name;
69091a2c
YZ
9411 enum aarch64_abi_type value;
9412};
9413
9414static const struct aarch64_option_abi_value_table aarch64_abis[] = {
9415 {"ilp32", AARCH64_ABI_ILP32},
9416 {"lp64", AARCH64_ABI_LP64},
69091a2c
YZ
9417};
9418
9419static int
17b9d67d 9420aarch64_parse_abi (const char *str)
69091a2c 9421{
5703197e 9422 unsigned int i;
69091a2c 9423
5703197e 9424 if (str[0] == '\0')
69091a2c
YZ
9425 {
9426 as_bad (_("missing abi name `%s'"), str);
9427 return 0;
9428 }
9429
5703197e
TS
9430 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
9431 if (strcmp (str, aarch64_abis[i].name) == 0)
69091a2c 9432 {
5703197e 9433 aarch64_abi = aarch64_abis[i].value;
69091a2c
YZ
9434 return 1;
9435 }
9436
9437 as_bad (_("unknown abi `%s'\n"), str);
9438 return 0;
9439}
9440
a06ea964 9441static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
9442#ifdef OBJ_ELF
9443 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
9444 aarch64_parse_abi, NULL},
9445#endif /* OBJ_ELF */
a06ea964
NC
9446 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
9447 aarch64_parse_cpu, NULL},
9448 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
9449 aarch64_parse_arch, NULL},
9450 {NULL, NULL, 0, NULL}
9451};
9452
9453int
17b9d67d 9454md_parse_option (int c, const char *arg)
a06ea964
NC
9455{
9456 struct aarch64_option_table *opt;
9457 struct aarch64_long_option_table *lopt;
9458
9459 switch (c)
9460 {
9461#ifdef OPTION_EB
9462 case OPTION_EB:
9463 target_big_endian = 1;
9464 break;
9465#endif
9466
9467#ifdef OPTION_EL
9468 case OPTION_EL:
9469 target_big_endian = 0;
9470 break;
9471#endif
9472
9473 case 'a':
9474 /* Listing option. Just ignore these, we don't support additional
9475 ones. */
9476 return 0;
9477
9478 default:
9479 for (opt = aarch64_opts; opt->option != NULL; opt++)
9480 {
9481 if (c == opt->option[0]
9482 && ((arg == NULL && opt->option[1] == 0)
9483 || streq (arg, opt->option + 1)))
9484 {
9485 /* If the option is deprecated, tell the user. */
9486 if (opt->deprecated != NULL)
9487 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
9488 arg ? arg : "", _(opt->deprecated));
9489
9490 if (opt->var != NULL)
9491 *opt->var = opt->value;
9492
9493 return 1;
9494 }
9495 }
9496
9497 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9498 {
9499 /* These options are expected to have an argument. */
9500 if (c == lopt->option[0]
9501 && arg != NULL
9502 && strncmp (arg, lopt->option + 1,
9503 strlen (lopt->option + 1)) == 0)
9504 {
9505 /* If the option is deprecated, tell the user. */
9506 if (lopt->deprecated != NULL)
9507 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
9508 _(lopt->deprecated));
9509
9510 /* Call the sup-option parser. */
9511 return lopt->func (arg + strlen (lopt->option) - 1);
9512 }
9513 }
9514
9515 return 0;
9516 }
9517
9518 return 1;
9519}
9520
9521void
9522md_show_usage (FILE * fp)
9523{
9524 struct aarch64_option_table *opt;
9525 struct aarch64_long_option_table *lopt;
9526
9527 fprintf (fp, _(" AArch64-specific assembler options:\n"));
9528
9529 for (opt = aarch64_opts; opt->option != NULL; opt++)
9530 if (opt->help != NULL)
9531 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
9532
9533 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9534 if (lopt->help != NULL)
9535 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
9536
9537#ifdef OPTION_EB
9538 fprintf (fp, _("\
9539 -EB assemble code for a big-endian cpu\n"));
9540#endif
9541
9542#ifdef OPTION_EL
9543 fprintf (fp, _("\
9544 -EL assemble code for a little-endian cpu\n"));
9545#endif
9546}
9547
9548/* Parse a .cpu directive. */
9549
9550static void
9551s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
9552{
9553 const struct aarch64_cpu_option_table *opt;
9554 char saved_char;
9555 char *name;
9556 char *ext;
9557 size_t optlen;
9558
9559 name = input_line_pointer;
9560 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9561 input_line_pointer++;
9562 saved_char = *input_line_pointer;
