gas/
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
fa94de6b 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
3da1d841 35#include "libiberty.h"
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3 100/* The code that was here used to select a default CPU depending on compiler
fa94de6b 101 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
bca38921 198static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
7e806470 199static const arm_feature_set arm_ext_m =
b2a5fbdc 200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 201static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 202static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 203static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 204static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 205static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
206
207static const arm_feature_set arm_arch_any = ARM_ANY;
208static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 211static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 212
2d447fca
JM
213static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
215static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 227static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 228static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
229static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
231static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
234static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
bca38921
MGD
237static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
e74cfd16 243
33a392fb 244static int mfloat_abi_opt = -1;
e74cfd16
PB
245/* Record user cpu selection for object attributes. */
246static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
247/* Must be long enough to hold any of the names in arm_cpus. */
248static char selected_cpu_name[16];
8d67f500
NC
249
250/* Return if no cpu was selected on command-line. */
251static bfd_boolean
252no_cpu_selected (void)
253{
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256}
257
7cc69913 258#ifdef OBJ_ELF
deeaaff8
DJ
259# ifdef EABI_DEFAULT
260static int meabi_flags = EABI_DEFAULT;
261# else
d507cf36 262static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 263# endif
e1da3f5b 264
ee3c0378
AS
265static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
e1da3f5b 267bfd_boolean
5f4273c7 268arm_is_eabi (void)
e1da3f5b
PB
269{
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271}
7cc69913 272#endif
b99bd4ef 273
b99bd4ef 274#ifdef OBJ_ELF
c19d1205 275/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
276symbolS * GOT_symbol;
277#endif
278
b99bd4ef
NC
279/* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283static int thumb_mode = 0;
8dc2430f
NC
284/* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287#define MODE_RECORDED (1 << 4)
b99bd4ef 288
e07e6e58
NC
289/* Specifies the intrinsic IT insn behavior mode. */
290enum implicit_it_mode
291{
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296};
297static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
c19d1205
ZW
299/* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322static bfd_boolean unified_syntax = FALSE;
b99bd4ef 323
5287ad62
JB
324enum neon_el_type
325{
dcbf9037 326 NT_invtype,
5287ad62
JB
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
dcbf9037 332 NT_unsigned
5287ad62
JB
333};
334
335struct neon_type_el
336{
337 enum neon_el_type type;
338 unsigned size;
339};
340
341#define NEON_MAX_TYPE_ELS 4
342
343struct neon_type
344{
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347};
348
e07e6e58
NC
349enum it_instruction_type
350{
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359};
360
ad6cec43
MGD
361/* The maximum number of operands we need. */
362#define ARM_IT_MAX_OPERANDS 6
363
b99bd4ef
NC
364struct arm_it
365{
c19d1205 366 const char * error;
b99bd4ef 367 unsigned long instruction;
c19d1205
ZW
368 int size;
369 int size_req;
370 int cond;
037e8744
JB
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
5287ad62 375 struct neon_type vectype;
88714cb8
DG
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
0110f2b8
PB
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
b99bd4ef
NC
382 struct
383 {
384 bfd_reloc_code_real_type type;
c19d1205
ZW
385 expressionS exp;
386 int pc_rel;
b99bd4ef 387 } reloc;
b99bd4ef 388
e07e6e58
NC
389 enum it_instruction_type it_insn_type;
390
c19d1205
ZW
391 struct
392 {
393 unsigned reg;
ca3f61f7 394 signed int imm;
dcbf9037 395 struct neon_type_el vectype;
ca3f61f7
NC
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 415 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
416};
417
c19d1205 418static struct arm_it inst;
b99bd4ef
NC
419
420#define NUM_FLOAT_VALS 8
421
05d2d07e 422const char * fp_const[] =
b99bd4ef
NC
423{
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425};
426
c19d1205 427/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
428#define MAX_LITTLENUMS 6
429
430LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432#define FAIL (-1)
433#define SUCCESS (0)
434
435#define SUFF_S 1
436#define SUFF_D 2
437#define SUFF_E 3
438#define SUFF_P 4
439
c19d1205
ZW
440#define CP_T_X 0x00008000
441#define CP_T_Y 0x00400000
b99bd4ef 442
c19d1205
ZW
443#define CONDS_BIT 0x00100000
444#define LOAD_BIT 0x00100000
b99bd4ef
NC
445
446#define DOUBLE_LOAD_FLAG 0x00000001
447
448struct asm_cond
449{
d3ce72d0 450 const char * template_name;
c921be7d 451 unsigned long value;
b99bd4ef
NC
452};
453
c19d1205 454#define COND_ALWAYS 0xE
b99bd4ef 455
b99bd4ef
NC
456struct asm_psr
457{
d3ce72d0 458 const char * template_name;
c921be7d 459 unsigned long field;
b99bd4ef
NC
460};
461
62b3e311
PB
462struct asm_barrier_opt
463{
e797f7e0
MGD
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
62b3e311
PB
467};
468
2d2255b5 469/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
470#define SPSR_BIT (1 << 22)
471
c19d1205
ZW
472/* The individual PSR flag bits. */
473#define PSR_c (1 << 16)
474#define PSR_x (1 << 17)
475#define PSR_s (1 << 18)
476#define PSR_f (1 << 19)
b99bd4ef 477
c19d1205 478struct reloc_entry
bfae80f2 479{
c921be7d
NC
480 char * name;
481 bfd_reloc_code_real_type reloc;
bfae80f2
RE
482};
483
5287ad62 484enum vfp_reg_pos
bfae80f2 485{
5287ad62
JB
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
488};
489
490enum vfp_ldstm_type
491{
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493};
494
dcbf9037
JB
495/* Bits for DEFINED field in neon_typed_alias. */
496#define NTA_HASTYPE 1
497#define NTA_HASINDEX 2
498
499struct neon_typed_alias
500{
c921be7d
NC
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
dcbf9037
JB
504};
505
c19d1205
ZW
506/* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508enum arm_reg_type
bfae80f2 509{
c19d1205
ZW
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
5287ad62 516 REG_TYPE_NQ,
037e8744 517 REG_TYPE_VFSD,
5287ad62 518 REG_TYPE_NDQ,
037e8744 519 REG_TYPE_NSDQ,
c19d1205
ZW
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
90ec0d68 531 REG_TYPE_RNB
bfae80f2
RE
532};
533
dcbf9037
JB
534/* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
538struct reg_entry
539{
c921be7d 540 const char * name;
90ec0d68 541 unsigned int number;
c921be7d
NC
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
6c43fab6
RE
545};
546
c19d1205 547/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 548const char * const reg_expected_msgs[] =
c19d1205
ZW
549{
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
5287ad62
JB
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
037e8744 557 N_("VFP single or double precision register expected"),
5287ad62 558 N_("Neon double or quad precision register expected"),
037e8744 559 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
6c43fab6
RE
571};
572
c19d1205 573/* Some well known registers that we refer to directly elsewhere. */
bd340a04 574#define REG_R12 12
c19d1205
ZW
575#define REG_SP 13
576#define REG_LR 14
577#define REG_PC 15
404ff6b5 578
b99bd4ef
NC
579/* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
c19d1205 581#define INSN_SIZE 4
b99bd4ef
NC
582
583struct asm_opcode
584{
585 /* Basic string to match. */
d3ce72d0 586 const char * template_name;
c19d1205
ZW
587
588 /* Parameters to instruction. */
5be8be5d 589 unsigned int operands[8];
c19d1205
ZW
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
b99bd4ef
NC
593
594 /* Basic instruction code. */
c19d1205 595 unsigned int avalue : 28;
b99bd4ef 596
c19d1205
ZW
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
b99bd4ef 599
90e4755a 600 /* Which architecture variant provides this instruction. */
c921be7d
NC
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
c19d1205
ZW
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
b99bd4ef 606
c19d1205
ZW
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
b99bd4ef
NC
609};
610
a737bd4d
NC
611/* Defines for various bits that we will want to toggle. */
612#define INST_IMMEDIATE 0x02000000
613#define OFFSET_REG 0x02000000
c19d1205 614#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
615#define SHIFT_BY_REG 0x00000010
616#define PRE_INDEX 0x01000000
617#define INDEX_UP 0x00800000
618#define WRITE_BACK 0x00200000
619#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 620#define CPSI_MMOD 0x00020000
90e4755a 621
a737bd4d
NC
622#define LITERAL_MASK 0xf000f000
623#define OPCODE_MASK 0xfe1fffff
624#define V4_STR_BIT 0x00000020
90e4755a 625
efd81785
PB
626#define T2_SUBS_PC_LR 0xf3de8f00
627
a737bd4d 628#define DATA_OP_SHIFT 21
90e4755a 629
ef8d22e6
PB
630#define T2_OPCODE_MASK 0xfe1fffff
631#define T2_DATA_OP_SHIFT 21
632
6530b175
NC
633#define A_COND_MASK 0xf0000000
634#define A_PUSH_POP_OP_MASK 0x0fff0000
635
636/* Opcodes for pushing/poping registers to/from the stack. */
637#define A1_OPCODE_PUSH 0x092d0000
638#define A2_OPCODE_PUSH 0x052d0004
639#define A2_OPCODE_POP 0x049d0004
640
a737bd4d
NC
641/* Codes to distinguish the arithmetic instructions. */
642#define OPCODE_AND 0
643#define OPCODE_EOR 1
644#define OPCODE_SUB 2
645#define OPCODE_RSB 3
646#define OPCODE_ADD 4
647#define OPCODE_ADC 5
648#define OPCODE_SBC 6
649#define OPCODE_RSC 7
650#define OPCODE_TST 8
651#define OPCODE_TEQ 9
652#define OPCODE_CMP 10
653#define OPCODE_CMN 11
654#define OPCODE_ORR 12
655#define OPCODE_MOV 13
656#define OPCODE_BIC 14
657#define OPCODE_MVN 15
90e4755a 658
ef8d22e6
PB
659#define T2_OPCODE_AND 0
660#define T2_OPCODE_BIC 1
661#define T2_OPCODE_ORR 2
662#define T2_OPCODE_ORN 3
663#define T2_OPCODE_EOR 4
664#define T2_OPCODE_ADD 8
665#define T2_OPCODE_ADC 10
666#define T2_OPCODE_SBC 11
667#define T2_OPCODE_SUB 13
668#define T2_OPCODE_RSB 14
669
a737bd4d
NC
670#define T_OPCODE_MUL 0x4340
671#define T_OPCODE_TST 0x4200
672#define T_OPCODE_CMN 0x42c0
673#define T_OPCODE_NEG 0x4240
674#define T_OPCODE_MVN 0x43c0
90e4755a 675
a737bd4d
NC
676#define T_OPCODE_ADD_R3 0x1800
677#define T_OPCODE_SUB_R3 0x1a00
678#define T_OPCODE_ADD_HI 0x4400
679#define T_OPCODE_ADD_ST 0xb000
680#define T_OPCODE_SUB_ST 0xb080
681#define T_OPCODE_ADD_SP 0xa800
682#define T_OPCODE_ADD_PC 0xa000
683#define T_OPCODE_ADD_I8 0x3000
684#define T_OPCODE_SUB_I8 0x3800
685#define T_OPCODE_ADD_I3 0x1c00
686#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 687
a737bd4d
NC
688#define T_OPCODE_ASR_R 0x4100
689#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
690#define T_OPCODE_LSR_R 0x40c0
691#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
692#define T_OPCODE_ASR_I 0x1000
693#define T_OPCODE_LSL_I 0x0000
694#define T_OPCODE_LSR_I 0x0800
b99bd4ef 695
a737bd4d
NC
696#define T_OPCODE_MOV_I8 0x2000
697#define T_OPCODE_CMP_I8 0x2800
698#define T_OPCODE_CMP_LR 0x4280
699#define T_OPCODE_MOV_HR 0x4600
700#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 701
a737bd4d
NC
702#define T_OPCODE_LDR_PC 0x4800
703#define T_OPCODE_LDR_SP 0x9800
704#define T_OPCODE_STR_SP 0x9000
705#define T_OPCODE_LDR_IW 0x6800
706#define T_OPCODE_STR_IW 0x6000
707#define T_OPCODE_LDR_IH 0x8800
708#define T_OPCODE_STR_IH 0x8000
709#define T_OPCODE_LDR_IB 0x7800
710#define T_OPCODE_STR_IB 0x7000
711#define T_OPCODE_LDR_RW 0x5800
712#define T_OPCODE_STR_RW 0x5000
713#define T_OPCODE_LDR_RH 0x5a00
714#define T_OPCODE_STR_RH 0x5200
715#define T_OPCODE_LDR_RB 0x5c00
716#define T_OPCODE_STR_RB 0x5400
c9b604bd 717
a737bd4d
NC
718#define T_OPCODE_PUSH 0xb400
719#define T_OPCODE_POP 0xbc00
b99bd4ef 720
2fc8bdac 721#define T_OPCODE_BRANCH 0xe000
b99bd4ef 722
a737bd4d 723#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 724#define THUMB_PP_PC_LR 0x0100
c19d1205 725#define THUMB_LOAD_BIT 0x0800
53365c0d 726#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
727
728#define BAD_ARGS _("bad arguments to instruction")
fdfde340 729#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
730#define BAD_PC _("r15 not allowed here")
731#define BAD_COND _("instruction cannot be conditional")
732#define BAD_OVERLAP _("registers may not be the same")
733#define BAD_HIREG _("lo register required")
734#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 735#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
736#define BAD_BRANCH _("branch must be last instruction in IT block")
737#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 738#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
739#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740#define BAD_IT_COND _("incorrect condition in IT block")
741#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 742#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
743#define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745#define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
08f10d51 747#define BAD_RANGE _("branch out of range")
c19d1205 748
c921be7d
NC
749static struct hash_control * arm_ops_hsh;
750static struct hash_control * arm_cond_hsh;
751static struct hash_control * arm_shift_hsh;
752static struct hash_control * arm_psr_hsh;
753static struct hash_control * arm_v7m_psr_hsh;
754static struct hash_control * arm_reg_hsh;
755static struct hash_control * arm_reloc_hsh;
756static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 757
b99bd4ef
NC
758/* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
5f4273c7 765 <insn> */
b99bd4ef
NC
766
767symbolS * last_label_seen;
b34976b6 768static int label_is_thumb_function_name = FALSE;
e07e6e58 769
3d0c9500
NC
770/* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
a737bd4d 772
c19d1205 773#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 774typedef struct literal_pool
b99bd4ef 775{
c921be7d
NC
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
a8040cf2
NC
782#ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784#endif
c921be7d 785 struct literal_pool * next;
3d0c9500 786} literal_pool;
b99bd4ef 787
3d0c9500
NC
788/* Pointer to a linked list of literal pools. */
789literal_pool * list_of_pools = NULL;
e27ec89e 790
e07e6e58
NC
791#ifdef OBJ_ELF
792# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793#else
794static struct current_it now_it;
795#endif
796
797static inline int
798now_it_compatible (int cond)
799{
800 return (cond & ~1) == (now_it.cc & ~1);
801}
802
803static inline int
804conditional_insn (void)
805{
806 return inst.cond != COND_ALWAYS;
807}
808
809static int in_it_block (void);
810
811static int handle_it_state (void);
812
813static void force_automatic_it_block_close (void);
814
c921be7d
NC
815static void it_fsm_post_encode (void);
816
e07e6e58
NC
817#define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
c921be7d
NC
826#define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
e07e6e58
NC
835#define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
c19d1205 845/* Pure syntax. */
b99bd4ef 846
c19d1205
ZW
847/* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849const char comment_chars[] = "@";
3d0c9500 850
c19d1205
ZW
851/* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854/* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857/* Also note that comments like this one will always work. */
858const char line_comment_chars[] = "#";
3d0c9500 859
c19d1205 860const char line_separator_chars[] = ";";
b99bd4ef 861
c19d1205
ZW
862/* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864const char EXP_CHARS[] = "eE";
3d0c9500 865
c19d1205
ZW
866/* Chars that mean this number is a floating point constant. */
867/* As in 0f12.456 */
868/* or 0d1.2345e12 */
b99bd4ef 869
c19d1205 870const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 871
c19d1205
ZW
872/* Prefix characters that indicate the start of an immediate
873 value. */
874#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 875
c19d1205
ZW
876/* Separator character handling. */
877
878#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880static inline int
881skip_past_char (char ** str, char c)
882{
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
3d0c9500 887 }
c19d1205
ZW
888 else
889 return FAIL;
890}
c921be7d 891
c19d1205 892#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 893
c19d1205
ZW
894/* Arithmetic expressions (possibly involving symbols). */
895
896/* Return TRUE if anything in the expression is a bignum. */
897
898static int
899walk_no_bignums (symbolS * sp)
900{
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 905 {
c19d1205
ZW
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
909 }
910
c19d1205 911 return 0;
3d0c9500
NC
912}
913
c19d1205
ZW
914static int in_my_get_expression = 0;
915
916/* Third argument to my_get_expression. */
917#define GE_NO_PREFIX 0
918#define GE_IMM_PREFIX 1
919#define GE_OPT_PREFIX 2
5287ad62
JB
920/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922#define GE_OPT_PREFIX_BIG 3
a737bd4d 923
b99bd4ef 924static int
c19d1205 925my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 926{
c19d1205
ZW
927 char * save_in;
928 segT seg;
b99bd4ef 929
c19d1205
ZW
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
5287ad62
JB
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
b99bd4ef 934
c19d1205 935 switch (prefix_mode)
b99bd4ef 936 {
c19d1205
ZW
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
5287ad62 947 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
b99bd4ef 953
c19d1205 954 memset (ep, 0, sizeof (expressionS));
b99bd4ef 955
c19d1205
ZW
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
f86adc07 962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 963 {
f86adc07 964 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
f86adc07
NS
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
970 return 1;
971 }
b99bd4ef 972
c19d1205
ZW
973#ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
b99bd4ef 984 }
87975d2a
AM
985#else
986 (void) seg;
c19d1205 987#endif
b99bd4ef 988
c19d1205
ZW
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
5287ad62
JB
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
b99bd4ef 1004
c19d1205
ZW
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
b99bd4ef
NC
1008}
1009
c19d1205
ZW
1010/* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
b99bd4ef 1014
c19d1205
ZW
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1021
c19d1205 1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1023
c19d1205
ZW
1024char *
1025md_atof (int type, char * litP, int * sizeP)
1026{
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
b99bd4ef 1031
c19d1205
ZW
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
b99bd4ef 1040
c19d1205
ZW
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
b99bd4ef 1047
c19d1205
ZW
1048 case 'x':
1049 case 'X':
499ac353 1050 prec = 5;
c19d1205 1051 break;
b99bd4ef 1052
c19d1205
ZW
1053 case 'p':
1054 case 'P':
499ac353 1055 prec = 5;
c19d1205 1056 break;
a737bd4d 1057
c19d1205
ZW
1058 default:
1059 *sizeP = 0;
499ac353 1060 return _("Unrecognized or unsupported floating point constant");
c19d1205 1061 }
b99bd4ef 1062
c19d1205
ZW
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
499ac353 1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1067
c19d1205
ZW
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
499ac353
NC
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1074 }
1075 }
1076 else
1077 {
e74cfd16 1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1079 for (i = prec - 1; i >= 0; i--)
1080 {
499ac353
NC
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
499ac353
NC
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1094 }
1095 }
b99bd4ef 1096
499ac353 1097 return NULL;
c19d1205 1098}
b99bd4ef 1099
c19d1205
ZW
1100/* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102void
91d6fa6a 1103md_operand (expressionS * exp)
c19d1205
ZW
1104{
1105 if (in_my_get_expression)
91d6fa6a 1106 exp->X_op = O_illegal;
b99bd4ef
NC
1107}
1108
c19d1205 1109/* Immediate values. */
b99bd4ef 1110
c19d1205
ZW
1111/* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114#ifdef OBJ_ELF
1115static int
1116immediate_for_directive (int *val)
b99bd4ef 1117{
c19d1205
ZW
1118 expressionS exp;
1119 exp.X_op = O_illegal;
b99bd4ef 1120
c19d1205
ZW
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
b99bd4ef 1126
c19d1205
ZW
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
b99bd4ef 1135}
c19d1205 1136#endif
b99bd4ef 1137
c19d1205 1138/* Register parsing. */
b99bd4ef 1139
c19d1205
ZW
1140/* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145static struct reg_entry *
1146arm_reg_parse_multi (char **ccp)
b99bd4ef 1147{
c19d1205
ZW
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
b99bd4ef 1151
c19d1205
ZW
1152#ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
01cfc07f 1154 return NULL;
c19d1205
ZW
1155 start++;
1156#endif
1157#ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160#endif
b99bd4ef 1161
c19d1205
ZW
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
b99bd4ef 1165
c19d1205
ZW
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
b99bd4ef
NC
1177}
1178
1179static int
dcbf9037
JB
1180arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
b99bd4ef 1182{
c19d1205
ZW
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
79134647 1191 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1192 return reg->number;
1193 break;
69b97547 1194
c19d1205
ZW
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
6057a28f 1202
c19d1205
ZW
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
79134647 1206 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1207 return reg->number;
6057a28f 1208 break;
c19d1205 1209
6057a28f 1210 default:
c19d1205 1211 break;
6057a28f
NC
1212 }
1213
dcbf9037
JB
1214 return FAIL;
1215}
1216
1217/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220static int
1221arm_reg_parse (char **ccp, enum arm_reg_type type)
1222{
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
c19d1205
ZW
1237 *ccp = start;
1238 return FAIL;
1239}
69b97547 1240
dcbf9037
JB
1241/* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255static int
1256parse_neon_type (struct neon_type *type, char **str)
1257{
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
dcbf9037
JB
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
037e8744 1312 done:
dcbf9037
JB
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328}
1329
1330/* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335static void
1336first_error (const char *err)
1337{
1338 if (!inst.error)
1339 inst.error = err;
1340}
1341
1342/* Parse a single type, e.g. ".s32", leading period included. */
1343static int
1344parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345{
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
5f4273c7 1369
dcbf9037 1370 *ccp = str;
5f4273c7 1371
dcbf9037
JB
1372 return SUCCESS;
1373}
1374
1375/* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378#define NEON_ALL_LANES 15
1379#define NEON_INTERLEAVE_LANES 14
1380
1381/* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386static int
1387parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390{
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
037e8744
JB
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1423 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
5f4273c7 1430
dcbf9037
JB
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
5f4273c7 1441
dcbf9037
JB
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
5f4273c7 1449
dcbf9037
JB
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
5f4273c7 1478
dcbf9037
JB
1479 if (typeinfo)
1480 *typeinfo = atype;
5f4273c7 1481
dcbf9037
JB
1482 if (rtype)
1483 *rtype = type;
5f4273c7 1484
dcbf9037 1485 *ccp = str;
5f4273c7 1486
dcbf9037
JB
1487 return reg->number;
1488}
1489
1490/* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1495 This function will fault on encountering a scalar. */
dcbf9037
JB
1496
1497static int
1498arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500{
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
0855e32b
NS
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
dcbf9037
JB
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525}
1526
1527#define NEON_SCALAR_REG(X) ((X) >> 4)
1528#define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
5287ad62
JB
1530/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534static int
dcbf9037 1535parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1536{
dcbf9037 1537 int reg;
5287ad62 1538 char *str = *ccp;
dcbf9037 1539 struct neon_typed_alias atype;
5f4273c7 1540
dcbf9037 1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1542
dcbf9037 1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1544 return FAIL;
5f4273c7 1545
dcbf9037 1546 if (atype.index == NEON_ALL_LANES)
5287ad62 1547 {
dcbf9037 1548 first_error (_("scalar must have an index"));
5287ad62
JB
1549 return FAIL;
1550 }
dcbf9037 1551 else if (atype.index >= 64 / elsize)
5287ad62 1552 {
dcbf9037 1553 first_error (_("scalar index out of range"));
5287ad62
JB
1554 return FAIL;
1555 }
5f4273c7 1556
dcbf9037
JB
1557 if (type)
1558 *type = atype.eltype;
5f4273c7 1559
5287ad62 1560 *ccp = str;
5f4273c7 1561
dcbf9037 1562 return reg * 16 + atype.index;
5287ad62
JB
1563}
1564
c19d1205 1565/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1566
c19d1205
ZW
1567static long
1568parse_reg_list (char ** strp)
1569{
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
a737bd4d 1573
c19d1205
ZW
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
6057a28f 1576 {
c19d1205 1577 another_range = 0;
a737bd4d 1578
c19d1205
ZW
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
a737bd4d 1583
c19d1205
ZW
1584 str++;
1585 do
1586 {
1587 int reg;
6057a28f 1588
dcbf9037 1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1590 {
dcbf9037 1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1592 return FAIL;
1593 }
a737bd4d 1594
c19d1205
ZW
1595 if (in_range)
1596 {
1597 int i;
a737bd4d 1598
c19d1205
ZW
1599 if (reg <= cur_reg)
1600 {
dcbf9037 1601 first_error (_("bad range in register list"));
c19d1205
ZW
1602 return FAIL;
1603 }
40a18ebd 1604
c19d1205
ZW
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
a737bd4d 1616
c19d1205
ZW
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1622
c19d1205
ZW
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
a737bd4d 1629
c19d1205
ZW
1630 if (*str++ != '}')
1631 {
dcbf9037 1632 first_error (_("missing `}'"));
c19d1205
ZW
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
91d6fa6a 1638 expressionS exp;
40a18ebd 1639
91d6fa6a 1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1641 return FAIL;
40a18ebd 1642
91d6fa6a 1643 if (exp.X_op == O_constant)
c19d1205 1644 {
91d6fa6a
NC
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
a737bd4d 1651
91d6fa6a 1652 if ((range & exp.X_add_number) != 0)
c19d1205 1653 {
91d6fa6a 1654 int regno = range & exp.X_add_number;
a737bd4d 1655
c19d1205
ZW
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
a737bd4d 1662
91d6fa6a 1663 range |= exp.X_add_number;
c19d1205
ZW
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
a737bd4d 1672
91d6fa6a 1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
a737bd4d 1678
c19d1205
ZW
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
a737bd4d 1684 }
c19d1205 1685 while (another_range);
a737bd4d 1686
c19d1205
ZW
1687 *strp = str;
1688 return range;
a737bd4d
NC
1689}
1690
5287ad62
JB
1691/* Types of registers in a list. */
1692
1693enum reg_list_els
1694{
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698};
1699
c19d1205
ZW
1700/* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
dcbf9037
JB
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
6057a28f 1714
c19d1205 1715static int
037e8744 1716parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1717{
037e8744 1718 char *str = *ccp;
c19d1205
ZW
1719 int base_reg;
1720 int new_base;
21d799b5 1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1722 int max_regs = 0;
c19d1205
ZW
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
a737bd4d 1726 int i;
6057a28f 1727
037e8744 1728 if (*str != '{')
5287ad62
JB
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
6057a28f 1733
037e8744 1734 str++;
6057a28f 1735
5287ad62 1736 switch (etype)
c19d1205 1737 {
5287ad62 1738 case REGLIST_VFP_S:
c19d1205
ZW
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
5287ad62 1741 break;
5f4273c7 1742
5287ad62
JB
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
b7fc2769 1745 break;
5f4273c7 1746
b7fc2769
JB
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
b1cc4aeb
PB
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1760 fpu_vfp_ext_d32);
5287ad62
JB
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1763 fpu_vfp_ext_d32);
5287ad62
JB
1764 }
1765 else
1766 max_regs = 16;
c19d1205 1767 }
6057a28f 1768
c19d1205 1769 base_reg = max_regs;
a737bd4d 1770
c19d1205
ZW
1771 do
1772 {
5287ad62 1773 int setmask = 1, addregs = 1;
dcbf9037 1774
037e8744 1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1776
c19d1205 1777 if (new_base == FAIL)
a737bd4d 1778 {
dcbf9037 1779 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1780 return FAIL;
1781 }
5f4273c7 1782
b7fc2769
JB
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
5f4273c7 1788
5287ad62
JB
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
c19d1205
ZW
1796 if (new_base < base_reg)
1797 base_reg = new_base;
a737bd4d 1798
5287ad62 1799 if (mask & (setmask << new_base))
c19d1205 1800 {
dcbf9037 1801 first_error (_("invalid register list"));
c19d1205 1802 return FAIL;
a737bd4d 1803 }
a737bd4d 1804
c19d1205
ZW
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
0bbf2aa4 1810
5287ad62
JB
1811 mask |= setmask << new_base;
1812 count += addregs;
0bbf2aa4 1813
037e8744 1814 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1815 {
1816 int high_range;
0bbf2aa4 1817
037e8744 1818 str++;
0bbf2aa4 1819
037e8744 1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1821 == FAIL)
c19d1205
ZW
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
0bbf2aa4 1826
b7fc2769
JB
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
5287ad62
JB
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
c19d1205
ZW
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
0bbf2aa4 1841
5287ad62 1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1843 {
5287ad62 1844 if (mask & (setmask << new_base))
0bbf2aa4 1845 {
c19d1205
ZW
1846 inst.error = _("invalid register list");
1847 return FAIL;
0bbf2aa4 1848 }
c19d1205 1849
5287ad62
JB
1850 mask |= setmask << new_base;
1851 count += addregs;
0bbf2aa4 1852 }
0bbf2aa4 1853 }
0bbf2aa4 1854 }
037e8744 1855 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1856
037e8744 1857 str++;
0bbf2aa4 1858
c19d1205
ZW
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
037e8744
JB
1876 *ccp = str;
1877
c19d1205 1878 return count;
b99bd4ef
NC
1879}
1880
dcbf9037
JB
1881/* True if two alias types are the same. */
1882
c921be7d 1883static bfd_boolean
dcbf9037
JB
1884neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885{
1886 if (!a && !b)
c921be7d 1887 return TRUE;
5f4273c7 1888
dcbf9037 1889 if (!a || !b)
c921be7d 1890 return FALSE;
dcbf9037
JB
1891
1892 if (a->defined != b->defined)
c921be7d 1893 return FALSE;
5f4273c7 1894
dcbf9037
JB
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
c921be7d 1898 return FALSE;
dcbf9037
JB
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
c921be7d 1902 return FALSE;
5f4273c7 1903
c921be7d 1904 return TRUE;
dcbf9037
JB
1905}
1906
5287ad62
JB
1907/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
dcbf9037 1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1914
5287ad62 1915#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1916#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1917#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919static int
dcbf9037
JB
1920parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
5287ad62
JB
1922{
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1932 struct neon_typed_alias firsttype;
5f4273c7 1933
5287ad62
JB
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
5f4273c7 1936
5287ad62
JB
1937 do
1938 {
dcbf9037
JB
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
5287ad62
JB
1942 if (getreg == FAIL)
1943 {
dcbf9037 1944 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1945 return FAIL;
1946 }
5f4273c7 1947
5287ad62
JB
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
5287ad62 1954 }
dcbf9037 1955 firsttype = atype;
5287ad62
JB
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
dcbf9037 1962 first_error (_(incr_error));
5287ad62
JB
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
dcbf9037
JB
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
c921be7d 1972 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1973 {
1974 first_error (_(type_error));
5287ad62
JB
1975 return FAIL;
1976 }
5f4273c7 1977
5287ad62
JB
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
dcbf9037 1982 struct neon_typed_alias htype;
5287ad62
JB
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
dcbf9037 1988 first_error (_(type_error));
5287ad62
JB
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
dcbf9037 1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1996 return FAIL;
1997 }
1998 ptr++;
dcbf9037 1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
2000 if (hireg == FAIL)
2001 {
dcbf9037
JB
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
c921be7d 2005 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
2006 {
2007 first_error (_(type_error));
5287ad62
JB
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
5f4273c7 2013
5287ad62
JB
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
5f4273c7 2020
dcbf9037 2021 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 2022 {
dcbf9037
JB
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
5287ad62 2026 {
dcbf9037
JB
2027 first_error (_(type_error));
2028 return FAIL;
5287ad62
JB
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
dcbf9037 2035 first_error (_(type_error));
5287ad62
JB
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2041
5287ad62
JB
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2045
5287ad62
JB
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
dcbf9037 2050 first_error (_("error parsing element/structure list"));
5287ad62
JB
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
dcbf9037 2056 first_error (_("expected }"));
5287ad62
JB
2057 return FAIL;
2058 }
5f4273c7 2059
5287ad62
JB
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
dcbf9037
JB
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
5287ad62
JB
2066 *pbase = base_reg;
2067 *str = ptr;
5f4273c7 2068
5287ad62
JB
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070}
2071
c19d1205
ZW
2072/* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2077
c19d1205
ZW
2078static int
2079parse_reloc (char **str)
b99bd4ef 2080{
c19d1205
ZW
2081 struct reloc_entry *r;
2082 char *p, *q;
b99bd4ef 2083
c19d1205
ZW
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
b99bd4ef 2086
c19d1205
ZW
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
21d799b5
NC
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
b99bd4ef
NC
2101}
2102
c19d1205
ZW
2103/* Directives: register aliases. */
2104
dcbf9037 2105static struct reg_entry *
90ec0d68 2106insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2107{
d3ce72d0 2108 struct reg_entry *new_reg;
c19d1205 2109 const char *name;
b99bd4ef 2110
d3ce72d0 2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2112 {
d3ce72d0 2113 if (new_reg->builtin)
c19d1205 2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2115
c19d1205
ZW
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
d3ce72d0 2118 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2120
d929913e 2121 return NULL;
c19d1205 2122 }
b99bd4ef 2123
c19d1205 2124 name = xstrdup (str);
d3ce72d0 2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2126
d3ce72d0
NC
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
b99bd4ef 2132
d3ce72d0 2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2134 abort ();
5f4273c7 2135
d3ce72d0 2136 return new_reg;
dcbf9037
JB
2137}
2138
2139static void
2140insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142{
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2144
dcbf9037
JB
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
5f4273c7 2150
dcbf9037
JB
2151 if (atype)
2152 {
21d799b5
NC
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2155 *reg->neon = *atype;
2156 }
c19d1205 2157}
b99bd4ef 2158
c19d1205 2159/* Look for the .req directive. This is of the form:
b99bd4ef 2160
c19d1205 2161 new_register_name .req existing_register_name
b99bd4ef 2162
c19d1205 2163 If we find one, or if it looks sufficiently like one that we want to
d929913e 2164 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2165
d929913e 2166static bfd_boolean
c19d1205
ZW
2167create_register_alias (char * newname, char *p)
2168{
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
b99bd4ef 2172
c19d1205
ZW
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2177 return FALSE;
b99bd4ef 2178
c19d1205
ZW
2179 oldname += 6;
2180 if (*oldname == '\0')
d929913e 2181 return FALSE;
b99bd4ef 2182
21d799b5 2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2184 if (!old)
b99bd4ef 2185 {
c19d1205 2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2187 return TRUE;
b99bd4ef
NC
2188 }
2189
c19d1205
ZW
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193#ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195#else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198#endif
b99bd4ef 2199
21d799b5 2200 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
b99bd4ef 2203
c19d1205
ZW
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
d929913e
NC
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
c19d1205 2211
d929913e
NC
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2221 the artificial FOO alias because it has already been created by the
d929913e
NC
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
c19d1205 2226
d929913e
NC
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
c19d1205 2229
d929913e
NC
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
c19d1205 2233
d929913e 2234 return TRUE;
b99bd4ef
NC
2235}
2236
dcbf9037
JB
2237/* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
5f4273c7 2245 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2246
c921be7d 2247static bfd_boolean
dcbf9037
JB
2248create_neon_reg_alias (char *newname, char *p)
2249{
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
12d6b0b7 2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2256 int namelen;
5f4273c7 2257
dcbf9037
JB
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
5f4273c7 2262
dcbf9037 2263 nameend = p;
5f4273c7 2264
dcbf9037
JB
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
c921be7d 2270 return FALSE;
5f4273c7 2271
dcbf9037 2272 p += 5;
5f4273c7 2273
dcbf9037 2274 if (*p == '\0')
c921be7d 2275 return FALSE;
5f4273c7 2276
dcbf9037
JB
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
c921be7d 2282 return FALSE;
dcbf9037
JB
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
c921be7d 2293 return FALSE;
dcbf9037
JB
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2310 return FALSE;
dcbf9037 2311 }
5f4273c7 2312
dcbf9037
JB
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
c921be7d 2317 return FALSE;
dcbf9037
JB
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
5f4273c7 2321
dcbf9037
JB
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
5f4273c7 2326
dcbf9037
JB
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2330 return FALSE;
dcbf9037 2331 }
5f4273c7 2332
dcbf9037 2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2334
dcbf9037
JB
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
c921be7d 2338 return FALSE;
dcbf9037 2339 }
5f4273c7 2340
dcbf9037
JB
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
5f4273c7 2343
dcbf9037
JB
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
c921be7d 2347 return FALSE;
dcbf9037
JB
2348 }
2349 }
2350
15735687
NS
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354#ifdef TC_CASE_SENSITIVE
dcbf9037 2355 namelen = nameend - newname;
15735687
NS
2356#else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359#endif
2360
21d799b5 2361 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
5f4273c7 2364
dcbf9037
JB
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2367
dcbf9037
JB
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
5f4273c7 2371
dcbf9037
JB
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2375
dcbf9037
JB
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
5f4273c7 2379
dcbf9037
JB
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2383
c921be7d 2384 return TRUE;
dcbf9037
JB
2385}
2386
c19d1205
ZW
2387/* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
c921be7d 2389
b99bd4ef 2390static void
c19d1205 2391s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2392{
c19d1205
ZW
2393 as_bad (_("invalid syntax for .req directive"));
2394}
b99bd4ef 2395
dcbf9037
JB
2396static void
2397s_dn (int a ATTRIBUTE_UNUSED)
2398{
2399 as_bad (_("invalid syntax for .dn directive"));
2400}
2401
2402static void
2403s_qn (int a ATTRIBUTE_UNUSED)
2404{
2405 as_bad (_("invalid syntax for .qn directive"));
2406}
2407
c19d1205
ZW
2408/* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
b99bd4ef 2410
c19d1205
ZW
2411 my_alias .req r11
2412 .unreq my_alias */
b99bd4ef
NC
2413
2414static void
c19d1205 2415s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2416{
c19d1205
ZW
2417 char * name;
2418 char saved_char;
b99bd4ef 2419
c19d1205
ZW
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
21d799b5
NC
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
c19d1205
ZW
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
a1727c1a 2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2441 name);
2442 else
2443 {
d929913e
NC
2444 char * p;
2445 char * nbuf;
2446
db0bc284 2447 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2448 free ((char *) reg->name);
dcbf9037
JB
2449 if (reg->neon)
2450 free (reg->neon);
c19d1205 2451 free (reg);
d929913e
NC
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
5f4273c7 2456
d929913e
NC
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
21d799b5 2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2461 if (reg)
2462 {
db0bc284 2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
21d799b5 2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2473 if (reg)
2474 {
db0bc284 2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
c19d1205
ZW
2483 }
2484 }
b99bd4ef 2485
c19d1205 2486 *input_line_pointer = saved_char;
b99bd4ef
NC
2487 demand_empty_rest_of_line ();
2488}
2489
c19d1205
ZW
2490/* Directives: Instruction set selection. */
2491
2492#ifdef OBJ_ELF
2493/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
cd000bff
DJ
2498/* Create a new mapping symbol for the transition to STATE. */
2499
2500static void
2501make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2502{
a737bd4d 2503 symbolS * symbolP;
c19d1205
ZW
2504 const char * symname;
2505 int type;
b99bd4ef 2506
c19d1205 2507 switch (state)
b99bd4ef 2508 {
c19d1205
ZW
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
c19d1205
ZW
2521 default:
2522 abort ();
2523 }
2524
cd000bff 2525 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
cd000bff
DJ
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2de7820f
JZ
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2556 if (value == 0)
2557 {
2de7820f
JZ
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
cd000bff
DJ
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
cd000bff
DJ
2571 frag->tc_frag_data.last_map = symbolP;
2572}
2573
2574/* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578static void
2579insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581{
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2595 }
cd000bff
DJ
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599}
2600
2601static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603/* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606void
2607mapping_state (enum mstate state)
2608{
940b5ce0
DJ
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
cd000bff
DJ
2611#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
49c62a33
NC
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
cd000bff
DJ
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652#undef TRANSITION
2653}
2654
2655/* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658static void
2659mapping_state_2 (enum mstate state, int max_chars)
2660{
940b5ce0
DJ
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
cd000bff
DJ
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
cd000bff
DJ
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2673}
2674#else
d3106081
NS
2675#define mapping_state(x) ((void)0)
2676#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2677#endif
2678
2679/* Find the real, Thumb encoded start of a Thumb function. */
2680
4343666d 2681#ifdef OBJ_COFF
c19d1205
ZW
2682static symbolS *
2683find_real_start (symbolS * symbolP)
2684{
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690#define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
37f6032b
ZW
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2701 return symbolP;
2702
37f6032b 2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
bd3ba5d1 2708 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2709 new_target = symbolP;
2710 }
2711
c19d1205
ZW
2712 return new_target;
2713}
4343666d 2714#endif
c19d1205
ZW
2715
2716static void
2717opcode_select (int width)
2718{
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
e74cfd16 2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
c19d1205
ZW
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
e74cfd16 2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
c19d1205
ZW
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752}
2753
2754static void
2755s_arm (int ignore ATTRIBUTE_UNUSED)
2756{
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759}
2760
2761static void
2762s_thumb (int ignore ATTRIBUTE_UNUSED)
2763{
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766}
2767
2768static void
2769s_code (int unused ATTRIBUTE_UNUSED)
2770{
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784}
2785
2786static void
2787s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788{
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801}
2802
2803static void
2804s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805{
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811}
2812
2813/* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816static void
2817s_thumb_set (int equiv)
2818{
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856#ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
c19d1205 2859 for this symbol. */
b99bd4ef
NC
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
21d799b5 2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872#endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875#ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878#endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
c19d1205 2894 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898#if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900#endif
2901}
2902
c19d1205 2903/* Directives: Mode selection. */
b99bd4ef 2904
c19d1205
ZW
2905/* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2908static void
c19d1205 2909s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2910{
