use XNEW and related macros more
[deliverable/binutils-gdb.git] / gas / config / tc-aarch64.c
CommitLineData
a06ea964
NC
1/* tc-aarch64.c -- Assemble for the AArch64 ISA
2
6f2750fe 3 Copyright (C) 2009-2016 Free Software Foundation, Inc.
a06ea964
NC
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22#include "as.h"
23#include <limits.h>
24#include <stdarg.h>
25#include "bfd_stdint.h"
26#define NO_RELOC 0
27#include "safe-ctype.h"
28#include "subsegs.h"
29#include "obstack.h"
30
31#ifdef OBJ_ELF
32#include "elf/aarch64.h"
33#include "dw2gencfi.h"
34#endif
35
36#include "dwarf2dbg.h"
37
38/* Types of processor to assemble for. */
39#ifndef CPU_DEFAULT
40#define CPU_DEFAULT AARCH64_ARCH_V8
41#endif
42
43#define streq(a, b) (strcmp (a, b) == 0)
44
f4c51f60
JW
45#define END_OF_INSN '\0'
46
a06ea964
NC
47static aarch64_feature_set cpu_variant;
48
49/* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53static const aarch64_feature_set *march_cpu_opt = NULL;
54
55/* Constants for known architecture features. */
56static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
a06ea964
NC
58#ifdef OBJ_ELF
59/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
60static symbolS *GOT_symbol;
cec5225b 61
69091a2c
YZ
62/* Which ABI to use. */
63enum aarch64_abi_type
64{
65 AARCH64_ABI_LP64 = 0,
66 AARCH64_ABI_ILP32 = 1
67};
68
69/* AArch64 ABI for the output file. */
70static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_LP64;
71
cec5225b
YZ
72/* When non-zero, program to a 32-bit model, in which the C data types
73 int, long and all pointer types are 32-bit objects (ILP32); or to a
74 64-bit model, in which the C int type is 32-bits but the C long type
75 and all pointer types are 64-bit objects (LP64). */
69091a2c 76#define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
a06ea964
NC
77#endif
78
79enum neon_el_type
80{
81 NT_invtype = -1,
82 NT_b,
83 NT_h,
84 NT_s,
85 NT_d,
86 NT_q
87};
88
89/* Bits for DEFINED field in neon_type_el. */
90#define NTA_HASTYPE 1
91#define NTA_HASINDEX 2
92
93struct neon_type_el
94{
95 enum neon_el_type type;
96 unsigned char defined;
97 unsigned width;
98 int64_t index;
99};
100
101#define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
102
103struct reloc
104{
105 bfd_reloc_code_real_type type;
106 expressionS exp;
107 int pc_rel;
108 enum aarch64_opnd opnd;
109 uint32_t flags;
110 unsigned need_libopcodes_p : 1;
111};
112
113struct aarch64_instruction
114{
115 /* libopcodes structure for instruction intermediate representation. */
116 aarch64_inst base;
117 /* Record assembly errors found during the parsing. */
118 struct
119 {
120 enum aarch64_operand_error_kind kind;
121 const char *error;
122 } parsing_error;
123 /* The condition that appears in the assembly line. */
124 int cond;
125 /* Relocation information (including the GAS internal fixup). */
126 struct reloc reloc;
127 /* Need to generate an immediate in the literal pool. */
128 unsigned gen_lit_pool : 1;
129};
130
131typedef struct aarch64_instruction aarch64_instruction;
132
133static aarch64_instruction inst;
134
135static bfd_boolean parse_operands (char *, const aarch64_opcode *);
136static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
137
138/* Diagnostics inline function utilites.
139
140 These are lightweight utlities which should only be called by parse_operands
141 and other parsers. GAS processes each assembly line by parsing it against
142 instruction template(s), in the case of multiple templates (for the same
143 mnemonic name), those templates are tried one by one until one succeeds or
144 all fail. An assembly line may fail a few templates before being
145 successfully parsed; an error saved here in most cases is not a user error
146 but an error indicating the current template is not the right template.
147 Therefore it is very important that errors can be saved at a low cost during
148 the parsing; we don't want to slow down the whole parsing by recording
149 non-user errors in detail.
150
151 Remember that the objective is to help GAS pick up the most approapriate
152 error message in the case of multiple templates, e.g. FMOV which has 8
153 templates. */
154
155static inline void
156clear_error (void)
157{
158 inst.parsing_error.kind = AARCH64_OPDE_NIL;
159 inst.parsing_error.error = NULL;
160}
161
162static inline bfd_boolean
163error_p (void)
164{
165 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
166}
167
168static inline const char *
169get_error_message (void)
170{
171 return inst.parsing_error.error;
172}
173
a06ea964
NC
174static inline enum aarch64_operand_error_kind
175get_error_kind (void)
176{
177 return inst.parsing_error.kind;
178}
179
a06ea964
NC
180static inline void
181set_error (enum aarch64_operand_error_kind kind, const char *error)
182{
183 inst.parsing_error.kind = kind;
184 inst.parsing_error.error = error;
185}
186
187static inline void
188set_recoverable_error (const char *error)
189{
190 set_error (AARCH64_OPDE_RECOVERABLE, error);
191}
192
193/* Use the DESC field of the corresponding aarch64_operand entry to compose
194 the error message. */
195static inline void
196set_default_error (void)
197{
198 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
199}
200
201static inline void
202set_syntax_error (const char *error)
203{
204 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
205}
206
207static inline void
208set_first_syntax_error (const char *error)
209{
210 if (! error_p ())
211 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
212}
213
214static inline void
215set_fatal_syntax_error (const char *error)
216{
217 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
218}
219\f
220/* Number of littlenums required to hold an extended precision number. */
221#define MAX_LITTLENUMS 6
222
223/* Return value for certain parsers when the parsing fails; those parsers
224 return the information of the parsed result, e.g. register number, on
225 success. */
226#define PARSE_FAIL -1
227
228/* This is an invalid condition code that means no conditional field is
229 present. */
230#define COND_ALWAYS 0x10
231
232typedef struct
233{
234 const char *template;
235 unsigned long value;
236} asm_barrier_opt;
237
238typedef struct
239{
240 const char *template;
241 uint32_t value;
242} asm_nzcv;
243
244struct reloc_entry
245{
246 char *name;
247 bfd_reloc_code_real_type reloc;
248};
249
250/* Structure for a hash table entry for a register. */
251typedef struct
252{
253 const char *name;
254 unsigned char number;
255 unsigned char type;
256 unsigned char builtin;
257} reg_entry;
258
259/* Macros to define the register types and masks for the purpose
260 of parsing. */
261
262#undef AARCH64_REG_TYPES
263#define AARCH64_REG_TYPES \
264 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
265 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
266 BASIC_REG_TYPE(SP_32) /* wsp */ \
267 BASIC_REG_TYPE(SP_64) /* sp */ \
268 BASIC_REG_TYPE(Z_32) /* wzr */ \
269 BASIC_REG_TYPE(Z_64) /* xzr */ \
270 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
271 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
272 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
273 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
274 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
275 BASIC_REG_TYPE(CN) /* c[0-7] */ \
276 BASIC_REG_TYPE(VN) /* v[0-31] */ \
277 /* Typecheck: any 64-bit int reg (inc SP exc XZR) */ \
278 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
279 /* Typecheck: any int (inc {W}SP inc [WX]ZR) */ \
280 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
281 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
282 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
283 /* Typecheck: any [BHSDQ]P FP. */ \
284 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
285 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
286 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR) */ \
287 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
288 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
289 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
290 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
291 /* Any integer register; used for error messages only. */ \
292 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
293 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
294 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
295 /* Pseudo type to mark the end of the enumerator sequence. */ \
296 BASIC_REG_TYPE(MAX)
297
298#undef BASIC_REG_TYPE
299#define BASIC_REG_TYPE(T) REG_TYPE_##T,
300#undef MULTI_REG_TYPE
301#define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
302
303/* Register type enumerators. */
304typedef enum
305{
306 /* A list of REG_TYPE_*. */
307 AARCH64_REG_TYPES
308} aarch64_reg_type;
309
310#undef BASIC_REG_TYPE
311#define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
312#undef REG_TYPE
313#define REG_TYPE(T) (1 << REG_TYPE_##T)
314#undef MULTI_REG_TYPE
315#define MULTI_REG_TYPE(T,V) V,
316
317/* Values indexed by aarch64_reg_type to assist the type checking. */
318static const unsigned reg_type_masks[] =
319{
320 AARCH64_REG_TYPES
321};
322
323#undef BASIC_REG_TYPE
324#undef REG_TYPE
325#undef MULTI_REG_TYPE
326#undef AARCH64_REG_TYPES
327
328/* Diagnostics used when we don't get a register of the expected type.
329 Note: this has to synchronized with aarch64_reg_type definitions
330 above. */
331static const char *
332get_reg_expected_msg (aarch64_reg_type reg_type)
333{
334 const char *msg;
335
336 switch (reg_type)
337 {
338 case REG_TYPE_R_32:
339 msg = N_("integer 32-bit register expected");
340 break;
341 case REG_TYPE_R_64:
342 msg = N_("integer 64-bit register expected");
343 break;
344 case REG_TYPE_R_N:
345 msg = N_("integer register expected");
346 break;
347 case REG_TYPE_R_Z_SP:
348 msg = N_("integer, zero or SP register expected");
349 break;
350 case REG_TYPE_FP_B:
351 msg = N_("8-bit SIMD scalar register expected");
352 break;
353 case REG_TYPE_FP_H:
354 msg = N_("16-bit SIMD scalar or floating-point half precision "
355 "register expected");
356 break;
357 case REG_TYPE_FP_S:
358 msg = N_("32-bit SIMD scalar or floating-point single precision "
359 "register expected");
360 break;
361 case REG_TYPE_FP_D:
362 msg = N_("64-bit SIMD scalar or floating-point double precision "
363 "register expected");
364 break;
365 case REG_TYPE_FP_Q:
366 msg = N_("128-bit SIMD scalar or floating-point quad precision "
367 "register expected");
368 break;
369 case REG_TYPE_CN:
370 msg = N_("C0 - C15 expected");
371 break;
372 case REG_TYPE_R_Z_BHSDQ_V:
373 msg = N_("register expected");
374 break;
375 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
376 msg = N_("SIMD scalar or floating-point register expected");
377 break;
378 case REG_TYPE_VN: /* any V reg */
379 msg = N_("vector register expected");
380 break;
381 default:
382 as_fatal (_("invalid register type %d"), reg_type);
383 }
384 return msg;
385}
386
387/* Some well known registers that we refer to directly elsewhere. */
388#define REG_SP 31
389
390/* Instructions take 4 bytes in the object file. */
391#define INSN_SIZE 4
392
393/* Define some common error messages. */
394#define BAD_SP _("SP not allowed here")
395
396static struct hash_control *aarch64_ops_hsh;
397static struct hash_control *aarch64_cond_hsh;
398static struct hash_control *aarch64_shift_hsh;
399static struct hash_control *aarch64_sys_regs_hsh;
400static struct hash_control *aarch64_pstatefield_hsh;
401static struct hash_control *aarch64_sys_regs_ic_hsh;
402static struct hash_control *aarch64_sys_regs_dc_hsh;
403static struct hash_control *aarch64_sys_regs_at_hsh;
404static struct hash_control *aarch64_sys_regs_tlbi_hsh;
405static struct hash_control *aarch64_reg_hsh;
406static struct hash_control *aarch64_barrier_opt_hsh;
407static struct hash_control *aarch64_nzcv_hsh;
408static struct hash_control *aarch64_pldop_hsh;
1e6f4800 409static struct hash_control *aarch64_hint_opt_hsh;
a06ea964
NC
410
411/* Stuff needed to resolve the label ambiguity
412 As:
413 ...
414 label: <insn>
415 may differ from:
416 ...
417 label:
418 <insn> */
419
420static symbolS *last_label_seen;
421
422/* Literal pool structure. Held on a per-section
423 and per-sub-section basis. */
424
425#define MAX_LITERAL_POOL_SIZE 1024
55d9b4c1
NC
426typedef struct literal_expression
427{
428 expressionS exp;
429 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
430 LITTLENUM_TYPE * bignum;
431} literal_expression;
432
a06ea964
NC
433typedef struct literal_pool
434{
55d9b4c1 435 literal_expression literals[MAX_LITERAL_POOL_SIZE];
a06ea964
NC
436 unsigned int next_free_entry;
437 unsigned int id;
438 symbolS *symbol;
439 segT section;
440 subsegT sub_section;
441 int size;
442 struct literal_pool *next;
443} literal_pool;
444
445/* Pointer to a linked list of literal pools. */
446static literal_pool *list_of_pools = NULL;
447\f
448/* Pure syntax. */
449
450/* This array holds the chars that always start a comment. If the
451 pre-processor is disabled, these aren't very useful. */
452const char comment_chars[] = "";
453
454/* This array holds the chars that only start a comment at the beginning of
455 a line. If the line seems to have the form '# 123 filename'
456 .line and .file directives will appear in the pre-processed output. */
457/* Note that input_file.c hand checks for '#' at the beginning of the
458 first line of the input file. This is because the compiler outputs
459 #NO_APP at the beginning of its output. */
460/* Also note that comments like this one will always work. */
461const char line_comment_chars[] = "#";
462
463const char line_separator_chars[] = ";";
464
465/* Chars that can be used to separate mant
466 from exp in floating point numbers. */
467const char EXP_CHARS[] = "eE";
468
469/* Chars that mean this number is a floating point constant. */
470/* As in 0f12.456 */
471/* or 0d1.2345e12 */
472
473const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
474
475/* Prefix character that indicates the start of an immediate value. */
476#define is_immediate_prefix(C) ((C) == '#')
477
478/* Separator character handling. */
479
480#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
481
482static inline bfd_boolean
483skip_past_char (char **str, char c)
484{
485 if (**str == c)
486 {
487 (*str)++;
488 return TRUE;
489 }
490 else
491 return FALSE;
492}
493
494#define skip_past_comma(str) skip_past_char (str, ',')
495
496/* Arithmetic expressions (possibly involving symbols). */
497
a06ea964
NC
498static bfd_boolean in_my_get_expression_p = FALSE;
499
500/* Third argument to my_get_expression. */
501#define GE_NO_PREFIX 0
502#define GE_OPT_PREFIX 1
503
504/* Return TRUE if the string pointed by *STR is successfully parsed
505 as an valid expression; *EP will be filled with the information of
506 such an expression. Otherwise return FALSE. */
507
508static bfd_boolean
509my_get_expression (expressionS * ep, char **str, int prefix_mode,
510 int reject_absent)
511{
512 char *save_in;
513 segT seg;
514 int prefix_present_p = 0;
515
516 switch (prefix_mode)
517 {
518 case GE_NO_PREFIX:
519 break;
520 case GE_OPT_PREFIX:
521 if (is_immediate_prefix (**str))
522 {
523 (*str)++;
524 prefix_present_p = 1;
525 }
526 break;
527 default:
528 abort ();
529 }
530
531 memset (ep, 0, sizeof (expressionS));
532
533 save_in = input_line_pointer;
534 input_line_pointer = *str;
535 in_my_get_expression_p = TRUE;
536 seg = expression (ep);
537 in_my_get_expression_p = FALSE;
538
539 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
540 {
541 /* We found a bad expression in md_operand(). */
542 *str = input_line_pointer;
543 input_line_pointer = save_in;
544 if (prefix_present_p && ! error_p ())
545 set_fatal_syntax_error (_("bad expression"));
546 else
547 set_first_syntax_error (_("bad expression"));
548 return FALSE;
549 }
550
551#ifdef OBJ_AOUT
552 if (seg != absolute_section
553 && seg != text_section
554 && seg != data_section
555 && seg != bss_section && seg != undefined_section)
556 {
557 set_syntax_error (_("bad segment"));
558 *str = input_line_pointer;
559 input_line_pointer = save_in;
560 return FALSE;
561 }
562#else
563 (void) seg;
564#endif
565
a06ea964
NC
566 *str = input_line_pointer;
567 input_line_pointer = save_in;
568 return TRUE;
569}
570
571/* Turn a string in input_line_pointer into a floating point constant
572 of type TYPE, and store the appropriate bytes in *LITP. The number
573 of LITTLENUMS emitted is stored in *SIZEP. An error message is
574 returned, or NULL on OK. */
575
6d4af3c2 576const char *
a06ea964
NC
577md_atof (int type, char *litP, int *sizeP)
578{
579 return ieee_md_atof (type, litP, sizeP, target_big_endian);
580}
581
582/* We handle all bad expressions here, so that we can report the faulty
583 instruction in the error message. */
584void
585md_operand (expressionS * exp)
586{
587 if (in_my_get_expression_p)
588 exp->X_op = O_illegal;
589}
590
591/* Immediate values. */
592
593/* Errors may be set multiple times during parsing or bit encoding
594 (particularly in the Neon bits), but usually the earliest error which is set
595 will be the most meaningful. Avoid overwriting it with later (cascading)
596 errors by calling this function. */
597
598static void
599first_error (const char *error)
600{
601 if (! error_p ())
602 set_syntax_error (error);
603}
604
605/* Similiar to first_error, but this function accepts formatted error
606 message. */
607static void
608first_error_fmt (const char *format, ...)
609{
610 va_list args;
611 enum
612 { size = 100 };
613 /* N.B. this single buffer will not cause error messages for different
614 instructions to pollute each other; this is because at the end of
615 processing of each assembly line, error message if any will be
616 collected by as_bad. */
617 static char buffer[size];
618
619 if (! error_p ())
620 {
3e0baa28 621 int ret ATTRIBUTE_UNUSED;
a06ea964
NC
622 va_start (args, format);
623 ret = vsnprintf (buffer, size, format, args);
624 know (ret <= size - 1 && ret >= 0);
625 va_end (args);
626 set_syntax_error (buffer);
627 }
628}
629
630/* Register parsing. */
631
632/* Generic register parser which is called by other specialized
633 register parsers.
634 CCP points to what should be the beginning of a register name.
635 If it is indeed a valid register name, advance CCP over it and
636 return the reg_entry structure; otherwise return NULL.
637 It does not issue diagnostics. */
638
639static reg_entry *
640parse_reg (char **ccp)
641{
642 char *start = *ccp;
643 char *p;
644 reg_entry *reg;
645
646#ifdef REGISTER_PREFIX
647 if (*start != REGISTER_PREFIX)
648 return NULL;
649 start++;
650#endif
651
652 p = start;
653 if (!ISALPHA (*p) || !is_name_beginner (*p))
654 return NULL;
655
656 do
657 p++;
658 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
659
660 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
661
662 if (!reg)
663 return NULL;
664
665 *ccp = p;
666 return reg;
667}
668
669/* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
670 return FALSE. */
671static bfd_boolean
672aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
673{
674 if (reg->type == type)
675 return TRUE;
676
677 switch (type)
678 {
679 case REG_TYPE_R64_SP: /* 64-bit integer reg (inc SP exc XZR). */
680 case REG_TYPE_R_Z_SP: /* Integer reg (inc {X}SP inc [WX]ZR). */
681 case REG_TYPE_R_Z_BHSDQ_V: /* Any register apart from Cn. */
682 case REG_TYPE_BHSDQ: /* Any [BHSDQ]P FP or SIMD scalar register. */
683 case REG_TYPE_VN: /* Vector register. */
684 gas_assert (reg->type < REG_TYPE_MAX && type < REG_TYPE_MAX);
685 return ((reg_type_masks[reg->type] & reg_type_masks[type])
686 == reg_type_masks[reg->type]);
687 default:
688 as_fatal ("unhandled type %d", type);
689 abort ();
690 }
691}
692
693/* Parse a register and return PARSE_FAIL if the register is not of type R_Z_SP.
694 Return the register number otherwise. *ISREG32 is set to one if the
695 register is 32-bit wide; *ISREGZERO is set to one if the register is
696 of type Z_32 or Z_64.
697 Note that this function does not issue any diagnostics. */
698
699static int
700aarch64_reg_parse_32_64 (char **ccp, int reject_sp, int reject_rz,
701 int *isreg32, int *isregzero)
702{
703 char *str = *ccp;
704 const reg_entry *reg = parse_reg (&str);
705
706 if (reg == NULL)
707 return PARSE_FAIL;
708
709 if (! aarch64_check_reg_type (reg, REG_TYPE_R_Z_SP))
710 return PARSE_FAIL;
711
712 switch (reg->type)
713 {
714 case REG_TYPE_SP_32:
715 case REG_TYPE_SP_64:
716 if (reject_sp)
717 return PARSE_FAIL;
718 *isreg32 = reg->type == REG_TYPE_SP_32;
719 *isregzero = 0;
720 break;
721 case REG_TYPE_R_32:
722 case REG_TYPE_R_64:
723 *isreg32 = reg->type == REG_TYPE_R_32;
724 *isregzero = 0;
725 break;
726 case REG_TYPE_Z_32:
727 case REG_TYPE_Z_64:
728 if (reject_rz)
729 return PARSE_FAIL;
730 *isreg32 = reg->type == REG_TYPE_Z_32;
731 *isregzero = 1;
732 break;
733 default:
734 return PARSE_FAIL;
735 }
736
737 *ccp = str;
738
739 return reg->number;
740}
741
742/* Parse the qualifier of a SIMD vector register or a SIMD vector element.
743 Fill in *PARSED_TYPE and return TRUE if the parsing succeeds;
744 otherwise return FALSE.
745
746 Accept only one occurrence of:
3067d3b9 747 8b 16b 2h 4h 8h 2s 4s 1d 2d
a06ea964
NC
748 b h s d q */
749static bfd_boolean
750parse_neon_type_for_operand (struct neon_type_el *parsed_type, char **str)
751{
752 char *ptr = *str;
753 unsigned width;
754 unsigned element_size;
755 enum neon_el_type type;
756
757 /* skip '.' */
758 ptr++;
759
760 if (!ISDIGIT (*ptr))
761 {
762 width = 0;
763 goto elt_size;
764 }
765 width = strtoul (ptr, &ptr, 10);
766 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
767 {
768 first_error_fmt (_("bad size %d in vector width specifier"), width);
769 return FALSE;
770 }
771
772elt_size:
773 switch (TOLOWER (*ptr))
774 {
775 case 'b':
776 type = NT_b;
777 element_size = 8;
778 break;
779 case 'h':
780 type = NT_h;
781 element_size = 16;
782 break;
783 case 's':
784 type = NT_s;
785 element_size = 32;
786 break;
787 case 'd':
788 type = NT_d;
789 element_size = 64;
790 break;
791 case 'q':
792 if (width == 1)
793 {
794 type = NT_q;
795 element_size = 128;
796 break;
797 }
798 /* fall through. */
799 default:
800 if (*ptr != '\0')
801 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
802 else
803 first_error (_("missing element size"));
804 return FALSE;
805 }
3067d3b9
MW
806 if (width != 0 && width * element_size != 64 && width * element_size != 128
807 && !(width == 2 && element_size == 16))
a06ea964
NC
808 {
809 first_error_fmt (_
810 ("invalid element size %d and vector size combination %c"),
811 width, *ptr);
812 return FALSE;
813 }
814 ptr++;
815
816 parsed_type->type = type;
817 parsed_type->width = width;
818
819 *str = ptr;
820
821 return TRUE;
822}
823
824/* Parse a single type, e.g. ".8b", leading period included.
825 Only applicable to Vn registers.
826
827 Return TRUE on success; otherwise return FALSE. */
828static bfd_boolean
829parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
830{
831 char *str = *ccp;
832
833 if (*str == '.')
834 {
835 if (! parse_neon_type_for_operand (vectype, &str))
836 {
837 first_error (_("vector type expected"));
838 return FALSE;
839 }
840 }
841 else
842 return FALSE;
843
844 *ccp = str;
845
846 return TRUE;
847}
848
849/* Parse a register of the type TYPE.
850
851 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
852 name or the parsed register is not of TYPE.
853
854 Otherwise return the register number, and optionally fill in the actual
855 type of the register in *RTYPE when multiple alternatives were given, and
856 return the register shape and element index information in *TYPEINFO.
857
858 IN_REG_LIST should be set with TRUE if the caller is parsing a register
859 list. */
860
861static int
862parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
863 struct neon_type_el *typeinfo, bfd_boolean in_reg_list)
864{
865 char *str = *ccp;
866 const reg_entry *reg = parse_reg (&str);
867 struct neon_type_el atype;
868 struct neon_type_el parsetype;
869 bfd_boolean is_typed_vecreg = FALSE;
870
871 atype.defined = 0;
872 atype.type = NT_invtype;
873 atype.width = -1;
874 atype.index = 0;
875
876 if (reg == NULL)
877 {
878 if (typeinfo)
879 *typeinfo = atype;
880 set_default_error ();
881 return PARSE_FAIL;
882 }
883
884 if (! aarch64_check_reg_type (reg, type))
885 {
886 DEBUG_TRACE ("reg type check failed");
887 set_default_error ();
888 return PARSE_FAIL;
889 }
890 type = reg->type;
891
892 if (type == REG_TYPE_VN
893 && parse_neon_operand_type (&parsetype, &str))
894 {
895 /* Register if of the form Vn.[bhsdq]. */
896 is_typed_vecreg = TRUE;
897
898 if (parsetype.width == 0)
899 /* Expect index. In the new scheme we cannot have
900 Vn.[bhsdq] represent a scalar. Therefore any
901 Vn.[bhsdq] should have an index following it.
902 Except in reglists ofcourse. */
903 atype.defined |= NTA_HASINDEX;
904 else
905 atype.defined |= NTA_HASTYPE;
906
907 atype.type = parsetype.type;
908 atype.width = parsetype.width;
909 }
910
911 if (skip_past_char (&str, '['))
912 {
913 expressionS exp;
914
915 /* Reject Sn[index] syntax. */
916 if (!is_typed_vecreg)
917 {
918 first_error (_("this type of register can't be indexed"));
919 return PARSE_FAIL;
920 }
921
922 if (in_reg_list == TRUE)
923 {
924 first_error (_("index not allowed inside register list"));
925 return PARSE_FAIL;
926 }
927
928 atype.defined |= NTA_HASINDEX;
929
930 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
931
932 if (exp.X_op != O_constant)
933 {
934 first_error (_("constant expression required"));
935 return PARSE_FAIL;
936 }
937
938 if (! skip_past_char (&str, ']'))
939 return PARSE_FAIL;
940
941 atype.index = exp.X_add_number;
942 }
943 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
944 {
945 /* Indexed vector register expected. */
946 first_error (_("indexed vector register expected"));
947 return PARSE_FAIL;
948 }
949
950 /* A vector reg Vn should be typed or indexed. */
951 if (type == REG_TYPE_VN && atype.defined == 0)
952 {
953 first_error (_("invalid use of vector register"));
954 }
955
956 if (typeinfo)
957 *typeinfo = atype;
958
959 if (rtype)
960 *rtype = type;
961
962 *ccp = str;
963
964 return reg->number;
965}
966
967/* Parse register.
968
969 Return the register number on success; return PARSE_FAIL otherwise.
970
971 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
972 the register (e.g. NEON double or quad reg when either has been requested).
973
974 If this is a NEON vector register with additional type information, fill
975 in the struct pointed to by VECTYPE (if non-NULL).
976
977 This parser does not handle register list. */
978
979static int
980aarch64_reg_parse (char **ccp, aarch64_reg_type type,
981 aarch64_reg_type *rtype, struct neon_type_el *vectype)
982{
983 struct neon_type_el atype;
984 char *str = *ccp;
985 int reg = parse_typed_reg (&str, type, rtype, &atype,
986 /*in_reg_list= */ FALSE);
987
988 if (reg == PARSE_FAIL)
989 return PARSE_FAIL;
990
991 if (vectype)
992 *vectype = atype;
993
994 *ccp = str;
995
996 return reg;
997}
998
999static inline bfd_boolean
1000eq_neon_type_el (struct neon_type_el e1, struct neon_type_el e2)
1001{
1002 return
1003 e1.type == e2.type
1004 && e1.defined == e2.defined
1005 && e1.width == e2.width && e1.index == e2.index;
1006}
1007
1008/* This function parses the NEON register list. On success, it returns
1009 the parsed register list information in the following encoded format:
1010
1011 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1012 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1013
1014 The information of the register shape and/or index is returned in
1015 *VECTYPE.