9563 *input_line_pointer = 0;
9564
9565 ext = strchr (name, '+');
9566
9567 if (ext != NULL)
9568 optlen = ext - name;
9569 else
9570 optlen = strlen (name);
9571
9572 /* Skip the first "all" entry. */
9573 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
9574 if (strlen (opt->name) == optlen
9575 && strncmp (name, opt->name, optlen) == 0)
9576 {
9577 mcpu_cpu_opt = &opt->value;
9578 if (ext != NULL)
ae527cd8 9579 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
9580 return;
9581
9582 cpu_variant = *mcpu_cpu_opt;
9583
9584 *input_line_pointer = saved_char;
9585 demand_empty_rest_of_line ();
9586 return;
9587 }
9588 as_bad (_("unknown cpu `%s'"), name);
9589 *input_line_pointer = saved_char;
9590 ignore_rest_of_line ();
9591}
9592
9593
9594/* Parse a .arch directive. */
9595
9596static void
9597s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
9598{
9599 const struct aarch64_arch_option_table *opt;
9600 char saved_char;
9601 char *name;
9602 char *ext;
9603 size_t optlen;
9604
9605 name = input_line_pointer;
9606 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9607 input_line_pointer++;
9608 saved_char = *input_line_pointer;
9609 *input_line_pointer = 0;
9610
9611 ext = strchr (name, '+');
9612
9613 if (ext != NULL)
9614 optlen = ext - name;
9615 else
9616 optlen = strlen (name);
9617
9618 /* Skip the first "all" entry. */
9619 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
9620 if (strlen (opt->name) == optlen
9621 && strncmp (name, opt->name, optlen) == 0)
9622 {
9623 mcpu_cpu_opt = &opt->value;
9624 if (ext != NULL)
ae527cd8 9625 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
9626 return;
9627
9628 cpu_variant = *mcpu_cpu_opt;
9629
9630 *input_line_pointer = saved_char;
9631 demand_empty_rest_of_line ();
9632 return;
9633 }
9634
9635 as_bad (_("unknown architecture `%s'\n"), name);
9636 *input_line_pointer = saved_char;
9637 ignore_rest_of_line ();
9638}
9639
ae527cd8
JB
9640/* Parse a .arch_extension directive. */
9641
9642static void
9643s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
9644{
9645 char saved_char;
9646 char *ext = input_line_pointer;;
9647
9648 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9649 input_line_pointer++;
9650 saved_char = *input_line_pointer;
9651 *input_line_pointer = 0;
9652
9653 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
9654 return;
9655
9656 cpu_variant = *mcpu_cpu_opt;
9657
9658 *input_line_pointer = saved_char;
9659 demand_empty_rest_of_line ();
9660}
9661
a06ea964
NC
9662/* Copy symbol information. */
9663
9664void
9665aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
9666{
9667 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
9668}
0b4eac57
SN
9669
9670#ifdef OBJ_ELF
9671/* Same as elf_copy_symbol_attributes, but without copying st_other.
9672 This is needed so AArch64 specific st_other values can be independently
9673 specified for an IFUNC resolver (that is called by the dynamic linker)
9674 and the symbol it resolves (aliased to the resolver). In particular,
9675 if a function symbol has special st_other value set via directives,
9676 then attaching an IFUNC resolver to that symbol should not override
9677 the st_other setting. Requiring the directive on the IFUNC resolver
9678 symbol would be unexpected and problematic in C code, where the two
9679 symbols appear as two independent function declarations. */
9680
9681void
9682aarch64_elf_copy_symbol_attributes (symbolS *dest, symbolS *src)
9683{
9684 struct elf_obj_sy *srcelf = symbol_get_obj (src);
9685 struct elf_obj_sy *destelf = symbol_get_obj (dest);
9686 if (srcelf->size)
9687 {
9688 if (destelf->size == NULL)
9689 destelf->size = XNEW (expressionS);
9690 *destelf->size = *srcelf->size;
9691 }
9692 else
9693 {
9fbb53c7 9694 free (destelf->size);
0b4eac57
SN
9695 destelf->size = NULL;
9696 }
9697 S_SET_SIZE (dest, S_GET_SIZE (src));
9698}
9699#endif
This page took 1.624528 seconds and 4 git commands to generate.