c19d1205
ZW
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
b99bd4ef
NC
2926 demand_empty_rest_of_line ();
2927}
2928
c19d1205
ZW
2929/* Directives: sectioning and alignment. */
2930
2931/* Same as s_align_ptwo but align 0 => align 2. */
2932
b99bd4ef 2933static void
c19d1205 2934s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2935{
a737bd4d 2936 int temp;
dce323d1 2937 bfd_boolean fill_p;
c19d1205
ZW
2938 long temp_fill;
2939 long max_alignment = 15;
b99bd4ef
NC
2940
2941 temp = get_absolute_expression ();
c19d1205
ZW
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
b99bd4ef 2945 {
c19d1205
ZW
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
b99bd4ef 2949
c19d1205
ZW
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
dce323d1 2954 fill_p = TRUE;
b99bd4ef 2955 }
c19d1205 2956 else
dce323d1
PB
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
b99bd4ef 2961
c19d1205
ZW
2962 if (!temp)
2963 temp = 2;
b99bd4ef 2964
c19d1205
ZW
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
dce323d1
PB
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
c19d1205
ZW
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
b99bd4ef
NC
2976}
2977
c19d1205
ZW
2978static void
2979s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2980{
c19d1205
ZW
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
cd000bff
DJ
2985
2986#ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988#endif
c19d1205 2989}
b99bd4ef 2990
c19d1205
ZW
2991static void
2992s_even (int ignore ATTRIBUTE_UNUSED)
2993{
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
b99bd4ef 2997
c19d1205 2998 record_alignment (now_seg, 1);
b99bd4ef 2999
c19d1205 3000 demand_empty_rest_of_line ();
b99bd4ef
NC
3001}
3002
c19d1205 3003/* Directives: Literal pools. */
a737bd4d 3004
c19d1205
ZW
3005static literal_pool *
3006find_literal_pool (void)
a737bd4d 3007{
c19d1205 3008 literal_pool * pool;
a737bd4d 3009
c19d1205 3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3011 {
c19d1205
ZW
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
a737bd4d
NC
3015 }
3016
c19d1205 3017 return pool;
a737bd4d
NC
3018}
3019
c19d1205
ZW
3020static literal_pool *
3021find_or_make_literal_pool (void)
a737bd4d 3022{
c19d1205
ZW
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
a737bd4d 3026
c19d1205 3027 pool = find_literal_pool ();
a737bd4d 3028
c19d1205 3029 if (pool == NULL)
a737bd4d 3030 {
c19d1205 3031 /* Create a new pool. */
21d799b5 3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
3033 if (! pool)
3034 return NULL;
a737bd4d 3035
c19d1205
ZW
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
a737bd4d 3044 }
a737bd4d 3045
c19d1205
ZW
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
a737bd4d 3048 {
c19d1205
ZW
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
a737bd4d
NC
3052 }
3053
c19d1205
ZW
3054 /* Done. */
3055 return pool;
a737bd4d
NC
3056}
3057
c19d1205 3058/* Add the literal in the global 'inst'
5f4273c7 3059 structure to the relevant literal pool. */
b99bd4ef
NC
3060
3061static int
c19d1205 3062add_to_lit_pool (void)
b99bd4ef 3063{
c19d1205
ZW
3064 literal_pool * pool;
3065 unsigned int entry;
b99bd4ef 3066
c19d1205
ZW
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3071 {
c19d1205
ZW
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
b99bd4ef
NC
3089 }
3090
c19d1205
ZW
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
a8040cf2
NC
3101#ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108#endif
c19d1205
ZW
3109 pool->next_free_entry += 1;
3110 }
b99bd4ef 3111
c19d1205
ZW
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3115
c19d1205 3116 return SUCCESS;
b99bd4ef
NC
3117}
3118
c19d1205
ZW
3119/* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
e16bb312 3121
c19d1205
ZW
3122static void
3123symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128{
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
e16bb312 3131
c19d1205
ZW
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
21d799b5 3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3135
c19d1205
ZW
3136#ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139#endif
b99bd4ef 3140
c19d1205 3141 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3142
c19d1205
ZW
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
b99bd4ef 3146
c19d1205 3147 symbol_set_frag (symbolP, frag);
b99bd4ef 3148
c19d1205
ZW
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
b99bd4ef 3152
c19d1205
ZW
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
b99bd4ef 3156
c19d1205 3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3158
c19d1205 3159 obj_symbol_new_hook (symbolP);
b99bd4ef 3160
c19d1205
ZW
3161#ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163#endif
3164
3165#ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167#endif /* DEBUG_SYMS */
b99bd4ef
NC
3168}
3169
b99bd4ef 3170
c19d1205
ZW
3171static void
3172s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3173{
c19d1205
ZW
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
b99bd4ef 3177
c19d1205
ZW
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
b99bd4ef 3183
c19d1205 3184 mapping_state (MAP_DATA);
b99bd4ef 3185
c19d1205
ZW
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
b99bd4ef 3190
c19d1205 3191 record_alignment (now_seg, 2);
b99bd4ef 3192
c19d1205 3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3194
c19d1205
ZW
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
b99bd4ef 3198
c19d1205 3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3200
c19d1205
ZW
3201#if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203#endif
6c43fab6 3204
c19d1205 3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3206 {
3207#ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210#endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
b99bd4ef 3214
c19d1205
ZW
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
b99bd4ef
NC
3218}
3219
c19d1205
ZW
3220#ifdef OBJ_ELF
3221/* Forward declarations for functions below, in the MD interface
3222 section. */
3223static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224static valueT create_unwind_entry (int);
3225static void start_unwind_section (const segT, int);
3226static void add_unwind_opcode (valueT, int);
3227static void flush_pending_unwind (void);
b99bd4ef 3228
c19d1205 3229/* Directives: Data. */
b99bd4ef 3230
c19d1205
ZW
3231static void
3232s_arm_elf_cons (int nbytes)
3233{
3234 expressionS exp;
b99bd4ef 3235
c19d1205
ZW
3236#ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238#endif
b99bd4ef 3239
c19d1205 3240 if (is_it_end_of_statement ())
b99bd4ef 3241 {
c19d1205
ZW
3242 demand_empty_rest_of_line ();
3243 return;
b99bd4ef
NC
3244 }
3245
c19d1205
ZW
3246#ifdef md_cons_align
3247 md_cons_align (nbytes);
3248#endif
b99bd4ef 3249
c19d1205
ZW
3250 mapping_state (MAP_DATA);
3251 do
b99bd4ef 3252 {
c19d1205
ZW
3253 int reloc;
3254 char *base = input_line_pointer;
b99bd4ef 3255
c19d1205 3256 expression (& exp);
b99bd4ef 3257
c19d1205
ZW
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
21d799b5
NC
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
c19d1205 3277 int size = bfd_get_reloc_size (howto);
b99bd4ef 3278
2fc8bdac
ZW
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
c19d1205 3286 if (size > nbytes)
2fc8bdac 3287 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
21d799b5 3297 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3310 }
3311 }
3312 }
b99bd4ef 3313 }
c19d1205 3314 while (*input_line_pointer++ == ',');
b99bd4ef 3315
c19d1205
ZW
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
b99bd4ef
NC
3319}
3320
c921be7d
NC
3321/* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324static void
3325emit_thumb32_expr (expressionS * exp)
3326{
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333}
3334
3335/* Guess the instruction size based on the opcode. */
3336
3337static int
3338thumb_insn_size (int opcode)
3339{
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346}
3347
3348static bfd_boolean
3349emit_insn (expressionS *exp, int nbytes)
3350{
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391}
3392
3393/* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396static void
3397s_arm_elf_inst (int nbytes)
3398{
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441}
b99bd4ef 3442
c19d1205 3443/* Parse a .rel31 directive. */
b99bd4ef 3444
c19d1205
ZW
3445static void
3446s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447{
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
b99bd4ef 3451
c19d1205
ZW
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
b99bd4ef 3457
c19d1205
ZW
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
b99bd4ef 3462
c19d1205
ZW
3463#ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465#endif
b99bd4ef 3466
c19d1205
ZW
3467#ifdef md_cons_align
3468 md_cons_align (4);
3469#endif
b99bd4ef 3470
c19d1205 3471 mapping_state (MAP_DATA);
b99bd4ef 3472
c19d1205 3473 expression (&exp);
b99bd4ef 3474
c19d1205
ZW
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
b99bd4ef 3479
c19d1205 3480 demand_empty_rest_of_line ();
b99bd4ef
NC
3481}
3482
c19d1205 3483/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3484
c19d1205 3485/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3486
c19d1205
ZW
3487static void
3488s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489{
3490 demand_empty_rest_of_line ();
921e5f0a
PB
3491 if (unwind.proc_start)
3492 {
c921be7d 3493 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3494 return;
3495 }
3496
c19d1205
ZW
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
b99bd4ef 3499
c19d1205
ZW
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
fdfde340 3507 unwind.fp_reg = REG_SP;
c19d1205
ZW
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510}
b99bd4ef 3511
b99bd4ef 3512
c19d1205
ZW
3513/* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
b99bd4ef 3515
c19d1205
ZW
3516static void
3517s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518{
3519 demand_empty_rest_of_line ();
921e5f0a 3520 if (!unwind.proc_start)
c921be7d 3521 as_bad (MISSING_FNSTART);
921e5f0a 3522
c19d1205 3523 if (unwind.table_entry)
6decc662 3524 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3525
c19d1205
ZW
3526 create_unwind_entry (1);
3527}
a737bd4d 3528
c19d1205 3529/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3530
c19d1205
ZW
3531static void
3532s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533{
3534 long where;
3535 char *ptr;
3536 valueT val;
940b5ce0 3537 unsigned int marked_pr_dependency;
f02232aa 3538
c19d1205 3539 demand_empty_rest_of_line ();
f02232aa 3540
921e5f0a
PB
3541 if (!unwind.proc_start)
3542 {
c921be7d 3543 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3544 return;
3545 }
3546
c19d1205
ZW
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
f02232aa 3552
c19d1205
ZW
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
b99bd4ef 3557
c19d1205 3558 ptr = frag_more (8);
5011093d 3559 memset (ptr, 0, 8);
c19d1205 3560 where = frag_now_fix () - 8;
f02232aa 3561
c19d1205
ZW
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
f02232aa 3565
c19d1205
ZW
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
940b5ce0
DJ
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
5f4273c7
NC
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
c19d1205
ZW
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3582 |= 1 << unwind.personality_index;
c19d1205 3583 }
f02232aa 3584
c19d1205
ZW
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
f02232aa 3592
c19d1205
ZW
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3595
3596 unwind.proc_start = NULL;
c19d1205 3597}
f02232aa 3598
f02232aa 3599
c19d1205 3600/* Parse an unwind_cantunwind directive. */
b99bd4ef 3601
c19d1205
ZW
3602static void
3603s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604{
3605 demand_empty_rest_of_line ();
921e5f0a 3606 if (!unwind.proc_start)
c921be7d 3607 as_bad (MISSING_FNSTART);
921e5f0a 3608
c19d1205
ZW
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3611
c19d1205
ZW
3612 unwind.personality_index = -2;
3613}
b99bd4ef 3614
b99bd4ef 3615
c19d1205 3616/* Parse a personalityindex directive. */
b99bd4ef 3617
c19d1205
ZW
3618static void
3619s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620{
3621 expressionS exp;
b99bd4ef 3622
921e5f0a 3623 if (!unwind.proc_start)
c921be7d 3624 as_bad (MISSING_FNSTART);
921e5f0a 3625
c19d1205
ZW
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3628
c19d1205 3629 expression (&exp);
b99bd4ef 3630
c19d1205
ZW
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3633 {
c19d1205
ZW
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
b99bd4ef
NC
3637 }
3638
c19d1205 3639 unwind.personality_index = exp.X_add_number;
b99bd4ef 3640
c19d1205
ZW
3641 demand_empty_rest_of_line ();
3642}
e16bb312 3643
e16bb312 3644
c19d1205 3645/* Parse a personality directive. */
e16bb312 3646
c19d1205
ZW
3647static void
3648s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649{
3650 char *name, *p, c;
a737bd4d 3651
921e5f0a 3652 if (!unwind.proc_start)
c921be7d 3653 as_bad (MISSING_FNSTART);
921e5f0a 3654
c19d1205
ZW
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
a737bd4d 3657
c19d1205
ZW
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664}
e16bb312 3665
e16bb312 3666
c19d1205 3667/* Parse a directive saving core registers. */
e16bb312 3668
c19d1205
ZW
3669static void
3670s_arm_unwind_save_core (void)
e16bb312 3671{
c19d1205
ZW
3672 valueT op;
3673 long range;
3674 int n;
e16bb312 3675
c19d1205
ZW
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
e16bb312 3678 {
c19d1205
ZW
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
e16bb312 3683
c19d1205 3684 demand_empty_rest_of_line ();
e16bb312 3685
c19d1205
ZW
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
e16bb312 3697
01ae4198
DJ
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
c19d1205 3700 {
01ae4198
DJ
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
0dd132b6 3716 else
01ae4198
DJ
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
c19d1205 3726 }
0dd132b6 3727
c19d1205
ZW
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
0dd132b6
NC
3733 }
3734
c19d1205
ZW
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
0dd132b6
NC
3741}
3742
c19d1205
ZW
3743
3744/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3745
3746static void
c19d1205 3747s_arm_unwind_save_fpa (int reg)
b99bd4ef 3748{
c19d1205
ZW
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
b99bd4ef 3752
c19d1205
ZW
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
b99bd4ef 3758
c19d1205 3759 if (exp.X_op != O_constant)
b99bd4ef 3760 {
c19d1205
ZW
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
b99bd4ef
NC
3763 return;
3764 }
3765
c19d1205
ZW
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3769 {
c19d1205
ZW
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
b99bd4ef
NC
3772 return;
3773 }
3774
c19d1205 3775 demand_empty_rest_of_line ();
b99bd4ef 3776
c19d1205
ZW
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
b99bd4ef
NC
3783 else
3784 {
c19d1205
ZW
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
b99bd4ef 3788 }
c19d1205 3789 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3790}
3791
c19d1205 3792
fa073d69
MS
3793/* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795static void
3796s_arm_unwind_save_vfp_armv6 (void)
3797{
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840}
3841
3842
3843/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3844
3845static void
c19d1205 3846s_arm_unwind_save_vfp (void)
b99bd4ef 3847{
c19d1205 3848 int count;
ca3f61f7 3849 unsigned int reg;
c19d1205 3850 valueT op;
b99bd4ef 3851
5287ad62 3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3853 if (count == FAIL)
b99bd4ef 3854 {
c19d1205
ZW
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
b99bd4ef
NC
3857 return;
3858 }
3859
c19d1205 3860 demand_empty_rest_of_line ();
b99bd4ef 3861
c19d1205 3862 if (reg == 8)
b99bd4ef 3863 {
c19d1205
ZW
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
b99bd4ef 3867 }
c19d1205 3868 else
b99bd4ef 3869 {
c19d1205
ZW
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
b99bd4ef 3873 }
c19d1205
ZW
3874 unwind.frame_size += count * 8 + 4;
3875}
b99bd4ef 3876
b99bd4ef 3877
c19d1205
ZW
3878/* Parse a directive saving iWMMXt data registers. */
3879
3880static void
3881s_arm_unwind_save_mmxwr (void)
3882{
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
b99bd4ef 3888
c19d1205
ZW
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
b99bd4ef 3891
c19d1205 3892 do
b99bd4ef 3893 {
dcbf9037 3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3895
c19d1205 3896 if (reg == FAIL)
b99bd4ef 3897 {
9b7132d3 3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3899 goto error;
b99bd4ef
NC
3900 }
3901
c19d1205
ZW
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
b99bd4ef 3905
c19d1205
ZW
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
dcbf9037 3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3910 if (hi_reg == FAIL)
3911 {
9b7132d3 3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3925
c19d1205
ZW
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
b99bd4ef 3928
c19d1205 3929 demand_empty_rest_of_line ();
b99bd4ef 3930
708587a4 3931 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3932 the list. */
3933 flush_pending_unwind ();
b99bd4ef 3934
c19d1205 3935 for (i = 0; i < 16; i++)
b99bd4ef 3936 {
c19d1205
ZW
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
b99bd4ef
NC
3939 }
3940
c19d1205
ZW
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
b99bd4ef 3945 {
c19d1205
ZW
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
b99bd4ef 3964
c19d1205
ZW
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
87a1fd79 3967 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
b99bd4ef
NC
3976 }
3977
c19d1205
ZW
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3982 {
c19d1205
ZW
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3988 preceding block. */
c19d1205
ZW
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
b99bd4ef
NC
4006 }
4007
c19d1205
ZW
4008 return;
4009error:
4010 ignore_rest_of_line ();
b99bd4ef
NC
4011}
4012
4013static void
c19d1205 4014s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4015{
c19d1205
ZW
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
b99bd4ef 4020
c19d1205
ZW
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
b99bd4ef 4023
c19d1205 4024 do
b99bd4ef 4025 {
dcbf9037 4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4027
c19d1205
ZW
4028 if (reg == FAIL)
4029 {
9b7132d3 4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4031 goto error;
4032 }
b99bd4ef 4033
c19d1205
ZW
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
b99bd4ef 4038
c19d1205
ZW
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
dcbf9037 4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4043 if (hi_reg == FAIL)
4044 {
9b7132d3 4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
b99bd4ef 4056 }
c19d1205 4057 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4058
c19d1205
ZW
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
b99bd4ef 4061
c19d1205
ZW
4062 demand_empty_rest_of_line ();
4063
708587a4 4064 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4065 the list. */
4066 flush_pending_unwind ();
b99bd4ef 4067
c19d1205 4068 for (reg = 0; reg < 16; reg++)
b99bd4ef 4069 {
c19d1205
ZW
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
b99bd4ef 4072 }
c19d1205
ZW
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076error:
4077 ignore_rest_of_line ();
b99bd4ef
NC
4078}
4079
c19d1205 4080
fa073d69
MS
4081/* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4083
b99bd4ef 4084static void
fa073d69 4085s_arm_unwind_save (int arch_v6)
b99bd4ef 4086{
c19d1205
ZW
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
b99bd4ef 4090
921e5f0a 4091 if (!unwind.proc_start)
c921be7d 4092 as_bad (MISSING_FNSTART);
921e5f0a 4093
c19d1205
ZW
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
b99bd4ef 4096
c19d1205 4097 if (*peek == '{')
b99bd4ef 4098 {
c19d1205
ZW
4099 had_brace = TRUE;
4100 peek++;
b99bd4ef
NC
4101 }
4102
c19d1205 4103 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4104
c19d1205 4105 if (!reg)
b99bd4ef 4106 {
c19d1205
ZW
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
b99bd4ef
NC
4109 return;
4110 }
4111
c19d1205 4112 switch (reg->type)
b99bd4ef 4113 {
c19d1205
ZW
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
93ac2687 4121 input_line_pointer = peek;
c19d1205 4122 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4123 return;
c19d1205
ZW
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
c19d1205
ZW
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
b99bd4ef 4138 }
c19d1205 4139}
b99bd4ef 4140
b99bd4ef 4141
c19d1205
ZW
4142/* Parse an unwind_movsp directive. */
4143
4144static void
4145s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146{
4147 int reg;
4148 valueT op;
4fa3602b 4149 int offset;
c19d1205 4150
921e5f0a 4151 if (!unwind.proc_start)
c921be7d 4152 as_bad (MISSING_FNSTART);
921e5f0a 4153
dcbf9037 4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4155 if (reg == FAIL)
b99bd4ef 4156 {
9b7132d3 4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4158 ignore_rest_of_line ();
b99bd4ef
NC
4159 return;
4160 }
4fa3602b
PB
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
c19d1205 4171 demand_empty_rest_of_line ();
b99bd4ef 4172
c19d1205 4173 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4174 {
c19d1205 4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4176 return;
4177 }
4178
c19d1205
ZW
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4181
c19d1205
ZW
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4fa3602b 4188 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4189 unwind.sp_restored = 1;
b05fe5cf
ZW
4190}
4191
c19d1205
ZW
4192/* Parse an unwind_pad directive. */
4193
b05fe5cf 4194static void
c19d1205 4195s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4196{
c19d1205 4197 int offset;
b05fe5cf 4198
921e5f0a 4199 if (!unwind.proc_start)
c921be7d 4200 as_bad (MISSING_FNSTART);
921e5f0a 4201
c19d1205
ZW
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
b99bd4ef 4204
c19d1205
ZW
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
b99bd4ef 4211
c19d1205
ZW
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217}
4218
4219/* Parse an unwind_setfp directive. */
4220
4221static void
4222s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4223{
c19d1205
ZW
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
921e5f0a 4228 if (!unwind.proc_start)
c921be7d 4229 as_bad (MISSING_FNSTART);
921e5f0a 4230
dcbf9037 4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
dcbf9037 4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4236
c19d1205
ZW
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
b99bd4ef 4243
c19d1205
ZW
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
a737bd4d 4252
c19d1205 4253 demand_empty_rest_of_line ();
a737bd4d 4254
fdfde340 4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4256 {
c19d1205
ZW
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
a737bd4d
NC
4260 }
4261
c19d1205
ZW
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
fdfde340 4265 if (sp_reg == REG_SP)
c19d1205
ZW
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
a737bd4d
NC
4269}
4270
c19d1205
ZW
4271/* Parse an unwind_raw directive. */
4272
4273static void
4274s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4275{
c19d1205 4276 expressionS exp;
708587a4 4277 /* This is an arbitrary limit. */
c19d1205
ZW
4278 unsigned char op[16];
4279 int count;
a737bd4d 4280
921e5f0a 4281 if (!unwind.proc_start)
c921be7d 4282 as_bad (MISSING_FNSTART);
921e5f0a 4283
c19d1205
ZW
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4287 {
c19d1205
ZW
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
a737bd4d 4293
c19d1205
ZW
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
a737bd4d 4300
c19d1205 4301 count = 0;
a737bd4d 4302
c19d1205
ZW
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
a737bd4d 4310 }
c19d1205 4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4312 {
c19d1205
ZW
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
a737bd4d 4316 }
c19d1205 4317 op[count++] = exp.X_add_number;
a737bd4d 4318
c19d1205
ZW
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
a737bd4d 4322
c19d1205
ZW
4323 expression (&exp);
4324 }
b99bd4ef 4325
c19d1205
ZW
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
b99bd4ef 4329
c19d1205 4330 demand_empty_rest_of_line ();
b99bd4ef 4331}
ee065d83
PB
4332
4333
4334/* Parse a .eabi_attribute directive. */
4335
4336static void
4337s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338{
ee3c0378
AS
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4343}
4344
0855e32b
NS
4345/* Emit a tls fix for the symbol. */
4346
4347static void
4348s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349{
4350 char *p;
4351 expressionS exp;
4352#ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354#endif
4355
4356#ifdef md_cons_align
4357 md_cons_align (4);
4358#endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367}
cdf9ccec 4368#endif /* OBJ_ELF */
0855e32b 4369
ee065d83 4370static void s_arm_arch (int);
7a1d4c38 4371static void s_arm_object_arch (int);
ee065d83
PB
4372static void s_arm_cpu (int);
4373static void s_arm_fpu (int);
69133863 4374static void s_arm_arch_extension (int);
b99bd4ef 4375
f0927246
NC
4376#ifdef TE_PE
4377
4378static void
5f4273c7 4379pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4380{
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395}
4396#endif /* TE_PE */
4397
c19d1205
ZW
4398/* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
b99bd4ef 4403
c19d1205 4404const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4405{
c19d1205
ZW
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
dcbf9037
JB
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
c19d1205
ZW
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
8463be01
PB
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
7a1d4c38 4426 { "object_arch", s_arm_object_arch, 0 },
8463be01 4427 { "fpu", s_arm_fpu, 0 },
69133863 4428 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4429#ifdef OBJ_ELF
c921be7d
NC
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
fa073d69 4443 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4450#else
4451 { "word", cons, 4},
f0927246
NC
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4461#endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
f0927246
NC
4465#ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467#endif
c19d1205
ZW
4468 { 0, 0, 0 }
4469};
4470\f
4471/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4472
c19d1205
ZW
4473/* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
b99bd4ef 4478
c19d1205
ZW
4479static int
4480parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482{
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
b99bd4ef 4486 {
c19d1205
ZW
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
b99bd4ef 4490
c19d1205
ZW
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
b99bd4ef 4496
c19d1205
ZW
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499}
b99bd4ef 4500
5287ad62 4501/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505static int
4506parse_big_immediate (char **str, int i)
4507{
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
036dc3f7
PB
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
58ad575f 4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
5287ad62 4526 else if (exp.X_op == O_big
95b75c01 4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4530
5287ad62
JB
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4534 gas_assert (parts != 0);
95b75c01
NC
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
5287ad62
JB
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
5f4273c7 4565
5287ad62
JB
4566 *str = ptr;
4567
4568 return SUCCESS;
4569}
4570
c19d1205
ZW
4571/* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
b99bd4ef 4573
c19d1205
ZW
4574static int
4575parse_fpa_immediate (char ** str)
4576{
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
b99bd4ef 4582
c19d1205
ZW
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
b99bd4ef 4585
c19d1205
ZW
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4589 {
c19d1205 4590 char *start = *str;
b99bd4ef 4591
c19d1205
ZW
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
b99bd4ef 4598
c19d1205
ZW
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
b99bd4ef 4603
c19d1205 4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4605
c19d1205
ZW
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4613 {
c19d1205
ZW
4614 if (words[j] != fp_values[i][j])
4615 break;
b99bd4ef
NC
4616 }
4617
c19d1205 4618 if (j == MAX_LITTLENUMS)
b99bd4ef 4619 {
c19d1205
ZW
4620 *str = save_in;
4621 return i + 8;
b99bd4ef
NC
4622 }
4623 }
4624 }
b99bd4ef 4625
c19d1205
ZW
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
b99bd4ef 4645
c19d1205
ZW
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
b99bd4ef
NC
4654 }
4655
c19d1205
ZW
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
b99bd4ef
NC
4660}
4661
136da414
JB
4662/* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665static int
4666is_quarter_float (unsigned imm)
4667{
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670}
4671
4672/* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
136da414
JB
4677
4678static unsigned
4679parse_qfloat_immediate (char **ccp, int *immed)
4680{
4681 char *str = *ccp;
c96612cc 4682 char *fpnum;
136da414 4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4684 int found_fpchar = 0;
5f4273c7 4685
136da414 4686 skip_past_char (&str, '#');
5f4273c7 4687
c96612cc
JB
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
5f4273c7 4710
136da414
JB
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
5f4273c7 4715
136da414
JB
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
5f4273c7 4722
c96612cc 4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
5f4273c7 4729
136da414
JB
4730 return SUCCESS;
4731 }
5f4273c7 4732
136da414
JB
4733 return FAIL;
4734}
4735
c19d1205
ZW
4736/* Shift operands. */
4737enum shift_kind
b99bd4ef 4738{
c19d1205
ZW
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740};
b99bd4ef 4741
c19d1205
ZW
4742struct asm_shift_name
4743{
4744 const char *name;
4745 enum shift_kind kind;
4746};
b99bd4ef 4747
c19d1205
ZW
4748/* Third argument to parse_shift. */
4749enum parse_shift_mode
4750{
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756};
b99bd4ef 4757
c19d1205
ZW
4758/* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
b99bd4ef 4760
c19d1205
ZW
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
b99bd4ef 4764
c19d1205
ZW
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4767
c19d1205
ZW
4768static int
4769parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4770{
c19d1205
ZW
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
b99bd4ef 4776
c19d1205
ZW
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
b99bd4ef 4779
c19d1205 4780 if (p == *str)
b99bd4ef 4781 {
c19d1205
ZW
4782 inst.error = _("shift expression expected");
4783 return FAIL;
b99bd4ef
NC
4784 }
4785
21d799b5
NC
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
c19d1205
ZW
4788
4789 if (shift_name == NULL)
b99bd4ef 4790 {
c19d1205
ZW
4791 inst.error = _("shift expression expected");
4792 return FAIL;
b99bd4ef
NC
4793 }
4794
c19d1205 4795 shift = shift_name->kind;
b99bd4ef 4796
c19d1205
ZW
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
b99bd4ef 4801
c19d1205
ZW
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
b99bd4ef 4809
c19d1205
ZW
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
b99bd4ef 4817
c19d1205
ZW
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
b99bd4ef 4825
c19d1205
ZW
4826 default: abort ();
4827 }
b99bd4ef 4828
c19d1205
ZW
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
b99bd4ef 4833
c19d1205 4834 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
b99bd4ef
NC
4847}
4848
c19d1205 4849/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4850
c19d1205
ZW
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
b99bd4ef 4855
c19d1205
ZW
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4858 is deferred to md_apply_fix. */
b99bd4ef 4859
c19d1205
ZW
4860static int
4861parse_shifter_operand (char **str, int i)
4862{
4863 int value;
91d6fa6a 4864 expressionS exp;
b99bd4ef 4865
dcbf9037 4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
b99bd4ef 4870
c19d1205
ZW
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4874
c19d1205
ZW
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
b99bd4ef 4877
c19d1205
ZW
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4880 }
4881
c19d1205
ZW
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
b99bd4ef 4884
c19d1205 4885 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4886 {
c19d1205 4887 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4889 return FAIL;
b99bd4ef 4890
91d6fa6a 4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
b99bd4ef 4896
91d6fa6a 4897 value = exp.X_add_number;
c19d1205
ZW
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
09d92015 4908
a415b1cd
JB
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
09d92015
MM
4912 }
4913
c19d1205
ZW
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
09d92015
MM
4917}
4918
4962c51a
MS
4919/* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926struct group_reloc_table_entry
4927{
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933};
4934
4935typedef enum
4936{
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942} group_reloc_type;
4943
4944static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998/* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005static int
5006find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007{
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5f4273c7
NC
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
4962c51a
MS
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023}
5024
5025/* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039static parse_operand_result
5040parse_shifter_operand_group_reloc (char **str, int i)
5041{
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
21d799b5 5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5070 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079}
5080
8e560766
MGD
5081/* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5083
8e560766
MGD
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085static parse_operand_result
5086parse_neon_alignment (char **str, int i)
5087{
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106}
5107
c19d1205
ZW
5108/* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
09d92015 5110
c19d1205 5111 Preindexed addressing (.preind=1):
09d92015 5112
c19d1205
ZW
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5117
c19d1205 5118 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5119
c19d1205 5120 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5121
c19d1205
ZW
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5126
c19d1205 5127 Unindexed addressing (.preind=0, .postind=0):
09d92015 5128
c19d1205 5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5130
c19d1205 5131 Other:
09d92015 5132
c19d1205
ZW
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5136
c19d1205
ZW
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
4962c51a
MS
5140static parse_operand_result
5141parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
09d92015 5143{
c19d1205
ZW
5144 char *p = *str;
5145 int reg;
09d92015 5146
c19d1205 5147 if (skip_past_char (&p, '[') == FAIL)
09d92015 5148 {
c19d1205
ZW
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
974da60d 5151 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
974da60d 5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5158
c19d1205 5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5160 return PARSE_OPERAND_FAIL;
09d92015 5161
c19d1205 5162 *str = p;
4962c51a 5163 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5164 }
5165
dcbf9037 5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5167 {
c19d1205 5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5169 return PARSE_OPERAND_FAIL;
09d92015 5170 }
c19d1205
ZW
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
09d92015 5173
c19d1205 5174 if (skip_past_comma (&p) == SUCCESS)
09d92015 5175 {
c19d1205 5176 inst.operands[i].preind = 1;
09d92015 5177
c19d1205
ZW
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
dcbf9037 5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5182 {
c19d1205
ZW
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5188 return PARSE_OPERAND_FAIL;
c19d1205 5189 }
5287ad62 5190 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5196
8e560766
MGD
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
c19d1205
ZW
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
4962c51a 5207
5f4273c7
NC
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
21d799b5 5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5238 break;
5239
5240 case GROUP_LDRS:
21d799b5 5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5242 break;
5243
5244 case GROUP_LDC:
21d799b5 5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5246 break;
5247
5248 default:
9c2799c2 5249 gas_assert (0);
4962c51a
MS
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
26d97720
NS
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
09d92015
MM
5277 }
5278 }
8e560766
MGD
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5284
8e560766
MGD
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
09d92015 5288
c19d1205 5289 if (skip_past_char (&p, ']') == FAIL)
09d92015 5290 {
c19d1205 5291 inst.error = _("']' expected");
4962c51a 5292 return PARSE_OPERAND_FAIL;
09d92015
MM
5293 }
5294
c19d1205
ZW
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
09d92015 5297
c19d1205 5298 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5299 {
c19d1205
ZW
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5304 0, 255, TRUE) == FAIL)
4962c51a 5305 return PARSE_OPERAND_FAIL;
09d92015 5306
c19d1205
ZW
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5310 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
4962c51a 5315 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5316 }
5317 *str = p;
4962c51a 5318 return PARSE_OPERAND_SUCCESS;
09d92015 5319 }
c19d1205
ZW
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
09d92015 5324
c19d1205
ZW
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5328 return PARSE_OPERAND_FAIL;
c19d1205 5329 }
09d92015 5330
c19d1205
ZW
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5333
dcbf9037 5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5335 {
5287ad62
JB
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
c19d1205 5342 inst.operands[i].immisreg = 1;
a737bd4d 5343
c19d1205
ZW
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5346 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5347 }
5348 else
5349 {
26d97720 5350 char *q = p;
c19d1205
ZW
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5357 return PARSE_OPERAND_FAIL;
26d97720
NS
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
c19d1205
ZW
5371 }
5372 }
a737bd4d
NC
5373 }
5374
c19d1205
ZW
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
4962c51a
MS
5384 return PARSE_OPERAND_SUCCESS;
5385}
5386
5387static int
5388parse_address (char **str, int i)
5389{
21d799b5 5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5391 ? SUCCESS : FAIL;
5392}
5393
5394static parse_operand_result
5395parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396{
5397 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5398}
5399
b6895b4f
PB
5400/* Parse an operand for a MOVW or MOVT instruction. */
5401static int
5402parse_half (char **str)
5403{
5404 char * p;
5f4273c7 5405
b6895b4f
PB
5406 p = *str;
5407 skip_past_char (&p, '#');
5f4273c7 5408 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5f4273c7 5416 skip_whitespace (p);
b6895b4f
PB
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438}
5439
c19d1205 5440/* Miscellaneous. */
a737bd4d 5441
c19d1205
ZW
5442/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444static int
d2cd1205 5445parse_psr (char **str, bfd_boolean lhs)
09d92015 5446{
c19d1205
ZW
5447 char *p;
5448 unsigned long psr_field;
62b3e311
PB
5449 const struct asm_psr *psr;
5450 char *start;
d2cd1205 5451 bfd_boolean is_apsr = FALSE;
ac7f631b 5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5453
a4482bb6
NC
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
c19d1205
ZW
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
62b3e311 5463 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
fa94de6b 5467
d2cd1205
JB
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
62b3e311
PB
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
d2cd1205
JB
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
21d799b5
NC
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
d2cd1205 5499
62b3e311
PB
5500 if (!psr)
5501 return FAIL;
09d92015 5502
d2cd1205
JB
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
62b3e311 5512 *str = p;
d2cd1205
JB
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5518 }
d2cd1205
JB
5519 else
5520 goto unsupported_psr;
09d92015 5521
62b3e311 5522 p += 4;
d2cd1205 5523check_suffix:
c19d1205
ZW
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
c19d1205
ZW
5527 p++;
5528 start = p;
a737bd4d 5529
c19d1205
ZW
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
a737bd4d 5533
d2cd1205
JB
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
fa94de6b 5540
d2cd1205
JB
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
fa94de6b 5560
d2cd1205
JB
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
fa94de6b 5564
d2cd1205
JB
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
fa94de6b 5568
d2cd1205
JB
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
fa94de6b 5574
d2cd1205
JB
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
fa94de6b 5577
d2cd1205
JB
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
fa94de6b 5589
d2cd1205
JB
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
a737bd4d 5604
d2cd1205
JB
5605 psr_field |= psr->field;
5606 }
a737bd4d 5607 }
c19d1205 5608 else
a737bd4d 5609 {
c19d1205
ZW
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
d2cd1205
JB
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
a737bd4d 5625 }
c19d1205
ZW
5626 *str = p;
5627 return psr_field;
a737bd4d 5628
d2cd1205
JB
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
c19d1205
ZW
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
a737bd4d
NC
5637}
5638
c19d1205
ZW
5639/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5641
c19d1205
ZW
5642static int
5643parse_cps_flags (char **str)
a737bd4d 5644{
c19d1205
ZW
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
a737bd4d 5648
c19d1205
ZW
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
a737bd4d 5654
c19d1205
ZW
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5658
c19d1205
ZW
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
a737bd4d 5663
c19d1205
ZW
5664 done:
5665 if (saw_a_flag == 0)
a737bd4d 5666 {
c19d1205
ZW
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
a737bd4d 5669 }
a737bd4d 5670
c19d1205
ZW
5671 *str = s - 1;
5672 return val;
a737bd4d
NC
5673}
5674
c19d1205
ZW
5675/* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5677
5678static int
c19d1205 5679parse_endian_specifier (char **str)
a737bd4d 5680{
c19d1205
ZW
5681 int little_endian;
5682 char *s = *str;
a737bd4d 5683
c19d1205
ZW
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
a737bd4d 5689 {
c19d1205 5690 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5691 return FAIL;
5692 }
5693
c19d1205 5694 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5695 {
c19d1205 5696 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5697 return FAIL;
5698 }
5699
c19d1205
ZW
5700 *str = s + 2;
5701 return little_endian;
5702}
a737bd4d 5703
c19d1205
ZW
5704/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708static int
5709parse_ror (char **str)
5710{
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
a737bd4d 5717 {
c19d1205 5718 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5719 return FAIL;
5720 }
c19d1205
ZW
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
a737bd4d 5726 {
c19d1205
ZW
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5734 return FAIL;
5735 }
c19d1205 5736}
a737bd4d 5737
c19d1205
ZW
5738/* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740static int
5741parse_cond (char **str)
5742{
c462b453 5743 char *q;
c19d1205 5744 const struct asm_cond *c;
c462b453
PB
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
a737bd4d 5749
c462b453
PB
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
e07e6e58 5754 cond[n] = TOLOWER (*q);
c462b453
PB
5755 q++;
5756 n++;
5757 }
a737bd4d 5758
21d799b5 5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5760 if (!c)
a737bd4d 5761 {
c19d1205 5762 inst.error = _("condition required");
a737bd4d
NC
5763 return FAIL;
5764 }
5765
c19d1205
ZW
5766 *str = q;
5767 return c->value;
5768}
5769
e797f7e0
MGD
5770/* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772static bfd_boolean
5773mark_feature_used (const arm_feature_set *feature)
5774{
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787}
5788
62b3e311
PB
5789/* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791static int
5792parse_barrier (char **str)
5793{
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
21d799b5
NC
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
62b3e311
PB
5803 if (!o)
5804 return FAIL;
5805
e797f7e0
MGD
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
62b3e311
PB
5809 *str = q;
5810 return o->value;
5811}
5812
92e90b6e
PB
5813/* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815static int
5816parse_tb (char **str)
5817{
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
92e90b6e 5826
dcbf9037 5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5f4273c7 5839
dcbf9037 5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866}
5867
5287ad62
JB
5868/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
037e8744
JB
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5287ad62
JB
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875static int
5876parse_neon_mov (char **str, int *which_operand)
5877{
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
dcbf9037 5881 struct neon_type_el optype;
5f4273c7 5882
dcbf9037 5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
dcbf9037 5888 inst.operands[i].vectype = optype;
5287ad62
JB
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5f4273c7 5893
dcbf9037 5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5895 goto wanted_arm;
5f4273c7 5896
5287ad62
JB
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
037e8744 5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5902 != FAIL)
5287ad62
JB
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5f4273c7 5907
5287ad62
JB
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
dcbf9037 5913 inst.operands[i].vectype = optype;
5287ad62
JB
5914 inst.operands[i++].present = 1;
5915
dcbf9037 5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5917 {
037e8744
JB
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
037e8744 5922 inst.operands[i].present = 1;
5287ad62
JB
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
dcbf9037 5926 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5927 return FAIL;
5928 }
037e8744
JB
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5287ad62 5940 }
037e8744
JB
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5287ad62
JB
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
dcbf9037 5954 inst.operands[i].vectype = optype;
5287ad62 5955 inst.operands[i].present = 1;
5f4273c7 5956
037e8744
JB
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5f4273c7 5968
037e8744
JB
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5f4273c7 5971
037e8744
JB
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5f4273c7 5974
037e8744
JB
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
1b11b49f 5977 inst.operands[i].present = 1;
037e8744 5978 }
5287ad62 5979 }
4641781c
PB