1016
1017 It returns PARSE_FAIL if the register list is invalid.
1018
1019 The list contains one to four registers.
1020 Each register can be one of:
1021 <Vt>.<T>[<index>]
1022 <Vt>.<T>
1023 All <T> should be identical.
1024 All <index> should be identical.
1025 There are restrictions on <Vt> numbers which are checked later
1026 (by reg_list_valid_p). */
1027
1028static int
1029parse_neon_reg_list (char **ccp, struct neon_type_el *vectype)
1030{
1031 char *str = *ccp;
1032 int nb_regs;
1033 struct neon_type_el typeinfo, typeinfo_first;
1034 int val, val_range;
1035 int in_range;
1036 int ret_val;
1037 int i;
1038 bfd_boolean error = FALSE;
1039 bfd_boolean expect_index = FALSE;
1040
1041 if (*str != '{')
1042 {
1043 set_syntax_error (_("expecting {"));
1044 return PARSE_FAIL;
1045 }
1046 str++;
1047
1048 nb_regs = 0;
1049 typeinfo_first.defined = 0;
1050 typeinfo_first.type = NT_invtype;
1051 typeinfo_first.width = -1;
1052 typeinfo_first.index = 0;
1053 ret_val = 0;
1054 val = -1;
1055 val_range = -1;
1056 in_range = 0;
1057 do
1058 {
1059 if (in_range)
1060 {
1061 str++; /* skip over '-' */
1062 val_range = val;
1063 }
1064 val = parse_typed_reg (&str, REG_TYPE_VN, NULL, &typeinfo,
1065 /*in_reg_list= */ TRUE);
1066 if (val == PARSE_FAIL)
1067 {
1068 set_first_syntax_error (_("invalid vector register in list"));
1069 error = TRUE;
1070 continue;
1071 }
1072 /* reject [bhsd]n */
1073 if (typeinfo.defined == 0)
1074 {
1075 set_first_syntax_error (_("invalid scalar register in list"));
1076 error = TRUE;
1077 continue;
1078 }
1079
1080 if (typeinfo.defined & NTA_HASINDEX)
1081 expect_index = TRUE;
1082
1083 if (in_range)
1084 {
1085 if (val < val_range)
1086 {
1087 set_first_syntax_error
1088 (_("invalid range in vector register list"));
1089 error = TRUE;
1090 }
1091 val_range++;
1092 }
1093 else
1094 {
1095 val_range = val;
1096 if (nb_regs == 0)
1097 typeinfo_first = typeinfo;
1098 else if (! eq_neon_type_el (typeinfo_first, typeinfo))
1099 {
1100 set_first_syntax_error
1101 (_("type mismatch in vector register list"));
1102 error = TRUE;
1103 }
1104 }
1105 if (! error)
1106 for (i = val_range; i <= val; i++)
1107 {
1108 ret_val |= i << (5 * nb_regs);
1109 nb_regs++;
1110 }
1111 in_range = 0;
1112 }
1113 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1114
1115 skip_whitespace (str);
1116 if (*str != '}')
1117 {
1118 set_first_syntax_error (_("end of vector register list not found"));
1119 error = TRUE;
1120 }
1121 str++;
1122
1123 skip_whitespace (str);
1124
1125 if (expect_index)
1126 {
1127 if (skip_past_char (&str, '['))
1128 {
1129 expressionS exp;
1130
1131 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1132 if (exp.X_op != O_constant)
1133 {
1134 set_first_syntax_error (_("constant expression required."));
1135 error = TRUE;
1136 }
1137 if (! skip_past_char (&str, ']'))
1138 error = TRUE;
1139 else
1140 typeinfo_first.index = exp.X_add_number;
1141 }
1142 else
1143 {
1144 set_first_syntax_error (_("expected index"));
1145 error = TRUE;
1146 }
1147 }
1148
1149 if (nb_regs > 4)
1150 {
1151 set_first_syntax_error (_("too many registers in vector register list"));
1152 error = TRUE;
1153 }
1154 else if (nb_regs == 0)
1155 {
1156 set_first_syntax_error (_("empty vector register list"));
1157 error = TRUE;
1158 }
1159
1160 *ccp = str;
1161 if (! error)
1162 *vectype = typeinfo_first;
1163
1164 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1165}
1166
1167/* Directives: register aliases. */
1168
1169static reg_entry *
1170insert_reg_alias (char *str, int number, aarch64_reg_type type)
1171{
1172 reg_entry *new;
1173 const char *name;
1174
1175 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1176 {
1177 if (new->builtin)
1178 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1179 str);
1180
1181 /* Only warn about a redefinition if it's not defined as the
1182 same register. */
1183 else if (new->number != number || new->type != type)
1184 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1185
1186 return NULL;
1187 }
1188
1189 name = xstrdup (str);
add39d23 1190 new = XNEW (reg_entry);
a06ea964
NC
1191
1192 new->name = name;
1193 new->number = number;
1194 new->type = type;
1195 new->builtin = FALSE;
1196
1197 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1198 abort ();
1199
1200 return new;
1201}
1202
1203/* Look for the .req directive. This is of the form:
1204
1205 new_register_name .req existing_register_name
1206
1207 If we find one, or if it looks sufficiently like one that we want to
1208 handle any error here, return TRUE. Otherwise return FALSE. */
1209
1210static bfd_boolean
1211create_register_alias (char *newname, char *p)
1212{
1213 const reg_entry *old;
1214 char *oldname, *nbuf;
1215 size_t nlen;
1216
1217 /* The input scrubber ensures that whitespace after the mnemonic is
1218 collapsed to single spaces. */
1219 oldname = p;
1220 if (strncmp (oldname, " .req ", 6) != 0)
1221 return FALSE;
1222
1223 oldname += 6;
1224 if (*oldname == '\0')
1225 return FALSE;
1226
1227 old = hash_find (aarch64_reg_hsh, oldname);
1228 if (!old)
1229 {
1230 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1231 return TRUE;
1232 }
1233
1234 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1235 the desired alias name, and p points to its end. If not, then
1236 the desired alias name is in the global original_case_string. */
1237#ifdef TC_CASE_SENSITIVE
1238 nlen = p - newname;
1239#else
1240 newname = original_case_string;
1241 nlen = strlen (newname);
1242#endif
1243
29a2809e 1244 nbuf = xmemdup0 (newname, nlen);
a06ea964
NC
1245
1246 /* Create aliases under the new name as stated; an all-lowercase
1247 version of the new name; and an all-uppercase version of the new
1248 name. */
1249 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1250 {
1251 for (p = nbuf; *p; p++)
1252 *p = TOUPPER (*p);
1253
1254 if (strncmp (nbuf, newname, nlen))
1255 {
1256 /* If this attempt to create an additional alias fails, do not bother
1257 trying to create the all-lower case alias. We will fail and issue
1258 a second, duplicate error message. This situation arises when the
1259 programmer does something like:
1260 foo .req r0
1261 Foo .req r1
1262 The second .req creates the "Foo" alias but then fails to create
1263 the artificial FOO alias because it has already been created by the
1264 first .req. */
1265 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
1266 {
1267 free (nbuf);
1268 return TRUE;
1269 }
a06ea964
NC
1270 }
1271
1272 for (p = nbuf; *p; p++)
1273 *p = TOLOWER (*p);
1274
1275 if (strncmp (nbuf, newname, nlen))
1276 insert_reg_alias (nbuf, old->number, old->type);
1277 }
1278
e1fa0163 1279 free (nbuf);
a06ea964
NC
1280 return TRUE;
1281}
1282
1283/* Should never be called, as .req goes between the alias and the
1284 register name, not at the beginning of the line. */
1285static void
1286s_req (int a ATTRIBUTE_UNUSED)
1287{
1288 as_bad (_("invalid syntax for .req directive"));
1289}
1290
1291/* The .unreq directive deletes an alias which was previously defined
1292 by .req. For example:
1293
1294 my_alias .req r11
1295 .unreq my_alias */
1296
1297static void
1298s_unreq (int a ATTRIBUTE_UNUSED)
1299{
1300 char *name;
1301 char saved_char;
1302
1303 name = input_line_pointer;
1304
1305 while (*input_line_pointer != 0
1306 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1307 ++input_line_pointer;
1308
1309 saved_char = *input_line_pointer;
1310 *input_line_pointer = 0;
1311
1312 if (!*name)
1313 as_bad (_("invalid syntax for .unreq directive"));
1314 else
1315 {
1316 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1317
1318 if (!reg)
1319 as_bad (_("unknown register alias '%s'"), name);
1320 else if (reg->builtin)
1321 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1322 name);
1323 else
1324 {
1325 char *p;
1326 char *nbuf;
1327
1328 hash_delete (aarch64_reg_hsh, name, FALSE);
1329 free ((char *) reg->name);
1330 free (reg);
1331
1332 /* Also locate the all upper case and all lower case versions.
1333 Do not complain if we cannot find one or the other as it
1334 was probably deleted above. */
1335
1336 nbuf = strdup (name);
1337 for (p = nbuf; *p; p++)
1338 *p = TOUPPER (*p);
1339 reg = hash_find (aarch64_reg_hsh, nbuf);
1340 if (reg)
1341 {
1342 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1343 free ((char *) reg->name);
1344 free (reg);
1345 }
1346
1347 for (p = nbuf; *p; p++)
1348 *p = TOLOWER (*p);
1349 reg = hash_find (aarch64_reg_hsh, nbuf);
1350 if (reg)
1351 {
1352 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1353 free ((char *) reg->name);
1354 free (reg);
1355 }
1356
1357 free (nbuf);
1358 }
1359 }
1360
1361 *input_line_pointer = saved_char;
1362 demand_empty_rest_of_line ();
1363}
1364
1365/* Directives: Instruction set selection. */
1366
1367#ifdef OBJ_ELF
1368/* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1369 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1370 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1371 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1372
1373/* Create a new mapping symbol for the transition to STATE. */
1374
1375static void
1376make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1377{
1378 symbolS *symbolP;
1379 const char *symname;
1380 int type;
1381
1382 switch (state)
1383 {
1384 case MAP_DATA:
1385 symname = "$d";
1386 type = BSF_NO_FLAGS;
1387 break;
1388 case MAP_INSN:
1389 symname = "$x";
1390 type = BSF_NO_FLAGS;
1391 break;
1392 default:
1393 abort ();
1394 }
1395
1396 symbolP = symbol_new (symname, now_seg, value, frag);
1397 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1398
1399 /* Save the mapping symbols for future reference. Also check that
1400 we do not place two mapping symbols at the same offset within a
1401 frag. We'll handle overlap between frags in
1402 check_mapping_symbols.
1403
1404 If .fill or other data filling directive generates zero sized data,
1405 the mapping symbol for the following code will have the same value
1406 as the one generated for the data filling directive. In this case,
1407 we replace the old symbol with the new one at the same address. */
1408 if (value == 0)
1409 {
1410 if (frag->tc_frag_data.first_map != NULL)
1411 {
1412 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1413 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1414 &symbol_lastP);
1415 }
1416 frag->tc_frag_data.first_map = symbolP;
1417 }
1418 if (frag->tc_frag_data.last_map != NULL)
1419 {
1420 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1421 S_GET_VALUE (symbolP));
1422 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1423 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1424 &symbol_lastP);
1425 }
1426 frag->tc_frag_data.last_map = symbolP;
1427}
1428
1429/* We must sometimes convert a region marked as code to data during
1430 code alignment, if an odd number of bytes have to be padded. The
1431 code mapping symbol is pushed to an aligned address. */
1432
1433static void
1434insert_data_mapping_symbol (enum mstate state,
1435 valueT value, fragS * frag, offsetT bytes)
1436{
1437 /* If there was already a mapping symbol, remove it. */
1438 if (frag->tc_frag_data.last_map != NULL
1439 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1440 frag->fr_address + value)
1441 {
1442 symbolS *symp = frag->tc_frag_data.last_map;
1443
1444 if (value == 0)
1445 {
1446 know (frag->tc_frag_data.first_map == symp);
1447 frag->tc_frag_data.first_map = NULL;
1448 }
1449 frag->tc_frag_data.last_map = NULL;
1450 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1451 }
1452
1453 make_mapping_symbol (MAP_DATA, value, frag);
1454 make_mapping_symbol (state, value + bytes, frag);
1455}
1456
1457static void mapping_state_2 (enum mstate state, int max_chars);
1458
1459/* Set the mapping state to STATE. Only call this when about to
1460 emit some STATE bytes to the file. */
1461
1462void
1463mapping_state (enum mstate state)
1464{
1465 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1466
a578ef7e
JW
1467 if (state == MAP_INSN)
1468 /* AArch64 instructions require 4-byte alignment. When emitting
1469 instructions into any section, record the appropriate section
1470 alignment. */
1471 record_alignment (now_seg, 2);
1472
448eb63d
RL
1473 if (mapstate == state)
1474 /* The mapping symbol has already been emitted.
1475 There is nothing else to do. */
1476 return;
1477
c1baaddf 1478#define TRANSITION(from, to) (mapstate == (from) && state == (to))
a97902de
RL
1479 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1480 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
c1baaddf 1481 evaluated later in the next else. */
a06ea964 1482 return;
c1baaddf
RL
1483 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1484 {
1485 /* Only add the symbol if the offset is > 0:
1486 if we're at the first frag, check it's size > 0;
1487 if we're not at the first frag, then for sure
1488 the offset is > 0. */
1489 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1490 const int add_symbol = (frag_now != frag_first)
1491 || (frag_now_fix () > 0);
1492
1493 if (add_symbol)
1494 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1495 }
1496#undef TRANSITION
a06ea964
NC
1497
1498 mapping_state_2 (state, 0);
a06ea964
NC
1499}
1500
1501/* Same as mapping_state, but MAX_CHARS bytes have already been
1502 allocated. Put the mapping symbol that far back. */
1503
1504static void
1505mapping_state_2 (enum mstate state, int max_chars)
1506{
1507 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1508
1509 if (!SEG_NORMAL (now_seg))
1510 return;
1511
1512 if (mapstate == state)
1513 /* The mapping symbol has already been emitted.
1514 There is nothing else to do. */
1515 return;
1516
1517 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1518 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1519}
1520#else
1521#define mapping_state(x) /* nothing */
1522#define mapping_state_2(x, y) /* nothing */
1523#endif
1524
1525/* Directives: sectioning and alignment. */
1526
1527static void
1528s_bss (int ignore ATTRIBUTE_UNUSED)
1529{
1530 /* We don't support putting frags in the BSS segment, we fake it by
1531 marking in_bss, then looking at s_skip for clues. */
1532 subseg_set (bss_section, 0);
1533 demand_empty_rest_of_line ();
1534 mapping_state (MAP_DATA);
1535}
1536
1537static void
1538s_even (int ignore ATTRIBUTE_UNUSED)
1539{
1540 /* Never make frag if expect extra pass. */
1541 if (!need_pass_2)
1542 frag_align (1, 0, 0);
1543
1544 record_alignment (now_seg, 1);
1545
1546 demand_empty_rest_of_line ();
1547}
1548
1549/* Directives: Literal pools. */
1550
1551static literal_pool *
1552find_literal_pool (int size)
1553{
1554 literal_pool *pool;
1555
1556 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1557 {
1558 if (pool->section == now_seg
1559 && pool->sub_section == now_subseg && pool->size == size)
1560 break;
1561 }
1562
1563 return pool;
1564}
1565
1566static literal_pool *
1567find_or_make_literal_pool (int size)
1568{
1569 /* Next literal pool ID number. */
1570 static unsigned int latest_pool_num = 1;
1571 literal_pool *pool;
1572
1573 pool = find_literal_pool (size);
1574
1575 if (pool == NULL)
1576 {
1577 /* Create a new pool. */
add39d23 1578 pool = XNEW (literal_pool);
a06ea964
NC
1579 if (!pool)
1580 return NULL;
1581
1582 /* Currently we always put the literal pool in the current text
1583 section. If we were generating "small" model code where we
1584 knew that all code and initialised data was within 1MB then
1585 we could output literals to mergeable, read-only data
1586 sections. */
1587
1588 pool->next_free_entry = 0;
1589 pool->section = now_seg;
1590 pool->sub_section = now_subseg;
1591 pool->size = size;
1592 pool->next = list_of_pools;
1593 pool->symbol = NULL;
1594
1595 /* Add it to the list. */
1596 list_of_pools = pool;
1597 }
1598
1599 /* New pools, and emptied pools, will have a NULL symbol. */
1600 if (pool->symbol == NULL)
1601 {
1602 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1603 (valueT) 0, &zero_address_frag);
1604 pool->id = latest_pool_num++;
1605 }
1606
1607 /* Done. */
1608 return pool;
1609}
1610
1611/* Add the literal of size SIZE in *EXP to the relevant literal pool.
1612 Return TRUE on success, otherwise return FALSE. */
1613static bfd_boolean
1614add_to_lit_pool (expressionS *exp, int size)
1615{
1616 literal_pool *pool;
1617 unsigned int entry;
1618
1619 pool = find_or_make_literal_pool (size);
1620
1621 /* Check if this literal value is already in the pool. */
1622 for (entry = 0; entry < pool->next_free_entry; entry++)
1623 {
55d9b4c1
NC
1624 expressionS * litexp = & pool->literals[entry].exp;
1625
1626 if ((litexp->X_op == exp->X_op)
a06ea964 1627 && (exp->X_op == O_constant)
55d9b4c1
NC
1628 && (litexp->X_add_number == exp->X_add_number)
1629 && (litexp->X_unsigned == exp->X_unsigned))
a06ea964
NC
1630 break;
1631
55d9b4c1 1632 if ((litexp->X_op == exp->X_op)
a06ea964 1633 && (exp->X_op == O_symbol)
55d9b4c1
NC
1634 && (litexp->X_add_number == exp->X_add_number)
1635 && (litexp->X_add_symbol == exp->X_add_symbol)
1636 && (litexp->X_op_symbol == exp->X_op_symbol))
a06ea964
NC
1637 break;
1638 }
1639
1640 /* Do we need to create a new entry? */
1641 if (entry == pool->next_free_entry)
1642 {
1643 if (entry >= MAX_LITERAL_POOL_SIZE)
1644 {
1645 set_syntax_error (_("literal pool overflow"));
1646 return FALSE;
1647 }
1648
55d9b4c1 1649 pool->literals[entry].exp = *exp;
a06ea964 1650 pool->next_free_entry += 1;
55d9b4c1
NC
1651 if (exp->X_op == O_big)
1652 {
1653 /* PR 16688: Bignums are held in a single global array. We must
1654 copy and preserve that value now, before it is overwritten. */
add39d23
TS
1655 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1656 exp->X_add_number);
55d9b4c1
NC
1657 memcpy (pool->literals[entry].bignum, generic_bignum,
1658 CHARS_PER_LITTLENUM * exp->X_add_number);
1659 }
1660 else
1661 pool->literals[entry].bignum = NULL;
a06ea964
NC
1662 }
1663
1664 exp->X_op = O_symbol;
1665 exp->X_add_number = ((int) entry) * size;
1666 exp->X_add_symbol = pool->symbol;
1667
1668 return TRUE;
1669}
1670
1671/* Can't use symbol_new here, so have to create a symbol and then at
1672 a later date assign it a value. Thats what these functions do. */
1673
1674static void
1675symbol_locate (symbolS * symbolP,
1676 const char *name,/* It is copied, the caller can modify. */
1677 segT segment, /* Segment identifier (SEG_<something>). */
1678 valueT valu, /* Symbol value. */
1679 fragS * frag) /* Associated fragment. */
1680{
e57e6ddc 1681 size_t name_length;
a06ea964
NC
1682 char *preserved_copy_of_name;
1683
1684 name_length = strlen (name) + 1; /* +1 for \0. */
1685 obstack_grow (&notes, name, name_length);
1686 preserved_copy_of_name = obstack_finish (&notes);
1687
1688#ifdef tc_canonicalize_symbol_name
1689 preserved_copy_of_name =
1690 tc_canonicalize_symbol_name (preserved_copy_of_name);
1691#endif
1692
1693 S_SET_NAME (symbolP, preserved_copy_of_name);
1694
1695 S_SET_SEGMENT (symbolP, segment);
1696 S_SET_VALUE (symbolP, valu);
1697 symbol_clear_list_pointers (symbolP);
1698
1699 symbol_set_frag (symbolP, frag);
1700
1701 /* Link to end of symbol chain. */
1702 {
1703 extern int symbol_table_frozen;
1704
1705 if (symbol_table_frozen)
1706 abort ();
1707 }
1708
1709 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1710
1711 obj_symbol_new_hook (symbolP);
1712
1713#ifdef tc_symbol_new_hook
1714 tc_symbol_new_hook (symbolP);
1715#endif
1716
1717#ifdef DEBUG_SYMS
1718 verify_symbol_chain (symbol_rootP, symbol_lastP);
1719#endif /* DEBUG_SYMS */
1720}
1721
1722
1723static void
1724s_ltorg (int ignored ATTRIBUTE_UNUSED)
1725{
1726 unsigned int entry;
1727 literal_pool *pool;
1728 char sym_name[20];
1729 int align;
1730
67a32447 1731 for (align = 2; align <= 4; align++)
a06ea964
NC
1732 {
1733 int size = 1 << align;
1734
1735 pool = find_literal_pool (size);
1736 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1737 continue;
1738
1739 mapping_state (MAP_DATA);
1740
1741 /* Align pool as you have word accesses.
1742 Only make a frag if we have to. */
1743 if (!need_pass_2)
1744 frag_align (align, 0, 0);
1745
1746 record_alignment (now_seg, align);
1747
1748 sprintf (sym_name, "$$lit_\002%x", pool->id);
1749
1750 symbol_locate (pool->symbol, sym_name, now_seg,
1751 (valueT) frag_now_fix (), frag_now);
1752 symbol_table_insert (pool->symbol);
1753
1754 for (entry = 0; entry < pool->next_free_entry; entry++)
55d9b4c1
NC
1755 {
1756 expressionS * exp = & pool->literals[entry].exp;
1757
1758 if (exp->X_op == O_big)
1759 {
1760 /* PR 16688: Restore the global bignum value. */
1761 gas_assert (pool->literals[entry].bignum != NULL);
1762 memcpy (generic_bignum, pool->literals[entry].bignum,
1763 CHARS_PER_LITTLENUM * exp->X_add_number);
1764 }
1765
1766 /* First output the expression in the instruction to the pool. */
1767 emit_expr (exp, size); /* .word|.xword */
1768
1769 if (exp->X_op == O_big)
1770 {
1771 free (pool->literals[entry].bignum);
1772 pool->literals[entry].bignum = NULL;
1773 }
1774 }
a06ea964
NC
1775
1776 /* Mark the pool as empty. */
1777 pool->next_free_entry = 0;
1778 pool->symbol = NULL;
1779 }
1780}
1781
1782#ifdef OBJ_ELF
1783/* Forward declarations for functions below, in the MD interface
1784 section. */
1785static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1786static struct reloc_table_entry * find_reloc_table_entry (char **);
1787
1788/* Directives: Data. */
1789/* N.B. the support for relocation suffix in this directive needs to be
1790 implemented properly. */
1791
1792static void
1793s_aarch64_elf_cons (int nbytes)
1794{
1795 expressionS exp;
1796
1797#ifdef md_flush_pending_output
1798 md_flush_pending_output ();
1799#endif
1800
1801 if (is_it_end_of_statement ())
1802 {
1803 demand_empty_rest_of_line ();
1804 return;
1805 }
1806
1807#ifdef md_cons_align
1808 md_cons_align (nbytes);
1809#endif
1810
1811 mapping_state (MAP_DATA);
1812 do
1813 {
1814 struct reloc_table_entry *reloc;
1815
1816 expression (&exp);
1817
1818 if (exp.X_op != O_symbol)
1819 emit_expr (&exp, (unsigned int) nbytes);
1820 else
1821 {
1822 skip_past_char (&input_line_pointer, '#');
1823 if (skip_past_char (&input_line_pointer, ':'))
1824 {
1825 reloc = find_reloc_table_entry (&input_line_pointer);
1826 if (reloc == NULL)
1827 as_bad (_("unrecognized relocation suffix"));
1828 else
1829 as_bad (_("unimplemented relocation suffix"));
1830 ignore_rest_of_line ();
1831 return;
1832 }
1833 else
1834 emit_expr (&exp, (unsigned int) nbytes);
1835 }
1836 }
1837 while (*input_line_pointer++ == ',');
1838
1839 /* Put terminator back into stream. */
1840 input_line_pointer--;
1841 demand_empty_rest_of_line ();
1842}
1843
1844#endif /* OBJ_ELF */
1845
1846/* Output a 32-bit word, but mark as an instruction. */
1847
1848static void
1849s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1850{
1851 expressionS exp;
1852
1853#ifdef md_flush_pending_output
1854 md_flush_pending_output ();
1855#endif
1856
1857 if (is_it_end_of_statement ())
1858 {
1859 demand_empty_rest_of_line ();
1860 return;
1861 }
1862
a97902de 1863 /* Sections are assumed to start aligned. In executable section, there is no
c1baaddf
RL
1864 MAP_DATA symbol pending. So we only align the address during
1865 MAP_DATA --> MAP_INSN transition.
eb9d6cc9 1866 For other sections, this is not guaranteed. */
c1baaddf 1867 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
eb9d6cc9 1868 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
a06ea964 1869 frag_align_code (2, 0);
c1baaddf 1870
a06ea964
NC
1871#ifdef OBJ_ELF
1872 mapping_state (MAP_INSN);
1873#endif
1874
1875 do
1876 {
1877 expression (&exp);
1878 if (exp.X_op != O_constant)
1879 {
1880 as_bad (_("constant expression required"));
1881 ignore_rest_of_line ();
1882 return;
1883 }
1884
1885 if (target_big_endian)
1886 {
1887 unsigned int val = exp.X_add_number;
1888 exp.X_add_number = SWAP_32 (val);
1889 }
1890 emit_expr (&exp, 4);
1891 }
1892 while (*input_line_pointer++ == ',');
1893
1894 /* Put terminator back into stream. */
1895 input_line_pointer--;
1896 demand_empty_rest_of_line ();
1897}
1898
1899#ifdef OBJ_ELF
43a357f9
RL
1900/* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
1901
1902static void
1903s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
1904{
1905 expressionS exp;
1906
1907 expression (&exp);
1908 frag_grow (4);
1909 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1910 BFD_RELOC_AARCH64_TLSDESC_ADD);
1911
1912 demand_empty_rest_of_line ();
1913}
1914
a06ea964
NC
1915/* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
1916
1917static void
1918s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
1919{
1920 expressionS exp;
1921
1922 /* Since we're just labelling the code, there's no need to define a
1923 mapping symbol. */
1924 expression (&exp);
1925 /* Make sure there is enough room in this frag for the following
1926 blr. This trick only works if the blr follows immediately after
1927 the .tlsdesc directive. */
1928 frag_grow (4);
1929 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1930 BFD_RELOC_AARCH64_TLSDESC_CALL);
1931
1932 demand_empty_rest_of_line ();
1933}
43a357f9
RL
1934
1935/* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
1936
1937static void
1938s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
1939{
1940 expressionS exp;
1941
1942 expression (&exp);
1943 frag_grow (4);
1944 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
1945 BFD_RELOC_AARCH64_TLSDESC_LDR);
1946
1947 demand_empty_rest_of_line ();
1948}
a06ea964
NC
1949#endif /* OBJ_ELF */
1950
1951static void s_aarch64_arch (int);
1952static void s_aarch64_cpu (int);
ae527cd8 1953static void s_aarch64_arch_extension (int);
a06ea964
NC
1954
1955/* This table describes all the machine specific pseudo-ops the assembler
1956 has to support. The fields are:
1957 pseudo-op name without dot
1958 function to call to execute this pseudo-op
1959 Integer arg to pass to the function. */
1960
1961const pseudo_typeS md_pseudo_table[] = {
1962 /* Never called because '.req' does not start a line. */
1963 {"req", s_req, 0},
1964 {"unreq", s_unreq, 0},
1965 {"bss", s_bss, 0},
1966 {"even", s_even, 0},
1967 {"ltorg", s_ltorg, 0},
1968 {"pool", s_ltorg, 0},
1969 {"cpu", s_aarch64_cpu, 0},
1970 {"arch", s_aarch64_arch, 0},
ae527cd8 1971 {"arch_extension", s_aarch64_arch_extension, 0},
a06ea964
NC
1972 {"inst", s_aarch64_inst, 0},
1973#ifdef OBJ_ELF
43a357f9 1974 {"tlsdescadd", s_tlsdescadd, 0},
a06ea964 1975 {"tlsdesccall", s_tlsdesccall, 0},
43a357f9 1976 {"tlsdescldr", s_tlsdescldr, 0},
a06ea964
NC
1977 {"word", s_aarch64_elf_cons, 4},
1978 {"long", s_aarch64_elf_cons, 4},
1979 {"xword", s_aarch64_elf_cons, 8},
1980 {"dword", s_aarch64_elf_cons, 8},
1981#endif
1982 {0, 0, 0}
1983};
1984\f
1985
1986/* Check whether STR points to a register name followed by a comma or the
1987 end of line; REG_TYPE indicates which register types are checked
1988 against. Return TRUE if STR is such a register name; otherwise return
1989 FALSE. The function does not intend to produce any diagnostics, but since
1990 the register parser aarch64_reg_parse, which is called by this function,
1991 does produce diagnostics, we call clear_error to clear any diagnostics
1992 that may be generated by aarch64_reg_parse.
1993 Also, the function returns FALSE directly if there is any user error
1994 present at the function entry. This prevents the existing diagnostics
1995 state from being spoiled.
1996 The function currently serves parse_constant_immediate and
1997 parse_big_immediate only. */
1998static bfd_boolean
1999reg_name_p (char *str, aarch64_reg_type reg_type)
2000{
2001 int reg;
2002
2003 /* Prevent the diagnostics state from being spoiled. */
2004 if (error_p ())
2005 return FALSE;
2006
2007 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2008
2009 /* Clear the parsing error that may be set by the reg parser. */
2010 clear_error ();
2011
2012 if (reg == PARSE_FAIL)
2013 return FALSE;
2014
2015 skip_whitespace (str);
2016 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2017 return TRUE;
2018
2019 return FALSE;
2020}
2021
2022/* Parser functions used exclusively in instruction operands. */
2023
2024/* Parse an immediate expression which may not be constant.
2025
2026 To prevent the expression parser from pushing a register name
2027 into the symbol table as an undefined symbol, firstly a check is
2028 done to find out whether STR is a valid register name followed
2029 by a comma or the end of line. Return FALSE if STR is such a
2030 string. */
2031
2032static bfd_boolean
2033parse_immediate_expression (char **str, expressionS *exp)
2034{
2035 if (reg_name_p (*str, REG_TYPE_R_Z_BHSDQ_V))
2036 {
2037 set_recoverable_error (_("immediate operand required"));
2038 return FALSE;
2039 }
2040
2041 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2042
2043 if (exp->X_op == O_absent)
2044 {
2045 set_fatal_syntax_error (_("missing immediate expression"));
2046 return FALSE;
2047 }
2048
2049 return TRUE;
2050}
2051
2052/* Constant immediate-value read function for use in insn parsing.
2053 STR points to the beginning of the immediate (with the optional
2054 leading #); *VAL receives the value.
2055
2056 Return TRUE on success; otherwise return FALSE. */
2057
2058static bfd_boolean
2059parse_constant_immediate (char **str, int64_t * val)
2060{
2061 expressionS exp;
2062
2063 if (! parse_immediate_expression (str, &exp))
2064 return FALSE;
2065
2066 if (exp.X_op != O_constant)
2067 {
2068 set_syntax_error (_("constant expression required"));
2069 return FALSE;
2070 }
2071
2072 *val = exp.X_add_number;
2073 return TRUE;
2074}
2075
2076static uint32_t
2077encode_imm_float_bits (uint32_t imm)
2078{
2079 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2080 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2081}
2082
62b0d0d5
YZ
2083/* Return TRUE if the single-precision floating-point value encoded in IMM
2084 can be expressed in the AArch64 8-bit signed floating-point format with
2085 3-bit exponent and normalized 4 bits of precision; in other words, the
2086 floating-point value must be expressable as
2087 (+/-) n / 16 * power (2, r)
2088 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2089
a06ea964
NC
2090static bfd_boolean
2091aarch64_imm_float_p (uint32_t imm)
2092{
62b0d0d5
YZ
2093 /* If a single-precision floating-point value has the following bit
2094 pattern, it can be expressed in the AArch64 8-bit floating-point
2095 format:
2096
2097 3 32222222 2221111111111
a06ea964 2098 1 09876543 21098765432109876543210
62b0d0d5
YZ
2099 n Eeeeeexx xxxx0000000000000000000
2100
2101 where n, e and each x are either 0 or 1 independently, with
2102 E == ~ e. */
a06ea964 2103
62b0d0d5
YZ
2104 uint32_t pattern;
2105
2106 /* Prepare the pattern for 'Eeeeee'. */
2107 if (((imm >> 30) & 0x1) == 0)
2108 pattern = 0x3e000000;
a06ea964 2109 else
62b0d0d5
YZ
2110 pattern = 0x40000000;
2111
2112 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2113 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
a06ea964
NC
2114}
2115
62b0d0d5
YZ
2116/* Like aarch64_imm_float_p but for a double-precision floating-point value.
2117
2118 Return TRUE if the value encoded in IMM can be expressed in the AArch64
2119 8-bit signed floating-point format with 3-bit exponent and normalized 4
2120 bits of precision (i.e. can be used in an FMOV instruction); return the
2121 equivalent single-precision encoding in *FPWORD.
2122
2123 Otherwise return FALSE. */
2124
a06ea964 2125static bfd_boolean
62b0d0d5
YZ
2126aarch64_double_precision_fmovable (uint64_t imm, uint32_t *fpword)
2127{
2128 /* If a double-precision floating-point value has the following bit
2129 pattern, it can be expressed in the AArch64 8-bit floating-point
2130 format:
2131
2132 6 66655555555 554444444...21111111111
2133 3 21098765432 109876543...098765432109876543210
2134 n Eeeeeeeeexx xxxx00000...000000000000000000000
2135
2136 where n, e and each x are either 0 or 1 independently, with
2137 E == ~ e. */
2138
2139 uint32_t pattern;
2140 uint32_t high32 = imm >> 32;
2141
2142 /* Lower 32 bits need to be 0s. */
2143 if ((imm & 0xffffffff) != 0)
2144 return FALSE;
2145
2146 /* Prepare the pattern for 'Eeeeeeeee'. */
2147 if (((high32 >> 30) & 0x1) == 0)
2148 pattern = 0x3fc00000;
2149 else
2150 pattern = 0x40000000;
2151
2152 if ((high32 & 0xffff) == 0 /* bits 32 - 47 are 0. */
2153 && (high32 & 0x7fc00000) == pattern) /* bits 54 - 61 == ~ bit 62. */
2154 {
2155 /* Convert to the single-precision encoding.
2156 i.e. convert
2157 n Eeeeeeeeexx xxxx00000...000000000000000000000
2158 to
2159 n Eeeeeexx xxxx0000000000000000000. */
2160 *fpword = ((high32 & 0xfe000000) /* nEeeeee. */
2161 | (((high32 >> 16) & 0x3f) << 19)); /* xxxxxx. */
2162 return TRUE;
2163 }
2164 else
2165 return FALSE;
2166}
2167
2168/* Parse a floating-point immediate. Return TRUE on success and return the
2169 value in *IMMED in the format of IEEE754 single-precision encoding.
2170 *CCP points to the start of the string; DP_P is TRUE when the immediate
2171 is expected to be in double-precision (N.B. this only matters when
2172 hexadecimal representation is involved).
