Fix error message strings so that they can be translated properly.
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
4b95cf5c 3 Copyright (C) 2009-2014 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
58static const aarch64_feature_set aarch64_arch_any = AARCH64_ANY;
59static const aarch64_feature_set aarch64_arch_none = AARCH64_ARCH_NONE;
60
61#ifdef OBJ_ELF
62/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
63static symbolS *GOT_symbol;
cec5225b 64
69091a2c
YZ
65/* Which ABI to use. */
66enum aarch64_abi_type
67{
68 AARCH64_ABI_LP64 = 0,
69 AARCH64_ABI_ILP32 = 1
70};
71
72/* AArch64 ABI for the output file. */
73static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
74
cec5225b
YZ
75/* When non-zero, program to a 32-bit model, in which the C data types
76 int, long and all pointer types are 32-bit objects (ILP32); or to a
77 64-bit model, in which the C int type is 32-bits but the C long type
78 and all pointer types are 64-bit objects (LP64). */
69091a2c 79#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
80#endif
81
82enum neon_el_type
83{
84 NT_invtype = -1,
85 NT_b,
86 NT_h,
87 NT_s,
88 NT_d,
89 NT_q
90};
91
92/* Bits for DEFINED field in neon_type_el. */
93#define NTA_HASTYPE 1
94#define NTA_HASINDEX 2
95
96struct neon_type_el
97{
98 enum neon_el_type type;
99 unsigned char defined;
100 unsigned width;
101 int64_t index;
102};
103
104#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
105
106struct reloc
107{
108 bfd_reloc_code_real_type type;
109 expressionS exp;
110 int pc_rel;
111 enum aarch64_opnd opnd;
112 uint32_t flags;
113 unsigned need_libopcodes_p : 1;
114};
115
116struct aarch64_instruction
117{
118 /* libopcodes structure for instruction intermediate representation. */
119 aarch64_inst base;
120 /* Record assembly errors found during the parsing. */
121 struct
122 {
123 enum aarch64_operand_error_kind kind;
124 const char *error;
125 } parsing_error;
126 /* The condition that appears in the assembly line. */
127 int cond;
128 /* Relocation information (including the GAS internal fixup). */
129 struct reloc reloc;
130 /* Need to generate an immediate in the literal pool. */
131 unsigned gen_lit_pool : 1;
132};
133
134typedef struct aarch64_instruction aarch64_instruction;
135
136static aarch64_instruction inst;
137
138static bfd_boolean parse_operands (char *, const aarch64_opcode *);
139static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
140
141/* Diagnostics inline function utilites.
142
143 These are lightweight utlities which should only be called by parse_operands
144 and other parsers. GAS processes each assembly line by parsing it against
145 instruction template(s), in the case of multiple templates (for the same
146 mnemonic name), those templates are tried one by one until one succeeds or
147 all fail. An assembly line may fail a few templates before being
148 successfully parsed; an error saved here in most cases is not a user error
149 but an error indicating the current template is not the right template.
150 Therefore it is very important that errors can be saved at a low cost during
151 the parsing; we don't want to slow down the whole parsing by recording
152 non-user errors in detail.
153
154 Remember that the objective is to help GAS pick up the most approapriate
155 error message in the case of multiple templates, e.g. FMOV which has 8
156 templates. */
157
158static inline void
159clear_error (void)
160{
161 inst.parsing_error.kind = AARCH64_OPDE_NIL;
162 inst.parsing_error.error = NULL;
163}
164
165static inline bfd_boolean
166error_p (void)
167{
168 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
169}
170
171static inline const char *
172get_error_message (void)
173{
174 return inst.parsing_error.error;
175}
176
177static inline void
178set_error_message (const char *error)
179{
180 inst.parsing_error.error = error;
181}
182
183static inline enum aarch64_operand_error_kind
184get_error_kind (void)
185{
186 return inst.parsing_error.kind;
187}
188
189static inline void
190set_error_kind (enum aarch64_operand_error_kind kind)
191{
192 inst.parsing_error.kind = kind;
193}
194
195static inline void
196set_error (enum aarch64_operand_error_kind kind, const char *error)
197{
198 inst.parsing_error.kind = kind;
199 inst.parsing_error.error = error;
200}
201
202static inline void
203set_recoverable_error (const char *error)
204{
205 set_error (AARCH64_OPDE_RECOVERABLE, error);
206}
207
208/* Use the DESC field of the corresponding aarch64_operand entry to compose
209 the error message. */
210static inline void
211set_default_error (void)
212{
213 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
214}
215
216static inline void
217set_syntax_error (const char *error)
218{
219 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
220}
221
222static inline void
223set_first_syntax_error (const char *error)
224{
225 if (! error_p ())
226 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
227}
228
229static inline void
230set_fatal_syntax_error (const char *error)
231{
232 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
233}
234\f
235/* Number of littlenums required to hold an extended precision number. */
236#define MAX_LITTLENUMS 6
237
238/* Return value for certain parsers when the parsing fails; those parsers
239 return the information of the parsed result, e.g. register number, on
240 success. */
241#define PARSE_FAIL -1
242
243/* This is an invalid condition code that means no conditional field is
244 present. */
245#define COND_ALWAYS 0x10
246
247typedef struct
248{
249 const char *template;
250 unsigned long value;
251} asm_barrier_opt;
252
253typedef struct
254{
255 const char *template;
256 uint32_t value;
257} asm_nzcv;
258
259struct reloc_entry
260{
261 char *name;
262 bfd_reloc_code_real_type reloc;
263};
264
265/* Structure for a hash table entry for a register. */
266typedef struct
267{
268 const char *name;
269 unsigned char number;
270 unsigned char type;
271 unsigned char builtin;
272} reg_entry;
273
274/* Macros to define the register types and masks for the purpose
275 of parsing. */
276
277#undef AARCH64_REG_TYPES
278#define AARCH64_REG_TYPES \
279 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
280 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
281 BASIC_REG_TYPE(SP_32) /* wsp */ \
282 BASIC_REG_TYPE(SP_64) /* sp */ \
283 BASIC_REG_TYPE(Z_32) /* wzr */ \
284 BASIC_REG_TYPE(Z_64) /* xzr */ \
285 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
286 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
287 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
288 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
289 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
290 BASIC_REG_TYPE(CN) /* c[0-7] */ \
291 BASIC_REG_TYPE(VN) /* v[0-31] */ \
292 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
293 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
294 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
295 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
296 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
297 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
298 /* Typecheck: any [BHSDQ]P FP. */ \
299 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
300 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
301 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
302 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
303 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
304 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
305 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
306 /* Any integer register; used for error messages only. */ \
307 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
308 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
309 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
310 /* Pseudo type to mark the end of the enumerator sequence. */ \
311 BASIC_REG_TYPE(MAX)
312
313#undef BASIC_REG_TYPE
314#define BASIC_REG_TYPE(T) REG_TYPE_##T,
315#undef MULTI_REG_TYPE
316#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
317
318/* Register type enumerators. */
319typedef enum
320{
321 /* A list of REG_TYPE_*. */
322 AARCH64_REG_TYPES
323} aarch64_reg_type;
324
325#undef BASIC_REG_TYPE
326#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
327#undef REG_TYPE
328#define REG_TYPE(T) (1 << REG_TYPE_##T)
329#undef MULTI_REG_TYPE
330#define MULTI_REG_TYPE(T,V) V,
331
332/* Values indexed by aarch64_reg_type to assist the type checking. */
333static const unsigned reg_type_masks[] =
334{
335 AARCH64_REG_TYPES
336};
337
338#undef BASIC_REG_TYPE
339#undef REG_TYPE
340#undef MULTI_REG_TYPE
341#undef AARCH64_REG_TYPES
342
343/* Diagnostics used when we don't get a register of the expected type.
344 Note: this has to synchronized with aarch64_reg_type definitions
345 above. */
346static const char *
347get_reg_expected_msg (aarch64_reg_type reg_type)
348{
349 const char *msg;
350
351 switch (reg_type)
352 {
353 case REG_TYPE_R_32:
354 msg = N_("integer 32-bit register expected");
355 break;
356 case REG_TYPE_R_64:
357 msg = N_("integer 64-bit register expected");
358 break;
359 case REG_TYPE_R_N:
360 msg = N_("integer register expected");
361 break;
362 case REG_TYPE_R_Z_SP:
363 msg = N_("integer, zero or SP register expected");
364 break;
365 case REG_TYPE_FP_B:
366 msg = N_("8-bit SIMD scalar register expected");
367 break;
368 case REG_TYPE_FP_H:
369 msg = N_("16-bit SIMD scalar or floating-point half precision "
370 "register expected");
371 break;
372 case REG_TYPE_FP_S:
373 msg = N_("32-bit SIMD scalar or floating-point single precision "
374 "register expected");
375 break;
376 case REG_TYPE_FP_D:
377 msg = N_("64-bit SIMD scalar or floating-point double precision "
378 "register expected");
379 break;
380 case REG_TYPE_FP_Q:
381 msg = N_("128-bit SIMD scalar or floating-point quad precision "
382 "register expected");
383 break;
384 case REG_TYPE_CN:
385 msg = N_("C0 - C15 expected");
386 break;
387 case REG_TYPE_R_Z_BHSDQ_V:
388 msg = N_("register expected");
389 break;
390 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
391 msg = N_("SIMD scalar or floating-point register expected");
392 break;
393 case REG_TYPE_VN: /* any V reg */
394 msg = N_("vector register expected");
395 break;
396 default:
397 as_fatal (_("invalid register type %d"), reg_type);
398 }
399 return msg;
400}
401
402/* Some well known registers that we refer to directly elsewhere. */
403#define REG_SP 31
404
405/* Instructions take 4 bytes in the object file. */
406#define INSN_SIZE 4
407
408/* Define some common error messages. */
409#define BAD_SP _("SP not allowed here")
410
411static struct hash_control *aarch64_ops_hsh;
412static struct hash_control *aarch64_cond_hsh;
413static struct hash_control *aarch64_shift_hsh;
414static struct hash_control *aarch64_sys_regs_hsh;
415static struct hash_control *aarch64_pstatefield_hsh;
416static struct hash_control *aarch64_sys_regs_ic_hsh;
417static struct hash_control *aarch64_sys_regs_dc_hsh;
418static struct hash_control *aarch64_sys_regs_at_hsh;
419static struct hash_control *aarch64_sys_regs_tlbi_hsh;
420static struct hash_control *aarch64_reg_hsh;
421static struct hash_control *aarch64_barrier_opt_hsh;
422static struct hash_control *aarch64_nzcv_hsh;
423static struct hash_control *aarch64_pldop_hsh;
424
425/* Stuff needed to resolve the label ambiguity
426 As:
427 ...
428 label: <insn>
429 may differ from:
430 ...
431 label:
432 <insn> */
433
434static symbolS *last_label_seen;
435
436/* Literal pool structure. Held on a per-section
437 and per-sub-section basis. */
438
439#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
440typedef struct literal_expression
441{
442 expressionS exp;
443 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
444 LITTLENUM_TYPE * bignum;
445} literal_expression;
446
a06ea964
NC
447typedef struct literal_pool
448{
55d9b4c1 449 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
450 unsigned int next_free_entry;
451 unsigned int id;
452 symbolS *symbol;
453 segT section;
454 subsegT sub_section;
455 int size;
456 struct literal_pool *next;
457} literal_pool;
458
459/* Pointer to a linked list of literal pools. */
460static literal_pool *list_of_pools = NULL;
461\f
462/* Pure syntax. */
463
464/* This array holds the chars that always start a comment. If the
465 pre-processor is disabled, these aren't very useful. */
466const char comment_chars[] = "";
467
468/* This array holds the chars that only start a comment at the beginning of
469 a line. If the line seems to have the form '# 123 filename'
470 .line and .file directives will appear in the pre-processed output. */
471/* Note that input_file.c hand checks for '#' at the beginning of the
472 first line of the input file. This is because the compiler outputs
473 #NO_APP at the beginning of its output. */
474/* Also note that comments like this one will always work. */
475const char line_comment_chars[] = "#";
476
477const char line_separator_chars[] = ";";
478
479/* Chars that can be used to separate mant
480 from exp in floating point numbers. */
481const char EXP_CHARS[] = "eE";
482
483/* Chars that mean this number is a floating point constant. */
484/* As in 0f12.456 */
485/* or 0d1.2345e12 */
486
487const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
488
489/* Prefix character that indicates the start of an immediate value. */
490#define is_immediate_prefix(C) ((C) == '#')
491
492/* Separator character handling. */
493
494#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
495
496static inline bfd_boolean
497skip_past_char (char **str, char c)
498{
499 if (**str == c)
500 {
501 (*str)++;
502 return TRUE;
503 }
504 else
505 return FALSE;
506}
507
508#define skip_past_comma(str) skip_past_char (str, ',')
509
510/* Arithmetic expressions (possibly involving symbols). */
511
a06ea964
NC
512static bfd_boolean in_my_get_expression_p = FALSE;
513
514/* Third argument to my_get_expression. */
515#define GE_NO_PREFIX 0
516#define GE_OPT_PREFIX 1
517
518/* Return TRUE if the string pointed by *STR is successfully parsed
519 as an valid expression; *EP will be filled with the information of
520 such an expression. Otherwise return FALSE. */
521
522static bfd_boolean
523my_get_expression (expressionS * ep, char **str, int prefix_mode,
524 int reject_absent)
525{
526 char *save_in;
527 segT seg;
528 int prefix_present_p = 0;
529
530 switch (prefix_mode)
531 {
532 case GE_NO_PREFIX:
533 break;
534 case GE_OPT_PREFIX:
535 if (is_immediate_prefix (**str))
536 {
537 (*str)++;
538 prefix_present_p = 1;
539 }
540 break;
541 default:
542 abort ();
543 }
544
545 memset (ep, 0, sizeof (expressionS));
546
547 save_in = input_line_pointer;
548 input_line_pointer = *str;
549 in_my_get_expression_p = TRUE;
550 seg = expression (ep);
551 in_my_get_expression_p = FALSE;
552
553 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
554 {
555 /* We found a bad expression in md_operand(). */
556 *str = input_line_pointer;
557 input_line_pointer = save_in;
558 if (prefix_present_p && ! error_p ())
559 set_fatal_syntax_error (_("bad expression"));
560 else
561 set_first_syntax_error (_("bad expression"));
562 return FALSE;
563 }
564
565#ifdef OBJ_AOUT
566 if (seg != absolute_section
567 && seg != text_section
568 && seg != data_section
569 && seg != bss_section && seg != undefined_section)
570 {
571 set_syntax_error (_("bad segment"));
572 *str = input_line_pointer;
573 input_line_pointer = save_in;
574 return FALSE;
575 }
576#else
577 (void) seg;
578#endif
579
a06ea964
NC
580 *str = input_line_pointer;
581 input_line_pointer = save_in;
582 return TRUE;
583}
584
585/* Turn a string in input_line_pointer into a floating point constant
586 of type TYPE, and store the appropriate bytes in *LITP. The number
587 of LITTLENUMS emitted is stored in *SIZEP. An error message is
588 returned, or NULL on OK. */
589
590char *
591md_atof (int type, char *litP, int *sizeP)
592{
593 return ieee_md_atof (type, litP, sizeP, target_big_endian);
594}
595
596/* We handle all bad expressions here, so that we can report the faulty
597 instruction in the error message. */
598void
599md_operand (expressionS * exp)
600{
601 if (in_my_get_expression_p)
602 exp->X_op = O_illegal;
603}
604
605/* Immediate values. */
606
607/* Errors may be set multiple times during parsing or bit encoding
608 (particularly in the Neon bits), but usually the earliest error which is set
609 will be the most meaningful. Avoid overwriting it with later (cascading)
610 errors by calling this function. */
611
612static void
613first_error (const char *error)
614{
615 if (! error_p ())
616 set_syntax_error (error);
617}
618
619/* Similiar to first_error, but this function accepts formatted error
620 message. */
621static void
622first_error_fmt (const char *format, ...)
623{
624 va_list args;
625 enum
626 { size = 100 };
627 /* N.B. this single buffer will not cause error messages for different
628 instructions to pollute each other; this is because at the end of
629 processing of each assembly line, error message if any will be
630 collected by as_bad. */
631 static char buffer[size];
632
633 if (! error_p ())
634 {
3e0baa28 635 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
636 va_start (args, format);
637 ret = vsnprintf (buffer, size, format, args);
638 know (ret <= size - 1 && ret >= 0);
639 va_end (args);
640 set_syntax_error (buffer);
641 }
642}
643
644/* Register parsing. */
645
646/* Generic register parser which is called by other specialized
647 register parsers.
648 CCP points to what should be the beginning of a register name.
649 If it is indeed a valid register name, advance CCP over it and
650 return the reg_entry structure; otherwise return NULL.
651 It does not issue diagnostics. */
652
653static reg_entry *
654parse_reg (char **ccp)
655{
656 char *start = *ccp;
657 char *p;
658 reg_entry *reg;
659
660#ifdef REGISTER_PREFIX
661 if (*start != REGISTER_PREFIX)
662 return NULL;
663 start++;
664#endif
665
666 p = start;
667 if (!ISALPHA (*p) || !is_name_beginner (*p))
668 return NULL;
669
670 do
671 p++;
672 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
673
674 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
675
676 if (!reg)
677 return NULL;
678
679 *ccp = p;
680 return reg;
681}
682
683/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
684 return FALSE. */
685static bfd_boolean
686aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
687{
688 if (reg->type == type)
689 return TRUE;
690
691 switch (type)
692 {
693 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
694 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
695 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
696 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
697 case REG_TYPE_VN: /* Vector register. */
698 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
699 return ((reg_type_masks[reg->type] & reg_type_masks[type])
700 == reg_type_masks[reg->type]);
701 default:
702 as_fatal ("unhandled type %d", type);
703 abort ();
704 }
705}
706
707/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
708 Return the register number otherwise. *ISREG32 is set to one if the
709 register is 32-bit wide; *ISREGZERO is set to one if the register is
710 of type Z_32 or Z_64.
711 Note that this function does not issue any diagnostics. */
712
713static int
714aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
715 int *isreg32, int *isregzero)
716{
717 char *str = *ccp;
718 const reg_entry *reg = parse_reg (&str);
719
720 if (reg == NULL)
721 return PARSE_FAIL;
722
723 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
724 return PARSE_FAIL;
725
726 switch (reg->type)
727 {
728 case REG_TYPE_SP_32:
729 case REG_TYPE_SP_64:
730 if (reject_sp)
731 return PARSE_FAIL;
732 *isreg32 = reg->type == REG_TYPE_SP_32;
733 *isregzero = 0;
734 break;
735 case REG_TYPE_R_32:
736 case REG_TYPE_R_64:
737 *isreg32 = reg->type == REG_TYPE_R_32;
738 *isregzero = 0;
739 break;
740 case REG_TYPE_Z_32:
741 case REG_TYPE_Z_64:
742 if (reject_rz)
743 return PARSE_FAIL;
744 *isreg32 = reg->type == REG_TYPE_Z_32;
745 *isregzero = 1;
746 break;
747 default:
748 return PARSE_FAIL;
749 }
750
751 *ccp = str;
752
753 return reg->number;
754}
755
756/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
757 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
758 otherwise return FALSE.
759
760 Accept only one occurrence of:
761 8b 16b 4h 8h 2s 4s 1d 2d
762 b h s d q */
763static bfd_boolean
764parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
765{
766 char *ptr = *str;
767 unsigned width;
768 unsigned element_size;
769 enum neon_el_type type;
770
771 /* skip '.' */
772 ptr++;
773
774 if (!ISDIGIT (*ptr))
775 {
776 width = 0;
777 goto elt_size;
778 }
779 width = strtoul (ptr, &ptr, 10);
780 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
781 {
782 first_error_fmt (_("bad size %d in vector width specifier"), width);
783 return FALSE;
784 }
785
786elt_size:
787 switch (TOLOWER (*ptr))
788 {
789 case 'b':
790 type = NT_b;
791 element_size = 8;
792 break;
793 case 'h':
794 type = NT_h;
795 element_size = 16;
796 break;
797 case 's':
798 type = NT_s;
799 element_size = 32;
800 break;
801 case 'd':
802 type = NT_d;
803 element_size = 64;
804 break;
805 case 'q':
806 if (width == 1)
807 {
808 type = NT_q;
809 element_size = 128;
810 break;
811 }
812 /* fall through. */
813 default:
814 if (*ptr != '\0')
815 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
816 else
817 first_error (_("missing element size"));
818 return FALSE;
819 }
820 if (width != 0 && width * element_size != 64 && width * element_size != 128)
821 {
822 first_error_fmt (_
823 ("invalid element size %d and vector size combination %c"),
824 width, *ptr);
825 return FALSE;
826 }
827 ptr++;
828
829 parsed_type->type = type;
830 parsed_type->width = width;
831
832 *str = ptr;
833
834 return TRUE;
835}
836
837/* Parse a single type, e.g. ".8b", leading period included.
838 Only applicable to Vn registers.
839
840 Return TRUE on success; otherwise return FALSE. */
841static bfd_boolean
842parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
843{
844 char *str = *ccp;
845
846 if (*str == '.')
847 {
848 if (! parse_neon_type_for_operand (vectype, &str))
849 {
850 first_error (_("vector type expected"));
851 return FALSE;
852 }
853 }
854 else
855 return FALSE;
856
857 *ccp = str;
858
859 return TRUE;
860}
861
862/* Parse a register of the type TYPE.
863
864 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
865 name or the parsed register is not of TYPE.
866
867 Otherwise return the register number, and optionally fill in the actual
868 type of the register in *RTYPE when multiple alternatives were given, and
869 return the register shape and element index information in *TYPEINFO.
870
871 IN_REG_LIST should be set with TRUE if the caller is parsing a register
872 list. */
873
874static int
875parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
876 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
877{
878 char *str = *ccp;
879 const reg_entry *reg = parse_reg (&str);
880 struct neon_type_el atype;
881 struct neon_type_el parsetype;
882 bfd_boolean is_typed_vecreg = FALSE;
883
884 atype.defined = 0;
885 atype.type = NT_invtype;
886 atype.width = -1;
887 atype.index = 0;
888
889 if (reg == NULL)
890 {
891 if (typeinfo)
892 *typeinfo = atype;
893 set_default_error ();
894 return PARSE_FAIL;
895 }
896
897 if (! aarch64_check_reg_type (reg, type))
898 {
899 DEBUG_TRACE ("reg type check failed");
900 set_default_error ();
901 return PARSE_FAIL;
902 }
903 type = reg->type;
904
905 if (type == REG_TYPE_VN
906 && parse_neon_operand_type (&parsetype, &str))
907 {
908 /* Register if of the form Vn.[bhsdq]. */
909 is_typed_vecreg = TRUE;
910
911 if (parsetype.width == 0)
912 /* Expect index. In the new scheme we cannot have
913 Vn.[bhsdq] represent a scalar. Therefore any
914 Vn.[bhsdq] should have an index following it.
915 Except in reglists ofcourse. */
916 atype.defined |= NTA_HASINDEX;
917 else
918 atype.defined |= NTA_HASTYPE;
919
920 atype.type = parsetype.type;
921 atype.width = parsetype.width;
922 }
923
924 if (skip_past_char (&str, '['))
925 {
926 expressionS exp;
927
928 /* Reject Sn[index] syntax. */
929 if (!is_typed_vecreg)
930 {
931 first_error (_("this type of register can't be indexed"));
932 return PARSE_FAIL;
933 }
934
935 if (in_reg_list == TRUE)
936 {
937 first_error (_("index not allowed inside register list"));
938 return PARSE_FAIL;
939 }
940
941 atype.defined |= NTA_HASINDEX;
942
943 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
944
945 if (exp.X_op != O_constant)
946 {
947 first_error (_("constant expression required"));
948 return PARSE_FAIL;
949 }
950
951 if (! skip_past_char (&str, ']'))
952 return PARSE_FAIL;
953
954 atype.index = exp.X_add_number;
955 }
956 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
957 {
958 /* Indexed vector register expected. */
959 first_error (_("indexed vector register expected"));
960 return PARSE_FAIL;
961 }
962
963 /* A vector reg Vn should be typed or indexed. */
964 if (type == REG_TYPE_VN && atype.defined == 0)
965 {
966 first_error (_("invalid use of vector register"));
967 }
968
969 if (typeinfo)
970 *typeinfo = atype;
971
972 if (rtype)
973 *rtype = type;
974
975 *ccp = str;
976
977 return reg->number;
978}
979
980/* Parse register.
981
982 Return the register number on success; return PARSE_FAIL otherwise.
983
984 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
985 the register (e.g. NEON double or quad reg when either has been requested).
986
987 If this is a NEON vector register with additional type information, fill
988 in the struct pointed to by VECTYPE (if non-NULL).
989
990 This parser does not handle register list. */
991
992static int
993aarch64_reg_parse (char **ccp, aarch64_reg_type type,
994 aarch64_reg_type *rtype, struct neon_type_el *vectype)
995{
996 struct neon_type_el atype;
997 char *str = *ccp;
998 int reg = parse_typed_reg (&str, type, rtype, &atype,
999 /*in_reg_list= */ FALSE);
1000
1001 if (reg == PARSE_FAIL)
1002 return PARSE_FAIL;
1003
1004 if (vectype)
1005 *vectype = atype;
1006
1007 *ccp = str;
1008
1009 return reg;
1010}
1011
1012static inline bfd_boolean
1013eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
1014{
1015 return
1016 e1.type == e2.type
1017 && e1.defined == e2.defined
1018 && e1.width == e2.width && e1.index == e2.index;
1019}
1020
1021/* This function parses the NEON register list. On success, it returns
1022 the parsed register list information in the following encoded format:
1023
1024 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1025 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1026
1027 The information of the register shape and/or index is returned in
1028 *VECTYPE.