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5287ad62
JB
5990 else
5991 {
dcbf9037 5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5993 return FAIL;
5994 }
5995 }
dcbf9037 5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
5f4273c7 6002
5287ad62
JB
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
5f4273c7 6005
dcbf9037 6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
dcbf9037 6012 inst.operands[i].vectype = optype;
5287ad62 6013 }
dcbf9037 6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
5f4273c7 6020
5287ad62
JB
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
5f4273c7 6023
037e8744 6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 6025 == FAIL)
5287ad62 6026 {
037e8744 6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
037e8744
JB
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 6035 inst.operands[i].vectype = optype;
5287ad62 6036 inst.operands[i].present = 1;
5f4273c7 6037
037e8744
JB
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
1b11b49f 6067 inst.operands[i].present = 1;
5287ad62
JB
6068 }
6069 }
6070 else
6071 {
dcbf9037 6072 first_error (_("parse error"));
5287ad62
JB
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
5f4273c7 6081 wanted_comma:
dcbf9037 6082 first_error (_("expected comma"));
5287ad62 6083 return FAIL;
5f4273c7
NC
6084
6085 wanted_arm:
dcbf9037 6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6087 return FAIL;
5287ad62
JB
6088}
6089
5be8be5d
DG
6090/* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
c19d1205
ZW
6095/* Matcher codes for parse_operands. */
6096enum operand_parse_code
6097{
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6105 optional trailing ! */
c19d1205
ZW
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
5287ad62
JB
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
037e8744 6114 OP_RVSD, /* VFP single or double precision register */
5287ad62 6115 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6116 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6117 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
037e8744 6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
5287ad62 6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6147
6148 OP_I0, /* immediate zero */
c19d1205
ZW
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
5287ad62 6152 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
5287ad62
JB
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
c19d1205 6158 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
c19d1205 6161 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
4962c51a 6169 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6170 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6183 OP_COND, /* conditional code */
92e90b6e 6184 OP_TB, /* Table branch. */
c19d1205 6185
037e8744
JB
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
c19d1205
ZW
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
5287ad62 6198 OP_oI32b, /* 1 .. 32 */
5f1af56b 6199 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6216
5be8be5d
DG
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
c19d1205
ZW
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223};
a737bd4d 6224
c19d1205
ZW
6225/* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229static int
5be8be5d 6230parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6231{
5be8be5d 6232 unsigned const int *upat = pattern;
c19d1205
ZW
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
99aad254 6235 int i, val = 0, backtrack_index = 0;
5287ad62 6236 enum arm_reg_type rtype;
4962c51a 6237 parse_operand_result result;
5be8be5d 6238 unsigned int op_parse_code;
c19d1205 6239
e07e6e58
NC
6240#define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
c19d1205 6247
e07e6e58
NC
6248#define po_reg_or_fail(regtype) \
6249 do \
dcbf9037 6250 { \
e07e6e58
NC
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
dcbf9037 6265 } \
e07e6e58
NC
6266 while (0)
6267
6268#define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
dcbf9037 6275 \
e07e6e58
NC
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286#define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295#define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306#define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314#define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
4962c51a 6324
52e7f43d
RE
6325#define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
c19d1205
ZW
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
5be8be5d
DG
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6359 {
6360 /* Remember where we are in case we need to backtrack. */
9c2799c2 6361 gas_assert (!backtrack_pos);
c19d1205
ZW
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
b6702015 6367 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6368 po_char_or_fail (',');
6369
5be8be5d 6370 switch (op_parse_code)
c19d1205
ZW
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
5be8be5d 6374 case OP_oRRnpcsp:
c19d1205 6375 case OP_RRnpc:
5be8be5d 6376 case OP_RRnpcsp:
c19d1205
ZW
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
c19d1205
ZW
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
5287ad62
JB
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
037e8744
JB
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
5287ad62
JB
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
037e8744
JB
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
5287ad62
JB
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
4316f0d2 6470 case OP_RNDQ_Ibig:
5287ad62 6471 {
4316f0d2 6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6473 break;
4316f0d2 6474 try_immbig:
5287ad62
JB
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
c19d1205
ZW
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
a737bd4d 6499
55881a11 6500 case OP_RRnpctw:
c19d1205 6501 case OP_RRw:
b6702015 6502 case OP_oRRw:
c19d1205
ZW
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5f1af56b 6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6572 {
c19d1205
ZW
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
a737bd4d 6584 }
c19d1205 6585 break;
a737bd4d 6586
b6895b4f
PB
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
e07e6e58 6592 /* Register or expression. */
c19d1205
ZW
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6595
e07e6e58 6596 /* Register or immediate. */
c19d1205
ZW
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6599
c19d1205
ZW
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
09d92015 6613
2d447fca
JM
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
e07e6e58 6617 /* Two kinds of register. */
c19d1205
ZW
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
09d92015 6633
41adaa5c
JM
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
c19d1205
ZW
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6653 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
c19d1205 6660
fa94de6b 6661 case OP_wPSR:
d2cd1205 6662 case OP_rPSR:
90ec0d68
MGD
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
d2cd1205
JB
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
037e8744
JB
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
f7c21dc7
NC
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
037e8744
JB
6699 }
6700 else
6701 goto failure;
6702 break;
6703
92e90b6e
PB
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
e07e6e58 6708 /* Register lists. */
c19d1205
ZW
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
09d92015 6717
c19d1205 6718 case OP_VRSLST:
5287ad62 6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6720 break;
09d92015 6721
c19d1205 6722 case OP_VRDLST:
5287ad62 6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6724 break;
a737bd4d 6725
037e8744
JB
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
5287ad62
JB
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
dcbf9037
JB
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
5287ad62
JB
6747 break;
6748
c19d1205
ZW
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
09d92015 6753
4962c51a
MS
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
c19d1205
ZW
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
09d92015 6772
4962c51a
MS
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
c19d1205
ZW
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
09d92015 6781
c19d1205
ZW
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
09d92015 6785
c19d1205
ZW
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
09d92015 6789
c19d1205 6790 default:
5be8be5d 6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6792 }
09d92015 6793
c19d1205
ZW
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
5be8be5d 6797 switch (op_parse_code)
c19d1205
ZW
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
b6702015 6803 case OP_oRRw:
c19d1205
ZW
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
09d92015 6808
5be8be5d
DG
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
55881a11 6820 case OP_RRnpctw:
fa94de6b
RM
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
55881a11
MGD
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
c19d1205
ZW
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
d2cd1205
JB
6830 case OP_wPSR:
6831 case OP_rPSR:
c19d1205 6832 case OP_COND:
52e7f43d 6833 case OP_oBARRIER_I15:
c19d1205
ZW
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
037e8744 6837 case OP_VRSDLST:
5287ad62
JB
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
c19d1205
ZW
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
a737bd4d 6844
c19d1205
ZW
6845 default:
6846 break;
6847 }
09d92015 6848
c19d1205
ZW
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
09d92015 6852
c19d1205 6853 bad_args:
09d92015 6854 inst.error = BAD_ARGS;
c19d1205
ZW
6855
6856 failure:
6857 if (!backtrack_pos)
d252fdde
PB
6858 {
6859 /* The parse routine should already have set inst.error, but set a
5f4273c7 6860 default here just in case. */
d252fdde
PB
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
c19d1205
ZW
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
d252fdde
PB
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
c19d1205
ZW
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
09d92015 6884 }
09d92015 6885
c19d1205
ZW
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
09d92015 6889
c19d1205 6890 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6891}
6892
c19d1205
ZW
6893#undef po_char_or_fail
6894#undef po_reg_or_fail
6895#undef po_reg_or_goto
6896#undef po_imm_or_fail
5287ad62 6897#undef po_scalar_or_fail
52e7f43d 6898#undef po_barrier_or_imm
e07e6e58 6899
c19d1205 6900/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6901#define constraint(expr, err) \
6902 do \
c19d1205 6903 { \
e07e6e58
NC
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
c19d1205 6909 } \
e07e6e58 6910 while (0)
c19d1205 6911
fdfde340
JM
6912/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915#define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
94206790
MM
6924/* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926#define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
c19d1205
ZW
6932/* Functions for operand encoding. ARM, then Thumb. */
6933
6934#define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936/* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939static unsigned int
6940encode_arm_immediate (unsigned int val)
09d92015 6941{
c19d1205
ZW
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
09d92015
MM
6949}
6950
c19d1205
ZW
6951/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953static unsigned int
6954encode_thumb32_immediate (unsigned int val)
09d92015 6955{
c19d1205 6956 unsigned int a, i;
09d92015 6957
9c3c69f2 6958 if (val <= 0xff)
c19d1205 6959 return val;
a737bd4d 6960
9c3c69f2 6961 for (i = 1; i <= 24; i++)
09d92015 6962 {
9c3c69f2
PB
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6966 }
a737bd4d 6967
c19d1205
ZW
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
09d92015 6973
c19d1205
ZW
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
a737bd4d 6977
c19d1205 6978 return FAIL;
09d92015 6979}
5287ad62 6980/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6981
6982static void
5287ad62
JB
6983encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984{
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
b1cc4aeb 6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6992 fpu_vfp_ext_d32);
5287ad62
JB
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6995 fpu_vfp_ext_d32);
5287ad62
JB
6996 }
6997 else
6998 {
dcbf9037 6999 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
7000 return;
7001 }
7002 }
7003
c19d1205 7004 switch (pos)
09d92015 7005 {
c19d1205
ZW
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
5287ad62
JB
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
5f4273c7 7021
5287ad62
JB
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
5f4273c7 7025
5287ad62
JB
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
c19d1205
ZW
7030 default:
7031 abort ();
09d92015 7032 }
09d92015
MM
7033}
7034
c19d1205 7035/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7036 if any, is handled by md_apply_fix. */
09d92015 7037static void
c19d1205 7038encode_arm_shift (int i)
09d92015 7039{
c19d1205
ZW
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
09d92015 7043 {
c19d1205
ZW
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7052 }
c19d1205 7053}
09d92015 7054
c19d1205
ZW
7055static void
7056encode_arm_shifter_operand (int i)
7057{
7058 if (inst.operands[i].isreg)
09d92015 7059 {
c19d1205
ZW
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
09d92015 7062 }
c19d1205 7063 else
a415b1cd
JB
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
09d92015
MM
7069}
7070
c19d1205 7071/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7072static void
c19d1205 7073encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7074{
2b2f5df9
NC
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
c19d1205 7080 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7081
c19d1205 7082 if (inst.operands[i].preind)
09d92015 7083 {
c19d1205
ZW
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
09d92015 7092
c19d1205
ZW
7093 }
7094 else if (inst.operands[i].postind)
7095 {
9c2799c2 7096 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
09d92015 7101 {
c19d1205 7102 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7103 return;
7104 }
7105
c19d1205
ZW
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
09d92015
MM
7112}
7113
c19d1205
ZW
7114/* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
a737bd4d 7118static void
c19d1205 7119encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7120{
5be8be5d
DG
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
c19d1205 7123 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7124
c19d1205 7125 if (inst.operands[i].immisreg)
09d92015 7126 {
5be8be5d
DG
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
c19d1205
ZW
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
09d92015 7144 }
c19d1205 7145 else /* immediate offset in inst.reloc */
09d92015 7146 {
5be8be5d
DG
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7155 BAD_PC_ADDRESSING);
23a10334 7156
dc5ec521 7157 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7162 }
7163
c19d1205 7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
09d92015 7171 }
09d92015
MM
7172}
7173
c19d1205
ZW
7174/* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179static void
7180encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7181{
c19d1205 7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7183 {
c19d1205
ZW
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
09d92015 7186 }
a737bd4d 7187
c19d1205 7188 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7189
c19d1205
ZW
7190 if (inst.operands[i].immisreg)
7191 {
5be8be5d
DG
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
c19d1205
ZW
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
5be8be5d
DG
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
c19d1205
ZW
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
c19d1205 7213 }
a737bd4d
NC
7214}
7215
c19d1205
ZW
7216/* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
09d92015 7223
c19d1205
ZW
7224static int
7225encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7226{
c19d1205 7227 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7228
9c2799c2 7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7230
c19d1205 7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7232 {
9c2799c2 7233 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
09d92015 7242 }
a737bd4d 7243
c19d1205
ZW
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
a737bd4d 7246
c19d1205 7247 if (inst.operands[i].writeback)
09d92015 7248 {
c19d1205
ZW
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
09d92015 7260 }
a737bd4d 7261
c19d1205 7262 if (reloc_override)
21d799b5 7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
26d97720
NS
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
c19d1205
ZW
7278 return SUCCESS;
7279}
a737bd4d 7280
c19d1205
ZW
7281/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
a737bd4d 7287
c19d1205
ZW
7288 inst.operands[i] describes the destination register. */
7289
c921be7d 7290static bfd_boolean
c19d1205
ZW
7291move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292{
53365c0d
PB
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
09d92015 7301 {
c19d1205 7302 inst.error = _("invalid pseudo operation");
c921be7d 7303 return TRUE;
09d92015 7304 }
c19d1205 7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7306 {
7307 inst.error = _("constant expression expected");
c921be7d 7308 return TRUE;
09d92015 7309 }
c19d1205 7310 if (inst.reloc.exp.X_op == O_constant)
09d92015 7311 {
c19d1205
ZW
7312 if (thumb_p)
7313 {
53365c0d 7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7319 return TRUE;
c19d1205
ZW
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
c921be7d 7331 return TRUE;
c19d1205 7332 }
09d92015 7333
c19d1205
ZW
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
c921be7d 7341 return TRUE;
c19d1205
ZW
7342 }
7343 }
09d92015
MM
7344 }
7345
c19d1205
ZW
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
c921be7d 7349 return TRUE;
c19d1205
ZW
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
c921be7d 7360 return FALSE;
09d92015
MM
7361}
7362
5f4273c7 7363/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
09d92015 7366
a737bd4d 7367static void
c19d1205 7368do_noargs (void)
09d92015 7369{
c19d1205 7370}
a737bd4d 7371
c19d1205
ZW
7372static void
7373do_rd (void)
7374{
7375 inst.instruction |= inst.operands[0].reg << 12;
7376}
a737bd4d 7377
c19d1205
ZW
7378static void
7379do_rd_rm (void)
7380{
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383}
09d92015 7384
9eb6c0f1
MGD
7385static void
7386do_rm_rn (void)
7387{
7388 inst.instruction |= inst.operands[0].reg;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390}
7391
c19d1205
ZW
7392static void
7393do_rd_rn (void)
7394{
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= inst.operands[1].reg << 16;
7397}
a737bd4d 7398
c19d1205
ZW
7399static void
7400do_rn_rd (void)
7401{
7402 inst.instruction |= inst.operands[0].reg << 16;
7403 inst.instruction |= inst.operands[1].reg << 12;
7404}
09d92015 7405
59d09be6
MGD
7406static bfd_boolean
7407check_obsolete (const arm_feature_set *feature, const char *msg)
7408{
7409 if (ARM_CPU_IS_ANY (cpu_variant))
7410 {
7411 as_warn ("%s", msg);
7412 return TRUE;
7413 }
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7415 {
7416 as_bad ("%s", msg);
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421}
7422
c19d1205
ZW
7423static void
7424do_rd_rm_rn (void)
7425{
9a64e435 7426 unsigned Rn = inst.operands[2].reg;
708587a4 7427 /* Enforce restrictions on SWP instruction. */
9a64e435 7428 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7429 {
7430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7431 _("Rn must not overlap other operands"));
7432
59d09be6
MGD
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7434 */
7435 if (!check_obsolete (&arm_ext_v8,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 7440 }
59d09be6 7441
c19d1205
ZW
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
9a64e435 7444 inst.instruction |= Rn << 16;
c19d1205 7445}
09d92015 7446
c19d1205
ZW
7447static void
7448do_rd_rn_rm (void)
7449{
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.instruction |= inst.operands[2].reg;
7453}
a737bd4d 7454
c19d1205
ZW
7455static void
7456do_rm_rd_rn (void)
7457{
5be8be5d
DG
7458 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7459 constraint (((inst.reloc.exp.X_op != O_constant
7460 && inst.reloc.exp.X_op != O_illegal)
7461 || inst.reloc.exp.X_add_number != 0),
7462 BAD_ADDR_MODE);
c19d1205
ZW
7463 inst.instruction |= inst.operands[0].reg;
7464 inst.instruction |= inst.operands[1].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466}
09d92015 7467
c19d1205
ZW
7468static void
7469do_imm0 (void)
7470{
7471 inst.instruction |= inst.operands[0].imm;
7472}
09d92015 7473
c19d1205
ZW
7474static void
7475do_rd_cpaddr (void)
7476{
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7479}
a737bd4d 7480
c19d1205
ZW
7481/* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7483 wrap). */
09d92015 7484
c19d1205
ZW
7485/* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7487
7488static void
c19d1205 7489do_adr (void)
09d92015 7490{
c19d1205 7491 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7492
c19d1205
ZW
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7496 inst.reloc.pc_rel = 1;
2fc8bdac 7497 inst.reloc.exp.X_add_number -= 8;
c19d1205 7498}
b99bd4ef 7499
c19d1205
ZW
7500/* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
b99bd4ef 7504
c19d1205
ZW
7505static void
7506do_adrl (void)
7507{
7508 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7509
c19d1205
ZW
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7513 inst.reloc.pc_rel = 1;
7514 inst.size = INSN_SIZE * 2;
2fc8bdac 7515 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7516}
7517
b99bd4ef 7518static void
c19d1205 7519do_arit (void)
b99bd4ef 7520{
c19d1205
ZW
7521 if (!inst.operands[1].present)
7522 inst.operands[1].reg = inst.operands[0].reg;
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg << 16;
7525 encode_arm_shifter_operand (2);
7526}
b99bd4ef 7527
62b3e311
PB
7528static void
7529do_barrier (void)
7530{
7531 if (inst.operands[0].present)
7532 {
7533 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7534 && inst.operands[0].imm > 0xf
7535 && inst.operands[0].imm < 0x0,
bd3ba5d1 7536 _("bad barrier type"));
62b3e311
PB
7537 inst.instruction |= inst.operands[0].imm;
7538 }
7539 else
7540 inst.instruction |= 0xf;
7541}
7542
c19d1205
ZW
7543static void
7544do_bfc (void)
7545{
7546 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7547 constraint (msb > 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].imm << 7;
7552 inst.instruction |= (msb - 1) << 16;
7553}
b99bd4ef 7554
c19d1205
ZW
7555static void
7556do_bfi (void)
7557{
7558 unsigned int msb;
b99bd4ef 7559
c19d1205
ZW
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst.operands[1].isreg)
7563 inst.operands[1].reg = REG_PC;
b99bd4ef 7564
c19d1205
ZW
7565 msb = inst.operands[2].imm + inst.operands[3].imm;
7566 constraint (msb > 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst.instruction |= inst.operands[0].reg << 12;
7570 inst.instruction |= inst.operands[1].reg;
7571 inst.instruction |= inst.operands[2].imm << 7;
7572 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7573}
7574
b99bd4ef 7575static void
c19d1205 7576do_bfx (void)
b99bd4ef 7577{
c19d1205
ZW
7578 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7579 _("bit-field extends past end of register"));
7580 inst.instruction |= inst.operands[0].reg << 12;
7581 inst.instruction |= inst.operands[1].reg;
7582 inst.instruction |= inst.operands[2].imm << 7;
7583 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7584}
09d92015 7585
c19d1205
ZW
7586/* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
b99bd4ef 7591
c19d1205
ZW
7592static void
7593do_bkpt (void)
7594{
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7597
c19d1205
ZW
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst.instruction |= inst.operands[0].imm & 0xf;
7600}
09d92015 7601
c19d1205
ZW
7602static void
7603encode_branch (int default_reloc)
7604{
7605 if (inst.operands[0].hasreloc)
7606 {
0855e32b
NS
7607 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7608 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7613 }
b99bd4ef 7614 else
9ae92b05 7615 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7616 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7617}
7618
b99bd4ef 7619static void
c19d1205 7620do_branch (void)
b99bd4ef 7621{
39b41c9c
PB
7622#ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7625 else
7626#endif
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7628}
7629
7630static void
7631do_bl (void)
7632{
7633#ifdef OBJ_ELF
7634 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7635 {
7636 if (inst.cond == COND_ALWAYS)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7638 else
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7640 }
7641 else
7642#endif
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7644}
b99bd4ef 7645
c19d1205
ZW
7646/* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7653
c19d1205
ZW
7654static void
7655do_blx (void)
7656{
7657 if (inst.operands[0].isreg)
b99bd4ef 7658 {
c19d1205
ZW
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst.operands[0].reg == REG_PC)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7663
c19d1205
ZW
7664 inst.instruction |= inst.operands[0].reg;
7665 }
7666 else
b99bd4ef 7667 {
c19d1205 7668 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7672 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7673 inst.instruction = 0xfa000000;
267bf995 7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7675 }
c19d1205
ZW
7676}
7677
7678static void
7679do_bx (void)
7680{
845b51d6
PB
7681 bfd_boolean want_reloc;
7682
c19d1205
ZW
7683 if (inst.operands[0].reg == REG_PC)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7685
c19d1205 7686 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7690 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7691 want_reloc = TRUE;
7692
5ad34203 7693#ifdef OBJ_ELF
845b51d6 7694 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7695#endif
584206db 7696 want_reloc = FALSE;
845b51d6
PB
7697
7698 if (want_reloc)
7699 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7700}
7701
c19d1205
ZW
7702
7703/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7704
7705static void
c19d1205 7706do_bxj (void)
a737bd4d 7707{
c19d1205
ZW
7708 if (inst.operands[0].reg == REG_PC)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7710
7711 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7712}
7713
c19d1205
ZW
7714/* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7717static void
7718do_cdp (void)
7719{
7720 inst.instruction |= inst.operands[0].reg << 8;
7721 inst.instruction |= inst.operands[1].imm << 20;
7722 inst.instruction |= inst.operands[2].reg << 12;
7723 inst.instruction |= inst.operands[3].reg << 16;
7724 inst.instruction |= inst.operands[4].reg;
7725 inst.instruction |= inst.operands[5].imm << 5;
7726}
a737bd4d
NC
7727
7728static void
c19d1205 7729do_cmp (void)
a737bd4d 7730{
c19d1205
ZW
7731 inst.instruction |= inst.operands[0].reg << 16;
7732 encode_arm_shifter_operand (1);
a737bd4d
NC
7733}
7734
c19d1205
ZW
7735/* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7737 MRC2
7738 MCR{cond}
7739 MCR2
7740
7741 No special properties. */
09d92015 7742
dcbd0d71
MGD
7743struct deprecated_coproc_regs_s
7744{
7745 unsigned cp;
7746 int opc1;
7747 unsigned crn;
7748 unsigned crm;
7749 int opc2;
7750 arm_feature_set deprecated;
7751 arm_feature_set obsoleted;
7752 const char *dep_msg;
7753 const char *obs_msg;
7754};
7755
7756#define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7758
7759/* Table of all deprecated coprocessor registers. */
7760static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7761{
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8, NULL},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8, NULL},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8, NULL},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8, NULL},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8, NULL},
7777};
7778
7779#undef DEPR_ACCESS_V8
7780
7781static const size_t deprecated_coproc_reg_count =
7782 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7783
09d92015 7784static void
c19d1205 7785do_co_reg (void)
09d92015 7786{
fdfde340 7787 unsigned Rd;
dcbd0d71 7788 size_t i;
fdfde340
JM
7789
7790 Rd = inst.operands[2].reg;
7791 if (thumb_mode)
7792 {
7793 if (inst.instruction == 0xee000010
7794 || inst.instruction == 0xfe000010)
7795 /* MCR, MCR2 */
7796 reject_bad_reg (Rd);
7797 else
7798 /* MRC, MRC2 */
7799 constraint (Rd == REG_SP, BAD_SP);
7800 }
7801 else
7802 {
7803 /* MCR */
7804 if (inst.instruction == 0xe000010)
7805 constraint (Rd == REG_PC, BAD_PC);
7806 }
7807
dcbd0d71
MGD
7808 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7809 {
7810 const struct deprecated_coproc_regs_s *r =
7811 deprecated_coproc_regs + i;
7812
7813 if (inst.operands[0].reg == r->cp
7814 && inst.operands[1].imm == r->opc1
7815 && inst.operands[3].reg == r->crn
7816 && inst.operands[4].reg == r->crm
7817 && inst.operands[5].imm == r->opc2)
7818 {
7819 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7822 as_warn ("%s", r->dep_msg);
7823 }
7824 }
fdfde340 7825
c19d1205
ZW
7826 inst.instruction |= inst.operands[0].reg << 8;
7827 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7828 inst.instruction |= Rd << 12;
c19d1205
ZW
7829 inst.instruction |= inst.operands[3].reg << 16;
7830 inst.instruction |= inst.operands[4].reg;
7831 inst.instruction |= inst.operands[5].imm << 5;
7832}
09d92015 7833
c19d1205
ZW
7834/* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7836 MCRR2
7837 MRRC{cond}
7838 MRRC2
b99bd4ef 7839
c19d1205 7840 Two XScale instructions are special cases of these:
09d92015 7841
c19d1205
ZW
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7844
5f4273c7 7845 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7846
c19d1205
ZW
7847static void
7848do_co_reg2c (void)
7849{
fdfde340
JM
7850 unsigned Rd, Rn;
7851
7852 Rd = inst.operands[2].reg;
7853 Rn = inst.operands[3].reg;
7854
7855 if (thumb_mode)
7856 {
7857 reject_bad_reg (Rd);
7858 reject_bad_reg (Rn);
7859 }
7860 else
7861 {
7862 constraint (Rd == REG_PC, BAD_PC);
7863 constraint (Rn == REG_PC, BAD_PC);
7864 }
7865
c19d1205
ZW
7866 inst.instruction |= inst.operands[0].reg << 8;
7867 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7868 inst.instruction |= Rd << 12;
7869 inst.instruction |= Rn << 16;
c19d1205 7870 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7871}
7872
c19d1205
ZW
7873static void
7874do_cpsi (void)
7875{
7876 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7877 if (inst.operands[1].present)
7878 {
7879 inst.instruction |= CPSI_MMOD;
7880 inst.instruction |= inst.operands[1].imm;
7881 }
c19d1205 7882}
b99bd4ef 7883
62b3e311
PB
7884static void
7885do_dbg (void)
7886{
7887 inst.instruction |= inst.operands[0].imm;
7888}
7889
eea54501
MGD
7890static void
7891do_div (void)
7892{
7893 unsigned Rd, Rn, Rm;
7894
7895 Rd = inst.operands[0].reg;
7896 Rn = (inst.operands[1].present
7897 ? inst.operands[1].reg : Rd);
7898 Rm = inst.operands[2].reg;
7899
7900 constraint ((Rd == REG_PC), BAD_PC);
7901 constraint ((Rn == REG_PC), BAD_PC);
7902 constraint ((Rm == REG_PC), BAD_PC);
7903
7904 inst.instruction |= Rd << 16;
7905 inst.instruction |= Rn << 0;
7906 inst.instruction |= Rm << 8;
7907}
7908
b99bd4ef 7909static void
c19d1205 7910do_it (void)
b99bd4ef 7911{
c19d1205 7912 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7916
c19d1205 7917 inst.size = 0;
e07e6e58
NC
7918 if (unified_syntax)
7919 {
7920 set_it_insn_type (IT_INSN);
7921 now_it.mask = (inst.instruction & 0xf) | 0x10;
7922 now_it.cc = inst.operands[0].imm;
7923 }
09d92015 7924}
b99bd4ef 7925
6530b175
NC
7926/* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7928static int
7929only_one_reg_in_list (int range)
7930{
7931 int i = ffs (range) - 1;
7932 return (i > 15 || range != (1 << i)) ? -1 : i;
7933}
7934
09d92015 7935static void
6530b175 7936encode_ldmstm(int from_push_pop_mnem)
ea6ef066 7937{
c19d1205
ZW
7938 int base_reg = inst.operands[0].reg;
7939 int range = inst.operands[1].imm;
6530b175 7940 int one_reg;
ea6ef066 7941
c19d1205
ZW
7942 inst.instruction |= base_reg << 16;
7943 inst.instruction |= range;
ea6ef066 7944
c19d1205
ZW
7945 if (inst.operands[1].writeback)
7946 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7947
c19d1205 7948 if (inst.operands[0].writeback)
ea6ef066 7949 {
c19d1205
ZW
7950 inst.instruction |= WRITE_BACK;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst.instruction & LOAD_BIT)
09d92015 7953 {
c19d1205
ZW
7954 /* Not allowed in LDM type 2. */
7955 if ((inst.instruction & LDM_TYPE_2_OR_3)
7956 && ((range & (1 << REG_PC)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range & (1 << base_reg))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7961 }
7962 else /* STM. */
7963 {
7964 /* Not allowed for type 2. */
7965 if (inst.instruction & LDM_TYPE_2_OR_3)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range & (1 << base_reg))
7969 && (range & ((1 << base_reg) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7971 }
ea6ef066 7972 }
6530b175
NC
7973
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg = only_one_reg_in_list (range);
7976 if (from_push_pop_mnem && one_reg >= 0)
7977 {
7978 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7979
7980 inst.instruction &= A_COND_MASK;
7981 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7982 inst.instruction |= one_reg << 12;
7983 }
7984}
7985
7986static void
7987do_ldmstm (void)
7988{
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
7990}
7991
c19d1205
ZW
7992/* ARMv5TE load-consecutive (argument parse)
7993 Mode is like LDRH.
7994
7995 LDRccD R, mode
7996 STRccD R, mode. */
7997
a737bd4d 7998static void
c19d1205 7999do_ldrd (void)
a737bd4d 8000{
c19d1205 8001 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8002 _("first transfer register must be even"));
c19d1205
ZW
8003 constraint (inst.operands[1].present
8004 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8005 _("can only transfer two consecutive registers"));
c19d1205
ZW
8006 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8007 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8008
c19d1205
ZW
8009 if (!inst.operands[1].present)
8010 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8011
c56791bb
RE
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
ea6ef066 8015
c56791bb
RE
8016 if (inst.operands[2].reg == inst.operands[1].reg
8017 && (inst.operands[2].writeback || inst.operands[2].postind))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
b05fe5cf 8020
c56791bb
RE
8021 if (!(inst.instruction & V4_STR_BIT))
8022 {
c19d1205 8023 /* For an index-register load, the index register must not overlap the
c56791bb
RE
8024 destination (even if not write-back). */
8025 if (inst.operands[2].immisreg
8026 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8027 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8028 as_warn (_("index register overlaps transfer register"));
b05fe5cf 8029 }
c19d1205
ZW
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
8032}
8033
8034static void
c19d1205 8035do_ldrex (void)
b05fe5cf 8036{
c19d1205
ZW
8037 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8038 || inst.operands[1].postind || inst.operands[1].writeback
8039 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
8040 || inst.operands[1].negative
8041 /* This can arise if the programmer has written
8042 strex rN, rM, foo
8043 or if they have mistakenly used a register name as the last
8044 operand, eg:
8045 strex rN, rM, rX
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst.operands[1].reg == REG_PC),
8053 BAD_ADDR_MODE);
b05fe5cf 8054
c19d1205
ZW
8055 constraint (inst.reloc.exp.X_op != O_constant
8056 || inst.reloc.exp.X_add_number != 0,
8057 _("offset must be zero in ARM encoding"));
b05fe5cf 8058
5be8be5d
DG
8059 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8060
c19d1205
ZW
8061 inst.instruction |= inst.operands[0].reg << 12;
8062 inst.instruction |= inst.operands[1].reg << 16;
8063 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
8064}
8065
8066static void
c19d1205 8067do_ldrexd (void)
b05fe5cf 8068{
c19d1205
ZW
8069 constraint (inst.operands[0].reg % 2 != 0,
8070 _("even register required"));
8071 constraint (inst.operands[1].present
8072 && inst.operands[1].reg != inst.operands[0].reg + 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 8077
c19d1205
ZW
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
8080}
8081
1be5fd2e
NC
8082/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8084static void
8085check_ldr_r15_aligned (void)
8086{
8087 constraint (!(inst.operands[1].immisreg)
8088 && (inst.operands[0].reg == REG_PC
8089 && inst.operands[1].reg == REG_PC
8090 && (inst.reloc.exp.X_add_number & 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8092}
8093
b05fe5cf 8094static void
c19d1205 8095do_ldst (void)
b05fe5cf 8096{
c19d1205
ZW
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 if (!inst.operands[1].isreg)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 8100 return;
c19d1205 8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 8102 check_ldr_r15_aligned ();
b05fe5cf
ZW
8103}
8104
8105static void
c19d1205 8106do_ldstt (void)
b05fe5cf 8107{
c19d1205
ZW
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8109 reject [Rn,...]. */
8110 if (inst.operands[1].preind)
b05fe5cf 8111 {
bd3ba5d1
NC
8112 constraint (inst.reloc.exp.X_op != O_constant
8113 || inst.reloc.exp.X_add_number != 0,
c19d1205 8114 _("this instruction requires a post-indexed address"));
b05fe5cf 8115
c19d1205
ZW
8116 inst.operands[1].preind = 0;
8117 inst.operands[1].postind = 1;
8118 inst.operands[1].writeback = 1;
b05fe5cf 8119 }
c19d1205
ZW
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8122}
b05fe5cf 8123
c19d1205 8124/* Halfword and signed-byte load/store operations. */
b05fe5cf 8125
c19d1205
ZW
8126static void
8127do_ldstv4 (void)
8128{
ff4a8d2b 8129 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 if (!inst.operands[1].isreg)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 8133 return;
c19d1205 8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
8135}
8136
8137static void
c19d1205 8138do_ldsttv4 (void)
b05fe5cf 8139{
c19d1205
ZW
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8141 reject [Rn,...]. */
8142 if (inst.operands[1].preind)
b05fe5cf 8143 {
bd3ba5d1
NC
8144 constraint (inst.reloc.exp.X_op != O_constant
8145 || inst.reloc.exp.X_add_number != 0,
c19d1205 8146 _("this instruction requires a post-indexed address"));
b05fe5cf 8147
c19d1205
ZW
8148 inst.operands[1].preind = 0;
8149 inst.operands[1].postind = 1;
8150 inst.operands[1].writeback = 1;
b05fe5cf 8151 }
c19d1205
ZW
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8154}
b05fe5cf 8155
c19d1205
ZW
8156/* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8158static void
8159do_lstc (void)
8160{
8161 inst.instruction |= inst.operands[0].reg << 8;
8162 inst.instruction |= inst.operands[1].reg << 12;
8163 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
8164}
8165
b05fe5cf 8166static void
c19d1205 8167do_mlas (void)
b05fe5cf 8168{
8fb9d7b9 8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 8170 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 8171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 8172 && !(inst.instruction & 0x00400000))
8fb9d7b9 8173 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 8174
c19d1205
ZW
8175 inst.instruction |= inst.operands[0].reg << 16;
8176 inst.instruction |= inst.operands[1].reg;
8177 inst.instruction |= inst.operands[2].reg << 8;
8178 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 8179}
b05fe5cf 8180
c19d1205
ZW
8181static void
8182do_mov (void)
8183{
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 encode_arm_shifter_operand (1);
8186}
b05fe5cf 8187
c19d1205
ZW
8188/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8189static void
8190do_mov16 (void)
8191{
b6895b4f
PB
8192 bfd_vma imm;
8193 bfd_boolean top;
8194
8195 top = (inst.instruction & 0x00400000) != 0;
8196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8199 _(":upper16: not allowed instruction"));
c19d1205 8200 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
8201 if (inst.reloc.type == BFD_RELOC_UNUSED)
8202 {
8203 imm = inst.reloc.exp.X_add_number;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst.instruction |= (imm & 0x00000fff);
8206 inst.instruction |= (imm & 0x0000f000) << 4;
8207 }
b05fe5cf 8208}
b99bd4ef 8209
037e8744
JB
8210static void do_vfp_nsyn_opcode (const char *);
8211
8212static int
8213do_vfp_nsyn_mrs (void)
8214{
8215 if (inst.operands[0].isvec)
8216 {
8217 if (inst.operands[1].reg != 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8222 }
8223 else if (inst.operands[1].isvec)
8224 do_vfp_nsyn_opcode ("fmrx");
8225 else
8226 return FAIL;
5f4273c7 8227
037e8744
JB
8228 return SUCCESS;
8229}
8230
8231static int
8232do_vfp_nsyn_msr (void)
8233{
8234 if (inst.operands[0].isvec)
8235 do_vfp_nsyn_opcode ("fmxr");
8236 else
8237 return FAIL;
8238
8239 return SUCCESS;
8240}
8241
f7c21dc7
NC
8242static void
8243do_vmrs (void)
8244{
8245 unsigned Rt = inst.operands[0].reg;
fa94de6b 8246
f7c21dc7
NC
8247 if (thumb_mode && inst.operands[0].reg == REG_SP)
8248 {
8249 inst.error = BAD_SP;
8250 return;
8251 }
8252
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8255 {
8256 inst.error = BAD_PC;
8257 return;
8258 }
8259
7465e07a
NC
8260 switch (inst.operands[1].reg)
8261 {
8262 case 0: /* FPSID */
8263 case 1: /* FPSCR */
8264 case 6: /* MVFR1 */
8265 case 7: /* MVFR0 */
8266 case 8: /* FPEXC */
8267 inst.instruction |= (inst.operands[1].reg << 16);
8268 break;
8269 default:
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8271 }
f7c21dc7
NC
8272
8273 inst.instruction |= (Rt << 12);
8274}
8275
8276static void
8277do_vmsr (void)
8278{
8279 unsigned Rt = inst.operands[1].reg;
fa94de6b 8280
f7c21dc7
NC
8281 if (thumb_mode)
8282 reject_bad_reg (Rt);
8283 else if (Rt == REG_PC)
8284 {
8285 inst.error = BAD_PC;
8286 return;
8287 }
8288
7465e07a
NC
8289 switch (inst.operands[0].reg)
8290 {
8291 case 0: /* FPSID */
8292 case 1: /* FPSCR */
8293 case 8: /* FPEXC */
8294 inst.instruction |= (inst.operands[0].reg << 16);
8295 break;
8296 default:
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8298 }
f7c21dc7
NC
8299
8300 inst.instruction |= (Rt << 12);
8301}
8302
b99bd4ef 8303static void
c19d1205 8304do_mrs (void)
b99bd4ef 8305{
90ec0d68
MGD
8306 unsigned br;
8307
037e8744
JB
8308 if (do_vfp_nsyn_mrs () == SUCCESS)
8309 return;
8310
ff4a8d2b 8311 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8312 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8313
8314 if (inst.operands[1].isreg)
8315 {
8316 br = inst.operands[1].reg;
8317 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8319 }
8320 else
8321 {
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8324 != (PSR_c|PSR_f),
d2cd1205 8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8326 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8327 }
8328
8329 inst.instruction |= br;
c19d1205 8330}
b99bd4ef 8331
c19d1205
ZW
8332/* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
b99bd4ef 8335
c19d1205
ZW
8336static void
8337do_msr (void)
8338{
037e8744
JB
8339 if (do_vfp_nsyn_msr () == SUCCESS)
8340 return;
8341
c19d1205
ZW
8342 inst.instruction |= inst.operands[0].imm;
8343 if (inst.operands[1].isreg)
8344 inst.instruction |= inst.operands[1].reg;
8345 else
b99bd4ef 8346 {
c19d1205
ZW
8347 inst.instruction |= INST_IMMEDIATE;
8348 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8349 inst.reloc.pc_rel = 0;
b99bd4ef 8350 }
b99bd4ef
NC
8351}
8352
c19d1205
ZW
8353static void
8354do_mul (void)
a737bd4d 8355{
ff4a8d2b
NC
8356 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8357
c19d1205
ZW
8358 if (!inst.operands[2].present)
8359 inst.operands[2].reg = inst.operands[0].reg;
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8363
8fb9d7b9
MS
8364 if (inst.operands[0].reg == inst.operands[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8367}
8368
c19d1205
ZW
8369/* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8374
8375static void
c19d1205 8376do_mull (void)
b99bd4ef 8377{
c19d1205
ZW
8378 inst.instruction |= inst.operands[0].reg << 12;
8379 inst.instruction |= inst.operands[1].reg << 16;
8380 inst.instruction |= inst.operands[2].reg;
8381 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8382
682b27ad
PB
8383 /* rdhi and rdlo must be different. */
8384 if (inst.operands[0].reg == inst.operands[1].reg)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8386
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8389 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8390 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8392}
b99bd4ef 8393
c19d1205
ZW
8394static void
8395do_nop (void)
8396{
e7495e45
NS
8397 if (inst.operands[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8399 {
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst.instruction &= 0xf0000000;
e7495e45
NS
8402 inst.instruction |= 0x0320f000;
8403 if (inst.operands[0].present)
8404 inst.instruction |= inst.operands[0].imm;
c19d1205 8405 }
b99bd4ef
NC
8406}
8407
c19d1205
ZW
8408/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8412
8413static void
c19d1205 8414do_pkhbt (void)
b99bd4ef 8415{
c19d1205
ZW
8416 inst.instruction |= inst.operands[0].reg << 12;
8417 inst.instruction |= inst.operands[1].reg << 16;
8418 inst.instruction |= inst.operands[2].reg;
8419 if (inst.operands[3].present)
8420 encode_arm_shift (3);
8421}
b99bd4ef 8422
c19d1205 8423/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8424
c19d1205
ZW
8425static void
8426do_pkhtb (void)
8427{
8428 if (!inst.operands[3].present)
b99bd4ef 8429 {
c19d1205
ZW
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst.instruction &= 0xfff00010;
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].reg;
8435 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8436 }
8437 else
8438 {
c19d1205
ZW
8439 inst.instruction |= inst.operands[0].reg << 12;
8440 inst.instruction |= inst.operands[1].reg << 16;
8441 inst.instruction |= inst.operands[2].reg;
8442 encode_arm_shift (3);
b99bd4ef
NC
8443 }
8444}
8445
c19d1205 8446/* ARMv5TE: Preload-Cache
60e5ef9f 8447 MP Extensions: Preload for write
c19d1205 8448
60e5ef9f 8449 PLD(W) <addr_mode>
c19d1205
ZW
8450
8451 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8452
8453static void
c19d1205 8454do_pld (void)
b99bd4ef 8455{
c19d1205
ZW
8456 constraint (!inst.operands[0].isreg,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst.operands[0].postind,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst.operands[0].writeback,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst.operands[0].preind,
8463 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8465}
b99bd4ef 8466
62b3e311
PB
8467/* ARMv7: PLI <addr_mode> */
8468static void
8469do_pli (void)
8470{
8471 constraint (!inst.operands[0].isreg,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst.operands[0].postind,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst.operands[0].writeback,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst.operands[0].preind,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8480 inst.instruction &= ~PRE_INDEX;
8481}
8482
c19d1205
ZW
8483static void
8484do_push_pop (void)
8485{
8486 inst.operands[1] = inst.operands[0];
8487 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8488 inst.operands[0].isreg = 1;
8489 inst.operands[0].writeback = 1;
8490 inst.operands[0].reg = REG_SP;
6530b175 8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 8492}
b99bd4ef 8493
c19d1205
ZW
8494/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8496 respectively.