2173
2174 N.B. 0.0 is accepted by this function. */
2175
2176static bfd_boolean
2177parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p)
a06ea964
NC
2178{
2179 char *str = *ccp;
2180 char *fpnum;
2181 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2182 int found_fpchar = 0;
62b0d0d5
YZ
2183 int64_t val = 0;
2184 unsigned fpword = 0;
2185 bfd_boolean hex_p = FALSE;
a06ea964
NC
2186
2187 skip_past_char (&str, '#');
2188
a06ea964
NC
2189 fpnum = str;
2190 skip_whitespace (fpnum);
2191
2192 if (strncmp (fpnum, "0x", 2) == 0)
62b0d0d5
YZ
2193 {
2194 /* Support the hexadecimal representation of the IEEE754 encoding.
2195 Double-precision is expected when DP_P is TRUE, otherwise the
2196 representation should be in single-precision. */
2197 if (! parse_constant_immediate (&str, &val))
2198 goto invalid_fp;
2199
2200 if (dp_p)
2201 {
2202 if (! aarch64_double_precision_fmovable (val, &fpword))
2203 goto invalid_fp;
2204 }
2205 else if ((uint64_t) val > 0xffffffff)
2206 goto invalid_fp;
2207 else
2208 fpword = val;
2209
2210 hex_p = TRUE;
2211 }
a06ea964
NC
2212 else
2213 {
62b0d0d5
YZ
2214 /* We must not accidentally parse an integer as a floating-point number.
2215 Make sure that the value we parse is not an integer by checking for
2216 special characters '.' or 'e'. */
a06ea964
NC
2217 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
2218 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
2219 {
2220 found_fpchar = 1;
2221 break;
2222 }
2223
2224 if (!found_fpchar)
2225 return FALSE;
2226 }
2227
62b0d0d5 2228 if (! hex_p)
a06ea964 2229 {
a06ea964
NC
2230 int i;
2231
62b0d0d5
YZ
2232 if ((str = atof_ieee (str, 's', words)) == NULL)
2233 goto invalid_fp;
2234
a06ea964
NC
2235 /* Our FP word must be 32 bits (single-precision FP). */
2236 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2237 {
2238 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2239 fpword |= words[i];
2240 }
62b0d0d5 2241 }
a06ea964 2242
62b0d0d5
YZ
2243 if (aarch64_imm_float_p (fpword) || (fpword & 0x7fffffff) == 0)
2244 {
2245 *immed = fpword;
a06ea964 2246 *ccp = str;
a06ea964
NC
2247 return TRUE;
2248 }
2249
2250invalid_fp:
2251 set_fatal_syntax_error (_("invalid floating-point constant"));
2252 return FALSE;
2253}
2254
2255/* Less-generic immediate-value read function with the possibility of loading
2256 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2257 instructions.
2258
2259 To prevent the expression parser from pushing a register name into the
2260 symbol table as an undefined symbol, a check is firstly done to find
2261 out whether STR is a valid register name followed by a comma or the end
2262 of line. Return FALSE if STR is such a register. */
2263
2264static bfd_boolean
2265parse_big_immediate (char **str, int64_t *imm)
2266{
2267 char *ptr = *str;
2268
2269 if (reg_name_p (ptr, REG_TYPE_R_Z_BHSDQ_V))
2270 {
2271 set_syntax_error (_("immediate operand required"));
2272 return FALSE;
2273 }
2274
2275 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2276
2277 if (inst.reloc.exp.X_op == O_constant)
2278 *imm = inst.reloc.exp.X_add_number;
2279
2280 *str = ptr;
2281
2282 return TRUE;
2283}
2284
2285/* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2286 if NEED_LIBOPCODES is non-zero, the fixup will need
2287 assistance from the libopcodes. */
2288
2289static inline void
2290aarch64_set_gas_internal_fixup (struct reloc *reloc,
2291 const aarch64_opnd_info *operand,
2292 int need_libopcodes_p)
2293{
2294 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2295 reloc->opnd = operand->type;
2296 if (need_libopcodes_p)
2297 reloc->need_libopcodes_p = 1;
2298};
2299
2300/* Return TRUE if the instruction needs to be fixed up later internally by
2301 the GAS; otherwise return FALSE. */
2302
2303static inline bfd_boolean
2304aarch64_gas_internal_fixup_p (void)
2305{
2306 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2307}
2308
2309/* Assign the immediate value to the relavant field in *OPERAND if
2310 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2311 needs an internal fixup in a later stage.
2312 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2313 IMM.VALUE that may get assigned with the constant. */
2314static inline void
2315assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2316 aarch64_opnd_info *operand,
2317 int addr_off_p,
2318 int need_libopcodes_p,
2319 int skip_p)
2320{
2321 if (reloc->exp.X_op == O_constant)
2322 {
2323 if (addr_off_p)
2324 operand->addr.offset.imm = reloc->exp.X_add_number;
2325 else
2326 operand->imm.value = reloc->exp.X_add_number;
2327 reloc->type = BFD_RELOC_UNUSED;
2328 }
2329 else
2330 {
2331 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2332 /* Tell libopcodes to ignore this operand or not. This is helpful
2333 when one of the operands needs to be fixed up later but we need
2334 libopcodes to check the other operands. */
2335 operand->skip = skip_p;
2336 }
2337}
2338
2339/* Relocation modifiers. Each entry in the table contains the textual
2340 name for the relocation which may be placed before a symbol used as
2341 a load/store offset, or add immediate. It must be surrounded by a
2342 leading and trailing colon, for example:
2343
2344 ldr x0, [x1, #:rello:varsym]
2345 add x0, x1, #:rello:varsym */
2346
2347struct reloc_table_entry
2348{
2349 const char *name;
2350 int pc_rel;
6f4a313b 2351 bfd_reloc_code_real_type adr_type;
a06ea964
NC
2352 bfd_reloc_code_real_type adrp_type;
2353 bfd_reloc_code_real_type movw_type;
2354 bfd_reloc_code_real_type add_type;
2355 bfd_reloc_code_real_type ldst_type;
74ad790c 2356 bfd_reloc_code_real_type ld_literal_type;
a06ea964
NC
2357};
2358
2359static struct reloc_table_entry reloc_table[] = {
2360 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2361 {"lo12", 0,
6f4a313b 2362 0, /* adr_type */
a06ea964
NC
2363 0,
2364 0,
2365 BFD_RELOC_AARCH64_ADD_LO12,
74ad790c
MS
2366 BFD_RELOC_AARCH64_LDST_LO12,
2367 0},
a06ea964
NC
2368
2369 /* Higher 21 bits of pc-relative page offset: ADRP */
2370 {"pg_hi21", 1,
6f4a313b 2371 0, /* adr_type */
a06ea964
NC
2372 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2373 0,
2374 0,
74ad790c 2375 0,
a06ea964
NC
2376 0},
2377
2378 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2379 {"pg_hi21_nc", 1,
6f4a313b 2380 0, /* adr_type */
a06ea964
NC
2381 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2382 0,
2383 0,
74ad790c 2384 0,
a06ea964
NC
2385 0},
2386
2387 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2388 {"abs_g0", 0,
6f4a313b 2389 0, /* adr_type */
a06ea964
NC
2390 0,
2391 BFD_RELOC_AARCH64_MOVW_G0,
2392 0,
74ad790c 2393 0,
a06ea964
NC
2394 0},
2395
2396 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2397 {"abs_g0_s", 0,
6f4a313b 2398 0, /* adr_type */
a06ea964
NC
2399 0,
2400 BFD_RELOC_AARCH64_MOVW_G0_S,
2401 0,
74ad790c 2402 0,
a06ea964
NC
2403 0},
2404
2405 /* Less significant bits 0-15 of address/value: MOVK, no check */
2406 {"abs_g0_nc", 0,
6f4a313b 2407 0, /* adr_type */
a06ea964
NC
2408 0,
2409 BFD_RELOC_AARCH64_MOVW_G0_NC,
2410 0,
74ad790c 2411 0,
a06ea964
NC
2412 0},
2413
2414 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2415 {"abs_g1", 0,
6f4a313b 2416 0, /* adr_type */
a06ea964
NC
2417 0,
2418 BFD_RELOC_AARCH64_MOVW_G1,
2419 0,
74ad790c 2420 0,
a06ea964
NC
2421 0},
2422
2423 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2424 {"abs_g1_s", 0,
6f4a313b 2425 0, /* adr_type */
a06ea964
NC
2426 0,
2427 BFD_RELOC_AARCH64_MOVW_G1_S,
2428 0,
74ad790c 2429 0,
a06ea964
NC
2430 0},
2431
2432 /* Less significant bits 16-31 of address/value: MOVK, no check */
2433 {"abs_g1_nc", 0,
6f4a313b 2434 0, /* adr_type */
a06ea964
NC
2435 0,
2436 BFD_RELOC_AARCH64_MOVW_G1_NC,
2437 0,
74ad790c 2438 0,
a06ea964
NC
2439 0},
2440
2441 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2442 {"abs_g2", 0,
6f4a313b 2443 0, /* adr_type */
a06ea964
NC
2444 0,
2445 BFD_RELOC_AARCH64_MOVW_G2,
2446 0,
74ad790c 2447 0,
a06ea964
NC
2448 0},
2449
2450 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2451 {"abs_g2_s", 0,
6f4a313b 2452 0, /* adr_type */
a06ea964
NC
2453 0,
2454 BFD_RELOC_AARCH64_MOVW_G2_S,
2455 0,
74ad790c 2456 0,
a06ea964
NC
2457 0},
2458
2459 /* Less significant bits 32-47 of address/value: MOVK, no check */
2460 {"abs_g2_nc", 0,
6f4a313b 2461 0, /* adr_type */
a06ea964
NC
2462 0,
2463 BFD_RELOC_AARCH64_MOVW_G2_NC,
2464 0,
74ad790c 2465 0,
a06ea964
NC
2466 0},
2467
2468 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2469 {"abs_g3", 0,
6f4a313b 2470 0, /* adr_type */
a06ea964
NC
2471 0,
2472 BFD_RELOC_AARCH64_MOVW_G3,
2473 0,
74ad790c 2474 0,
a06ea964 2475 0},
4aa2c5e2 2476
a06ea964
NC
2477 /* Get to the page containing GOT entry for a symbol. */
2478 {"got", 1,
6f4a313b 2479 0, /* adr_type */
a06ea964
NC
2480 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2481 0,
2482 0,
74ad790c 2483 0,
4aa2c5e2
MS
2484 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2485
a06ea964
NC
2486 /* 12 bit offset into the page containing GOT entry for that symbol. */
2487 {"got_lo12", 0,
6f4a313b 2488 0, /* adr_type */
a06ea964
NC
2489 0,
2490 0,
2491 0,
74ad790c
MS
2492 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2493 0},
a06ea964 2494
ca632371
RL
2495 /* 0-15 bits of address/value: MOVk, no check. */
2496 {"gotoff_g0_nc", 0,
2497 0, /* adr_type */
2498 0,
2499 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2500 0,
2501 0,
2502 0},
2503
654248e7
RL
2504 /* Most significant bits 16-31 of address/value: MOVZ. */
2505 {"gotoff_g1", 0,
2506 0, /* adr_type */
2507 0,
2508 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2509 0,
2510 0,
2511 0},
2512
87f5fbcc
RL
2513 /* 15 bit offset into the page containing GOT entry for that symbol. */
2514 {"gotoff_lo15", 0,
2515 0, /* adr_type */
2516 0,
2517 0,
2518 0,
2519 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2520 0},
2521
3b957e5b
RL
2522 /* Get to the page containing GOT TLS entry for a symbol */
2523 {"gottprel_g0_nc", 0,
2524 0, /* adr_type */
2525 0,
2526 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2527 0,
2528 0,
2529 0},
2530
2531 /* Get to the page containing GOT TLS entry for a symbol */
2532 {"gottprel_g1", 0,
2533 0, /* adr_type */
2534 0,
2535 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2536 0,
2537 0,
2538 0},
2539
a06ea964
NC
2540 /* Get to the page containing GOT TLS entry for a symbol */
2541 {"tlsgd", 0,
3c12b054 2542 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
a06ea964
NC
2543 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2544 0,
2545 0,
74ad790c 2546 0,
a06ea964
NC
2547 0},
2548
2549 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2550 {"tlsgd_lo12", 0,
6f4a313b 2551 0, /* adr_type */
a06ea964
NC
2552 0,
2553 0,
2554 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
74ad790c 2555 0,
a06ea964
NC
2556 0},
2557
3e8286c0
RL
2558 /* Lower 16 bits address/value: MOVk. */
2559 {"tlsgd_g0_nc", 0,
2560 0, /* adr_type */
2561 0,
2562 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2563 0,
2564 0,
2565 0},
2566
1aa66fb1
RL
2567 /* Most significant bits 16-31 of address/value: MOVZ. */
2568 {"tlsgd_g1", 0,
2569 0, /* adr_type */
2570 0,
2571 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2572 0,
2573 0,
2574 0},
2575
a06ea964
NC
2576 /* Get to the page containing GOT TLS entry for a symbol */
2577 {"tlsdesc", 0,
389b8029 2578 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
418009c2 2579 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
a06ea964
NC
2580 0,
2581 0,
74ad790c 2582 0,
1ada945d 2583 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
a06ea964
NC
2584
2585 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2586 {"tlsdesc_lo12", 0,
6f4a313b 2587 0, /* adr_type */
a06ea964
NC
2588 0,
2589 0,
2590 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC,
74ad790c
MS
2591 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2592 0},
a06ea964 2593
6c37fedc
JW
2594 /* Get to the page containing GOT TLS entry for a symbol.
2595 The same as GD, we allocate two consecutive GOT slots
2596 for module index and module offset, the only difference
2597 with GD is the module offset should be intialized to
2598 zero without any outstanding runtime relocation. */
2599 {"tlsldm", 0,
2600 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
1107e076 2601 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
6c37fedc
JW
2602 0,
2603 0,
2604 0,
2605 0},
2606
a12fad50
JW
2607 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2608 {"tlsldm_lo12_nc", 0,
2609 0, /* adr_type */
2610 0,
2611 0,
2612 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2613 0,
2614 0},
2615
70151fb5
JW
2616 /* 12 bit offset into the module TLS base address. */
2617 {"dtprel_lo12", 0,
2618 0, /* adr_type */
2619 0,
2620 0,
2621 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
4c562523 2622 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
70151fb5
JW
2623 0},
2624
13289c10
JW
2625 /* Same as dtprel_lo12, no overflow check. */
2626 {"dtprel_lo12_nc", 0,
2627 0, /* adr_type */
2628 0,
2629 0,
2630 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
4c562523 2631 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
13289c10
JW
2632 0},
2633
49df5539
JW
2634 /* bits[23:12] of offset to the module TLS base address. */
2635 {"dtprel_hi12", 0,
2636 0, /* adr_type */
2637 0,
2638 0,
2639 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2640 0,
2641 0},
2642
2643 /* bits[15:0] of offset to the module TLS base address. */
2644 {"dtprel_g0", 0,
2645 0, /* adr_type */
2646 0,
2647 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2648 0,
2649 0,
2650 0},
2651
2652 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2653 {"dtprel_g0_nc", 0,
2654 0, /* adr_type */
2655 0,
2656 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2657 0,
2658 0,
2659 0},
2660
2661 /* bits[31:16] of offset to the module TLS base address. */
2662 {"dtprel_g1", 0,
2663 0, /* adr_type */
2664 0,
2665 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2666 0,
2667 0,
2668 0},
2669
2670 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2671 {"dtprel_g1_nc", 0,
2672 0, /* adr_type */
2673 0,
2674 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2675 0,
2676 0,
2677 0},
2678
2679 /* bits[47:32] of offset to the module TLS base address. */
2680 {"dtprel_g2", 0,
2681 0, /* adr_type */
2682 0,
2683 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2684 0,
2685 0,
2686 0},
2687
43a357f9
RL
2688 /* Lower 16 bit offset into GOT entry for a symbol */
2689 {"tlsdesc_off_g0_nc", 0,
2690 0, /* adr_type */
2691 0,
2692 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2693 0,
2694 0,
2695 0},
2696
2697 /* Higher 16 bit offset into GOT entry for a symbol */
2698 {"tlsdesc_off_g1", 0,
2699 0, /* adr_type */
2700 0,
2701 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2702 0,
2703 0,
2704 0},
2705
a06ea964
NC
2706 /* Get to the page containing GOT TLS entry for a symbol */
2707 {"gottprel", 0,
6f4a313b 2708 0, /* adr_type */
a06ea964
NC
2709 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2710 0,
2711 0,
74ad790c 2712 0,
043bf05a 2713 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
a06ea964
NC
2714
2715 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2716 {"gottprel_lo12", 0,
6f4a313b 2717 0, /* adr_type */
a06ea964
NC
2718 0,
2719 0,
2720 0,
74ad790c
MS
2721 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2722 0},
a06ea964
NC
2723
2724 /* Get tp offset for a symbol. */
2725 {"tprel", 0,
6f4a313b 2726 0, /* adr_type */
a06ea964
NC
2727 0,
2728 0,
2729 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2730 0,
a06ea964
NC
2731 0},
2732
2733 /* Get tp offset for a symbol. */
2734 {"tprel_lo12", 0,
6f4a313b 2735 0, /* adr_type */
a06ea964
NC
2736 0,
2737 0,
2738 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
74ad790c 2739 0,
a06ea964
NC
2740 0},
2741
2742 /* Get tp offset for a symbol. */
2743 {"tprel_hi12", 0,
6f4a313b 2744 0, /* adr_type */
a06ea964
NC
2745 0,
2746 0,
2747 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
74ad790c 2748 0,
a06ea964
NC
2749 0},
2750
2751 /* Get tp offset for a symbol. */
2752 {"tprel_lo12_nc", 0,
6f4a313b 2753 0, /* adr_type */
a06ea964
NC
2754 0,
2755 0,
2756 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
74ad790c 2757 0,
a06ea964
NC
2758 0},
2759
2760 /* Most significant bits 32-47 of address/value: MOVZ. */
2761 {"tprel_g2", 0,
6f4a313b 2762 0, /* adr_type */
a06ea964
NC
2763 0,
2764 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2765 0,
74ad790c 2766 0,
a06ea964
NC
2767 0},
2768
2769 /* Most significant bits 16-31 of address/value: MOVZ. */
2770 {"tprel_g1", 0,
6f4a313b 2771 0, /* adr_type */
a06ea964
NC
2772 0,
2773 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2774 0,
74ad790c 2775 0,
a06ea964
NC
2776 0},
2777
2778 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2779 {"tprel_g1_nc", 0,
6f4a313b 2780 0, /* adr_type */
a06ea964
NC
2781 0,
2782 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2783 0,
74ad790c 2784 0,
a06ea964
NC
2785 0},
2786
2787 /* Most significant bits 0-15 of address/value: MOVZ. */
2788 {"tprel_g0", 0,
6f4a313b 2789 0, /* adr_type */
a06ea964
NC
2790 0,
2791 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2792 0,
74ad790c 2793 0,
a06ea964
NC
2794 0},
2795
2796 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2797 {"tprel_g0_nc", 0,
6f4a313b 2798 0, /* adr_type */
a06ea964
NC
2799 0,
2800 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2801 0,
74ad790c 2802 0,
a06ea964 2803 0},
a921b5bd
JW
2804
2805 /* 15bit offset from got entry to base address of GOT table. */
2806 {"gotpage_lo15", 0,
2807 0,
2808 0,
2809 0,
2810 0,
2811 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2812 0},
3d715ce4
JW
2813
2814 /* 14bit offset from got entry to base address of GOT table. */
2815 {"gotpage_lo14", 0,
2816 0,
2817 0,
2818 0,
2819 0,
2820 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2821 0},
a06ea964
NC
2822};
2823
2824/* Given the address of a pointer pointing to the textual name of a
2825 relocation as may appear in assembler source, attempt to find its
2826 details in reloc_table. The pointer will be updated to the character
2827 after the trailing colon. On failure, NULL will be returned;
2828 otherwise return the reloc_table_entry. */
2829
2830static struct reloc_table_entry *
2831find_reloc_table_entry (char **str)
2832{
2833 unsigned int i;
2834 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
2835 {
2836 int length = strlen (reloc_table[i].name);
2837
2838 if (strncasecmp (reloc_table[i].name, *str, length) == 0
2839 && (*str)[length] == ':')
2840 {
2841 *str += (length + 1);
2842 return &reloc_table[i];
2843 }
2844 }
2845
2846 return NULL;
2847}
2848
2849/* Mode argument to parse_shift and parser_shifter_operand. */
2850enum parse_shift_mode
2851{
2852 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
2853 "#imm{,lsl #n}" */
2854 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
2855 "#imm" */
2856 SHIFTED_LSL, /* bare "lsl #n" */
2857 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
2858 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
2859};
2860
2861/* Parse a <shift> operator on an AArch64 data processing instruction.
2862 Return TRUE on success; otherwise return FALSE. */
2863static bfd_boolean
2864parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
2865{
2866 const struct aarch64_name_value_pair *shift_op;
2867 enum aarch64_modifier_kind kind;
2868 expressionS exp;
2869 int exp_has_prefix;
2870 char *s = *str;
2871 char *p = s;
2872
2873 for (p = *str; ISALPHA (*p); p++)
2874 ;
2875
2876 if (p == *str)
2877 {
2878 set_syntax_error (_("shift expression expected"));
2879 return FALSE;
2880 }
2881
2882 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
2883
2884 if (shift_op == NULL)
2885 {
2886 set_syntax_error (_("shift operator expected"));
2887 return FALSE;
2888 }
2889
2890 kind = aarch64_get_operand_modifier (shift_op);
2891
2892 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
2893 {
2894 set_syntax_error (_("invalid use of 'MSL'"));
2895 return FALSE;
2896 }
2897
2898 switch (mode)
2899 {
2900 case SHIFTED_LOGIC_IMM:
2901 if (aarch64_extend_operator_p (kind) == TRUE)
2902 {
2903 set_syntax_error (_("extending shift is not permitted"));
2904 return FALSE;
2905 }
2906 break;
2907
2908 case SHIFTED_ARITH_IMM:
2909 if (kind == AARCH64_MOD_ROR)
2910 {
2911 set_syntax_error (_("'ROR' shift is not permitted"));
2912 return FALSE;
2913 }
2914 break;
2915
2916 case SHIFTED_LSL:
2917 if (kind != AARCH64_MOD_LSL)
2918 {
2919 set_syntax_error (_("only 'LSL' shift is permitted"));
2920 return FALSE;
2921 }
2922 break;
2923
2924 case SHIFTED_REG_OFFSET:
2925 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
2926 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
2927 {
2928 set_fatal_syntax_error
2929 (_("invalid shift for the register offset addressing mode"));
2930 return FALSE;
2931 }
2932 break;
2933
2934 case SHIFTED_LSL_MSL:
2935 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
2936 {
2937 set_syntax_error (_("invalid shift operator"));
2938 return FALSE;
2939 }
2940 break;
2941
2942 default:
2943 abort ();
2944 }
2945
2946 /* Whitespace can appear here if the next thing is a bare digit. */
2947 skip_whitespace (p);
2948
2949 /* Parse shift amount. */
2950 exp_has_prefix = 0;
2951 if (mode == SHIFTED_REG_OFFSET && *p == ']')
2952 exp.X_op = O_absent;
2953 else
2954 {
2955 if (is_immediate_prefix (*p))
2956 {
2957 p++;
2958 exp_has_prefix = 1;
2959 }
2960 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
2961 }
2962 if (exp.X_op == O_absent)
2963 {
2964 if (aarch64_extend_operator_p (kind) == FALSE || exp_has_prefix)
2965 {
2966 set_syntax_error (_("missing shift amount"));
2967 return FALSE;
2968 }
2969 operand->shifter.amount = 0;
2970 }
2971 else if (exp.X_op != O_constant)
2972 {
2973 set_syntax_error (_("constant shift amount required"));
2974 return FALSE;
2975 }
2976 else if (exp.X_add_number < 0 || exp.X_add_number > 63)
2977 {
2978 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
2979 return FALSE;
2980 }
2981 else
2982 {
2983 operand->shifter.amount = exp.X_add_number;
2984 operand->shifter.amount_present = 1;
2985 }
2986
2987 operand->shifter.operator_present = 1;
2988 operand->shifter.kind = kind;
2989
2990 *str = p;
2991 return TRUE;
2992}
2993
2994/* Parse a <shifter_operand> for a data processing instruction:
2995
2996 #<immediate>
2997 #<immediate>, LSL #imm
2998
2999 Validation of immediate operands is deferred to md_apply_fix.
3000
3001 Return TRUE on success; otherwise return FALSE. */
3002
3003static bfd_boolean
3004parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3005 enum parse_shift_mode mode)
3006{
3007 char *p;
3008
3009 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3010 return FALSE;
3011
3012 p = *str;
3013
3014 /* Accept an immediate expression. */
3015 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3016 return FALSE;
3017
3018 /* Accept optional LSL for arithmetic immediate values. */
3019 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3020 if (! parse_shift (&p, operand, SHIFTED_LSL))
3021 return FALSE;
3022
3023 /* Not accept any shifter for logical immediate values. */
3024 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3025 && parse_shift (&p, operand, mode))
3026 {
3027 set_syntax_error (_("unexpected shift operator"));
3028 return FALSE;
3029 }
3030
3031 *str = p;
3032 return TRUE;
3033}
3034
3035/* Parse a <shifter_operand> for a data processing instruction:
3036
3037 <Rm>
3038 <Rm>, <shift>
3039 #<immediate>
3040 #<immediate>, LSL #imm
3041
3042 where <shift> is handled by parse_shift above, and the last two
3043 cases are handled by the function above.
3044
3045 Validation of immediate operands is deferred to md_apply_fix.
3046
3047 Return TRUE on success; otherwise return FALSE. */
3048
3049static bfd_boolean
3050parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3051 enum parse_shift_mode mode)
3052{
3053 int reg;
3054 int isreg32, isregzero;
3055 enum aarch64_operand_class opd_class
3056 = aarch64_get_operand_class (operand->type);
3057
3058 if ((reg =
3059 aarch64_reg_parse_32_64 (str, 0, 0, &isreg32, &isregzero)) != PARSE_FAIL)
3060 {
3061 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3062 {
3063 set_syntax_error (_("unexpected register in the immediate operand"));
3064 return FALSE;
3065 }
3066
3067 if (!isregzero && reg == REG_SP)
3068 {
3069 set_syntax_error (BAD_SP);
3070 return FALSE;
3071 }
3072
3073 operand->reg.regno = reg;
3074 operand->qualifier = isreg32 ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
3075
3076 /* Accept optional shift operation on register. */
3077 if (! skip_past_comma (str))
3078 return TRUE;
3079
3080 if (! parse_shift (str, operand, mode))
3081 return FALSE;
3082
3083 return TRUE;
3084 }
3085 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3086 {
3087 set_syntax_error
3088 (_("integer register expected in the extended/shifted operand "
3089 "register"));
3090 return FALSE;
3091 }
3092
3093 /* We have a shifted immediate variable. */
3094 return parse_shifter_operand_imm (str, operand, mode);
3095}
3096
3097/* Return TRUE on success; return FALSE otherwise. */
3098
3099static bfd_boolean
3100parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3101 enum parse_shift_mode mode)
3102{
3103 char *p = *str;
3104
3105 /* Determine if we have the sequence of characters #: or just :
3106 coming next. If we do, then we check for a :rello: relocation
3107 modifier. If we don't, punt the whole lot to
3108 parse_shifter_operand. */
3109
3110 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3111 {
3112 struct reloc_table_entry *entry;
3113
3114 if (p[0] == '#')
3115 p += 2;
3116 else
3117 p++;
3118 *str = p;
3119
3120 /* Try to parse a relocation. Anything else is an error. */
3121 if (!(entry = find_reloc_table_entry (str)))
3122 {
3123 set_syntax_error (_("unknown relocation modifier"));
3124 return FALSE;
3125 }
3126
3127 if (entry->add_type == 0)
3128 {
3129 set_syntax_error
3130 (_("this relocation modifier is not allowed on this instruction"));
3131 return FALSE;
3132 }
3133
3134 /* Save str before we decompose it. */
3135 p = *str;
3136
3137 /* Next, we parse the expression. */
3138 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3139 return FALSE;
3140
3141 /* Record the relocation type (use the ADD variant here). */
3142 inst.reloc.type = entry->add_type;
3143 inst.reloc.pc_rel = entry->pc_rel;
3144
3145 /* If str is empty, we've reached the end, stop here. */
3146 if (**str == '\0')
3147 return TRUE;
3148
55d9b4c1 3149 /* Otherwise, we have a shifted reloc modifier, so rewind to
a06ea964
NC
3150 recover the variable name and continue parsing for the shifter. */
3151 *str = p;
3152 return parse_shifter_operand_imm (str, operand, mode);
3153 }
3154
3155 return parse_shifter_operand (str, operand, mode);
3156}
3157
3158/* Parse all forms of an address expression. Information is written
3159 to *OPERAND and/or inst.reloc.
3160
3161 The A64 instruction set has the following addressing modes:
3162
3163 Offset
3164 [base] // in SIMD ld/st structure
3165 [base{,#0}] // in ld/st exclusive
3166 [base{,#imm}]
3167 [base,Xm{,LSL #imm}]
3168 [base,Xm,SXTX {#imm}]
3169 [base,Wm,(S|U)XTW {#imm}]
3170 Pre-indexed
3171 [base,#imm]!
3172 Post-indexed
3173 [base],#imm
3174 [base],Xm // in SIMD ld/st structure
3175 PC-relative (literal)
3176 label
3177 =immediate
3178
3179 (As a convenience, the notation "=immediate" is permitted in conjunction
3180 with the pc-relative literal load instructions to automatically place an
3181 immediate value or symbolic address in a nearby literal pool and generate
3182 a hidden label which references it.)