1029
1030 It returns PARSE_FAIL if the register list is invalid.
1031
1032 The list contains one to four registers.
1033 Each register can be one of:
1034 <Vt>.<T>[<index>]
1035 <Vt>.<T>
1036 All <T> should be identical.
1037 All <index> should be identical.
1038 There are restrictions on <Vt> numbers which are checked later
1039 (by reg_list_valid_p). */
1040
1041static int
1042parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1043{
1044 char *str = *ccp;
1045 int nb_regs;
1046 struct neon_type_el typeinfo, typeinfo_first;
1047 int val, val_range;
1048 int in_range;
1049 int ret_val;
1050 int i;
1051 bfd_boolean error = FALSE;
1052 bfd_boolean expect_index = FALSE;
1053
1054 if (*str != '{')
1055 {
1056 set_syntax_error (_("expecting {"));
1057 return PARSE_FAIL;
1058 }
1059 str++;
1060
1061 nb_regs = 0;
1062 typeinfo_first.defined = 0;
1063 typeinfo_first.type = NT_invtype;
1064 typeinfo_first.width = -1;
1065 typeinfo_first.index = 0;
1066 ret_val = 0;
1067 val = -1;
1068 val_range = -1;
1069 in_range = 0;
1070 do
1071 {
1072 if (in_range)
1073 {
1074 str++; /* skip over '-' */
1075 val_range = val;
1076 }
1077 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1078 /*in_reg_list= */ TRUE);
1079 if (val == PARSE_FAIL)
1080 {
1081 set_first_syntax_error (_("invalid vector register in list"));
1082 error = TRUE;
1083 continue;
1084 }
1085 /* reject [bhsd]n */
1086 if (typeinfo.defined == 0)
1087 {
1088 set_first_syntax_error (_("invalid scalar register in list"));
1089 error = TRUE;
1090 continue;
1091 }
1092
1093 if (typeinfo.defined & NTA_HASINDEX)
1094 expect_index = TRUE;
1095
1096 if (in_range)
1097 {
1098 if (val < val_range)
1099 {
1100 set_first_syntax_error
1101 (_("invalid range in vector register list"));
1102 error = TRUE;
1103 }
1104 val_range++;
1105 }
1106 else
1107 {
1108 val_range = val;
1109 if (nb_regs == 0)
1110 typeinfo_first = typeinfo;
1111 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1112 {
1113 set_first_syntax_error
1114 (_("type mismatch in vector register list"));
1115 error = TRUE;
1116 }
1117 }
1118 if (! error)
1119 for (i = val_range; i <= val; i++)
1120 {
1121 ret_val |= i << (5 * nb_regs);
1122 nb_regs++;
1123 }
1124 in_range = 0;
1125 }
1126 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1127
1128 skip_whitespace (str);
1129 if (*str != '}')
1130 {
1131 set_first_syntax_error (_("end of vector register list not found"));
1132 error = TRUE;
1133 }
1134 str++;
1135
1136 skip_whitespace (str);
1137
1138 if (expect_index)
1139 {
1140 if (skip_past_char (&str, '['))
1141 {
1142 expressionS exp;
1143
1144 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1145 if (exp.X_op != O_constant)
1146 {
1147 set_first_syntax_error (_("constant expression required."));
1148 error = TRUE;
1149 }
1150 if (! skip_past_char (&str, ']'))
1151 error = TRUE;
1152 else
1153 typeinfo_first.index = exp.X_add_number;
1154 }
1155 else
1156 {
1157 set_first_syntax_error (_("expected index"));
1158 error = TRUE;
1159 }
1160 }
1161
1162 if (nb_regs > 4)
1163 {
1164 set_first_syntax_error (_("too many registers in vector register list"));
1165 error = TRUE;
1166 }
1167 else if (nb_regs == 0)
1168 {
1169 set_first_syntax_error (_("empty vector register list"));
1170 error = TRUE;
1171 }
1172
1173 *ccp = str;
1174 if (! error)
1175 *vectype = typeinfo_first;
1176
1177 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1178}
1179
1180/* Directives: register aliases. */
1181
1182static reg_entry *
1183insert_reg_alias (char *str, int number, aarch64_reg_type type)
1184{
1185 reg_entry *new;
1186 const char *name;
1187
1188 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1189 {
1190 if (new->builtin)
1191 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1192 str);
1193
1194 /* Only warn about a redefinition if it's not defined as the
1195 same register. */
1196 else if (new->number != number || new->type != type)
1197 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1198
1199 return NULL;
1200 }
1201
1202 name = xstrdup (str);
1203 new = xmalloc (sizeof (reg_entry));
1204
1205 new->name = name;
1206 new->number = number;
1207 new->type = type;
1208 new->builtin = FALSE;
1209
1210 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1211 abort ();
1212
1213 return new;
1214}
1215
1216/* Look for the .req directive. This is of the form:
1217
1218 new_register_name .req existing_register_name
1219
1220 If we find one, or if it looks sufficiently like one that we want to
1221 handle any error here, return TRUE. Otherwise return FALSE. */
1222
1223static bfd_boolean
1224create_register_alias (char *newname, char *p)
1225{
1226 const reg_entry *old;
1227 char *oldname, *nbuf;
1228 size_t nlen;
1229
1230 /* The input scrubber ensures that whitespace after the mnemonic is
1231 collapsed to single spaces. */
1232 oldname = p;
1233 if (strncmp (oldname, " .req ", 6) != 0)
1234 return FALSE;
1235
1236 oldname += 6;
1237 if (*oldname == '\0')
1238 return FALSE;
1239
1240 old = hash_find (aarch64_reg_hsh, oldname);
1241 if (!old)
1242 {
1243 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1244 return TRUE;
1245 }
1246
1247 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1248 the desired alias name, and p points to its end. If not, then
1249 the desired alias name is in the global original_case_string. */
1250#ifdef TC_CASE_SENSITIVE
1251 nlen = p - newname;
1252#else
1253 newname = original_case_string;
1254 nlen = strlen (newname);
1255#endif
1256
1257 nbuf = alloca (nlen + 1);
1258 memcpy (nbuf, newname, nlen);
1259 nbuf[nlen] = '\0';
1260
1261 /* Create aliases under the new name as stated; an all-lowercase
1262 version of the new name; and an all-uppercase version of the new
1263 name. */
1264 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1265 {
1266 for (p = nbuf; *p; p++)
1267 *p = TOUPPER (*p);
1268
1269 if (strncmp (nbuf, newname, nlen))
1270 {
1271 /* If this attempt to create an additional alias fails, do not bother
1272 trying to create the all-lower case alias. We will fail and issue
1273 a second, duplicate error message. This situation arises when the
1274 programmer does something like:
1275 foo .req r0
1276 Foo .req r1
1277 The second .req creates the "Foo" alias but then fails to create
1278 the artificial FOO alias because it has already been created by the
1279 first .req. */
1280 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1281 return TRUE;
1282 }
1283
1284 for (p = nbuf; *p; p++)
1285 *p = TOLOWER (*p);
1286
1287 if (strncmp (nbuf, newname, nlen))
1288 insert_reg_alias (nbuf, old->number, old->type);
1289 }
1290
1291 return TRUE;
1292}
1293
1294/* Should never be called, as .req goes between the alias and the
1295 register name, not at the beginning of the line. */
1296static void
1297s_req (int a ATTRIBUTE_UNUSED)
1298{
1299 as_bad (_("invalid syntax for .req directive"));
1300}
1301
1302/* The .unreq directive deletes an alias which was previously defined
1303 by .req. For example:
1304
1305 my_alias .req r11
1306 .unreq my_alias */
1307
1308static void
1309s_unreq (int a ATTRIBUTE_UNUSED)
1310{
1311 char *name;
1312 char saved_char;
1313
1314 name = input_line_pointer;
1315
1316 while (*input_line_pointer != 0
1317 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1318 ++input_line_pointer;
1319
1320 saved_char = *input_line_pointer;
1321 *input_line_pointer = 0;
1322
1323 if (!*name)
1324 as_bad (_("invalid syntax for .unreq directive"));
1325 else
1326 {
1327 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1328
1329 if (!reg)
1330 as_bad (_("unknown register alias '%s'"), name);
1331 else if (reg->builtin)
1332 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1333 name);
1334 else
1335 {
1336 char *p;
1337 char *nbuf;
1338
1339 hash_delete (aarch64_reg_hsh, name, FALSE);
1340 free ((char *) reg->name);
1341 free (reg);
1342
1343 /* Also locate the all upper case and all lower case versions.
1344 Do not complain if we cannot find one or the other as it
1345 was probably deleted above. */
1346
1347 nbuf = strdup (name);
1348 for (p = nbuf; *p; p++)
1349 *p = TOUPPER (*p);
1350 reg = hash_find (aarch64_reg_hsh, nbuf);
1351 if (reg)
1352 {
1353 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1354 free ((char *) reg->name);
1355 free (reg);
1356 }
1357
1358 for (p = nbuf; *p; p++)
1359 *p = TOLOWER (*p);
1360 reg = hash_find (aarch64_reg_hsh, nbuf);
1361 if (reg)
1362 {
1363 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1364 free ((char *) reg->name);
1365 free (reg);
1366 }
1367
1368 free (nbuf);
1369 }
1370 }
1371
1372 *input_line_pointer = saved_char;
1373 demand_empty_rest_of_line ();
1374}
1375
1376/* Directives: Instruction set selection. */
1377
1378#ifdef OBJ_ELF
1379/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1380 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1381 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1382 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1383
1384/* Create a new mapping symbol for the transition to STATE. */
1385
1386static void
1387make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1388{
1389 symbolS *symbolP;
1390 const char *symname;
1391 int type;
1392
1393 switch (state)
1394 {
1395 case MAP_DATA:
1396 symname = "$d";
1397 type = BSF_NO_FLAGS;
1398 break;
1399 case MAP_INSN:
1400 symname = "$x";
1401 type = BSF_NO_FLAGS;
1402 break;
1403 default:
1404 abort ();
1405 }
1406
1407 symbolP = symbol_new (symname, now_seg, value, frag);
1408 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1409
1410 /* Save the mapping symbols for future reference. Also check that
1411 we do not place two mapping symbols at the same offset within a
1412 frag. We'll handle overlap between frags in
1413 check_mapping_symbols.
1414
1415 If .fill or other data filling directive generates zero sized data,
1416 the mapping symbol for the following code will have the same value
1417 as the one generated for the data filling directive. In this case,
1418 we replace the old symbol with the new one at the same address. */
1419 if (value == 0)
1420 {
1421 if (frag->tc_frag_data.first_map != NULL)
1422 {
1423 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1424 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1425 &symbol_lastP);
1426 }
1427 frag->tc_frag_data.first_map = symbolP;
1428 }
1429 if (frag->tc_frag_data.last_map != NULL)
1430 {
1431 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1432 S_GET_VALUE (symbolP));
1433 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1434 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1435 &symbol_lastP);
1436 }
1437 frag->tc_frag_data.last_map = symbolP;
1438}
1439
1440/* We must sometimes convert a region marked as code to data during
1441 code alignment, if an odd number of bytes have to be padded. The
1442 code mapping symbol is pushed to an aligned address. */
1443
1444static void
1445insert_data_mapping_symbol (enum mstate state,
1446 valueT value, fragS * frag, offsetT bytes)
1447{
1448 /* If there was already a mapping symbol, remove it. */
1449 if (frag->tc_frag_data.last_map != NULL
1450 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1451 frag->fr_address + value)
1452 {
1453 symbolS *symp = frag->tc_frag_data.last_map;
1454
1455 if (value == 0)
1456 {
1457 know (frag->tc_frag_data.first_map == symp);
1458 frag->tc_frag_data.first_map = NULL;
1459 }
1460 frag->tc_frag_data.last_map = NULL;
1461 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1462 }
1463
1464 make_mapping_symbol (MAP_DATA, value, frag);
1465 make_mapping_symbol (state, value + bytes, frag);
1466}
1467
1468static void mapping_state_2 (enum mstate state, int max_chars);
1469
1470/* Set the mapping state to STATE. Only call this when about to
1471 emit some STATE bytes to the file. */
1472
1473void
1474mapping_state (enum mstate state)
1475{
1476 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1477
1478#define TRANSITION(from, to) (mapstate == (from) && state == (to))
1479
1480 if (mapstate == state)
1481 /* The mapping symbol has already been emitted.
1482 There is nothing else to do. */
1483 return;
1484 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
1485 /* This case will be evaluated later in the next else. */
1486 return;
1487 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1488 {
1489 /* Only add the symbol if the offset is > 0:
1490 if we're at the first frag, check it's size > 0;
1491 if we're not at the first frag, then for sure
1492 the offset is > 0. */
1493 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1494 const int add_symbol = (frag_now != frag_first)
1495 || (frag_now_fix () > 0);
1496
1497 if (add_symbol)
1498 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1499 }
1500
1501 mapping_state_2 (state, 0);
1502#undef TRANSITION
1503}
1504
1505/* Same as mapping_state, but MAX_CHARS bytes have already been
1506 allocated. Put the mapping symbol that far back. */
1507
1508static void
1509mapping_state_2 (enum mstate state, int max_chars)
1510{
1511 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1512
1513 if (!SEG_NORMAL (now_seg))
1514 return;
1515
1516 if (mapstate == state)
1517 /* The mapping symbol has already been emitted.
1518 There is nothing else to do. */
1519 return;
1520
1521 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1522 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1523}
1524#else
1525#define mapping_state(x) /* nothing */
1526#define mapping_state_2(x, y) /* nothing */
1527#endif
1528
1529/* Directives: sectioning and alignment. */
1530
1531static void
1532s_bss (int ignore ATTRIBUTE_UNUSED)
1533{
1534 /* We don't support putting frags in the BSS segment, we fake it by
1535 marking in_bss, then looking at s_skip for clues. */
1536 subseg_set (bss_section, 0);
1537 demand_empty_rest_of_line ();
1538 mapping_state (MAP_DATA);
1539}
1540
1541static void
1542s_even (int ignore ATTRIBUTE_UNUSED)
1543{
1544 /* Never make frag if expect extra pass. */
1545 if (!need_pass_2)
1546 frag_align (1, 0, 0);
1547
1548 record_alignment (now_seg, 1);
1549
1550 demand_empty_rest_of_line ();
1551}
1552
1553/* Directives: Literal pools. */
1554
1555static literal_pool *
1556find_literal_pool (int size)
1557{
1558 literal_pool *pool;
1559
1560 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1561 {
1562 if (pool->section == now_seg
1563 && pool->sub_section == now_subseg && pool->size == size)
1564 break;
1565 }
1566
1567 return pool;
1568}
1569
1570static literal_pool *
1571find_or_make_literal_pool (int size)
1572{
1573 /* Next literal pool ID number. */
1574 static unsigned int latest_pool_num = 1;
1575 literal_pool *pool;
1576
1577 pool = find_literal_pool (size);
1578
1579 if (pool == NULL)
1580 {
1581 /* Create a new pool. */
1582 pool = xmalloc (sizeof (*pool));
1583 if (!pool)
1584 return NULL;
1585
1586 /* Currently we always put the literal pool in the current text
1587 section. If we were generating "small" model code where we
1588 knew that all code and initialised data was within 1MB then
1589 we could output literals to mergeable, read-only data
1590 sections. */
1591
1592 pool->next_free_entry = 0;
1593 pool->section = now_seg;
1594 pool->sub_section = now_subseg;
1595 pool->size = size;
1596 pool->next = list_of_pools;
1597 pool->symbol = NULL;
1598
1599 /* Add it to the list. */
1600 list_of_pools = pool;
1601 }
1602
1603 /* New pools, and emptied pools, will have a NULL symbol. */
1604 if (pool->symbol == NULL)
1605 {
1606 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1607 (valueT) 0, &zero_address_frag);
1608 pool->id = latest_pool_num++;
1609 }
1610
1611 /* Done. */
1612 return pool;
1613}
1614
1615/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1616 Return TRUE on success, otherwise return FALSE. */
1617static bfd_boolean
1618add_to_lit_pool (expressionS *exp, int size)
1619{
1620 literal_pool *pool;
1621 unsigned int entry;
1622
1623 pool = find_or_make_literal_pool (size);
1624
1625 /* Check if this literal value is already in the pool. */
1626 for (entry = 0; entry < pool->next_free_entry; entry++)
1627 {
55d9b4c1
NC
1628 expressionS * litexp = & pool->literals[entry].exp;
1629
1630 if ((litexp->X_op == exp->X_op)
a06ea964 1631 && (exp->X_op == O_constant)
55d9b4c1
NC
1632 && (litexp->X_add_number == exp->X_add_number)
1633 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1634 break;
1635
55d9b4c1 1636 if ((litexp->X_op == exp->X_op)
a06ea964 1637 && (exp->X_op == O_symbol)
55d9b4c1
NC
1638 && (litexp->X_add_number == exp->X_add_number)
1639 && (litexp->X_add_symbol == exp->X_add_symbol)
1640 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1641 break;
1642 }
1643
1644 /* Do we need to create a new entry? */
1645 if (entry == pool->next_free_entry)
1646 {
1647 if (entry >= MAX_LITERAL_POOL_SIZE)
1648 {
1649 set_syntax_error (_("literal pool overflow"));
1650 return FALSE;
1651 }
1652
55d9b4c1 1653 pool->literals[entry].exp = *exp;
a06ea964 1654 pool->next_free_entry += 1;
55d9b4c1
NC
1655 if (exp->X_op == O_big)
1656 {
1657 /* PR 16688: Bignums are held in a single global array. We must
1658 copy and preserve that value now, before it is overwritten. */
1659 pool->literals[entry].bignum = xmalloc (CHARS_PER_LITTLENUM * exp->X_add_number);
1660 memcpy (pool->literals[entry].bignum, generic_bignum,
1661 CHARS_PER_LITTLENUM * exp->X_add_number);
1662 }
1663 else
1664 pool->literals[entry].bignum = NULL;
a06ea964
NC
1665 }
1666
1667 exp->X_op = O_symbol;
1668 exp->X_add_number = ((int) entry) * size;
1669 exp->X_add_symbol = pool->symbol;
1670
1671 return TRUE;
1672}
1673
1674/* Can't use symbol_new here, so have to create a symbol and then at
1675 a later date assign it a value. Thats what these functions do. */
1676
1677static void
1678symbol_locate (symbolS * symbolP,
1679 const char *name,/* It is copied, the caller can modify. */
1680 segT segment, /* Segment identifier (SEG_<something>). */
1681 valueT valu, /* Symbol value. */
1682 fragS * frag) /* Associated fragment. */
1683{
e57e6ddc 1684 size_t name_length;
a06ea964
NC
1685 char *preserved_copy_of_name;
1686
1687 name_length = strlen (name) + 1; /* +1 for \0. */
1688 obstack_grow (&notes, name, name_length);
1689 preserved_copy_of_name = obstack_finish (&notes);
1690
1691#ifdef tc_canonicalize_symbol_name
1692 preserved_copy_of_name =
1693 tc_canonicalize_symbol_name (preserved_copy_of_name);
1694#endif
1695
1696 S_SET_NAME (symbolP, preserved_copy_of_name);
1697
1698 S_SET_SEGMENT (symbolP, segment);
1699 S_SET_VALUE (symbolP, valu);
1700 symbol_clear_list_pointers (symbolP);
1701
1702 symbol_set_frag (symbolP, frag);
1703
1704 /* Link to end of symbol chain. */
1705 {
1706 extern int symbol_table_frozen;
1707
1708 if (symbol_table_frozen)
1709 abort ();
1710 }
1711
1712 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1713
1714 obj_symbol_new_hook (symbolP);
1715
1716#ifdef tc_symbol_new_hook
1717 tc_symbol_new_hook (symbolP);
1718#endif
1719
1720#ifdef DEBUG_SYMS
1721 verify_symbol_chain (symbol_rootP, symbol_lastP);
1722#endif /* DEBUG_SYMS */
1723}
1724
1725
1726static void
1727s_ltorg (int ignored ATTRIBUTE_UNUSED)
1728{
1729 unsigned int entry;
1730 literal_pool *pool;
1731 char sym_name[20];
1732 int align;
1733
67a32447 1734 for (align = 2; align <= 4; align++)
a06ea964
NC
1735 {
1736 int size = 1 << align;
1737
1738 pool = find_literal_pool (size);
1739 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1740 continue;
1741
1742 mapping_state (MAP_DATA);
1743
1744 /* Align pool as you have word accesses.
1745 Only make a frag if we have to. */
1746 if (!need_pass_2)
1747 frag_align (align, 0, 0);
1748
1749 record_alignment (now_seg, align);
1750
1751 sprintf (sym_name, "$$lit_\002%x", pool->id);
1752
1753 symbol_locate (pool->symbol, sym_name, now_seg,
1754 (valueT) frag_now_fix (), frag_now);
1755 symbol_table_insert (pool->symbol);
1756
1757 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1758 {
1759 expressionS * exp = & pool->literals[entry].exp;
1760
1761 if (exp->X_op == O_big)
1762 {
1763 /* PR 16688: Restore the global bignum value. */
1764 gas_assert (pool->literals[entry].bignum != NULL);
1765 memcpy (generic_bignum, pool->literals[entry].bignum,
1766 CHARS_PER_LITTLENUM * exp->X_add_number);
1767 }
1768
1769 /* First output the expression in the instruction to the pool. */
1770 emit_expr (exp, size); /* .word|.xword */
1771
1772 if (exp->X_op == O_big)
1773 {
1774 free (pool->literals[entry].bignum);
1775 pool->literals[entry].bignum = NULL;
1776 }
1777 }
a06ea964
NC
1778
1779 /* Mark the pool as empty. */
1780 pool->next_free_entry = 0;
1781 pool->symbol = NULL;
1782 }
1783}
1784
1785#ifdef OBJ_ELF
1786/* Forward declarations for functions below, in the MD interface
1787 section. */
1788static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1789static struct reloc_table_entry * find_reloc_table_entry (char **);
1790
1791/* Directives: Data. */
1792/* N.B. the support for relocation suffix in this directive needs to be
1793 implemented properly. */
1794
1795static void
1796s_aarch64_elf_cons (int nbytes)
1797{
1798 expressionS exp;
1799
1800#ifdef md_flush_pending_output
1801 md_flush_pending_output ();
1802#endif
1803
1804 if (is_it_end_of_statement ())
1805 {
1806 demand_empty_rest_of_line ();
1807 return;
1808 }
1809
1810#ifdef md_cons_align
1811 md_cons_align (nbytes);
1812#endif
1813
1814 mapping_state (MAP_DATA);
1815 do
1816 {
1817 struct reloc_table_entry *reloc;
1818
1819 expression (&exp);
1820
1821 if (exp.X_op != O_symbol)
1822 emit_expr (&exp, (unsigned int) nbytes);
1823 else
1824 {
1825 skip_past_char (&input_line_pointer, '#');
1826 if (skip_past_char (&input_line_pointer, ':'))
1827 {
1828 reloc = find_reloc_table_entry (&input_line_pointer);
1829 if (reloc == NULL)
1830 as_bad (_("unrecognized relocation suffix"));
1831 else
1832 as_bad (_("unimplemented relocation suffix"));
1833 ignore_rest_of_line ();
1834 return;
1835 }
1836 else
1837 emit_expr (&exp, (unsigned int) nbytes);
1838 }
1839 }
1840 while (*input_line_pointer++ == ',');
1841
1842 /* Put terminator back into stream. */
1843 input_line_pointer--;
1844 demand_empty_rest_of_line ();
1845}
1846
1847#endif /* OBJ_ELF */
1848
1849/* Output a 32-bit word, but mark as an instruction. */
1850
1851static void
1852s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1853{
1854 expressionS exp;
1855
1856#ifdef md_flush_pending_output
1857 md_flush_pending_output ();
1858#endif
1859
1860 if (is_it_end_of_statement ())
1861 {
1862 demand_empty_rest_of_line ();
1863 return;
1864 }
1865
1866 if (!need_pass_2)
1867 frag_align_code (2, 0);
1868#ifdef OBJ_ELF
1869 mapping_state (MAP_INSN);
1870#endif
1871
1872 do
1873 {
1874 expression (&exp);
1875 if (exp.X_op != O_constant)
1876 {
1877 as_bad (_("constant expression required"));
1878 ignore_rest_of_line ();
1879 return;
1880 }
1881
1882 if (target_big_endian)
1883 {
1884 unsigned int val = exp.X_add_number;
1885 exp.X_add_number = SWAP_32 (val);
1886 }
1887 emit_expr (&exp, 4);
1888 }
1889 while (*input_line_pointer++ == ',');
1890
1891 /* Put terminator back into stream. */
1892 input_line_pointer--;
1893 demand_empty_rest_of_line ();
1894}
1895
1896#ifdef OBJ_ELF
1897/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1898
1899static void
1900s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1901{
1902 expressionS exp;
1903
1904 /* Since we're just labelling the code, there's no need to define a
1905 mapping symbol. */
1906 expression (&exp);
1907 /* Make sure there is enough room in this frag for the following
1908 blr. This trick only works if the blr follows immediately after
1909 the .tlsdesc directive. */
1910 frag_grow (4);
1911 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1912 BFD_RELOC_AARCH64_TLSDESC_CALL);
1913
1914 demand_empty_rest_of_line ();
1915}
1916#endif /* OBJ_ELF */
1917
1918static void s_aarch64_arch (int);
1919static void s_aarch64_cpu (int);
1920
1921/* This table describes all the machine specific pseudo-ops the assembler
1922 has to support. The fields are:
1923 pseudo-op name without dot
1924 function to call to execute this pseudo-op
1925 Integer arg to pass to the function. */
1926
1927const pseudo_typeS md_pseudo_table[] = {
1928 /* Never called because '.req' does not start a line. */
1929 {"req", s_req, 0},
1930 {"unreq", s_unreq, 0},
1931 {"bss", s_bss, 0},
1932 {"even", s_even, 0},
1933 {"ltorg", s_ltorg, 0},
1934 {"pool", s_ltorg, 0},
1935 {"cpu", s_aarch64_cpu, 0},
1936 {"arch", s_aarch64_arch, 0},
1937 {"inst", s_aarch64_inst, 0},
1938#ifdef OBJ_ELF
1939 {"tlsdesccall", s_tlsdesccall, 0},
1940 {"word", s_aarch64_elf_cons, 4},
1941 {"long", s_aarch64_elf_cons, 4},
1942 {"xword", s_aarch64_elf_cons, 8},
1943 {"dword", s_aarch64_elf_cons, 8},
1944#endif
1945 {0, 0, 0}
1946};
1947\f
1948
1949/* Check whether STR points to a register name followed by a comma or the
1950 end of line; REG_TYPE indicates which register types are checked
1951 against. Return TRUE if STR is such a register name; otherwise return
1952 FALSE. The function does not intend to produce any diagnostics, but since
1953 the register parser aarch64_reg_parse, which is called by this function,
1954 does produce diagnostics, we call clear_error to clear any diagnostics
1955 that may be generated by aarch64_reg_parse.
1956 Also, the function returns FALSE directly if there is any user error
1957 present at the function entry. This prevents the existing diagnostics
1958 state from being spoiled.
1959 The function currently serves parse_constant_immediate and
1960 parse_big_immediate only. */
1961static bfd_boolean
1962reg_name_p (char *str, aarch64_reg_type reg_type)
1963{
1964 int reg;
1965
1966 /* Prevent the diagnostics state from being spoiled. */
1967 if (error_p ())
1968 return FALSE;
1969
1970 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
1971
1972 /* Clear the parsing error that may be set by the reg parser. */
1973 clear_error ();
1974
1975 if (reg == PARSE_FAIL)
1976 return FALSE;
1977
1978 skip_whitespace (str);
1979 if (*str == ',' || is_end_of_line[(unsigned int) *str])
1980 return TRUE;
1981
1982 return FALSE;
1983}
1984
1985/* Parser functions used exclusively in instruction operands. */
1986
1987/* Parse an immediate expression which may not be constant.
1988
1989 To prevent the expression parser from pushing a register name
1990 into the symbol table as an undefined symbol, firstly a check is
1991 done to find out whether STR is a valid register name followed
1992 by a comma or the end of line. Return FALSE if STR is such a
1993 string. */
1994
1995static bfd_boolean
1996parse_immediate_expression (char **str, expressionS *exp)
1997{
1998 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
1999 {
2000 set_recoverable_error (_("immediate operand required"));
2001 return FALSE;
2002 }
2003
2004 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2005
2006 if (exp->X_op == O_absent)
2007 {
2008 set_fatal_syntax_error (_("missing immediate expression"));
2009 return FALSE;
2010 }
2011
2012 return TRUE;
2013}
2014
2015/* Constant immediate-value read function for use in insn parsing.
2016 STR points to the beginning of the immediate (with the optional
2017 leading #); *VAL receives the value.
2018
2019 Return TRUE on success; otherwise return FALSE. */
2020
2021static bfd_boolean
2022parse_constant_immediate (char **str, int64_t * val)
2023{
2024 expressionS exp;
2025
2026 if (! parse_immediate_expression (str, &exp))
2027 return FALSE;
2028
2029 if (exp.X_op != O_constant)
2030 {
2031 set_syntax_error (_("constant expression required"));
2032 return FALSE;
2033 }
2034
2035 *val = exp.X_add_number;
2036 return TRUE;
2037}
2038
2039static uint32_t
2040encode_imm_float_bits (uint32_t imm)
2041{
2042 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2043 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2044}
2045
62b0d0d5
YZ
2046/* Return TRUE if the single-precision floating-point value encoded in IMM
2047 can be expressed in the AArch64 8-bit signed floating-point format with
2048 3-bit exponent and normalized 4 bits of precision; in other words, the
2049 floating-point value must be expressable as
2050 (+/-) n / 16 * power (2, r)
2051 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2052
a06ea964
NC
2053static bfd_boolean
2054aarch64_imm_float_p (uint32_t imm)
2055{
62b0d0d5
YZ
2056 /* If a single-precision floating-point value has the following bit
2057 pattern, it can be expressed in the AArch64 8-bit floating-point
2058 format:
2059
2060 3 32222222 2221111111111
a06ea964 2061 1 09876543 21098765432109876543210
62b0d0d5
YZ
2062 n Eeeeeexx xxxx0000000000000000000
2063
2064 where n, e and each x are either 0 or 1 independently, with
2065 E == ~ e. */
a06ea964 2066
62b0d0d5
YZ
2067 uint32_t pattern;
2068
2069 /* Prepare the pattern for 'Eeeeee'. */
2070 if (((imm >> 30) & 0x1) == 0)
2071 pattern = 0x3e000000;
a06ea964 2072 else
62b0d0d5
YZ
2073 pattern = 0x40000000;
2074
2075 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2076 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2077}
2078
62b0d0d5
YZ
2079/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2080
2081 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2082 8-bit signed floating-point format with 3-bit exponent and normalized 4
2083 bits of precision (i.e. can be used in an FMOV instruction); return the
2084 equivalent single-precision encoding in *FPWORD.