8497 Unconditionally executed.
8498 Error if Rn is R15. */
b99bd4ef 8499
c19d1205
ZW
8500static void
8501do_rfe (void)
8502{
8503 inst.instruction |= inst.operands[0].reg << 16;
8504 if (inst.operands[0].writeback)
8505 inst.instruction |= WRITE_BACK;
8506}
b99bd4ef 8507
c19d1205 8508/* ARM V6 ssat (argument parse). */
b99bd4ef 8509
c19d1205
ZW
8510static void
8511do_ssat (void)
8512{
8513 inst.instruction |= inst.operands[0].reg << 12;
8514 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8515 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8516
c19d1205
ZW
8517 if (inst.operands[3].present)
8518 encode_arm_shift (3);
b99bd4ef
NC
8519}
8520
c19d1205 8521/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8522
8523static void
c19d1205 8524do_usat (void)
b99bd4ef 8525{
c19d1205
ZW
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 inst.instruction |= inst.operands[1].imm << 16;
8528 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8529
c19d1205
ZW
8530 if (inst.operands[3].present)
8531 encode_arm_shift (3);
b99bd4ef
NC
8532}
8533
c19d1205 8534/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8535
8536static void
c19d1205 8537do_ssat16 (void)
09d92015 8538{
c19d1205
ZW
8539 inst.instruction |= inst.operands[0].reg << 12;
8540 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8541 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8542}
8543
c19d1205
ZW
8544static void
8545do_usat16 (void)
a737bd4d 8546{
c19d1205
ZW
8547 inst.instruction |= inst.operands[0].reg << 12;
8548 inst.instruction |= inst.operands[1].imm << 16;
8549 inst.instruction |= inst.operands[2].reg;
8550}
a737bd4d 8551
c19d1205
ZW
8552/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
a737bd4d 8554
c19d1205
ZW
8555 setend <endian_specifier>, where <endian_specifier> is either
8556 BE or LE. */
a737bd4d 8557
c19d1205
ZW
8558static void
8559do_setend (void)
8560{
12e37cbc
MGD
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8564
c19d1205
ZW
8565 if (inst.operands[0].imm)
8566 inst.instruction |= 0x200;
a737bd4d
NC
8567}
8568
8569static void
c19d1205 8570do_shift (void)
a737bd4d 8571{
c19d1205
ZW
8572 unsigned int Rm = (inst.operands[1].present
8573 ? inst.operands[1].reg
8574 : inst.operands[0].reg);
a737bd4d 8575
c19d1205
ZW
8576 inst.instruction |= inst.operands[0].reg << 12;
8577 inst.instruction |= Rm;
8578 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8579 {
c19d1205
ZW
8580 inst.instruction |= inst.operands[2].reg << 8;
8581 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst.operands[2].shifted,
8584 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
8585 }
8586 else
c19d1205 8587 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8588}
8589
09d92015 8590static void
3eb17e6b 8591do_smc (void)
09d92015 8592{
3eb17e6b 8593 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8594 inst.reloc.pc_rel = 0;
09d92015
MM
8595}
8596
90ec0d68
MGD
8597static void
8598do_hvc (void)
8599{
8600 inst.reloc.type = BFD_RELOC_ARM_HVC;
8601 inst.reloc.pc_rel = 0;
8602}
8603
09d92015 8604static void
c19d1205 8605do_swi (void)
09d92015 8606{
c19d1205
ZW
8607 inst.reloc.type = BFD_RELOC_ARM_SWI;
8608 inst.reloc.pc_rel = 0;
09d92015
MM
8609}
8610
c19d1205
ZW
8611/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
e16bb312 8615
c19d1205
ZW
8616static void
8617do_smla (void)
e16bb312 8618{
c19d1205
ZW
8619 inst.instruction |= inst.operands[0].reg << 16;
8620 inst.instruction |= inst.operands[1].reg;
8621 inst.instruction |= inst.operands[2].reg << 8;
8622 inst.instruction |= inst.operands[3].reg << 12;
8623}
a737bd4d 8624
c19d1205
ZW
8625/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
a737bd4d 8629
c19d1205
ZW
8630static void
8631do_smlal (void)
8632{
8633 inst.instruction |= inst.operands[0].reg << 12;
8634 inst.instruction |= inst.operands[1].reg << 16;
8635 inst.instruction |= inst.operands[2].reg;
8636 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8637
c19d1205
ZW
8638 if (inst.operands[0].reg == inst.operands[1].reg)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8640}
a737bd4d 8641
c19d1205
ZW
8642/* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
a737bd4d 8645
c19d1205
ZW
8646static void
8647do_smul (void)
8648{
8649 inst.instruction |= inst.operands[0].reg << 16;
8650 inst.instruction |= inst.operands[1].reg;
8651 inst.instruction |= inst.operands[2].reg << 8;
8652}
a737bd4d 8653
b6702015
PB
8654/* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
a737bd4d 8656
c19d1205
ZW
8657static void
8658do_srs (void)
8659{
b6702015
PB
8660 int reg;
8661
8662 if (inst.operands[0].present)
8663 {
8664 reg = inst.operands[0].reg;
fdfde340 8665 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8666 }
8667 else
fdfde340 8668 reg = REG_SP;
b6702015
PB
8669
8670 inst.instruction |= reg << 16;
8671 inst.instruction |= inst.operands[1].imm;
8672 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8673 inst.instruction |= WRITE_BACK;
8674}
a737bd4d 8675
c19d1205 8676/* ARM V6 strex (argument parse). */
a737bd4d 8677
c19d1205
ZW
8678static void
8679do_strex (void)
8680{
8681 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8682 || inst.operands[2].postind || inst.operands[2].writeback
8683 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8684 || inst.operands[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst.operands[2].reg == REG_PC),
8687 BAD_ADDR_MODE);
a737bd4d 8688
c19d1205
ZW
8689 constraint (inst.operands[0].reg == inst.operands[1].reg
8690 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8691
c19d1205
ZW
8692 constraint (inst.reloc.exp.X_op != O_constant
8693 || inst.reloc.exp.X_add_number != 0,
8694 _("offset must be zero in ARM encoding"));
a737bd4d 8695
c19d1205
ZW
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 inst.instruction |= inst.operands[1].reg;
8698 inst.instruction |= inst.operands[2].reg << 16;
8699 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8700}
8701
877807f8
NC
8702static void
8703do_t_strexbh (void)
8704{
8705 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8706 || inst.operands[2].postind || inst.operands[2].writeback
8707 || inst.operands[2].immisreg || inst.operands[2].shifted
8708 || inst.operands[2].negative,
8709 BAD_ADDR_MODE);
8710
8711 constraint (inst.operands[0].reg == inst.operands[1].reg
8712 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8713
8714 do_rm_rd_rn ();
8715}
8716
e16bb312 8717static void
c19d1205 8718do_strexd (void)
e16bb312 8719{
c19d1205
ZW
8720 constraint (inst.operands[1].reg % 2 != 0,
8721 _("even register required"));
8722 constraint (inst.operands[2].present
8723 && inst.operands[2].reg != inst.operands[1].reg + 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8728
c19d1205
ZW
8729 constraint (inst.operands[0].reg == inst.operands[1].reg
8730 || inst.operands[0].reg == inst.operands[1].reg + 1
8731 || inst.operands[0].reg == inst.operands[3].reg,
8732 BAD_OVERLAP);
e16bb312 8733
c19d1205
ZW
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 inst.instruction |= inst.operands[1].reg;
8736 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8737}
8738
9eb6c0f1
MGD
8739/* ARM V8 STRL. */
8740static void
4b8c8c02 8741do_stlex (void)
9eb6c0f1
MGD
8742{
8743 constraint (inst.operands[0].reg == inst.operands[1].reg
8744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8745
8746 do_rd_rm_rn ();
8747}
8748
8749static void
4b8c8c02 8750do_t_stlex (void)
9eb6c0f1
MGD
8751{
8752 constraint (inst.operands[0].reg == inst.operands[1].reg
8753 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8754
8755 do_rm_rd_rn ();
8756}
8757
c19d1205
ZW
8758/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8765
e16bb312 8766static void
c19d1205 8767do_sxtah (void)
e16bb312 8768{
c19d1205
ZW
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].reg << 16;
8771 inst.instruction |= inst.operands[2].reg;
8772 inst.instruction |= inst.operands[3].imm << 10;
8773}
e16bb312 8774
c19d1205 8775/* ARM V6 SXTH.
e16bb312 8776
c19d1205
ZW
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
e16bb312
NC
8780
8781static void
c19d1205 8782do_sxth (void)
e16bb312 8783{
c19d1205
ZW
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 inst.instruction |= inst.operands[1].reg;
8786 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8787}
c19d1205
ZW
8788\f
8789/* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8791
8792static void
c19d1205 8793do_vfp_sp_monadic (void)
e16bb312 8794{
5287ad62
JB
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8797}
8798
8799static void
c19d1205 8800do_vfp_sp_dyadic (void)
e16bb312 8801{
5287ad62
JB
8802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8803 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8804 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8805}
8806
8807static void
c19d1205 8808do_vfp_sp_compare_z (void)
e16bb312 8809{
5287ad62 8810 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8811}
8812
8813static void
c19d1205 8814do_vfp_dp_sp_cvt (void)
e16bb312 8815{
5287ad62
JB
8816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8817 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8818}
8819
8820static void
c19d1205 8821do_vfp_sp_dp_cvt (void)
e16bb312 8822{
5287ad62
JB
8823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8824 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8825}
8826
8827static void
c19d1205 8828do_vfp_reg_from_sp (void)
e16bb312 8829{
c19d1205 8830 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8831 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8832}
8833
8834static void
c19d1205 8835do_vfp_reg2_from_sp2 (void)
e16bb312 8836{
c19d1205
ZW
8837 constraint (inst.operands[2].imm != 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst.instruction |= inst.operands[0].reg << 12;
8840 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8842}
8843
8844static void
c19d1205 8845do_vfp_sp_from_reg (void)
e16bb312 8846{
5287ad62 8847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8848 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8849}
8850
8851static void
c19d1205 8852do_vfp_sp2_from_reg2 (void)
e16bb312 8853{
c19d1205
ZW
8854 constraint (inst.operands[0].imm != 2,
8855 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8857 inst.instruction |= inst.operands[1].reg << 12;
8858 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8859}
8860
8861static void
c19d1205 8862do_vfp_sp_ldst (void)
e16bb312 8863{
5287ad62 8864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8865 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8866}
8867
8868static void
c19d1205 8869do_vfp_dp_ldst (void)
e16bb312 8870{
5287ad62 8871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8872 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8873}
8874
c19d1205 8875
e16bb312 8876static void
c19d1205 8877vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8878{
c19d1205
ZW
8879 if (inst.operands[0].writeback)
8880 inst.instruction |= WRITE_BACK;
8881 else
8882 constraint (ldstm_type != VFP_LDSTMIA,
8883 _("this addressing mode requires base-register writeback"));
8884 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8886 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8887}
8888
8889static void
c19d1205 8890vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8891{
c19d1205 8892 int count;
e16bb312 8893
c19d1205
ZW
8894 if (inst.operands[0].writeback)
8895 inst.instruction |= WRITE_BACK;
8896 else
8897 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8898 _("this addressing mode requires base-register writeback"));
e16bb312 8899
c19d1205 8900 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8901 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8902
c19d1205
ZW
8903 count = inst.operands[1].imm << 1;
8904 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8905 count += 1;
e16bb312 8906
c19d1205 8907 inst.instruction |= count;
e16bb312
NC
8908}
8909
8910static void
c19d1205 8911do_vfp_sp_ldstmia (void)
e16bb312 8912{
c19d1205 8913 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8914}
8915
8916static void
c19d1205 8917do_vfp_sp_ldstmdb (void)
e16bb312 8918{
c19d1205 8919 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8920}
8921
8922static void
c19d1205 8923do_vfp_dp_ldstmia (void)
e16bb312 8924{
c19d1205 8925 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8926}
8927
8928static void
c19d1205 8929do_vfp_dp_ldstmdb (void)
e16bb312 8930{
c19d1205 8931 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8932}
8933
8934static void
c19d1205 8935do_vfp_xp_ldstmia (void)
e16bb312 8936{
c19d1205
ZW
8937 vfp_dp_ldstm (VFP_LDSTMIAX);
8938}
e16bb312 8939
c19d1205
ZW
8940static void
8941do_vfp_xp_ldstmdb (void)
8942{
8943 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8944}
5287ad62
JB
8945
8946static void
8947do_vfp_dp_rd_rm (void)
8948{
8949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8951}
8952
8953static void
8954do_vfp_dp_rn_rd (void)
8955{
8956 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8957 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8958}
8959
8960static void
8961do_vfp_dp_rd_rn (void)
8962{
8963 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8964 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8965}
8966
8967static void
8968do_vfp_dp_rd_rn_rm (void)
8969{
8970 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8971 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8972 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8973}
8974
8975static void
8976do_vfp_dp_rd (void)
8977{
8978 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8979}
8980
8981static void
8982do_vfp_dp_rm_rd_rn (void)
8983{
8984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8985 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8986 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8987}
8988
8989/* VFPv3 instructions. */
8990static void
8991do_vfp_sp_const (void)
8992{
8993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8994 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8995 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8996}
8997
8998static void
8999do_vfp_dp_const (void)
9000{
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9002 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9003 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9004}
9005
9006static void
9007vfp_conv (int srcsize)
9008{
5f1af56b
MGD
9009 int immbits = srcsize - inst.operands[1].imm;
9010
fa94de6b
RM
9011 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9012 {
5f1af56b
MGD
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst.error = _("immediate value out of range, expected range [0, 16]");
9016 return;
9017 }
fa94de6b 9018 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
9019 {
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst.error = _("immediate value out of range, expected range [1, 32]");
9023 return;
9024 }
9025
5287ad62
JB
9026 inst.instruction |= (immbits & 1) << 5;
9027 inst.instruction |= (immbits >> 1);
9028}
9029
9030static void
9031do_vfp_sp_conv_16 (void)
9032{
9033 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9034 vfp_conv (16);
9035}
9036
9037static void
9038do_vfp_dp_conv_16 (void)
9039{
9040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9041 vfp_conv (16);
9042}
9043
9044static void
9045do_vfp_sp_conv_32 (void)
9046{
9047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9048 vfp_conv (32);
9049}
9050
9051static void
9052do_vfp_dp_conv_32 (void)
9053{
9054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9055 vfp_conv (32);
9056}
c19d1205
ZW
9057\f
9058/* FPA instructions. Also in a logical order. */
e16bb312 9059
c19d1205
ZW
9060static void
9061do_fpa_cmp (void)
9062{
9063 inst.instruction |= inst.operands[0].reg << 16;
9064 inst.instruction |= inst.operands[1].reg;
9065}
b99bd4ef
NC
9066
9067static void
c19d1205 9068do_fpa_ldmstm (void)
b99bd4ef 9069{
c19d1205
ZW
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 switch (inst.operands[1].imm)
9072 {
9073 case 1: inst.instruction |= CP_T_X; break;
9074 case 2: inst.instruction |= CP_T_Y; break;
9075 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9076 case 4: break;
9077 default: abort ();
9078 }
b99bd4ef 9079
c19d1205
ZW
9080 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9081 {
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst.reloc.exp.X_op != O_constant
9087 || inst.reloc.exp.X_add_number != 0,
9088 _("this instruction does not support indexing"));
b99bd4ef 9089
c19d1205
ZW
9090 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9091 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 9092
c19d1205
ZW
9093 if (!(inst.instruction & INDEX_UP))
9094 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 9095
c19d1205
ZW
9096 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9097 {
9098 inst.operands[2].preind = 0;
9099 inst.operands[2].postind = 1;
9100 }
9101 }
b99bd4ef 9102
c19d1205 9103 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 9104}
c19d1205
ZW
9105\f
9106/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 9107
c19d1205
ZW
9108static void
9109do_iwmmxt_tandorc (void)
9110{
9111 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9112}
b99bd4ef 9113
c19d1205
ZW
9114static void
9115do_iwmmxt_textrc (void)
9116{
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].imm;
9119}
b99bd4ef
NC
9120
9121static void
c19d1205 9122do_iwmmxt_textrm (void)
b99bd4ef 9123{
c19d1205
ZW
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 inst.instruction |= inst.operands[2].imm;
9127}
b99bd4ef 9128
c19d1205
ZW
9129static void
9130do_iwmmxt_tinsr (void)
9131{
9132 inst.instruction |= inst.operands[0].reg << 16;
9133 inst.instruction |= inst.operands[1].reg << 12;
9134 inst.instruction |= inst.operands[2].imm;
9135}
b99bd4ef 9136
c19d1205
ZW
9137static void
9138do_iwmmxt_tmia (void)
9139{
9140 inst.instruction |= inst.operands[0].reg << 5;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].reg << 12;
9143}
b99bd4ef 9144
c19d1205
ZW
9145static void
9146do_iwmmxt_waligni (void)
9147{
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 inst.instruction |= inst.operands[1].reg << 16;
9150 inst.instruction |= inst.operands[2].reg;
9151 inst.instruction |= inst.operands[3].imm << 20;
9152}
b99bd4ef 9153
2d447fca
JM
9154static void
9155do_iwmmxt_wmerge (void)
9156{
9157 inst.instruction |= inst.operands[0].reg << 12;
9158 inst.instruction |= inst.operands[1].reg << 16;
9159 inst.instruction |= inst.operands[2].reg;
9160 inst.instruction |= inst.operands[3].imm << 21;
9161}
9162
c19d1205
ZW
9163static void
9164do_iwmmxt_wmov (void)
9165{
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst.instruction |= inst.operands[0].reg << 12;
9168 inst.instruction |= inst.operands[1].reg << 16;
9169 inst.instruction |= inst.operands[1].reg;
9170}
b99bd4ef 9171
c19d1205
ZW
9172static void
9173do_iwmmxt_wldstbh (void)
9174{
8f06b2d8 9175 int reloc;
c19d1205 9176 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
9177 if (thumb_mode)
9178 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9179 else
9180 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9181 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
9182}
9183
c19d1205
ZW
9184static void
9185do_iwmmxt_wldstw (void)
9186{
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst.operands[0].isreg)
9189 {
9190 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9191 inst.instruction |= 0xf0000000;
9192 }
b99bd4ef 9193
c19d1205
ZW
9194 inst.instruction |= inst.operands[0].reg << 12;
9195 encode_arm_cp_address (1, TRUE, TRUE, 0);
9196}
b99bd4ef
NC
9197
9198static void
c19d1205 9199do_iwmmxt_wldstd (void)
b99bd4ef 9200{
c19d1205 9201 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9203 && inst.operands[1].immisreg)
9204 {
9205 inst.instruction &= ~0x1a000ff;
9206 inst.instruction |= (0xf << 28);
9207 if (inst.operands[1].preind)
9208 inst.instruction |= PRE_INDEX;
9209 if (!inst.operands[1].negative)
9210 inst.instruction |= INDEX_UP;
9211 if (inst.operands[1].writeback)
9212 inst.instruction |= WRITE_BACK;
9213 inst.instruction |= inst.operands[1].reg << 16;
9214 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9215 inst.instruction |= inst.operands[1].imm;
9216 }
9217 else
9218 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 9219}
b99bd4ef 9220
c19d1205
ZW
9221static void
9222do_iwmmxt_wshufh (void)
9223{
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9227 inst.instruction |= (inst.operands[2].imm & 0x0f);
9228}
b99bd4ef 9229
c19d1205
ZW
9230static void
9231do_iwmmxt_wzero (void)
9232{
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst.instruction |= inst.operands[0].reg;
9235 inst.instruction |= inst.operands[0].reg << 12;
9236 inst.instruction |= inst.operands[0].reg << 16;
9237}
2d447fca
JM
9238
9239static void
9240do_iwmmxt_wrwrwr_or_imm5 (void)
9241{
9242 if (inst.operands[2].isreg)
9243 do_rd_rn_rm ();
9244 else {
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9246 _("immediate operand requires iWMMXt2"));
9247 do_rd_rn ();
9248 if (inst.operands[2].imm == 0)
9249 {
9250 switch ((inst.instruction >> 20) & 0xf)
9251 {
9252 case 4:
9253 case 5:
9254 case 6:
5f4273c7 9255 case 7:
2d447fca
JM
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst.operands[2].imm = 16;
9258 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9259 break;
9260 case 8:
9261 case 9:
9262 case 10:
9263 case 11:
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst.operands[2].imm = 32;
9266 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9267 break;
9268 case 12:
9269 case 13:
9270 case 14:
9271 case 15:
9272 {
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9274 unsigned long wrn;
9275 wrn = (inst.instruction >> 16) & 0xf;
9276 inst.instruction &= 0xff0fff0f;
9277 inst.instruction |= wrn;
9278 /* Bail out here; the instruction is now assembled. */
9279 return;
9280 }
9281 }
9282 }
9283 /* Map 32 -> 0, etc. */
9284 inst.operands[2].imm &= 0x1f;
9285 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9286 }
9287}
c19d1205
ZW
9288\f
9289/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
b99bd4ef 9291
c19d1205 9292/* Insns like "foo X,Y,Z". */
b99bd4ef 9293
c19d1205
ZW
9294static void
9295do_mav_triple (void)
9296{
9297 inst.instruction |= inst.operands[0].reg << 16;
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300}
b99bd4ef 9301
c19d1205
ZW
9302/* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9304
c19d1205
ZW
9305static void
9306do_mav_quad (void)
9307{
9308 inst.instruction |= inst.operands[0].reg << 5;
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9312}
9313
c19d1205
ZW
9314/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9315static void
9316do_mav_dspsc (void)
a737bd4d 9317{
c19d1205
ZW
9318 inst.instruction |= inst.operands[1].reg << 12;
9319}
a737bd4d 9320
c19d1205
ZW
9321/* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9324
c19d1205
ZW
9325static void
9326do_mav_shift (void)
9327{
9328 int imm = inst.operands[2].imm;
a737bd4d 9329
c19d1205
ZW
9330 inst.instruction |= inst.operands[0].reg << 12;
9331 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9332
c19d1205
ZW
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9337
c19d1205
ZW
9338 inst.instruction |= imm;
9339}
9340\f
9341/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9342
c19d1205
ZW
9343/* Xscale multiply-accumulate (argument parse)
9344 MIAcc acc0,Rm,Rs
9345 MIAPHcc acc0,Rm,Rs
9346 MIAxycc acc0,Rm,Rs. */
a737bd4d 9347
c19d1205
ZW
9348static void
9349do_xsc_mia (void)
9350{
9351 inst.instruction |= inst.operands[1].reg;
9352 inst.instruction |= inst.operands[2].reg << 12;
9353}
a737bd4d 9354
c19d1205 9355/* Xscale move-accumulator-register (argument parse)
a737bd4d 9356
c19d1205 9357 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9358
c19d1205
ZW
9359static void
9360do_xsc_mar (void)
9361{
9362 inst.instruction |= inst.operands[1].reg << 12;
9363 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9364}
9365
c19d1205 9366/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9367
c19d1205 9368 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9369
9370static void
c19d1205 9371do_xsc_mra (void)
b99bd4ef 9372{
c19d1205
ZW
9373 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg << 16;
9376}
9377\f
9378/* Encoding functions relevant only to Thumb. */
b99bd4ef 9379
c19d1205
ZW
9380/* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9382
9383static void
9384encode_thumb32_shifted_operand (int i)
9385{
9386 unsigned int value = inst.reloc.exp.X_add_number;
9387 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9388
9c3c69f2
PB
9389 constraint (inst.operands[i].immisreg,
9390 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9391 inst.instruction |= inst.operands[i].reg;
9392 if (shift == SHIFT_RRX)
9393 inst.instruction |= SHIFT_ROR << 4;
9394 else
b99bd4ef 9395 {
c19d1205
ZW
9396 constraint (inst.reloc.exp.X_op != O_constant,
9397 _("expression too complex"));
9398
9399 constraint (value > 32
9400 || (value == 32 && (shift == SHIFT_LSL
9401 || shift == SHIFT_ROR)),
9402 _("shift expression is too large"));
9403
9404 if (value == 0)
9405 shift = SHIFT_LSL;
9406 else if (value == 32)
9407 value = 0;
9408
9409 inst.instruction |= shift << 4;
9410 inst.instruction |= (value & 0x1c) << 10;
9411 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9412 }
c19d1205 9413}
b99bd4ef 9414
b99bd4ef 9415
c19d1205
ZW
9416/* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9420 that cannot be used with a D instruction. If it is a store insn,
9421 reject PC in Rn. */
b99bd4ef 9422
c19d1205
ZW
9423static void
9424encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9425{
5be8be5d 9426 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9427
9428 constraint (!inst.operands[i].isreg,
53365c0d 9429 _("Instruction does not support =N addresses"));
b99bd4ef 9430
c19d1205
ZW
9431 inst.instruction |= inst.operands[i].reg << 16;
9432 if (inst.operands[i].immisreg)
b99bd4ef 9433 {
5be8be5d 9434 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9435 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9436 constraint (inst.operands[i].negative,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst.operands[i].postind,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst.operands[i].writeback,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9443 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9444
f40d1643 9445 inst.instruction |= inst.operands[i].imm;
c19d1205 9446 if (inst.operands[i].shifted)
b99bd4ef 9447 {
c19d1205
ZW
9448 constraint (inst.reloc.exp.X_op != O_constant,
9449 _("expression too complex"));
9c3c69f2
PB
9450 constraint (inst.reloc.exp.X_add_number < 0
9451 || inst.reloc.exp.X_add_number > 3,
c19d1205 9452 _("shift out of range"));
9c3c69f2 9453 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9454 }
9455 inst.reloc.type = BFD_RELOC_UNUSED;
9456 }
9457 else if (inst.operands[i].preind)
9458 {
5be8be5d 9459 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9460 constraint (is_t && inst.operands[i].writeback,
c19d1205 9461 _("cannot use writeback with this instruction"));
5be8be5d
DG
9462 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9463 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9464
9465 if (is_d)
9466 {
9467 inst.instruction |= 0x01000000;
9468 if (inst.operands[i].writeback)
9469 inst.instruction |= 0x00200000;
b99bd4ef 9470 }
c19d1205 9471 else
b99bd4ef 9472 {
c19d1205
ZW
9473 inst.instruction |= 0x00000c00;
9474 if (inst.operands[i].writeback)
9475 inst.instruction |= 0x00000100;
b99bd4ef 9476 }
c19d1205 9477 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9478 }
c19d1205 9479 else if (inst.operands[i].postind)
b99bd4ef 9480 {
9c2799c2 9481 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9482 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t, _("cannot use post-indexing with this instruction"));
9484
9485 if (is_d)
9486 inst.instruction |= 0x00200000;
9487 else
9488 inst.instruction |= 0x00000900;
9489 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9490 }
9491 else /* unindexed - only for coprocessor */
9492 inst.error = _("instruction does not accept unindexed addressing");
9493}
9494
9495/* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9499 holds variant (1).