3183
3184 Upon a successful parsing, the address structure in *OPERAND will be
3185 filled in the following way:
3186
3187 .base_regno = <base>
3188 .offset.is_reg // 1 if the offset is a register
3189 .offset.imm = <imm>
3190 .offset.regno = <Rm>
3191
3192 For different addressing modes defined in the A64 ISA:
3193
3194 Offset
3195 .pcrel=0; .preind=1; .postind=0; .writeback=0
3196 Pre-indexed
3197 .pcrel=0; .preind=1; .postind=0; .writeback=1
3198 Post-indexed
3199 .pcrel=0; .preind=0; .postind=1; .writeback=1
3200 PC-relative (literal)
3201 .pcrel=1; .preind=1; .postind=0; .writeback=0
3202
3203 The shift/extension information, if any, will be stored in .shifter.
3204
3205 It is the caller's responsibility to check for addressing modes not
3206 supported by the instruction, and to set inst.reloc.type. */
3207
3208static bfd_boolean
3209parse_address_main (char **str, aarch64_opnd_info *operand, int reloc,
3210 int accept_reg_post_index)
3211{
3212 char *p = *str;
3213 int reg;
3214 int isreg32, isregzero;
3215 expressionS *exp = &inst.reloc.exp;
3216
3217 if (! skip_past_char (&p, '['))
3218 {
3219 /* =immediate or label. */
3220 operand->addr.pcrel = 1;
3221 operand->addr.preind = 1;
3222
f41aef5f
RE
3223 /* #:<reloc_op>:<symbol> */
3224 skip_past_char (&p, '#');
3225 if (reloc && skip_past_char (&p, ':'))
3226 {
6f4a313b 3227 bfd_reloc_code_real_type ty;
f41aef5f
RE
3228 struct reloc_table_entry *entry;
3229
3230 /* Try to parse a relocation modifier. Anything else is
3231 an error. */
3232 entry = find_reloc_table_entry (&p);
3233 if (! entry)
3234 {
3235 set_syntax_error (_("unknown relocation modifier"));
3236 return FALSE;
3237 }
3238
6f4a313b
MS
3239 switch (operand->type)
3240 {
3241 case AARCH64_OPND_ADDR_PCREL21:
3242 /* adr */
3243 ty = entry->adr_type;
3244 break;
3245
3246 default:
74ad790c 3247 ty = entry->ld_literal_type;
6f4a313b
MS
3248 break;
3249 }
3250
3251 if (ty == 0)
f41aef5f
RE
3252 {
3253 set_syntax_error
3254 (_("this relocation modifier is not allowed on this "
3255 "instruction"));
3256 return FALSE;
3257 }
3258
3259 /* #:<reloc_op>: */
3260 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3261 {
3262 set_syntax_error (_("invalid relocation expression"));
3263 return FALSE;
3264 }
a06ea964 3265
f41aef5f 3266 /* #:<reloc_op>:<expr> */
6f4a313b
MS
3267 /* Record the relocation type. */
3268 inst.reloc.type = ty;
f41aef5f
RE
3269 inst.reloc.pc_rel = entry->pc_rel;
3270 }
3271 else
a06ea964 3272 {
f41aef5f
RE
3273
3274 if (skip_past_char (&p, '='))
3275 /* =immediate; need to generate the literal in the literal pool. */
3276 inst.gen_lit_pool = 1;
3277
3278 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3279 {
3280 set_syntax_error (_("invalid address"));
3281 return FALSE;
3282 }
a06ea964
NC
3283 }
3284
3285 *str = p;
3286 return TRUE;
3287 }
3288
3289 /* [ */
3290
3291 /* Accept SP and reject ZR */
3292 reg = aarch64_reg_parse_32_64 (&p, 0, 1, &isreg32, &isregzero);
3293 if (reg == PARSE_FAIL || isreg32)
3294 {
3295 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3296 return FALSE;
3297 }
3298 operand->addr.base_regno = reg;
3299
3300 /* [Xn */
3301 if (skip_past_comma (&p))
3302 {
3303 /* [Xn, */
3304 operand->addr.preind = 1;
3305
3306 /* Reject SP and accept ZR */
3307 reg = aarch64_reg_parse_32_64 (&p, 1, 0, &isreg32, &isregzero);
3308 if (reg != PARSE_FAIL)
3309 {
3310 /* [Xn,Rm */
3311 operand->addr.offset.regno = reg;
3312 operand->addr.offset.is_reg = 1;
3313 /* Shifted index. */
3314 if (skip_past_comma (&p))
3315 {
3316 /* [Xn,Rm, */
3317 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3318 /* Use the diagnostics set in parse_shift, so not set new
3319 error message here. */
3320 return FALSE;
3321 }
3322 /* We only accept:
3323 [base,Xm{,LSL #imm}]
3324 [base,Xm,SXTX {#imm}]
3325 [base,Wm,(S|U)XTW {#imm}] */
3326 if (operand->shifter.kind == AARCH64_MOD_NONE
3327 || operand->shifter.kind == AARCH64_MOD_LSL
3328 || operand->shifter.kind == AARCH64_MOD_SXTX)
3329 {
3330 if (isreg32)
3331 {
3332 set_syntax_error (_("invalid use of 32-bit register offset"));
3333 return FALSE;
3334 }
3335 }
3336 else if (!isreg32)
3337 {
3338 set_syntax_error (_("invalid use of 64-bit register offset"));
3339 return FALSE;
3340 }
3341 }
3342 else
3343 {
3344 /* [Xn,#:<reloc_op>:<symbol> */
3345 skip_past_char (&p, '#');
3346 if (reloc && skip_past_char (&p, ':'))
3347 {
3348 struct reloc_table_entry *entry;
3349
3350 /* Try to parse a relocation modifier. Anything else is
3351 an error. */
3352 if (!(entry = find_reloc_table_entry (&p)))
3353 {
3354 set_syntax_error (_("unknown relocation modifier"));
3355 return FALSE;
3356 }
3357
3358 if (entry->ldst_type == 0)
3359 {
3360 set_syntax_error
3361 (_("this relocation modifier is not allowed on this "
3362 "instruction"));
3363 return FALSE;
3364 }
3365
3366 /* [Xn,#:<reloc_op>: */
3367 /* We now have the group relocation table entry corresponding to
3368 the name in the assembler source. Next, we parse the
3369 expression. */
3370 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3371 {
3372 set_syntax_error (_("invalid relocation expression"));
3373 return FALSE;
3374 }
3375
3376 /* [Xn,#:<reloc_op>:<expr> */
3377 /* Record the load/store relocation type. */
3378 inst.reloc.type = entry->ldst_type;
3379 inst.reloc.pc_rel = entry->pc_rel;
3380 }
3381 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3382 {
3383 set_syntax_error (_("invalid expression in the address"));
3384 return FALSE;
3385 }
3386 /* [Xn,<expr> */
3387 }
3388 }
3389
3390 if (! skip_past_char (&p, ']'))
3391 {
3392 set_syntax_error (_("']' expected"));
3393 return FALSE;
3394 }
3395
3396 if (skip_past_char (&p, '!'))
3397 {
3398 if (operand->addr.preind && operand->addr.offset.is_reg)
3399 {
3400 set_syntax_error (_("register offset not allowed in pre-indexed "
3401 "addressing mode"));
3402 return FALSE;
3403 }
3404 /* [Xn]! */
3405 operand->addr.writeback = 1;
3406 }
3407 else if (skip_past_comma (&p))
3408 {
3409 /* [Xn], */
3410 operand->addr.postind = 1;
3411 operand->addr.writeback = 1;
3412
3413 if (operand->addr.preind)
3414 {
3415 set_syntax_error (_("cannot combine pre- and post-indexing"));
3416 return FALSE;
3417 }
3418
3419 if (accept_reg_post_index
3420 && (reg = aarch64_reg_parse_32_64 (&p, 1, 1, &isreg32,
3421 &isregzero)) != PARSE_FAIL)
3422 {
3423 /* [Xn],Xm */
3424 if (isreg32)
3425 {
3426 set_syntax_error (_("invalid 32-bit register offset"));
3427 return FALSE;
3428 }
3429 operand->addr.offset.regno = reg;
3430 operand->addr.offset.is_reg = 1;
3431 }
3432 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3433 {
3434 /* [Xn],#expr */
3435 set_syntax_error (_("invalid expression in the address"));
3436 return FALSE;
3437 }
3438 }
3439
3440 /* If at this point neither .preind nor .postind is set, we have a
3441 bare [Rn]{!}; reject [Rn]! but accept [Rn] as a shorthand for [Rn,#0]. */
3442 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3443 {
3444 if (operand->addr.writeback)
3445 {
3446 /* Reject [Rn]! */
3447 set_syntax_error (_("missing offset in the pre-indexed address"));
3448 return FALSE;
3449 }
3450 operand->addr.preind = 1;
3451 inst.reloc.exp.X_op = O_constant;
3452 inst.reloc.exp.X_add_number = 0;
3453 }
3454
3455 *str = p;
3456 return TRUE;
3457}
3458
3459/* Return TRUE on success; otherwise return FALSE. */
3460static bfd_boolean
3461parse_address (char **str, aarch64_opnd_info *operand,
3462 int accept_reg_post_index)
3463{
3464 return parse_address_main (str, operand, 0, accept_reg_post_index);
3465}
3466
3467/* Return TRUE on success; otherwise return FALSE. */
3468static bfd_boolean
3469parse_address_reloc (char **str, aarch64_opnd_info *operand)
3470{
3471 return parse_address_main (str, operand, 1, 0);
3472}
3473
3474/* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3475 Return TRUE on success; otherwise return FALSE. */
3476static bfd_boolean
3477parse_half (char **str, int *internal_fixup_p)
3478{
671eeb28 3479 char *p = *str;
a06ea964 3480
a06ea964
NC
3481 skip_past_char (&p, '#');
3482
3483 gas_assert (internal_fixup_p);
3484 *internal_fixup_p = 0;
3485
3486 if (*p == ':')
3487 {
3488 struct reloc_table_entry *entry;
3489
3490 /* Try to parse a relocation. Anything else is an error. */
3491 ++p;
3492 if (!(entry = find_reloc_table_entry (&p)))
3493 {
3494 set_syntax_error (_("unknown relocation modifier"));
3495 return FALSE;
3496 }
3497
3498 if (entry->movw_type == 0)
3499 {
3500 set_syntax_error
3501 (_("this relocation modifier is not allowed on this instruction"));
3502 return FALSE;
3503 }
3504
3505 inst.reloc.type = entry->movw_type;
3506 }
3507 else
3508 *internal_fixup_p = 1;
3509
a06ea964
NC
3510 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3511 return FALSE;
3512
3513 *str = p;
3514 return TRUE;
3515}
3516
3517/* Parse an operand for an ADRP instruction:
3518 ADRP <Xd>, <label>
3519 Return TRUE on success; otherwise return FALSE. */
3520
3521static bfd_boolean
3522parse_adrp (char **str)
3523{
3524 char *p;
3525
3526 p = *str;
3527 if (*p == ':')
3528 {
3529 struct reloc_table_entry *entry;
3530
3531 /* Try to parse a relocation. Anything else is an error. */
3532 ++p;
3533 if (!(entry = find_reloc_table_entry (&p)))
3534 {
3535 set_syntax_error (_("unknown relocation modifier"));
3536 return FALSE;
3537 }
3538
3539 if (entry->adrp_type == 0)
3540 {
3541 set_syntax_error
3542 (_("this relocation modifier is not allowed on this instruction"));
3543 return FALSE;
3544 }
3545
3546 inst.reloc.type = entry->adrp_type;
3547 }
3548 else
3549 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3550
3551 inst.reloc.pc_rel = 1;
3552
3553 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3554 return FALSE;
3555
3556 *str = p;
3557 return TRUE;
3558}
3559
3560/* Miscellaneous. */
3561
3562/* Parse an option for a preload instruction. Returns the encoding for the
3563 option, or PARSE_FAIL. */
3564
3565static int
3566parse_pldop (char **str)
3567{
3568 char *p, *q;
3569 const struct aarch64_name_value_pair *o;
3570
3571 p = q = *str;
3572 while (ISALNUM (*q))
3573 q++;
3574
3575 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3576 if (!o)
3577 return PARSE_FAIL;
3578
3579 *str = q;
3580 return o->value;
3581}
3582
3583/* Parse an option for a barrier instruction. Returns the encoding for the
3584 option, or PARSE_FAIL. */
3585
3586static int
3587parse_barrier (char **str)
3588{
3589 char *p, *q;
3590 const asm_barrier_opt *o;
3591
3592 p = q = *str;
3593 while (ISALPHA (*q))
3594 q++;
3595
3596 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3597 if (!o)
3598 return PARSE_FAIL;
3599
3600 *str = q;
3601 return o->value;
3602}
3603
1e6f4800
MW
3604/* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3605 return 0 if successful. Otherwise return PARSE_FAIL. */
3606
3607static int
3608parse_barrier_psb (char **str,
3609 const struct aarch64_name_value_pair ** hint_opt)
3610{
3611 char *p, *q;
3612 const struct aarch64_name_value_pair *o;
3613
3614 p = q = *str;
3615 while (ISALPHA (*q))
3616 q++;
3617
3618 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3619 if (!o)
3620 {
3621 set_fatal_syntax_error
3622 ( _("unknown or missing option to PSB"));
3623 return PARSE_FAIL;
3624 }
3625
3626 if (o->value != 0x11)
3627 {
3628 /* PSB only accepts option name 'CSYNC'. */
3629 set_syntax_error
3630 (_("the specified option is not accepted for PSB"));
3631 return PARSE_FAIL;
3632 }
3633
3634 *str = q;
3635 *hint_opt = o;
3636 return 0;
3637}
3638
a06ea964 3639/* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
a203d9b7 3640 Returns the encoding for the option, or PARSE_FAIL.
a06ea964
NC
3641
3642 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
72ca8fad
MW
3643 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3644
3645 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3646 field, otherwise as a system register.
3647*/
a06ea964
NC
3648
3649static int
72ca8fad
MW
3650parse_sys_reg (char **str, struct hash_control *sys_regs,
3651 int imple_defined_p, int pstatefield_p)
a06ea964
NC
3652{
3653 char *p, *q;
3654 char buf[32];
49eec193 3655 const aarch64_sys_reg *o;
a06ea964
NC
3656 int value;
3657
3658 p = buf;
3659 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3660 if (p < buf + 31)
3661 *p++ = TOLOWER (*q);
3662 *p = '\0';
3663 /* Assert that BUF be large enough. */
3664 gas_assert (p - buf == q - *str);
3665
3666 o = hash_find (sys_regs, buf);
3667 if (!o)
3668 {
3669 if (!imple_defined_p)
3670 return PARSE_FAIL;
3671 else
3672 {
df7b4545 3673 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
a06ea964 3674 unsigned int op0, op1, cn, cm, op2;
df7b4545
JW
3675
3676 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
3677 != 5)
a06ea964 3678 return PARSE_FAIL;
df7b4545 3679 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
a06ea964
NC
3680 return PARSE_FAIL;
3681 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
3682 }
3683 }
3684 else
49eec193 3685 {
72ca8fad
MW
3686 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
3687 as_bad (_("selected processor does not support PSTATE field "
3688 "name '%s'"), buf);
3689 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
3690 as_bad (_("selected processor does not support system register "
3691 "name '%s'"), buf);
9a73e520 3692 if (aarch64_sys_reg_deprecated_p (o))
49eec193 3693 as_warn (_("system register name '%s' is deprecated and may be "
72ca8fad 3694 "removed in a future release"), buf);
49eec193
YZ
3695 value = o->value;
3696 }
a06ea964
NC
3697
3698 *str = q;
3699 return value;
3700}
3701
3702/* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
3703 for the option, or NULL. */
3704
3705static const aarch64_sys_ins_reg *
3706parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
3707{
3708 char *p, *q;
3709 char buf[32];
3710 const aarch64_sys_ins_reg *o;
3711
3712 p = buf;
3713 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
3714 if (p < buf + 31)
3715 *p++ = TOLOWER (*q);
3716 *p = '\0';
3717
3718 o = hash_find (sys_ins_regs, buf);
3719 if (!o)
3720 return NULL;
3721
d6bf7ce6
MW
3722 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
3723 as_bad (_("selected processor does not support system register "
3724 "name '%s'"), buf);
3725
a06ea964
NC
3726 *str = q;
3727 return o;
3728}
3729\f
3730#define po_char_or_fail(chr) do { \
3731 if (! skip_past_char (&str, chr)) \
3732 goto failure; \
3733} while (0)
3734
3735#define po_reg_or_fail(regtype) do { \
3736 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
3737 if (val == PARSE_FAIL) \
3738 { \
3739 set_default_error (); \
3740 goto failure; \
3741 } \
3742 } while (0)
3743
3744#define po_int_reg_or_fail(reject_sp, reject_rz) do { \
3745 val = aarch64_reg_parse_32_64 (&str, reject_sp, reject_rz, \
3746 &isreg32, &isregzero); \
3747 if (val == PARSE_FAIL) \
3748 { \
3749 set_default_error (); \
3750 goto failure; \
3751 } \
3752 info->reg.regno = val; \
3753 if (isreg32) \
3754 info->qualifier = AARCH64_OPND_QLF_W; \
3755 else \
3756 info->qualifier = AARCH64_OPND_QLF_X; \
3757 } while (0)
3758
3759#define po_imm_nc_or_fail() do { \
3760 if (! parse_constant_immediate (&str, &val)) \
3761 goto failure; \
3762 } while (0)
3763
3764#define po_imm_or_fail(min, max) do { \
3765 if (! parse_constant_immediate (&str, &val)) \
3766 goto failure; \
3767 if (val < min || val > max) \
3768 { \
3769 set_fatal_syntax_error (_("immediate value out of range "\
3770#min " to "#max)); \
3771 goto failure; \
3772 } \
3773 } while (0)
3774
3775#define po_misc_or_fail(expr) do { \
3776 if (!expr) \
3777 goto failure; \
3778 } while (0)
3779\f
3780/* encode the 12-bit imm field of Add/sub immediate */
3781static inline uint32_t
3782encode_addsub_imm (uint32_t imm)
3783{
3784 return imm << 10;
3785}
3786
3787/* encode the shift amount field of Add/sub immediate */
3788static inline uint32_t
3789encode_addsub_imm_shift_amount (uint32_t cnt)
3790{
3791 return cnt << 22;
3792}
3793
3794
3795/* encode the imm field of Adr instruction */
3796static inline uint32_t
3797encode_adr_imm (uint32_t imm)
3798{
3799 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
3800 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
3801}
3802
3803/* encode the immediate field of Move wide immediate */
3804static inline uint32_t
3805encode_movw_imm (uint32_t imm)
3806{
3807 return imm << 5;
3808}
3809
3810/* encode the 26-bit offset of unconditional branch */
3811static inline uint32_t
3812encode_branch_ofs_26 (uint32_t ofs)
3813{
3814 return ofs & ((1 << 26) - 1);
3815}
3816
3817/* encode the 19-bit offset of conditional branch and compare & branch */
3818static inline uint32_t
3819encode_cond_branch_ofs_19 (uint32_t ofs)
3820{
3821 return (ofs & ((1 << 19) - 1)) << 5;
3822}
3823
3824/* encode the 19-bit offset of ld literal */
3825static inline uint32_t
3826encode_ld_lit_ofs_19 (uint32_t ofs)
3827{
3828 return (ofs & ((1 << 19) - 1)) << 5;
3829}
3830
3831/* Encode the 14-bit offset of test & branch. */
3832static inline uint32_t
3833encode_tst_branch_ofs_14 (uint32_t ofs)
3834{
3835 return (ofs & ((1 << 14) - 1)) << 5;
3836}
3837
3838/* Encode the 16-bit imm field of svc/hvc/smc. */
3839static inline uint32_t
3840encode_svc_imm (uint32_t imm)
3841{
3842 return imm << 5;
3843}
3844
3845/* Reencode add(s) to sub(s), or sub(s) to add(s). */
3846static inline uint32_t
3847reencode_addsub_switch_add_sub (uint32_t opcode)
3848{
3849 return opcode ^ (1 << 30);
3850}
3851
3852static inline uint32_t
3853reencode_movzn_to_movz (uint32_t opcode)
3854{
3855 return opcode | (1 << 30);
3856}
3857
3858static inline uint32_t
3859reencode_movzn_to_movn (uint32_t opcode)
3860{
3861 return opcode & ~(1 << 30);
3862}
3863
3864/* Overall per-instruction processing. */
3865
3866/* We need to be able to fix up arbitrary expressions in some statements.
3867 This is so that we can handle symbols that are an arbitrary distance from
3868 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
3869 which returns part of an address in a form which will be valid for
3870 a data instruction. We do this by pushing the expression into a symbol
3871 in the expr_section, and creating a fix for that. */
3872
3873static fixS *
3874fix_new_aarch64 (fragS * frag,
3875 int where,
3876 short int size, expressionS * exp, int pc_rel, int reloc)
3877{
3878 fixS *new_fix;
3879
3880 switch (exp->X_op)
3881 {
3882 case O_constant:
3883 case O_symbol:
3884 case O_add:
3885 case O_subtract:
3886 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
3887 break;
3888
3889 default:
3890 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
3891 pc_rel, reloc);
3892 break;
3893 }
3894 return new_fix;
3895}
3896\f
3897/* Diagnostics on operands errors. */
3898
a52e6fd3
YZ
3899/* By default, output verbose error message.
3900 Disable the verbose error message by -mno-verbose-error. */
3901static int verbose_error_p = 1;
a06ea964
NC
3902
3903#ifdef DEBUG_AARCH64
3904/* N.B. this is only for the purpose of debugging. */
3905const char* operand_mismatch_kind_names[] =
3906{
3907 "AARCH64_OPDE_NIL",
3908 "AARCH64_OPDE_RECOVERABLE",
3909 "AARCH64_OPDE_SYNTAX_ERROR",
3910 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
3911 "AARCH64_OPDE_INVALID_VARIANT",
3912 "AARCH64_OPDE_OUT_OF_RANGE",
3913 "AARCH64_OPDE_UNALIGNED",
3914 "AARCH64_OPDE_REG_LIST",
3915 "AARCH64_OPDE_OTHER_ERROR",
3916};
3917#endif /* DEBUG_AARCH64 */
3918
3919/* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
3920
3921 When multiple errors of different kinds are found in the same assembly
3922 line, only the error of the highest severity will be picked up for
3923 issuing the diagnostics. */
3924
3925static inline bfd_boolean
3926operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
3927 enum aarch64_operand_error_kind rhs)
3928{
3929 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
3930 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
3931 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
3932 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
3933 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
3934 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
3935 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
3936 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
3937 return lhs > rhs;
3938}
3939
3940/* Helper routine to get the mnemonic name from the assembly instruction
3941 line; should only be called for the diagnosis purpose, as there is
3942 string copy operation involved, which may affect the runtime
3943 performance if used in elsewhere. */
3944
3945static const char*
3946get_mnemonic_name (const char *str)
3947{
3948 static char mnemonic[32];
3949 char *ptr;
3950
3951 /* Get the first 15 bytes and assume that the full name is included. */
3952 strncpy (mnemonic, str, 31);
3953 mnemonic[31] = '\0';
3954
3955 /* Scan up to the end of the mnemonic, which must end in white space,
3956 '.', or end of string. */
3957 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
3958 ;
3959
3960 *ptr = '\0';
3961
3962 /* Append '...' to the truncated long name. */
3963 if (ptr - mnemonic == 31)
3964 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
3965
3966 return mnemonic;
3967}
3968
3969static void
3970reset_aarch64_instruction (aarch64_instruction *instruction)
3971{
3972 memset (instruction, '\0', sizeof (aarch64_instruction));
3973 instruction->reloc.type = BFD_RELOC_UNUSED;
3974}
3975
3976/* Data strutures storing one user error in the assembly code related to
3977 operands. */
3978
3979struct operand_error_record
3980{
3981 const aarch64_opcode *opcode;
3982 aarch64_operand_error detail;
3983 struct operand_error_record *next;
3984};
3985
3986typedef struct operand_error_record operand_error_record;
3987
3988struct operand_errors
3989{
3990 operand_error_record *head;
3991 operand_error_record *tail;
3992};
3993
3994typedef struct operand_errors operand_errors;
3995
3996/* Top-level data structure reporting user errors for the current line of
3997 the assembly code.
3998 The way md_assemble works is that all opcodes sharing the same mnemonic
3999 name are iterated to find a match to the assembly line. In this data
4000 structure, each of the such opcodes will have one operand_error_record
4001 allocated and inserted. In other words, excessive errors related with
4002 a single opcode are disregarded. */
4003operand_errors operand_error_report;
4004
4005/* Free record nodes. */
4006static operand_error_record *free_opnd_error_record_nodes = NULL;
4007
4008/* Initialize the data structure that stores the operand mismatch
4009 information on assembling one line of the assembly code. */
4010static void
4011init_operand_error_report (void)
4012{
4013 if (operand_error_report.head != NULL)
4014 {
4015 gas_assert (operand_error_report.tail != NULL);
4016 operand_error_report.tail->next = free_opnd_error_record_nodes;
4017 free_opnd_error_record_nodes = operand_error_report.head;
4018 operand_error_report.head = NULL;
4019 operand_error_report.tail = NULL;
4020 return;
4021 }
4022 gas_assert (operand_error_report.tail == NULL);
4023}
4024
4025/* Return TRUE if some operand error has been recorded during the
4026 parsing of the current assembly line using the opcode *OPCODE;
4027 otherwise return FALSE. */
4028static inline bfd_boolean
4029opcode_has_operand_error_p (const aarch64_opcode *opcode)
4030{
4031 operand_error_record *record = operand_error_report.head;
4032 return record && record->opcode == opcode;
4033}
4034
4035/* Add the error record *NEW_RECORD to operand_error_report. The record's
4036 OPCODE field is initialized with OPCODE.
4037 N.B. only one record for each opcode, i.e. the maximum of one error is
4038 recorded for each instruction template. */
4039
4040static void
4041add_operand_error_record (const operand_error_record* new_record)
4042{
4043 const aarch64_opcode *opcode = new_record->opcode;
4044 operand_error_record* record = operand_error_report.head;
4045
4046 /* The record may have been created for this opcode. If not, we need
4047 to prepare one. */
4048 if (! opcode_has_operand_error_p (opcode))
4049 {
4050 /* Get one empty record. */
4051 if (free_opnd_error_record_nodes == NULL)
4052 {
325801bd 4053 record = XNEW (operand_error_record);
a06ea964
NC
4054 }
4055 else
4056 {
4057 record = free_opnd_error_record_nodes;
4058 free_opnd_error_record_nodes = record->next;
4059 }
4060 record->opcode = opcode;
4061 /* Insert at the head. */
4062 record->next = operand_error_report.head;
4063 operand_error_report.head = record;
4064 if (operand_error_report.tail == NULL)
4065 operand_error_report.tail = record;
4066 }
4067 else if (record->detail.kind != AARCH64_OPDE_NIL
4068 && record->detail.index <= new_record->detail.index
4069 && operand_error_higher_severity_p (record->detail.kind,
4070 new_record->detail.kind))
4071 {
4072 /* In the case of multiple errors found on operands related with a
4073 single opcode, only record the error of the leftmost operand and
4074 only if the error is of higher severity. */
4075 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4076 " the existing error %s on operand %d",
4077 operand_mismatch_kind_names[new_record->detail.kind],
4078 new_record->detail.index,
4079 operand_mismatch_kind_names[record->detail.kind],
4080 record->detail.index);
4081 return;
4082 }
4083
4084 record->detail = new_record->detail;
4085}
4086
4087static inline void
4088record_operand_error_info (const aarch64_opcode *opcode,
4089 aarch64_operand_error *error_info)
4090{
4091 operand_error_record record;
4092 record.opcode = opcode;
4093 record.detail = *error_info;
4094 add_operand_error_record (&record);
4095}
4096
4097/* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4098 error message *ERROR, for operand IDX (count from 0). */
4099
4100static void
4101record_operand_error (const aarch64_opcode *opcode, int idx,
4102 enum aarch64_operand_error_kind kind,
4103 const char* error)
4104{
4105 aarch64_operand_error info;
4106 memset(&info, 0, sizeof (info));
4107 info.index = idx;
4108 info.kind = kind;
4109 info.error = error;
4110 record_operand_error_info (opcode, &info);
4111}
4112
4113static void
4114record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4115 enum aarch64_operand_error_kind kind,
4116 const char* error, const int *extra_data)
4117{
4118 aarch64_operand_error info;
4119 info.index = idx;
4120 info.kind = kind;
4121 info.error = error;
4122 info.data[0] = extra_data[0];
4123 info.data[1] = extra_data[1];
4124 info.data[2] = extra_data[2];
4125 record_operand_error_info (opcode, &info);
4126}
4127
4128static void
4129record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4130 const char* error, int lower_bound,
4131 int upper_bound)
4132{
4133 int data[3] = {lower_bound, upper_bound, 0};
4134 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4135 error, data);
4136}
4137
4138/* Remove the operand error record for *OPCODE. */
4139static void ATTRIBUTE_UNUSED
4140remove_operand_error_record (const aarch64_opcode *opcode)
4141{
4142 if (opcode_has_operand_error_p (opcode))
4143 {
4144 operand_error_record* record = operand_error_report.head;
4145 gas_assert (record != NULL && operand_error_report.tail != NULL);
4146 operand_error_report.head = record->next;
4147 record->next = free_opnd_error_record_nodes;
4148 free_opnd_error_record_nodes = record;
4149 if (operand_error_report.head == NULL)
4150 {
4151 gas_assert (operand_error_report.tail == record);
4152 operand_error_report.tail = NULL;
4153 }
4154 }
4155}
4156
4157/* Given the instruction in *INSTR, return the index of the best matched
4158 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4159
4160 Return -1 if there is no qualifier sequence; return the first match
4161 if there is multiple matches found. */
4162
4163static int
4164find_best_match (const aarch64_inst *instr,
4165 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4166{
4167 int i, num_opnds, max_num_matched, idx;
4168
4169 num_opnds = aarch64_num_of_operands (instr->opcode);
4170 if (num_opnds == 0)
4171 {
4172 DEBUG_TRACE ("no operand");
4173 return -1;
4174 }
4175
4176 max_num_matched = 0;
4177 idx = -1;
4178
4179 /* For each pattern. */
4180 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4181 {
4182 int j, num_matched;
4183 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4184
4185 /* Most opcodes has much fewer patterns in the list. */
4186 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
4187 {
4188 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4189 if (i != 0 && idx == -1)
4190 /* If nothing has been matched, return the 1st sequence. */
4191 idx = 0;
4192 break;
4193 }
4194
4195 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4196 if (*qualifiers == instr->operands[j].qualifier)
4197 ++num_matched;
4198
4199 if (num_matched > max_num_matched)
4200 {
4201 max_num_matched = num_matched;
4202 idx = i;
4203 }
4204 }
4205
4206 DEBUG_TRACE ("return with %d", idx);
4207 return idx;
4208}
4209
4210/* Assign qualifiers in the qualifier seqence (headed by QUALIFIERS) to the
4211 corresponding operands in *INSTR. */
4212
4213static inline void
4214assign_qualifier_sequence (aarch64_inst *instr,
4215 const aarch64_opnd_qualifier_t *qualifiers)
4216{
4217 int i = 0;
4218 int num_opnds = aarch64_num_of_operands (instr->opcode);
4219 gas_assert (num_opnds);
4220 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4221 instr->operands[i].qualifier = *qualifiers;
4222}
4223
4224/* Print operands for the diagnosis purpose. */
4225
4226static void
4227print_operands (char *buf, const aarch64_opcode *opcode,
4228 const aarch64_opnd_info *opnds)
4229{
4230 int i;
4231
4232 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4233 {
4234 const size_t size = 128;
4235 char str[size];
4236
4237 /* We regard the opcode operand info more, however we also look into
4238 the inst->operands to support the disassembling of the optional
4239 operand.
4240 The two operand code should be the same in all cases, apart from
4241 when the operand can be optional. */
4242 if (opcode->operands[i] == AARCH64_OPND_NIL
4243 || opnds[i].type == AARCH64_OPND_NIL)
4244 break;
4245
4246 /* Generate the operand string in STR. */
4247 aarch64_print_operand (str, size, 0, opcode, opnds, i, NULL, NULL);
4248
4249 /* Delimiter. */
4250 if (str[0] != '\0')
4251 strcat (buf, i == 0 ? " " : ",");
4252
4253 /* Append the operand string. */
4254 strcat (buf, str);
4255 }
4256}
4257
4258/* Send to stderr a string as information. */
4259
4260static void
4261output_info (const char *format, ...)
4262{
3b4dbbbf 4263 const char *file;
a06ea964
NC
4264 unsigned int line;
4265 va_list args;
4266
3b4dbbbf 4267 file = as_where (&line);
a06ea964
NC
4268 if (file)
4269 {
4270 if (line != 0)
4271 fprintf (stderr, "%s:%u: ", file, line);
4272 else
4273 fprintf (stderr, "%s: ", file);
4274 }
4275 fprintf (stderr, _("Info: "));
4276 va_start (args, format);
4277 vfprintf (stderr, format, args);
4278 va_end (args);
4279 (void) putc ('\n', stderr);
4280}
4281
4282/* Output one operand error record. */
4283
4284static void
4285output_operand_error_record (const operand_error_record *record, char *str)
4286{
28f013d5
JB
4287 const aarch64_operand_error *detail = &record->detail;
4288 int idx = detail->index;
a06ea964 4289 const aarch64_opcode *opcode = record->opcode;
28f013d5 4290 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
a06ea964 4291 : AARCH64_OPND_NIL);
a06ea964
NC
4292
4293 switch (detail->kind)
4294 {
4295 case AARCH64_OPDE_NIL:
4296 gas_assert (0);
4297 break;
4298
4299 case AARCH64_OPDE_SYNTAX_ERROR:
4300 case AARCH64_OPDE_RECOVERABLE:
4301 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4302 case AARCH64_OPDE_OTHER_ERROR:
a06ea964
NC
4303 /* Use the prepared error message if there is, otherwise use the
4304 operand description string to describe the error. */
4305 if (detail->error != NULL)
4306 {
28f013d5 4307 if (idx < 0)
a06ea964
NC
4308 as_bad (_("%s -- `%s'"), detail->error, str);
4309 else
4310 as_bad (_("%s at operand %d -- `%s'"),
28f013d5 4311 detail->error, idx + 1, str);
a06ea964
NC
4312 }
4313 else
28f013d5
JB
4314 {
4315 gas_assert (idx >= 0);
4316 as_bad (_("operand %d should be %s -- `%s'"), idx + 1,
a06ea964 4317 aarch64_get_operand_desc (opd_code), str);
28f013d5 4318 }
a06ea964
NC
4319 break;
4320
4321 case AARCH64_OPDE_INVALID_VARIANT:
4322 as_bad (_("operand mismatch -- `%s'"), str);
4323 if (verbose_error_p)
4324 {
4325 /* We will try to correct the erroneous instruction and also provide
4326 more information e.g. all other valid variants.