2085
2086 Otherwise return FALSE. */
2087
a06ea964 2088static bfd_boolean
62b0d0d5
YZ
2089aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2090{
2091 /* If a double-precision floating-point value has the following bit
2092 pattern, it can be expressed in the AArch64 8-bit floating-point
2093 format:
2094
2095 6 66655555555 554444444...21111111111
2096 3 21098765432 109876543...098765432109876543210
2097 n Eeeeeeeeexx xxxx00000...000000000000000000000
2098
2099 where n, e and each x are either 0 or 1 independently, with
2100 E == ~ e. */
2101
2102 uint32_t pattern;
2103 uint32_t high32 = imm >> 32;
2104
2105 /* Lower 32 bits need to be 0s. */
2106 if ((imm & 0xffffffff) != 0)
2107 return FALSE;
2108
2109 /* Prepare the pattern for 'Eeeeeeeee'. */
2110 if (((high32 >> 30) & 0x1) == 0)
2111 pattern = 0x3fc00000;
2112 else
2113 pattern = 0x40000000;
2114
2115 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2116 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2117 {
2118 /* Convert to the single-precision encoding.
2119 i.e. convert
2120 n Eeeeeeeeexx xxxx00000...000000000000000000000
2121 to
2122 n Eeeeeexx xxxx0000000000000000000. */
2123 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2124 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2125 return TRUE;
2126 }
2127 else
2128 return FALSE;
2129}
2130
2131/* Parse a floating-point immediate. Return TRUE on success and return the
2132 value in *IMMED in the format of IEEE754 single-precision encoding.
2133 *CCP points to the start of the string; DP_P is TRUE when the immediate
2134 is expected to be in double-precision (N.B. this only matters when
2135 hexadecimal representation is involved).
2136
2137 N.B. 0.0 is accepted by this function. */
2138
2139static bfd_boolean
2140parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2141{
2142 char *str = *ccp;
2143 char *fpnum;
2144 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2145 int found_fpchar = 0;
62b0d0d5
YZ
2146 int64_t val = 0;
2147 unsigned fpword = 0;
2148 bfd_boolean hex_p = FALSE;
a06ea964
NC
2149
2150 skip_past_char (&str, '#');
2151
a06ea964
NC
2152 fpnum = str;
2153 skip_whitespace (fpnum);
2154
2155 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2156 {
2157 /* Support the hexadecimal representation of the IEEE754 encoding.
2158 Double-precision is expected when DP_P is TRUE, otherwise the
2159 representation should be in single-precision. */
2160 if (! parse_constant_immediate (&str, &val))
2161 goto invalid_fp;
2162
2163 if (dp_p)
2164 {
2165 if (! aarch64_double_precision_fmovable (val, &fpword))
2166 goto invalid_fp;
2167 }
2168 else if ((uint64_t) val > 0xffffffff)
2169 goto invalid_fp;
2170 else
2171 fpword = val;
2172
2173 hex_p = TRUE;
2174 }
a06ea964
NC
2175 else
2176 {
62b0d0d5
YZ
2177 /* We must not accidentally parse an integer as a floating-point number.
2178 Make sure that the value we parse is not an integer by checking for
2179 special characters '.' or 'e'. */
a06ea964
NC
2180 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2181 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2182 {
2183 found_fpchar = 1;
2184 break;
2185 }
2186
2187 if (!found_fpchar)
2188 return FALSE;
2189 }
2190
62b0d0d5 2191 if (! hex_p)
a06ea964 2192 {
a06ea964
NC
2193 int i;
2194
62b0d0d5
YZ
2195 if ((str = atof_ieee (str, 's', words)) == NULL)
2196 goto invalid_fp;
2197
a06ea964
NC
2198 /* Our FP word must be 32 bits (single-precision FP). */
2199 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2200 {
2201 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2202 fpword |= words[i];
2203 }
62b0d0d5 2204 }
a06ea964 2205
62b0d0d5
YZ
2206 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2207 {
2208 *immed = fpword;
a06ea964 2209 *ccp = str;
a06ea964
NC
2210 return TRUE;
2211 }
2212
2213invalid_fp:
2214 set_fatal_syntax_error (_("invalid floating-point constant"));
2215 return FALSE;
2216}
2217
2218/* Less-generic immediate-value read function with the possibility of loading
2219 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2220 instructions.
2221
2222 To prevent the expression parser from pushing a register name into the
2223 symbol table as an undefined symbol, a check is firstly done to find
2224 out whether STR is a valid register name followed by a comma or the end
2225 of line. Return FALSE if STR is such a register. */
2226
2227static bfd_boolean
2228parse_big_immediate (char **str, int64_t *imm)
2229{
2230 char *ptr = *str;
2231
2232 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2233 {
2234 set_syntax_error (_("immediate operand required"));
2235 return FALSE;
2236 }
2237
2238 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2239
2240 if (inst.reloc.exp.X_op == O_constant)
2241 *imm = inst.reloc.exp.X_add_number;
2242
2243 *str = ptr;
2244
2245 return TRUE;
2246}
2247
2248/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2249 if NEED_LIBOPCODES is non-zero, the fixup will need
2250 assistance from the libopcodes. */
2251
2252static inline void
2253aarch64_set_gas_internal_fixup (struct reloc *reloc,
2254 const aarch64_opnd_info *operand,
2255 int need_libopcodes_p)
2256{
2257 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2258 reloc->opnd = operand->type;
2259 if (need_libopcodes_p)
2260 reloc->need_libopcodes_p = 1;
2261};
2262
2263/* Return TRUE if the instruction needs to be fixed up later internally by
2264 the GAS; otherwise return FALSE. */
2265
2266static inline bfd_boolean
2267aarch64_gas_internal_fixup_p (void)
2268{
2269 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2270}
2271
2272/* Assign the immediate value to the relavant field in *OPERAND if
2273 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2274 needs an internal fixup in a later stage.
2275 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2276 IMM.VALUE that may get assigned with the constant. */
2277static inline void
2278assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2279 aarch64_opnd_info *operand,
2280 int addr_off_p,
2281 int need_libopcodes_p,
2282 int skip_p)
2283{
2284 if (reloc->exp.X_op == O_constant)
2285 {
2286 if (addr_off_p)
2287 operand->addr.offset.imm = reloc->exp.X_add_number;
2288 else
2289 operand->imm.value = reloc->exp.X_add_number;
2290 reloc->type = BFD_RELOC_UNUSED;
2291 }
2292 else
2293 {
2294 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2295 /* Tell libopcodes to ignore this operand or not. This is helpful
2296 when one of the operands needs to be fixed up later but we need
2297 libopcodes to check the other operands. */
2298 operand->skip = skip_p;
2299 }
2300}
2301
2302/* Relocation modifiers. Each entry in the table contains the textual
2303 name for the relocation which may be placed before a symbol used as
2304 a load/store offset, or add immediate. It must be surrounded by a
2305 leading and trailing colon, for example:
2306
2307 ldr x0, [x1, #:rello:varsym]
2308 add x0, x1, #:rello:varsym */
2309
2310struct reloc_table_entry
2311{
2312 const char *name;
2313 int pc_rel;
2314 bfd_reloc_code_real_type adrp_type;
2315 bfd_reloc_code_real_type movw_type;
2316 bfd_reloc_code_real_type add_type;
2317 bfd_reloc_code_real_type ldst_type;
2318};
2319
2320static struct reloc_table_entry reloc_table[] = {
2321 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2322 {"lo12", 0,
2323 0,
2324 0,
2325 BFD_RELOC_AARCH64_ADD_LO12,
2326 BFD_RELOC_AARCH64_LDST_LO12},
2327
2328 /* Higher 21 bits of pc-relative page offset: ADRP */
2329 {"pg_hi21", 1,
2330 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2331 0,
2332 0,
2333 0},
2334
2335 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2336 {"pg_hi21_nc", 1,
2337 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2338 0,
2339 0,
2340 0},
2341
2342 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2343 {"abs_g0", 0,
2344 0,
2345 BFD_RELOC_AARCH64_MOVW_G0,
2346 0,
2347 0},
2348
2349 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2350 {"abs_g0_s", 0,
2351 0,
2352 BFD_RELOC_AARCH64_MOVW_G0_S,
2353 0,
2354 0},
2355
2356 /* Less significant bits 0-15 of address/value: MOVK, no check */
2357 {"abs_g0_nc", 0,
2358 0,
2359 BFD_RELOC_AARCH64_MOVW_G0_NC,
2360 0,
2361 0},
2362
2363 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2364 {"abs_g1", 0,
2365 0,
2366 BFD_RELOC_AARCH64_MOVW_G1,
2367 0,
2368 0},
2369
2370 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2371 {"abs_g1_s", 0,
2372 0,
2373 BFD_RELOC_AARCH64_MOVW_G1_S,
2374 0,
2375 0},
2376
2377 /* Less significant bits 16-31 of address/value: MOVK, no check */
2378 {"abs_g1_nc", 0,
2379 0,
2380 BFD_RELOC_AARCH64_MOVW_G1_NC,
2381 0,
2382 0},
2383
2384 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2385 {"abs_g2", 0,
2386 0,
2387 BFD_RELOC_AARCH64_MOVW_G2,
2388 0,
2389 0},
2390
2391 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2392 {"abs_g2_s", 0,
2393 0,
2394 BFD_RELOC_AARCH64_MOVW_G2_S,
2395 0,
2396 0},
2397
2398 /* Less significant bits 32-47 of address/value: MOVK, no check */
2399 {"abs_g2_nc", 0,
2400 0,
2401 BFD_RELOC_AARCH64_MOVW_G2_NC,
2402 0,
2403 0},
2404
2405 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2406 {"abs_g3", 0,
2407 0,
2408 BFD_RELOC_AARCH64_MOVW_G3,
2409 0,
2410 0},
4aa2c5e2 2411
a06ea964
NC
2412 /* Get to the page containing GOT entry for a symbol. */
2413 {"got", 1,
2414 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2415 0,
2416 0,
4aa2c5e2
MS
2417 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2418
a06ea964
NC
2419 /* 12 bit offset into the page containing GOT entry for that symbol. */
2420 {"got_lo12", 0,
2421 0,
2422 0,
2423 0,
a6bb11b2 2424 BFD_RELOC_AARCH64_LD_GOT_LO12_NC},
a06ea964
NC
2425
2426 /* Get to the page containing GOT TLS entry for a symbol */
2427 {"tlsgd", 0,
2428 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2429 0,
2430 0,
2431 0},
2432
2433 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2434 {"tlsgd_lo12", 0,
2435 0,
2436 0,
2437 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2438 0},
2439
2440 /* Get to the page containing GOT TLS entry for a symbol */
2441 {"tlsdesc", 0,
418009c2 2442 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2443 0,
2444 0,
2445 0},
2446
2447 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2448 {"tlsdesc_lo12", 0,
2449 0,
2450 0,
2451 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
a6bb11b2 2452 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC},
a06ea964
NC
2453
2454 /* Get to the page containing GOT TLS entry for a symbol */
2455 {"gottprel", 0,
2456 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2457 0,
2458 0,
2459 0},
2460
2461 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2462 {"gottprel_lo12", 0,
2463 0,
2464 0,
2465 0,
a6bb11b2 2466 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC},
a06ea964
NC
2467
2468 /* Get tp offset for a symbol. */
2469 {"tprel", 0,
2470 0,
2471 0,
2472 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2473 0},
2474
2475 /* Get tp offset for a symbol. */
2476 {"tprel_lo12", 0,
2477 0,
2478 0,
2479 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2480 0},
2481
2482 /* Get tp offset for a symbol. */
2483 {"tprel_hi12", 0,
2484 0,
2485 0,
2486 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2487 0},
2488
2489 /* Get tp offset for a symbol. */
2490 {"tprel_lo12_nc", 0,
2491 0,
2492 0,
2493 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2494 0},
2495
2496 /* Most significant bits 32-47 of address/value: MOVZ. */
2497 {"tprel_g2", 0,
2498 0,
2499 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2500 0,
2501 0},
2502
2503 /* Most significant bits 16-31 of address/value: MOVZ. */
2504 {"tprel_g1", 0,
2505 0,
2506 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2507 0,
2508 0},
2509
2510 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2511 {"tprel_g1_nc", 0,
2512 0,
2513 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2514 0,
2515 0},
2516
2517 /* Most significant bits 0-15 of address/value: MOVZ. */
2518 {"tprel_g0", 0,
2519 0,
2520 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2521 0,
2522 0},
2523
2524 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2525 {"tprel_g0_nc", 0,
2526 0,
2527 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2528 0,
2529 0},
2530};
2531
2532/* Given the address of a pointer pointing to the textual name of a
2533 relocation as may appear in assembler source, attempt to find its
2534 details in reloc_table. The pointer will be updated to the character
2535 after the trailing colon. On failure, NULL will be returned;
2536 otherwise return the reloc_table_entry. */
2537
2538static struct reloc_table_entry *
2539find_reloc_table_entry (char **str)
2540{
2541 unsigned int i;
2542 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2543 {
2544 int length = strlen (reloc_table[i].name);
2545
2546 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2547 && (*str)[length] == ':')
2548 {
2549 *str += (length + 1);
2550 return &reloc_table[i];
2551 }
2552 }
2553
2554 return NULL;
2555}
2556
2557/* Mode argument to parse_shift and parser_shifter_operand. */
2558enum parse_shift_mode
2559{
2560 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2561 "#imm{,lsl #n}" */
2562 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2563 "#imm" */
2564 SHIFTED_LSL, /* bare "lsl #n" */
2565 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2566 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2567};
2568
2569/* Parse a <shift> operator on an AArch64 data processing instruction.
2570 Return TRUE on success; otherwise return FALSE. */
2571static bfd_boolean
2572parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2573{
2574 const struct aarch64_name_value_pair *shift_op;
2575 enum aarch64_modifier_kind kind;
2576 expressionS exp;
2577 int exp_has_prefix;
2578 char *s = *str;
2579 char *p = s;
2580
2581 for (p = *str; ISALPHA (*p); p++)
2582 ;
2583
2584 if (p == *str)
2585 {
2586 set_syntax_error (_("shift expression expected"));
2587 return FALSE;
2588 }
2589
2590 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2591
2592 if (shift_op == NULL)
2593 {
2594 set_syntax_error (_("shift operator expected"));
2595 return FALSE;
2596 }
2597
2598 kind = aarch64_get_operand_modifier (shift_op);
2599
2600 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2601 {
2602 set_syntax_error (_("invalid use of 'MSL'"));
2603 return FALSE;
2604 }
2605
2606 switch (mode)
2607 {
2608 case SHIFTED_LOGIC_IMM:
2609 if (aarch64_extend_operator_p (kind) == TRUE)
2610 {
2611 set_syntax_error (_("extending shift is not permitted"));
2612 return FALSE;
2613 }
2614 break;
2615
2616 case SHIFTED_ARITH_IMM:
2617 if (kind == AARCH64_MOD_ROR)
2618 {
2619 set_syntax_error (_("'ROR' shift is not permitted"));
2620 return FALSE;
2621 }
2622 break;
2623
2624 case SHIFTED_LSL:
2625 if (kind != AARCH64_MOD_LSL)
2626 {
2627 set_syntax_error (_("only 'LSL' shift is permitted"));
2628 return FALSE;
2629 }
2630 break;
2631
2632 case SHIFTED_REG_OFFSET:
2633 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2634 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2635 {
2636 set_fatal_syntax_error
2637 (_("invalid shift for the register offset addressing mode"));
2638 return FALSE;
2639 }
2640 break;
2641
2642 case SHIFTED_LSL_MSL:
2643 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2644 {
2645 set_syntax_error (_("invalid shift operator"));
2646 return FALSE;
2647 }
2648 break;
2649
2650 default:
2651 abort ();
2652 }
2653
2654 /* Whitespace can appear here if the next thing is a bare digit. */
2655 skip_whitespace (p);
2656
2657 /* Parse shift amount. */
2658 exp_has_prefix = 0;
2659 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2660 exp.X_op = O_absent;
2661 else
2662 {
2663 if (is_immediate_prefix (*p))
2664 {
2665 p++;
2666 exp_has_prefix = 1;
2667 }
2668 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2669 }
2670 if (exp.X_op == O_absent)
2671 {
2672 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2673 {
2674 set_syntax_error (_("missing shift amount"));
2675 return FALSE;
2676 }
2677 operand->shifter.amount = 0;
2678 }
2679 else if (exp.X_op != O_constant)
2680 {
2681 set_syntax_error (_("constant shift amount required"));
2682 return FALSE;
2683 }
2684 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2685 {
2686 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2687 return FALSE;
2688 }
2689 else
2690 {
2691 operand->shifter.amount = exp.X_add_number;
2692 operand->shifter.amount_present = 1;
2693 }
2694
2695 operand->shifter.operator_present = 1;
2696 operand->shifter.kind = kind;
2697
2698 *str = p;
2699 return TRUE;
2700}
2701
2702/* Parse a <shifter_operand> for a data processing instruction:
2703
2704 #<immediate>
2705 #<immediate>, LSL #imm
2706
2707 Validation of immediate operands is deferred to md_apply_fix.
2708
2709 Return TRUE on success; otherwise return FALSE. */
2710
2711static bfd_boolean
2712parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
2713 enum parse_shift_mode mode)
2714{
2715 char *p;
2716
2717 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
2718 return FALSE;
2719
2720 p = *str;
2721
2722 /* Accept an immediate expression. */
2723 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
2724 return FALSE;
2725
2726 /* Accept optional LSL for arithmetic immediate values. */
2727 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
2728 if (! parse_shift (&p, operand, SHIFTED_LSL))
2729 return FALSE;
2730
2731 /* Not accept any shifter for logical immediate values. */
2732 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
2733 && parse_shift (&p, operand, mode))
2734 {
2735 set_syntax_error (_("unexpected shift operator"));
2736 return FALSE;
2737 }
2738
2739 *str = p;
2740 return TRUE;
2741}
2742
2743/* Parse a <shifter_operand> for a data processing instruction:
2744
2745 <Rm>
2746 <Rm>, <shift>
2747 #<immediate>
2748 #<immediate>, LSL #imm
2749
2750 where <shift> is handled by parse_shift above, and the last two
2751 cases are handled by the function above.
2752
2753 Validation of immediate operands is deferred to md_apply_fix.
2754
2755 Return TRUE on success; otherwise return FALSE. */
2756
2757static bfd_boolean
2758parse_shifter_operand (char **str, aarch64_opnd_info *operand,
2759 enum parse_shift_mode mode)
2760{
2761 int reg;
2762 int isreg32, isregzero;
2763 enum aarch64_operand_class opd_class
2764 = aarch64_get_operand_class (operand->type);
2765
2766 if ((reg =
2767 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
2768 {
2769 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
2770 {
2771 set_syntax_error (_("unexpected register in the immediate operand"));
2772 return FALSE;
2773 }
2774
2775 if (!isregzero && reg == REG_SP)
2776 {
2777 set_syntax_error (BAD_SP);
2778 return FALSE;
2779 }
2780
2781 operand->reg.regno = reg;
2782 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
2783
2784 /* Accept optional shift operation on register. */
2785 if (! skip_past_comma (str))
2786 return TRUE;
2787
2788 if (! parse_shift (str, operand, mode))
2789 return FALSE;
2790
2791 return TRUE;
2792 }
2793 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
2794 {
2795 set_syntax_error
2796 (_("integer register expected in the extended/shifted operand "
2797 "register"));
2798 return FALSE;
2799 }
2800
2801 /* We have a shifted immediate variable. */
2802 return parse_shifter_operand_imm (str, operand, mode);
2803}
2804
2805/* Return TRUE on success; return FALSE otherwise. */
2806
2807static bfd_boolean
2808parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
2809 enum parse_shift_mode mode)
2810{
2811 char *p = *str;
2812
2813 /* Determine if we have the sequence of characters #: or just :
2814 coming next. If we do, then we check for a :rello: relocation
2815 modifier. If we don't, punt the whole lot to
2816 parse_shifter_operand. */
2817
2818 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
2819 {
2820 struct reloc_table_entry *entry;
2821
2822 if (p[0] == '#')
2823 p += 2;
2824 else
2825 p++;
2826 *str = p;
2827
2828 /* Try to parse a relocation. Anything else is an error. */
2829 if (!(entry = find_reloc_table_entry (str)))
2830 {
2831 set_syntax_error (_("unknown relocation modifier"));
2832 return FALSE;
2833 }
2834
2835 if (entry->add_type == 0)
2836 {
2837 set_syntax_error
2838 (_("this relocation modifier is not allowed on this instruction"));
2839 return FALSE;
2840 }
2841
2842 /* Save str before we decompose it. */
2843 p = *str;
2844
2845 /* Next, we parse the expression. */
2846 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
2847 return FALSE;
2848
2849 /* Record the relocation type (use the ADD variant here). */
2850 inst.reloc.type = entry->add_type;
2851 inst.reloc.pc_rel = entry->pc_rel;
2852
2853 /* If str is empty, we've reached the end, stop here. */
2854 if (**str == '\0')
2855 return TRUE;
2856
55d9b4c1 2857 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
2858 recover the variable name and continue parsing for the shifter. */
2859 *str = p;
2860 return parse_shifter_operand_imm (str, operand, mode);
2861 }
2862
2863 return parse_shifter_operand (str, operand, mode);
2864}
2865
2866/* Parse all forms of an address expression. Information is written
2867 to *OPERAND and/or inst.reloc.
2868
2869 The A64 instruction set has the following addressing modes:
2870
2871 Offset
2872 [base] // in SIMD ld/st structure
2873 [base{,#0}] // in ld/st exclusive
2874 [base{,#imm}]
2875 [base,Xm{,LSL #imm}]
2876 [base,Xm,SXTX {#imm}]
2877 [base,Wm,(S|U)XTW {#imm}]
2878 Pre-indexed
2879 [base,#imm]!
2880 Post-indexed
2881 [base],#imm
2882 [base],Xm // in SIMD ld/st structure
2883 PC-relative (literal)
2884 label
2885 =immediate
2886
2887 (As a convenience, the notation "=immediate" is permitted in conjunction
2888 with the pc-relative literal load instructions to automatically place an
2889 immediate value or symbolic address in a nearby literal pool and generate
2890 a hidden label which references it.)
2891
2892 Upon a successful parsing, the address structure in *OPERAND will be
2893 filled in the following way:
2894
2895 .base_regno = <base>
2896 .offset.is_reg // 1 if the offset is a register
2897 .offset.imm = <imm>
2898 .offset.regno = <Rm>
2899
2900 For different addressing modes defined in the A64 ISA:
2901
2902 Offset
2903 .pcrel=0; .preind=1; .postind=0; .writeback=0
2904 Pre-indexed
2905 .pcrel=0; .preind=1; .postind=0; .writeback=1
2906 Post-indexed
2907 .pcrel=0; .preind=0; .postind=1; .writeback=1
2908 PC-relative (literal)
2909 .pcrel=1; .preind=1; .postind=0; .writeback=0
2910
2911 The shift/extension information, if any, will be stored in .shifter.
2912
2913 It is the caller's responsibility to check for addressing modes not
2914 supported by the instruction, and to set inst.reloc.type. */
2915
2916static bfd_boolean
2917parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
2918 int accept_reg_post_index)
2919{
2920 char *p = *str;
2921 int reg;
2922 int isreg32, isregzero;
2923 expressionS *exp = &inst.reloc.exp;
2924
2925 if (! skip_past_char (&p, '['))
2926 {
2927 /* =immediate or label. */
2928 operand->addr.pcrel = 1;
2929 operand->addr.preind = 1;
2930
f41aef5f
RE
2931 /* #:<reloc_op>:<symbol> */
2932 skip_past_char (&p, '#');
2933 if (reloc && skip_past_char (&p, ':'))
2934 {
2935 struct reloc_table_entry *entry;
2936
2937 /* Try to parse a relocation modifier. Anything else is
2938 an error. */
2939 entry = find_reloc_table_entry (&p);
2940 if (! entry)
2941 {
2942 set_syntax_error (_("unknown relocation modifier"));
2943 return FALSE;
2944 }
2945
2946 if (entry->ldst_type == 0)
2947 {
2948 set_syntax_error
2949 (_("this relocation modifier is not allowed on this "
2950 "instruction"));
2951 return FALSE;
2952 }
2953
2954 /* #:<reloc_op>: */
2955 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
2956 {
2957 set_syntax_error (_("invalid relocation expression"));
2958 return FALSE;
2959 }
a06ea964 2960
f41aef5f
RE
2961 /* #:<reloc_op>:<expr> */
2962 /* Record the load/store relocation type. */
2963 inst.reloc.type = entry->ldst_type;
2964 inst.reloc.pc_rel = entry->pc_rel;
2965 }
2966 else
a06ea964 2967 {
f41aef5f
RE
2968
2969 if (skip_past_char (&p, '='))
2970 /* =immediate; need to generate the literal in the literal pool. */
2971 inst.gen_lit_pool = 1;
2972
2973 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
2974 {
2975 set_syntax_error (_("invalid address"));
2976 return FALSE;
2977 }
a06ea964
NC
2978 }
2979
2980 *str = p;
2981 return TRUE;
2982 }
2983
2984 /* [ */
2985
2986 /* Accept SP and reject ZR */
2987 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
2988 if (reg == PARSE_FAIL || isreg32)
2989 {
2990 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
2991 return FALSE;
2992 }
2993 operand->addr.base_regno = reg;
2994
2995 /* [Xn */
2996 if (skip_past_comma (&p))
2997 {
2998 /* [Xn, */
2999 operand->addr.preind = 1;
3000
3001 /* Reject SP and accept ZR */
3002 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3003 if (reg != PARSE_FAIL)
3004 {
3005 /* [Xn,Rm */
3006 operand->addr.offset.regno = reg;
3007 operand->addr.offset.is_reg = 1;
3008 /* Shifted index. */
3009 if (skip_past_comma (&p))
3010 {
3011 /* [Xn,Rm, */
3012 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3013 /* Use the diagnostics set in parse_shift, so not set new
3014 error message here. */
3015 return FALSE;
3016 }
3017 /* We only accept:
3018 [base,Xm{,LSL #imm}]
3019 [base,Xm,SXTX {#imm}]
3020 [base,Wm,(S|U)XTW {#imm}] */
3021 if (operand->shifter.kind == AARCH64_MOD_NONE
3022 || operand->shifter.kind == AARCH64_MOD_LSL
3023 || operand->shifter.kind == AARCH64_MOD_SXTX)
3024 {
3025 if (isreg32)
3026 {
3027 set_syntax_error (_("invalid use of 32-bit register offset"));
3028 return FALSE;
3029 }
3030 }
3031 else if (!isreg32)
3032 {
3033 set_syntax_error (_("invalid use of 64-bit register offset"));
3034 return FALSE;
3035 }
3036 }
3037 else
3038 {
3039 /* [Xn,#:<reloc_op>:<symbol> */
3040 skip_past_char (&p, '#');
3041 if (reloc && skip_past_char (&p, ':'))
3042 {
3043 struct reloc_table_entry *entry;
3044
3045 /* Try to parse a relocation modifier. Anything else is
3046 an error. */
3047 if (!(entry = find_reloc_table_entry (&p)))
3048 {
3049 set_syntax_error (_("unknown relocation modifier"));
3050 return FALSE;
3051 }
3052
3053 if (entry->ldst_type == 0)
3054 {
3055 set_syntax_error
3056 (_("this relocation modifier is not allowed on this "
3057 "instruction"));
3058 return FALSE;
3059 }
3060
3061 /* [Xn,#:<reloc_op>: */
3062 /* We now have the group relocation table entry corresponding to
3063 the name in the assembler source. Next, we parse the
3064 expression. */
3065 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3066 {
3067 set_syntax_error (_("invalid relocation expression"));
3068 return FALSE;
3069 }
3070
3071 /* [Xn,#:<reloc_op>:<expr> */
3072 /* Record the load/store relocation type. */
3073 inst.reloc.type = entry->ldst_type;
3074 inst.reloc.pc_rel = entry->pc_rel;
3075 }
3076 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3077 {
3078 set_syntax_error (_("invalid expression in the address"));
3079 return FALSE;
3080 }
3081 /* [Xn,<expr> */
3082 }
3083 }
3084
3085 if (! skip_past_char (&p, ']'))
3086 {
3087 set_syntax_error (_("']' expected"));
3088 return FALSE;
3089 }
3090
3091 if (skip_past_char (&p, '!'))