9500 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9501#define T16_32_TAB \
21d799b5
NC
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
53c4b28b
MGD
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
c19d1205
ZW
9580
9581/* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
21d799b5 9584#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9585enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9586#undef X
9587
9588#define X(a,b,c) 0x##b
9589static const unsigned short thumb_op16[] = { T16_32_TAB };
9590#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9591#undef X
9592
9593#define X(a,b,c) 0x##c
9594static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9595#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9597#undef X
9598#undef T16_32_TAB
9599
9600/* Thumb instruction encoders, in alphabetical order. */
9601
92e90b6e 9602/* ADDW or SUBW. */
c921be7d 9603
92e90b6e
PB
9604static void
9605do_t_add_sub_w (void)
9606{
9607 int Rd, Rn;
9608
9609 Rd = inst.operands[0].reg;
9610 Rn = inst.operands[1].reg;
9611
539d4391
NC
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9614 if (Rn == REG_SP)
9615 constraint (Rd == REG_PC, BAD_PC);
9616 else
9617 reject_bad_reg (Rd);
fdfde340 9618
92e90b6e
PB
9619 inst.instruction |= (Rn << 16) | (Rd << 8);
9620 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9621}
9622
c19d1205
ZW
9623/* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9625
9626static void
9627do_t_add_sub (void)
9628{
9629 int Rd, Rs, Rn;
9630
9631 Rd = inst.operands[0].reg;
9632 Rs = (inst.operands[1].present
9633 ? inst.operands[1].reg /* Rd, Rs, foo */
9634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9635
e07e6e58
NC
9636 if (Rd == REG_PC)
9637 set_it_insn_type_last ();
9638
c19d1205
ZW
9639 if (unified_syntax)
9640 {
0110f2b8
PB
9641 bfd_boolean flags;
9642 bfd_boolean narrow;
9643 int opcode;
9644
9645 flags = (inst.instruction == T_MNEM_adds
9646 || inst.instruction == T_MNEM_subs);
9647 if (flags)
e07e6e58 9648 narrow = !in_it_block ();
0110f2b8 9649 else
e07e6e58 9650 narrow = in_it_block ();
c19d1205 9651 if (!inst.operands[2].isreg)
b99bd4ef 9652 {
16805f35
PB
9653 int add;
9654
fdfde340
JM
9655 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9656
16805f35
PB
9657 add = (inst.instruction == T_MNEM_add
9658 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9659 opcode = 0;
9660 if (inst.size_req != 4)
9661 {
0110f2b8
PB
9662 /* Attempt to use a narrow opcode, with relaxation if
9663 appropriate. */
9664 if (Rd == REG_SP && Rs == REG_SP && !flags)
9665 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9666 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9667 opcode = T_MNEM_add_sp;
9668 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9669 opcode = T_MNEM_add_pc;
9670 else if (Rd <= 7 && Rs <= 7 && narrow)
9671 {
9672 if (flags)
9673 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9674 else
9675 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9676 }
9677 if (opcode)
9678 {
9679 inst.instruction = THUMB_OP16(opcode);
9680 inst.instruction |= (Rd << 4) | Rs;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9682 if (inst.size_req != 2)
9683 inst.relax = opcode;
9684 }
9685 else
9686 constraint (inst.size_req == 2, BAD_HIREG);
9687 }
9688 if (inst.size_req == 4
9689 || (inst.size_req != 2 && !opcode))
9690 {
efd81785
PB
9691 if (Rd == REG_PC)
9692 {
fdfde340 9693 constraint (add, BAD_PC);
efd81785
PB
9694 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst.reloc.exp.X_op != O_constant,
9697 _("expression too complex"));
9698 constraint (inst.reloc.exp.X_add_number < 0
9699 || inst.reloc.exp.X_add_number > 0xff,
9700 _("immediate value out of range"));
9701 inst.instruction = T2_SUBS_PC_LR
9702 | inst.reloc.exp.X_add_number;
9703 inst.reloc.type = BFD_RELOC_UNUSED;
9704 return;
9705 }
9706 else if (Rs == REG_PC)
16805f35
PB
9707 {
9708 /* Always use addw/subw. */
9709 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9710 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9711 }
9712 else
9713 {
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction = (inst.instruction & 0xe1ffffff)
9716 | 0x10000000;
9717 if (flags)
9718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9719 else
9720 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9721 }
dc4503c6
PB
9722 inst.instruction |= Rd << 8;
9723 inst.instruction |= Rs << 16;
0110f2b8 9724 }
b99bd4ef 9725 }
c19d1205
ZW
9726 else
9727 {
5f4cb198
NC
9728 unsigned int value = inst.reloc.exp.X_add_number;
9729 unsigned int shift = inst.operands[2].shift_kind;
9730
c19d1205
ZW
9731 Rn = inst.operands[2].reg;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst.operands[2].shifted && inst.size_req != 4)
9734 {
e27ec89e
PB
9735 if (Rd > 7 || Rs > 7 || Rn > 7)
9736 narrow = FALSE;
9737
9738 if (narrow)
c19d1205 9739 {
e27ec89e
PB
9740 inst.instruction = ((inst.instruction == T_MNEM_adds
9741 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9742 ? T_OPCODE_ADD_R3
9743 : T_OPCODE_SUB_R3);
9744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9745 return;
9746 }
b99bd4ef 9747
7e806470 9748 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9749 {
7e806470
PB
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd > 7 || Rn > 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9755 {
7e806470
PB
9756 if (Rd == Rn)
9757 {
9758 Rn = Rs;
9759 Rs = Rd;
9760 }
c19d1205
ZW
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 inst.instruction |= Rn << 3;
9765 return;
9766 }
c19d1205
ZW
9767 }
9768 }
c921be7d 9769
fdfde340
JM
9770 constraint (Rd == REG_PC, BAD_PC);
9771 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9772 constraint (Rs == REG_PC, BAD_PC);
9773 reject_bad_reg (Rn);
9774
c19d1205
ZW
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9777 _("shift must be constant"));
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction |= Rd << 8;
9780 inst.instruction |= Rs << 16;
5f4cb198
NC
9781 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9784 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
9785 encode_thumb32_shifted_operand (2);
9786 }
9787 }
9788 else
9789 {
9790 constraint (inst.instruction == T_MNEM_adds
9791 || inst.instruction == T_MNEM_subs,
9792 BAD_THUMB32);
b99bd4ef 9793
c19d1205 9794 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9795 {
c19d1205
ZW
9796 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9797 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9798 BAD_HIREG);
9799
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? 0x0000 : 0x8000);
9802 inst.instruction |= (Rd << 4) | Rs;
9803 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9804 return;
9805 }
9806
c19d1205
ZW
9807 Rn = inst.operands[2].reg;
9808 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9809
c19d1205
ZW
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9812 {
c19d1205
ZW
9813 /* Can't do this for SUB. */
9814 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9815 inst.instruction = T_OPCODE_ADD_HI;
9816 inst.instruction |= (Rd & 8) << 4;
9817 inst.instruction |= (Rd & 7);
9818 if (Rs == Rd)
9819 inst.instruction |= Rn << 3;
9820 else if (Rn == Rd)
9821 inst.instruction |= Rs << 3;
9822 else
9823 constraint (1, _("dest must overlap one source register"));
9824 }
9825 else
9826 {
9827 inst.instruction = (inst.instruction == T_MNEM_add
9828 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9829 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9830 }
b99bd4ef 9831 }
b99bd4ef
NC
9832}
9833
c19d1205
ZW
9834static void
9835do_t_adr (void)
9836{
fdfde340
JM
9837 unsigned Rd;
9838
9839 Rd = inst.operands[0].reg;
9840 reject_bad_reg (Rd);
9841
9842 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9843 {
9844 /* Defer to section relaxation. */
9845 inst.relax = inst.instruction;
9846 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9847 inst.instruction |= Rd << 4;
0110f2b8
PB
9848 }
9849 else if (unified_syntax && inst.size_req != 2)
e9f89963 9850 {
0110f2b8 9851 /* Generate a 32-bit opcode. */
e9f89963 9852 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9853 inst.instruction |= Rd << 8;
e9f89963
PB
9854 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9855 inst.reloc.pc_rel = 1;
9856 }
9857 else
9858 {
0110f2b8 9859 /* Generate a 16-bit opcode. */
e9f89963
PB
9860 inst.instruction = THUMB_OP16 (inst.instruction);
9861 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9862 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9863 inst.reloc.pc_rel = 1;
b99bd4ef 9864
fdfde340 9865 inst.instruction |= Rd << 4;
e9f89963 9866 }
c19d1205 9867}
b99bd4ef 9868
c19d1205
ZW
9869/* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9875static void
c19d1205 9876do_t_arit3 (void)
b99bd4ef 9877{
c19d1205 9878 int Rd, Rs, Rn;
b99bd4ef 9879
c19d1205
ZW
9880 Rd = inst.operands[0].reg;
9881 Rs = (inst.operands[1].present
9882 ? inst.operands[1].reg /* Rd, Rs, foo */
9883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9884 Rn = inst.operands[2].reg;
b99bd4ef 9885
fdfde340
JM
9886 reject_bad_reg (Rd);
9887 reject_bad_reg (Rs);
9888 if (inst.operands[2].isreg)
9889 reject_bad_reg (Rn);
9890
c19d1205 9891 if (unified_syntax)
b99bd4ef 9892 {
c19d1205
ZW
9893 if (!inst.operands[2].isreg)
9894 {
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst.instruction = THUMB_OP32 (inst.instruction);
9898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9899 inst.instruction |= Rd << 8;
9900 inst.instruction |= Rs << 16;
9901 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9902 }
9903 else
9904 {
e27ec89e
PB
9905 bfd_boolean narrow;
9906
c19d1205 9907 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9908 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9909 narrow = !in_it_block ();
e27ec89e 9910 else
e07e6e58 9911 narrow = in_it_block ();
e27ec89e
PB
9912
9913 if (Rd > 7 || Rn > 7 || Rs > 7)
9914 narrow = FALSE;
9915 if (inst.operands[2].shifted)
9916 narrow = FALSE;
9917 if (inst.size_req == 4)
9918 narrow = FALSE;
9919
9920 if (narrow
c19d1205
ZW
9921 && Rd == Rs)
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= Rd;
9925 inst.instruction |= Rn << 3;
9926 return;
9927 }
b99bd4ef 9928
c19d1205
ZW
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst.operands[2].shifted
9931 && inst.operands[2].immisreg,
9932 _("shift must be constant"));
9933 inst.instruction = THUMB_OP32 (inst.instruction);
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rs << 16;
9936 encode_thumb32_shifted_operand (2);
9937 }
a737bd4d 9938 }
c19d1205 9939 else
b99bd4ef 9940 {
c19d1205
ZW
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9943 says it doesn't. */
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9945
c19d1205
ZW
9946 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9947 _("unshifted register required"));
9948 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9949 constraint (Rd != Rs,
9950 _("dest and source1 must be the same register"));
a737bd4d 9951
c19d1205
ZW
9952 inst.instruction = THUMB_OP16 (inst.instruction);
9953 inst.instruction |= Rd;
9954 inst.instruction |= Rn << 3;
b99bd4ef 9955 }
a737bd4d 9956}
b99bd4ef 9957
c19d1205
ZW
9958/* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9962 accepted. */
9963static void
9964do_t_arit3c (void)
a737bd4d 9965{
c19d1205 9966 int Rd, Rs, Rn;
b99bd4ef 9967
c19d1205
ZW
9968 Rd = inst.operands[0].reg;
9969 Rs = (inst.operands[1].present
9970 ? inst.operands[1].reg /* Rd, Rs, foo */
9971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9972 Rn = inst.operands[2].reg;
c921be7d 9973
fdfde340
JM
9974 reject_bad_reg (Rd);
9975 reject_bad_reg (Rs);
9976 if (inst.operands[2].isreg)
9977 reject_bad_reg (Rn);
a737bd4d 9978
c19d1205 9979 if (unified_syntax)
a737bd4d 9980 {
c19d1205 9981 if (!inst.operands[2].isreg)
b99bd4ef 9982 {
c19d1205
ZW
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst.instruction = THUMB_OP32 (inst.instruction);
9986 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9987 inst.instruction |= Rd << 8;
9988 inst.instruction |= Rs << 16;
9989 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9990 }
c19d1205 9991 else
a737bd4d 9992 {
e27ec89e
PB
9993 bfd_boolean narrow;
9994
c19d1205 9995 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9996 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9997 narrow = !in_it_block ();
e27ec89e 9998 else
e07e6e58 9999 narrow = in_it_block ();
e27ec89e
PB
10000
10001 if (Rd > 7 || Rn > 7 || Rs > 7)
10002 narrow = FALSE;
10003 if (inst.operands[2].shifted)
10004 narrow = FALSE;
10005 if (inst.size_req == 4)
10006 narrow = FALSE;
10007
10008 if (narrow)
a737bd4d 10009 {
c19d1205 10010 if (Rd == Rs)
a737bd4d 10011 {
c19d1205
ZW
10012 inst.instruction = THUMB_OP16 (inst.instruction);
10013 inst.instruction |= Rd;
10014 inst.instruction |= Rn << 3;
10015 return;
a737bd4d 10016 }
c19d1205 10017 if (Rd == Rn)
a737bd4d 10018 {
c19d1205
ZW
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= Rd;
10021 inst.instruction |= Rs << 3;
10022 return;
a737bd4d
NC
10023 }
10024 }
c19d1205
ZW
10025
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst.operands[2].shifted
10028 && inst.operands[2].immisreg,
10029 _("shift must be constant"));
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 inst.instruction |= Rd << 8;
10032 inst.instruction |= Rs << 16;
10033 encode_thumb32_shifted_operand (2);
a737bd4d 10034 }
b99bd4ef 10035 }
c19d1205
ZW
10036 else
10037 {
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10042
c19d1205
ZW
10043 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10044 _("unshifted register required"));
10045 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10046
10047 inst.instruction = THUMB_OP16 (inst.instruction);
10048 inst.instruction |= Rd;
10049
10050 if (Rd == Rs)
10051 inst.instruction |= Rn << 3;
10052 else if (Rd == Rn)
10053 inst.instruction |= Rs << 3;
10054 else
10055 constraint (1, _("dest must overlap one source register"));
10056 }
a737bd4d
NC
10057}
10058
62b3e311
PB
10059static void
10060do_t_barrier (void)
10061{
10062 if (inst.operands[0].present)
10063 {
10064 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
10065 && inst.operands[0].imm > 0xf
10066 && inst.operands[0].imm < 0x0,
bd3ba5d1 10067 _("bad barrier type"));
62b3e311
PB
10068 inst.instruction |= inst.operands[0].imm;
10069 }
10070 else
10071 inst.instruction |= 0xf;
10072}
10073
c19d1205
ZW
10074static void
10075do_t_bfc (void)
a737bd4d 10076{
fdfde340 10077 unsigned Rd;
c19d1205
ZW
10078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
fdfde340
JM
10082 Rd = inst.operands[0].reg;
10083 reject_bad_reg (Rd);
10084 inst.instruction |= Rd << 8;
c19d1205
ZW
10085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10087 inst.instruction |= msb - 1;
b99bd4ef
NC
10088}
10089
c19d1205
ZW
10090static void
10091do_t_bfi (void)
b99bd4ef 10092{
fdfde340 10093 int Rd, Rn;
c19d1205 10094 unsigned int msb;
b99bd4ef 10095
fdfde340
JM
10096 Rd = inst.operands[0].reg;
10097 reject_bad_reg (Rd);
10098
c19d1205
ZW
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst.operands[1].isreg)
fdfde340
JM
10102 Rn = REG_PC;
10103 else
10104 {
10105 Rn = inst.operands[1].reg;
10106 reject_bad_reg (Rn);
10107 }
b99bd4ef 10108
c19d1205
ZW
10109 msb = inst.operands[2].imm + inst.operands[3].imm;
10110 constraint (msb > 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
fdfde340
JM
10113 inst.instruction |= Rd << 8;
10114 inst.instruction |= Rn << 16;
c19d1205
ZW
10115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10117 inst.instruction |= msb - 1;
b99bd4ef
NC
10118}
10119
c19d1205
ZW
10120static void
10121do_t_bfx (void)
b99bd4ef 10122{
fdfde340
JM
10123 unsigned Rd, Rn;
10124
10125 Rd = inst.operands[0].reg;
10126 Rn = inst.operands[1].reg;
10127
10128 reject_bad_reg (Rd);
10129 reject_bad_reg (Rn);
10130
c19d1205
ZW
10131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10132 _("bit-field extends past end of register"));
fdfde340
JM
10133 inst.instruction |= Rd << 8;
10134 inst.instruction |= Rn << 16;
c19d1205
ZW
10135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10137 inst.instruction |= inst.operands[3].imm - 1;
10138}
b99bd4ef 10139
c19d1205
ZW
10140/* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
b99bd4ef 10146
c19d1205
ZW
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
b99bd4ef 10149
c19d1205
ZW
10150static void
10151do_t_blx (void)
10152{
e07e6e58
NC
10153 set_it_insn_type_last ();
10154
c19d1205 10155 if (inst.operands[0].isreg)
fdfde340
JM
10156 {
10157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10158 /* We have a register, so this is BLX(2). */
10159 inst.instruction |= inst.operands[0].reg << 3;
10160 }
b99bd4ef
NC
10161 else
10162 {
c19d1205 10163 /* No register. This must be BLX(1). */
2fc8bdac 10164 inst.instruction = 0xf000e800;
0855e32b 10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
10166 }
10167}
10168
c19d1205
ZW
10169static void
10170do_t_branch (void)
b99bd4ef 10171{
0110f2b8 10172 int opcode;
dfa9f0d5 10173 int cond;
9ae92b05 10174 int reloc;
dfa9f0d5 10175
e07e6e58
NC
10176 cond = inst.cond;
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10178
10179 if (in_it_block ())
dfa9f0d5
PB
10180 {
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10182 branches. */
10183 cond = COND_ALWAYS;
dfa9f0d5
PB
10184 }
10185 else
10186 cond = inst.cond;
10187
10188 if (cond != COND_ALWAYS)
0110f2b8
PB
10189 opcode = T_MNEM_bcond;
10190 else
10191 opcode = inst.instruction;
10192
12d6b0b7
RS
10193 if (unified_syntax
10194 && (inst.size_req == 4
10960bfb
PB
10195 || (inst.size_req != 2
10196 && (inst.operands[0].hasreloc
10197 || inst.reloc.exp.X_op == O_constant))))
c19d1205 10198 {
0110f2b8 10199 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 10200 if (cond == COND_ALWAYS)
9ae92b05 10201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
10202 else
10203 {
9c2799c2 10204 gas_assert (cond != 0xF);
dfa9f0d5 10205 inst.instruction |= cond << 22;
9ae92b05 10206 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
10207 }
10208 }
b99bd4ef
NC
10209 else
10210 {
0110f2b8 10211 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 10212 if (cond == COND_ALWAYS)
9ae92b05 10213 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 10214 else
b99bd4ef 10215 {
dfa9f0d5 10216 inst.instruction |= cond << 8;
9ae92b05 10217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 10218 }
0110f2b8
PB
10219 /* Allow section relaxation. */
10220 if (unified_syntax && inst.size_req != 2)
10221 inst.relax = opcode;
b99bd4ef 10222 }
9ae92b05 10223 inst.reloc.type = reloc;
c19d1205 10224 inst.reloc.pc_rel = 1;
b99bd4ef
NC
10225}
10226
8884b720
MGD
10227/* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10229 RANGE. */
b99bd4ef 10230static void
8884b720 10231do_t_bkpt_hlt1 (int range)
b99bd4ef 10232{
dfa9f0d5
PB
10233 constraint (inst.cond != COND_ALWAYS,
10234 _("instruction is always unconditional"));
c19d1205 10235 if (inst.operands[0].present)
b99bd4ef 10236 {
8884b720 10237 constraint (inst.operands[0].imm > range,
c19d1205
ZW
10238 _("immediate value out of range"));
10239 inst.instruction |= inst.operands[0].imm;
b99bd4ef 10240 }
8884b720
MGD
10241
10242 set_it_insn_type (NEUTRAL_IT_INSN);
10243}
10244
10245static void
10246do_t_hlt (void)
10247{
10248 do_t_bkpt_hlt1 (63);
10249}
10250
10251static void
10252do_t_bkpt (void)
10253{
10254 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
10255}
10256
10257static void
c19d1205 10258do_t_branch23 (void)
b99bd4ef 10259{
e07e6e58 10260 set_it_insn_type_last ();
0855e32b 10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 10262
0855e32b
NS
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10269 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 10270
4343666d 10271#if defined(OBJ_COFF)
c19d1205
ZW
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst.reloc.exp.X_op == O_symbol
10277 && inst.reloc.exp.X_add_symbol != NULL
10278 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10279 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10280 inst.reloc.exp.X_add_symbol =
10281 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 10282#endif
90e4755a
RE
10283}
10284
10285static void
c19d1205 10286do_t_bx (void)
90e4755a 10287{
e07e6e58 10288 set_it_insn_type_last ();
c19d1205
ZW
10289 inst.instruction |= inst.operands[0].reg << 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10293}
90e4755a 10294
c19d1205
ZW
10295static void
10296do_t_bxj (void)
10297{
fdfde340 10298 int Rm;
90e4755a 10299
e07e6e58 10300 set_it_insn_type_last ();
fdfde340
JM
10301 Rm = inst.operands[0].reg;
10302 reject_bad_reg (Rm);
10303 inst.instruction |= Rm << 16;
90e4755a
RE
10304}
10305
10306static void
c19d1205 10307do_t_clz (void)
90e4755a 10308{
fdfde340
JM
10309 unsigned Rd;
10310 unsigned Rm;
10311
10312 Rd = inst.operands[0].reg;
10313 Rm = inst.operands[1].reg;
10314
10315 reject_bad_reg (Rd);
10316 reject_bad_reg (Rm);
10317
10318 inst.instruction |= Rd << 8;
10319 inst.instruction |= Rm << 16;
10320 inst.instruction |= Rm;
c19d1205 10321}
90e4755a 10322
dfa9f0d5
PB
10323static void
10324do_t_cps (void)
10325{
e07e6e58 10326 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10327 inst.instruction |= inst.operands[0].imm;
10328}
10329
c19d1205
ZW
10330static void
10331do_t_cpsi (void)
10332{
e07e6e58 10333 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10334 if (unified_syntax
62b3e311
PB
10335 && (inst.operands[1].present || inst.size_req == 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10337 {
c19d1205
ZW
10338 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10339 inst.instruction = 0xf3af8000;
10340 inst.instruction |= imod << 9;
10341 inst.instruction |= inst.operands[0].imm << 5;
10342 if (inst.operands[1].present)
10343 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10344 }
c19d1205 10345 else
90e4755a 10346 {
62b3e311
PB
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10348 && (inst.operands[0].imm & 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst.instruction |= inst.operands[0].imm;
90e4755a 10355 }
90e4755a
RE
10356}
10357
c19d1205
ZW
10358/* THUMB CPY instruction (argument parse). */
10359
90e4755a 10360static void
c19d1205 10361do_t_cpy (void)
90e4755a 10362{
c19d1205 10363 if (inst.size_req == 4)
90e4755a 10364 {
c19d1205
ZW
10365 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
90e4755a 10368 }
c19d1205 10369 else
90e4755a 10370 {
c19d1205
ZW
10371 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10372 inst.instruction |= (inst.operands[0].reg & 0x7);
10373 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10374 }
90e4755a
RE
10375}
10376
90e4755a 10377static void
25fe350b 10378do_t_cbz (void)
90e4755a 10379{
e07e6e58 10380 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10381 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10382 inst.instruction |= inst.operands[0].reg;
10383 inst.reloc.pc_rel = 1;
10384 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10385}
90e4755a 10386
62b3e311
PB
10387static void
10388do_t_dbg (void)
10389{
10390 inst.instruction |= inst.operands[0].imm;
10391}
10392
10393static void
10394do_t_div (void)
10395{
fdfde340
JM
10396 unsigned Rd, Rn, Rm;
10397
10398 Rd = inst.operands[0].reg;
10399 Rn = (inst.operands[1].present
10400 ? inst.operands[1].reg : Rd);
10401 Rm = inst.operands[2].reg;
10402
10403 reject_bad_reg (Rd);
10404 reject_bad_reg (Rn);
10405 reject_bad_reg (Rm);
10406
10407 inst.instruction |= Rd << 8;
10408 inst.instruction |= Rn << 16;
10409 inst.instruction |= Rm;
62b3e311
PB
10410}
10411
c19d1205
ZW
10412static void
10413do_t_hint (void)
10414{
10415 if (unified_syntax && inst.size_req == 4)
10416 inst.instruction = THUMB_OP32 (inst.instruction);
10417 else
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419}
90e4755a 10420
c19d1205
ZW
10421static void
10422do_t_it (void)
10423{
10424 unsigned int cond = inst.operands[0].imm;
e27ec89e 10425
e07e6e58
NC
10426 set_it_insn_type (IT_INSN);
10427 now_it.mask = (inst.instruction & 0xf) | 0x10;
10428 now_it.cc = cond;
5a01bb1d 10429 now_it.warn_deprecated = FALSE;
e27ec89e
PB
10430
10431 /* If the condition is a negative condition, invert the mask. */
c19d1205 10432 if ((cond & 0x1) == 0x0)
90e4755a 10433 {
c19d1205 10434 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10435
c19d1205 10436 if ((mask & 0x7) == 0)
5a01bb1d
MGD
10437 {
10438 /* No conversion needed. */
10439 now_it.block_length = 1;
10440 }
c19d1205 10441 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
10442 {
10443 mask ^= 0x8;
10444 now_it.block_length = 2;
10445 }
e27ec89e 10446 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
10447 {
10448 mask ^= 0xC;
10449 now_it.block_length = 3;
10450 }
c19d1205 10451 else
5a01bb1d
MGD
10452 {
10453 mask ^= 0xE;
10454 now_it.block_length = 4;
10455 }
90e4755a 10456
e27ec89e
PB
10457 inst.instruction &= 0xfff0;
10458 inst.instruction |= mask;
c19d1205 10459 }
90e4755a 10460
c19d1205
ZW
10461 inst.instruction |= cond << 4;
10462}
90e4755a 10463
3c707909
PB
10464/* Helper function used for both push/pop and ldm/stm. */
10465static void
10466encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10467{
10468 bfd_boolean load;
10469
10470 load = (inst.instruction & (1 << 20)) != 0;
10471
10472 if (mask & (1 << 13))
10473 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10474
10475 if ((mask & (1 << base)) != 0
10476 && writeback)
10477 inst.error = _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10479
3c707909
PB
10480 if (load)
10481 {
e07e6e58
NC
10482 if (mask & (1 << 15))
10483 {
10484 if (mask & (1 << 14))
10485 inst.error = _("LR and PC should not both be in register list");
10486 else
10487 set_it_insn_type_last ();
10488 }
3c707909
PB
10489 }
10490 else
10491 {
10492 if (mask & (1 << 15))
10493 inst.error = _("PC not allowed in register list");
3c707909
PB
10494 }
10495
10496 if ((mask & (mask - 1)) == 0)
10497 {
10498 /* Single register transfers implemented as str/ldr. */
10499 if (writeback)
10500 {
10501 if (inst.instruction & (1 << 23))
10502 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10503 else
10504 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10505 }
10506 else
10507 {
10508 if (inst.instruction & (1 << 23))
10509 inst.instruction = 0x00800000; /* ia -> [base] */
10510 else
10511 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10512 }
10513
10514 inst.instruction |= 0xf8400000;
10515 if (load)
10516 inst.instruction |= 0x00100000;
10517
5f4273c7 10518 mask = ffs (mask) - 1;
3c707909
PB
10519 mask <<= 12;
10520 }
10521 else if (writeback)
10522 inst.instruction |= WRITE_BACK;
10523
10524 inst.instruction |= mask;
10525 inst.instruction |= base << 16;
10526}
10527
c19d1205
ZW
10528static void
10529do_t_ldmstm (void)
10530{
10531 /* This really doesn't seem worth it. */
10532 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10533 _("expression too complex"));
10534 constraint (inst.operands[1].writeback,
10535 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10536
c19d1205
ZW
10537 if (unified_syntax)
10538 {
3c707909
PB
10539 bfd_boolean narrow;
10540 unsigned mask;
10541
10542 narrow = FALSE;
c19d1205
ZW
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10545 && inst.size_req != 4
3c707909 10546 && !(inst.operands[1].imm & ~0xff))
90e4755a 10547 {
3c707909 10548 mask = 1 << inst.operands[0].reg;
90e4755a 10549
eab4f823 10550 if (inst.operands[0].reg <= 7)
90e4755a 10551 {
3c707909 10552 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10553 ? inst.operands[0].writeback
10554 : (inst.operands[0].writeback
10555 == !(inst.operands[1].imm & mask)))
10556 {
10557 if (inst.instruction == T_MNEM_stmia
10558 && (inst.operands[1].imm & mask)
10559 && (inst.operands[1].imm & (mask - 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst.operands[0].reg);
3c707909 10562
eab4f823
MGD
10563 inst.instruction = THUMB_OP16 (inst.instruction);
10564 inst.instruction |= inst.operands[0].reg << 8;
10565 inst.instruction |= inst.operands[1].imm;
10566 narrow = TRUE;
10567 }
10568 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10569 {
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10573 reglist.
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode;
10579 /* First, record an error for Case 3. */
10580 if (inst.operands[1].imm & mask
10581 && inst.operands[0].writeback)
fa94de6b 10582 inst.error =
eab4f823
MGD
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
fa94de6b
RM
10585
10586 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
10587 : T_MNEM_ldr);
10588 inst.instruction = THUMB_OP16 (opcode);
10589 inst.instruction |= inst.operands[0].reg << 3;
10590 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10591 narrow = TRUE;
10592 }
90e4755a 10593 }
eab4f823 10594 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10595 {
eab4f823
MGD
10596 if (inst.operands[0].writeback)
10597 {
fa94de6b 10598 inst.instruction =
eab4f823
MGD
10599 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10600 ? T_MNEM_push : T_MNEM_pop);
10601 inst.instruction |= inst.operands[1].imm;
10602 narrow = TRUE;
10603 }
10604 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10605 {
fa94de6b 10606 inst.instruction =
eab4f823
MGD
10607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10608 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10609 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10610 narrow = TRUE;
10611 }
90e4755a 10612 }
3c707909
PB
10613 }
10614
10615 if (!narrow)
10616 {
c19d1205
ZW
10617 if (inst.instruction < 0xffff)
10618 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10619
5f4273c7
NC
10620 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10621 inst.operands[0].writeback);
90e4755a
RE
10622 }
10623 }
c19d1205 10624 else
90e4755a 10625 {
c19d1205
ZW
10626 constraint (inst.operands[0].reg > 7
10627 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10628 constraint (inst.instruction != T_MNEM_ldmia
10629 && inst.instruction != T_MNEM_stmia,
10630 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10631 if (inst.instruction == T_MNEM_stmia)
f03698e6 10632 {
c19d1205
ZW
10633 if (!inst.operands[0].writeback)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10636 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10637 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10638 inst.operands[0].reg);
f03698e6 10639 }
c19d1205 10640 else
90e4755a 10641 {
c19d1205
ZW
10642 if (!inst.operands[0].writeback
10643 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst.operands[0].writeback
10646 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10647 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10648 }
10649
c19d1205
ZW
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].reg << 8;
10652 inst.instruction |= inst.operands[1].imm;
10653 }
10654}
e28cd48c 10655
c19d1205
ZW
10656static void
10657do_t_ldrex (void)
10658{
10659 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10660 || inst.operands[1].postind || inst.operands[1].writeback
10661 || inst.operands[1].immisreg || inst.operands[1].shifted
10662 || inst.operands[1].negative,
01cfc07f 10663 BAD_ADDR_MODE);
e28cd48c 10664
5be8be5d
DG
10665 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10666
c19d1205
ZW
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 inst.instruction |= inst.operands[1].reg << 16;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10670}
e28cd48c 10671
c19d1205
ZW
10672static void
10673do_t_ldrexd (void)
10674{
10675 if (!inst.operands[1].present)
1cac9012 10676 {
c19d1205
ZW
10677 constraint (inst.operands[0].reg == REG_LR,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10681 }
c19d1205
ZW
10682 constraint (inst.operands[0].reg == inst.operands[1].reg,
10683 BAD_OVERLAP);
b99bd4ef 10684
c19d1205
ZW
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 inst.instruction |= inst.operands[1].reg << 8;
10687 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10688}
10689
10690static void
c19d1205 10691do_t_ldst (void)
b99bd4ef 10692{
0110f2b8
PB
10693 unsigned long opcode;
10694 int Rn;
10695
e07e6e58
NC
10696 if (inst.operands[0].isreg
10697 && !inst.operands[0].preind
10698 && inst.operands[0].reg == REG_PC)
10699 set_it_insn_type_last ();
10700
0110f2b8 10701 opcode = inst.instruction;
c19d1205 10702 if (unified_syntax)
b99bd4ef 10703 {
53365c0d
PB
10704 if (!inst.operands[1].isreg)
10705 {
10706 if (opcode <= 0xffff)
10707 inst.instruction = THUMB_OP32 (opcode);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10709 return;
10710 }
0110f2b8
PB
10711 if (inst.operands[1].isreg
10712 && !inst.operands[1].writeback
c19d1205
ZW
10713 && !inst.operands[1].shifted && !inst.operands[1].postind
10714 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10715 && opcode <= 0xffff
10716 && inst.size_req != 4)
c19d1205 10717 {
0110f2b8
PB
10718 /* Insn may have a 16-bit form. */
10719 Rn = inst.operands[1].reg;
10720 if (inst.operands[1].immisreg)
10721 {
10722 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10723 /* [Rn, Rik] */
0110f2b8
PB
10724 if (Rn <= 7 && inst.operands[1].imm <= 7)
10725 goto op16;
5be8be5d
DG
10726 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10727 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10728 }
10729 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10730 && opcode != T_MNEM_ldrsb)
10731 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10732 || (Rn == REG_SP && opcode == T_MNEM_str))
10733 {
10734 /* [Rn, #const] */
10735 if (Rn > 7)
10736 {
10737 if (Rn == REG_PC)
10738 {
10739 if (inst.reloc.pc_rel)
10740 opcode = T_MNEM_ldr_pc2;
10741 else
10742 opcode = T_MNEM_ldr_pc;
10743 }
10744 else
10745 {
10746 if (opcode == T_MNEM_ldr)
10747 opcode = T_MNEM_ldr_sp;
10748 else
10749 opcode = T_MNEM_str_sp;
10750 }
10751 inst.instruction = inst.operands[0].reg << 8;
10752 }
10753 else
10754 {
10755 inst.instruction = inst.operands[0].reg;
10756 inst.instruction |= inst.operands[1].reg << 3;
10757 }
10758 inst.instruction |= THUMB_OP16 (opcode);
10759 if (inst.size_req == 2)
10760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10761 else
10762 inst.relax = opcode;
10763 return;
10764 }
c19d1205 10765 }
0110f2b8 10766 /* Definitely a 32-bit variant. */
5be8be5d 10767
8d67f500
NC
10768 /* Warning for Erratum 752419. */
10769 if (opcode == T_MNEM_ldr
10770 && inst.operands[0].reg == REG_SP
10771 && inst.operands[1].writeback == 1
10772 && !inst.operands[1].immisreg)
10773 {
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10781 }
10782
5be8be5d 10783 /* Do some validations regarding addressing modes. */
1be5fd2e 10784 if (inst.operands[1].immisreg)
5be8be5d
DG
10785 reject_bad_reg (inst.operands[1].imm);
10786
1be5fd2e
NC
10787 constraint (inst.operands[1].writeback == 1
10788 && inst.operands[0].reg == inst.operands[1].reg,
10789 BAD_OVERLAP);
10790
0110f2b8 10791 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10792 inst.instruction |= inst.operands[0].reg << 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 10794 check_ldr_r15_aligned ();
b99bd4ef
NC
10795 return;
10796 }
10797
c19d1205
ZW
10798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10799
10800 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10801 {
c19d1205
ZW
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10804 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10805 || inst.operands[1].postind || inst.operands[1].shifted
10806 || inst.operands[1].negative,
10807 _("Thumb does not support this addressing mode"));
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 goto op16;
b99bd4ef 10810 }
5f4273c7 10811
c19d1205
ZW
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 if (!inst.operands[1].isreg)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10815 return;
b99bd4ef 10816
c19d1205
ZW
10817 constraint (!inst.operands[1].preind
10818 || inst.operands[1].shifted
10819 || inst.operands[1].writeback,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10822 {
c19d1205
ZW
10823 constraint (inst.instruction & 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst.operands[1].reg == REG_PC
10826 && !(inst.instruction & THUMB_LOAD_BIT),
10827 _("r15 based store not allowed"));
10828 constraint (inst.operands[1].immisreg,
10829 _("invalid base register for register offset"));
b99bd4ef 10830
c19d1205
ZW
10831 if (inst.operands[1].reg == REG_PC)
10832 inst.instruction = T_OPCODE_LDR_PC;
10833 else if (inst.instruction & THUMB_LOAD_BIT)
10834 inst.instruction = T_OPCODE_LDR_SP;
10835 else
10836 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10837
c19d1205
ZW
10838 inst.instruction |= inst.operands[0].reg << 8;
10839 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10840 return;
10841 }
90e4755a 10842
c19d1205
ZW
10843 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10844 if (!inst.operands[1].immisreg)
10845 {
10846 /* Immediate offset. */
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10850 return;
10851 }
90e4755a 10852
c19d1205
ZW
10853 /* Register offset. */
10854 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10855 constraint (inst.operands[1].negative,
10856 _("Thumb does not support this addressing mode"));
90e4755a 10857
c19d1205
ZW
10858 op16:
10859 switch (inst.instruction)
10860 {
10861 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10862 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10863 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10864 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10865 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10866 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10869 default: abort ();
10870 }
90e4755a 10871
c19d1205
ZW
10872 inst.instruction |= inst.operands[0].reg;
10873 inst.instruction |= inst.operands[1].reg << 3;
10874 inst.instruction |= inst.operands[1].imm << 6;
10875}
90e4755a 10876
c19d1205
ZW
10877static void
10878do_t_ldstd (void)
10879{
10880 if (!inst.operands[1].present)
b99bd4ef 10881 {
c19d1205
ZW
10882 inst.operands[1].reg = inst.operands[0].reg + 1;
10883 constraint (inst.operands[0].reg == REG_LR,
10884 _("r14 not allowed here"));
bd340a04
MGD
10885 constraint (inst.operands[0].reg == REG_R12,
10886 _("r12 not allowed here"));
b99bd4ef 10887 }
bd340a04
MGD
10888
10889 if (inst.operands[2].writeback
10890 && (inst.operands[0].reg == inst.operands[2].reg
10891 || inst.operands[1].reg == inst.operands[2].reg))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10894
c19d1205
ZW
10895 inst.instruction |= inst.operands[0].reg << 12;
10896 inst.instruction |= inst.operands[1].reg << 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10898}
10899
c19d1205
ZW
10900static void
10901do_t_ldstt (void)
10902{
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10905}
a737bd4d 10906
b99bd4ef 10907static void
c19d1205 10908do_t_mla (void)
b99bd4ef 10909{
fdfde340 10910 unsigned Rd, Rn, Rm, Ra;
c921be7d 10911
fdfde340
JM
10912 Rd = inst.operands[0].reg;
10913 Rn = inst.operands[1].reg;
10914 Rm = inst.operands[2].reg;
10915 Ra = inst.operands[3].reg;
10916
10917 reject_bad_reg (Rd);
10918 reject_bad_reg (Rn);
10919 reject_bad_reg (Rm);
10920 reject_bad_reg (Ra);
10921
10922 inst.instruction |= Rd << 8;
10923 inst.instruction |= Rn << 16;
10924 inst.instruction |= Rm;
10925 inst.instruction |= Ra << 12;
c19d1205 10926}
b99bd4ef 10927
c19d1205
ZW
10928static void
10929do_t_mlal (void)
10930{
fdfde340
JM
10931 unsigned RdLo, RdHi, Rn, Rm;
10932
10933 RdLo = inst.operands[0].reg;
10934 RdHi = inst.operands[1].reg;
10935 Rn = inst.operands[2].reg;
10936 Rm = inst.operands[3].reg;
10937
10938 reject_bad_reg (RdLo);
10939 reject_bad_reg (RdHi);
10940 reject_bad_reg (Rn);
10941 reject_bad_reg (Rm);
10942
10943 inst.instruction |= RdLo << 12;
10944 inst.instruction |= RdHi << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
c19d1205 10947}
b99bd4ef 10948
c19d1205
ZW
10949static void
10950do_t_mov_cmp (void)
10951{
fdfde340
JM
10952 unsigned Rn, Rm;
10953
10954 Rn = inst.operands[0].reg;
10955 Rm = inst.operands[1].reg;
10956
e07e6e58
NC
10957 if (Rn == REG_PC)
10958 set_it_insn_type_last ();
10959
c19d1205 10960 if (unified_syntax)
b99bd4ef 10961 {
c19d1205
ZW
10962 int r0off = (inst.instruction == T_MNEM_mov
10963 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10964 unsigned long opcode;
3d388997
PB
10965 bfd_boolean narrow;
10966 bfd_boolean low_regs;
10967
fdfde340 10968 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10969 opcode = inst.instruction;
e07e6e58 10970 if (in_it_block ())
0110f2b8 10971 narrow = opcode != T_MNEM_movs;
3d388997 10972 else
0110f2b8 10973 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10974 if (inst.size_req == 4
10975 || inst.operands[1].shifted)
10976 narrow = FALSE;
10977
efd81785
PB
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10980 && !inst.operands[1].shifted
fdfde340
JM
10981 && Rn == REG_PC
10982 && Rm == REG_LR)
efd81785
PB
10983 {
10984 inst.instruction = T2_SUBS_PC_LR;
10985 return;
10986 }
10987
fdfde340
JM
10988 if (opcode == T_MNEM_cmp)
10989 {
10990 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10991 if (narrow)
10992 {
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10994 but valid. */
10995 warn_deprecated_sp (Rm);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm == REG_PC, BAD_PC);
11000 }
11001 else
11002 reject_bad_reg (Rm);
fdfde340
JM
11003 }
11004 else if (opcode == T_MNEM_mov
11005 || opcode == T_MNEM_movs)
11006 {
11007 if (inst.operands[1].isreg)
11008 {
11009 if (opcode == T_MNEM_movs)
11010 {
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013 }
76fa04a4
MGD
11014 else if (narrow)
11015 {
11016 /* This is mov.n. */
11017 if ((Rn == REG_SP || Rn == REG_PC)
11018 && (Rm == REG_SP || Rm == REG_PC))
11019 {
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm, Rn);
11023 }
11024 }
11025 else
11026 {
11027 /* This is mov.w. */
11028 constraint (Rn == REG_PC, BAD_PC);
11029 constraint (Rm == REG_PC, BAD_PC);
11030 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11031 }
fdfde340
JM
11032 }
11033 else
11034 reject_bad_reg (Rn);
11035 }
11036
c19d1205
ZW
11037 if (!inst.operands[1].isreg)
11038 {
0110f2b8 11039 /* Immediate operand. */
e07e6e58 11040 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
11041 narrow = 0;
11042 if (low_regs && narrow)
11043 {
11044 inst.instruction = THUMB_OP16 (opcode);
fdfde340 11045 inst.instruction |= Rn << 8;
0110f2b8
PB
11046 if (inst.size_req == 2)
11047 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11048 else
11049 inst.relax = opcode;
11050 }
11051 else
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11055 inst.instruction |= Rn << r0off;
0110f2b8
PB
11056 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11057 }
c19d1205 11058 }
728ca7c9
PB
11059 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11060 && (inst.instruction == T_MNEM_mov
11061 || inst.instruction == T_MNEM_movs))
11062 {
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11065
e07e6e58 11066 if (in_it_block ())
728ca7c9
PB
11067 narrow = !flags;
11068 else
11069 narrow = flags;
11070
11071 if (inst.size_req == 4)
11072 narrow = FALSE;
11073
11074 if (!low_regs || inst.operands[1].imm > 7)
11075 narrow = FALSE;
11076
fdfde340 11077 if (Rn != Rm)
728ca7c9
PB
11078 narrow = FALSE;
11079
11080 switch (inst.operands[1].shift_kind)
11081 {
11082 case SHIFT_LSL:
11083 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11084 break;
11085 case SHIFT_ASR:
11086 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11087 break;
11088 case SHIFT_LSR:
11089 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11090 break;
11091 case SHIFT_ROR:
11092 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11093 break;
11094 default:
5f4273c7 11095 abort ();
728ca7c9
PB
11096 }
11097
11098 inst.instruction = opcode;
11099 if (narrow)
11100 {
fdfde340 11101 inst.instruction |= Rn;
728ca7c9
PB
11102 inst.instruction |= inst.operands[1].imm << 3;
11103 }
11104 else
11105 {
11106 if (flags)
11107 inst.instruction |= CONDS_BIT;
11108
fdfde340
JM
11109 inst.instruction |= Rn << 8;
11110 inst.instruction |= Rm << 16;
728ca7c9
PB
11111 inst.instruction |= inst.operands[1].imm;
11112 }
11113 }
3d388997 11114 else if (!narrow)
c19d1205 11115 {
728ca7c9
PB
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs && inst.operands[1].shifted
11119 && (inst.instruction == T_MNEM_mov
11120 || inst.instruction == T_MNEM_movs))
11121 {
e07e6e58 11122 if (in_it_block ())
728ca7c9
PB
11123 narrow = (inst.instruction == T_MNEM_mov);
11124 else
11125 narrow = (inst.instruction == T_MNEM_movs);
11126 }
11127
11128 if (narrow)
11129 {
11130 switch (inst.operands[1].shift_kind)
11131 {
11132 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11133 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11134 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11135 default: narrow = FALSE; break;
11136 }
11137 }
11138
11139 if (narrow)
11140 {
fdfde340
JM
11141 inst.instruction |= Rn;
11142 inst.instruction |= Rm << 3;
728ca7c9
PB
11143 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11144 }
11145 else
11146 {
11147 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11148 inst.instruction |= Rn << r0off;
728ca7c9
PB
11149 encode_thumb32_shifted_operand (1);
11150 }
c19d1205
ZW
11151 }
11152 else
11153 switch (inst.instruction)
11154 {
11155 case T_MNEM_mov:
837b3435 11156 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
11157 results. Don't allow this. */
11158 if (low_regs)
11159 {
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
fa94de6b 11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
11164 arm_ext_v6);
11165 }
11166
c19d1205 11167 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
11168 inst.instruction |= (Rn & 0x8) << 4;
11169 inst.instruction |= (Rn & 0x7);
11170 inst.instruction |= Rm << 3;
c19d1205 11171 break;
b99bd4ef 11172
c19d1205
ZW
11173 case T_MNEM_movs:
11174 /* We know we have low registers at this point.