4327
4328 The string representation of the corrected instruction and other
4329 valid variants are generated by
4330
4331 1) obtaining the intermediate representation of the erroneous
4332 instruction;
4333 2) manipulating the IR, e.g. replacing the operand qualifier;
4334 3) printing out the instruction by calling the printer functions
4335 shared with the disassembler.
4336
4337 The limitation of this method is that the exact input assembly
4338 line cannot be accurately reproduced in some cases, for example an
4339 optional operand present in the actual assembly line will be
4340 omitted in the output; likewise for the optional syntax rules,
4341 e.g. the # before the immediate. Another limitation is that the
4342 assembly symbols and relocation operations in the assembly line
4343 currently cannot be printed out in the error report. Last but not
4344 least, when there is other error(s) co-exist with this error, the
4345 'corrected' instruction may be still incorrect, e.g. given
4346 'ldnp h0,h1,[x0,#6]!'
4347 this diagnosis will provide the version:
4348 'ldnp s0,s1,[x0,#6]!'
4349 which is still not right. */
4350 size_t len = strlen (get_mnemonic_name (str));
4351 int i, qlf_idx;
4352 bfd_boolean result;
4353 const size_t size = 2048;
4354 char buf[size];
4355 aarch64_inst *inst_base = &inst.base;
4356 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4357
4358 /* Init inst. */
4359 reset_aarch64_instruction (&inst);
4360 inst_base->opcode = opcode;
4361
4362 /* Reset the error report so that there is no side effect on the
4363 following operand parsing. */
4364 init_operand_error_report ();
4365
4366 /* Fill inst. */
4367 result = parse_operands (str + len, opcode)
4368 && programmer_friendly_fixup (&inst);
4369 gas_assert (result);
4370 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4371 NULL, NULL);
4372 gas_assert (!result);
4373
4374 /* Find the most matched qualifier sequence. */
4375 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4376 gas_assert (qlf_idx > -1);
4377
4378 /* Assign the qualifiers. */
4379 assign_qualifier_sequence (inst_base,
4380 opcode->qualifiers_list[qlf_idx]);
4381
4382 /* Print the hint. */
4383 output_info (_(" did you mean this?"));
4384 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4385 print_operands (buf, opcode, inst_base->operands);
4386 output_info (_(" %s"), buf);
4387
4388 /* Print out other variant(s) if there is any. */
4389 if (qlf_idx != 0 ||
4390 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4391 output_info (_(" other valid variant(s):"));
4392
4393 /* For each pattern. */
4394 qualifiers_list = opcode->qualifiers_list;
4395 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4396 {
4397 /* Most opcodes has much fewer patterns in the list.
4398 First NIL qualifier indicates the end in the list. */
4399 if (empty_qualifier_sequence_p (*qualifiers_list) == TRUE)
4400 break;
4401
4402 if (i != qlf_idx)
4403 {
4404 /* Mnemonics name. */
4405 snprintf (buf, size, "\t%s", get_mnemonic_name (str));
4406
4407 /* Assign the qualifiers. */
4408 assign_qualifier_sequence (inst_base, *qualifiers_list);
4409
4410 /* Print instruction. */
4411 print_operands (buf, opcode, inst_base->operands);
4412
4413 output_info (_(" %s"), buf);
4414 }
4415 }
4416 }
4417 break;
4418
4419 case AARCH64_OPDE_OUT_OF_RANGE:
f5555712
YZ
4420 if (detail->data[0] != detail->data[1])
4421 as_bad (_("%s out of range %d to %d at operand %d -- `%s'"),
4422 detail->error ? detail->error : _("immediate value"),
28f013d5 4423 detail->data[0], detail->data[1], idx + 1, str);
f5555712
YZ
4424 else
4425 as_bad (_("%s expected to be %d at operand %d -- `%s'"),
4426 detail->error ? detail->error : _("immediate value"),
28f013d5 4427 detail->data[0], idx + 1, str);
a06ea964
NC
4428 break;
4429
4430 case AARCH64_OPDE_REG_LIST:
4431 if (detail->data[0] == 1)
4432 as_bad (_("invalid number of registers in the list; "
4433 "only 1 register is expected at operand %d -- `%s'"),
28f013d5 4434 idx + 1, str);
a06ea964
NC
4435 else
4436 as_bad (_("invalid number of registers in the list; "
4437 "%d registers are expected at operand %d -- `%s'"),
28f013d5 4438 detail->data[0], idx + 1, str);
a06ea964
NC
4439 break;
4440
4441 case AARCH64_OPDE_UNALIGNED:
4442 as_bad (_("immediate value should be a multiple of "
4443 "%d at operand %d -- `%s'"),
28f013d5 4444 detail->data[0], idx + 1, str);
a06ea964
NC
4445 break;
4446
4447 default:
4448 gas_assert (0);
4449 break;
4450 }
4451}
4452
4453/* Process and output the error message about the operand mismatching.
4454
4455 When this function is called, the operand error information had
4456 been collected for an assembly line and there will be multiple
4457 errors in the case of mulitple instruction templates; output the
4458 error message that most closely describes the problem. */
4459
4460static void
4461output_operand_error_report (char *str)
4462{
4463 int largest_error_pos;
4464 const char *msg = NULL;
4465 enum aarch64_operand_error_kind kind;
4466 operand_error_record *curr;
4467 operand_error_record *head = operand_error_report.head;
4468 operand_error_record *record = NULL;
4469
4470 /* No error to report. */
4471 if (head == NULL)
4472 return;
4473
4474 gas_assert (head != NULL && operand_error_report.tail != NULL);
4475
4476 /* Only one error. */
4477 if (head == operand_error_report.tail)
4478 {
4479 DEBUG_TRACE ("single opcode entry with error kind: %s",
4480 operand_mismatch_kind_names[head->detail.kind]);
4481 output_operand_error_record (head, str);
4482 return;
4483 }
4484
4485 /* Find the error kind of the highest severity. */
4486 DEBUG_TRACE ("multiple opcode entres with error kind");
4487 kind = AARCH64_OPDE_NIL;
4488 for (curr = head; curr != NULL; curr = curr->next)
4489 {
4490 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4491 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4492 if (operand_error_higher_severity_p (curr->detail.kind, kind))
4493 kind = curr->detail.kind;
4494 }
4495 gas_assert (kind != AARCH64_OPDE_NIL);
4496
4497 /* Pick up one of errors of KIND to report. */
4498 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4499 for (curr = head; curr != NULL; curr = curr->next)
4500 {
4501 if (curr->detail.kind != kind)
4502 continue;
4503 /* If there are multiple errors, pick up the one with the highest
4504 mismatching operand index. In the case of multiple errors with
4505 the equally highest operand index, pick up the first one or the
4506 first one with non-NULL error message. */
4507 if (curr->detail.index > largest_error_pos
4508 || (curr->detail.index == largest_error_pos && msg == NULL
4509 && curr->detail.error != NULL))
4510 {
4511 largest_error_pos = curr->detail.index;
4512 record = curr;
4513 msg = record->detail.error;
4514 }
4515 }
4516
4517 gas_assert (largest_error_pos != -2 && record != NULL);
4518 DEBUG_TRACE ("Pick up error kind %s to report",
4519 operand_mismatch_kind_names[record->detail.kind]);
4520
4521 /* Output. */
4522 output_operand_error_record (record, str);
4523}
4524\f
4525/* Write an AARCH64 instruction to buf - always little-endian. */
4526static void
4527put_aarch64_insn (char *buf, uint32_t insn)
4528{
4529 unsigned char *where = (unsigned char *) buf;
4530 where[0] = insn;
4531 where[1] = insn >> 8;
4532 where[2] = insn >> 16;
4533 where[3] = insn >> 24;
4534}
4535
4536static uint32_t
4537get_aarch64_insn (char *buf)
4538{
4539 unsigned char *where = (unsigned char *) buf;
4540 uint32_t result;
4541 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4542 return result;
4543}
4544
4545static void
4546output_inst (struct aarch64_inst *new_inst)
4547{
4548 char *to = NULL;
4549
4550 to = frag_more (INSN_SIZE);
4551
4552 frag_now->tc_frag_data.recorded = 1;
4553
4554 put_aarch64_insn (to, inst.base.value);
4555
4556 if (inst.reloc.type != BFD_RELOC_UNUSED)
4557 {
4558 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4559 INSN_SIZE, &inst.reloc.exp,
4560 inst.reloc.pc_rel,
4561 inst.reloc.type);
4562 DEBUG_TRACE ("Prepared relocation fix up");
4563 /* Don't check the addend value against the instruction size,
4564 that's the job of our code in md_apply_fix(). */
4565 fixp->fx_no_overflow = 1;
4566 if (new_inst != NULL)
4567 fixp->tc_fix_data.inst = new_inst;
4568 if (aarch64_gas_internal_fixup_p ())
4569 {
4570 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4571 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4572 fixp->fx_addnumber = inst.reloc.flags;
4573 }
4574 }
4575
4576 dwarf2_emit_insn (INSN_SIZE);
4577}
4578
4579/* Link together opcodes of the same name. */
4580
4581struct templates
4582{
4583 aarch64_opcode *opcode;
4584 struct templates *next;
4585};
4586
4587typedef struct templates templates;
4588
4589static templates *
4590lookup_mnemonic (const char *start, int len)
4591{
4592 templates *templ = NULL;
4593
4594 templ = hash_find_n (aarch64_ops_hsh, start, len);
4595 return templ;
4596}
4597
4598/* Subroutine of md_assemble, responsible for looking up the primary
4599 opcode from the mnemonic the user wrote. STR points to the
4600 beginning of the mnemonic. */
4601
4602static templates *
4603opcode_lookup (char **str)
4604{
4605 char *end, *base;
4606 const aarch64_cond *cond;
4607 char condname[16];
4608 int len;
4609
4610 /* Scan up to the end of the mnemonic, which must end in white space,
4611 '.', or end of string. */
4612 for (base = end = *str; is_part_of_name(*end); end++)
4613 if (*end == '.')
4614 break;
4615
4616 if (end == base)
4617 return 0;
4618
4619 inst.cond = COND_ALWAYS;
4620
4621 /* Handle a possible condition. */
4622 if (end[0] == '.')
4623 {
4624 cond = hash_find_n (aarch64_cond_hsh, end + 1, 2);
4625 if (cond)
4626 {
4627 inst.cond = cond->value;
4628 *str = end + 3;
4629 }
4630 else
4631 {
4632 *str = end;
4633 return 0;
4634 }
4635 }
4636 else
4637 *str = end;
4638
4639 len = end - base;
4640
4641 if (inst.cond == COND_ALWAYS)
4642 {
4643 /* Look for unaffixed mnemonic. */
4644 return lookup_mnemonic (base, len);
4645 }
4646 else if (len <= 13)
4647 {
4648 /* append ".c" to mnemonic if conditional */
4649 memcpy (condname, base, len);
4650 memcpy (condname + len, ".c", 2);
4651 base = condname;
4652 len += 2;
4653 return lookup_mnemonic (base, len);
4654 }
4655
4656 return NULL;
4657}
4658
4659/* Internal helper routine converting a vector neon_type_el structure
4660 *VECTYPE to a corresponding operand qualifier. */
4661
4662static inline aarch64_opnd_qualifier_t
4663vectype_to_qualifier (const struct neon_type_el *vectype)
4664{
4665 /* Element size in bytes indexed by neon_el_type. */
4666 const unsigned char ele_size[5]
4667 = {1, 2, 4, 8, 16};
65f2205d
MW
4668 const unsigned int ele_base [5] =
4669 {
4670 AARCH64_OPND_QLF_V_8B,
3067d3b9 4671 AARCH64_OPND_QLF_V_2H,
65f2205d
MW
4672 AARCH64_OPND_QLF_V_2S,
4673 AARCH64_OPND_QLF_V_1D,
4674 AARCH64_OPND_QLF_V_1Q
4675 };
a06ea964
NC
4676
4677 if (!vectype->defined || vectype->type == NT_invtype)
4678 goto vectype_conversion_fail;
4679
4680 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
4681
4682 if (vectype->defined & NTA_HASINDEX)
4683 /* Vector element register. */
4684 return AARCH64_OPND_QLF_S_B + vectype->type;
4685 else
4686 {
4687 /* Vector register. */
4688 int reg_size = ele_size[vectype->type] * vectype->width;
4689 unsigned offset;
65f2205d 4690 unsigned shift;
3067d3b9 4691 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
a06ea964 4692 goto vectype_conversion_fail;
65f2205d
MW
4693
4694 /* The conversion is by calculating the offset from the base operand
4695 qualifier for the vector type. The operand qualifiers are regular
4696 enough that the offset can established by shifting the vector width by
4697 a vector-type dependent amount. */
4698 shift = 0;
4699 if (vectype->type == NT_b)
4700 shift = 4;
3067d3b9 4701 else if (vectype->type == NT_h || vectype->type == NT_s)
65f2205d
MW
4702 shift = 2;
4703 else if (vectype->type >= NT_d)
4704 shift = 1;
4705 else
4706 gas_assert (0);
4707
4708 offset = ele_base [vectype->type] + (vectype->width >> shift);
4709 gas_assert (AARCH64_OPND_QLF_V_8B <= offset
4710 && offset <= AARCH64_OPND_QLF_V_1Q);
4711 return offset;
a06ea964
NC
4712 }
4713
4714vectype_conversion_fail:
4715 first_error (_("bad vector arrangement type"));
4716 return AARCH64_OPND_QLF_NIL;
4717}
4718
4719/* Process an optional operand that is found omitted from the assembly line.
4720 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
4721 instruction's opcode entry while IDX is the index of this omitted operand.
4722 */
4723
4724static void
4725process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
4726 int idx, aarch64_opnd_info *operand)
4727{
4728 aarch64_insn default_value = get_optional_operand_default_value (opcode);
4729 gas_assert (optional_operand_p (opcode, idx));
4730 gas_assert (!operand->present);
4731
4732 switch (type)
4733 {
4734 case AARCH64_OPND_Rd:
4735 case AARCH64_OPND_Rn:
4736 case AARCH64_OPND_Rm:
4737 case AARCH64_OPND_Rt:
4738 case AARCH64_OPND_Rt2:
4739 case AARCH64_OPND_Rs:
4740 case AARCH64_OPND_Ra:
4741 case AARCH64_OPND_Rt_SYS:
4742 case AARCH64_OPND_Rd_SP:
4743 case AARCH64_OPND_Rn_SP:
4744 case AARCH64_OPND_Fd:
4745 case AARCH64_OPND_Fn:
4746 case AARCH64_OPND_Fm:
4747 case AARCH64_OPND_Fa:
4748 case AARCH64_OPND_Ft:
4749 case AARCH64_OPND_Ft2:
4750 case AARCH64_OPND_Sd:
4751 case AARCH64_OPND_Sn:
4752 case AARCH64_OPND_Sm:
4753 case AARCH64_OPND_Vd:
4754 case AARCH64_OPND_Vn:
4755 case AARCH64_OPND_Vm:
4756 case AARCH64_OPND_VdD1:
4757 case AARCH64_OPND_VnD1:
4758 operand->reg.regno = default_value;
4759 break;
4760
4761 case AARCH64_OPND_Ed:
4762 case AARCH64_OPND_En:
4763 case AARCH64_OPND_Em:
4764 operand->reglane.regno = default_value;
4765 break;
4766
4767 case AARCH64_OPND_IDX:
4768 case AARCH64_OPND_BIT_NUM:
4769 case AARCH64_OPND_IMMR:
4770 case AARCH64_OPND_IMMS:
4771 case AARCH64_OPND_SHLL_IMM:
4772 case AARCH64_OPND_IMM_VLSL:
4773 case AARCH64_OPND_IMM_VLSR:
4774 case AARCH64_OPND_CCMP_IMM:
4775 case AARCH64_OPND_FBITS:
4776 case AARCH64_OPND_UIMM4:
4777 case AARCH64_OPND_UIMM3_OP1:
4778 case AARCH64_OPND_UIMM3_OP2:
4779 case AARCH64_OPND_IMM:
4780 case AARCH64_OPND_WIDTH:
4781 case AARCH64_OPND_UIMM7:
4782 case AARCH64_OPND_NZCV:
4783 operand->imm.value = default_value;
4784 break;
4785
4786 case AARCH64_OPND_EXCEPTION:
4787 inst.reloc.type = BFD_RELOC_UNUSED;
4788 break;
4789
4790 case AARCH64_OPND_BARRIER_ISB:
4791 operand->barrier = aarch64_barrier_options + default_value;
4792
4793 default:
4794 break;
4795 }
4796}
4797
4798/* Process the relocation type for move wide instructions.
4799 Return TRUE on success; otherwise return FALSE. */
4800
4801static bfd_boolean
4802process_movw_reloc_info (void)
4803{
4804 int is32;
4805 unsigned shift;
4806
4807 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
4808
4809 if (inst.base.opcode->op == OP_MOVK)
4810 switch (inst.reloc.type)
4811 {
4812 case BFD_RELOC_AARCH64_MOVW_G0_S:
4813 case BFD_RELOC_AARCH64_MOVW_G1_S:
4814 case BFD_RELOC_AARCH64_MOVW_G2_S:
1aa66fb1 4815 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 4816 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
a06ea964 4817 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
a06ea964
NC
4818 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4819 set_syntax_error
4820 (_("the specified relocation type is not allowed for MOVK"));
4821 return FALSE;
4822 default:
4823 break;
4824 }
4825
4826 switch (inst.reloc.type)
4827 {
4828 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 4829 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 4830 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 4831 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
43a357f9 4832 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
3e8286c0 4833 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
3b957e5b 4834 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
49df5539
JW
4835 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
4836 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
a06ea964
NC
4837 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
4838 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
4839 shift = 0;
4840 break;
4841 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 4842 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 4843 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 4844 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 4845 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
1aa66fb1 4846 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
3b957e5b 4847 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539
JW
4848 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
4849 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
a06ea964
NC
4850 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
4851 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
4852 shift = 16;
4853 break;
4854 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 4855 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 4856 case BFD_RELOC_AARCH64_MOVW_G2_S:
49df5539 4857 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964
NC
4858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
4859 if (is32)
4860 {
4861 set_fatal_syntax_error
4862 (_("the specified relocation type is not allowed for 32-bit "
4863 "register"));
4864 return FALSE;
4865 }
4866 shift = 32;
4867 break;
4868 case BFD_RELOC_AARCH64_MOVW_G3:
4869 if (is32)
4870 {
4871 set_fatal_syntax_error
4872 (_("the specified relocation type is not allowed for 32-bit "
4873 "register"));
4874 return FALSE;
4875 }
4876 shift = 48;
4877 break;
4878 default:
4879 /* More cases should be added when more MOVW-related relocation types
4880 are supported in GAS. */
4881 gas_assert (aarch64_gas_internal_fixup_p ());
4882 /* The shift amount should have already been set by the parser. */
4883 return TRUE;
4884 }
4885 inst.base.operands[1].shifter.amount = shift;
4886 return TRUE;
4887}
4888
4889/* A primitive log caculator. */
4890
4891static inline unsigned int
4892get_logsz (unsigned int size)
4893{
4894 const unsigned char ls[16] =
4895 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
4896 if (size > 16)
4897 {
4898 gas_assert (0);
4899 return -1;
4900 }
4901 gas_assert (ls[size - 1] != (unsigned char)-1);
4902 return ls[size - 1];
4903}
4904
4905/* Determine and return the real reloc type code for an instruction
4906 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
4907
4908static inline bfd_reloc_code_real_type
4909ldst_lo12_determine_real_reloc_type (void)
4910{
4c562523 4911 unsigned logsz;
a06ea964
NC
4912 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
4913 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
4914
4c562523
JW
4915 const bfd_reloc_code_real_type reloc_ldst_lo12[3][5] = {
4916 {
4917 BFD_RELOC_AARCH64_LDST8_LO12,
4918 BFD_RELOC_AARCH64_LDST16_LO12,
4919 BFD_RELOC_AARCH64_LDST32_LO12,
4920 BFD_RELOC_AARCH64_LDST64_LO12,
a06ea964 4921 BFD_RELOC_AARCH64_LDST128_LO12
4c562523
JW
4922 },
4923 {
4924 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
4925 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
4926 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
4927 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
4928 BFD_RELOC_AARCH64_NONE
4929 },
4930 {
4931 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
4932 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
4933 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
4934 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
4935 BFD_RELOC_AARCH64_NONE
4936 }
a06ea964
NC
4937 };
4938
4c562523
JW
4939 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
4940 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4941 || (inst.reloc.type
4942 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC));
a06ea964
NC
4943 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
4944
4945 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
4946 opd1_qlf =
4947 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
4948 1, opd0_qlf, 0);
4949 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
4950
4951 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
4c562523
JW
4952 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
4953 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
4954 gas_assert (logsz <= 3);
4955 else
4956 gas_assert (logsz <= 4);
a06ea964 4957
4c562523
JW
4958 /* In reloc.c, these pseudo relocation types should be defined in similar
4959 order as above reloc_ldst_lo12 array. Because the array index calcuation
4960 below relies on this. */
4961 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
a06ea964
NC
4962}
4963
4964/* Check whether a register list REGINFO is valid. The registers must be
4965 numbered in increasing order (modulo 32), in increments of one or two.
4966
4967 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
4968 increments of two.
4969
4970 Return FALSE if such a register list is invalid, otherwise return TRUE. */
4971
4972static bfd_boolean
4973reg_list_valid_p (uint32_t reginfo, int accept_alternate)
4974{
4975 uint32_t i, nb_regs, prev_regno, incr;
4976
4977 nb_regs = 1 + (reginfo & 0x3);
4978 reginfo >>= 2;
4979 prev_regno = reginfo & 0x1f;
4980 incr = accept_alternate ? 2 : 1;
4981
4982 for (i = 1; i < nb_regs; ++i)
4983 {
4984 uint32_t curr_regno;
4985 reginfo >>= 5;
4986 curr_regno = reginfo & 0x1f;
4987 if (curr_regno != ((prev_regno + incr) & 0x1f))
4988 return FALSE;
4989 prev_regno = curr_regno;
4990 }
4991
4992 return TRUE;
4993}
4994
4995/* Generic instruction operand parser. This does no encoding and no
4996 semantic validation; it merely squirrels values away in the inst
4997 structure. Returns TRUE or FALSE depending on whether the
4998 specified grammar matched. */
4999
5000static bfd_boolean
5001parse_operands (char *str, const aarch64_opcode *opcode)
5002{
5003 int i;
5004 char *backtrack_pos = 0;
5005 const enum aarch64_opnd *operands = opcode->operands;
5006
5007 clear_error ();
5008 skip_whitespace (str);
5009
5010 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5011 {
5012 int64_t val;
5013 int isreg32, isregzero;
5014 int comma_skipped_p = 0;
5015 aarch64_reg_type rtype;
5016 struct neon_type_el vectype;
5017 aarch64_opnd_info *info = &inst.base.operands[i];
5018
5019 DEBUG_TRACE ("parse operand %d", i);
5020
5021 /* Assign the operand code. */
5022 info->type = operands[i];
5023
5024 if (optional_operand_p (opcode, i))
5025 {
5026 /* Remember where we are in case we need to backtrack. */
5027 gas_assert (!backtrack_pos);
5028 backtrack_pos = str;
5029 }
5030
5031 /* Expect comma between operands; the backtrack mechanizm will take
5032 care of cases of omitted optional operand. */
5033 if (i > 0 && ! skip_past_char (&str, ','))
5034 {
5035 set_syntax_error (_("comma expected between operands"));
5036 goto failure;
5037 }
5038 else
5039 comma_skipped_p = 1;
5040
5041 switch (operands[i])
5042 {
5043 case AARCH64_OPND_Rd:
5044 case AARCH64_OPND_Rn:
5045 case AARCH64_OPND_Rm:
5046 case AARCH64_OPND_Rt:
5047 case AARCH64_OPND_Rt2:
5048 case AARCH64_OPND_Rs:
5049 case AARCH64_OPND_Ra:
5050 case AARCH64_OPND_Rt_SYS:
ee804238 5051 case AARCH64_OPND_PAIRREG:
a06ea964
NC
5052 po_int_reg_or_fail (1, 0);
5053 break;
5054
5055 case AARCH64_OPND_Rd_SP:
5056 case AARCH64_OPND_Rn_SP:
5057 po_int_reg_or_fail (0, 1);
5058 break;
5059
5060 case AARCH64_OPND_Rm_EXT:
5061 case AARCH64_OPND_Rm_SFT:
5062 po_misc_or_fail (parse_shifter_operand
5063 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5064 ? SHIFTED_ARITH_IMM
5065 : SHIFTED_LOGIC_IMM)));
5066 if (!info->shifter.operator_present)
5067 {
5068 /* Default to LSL if not present. Libopcodes prefers shifter
5069 kind to be explicit. */
5070 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5071 info->shifter.kind = AARCH64_MOD_LSL;
5072 /* For Rm_EXT, libopcodes will carry out further check on whether
5073 or not stack pointer is used in the instruction (Recall that
5074 "the extend operator is not optional unless at least one of
5075 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5076 }
5077 break;
5078
5079 case AARCH64_OPND_Fd:
5080 case AARCH64_OPND_Fn:
5081 case AARCH64_OPND_Fm:
5082 case AARCH64_OPND_Fa:
5083 case AARCH64_OPND_Ft:
5084 case AARCH64_OPND_Ft2:
5085 case AARCH64_OPND_Sd:
5086 case AARCH64_OPND_Sn:
5087 case AARCH64_OPND_Sm:
5088 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5089 if (val == PARSE_FAIL)
5090 {
5091 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5092 goto failure;
5093 }
5094 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5095
5096 info->reg.regno = val;
5097 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5098 break;
5099
5100 case AARCH64_OPND_Vd:
5101 case AARCH64_OPND_Vn:
5102 case AARCH64_OPND_Vm:
5103 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5104 if (val == PARSE_FAIL)
5105 {
5106 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5107 goto failure;
5108 }
5109 if (vectype.defined & NTA_HASINDEX)
5110 goto failure;
5111
5112 info->reg.regno = val;
5113 info->qualifier = vectype_to_qualifier (&vectype);
5114 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5115 goto failure;
5116 break;
5117
5118 case AARCH64_OPND_VdD1:
5119 case AARCH64_OPND_VnD1:
5120 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5121 if (val == PARSE_FAIL)
5122 {
5123 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5124 goto failure;
5125 }
5126 if (vectype.type != NT_d || vectype.index != 1)
5127 {
5128 set_fatal_syntax_error
5129 (_("the top half of a 128-bit FP/SIMD register is expected"));
5130 goto failure;
5131 }
5132 info->reg.regno = val;
5133 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5134 here; it is correct for the purpose of encoding/decoding since
5135 only the register number is explicitly encoded in the related
5136 instructions, although this appears a bit hacky. */
5137 info->qualifier = AARCH64_OPND_QLF_S_D;
5138 break;
5139
5140 case AARCH64_OPND_Ed:
5141 case AARCH64_OPND_En:
5142 case AARCH64_OPND_Em:
5143 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5144 if (val == PARSE_FAIL)
5145 {
5146 first_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5147 goto failure;
5148 }
5149 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5150 goto failure;
5151
5152 info->reglane.regno = val;
5153 info->reglane.index = vectype.index;
5154 info->qualifier = vectype_to_qualifier (&vectype);
5155 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5156 goto failure;
5157 break;
5158
5159 case AARCH64_OPND_LVn:
5160 case AARCH64_OPND_LVt:
5161 case AARCH64_OPND_LVt_AL:
5162 case AARCH64_OPND_LEt:
5163 if ((val = parse_neon_reg_list (&str, &vectype)) == PARSE_FAIL)
5164 goto failure;
5165 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5166 {
5167 set_fatal_syntax_error (_("invalid register list"));
5168 goto failure;
5169 }
5170 info->reglist.first_regno = (val >> 2) & 0x1f;
5171 info->reglist.num_regs = (val & 0x3) + 1;
5172 if (operands[i] == AARCH64_OPND_LEt)
5173 {
5174 if (!(vectype.defined & NTA_HASINDEX))
5175 goto failure;
5176 info->reglist.has_index = 1;
5177 info->reglist.index = vectype.index;
5178 }
5179 else if (!(vectype.defined & NTA_HASTYPE))
5180 goto failure;
5181 info->qualifier = vectype_to_qualifier (&vectype);
5182 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5183 goto failure;
5184 break;
5185
5186 case AARCH64_OPND_Cn:
5187 case AARCH64_OPND_Cm:
5188 po_reg_or_fail (REG_TYPE_CN);
5189 if (val > 15)
5190 {
5191 set_fatal_syntax_error (_(get_reg_expected_msg (REG_TYPE_CN)));
5192 goto failure;
5193 }
5194 inst.base.operands[i].reg.regno = val;
5195 break;
5196
5197 case AARCH64_OPND_SHLL_IMM:
5198 case AARCH64_OPND_IMM_VLSR:
5199 po_imm_or_fail (1, 64);
5200 info->imm.value = val;
5201 break;
5202
5203 case AARCH64_OPND_CCMP_IMM:
5204 case AARCH64_OPND_FBITS:
5205 case AARCH64_OPND_UIMM4:
5206 case AARCH64_OPND_UIMM3_OP1:
5207 case AARCH64_OPND_UIMM3_OP2:
5208 case AARCH64_OPND_IMM_VLSL:
5209 case AARCH64_OPND_IMM:
5210 case AARCH64_OPND_WIDTH:
5211 po_imm_nc_or_fail ();
5212 info->imm.value = val;
5213 break;
5214
5215 case AARCH64_OPND_UIMM7:
5216 po_imm_or_fail (0, 127);
5217 info->imm.value = val;
5218 break;
5219
5220 case AARCH64_OPND_IDX:
5221 case AARCH64_OPND_BIT_NUM:
5222 case AARCH64_OPND_IMMR:
5223 case AARCH64_OPND_IMMS:
5224 po_imm_or_fail (0, 63);
5225 info->imm.value = val;
5226 break;
5227
5228 case AARCH64_OPND_IMM0:
5229 po_imm_nc_or_fail ();
5230 if (val != 0)
5231 {
5232 set_fatal_syntax_error (_("immediate zero expected"));
5233 goto failure;
5234 }
5235 info->imm.value = 0;
5236 break;
5237
5238 case AARCH64_OPND_FPIMM0:
5239 {
5240 int qfloat;
5241 bfd_boolean res1 = FALSE, res2 = FALSE;
5242 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5243 it is probably not worth the effort to support it. */
62b0d0d5 5244 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE))
a06ea964
NC
5245 && !(res2 = parse_constant_immediate (&str, &val)))
5246 goto failure;
5247 if ((res1 && qfloat == 0) || (res2 && val == 0))
5248 {
5249 info->imm.value = 0;
5250 info->imm.is_fp = 1;
5251 break;
5252 }
5253 set_fatal_syntax_error (_("immediate zero expected"));
5254 goto failure;
5255 }
5256
5257 case AARCH64_OPND_IMM_MOV:
5258 {
5259 char *saved = str;
8db49cc2
WN
5260 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5261 reg_name_p (str, REG_TYPE_VN))
a06ea964
NC
5262 goto failure;
5263 str = saved;
5264 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5265 GE_OPT_PREFIX, 1));
5266 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5267 later. fix_mov_imm_insn will try to determine a machine
5268 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5269 message if the immediate cannot be moved by a single
5270 instruction. */
5271 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5272 inst.base.operands[i].skip = 1;
5273 }
5274 break;
5275
5276 case AARCH64_OPND_SIMD_IMM:
5277 case AARCH64_OPND_SIMD_IMM_SFT:
5278 if (! parse_big_immediate (&str, &val))
5279 goto failure;
5280 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5281 /* addr_off_p */ 0,
5282 /* need_libopcodes_p */ 1,
5283 /* skip_p */ 1);
5284 /* Parse shift.