3092 {
3093 if (operand->addr.preind && operand->addr.offset.is_reg)
3094 {
3095 set_syntax_error (_("register offset not allowed in pre-indexed "
3096 "addressing mode"));
3097 return FALSE;
3098 }
3099 /* [Xn]! */
3100 operand->addr.writeback = 1;
3101 }
3102 else if (skip_past_comma (&p))
3103 {
3104 /* [Xn], */
3105 operand->addr.postind = 1;
3106 operand->addr.writeback = 1;
3107
3108 if (operand->addr.preind)
3109 {
3110 set_syntax_error (_("cannot combine pre- and post-indexing"));
3111 return FALSE;
3112 }
3113
3114 if (accept_reg_post_index
3115 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3116 &isregzero)) != PARSE_FAIL)
3117 {
3118 /* [Xn],Xm */
3119 if (isreg32)
3120 {
3121 set_syntax_error (_("invalid 32-bit register offset"));
3122 return FALSE;
3123 }
3124 operand->addr.offset.regno = reg;
3125 operand->addr.offset.is_reg = 1;
3126 }
3127 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3128 {
3129 /* [Xn],#expr */
3130 set_syntax_error (_("invalid expression in the address"));
3131 return FALSE;
3132 }
3133 }
3134
3135 /* If at this point neither .preind nor .postind is set, we have a
3136 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3137 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3138 {
3139 if (operand->addr.writeback)
3140 {
3141 /* Reject [Rn]! */
3142 set_syntax_error (_("missing offset in the pre-indexed address"));
3143 return FALSE;
3144 }
3145 operand->addr.preind = 1;
3146 inst.reloc.exp.X_op = O_constant;
3147 inst.reloc.exp.X_add_number = 0;
3148 }
3149
3150 *str = p;
3151 return TRUE;
3152}
3153
3154/* Return TRUE on success; otherwise return FALSE. */
3155static bfd_boolean
3156parse_address (char **str, aarch64_opnd_info *operand,
3157 int accept_reg_post_index)
3158{
3159 return parse_address_main (str, operand, 0, accept_reg_post_index);
3160}
3161
3162/* Return TRUE on success; otherwise return FALSE. */
3163static bfd_boolean
3164parse_address_reloc (char **str, aarch64_opnd_info *operand)
3165{
3166 return parse_address_main (str, operand, 1, 0);
3167}
3168
3169/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3170 Return TRUE on success; otherwise return FALSE. */
3171static bfd_boolean
3172parse_half (char **str, int *internal_fixup_p)
3173{
3174 char *p, *saved;
3175 int dummy;
3176
3177 p = *str;
3178 skip_past_char (&p, '#');
3179
3180 gas_assert (internal_fixup_p);
3181 *internal_fixup_p = 0;
3182
3183 if (*p == ':')
3184 {
3185 struct reloc_table_entry *entry;
3186
3187 /* Try to parse a relocation. Anything else is an error. */
3188 ++p;
3189 if (!(entry = find_reloc_table_entry (&p)))
3190 {
3191 set_syntax_error (_("unknown relocation modifier"));
3192 return FALSE;
3193 }
3194
3195 if (entry->movw_type == 0)
3196 {
3197 set_syntax_error
3198 (_("this relocation modifier is not allowed on this instruction"));
3199 return FALSE;
3200 }
3201
3202 inst.reloc.type = entry->movw_type;
3203 }
3204 else
3205 *internal_fixup_p = 1;
3206
3207 /* Avoid parsing a register as a general symbol. */
3208 saved = p;
3209 if (aarch64_reg_parse_32_64 (&p, 0, 0, &dummy, &dummy) != PARSE_FAIL)
3210 return FALSE;
3211 p = saved;
3212
3213 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3214 return FALSE;
3215
3216 *str = p;
3217 return TRUE;
3218}
3219
3220/* Parse an operand for an ADRP instruction:
3221 ADRP <Xd>, <label>
3222 Return TRUE on success; otherwise return FALSE. */
3223
3224static bfd_boolean
3225parse_adrp (char **str)
3226{
3227 char *p;
3228
3229 p = *str;
3230 if (*p == ':')
3231 {
3232 struct reloc_table_entry *entry;
3233
3234 /* Try to parse a relocation. Anything else is an error. */
3235 ++p;
3236 if (!(entry = find_reloc_table_entry (&p)))
3237 {
3238 set_syntax_error (_("unknown relocation modifier"));
3239 return FALSE;
3240 }
3241
3242 if (entry->adrp_type == 0)
3243 {
3244 set_syntax_error
3245 (_("this relocation modifier is not allowed on this instruction"));
3246 return FALSE;
3247 }
3248
3249 inst.reloc.type = entry->adrp_type;
3250 }
3251 else
3252 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3253
3254 inst.reloc.pc_rel = 1;
3255
3256 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3257 return FALSE;
3258
3259 *str = p;
3260 return TRUE;
3261}
3262
3263/* Miscellaneous. */
3264
3265/* Parse an option for a preload instruction. Returns the encoding for the
3266 option, or PARSE_FAIL. */
3267
3268static int
3269parse_pldop (char **str)
3270{
3271 char *p, *q;
3272 const struct aarch64_name_value_pair *o;
3273
3274 p = q = *str;
3275 while (ISALNUM (*q))
3276 q++;
3277
3278 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3279 if (!o)
3280 return PARSE_FAIL;
3281
3282 *str = q;
3283 return o->value;
3284}
3285
3286/* Parse an option for a barrier instruction. Returns the encoding for the
3287 option, or PARSE_FAIL. */
3288
3289static int
3290parse_barrier (char **str)
3291{
3292 char *p, *q;
3293 const asm_barrier_opt *o;
3294
3295 p = q = *str;
3296 while (ISALPHA (*q))
3297 q++;
3298
3299 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3300 if (!o)
3301 return PARSE_FAIL;
3302
3303 *str = q;
3304 return o->value;
3305}
3306
3307/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3308 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3309
3310 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
18cf6de4 3311 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964
NC
3312
3313static int
a203d9b7 3314parse_sys_reg (char **str, struct hash_control *sys_regs, int imple_defined_p)
a06ea964
NC
3315{
3316 char *p, *q;
3317 char buf[32];
49eec193 3318 const aarch64_sys_reg *o;
a06ea964
NC
3319 int value;
3320
3321 p = buf;
3322 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3323 if (p < buf + 31)
3324 *p++ = TOLOWER (*q);
3325 *p = '\0';
3326 /* Assert that BUF be large enough. */
3327 gas_assert (p - buf == q - *str);
3328
3329 o = hash_find (sys_regs, buf);
3330 if (!o)
3331 {
3332 if (!imple_defined_p)
3333 return PARSE_FAIL;
3334 else
3335 {
df7b4545 3336 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3337 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3338
3339 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3340 != 5)
a06ea964 3341 return PARSE_FAIL;
df7b4545 3342 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3343 return PARSE_FAIL;
3344 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3345 }
3346 }
3347 else
49eec193 3348 {
9a73e520 3349 if (aarch64_sys_reg_deprecated_p (o))
49eec193
YZ
3350 as_warn (_("system register name '%s' is deprecated and may be "
3351"removed in a future release"), buf);
3352 value = o->value;
3353 }
a06ea964
NC
3354
3355 *str = q;
3356 return value;
3357}
3358
3359/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3360 for the option, or NULL. */
3361
3362static const aarch64_sys_ins_reg *
3363parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3364{
3365 char *p, *q;
3366 char buf[32];
3367 const aarch64_sys_ins_reg *o;
3368
3369 p = buf;
3370 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3371 if (p < buf + 31)
3372 *p++ = TOLOWER (*q);
3373 *p = '\0';
3374
3375 o = hash_find (sys_ins_regs, buf);
3376 if (!o)
3377 return NULL;
3378
3379 *str = q;
3380 return o;
3381}
3382\f
3383#define po_char_or_fail(chr) do { \
3384 if (! skip_past_char (&str, chr)) \
3385 goto failure; \
3386} while (0)
3387
3388#define po_reg_or_fail(regtype) do { \
3389 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3390 if (val == PARSE_FAIL) \
3391 { \
3392 set_default_error (); \
3393 goto failure; \
3394 } \
3395 } while (0)
3396
3397#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3398 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3399 &isreg32, &isregzero); \
3400 if (val == PARSE_FAIL) \
3401 { \
3402 set_default_error (); \
3403 goto failure; \
3404 } \
3405 info->reg.regno = val; \
3406 if (isreg32) \
3407 info->qualifier = AARCH64_OPND_QLF_W; \
3408 else \
3409 info->qualifier = AARCH64_OPND_QLF_X; \
3410 } while (0)
3411
3412#define po_imm_nc_or_fail() do { \
3413 if (! parse_constant_immediate (&str, &val)) \
3414 goto failure; \
3415 } while (0)
3416
3417#define po_imm_or_fail(min, max) do { \
3418 if (! parse_constant_immediate (&str, &val)) \
3419 goto failure; \
3420 if (val < min || val > max) \
3421 { \
3422 set_fatal_syntax_error (_("immediate value out of range "\
3423#min " to "#max)); \
3424 goto failure; \
3425 } \
3426 } while (0)
3427
3428#define po_misc_or_fail(expr) do { \
3429 if (!expr) \
3430 goto failure; \
3431 } while (0)
3432\f
3433/* encode the 12-bit imm field of Add/sub immediate */
3434static inline uint32_t
3435encode_addsub_imm (uint32_t imm)
3436{
3437 return imm << 10;
3438}
3439
3440/* encode the shift amount field of Add/sub immediate */
3441static inline uint32_t
3442encode_addsub_imm_shift_amount (uint32_t cnt)
3443{
3444 return cnt << 22;
3445}
3446
3447
3448/* encode the imm field of Adr instruction */
3449static inline uint32_t
3450encode_adr_imm (uint32_t imm)
3451{
3452 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3453 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3454}
3455
3456/* encode the immediate field of Move wide immediate */
3457static inline uint32_t
3458encode_movw_imm (uint32_t imm)
3459{
3460 return imm << 5;
3461}
3462
3463/* encode the 26-bit offset of unconditional branch */
3464static inline uint32_t
3465encode_branch_ofs_26 (uint32_t ofs)
3466{
3467 return ofs & ((1 << 26) - 1);
3468}
3469
3470/* encode the 19-bit offset of conditional branch and compare & branch */
3471static inline uint32_t
3472encode_cond_branch_ofs_19 (uint32_t ofs)
3473{
3474 return (ofs & ((1 << 19) - 1)) << 5;
3475}
3476
3477/* encode the 19-bit offset of ld literal */
3478static inline uint32_t
3479encode_ld_lit_ofs_19 (uint32_t ofs)
3480{
3481 return (ofs & ((1 << 19) - 1)) << 5;
3482}
3483
3484/* Encode the 14-bit offset of test & branch. */
3485static inline uint32_t
3486encode_tst_branch_ofs_14 (uint32_t ofs)
3487{
3488 return (ofs & ((1 << 14) - 1)) << 5;
3489}
3490
3491/* Encode the 16-bit imm field of svc/hvc/smc. */
3492static inline uint32_t
3493encode_svc_imm (uint32_t imm)
3494{
3495 return imm << 5;
3496}
3497
3498/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3499static inline uint32_t
3500reencode_addsub_switch_add_sub (uint32_t opcode)
3501{
3502 return opcode ^ (1 << 30);
3503}
3504
3505static inline uint32_t
3506reencode_movzn_to_movz (uint32_t opcode)
3507{
3508 return opcode | (1 << 30);
3509}
3510
3511static inline uint32_t
3512reencode_movzn_to_movn (uint32_t opcode)
3513{
3514 return opcode & ~(1 << 30);
3515}
3516
3517/* Overall per-instruction processing. */
3518
3519/* We need to be able to fix up arbitrary expressions in some statements.
3520 This is so that we can handle symbols that are an arbitrary distance from
3521 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3522 which returns part of an address in a form which will be valid for
3523 a data instruction. We do this by pushing the expression into a symbol
3524 in the expr_section, and creating a fix for that. */
3525
3526static fixS *
3527fix_new_aarch64 (fragS * frag,
3528 int where,
3529 short int size, expressionS * exp, int pc_rel, int reloc)
3530{
3531 fixS *new_fix;
3532
3533 switch (exp->X_op)
3534 {
3535 case O_constant:
3536 case O_symbol:
3537 case O_add:
3538 case O_subtract:
3539 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3540 break;
3541
3542 default:
3543 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3544 pc_rel, reloc);
3545 break;
3546 }
3547 return new_fix;
3548}
3549\f
3550/* Diagnostics on operands errors. */
3551
a52e6fd3
YZ
3552/* By default, output verbose error message.
3553 Disable the verbose error message by -mno-verbose-error. */
3554static int verbose_error_p = 1;
a06ea964
NC
3555
3556#ifdef DEBUG_AARCH64
3557/* N.B. this is only for the purpose of debugging. */
3558const char* operand_mismatch_kind_names[] =
3559{
3560 "AARCH64_OPDE_NIL",
3561 "AARCH64_OPDE_RECOVERABLE",
3562 "AARCH64_OPDE_SYNTAX_ERROR",
3563 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3564 "AARCH64_OPDE_INVALID_VARIANT",
3565 "AARCH64_OPDE_OUT_OF_RANGE",
3566 "AARCH64_OPDE_UNALIGNED",
3567 "AARCH64_OPDE_REG_LIST",
3568 "AARCH64_OPDE_OTHER_ERROR",
3569};
3570#endif /* DEBUG_AARCH64 */
3571
3572/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3573
3574 When multiple errors of different kinds are found in the same assembly
3575 line, only the error of the highest severity will be picked up for
3576 issuing the diagnostics. */
3577
3578static inline bfd_boolean
3579operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3580 enum aarch64_operand_error_kind rhs)
3581{
3582 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3583 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3584 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3585 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3586 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3587 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3588 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3589 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3590 return lhs > rhs;
3591}
3592
3593/* Helper routine to get the mnemonic name from the assembly instruction
3594 line; should only be called for the diagnosis purpose, as there is
3595 string copy operation involved, which may affect the runtime
3596 performance if used in elsewhere. */
3597
3598static const char*
3599get_mnemonic_name (const char *str)
3600{
3601 static char mnemonic[32];
3602 char *ptr;
3603
3604 /* Get the first 15 bytes and assume that the full name is included. */
3605 strncpy (mnemonic, str, 31);
3606 mnemonic[31] = '\0';
3607
3608 /* Scan up to the end of the mnemonic, which must end in white space,
3609 '.', or end of string. */
3610 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3611 ;
3612
3613 *ptr = '\0';
3614
3615 /* Append '...' to the truncated long name. */
3616 if (ptr - mnemonic == 31)
3617 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3618
3619 return mnemonic;
3620}
3621
3622static void
3623reset_aarch64_instruction (aarch64_instruction *instruction)
3624{
3625 memset (instruction, '\0', sizeof (aarch64_instruction));
3626 instruction->reloc.type = BFD_RELOC_UNUSED;
3627}
3628
3629/* Data strutures storing one user error in the assembly code related to
3630 operands. */
3631
3632struct operand_error_record
3633{
3634 const aarch64_opcode *opcode;
3635 aarch64_operand_error detail;
3636 struct operand_error_record *next;
3637};
3638
3639typedef struct operand_error_record operand_error_record;
3640
3641struct operand_errors
3642{
3643 operand_error_record *head;
3644 operand_error_record *tail;
3645};
3646
3647typedef struct operand_errors operand_errors;
3648
3649/* Top-level data structure reporting user errors for the current line of
3650 the assembly code.
3651 The way md_assemble works is that all opcodes sharing the same mnemonic
3652 name are iterated to find a match to the assembly line. In this data
3653 structure, each of the such opcodes will have one operand_error_record
3654 allocated and inserted. In other words, excessive errors related with
3655 a single opcode are disregarded. */
3656operand_errors operand_error_report;
3657
3658/* Free record nodes. */
3659static operand_error_record *free_opnd_error_record_nodes = NULL;
3660
3661/* Initialize the data structure that stores the operand mismatch
3662 information on assembling one line of the assembly code. */
3663static void
3664init_operand_error_report (void)
3665{
3666 if (operand_error_report.head != NULL)
3667 {
3668 gas_assert (operand_error_report.tail != NULL);
3669 operand_error_report.tail->next = free_opnd_error_record_nodes;
3670 free_opnd_error_record_nodes = operand_error_report.head;
3671 operand_error_report.head = NULL;
3672 operand_error_report.tail = NULL;
3673 return;
3674 }
3675 gas_assert (operand_error_report.tail == NULL);
3676}
3677
3678/* Return TRUE if some operand error has been recorded during the
3679 parsing of the current assembly line using the opcode *OPCODE;
3680 otherwise return FALSE. */
3681static inline bfd_boolean
3682opcode_has_operand_error_p (const aarch64_opcode *opcode)
3683{
3684 operand_error_record *record = operand_error_report.head;
3685 return record && record->opcode == opcode;
3686}
3687
3688/* Add the error record *NEW_RECORD to operand_error_report. The record's
3689 OPCODE field is initialized with OPCODE.
3690 N.B. only one record for each opcode, i.e. the maximum of one error is
3691 recorded for each instruction template. */
3692
3693static void
3694add_operand_error_record (const operand_error_record* new_record)
3695{
3696 const aarch64_opcode *opcode = new_record->opcode;
3697 operand_error_record* record = operand_error_report.head;
3698
3699 /* The record may have been created for this opcode. If not, we need
3700 to prepare one. */
3701 if (! opcode_has_operand_error_p (opcode))
3702 {
3703 /* Get one empty record. */
3704 if (free_opnd_error_record_nodes == NULL)
3705 {
3706 record = xmalloc (sizeof (operand_error_record));
3707 if (record == NULL)
3708 abort ();
3709 }
3710 else
3711 {
3712 record = free_opnd_error_record_nodes;
3713 free_opnd_error_record_nodes = record->next;
3714 }
3715 record->opcode = opcode;
3716 /* Insert at the head. */
3717 record->next = operand_error_report.head;
3718 operand_error_report.head = record;
3719 if (operand_error_report.tail == NULL)
3720 operand_error_report.tail = record;
3721 }
3722 else if (record->detail.kind != AARCH64_OPDE_NIL
3723 && record->detail.index <= new_record->detail.index
3724 && operand_error_higher_severity_p (record->detail.kind,
3725 new_record->detail.kind))
3726 {
3727 /* In the case of multiple errors found on operands related with a
3728 single opcode, only record the error of the leftmost operand and
3729 only if the error is of higher severity. */
3730 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
3731 " the existing error %s on operand %d",
3732 operand_mismatch_kind_names[new_record->detail.kind],
3733 new_record->detail.index,
3734 operand_mismatch_kind_names[record->detail.kind],
3735 record->detail.index);
3736 return;
3737 }
3738
3739 record->detail = new_record->detail;
3740}
3741
3742static inline void
3743record_operand_error_info (const aarch64_opcode *opcode,
3744 aarch64_operand_error *error_info)
3745{
3746 operand_error_record record;
3747 record.opcode = opcode;
3748 record.detail = *error_info;
3749 add_operand_error_record (&record);
3750}
3751
3752/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
3753 error message *ERROR, for operand IDX (count from 0). */
3754
3755static void
3756record_operand_error (const aarch64_opcode *opcode, int idx,
3757 enum aarch64_operand_error_kind kind,
3758 const char* error)
3759{
3760 aarch64_operand_error info;
3761 memset(&info, 0, sizeof (info));
3762 info.index = idx;
3763 info.kind = kind;
3764 info.error = error;
3765 record_operand_error_info (opcode, &info);
3766}
3767
3768static void
3769record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
3770 enum aarch64_operand_error_kind kind,
3771 const char* error, const int *extra_data)
3772{
3773 aarch64_operand_error info;
3774 info.index = idx;
3775 info.kind = kind;
3776 info.error = error;
3777 info.data[0] = extra_data[0];
3778 info.data[1] = extra_data[1];
3779 info.data[2] = extra_data[2];
3780 record_operand_error_info (opcode, &info);
3781}
3782
3783static void
3784record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
3785 const char* error, int lower_bound,
3786 int upper_bound)
3787{
3788 int data[3] = {lower_bound, upper_bound, 0};
3789 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
3790 error, data);
3791}
3792
3793/* Remove the operand error record for *OPCODE. */
3794static void ATTRIBUTE_UNUSED
3795remove_operand_error_record (const aarch64_opcode *opcode)
3796{
3797 if (opcode_has_operand_error_p (opcode))
3798 {
3799 operand_error_record* record = operand_error_report.head;
3800 gas_assert (record != NULL && operand_error_report.tail != NULL);
3801 operand_error_report.head = record->next;
3802 record->next = free_opnd_error_record_nodes;
3803 free_opnd_error_record_nodes = record;
3804 if (operand_error_report.head == NULL)
3805 {
3806 gas_assert (operand_error_report.tail == record);
3807 operand_error_report.tail = NULL;
3808 }
3809 }
3810}
3811
3812/* Given the instruction in *INSTR, return the index of the best matched
3813 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
3814
3815 Return -1 if there is no qualifier sequence; return the first match
3816 if there is multiple matches found. */
3817
3818static int
3819find_best_match (const aarch64_inst *instr,
3820 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
3821{
3822 int i, num_opnds, max_num_matched, idx;
3823
3824 num_opnds = aarch64_num_of_operands (instr->opcode);
3825 if (num_opnds == 0)
3826 {
3827 DEBUG_TRACE ("no operand");
3828 return -1;
3829 }
3830
3831 max_num_matched = 0;
3832 idx = -1;
3833
3834 /* For each pattern. */
3835 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
3836 {
3837 int j, num_matched;
3838 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
3839
3840 /* Most opcodes has much fewer patterns in the list. */
3841 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
3842 {
3843 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
3844 if (i != 0 && idx == -1)
3845 /* If nothing has been matched, return the 1st sequence. */
3846 idx = 0;
3847 break;
3848 }
3849
3850 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
3851 if (*qualifiers == instr->operands[j].qualifier)
3852 ++num_matched;
3853
3854 if (num_matched > max_num_matched)
3855 {
3856 max_num_matched = num_matched;
3857 idx = i;
3858 }
3859 }
3860
3861 DEBUG_TRACE ("return with %d", idx);
3862 return idx;
3863}
3864
3865/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
3866 corresponding operands in *INSTR. */
3867
3868static inline void
3869assign_qualifier_sequence (aarch64_inst *instr,
3870 const aarch64_opnd_qualifier_t *qualifiers)
3871{
3872 int i = 0;
3873 int num_opnds = aarch64_num_of_operands (instr->opcode);
3874 gas_assert (num_opnds);
3875 for (i = 0; i < num_opnds; ++i, ++qualifiers)
3876 instr->operands[i].qualifier = *qualifiers;
3877}
3878
3879/* Print operands for the diagnosis purpose. */
3880
3881static void
3882print_operands (char *buf, const aarch64_opcode *opcode,
3883 const aarch64_opnd_info *opnds)
3884{
3885 int i;
3886
3887 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
3888 {
3889 const size_t size = 128;
3890 char str[size];
3891
3892 /* We regard the opcode operand info more, however we also look into
3893 the inst->operands to support the disassembling of the optional
3894 operand.
3895 The two operand code should be the same in all cases, apart from
3896 when the operand can be optional. */
3897 if (opcode->operands[i] == AARCH64_OPND_NIL
3898 || opnds[i].type == AARCH64_OPND_NIL)
3899 break;
3900
3901 /* Generate the operand string in STR. */
3902 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
3903
3904 /* Delimiter. */
3905 if (str[0] != '\0')
3906 strcat (buf, i == 0 ? " " : ",");
3907
3908 /* Append the operand string. */
3909 strcat (buf, str);
3910 }
3911}
3912
3913/* Send to stderr a string as information. */
3914
3915static void
3916output_info (const char *format, ...)
3917{
3918 char *file;
3919 unsigned int line;
3920 va_list args;
3921
3922 as_where (&file, &line);
3923 if (file)
3924 {
3925 if (line != 0)
3926 fprintf (stderr, "%s:%u: ", file, line);
3927 else
3928 fprintf (stderr, "%s: ", file);
3929 }
3930 fprintf (stderr, _("Info: "));
3931 va_start (args, format);
3932 vfprintf (stderr, format, args);
3933 va_end (args);
3934 (void) putc ('\n', stderr);
3935}
3936
3937/* Output one operand error record. */
3938
3939static void
3940output_operand_error_record (const operand_error_record *record, char *str)
3941{
28f013d5
JB
3942 const aarch64_operand_error *detail = &record->detail;
3943 int idx = detail->index;
a06ea964 3944 const aarch64_opcode *opcode = record->opcode;
28f013d5 3945 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 3946 : AARCH64_OPND_NIL);
a06ea964
NC
3947
3948 switch (detail->kind)
3949 {
3950 case AARCH64_OPDE_NIL:
3951 gas_assert (0);
3952 break;
3953
3954 case AARCH64_OPDE_SYNTAX_ERROR:
3955 case AARCH64_OPDE_RECOVERABLE:
3956 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
3957 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
3958 /* Use the prepared error message if there is, otherwise use the
3959 operand description string to describe the error. */
3960 if (detail->error != NULL)
3961 {
28f013d5 3962 if (idx < 0)
a06ea964
NC
3963 as_bad (_("%s -- `%s'"), detail->error, str);
3964 else
3965 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 3966 detail->error, idx + 1, str);
a06ea964
NC
3967 }
3968 else
28f013d5
JB
3969 {
3970 gas_assert (idx >= 0);
3971 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 3972 aarch64_get_operand_desc (opd_code), str);
28f013d5 3973 }
a06ea964
NC
3974 break;
3975
3976 case AARCH64_OPDE_INVALID_VARIANT:
3977 as_bad (_("operand mismatch -- `%s'"), str);
3978 if (verbose_error_p)
3979 {
3980 /* We will try to correct the erroneous instruction and also provide
3981 more information e.g. all other valid variants.
3982
3983 The string representation of the corrected instruction and other
3984 valid variants are generated by
3985
3986 1) obtaining the intermediate representation of the erroneous
3987 instruction;
3988 2) manipulating the IR, e.g. replacing the operand qualifier;
3989 3) printing out the instruction by calling the printer functions
3990 shared with the disassembler.
3991
3992 The limitation of this method is that the exact input assembly
3993 line cannot be accurately reproduced in some cases, for example an
3994 optional operand present in the actual assembly line will be
3995 omitted in the output; likewise for the optional syntax rules,
3996 e.g. the # before the immediate. Another limitation is that the
3997 assembly symbols and relocation operations in the assembly line
3998 currently cannot be printed out in the error report. Last but not
3999 least, when there is other error(s) co-exist with this error, the
4000 'corrected' instruction may be still incorrect, e.g. given
4001 'ldnp h0,h1,[x0,#6]!'
4002 this diagnosis will provide the version:
4003 'ldnp s0,s1,[x0,#6]!'