941a8a52
MGD
11175 Generate LSLS Rd, Rs, #0. */
11176 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
11177 inst.instruction |= Rn;
11178 inst.instruction |= Rm << 3;
c19d1205
ZW
11179 break;
11180
11181 case T_MNEM_cmp:
3d388997 11182 if (low_regs)
c19d1205
ZW
11183 {
11184 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
11185 inst.instruction |= Rn;
11186 inst.instruction |= Rm << 3;
c19d1205
ZW
11187 }
11188 else
11189 {
11190 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
11191 inst.instruction |= (Rn & 0x8) << 4;
11192 inst.instruction |= (Rn & 0x7);
11193 inst.instruction |= Rm << 3;
c19d1205
ZW
11194 }
11195 break;
11196 }
b99bd4ef
NC
11197 return;
11198 }
11199
c19d1205 11200 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
11201
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst.operands[1].shifted,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11205
c19d1205 11206 if (inst.operands[1].isreg)
b99bd4ef 11207 {
fdfde340 11208 if (Rn < 8 && Rm < 8)
b99bd4ef 11209 {
c19d1205
ZW
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst.instruction == T_OPCODE_MOV_I8)
11213 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 11214 else
c19d1205 11215 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 11216
fdfde340
JM
11217 inst.instruction |= Rn;
11218 inst.instruction |= Rm << 3;
b99bd4ef
NC
11219 }
11220 else
11221 {
c19d1205
ZW
11222 if (inst.instruction == T_OPCODE_MOV_I8)
11223 inst.instruction = T_OPCODE_MOV_HR;
11224 else
11225 inst.instruction = T_OPCODE_CMP_HR;
11226 do_t_cpy ();
b99bd4ef
NC
11227 }
11228 }
c19d1205 11229 else
b99bd4ef 11230 {
fdfde340 11231 constraint (Rn > 7,
c19d1205 11232 _("only lo regs allowed with immediate"));
fdfde340 11233 inst.instruction |= Rn << 8;
c19d1205
ZW
11234 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11235 }
11236}
b99bd4ef 11237
c19d1205
ZW
11238static void
11239do_t_mov16 (void)
11240{
fdfde340 11241 unsigned Rd;
b6895b4f
PB
11242 bfd_vma imm;
11243 bfd_boolean top;
11244
11245 top = (inst.instruction & 0x00800000) != 0;
11246 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11247 {
11248 constraint (top, _(":lower16: not allowed this instruction"));
11249 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11250 }
11251 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11252 {
11253 constraint (!top, _(":upper16: not allowed this instruction"));
11254 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11255 }
11256
fdfde340
JM
11257 Rd = inst.operands[0].reg;
11258 reject_bad_reg (Rd);
11259
11260 inst.instruction |= Rd << 8;
b6895b4f
PB
11261 if (inst.reloc.type == BFD_RELOC_UNUSED)
11262 {
11263 imm = inst.reloc.exp.X_add_number;
11264 inst.instruction |= (imm & 0xf000) << 4;
11265 inst.instruction |= (imm & 0x0800) << 15;
11266 inst.instruction |= (imm & 0x0700) << 4;
11267 inst.instruction |= (imm & 0x00ff);
11268 }
c19d1205 11269}
b99bd4ef 11270
c19d1205
ZW
11271static void
11272do_t_mvn_tst (void)
11273{
fdfde340 11274 unsigned Rn, Rm;
c921be7d 11275
fdfde340
JM
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[1].reg;
11278
11279 if (inst.instruction == T_MNEM_cmp
11280 || inst.instruction == T_MNEM_cmn)
11281 constraint (Rn == REG_PC, BAD_PC);
11282 else
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
c19d1205
ZW
11286 if (unified_syntax)
11287 {
11288 int r0off = (inst.instruction == T_MNEM_mvn
11289 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
11290 bfd_boolean narrow;
11291
11292 if (inst.size_req == 4
11293 || inst.instruction > 0xffff
11294 || inst.operands[1].shifted
fdfde340 11295 || Rn > 7 || Rm > 7)
3d388997
PB
11296 narrow = FALSE;
11297 else if (inst.instruction == T_MNEM_cmn)
11298 narrow = TRUE;
11299 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11300 narrow = !in_it_block ();
3d388997 11301 else
e07e6e58 11302 narrow = in_it_block ();
3d388997 11303
c19d1205 11304 if (!inst.operands[1].isreg)
b99bd4ef 11305 {
c19d1205
ZW
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst.instruction < 0xffff)
11309 inst.instruction = THUMB_OP32 (inst.instruction);
11310 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11311 inst.instruction |= Rn << r0off;
c19d1205 11312 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11313 }
c19d1205 11314 else
b99bd4ef 11315 {
c19d1205 11316 /* See if we can do this with a 16-bit instruction. */
3d388997 11317 if (narrow)
b99bd4ef 11318 {
c19d1205 11319 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11320 inst.instruction |= Rn;
11321 inst.instruction |= Rm << 3;
b99bd4ef 11322 }
c19d1205 11323 else
b99bd4ef 11324 {
c19d1205
ZW
11325 constraint (inst.operands[1].shifted
11326 && inst.operands[1].immisreg,
11327 _("shift must be constant"));
11328 if (inst.instruction < 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11330 inst.instruction |= Rn << r0off;
c19d1205 11331 encode_thumb32_shifted_operand (1);
b99bd4ef 11332 }
b99bd4ef
NC
11333 }
11334 }
11335 else
11336 {
c19d1205
ZW
11337 constraint (inst.instruction > 0xffff
11338 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11339 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11340 _("unshifted register required"));
fdfde340 11341 constraint (Rn > 7 || Rm > 7,
c19d1205 11342 BAD_HIREG);
b99bd4ef 11343
c19d1205 11344 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11345 inst.instruction |= Rn;
11346 inst.instruction |= Rm << 3;
b99bd4ef 11347 }
b99bd4ef
NC
11348}
11349
b05fe5cf 11350static void
c19d1205 11351do_t_mrs (void)
b05fe5cf 11352{
fdfde340 11353 unsigned Rd;
037e8744
JB
11354
11355 if (do_vfp_nsyn_mrs () == SUCCESS)
11356 return;
11357
90ec0d68
MGD
11358 Rd = inst.operands[0].reg;
11359 reject_bad_reg (Rd);
11360 inst.instruction |= Rd << 8;
11361
11362 if (inst.operands[1].isreg)
62b3e311 11363 {
90ec0d68
MGD
11364 unsigned br = inst.operands[1].reg;
11365 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11367
11368 inst.instruction |= br & (0xf << 16);
11369 inst.instruction |= (br & 0x300) >> 4;
11370 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11371 }
11372 else
11373 {
90ec0d68 11374 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11375
d2cd1205 11376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
11377 {
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11382 constraint ((flags != 0) && m_profile, _("selected processor does "
11383 "not support requested special purpose register"));
11384 }
90ec0d68 11385 else
d2cd1205
JB
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11387 devices). */
11388 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11390
90ec0d68
MGD
11391 inst.instruction |= (flags & SPSR_BIT) >> 2;
11392 inst.instruction |= inst.operands[1].imm & 0xff;
11393 inst.instruction |= 0xf0000;
11394 }
c19d1205 11395}
b05fe5cf 11396
c19d1205
ZW
11397static void
11398do_t_msr (void)
11399{
62b3e311 11400 int flags;
fdfde340 11401 unsigned Rn;
62b3e311 11402
037e8744
JB
11403 if (do_vfp_nsyn_msr () == SUCCESS)
11404 return;
11405
c19d1205
ZW
11406 constraint (!inst.operands[1].isreg,
11407 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11408
11409 if (inst.operands[0].isreg)
11410 flags = (int)(inst.operands[0].reg);
11411 else
11412 flags = inst.operands[0].imm;
11413
d2cd1205 11414 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11415 {
d2cd1205
JB
11416 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11417
1a43faaf
NC
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11423 && (bits & ~(PSR_s | PSR_f)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11425 && bits != PSR_f)) && m_profile,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
62b3e311
PB
11428 }
11429 else
d2cd1205
JB
11430 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
c921be7d 11432
fdfde340
JM
11433 Rn = inst.operands[1].reg;
11434 reject_bad_reg (Rn);
11435
62b3e311 11436 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11437 inst.instruction |= (flags & 0xf0000) >> 8;
11438 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11439 inst.instruction |= (flags & 0xff);
fdfde340 11440 inst.instruction |= Rn << 16;
c19d1205 11441}
b05fe5cf 11442
c19d1205
ZW
11443static void
11444do_t_mul (void)
11445{
17828f45 11446 bfd_boolean narrow;
fdfde340 11447 unsigned Rd, Rn, Rm;
17828f45 11448
c19d1205
ZW
11449 if (!inst.operands[2].present)
11450 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11451
fdfde340
JM
11452 Rd = inst.operands[0].reg;
11453 Rn = inst.operands[1].reg;
11454 Rm = inst.operands[2].reg;
11455
17828f45 11456 if (unified_syntax)
b05fe5cf 11457 {
17828f45 11458 if (inst.size_req == 4
fdfde340
JM
11459 || (Rd != Rn
11460 && Rd != Rm)
11461 || Rn > 7
11462 || Rm > 7)
17828f45
JM
11463 narrow = FALSE;
11464 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11465 narrow = !in_it_block ();
17828f45 11466 else
e07e6e58 11467 narrow = in_it_block ();
b05fe5cf 11468 }
c19d1205 11469 else
b05fe5cf 11470 {
17828f45 11471 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11472 constraint (Rn > 7 || Rm > 7,
c19d1205 11473 BAD_HIREG);
17828f45
JM
11474 narrow = TRUE;
11475 }
b05fe5cf 11476
17828f45
JM
11477 if (narrow)
11478 {
11479 /* 16-bit MULS/Conditional MUL. */
c19d1205 11480 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11481 inst.instruction |= Rd;
b05fe5cf 11482
fdfde340
JM
11483 if (Rd == Rn)
11484 inst.instruction |= Rm << 3;
11485 else if (Rd == Rm)
11486 inst.instruction |= Rn << 3;
c19d1205
ZW
11487 else
11488 constraint (1, _("dest must overlap one source register"));
11489 }
17828f45
JM
11490 else
11491 {
e07e6e58
NC
11492 constraint (inst.instruction != T_MNEM_mul,
11493 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11494 /* 32-bit MUL. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11496 inst.instruction |= Rd << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm << 0;
11499
11500 reject_bad_reg (Rd);
11501 reject_bad_reg (Rn);
11502 reject_bad_reg (Rm);
17828f45 11503 }
c19d1205 11504}
b05fe5cf 11505
c19d1205
ZW
11506static void
11507do_t_mull (void)
11508{
fdfde340 11509 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11510
fdfde340
JM
11511 RdLo = inst.operands[0].reg;
11512 RdHi = inst.operands[1].reg;
11513 Rn = inst.operands[2].reg;
11514 Rm = inst.operands[3].reg;
11515
11516 reject_bad_reg (RdLo);
11517 reject_bad_reg (RdHi);
11518 reject_bad_reg (Rn);
11519 reject_bad_reg (Rm);
11520
11521 inst.instruction |= RdLo << 12;
11522 inst.instruction |= RdHi << 8;
11523 inst.instruction |= Rn << 16;
11524 inst.instruction |= Rm;
11525
11526 if (RdLo == RdHi)
c19d1205
ZW
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11528}
b05fe5cf 11529
c19d1205
ZW
11530static void
11531do_t_nop (void)
11532{
e07e6e58
NC
11533 set_it_insn_type (NEUTRAL_IT_INSN);
11534
c19d1205
ZW
11535 if (unified_syntax)
11536 {
11537 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11538 {
c19d1205
ZW
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].imm;
11541 }
11542 else
11543 {
bc2d1808
NC
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
afa62d5e 11546 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11547 {
11548 inst.instruction = THUMB_OP16 (inst.instruction);
11549 inst.instruction |= inst.operands[0].imm << 4;
11550 }
11551 else
11552 inst.instruction = 0x46c0;
c19d1205
ZW
11553 }
11554 }
11555 else
11556 {
11557 constraint (inst.operands[0].present,
11558 _("Thumb does not support NOP with hints"));
11559 inst.instruction = 0x46c0;
11560 }
11561}
b05fe5cf 11562
c19d1205
ZW
11563static void
11564do_t_neg (void)
11565{
11566 if (unified_syntax)
11567 {
3d388997
PB
11568 bfd_boolean narrow;
11569
11570 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11571 narrow = !in_it_block ();
3d388997 11572 else
e07e6e58 11573 narrow = in_it_block ();
3d388997
PB
11574 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11575 narrow = FALSE;
11576 if (inst.size_req == 4)
11577 narrow = FALSE;
11578
11579 if (!narrow)
c19d1205
ZW
11580 {
11581 inst.instruction = THUMB_OP32 (inst.instruction);
11582 inst.instruction |= inst.operands[0].reg << 8;
11583 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11584 }
11585 else
11586 {
c19d1205
ZW
11587 inst.instruction = THUMB_OP16 (inst.instruction);
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11590 }
11591 }
11592 else
11593 {
c19d1205
ZW
11594 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11595 BAD_HIREG);
11596 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 }
11602}
11603
1c444d06
JM
11604static void
11605do_t_orn (void)
11606{
11607 unsigned Rd, Rn;
11608
11609 Rd = inst.operands[0].reg;
11610 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11611
fdfde340
JM
11612 reject_bad_reg (Rd);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn);
11615
1c444d06
JM
11616 inst.instruction |= Rd << 8;
11617 inst.instruction |= Rn << 16;
11618
11619 if (!inst.operands[2].isreg)
11620 {
11621 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11623 }
11624 else
11625 {
11626 unsigned Rm;
11627
11628 Rm = inst.operands[2].reg;
fdfde340 11629 reject_bad_reg (Rm);
1c444d06
JM
11630
11631 constraint (inst.operands[2].shifted
11632 && inst.operands[2].immisreg,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11635 }
11636}
11637
c19d1205
ZW
11638static void
11639do_t_pkhbt (void)
11640{
fdfde340
JM
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
c19d1205
ZW
11654 if (inst.operands[3].present)
11655 {
11656 unsigned int val = inst.reloc.exp.X_add_number;
11657 constraint (inst.reloc.exp.X_op != O_constant,
11658 _("expression too complex"));
11659 inst.instruction |= (val & 0x1c) << 10;
11660 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11661 }
c19d1205 11662}
b05fe5cf 11663
c19d1205
ZW
11664static void
11665do_t_pkhtb (void)
11666{
11667 if (!inst.operands[3].present)
1ef52f49
NC
11668 {
11669 unsigned Rtmp;
11670
11671 inst.instruction &= ~0x00000020;
11672
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp = inst.operands[1].reg;
11675 inst.operands[1].reg = inst.operands[2].reg;
11676 inst.operands[2].reg = Rtmp;
11677 }
c19d1205 11678 do_t_pkhbt ();
b05fe5cf
ZW
11679}
11680
c19d1205
ZW
11681static void
11682do_t_pld (void)
11683{
fdfde340
JM
11684 if (inst.operands[0].immisreg)
11685 reject_bad_reg (inst.operands[0].imm);
11686
c19d1205
ZW
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11688}
b05fe5cf 11689
c19d1205
ZW
11690static void
11691do_t_push_pop (void)
b99bd4ef 11692{
e9f89963 11693 unsigned mask;
5f4273c7 11694
c19d1205
ZW
11695 constraint (inst.operands[0].writeback,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11698 _("expression too complex"));
b99bd4ef 11699
e9f89963
PB
11700 mask = inst.operands[0].imm;
11701 if ((mask & ~0xff) == 0)
3c707909 11702 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11703 else if ((inst.instruction == T_MNEM_push
e9f89963 11704 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11705 || (inst.instruction == T_MNEM_pop
e9f89963 11706 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11707 {
c19d1205
ZW
11708 inst.instruction = THUMB_OP16 (inst.instruction);
11709 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11710 inst.instruction |= mask & 0xff;
c19d1205
ZW
11711 }
11712 else if (unified_syntax)
11713 {
3c707909 11714 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11715 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11716 }
11717 else
11718 {
11719 inst.error = _("invalid register list to push/pop instruction");
11720 return;
11721 }
c19d1205 11722}
b99bd4ef 11723
c19d1205
ZW
11724static void
11725do_t_rbit (void)
11726{
fdfde340
JM
11727 unsigned Rd, Rm;
11728
11729 Rd = inst.operands[0].reg;
11730 Rm = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rm);
11734
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
c19d1205 11738}
b99bd4ef 11739
c19d1205
ZW
11740static void
11741do_t_rev (void)
11742{
fdfde340
JM
11743 unsigned Rd, Rm;
11744
11745 Rd = inst.operands[0].reg;
11746 Rm = inst.operands[1].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rm);
11750
11751 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11752 && inst.size_req != 4)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rm << 3;
c19d1205
ZW
11757 }
11758 else if (unified_syntax)
11759 {
11760 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rm << 16;
11763 inst.instruction |= Rm;
c19d1205
ZW
11764 }
11765 else
11766 inst.error = BAD_HIREG;
11767}
b99bd4ef 11768
1c444d06
JM
11769static void
11770do_t_rrx (void)
11771{
11772 unsigned Rd, Rm;
11773
11774 Rd = inst.operands[0].reg;
11775 Rm = inst.operands[1].reg;
11776
fdfde340
JM
11777 reject_bad_reg (Rd);
11778 reject_bad_reg (Rm);
c921be7d 11779
1c444d06
JM
11780 inst.instruction |= Rd << 8;
11781 inst.instruction |= Rm;
11782}
11783
c19d1205
ZW
11784static void
11785do_t_rsb (void)
11786{
fdfde340 11787 unsigned Rd, Rs;
b99bd4ef 11788
c19d1205
ZW
11789 Rd = inst.operands[0].reg;
11790 Rs = (inst.operands[1].present
11791 ? inst.operands[1].reg /* Rd, Rs, foo */
11792 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11793
fdfde340
JM
11794 reject_bad_reg (Rd);
11795 reject_bad_reg (Rs);
11796 if (inst.operands[2].isreg)
11797 reject_bad_reg (inst.operands[2].reg);
11798
c19d1205
ZW
11799 inst.instruction |= Rd << 8;
11800 inst.instruction |= Rs << 16;
11801 if (!inst.operands[2].isreg)
11802 {
026d3abb
PB
11803 bfd_boolean narrow;
11804
11805 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11806 narrow = !in_it_block ();
026d3abb 11807 else
e07e6e58 11808 narrow = in_it_block ();
026d3abb
PB
11809
11810 if (Rd > 7 || Rs > 7)
11811 narrow = FALSE;
11812
11813 if (inst.size_req == 4 || !unified_syntax)
11814 narrow = FALSE;
11815
11816 if (inst.reloc.exp.X_op != O_constant
11817 || inst.reloc.exp.X_add_number != 0)
11818 narrow = FALSE;
11819
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11822 if (narrow)
11823 {
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11826 inst.instruction |= Rs << 3;
11827 inst.instruction |= Rd;
11828 }
11829 else
11830 {
11831 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11832 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11833 }
c19d1205
ZW
11834 }
11835 else
11836 encode_thumb32_shifted_operand (2);
11837}
b99bd4ef 11838
c19d1205
ZW
11839static void
11840do_t_setend (void)
11841{
12e37cbc
MGD
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11845
e07e6e58 11846 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11847 if (inst.operands[0].imm)
11848 inst.instruction |= 0x8;
11849}
b99bd4ef 11850
c19d1205
ZW
11851static void
11852do_t_shift (void)
11853{
11854 if (!inst.operands[1].present)
11855 inst.operands[1].reg = inst.operands[0].reg;
11856
11857 if (unified_syntax)
11858 {
3d388997
PB
11859 bfd_boolean narrow;
11860 int shift_kind;
11861
11862 switch (inst.instruction)
11863 {
11864 case T_MNEM_asr:
11865 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11866 case T_MNEM_lsl:
11867 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11868 case T_MNEM_lsr:
11869 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11870 case T_MNEM_ror:
11871 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11872 default: abort ();
11873 }
11874
11875 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11876 narrow = !in_it_block ();
3d388997 11877 else
e07e6e58 11878 narrow = in_it_block ();
3d388997
PB
11879 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11880 narrow = FALSE;
11881 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11882 narrow = FALSE;
11883 if (inst.operands[2].isreg
11884 && (inst.operands[1].reg != inst.operands[0].reg
11885 || inst.operands[2].reg > 7))
11886 narrow = FALSE;
11887 if (inst.size_req == 4)
11888 narrow = FALSE;
11889
fdfde340
JM
11890 reject_bad_reg (inst.operands[0].reg);
11891 reject_bad_reg (inst.operands[1].reg);
c921be7d 11892
3d388997 11893 if (!narrow)
c19d1205
ZW
11894 {
11895 if (inst.operands[2].isreg)
b99bd4ef 11896 {
fdfde340 11897 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11898 inst.instruction = THUMB_OP32 (inst.instruction);
11899 inst.instruction |= inst.operands[0].reg << 8;
11900 inst.instruction |= inst.operands[1].reg << 16;
11901 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
11902
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst.operands[2].shifted,
11905 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11906 }
11907 else
11908 {
11909 inst.operands[1].shifted = 1;
3d388997 11910 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11911 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11912 ? T_MNEM_movs : T_MNEM_mov);
11913 inst.instruction |= inst.operands[0].reg << 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11917 }
11918 }
11919 else
11920 {
c19d1205 11921 if (inst.operands[2].isreg)
b99bd4ef 11922 {
3d388997 11923 switch (shift_kind)
b99bd4ef 11924 {
3d388997
PB
11925 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11926 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11927 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11928 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11929 default: abort ();
b99bd4ef 11930 }
5f4273c7 11931
c19d1205
ZW
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
11938 }
11939 else
11940 {
3d388997 11941 switch (shift_kind)
b99bd4ef 11942 {
3d388997
PB
11943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11946 default: abort ();
b99bd4ef 11947 }
c19d1205
ZW
11948 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11951 }
11952 }
c19d1205
ZW
11953 }
11954 else
11955 {
11956 constraint (inst.operands[0].reg > 7
11957 || inst.operands[1].reg > 7, BAD_HIREG);
11958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11959
c19d1205
ZW
11960 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11961 {
11962 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11963 constraint (inst.operands[0].reg != inst.operands[1].reg,
11964 _("source1 and dest must be same register"));
b99bd4ef 11965
c19d1205
ZW
11966 switch (inst.instruction)
11967 {
11968 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11969 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11970 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11971 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11972 default: abort ();
11973 }
5f4273c7 11974
c19d1205
ZW
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11977
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst.operands[2].shifted,
11980 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11981 }
11982 else
b99bd4ef 11983 {
c19d1205
ZW
11984 switch (inst.instruction)
11985 {
11986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11989 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11990 default: abort ();
11991 }
11992 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11993 inst.instruction |= inst.operands[0].reg;
11994 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11995 }
11996 }
b99bd4ef
NC
11997}
11998
11999static void
c19d1205 12000do_t_simd (void)
b99bd4ef 12001{
fdfde340
JM
12002 unsigned Rd, Rn, Rm;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[1].reg;
12006 Rm = inst.operands[2].reg;
12007
12008 reject_bad_reg (Rd);
12009 reject_bad_reg (Rn);
12010 reject_bad_reg (Rm);
12011
12012 inst.instruction |= Rd << 8;
12013 inst.instruction |= Rn << 16;
12014 inst.instruction |= Rm;
c19d1205 12015}
b99bd4ef 12016
03ee1b7f
NC
12017static void
12018do_t_simd2 (void)
12019{
12020 unsigned Rd, Rn, Rm;
12021
12022 Rd = inst.operands[0].reg;
12023 Rm = inst.operands[1].reg;
12024 Rn = inst.operands[2].reg;
12025
12026 reject_bad_reg (Rd);
12027 reject_bad_reg (Rn);
12028 reject_bad_reg (Rm);
12029
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= Rm;
12033}
12034
c19d1205 12035static void
3eb17e6b 12036do_t_smc (void)
c19d1205
ZW
12037{
12038 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12040 _("SMC is not permitted on this architecture"));
c19d1205
ZW
12041 constraint (inst.reloc.exp.X_op != O_constant,
12042 _("expression too complex"));
12043 inst.reloc.type = BFD_RELOC_UNUSED;
12044 inst.instruction |= (value & 0xf000) >> 12;
12045 inst.instruction |= (value & 0x0ff0);
12046 inst.instruction |= (value & 0x000f) << 16;
12047}
b99bd4ef 12048
90ec0d68
MGD
12049static void
12050do_t_hvc (void)
12051{
12052 unsigned int value = inst.reloc.exp.X_add_number;
12053
12054 inst.reloc.type = BFD_RELOC_UNUSED;
12055 inst.instruction |= (value & 0x0fff);
12056 inst.instruction |= (value & 0xf000) << 4;
12057}
12058
c19d1205 12059static void
3a21c15a 12060do_t_ssat_usat (int bias)
c19d1205 12061{
fdfde340
JM
12062 unsigned Rd, Rn;
12063
12064 Rd = inst.operands[0].reg;
12065 Rn = inst.operands[2].reg;
12066
12067 reject_bad_reg (Rd);
12068 reject_bad_reg (Rn);
12069
12070 inst.instruction |= Rd << 8;
3a21c15a 12071 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 12072 inst.instruction |= Rn << 16;
b99bd4ef 12073
c19d1205 12074 if (inst.operands[3].present)
b99bd4ef 12075 {
3a21c15a
NC
12076 offsetT shift_amount = inst.reloc.exp.X_add_number;
12077
12078 inst.reloc.type = BFD_RELOC_UNUSED;
12079
c19d1205
ZW
12080 constraint (inst.reloc.exp.X_op != O_constant,
12081 _("expression too complex"));
b99bd4ef 12082
3a21c15a 12083 if (shift_amount != 0)
6189168b 12084 {
3a21c15a
NC
12085 constraint (shift_amount > 31,
12086 _("shift expression is too large"));
12087
c19d1205 12088 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
12089 inst.instruction |= 0x00200000; /* sh bit. */
12090
12091 inst.instruction |= (shift_amount & 0x1c) << 10;
12092 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
12093 }
12094 }
b99bd4ef 12095}
c921be7d 12096
3a21c15a
NC
12097static void
12098do_t_ssat (void)
12099{
12100 do_t_ssat_usat (1);
12101}
b99bd4ef 12102
0dd132b6 12103static void
c19d1205 12104do_t_ssat16 (void)
0dd132b6 12105{
fdfde340
JM
12106 unsigned Rd, Rn;
12107
12108 Rd = inst.operands[0].reg;
12109 Rn = inst.operands[2].reg;
12110
12111 reject_bad_reg (Rd);
12112 reject_bad_reg (Rn);
12113
12114 inst.instruction |= Rd << 8;
c19d1205 12115 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 12116 inst.instruction |= Rn << 16;
c19d1205 12117}
0dd132b6 12118
c19d1205
ZW
12119static void
12120do_t_strex (void)
12121{
12122 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12123 || inst.operands[2].postind || inst.operands[2].writeback
12124 || inst.operands[2].immisreg || inst.operands[2].shifted
12125 || inst.operands[2].negative,
01cfc07f 12126 BAD_ADDR_MODE);
0dd132b6 12127
5be8be5d
DG
12128 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12129
c19d1205
ZW
12130 inst.instruction |= inst.operands[0].reg << 8;
12131 inst.instruction |= inst.operands[1].reg << 12;
12132 inst.instruction |= inst.operands[2].reg << 16;
12133 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
12134}
12135
b99bd4ef 12136static void
c19d1205 12137do_t_strexd (void)
b99bd4ef 12138{
c19d1205
ZW
12139 if (!inst.operands[2].present)
12140 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 12141
c19d1205
ZW
12142 constraint (inst.operands[0].reg == inst.operands[1].reg
12143 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 12144 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 12145 BAD_OVERLAP);
b99bd4ef 12146
c19d1205
ZW
12147 inst.instruction |= inst.operands[0].reg;
12148 inst.instruction |= inst.operands[1].reg << 12;
12149 inst.instruction |= inst.operands[2].reg << 8;
12150 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
12151}
12152
12153static void
c19d1205 12154do_t_sxtah (void)
b99bd4ef 12155{
fdfde340
JM
12156 unsigned Rd, Rn, Rm;
12157
12158 Rd = inst.operands[0].reg;
12159 Rn = inst.operands[1].reg;
12160 Rm = inst.operands[2].reg;
12161
12162 reject_bad_reg (Rd);
12163 reject_bad_reg (Rn);
12164 reject_bad_reg (Rm);
12165
12166 inst.instruction |= Rd << 8;
12167 inst.instruction |= Rn << 16;
12168 inst.instruction |= Rm;
c19d1205
ZW
12169 inst.instruction |= inst.operands[3].imm << 4;
12170}
b99bd4ef 12171
c19d1205
ZW
12172static void
12173do_t_sxth (void)
12174{
fdfde340
JM
12175 unsigned Rd, Rm;
12176
12177 Rd = inst.operands[0].reg;
12178 Rm = inst.operands[1].reg;
12179
12180 reject_bad_reg (Rd);
12181 reject_bad_reg (Rm);
c921be7d
NC
12182
12183 if (inst.instruction <= 0xffff
12184 && inst.size_req != 4
fdfde340 12185 && Rd <= 7 && Rm <= 7
c19d1205 12186 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 12187 {
c19d1205 12188 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12189 inst.instruction |= Rd;
12190 inst.instruction |= Rm << 3;
b99bd4ef 12191 }
c19d1205 12192 else if (unified_syntax)
b99bd4ef 12193 {
c19d1205
ZW
12194 if (inst.instruction <= 0xffff)
12195 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= Rm;
c19d1205 12198 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 12199 }
c19d1205 12200 else
b99bd4ef 12201 {
c19d1205
ZW
12202 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG);
b99bd4ef 12205 }
c19d1205 12206}
b99bd4ef 12207
c19d1205
ZW
12208static void
12209do_t_swi (void)
12210{
b2a5fbdc
MGD
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12212 to ARM_EXT_V6M. */
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12214 {
ac7f631b
NC
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12220 }
12221
c19d1205
ZW
12222 inst.reloc.type = BFD_RELOC_ARM_SWI;
12223}
b99bd4ef 12224
92e90b6e
PB
12225static void
12226do_t_tb (void)
12227{
fdfde340 12228 unsigned Rn, Rm;
92e90b6e
PB
12229 int half;
12230
12231 half = (inst.instruction & 0x10) != 0;
e07e6e58 12232 set_it_insn_type_last ();
dfa9f0d5
PB
12233 constraint (inst.operands[0].immisreg,
12234 _("instruction requires register index"));
fdfde340
JM
12235
12236 Rn = inst.operands[0].reg;
12237 Rm = inst.operands[0].imm;
c921be7d 12238
fdfde340
JM
12239 constraint (Rn == REG_SP, BAD_SP);
12240 reject_bad_reg (Rm);
12241
92e90b6e
PB
12242 constraint (!half && inst.operands[0].shifted,
12243 _("instruction does not allow shifted index"));
fdfde340 12244 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
12245}
12246
c19d1205
ZW
12247static void
12248do_t_usat (void)
12249{
3a21c15a 12250 do_t_ssat_usat (0);
b99bd4ef
NC
12251}
12252
12253static void
c19d1205 12254do_t_usat16 (void)
b99bd4ef 12255{
fdfde340
JM
12256 unsigned Rd, Rn;
12257
12258 Rd = inst.operands[0].reg;
12259 Rn = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263
12264 inst.instruction |= Rd << 8;
c19d1205 12265 inst.instruction |= inst.operands[1].imm;
fdfde340 12266 inst.instruction |= Rn << 16;
b99bd4ef 12267}
c19d1205 12268
5287ad62 12269/* Neon instruction encoder helpers. */
5f4273c7 12270
5287ad62 12271/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 12272
5287ad62
JB
12273/* An "invalid" code for the following tables. */
12274#define N_INV -1u
12275
12276struct neon_tab_entry
b99bd4ef 12277{
5287ad62
JB
12278 unsigned integer;
12279 unsigned float_or_poly;
12280 unsigned scalar_or_imm;
12281};
5f4273c7 12282
5287ad62
JB
12283/* Map overloaded Neon opcodes to their respective encodings. */
12284#define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
e07e6e58 12297 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12345 X(vseleq, 0xe000a00, N_INV, N_INV), \
12346 X(vselvs, 0xe100a00, N_INV, N_INV), \
12347 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
12348 X(vselgt, 0xe300a00, N_INV, N_INV), \
12349 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 12350 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
12351 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
12352 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 12353 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 12354 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
12355 X(sha3op, 0x2000c00, N_INV, N_INV), \
12356 X(sha1h, 0x3b902c0, N_INV, N_INV), \
12357 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
12358
12359enum neon_opc
12360{
12361#define X(OPC,I,F,S) N_MNEM_##OPC
12362NEON_ENC_TAB
12363#undef X
12364};
b99bd4ef 12365
5287ad62
JB
12366static const struct neon_tab_entry neon_enc_tab[] =
12367{
12368#define X(OPC,I,F,S) { (I), (F), (S) }
12369NEON_ENC_TAB
12370#undef X
12371};
b99bd4ef 12372
88714cb8
DG
12373/* Do not use these macros; instead, use NEON_ENCODE defined below. */
12374#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12375#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12376#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12377#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12378#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12379#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12380#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12381#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12382#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12383#define NEON_ENC_SINGLE_(X) \
037e8744 12384 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 12385#define NEON_ENC_DOUBLE_(X) \
037e8744 12386 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
12387#define NEON_ENC_FPV8_(X) \
12388 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 12389
88714cb8
DG
12390#define NEON_ENCODE(type, inst) \
12391 do \
12392 { \
12393 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12394 inst.is_neon = 1; \
12395 } \
12396 while (0)
12397
12398#define check_neon_suffixes \
12399 do \
12400 { \
12401 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12402 { \
12403 as_bad (_("invalid neon suffix for non neon instruction")); \
12404 return; \
12405 } \
12406 } \
12407 while (0)
12408
037e8744
JB
12409/* Define shapes for instruction operands. The following mnemonic characters
12410 are used in this table:
5287ad62 12411
037e8744 12412 F - VFP S<n> register
5287ad62
JB
12413 D - Neon D<n> register
12414 Q - Neon Q<n> register
12415 I - Immediate
12416 S - Scalar
12417 R - ARM register
12418 L - D<n> register list
5f4273c7 12419
037e8744
JB
12420 This table is used to generate various data:
12421 - enumerations of the form NS_DDR to be used as arguments to
12422 neon_select_shape.
12423 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12424 - a table used to drive neon_select_shape. */
b99bd4ef 12425
037e8744
JB
12426#define NEON_SHAPE_DEF \
12427 X(3, (D, D, D), DOUBLE), \
12428 X(3, (Q, Q, Q), QUAD), \
12429 X(3, (D, D, I), DOUBLE), \
12430 X(3, (Q, Q, I), QUAD), \
12431 X(3, (D, D, S), DOUBLE), \
12432 X(3, (Q, Q, S), QUAD), \
12433 X(2, (D, D), DOUBLE), \
12434 X(2, (Q, Q), QUAD), \
12435 X(2, (D, S), DOUBLE), \
12436 X(2, (Q, S), QUAD), \
12437 X(2, (D, R), DOUBLE), \
12438 X(2, (Q, R), QUAD), \
12439 X(2, (D, I), DOUBLE), \
12440 X(2, (Q, I), QUAD), \
12441 X(3, (D, L, D), DOUBLE), \
12442 X(2, (D, Q), MIXED), \
12443 X(2, (Q, D), MIXED), \
12444 X(3, (D, Q, I), MIXED), \
12445 X(3, (Q, D, I), MIXED), \
12446 X(3, (Q, D, D), MIXED), \
12447 X(3, (D, Q, Q), MIXED), \
12448 X(3, (Q, Q, D), MIXED), \
12449 X(3, (Q, D, S), MIXED), \
12450 X(3, (D, Q, S), MIXED), \
12451 X(4, (D, D, D, I), DOUBLE), \
12452 X(4, (Q, Q, Q, I), QUAD), \
12453 X(2, (F, F), SINGLE), \
12454 X(3, (F, F, F), SINGLE), \
12455 X(2, (F, I), SINGLE), \
12456 X(2, (F, D), MIXED), \
12457 X(2, (D, F), MIXED), \
12458 X(3, (F, F, I), MIXED), \
12459 X(4, (R, R, F, F), SINGLE), \
12460 X(4, (F, F, R, R), SINGLE), \
12461 X(3, (D, R, R), DOUBLE), \
12462 X(3, (R, R, D), DOUBLE), \
12463 X(2, (S, R), SINGLE), \
12464 X(2, (R, S), SINGLE), \
12465 X(2, (F, R), SINGLE), \
12466 X(2, (R, F), SINGLE)
12467
12468#define S2(A,B) NS_##A##B
12469#define S3(A,B,C) NS_##A##B##C
12470#define S4(A,B,C,D) NS_##A##B##C##D
12471
12472#define X(N, L, C) S##N L
12473
5287ad62
JB
12474enum neon_shape
12475{
037e8744
JB
12476 NEON_SHAPE_DEF,
12477 NS_NULL
5287ad62 12478};
b99bd4ef 12479
037e8744
JB
12480#undef X
12481#undef S2
12482#undef S3
12483#undef S4
12484
12485enum neon_shape_class
12486{
12487 SC_SINGLE,
12488 SC_DOUBLE,
12489 SC_QUAD,
12490 SC_MIXED
12491};
12492
12493#define X(N, L, C) SC_##C
12494
12495static enum neon_shape_class neon_shape_class[] =
12496{
12497 NEON_SHAPE_DEF
12498};
12499
12500#undef X
12501
12502enum neon_shape_el
12503{
12504 SE_F,
12505 SE_D,
12506 SE_Q,
12507 SE_I,
12508 SE_S,
12509 SE_R,
12510 SE_L
12511};
12512
12513/* Register widths of above. */
12514static unsigned neon_shape_el_size[] =
12515{
12516 32,
12517 64,
12518 128,
12519 0,
12520 32,
12521 32,
12522 0
12523};
12524
12525struct neon_shape_info
12526{
12527 unsigned els;
12528 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12529};
12530
12531#define S2(A,B) { SE_##A, SE_##B }
12532#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12533#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12534
12535#define X(N, L, C) { N, S##N L }
12536
12537static struct neon_shape_info neon_shape_tab[] =
12538{
12539 NEON_SHAPE_DEF
12540};
12541
12542#undef X
12543#undef S2
12544#undef S3
12545#undef S4
12546
5287ad62
JB
12547/* Bit masks used in type checking given instructions.
12548 'N_EQK' means the type must be the same as (or based on in some way) the key
12549 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12550 set, various other bits can be set as well in order to modify the meaning of
12551 the type constraint. */
12552
12553enum neon_type_mask
12554{
8e79c3df
CM
12555 N_S8 = 0x0000001,
12556 N_S16 = 0x0000002,
12557 N_S32 = 0x0000004,
12558 N_S64 = 0x0000008,
12559 N_U8 = 0x0000010,
12560 N_U16 = 0x0000020,
12561 N_U32 = 0x0000040,
12562 N_U64 = 0x0000080,
12563 N_I8 = 0x0000100,
12564 N_I16 = 0x0000200,
12565 N_I32 = 0x0000400,
12566 N_I64 = 0x0000800,
12567 N_8 = 0x0001000,
12568 N_16 = 0x0002000,
12569 N_32 = 0x0004000,
12570 N_64 = 0x0008000,
12571 N_P8 = 0x0010000,
12572 N_P16 = 0x0020000,
12573 N_F16 = 0x0040000,
12574 N_F32 = 0x0080000,
12575 N_F64 = 0x0100000,
4f51b4bd 12576 N_P64 = 0x0200000,
c921be7d
NC
12577 N_KEY = 0x1000000, /* Key element (main type specifier). */
12578 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12579 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 12580 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
12581 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12582 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12583 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12584 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12585 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12586 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12587 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12588 N_UTYP = 0,
4f51b4bd 12589 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
12590};
12591
dcbf9037
JB
12592#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12593
5287ad62
JB
12594#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12595#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12596#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12597#define N_SUF_32 (N_SU_32 | N_F32)
12598#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12599#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12600
12601/* Pass this as the first type argument to neon_check_type to ignore types
12602 altogether. */
12603#define N_IGNORE_TYPE (N_KEY | N_EQK)
12604
037e8744
JB
12605/* Select a "shape" for the current instruction (describing register types or
12606 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12607 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12608 function of operand parsing, so this function doesn't need to be called.
12609 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12610
12611static enum neon_shape
037e8744 12612neon_select_shape (enum neon_shape shape, ...)