5285 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5286 shift, we don't check it here; we leave the checking to
5287 the libopcodes (operand_general_constraint_met_p). By
5288 doing this, we achieve better diagnostics. */
5289 if (skip_past_comma (&str)
5290 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5291 goto failure;
5292 if (!info->shifter.operator_present
5293 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5294 {
5295 /* Default to LSL if not present. Libopcodes prefers shifter
5296 kind to be explicit. */
5297 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5298 info->shifter.kind = AARCH64_MOD_LSL;
5299 }
5300 break;
5301
5302 case AARCH64_OPND_FPIMM:
5303 case AARCH64_OPND_SIMD_FPIMM:
5304 {
5305 int qfloat;
62b0d0d5
YZ
5306 bfd_boolean dp_p
5307 = (aarch64_get_qualifier_esize (inst.base.operands[0].qualifier)
5308 == 8);
5309 if (! parse_aarch64_imm_float (&str, &qfloat, dp_p))
a06ea964
NC
5310 goto failure;
5311 if (qfloat == 0)
5312 {
5313 set_fatal_syntax_error (_("invalid floating-point constant"));
5314 goto failure;
5315 }
5316 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5317 inst.base.operands[i].imm.is_fp = 1;
5318 }
5319 break;
5320
5321 case AARCH64_OPND_LIMM:
5322 po_misc_or_fail (parse_shifter_operand (&str, info,
5323 SHIFTED_LOGIC_IMM));
5324 if (info->shifter.operator_present)
5325 {
5326 set_fatal_syntax_error
5327 (_("shift not allowed for bitmask immediate"));
5328 goto failure;
5329 }
5330 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5331 /* addr_off_p */ 0,
5332 /* need_libopcodes_p */ 1,
5333 /* skip_p */ 1);
5334 break;
5335
5336 case AARCH64_OPND_AIMM:
5337 if (opcode->op == OP_ADD)
5338 /* ADD may have relocation types. */
5339 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5340 SHIFTED_ARITH_IMM));
5341 else
5342 po_misc_or_fail (parse_shifter_operand (&str, info,
5343 SHIFTED_ARITH_IMM));
5344 switch (inst.reloc.type)
5345 {
5346 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5347 info->shifter.amount = 12;
5348 break;
5349 case BFD_RELOC_UNUSED:
5350 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5351 if (info->shifter.kind != AARCH64_MOD_NONE)
5352 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5353 inst.reloc.pc_rel = 0;
5354 break;
5355 default:
5356 break;
5357 }
5358 info->imm.value = 0;
5359 if (!info->shifter.operator_present)
5360 {
5361 /* Default to LSL if not present. Libopcodes prefers shifter
5362 kind to be explicit. */
5363 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5364 info->shifter.kind = AARCH64_MOD_LSL;
5365 }
5366 break;
5367
5368 case AARCH64_OPND_HALF:
5369 {
5370 /* #<imm16> or relocation. */
5371 int internal_fixup_p;
5372 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
5373 if (internal_fixup_p)
5374 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5375 skip_whitespace (str);
5376 if (skip_past_comma (&str))
5377 {
5378 /* {, LSL #<shift>} */
5379 if (! aarch64_gas_internal_fixup_p ())
5380 {
5381 set_fatal_syntax_error (_("can't mix relocation modifier "
5382 "with explicit shift"));
5383 goto failure;
5384 }
5385 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5386 }
5387 else
5388 inst.base.operands[i].shifter.amount = 0;
5389 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5390 inst.base.operands[i].imm.value = 0;
5391 if (! process_movw_reloc_info ())
5392 goto failure;
5393 }
5394 break;
5395
5396 case AARCH64_OPND_EXCEPTION:
5397 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp));
5398 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5399 /* addr_off_p */ 0,
5400 /* need_libopcodes_p */ 0,
5401 /* skip_p */ 1);
5402 break;
5403
5404 case AARCH64_OPND_NZCV:
5405 {
5406 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
5407 if (nzcv != NULL)
5408 {
5409 str += 4;
5410 info->imm.value = nzcv->value;
5411 break;
5412 }
5413 po_imm_or_fail (0, 15);
5414 info->imm.value = val;
5415 }
5416 break;
5417
5418 case AARCH64_OPND_COND:
68a64283 5419 case AARCH64_OPND_COND1:
a06ea964
NC
5420 info->cond = hash_find_n (aarch64_cond_hsh, str, 2);
5421 str += 2;
5422 if (info->cond == NULL)
5423 {
5424 set_syntax_error (_("invalid condition"));
5425 goto failure;
5426 }
68a64283
YZ
5427 else if (operands[i] == AARCH64_OPND_COND1
5428 && (info->cond->value & 0xe) == 0xe)
5429 {
5430 /* Not allow AL or NV. */
5431 set_default_error ();
5432 goto failure;
5433 }
a06ea964
NC
5434 break;
5435
5436 case AARCH64_OPND_ADDR_ADRP:
5437 po_misc_or_fail (parse_adrp (&str));
5438 /* Clear the value as operand needs to be relocated. */
5439 info->imm.value = 0;
5440 break;
5441
5442 case AARCH64_OPND_ADDR_PCREL14:
5443 case AARCH64_OPND_ADDR_PCREL19:
5444 case AARCH64_OPND_ADDR_PCREL21:
5445 case AARCH64_OPND_ADDR_PCREL26:
5446 po_misc_or_fail (parse_address_reloc (&str, info));
5447 if (!info->addr.pcrel)
5448 {
5449 set_syntax_error (_("invalid pc-relative address"));
5450 goto failure;
5451 }
5452 if (inst.gen_lit_pool
5453 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
5454 {
5455 /* Only permit "=value" in the literal load instructions.
5456 The literal will be generated by programmer_friendly_fixup. */
5457 set_syntax_error (_("invalid use of \"=immediate\""));
5458 goto failure;
5459 }
5460 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
5461 {
5462 set_syntax_error (_("unrecognized relocation suffix"));
5463 goto failure;
5464 }
5465 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
5466 {
5467 info->imm.value = inst.reloc.exp.X_add_number;
5468 inst.reloc.type = BFD_RELOC_UNUSED;
5469 }
5470 else
5471 {
5472 info->imm.value = 0;
f41aef5f
RE
5473 if (inst.reloc.type == BFD_RELOC_UNUSED)
5474 switch (opcode->iclass)
5475 {
5476 case compbranch:
5477 case condbranch:
5478 /* e.g. CBZ or B.COND */
5479 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5480 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
5481 break;
5482 case testbranch:
5483 /* e.g. TBZ */
5484 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
5485 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
5486 break;
5487 case branch_imm:
5488 /* e.g. B or BL */
5489 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
5490 inst.reloc.type =
5491 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
5492 : BFD_RELOC_AARCH64_JUMP26;
5493 break;
5494 case loadlit:
5495 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
5496 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
5497 break;
5498 case pcreladdr:
5499 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
5500 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
5501 break;
5502 default:
5503 gas_assert (0);
5504 abort ();
5505 }
a06ea964
NC
5506 inst.reloc.pc_rel = 1;
5507 }
5508 break;
5509
5510 case AARCH64_OPND_ADDR_SIMPLE:
5511 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
5512 /* [<Xn|SP>{, #<simm>}] */
5513 po_char_or_fail ('[');
5514 po_reg_or_fail (REG_TYPE_R64_SP);
5515 /* Accept optional ", #0". */
5516 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
5517 && skip_past_char (&str, ','))
5518 {
5519 skip_past_char (&str, '#');
5520 if (! skip_past_char (&str, '0'))
5521 {
5522 set_fatal_syntax_error
5523 (_("the optional immediate offset can only be 0"));
5524 goto failure;
5525 }
5526 }
5527 po_char_or_fail (']');
5528 info->addr.base_regno = val;
5529 break;
5530
5531 case AARCH64_OPND_ADDR_REGOFF:
5532 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
5533 po_misc_or_fail (parse_address (&str, info, 0));
5534 if (info->addr.pcrel || !info->addr.offset.is_reg
5535 || !info->addr.preind || info->addr.postind
5536 || info->addr.writeback)
5537 {
5538 set_syntax_error (_("invalid addressing mode"));
5539 goto failure;
5540 }
5541 if (!info->shifter.operator_present)
5542 {
5543 /* Default to LSL if not present. Libopcodes prefers shifter
5544 kind to be explicit. */
5545 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5546 info->shifter.kind = AARCH64_MOD_LSL;
5547 }
5548 /* Qualifier to be deduced by libopcodes. */
5549 break;
5550
5551 case AARCH64_OPND_ADDR_SIMM7:
5552 po_misc_or_fail (parse_address (&str, info, 0));
5553 if (info->addr.pcrel || info->addr.offset.is_reg
5554 || (!info->addr.preind && !info->addr.postind))
5555 {
5556 set_syntax_error (_("invalid addressing mode"));
5557 goto failure;
5558 }
5559 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5560 /* addr_off_p */ 1,
5561 /* need_libopcodes_p */ 1,
5562 /* skip_p */ 0);
5563 break;
5564
5565 case AARCH64_OPND_ADDR_SIMM9:
5566 case AARCH64_OPND_ADDR_SIMM9_2:
5567 po_misc_or_fail (parse_address_reloc (&str, info));
5568 if (info->addr.pcrel || info->addr.offset.is_reg
5569 || (!info->addr.preind && !info->addr.postind)
5570 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
5571 && info->addr.writeback))
5572 {
5573 set_syntax_error (_("invalid addressing mode"));
5574 goto failure;
5575 }
5576 if (inst.reloc.type != BFD_RELOC_UNUSED)
5577 {
5578 set_syntax_error (_("relocation not allowed"));
5579 goto failure;
5580 }
5581 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5582 /* addr_off_p */ 1,
5583 /* need_libopcodes_p */ 1,
5584 /* skip_p */ 0);
5585 break;
5586
5587 case AARCH64_OPND_ADDR_UIMM12:
5588 po_misc_or_fail (parse_address_reloc (&str, info));
5589 if (info->addr.pcrel || info->addr.offset.is_reg
5590 || !info->addr.preind || info->addr.writeback)
5591 {
5592 set_syntax_error (_("invalid addressing mode"));
5593 goto failure;
5594 }
5595 if (inst.reloc.type == BFD_RELOC_UNUSED)
5596 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
4c562523
JW
5597 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5598 || (inst.reloc.type
5599 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
5600 || (inst.reloc.type
5601 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC))
a06ea964
NC
5602 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
5603 /* Leave qualifier to be determined by libopcodes. */
5604 break;
5605
5606 case AARCH64_OPND_SIMD_ADDR_POST:
5607 /* [<Xn|SP>], <Xm|#<amount>> */
5608 po_misc_or_fail (parse_address (&str, info, 1));
5609 if (!info->addr.postind || !info->addr.writeback)
5610 {
5611 set_syntax_error (_("invalid addressing mode"));
5612 goto failure;
5613 }
5614 if (!info->addr.offset.is_reg)
5615 {
5616 if (inst.reloc.exp.X_op == O_constant)
5617 info->addr.offset.imm = inst.reloc.exp.X_add_number;
5618 else
5619 {
5620 set_fatal_syntax_error
5621 (_("writeback value should be an immediate constant"));
5622 goto failure;
5623 }
5624 }
5625 /* No qualifier. */
5626 break;
5627
5628 case AARCH64_OPND_SYSREG:
72ca8fad 5629 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0))
a203d9b7 5630 == PARSE_FAIL)
a06ea964 5631 {
a203d9b7
YZ
5632 set_syntax_error (_("unknown or missing system register name"));
5633 goto failure;
a06ea964 5634 }
a203d9b7 5635 inst.base.operands[i].sysreg = val;
a06ea964
NC
5636 break;
5637
5638 case AARCH64_OPND_PSTATEFIELD:
72ca8fad 5639 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1))
a3251895 5640 == PARSE_FAIL)
a06ea964
NC
5641 {
5642 set_syntax_error (_("unknown or missing PSTATE field name"));
5643 goto failure;
5644 }
5645 inst.base.operands[i].pstatefield = val;
5646 break;
5647
5648 case AARCH64_OPND_SYSREG_IC:
5649 inst.base.operands[i].sysins_op =
5650 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
5651 goto sys_reg_ins;
5652 case AARCH64_OPND_SYSREG_DC:
5653 inst.base.operands[i].sysins_op =
5654 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
5655 goto sys_reg_ins;
5656 case AARCH64_OPND_SYSREG_AT:
5657 inst.base.operands[i].sysins_op =
5658 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
5659 goto sys_reg_ins;
5660 case AARCH64_OPND_SYSREG_TLBI:
5661 inst.base.operands[i].sysins_op =
5662 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
5663sys_reg_ins:
5664 if (inst.base.operands[i].sysins_op == NULL)
5665 {
5666 set_fatal_syntax_error ( _("unknown or missing operation name"));
5667 goto failure;
5668 }
5669 break;
5670
5671 case AARCH64_OPND_BARRIER:
5672 case AARCH64_OPND_BARRIER_ISB:
5673 val = parse_barrier (&str);
5674 if (val != PARSE_FAIL
5675 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
5676 {
5677 /* ISB only accepts options name 'sy'. */
5678 set_syntax_error
5679 (_("the specified option is not accepted in ISB"));
5680 /* Turn off backtrack as this optional operand is present. */
5681 backtrack_pos = 0;
5682 goto failure;
5683 }
5684 /* This is an extension to accept a 0..15 immediate. */
5685 if (val == PARSE_FAIL)
5686 po_imm_or_fail (0, 15);
5687 info->barrier = aarch64_barrier_options + val;
5688 break;
5689
5690 case AARCH64_OPND_PRFOP:
5691 val = parse_pldop (&str);
5692 /* This is an extension to accept a 0..31 immediate. */
5693 if (val == PARSE_FAIL)
5694 po_imm_or_fail (0, 31);
5695 inst.base.operands[i].prfop = aarch64_prfops + val;
5696 break;
5697
1e6f4800
MW
5698 case AARCH64_OPND_BARRIER_PSB:
5699 val = parse_barrier_psb (&str, &(info->hint_option));
5700 if (val == PARSE_FAIL)
5701 goto failure;
5702 break;
5703
a06ea964
NC
5704 default:
5705 as_fatal (_("unhandled operand code %d"), operands[i]);
5706 }
5707
5708 /* If we get here, this operand was successfully parsed. */
5709 inst.base.operands[i].present = 1;
5710 continue;
5711
5712failure:
5713 /* The parse routine should already have set the error, but in case
5714 not, set a default one here. */
5715 if (! error_p ())
5716 set_default_error ();
5717
5718 if (! backtrack_pos)
5719 goto parse_operands_return;
5720
f4c51f60
JW
5721 {
5722 /* We reach here because this operand is marked as optional, and
5723 either no operand was supplied or the operand was supplied but it
5724 was syntactically incorrect. In the latter case we report an
5725 error. In the former case we perform a few more checks before
5726 dropping through to the code to insert the default operand. */
5727
5728 char *tmp = backtrack_pos;
5729 char endchar = END_OF_INSN;
5730
5731 if (i != (aarch64_num_of_operands (opcode) - 1))
5732 endchar = ',';
5733 skip_past_char (&tmp, ',');
5734
5735 if (*tmp != endchar)
5736 /* The user has supplied an operand in the wrong format. */
5737 goto parse_operands_return;
5738
5739 /* Make sure there is not a comma before the optional operand.
5740 For example the fifth operand of 'sys' is optional:
5741
5742 sys #0,c0,c0,#0, <--- wrong
5743 sys #0,c0,c0,#0 <--- correct. */
5744 if (comma_skipped_p && i && endchar == END_OF_INSN)
5745 {
5746 set_fatal_syntax_error
5747 (_("unexpected comma before the omitted optional operand"));
5748 goto parse_operands_return;
5749 }
5750 }
5751
a06ea964
NC
5752 /* Reaching here means we are dealing with an optional operand that is
5753 omitted from the assembly line. */
5754 gas_assert (optional_operand_p (opcode, i));
5755 info->present = 0;
5756 process_omitted_operand (operands[i], opcode, i, info);
5757
5758 /* Try again, skipping the optional operand at backtrack_pos. */
5759 str = backtrack_pos;
5760 backtrack_pos = 0;
5761
a06ea964
NC
5762 /* Clear any error record after the omitted optional operand has been
5763 successfully handled. */
5764 clear_error ();
5765 }
5766
5767 /* Check if we have parsed all the operands. */
5768 if (*str != '\0' && ! error_p ())
5769 {
5770 /* Set I to the index of the last present operand; this is
5771 for the purpose of diagnostics. */
5772 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
5773 ;
5774 set_fatal_syntax_error
5775 (_("unexpected characters following instruction"));
5776 }
5777
5778parse_operands_return:
5779
5780 if (error_p ())
5781 {
5782 DEBUG_TRACE ("parsing FAIL: %s - %s",
5783 operand_mismatch_kind_names[get_error_kind ()],
5784 get_error_message ());
5785 /* Record the operand error properly; this is useful when there
5786 are multiple instruction templates for a mnemonic name, so that
5787 later on, we can select the error that most closely describes
5788 the problem. */
5789 record_operand_error (opcode, i, get_error_kind (),
5790 get_error_message ());
5791 return FALSE;
5792 }
5793 else
5794 {
5795 DEBUG_TRACE ("parsing SUCCESS");
5796 return TRUE;
5797 }
5798}
5799
5800/* It does some fix-up to provide some programmer friendly feature while
5801 keeping the libopcodes happy, i.e. libopcodes only accepts
5802 the preferred architectural syntax.
5803 Return FALSE if there is any failure; otherwise return TRUE. */
5804
5805static bfd_boolean
5806programmer_friendly_fixup (aarch64_instruction *instr)
5807{
5808 aarch64_inst *base = &instr->base;
5809 const aarch64_opcode *opcode = base->opcode;
5810 enum aarch64_op op = opcode->op;
5811 aarch64_opnd_info *operands = base->operands;
5812
5813 DEBUG_TRACE ("enter");
5814
5815 switch (opcode->iclass)
5816 {
5817 case testbranch:
5818 /* TBNZ Xn|Wn, #uimm6, label
5819 Test and Branch Not Zero: conditionally jumps to label if bit number
5820 uimm6 in register Xn is not zero. The bit number implies the width of
5821 the register, which may be written and should be disassembled as Wn if
5822 uimm is less than 32. */
5823 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
5824 {
5825 if (operands[1].imm.value >= 32)
5826 {
5827 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
5828 0, 31);
5829 return FALSE;
5830 }
5831 operands[0].qualifier = AARCH64_OPND_QLF_X;
5832 }
5833 break;
5834 case loadlit:
5835 /* LDR Wt, label | =value
5836 As a convenience assemblers will typically permit the notation
5837 "=value" in conjunction with the pc-relative literal load instructions
5838 to automatically place an immediate value or symbolic address in a
5839 nearby literal pool and generate a hidden label which references it.
5840 ISREG has been set to 0 in the case of =value. */
5841 if (instr->gen_lit_pool
5842 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
5843 {
5844 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
5845 if (op == OP_LDRSW_LIT)
5846 size = 4;
5847 if (instr->reloc.exp.X_op != O_constant
67a32447 5848 && instr->reloc.exp.X_op != O_big
a06ea964
NC
5849 && instr->reloc.exp.X_op != O_symbol)
5850 {
5851 record_operand_error (opcode, 1,
5852 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
5853 _("constant expression expected"));
5854 return FALSE;
5855 }
5856 if (! add_to_lit_pool (&instr->reloc.exp, size))
5857 {
5858 record_operand_error (opcode, 1,
5859 AARCH64_OPDE_OTHER_ERROR,
5860 _("literal pool insertion failed"));
5861 return FALSE;
5862 }
5863 }
5864 break;
a06ea964
NC
5865 case log_shift:
5866 case bitfield:
5867 /* UXT[BHW] Wd, Wn
5868 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
5869 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
5870 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
5871 A programmer-friendly assembler should accept a destination Xd in
5872 place of Wd, however that is not the preferred form for disassembly.
5873 */
5874 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
5875 && operands[1].qualifier == AARCH64_OPND_QLF_W
5876 && operands[0].qualifier == AARCH64_OPND_QLF_X)
5877 operands[0].qualifier = AARCH64_OPND_QLF_W;
5878 break;
5879
5880 case addsub_ext:
5881 {
5882 /* In the 64-bit form, the final register operand is written as Wm
5883 for all but the (possibly omitted) UXTX/LSL and SXTX
5884 operators.
5885 As a programmer-friendly assembler, we accept e.g.
5886 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
5887 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
5888 int idx = aarch64_operand_index (opcode->operands,
5889 AARCH64_OPND_Rm_EXT);
5890 gas_assert (idx == 1 || idx == 2);
5891 if (operands[0].qualifier == AARCH64_OPND_QLF_X
5892 && operands[idx].qualifier == AARCH64_OPND_QLF_X
5893 && operands[idx].shifter.kind != AARCH64_MOD_LSL
5894 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
5895 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
5896 operands[idx].qualifier = AARCH64_OPND_QLF_W;
5897 }
5898 break;
5899
5900 default:
5901 break;
5902 }
5903
5904 DEBUG_TRACE ("exit with SUCCESS");
5905 return TRUE;
5906}
5907
5c47e525 5908/* Check for loads and stores that will cause unpredictable behavior. */
54a28c4c
JW
5909
5910static void
5911warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
5912{
5913 aarch64_inst *base = &instr->base;
5914 const aarch64_opcode *opcode = base->opcode;
5915 const aarch64_opnd_info *opnds = base->operands;
5916 switch (opcode->iclass)
5917 {
5918 case ldst_pos:
5919 case ldst_imm9:
5920 case ldst_unscaled:
5921 case ldst_unpriv:
5c47e525
RE
5922 /* Loading/storing the base register is unpredictable if writeback. */
5923 if ((aarch64_get_operand_class (opnds[0].type)
5924 == AARCH64_OPND_CLASS_INT_REG)
5925 && opnds[0].reg.regno == opnds[1].addr.base_regno
4bf8c6e8 5926 && opnds[1].addr.base_regno != REG_SP
54a28c4c 5927 && opnds[1].addr.writeback)
5c47e525 5928 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
54a28c4c
JW
5929 break;
5930 case ldstpair_off:
5931 case ldstnapair_offs:
5932 case ldstpair_indexed:
5c47e525
RE
5933 /* Loading/storing the base register is unpredictable if writeback. */
5934 if ((aarch64_get_operand_class (opnds[0].type)
5935 == AARCH64_OPND_CLASS_INT_REG)
5936 && (opnds[0].reg.regno == opnds[2].addr.base_regno
5937 || opnds[1].reg.regno == opnds[2].addr.base_regno)
4bf8c6e8 5938 && opnds[2].addr.base_regno != REG_SP
54a28c4c 5939 && opnds[2].addr.writeback)
5c47e525
RE
5940 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
5941 /* Load operations must load different registers. */
54a28c4c
JW
5942 if ((opcode->opcode & (1 << 22))
5943 && opnds[0].reg.regno == opnds[1].reg.regno)
5944 as_warn (_("unpredictable load of register pair -- `%s'"), str);
5945 break;
5946 default:
5947 break;
5948 }
5949}
5950
a06ea964
NC
5951/* A wrapper function to interface with libopcodes on encoding and
5952 record the error message if there is any.
5953
5954 Return TRUE on success; otherwise return FALSE. */
5955
5956static bfd_boolean
5957do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
5958 aarch64_insn *code)
5959{
5960 aarch64_operand_error error_info;
5961 error_info.kind = AARCH64_OPDE_NIL;
5962 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info))
5963 return TRUE;
5964 else
5965 {
5966 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
5967 record_operand_error_info (opcode, &error_info);
5968 return FALSE;
5969 }
5970}
5971
5972#ifdef DEBUG_AARCH64
5973static inline void
5974dump_opcode_operands (const aarch64_opcode *opcode)
5975{
5976 int i = 0;
5977 while (opcode->operands[i] != AARCH64_OPND_NIL)
5978 {
5979 aarch64_verbose ("\t\t opnd%d: %s", i,
5980 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
5981 ? aarch64_get_operand_name (opcode->operands[i])
5982 : aarch64_get_operand_desc (opcode->operands[i]));
5983 ++i;
5984 }
5985}
5986#endif /* DEBUG_AARCH64 */
5987
5988/* This is the guts of the machine-dependent assembler. STR points to a
5989 machine dependent instruction. This function is supposed to emit
5990 the frags/bytes it assembles to. */
5991
5992void
5993md_assemble (char *str)
5994{
5995 char *p = str;
5996 templates *template;
5997 aarch64_opcode *opcode;
5998 aarch64_inst *inst_base;
5999 unsigned saved_cond;
6000
6001 /* Align the previous label if needed. */
6002 if (last_label_seen != NULL)
6003 {
6004 symbol_set_frag (last_label_seen, frag_now);
6005 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6006 S_SET_SEGMENT (last_label_seen, now_seg);
6007 }
6008
6009 inst.reloc.type = BFD_RELOC_UNUSED;
6010
6011 DEBUG_TRACE ("\n\n");
6012 DEBUG_TRACE ("==============================");
6013 DEBUG_TRACE ("Enter md_assemble with %s", str);
6014
6015 template = opcode_lookup (&p);
6016 if (!template)
6017 {
6018 /* It wasn't an instruction, but it might be a register alias of
6019 the form alias .req reg directive. */
6020 if (!create_register_alias (str, p))
6021 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6022 str);
6023 return;
6024 }
6025
6026 skip_whitespace (p);
6027 if (*p == ',')
6028 {
6029 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6030 get_mnemonic_name (str), str);
6031 return;
6032 }
6033
6034 init_operand_error_report ();
6035
eb9d6cc9
RL
6036 /* Sections are assumed to start aligned. In executable section, there is no
6037 MAP_DATA symbol pending. So we only align the address during
6038 MAP_DATA --> MAP_INSN transition.
6039 For other sections, this is not guaranteed. */
6040 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6041 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6042 frag_align_code (2, 0);
6043
a06ea964
NC
6044 saved_cond = inst.cond;
6045 reset_aarch64_instruction (&inst);
6046 inst.cond = saved_cond;
6047
6048 /* Iterate through all opcode entries with the same mnemonic name. */
6049 do
6050 {
6051 opcode = template->opcode;
6052
6053 DEBUG_TRACE ("opcode %s found", opcode->name);
6054#ifdef DEBUG_AARCH64
6055 if (debug_dump)
6056 dump_opcode_operands (opcode);
6057#endif /* DEBUG_AARCH64 */
6058
a06ea964
NC
6059 mapping_state (MAP_INSN);
6060
6061 inst_base = &inst.base;
6062 inst_base->opcode = opcode;
6063
6064 /* Truly conditionally executed instructions, e.g. b.cond. */
6065 if (opcode->flags & F_COND)
6066 {
6067 gas_assert (inst.cond != COND_ALWAYS);
6068 inst_base->cond = get_cond_from_value (inst.cond);
6069 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6070 }
6071 else if (inst.cond != COND_ALWAYS)
6072 {
6073 /* It shouldn't arrive here, where the assembly looks like a
6074 conditional instruction but the found opcode is unconditional. */
6075 gas_assert (0);
6076 continue;
6077 }
6078
6079 if (parse_operands (p, opcode)
6080 && programmer_friendly_fixup (&inst)
6081 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6082 {
3f06bfce
YZ
6083 /* Check that this instruction is supported for this CPU. */
6084 if (!opcode->avariant
6085 || !AARCH64_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
6086 {
6087 as_bad (_("selected processor does not support `%s'"), str);
6088 return;
6089 }
6090
54a28c4c
JW
6091 warn_unpredictable_ldst (&inst, str);
6092
a06ea964
NC
6093 if (inst.reloc.type == BFD_RELOC_UNUSED
6094 || !inst.reloc.need_libopcodes_p)
6095 output_inst (NULL);
6096 else
6097 {
6098 /* If there is relocation generated for the instruction,
6099 store the instruction information for the future fix-up. */
6100 struct aarch64_inst *copy;
6101 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
325801bd 6102 copy = XNEW (struct aarch64_inst);
a06ea964
NC
6103 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6104 output_inst (copy);
6105 }
6106 return;
6107 }
6108
6109 template = template->next;
6110 if (template != NULL)
6111 {
6112 reset_aarch64_instruction (&inst);
6113 inst.cond = saved_cond;
6114 }
6115 }
6116 while (template != NULL);
6117
6118 /* Issue the error messages if any. */
6119 output_operand_error_report (str);
6120}
6121
6122/* Various frobbings of labels and their addresses. */
6123
6124void
6125aarch64_start_line_hook (void)
6126{
6127 last_label_seen = NULL;
6128}
6129
6130void
6131aarch64_frob_label (symbolS * sym)
6132{
6133 last_label_seen = sym;
6134
6135 dwarf2_emit_label (sym);
6136}
6137
6138int
6139aarch64_data_in_code (void)
6140{
6141 if (!strncmp (input_line_pointer + 1, "data:", 5))
6142 {
6143 *input_line_pointer = '/';
6144 input_line_pointer += 5;
6145 *input_line_pointer = 0;
6146 return 1;
6147 }
6148
6149 return 0;
6150}
6151
6152char *
6153aarch64_canonicalize_symbol_name (char *name)
6154{
6155 int len;
6156
6157 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
6158 *(name + len - 5) = 0;
6159
6160 return name;
6161}
6162\f
6163/* Table of all register names defined by default. The user can
6164 define additional names with .req. Note that all register names
6165 should appear in both upper and lowercase variants. Some registers
6166 also have mixed-case names. */
6167
6168#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
6169#define REGNUM(p,n,t) REGDEF(p##n, n, t)
6170#define REGSET31(p,t) \
6171 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
6172 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
6173 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
6174 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t), \
6175 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
6176 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
6177 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
6178 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
6179#define REGSET(p,t) \
6180 REGSET31(p,t), REGNUM(p,31,t)
6181
6182/* These go into aarch64_reg_hsh hash-table. */
6183static const reg_entry reg_names[] = {
6184 /* Integer registers. */
6185 REGSET31 (x, R_64), REGSET31 (X, R_64),
6186 REGSET31 (w, R_32), REGSET31 (W, R_32),
6187
6188 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
6189 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
6190
6191 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
6192 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
6193
6194 /* Coprocessor register numbers. */
6195 REGSET (c, CN), REGSET (C, CN),
6196
6197 /* Floating-point single precision registers. */
6198 REGSET (s, FP_S), REGSET (S, FP_S),
6199
6200 /* Floating-point double precision registers. */
6201 REGSET (d, FP_D), REGSET (D, FP_D),
6202
6203 /* Floating-point half precision registers. */
6204 REGSET (h, FP_H), REGSET (H, FP_H),
6205
6206 /* Floating-point byte precision registers. */
6207 REGSET (b, FP_B), REGSET (B, FP_B),
6208
6209 /* Floating-point quad precision registers. */
6210 REGSET (q, FP_Q), REGSET (Q, FP_Q),
6211
6212 /* FP/SIMD registers. */
6213 REGSET (v, VN), REGSET (V, VN),
6214};
6215
6216#undef REGDEF
6217#undef REGNUM
6218#undef REGSET
6219
6220#define N 1
6221#define n 0
6222#define Z 1
6223#define z 0
6224#define C 1
6225#define c 0
6226#define V 1
6227#define v 0
6228#define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
6229static const asm_nzcv nzcv_names[] = {
6230 {"nzcv", B (n, z, c, v)},
6231 {"nzcV", B (n, z, c, V)},
6232 {"nzCv", B (n, z, C, v)},
6233 {"nzCV", B (n, z, C, V)},
6234 {"nZcv", B (n, Z, c, v)},
6235 {"nZcV", B (n, Z, c, V)},
6236 {"nZCv", B (n, Z, C, v)},
6237 {"nZCV", B (n, Z, C, V)},
6238 {"Nzcv", B (N, z, c, v)},
6239 {"NzcV", B (N, z, c, V)},
6240 {"NzCv", B (N, z, C, v)},
6241 {"NzCV", B (N, z, C, V)},
6242 {"NZcv", B (N, Z, c, v)},
6243 {"NZcV", B (N, Z, c, V)},
6244 {"NZCv", B (N, Z, C, v)},
6245 {"NZCV", B (N, Z, C, V)}
6246};
6247
6248#undef N
6249#undef n
6250#undef Z
6251#undef z
6252#undef C
6253#undef c
6254#undef V
6255#undef v
6256#undef B
6257\f
6258/* MD interface: bits in the object file. */
6259
6260/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
6261 for use in the a.out file, and stores them in the array pointed to by buf.