4004 which is still not right. */
4005 size_t len = strlen (get_mnemonic_name (str));
4006 int i, qlf_idx;
4007 bfd_boolean result;
4008 const size_t size = 2048;
4009 char buf[size];
4010 aarch64_inst *inst_base = &inst.base;
4011 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4012
4013 /* Init inst. */
4014 reset_aarch64_instruction (&inst);
4015 inst_base->opcode = opcode;
4016
4017 /* Reset the error report so that there is no side effect on the
4018 following operand parsing. */
4019 init_operand_error_report ();
4020
4021 /* Fill inst. */
4022 result = parse_operands (str + len, opcode)
4023 && programmer_friendly_fixup (&inst);
4024 gas_assert (result);
4025 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4026 NULL, NULL);
4027 gas_assert (!result);
4028
4029 /* Find the most matched qualifier sequence. */
4030 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4031 gas_assert (qlf_idx > -1);
4032
4033 /* Assign the qualifiers. */
4034 assign_qualifier_sequence (inst_base,
4035 opcode->qualifiers_list[qlf_idx]);
4036
4037 /* Print the hint. */
4038 output_info (_(" did you mean this?"));
4039 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4040 print_operands (buf, opcode, inst_base->operands);
4041 output_info (_(" %s"), buf);
4042
4043 /* Print out other variant(s) if there is any. */
4044 if (qlf_idx != 0 ||
4045 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4046 output_info (_(" other valid variant(s):"));
4047
4048 /* For each pattern. */
4049 qualifiers_list = opcode->qualifiers_list;
4050 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4051 {
4052 /* Most opcodes has much fewer patterns in the list.
4053 First NIL qualifier indicates the end in the list. */
4054 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4055 break;
4056
4057 if (i != qlf_idx)
4058 {
4059 /* Mnemonics name. */
4060 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4061
4062 /* Assign the qualifiers. */
4063 assign_qualifier_sequence (inst_base, *qualifiers_list);
4064
4065 /* Print instruction. */
4066 print_operands (buf, opcode, inst_base->operands);
4067
4068 output_info (_(" %s"), buf);
4069 }
4070 }
4071 }
4072 break;
4073
4074 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4075 if (detail->data[0] != detail->data[1])
4076 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4077 detail->error ? detail->error : _("immediate value"),
28f013d5 4078 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4079 else
4080 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4081 detail->error ? detail->error : _("immediate value"),
28f013d5 4082 detail->data[0], idx + 1, str);
a06ea964
NC
4083 break;
4084
4085 case AARCH64_OPDE_REG_LIST:
4086 if (detail->data[0] == 1)
4087 as_bad (_("invalid number of registers in the list; "
4088 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4089 idx + 1, str);
a06ea964
NC
4090 else
4091 as_bad (_("invalid number of registers in the list; "
4092 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4093 detail->data[0], idx + 1, str);
a06ea964
NC
4094 break;
4095
4096 case AARCH64_OPDE_UNALIGNED:
4097 as_bad (_("immediate value should be a multiple of "
4098 "%d at operand %d -- `%s'"),
28f013d5 4099 detail->data[0], idx + 1, str);
a06ea964
NC
4100 break;
4101
4102 default:
4103 gas_assert (0);
4104 break;
4105 }
4106}
4107
4108/* Process and output the error message about the operand mismatching.
4109
4110 When this function is called, the operand error information had
4111 been collected for an assembly line and there will be multiple
4112 errors in the case of mulitple instruction templates; output the
4113 error message that most closely describes the problem. */
4114
4115static void
4116output_operand_error_report (char *str)
4117{
4118 int largest_error_pos;
4119 const char *msg = NULL;
4120 enum aarch64_operand_error_kind kind;
4121 operand_error_record *curr;
4122 operand_error_record *head = operand_error_report.head;
4123 operand_error_record *record = NULL;
4124
4125 /* No error to report. */
4126 if (head == NULL)
4127 return;
4128
4129 gas_assert (head != NULL && operand_error_report.tail != NULL);
4130
4131 /* Only one error. */
4132 if (head == operand_error_report.tail)
4133 {
4134 DEBUG_TRACE ("single opcode entry with error kind: %s",
4135 operand_mismatch_kind_names[head->detail.kind]);
4136 output_operand_error_record (head, str);
4137 return;
4138 }
4139
4140 /* Find the error kind of the highest severity. */
4141 DEBUG_TRACE ("multiple opcode entres with error kind");
4142 kind = AARCH64_OPDE_NIL;
4143 for (curr = head; curr != NULL; curr = curr->next)
4144 {
4145 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4146 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4147 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4148 kind = curr->detail.kind;
4149 }
4150 gas_assert (kind != AARCH64_OPDE_NIL);
4151
4152 /* Pick up one of errors of KIND to report. */
4153 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4154 for (curr = head; curr != NULL; curr = curr->next)
4155 {
4156 if (curr->detail.kind != kind)
4157 continue;
4158 /* If there are multiple errors, pick up the one with the highest
4159 mismatching operand index. In the case of multiple errors with
4160 the equally highest operand index, pick up the first one or the
4161 first one with non-NULL error message. */
4162 if (curr->detail.index > largest_error_pos
4163 || (curr->detail.index == largest_error_pos && msg == NULL
4164 && curr->detail.error != NULL))
4165 {
4166 largest_error_pos = curr->detail.index;
4167 record = curr;
4168 msg = record->detail.error;
4169 }
4170 }
4171
4172 gas_assert (largest_error_pos != -2 && record != NULL);
4173 DEBUG_TRACE ("Pick up error kind %s to report",
4174 operand_mismatch_kind_names[record->detail.kind]);
4175
4176 /* Output. */
4177 output_operand_error_record (record, str);
4178}
4179\f
4180/* Write an AARCH64 instruction to buf - always little-endian. */
4181static void
4182put_aarch64_insn (char *buf, uint32_t insn)
4183{
4184 unsigned char *where = (unsigned char *) buf;
4185 where[0] = insn;
4186 where[1] = insn >> 8;
4187 where[2] = insn >> 16;
4188 where[3] = insn >> 24;
4189}
4190
4191static uint32_t
4192get_aarch64_insn (char *buf)
4193{
4194 unsigned char *where = (unsigned char *) buf;
4195 uint32_t result;
4196 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4197 return result;
4198}
4199
4200static void
4201output_inst (struct aarch64_inst *new_inst)
4202{
4203 char *to = NULL;
4204
4205 to = frag_more (INSN_SIZE);
4206
4207 frag_now->tc_frag_data.recorded = 1;
4208
4209 put_aarch64_insn (to, inst.base.value);
4210
4211 if (inst.reloc.type != BFD_RELOC_UNUSED)
4212 {
4213 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4214 INSN_SIZE, &inst.reloc.exp,
4215 inst.reloc.pc_rel,
4216 inst.reloc.type);
4217 DEBUG_TRACE ("Prepared relocation fix up");
4218 /* Don't check the addend value against the instruction size,
4219 that's the job of our code in md_apply_fix(). */
4220 fixp->fx_no_overflow = 1;
4221 if (new_inst != NULL)
4222 fixp->tc_fix_data.inst = new_inst;
4223 if (aarch64_gas_internal_fixup_p ())
4224 {
4225 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4226 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4227 fixp->fx_addnumber = inst.reloc.flags;
4228 }
4229 }
4230
4231 dwarf2_emit_insn (INSN_SIZE);
4232}
4233
4234/* Link together opcodes of the same name. */
4235
4236struct templates
4237{
4238 aarch64_opcode *opcode;
4239 struct templates *next;
4240};
4241
4242typedef struct templates templates;
4243
4244static templates *
4245lookup_mnemonic (const char *start, int len)
4246{
4247 templates *templ = NULL;
4248
4249 templ = hash_find_n (aarch64_ops_hsh, start, len);
4250 return templ;
4251}
4252
4253/* Subroutine of md_assemble, responsible for looking up the primary
4254 opcode from the mnemonic the user wrote. STR points to the
4255 beginning of the mnemonic. */
4256
4257static templates *
4258opcode_lookup (char **str)
4259{
4260 char *end, *base;
4261 const aarch64_cond *cond;
4262 char condname[16];
4263 int len;
4264
4265 /* Scan up to the end of the mnemonic, which must end in white space,
4266 '.', or end of string. */
4267 for (base = end = *str; is_part_of_name(*end); end++)
4268 if (*end == '.')
4269 break;
4270
4271 if (end == base)
4272 return 0;
4273
4274 inst.cond = COND_ALWAYS;
4275
4276 /* Handle a possible condition. */
4277 if (end[0] == '.')
4278 {
4279 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4280 if (cond)
4281 {
4282 inst.cond = cond->value;
4283 *str = end + 3;
4284 }
4285 else
4286 {
4287 *str = end;
4288 return 0;
4289 }
4290 }
4291 else
4292 *str = end;
4293
4294 len = end - base;
4295
4296 if (inst.cond == COND_ALWAYS)
4297 {
4298 /* Look for unaffixed mnemonic. */
4299 return lookup_mnemonic (base, len);
4300 }
4301 else if (len <= 13)
4302 {
4303 /* append ".c" to mnemonic if conditional */
4304 memcpy (condname, base, len);
4305 memcpy (condname + len, ".c", 2);
4306 base = condname;
4307 len += 2;
4308 return lookup_mnemonic (base, len);
4309 }
4310
4311 return NULL;
4312}
4313
4314/* Internal helper routine converting a vector neon_type_el structure
4315 *VECTYPE to a corresponding operand qualifier. */
4316
4317static inline aarch64_opnd_qualifier_t
4318vectype_to_qualifier (const struct neon_type_el *vectype)
4319{
4320 /* Element size in bytes indexed by neon_el_type. */
4321 const unsigned char ele_size[5]
4322 = {1, 2, 4, 8, 16};
4323
4324 if (!vectype->defined || vectype->type == NT_invtype)
4325 goto vectype_conversion_fail;
4326
4327 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4328
4329 if (vectype->defined & NTA_HASINDEX)
4330 /* Vector element register. */
4331 return AARCH64_OPND_QLF_S_B + vectype->type;
4332 else
4333 {
4334 /* Vector register. */
4335 int reg_size = ele_size[vectype->type] * vectype->width;
4336 unsigned offset;
4337 if (reg_size != 16 && reg_size != 8)
4338 goto vectype_conversion_fail;
4339 /* The conversion is calculated based on the relation of the order of
4340 qualifiers to the vector element size and vector register size. */
4341 offset = (vectype->type == NT_q)
4342 ? 8 : (vectype->type << 1) + (reg_size >> 4);
4343 gas_assert (offset <= 8);
4344 return AARCH64_OPND_QLF_V_8B + offset;
4345 }
4346
4347vectype_conversion_fail:
4348 first_error (_("bad vector arrangement type"));
4349 return AARCH64_OPND_QLF_NIL;
4350}
4351
4352/* Process an optional operand that is found omitted from the assembly line.
4353 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4354 instruction's opcode entry while IDX is the index of this omitted operand.
4355 */
4356
4357static void
4358process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4359 int idx, aarch64_opnd_info *operand)
4360{
4361 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4362 gas_assert (optional_operand_p (opcode, idx));
4363 gas_assert (!operand->present);
4364
4365 switch (type)
4366 {
4367 case AARCH64_OPND_Rd:
4368 case AARCH64_OPND_Rn:
4369 case AARCH64_OPND_Rm:
4370 case AARCH64_OPND_Rt:
4371 case AARCH64_OPND_Rt2:
4372 case AARCH64_OPND_Rs:
4373 case AARCH64_OPND_Ra:
4374 case AARCH64_OPND_Rt_SYS:
4375 case AARCH64_OPND_Rd_SP:
4376 case AARCH64_OPND_Rn_SP:
4377 case AARCH64_OPND_Fd:
4378 case AARCH64_OPND_Fn:
4379 case AARCH64_OPND_Fm:
4380 case AARCH64_OPND_Fa:
4381 case AARCH64_OPND_Ft:
4382 case AARCH64_OPND_Ft2:
4383 case AARCH64_OPND_Sd:
4384 case AARCH64_OPND_Sn:
4385 case AARCH64_OPND_Sm:
4386 case AARCH64_OPND_Vd:
4387 case AARCH64_OPND_Vn:
4388 case AARCH64_OPND_Vm:
4389 case AARCH64_OPND_VdD1:
4390 case AARCH64_OPND_VnD1:
4391 operand->reg.regno = default_value;
4392 break;
4393
4394 case AARCH64_OPND_Ed:
4395 case AARCH64_OPND_En:
4396 case AARCH64_OPND_Em:
4397 operand->reglane.regno = default_value;
4398 break;
4399
4400 case AARCH64_OPND_IDX:
4401 case AARCH64_OPND_BIT_NUM:
4402 case AARCH64_OPND_IMMR:
4403 case AARCH64_OPND_IMMS:
4404 case AARCH64_OPND_SHLL_IMM:
4405 case AARCH64_OPND_IMM_VLSL:
4406 case AARCH64_OPND_IMM_VLSR:
4407 case AARCH64_OPND_CCMP_IMM:
4408 case AARCH64_OPND_FBITS:
4409 case AARCH64_OPND_UIMM4:
4410 case AARCH64_OPND_UIMM3_OP1:
4411 case AARCH64_OPND_UIMM3_OP2:
4412 case AARCH64_OPND_IMM:
4413 case AARCH64_OPND_WIDTH:
4414 case AARCH64_OPND_UIMM7:
4415 case AARCH64_OPND_NZCV:
4416 operand->imm.value = default_value;
4417 break;
4418
4419 case AARCH64_OPND_EXCEPTION:
4420 inst.reloc.type = BFD_RELOC_UNUSED;
4421 break;
4422
4423 case AARCH64_OPND_BARRIER_ISB:
4424 operand->barrier = aarch64_barrier_options + default_value;
4425
4426 default:
4427 break;
4428 }
4429}
4430
4431/* Process the relocation type for move wide instructions.
4432 Return TRUE on success; otherwise return FALSE. */
4433
4434static bfd_boolean
4435process_movw_reloc_info (void)
4436{
4437 int is32;
4438 unsigned shift;
4439
4440 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4441
4442 if (inst.base.opcode->op == OP_MOVK)
4443 switch (inst.reloc.type)
4444 {
4445 case BFD_RELOC_AARCH64_MOVW_G0_S:
4446 case BFD_RELOC_AARCH64_MOVW_G1_S:
4447 case BFD_RELOC_AARCH64_MOVW_G2_S:
4448 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4449 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4450 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4451 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4452 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4453 set_syntax_error
4454 (_("the specified relocation type is not allowed for MOVK"));
4455 return FALSE;
4456 default:
4457 break;
4458 }
4459
4460 switch (inst.reloc.type)
4461 {
4462 case BFD_RELOC_AARCH64_MOVW_G0:
4463 case BFD_RELOC_AARCH64_MOVW_G0_S:
4464 case BFD_RELOC_AARCH64_MOVW_G0_NC:
4465 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4466 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4467 shift = 0;
4468 break;
4469 case BFD_RELOC_AARCH64_MOVW_G1:
4470 case BFD_RELOC_AARCH64_MOVW_G1_S:
4471 case BFD_RELOC_AARCH64_MOVW_G1_NC:
4472 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4473 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4474 shift = 16;
4475 break;
4476 case BFD_RELOC_AARCH64_MOVW_G2:
4477 case BFD_RELOC_AARCH64_MOVW_G2_S:
4478 case BFD_RELOC_AARCH64_MOVW_G2_NC:
4479 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4480 if (is32)
4481 {
4482 set_fatal_syntax_error
4483 (_("the specified relocation type is not allowed for 32-bit "
4484 "register"));
4485 return FALSE;
4486 }
4487 shift = 32;
4488 break;
4489 case BFD_RELOC_AARCH64_MOVW_G3:
4490 if (is32)
4491 {
4492 set_fatal_syntax_error
4493 (_("the specified relocation type is not allowed for 32-bit "
4494 "register"));
4495 return FALSE;
4496 }
4497 shift = 48;
4498 break;
4499 default:
4500 /* More cases should be added when more MOVW-related relocation types
4501 are supported in GAS. */
4502 gas_assert (aarch64_gas_internal_fixup_p ());
4503 /* The shift amount should have already been set by the parser. */
4504 return TRUE;
4505 }
4506 inst.base.operands[1].shifter.amount = shift;
4507 return TRUE;
4508}
4509
4510/* A primitive log caculator. */
4511
4512static inline unsigned int
4513get_logsz (unsigned int size)
4514{
4515 const unsigned char ls[16] =
4516 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4517 if (size > 16)
4518 {
4519 gas_assert (0);
4520 return -1;
4521 }
4522 gas_assert (ls[size - 1] != (unsigned char)-1);
4523 return ls[size - 1];
4524}
4525
4526/* Determine and return the real reloc type code for an instruction
4527 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4528
4529static inline bfd_reloc_code_real_type
4530ldst_lo12_determine_real_reloc_type (void)
4531{
4532 int logsz;
4533 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4534 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4535
4536 const bfd_reloc_code_real_type reloc_ldst_lo12[5] = {
4537 BFD_RELOC_AARCH64_LDST8_LO12, BFD_RELOC_AARCH64_LDST16_LO12,
4538 BFD_RELOC_AARCH64_LDST32_LO12, BFD_RELOC_AARCH64_LDST64_LO12,
4539 BFD_RELOC_AARCH64_LDST128_LO12
4540 };
4541
4542 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12);
4543 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4544
4545 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4546 opd1_qlf =
4547 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4548 1, opd0_qlf, 0);
4549 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4550
4551 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4552 gas_assert (logsz >= 0 && logsz <= 4);
4553
4554 return reloc_ldst_lo12[logsz];
4555}
4556
4557/* Check whether a register list REGINFO is valid. The registers must be
4558 numbered in increasing order (modulo 32), in increments of one or two.
4559
4560 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4561 increments of two.
4562
4563 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4564
4565static bfd_boolean
4566reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4567{
4568 uint32_t i, nb_regs, prev_regno, incr;
4569
4570 nb_regs = 1 + (reginfo & 0x3);
4571 reginfo >>= 2;
4572 prev_regno = reginfo & 0x1f;
4573 incr = accept_alternate ? 2 : 1;
4574
4575 for (i = 1; i < nb_regs; ++i)
4576 {
4577 uint32_t curr_regno;
4578 reginfo >>= 5;
4579 curr_regno = reginfo & 0x1f;
4580 if (curr_regno != ((prev_regno + incr) & 0x1f))
4581 return FALSE;
4582 prev_regno = curr_regno;
4583 }
4584
4585 return TRUE;
4586}
4587
4588/* Generic instruction operand parser. This does no encoding and no
4589 semantic validation; it merely squirrels values away in the inst
4590 structure. Returns TRUE or FALSE depending on whether the
4591 specified grammar matched. */
4592
4593static bfd_boolean
4594parse_operands (char *str, const aarch64_opcode *opcode)
4595{
4596 int i;
4597 char *backtrack_pos = 0;
4598 const enum aarch64_opnd *operands = opcode->operands;
4599
4600 clear_error ();
4601 skip_whitespace (str);
4602
4603 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
4604 {
4605 int64_t val;
4606 int isreg32, isregzero;
4607 int comma_skipped_p = 0;
4608 aarch64_reg_type rtype;
4609 struct neon_type_el vectype;
4610 aarch64_opnd_info *info = &inst.base.operands[i];
4611
4612 DEBUG_TRACE ("parse operand %d", i);
4613
4614 /* Assign the operand code. */
4615 info->type = operands[i];
4616
4617 if (optional_operand_p (opcode, i))
4618 {
4619 /* Remember where we are in case we need to backtrack. */
4620 gas_assert (!backtrack_pos);
4621 backtrack_pos = str;
4622 }
4623
4624 /* Expect comma between operands; the backtrack mechanizm will take
4625 care of cases of omitted optional operand. */
4626 if (i > 0 && ! skip_past_char (&str, ','))
4627 {
4628 set_syntax_error (_("comma expected between operands"));
4629 goto failure;
4630 }
4631 else
4632 comma_skipped_p = 1;
4633
4634 switch (operands[i])
4635 {
4636 case AARCH64_OPND_Rd:
4637 case AARCH64_OPND_Rn:
4638 case AARCH64_OPND_Rm:
4639 case AARCH64_OPND_Rt:
4640 case AARCH64_OPND_Rt2:
4641 case AARCH64_OPND_Rs:
4642 case AARCH64_OPND_Ra:
4643 case AARCH64_OPND_Rt_SYS:
ee804238 4644 case AARCH64_OPND_PAIRREG:
a06ea964
NC
4645 po_int_reg_or_fail (1, 0);
4646 break;
4647
4648 case AARCH64_OPND_Rd_SP:
4649 case AARCH64_OPND_Rn_SP:
4650 po_int_reg_or_fail (0, 1);
4651 break;
4652
4653 case AARCH64_OPND_Rm_EXT:
4654 case AARCH64_OPND_Rm_SFT:
4655 po_misc_or_fail (parse_shifter_operand
4656 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
4657 ? SHIFTED_ARITH_IMM
4658 : SHIFTED_LOGIC_IMM)));
4659 if (!info->shifter.operator_present)
4660 {
4661 /* Default to LSL if not present. Libopcodes prefers shifter
4662 kind to be explicit. */
4663 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4664 info->shifter.kind = AARCH64_MOD_LSL;
4665 /* For Rm_EXT, libopcodes will carry out further check on whether
4666 or not stack pointer is used in the instruction (Recall that
4667 "the extend operator is not optional unless at least one of
4668 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
4669 }
4670 break;
4671
4672 case AARCH64_OPND_Fd:
4673 case AARCH64_OPND_Fn:
4674 case AARCH64_OPND_Fm:
4675 case AARCH64_OPND_Fa:
4676 case AARCH64_OPND_Ft:
4677 case AARCH64_OPND_Ft2:
4678 case AARCH64_OPND_Sd:
4679 case AARCH64_OPND_Sn:
4680 case AARCH64_OPND_Sm:
4681 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
4682 if (val == PARSE_FAIL)
4683 {
4684 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
4685 goto failure;
4686 }
4687 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
4688
4689 info->reg.regno = val;
4690 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
4691 break;
4692
4693 case AARCH64_OPND_Vd:
4694 case AARCH64_OPND_Vn:
4695 case AARCH64_OPND_Vm:
4696 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4697 if (val == PARSE_FAIL)
4698 {
4699 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4700 goto failure;
4701 }
4702 if (vectype.defined & NTA_HASINDEX)
4703 goto failure;
4704
4705 info->reg.regno = val;
4706 info->qualifier = vectype_to_qualifier (&vectype);
4707 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4708 goto failure;
4709 break;
4710
4711 case AARCH64_OPND_VdD1:
4712 case AARCH64_OPND_VnD1:
4713 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4714 if (val == PARSE_FAIL)
4715 {
4716 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4717 goto failure;
4718 }
4719 if (vectype.type != NT_d || vectype.index != 1)
4720 {
4721 set_fatal_syntax_error
4722 (_("the top half of a 128-bit FP/SIMD register is expected"));
4723 goto failure;
4724 }
4725 info->reg.regno = val;
4726 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
4727 here; it is correct for the purpose of encoding/decoding since
4728 only the register number is explicitly encoded in the related
4729 instructions, although this appears a bit hacky. */
4730 info->qualifier = AARCH64_OPND_QLF_S_D;
4731 break;
4732
4733 case AARCH64_OPND_Ed:
4734 case AARCH64_OPND_En:
4735 case AARCH64_OPND_Em:
4736 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
4737 if (val == PARSE_FAIL)
4738 {
4739 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
4740 goto failure;
4741 }
4742 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
4743 goto failure;
4744
4745 info->reglane.regno = val;
4746 info->reglane.index = vectype.index;
4747 info->qualifier = vectype_to_qualifier (&vectype);
4748 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4749 goto failure;
4750 break;
4751
4752 case AARCH64_OPND_LVn:
4753 case AARCH64_OPND_LVt:
4754 case AARCH64_OPND_LVt_AL:
4755 case AARCH64_OPND_LEt:
4756 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
4757 goto failure;
4758 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
4759 {
4760 set_fatal_syntax_error (_("invalid register list"));
4761 goto failure;
4762 }
4763 info->reglist.first_regno = (val >> 2) & 0x1f;
4764 info->reglist.num_regs = (val & 0x3) + 1;
4765 if (operands[i] == AARCH64_OPND_LEt)
4766 {
4767 if (!(vectype.defined & NTA_HASINDEX))
4768 goto failure;
4769 info->reglist.has_index = 1;
4770 info->reglist.index = vectype.index;
4771 }
4772 else if (!(vectype.defined & NTA_HASTYPE))
4773 goto failure;
4774 info->qualifier = vectype_to_qualifier (&vectype);
4775 if (info->qualifier == AARCH64_OPND_QLF_NIL)
4776 goto failure;
4777 break;
4778
4779 case AARCH64_OPND_Cn:
4780 case AARCH64_OPND_Cm:
4781 po_reg_or_fail (REG_TYPE_CN);
4782 if (val > 15)
4783 {
4784 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
4785 goto failure;
4786 }
4787 inst.base.operands[i].reg.regno = val;
4788 break;
4789
4790 case AARCH64_OPND_SHLL_IMM:
4791 case AARCH64_OPND_IMM_VLSR:
4792 po_imm_or_fail (1, 64);
4793 info->imm.value = val;
4794 break;
4795
4796 case AARCH64_OPND_CCMP_IMM:
4797 case AARCH64_OPND_FBITS:
4798 case AARCH64_OPND_UIMM4:
4799 case AARCH64_OPND_UIMM3_OP1:
4800 case AARCH64_OPND_UIMM3_OP2:
4801 case AARCH64_OPND_IMM_VLSL:
4802 case AARCH64_OPND_IMM:
4803 case AARCH64_OPND_WIDTH:
4804 po_imm_nc_or_fail ();
4805 info->imm.value = val;
4806 break;
4807
4808 case AARCH64_OPND_UIMM7:
4809 po_imm_or_fail (0, 127);
4810 info->imm.value = val;
4811 break;
4812
4813 case AARCH64_OPND_IDX:
4814 case AARCH64_OPND_BIT_NUM:
4815 case AARCH64_OPND_IMMR:
4816 case AARCH64_OPND_IMMS:
4817 po_imm_or_fail (0, 63);
4818 info->imm.value = val;
4819 break;
4820
4821 case AARCH64_OPND_IMM0:
4822 po_imm_nc_or_fail ();
4823 if (val != 0)
4824 {
4825 set_fatal_syntax_error (_("immediate zero expected"));
4826 goto failure;
4827 }
4828 info->imm.value = 0;
4829 break;
4830
4831 case AARCH64_OPND_FPIMM0:
4832 {
4833 int qfloat;
4834 bfd_boolean res1 = FALSE, res2 = FALSE;
4835 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
4836 it is probably not worth the effort to support it. */
62b0d0d5 4837 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
4838 && !(res2 = parse_constant_immediate (&str, &val)))
4839 goto failure;
4840 if ((res1 && qfloat == 0) || (res2 && val == 0))
4841 {
4842 info->imm.value = 0;
4843 info->imm.is_fp = 1;
4844 break;
4845 }
4846 set_fatal_syntax_error (_("immediate zero expected"));
4847 goto failure;
4848 }
4849
4850 case AARCH64_OPND_IMM_MOV:
4851 {
4852 char *saved = str;
8db49cc2
WN
4853 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
4854 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
4855 goto failure;
4856 str = saved;
4857 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
4858 GE_OPT_PREFIX, 1));
4859 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
4860 later. fix_mov_imm_insn will try to determine a machine
4861 instruction (MOVZ, MOVN or ORR) for it and will issue an error
4862 message if the immediate cannot be moved by a single
4863 instruction. */
4864 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4865 inst.base.operands[i].skip = 1;
4866 }
4867 break;
4868
4869 case AARCH64_OPND_SIMD_IMM:
4870 case AARCH64_OPND_SIMD_IMM_SFT:
4871 if (! parse_big_immediate (&str, &val))
4872 goto failure;
4873 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4874 /* addr_off_p */ 0,
4875 /* need_libopcodes_p */ 1,
4876 /* skip_p */ 1);
4877 /* Parse shift.