5287ad62 12613{
037e8744
JB
12614 va_list ap;
12615 enum neon_shape first_shape = shape;
5287ad62
JB
12616
12617 /* Fix missing optional operands. FIXME: we don't know at this point how
12618 many arguments we should have, so this makes the assumption that we have
12619 > 1. This is true of all current Neon opcodes, I think, but may not be
12620 true in the future. */
12621 if (!inst.operands[1].present)
12622 inst.operands[1] = inst.operands[0];
12623
037e8744 12624 va_start (ap, shape);
5f4273c7 12625
21d799b5 12626 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12627 {
12628 unsigned j;
12629 int matches = 1;
12630
12631 for (j = 0; j < neon_shape_tab[shape].els; j++)
12632 {
12633 if (!inst.operands[j].present)
12634 {
12635 matches = 0;
12636 break;
12637 }
12638
12639 switch (neon_shape_tab[shape].el[j])
12640 {
12641 case SE_F:
12642 if (!(inst.operands[j].isreg
12643 && inst.operands[j].isvec
12644 && inst.operands[j].issingle
12645 && !inst.operands[j].isquad))
12646 matches = 0;
12647 break;
12648
12649 case SE_D:
12650 if (!(inst.operands[j].isreg
12651 && inst.operands[j].isvec
12652 && !inst.operands[j].isquad
12653 && !inst.operands[j].issingle))
12654 matches = 0;
12655 break;
12656
12657 case SE_R:
12658 if (!(inst.operands[j].isreg
12659 && !inst.operands[j].isvec))
12660 matches = 0;
12661 break;
12662
12663 case SE_Q:
12664 if (!(inst.operands[j].isreg
12665 && inst.operands[j].isvec
12666 && inst.operands[j].isquad
12667 && !inst.operands[j].issingle))
12668 matches = 0;
12669 break;
12670
12671 case SE_I:
12672 if (!(!inst.operands[j].isreg
12673 && !inst.operands[j].isscalar))
12674 matches = 0;
12675 break;
12676
12677 case SE_S:
12678 if (!(!inst.operands[j].isreg
12679 && inst.operands[j].isscalar))
12680 matches = 0;
12681 break;
12682
12683 case SE_L:
12684 break;
12685 }
3fde54a2
JZ
12686 if (!matches)
12687 break;
037e8744 12688 }
ad6cec43
MGD
12689 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12690 /* We've matched all the entries in the shape table, and we don't
12691 have any left over operands which have not been matched. */
5287ad62 12692 break;
037e8744 12693 }
5f4273c7 12694
037e8744 12695 va_end (ap);
5287ad62 12696
037e8744
JB
12697 if (shape == NS_NULL && first_shape != NS_NULL)
12698 first_error (_("invalid instruction shape"));
5287ad62 12699
037e8744
JB
12700 return shape;
12701}
5287ad62 12702
037e8744
JB
12703/* True if SHAPE is predominantly a quadword operation (most of the time, this
12704 means the Q bit should be set). */
12705
12706static int
12707neon_quad (enum neon_shape shape)
12708{
12709 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12710}
037e8744 12711
5287ad62
JB
12712static void
12713neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12714 unsigned *g_size)
12715{
12716 /* Allow modification to be made to types which are constrained to be
12717 based on the key element, based on bits set alongside N_EQK. */
12718 if ((typebits & N_EQK) != 0)
12719 {
12720 if ((typebits & N_HLF) != 0)
12721 *g_size /= 2;
12722 else if ((typebits & N_DBL) != 0)
12723 *g_size *= 2;
12724 if ((typebits & N_SGN) != 0)
12725 *g_type = NT_signed;
12726 else if ((typebits & N_UNS) != 0)
12727 *g_type = NT_unsigned;
12728 else if ((typebits & N_INT) != 0)
12729 *g_type = NT_integer;
12730 else if ((typebits & N_FLT) != 0)
12731 *g_type = NT_float;
dcbf9037
JB
12732 else if ((typebits & N_SIZ) != 0)
12733 *g_type = NT_untyped;
5287ad62
JB
12734 }
12735}
5f4273c7 12736
5287ad62
JB
12737/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12738 operand type, i.e. the single type specified in a Neon instruction when it
12739 is the only one given. */
12740
12741static struct neon_type_el
12742neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12743{
12744 struct neon_type_el dest = *key;
5f4273c7 12745
9c2799c2 12746 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12747
5287ad62
JB
12748 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12749
12750 return dest;
12751}
12752
12753/* Convert Neon type and size into compact bitmask representation. */
12754
12755static enum neon_type_mask
12756type_chk_of_el_type (enum neon_el_type type, unsigned size)
12757{
12758 switch (type)
12759 {
12760 case NT_untyped:
12761 switch (size)
12762 {
12763 case 8: return N_8;
12764 case 16: return N_16;
12765 case 32: return N_32;
12766 case 64: return N_64;
12767 default: ;
12768 }
12769 break;
12770
12771 case NT_integer:
12772 switch (size)
12773 {
12774 case 8: return N_I8;
12775 case 16: return N_I16;
12776 case 32: return N_I32;
12777 case 64: return N_I64;
12778 default: ;
12779 }
12780 break;
12781
12782 case NT_float:
037e8744
JB
12783 switch (size)
12784 {
8e79c3df 12785 case 16: return N_F16;
037e8744
JB
12786 case 32: return N_F32;
12787 case 64: return N_F64;
12788 default: ;
12789 }
5287ad62
JB
12790 break;
12791
12792 case NT_poly:
12793 switch (size)
12794 {
12795 case 8: return N_P8;
12796 case 16: return N_P16;
4f51b4bd 12797 case 64: return N_P64;
5287ad62
JB
12798 default: ;
12799 }
12800 break;
12801
12802 case NT_signed:
12803 switch (size)
12804 {
12805 case 8: return N_S8;
12806 case 16: return N_S16;
12807 case 32: return N_S32;
12808 case 64: return N_S64;
12809 default: ;
12810 }
12811 break;
12812
12813 case NT_unsigned:
12814 switch (size)
12815 {
12816 case 8: return N_U8;
12817 case 16: return N_U16;
12818 case 32: return N_U32;
12819 case 64: return N_U64;
12820 default: ;
12821 }
12822 break;
12823
12824 default: ;
12825 }
5f4273c7 12826
5287ad62
JB
12827 return N_UTYP;
12828}
12829
12830/* Convert compact Neon bitmask type representation to a type and size. Only
12831 handles the case where a single bit is set in the mask. */
12832
dcbf9037 12833static int
5287ad62
JB
12834el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12835 enum neon_type_mask mask)
12836{
dcbf9037
JB
12837 if ((mask & N_EQK) != 0)
12838 return FAIL;
12839
5287ad62
JB
12840 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12841 *size = 8;
c70a8987 12842 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 12843 *size = 16;
dcbf9037 12844 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12845 *size = 32;
4f51b4bd 12846 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 12847 *size = 64;
dcbf9037
JB
12848 else
12849 return FAIL;
12850
5287ad62
JB
12851 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12852 *type = NT_signed;
dcbf9037 12853 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12854 *type = NT_unsigned;
dcbf9037 12855 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12856 *type = NT_integer;
dcbf9037 12857 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12858 *type = NT_untyped;
4f51b4bd 12859 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 12860 *type = NT_poly;
c70a8987 12861 else if ((mask & (N_F16 | N_F32 | N_F64)) != 0)
5287ad62 12862 *type = NT_float;
dcbf9037
JB
12863 else
12864 return FAIL;
5f4273c7 12865
dcbf9037 12866 return SUCCESS;
5287ad62
JB
12867}
12868
12869/* Modify a bitmask of allowed types. This is only needed for type
12870 relaxation. */
12871
12872static unsigned
12873modify_types_allowed (unsigned allowed, unsigned mods)
12874{
12875 unsigned size;
12876 enum neon_el_type type;
12877 unsigned destmask;
12878 int i;
5f4273c7 12879
5287ad62 12880 destmask = 0;
5f4273c7 12881
5287ad62
JB
12882 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12883 {
21d799b5
NC
12884 if (el_type_of_type_chk (&type, &size,
12885 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12886 {
12887 neon_modify_type_size (mods, &type, &size);
12888 destmask |= type_chk_of_el_type (type, size);
12889 }
5287ad62 12890 }
5f4273c7 12891
5287ad62
JB
12892 return destmask;
12893}
12894
12895/* Check type and return type classification.
12896 The manual states (paraphrase): If one datatype is given, it indicates the
12897 type given in:
12898 - the second operand, if there is one
12899 - the operand, if there is no second operand
12900 - the result, if there are no operands.
12901 This isn't quite good enough though, so we use a concept of a "key" datatype
12902 which is set on a per-instruction basis, which is the one which matters when
12903 only one data type is written.
12904 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12905 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12906
12907static struct neon_type_el
12908neon_check_type (unsigned els, enum neon_shape ns, ...)
12909{
12910 va_list ap;
12911 unsigned i, pass, key_el = 0;
12912 unsigned types[NEON_MAX_TYPE_ELS];
12913 enum neon_el_type k_type = NT_invtype;
12914 unsigned k_size = -1u;
12915 struct neon_type_el badtype = {NT_invtype, -1};
12916 unsigned key_allowed = 0;
12917
12918 /* Optional registers in Neon instructions are always (not) in operand 1.
12919 Fill in the missing operand here, if it was omitted. */
12920 if (els > 1 && !inst.operands[1].present)
12921 inst.operands[1] = inst.operands[0];
12922
12923 /* Suck up all the varargs. */
12924 va_start (ap, ns);
12925 for (i = 0; i < els; i++)
12926 {
12927 unsigned thisarg = va_arg (ap, unsigned);
12928 if (thisarg == N_IGNORE_TYPE)
12929 {
12930 va_end (ap);
12931 return badtype;
12932 }
12933 types[i] = thisarg;
12934 if ((thisarg & N_KEY) != 0)
12935 key_el = i;
12936 }
12937 va_end (ap);
12938
dcbf9037
JB
12939 if (inst.vectype.elems > 0)
12940 for (i = 0; i < els; i++)
12941 if (inst.operands[i].vectype.type != NT_invtype)
12942 {
12943 first_error (_("types specified in both the mnemonic and operands"));
12944 return badtype;
12945 }
12946
5287ad62
JB
12947 /* Duplicate inst.vectype elements here as necessary.
12948 FIXME: No idea if this is exactly the same as the ARM assembler,
12949 particularly when an insn takes one register and one non-register
12950 operand. */
12951 if (inst.vectype.elems == 1 && els > 1)
12952 {
12953 unsigned j;
12954 inst.vectype.elems = els;
12955 inst.vectype.el[key_el] = inst.vectype.el[0];
12956 for (j = 0; j < els; j++)
dcbf9037
JB
12957 if (j != key_el)
12958 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12959 types[j]);
12960 }
12961 else if (inst.vectype.elems == 0 && els > 0)
12962 {
12963 unsigned j;
12964 /* No types were given after the mnemonic, so look for types specified
12965 after each operand. We allow some flexibility here; as long as the
12966 "key" operand has a type, we can infer the others. */
12967 for (j = 0; j < els; j++)
12968 if (inst.operands[j].vectype.type != NT_invtype)
12969 inst.vectype.el[j] = inst.operands[j].vectype;
12970
12971 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12972 {
dcbf9037
JB
12973 for (j = 0; j < els; j++)
12974 if (inst.operands[j].vectype.type == NT_invtype)
12975 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12976 types[j]);
12977 }
12978 else
12979 {
12980 first_error (_("operand types can't be inferred"));
12981 return badtype;
5287ad62
JB
12982 }
12983 }
12984 else if (inst.vectype.elems != els)
12985 {
dcbf9037 12986 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12987 return badtype;
12988 }
12989
12990 for (pass = 0; pass < 2; pass++)
12991 {
12992 for (i = 0; i < els; i++)
12993 {
12994 unsigned thisarg = types[i];
12995 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12996 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12997 enum neon_el_type g_type = inst.vectype.el[i].type;
12998 unsigned g_size = inst.vectype.el[i].size;
12999
13000 /* Decay more-specific signed & unsigned types to sign-insensitive
13001 integer types if sign-specific variants are unavailable. */
13002 if ((g_type == NT_signed || g_type == NT_unsigned)
13003 && (types_allowed & N_SU_ALL) == 0)
13004 g_type = NT_integer;
13005
13006 /* If only untyped args are allowed, decay any more specific types to
13007 them. Some instructions only care about signs for some element
13008 sizes, so handle that properly. */
91ff7894
MGD
13009 if (((types_allowed & N_UNT) == 0)
13010 && ((g_size == 8 && (types_allowed & N_8) != 0)
13011 || (g_size == 16 && (types_allowed & N_16) != 0)
13012 || (g_size == 32 && (types_allowed & N_32) != 0)
13013 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
13014 g_type = NT_untyped;
13015
13016 if (pass == 0)
13017 {
13018 if ((thisarg & N_KEY) != 0)
13019 {
13020 k_type = g_type;
13021 k_size = g_size;
13022 key_allowed = thisarg & ~N_KEY;
13023 }
13024 }
13025 else
13026 {
037e8744
JB
13027 if ((thisarg & N_VFP) != 0)
13028 {
99b253c5
NC
13029 enum neon_shape_el regshape;
13030 unsigned regwidth, match;
13031
13032 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13033 if (ns == NS_NULL)
13034 {
13035 first_error (_("invalid instruction shape"));
13036 return badtype;
13037 }
13038 regshape = neon_shape_tab[ns].el[i];
13039 regwidth = neon_shape_el_size[regshape];
037e8744
JB
13040
13041 /* In VFP mode, operands must match register widths. If we
13042 have a key operand, use its width, else use the width of
13043 the current operand. */
13044 if (k_size != -1u)
13045 match = k_size;
13046 else
13047 match = g_size;
13048
13049 if (regwidth != match)
13050 {
13051 first_error (_("operand size must match register width"));
13052 return badtype;
13053 }
13054 }
5f4273c7 13055
5287ad62
JB
13056 if ((thisarg & N_EQK) == 0)
13057 {
13058 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13059
13060 if ((given_type & types_allowed) == 0)
13061 {
dcbf9037 13062 first_error (_("bad type in Neon instruction"));
5287ad62
JB
13063 return badtype;
13064 }
13065 }
13066 else
13067 {
13068 enum neon_el_type mod_k_type = k_type;
13069 unsigned mod_k_size = k_size;
13070 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13071 if (g_type != mod_k_type || g_size != mod_k_size)
13072 {
dcbf9037 13073 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
13074 return badtype;
13075 }
13076 }
13077 }
13078 }
13079 }
13080
13081 return inst.vectype.el[key_el];
13082}
13083
037e8744 13084/* Neon-style VFP instruction forwarding. */
5287ad62 13085
037e8744
JB
13086/* Thumb VFP instructions have 0xE in the condition field. */
13087
13088static void
13089do_vfp_cond_or_thumb (void)
5287ad62 13090{
88714cb8
DG
13091 inst.is_neon = 1;
13092
5287ad62 13093 if (thumb_mode)
037e8744 13094 inst.instruction |= 0xe0000000;
5287ad62 13095 else
037e8744 13096 inst.instruction |= inst.cond << 28;
5287ad62
JB
13097}
13098
037e8744
JB
13099/* Look up and encode a simple mnemonic, for use as a helper function for the
13100 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13101 etc. It is assumed that operand parsing has already been done, and that the
13102 operands are in the form expected by the given opcode (this isn't necessarily
13103 the same as the form in which they were parsed, hence some massaging must
13104 take place before this function is called).
13105 Checks current arch version against that in the looked-up opcode. */
5287ad62 13106
037e8744
JB
13107static void
13108do_vfp_nsyn_opcode (const char *opname)
5287ad62 13109{
037e8744 13110 const struct asm_opcode *opcode;
5f4273c7 13111
21d799b5 13112 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 13113
037e8744
JB
13114 if (!opcode)
13115 abort ();
5287ad62 13116
037e8744
JB
13117 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13118 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13119 _(BAD_FPU));
5287ad62 13120
88714cb8
DG
13121 inst.is_neon = 1;
13122
037e8744
JB
13123 if (thumb_mode)
13124 {
13125 inst.instruction = opcode->tvalue;
13126 opcode->tencode ();
13127 }
13128 else
13129 {
13130 inst.instruction = (inst.cond << 28) | opcode->avalue;
13131 opcode->aencode ();
13132 }
13133}
5287ad62
JB
13134
13135static void
037e8744 13136do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 13137{
037e8744
JB
13138 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13139
13140 if (rs == NS_FFF)
13141 {
13142 if (is_add)
13143 do_vfp_nsyn_opcode ("fadds");
13144 else
13145 do_vfp_nsyn_opcode ("fsubs");
13146 }
13147 else
13148 {
13149 if (is_add)
13150 do_vfp_nsyn_opcode ("faddd");
13151 else
13152 do_vfp_nsyn_opcode ("fsubd");
13153 }
13154}
13155
13156/* Check operand types to see if this is a VFP instruction, and if so call
13157 PFN (). */
13158
13159static int
13160try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13161{
13162 enum neon_shape rs;
13163 struct neon_type_el et;
13164
13165 switch (args)
13166 {
13167 case 2:
13168 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13169 et = neon_check_type (2, rs,
13170 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13171 break;
5f4273c7 13172
037e8744
JB
13173 case 3:
13174 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13175 et = neon_check_type (3, rs,
13176 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13177 break;
13178
13179 default:
13180 abort ();
13181 }
13182
13183 if (et.type != NT_invtype)
13184 {
13185 pfn (rs);
13186 return SUCCESS;
13187 }
037e8744 13188
99b253c5 13189 inst.error = NULL;
037e8744
JB
13190 return FAIL;
13191}
13192
13193static void
13194do_vfp_nsyn_mla_mls (enum neon_shape rs)
13195{
13196 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 13197
037e8744
JB
13198 if (rs == NS_FFF)
13199 {
13200 if (is_mla)
13201 do_vfp_nsyn_opcode ("fmacs");
13202 else
1ee69515 13203 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
13204 }
13205 else
13206 {
13207 if (is_mla)
13208 do_vfp_nsyn_opcode ("fmacd");
13209 else
1ee69515 13210 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
13211 }
13212}
13213
62f3b8c8
PB
13214static void
13215do_vfp_nsyn_fma_fms (enum neon_shape rs)
13216{
13217 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13218
13219 if (rs == NS_FFF)
13220 {
13221 if (is_fma)
13222 do_vfp_nsyn_opcode ("ffmas");
13223 else
13224 do_vfp_nsyn_opcode ("ffnmas");
13225 }
13226 else
13227 {
13228 if (is_fma)
13229 do_vfp_nsyn_opcode ("ffmad");
13230 else
13231 do_vfp_nsyn_opcode ("ffnmad");
13232 }
13233}
13234
037e8744
JB
13235static void
13236do_vfp_nsyn_mul (enum neon_shape rs)
13237{
13238 if (rs == NS_FFF)
13239 do_vfp_nsyn_opcode ("fmuls");
13240 else
13241 do_vfp_nsyn_opcode ("fmuld");
13242}
13243
13244static void
13245do_vfp_nsyn_abs_neg (enum neon_shape rs)
13246{
13247 int is_neg = (inst.instruction & 0x80) != 0;
13248 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13249
13250 if (rs == NS_FF)
13251 {
13252 if (is_neg)
13253 do_vfp_nsyn_opcode ("fnegs");
13254 else
13255 do_vfp_nsyn_opcode ("fabss");
13256 }
13257 else
13258 {
13259 if (is_neg)
13260 do_vfp_nsyn_opcode ("fnegd");
13261 else
13262 do_vfp_nsyn_opcode ("fabsd");
13263 }
13264}
13265
13266/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13267 insns belong to Neon, and are handled elsewhere. */
13268
13269static void
13270do_vfp_nsyn_ldm_stm (int is_dbmode)
13271{
13272 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13273 if (is_ldm)
13274 {
13275 if (is_dbmode)
13276 do_vfp_nsyn_opcode ("fldmdbs");
13277 else
13278 do_vfp_nsyn_opcode ("fldmias");
13279 }
13280 else
13281 {
13282 if (is_dbmode)
13283 do_vfp_nsyn_opcode ("fstmdbs");
13284 else
13285 do_vfp_nsyn_opcode ("fstmias");
13286 }
13287}
13288
037e8744
JB
13289static void
13290do_vfp_nsyn_sqrt (void)
13291{
13292 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13293 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13294
037e8744
JB
13295 if (rs == NS_FF)
13296 do_vfp_nsyn_opcode ("fsqrts");
13297 else
13298 do_vfp_nsyn_opcode ("fsqrtd");
13299}
13300
13301static void
13302do_vfp_nsyn_div (void)
13303{
13304 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13305 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13306 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13307
037e8744
JB
13308 if (rs == NS_FFF)
13309 do_vfp_nsyn_opcode ("fdivs");
13310 else
13311 do_vfp_nsyn_opcode ("fdivd");
13312}
13313
13314static void
13315do_vfp_nsyn_nmul (void)
13316{
13317 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13318 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13319 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13320
037e8744
JB
13321 if (rs == NS_FFF)
13322 {
88714cb8 13323 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13324 do_vfp_sp_dyadic ();
13325 }
13326 else
13327 {
88714cb8 13328 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13329 do_vfp_dp_rd_rn_rm ();
13330 }
13331 do_vfp_cond_or_thumb ();
13332}
13333
13334static void
13335do_vfp_nsyn_cmp (void)
13336{
13337 if (inst.operands[1].isreg)
13338 {
13339 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13340 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13341
037e8744
JB
13342 if (rs == NS_FF)
13343 {
88714cb8 13344 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13345 do_vfp_sp_monadic ();
13346 }
13347 else
13348 {
88714cb8 13349 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13350 do_vfp_dp_rd_rm ();
13351 }
13352 }
13353 else
13354 {
13355 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13356 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13357
13358 switch (inst.instruction & 0x0fffffff)
13359 {
13360 case N_MNEM_vcmp:
13361 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13362 break;
13363 case N_MNEM_vcmpe:
13364 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13365 break;
13366 default:
13367 abort ();
13368 }
5f4273c7 13369
037e8744
JB
13370 if (rs == NS_FI)
13371 {
88714cb8 13372 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13373 do_vfp_sp_compare_z ();
13374 }
13375 else
13376 {
88714cb8 13377 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13378 do_vfp_dp_rd ();
13379 }
13380 }
13381 do_vfp_cond_or_thumb ();
13382}
13383
13384static void
13385nsyn_insert_sp (void)
13386{
13387 inst.operands[1] = inst.operands[0];
13388 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 13389 inst.operands[0].reg = REG_SP;
037e8744
JB
13390 inst.operands[0].isreg = 1;
13391 inst.operands[0].writeback = 1;
13392 inst.operands[0].present = 1;
13393}
13394
13395static void
13396do_vfp_nsyn_push (void)
13397{
13398 nsyn_insert_sp ();
13399 if (inst.operands[1].issingle)
13400 do_vfp_nsyn_opcode ("fstmdbs");
13401 else
13402 do_vfp_nsyn_opcode ("fstmdbd");
13403}
13404
13405static void
13406do_vfp_nsyn_pop (void)
13407{
13408 nsyn_insert_sp ();
13409 if (inst.operands[1].issingle)
22b5b651 13410 do_vfp_nsyn_opcode ("fldmias");
037e8744 13411 else
22b5b651 13412 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13413}
13414
13415/* Fix up Neon data-processing instructions, ORing in the correct bits for
13416 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13417
88714cb8
DG
13418static void
13419neon_dp_fixup (struct arm_it* insn)
037e8744 13420{
88714cb8
DG
13421 unsigned int i = insn->instruction;
13422 insn->is_neon = 1;
13423
037e8744
JB
13424 if (thumb_mode)
13425 {
13426 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13427 if (i & (1 << 24))
13428 i |= 1 << 28;
5f4273c7 13429
037e8744 13430 i &= ~(1 << 24);
5f4273c7 13431
037e8744
JB
13432 i |= 0xef000000;
13433 }
13434 else
13435 i |= 0xf2000000;
5f4273c7 13436
88714cb8 13437 insn->instruction = i;
037e8744
JB
13438}
13439
13440/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13441 (0, 1, 2, 3). */
13442
13443static unsigned
13444neon_logbits (unsigned x)
13445{
13446 return ffs (x) - 4;
13447}
13448
13449#define LOW4(R) ((R) & 0xf)
13450#define HI1(R) (((R) >> 4) & 1)
13451
13452/* Encode insns with bit pattern:
13453
13454 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13455 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13456
037e8744
JB
13457 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13458 different meaning for some instruction. */
13459
13460static void
13461neon_three_same (int isquad, int ubit, int size)
13462{
13463 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13464 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13465 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13466 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13467 inst.instruction |= LOW4 (inst.operands[2].reg);
13468 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13469 inst.instruction |= (isquad != 0) << 6;
13470 inst.instruction |= (ubit != 0) << 24;
13471 if (size != -1)
13472 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13473
88714cb8 13474 neon_dp_fixup (&inst);
037e8744
JB
13475}
13476
13477/* Encode instructions of the form:
13478
13479 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13480 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13481
13482 Don't write size if SIZE == -1. */
13483
13484static void
13485neon_two_same (int qbit, int ubit, int size)
13486{
13487 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13488 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13489 inst.instruction |= LOW4 (inst.operands[1].reg);
13490 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13491 inst.instruction |= (qbit != 0) << 6;
13492 inst.instruction |= (ubit != 0) << 24;
13493
13494 if (size != -1)
13495 inst.instruction |= neon_logbits (size) << 18;
13496
88714cb8 13497 neon_dp_fixup (&inst);
5287ad62
JB
13498}
13499
13500/* Neon instruction encoders, in approximate order of appearance. */
13501
13502static void
13503do_neon_dyadic_i_su (void)
13504{
037e8744 13505 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13506 struct neon_type_el et = neon_check_type (3, rs,
13507 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13508 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13509}
13510
13511static void
13512do_neon_dyadic_i64_su (void)
13513{
037e8744 13514 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13515 struct neon_type_el et = neon_check_type (3, rs,
13516 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13517 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13518}
13519
13520static void
13521neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13522 unsigned immbits)
13523{
13524 unsigned size = et.size >> 3;
13525 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13526 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13527 inst.instruction |= LOW4 (inst.operands[1].reg);
13528 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13529 inst.instruction |= (isquad != 0) << 6;
13530 inst.instruction |= immbits << 16;
13531 inst.instruction |= (size >> 3) << 7;
13532 inst.instruction |= (size & 0x7) << 19;
13533 if (write_ubit)
13534 inst.instruction |= (uval != 0) << 24;
13535
88714cb8 13536 neon_dp_fixup (&inst);
5287ad62
JB
13537}
13538
13539static void
13540do_neon_shl_imm (void)
13541{
13542 if (!inst.operands[2].isreg)
13543 {
037e8744 13544 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13545 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13546 NEON_ENCODE (IMMED, inst);
037e8744 13547 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13548 }
13549 else
13550 {
037e8744 13551 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13552 struct neon_type_el et = neon_check_type (3, rs,
13553 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13554 unsigned int tmp;
13555
13556 /* VSHL/VQSHL 3-register variants have syntax such as:
13557 vshl.xx Dd, Dm, Dn
13558 whereas other 3-register operations encoded by neon_three_same have
13559 syntax like:
13560 vadd.xx Dd, Dn, Dm
13561 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13562 here. */
13563 tmp = inst.operands[2].reg;
13564 inst.operands[2].reg = inst.operands[1].reg;
13565 inst.operands[1].reg = tmp;
88714cb8 13566 NEON_ENCODE (INTEGER, inst);
037e8744 13567 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13568 }
13569}
13570
13571static void
13572do_neon_qshl_imm (void)
13573{
13574 if (!inst.operands[2].isreg)
13575 {
037e8744 13576 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13577 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13578
88714cb8 13579 NEON_ENCODE (IMMED, inst);
037e8744 13580 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13581 inst.operands[2].imm);
13582 }
13583 else
13584 {
037e8744 13585 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13586 struct neon_type_el et = neon_check_type (3, rs,
13587 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13588 unsigned int tmp;
13589
13590 /* See note in do_neon_shl_imm. */
13591 tmp = inst.operands[2].reg;
13592 inst.operands[2].reg = inst.operands[1].reg;
13593 inst.operands[1].reg = tmp;
88714cb8 13594 NEON_ENCODE (INTEGER, inst);
037e8744 13595 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13596 }
13597}
13598
627907b7
JB
13599static void
13600do_neon_rshl (void)
13601{
13602 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13603 struct neon_type_el et = neon_check_type (3, rs,
13604 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13605 unsigned int tmp;
13606
13607 tmp = inst.operands[2].reg;
13608 inst.operands[2].reg = inst.operands[1].reg;
13609 inst.operands[1].reg = tmp;
13610 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13611}
13612
5287ad62
JB
13613static int
13614neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13615{
036dc3f7
PB
13616 /* Handle .I8 pseudo-instructions. */
13617 if (size == 8)
5287ad62 13618 {
5287ad62
JB
13619 /* Unfortunately, this will make everything apart from zero out-of-range.
13620 FIXME is this the intended semantics? There doesn't seem much point in
13621 accepting .I8 if so. */
13622 immediate |= immediate << 8;
13623 size = 16;
036dc3f7
PB
13624 }
13625
13626 if (size >= 32)
13627 {
13628 if (immediate == (immediate & 0x000000ff))
13629 {
13630 *immbits = immediate;
13631 return 0x1;
13632 }
13633 else if (immediate == (immediate & 0x0000ff00))
13634 {
13635 *immbits = immediate >> 8;
13636 return 0x3;
13637 }
13638 else if (immediate == (immediate & 0x00ff0000))
13639 {
13640 *immbits = immediate >> 16;
13641 return 0x5;
13642 }
13643 else if (immediate == (immediate & 0xff000000))
13644 {
13645 *immbits = immediate >> 24;
13646 return 0x7;
13647 }
13648 if ((immediate & 0xffff) != (immediate >> 16))
13649 goto bad_immediate;
13650 immediate &= 0xffff;
5287ad62
JB
13651 }
13652
13653 if (immediate == (immediate & 0x000000ff))
13654 {
13655 *immbits = immediate;
036dc3f7 13656 return 0x9;
5287ad62
JB
13657 }
13658 else if (immediate == (immediate & 0x0000ff00))
13659 {
13660 *immbits = immediate >> 8;
036dc3f7 13661 return 0xb;
5287ad62
JB
13662 }
13663
13664 bad_immediate:
dcbf9037 13665 first_error (_("immediate value out of range"));
5287ad62
JB
13666 return FAIL;
13667}
13668
13669/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13670 A, B, C, D. */
13671
13672static int
13673neon_bits_same_in_bytes (unsigned imm)
13674{
13675 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13676 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13677 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13678 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13679}
13680
13681/* For immediate of above form, return 0bABCD. */
13682
13683static unsigned
13684neon_squash_bits (unsigned imm)
13685{
13686 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13687 | ((imm & 0x01000000) >> 21);
13688}
13689
136da414 13690/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13691
13692static unsigned
13693neon_qfloat_bits (unsigned imm)
13694{
136da414 13695 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13696}
13697
13698/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13699 the instruction. *OP is passed as the initial value of the op field, and
13700 may be set to a different value depending on the constant (i.e.
13701 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13702 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13703 try smaller element sizes. */
5287ad62
JB
13704
13705static int
c96612cc
JB
13706neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13707 unsigned *immbits, int *op, int size,
13708 enum neon_el_type type)
5287ad62 13709{
c96612cc
JB
13710 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13711 float. */
13712 if (type == NT_float && !float_p)
13713 return FAIL;
13714
136da414
JB
13715 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13716 {
13717 if (size != 32 || *op == 1)
13718 return FAIL;
13719 *immbits = neon_qfloat_bits (immlo);
13720 return 0xf;
13721 }
036dc3f7
PB
13722
13723 if (size == 64)
5287ad62 13724 {
036dc3f7
PB
13725 if (neon_bits_same_in_bytes (immhi)
13726 && neon_bits_same_in_bytes (immlo))
13727 {
13728 if (*op == 1)
13729 return FAIL;
13730 *immbits = (neon_squash_bits (immhi) << 4)
13731 | neon_squash_bits (immlo);
13732 *op = 1;
13733 return 0xe;
13734 }
13735
13736 if (immhi != immlo)
13737 return FAIL;
5287ad62 13738 }
036dc3f7
PB
13739
13740 if (size >= 32)
5287ad62 13741 {
036dc3f7
PB
13742 if (immlo == (immlo & 0x000000ff))
13743 {
13744 *immbits = immlo;
13745 return 0x0;
13746 }
13747 else if (immlo == (immlo & 0x0000ff00))
13748 {
13749 *immbits = immlo >> 8;
13750 return 0x2;
13751 }
13752 else if (immlo == (immlo & 0x00ff0000))
13753 {
13754 *immbits = immlo >> 16;
13755 return 0x4;
13756 }
13757 else if (immlo == (immlo & 0xff000000))
13758 {
13759 *immbits = immlo >> 24;
13760 return 0x6;
13761 }
13762 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13763 {
13764 *immbits = (immlo >> 8) & 0xff;
13765 return 0xc;
13766 }
13767 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13768 {
13769 *immbits = (immlo >> 16) & 0xff;
13770 return 0xd;
13771 }
13772
13773 if ((immlo & 0xffff) != (immlo >> 16))
13774 return FAIL;
13775 immlo &= 0xffff;
5287ad62 13776 }
036dc3f7
PB
13777
13778 if (size >= 16)
5287ad62 13779 {
036dc3f7
PB
13780 if (immlo == (immlo & 0x000000ff))
13781 {
13782 *immbits = immlo;
13783 return 0x8;
13784 }
13785 else if (immlo == (immlo & 0x0000ff00))
13786 {
13787 *immbits = immlo >> 8;
13788 return 0xa;
13789 }
13790
13791 if ((immlo & 0xff) != (immlo >> 8))
13792 return FAIL;
13793 immlo &= 0xff;
5287ad62 13794 }
036dc3f7
PB
13795
13796 if (immlo == (immlo & 0x000000ff))
5287ad62 13797 {
036dc3f7
PB
13798 /* Don't allow MVN with 8-bit immediate. */
13799 if (*op == 1)
13800 return FAIL;
13801 *immbits = immlo;
13802 return 0xe;
5287ad62 13803 }
5287ad62
JB
13804
13805 return FAIL;
13806}
13807
13808/* Write immediate bits [7:0] to the following locations:
13809
13810 |28/24|23 19|18 16|15 4|3 0|
13811 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13812
13813 This function is used by VMOV/VMVN/VORR/VBIC. */
13814
13815static void
13816neon_write_immbits (unsigned immbits)
13817{
13818 inst.instruction |= immbits & 0xf;
13819 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13820 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13821}
13822
13823/* Invert low-order SIZE bits of XHI:XLO. */
13824
13825static void
13826neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13827{
13828 unsigned immlo = xlo ? *xlo : 0;
13829 unsigned immhi = xhi ? *xhi : 0;
13830
13831 switch (size)
13832 {
13833 case 8:
13834 immlo = (~immlo) & 0xff;
13835 break;
13836
13837 case 16:
13838 immlo = (~immlo) & 0xffff;
13839 break;
13840
13841 case 64:
13842 immhi = (~immhi) & 0xffffffff;
13843 /* fall through. */
13844
13845 case 32:
13846 immlo = (~immlo) & 0xffffffff;
13847 break;
13848
13849 default:
13850 abort ();
13851 }
13852
13853 if (xlo)
13854 *xlo = immlo;
13855
13856 if (xhi)
13857 *xhi = immhi;
13858}
13859
13860static void
13861do_neon_logic (void)
13862{
13863 if (inst.operands[2].present && inst.operands[2].isreg)
13864 {
037e8744 13865 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13866 neon_check_type (3, rs, N_IGNORE_TYPE);
13867 /* U bit and size field were set as part of the bitmask. */
88714cb8 13868 NEON_ENCODE (INTEGER, inst);
037e8744 13869 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13870 }
13871 else
13872 {
4316f0d2
DG
13873 const int three_ops_form = (inst.operands[2].present
13874 && !inst.operands[2].isreg);
13875 const int immoperand = (three_ops_form ? 2 : 1);
13876 enum neon_shape rs = (three_ops_form
13877 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13878 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13879 struct neon_type_el et = neon_check_type (2, rs,
13880 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13881 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13882 unsigned immbits;
13883 int cmode;
5f4273c7 13884
5287ad62
JB
13885 if (et.type == NT_invtype)
13886 return;
5f4273c7 13887
4316f0d2
DG
13888 if (three_ops_form)
13889 constraint (inst.operands[0].reg != inst.operands[1].reg,
13890 _("first and second operands shall be the same register"));
13891
88714cb8 13892 NEON_ENCODE (IMMED, inst);
5287ad62 13893
4316f0d2 13894 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13895 if (et.size == 64)
13896 {
13897 /* .i64 is a pseudo-op, so the immediate must be a repeating
13898 pattern. */
4316f0d2
DG
13899 if (immbits != (inst.operands[immoperand].regisimm ?
13900 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13901 {
13902 /* Set immbits to an invalid constant. */
13903 immbits = 0xdeadbeef;
13904 }
13905 }
13906
5287ad62
JB
13907 switch (opcode)
13908 {
13909 case N_MNEM_vbic:
036dc3f7 13910 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13911 break;
5f4273c7 13912
5287ad62 13913 case N_MNEM_vorr:
036dc3f7 13914 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13915 break;
5f4273c7 13916
5287ad62
JB
13917 case N_MNEM_vand:
13918 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13919 neon_invert_size (&immbits, 0, et.size);
13920 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13921 break;
5f4273c7 13922
5287ad62
JB
13923 case N_MNEM_vorn:
13924 /* Pseudo-instruction for VORR. */
5287ad62
JB
13925 neon_invert_size (&immbits, 0, et.size);
13926 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13927 break;
5f4273c7 13928
5287ad62
JB
13929 default:
13930 abort ();
13931 }
13932
13933 if (cmode == FAIL)
13934 return;
13935
037e8744 13936 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13937 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13938 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13939 inst.instruction |= cmode << 8;
13940 neon_write_immbits (immbits);
5f4273c7 13941
88714cb8 13942 neon_dp_fixup (&inst);
5287ad62
JB
13943 }
13944}
13945
13946static void
13947do_neon_bitfield (void)
13948{
037e8744 13949 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13950 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13951 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13952}
13953
13954static void
dcbf9037
JB
13955neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13956 unsigned destbits)
5287ad62 13957{
037e8744 13958 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13959 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13960 types | N_KEY);
5287ad62
JB
13961 if (et.type == NT_float)
13962 {
88714cb8 13963 NEON_ENCODE (FLOAT, inst);
037e8744 13964 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13965 }
13966 else
13967 {
88714cb8 13968 NEON_ENCODE (INTEGER, inst);
037e8744 13969 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13970 }
13971}
13972
13973static void
13974do_neon_dyadic_if_su (void)
13975{
dcbf9037 13976 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13977}
13978
13979static void
13980do_neon_dyadic_if_su_d (void)
13981{
13982 /* This version only allow D registers, but that constraint is enforced during
13983 operand parsing so we don't need to do anything extra here. */
dcbf9037 13984 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13985}
13986
5287ad62
JB
13987static void
13988do_neon_dyadic_if_i_d (void)
13989{
428e3f1f
PB
13990 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13991 affected if we specify unsigned args. */
13992 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13993}
13994
037e8744
JB
13995enum vfp_or_neon_is_neon_bits
13996{
13997 NEON_CHECK_CC = 1,
73924fbc
MGD
13998 NEON_CHECK_ARCH = 2,
13999 NEON_CHECK_ARCH8 = 4
037e8744
JB
14000};
14001
14002/* Call this function if an instruction which may have belonged to the VFP or
14003 Neon instruction sets, but turned out to be a Neon instruction (due to the
14004 operand types involved, etc.). We have to check and/or fix-up a couple of
14005 things:
14006
14007 - Make sure the user hasn't attempted to make a Neon instruction
14008 conditional.
14009 - Alter the value in the condition code field if necessary.
14010 - Make sure that the arch supports Neon instructions.
14011
14012 Which of these operations take place depends on bits from enum
14013 vfp_or_neon_is_neon_bits.