6262 This knows about the endian-ness of the target machine and does
6263 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
6264 2 (short) and 4 (long) Floating numbers are put out as a series of
6265 LITTLENUMS (shorts, here at least). */
6266
6267void
6268md_number_to_chars (char *buf, valueT val, int n)
6269{
6270 if (target_big_endian)
6271 number_to_chars_bigendian (buf, val, n);
6272 else
6273 number_to_chars_littleendian (buf, val, n);
6274}
6275
6276/* MD interface: Sections. */
6277
6278/* Estimate the size of a frag before relaxing. Assume everything fits in
6279 4 bytes. */
6280
6281int
6282md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
6283{
6284 fragp->fr_var = 4;
6285 return 4;
6286}
6287
6288/* Round up a section size to the appropriate boundary. */
6289
6290valueT
6291md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
6292{
6293 return size;
6294}
6295
6296/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
f803aa8e
DPT
6297 of an rs_align_code fragment.
6298
6299 Here we fill the frag with the appropriate info for padding the
6300 output stream. The resulting frag will consist of a fixed (fr_fix)
6301 and of a repeating (fr_var) part.
6302
6303 The fixed content is always emitted before the repeating content and
6304 these two parts are used as follows in constructing the output:
6305 - the fixed part will be used to align to a valid instruction word
6306 boundary, in case that we start at a misaligned address; as no
6307 executable instruction can live at the misaligned location, we
6308 simply fill with zeros;
6309 - the variable part will be used to cover the remaining padding and
6310 we fill using the AArch64 NOP instruction.
6311
6312 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
6313 enough storage space for up to 3 bytes for padding the back to a valid
6314 instruction alignment and exactly 4 bytes to store the NOP pattern. */
a06ea964
NC
6315
6316void
6317aarch64_handle_align (fragS * fragP)
6318{
6319 /* NOP = d503201f */
6320 /* AArch64 instructions are always little-endian. */
d9235011 6321 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
a06ea964
NC
6322
6323 int bytes, fix, noop_size;
6324 char *p;
a06ea964
NC
6325
6326 if (fragP->fr_type != rs_align_code)
6327 return;
6328
6329 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
6330 p = fragP->fr_literal + fragP->fr_fix;
a06ea964
NC
6331
6332#ifdef OBJ_ELF
6333 gas_assert (fragP->tc_frag_data.recorded);
6334#endif
6335
a06ea964 6336 noop_size = sizeof (aarch64_noop);
a06ea964 6337
f803aa8e
DPT
6338 fix = bytes & (noop_size - 1);
6339 if (fix)
a06ea964 6340 {
a06ea964
NC
6341#ifdef OBJ_ELF
6342 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
6343#endif
6344 memset (p, 0, fix);
6345 p += fix;
f803aa8e 6346 fragP->fr_fix += fix;
a06ea964
NC
6347 }
6348
f803aa8e
DPT
6349 if (noop_size)
6350 memcpy (p, aarch64_noop, noop_size);
6351 fragP->fr_var = noop_size;
a06ea964
NC
6352}
6353
6354/* Perform target specific initialisation of a frag.
6355 Note - despite the name this initialisation is not done when the frag
6356 is created, but only when its type is assigned. A frag can be created
6357 and used a long time before its type is set, so beware of assuming that
6358 this initialisationis performed first. */
6359
6360#ifndef OBJ_ELF
6361void
6362aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
6363 int max_chars ATTRIBUTE_UNUSED)
6364{
6365}
6366
6367#else /* OBJ_ELF is defined. */
6368void
6369aarch64_init_frag (fragS * fragP, int max_chars)
6370{
6371 /* Record a mapping symbol for alignment frags. We will delete this
6372 later if the alignment ends up empty. */
6373 if (!fragP->tc_frag_data.recorded)
c7ad08e6
RL
6374 fragP->tc_frag_data.recorded = 1;
6375
6376 switch (fragP->fr_type)
a06ea964 6377 {
c7ad08e6
RL
6378 case rs_align:
6379 case rs_align_test:
6380 case rs_fill:
6381 mapping_state_2 (MAP_DATA, max_chars);
6382 break;
6383 case rs_align_code:
6384 mapping_state_2 (MAP_INSN, max_chars);
6385 break;
6386 default:
6387 break;
a06ea964
NC
6388 }
6389}
6390\f
6391/* Initialize the DWARF-2 unwind information for this procedure. */
6392
6393void
6394tc_aarch64_frame_initial_instructions (void)
6395{
6396 cfi_add_CFA_def_cfa (REG_SP, 0);
6397}
6398#endif /* OBJ_ELF */
6399
6400/* Convert REGNAME to a DWARF-2 register number. */
6401
6402int
6403tc_aarch64_regname_to_dw2regnum (char *regname)
6404{
6405 const reg_entry *reg = parse_reg (&regname);
6406 if (reg == NULL)
6407 return -1;
6408
6409 switch (reg->type)
6410 {
6411 case REG_TYPE_SP_32:
6412 case REG_TYPE_SP_64:
6413 case REG_TYPE_R_32:
6414 case REG_TYPE_R_64:
a2cac51c
RH
6415 return reg->number;
6416
a06ea964
NC
6417 case REG_TYPE_FP_B:
6418 case REG_TYPE_FP_H:
6419 case REG_TYPE_FP_S:
6420 case REG_TYPE_FP_D:
6421 case REG_TYPE_FP_Q:
a2cac51c
RH
6422 return reg->number + 64;
6423
a06ea964
NC
6424 default:
6425 break;
6426 }
6427 return -1;
6428}
6429
cec5225b
YZ
6430/* Implement DWARF2_ADDR_SIZE. */
6431
6432int
6433aarch64_dwarf2_addr_size (void)
6434{
6435#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6436 if (ilp32_p)
6437 return 4;
6438#endif
6439 return bfd_arch_bits_per_address (stdoutput) / 8;
6440}
6441
a06ea964
NC
6442/* MD interface: Symbol and relocation handling. */
6443
6444/* Return the address within the segment that a PC-relative fixup is
6445 relative to. For AArch64 PC-relative fixups applied to instructions
6446 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
6447
6448long
6449md_pcrel_from_section (fixS * fixP, segT seg)
6450{
6451 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
6452
6453 /* If this is pc-relative and we are going to emit a relocation
6454 then we just want to put out any pipeline compensation that the linker
6455 will need. Otherwise we want to use the calculated base. */
6456 if (fixP->fx_pcrel
6457 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
6458 || aarch64_force_relocation (fixP)))
6459 base = 0;
6460
6461 /* AArch64 should be consistent for all pc-relative relocations. */
6462 return base + AARCH64_PCREL_OFFSET;
6463}
6464
6465/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
6466 Otherwise we have no need to default values of symbols. */
6467
6468symbolS *
6469md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
6470{
6471#ifdef OBJ_ELF
6472 if (name[0] == '_' && name[1] == 'G'
6473 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
6474 {
6475 if (!GOT_symbol)
6476 {
6477 if (symbol_find (name))
6478 as_bad (_("GOT already in the symbol table"));
6479
6480 GOT_symbol = symbol_new (name, undefined_section,
6481 (valueT) 0, &zero_address_frag);
6482 }
6483
6484 return GOT_symbol;
6485 }
6486#endif
6487
6488 return 0;
6489}
6490
6491/* Return non-zero if the indicated VALUE has overflowed the maximum
6492 range expressible by a unsigned number with the indicated number of
6493 BITS. */
6494
6495static bfd_boolean
6496unsigned_overflow (valueT value, unsigned bits)
6497{
6498 valueT lim;
6499 if (bits >= sizeof (valueT) * 8)
6500 return FALSE;
6501 lim = (valueT) 1 << bits;
6502 return (value >= lim);
6503}
6504
6505
6506/* Return non-zero if the indicated VALUE has overflowed the maximum
6507 range expressible by an signed number with the indicated number of
6508 BITS. */
6509
6510static bfd_boolean
6511signed_overflow (offsetT value, unsigned bits)
6512{
6513 offsetT lim;
6514 if (bits >= sizeof (offsetT) * 8)
6515 return FALSE;
6516 lim = (offsetT) 1 << (bits - 1);
6517 return (value < -lim || value >= lim);
6518}
6519
6520/* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
6521 unsigned immediate offset load/store instruction, try to encode it as
6522 an unscaled, 9-bit, signed immediate offset load/store instruction.
6523 Return TRUE if it is successful; otherwise return FALSE.
6524
6525 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
6526 in response to the standard LDR/STR mnemonics when the immediate offset is
6527 unambiguous, i.e. when it is negative or unaligned. */
6528
6529static bfd_boolean
6530try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
6531{
6532 int idx;
6533 enum aarch64_op new_op;
6534 const aarch64_opcode *new_opcode;
6535
6536 gas_assert (instr->opcode->iclass == ldst_pos);
6537
6538 switch (instr->opcode->op)
6539 {
6540 case OP_LDRB_POS:new_op = OP_LDURB; break;
6541 case OP_STRB_POS: new_op = OP_STURB; break;
6542 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
6543 case OP_LDRH_POS: new_op = OP_LDURH; break;
6544 case OP_STRH_POS: new_op = OP_STURH; break;
6545 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
6546 case OP_LDR_POS: new_op = OP_LDUR; break;
6547 case OP_STR_POS: new_op = OP_STUR; break;
6548 case OP_LDRF_POS: new_op = OP_LDURV; break;
6549 case OP_STRF_POS: new_op = OP_STURV; break;
6550 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
6551 case OP_PRFM_POS: new_op = OP_PRFUM; break;
6552 default: new_op = OP_NIL; break;
6553 }
6554
6555 if (new_op == OP_NIL)
6556 return FALSE;
6557
6558 new_opcode = aarch64_get_opcode (new_op);
6559 gas_assert (new_opcode != NULL);
6560
6561 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
6562 instr->opcode->op, new_opcode->op);
6563
6564 aarch64_replace_opcode (instr, new_opcode);
6565
6566 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
6567 qualifier matching may fail because the out-of-date qualifier will
6568 prevent the operand being updated with a new and correct qualifier. */
6569 idx = aarch64_operand_index (instr->opcode->operands,
6570 AARCH64_OPND_ADDR_SIMM9);
6571 gas_assert (idx == 1);
6572 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
6573
6574 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
6575
6576 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL))
6577 return FALSE;
6578
6579 return TRUE;
6580}
6581
6582/* Called by fix_insn to fix a MOV immediate alias instruction.
6583
6584 Operand for a generic move immediate instruction, which is an alias
6585 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
6586 a 32-bit/64-bit immediate value into general register. An assembler error
6587 shall result if the immediate cannot be created by a single one of these
6588 instructions. If there is a choice, then to ensure reversability an
6589 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
6590
6591static void
6592fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
6593{
6594 const aarch64_opcode *opcode;
6595
6596 /* Need to check if the destination is SP/ZR. The check has to be done
6597 before any aarch64_replace_opcode. */
6598 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
6599 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
6600
6601 instr->operands[1].imm.value = value;
6602 instr->operands[1].skip = 0;
6603
6604 if (try_mov_wide_p)
6605 {
6606 /* Try the MOVZ alias. */
6607 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
6608 aarch64_replace_opcode (instr, opcode);
6609 if (aarch64_opcode_encode (instr->opcode, instr,
6610 &instr->value, NULL, NULL))
6611 {
6612 put_aarch64_insn (buf, instr->value);
6613 return;
6614 }
6615 /* Try the MOVK alias. */
6616 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
6617 aarch64_replace_opcode (instr, opcode);
6618 if (aarch64_opcode_encode (instr->opcode, instr,
6619 &instr->value, NULL, NULL))
6620 {
6621 put_aarch64_insn (buf, instr->value);
6622 return;
6623 }
6624 }
6625
6626 if (try_mov_bitmask_p)
6627 {
6628 /* Try the ORR alias. */
6629 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
6630 aarch64_replace_opcode (instr, opcode);
6631 if (aarch64_opcode_encode (instr->opcode, instr,
6632 &instr->value, NULL, NULL))
6633 {
6634 put_aarch64_insn (buf, instr->value);
6635 return;
6636 }
6637 }
6638
6639 as_bad_where (fixP->fx_file, fixP->fx_line,
6640 _("immediate cannot be moved by a single instruction"));
6641}
6642
6643/* An instruction operand which is immediate related may have symbol used
6644 in the assembly, e.g.
6645
6646 mov w0, u32
6647 .set u32, 0x00ffff00
6648
6649 At the time when the assembly instruction is parsed, a referenced symbol,
6650 like 'u32' in the above example may not have been seen; a fixS is created
6651 in such a case and is handled here after symbols have been resolved.
6652 Instruction is fixed up with VALUE using the information in *FIXP plus
6653 extra information in FLAGS.
6654
6655 This function is called by md_apply_fix to fix up instructions that need
6656 a fix-up described above but does not involve any linker-time relocation. */
6657
6658static void
6659fix_insn (fixS *fixP, uint32_t flags, offsetT value)
6660{
6661 int idx;
6662 uint32_t insn;
6663 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6664 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
6665 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
6666
6667 if (new_inst)
6668 {
6669 /* Now the instruction is about to be fixed-up, so the operand that
6670 was previously marked as 'ignored' needs to be unmarked in order
6671 to get the encoding done properly. */
6672 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6673 new_inst->operands[idx].skip = 0;
6674 }
6675
6676 gas_assert (opnd != AARCH64_OPND_NIL);
6677
6678 switch (opnd)
6679 {
6680 case AARCH64_OPND_EXCEPTION:
6681 if (unsigned_overflow (value, 16))
6682 as_bad_where (fixP->fx_file, fixP->fx_line,
6683 _("immediate out of range"));
6684 insn = get_aarch64_insn (buf);
6685 insn |= encode_svc_imm (value);
6686 put_aarch64_insn (buf, insn);
6687 break;
6688
6689 case AARCH64_OPND_AIMM:
6690 /* ADD or SUB with immediate.
6691 NOTE this assumes we come here with a add/sub shifted reg encoding
6692 3 322|2222|2 2 2 21111 111111
6693 1 098|7654|3 2 1 09876 543210 98765 43210
6694 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
6695 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
6696 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
6697 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
6698 ->
6699 3 322|2222|2 2 221111111111
6700 1 098|7654|3 2 109876543210 98765 43210
6701 11000000 sf 001|0001|shift imm12 Rn Rd ADD
6702 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
6703 51000000 sf 101|0001|shift imm12 Rn Rd SUB
6704 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
6705 Fields sf Rn Rd are already set. */
6706 insn = get_aarch64_insn (buf);
6707 if (value < 0)
6708 {
6709 /* Add <-> sub. */
6710 insn = reencode_addsub_switch_add_sub (insn);
6711 value = -value;
6712 }
6713
6714 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
6715 && unsigned_overflow (value, 12))
6716 {
6717 /* Try to shift the value by 12 to make it fit. */
6718 if (((value >> 12) << 12) == value
6719 && ! unsigned_overflow (value, 12 + 12))
6720 {
6721 value >>= 12;
6722 insn |= encode_addsub_imm_shift_amount (1);
6723 }
6724 }
6725
6726 if (unsigned_overflow (value, 12))
6727 as_bad_where (fixP->fx_file, fixP->fx_line,
6728 _("immediate out of range"));
6729
6730 insn |= encode_addsub_imm (value);
6731
6732 put_aarch64_insn (buf, insn);
6733 break;
6734
6735 case AARCH64_OPND_SIMD_IMM:
6736 case AARCH64_OPND_SIMD_IMM_SFT:
6737 case AARCH64_OPND_LIMM:
6738 /* Bit mask immediate. */
6739 gas_assert (new_inst != NULL);
6740 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
6741 new_inst->operands[idx].imm.value = value;
6742 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6743 &new_inst->value, NULL, NULL))
6744 put_aarch64_insn (buf, new_inst->value);
6745 else
6746 as_bad_where (fixP->fx_file, fixP->fx_line,
6747 _("invalid immediate"));
6748 break;
6749
6750 case AARCH64_OPND_HALF:
6751 /* 16-bit unsigned immediate. */
6752 if (unsigned_overflow (value, 16))
6753 as_bad_where (fixP->fx_file, fixP->fx_line,
6754 _("immediate out of range"));
6755 insn = get_aarch64_insn (buf);
6756 insn |= encode_movw_imm (value & 0xffff);
6757 put_aarch64_insn (buf, insn);
6758 break;
6759
6760 case AARCH64_OPND_IMM_MOV:
6761 /* Operand for a generic move immediate instruction, which is
6762 an alias instruction that generates a single MOVZ, MOVN or ORR
6763 instruction to loads a 32-bit/64-bit immediate value into general
6764 register. An assembler error shall result if the immediate cannot be
6765 created by a single one of these instructions. If there is a choice,
6766 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
6767 and MOVZ or MOVN to ORR. */
6768 gas_assert (new_inst != NULL);
6769 fix_mov_imm_insn (fixP, buf, new_inst, value);
6770 break;
6771
6772 case AARCH64_OPND_ADDR_SIMM7:
6773 case AARCH64_OPND_ADDR_SIMM9:
6774 case AARCH64_OPND_ADDR_SIMM9_2:
6775 case AARCH64_OPND_ADDR_UIMM12:
6776 /* Immediate offset in an address. */
6777 insn = get_aarch64_insn (buf);
6778
6779 gas_assert (new_inst != NULL && new_inst->value == insn);
6780 gas_assert (new_inst->opcode->operands[1] == opnd
6781 || new_inst->opcode->operands[2] == opnd);
6782
6783 /* Get the index of the address operand. */
6784 if (new_inst->opcode->operands[1] == opnd)
6785 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
6786 idx = 1;
6787 else
6788 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
6789 idx = 2;
6790
6791 /* Update the resolved offset value. */
6792 new_inst->operands[idx].addr.offset.imm = value;
6793
6794 /* Encode/fix-up. */
6795 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
6796 &new_inst->value, NULL, NULL))
6797 {
6798 put_aarch64_insn (buf, new_inst->value);
6799 break;
6800 }
6801 else if (new_inst->opcode->iclass == ldst_pos
6802 && try_to_encode_as_unscaled_ldst (new_inst))
6803 {
6804 put_aarch64_insn (buf, new_inst->value);
6805 break;
6806 }
6807
6808 as_bad_where (fixP->fx_file, fixP->fx_line,
6809 _("immediate offset out of range"));
6810 break;
6811
6812 default:
6813 gas_assert (0);
6814 as_fatal (_("unhandled operand code %d"), opnd);
6815 }
6816}
6817
6818/* Apply a fixup (fixP) to segment data, once it has been determined
6819 by our caller that we have all the info we need to fix it up.
6820
6821 Parameter valP is the pointer to the value of the bits. */
6822
6823void
6824md_apply_fix (fixS * fixP, valueT * valP, segT seg)
6825{
6826 offsetT value = *valP;
6827 uint32_t insn;
6828 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
6829 int scale;
6830 unsigned flags = fixP->fx_addnumber;
6831
6832 DEBUG_TRACE ("\n\n");
6833 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
6834 DEBUG_TRACE ("Enter md_apply_fix");
6835
6836 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
6837
6838 /* Note whether this will delete the relocation. */
6839
6840 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
6841 fixP->fx_done = 1;
6842
6843 /* Process the relocations. */
6844 switch (fixP->fx_r_type)
6845 {
6846 case BFD_RELOC_NONE:
6847 /* This will need to go in the object file. */
6848 fixP->fx_done = 0;
6849 break;
6850
6851 case BFD_RELOC_8:
6852 case BFD_RELOC_8_PCREL:
6853 if (fixP->fx_done || !seg->use_rela_p)
6854 md_number_to_chars (buf, value, 1);
6855 break;
6856
6857 case BFD_RELOC_16:
6858 case BFD_RELOC_16_PCREL:
6859 if (fixP->fx_done || !seg->use_rela_p)
6860 md_number_to_chars (buf, value, 2);
6861 break;
6862
6863 case BFD_RELOC_32:
6864 case BFD_RELOC_32_PCREL:
6865 if (fixP->fx_done || !seg->use_rela_p)
6866 md_number_to_chars (buf, value, 4);
6867 break;
6868
6869 case BFD_RELOC_64:
6870 case BFD_RELOC_64_PCREL:
6871 if (fixP->fx_done || !seg->use_rela_p)
6872 md_number_to_chars (buf, value, 8);
6873 break;
6874
6875 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
6876 /* We claim that these fixups have been processed here, even if
6877 in fact we generate an error because we do not have a reloc
6878 for them, so tc_gen_reloc() will reject them. */
6879 fixP->fx_done = 1;
6880 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
6881 {
6882 as_bad_where (fixP->fx_file, fixP->fx_line,
6883 _("undefined symbol %s used as an immediate value"),
6884 S_GET_NAME (fixP->fx_addsy));
6885 goto apply_fix_return;
6886 }
6887 fix_insn (fixP, flags, value);
6888 break;
6889
6890 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
a06ea964
NC
6891 if (fixP->fx_done || !seg->use_rela_p)
6892 {
89d2a2a3
MS
6893 if (value & 3)
6894 as_bad_where (fixP->fx_file, fixP->fx_line,
6895 _("pc-relative load offset not word aligned"));
6896 if (signed_overflow (value, 21))
6897 as_bad_where (fixP->fx_file, fixP->fx_line,
6898 _("pc-relative load offset out of range"));
a06ea964
NC
6899 insn = get_aarch64_insn (buf);
6900 insn |= encode_ld_lit_ofs_19 (value >> 2);
6901 put_aarch64_insn (buf, insn);
6902 }
6903 break;
6904
6905 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
a06ea964
NC
6906 if (fixP->fx_done || !seg->use_rela_p)
6907 {
89d2a2a3
MS
6908 if (signed_overflow (value, 21))
6909 as_bad_where (fixP->fx_file, fixP->fx_line,
6910 _("pc-relative address offset out of range"));
a06ea964
NC
6911 insn = get_aarch64_insn (buf);
6912 insn |= encode_adr_imm (value);
6913 put_aarch64_insn (buf, insn);
6914 }
6915 break;
6916
6917 case BFD_RELOC_AARCH64_BRANCH19:
a06ea964
NC
6918 if (fixP->fx_done || !seg->use_rela_p)
6919 {
89d2a2a3
MS
6920 if (value & 3)
6921 as_bad_where (fixP->fx_file, fixP->fx_line,
6922 _("conditional branch target not word aligned"));
6923 if (signed_overflow (value, 21))
6924 as_bad_where (fixP->fx_file, fixP->fx_line,
6925 _("conditional branch out of range"));
a06ea964
NC
6926 insn = get_aarch64_insn (buf);
6927 insn |= encode_cond_branch_ofs_19 (value >> 2);
6928 put_aarch64_insn (buf, insn);
6929 }
6930 break;
6931
6932 case BFD_RELOC_AARCH64_TSTBR14:
a06ea964
NC
6933 if (fixP->fx_done || !seg->use_rela_p)
6934 {
89d2a2a3
MS
6935 if (value & 3)
6936 as_bad_where (fixP->fx_file, fixP->fx_line,
6937 _("conditional branch target not word aligned"));
6938 if (signed_overflow (value, 16))
6939 as_bad_where (fixP->fx_file, fixP->fx_line,
6940 _("conditional branch out of range"));
a06ea964
NC
6941 insn = get_aarch64_insn (buf);
6942 insn |= encode_tst_branch_ofs_14 (value >> 2);
6943 put_aarch64_insn (buf, insn);
6944 }
6945 break;
6946
a06ea964 6947 case BFD_RELOC_AARCH64_CALL26:
f09c556a 6948 case BFD_RELOC_AARCH64_JUMP26:
a06ea964
NC
6949 if (fixP->fx_done || !seg->use_rela_p)
6950 {
89d2a2a3
MS
6951 if (value & 3)
6952 as_bad_where (fixP->fx_file, fixP->fx_line,
6953 _("branch target not word aligned"));
6954 if (signed_overflow (value, 28))
6955 as_bad_where (fixP->fx_file, fixP->fx_line,
6956 _("branch out of range"));
a06ea964
NC
6957 insn = get_aarch64_insn (buf);
6958 insn |= encode_branch_ofs_26 (value >> 2);
6959 put_aarch64_insn (buf, insn);
6960 }
6961 break;
6962
6963 case BFD_RELOC_AARCH64_MOVW_G0:
a06ea964 6964 case BFD_RELOC_AARCH64_MOVW_G0_NC:
f09c556a 6965 case BFD_RELOC_AARCH64_MOVW_G0_S:
ca632371 6966 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
a06ea964
NC
6967 scale = 0;
6968 goto movw_common;
6969 case BFD_RELOC_AARCH64_MOVW_G1:
a06ea964 6970 case BFD_RELOC_AARCH64_MOVW_G1_NC:
f09c556a 6971 case BFD_RELOC_AARCH64_MOVW_G1_S:
654248e7 6972 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
a06ea964
NC
6973 scale = 16;
6974 goto movw_common;
43a357f9
RL
6975 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6976 scale = 0;
6977 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6978 /* Should always be exported to object file, see
6979 aarch64_force_relocation(). */
6980 gas_assert (!fixP->fx_done);
6981 gas_assert (seg->use_rela_p);
6982 goto movw_common;
6983 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6984 scale = 16;
6985 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6986 /* Should always be exported to object file, see
6987 aarch64_force_relocation(). */
6988 gas_assert (!fixP->fx_done);
6989 gas_assert (seg->use_rela_p);
6990 goto movw_common;
a06ea964 6991 case BFD_RELOC_AARCH64_MOVW_G2:
a06ea964 6992 case BFD_RELOC_AARCH64_MOVW_G2_NC:
f09c556a 6993 case BFD_RELOC_AARCH64_MOVW_G2_S:
a06ea964
NC
6994 scale = 32;
6995 goto movw_common;
6996 case BFD_RELOC_AARCH64_MOVW_G3:
6997 scale = 48;
6998 movw_common:
6999 if (fixP->fx_done || !seg->use_rela_p)
7000 {
7001 insn = get_aarch64_insn (buf);
7002
7003 if (!fixP->fx_done)
7004 {
7005 /* REL signed addend must fit in 16 bits */
7006 if (signed_overflow (value, 16))
7007 as_bad_where (fixP->fx_file, fixP->fx_line,
7008 _("offset out of range"));
7009 }
7010 else
7011 {
7012 /* Check for overflow and scale. */
7013 switch (fixP->fx_r_type)
7014 {
7015 case BFD_RELOC_AARCH64_MOVW_G0:
7016 case BFD_RELOC_AARCH64_MOVW_G1:
7017 case BFD_RELOC_AARCH64_MOVW_G2:
7018 case BFD_RELOC_AARCH64_MOVW_G3:
654248e7 7019 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
43a357f9 7020 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964
NC
7021 if (unsigned_overflow (value, scale + 16))
7022 as_bad_where (fixP->fx_file, fixP->fx_line,
7023 _("unsigned value out of range"));
7024 break;
7025 case BFD_RELOC_AARCH64_MOVW_G0_S:
7026 case BFD_RELOC_AARCH64_MOVW_G1_S:
7027 case BFD_RELOC_AARCH64_MOVW_G2_S:
7028 /* NOTE: We can only come here with movz or movn. */
7029 if (signed_overflow (value, scale + 16))
7030 as_bad_where (fixP->fx_file, fixP->fx_line,
7031 _("signed value out of range"));
7032 if (value < 0)
7033 {
7034 /* Force use of MOVN. */
7035 value = ~value;
7036 insn = reencode_movzn_to_movn (insn);
7037 }
7038 else
7039 {
7040 /* Force use of MOVZ. */
7041 insn = reencode_movzn_to_movz (insn);
7042 }
7043 break;
7044 default:
7045 /* Unchecked relocations. */
7046 break;
7047 }
7048 value >>= scale;
7049 }
7050
7051 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7052 insn |= encode_movw_imm (value & 0xffff);
7053
7054 put_aarch64_insn (buf, insn);
7055 }
7056 break;
7057
a6bb11b2
YZ
7058 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7059 fixP->fx_r_type = (ilp32_p
7060 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7061 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7062 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7063 /* Should always be exported to object file, see
7064 aarch64_force_relocation(). */
7065 gas_assert (!fixP->fx_done);
7066 gas_assert (seg->use_rela_p);
7067 break;
7068
7069 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7070 fixP->fx_r_type = (ilp32_p
7071 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
7072 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC);
7073 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7074 /* Should always be exported to object file, see
7075 aarch64_force_relocation(). */
7076 gas_assert (!fixP->fx_done);
7077 gas_assert (seg->use_rela_p);
7078 break;
7079
2c0a3565
MS
7080 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7081 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7082 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7083 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7084 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7085 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
a06ea964 7086 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7087 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7088 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7089 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7090 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7091 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7092 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7093 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7094 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7095 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7096 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
49df5539 7097 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7098 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7099 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7100 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7101 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7102 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7103 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7104 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7105 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7106 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7107 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7108 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7109 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7110 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7111 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7112 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7113 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7114 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7115 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7116 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7117 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7118 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7119 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7120 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7121 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7122 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7123 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7124 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7125 /* Should always be exported to object file, see
7126 aarch64_force_relocation(). */
7127 gas_assert (!fixP->fx_done);
7128 gas_assert (seg->use_rela_p);
7129 break;
7130
a6bb11b2
YZ
7131 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
7132 /* Should always be exported to object file, see
7133 aarch64_force_relocation(). */
7134 fixP->fx_r_type = (ilp32_p
7135 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
7136 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
7137 gas_assert (!fixP->fx_done);
7138 gas_assert (seg->use_rela_p);
7139 break;
7140
a06ea964 7141 case BFD_RELOC_AARCH64_ADD_LO12:
f09c556a
JW
7142 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7143 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7144 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7145 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7146 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7147 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7148 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7149 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
f09c556a
JW
7150 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7151 case BFD_RELOC_AARCH64_LDST128_LO12:
a06ea964
NC
7152 case BFD_RELOC_AARCH64_LDST16_LO12:
7153 case BFD_RELOC_AARCH64_LDST32_LO12:
7154 case BFD_RELOC_AARCH64_LDST64_LO12:
f09c556a 7155 case BFD_RELOC_AARCH64_LDST8_LO12:
a06ea964
NC
7156 /* Should always be exported to object file, see
7157 aarch64_force_relocation(). */
7158 gas_assert (!fixP->fx_done);
7159 gas_assert (seg->use_rela_p);
7160 break;
7161
7162 case BFD_RELOC_AARCH64_TLSDESC_ADD:
a06ea964 7163 case BFD_RELOC_AARCH64_TLSDESC_CALL:
f09c556a 7164 case BFD_RELOC_AARCH64_TLSDESC_LDR:
a06ea964
NC
7165 break;
7166
b97e87cc
NC
7167 case BFD_RELOC_UNUSED:
7168 /* An error will already have been reported. */
7169 break;
7170
a06ea964
NC
7171 default:
7172 as_bad_where (fixP->fx_file, fixP->fx_line,
7173 _("unexpected %s fixup"),
7174 bfd_get_reloc_code_name (fixP->fx_r_type));
7175 break;
7176 }
7177
7178apply_fix_return:
7179 /* Free the allocated the struct aarch64_inst.