4878 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
4879 shift, we don't check it here; we leave the checking to
4880 the libopcodes (operand_general_constraint_met_p). By
4881 doing this, we achieve better diagnostics. */
4882 if (skip_past_comma (&str)
4883 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
4884 goto failure;
4885 if (!info->shifter.operator_present
4886 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
4887 {
4888 /* Default to LSL if not present. Libopcodes prefers shifter
4889 kind to be explicit. */
4890 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4891 info->shifter.kind = AARCH64_MOD_LSL;
4892 }
4893 break;
4894
4895 case AARCH64_OPND_FPIMM:
4896 case AARCH64_OPND_SIMD_FPIMM:
4897 {
4898 int qfloat;
62b0d0d5
YZ
4899 bfd_boolean dp_p
4900 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
4901 == 8);
4902 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
4903 goto failure;
4904 if (qfloat == 0)
4905 {
4906 set_fatal_syntax_error (_("invalid floating-point constant"));
4907 goto failure;
4908 }
4909 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
4910 inst.base.operands[i].imm.is_fp = 1;
4911 }
4912 break;
4913
4914 case AARCH64_OPND_LIMM:
4915 po_misc_or_fail (parse_shifter_operand (&str, info,
4916 SHIFTED_LOGIC_IMM));
4917 if (info->shifter.operator_present)
4918 {
4919 set_fatal_syntax_error
4920 (_("shift not allowed for bitmask immediate"));
4921 goto failure;
4922 }
4923 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4924 /* addr_off_p */ 0,
4925 /* need_libopcodes_p */ 1,
4926 /* skip_p */ 1);
4927 break;
4928
4929 case AARCH64_OPND_AIMM:
4930 if (opcode->op == OP_ADD)
4931 /* ADD may have relocation types. */
4932 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
4933 SHIFTED_ARITH_IMM));
4934 else
4935 po_misc_or_fail (parse_shifter_operand (&str, info,
4936 SHIFTED_ARITH_IMM));
4937 switch (inst.reloc.type)
4938 {
4939 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
4940 info->shifter.amount = 12;
4941 break;
4942 case BFD_RELOC_UNUSED:
4943 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
4944 if (info->shifter.kind != AARCH64_MOD_NONE)
4945 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
4946 inst.reloc.pc_rel = 0;
4947 break;
4948 default:
4949 break;
4950 }
4951 info->imm.value = 0;
4952 if (!info->shifter.operator_present)
4953 {
4954 /* Default to LSL if not present. Libopcodes prefers shifter
4955 kind to be explicit. */
4956 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
4957 info->shifter.kind = AARCH64_MOD_LSL;
4958 }
4959 break;
4960
4961 case AARCH64_OPND_HALF:
4962 {
4963 /* #<imm16> or relocation. */
4964 int internal_fixup_p;
4965 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
4966 if (internal_fixup_p)
4967 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
4968 skip_whitespace (str);
4969 if (skip_past_comma (&str))
4970 {
4971 /* {, LSL #<shift>} */
4972 if (! aarch64_gas_internal_fixup_p ())
4973 {
4974 set_fatal_syntax_error (_("can't mix relocation modifier "
4975 "with explicit shift"));
4976 goto failure;
4977 }
4978 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
4979 }
4980 else
4981 inst.base.operands[i].shifter.amount = 0;
4982 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
4983 inst.base.operands[i].imm.value = 0;
4984 if (! process_movw_reloc_info ())
4985 goto failure;
4986 }
4987 break;
4988
4989 case AARCH64_OPND_EXCEPTION:
4990 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
4991 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
4992 /* addr_off_p */ 0,
4993 /* need_libopcodes_p */ 0,
4994 /* skip_p */ 1);
4995 break;
4996
4997 case AARCH64_OPND_NZCV:
4998 {
4999 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5000 if (nzcv != NULL)
5001 {
5002 str += 4;
5003 info->imm.value = nzcv->value;
5004 break;
5005 }
5006 po_imm_or_fail (0, 15);
5007 info->imm.value = val;
5008 }
5009 break;
5010
5011 case AARCH64_OPND_COND:
68a64283 5012 case AARCH64_OPND_COND1:
a06ea964
NC
5013 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5014 str += 2;
5015 if (info->cond == NULL)
5016 {
5017 set_syntax_error (_("invalid condition"));
5018 goto failure;
5019 }
68a64283
YZ
5020 else if (operands[i] == AARCH64_OPND_COND1
5021 && (info->cond->value & 0xe) == 0xe)
5022 {
5023 /* Not allow AL or NV. */
5024 set_default_error ();
5025 goto failure;
5026 }
a06ea964
NC
5027 break;
5028
5029 case AARCH64_OPND_ADDR_ADRP:
5030 po_misc_or_fail (parse_adrp (&str));
5031 /* Clear the value as operand needs to be relocated. */
5032 info->imm.value = 0;
5033 break;
5034
5035 case AARCH64_OPND_ADDR_PCREL14:
5036 case AARCH64_OPND_ADDR_PCREL19:
5037 case AARCH64_OPND_ADDR_PCREL21:
5038 case AARCH64_OPND_ADDR_PCREL26:
5039 po_misc_or_fail (parse_address_reloc (&str, info));
5040 if (!info->addr.pcrel)
5041 {
5042 set_syntax_error (_("invalid pc-relative address"));
5043 goto failure;
5044 }
5045 if (inst.gen_lit_pool
5046 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5047 {
5048 /* Only permit "=value" in the literal load instructions.
5049 The literal will be generated by programmer_friendly_fixup. */
5050 set_syntax_error (_("invalid use of \"=immediate\""));
5051 goto failure;
5052 }
5053 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5054 {
5055 set_syntax_error (_("unrecognized relocation suffix"));
5056 goto failure;
5057 }
5058 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5059 {
5060 info->imm.value = inst.reloc.exp.X_add_number;
5061 inst.reloc.type = BFD_RELOC_UNUSED;
5062 }
5063 else
5064 {
5065 info->imm.value = 0;
f41aef5f
RE
5066 if (inst.reloc.type == BFD_RELOC_UNUSED)
5067 switch (opcode->iclass)
5068 {
5069 case compbranch:
5070 case condbranch:
5071 /* e.g. CBZ or B.COND */
5072 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5073 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5074 break;
5075 case testbranch:
5076 /* e.g. TBZ */
5077 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5078 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5079 break;
5080 case branch_imm:
5081 /* e.g. B or BL */
5082 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5083 inst.reloc.type =
5084 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5085 : BFD_RELOC_AARCH64_JUMP26;
5086 break;
5087 case loadlit:
5088 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5089 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5090 break;
5091 case pcreladdr:
5092 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5093 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5094 break;
5095 default:
5096 gas_assert (0);
5097 abort ();
5098 }
a06ea964
NC
5099 inst.reloc.pc_rel = 1;
5100 }
5101 break;
5102
5103 case AARCH64_OPND_ADDR_SIMPLE:
5104 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5105 /* [<Xn|SP>{, #<simm>}] */
5106 po_char_or_fail ('[');
5107 po_reg_or_fail (REG_TYPE_R64_SP);
5108 /* Accept optional ", #0". */
5109 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5110 && skip_past_char (&str, ','))
5111 {
5112 skip_past_char (&str, '#');
5113 if (! skip_past_char (&str, '0'))
5114 {
5115 set_fatal_syntax_error
5116 (_("the optional immediate offset can only be 0"));
5117 goto failure;
5118 }
5119 }
5120 po_char_or_fail (']');
5121 info->addr.base_regno = val;
5122 break;
5123
5124 case AARCH64_OPND_ADDR_REGOFF:
5125 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5126 po_misc_or_fail (parse_address (&str, info, 0));
5127 if (info->addr.pcrel || !info->addr.offset.is_reg
5128 || !info->addr.preind || info->addr.postind
5129 || info->addr.writeback)
5130 {
5131 set_syntax_error (_("invalid addressing mode"));
5132 goto failure;
5133 }
5134 if (!info->shifter.operator_present)
5135 {
5136 /* Default to LSL if not present. Libopcodes prefers shifter
5137 kind to be explicit. */
5138 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5139 info->shifter.kind = AARCH64_MOD_LSL;
5140 }
5141 /* Qualifier to be deduced by libopcodes. */
5142 break;
5143
5144 case AARCH64_OPND_ADDR_SIMM7:
5145 po_misc_or_fail (parse_address (&str, info, 0));
5146 if (info->addr.pcrel || info->addr.offset.is_reg
5147 || (!info->addr.preind && !info->addr.postind))
5148 {
5149 set_syntax_error (_("invalid addressing mode"));
5150 goto failure;
5151 }
5152 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5153 /* addr_off_p */ 1,
5154 /* need_libopcodes_p */ 1,
5155 /* skip_p */ 0);
5156 break;
5157
5158 case AARCH64_OPND_ADDR_SIMM9:
5159 case AARCH64_OPND_ADDR_SIMM9_2:
5160 po_misc_or_fail (parse_address_reloc (&str, info));
5161 if (info->addr.pcrel || info->addr.offset.is_reg
5162 || (!info->addr.preind && !info->addr.postind)
5163 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5164 && info->addr.writeback))
5165 {
5166 set_syntax_error (_("invalid addressing mode"));
5167 goto failure;
5168 }
5169 if (inst.reloc.type != BFD_RELOC_UNUSED)
5170 {
5171 set_syntax_error (_("relocation not allowed"));
5172 goto failure;
5173 }
5174 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5175 /* addr_off_p */ 1,
5176 /* need_libopcodes_p */ 1,
5177 /* skip_p */ 0);
5178 break;
5179
5180 case AARCH64_OPND_ADDR_UIMM12:
5181 po_misc_or_fail (parse_address_reloc (&str, info));
5182 if (info->addr.pcrel || info->addr.offset.is_reg
5183 || !info->addr.preind || info->addr.writeback)
5184 {
5185 set_syntax_error (_("invalid addressing mode"));
5186 goto failure;
5187 }
5188 if (inst.reloc.type == BFD_RELOC_UNUSED)
5189 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5190 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12)
5191 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5192 /* Leave qualifier to be determined by libopcodes. */
5193 break;
5194
5195 case AARCH64_OPND_SIMD_ADDR_POST:
5196 /* [<Xn|SP>], <Xm|#<amount>> */
5197 po_misc_or_fail (parse_address (&str, info, 1));
5198 if (!info->addr.postind || !info->addr.writeback)
5199 {
5200 set_syntax_error (_("invalid addressing mode"));
5201 goto failure;
5202 }
5203 if (!info->addr.offset.is_reg)
5204 {
5205 if (inst.reloc.exp.X_op == O_constant)
5206 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5207 else
5208 {
5209 set_fatal_syntax_error
5210 (_("writeback value should be an immediate constant"));
5211 goto failure;
5212 }
5213 }
5214 /* No qualifier. */
5215 break;
5216
5217 case AARCH64_OPND_SYSREG:
a203d9b7
YZ
5218 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1))
5219 == PARSE_FAIL)
a06ea964 5220 {
a203d9b7
YZ
5221 set_syntax_error (_("unknown or missing system register name"));
5222 goto failure;
a06ea964 5223 }
a203d9b7 5224 inst.base.operands[i].sysreg = val;
a06ea964
NC
5225 break;
5226
5227 case AARCH64_OPND_PSTATEFIELD:
a203d9b7 5228 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0))
a3251895 5229 == PARSE_FAIL)
a06ea964
NC
5230 {
5231 set_syntax_error (_("unknown or missing PSTATE field name"));
5232 goto failure;
5233 }
5234 inst.base.operands[i].pstatefield = val;
5235 break;
5236
5237 case AARCH64_OPND_SYSREG_IC:
5238 inst.base.operands[i].sysins_op =
5239 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5240 goto sys_reg_ins;
5241 case AARCH64_OPND_SYSREG_DC:
5242 inst.base.operands[i].sysins_op =
5243 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5244 goto sys_reg_ins;
5245 case AARCH64_OPND_SYSREG_AT:
5246 inst.base.operands[i].sysins_op =
5247 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5248 goto sys_reg_ins;
5249 case AARCH64_OPND_SYSREG_TLBI:
5250 inst.base.operands[i].sysins_op =
5251 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5252sys_reg_ins:
5253 if (inst.base.operands[i].sysins_op == NULL)
5254 {
5255 set_fatal_syntax_error ( _("unknown or missing operation name"));
5256 goto failure;
5257 }
5258 break;
5259
5260 case AARCH64_OPND_BARRIER:
5261 case AARCH64_OPND_BARRIER_ISB:
5262 val = parse_barrier (&str);
5263 if (val != PARSE_FAIL
5264 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5265 {
5266 /* ISB only accepts options name 'sy'. */
5267 set_syntax_error
5268 (_("the specified option is not accepted in ISB"));
5269 /* Turn off backtrack as this optional operand is present. */
5270 backtrack_pos = 0;
5271 goto failure;
5272 }
5273 /* This is an extension to accept a 0..15 immediate. */
5274 if (val == PARSE_FAIL)
5275 po_imm_or_fail (0, 15);
5276 info->barrier = aarch64_barrier_options + val;
5277 break;
5278
5279 case AARCH64_OPND_PRFOP:
5280 val = parse_pldop (&str);
5281 /* This is an extension to accept a 0..31 immediate. */
5282 if (val == PARSE_FAIL)
5283 po_imm_or_fail (0, 31);
5284 inst.base.operands[i].prfop = aarch64_prfops + val;
5285 break;
5286
5287 default:
5288 as_fatal (_("unhandled operand code %d"), operands[i]);
5289 }
5290
5291 /* If we get here, this operand was successfully parsed. */
5292 inst.base.operands[i].present = 1;
5293 continue;
5294
5295failure:
5296 /* The parse routine should already have set the error, but in case
5297 not, set a default one here. */
5298 if (! error_p ())
5299 set_default_error ();
5300
5301 if (! backtrack_pos)
5302 goto parse_operands_return;
5303
f4c51f60
JW
5304 {
5305 /* We reach here because this operand is marked as optional, and
5306 either no operand was supplied or the operand was supplied but it
5307 was syntactically incorrect. In the latter case we report an
5308 error. In the former case we perform a few more checks before
5309 dropping through to the code to insert the default operand. */
5310
5311 char *tmp = backtrack_pos;
5312 char endchar = END_OF_INSN;
5313
5314 if (i != (aarch64_num_of_operands (opcode) - 1))
5315 endchar = ',';
5316 skip_past_char (&tmp, ',');
5317
5318 if (*tmp != endchar)
5319 /* The user has supplied an operand in the wrong format. */
5320 goto parse_operands_return;
5321
5322 /* Make sure there is not a comma before the optional operand.
5323 For example the fifth operand of 'sys' is optional:
5324
5325 sys #0,c0,c0,#0, <--- wrong
5326 sys #0,c0,c0,#0 <--- correct. */
5327 if (comma_skipped_p && i && endchar == END_OF_INSN)
5328 {
5329 set_fatal_syntax_error
5330 (_("unexpected comma before the omitted optional operand"));
5331 goto parse_operands_return;
5332 }
5333 }
5334
a06ea964
NC
5335 /* Reaching here means we are dealing with an optional operand that is
5336 omitted from the assembly line. */
5337 gas_assert (optional_operand_p (opcode, i));
5338 info->present = 0;
5339 process_omitted_operand (operands[i], opcode, i, info);
5340
5341 /* Try again, skipping the optional operand at backtrack_pos. */
5342 str = backtrack_pos;
5343 backtrack_pos = 0;
5344
a06ea964
NC
5345 /* Clear any error record after the omitted optional operand has been
5346 successfully handled. */
5347 clear_error ();
5348 }
5349
5350 /* Check if we have parsed all the operands. */
5351 if (*str != '\0' && ! error_p ())
5352 {
5353 /* Set I to the index of the last present operand; this is
5354 for the purpose of diagnostics. */
5355 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5356 ;
5357 set_fatal_syntax_error
5358 (_("unexpected characters following instruction"));
5359 }
5360
5361parse_operands_return:
5362
5363 if (error_p ())
5364 {
5365 DEBUG_TRACE ("parsing FAIL: %s - %s",
5366 operand_mismatch_kind_names[get_error_kind ()],
5367 get_error_message ());
5368 /* Record the operand error properly; this is useful when there
5369 are multiple instruction templates for a mnemonic name, so that
5370 later on, we can select the error that most closely describes
5371 the problem. */
5372 record_operand_error (opcode, i, get_error_kind (),
5373 get_error_message ());
5374 return FALSE;
5375 }
5376 else
5377 {
5378 DEBUG_TRACE ("parsing SUCCESS");
5379 return TRUE;
5380 }
5381}
5382
5383/* It does some fix-up to provide some programmer friendly feature while
5384 keeping the libopcodes happy, i.e. libopcodes only accepts
5385 the preferred architectural syntax.
5386 Return FALSE if there is any failure; otherwise return TRUE. */
5387
5388static bfd_boolean
5389programmer_friendly_fixup (aarch64_instruction *instr)
5390{
5391 aarch64_inst *base = &instr->base;
5392 const aarch64_opcode *opcode = base->opcode;
5393 enum aarch64_op op = opcode->op;
5394 aarch64_opnd_info *operands = base->operands;
5395
5396 DEBUG_TRACE ("enter");
5397
5398 switch (opcode->iclass)
5399 {
5400 case testbranch:
5401 /* TBNZ Xn|Wn, #uimm6, label
5402 Test and Branch Not Zero: conditionally jumps to label if bit number
5403 uimm6 in register Xn is not zero. The bit number implies the width of
5404 the register, which may be written and should be disassembled as Wn if
5405 uimm is less than 32. */
5406 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5407 {
5408 if (operands[1].imm.value >= 32)
5409 {
5410 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5411 0, 31);
5412 return FALSE;
5413 }
5414 operands[0].qualifier = AARCH64_OPND_QLF_X;
5415 }
5416 break;
5417 case loadlit:
5418 /* LDR Wt, label | =value
5419 As a convenience assemblers will typically permit the notation
5420 "=value" in conjunction with the pc-relative literal load instructions
5421 to automatically place an immediate value or symbolic address in a
5422 nearby literal pool and generate a hidden label which references it.
5423 ISREG has been set to 0 in the case of =value. */
5424 if (instr->gen_lit_pool
5425 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5426 {
5427 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5428 if (op == OP_LDRSW_LIT)
5429 size = 4;
5430 if (instr->reloc.exp.X_op != O_constant
67a32447 5431 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5432 && instr->reloc.exp.X_op != O_symbol)
5433 {
5434 record_operand_error (opcode, 1,
5435 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5436 _("constant expression expected"));
5437 return FALSE;
5438 }
5439 if (! add_to_lit_pool (&instr->reloc.exp, size))
5440 {
5441 record_operand_error (opcode, 1,
5442 AARCH64_OPDE_OTHER_ERROR,
5443 _("literal pool insertion failed"));
5444 return FALSE;
5445 }
5446 }
5447 break;
a06ea964
NC
5448 case log_shift:
5449 case bitfield:
5450 /* UXT[BHW] Wd, Wn
5451 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5452 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5453 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5454 A programmer-friendly assembler should accept a destination Xd in
5455 place of Wd, however that is not the preferred form for disassembly.
5456 */
5457 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5458 && operands[1].qualifier == AARCH64_OPND_QLF_W
5459 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5460 operands[0].qualifier = AARCH64_OPND_QLF_W;
5461 break;
5462
5463 case addsub_ext:
5464 {
5465 /* In the 64-bit form, the final register operand is written as Wm
5466 for all but the (possibly omitted) UXTX/LSL and SXTX
5467 operators.
5468 As a programmer-friendly assembler, we accept e.g.
5469 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5470 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5471 int idx = aarch64_operand_index (opcode->operands,
5472 AARCH64_OPND_Rm_EXT);
5473 gas_assert (idx == 1 || idx == 2);
5474 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5475 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5476 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5477 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5478 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5479 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5480 }
5481 break;
5482
5483 default:
5484 break;
5485 }
5486
5487 DEBUG_TRACE ("exit with SUCCESS");
5488 return TRUE;
5489}
5490
5491/* A wrapper function to interface with libopcodes on encoding and
5492 record the error message if there is any.
5493
5494 Return TRUE on success; otherwise return FALSE. */
5495
5496static bfd_boolean
5497do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5498 aarch64_insn *code)
5499{
5500 aarch64_operand_error error_info;
5501 error_info.kind = AARCH64_OPDE_NIL;
5502 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5503 return TRUE;
5504 else
5505 {
5506 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5507 record_operand_error_info (opcode, &error_info);
5508 return FALSE;
5509 }
5510}
5511
5512#ifdef DEBUG_AARCH64
5513static inline void
5514dump_opcode_operands (const aarch64_opcode *opcode)
5515{
5516 int i = 0;
5517 while (opcode->operands[i] != AARCH64_OPND_NIL)
5518 {
5519 aarch64_verbose ("\t\t opnd%d: %s", i,
5520 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5521 ? aarch64_get_operand_name (opcode->operands[i])
5522 : aarch64_get_operand_desc (opcode->operands[i]));
5523 ++i;
5524 }
5525}
5526#endif /* DEBUG_AARCH64 */
5527
5528/* This is the guts of the machine-dependent assembler. STR points to a
5529 machine dependent instruction. This function is supposed to emit
5530 the frags/bytes it assembles to. */
5531
5532void
5533md_assemble (char *str)
5534{
5535 char *p = str;
5536 templates *template;
5537 aarch64_opcode *opcode;
5538 aarch64_inst *inst_base;
5539 unsigned saved_cond;
5540
5541 /* Align the previous label if needed. */
5542 if (last_label_seen != NULL)
5543 {
5544 symbol_set_frag (last_label_seen, frag_now);
5545 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
5546 S_SET_SEGMENT (last_label_seen, now_seg);
5547 }
5548
5549 inst.reloc.type = BFD_RELOC_UNUSED;
5550
5551 DEBUG_TRACE ("\n\n");
5552 DEBUG_TRACE ("==============================");
5553 DEBUG_TRACE ("Enter md_assemble with %s", str);
5554
5555 template = opcode_lookup (&p);
5556 if (!template)
5557 {
5558 /* It wasn't an instruction, but it might be a register alias of
5559 the form alias .req reg directive. */
5560 if (!create_register_alias (str, p))
5561 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
5562 str);
5563 return;
5564 }
5565
5566 skip_whitespace (p);
5567 if (*p == ',')
5568 {
5569 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
5570 get_mnemonic_name (str), str);
5571 return;
5572 }
5573
5574 init_operand_error_report ();
5575
5576 saved_cond = inst.cond;
5577 reset_aarch64_instruction (&inst);
5578 inst.cond = saved_cond;
5579
5580 /* Iterate through all opcode entries with the same mnemonic name. */
5581 do
5582 {
5583 opcode = template->opcode;
5584
5585 DEBUG_TRACE ("opcode %s found", opcode->name);
5586#ifdef DEBUG_AARCH64
5587 if (debug_dump)
5588 dump_opcode_operands (opcode);
5589#endif /* DEBUG_AARCH64 */
5590
a06ea964
NC
5591 mapping_state (MAP_INSN);
5592
5593 inst_base = &inst.base;
5594 inst_base->opcode = opcode;
5595
5596 /* Truly conditionally executed instructions, e.g. b.cond. */
5597 if (opcode->flags & F_COND)
5598 {
5599 gas_assert (inst.cond != COND_ALWAYS);
5600 inst_base->cond = get_cond_from_value (inst.cond);
5601 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
5602 }
5603 else if (inst.cond != COND_ALWAYS)
5604 {
5605 /* It shouldn't arrive here, where the assembly looks like a
5606 conditional instruction but the found opcode is unconditional. */
5607 gas_assert (0);
5608 continue;
5609 }
5610
5611 if (parse_operands (p, opcode)
5612 && programmer_friendly_fixup (&inst)
5613 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
5614 {
3f06bfce
YZ
5615 /* Check that this instruction is supported for this CPU. */
5616 if (!opcode->avariant
5617 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
5618 {
5619 as_bad (_("selected processor does not support `%s'"), str);
5620 return;
5621 }
5622
a06ea964
NC
5623 if (inst.reloc.type == BFD_RELOC_UNUSED
5624 || !inst.reloc.need_libopcodes_p)
5625 output_inst (NULL);
5626 else
5627 {
5628 /* If there is relocation generated for the instruction,
5629 store the instruction information for the future fix-up. */
5630 struct aarch64_inst *copy;
5631 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
5632 if ((copy = xmalloc (sizeof (struct aarch64_inst))) == NULL)
5633 abort ();
5634 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
5635 output_inst (copy);
5636 }
5637 return;
5638 }
5639
5640 template = template->next;
5641 if (template != NULL)
5642 {
5643 reset_aarch64_instruction (&inst);
5644 inst.cond = saved_cond;
5645 }
5646 }
5647 while (template != NULL);
5648
5649 /* Issue the error messages if any. */
5650 output_operand_error_report (str);
5651}
5652
5653/* Various frobbings of labels and their addresses. */
5654
5655void
5656aarch64_start_line_hook (void)
5657{
5658 last_label_seen = NULL;
5659}
5660
5661void
5662aarch64_frob_label (symbolS * sym)
5663{
5664 last_label_seen = sym;
5665
5666 dwarf2_emit_label (sym);
5667}
5668
5669int
5670aarch64_data_in_code (void)
5671{
5672 if (!strncmp (input_line_pointer + 1, "data:", 5))
5673 {
5674 *input_line_pointer = '/';
5675 input_line_pointer += 5;
5676 *input_line_pointer = 0;
5677 return 1;
5678 }
5679
5680 return 0;
5681}
5682
5683char *
5684aarch64_canonicalize_symbol_name (char *name)
5685{
5686 int len;
5687
5688 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
5689 *(name + len - 5) = 0;
5690
5691 return name;
5692}
5693\f
5694/* Table of all register names defined by default. The user can
5695 define additional names with .req. Note that all register names
5696 should appear in both upper and lowercase variants. Some registers
5697 also have mixed-case names. */
5698
5699#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
5700#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5701#define REGSET31(p,t) \
5702 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
5703 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
5704 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
5705 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
5706 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
5707 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
5708 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
5709 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
5710#define REGSET(p,t) \
5711 REGSET31(p,t), REGNUM(p,31,t)
5712
5713/* These go into aarch64_reg_hsh hash-table. */
5714static const reg_entry reg_names[] = {
5715 /* Integer registers. */
5716 REGSET31 (x, R_64), REGSET31 (X, R_64),
5717 REGSET31 (w, R_32), REGSET31 (W, R_32),
5718
5719 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
5720 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
5721
5722 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
5723 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
5724
5725 /* Coprocessor register numbers. */
5726 REGSET (c, CN), REGSET (C, CN),
5727
5728 /* Floating-point single precision registers. */
5729 REGSET (s, FP_S), REGSET (S, FP_S),
5730
5731 /* Floating-point double precision registers. */
5732 REGSET (d, FP_D), REGSET (D, FP_D),
5733
5734 /* Floating-point half precision registers. */
5735 REGSET (h, FP_H), REGSET (H, FP_H),
5736
5737 /* Floating-point byte precision registers. */
5738 REGSET (b, FP_B), REGSET (B, FP_B),
5739
5740 /* Floating-point quad precision registers. */
5741 REGSET (q, FP_Q), REGSET (Q, FP_Q),
5742
5743 /* FP/SIMD registers. */
5744 REGSET (v, VN), REGSET (V, VN),
5745};
5746
5747#undef REGDEF
5748#undef REGNUM
5749#undef REGSET
5750
5751#define N 1
5752#define n 0
5753#define Z 1
5754#define z 0
5755#define C 1
5756#define c 0
5757#define V 1
5758#define v 0
5759#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
5760static const asm_nzcv nzcv_names[] = {
5761 {"nzcv", B (n, z, c, v)},
5762 {"nzcV", B (n, z, c, V)},
5763 {"nzCv", B (n, z, C, v)},
5764 {"nzCV", B (n, z, C, V)},
5765 {"nZcv", B (n, Z, c, v)},
5766 {"nZcV", B (n, Z, c, V)},
5767 {"nZCv", B (n, Z, C, v)},
5768 {"nZCV", B (n, Z, C, V)},
5769 {"Nzcv", B (N, z, c, v)},
5770 {"NzcV", B (N, z, c, V)},
5771 {"NzCv", B (N, z, C, v)},
5772 {"NzCV", B (N, z, C, V)},
5773 {"NZcv", B (N, Z, c, v)},
5774 {"NZcV", B (N, Z, c, V)},
5775 {"NZCv", B (N, Z, C, v)},
5776 {"NZCV", B (N, Z, C, V)}
5777};
5778
5779#undef N
5780#undef n
5781#undef Z
5782#undef z
5783#undef C
5784#undef c
5785#undef V
5786#undef v
5787#undef B
5788\f
5789/* MD interface: bits in the object file. */
5790
5791/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
5792 for use in the a.out file, and stores them in the array pointed to by buf.