7180 N.B. currently there are very limited number of fix-up types actually use
7181 this field, so the impact on the performance should be minimal . */
7182 if (fixP->tc_fix_data.inst != NULL)
7183 free (fixP->tc_fix_data.inst);
7184
7185 return;
7186}
7187
7188/* Translate internal representation of relocation info to BFD target
7189 format. */
7190
7191arelent *
7192tc_gen_reloc (asection * section, fixS * fixp)
7193{
7194 arelent *reloc;
7195 bfd_reloc_code_real_type code;
7196
325801bd 7197 reloc = XNEW (arelent);
a06ea964 7198
325801bd 7199 reloc->sym_ptr_ptr = XNEW (asymbol *);
a06ea964
NC
7200 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7201 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
7202
7203 if (fixp->fx_pcrel)
7204 {
7205 if (section->use_rela_p)
7206 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
7207 else
7208 fixp->fx_offset = reloc->address;
7209 }
7210 reloc->addend = fixp->fx_offset;
7211
7212 code = fixp->fx_r_type;
7213 switch (code)
7214 {
7215 case BFD_RELOC_16:
7216 if (fixp->fx_pcrel)
7217 code = BFD_RELOC_16_PCREL;
7218 break;
7219
7220 case BFD_RELOC_32:
7221 if (fixp->fx_pcrel)
7222 code = BFD_RELOC_32_PCREL;
7223 break;
7224
7225 case BFD_RELOC_64:
7226 if (fixp->fx_pcrel)
7227 code = BFD_RELOC_64_PCREL;
7228 break;
7229
7230 default:
7231 break;
7232 }
7233
7234 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
7235 if (reloc->howto == NULL)
7236 {
7237 as_bad_where (fixp->fx_file, fixp->fx_line,
7238 _
7239 ("cannot represent %s relocation in this object file format"),
7240 bfd_get_reloc_code_name (code));
7241 return NULL;
7242 }
7243
7244 return reloc;
7245}
7246
7247/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
7248
7249void
7250cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
7251{
7252 bfd_reloc_code_real_type type;
7253 int pcrel = 0;
7254
7255 /* Pick a reloc.
7256 FIXME: @@ Should look at CPU word size. */
7257 switch (size)
7258 {
7259 case 1:
7260 type = BFD_RELOC_8;
7261 break;
7262 case 2:
7263 type = BFD_RELOC_16;
7264 break;
7265 case 4:
7266 type = BFD_RELOC_32;
7267 break;
7268 case 8:
7269 type = BFD_RELOC_64;
7270 break;
7271 default:
7272 as_bad (_("cannot do %u-byte relocation"), size);
7273 type = BFD_RELOC_UNUSED;
7274 break;
7275 }
7276
7277 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
7278}
7279
7280int
7281aarch64_force_relocation (struct fix *fixp)
7282{
7283 switch (fixp->fx_r_type)
7284 {
7285 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7286 /* Perform these "immediate" internal relocations
7287 even if the symbol is extern or weak. */
7288 return 0;
7289
a6bb11b2 7290 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
f09c556a
JW
7291 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
7292 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
a6bb11b2
YZ
7293 /* Pseudo relocs that need to be fixed up according to
7294 ilp32_p. */
7295 return 0;
7296
2c0a3565
MS
7297 case BFD_RELOC_AARCH64_ADD_LO12:
7298 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7299 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7300 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7301 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7302 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
3d715ce4 7303 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
87f5fbcc 7304 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
a921b5bd 7305 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
2c0a3565
MS
7306 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7307 case BFD_RELOC_AARCH64_LDST128_LO12:
7308 case BFD_RELOC_AARCH64_LDST16_LO12:
7309 case BFD_RELOC_AARCH64_LDST32_LO12:
7310 case BFD_RELOC_AARCH64_LDST64_LO12:
7311 case BFD_RELOC_AARCH64_LDST8_LO12:
7312 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC:
7313 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
389b8029 7314 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
2c0a3565
MS
7315 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7316 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC:
1ada945d 7317 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
43a357f9
RL
7318 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7319 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
a06ea964 7320 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
2c0a3565 7321 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
3c12b054 7322 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
3e8286c0 7323 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
1aa66fb1 7324 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
a06ea964 7325 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
a6bb11b2 7326 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
2c0a3565 7327 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
043bf05a 7328 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
3b957e5b
RL
7329 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7330 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7331 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
70151fb5 7332 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
13289c10 7333 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
a12fad50 7334 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
1107e076 7335 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6c37fedc 7336 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4c562523
JW
7337 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
7338 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
7339 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
7340 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
7341 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
7342 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
7343 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
7344 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
49df5539
JW
7345 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
7346 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7347 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
7348 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
7349 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
a06ea964 7350 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
2c0a3565 7351 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
a06ea964 7352 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
a06ea964
NC
7353 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
7354 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
2c0a3565
MS
7355 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7356 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7357 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
a06ea964
NC
7358 /* Always leave these relocations for the linker. */
7359 return 1;
7360
7361 default:
7362 break;
7363 }
7364
7365 return generic_force_reloc (fixp);
7366}
7367
7368#ifdef OBJ_ELF
7369
7370const char *
7371elf64_aarch64_target_format (void)
7372{
a75cf613
ES
7373 if (strcmp (TARGET_OS, "cloudabi") == 0)
7374 {
7375 /* FIXME: What to do for ilp32_p ? */
7376 return target_big_endian ? "elf64-bigaarch64-cloudabi" : "elf64-littleaarch64-cloudabi";
7377 }
a06ea964 7378 if (target_big_endian)
cec5225b 7379 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
a06ea964 7380 else
cec5225b 7381 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
a06ea964
NC
7382}
7383
7384void
7385aarch64elf_frob_symbol (symbolS * symp, int *puntp)
7386{
7387 elf_frob_symbol (symp, puntp);
7388}
7389#endif
7390
7391/* MD interface: Finalization. */
7392
7393/* A good place to do this, although this was probably not intended
7394 for this kind of use. We need to dump the literal pool before
7395 references are made to a null symbol pointer. */
7396
7397void
7398aarch64_cleanup (void)
7399{
7400 literal_pool *pool;
7401
7402 for (pool = list_of_pools; pool; pool = pool->next)
7403 {
7404 /* Put it at the end of the relevant section. */
7405 subseg_set (pool->section, pool->sub_section);
7406 s_ltorg (0);
7407 }
7408}
7409
7410#ifdef OBJ_ELF
7411/* Remove any excess mapping symbols generated for alignment frags in
7412 SEC. We may have created a mapping symbol before a zero byte
7413 alignment; remove it if there's a mapping symbol after the
7414 alignment. */
7415static void
7416check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
7417 void *dummy ATTRIBUTE_UNUSED)
7418{
7419 segment_info_type *seginfo = seg_info (sec);
7420 fragS *fragp;
7421
7422 if (seginfo == NULL || seginfo->frchainP == NULL)
7423 return;
7424
7425 for (fragp = seginfo->frchainP->frch_root;
7426 fragp != NULL; fragp = fragp->fr_next)
7427 {
7428 symbolS *sym = fragp->tc_frag_data.last_map;
7429 fragS *next = fragp->fr_next;
7430
7431 /* Variable-sized frags have been converted to fixed size by
7432 this point. But if this was variable-sized to start with,
7433 there will be a fixed-size frag after it. So don't handle
7434 next == NULL. */
7435 if (sym == NULL || next == NULL)
7436 continue;
7437
7438 if (S_GET_VALUE (sym) < next->fr_address)
7439 /* Not at the end of this frag. */
7440 continue;
7441 know (S_GET_VALUE (sym) == next->fr_address);
7442
7443 do
7444 {
7445 if (next->tc_frag_data.first_map != NULL)
7446 {
7447 /* Next frag starts with a mapping symbol. Discard this
7448 one. */
7449 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7450 break;
7451 }
7452
7453 if (next->fr_next == NULL)
7454 {
7455 /* This mapping symbol is at the end of the section. Discard
7456 it. */
7457 know (next->fr_fix == 0 && next->fr_var == 0);
7458 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
7459 break;
7460 }
7461
7462 /* As long as we have empty frags without any mapping symbols,
7463 keep looking. */
7464 /* If the next frag is non-empty and does not start with a
7465 mapping symbol, then this mapping symbol is required. */
7466 if (next->fr_address != next->fr_next->fr_address)
7467 break;
7468
7469 next = next->fr_next;
7470 }
7471 while (next != NULL);
7472 }
7473}
7474#endif
7475
7476/* Adjust the symbol table. */
7477
7478void
7479aarch64_adjust_symtab (void)
7480{
7481#ifdef OBJ_ELF
7482 /* Remove any overlapping mapping symbols generated by alignment frags. */
7483 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
7484 /* Now do generic ELF adjustments. */
7485 elf_adjust_symtab ();
7486#endif
7487}
7488
7489static void
7490checked_hash_insert (struct hash_control *table, const char *key, void *value)
7491{
7492 const char *hash_err;
7493
7494 hash_err = hash_insert (table, key, value);
7495 if (hash_err)
7496 printf ("Internal Error: Can't hash %s\n", key);
7497}
7498
7499static void
7500fill_instruction_hash_table (void)
7501{
7502 aarch64_opcode *opcode = aarch64_opcode_table;
7503
7504 while (opcode->name != NULL)
7505 {
7506 templates *templ, *new_templ;
7507 templ = hash_find (aarch64_ops_hsh, opcode->name);
7508
add39d23 7509 new_templ = XNEW (templates);
a06ea964
NC
7510 new_templ->opcode = opcode;
7511 new_templ->next = NULL;
7512
7513 if (!templ)
7514 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
7515 else
7516 {
7517 new_templ->next = templ->next;
7518 templ->next = new_templ;
7519 }
7520 ++opcode;
7521 }
7522}
7523
7524static inline void
7525convert_to_upper (char *dst, const char *src, size_t num)
7526{
7527 unsigned int i;
7528 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
7529 *dst = TOUPPER (*src);
7530 *dst = '\0';
7531}
7532
7533/* Assume STR point to a lower-case string, allocate, convert and return
7534 the corresponding upper-case string. */
7535static inline const char*
7536get_upper_str (const char *str)
7537{
7538 char *ret;
7539 size_t len = strlen (str);
325801bd 7540 ret = XNEWVEC (char, len + 1);
a06ea964
NC
7541 convert_to_upper (ret, str, len);
7542 return ret;
7543}
7544
7545/* MD interface: Initialization. */
7546
7547void
7548md_begin (void)
7549{
7550 unsigned mach;
7551 unsigned int i;
7552
7553 if ((aarch64_ops_hsh = hash_new ()) == NULL
7554 || (aarch64_cond_hsh = hash_new ()) == NULL
7555 || (aarch64_shift_hsh = hash_new ()) == NULL
7556 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
7557 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
7558 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
7559 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
7560 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
7561 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
7562 || (aarch64_reg_hsh = hash_new ()) == NULL
7563 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
7564 || (aarch64_nzcv_hsh = hash_new ()) == NULL
1e6f4800
MW
7565 || (aarch64_pldop_hsh = hash_new ()) == NULL
7566 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
a06ea964
NC
7567 as_fatal (_("virtual memory exhausted"));
7568
7569 fill_instruction_hash_table ();
7570
7571 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
7572 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
7573 (void *) (aarch64_sys_regs + i));
7574
7575 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
7576 checked_hash_insert (aarch64_pstatefield_hsh,
7577 aarch64_pstatefields[i].name,
7578 (void *) (aarch64_pstatefields + i));
7579
875880c6 7580 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
a06ea964 7581 checked_hash_insert (aarch64_sys_regs_ic_hsh,
875880c6 7582 aarch64_sys_regs_ic[i].name,
a06ea964
NC
7583 (void *) (aarch64_sys_regs_ic + i));
7584
875880c6 7585 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
a06ea964 7586 checked_hash_insert (aarch64_sys_regs_dc_hsh,
875880c6 7587 aarch64_sys_regs_dc[i].name,
a06ea964
NC
7588 (void *) (aarch64_sys_regs_dc + i));
7589
875880c6 7590 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
a06ea964 7591 checked_hash_insert (aarch64_sys_regs_at_hsh,
875880c6 7592 aarch64_sys_regs_at[i].name,
a06ea964
NC
7593 (void *) (aarch64_sys_regs_at + i));
7594
875880c6 7595 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
a06ea964 7596 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
875880c6 7597 aarch64_sys_regs_tlbi[i].name,
a06ea964
NC
7598 (void *) (aarch64_sys_regs_tlbi + i));
7599
7600 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
7601 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
7602 (void *) (reg_names + i));
7603
7604 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
7605 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
7606 (void *) (nzcv_names + i));
7607
7608 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
7609 {
7610 const char *name = aarch64_operand_modifiers[i].name;
7611 checked_hash_insert (aarch64_shift_hsh, name,
7612 (void *) (aarch64_operand_modifiers + i));
7613 /* Also hash the name in the upper case. */
7614 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
7615 (void *) (aarch64_operand_modifiers + i));
7616 }
7617
7618 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
7619 {
7620 unsigned int j;
7621 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
7622 the same condition code. */
7623 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
7624 {
7625 const char *name = aarch64_conds[i].names[j];
7626 if (name == NULL)
7627 break;
7628 checked_hash_insert (aarch64_cond_hsh, name,
7629 (void *) (aarch64_conds + i));
7630 /* Also hash the name in the upper case. */
7631 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
7632 (void *) (aarch64_conds + i));
7633 }
7634 }
7635
7636 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
7637 {
7638 const char *name = aarch64_barrier_options[i].name;
7639 /* Skip xx00 - the unallocated values of option. */
7640 if ((i & 0x3) == 0)
7641 continue;
7642 checked_hash_insert (aarch64_barrier_opt_hsh, name,
7643 (void *) (aarch64_barrier_options + i));
7644 /* Also hash the name in the upper case. */
7645 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
7646 (void *) (aarch64_barrier_options + i));
7647 }
7648
7649 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
7650 {
7651 const char* name = aarch64_prfops[i].name;
a1ccaec9
YZ
7652 /* Skip the unallocated hint encodings. */
7653 if (name == NULL)
a06ea964
NC
7654 continue;
7655 checked_hash_insert (aarch64_pldop_hsh, name,
7656 (void *) (aarch64_prfops + i));
7657 /* Also hash the name in the upper case. */
7658 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7659 (void *) (aarch64_prfops + i));
7660 }
7661
1e6f4800
MW
7662 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
7663 {
7664 const char* name = aarch64_hint_options[i].name;
7665
7666 checked_hash_insert (aarch64_hint_opt_hsh, name,
7667 (void *) (aarch64_hint_options + i));
7668 /* Also hash the name in the upper case. */
7669 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
7670 (void *) (aarch64_hint_options + i));
7671 }
7672
a06ea964
NC
7673 /* Set the cpu variant based on the command-line options. */
7674 if (!mcpu_cpu_opt)
7675 mcpu_cpu_opt = march_cpu_opt;
7676
7677 if (!mcpu_cpu_opt)
7678 mcpu_cpu_opt = &cpu_default;
7679
7680 cpu_variant = *mcpu_cpu_opt;
7681
7682 /* Record the CPU type. */
cec5225b 7683 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
a06ea964
NC
7684
7685 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
7686}
7687
7688/* Command line processing. */
7689
7690const char *md_shortopts = "m:";
7691
7692#ifdef AARCH64_BI_ENDIAN
7693#define OPTION_EB (OPTION_MD_BASE + 0)
7694#define OPTION_EL (OPTION_MD_BASE + 1)
7695#else
7696#if TARGET_BYTES_BIG_ENDIAN
7697#define OPTION_EB (OPTION_MD_BASE + 0)
7698#else
7699#define OPTION_EL (OPTION_MD_BASE + 1)
7700#endif
7701#endif
7702
7703struct option md_longopts[] = {
7704#ifdef OPTION_EB
7705 {"EB", no_argument, NULL, OPTION_EB},
7706#endif
7707#ifdef OPTION_EL
7708 {"EL", no_argument, NULL, OPTION_EL},
7709#endif
7710 {NULL, no_argument, NULL, 0}
7711};
7712
7713size_t md_longopts_size = sizeof (md_longopts);
7714
7715struct aarch64_option_table
7716{
e0471c16
TS
7717 const char *option; /* Option name to match. */
7718 const char *help; /* Help information. */
a06ea964
NC
7719 int *var; /* Variable to change. */
7720 int value; /* What to change it to. */
7721 char *deprecated; /* If non-null, print this message. */
7722};
7723
7724static struct aarch64_option_table aarch64_opts[] = {
7725 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
7726 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
7727 NULL},
7728#ifdef DEBUG_AARCH64
7729 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
7730#endif /* DEBUG_AARCH64 */
7731 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
7732 NULL},
a52e6fd3
YZ
7733 {"mno-verbose-error", N_("do not output verbose error messages"),
7734 &verbose_error_p, 0, NULL},
a06ea964
NC
7735 {NULL, NULL, NULL, 0, NULL}
7736};
7737
7738struct aarch64_cpu_option_table
7739{
e0471c16 7740 const char *name;
a06ea964
NC
7741 const aarch64_feature_set value;
7742 /* The canonical name of the CPU, or NULL to use NAME converted to upper
7743 case. */
7744 const char *canonical_name;
7745};
7746
7747/* This list should, at a minimum, contain all the cpu names
7748 recognized by GCC. */
7749static const struct aarch64_cpu_option_table aarch64_cpus[] = {
7750 {"all", AARCH64_ANY, NULL},
9c352f1c
JG
7751 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
7752 AARCH64_FEATURE_CRC), "Cortex-A35"},
aa31c464
JW
7753 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
7754 AARCH64_FEATURE_CRC), "Cortex-A53"},
7755 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
7756 AARCH64_FEATURE_CRC), "Cortex-A57"},
2abdd192
JW
7757 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
7758 AARCH64_FEATURE_CRC), "Cortex-A72"},
2412d878
EM
7759 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
7760 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7761 "Samsung Exynos M1"},
6b21c2bf
JW
7762 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7763 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7764 "Qualcomm QDF24XX"},
faade851
JW
7765 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
7766 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
7767 "Cavium ThunderX"},
070cb956
PT
7768 /* The 'xgene-1' name is an older name for 'xgene1', which was used
7769 in earlier releases and is superseded by 'xgene1' in all
7770 tools. */
9877c63c 7771 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
070cb956 7772 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
aa31c464
JW
7773 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
7774 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
a06ea964
NC
7775 {"generic", AARCH64_ARCH_V8, NULL},
7776
a06ea964
NC
7777 {NULL, AARCH64_ARCH_NONE, NULL}
7778};
7779
7780struct aarch64_arch_option_table
7781{
e0471c16 7782 const char *name;
a06ea964
NC
7783 const aarch64_feature_set value;
7784};
7785
7786/* This list should, at a minimum, contain all the architecture names
7787 recognized by GCC. */
7788static const struct aarch64_arch_option_table aarch64_archs[] = {
7789 {"all", AARCH64_ANY},
5a1ad39d 7790 {"armv8-a", AARCH64_ARCH_V8},
88f0ea34 7791 {"armv8.1-a", AARCH64_ARCH_V8_1},
acb787b0 7792 {"armv8.2-a", AARCH64_ARCH_V8_2},
a06ea964
NC
7793 {NULL, AARCH64_ARCH_NONE}
7794};
7795
7796/* ISA extensions. */
7797struct aarch64_option_cpu_value_table
7798{
e0471c16 7799 const char *name;
a06ea964
NC
7800 const aarch64_feature_set value;
7801};
7802
7803static const struct aarch64_option_cpu_value_table aarch64_features[] = {
e60bb1dd 7804 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0)},
a06ea964
NC
7805 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO, 0)},
7806 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
ee804238 7807 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0)},
a06ea964 7808 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
72ca8fad 7809 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0)},
290806fd 7810 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0)},
50cc854c 7811 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0)},
9e1f0fa7
MW
7812 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_SIMD
7813 | AARCH64_FEATURE_RDMA, 0)},
87018195
MW
7814 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16
7815 | AARCH64_FEATURE_FP, 0)},
73af8ed6 7816 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0)},
a06ea964
NC
7817 {NULL, AARCH64_ARCH_NONE}
7818};
7819
7820struct aarch64_long_option_table
7821{
e0471c16
TS
7822 const char *option; /* Substring to match. */
7823 const char *help; /* Help information. */
17b9d67d 7824 int (*func) (const char *subopt); /* Function to decode sub-option. */
a06ea964
NC
7825 char *deprecated; /* If non-null, print this message. */
7826};
7827
7828static int
82b8a785 7829aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
ae527cd8 7830 bfd_boolean ext_only)
a06ea964
NC
7831{
7832 /* We insist on extensions being added before being removed. We achieve
7833 this by using the ADDING_VALUE variable to indicate whether we are
7834 adding an extension (1) or removing it (0) and only allowing it to
7835 change in the order -1 -> 1 -> 0. */
7836 int adding_value = -1;
325801bd 7837 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
a06ea964
NC
7838
7839 /* Copy the feature set, so that we can modify it. */
7840 *ext_set = **opt_p;
7841 *opt_p = ext_set;
7842
7843 while (str != NULL && *str != 0)
7844 {
7845 const struct aarch64_option_cpu_value_table *opt;
82b8a785 7846 const char *ext = NULL;
a06ea964
NC
7847 int optlen;
7848
ae527cd8 7849 if (!ext_only)
a06ea964 7850 {
ae527cd8
JB
7851 if (*str != '+')
7852 {
7853 as_bad (_("invalid architectural extension"));
7854 return 0;
7855 }
a06ea964 7856
ae527cd8
JB
7857 ext = strchr (++str, '+');
7858 }
a06ea964
NC
7859
7860 if (ext != NULL)
7861 optlen = ext - str;
7862 else
7863 optlen = strlen (str);
7864
7865 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
7866 {
7867 if (adding_value != 0)
7868 adding_value = 0;
7869 optlen -= 2;
7870 str += 2;
7871 }
7872 else if (optlen > 0)
7873 {
7874 if (adding_value == -1)
7875 adding_value = 1;
7876 else if (adding_value != 1)
7877 {
7878 as_bad (_("must specify extensions to add before specifying "
7879 "those to remove"));
7880 return FALSE;
7881 }
7882 }
7883
7884 if (optlen == 0)
7885 {
7886 as_bad (_("missing architectural extension"));
7887 return 0;
7888 }
7889
7890 gas_assert (adding_value != -1);
7891
7892 for (opt = aarch64_features; opt->name != NULL; opt++)
7893 if (strncmp (opt->name, str, optlen) == 0)
7894 {
7895 /* Add or remove the extension. */
7896 if (adding_value)
7897 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
7898 else
7899 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
7900 break;
7901 }
7902
7903 if (opt->name == NULL)
7904 {
7905 as_bad (_("unknown architectural extension `%s'"), str);
7906 return 0;
7907 }
7908
7909 str = ext;
7910 };
7911
7912 return 1;
7913}
7914
7915static int
17b9d67d 7916aarch64_parse_cpu (const char *str)
a06ea964
NC
7917{
7918 const struct aarch64_cpu_option_table *opt;
82b8a785 7919 const char *ext = strchr (str, '+');
a06ea964
NC
7920 size_t optlen;
7921
7922 if (ext != NULL)
7923 optlen = ext - str;
7924 else
7925 optlen = strlen (str);
7926
7927 if (optlen == 0)
7928 {
7929 as_bad (_("missing cpu name `%s'"), str);
7930 return 0;
7931 }
7932
7933 for (opt = aarch64_cpus; opt->name != NULL; opt++)
7934 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7935 {
7936 mcpu_cpu_opt = &opt->value;
7937 if (ext != NULL)
ae527cd8 7938 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
a06ea964
NC
7939
7940 return 1;
7941 }
7942
7943 as_bad (_("unknown cpu `%s'"), str);
7944 return 0;
7945}
7946
7947static int
17b9d67d 7948aarch64_parse_arch (const char *str)
a06ea964
NC
7949{
7950 const struct aarch64_arch_option_table *opt;
82b8a785 7951 const char *ext = strchr (str, '+');
a06ea964
NC
7952 size_t optlen;
7953
7954 if (ext != NULL)
7955 optlen = ext - str;
7956 else
7957 optlen = strlen (str);
7958
7959 if (optlen == 0)
7960 {
7961 as_bad (_("missing architecture name `%s'"), str);
7962 return 0;
7963 }
7964
7965 for (opt = aarch64_archs; opt->name != NULL; opt++)
7966 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
7967 {
7968 march_cpu_opt = &opt->value;
7969 if (ext != NULL)
ae527cd8 7970 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
a06ea964
NC
7971
7972 return 1;
7973 }
7974
7975 as_bad (_("unknown architecture `%s'\n"), str);
7976 return 0;
7977}
7978
69091a2c
YZ
7979/* ABIs. */
7980struct aarch64_option_abi_value_table
7981{
e0471c16 7982 const char *name;
69091a2c
YZ
7983 enum aarch64_abi_type value;
7984};
7985
7986static const struct aarch64_option_abi_value_table aarch64_abis[] = {
7987 {"ilp32", AARCH64_ABI_ILP32},
7988 {"lp64", AARCH64_ABI_LP64},
7989 {NULL, 0}
7990};
7991
7992static int
17b9d67d 7993aarch64_parse_abi (const char *str)
69091a2c
YZ
7994{
7995 const struct aarch64_option_abi_value_table *opt;
7996 size_t optlen = strlen (str);
7997
7998 if (optlen == 0)
7999 {
8000 as_bad (_("missing abi name `%s'"), str);
8001 return 0;
8002 }
8003
8004 for (opt = aarch64_abis; opt->name != NULL; opt++)
8005 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
8006 {
8007 aarch64_abi = opt->value;
8008 return 1;
8009 }
8010
8011 as_bad (_("unknown abi `%s'\n"), str);
8012 return 0;
8013}
8014
a06ea964 8015static struct aarch64_long_option_table aarch64_long_opts[] = {
69091a2c
YZ
8016#ifdef OBJ_ELF
8017 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
8018 aarch64_parse_abi, NULL},
8019#endif /* OBJ_ELF */
a06ea964
NC
8020 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
8021 aarch64_parse_cpu, NULL},
8022 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
8023 aarch64_parse_arch, NULL},
8024 {NULL, NULL, 0, NULL}
8025};
8026
8027int
17b9d67d 8028md_parse_option (int c, const char *arg)
a06ea964
NC
8029{
8030 struct aarch64_option_table *opt;
8031 struct aarch64_long_option_table *lopt;
8032
8033 switch (c)
8034 {
8035#ifdef OPTION_EB
8036 case OPTION_EB:
8037 target_big_endian = 1;
8038 break;
8039#endif
8040
8041#ifdef OPTION_EL
8042 case OPTION_EL:
8043 target_big_endian = 0;
8044 break;
8045#endif
8046
8047 case 'a':
8048 /* Listing option. Just ignore these, we don't support additional
8049 ones. */
8050 return 0;
8051
8052 default:
8053 for (opt = aarch64_opts; opt->option != NULL; opt++)
8054 {
8055 if (c == opt->option[0]
8056 && ((arg == NULL && opt->option[1] == 0)
8057 || streq (arg, opt->option + 1)))
8058 {
8059 /* If the option is deprecated, tell the user. */
8060 if (opt->deprecated != NULL)
8061 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
8062 arg ? arg : "", _(opt->deprecated));
8063
8064 if (opt->var != NULL)
8065 *opt->var = opt->value;
8066
8067 return 1;
8068 }
8069 }
8070
8071 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8072 {
8073 /* These options are expected to have an argument. */
8074 if (c == lopt->option[0]
8075 && arg != NULL
8076 && strncmp (arg, lopt->option + 1,
8077 strlen (lopt->option + 1)) == 0)
8078 {
8079 /* If the option is deprecated, tell the user. */
8080 if (lopt->deprecated != NULL)
8081 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
8082 _(lopt->deprecated));
8083
8084 /* Call the sup-option parser. */
8085 return lopt->func (arg + strlen (lopt->option) - 1);
8086 }
8087 }
8088
8089 return 0;
8090 }
8091
8092 return 1;
8093}
8094
8095void
8096md_show_usage (FILE * fp)
8097{
8098 struct aarch64_option_table *opt;
8099 struct aarch64_long_option_table *lopt;
8100
8101 fprintf (fp, _(" AArch64-specific assembler options:\n"));
8102
8103 for (opt = aarch64_opts; opt->option != NULL; opt++)
8104 if (opt->help != NULL)
8105 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
8106
8107 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
8108 if (lopt->help != NULL)
8109 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
8110
8111#ifdef OPTION_EB
8112 fprintf (fp, _("\
8113 -EB assemble code for a big-endian cpu\n"));
8114#endif
8115
8116#ifdef OPTION_EL
8117 fprintf (fp, _("\
8118 -EL assemble code for a little-endian cpu\n"));
8119#endif
8120}
8121
8122/* Parse a .cpu directive. */
8123
8124static void
8125s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
8126{
8127 const struct aarch64_cpu_option_table *opt;
8128 char saved_char;
8129 char *name;
8130 char *ext;
8131 size_t optlen;
8132
8133 name = input_line_pointer;
8134 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8135 input_line_pointer++;
8136 saved_char = *input_line_pointer;
8137 *input_line_pointer = 0;
8138
8139 ext = strchr (name, '+');
8140
8141 if (ext != NULL)
8142 optlen = ext - name;
8143 else
8144 optlen = strlen (name);
8145
8146 /* Skip the first "all" entry. */
8147 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
8148 if (strlen (opt->name) == optlen
8149 && strncmp (name, opt->name, optlen) == 0)
8150 {
8151 mcpu_cpu_opt = &opt->value;
8152 if (ext != NULL)
ae527cd8 8153 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8154 return;
8155
8156 cpu_variant = *mcpu_cpu_opt;
8157
8158 *input_line_pointer = saved_char;
8159 demand_empty_rest_of_line ();
8160 return;
8161 }
8162 as_bad (_("unknown cpu `%s'"), name);
8163 *input_line_pointer = saved_char;
8164 ignore_rest_of_line ();
8165}
8166
8167
8168/* Parse a .arch directive. */
8169
8170static void
8171s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
8172{
8173 const struct aarch64_arch_option_table *opt;
8174 char saved_char;
8175 char *name;
8176 char *ext;
8177 size_t optlen;
8178
8179 name = input_line_pointer;
8180 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8181 input_line_pointer++;
8182 saved_char = *input_line_pointer;
8183 *input_line_pointer = 0;
8184
8185 ext = strchr (name, '+');
8186
8187 if (ext != NULL)
8188 optlen = ext - name;
8189 else
8190 optlen = strlen (name);
8191
8192 /* Skip the first "all" entry. */
8193 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
8194 if (strlen (opt->name) == optlen
8195 && strncmp (name, opt->name, optlen) == 0)
8196 {
8197 mcpu_cpu_opt = &opt->value;
8198 if (ext != NULL)
ae527cd8 8199 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
a06ea964
NC
8200 return;
8201
8202 cpu_variant = *mcpu_cpu_opt;
8203
8204 *input_line_pointer = saved_char;
8205 demand_empty_rest_of_line ();
8206 return;
8207 }
8208
8209 as_bad (_("unknown architecture `%s'\n"), name);
8210 *input_line_pointer = saved_char;
8211 ignore_rest_of_line ();
8212}
8213
ae527cd8
JB
8214/* Parse a .arch_extension directive. */
8215
8216static void
8217s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
8218{
8219 char saved_char;
8220 char *ext = input_line_pointer;;
8221
8222 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
8223 input_line_pointer++;
8224 saved_char = *input_line_pointer;
8225 *input_line_pointer = 0;
8226
8227 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
8228 return;
8229
8230 cpu_variant = *mcpu_cpu_opt;
8231
8232 *input_line_pointer = saved_char;
8233 demand_empty_rest_of_line ();
8234}
8235
a06ea964
NC
8236/* Copy symbol information. */
8237
8238void
8239aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
8240{
8241 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
8242}
This page took 0.575106 seconds and 4 git commands to generate.