5793 This knows about the endian-ness of the target machine and does
5794 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
5795 2 (short) and 4 (long) Floating numbers are put out as a series of
5796 LITTLENUMS (shorts, here at least). */
5797
5798void
5799md_number_to_chars (char *buf, valueT val, int n)
5800{
5801 if (target_big_endian)
5802 number_to_chars_bigendian (buf, val, n);
5803 else
5804 number_to_chars_littleendian (buf, val, n);
5805}
5806
5807/* MD interface: Sections. */
5808
5809/* Estimate the size of a frag before relaxing. Assume everything fits in
5810 4 bytes. */
5811
5812int
5813md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
5814{
5815 fragp->fr_var = 4;
5816 return 4;
5817}
5818
5819/* Round up a section size to the appropriate boundary. */
5820
5821valueT
5822md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5823{
5824 return size;
5825}
5826
5827/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
5828 of an rs_align_code fragment. */
5829
5830void
5831aarch64_handle_align (fragS * fragP)
5832{
5833 /* NOP = d503201f */
5834 /* AArch64 instructions are always little-endian. */
5835 static char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
5836
5837 int bytes, fix, noop_size;
5838 char *p;
5839 const char *noop;
5840
5841 if (fragP->fr_type != rs_align_code)
5842 return;
5843
5844 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5845 p = fragP->fr_literal + fragP->fr_fix;
5846 fix = 0;
5847
5848 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
5849 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
5850
5851#ifdef OBJ_ELF
5852 gas_assert (fragP->tc_frag_data.recorded);
5853#endif
5854
5855 noop = aarch64_noop;
5856 noop_size = sizeof (aarch64_noop);
5857 fragP->fr_var = noop_size;
5858
5859 if (bytes & (noop_size - 1))
5860 {
5861 fix = bytes & (noop_size - 1);
5862#ifdef OBJ_ELF
5863 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
5864#endif
5865 memset (p, 0, fix);
5866 p += fix;
5867 bytes -= fix;
5868 }
5869
5870 while (bytes >= noop_size)
5871 {
5872 memcpy (p, noop, noop_size);
5873 p += noop_size;
5874 bytes -= noop_size;
5875 fix += noop_size;
5876 }
5877
5878 fragP->fr_fix += fix;
5879}
5880
5881/* Called from md_do_align. Used to create an alignment
5882 frag in a code section. */
5883
5884void
5885aarch64_frag_align_code (int n, int max)
5886{
5887 char *p;
5888
5889 /* We assume that there will never be a requirement
5890 to support alignments greater than x bytes. */
5891 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
5892 as_fatal (_
5893 ("alignments greater than %d bytes not supported in .text sections"),
5894 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
5895
5896 p = frag_var (rs_align_code,
5897 MAX_MEM_FOR_RS_ALIGN_CODE,
5898 1,
5899 (relax_substateT) max,
5900 (symbolS *) NULL, (offsetT) n, (char *) NULL);
5901 *p = 0;
5902}
5903
5904/* Perform target specific initialisation of a frag.
5905 Note - despite the name this initialisation is not done when the frag
5906 is created, but only when its type is assigned. A frag can be created
5907 and used a long time before its type is set, so beware of assuming that
5908 this initialisationis performed first. */
5909
5910#ifndef OBJ_ELF
5911void
5912aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
5913 int max_chars ATTRIBUTE_UNUSED)
5914{
5915}
5916
5917#else /* OBJ_ELF is defined. */
5918void
5919aarch64_init_frag (fragS * fragP, int max_chars)
5920{
5921 /* Record a mapping symbol for alignment frags. We will delete this
5922 later if the alignment ends up empty. */
5923 if (!fragP->tc_frag_data.recorded)
5924 {
5925 fragP->tc_frag_data.recorded = 1;
5926 switch (fragP->fr_type)
5927 {
5928 case rs_align:
5929 case rs_align_test:
5930 case rs_fill:
5931 mapping_state_2 (MAP_DATA, max_chars);
5932 break;
5933 case rs_align_code:
5934 mapping_state_2 (MAP_INSN, max_chars);
5935 break;
5936 default:
5937 break;
5938 }
5939 }
5940}
5941\f
5942/* Initialize the DWARF-2 unwind information for this procedure. */
5943
5944void
5945tc_aarch64_frame_initial_instructions (void)
5946{
5947 cfi_add_CFA_def_cfa (REG_SP, 0);
5948}
5949#endif /* OBJ_ELF */
5950
5951/* Convert REGNAME to a DWARF-2 register number. */
5952
5953int
5954tc_aarch64_regname_to_dw2regnum (char *regname)
5955{
5956 const reg_entry *reg = parse_reg (&regname);
5957 if (reg == NULL)
5958 return -1;
5959
5960 switch (reg->type)
5961 {
5962 case REG_TYPE_SP_32:
5963 case REG_TYPE_SP_64:
5964 case REG_TYPE_R_32:
5965 case REG_TYPE_R_64:
a2cac51c
RH
5966 return reg->number;
5967
a06ea964
NC
5968 case REG_TYPE_FP_B:
5969 case REG_TYPE_FP_H:
5970 case REG_TYPE_FP_S:
5971 case REG_TYPE_FP_D:
5972 case REG_TYPE_FP_Q:
a2cac51c
RH
5973 return reg->number + 64;
5974
a06ea964
NC
5975 default:
5976 break;
5977 }
5978 return -1;
5979}
5980
cec5225b
YZ
5981/* Implement DWARF2_ADDR_SIZE. */
5982
5983int
5984aarch64_dwarf2_addr_size (void)
5985{
5986#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5987 if (ilp32_p)
5988 return 4;
5989#endif
5990 return bfd_arch_bits_per_address (stdoutput) / 8;
5991}
5992
a06ea964
NC
5993/* MD interface: Symbol and relocation handling. */
5994
5995/* Return the address within the segment that a PC-relative fixup is
5996 relative to. For AArch64 PC-relative fixups applied to instructions
5997 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
5998
5999long
6000md_pcrel_from_section (fixS * fixP, segT seg)
6001{
6002 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6003
6004 /* If this is pc-relative and we are going to emit a relocation
6005 then we just want to put out any pipeline compensation that the linker
6006 will need. Otherwise we want to use the calculated base. */
6007 if (fixP->fx_pcrel
6008 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6009 || aarch64_force_relocation (fixP)))
6010 base = 0;
6011
6012 /* AArch64 should be consistent for all pc-relative relocations. */
6013 return base + AARCH64_PCREL_OFFSET;
6014}
6015
6016/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6017 Otherwise we have no need to default values of symbols. */
6018
6019symbolS *
6020md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6021{
6022#ifdef OBJ_ELF
6023 if (name[0] == '_' && name[1] == 'G'
6024 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6025 {
6026 if (!GOT_symbol)
6027 {
6028 if (symbol_find (name))
6029 as_bad (_("GOT already in the symbol table"));
6030
6031 GOT_symbol = symbol_new (name, undefined_section,
6032 (valueT) 0, &zero_address_frag);
6033 }
6034
6035 return GOT_symbol;
6036 }
6037#endif
6038
6039 return 0;
6040}
6041
6042/* Return non-zero if the indicated VALUE has overflowed the maximum
6043 range expressible by a unsigned number with the indicated number of
6044 BITS. */
6045
6046static bfd_boolean
6047unsigned_overflow (valueT value, unsigned bits)
6048{
6049 valueT lim;
6050 if (bits >= sizeof (valueT) * 8)
6051 return FALSE;
6052 lim = (valueT) 1 << bits;
6053 return (value >= lim);
6054}
6055
6056
6057/* Return non-zero if the indicated VALUE has overflowed the maximum
6058 range expressible by an signed number with the indicated number of
6059 BITS. */
6060
6061static bfd_boolean
6062signed_overflow (offsetT value, unsigned bits)
6063{
6064 offsetT lim;
6065 if (bits >= sizeof (offsetT) * 8)
6066 return FALSE;
6067 lim = (offsetT) 1 << (bits - 1);
6068 return (value < -lim || value >= lim);
6069}
6070
6071/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6072 unsigned immediate offset load/store instruction, try to encode it as
6073 an unscaled, 9-bit, signed immediate offset load/store instruction.
6074 Return TRUE if it is successful; otherwise return FALSE.
6075
6076 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6077 in response to the standard LDR/STR mnemonics when the immediate offset is
6078 unambiguous, i.e. when it is negative or unaligned. */
6079
6080static bfd_boolean
6081try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6082{
6083 int idx;
6084 enum aarch64_op new_op;
6085 const aarch64_opcode *new_opcode;
6086
6087 gas_assert (instr->opcode->iclass == ldst_pos);
6088
6089 switch (instr->opcode->op)
6090 {
6091 case OP_LDRB_POS:new_op = OP_LDURB; break;
6092 case OP_STRB_POS: new_op = OP_STURB; break;
6093 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6094 case OP_LDRH_POS: new_op = OP_LDURH; break;
6095 case OP_STRH_POS: new_op = OP_STURH; break;
6096 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6097 case OP_LDR_POS: new_op = OP_LDUR; break;
6098 case OP_STR_POS: new_op = OP_STUR; break;
6099 case OP_LDRF_POS: new_op = OP_LDURV; break;
6100 case OP_STRF_POS: new_op = OP_STURV; break;
6101 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6102 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6103 default: new_op = OP_NIL; break;
6104 }
6105
6106 if (new_op == OP_NIL)
6107 return FALSE;
6108
6109 new_opcode = aarch64_get_opcode (new_op);
6110 gas_assert (new_opcode != NULL);
6111
6112 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6113 instr->opcode->op, new_opcode->op);
6114
6115 aarch64_replace_opcode (instr, new_opcode);
6116
6117 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6118 qualifier matching may fail because the out-of-date qualifier will
6119 prevent the operand being updated with a new and correct qualifier. */
6120 idx = aarch64_operand_index (instr->opcode->operands,
6121 AARCH64_OPND_ADDR_SIMM9);
6122 gas_assert (idx == 1);
6123 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6124
6125 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6126
6127 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6128 return FALSE;
6129
6130 return TRUE;
6131}
6132
6133/* Called by fix_insn to fix a MOV immediate alias instruction.
6134
6135 Operand for a generic move immediate instruction, which is an alias
6136 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6137 a 32-bit/64-bit immediate value into general register. An assembler error
6138 shall result if the immediate cannot be created by a single one of these
6139 instructions. If there is a choice, then to ensure reversability an
6140 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6141
6142static void
6143fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6144{
6145 const aarch64_opcode *opcode;
6146
6147 /* Need to check if the destination is SP/ZR. The check has to be done
6148 before any aarch64_replace_opcode. */
6149 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6150 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6151
6152 instr->operands[1].imm.value = value;
6153 instr->operands[1].skip = 0;
6154
6155 if (try_mov_wide_p)
6156 {
6157 /* Try the MOVZ alias. */
6158 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6159 aarch64_replace_opcode (instr, opcode);
6160 if (aarch64_opcode_encode (instr->opcode, instr,
6161 &instr->value, NULL, NULL))
6162 {
6163 put_aarch64_insn (buf, instr->value);
6164 return;
6165 }
6166 /* Try the MOVK alias. */
6167 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6168 aarch64_replace_opcode (instr, opcode);
6169 if (aarch64_opcode_encode (instr->opcode, instr,
6170 &instr->value, NULL, NULL))
6171 {
6172 put_aarch64_insn (buf, instr->value);
6173 return;
6174 }
6175 }
6176
6177 if (try_mov_bitmask_p)
6178 {
6179 /* Try the ORR alias. */
6180 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6181 aarch64_replace_opcode (instr, opcode);
6182 if (aarch64_opcode_encode (instr->opcode, instr,
6183 &instr->value, NULL, NULL))
6184 {
6185 put_aarch64_insn (buf, instr->value);
6186 return;
6187 }
6188 }
6189
6190 as_bad_where (fixP->fx_file, fixP->fx_line,
6191 _("immediate cannot be moved by a single instruction"));
6192}
6193
6194/* An instruction operand which is immediate related may have symbol used
6195 in the assembly, e.g.
6196
6197 mov w0, u32
6198 .set u32, 0x00ffff00
6199
6200 At the time when the assembly instruction is parsed, a referenced symbol,
6201 like 'u32' in the above example may not have been seen; a fixS is created
6202 in such a case and is handled here after symbols have been resolved.
6203 Instruction is fixed up with VALUE using the information in *FIXP plus
6204 extra information in FLAGS.
6205
6206 This function is called by md_apply_fix to fix up instructions that need
6207 a fix-up described above but does not involve any linker-time relocation. */
6208
6209static void
6210fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6211{
6212 int idx;
6213 uint32_t insn;
6214 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6215 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6216 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6217
6218 if (new_inst)
6219 {
6220 /* Now the instruction is about to be fixed-up, so the operand that
6221 was previously marked as 'ignored' needs to be unmarked in order
6222 to get the encoding done properly. */
6223 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6224 new_inst->operands[idx].skip = 0;
6225 }
6226
6227 gas_assert (opnd != AARCH64_OPND_NIL);
6228
6229 switch (opnd)
6230 {
6231 case AARCH64_OPND_EXCEPTION:
6232 if (unsigned_overflow (value, 16))
6233 as_bad_where (fixP->fx_file, fixP->fx_line,
6234 _("immediate out of range"));
6235 insn = get_aarch64_insn (buf);
6236 insn |= encode_svc_imm (value);
6237 put_aarch64_insn (buf, insn);
6238 break;
6239
6240 case AARCH64_OPND_AIMM:
6241 /* ADD or SUB with immediate.
6242 NOTE this assumes we come here with a add/sub shifted reg encoding
6243 3 322|2222|2 2 2 21111 111111
6244 1 098|7654|3 2 1 09876 543210 98765 43210
6245 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6246 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6247 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6248 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6249 ->
6250 3 322|2222|2 2 221111111111
6251 1 098|7654|3 2 109876543210 98765 43210
6252 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6253 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6254 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6255 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6256 Fields sf Rn Rd are already set. */
6257 insn = get_aarch64_insn (buf);
6258 if (value < 0)
6259 {
6260 /* Add <-> sub. */
6261 insn = reencode_addsub_switch_add_sub (insn);
6262 value = -value;
6263 }
6264
6265 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6266 && unsigned_overflow (value, 12))
6267 {
6268 /* Try to shift the value by 12 to make it fit. */
6269 if (((value >> 12) << 12) == value
6270 && ! unsigned_overflow (value, 12 + 12))
6271 {
6272 value >>= 12;
6273 insn |= encode_addsub_imm_shift_amount (1);
6274 }
6275 }
6276
6277 if (unsigned_overflow (value, 12))
6278 as_bad_where (fixP->fx_file, fixP->fx_line,
6279 _("immediate out of range"));
6280
6281 insn |= encode_addsub_imm (value);
6282
6283 put_aarch64_insn (buf, insn);
6284 break;
6285
6286 case AARCH64_OPND_SIMD_IMM:
6287 case AARCH64_OPND_SIMD_IMM_SFT:
6288 case AARCH64_OPND_LIMM:
6289 /* Bit mask immediate. */
6290 gas_assert (new_inst != NULL);
6291 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6292 new_inst->operands[idx].imm.value = value;
6293 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6294 &new_inst->value, NULL, NULL))
6295 put_aarch64_insn (buf, new_inst->value);
6296 else
6297 as_bad_where (fixP->fx_file, fixP->fx_line,
6298 _("invalid immediate"));
6299 break;
6300
6301 case AARCH64_OPND_HALF:
6302 /* 16-bit unsigned immediate. */
6303 if (unsigned_overflow (value, 16))
6304 as_bad_where (fixP->fx_file, fixP->fx_line,
6305 _("immediate out of range"));
6306 insn = get_aarch64_insn (buf);
6307 insn |= encode_movw_imm (value & 0xffff);
6308 put_aarch64_insn (buf, insn);
6309 break;
6310
6311 case AARCH64_OPND_IMM_MOV:
6312 /* Operand for a generic move immediate instruction, which is
6313 an alias instruction that generates a single MOVZ, MOVN or ORR
6314 instruction to loads a 32-bit/64-bit immediate value into general
6315 register. An assembler error shall result if the immediate cannot be
6316 created by a single one of these instructions. If there is a choice,
6317 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6318 and MOVZ or MOVN to ORR. */
6319 gas_assert (new_inst != NULL);
6320 fix_mov_imm_insn (fixP, buf, new_inst, value);
6321 break;
6322
6323 case AARCH64_OPND_ADDR_SIMM7:
6324 case AARCH64_OPND_ADDR_SIMM9:
6325 case AARCH64_OPND_ADDR_SIMM9_2:
6326 case AARCH64_OPND_ADDR_UIMM12:
6327 /* Immediate offset in an address. */
6328 insn = get_aarch64_insn (buf);
6329
6330 gas_assert (new_inst != NULL && new_inst->value == insn);
6331 gas_assert (new_inst->opcode->operands[1] == opnd
6332 || new_inst->opcode->operands[2] == opnd);
6333
6334 /* Get the index of the address operand. */
6335 if (new_inst->opcode->operands[1] == opnd)
6336 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6337 idx = 1;
6338 else
6339 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6340 idx = 2;
6341
6342 /* Update the resolved offset value. */
6343 new_inst->operands[idx].addr.offset.imm = value;
6344
6345 /* Encode/fix-up. */
6346 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6347 &new_inst->value, NULL, NULL))
6348 {
6349 put_aarch64_insn (buf, new_inst->value);
6350 break;
6351 }
6352 else if (new_inst->opcode->iclass == ldst_pos
6353 && try_to_encode_as_unscaled_ldst (new_inst))
6354 {
6355 put_aarch64_insn (buf, new_inst->value);
6356 break;
6357 }
6358
6359 as_bad_where (fixP->fx_file, fixP->fx_line,
6360 _("immediate offset out of range"));
6361 break;
6362
6363 default:
6364 gas_assert (0);
6365 as_fatal (_("unhandled operand code %d"), opnd);
6366 }
6367}
6368
6369/* Apply a fixup (fixP) to segment data, once it has been determined
6370 by our caller that we have all the info we need to fix it up.
6371
6372 Parameter valP is the pointer to the value of the bits. */
6373
6374void
6375md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6376{
6377 offsetT value = *valP;
6378 uint32_t insn;
6379 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6380 int scale;
6381 unsigned flags = fixP->fx_addnumber;
6382
6383 DEBUG_TRACE ("\n\n");
6384 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6385 DEBUG_TRACE ("Enter md_apply_fix");
6386
6387 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6388
6389 /* Note whether this will delete the relocation. */
6390
6391 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6392 fixP->fx_done = 1;
6393
6394 /* Process the relocations. */
6395 switch (fixP->fx_r_type)
6396 {
6397 case BFD_RELOC_NONE:
6398 /* This will need to go in the object file. */
6399 fixP->fx_done = 0;
6400 break;
6401
6402 case BFD_RELOC_8:
6403 case BFD_RELOC_8_PCREL:
6404 if (fixP->fx_done || !seg->use_rela_p)
6405 md_number_to_chars (buf, value, 1);
6406 break;
6407
6408 case BFD_RELOC_16:
6409 case BFD_RELOC_16_PCREL:
6410 if (fixP->fx_done || !seg->use_rela_p)
6411 md_number_to_chars (buf, value, 2);
6412 break;
6413
6414 case BFD_RELOC_32:
6415 case BFD_RELOC_32_PCREL:
6416 if (fixP->fx_done || !seg->use_rela_p)
6417 md_number_to_chars (buf, value, 4);
6418 break;
6419
6420 case BFD_RELOC_64:
6421 case BFD_RELOC_64_PCREL:
6422 if (fixP->fx_done || !seg->use_rela_p)
6423 md_number_to_chars (buf, value, 8);
6424 break;
6425
6426 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6427 /* We claim that these fixups have been processed here, even if
6428 in fact we generate an error because we do not have a reloc
6429 for them, so tc_gen_reloc() will reject them. */
6430 fixP->fx_done = 1;
6431 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6432 {
6433 as_bad_where (fixP->fx_file, fixP->fx_line,
6434 _("undefined symbol %s used as an immediate value"),
6435 S_GET_NAME (fixP->fx_addsy));
6436 goto apply_fix_return;
6437 }
6438 fix_insn (fixP, flags, value);
6439 break;
6440
6441 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6442 if (fixP->fx_done || !seg->use_rela_p)
6443 {
89d2a2a3
MS
6444 if (value & 3)
6445 as_bad_where (fixP->fx_file, fixP->fx_line,
6446 _("pc-relative load offset not word aligned"));
6447 if (signed_overflow (value, 21))
6448 as_bad_where (fixP->fx_file, fixP->fx_line,
6449 _("pc-relative load offset out of range"));
a06ea964
NC
6450 insn = get_aarch64_insn (buf);
6451 insn |= encode_ld_lit_ofs_19 (value >> 2);
6452 put_aarch64_insn (buf, insn);
6453 }
6454 break;
6455
6456 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6457 if (fixP->fx_done || !seg->use_rela_p)
6458 {
89d2a2a3
MS
6459 if (signed_overflow (value, 21))
6460 as_bad_where (fixP->fx_file, fixP->fx_line,
6461 _("pc-relative address offset out of range"));
a06ea964
NC
6462 insn = get_aarch64_insn (buf);
6463 insn |= encode_adr_imm (value);
6464 put_aarch64_insn (buf, insn);
6465 }
6466 break;
6467
6468 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6469 if (fixP->fx_done || !seg->use_rela_p)
6470 {
89d2a2a3
MS
6471 if (value & 3)
6472 as_bad_where (fixP->fx_file, fixP->fx_line,
6473 _("conditional branch target not word aligned"));
6474 if (signed_overflow (value, 21))
6475 as_bad_where (fixP->fx_file, fixP->fx_line,
6476 _("conditional branch out of range"));
a06ea964
NC
6477 insn = get_aarch64_insn (buf);
6478 insn |= encode_cond_branch_ofs_19 (value >> 2);
6479 put_aarch64_insn (buf, insn);
6480 }
6481 break;
6482
6483 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6484 if (fixP->fx_done || !seg->use_rela_p)
6485 {
89d2a2a3
MS
6486 if (value & 3)
6487 as_bad_where (fixP->fx_file, fixP->fx_line,
6488 _("conditional branch target not word aligned"));
6489 if (signed_overflow (value, 16))
6490 as_bad_where (fixP->fx_file, fixP->fx_line,
6491 _("conditional branch out of range"));
a06ea964
NC
6492 insn = get_aarch64_insn (buf);
6493 insn |= encode_tst_branch_ofs_14 (value >> 2);
6494 put_aarch64_insn (buf, insn);
6495 }
6496 break;
6497
6498 case BFD_RELOC_AARCH64_JUMP26:
6499 case BFD_RELOC_AARCH64_CALL26:
a06ea964
NC
6500 if (fixP->fx_done || !seg->use_rela_p)
6501 {
89d2a2a3
MS
6502 if (value & 3)
6503 as_bad_where (fixP->fx_file, fixP->fx_line,
6504 _("branch target not word aligned"));
6505 if (signed_overflow (value, 28))
6506 as_bad_where (fixP->fx_file, fixP->fx_line,
6507 _("branch out of range"));
a06ea964
NC
6508 insn = get_aarch64_insn (buf);
6509 insn |= encode_branch_ofs_26 (value >> 2);
6510 put_aarch64_insn (buf, insn);
6511 }
6512 break;
6513
6514 case BFD_RELOC_AARCH64_MOVW_G0:
6515 case BFD_RELOC_AARCH64_MOVW_G0_S:
6516 case BFD_RELOC_AARCH64_MOVW_G0_NC:
6517 scale = 0;
6518 goto movw_common;
6519 case BFD_RELOC_AARCH64_MOVW_G1:
6520 case BFD_RELOC_AARCH64_MOVW_G1_S:
6521 case BFD_RELOC_AARCH64_MOVW_G1_NC:
6522 scale = 16;
6523 goto movw_common;
6524 case BFD_RELOC_AARCH64_MOVW_G2:
6525 case BFD_RELOC_AARCH64_MOVW_G2_S:
6526 case BFD_RELOC_AARCH64_MOVW_G2_NC:
6527 scale = 32;
6528 goto movw_common;
6529 case BFD_RELOC_AARCH64_MOVW_G3:
6530 scale = 48;
6531 movw_common:
6532 if (fixP->fx_done || !seg->use_rela_p)
6533 {
6534 insn = get_aarch64_insn (buf);
6535
6536 if (!fixP->fx_done)
6537 {
6538 /* REL signed addend must fit in 16 bits */
6539 if (signed_overflow (value, 16))
6540 as_bad_where (fixP->fx_file, fixP->fx_line,
6541 _("offset out of range"));
6542 }
6543 else
6544 {
6545 /* Check for overflow and scale. */
6546 switch (fixP->fx_r_type)
6547 {
6548 case BFD_RELOC_AARCH64_MOVW_G0:
6549 case BFD_RELOC_AARCH64_MOVW_G1:
6550 case BFD_RELOC_AARCH64_MOVW_G2:
6551 case BFD_RELOC_AARCH64_MOVW_G3:
6552 if (unsigned_overflow (value, scale + 16))
6553 as_bad_where (fixP->fx_file, fixP->fx_line,
6554 _("unsigned value out of range"));
6555 break;
6556 case BFD_RELOC_AARCH64_MOVW_G0_S:
6557 case BFD_RELOC_AARCH64_MOVW_G1_S:
6558 case BFD_RELOC_AARCH64_MOVW_G2_S:
6559 /* NOTE: We can only come here with movz or movn. */
6560 if (signed_overflow (value, scale + 16))
6561 as_bad_where (fixP->fx_file, fixP->fx_line,
6562 _("signed value out of range"));
6563 if (value < 0)
6564 {
6565 /* Force use of MOVN. */
6566 value = ~value;
6567 insn = reencode_movzn_to_movn (insn);
6568 }
6569 else
6570 {
6571 /* Force use of MOVZ. */
6572 insn = reencode_movzn_to_movz (insn);
6573 }
6574 break;
6575 default:
6576 /* Unchecked relocations. */
6577 break;
6578 }
6579 value >>= scale;
6580 }
6581
6582 /* Insert value into MOVN/MOVZ/MOVK instruction. */
6583 insn |= encode_movw_imm (value & 0xffff);
6584
6585 put_aarch64_insn (buf, insn);
6586 }
6587 break;
6588
a6bb11b2
YZ
6589 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6590 fixP->fx_r_type = (ilp32_p
6591 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
6592 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
6593 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6594 /* Should always be exported to object file, see
6595 aarch64_force_relocation(). */
6596 gas_assert (!fixP->fx_done);
6597 gas_assert (seg->use_rela_p);
6598 break;
6599
6600 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6601 fixP->fx_r_type = (ilp32_p
6602 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
6603 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
6604 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6605 /* Should always be exported to object file, see
6606 aarch64_force_relocation(). */
6607 gas_assert (!fixP->fx_done);
6608 gas_assert (seg->use_rela_p);
6609 break;
6610
2c0a3565
MS
6611 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6612 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6613 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6614 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a06ea964 6615 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6616 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a06ea964 6617 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6618 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6619 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a06ea964 6620 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6621 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6622 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6623 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6624 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6625 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6626 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6627 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6628 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6629 /* Should always be exported to object file, see
6630 aarch64_force_relocation(). */
6631 gas_assert (!fixP->fx_done);
6632 gas_assert (seg->use_rela_p);
6633 break;
6634
a6bb11b2
YZ
6635 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6636 /* Should always be exported to object file, see
6637 aarch64_force_relocation(). */
6638 fixP->fx_r_type = (ilp32_p
6639 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
6640 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
6641 gas_assert (!fixP->fx_done);
6642 gas_assert (seg->use_rela_p);
6643 break;
6644
a06ea964
NC
6645 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6646 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6647 case BFD_RELOC_AARCH64_ADD_LO12:
6648 case BFD_RELOC_AARCH64_LDST8_LO12:
6649 case BFD_RELOC_AARCH64_LDST16_LO12:
6650 case BFD_RELOC_AARCH64_LDST32_LO12:
6651 case BFD_RELOC_AARCH64_LDST64_LO12:
6652 case BFD_RELOC_AARCH64_LDST128_LO12:
f41aef5f 6653 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
a06ea964
NC
6654 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6655 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
a6bb11b2 6656 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
a06ea964
NC
6657 /* Should always be exported to object file, see
6658 aarch64_force_relocation(). */
6659 gas_assert (!fixP->fx_done);
6660 gas_assert (seg->use_rela_p);
6661 break;
6662
6663 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6664 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6665 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6666 break;
6667
b97e87cc
NC
6668 case BFD_RELOC_UNUSED:
6669 /* An error will already have been reported. */
6670 break;
6671
a06ea964
NC
6672 default:
6673 as_bad_where (fixP->fx_file, fixP->fx_line,
6674 _("unexpected %s fixup"),
6675 bfd_get_reloc_code_name (fixP->fx_r_type));
6676 break;
6677 }
6678
6679apply_fix_return:
6680 /* Free the allocated the struct aarch64_inst.
6681 N.B. currently there are very limited number of fix-up types actually use
6682 this field, so the impact on the performance should be minimal . */
6683 if (fixP->tc_fix_data.inst != NULL)
6684 free (fixP->tc_fix_data.inst);
6685
6686 return;
6687}
6688
6689/* Translate internal representation of relocation info to BFD target
6690 format. */
6691
6692arelent *
6693tc_gen_reloc (asection * section, fixS * fixp)
6694{
6695 arelent *reloc;
6696 bfd_reloc_code_real_type code;
6697
6698 reloc = xmalloc (sizeof (arelent));
6699
6700 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
6701 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6702 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6703
6704 if (fixp->fx_pcrel)
6705 {
6706 if (section->use_rela_p)
6707 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
6708 else
6709 fixp->fx_offset = reloc->address;
6710 }
6711 reloc->addend = fixp->fx_offset;
6712
6713 code = fixp->fx_r_type;
6714 switch (code)
6715 {
6716 case BFD_RELOC_16:
6717 if (fixp->fx_pcrel)
6718 code = BFD_RELOC_16_PCREL;
6719 break;
6720
6721 case BFD_RELOC_32:
6722 if (fixp->fx_pcrel)
6723 code = BFD_RELOC_32_PCREL;
6724 break;
6725
6726 case BFD_RELOC_64:
6727 if (fixp->fx_pcrel)
6728 code = BFD_RELOC_64_PCREL;
6729 break;
6730
6731 default:
6732 break;
6733 }
6734
6735 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6736 if (reloc->howto == NULL)
6737 {
6738 as_bad_where (fixp->fx_file, fixp->fx_line,
6739 _
6740 ("cannot represent %s relocation in this object file format"),
6741 bfd_get_reloc_code_name (code));
6742 return NULL;
6743 }
6744
6745 return reloc;
6746}
6747
6748/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6749
6750void
6751cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
6752{
6753 bfd_reloc_code_real_type type;
6754 int pcrel = 0;
6755
6756 /* Pick a reloc.
6757 FIXME: @@ Should look at CPU word size. */
6758 switch (size)
6759 {
6760 case 1:
6761 type = BFD_RELOC_8;
6762 break;
6763 case 2:
6764 type = BFD_RELOC_16;
6765 break;
6766 case 4:
6767 type = BFD_RELOC_32;
6768 break;
6769 case 8:
6770 type = BFD_RELOC_64;
6771 break;
6772 default:
6773 as_bad (_("cannot do %u-byte relocation"), size);
6774 type = BFD_RELOC_UNUSED;
6775 break;
6776 }
6777
6778 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
6779}
6780
6781int
6782aarch64_force_relocation (struct fix *fixp)
6783{
6784 switch (fixp->fx_r_type)
6785 {
6786 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6787 /* Perform these "immediate" internal relocations
6788 even if the symbol is extern or weak. */
6789 return 0;
6790
a6bb11b2
YZ
6791 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
6792 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
6793 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
6794 /* Pseudo relocs that need to be fixed up according to
6795 ilp32_p. */
6796 return 0;
6797
2c0a3565
MS
6798 case BFD_RELOC_AARCH64_ADD_LO12:
6799 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
6800 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
6801 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
6802 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
6803 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
6804 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
6805 case BFD_RELOC_AARCH64_LDST128_LO12:
6806 case BFD_RELOC_AARCH64_LDST16_LO12:
6807 case BFD_RELOC_AARCH64_LDST32_LO12:
6808 case BFD_RELOC_AARCH64_LDST64_LO12:
6809 case BFD_RELOC_AARCH64_LDST8_LO12:
6810 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
6811 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6812 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6813 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
a06ea964 6814 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 6815 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
a06ea964 6816 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 6817 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 6818 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
a06ea964 6819 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 6820 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 6821 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
6822 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6823 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
6824 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6825 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6826 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
6827 /* Always leave these relocations for the linker. */
6828 return 1;
6829
6830 default:
6831 break;
6832 }
6833
6834 return generic_force_reloc (fixp);
6835}
6836
6837#ifdef OBJ_ELF
6838
6839const char *
6840elf64_aarch64_target_format (void)
6841{
6842 if (target_big_endian)
cec5225b 6843 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 6844 else
cec5225b 6845 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
6846}
6847
6848void
6849aarch64elf_frob_symbol (symbolS * symp, int *puntp)
6850{
6851 elf_frob_symbol (symp, puntp);
6852}
6853#endif
6854
6855/* MD interface: Finalization. */
6856
6857/* A good place to do this, although this was probably not intended
6858 for this kind of use. We need to dump the literal pool before
6859 references are made to a null symbol pointer. */
6860
6861void
6862aarch64_cleanup (void)
6863{
6864 literal_pool *pool;
6865
6866 for (pool = list_of_pools; pool; pool = pool->next)
6867 {
6868 /* Put it at the end of the relevant section. */
6869 subseg_set (pool->section, pool->sub_section);
6870 s_ltorg (0);
6871 }
6872}
6873
6874#ifdef OBJ_ELF
6875/* Remove any excess mapping symbols generated for alignment frags in
6876 SEC. We may have created a mapping symbol before a zero byte
6877 alignment; remove it if there's a mapping symbol after the
6878 alignment. */
6879static void
6880check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
6881 void *dummy ATTRIBUTE_UNUSED)
6882{
6883 segment_info_type *seginfo = seg_info (sec);
6884 fragS *fragp;
6885
6886 if (seginfo == NULL || seginfo->frchainP == NULL)
6887 return;
6888
6889 for (fragp = seginfo->frchainP->frch_root;
6890 fragp != NULL; fragp = fragp->fr_next)
6891 {
6892 symbolS *sym = fragp->tc_frag_data.last_map;
6893 fragS *next = fragp->fr_next;
6894
6895 /* Variable-sized frags have been converted to fixed size by
6896 this point. But if this was variable-sized to start with,
6897 there will be a fixed-size frag after it. So don't handle
6898 next == NULL. */
6899 if (sym == NULL || next == NULL)
6900 continue;
6901
6902 if (S_GET_VALUE (sym) < next->fr_address)
6903 /* Not at the end of this frag. */
6904 continue;
6905 know (S_GET_VALUE (sym) == next->fr_address);
6906
6907 do
6908 {
6909 if (next->tc_frag_data.first_map != NULL)
6910 {
6911 /* Next frag starts with a mapping symbol. Discard this
6912 one. */
6913 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
6914 break;
6915 }
6916
6917 if (next->fr_next == NULL)
6918 {
6919 /* This mapping symbol is at the end of the section. Discard
6920 it. */
6921 know (next->fr_fix == 0 && next->fr_var == 0);
6922 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
6923 break;
6924 }
6925
6926 /* As long as we have empty frags without any mapping symbols,
6927 keep looking. */
6928 /* If the next frag is non-empty and does not start with a
6929 mapping symbol, then this mapping symbol is required. */
6930 if (next->fr_address != next->fr_next->fr_address)
6931 break;
6932
6933 next = next->fr_next;
6934 }
6935 while (next != NULL);
6936 }
6937}
6938#endif
6939
6940/* Adjust the symbol table. */
6941
6942void
6943aarch64_adjust_symtab (void)
6944{
6945#ifdef OBJ_ELF
6946 /* Remove any overlapping mapping symbols generated by alignment frags. */
6947 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
6948 /* Now do generic ELF adjustments. */
6949 elf_adjust_symtab ();
6950#endif
6951}
6952
6953static void
6954checked_hash_insert (struct hash_control *table, const char *key, void *value)
6955{
6956 const char *hash_err;
6957
6958 hash_err = hash_insert (table, key, value);
6959 if (hash_err)
6960 printf ("Internal Error: Can't hash %s\n", key);
6961}
6962
6963static void
6964fill_instruction_hash_table (void)
6965{
6966 aarch64_opcode *opcode = aarch64_opcode_table;
6967
6968 while (opcode->name != NULL)
6969 {
6970 templates *templ, *new_templ;
6971 templ = hash_find (aarch64_ops_hsh, opcode->name);
6972
6973 new_templ = (templates *) xmalloc (sizeof (templates));
6974 new_templ->opcode = opcode;
6975 new_templ->next = NULL;
6976
6977 if (!templ)
6978 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
6979 else
6980 {
6981 new_templ->next = templ->next;
6982 templ->next = new_templ;
6983 }
6984 ++opcode;
6985 }
6986}
6987
6988static inline void
6989convert_to_upper (char *dst, const char *src, size_t num)
6990{
6991 unsigned int i;
6992 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
6993 *dst = TOUPPER (*src);
6994 *dst = '\0';
6995}
6996
6997/* Assume STR point to a lower-case string, allocate, convert and return
6998 the corresponding upper-case string. */
6999static inline const char*
7000get_upper_str (const char *str)
7001{
7002 char *ret;
7003 size_t len = strlen (str);
7004 if ((ret = xmalloc (len + 1)) == NULL)
7005 abort ();
7006 convert_to_upper (ret, str, len);
7007 return ret;
7008}
7009
7010/* MD interface: Initialization. */
7011
7012void
7013md_begin (void)
7014{
7015 unsigned mach;
7016 unsigned int i;
7017
7018 if ((aarch64_ops_hsh = hash_new ()) == NULL
7019 || (aarch64_cond_hsh = hash_new ()) == NULL
7020 || (aarch64_shift_hsh = hash_new ()) == NULL
7021 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7022 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7023 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7024 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7025 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7026 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7027 || (aarch64_reg_hsh = hash_new ()) == NULL
7028 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7029 || (aarch64_nzcv_hsh = hash_new ()) == NULL
7030 || (aarch64_pldop_hsh = hash_new ()) == NULL)
7031 as_fatal (_("virtual memory exhausted"));
7032
7033 fill_instruction_hash_table ();
7034
7035 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7036 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7037 (void *) (aarch64_sys_regs + i));
7038
7039 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7040 checked_hash_insert (aarch64_pstatefield_hsh,
7041 aarch64_pstatefields[i].name,
7042 (void *) (aarch64_pstatefields + i));
7043
7044 for (i = 0; aarch64_sys_regs_ic[i].template != NULL; i++)
7045 checked_hash_insert (aarch64_sys_regs_ic_hsh,
7046 aarch64_sys_regs_ic[i].template,
7047 (void *) (aarch64_sys_regs_ic + i));
7048
7049 for (i = 0; aarch64_sys_regs_dc[i].template != NULL; i++)
7050 checked_hash_insert (aarch64_sys_regs_dc_hsh,
7051 aarch64_sys_regs_dc[i].template,
7052 (void *) (aarch64_sys_regs_dc + i));
7053
7054 for (i = 0; aarch64_sys_regs_at[i].template != NULL; i++)
7055 checked_hash_insert (aarch64_sys_regs_at_hsh,
7056 aarch64_sys_regs_at[i].template,
7057 (void *) (aarch64_sys_regs_at + i));
7058
7059 for (i = 0; aarch64_sys_regs_tlbi[i].template != NULL; i++)
7060 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
7061 aarch64_sys_regs_tlbi[i].template,
7062 (void *) (aarch64_sys_regs_tlbi + i));
7063
7064 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7065 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7066 (void *) (reg_names + i));
7067
7068 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7069 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7070 (void *) (nzcv_names + i));
7071
7072 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7073 {
7074 const char *name = aarch64_operand_modifiers[i].name;
7075 checked_hash_insert (aarch64_shift_hsh, name,
7076 (void *) (aarch64_operand_modifiers + i));
7077 /* Also hash the name in the upper case. */
7078 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7079 (void *) (aarch64_operand_modifiers + i));
7080 }
7081
7082 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7083 {
7084 unsigned int j;
7085 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7086 the same condition code. */
7087 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7088 {
7089 const char *name = aarch64_conds[i].names[j];
7090 if (name == NULL)
7091 break;
7092 checked_hash_insert (aarch64_cond_hsh, name,
7093 (void *) (aarch64_conds + i));
7094 /* Also hash the name in the upper case. */
7095 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7096 (void *) (aarch64_conds + i));
7097 }
7098 }
7099
7100 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7101 {
7102 const char *name = aarch64_barrier_options[i].name;
7103 /* Skip xx00 - the unallocated values of option. */
7104 if ((i & 0x3) == 0)
7105 continue;
7106 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7107 (void *) (aarch64_barrier_options + i));
7108 /* Also hash the name in the upper case. */
7109 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7110 (void *) (aarch64_barrier_options + i));
7111 }
7112
7113 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7114 {
7115 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7116 /* Skip the unallocated hint encodings. */
7117 if (name == NULL)
a06ea964
NC
7118 continue;
7119 checked_hash_insert (aarch64_pldop_hsh, name,
7120 (void *) (aarch64_prfops + i));
7121 /* Also hash the name in the upper case. */
7122 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7123 (void *) (aarch64_prfops + i));
7124 }
7125
7126 /* Set the cpu variant based on the command-line options. */
7127 if (!mcpu_cpu_opt)
7128 mcpu_cpu_opt = march_cpu_opt;
7129
7130 if (!mcpu_cpu_opt)
7131 mcpu_cpu_opt = &cpu_default;
7132
7133 cpu_variant = *mcpu_cpu_opt;
7134
7135 /* Record the CPU type. */
cec5225b 7136 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7137
7138 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7139}
7140
7141/* Command line processing. */
7142
7143const char *md_shortopts = "m:";
7144
7145#ifdef AARCH64_BI_ENDIAN
7146#define OPTION_EB (OPTION_MD_BASE + 0)
7147#define OPTION_EL (OPTION_MD_BASE + 1)
7148#else
7149#if TARGET_BYTES_BIG_ENDIAN
7150#define OPTION_EB (OPTION_MD_BASE + 0)
7151#else
7152#define OPTION_EL (OPTION_MD_BASE + 1)
7153#endif
7154#endif
7155
7156struct option md_longopts[] = {
7157#ifdef OPTION_EB
7158 {"EB", no_argument, NULL, OPTION_EB},
7159#endif
7160#ifdef OPTION_EL
7161 {"EL", no_argument, NULL, OPTION_EL},
7162#endif
7163 {NULL, no_argument, NULL, 0}
7164};
7165
7166size_t md_longopts_size = sizeof (md_longopts);
7167
7168struct aarch64_option_table
7169{
7170 char *option; /* Option name to match. */
7171 char *help; /* Help information. */
7172 int *var; /* Variable to change. */
7173 int value; /* What to change it to. */
7174 char *deprecated; /* If non-null, print this message. */
7175};
7176
7177static struct aarch64_option_table aarch64_opts[] = {
7178 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7179 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7180 NULL},
7181#ifdef DEBUG_AARCH64
7182 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7183#endif /* DEBUG_AARCH64 */
7184 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7185 NULL},
a52e6fd3
YZ
7186 {"mno-verbose-error", N_("do not output verbose error messages"),
7187 &verbose_error_p, 0, NULL},
a06ea964
NC
7188 {NULL, NULL, NULL, 0, NULL}
7189};
7190
7191struct aarch64_cpu_option_table
7192{
7193 char *name;
7194 const aarch64_feature_set value;
7195 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7196 case. */
7197 const char *canonical_name;
7198};
7199
7200/* This list should, at a minimum, contain all the cpu names
7201 recognized by GCC. */
7202static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7203 {"all", AARCH64_ANY, NULL},
95830fd1
YZ
7204 {"cortex-a53", AARCH64_ARCH_V8, "Cortex-A53"},
7205 {"cortex-a57", AARCH64_ARCH_V8, "Cortex-A57"},
55fbd992 7206 {"thunderx", AARCH64_ARCH_V8, "Cavium ThunderX"},
9877c63c 7207 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
a06ea964
NC
7208 {"generic", AARCH64_ARCH_V8, NULL},
7209
7210 /* These two are example CPUs supported in GCC, once we have real
7211 CPUs they will be removed. */
7212 {"example-1", AARCH64_ARCH_V8, NULL},
7213 {"example-2", AARCH64_ARCH_V8, NULL},
7214
7215 {NULL, AARCH64_ARCH_NONE, NULL}
7216};
7217
7218struct aarch64_arch_option_table
7219{
7220 char *name;
7221 const aarch64_feature_set value;
7222};
7223
7224/* This list should, at a minimum, contain all the architecture names
7225 recognized by GCC. */
7226static const struct aarch64_arch_option_table aarch64_archs[] = {
7227 {"all", AARCH64_ANY},
5a1ad39d 7228 {"armv8-a", AARCH64_ARCH_V8},
a06ea964
NC
7229 {NULL, AARCH64_ARCH_NONE}
7230};
7231
7232/* ISA extensions. */
7233struct aarch64_option_cpu_value_table
7234{
7235 char *name;
7236 const aarch64_feature_set value;
7237};
7238
7239static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7240 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7241 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7242 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7243 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964
NC
7244 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
7245 {NULL, AARCH64_ARCH_NONE}
7246};
7247
7248struct aarch64_long_option_table
7249{
7250 char *option; /* Substring to match. */
7251 char *help; /* Help information. */
7252 int (*func) (char *subopt); /* Function to decode sub-option. */
7253 char *deprecated; /* If non-null, print this message. */
7254};
7255
7256static int
7257aarch64_parse_features (char *str, const aarch64_feature_set **opt_p)
7258{
7259 /* We insist on extensions being added before being removed. We achieve
7260 this by using the ADDING_VALUE variable to indicate whether we are
7261 adding an extension (1) or removing it (0) and only allowing it to
7262 change in the order -1 -> 1 -> 0. */
7263 int adding_value = -1;
7264 aarch64_feature_set *ext_set = xmalloc (sizeof (aarch64_feature_set));
7265
7266 /* Copy the feature set, so that we can modify it. */
7267 *ext_set = **opt_p;
7268 *opt_p = ext_set;
7269
7270 while (str != NULL && *str != 0)
7271 {
7272 const struct aarch64_option_cpu_value_table *opt;
7273 char *ext;
7274 int optlen;
7275
7276 if (*str != '+')
7277 {
7278 as_bad (_("invalid architectural extension"));
7279 return 0;
7280 }
7281
7282 str++;
7283 ext = strchr (str, '+');
7284
7285 if (ext != NULL)
7286 optlen = ext - str;
7287 else
7288 optlen = strlen (str);
7289
7290 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7291 {
7292 if (adding_value != 0)
7293 adding_value = 0;
7294 optlen -= 2;
7295 str += 2;
7296 }
7297 else if (optlen > 0)
7298 {
7299 if (adding_value == -1)
7300 adding_value = 1;
7301 else if (adding_value != 1)
7302 {
7303 as_bad (_("must specify extensions to add before specifying "
7304 "those to remove"));
7305 return FALSE;
7306 }
7307 }
7308
7309 if (optlen == 0)
7310 {
7311 as_bad (_("missing architectural extension"));
7312 return 0;
7313 }
7314
7315 gas_assert (adding_value != -1);
7316
7317 for (opt = aarch64_features; opt->name != NULL; opt++)
7318 if (strncmp (opt->name, str, optlen) == 0)
7319 {
7320 /* Add or remove the extension. */
7321 if (adding_value)
7322 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7323 else
7324 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7325 break;
7326 }
7327
7328 if (opt->name == NULL)
7329 {
7330 as_bad (_("unknown architectural extension `%s'"), str);
7331 return 0;
7332 }
7333
7334 str = ext;
7335 };
7336
7337 return 1;
7338}
7339
7340static int
7341aarch64_parse_cpu (char *str)
7342{
7343 const struct aarch64_cpu_option_table *opt;
7344 char *ext = strchr (str, '+');
7345 size_t optlen;
7346
7347 if (ext != NULL)
7348 optlen = ext - str;
7349 else
7350 optlen = strlen (str);
7351
7352 if (optlen == 0)
7353 {
7354 as_bad (_("missing cpu name `%s'"), str);
7355 return 0;
7356 }
7357
7358 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7359 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7360 {
7361 mcpu_cpu_opt = &opt->value;
7362 if (ext != NULL)
7363 return aarch64_parse_features (ext, &mcpu_cpu_opt);
7364
7365 return 1;
7366 }
7367
7368 as_bad (_("unknown cpu `%s'"), str);
7369 return 0;
7370}
7371
7372static int
7373aarch64_parse_arch (char *str)
7374{
7375 const struct aarch64_arch_option_table *opt;
7376 char *ext = strchr (str, '+');
7377 size_t optlen;
7378
7379 if (ext != NULL)
7380 optlen = ext - str;
7381 else
7382 optlen = strlen (str);
7383
7384 if (optlen == 0)
7385 {
7386 as_bad (_("missing architecture name `%s'"), str);
7387 return 0;
7388 }
7389
7390 for (opt = aarch64_archs; opt->name != NULL; opt++)
7391 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7392 {
7393 march_cpu_opt = &opt->value;
7394 if (ext != NULL)
7395 return aarch64_parse_features (ext, &march_cpu_opt);
7396
7397 return 1;
7398 }
7399
7400 as_bad (_("unknown architecture `%s'\n"), str);
7401 return 0;
7402}
7403
69091a2c
YZ
7404/* ABIs. */
7405struct aarch64_option_abi_value_table
7406{
7407 char *name;
7408 enum aarch64_abi_type value;
7409};
7410
7411static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7412 {"ilp32", AARCH64_ABI_ILP32},
7413 {"lp64", AARCH64_ABI_LP64},
7414 {NULL, 0}
7415};
7416
7417static int
7418aarch64_parse_abi (char *str)
7419{
7420 const struct aarch64_option_abi_value_table *opt;
7421 size_t optlen = strlen (str);
7422
7423 if (optlen == 0)
7424 {
7425 as_bad (_("missing abi name `%s'"), str);
7426 return 0;
7427 }
7428
7429 for (opt = aarch64_abis; opt->name != NULL; opt++)
7430 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7431 {
7432 aarch64_abi = opt->value;
7433 return 1;
7434 }
7435
7436 as_bad (_("unknown abi `%s'\n"), str);
7437 return 0;
7438}
7439
a06ea964 7440static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
7441#ifdef OBJ_ELF
7442 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
7443 aarch64_parse_abi, NULL},
7444#endif /* OBJ_ELF */
a06ea964
NC
7445 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
7446 aarch64_parse_cpu, NULL},
7447 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
7448 aarch64_parse_arch, NULL},
7449 {NULL, NULL, 0, NULL}
7450};
7451
7452int
7453md_parse_option (int c, char *arg)
7454{
7455 struct aarch64_option_table *opt;
7456 struct aarch64_long_option_table *lopt;
7457
7458 switch (c)
7459 {
7460#ifdef OPTION_EB
7461 case OPTION_EB:
7462 target_big_endian = 1;
7463 break;
7464#endif
7465
7466#ifdef OPTION_EL
7467 case OPTION_EL:
7468 target_big_endian = 0;
7469 break;
7470#endif
7471
7472 case 'a':
7473 /* Listing option. Just ignore these, we don't support additional
7474 ones. */
7475 return 0;
7476
7477 default:
7478 for (opt = aarch64_opts; opt->option != NULL; opt++)
7479 {
7480 if (c == opt->option[0]
7481 && ((arg == NULL && opt->option[1] == 0)
7482 || streq (arg, opt->option + 1)))
7483 {
7484 /* If the option is deprecated, tell the user. */
7485 if (opt->deprecated != NULL)
7486 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
7487 arg ? arg : "", _(opt->deprecated));
7488
7489 if (opt->var != NULL)
7490 *opt->var = opt->value;
7491
7492 return 1;
7493 }
7494 }
7495
7496 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7497 {
7498 /* These options are expected to have an argument. */
7499 if (c == lopt->option[0]
7500 && arg != NULL
7501 && strncmp (arg, lopt->option + 1,
7502 strlen (lopt->option + 1)) == 0)
7503 {
7504 /* If the option is deprecated, tell the user. */
7505 if (lopt->deprecated != NULL)
7506 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
7507 _(lopt->deprecated));
7508
7509 /* Call the sup-option parser. */
7510 return lopt->func (arg + strlen (lopt->option) - 1);
7511 }
7512 }
7513
7514 return 0;
7515 }
7516
7517 return 1;
7518}
7519
7520void
7521md_show_usage (FILE * fp)
7522{
7523 struct aarch64_option_table *opt;
7524 struct aarch64_long_option_table *lopt;
7525
7526 fprintf (fp, _(" AArch64-specific assembler options:\n"));
7527
7528 for (opt = aarch64_opts; opt->option != NULL; opt++)
7529 if (opt->help != NULL)
7530 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
7531
7532 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
7533 if (lopt->help != NULL)
7534 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
7535
7536#ifdef OPTION_EB
7537 fprintf (fp, _("\
7538 -EB assemble code for a big-endian cpu\n"));
7539#endif
7540
7541#ifdef OPTION_EL
7542 fprintf (fp, _("\
7543 -EL assemble code for a little-endian cpu\n"));
7544#endif
7545}
7546
7547/* Parse a .cpu directive. */
7548
7549static void
7550s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
7551{
7552 const struct aarch64_cpu_option_table *opt;
7553 char saved_char;
7554 char *name;
7555 char *ext;
7556 size_t optlen;
7557
7558 name = input_line_pointer;
7559 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7560 input_line_pointer++;
7561 saved_char = *input_line_pointer;
7562 *input_line_pointer = 0;
7563
7564 ext = strchr (name, '+');
7565
7566 if (ext != NULL)
7567 optlen = ext - name;
7568 else
7569 optlen = strlen (name);
7570
7571 /* Skip the first "all" entry. */
7572 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
7573 if (strlen (opt->name) == optlen
7574 && strncmp (name, opt->name, optlen) == 0)
7575 {
7576 mcpu_cpu_opt = &opt->value;
7577 if (ext != NULL)
7578 if (!aarch64_parse_features (ext, &mcpu_cpu_opt))
7579 return;
7580
7581 cpu_variant = *mcpu_cpu_opt;
7582
7583 *input_line_pointer = saved_char;
7584 demand_empty_rest_of_line ();
7585 return;
7586 }
7587 as_bad (_("unknown cpu `%s'"), name);
7588 *input_line_pointer = saved_char;
7589 ignore_rest_of_line ();
7590}
7591
7592
7593/* Parse a .arch directive. */
7594
7595static void
7596s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
7597{
7598 const struct aarch64_arch_option_table *opt;
7599 char saved_char;
7600 char *name;
7601 char *ext;
7602 size_t optlen;
7603
7604 name = input_line_pointer;
7605 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7606 input_line_pointer++;
7607 saved_char = *input_line_pointer;
7608 *input_line_pointer = 0;
7609
7610 ext = strchr (name, '+');
7611
7612 if (ext != NULL)
7613 optlen = ext - name;
7614 else
7615 optlen = strlen (name);
7616
7617 /* Skip the first "all" entry. */
7618 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
7619 if (strlen (opt->name) == optlen
7620 && strncmp (name, opt->name, optlen) == 0)
7621 {
7622 mcpu_cpu_opt = &opt->value;
7623 if (ext != NULL)
7624 if (!aarch64_parse_features (ext, &mcpu_cpu_opt))
7625 return;
7626
7627 cpu_variant = *mcpu_cpu_opt;
7628
7629 *input_line_pointer = saved_char;
7630 demand_empty_rest_of_line ();
7631 return;
7632 }
7633
7634 as_bad (_("unknown architecture `%s'\n"), name);
7635 *input_line_pointer = saved_char;
7636 ignore_rest_of_line ();
7637}
7638
7639/* Copy symbol information. */
7640
7641void
7642aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
7643{
7644 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
7645}
This page took 0.44359 seconds and 4 git commands to generate.