14014
14015 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14016 current instruction's condition is COND_ALWAYS, the condition field is
14017 changed to inst.uncond_value. This is necessary because instructions shared
14018 between VFP and Neon may be conditional for the VFP variants only, and the
14019 unconditional Neon version must have, e.g., 0xF in the condition field. */
14020
14021static int
14022vfp_or_neon_is_neon (unsigned check)
14023{
14024 /* Conditions are always legal in Thumb mode (IT blocks). */
14025 if (!thumb_mode && (check & NEON_CHECK_CC))
14026 {
14027 if (inst.cond != COND_ALWAYS)
14028 {
14029 first_error (_(BAD_COND));
14030 return FAIL;
14031 }
14032 if (inst.uncond_value != -1)
14033 inst.instruction |= inst.uncond_value << 28;
14034 }
5f4273c7 14035
037e8744 14036 if ((check & NEON_CHECK_ARCH)
73924fbc
MGD
14037 && !mark_feature_used (&fpu_neon_ext_v1))
14038 {
14039 first_error (_(BAD_FPU));
14040 return FAIL;
14041 }
14042
14043 if ((check & NEON_CHECK_ARCH8)
14044 && !mark_feature_used (&fpu_neon_ext_armv8))
037e8744
JB
14045 {
14046 first_error (_(BAD_FPU));
14047 return FAIL;
14048 }
5f4273c7 14049
037e8744
JB
14050 return SUCCESS;
14051}
14052
5287ad62
JB
14053static void
14054do_neon_addsub_if_i (void)
14055{
037e8744
JB
14056 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14057 return;
14058
14059 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14060 return;
14061
5287ad62
JB
14062 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14063 affected if we specify unsigned args. */
dcbf9037 14064 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
14065}
14066
14067/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14068 result to be:
14069 V<op> A,B (A is operand 0, B is operand 2)
14070 to mean:
14071 V<op> A,B,A
14072 not:
14073 V<op> A,B,B
14074 so handle that case specially. */
14075
14076static void
14077neon_exchange_operands (void)
14078{
14079 void *scratch = alloca (sizeof (inst.operands[0]));
14080 if (inst.operands[1].present)
14081 {
14082 /* Swap operands[1] and operands[2]. */
14083 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14084 inst.operands[1] = inst.operands[2];
14085 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14086 }
14087 else
14088 {
14089 inst.operands[1] = inst.operands[2];
14090 inst.operands[2] = inst.operands[0];
14091 }
14092}
14093
14094static void
14095neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14096{
14097 if (inst.operands[2].isreg)
14098 {
14099 if (invert)
14100 neon_exchange_operands ();
dcbf9037 14101 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
14102 }
14103 else
14104 {
037e8744 14105 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
14106 struct neon_type_el et = neon_check_type (2, rs,
14107 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 14108
88714cb8 14109 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14110 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14111 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14112 inst.instruction |= LOW4 (inst.operands[1].reg);
14113 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14114 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14115 inst.instruction |= (et.type == NT_float) << 10;
14116 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14117
88714cb8 14118 neon_dp_fixup (&inst);
5287ad62
JB
14119 }
14120}
14121
14122static void
14123do_neon_cmp (void)
14124{
14125 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14126}
14127
14128static void
14129do_neon_cmp_inv (void)
14130{
14131 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14132}
14133
14134static void
14135do_neon_ceq (void)
14136{
14137 neon_compare (N_IF_32, N_IF_32, FALSE);
14138}
14139
14140/* For multiply instructions, we have the possibility of 16-bit or 32-bit
14141 scalars, which are encoded in 5 bits, M : Rm.
14142 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14143 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14144 index in M. */
14145
14146static unsigned
14147neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14148{
dcbf9037
JB
14149 unsigned regno = NEON_SCALAR_REG (scalar);
14150 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
14151
14152 switch (elsize)
14153 {
14154 case 16:
14155 if (regno > 7 || elno > 3)
14156 goto bad_scalar;
14157 return regno | (elno << 3);
5f4273c7 14158
5287ad62
JB
14159 case 32:
14160 if (regno > 15 || elno > 1)
14161 goto bad_scalar;
14162 return regno | (elno << 4);
14163
14164 default:
14165 bad_scalar:
dcbf9037 14166 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
14167 }
14168
14169 return 0;
14170}
14171
14172/* Encode multiply / multiply-accumulate scalar instructions. */
14173
14174static void
14175neon_mul_mac (struct neon_type_el et, int ubit)
14176{
dcbf9037
JB
14177 unsigned scalar;
14178
14179 /* Give a more helpful error message if we have an invalid type. */
14180 if (et.type == NT_invtype)
14181 return;
5f4273c7 14182
dcbf9037 14183 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
14184 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14185 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14186 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14187 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14188 inst.instruction |= LOW4 (scalar);
14189 inst.instruction |= HI1 (scalar) << 5;
14190 inst.instruction |= (et.type == NT_float) << 8;
14191 inst.instruction |= neon_logbits (et.size) << 20;
14192 inst.instruction |= (ubit != 0) << 24;
14193
88714cb8 14194 neon_dp_fixup (&inst);
5287ad62
JB
14195}
14196
14197static void
14198do_neon_mac_maybe_scalar (void)
14199{
037e8744
JB
14200 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14201 return;
14202
14203 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14204 return;
14205
5287ad62
JB
14206 if (inst.operands[2].isscalar)
14207 {
037e8744 14208 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14209 struct neon_type_el et = neon_check_type (3, rs,
14210 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 14211 NEON_ENCODE (SCALAR, inst);
037e8744 14212 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14213 }
14214 else
428e3f1f
PB
14215 {
14216 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14217 affected if we specify unsigned args. */
14218 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14219 }
5287ad62
JB
14220}
14221
62f3b8c8
PB
14222static void
14223do_neon_fmac (void)
14224{
14225 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14226 return;
14227
14228 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14229 return;
14230
14231 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14232}
14233
5287ad62
JB
14234static void
14235do_neon_tst (void)
14236{
037e8744 14237 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14238 struct neon_type_el et = neon_check_type (3, rs,
14239 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 14240 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14241}
14242
14243/* VMUL with 3 registers allows the P8 type. The scalar version supports the
14244 same types as the MAC equivalents. The polynomial type for this instruction
14245 is encoded the same as the integer type. */
14246
14247static void
14248do_neon_mul (void)
14249{
037e8744
JB
14250 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14251 return;
14252
14253 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14254 return;
14255
5287ad62
JB
14256 if (inst.operands[2].isscalar)
14257 do_neon_mac_maybe_scalar ();
14258 else
dcbf9037 14259 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
14260}
14261
14262static void
14263do_neon_qdmulh (void)
14264{
14265 if (inst.operands[2].isscalar)
14266 {
037e8744 14267 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14268 struct neon_type_el et = neon_check_type (3, rs,
14269 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14270 NEON_ENCODE (SCALAR, inst);
037e8744 14271 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14272 }
14273 else
14274 {
037e8744 14275 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14276 struct neon_type_el et = neon_check_type (3, rs,
14277 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14278 NEON_ENCODE (INTEGER, inst);
5287ad62 14279 /* The U bit (rounding) comes from bit mask. */
037e8744 14280 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14281 }
14282}
14283
14284static void
14285do_neon_fcmp_absolute (void)
14286{
037e8744 14287 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14288 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14289 /* Size field comes from bit mask. */
037e8744 14290 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
14291}
14292
14293static void
14294do_neon_fcmp_absolute_inv (void)
14295{
14296 neon_exchange_operands ();
14297 do_neon_fcmp_absolute ();
14298}
14299
14300static void
14301do_neon_step (void)
14302{
037e8744 14303 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14304 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 14305 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14306}
14307
14308static void
14309do_neon_abs_neg (void)
14310{
037e8744
JB
14311 enum neon_shape rs;
14312 struct neon_type_el et;
5f4273c7 14313
037e8744
JB
14314 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14315 return;
14316
14317 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14318 return;
14319
14320 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14321 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 14322
5287ad62
JB
14323 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14324 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14325 inst.instruction |= LOW4 (inst.operands[1].reg);
14326 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14327 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14328 inst.instruction |= (et.type == NT_float) << 10;
14329 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14330
88714cb8 14331 neon_dp_fixup (&inst);
5287ad62
JB
14332}
14333
14334static void
14335do_neon_sli (void)
14336{
037e8744 14337 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14338 struct neon_type_el et = neon_check_type (2, rs,
14339 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14340 int imm = inst.operands[2].imm;
14341 constraint (imm < 0 || (unsigned)imm >= et.size,
14342 _("immediate out of range for insert"));
037e8744 14343 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14344}
14345
14346static void
14347do_neon_sri (void)
14348{
037e8744 14349 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14350 struct neon_type_el et = neon_check_type (2, rs,
14351 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14352 int imm = inst.operands[2].imm;
14353 constraint (imm < 1 || (unsigned)imm > et.size,
14354 _("immediate out of range for insert"));
037e8744 14355 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
14356}
14357
14358static void
14359do_neon_qshlu_imm (void)
14360{
037e8744 14361 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14362 struct neon_type_el et = neon_check_type (2, rs,
14363 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14364 int imm = inst.operands[2].imm;
14365 constraint (imm < 0 || (unsigned)imm >= et.size,
14366 _("immediate out of range for shift"));
14367 /* Only encodes the 'U present' variant of the instruction.
14368 In this case, signed types have OP (bit 8) set to 0.
14369 Unsigned types have OP set to 1. */
14370 inst.instruction |= (et.type == NT_unsigned) << 8;
14371 /* The rest of the bits are the same as other immediate shifts. */
037e8744 14372 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14373}
14374
14375static void
14376do_neon_qmovn (void)
14377{
14378 struct neon_type_el et = neon_check_type (2, NS_DQ,
14379 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14380 /* Saturating move where operands can be signed or unsigned, and the
14381 destination has the same signedness. */
88714cb8 14382 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14383 if (et.type == NT_unsigned)
14384 inst.instruction |= 0xc0;
14385 else
14386 inst.instruction |= 0x80;
14387 neon_two_same (0, 1, et.size / 2);
14388}
14389
14390static void
14391do_neon_qmovun (void)
14392{
14393 struct neon_type_el et = neon_check_type (2, NS_DQ,
14394 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14395 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 14396 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14397 neon_two_same (0, 1, et.size / 2);
14398}
14399
14400static void
14401do_neon_rshift_sat_narrow (void)
14402{
14403 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14404 or unsigned. If operands are unsigned, results must also be unsigned. */
14405 struct neon_type_el et = neon_check_type (2, NS_DQI,
14406 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14407 int imm = inst.operands[2].imm;
14408 /* This gets the bounds check, size encoding and immediate bits calculation
14409 right. */
14410 et.size /= 2;
5f4273c7 14411
5287ad62
JB
14412 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14413 VQMOVN.I<size> <Dd>, <Qm>. */
14414 if (imm == 0)
14415 {
14416 inst.operands[2].present = 0;
14417 inst.instruction = N_MNEM_vqmovn;
14418 do_neon_qmovn ();
14419 return;
14420 }
5f4273c7 14421
5287ad62
JB
14422 constraint (imm < 1 || (unsigned)imm > et.size,
14423 _("immediate out of range"));
14424 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14425}
14426
14427static void
14428do_neon_rshift_sat_narrow_u (void)
14429{
14430 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14431 or unsigned. If operands are unsigned, results must also be unsigned. */
14432 struct neon_type_el et = neon_check_type (2, NS_DQI,
14433 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14434 int imm = inst.operands[2].imm;
14435 /* This gets the bounds check, size encoding and immediate bits calculation
14436 right. */
14437 et.size /= 2;
14438
14439 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14440 VQMOVUN.I<size> <Dd>, <Qm>. */
14441 if (imm == 0)
14442 {
14443 inst.operands[2].present = 0;
14444 inst.instruction = N_MNEM_vqmovun;
14445 do_neon_qmovun ();
14446 return;
14447 }
14448
14449 constraint (imm < 1 || (unsigned)imm > et.size,
14450 _("immediate out of range"));
14451 /* FIXME: The manual is kind of unclear about what value U should have in
14452 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14453 must be 1. */
14454 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14455}
14456
14457static void
14458do_neon_movn (void)
14459{
14460 struct neon_type_el et = neon_check_type (2, NS_DQ,
14461 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14462 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14463 neon_two_same (0, 1, et.size / 2);
14464}
14465
14466static void
14467do_neon_rshift_narrow (void)
14468{
14469 struct neon_type_el et = neon_check_type (2, NS_DQI,
14470 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14471 int imm = inst.operands[2].imm;
14472 /* This gets the bounds check, size encoding and immediate bits calculation
14473 right. */
14474 et.size /= 2;
5f4273c7 14475
5287ad62
JB
14476 /* If immediate is zero then we are a pseudo-instruction for
14477 VMOVN.I<size> <Dd>, <Qm> */
14478 if (imm == 0)
14479 {
14480 inst.operands[2].present = 0;
14481 inst.instruction = N_MNEM_vmovn;
14482 do_neon_movn ();
14483 return;
14484 }
5f4273c7 14485
5287ad62
JB
14486 constraint (imm < 1 || (unsigned)imm > et.size,
14487 _("immediate out of range for narrowing operation"));
14488 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14489}
14490
14491static void
14492do_neon_shll (void)
14493{
14494 /* FIXME: Type checking when lengthening. */
14495 struct neon_type_el et = neon_check_type (2, NS_QDI,
14496 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14497 unsigned imm = inst.operands[2].imm;
14498
14499 if (imm == et.size)
14500 {
14501 /* Maximum shift variant. */
88714cb8 14502 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14503 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14504 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14505 inst.instruction |= LOW4 (inst.operands[1].reg);
14506 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14507 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14508
88714cb8 14509 neon_dp_fixup (&inst);
5287ad62
JB
14510 }
14511 else
14512 {
14513 /* A more-specific type check for non-max versions. */
14514 et = neon_check_type (2, NS_QDI,
14515 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14516 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14517 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14518 }
14519}
14520
037e8744 14521/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14522 the current instruction is. */
14523
6b9a8b67
MGD
14524#define CVT_FLAVOUR_VAR \
14525 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
14526 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
14527 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
14528 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
14529 /* Half-precision conversions. */ \
14530 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
14531 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
14532 /* VFP instructions. */ \
14533 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
14534 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
14535 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
14536 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
14537 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
14538 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
14539 /* VFP instructions with bitshift. */ \
14540 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
14541 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
14542 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
14543 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
14544 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
14545 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
14546 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
14547 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
14548
14549#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
14550 neon_cvt_flavour_##C,
14551
14552/* The different types of conversions we can do. */
14553enum neon_cvt_flavour
14554{
14555 CVT_FLAVOUR_VAR
14556 neon_cvt_flavour_invalid,
14557 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
14558};
14559
14560#undef CVT_VAR
14561
14562static enum neon_cvt_flavour
14563get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 14564{
6b9a8b67
MGD
14565#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
14566 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
14567 if (et.type != NT_invtype) \
14568 { \
14569 inst.error = NULL; \
14570 return (neon_cvt_flavour_##C); \
5287ad62 14571 }
6b9a8b67 14572
5287ad62 14573 struct neon_type_el et;
037e8744
JB
14574 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14575 || rs == NS_FF) ? N_VFP : 0;
14576 /* The instruction versions which take an immediate take one register
14577 argument, which is extended to the width of the full register. Thus the
14578 "source" and "destination" registers must have the same width. Hack that
14579 here by making the size equal to the key (wider, in this case) operand. */
14580 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14581
6b9a8b67
MGD
14582 CVT_FLAVOUR_VAR;
14583
14584 return neon_cvt_flavour_invalid;
5287ad62
JB
14585#undef CVT_VAR
14586}
14587
7e8e6784
MGD
14588enum neon_cvt_mode
14589{
14590 neon_cvt_mode_a,
14591 neon_cvt_mode_n,
14592 neon_cvt_mode_p,
14593 neon_cvt_mode_m,
14594 neon_cvt_mode_z,
30bdf752
MGD
14595 neon_cvt_mode_x,
14596 neon_cvt_mode_r
7e8e6784
MGD
14597};
14598
037e8744
JB
14599/* Neon-syntax VFP conversions. */
14600
5287ad62 14601static void
6b9a8b67 14602do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 14603{
037e8744 14604 const char *opname = 0;
5f4273c7 14605
037e8744 14606 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14607 {
037e8744
JB
14608 /* Conversions with immediate bitshift. */
14609 const char *enc[] =
14610 {
6b9a8b67
MGD
14611#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
14612 CVT_FLAVOUR_VAR
14613 NULL
14614#undef CVT_VAR
037e8744
JB
14615 };
14616
6b9a8b67 14617 if (flavour < (int) ARRAY_SIZE (enc))
037e8744
JB
14618 {
14619 opname = enc[flavour];
14620 constraint (inst.operands[0].reg != inst.operands[1].reg,
14621 _("operands 0 and 1 must be the same register"));
14622 inst.operands[1] = inst.operands[2];
14623 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14624 }
5287ad62
JB
14625 }
14626 else
14627 {
037e8744
JB
14628 /* Conversions without bitshift. */
14629 const char *enc[] =
14630 {
6b9a8b67
MGD
14631#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
14632 CVT_FLAVOUR_VAR
14633 NULL
14634#undef CVT_VAR
037e8744
JB
14635 };
14636
6b9a8b67 14637 if (flavour < (int) ARRAY_SIZE (enc))
037e8744
JB
14638 opname = enc[flavour];
14639 }
14640
14641 if (opname)
14642 do_vfp_nsyn_opcode (opname);
14643}
14644
14645static void
14646do_vfp_nsyn_cvtz (void)
14647{
14648 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
6b9a8b67 14649 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
14650 const char *enc[] =
14651 {
6b9a8b67
MGD
14652#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
14653 CVT_FLAVOUR_VAR
14654 NULL
14655#undef CVT_VAR
037e8744
JB
14656 };
14657
6b9a8b67 14658 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
14659 do_vfp_nsyn_opcode (enc[flavour]);
14660}
f31fef98 14661
037e8744 14662static void
7e8e6784
MGD
14663do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
14664 enum neon_cvt_mode mode)
14665{
14666 int sz, op;
14667 int rm;
14668
14669 set_it_insn_type (OUTSIDE_IT_INSN);
14670
14671 switch (flavour)
14672 {
14673 case neon_cvt_flavour_s32_f64:
14674 sz = 1;
14675 op = 0;
14676 break;
14677 case neon_cvt_flavour_s32_f32:
14678 sz = 0;
14679 op = 1;
14680 break;
14681 case neon_cvt_flavour_u32_f64:
14682 sz = 1;
14683 op = 0;
14684 break;
14685 case neon_cvt_flavour_u32_f32:
14686 sz = 0;
14687 op = 0;
14688 break;
14689 default:
14690 first_error (_("invalid instruction shape"));
14691 return;
14692 }
14693
14694 switch (mode)
14695 {
14696 case neon_cvt_mode_a: rm = 0; break;
14697 case neon_cvt_mode_n: rm = 1; break;
14698 case neon_cvt_mode_p: rm = 2; break;
14699 case neon_cvt_mode_m: rm = 3; break;
14700 default: first_error (_("invalid rounding mode")); return;
14701 }
14702
14703 NEON_ENCODE (FPV8, inst);
14704 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14705 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
14706 inst.instruction |= sz << 8;
14707 inst.instruction |= op << 7;
14708 inst.instruction |= rm << 16;
14709 inst.instruction |= 0xf0000000;
14710 inst.is_neon = TRUE;
14711}
14712
14713static void
14714do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
14715{
14716 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14717 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
6b9a8b67 14718 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 14719
e3e535bc 14720 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 14721 if (mode == neon_cvt_mode_z
e3e535bc 14722 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
6b9a8b67
MGD
14723 && (flavour == neon_cvt_flavour_s32_f32
14724 || flavour == neon_cvt_flavour_u32_f32
14725 || flavour == neon_cvt_flavour_s32_f64
14726 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
14727 && (rs == NS_FD || rs == NS_FF))
14728 {
14729 do_vfp_nsyn_cvtz ();
14730 return;
14731 }
14732
037e8744 14733 /* VFP rather than Neon conversions. */
6b9a8b67 14734 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 14735 {
7e8e6784
MGD
14736 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14737 do_vfp_nsyn_cvt (rs, flavour);
14738 else
14739 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14740
037e8744
JB
14741 return;
14742 }
14743
14744 switch (rs)
14745 {
14746 case NS_DDI:
14747 case NS_QQI:
14748 {
35997600
NC
14749 unsigned immbits;
14750 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14751
037e8744
JB
14752 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14753 return;
14754
14755 /* Fixed-point conversion with #0 immediate is encoded as an
14756 integer conversion. */
14757 if (inst.operands[2].present && inst.operands[2].imm == 0)
14758 goto int_encode;
35997600 14759 immbits = 32 - inst.operands[2].imm;
88714cb8 14760 NEON_ENCODE (IMMED, inst);
6b9a8b67 14761 if (flavour != neon_cvt_flavour_invalid)
037e8744
JB
14762 inst.instruction |= enctab[flavour];
14763 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14764 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14765 inst.instruction |= LOW4 (inst.operands[1].reg);
14766 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14767 inst.instruction |= neon_quad (rs) << 6;
14768 inst.instruction |= 1 << 21;
14769 inst.instruction |= immbits << 16;
14770
88714cb8 14771 neon_dp_fixup (&inst);
037e8744
JB
14772 }
14773 break;
14774
14775 case NS_DD:
14776 case NS_QQ:
7e8e6784
MGD
14777 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
14778 {
14779 NEON_ENCODE (FLOAT, inst);
14780 set_it_insn_type (OUTSIDE_IT_INSN);
14781
14782 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
14783 return;
14784
14785 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14786 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14787 inst.instruction |= LOW4 (inst.operands[1].reg);
14788 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14789 inst.instruction |= neon_quad (rs) << 6;
14790 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
14791 inst.instruction |= mode << 8;
14792 if (thumb_mode)
14793 inst.instruction |= 0xfc000000;
14794 else
14795 inst.instruction |= 0xf0000000;
14796 }
14797 else
14798 {
037e8744 14799 int_encode:
7e8e6784
MGD
14800 {
14801 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
037e8744 14802
7e8e6784 14803 NEON_ENCODE (INTEGER, inst);
037e8744 14804
7e8e6784
MGD
14805 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14806 return;
037e8744 14807
7e8e6784
MGD
14808 if (flavour != neon_cvt_flavour_invalid)
14809 inst.instruction |= enctab[flavour];
037e8744 14810
7e8e6784
MGD
14811 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14812 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14813 inst.instruction |= LOW4 (inst.operands[1].reg);
14814 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14815 inst.instruction |= neon_quad (rs) << 6;
14816 inst.instruction |= 2 << 18;
037e8744 14817
7e8e6784
MGD
14818 neon_dp_fixup (&inst);
14819 }
14820 }
14821 break;
037e8744 14822
8e79c3df
CM
14823 /* Half-precision conversions for Advanced SIMD -- neon. */
14824 case NS_QD:
14825 case NS_DQ:
14826
14827 if ((rs == NS_DQ)
14828 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14829 {
14830 as_bad (_("operand size must match register width"));
14831 break;
14832 }
14833
14834 if ((rs == NS_QD)
14835 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14836 {
14837 as_bad (_("operand size must match register width"));
14838 break;
14839 }
14840
14841 if (rs == NS_DQ)
14842 inst.instruction = 0x3b60600;
14843 else
14844 inst.instruction = 0x3b60700;
14845
14846 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14847 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14848 inst.instruction |= LOW4 (inst.operands[1].reg);
14849 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14850 neon_dp_fixup (&inst);
8e79c3df
CM
14851 break;
14852
037e8744
JB
14853 default:
14854 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
14855 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14856 do_vfp_nsyn_cvt (rs, flavour);
14857 else
14858 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 14859 }
5287ad62
JB
14860}
14861
e3e535bc
NC
14862static void
14863do_neon_cvtr (void)
14864{
7e8e6784 14865 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
14866}
14867
14868static void
14869do_neon_cvt (void)
14870{
7e8e6784
MGD
14871 do_neon_cvt_1 (neon_cvt_mode_z);
14872}
14873
14874static void
14875do_neon_cvta (void)
14876{
14877 do_neon_cvt_1 (neon_cvt_mode_a);
14878}
14879
14880static void
14881do_neon_cvtn (void)
14882{
14883 do_neon_cvt_1 (neon_cvt_mode_n);
14884}
14885
14886static void
14887do_neon_cvtp (void)
14888{
14889 do_neon_cvt_1 (neon_cvt_mode_p);
14890}
14891
14892static void
14893do_neon_cvtm (void)
14894{
14895 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
14896}
14897
8e79c3df 14898static void
c70a8987 14899do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 14900{
c70a8987
MGD
14901 if (is_double)
14902 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 14903
c70a8987
MGD
14904 encode_arm_vfp_reg (inst.operands[0].reg,
14905 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
14906 encode_arm_vfp_reg (inst.operands[1].reg,
14907 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
14908 inst.instruction |= to ? 0x10000 : 0;
14909 inst.instruction |= t ? 0x80 : 0;
14910 inst.instruction |= is_double ? 0x100 : 0;
14911 do_vfp_cond_or_thumb ();
14912}
8e79c3df 14913
c70a8987
MGD
14914static void
14915do_neon_cvttb_1 (bfd_boolean t)
14916{
14917 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_DF, NS_NULL);
8e79c3df 14918
c70a8987
MGD
14919 if (rs == NS_NULL)
14920 return;
14921 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
14922 {
14923 inst.error = NULL;
14924 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
14925 }
14926 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
14927 {
14928 inst.error = NULL;
14929 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
14930 }
14931 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
14932 {
14933 inst.error = NULL;
14934 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
14935 }
14936 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
14937 {
14938 inst.error = NULL;
14939 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
14940 }
14941 else
14942 return;
14943}
14944
14945static void
14946do_neon_cvtb (void)
14947{
14948 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
14949}
14950
14951
14952static void
14953do_neon_cvtt (void)
14954{
c70a8987 14955 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
14956}
14957
5287ad62
JB
14958static void
14959neon_move_immediate (void)
14960{
037e8744
JB
14961 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14962 struct neon_type_el et = neon_check_type (2, rs,
14963 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14964 unsigned immlo, immhi = 0, immbits;
c96612cc 14965 int op, cmode, float_p;
5287ad62 14966
037e8744
JB
14967 constraint (et.type == NT_invtype,
14968 _("operand size must be specified for immediate VMOV"));
14969
5287ad62
JB
14970 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14971 op = (inst.instruction & (1 << 5)) != 0;
14972
14973 immlo = inst.operands[1].imm;
14974 if (inst.operands[1].regisimm)
14975 immhi = inst.operands[1].reg;
14976
14977 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14978 _("immediate has bits set outside the operand size"));
14979
c96612cc
JB
14980 float_p = inst.operands[1].immisfloat;
14981
14982 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14983 et.size, et.type)) == FAIL)
5287ad62
JB
14984 {
14985 /* Invert relevant bits only. */
14986 neon_invert_size (&immlo, &immhi, et.size);
14987 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14988 with one or the other; those cases are caught by
14989 neon_cmode_for_move_imm. */
14990 op = !op;
c96612cc
JB
14991 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14992 &op, et.size, et.type)) == FAIL)
5287ad62 14993 {
dcbf9037 14994 first_error (_("immediate out of range"));
5287ad62
JB
14995 return;
14996 }
14997 }
14998
14999 inst.instruction &= ~(1 << 5);
15000 inst.instruction |= op << 5;
15001
15002 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15003 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 15004 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15005 inst.instruction |= cmode << 8;
15006
15007 neon_write_immbits (immbits);
15008}
15009
15010static void
15011do_neon_mvn (void)
15012{
15013 if (inst.operands[1].isreg)
15014 {
037e8744 15015 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 15016
88714cb8 15017 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15018 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15019 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15020 inst.instruction |= LOW4 (inst.operands[1].reg);
15021 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 15022 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15023 }
15024 else
15025 {
88714cb8 15026 NEON_ENCODE (IMMED, inst);
5287ad62
JB
15027 neon_move_immediate ();
15028 }
15029
88714cb8 15030 neon_dp_fixup (&inst);
5287ad62
JB
15031}
15032
15033/* Encode instructions of form:
15034
15035 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 15036 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
15037
15038static void
15039neon_mixed_length (struct neon_type_el et, unsigned size)
15040{
15041 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15042 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15043 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15044 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15045 inst.instruction |= LOW4 (inst.operands[2].reg);
15046 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15047 inst.instruction |= (et.type == NT_unsigned) << 24;
15048 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 15049
88714cb8 15050 neon_dp_fixup (&inst);
5287ad62
JB
15051}
15052
15053static void
15054do_neon_dyadic_long (void)
15055{
15056 /* FIXME: Type checking for lengthening op. */
15057 struct neon_type_el et = neon_check_type (3, NS_QDD,
15058 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15059 neon_mixed_length (et, et.size);
15060}
15061
15062static void
15063do_neon_abal (void)
15064{
15065 struct neon_type_el et = neon_check_type (3, NS_QDD,
15066 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15067 neon_mixed_length (et, et.size);
15068}
15069
15070static void
15071neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15072{
15073 if (inst.operands[2].isscalar)
15074 {
dcbf9037
JB
15075 struct neon_type_el et = neon_check_type (3, NS_QDS,
15076 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 15077 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
15078 neon_mul_mac (et, et.type == NT_unsigned);
15079 }
15080 else
15081 {
15082 struct neon_type_el et = neon_check_type (3, NS_QDD,
15083 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 15084 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
15085 neon_mixed_length (et, et.size);
15086 }
15087}
15088
15089static void
15090do_neon_mac_maybe_scalar_long (void)
15091{
15092 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15093}
15094
15095static void
15096do_neon_dyadic_wide (void)
15097{
15098 struct neon_type_el et = neon_check_type (3, NS_QQD,
15099 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15100 neon_mixed_length (et, et.size);
15101}
15102
15103static void
15104do_neon_dyadic_narrow (void)
15105{
15106 struct neon_type_el et = neon_check_type (3, NS_QDD,
15107 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
15108 /* Operand sign is unimportant, and the U bit is part of the opcode,
15109 so force the operand type to integer. */
15110 et.type = NT_integer;
5287ad62
JB
15111 neon_mixed_length (et, et.size / 2);
15112}
15113
15114static void
15115do_neon_mul_sat_scalar_long (void)
15116{
15117 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15118}
15119
15120static void
15121do_neon_vmull (void)
15122{
15123 if (inst.operands[2].isscalar)
15124 do_neon_mac_maybe_scalar_long ();
15125 else
15126 {
15127 struct neon_type_el et = neon_check_type (3, NS_QDD,
4f51b4bd
MGD
15128 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
15129
5287ad62 15130 if (et.type == NT_poly)
88714cb8 15131 NEON_ENCODE (POLY, inst);
5287ad62 15132 else
88714cb8 15133 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
15134
15135 /* For polynomial encoding the U bit must be zero, and the size must
15136 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
15137 obviously, as 0b10). */
15138 if (et.size == 64)
15139 {
15140 /* Check we're on the correct architecture. */
15141 if (!mark_feature_used (&fpu_crypto_ext_armv8))
15142 inst.error =
15143 _("Instruction form not available on this architecture.");
15144
15145 et.size = 32;
15146 }
15147
5287ad62
JB
15148 neon_mixed_length (et, et.size);
15149 }
15150}
15151
15152static void
15153do_neon_ext (void)
15154{
037e8744 15155 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
15156 struct neon_type_el et = neon_check_type (3, rs,
15157 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15158 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
15159
15160 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15161 _("shift out of range"));
5287ad62
JB
15162 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15163 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15164 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15165 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15166 inst.instruction |= LOW4 (inst.operands[2].reg);
15167 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 15168 inst.instruction |= neon_quad (rs) << 6;
5287ad62 15169 inst.instruction |= imm << 8;
5f4273c7 15170
88714cb8 15171 neon_dp_fixup (&inst);
5287ad62
JB
15172}
15173
15174static void
15175do_neon_rev (void)
15176{
037e8744 15177 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15178 struct neon_type_el et = neon_check_type (2, rs,
15179 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15180 unsigned op = (inst.instruction >> 7) & 3;
15181 /* N (width of reversed regions) is encoded as part of the bitmask. We
15182 extract it here to check the elements to be reversed are smaller.
15183 Otherwise we'd get a reserved instruction. */
15184 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 15185 gas_assert (elsize != 0);
5287ad62
JB
15186 constraint (et.size >= elsize,
15187 _("elements must be smaller than reversal region"));
037e8744 15188 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15189}
15190
15191static void
15192do_neon_dup (void)
15193{
15194 if (inst.operands[1].isscalar)
15195 {
037e8744 15196 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
15197 struct neon_type_el et = neon_check_type (2, rs,
15198 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 15199 unsigned sizebits = et.size >> 3;
dcbf9037 15200 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 15201 int logsize = neon_logbits (et.size);
dcbf9037 15202 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
15203
15204 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15205 return;
15206
88714cb8 15207 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
15208 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15209 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15210 inst.instruction |= LOW4 (dm);
15211 inst.instruction |= HI1 (dm) << 5;
037e8744 15212 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15213 inst.instruction |= x << 17;
15214 inst.instruction |= sizebits << 16;
5f4273c7 15215
88714cb8 15216 neon_dp_fixup (&inst);
5287ad62
JB
15217 }
15218 else
15219 {
037e8744
JB
15220 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15221 struct neon_type_el et = neon_check_type (2, rs,
15222 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 15223 /* Duplicate ARM register to lanes of vector. */
88714cb8 15224 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
15225 switch (et.size)
15226 {
15227 case 8: inst.instruction |= 0x400000; break;
15228 case 16: inst.instruction |= 0x000020; break;
15229 case 32: inst.instruction |= 0x000000; break;
15230 default: break;
15231 }
15232 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15233 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15234 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 15235 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
15236 /* The encoding for this instruction is identical for the ARM and Thumb
15237 variants, except for the condition field. */
037e8744 15238 do_vfp_cond_or_thumb ();
5287ad62
JB
15239 }
15240}
15241
15242/* VMOV has particularly many variations. It can be one of:
15243 0. VMOV<c><q> <Qd>, <Qm>
15244 1. VMOV<c><q> <Dd>, <Dm>
15245 (Register operations, which are VORR with Rm = Rn.)
15246 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15247 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15248 (Immediate loads.)
15249 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15250 (ARM register to scalar.)
15251 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15252 (Two ARM registers to vector.)
15253 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15254 (Scalar to ARM register.)
15255 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15256 (Vector to two ARM registers.)
037e8744
JB
15257 8. VMOV.F32 <Sd>, <Sm>
15258 9. VMOV.F64 <Dd>, <Dm>
15259 (VFP register moves.)
15260 10. VMOV.F32 <Sd>, #imm
15261 11. VMOV.F64 <Dd>, #imm
15262 (VFP float immediate load.)
15263 12. VMOV <Rd>, <Sm>
15264 (VFP single to ARM reg.)
15265 13. VMOV <Sd>, <Rm>
15266 (ARM reg to VFP single.)
15267 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15268 (Two ARM regs to two VFP singles.)
15269 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15270 (Two VFP singles to two ARM regs.)
5f4273c7 15271
037e8744
JB
15272 These cases can be disambiguated using neon_select_shape, except cases 1/9
15273 and 3/11 which depend on the operand type too.
5f4273c7 15274
5287ad62 15275 All the encoded bits are hardcoded by this function.
5f4273c7 15276
b7fc2769
JB
15277 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15278 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 15279
5287ad62 15280 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 15281 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
15282
15283static void
15284do_neon_mov (void)
15285{
037e8744
JB
15286 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15287 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15288 NS_NULL);
15289 struct neon_type_el et;
15290 const char *ldconst = 0;
5287ad62 15291
037e8744 15292 switch (rs)
5287ad62 15293 {
037e8744
JB
15294 case NS_DD: /* case 1/9. */
15295 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15296 /* It is not an error here if no type is given. */
15297 inst.error = NULL;
15298 if (et.type == NT_float && et.size == 64)
5287ad62 15299 {
037e8744
JB
15300 do_vfp_nsyn_opcode ("fcpyd");
15301 break;
5287ad62 15302 }
037e8744 15303 /* fall through. */
5287ad62 15304
037e8744
JB
15305 case NS_QQ: /* case 0/1. */
15306 {
15307 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15308 return;
15309 /* The architecture manual I have doesn't explicitly state which
15310 value the U bit should have for register->register moves, but
15311 the equivalent VORR instruction has U = 0, so do that. */
15312 inst.instruction = 0x0200110;
15313 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15314 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15315 inst.instruction |= LOW4 (inst.operands[1].reg);
15316 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15317 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15318 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15319 inst.instruction |= neon_quad (rs) << 6;
15320
88714cb8 15321 neon_dp_fixup (&inst);
037e8744
JB
15322 }
15323 break;
5f4273c7 15324
037e8744
JB
15325 case NS_DI: /* case 3/11. */
15326 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15327 inst.error = NULL;
15328 if (et.type == NT_float && et.size == 64)
5287ad62 15329 {
037e8744
JB
15330 /* case 11 (fconstd). */
15331 ldconst = "fconstd";
15332 goto encode_fconstd;
5287ad62 15333 }
037e8744
JB
15334 /* fall through. */
15335
15336 case NS_QI: /* case 2/3. */
15337 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15338 return;
15339 inst.instruction = 0x0800010;
15340 neon_move_immediate ();
88714cb8 15341 neon_dp_fixup (&inst);
5287ad62 15342 break;
5f4273c7 15343
037e8744
JB
15344 case NS_SR: /* case 4. */
15345 {
15346 unsigned bcdebits = 0;
91d6fa6a 15347 int logsize;
037e8744
JB
15348 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15349 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15350
91d6fa6a
NC
15351 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15352 logsize = neon_logbits (et.size);
15353
037e8744
JB
15354 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15355 _(BAD_FPU));
15356 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15357 && et.size != 32, _(BAD_FPU));
15358 constraint (et.type == NT_invtype, _("bad type for scalar"));
15359 constraint (x >= 64 / et.size, _("scalar index out of range"));
15360
15361 switch (et.size)
15362 {
15363 case 8: bcdebits = 0x8; break;
15364 case 16: bcdebits = 0x1; break;
15365 case 32: bcdebits = 0x0; break;
15366 default: ;
15367 }
15368
15369 bcdebits |= x << logsize;
15370
15371 inst.instruction = 0xe000b10;
15372 do_vfp_cond_or_thumb ();
15373 inst.instruction |= LOW4 (dn) << 16;
15374 inst.instruction |= HI1 (dn) << 7;
15375 inst.instruction |= inst.operands[1].reg << 12;
15376 inst.instruction |= (bcdebits & 3) << 5;
15377 inst.instruction |= (bcdebits >> 2) << 21;
15378 }
15379 break;
5f4273c7 15380
037e8744 15381 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 15382 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 15383 _(BAD_FPU));
b7fc2769 15384
037e8744
JB
15385 inst.instruction = 0xc400b10;
15386 do_vfp_cond_or_thumb ();
15387 inst.instruction |= LOW4 (inst.operands[0].reg);
15388 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15389 inst.instruction |= inst.operands[1].reg << 12;
15390 inst.instruction |= inst.operands[2].reg << 16;
15391 break;
5f4273c7 15392
037e8744
JB
15393 case NS_RS: /* case 6. */
15394 {
91d6fa6a 15395 unsigned logsize;
037e8744
JB
15396 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15397 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15398 unsigned abcdebits = 0;
15399
91d6fa6a
NC
15400 et = neon_check_type (2, NS_NULL,
15401 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15402 logsize = neon_logbits (et.size);
15403
037e8744
JB
15404 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15405 _(BAD_FPU));
15406 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15407 && et.size != 32, _(BAD_FPU));
15408 constraint (et.type == NT_invtype, _("bad type for scalar"));
15409 constraint (x >= 64 / et.size, _("scalar index out of range"));
15410
15411 switch (et.size)
15412 {
15413 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15414 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15415 case 32: abcdebits = 0x00; break;
15416 default: ;
15417 }
15418
15419 abcdebits |= x << logsize;
15420 inst.instruction = 0xe100b10;
15421 do_vfp_cond_or_thumb ();
15422 inst.instruction |= LOW4 (dn) << 16;
15423 inst.instruction |= HI1 (dn) << 7;
15424 inst.instruction |= inst.operands[0].reg << 12;
15425 inst.instruction |= (abcdebits & 3) << 5;
15426 inst.instruction |= (abcdebits >> 2) << 21;
15427 }
15428 break;
5f4273c7 15429
037e8744
JB
15430 case NS_RRD: /* case 7 (fmrrd). */
15431 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15432 _(BAD_FPU));
15433
15434 inst.instruction = 0xc500b10;
15435 do_vfp_cond_or_thumb ();
15436 inst.instruction |= inst.operands[0].reg << 12;
15437 inst.instruction |= inst.operands[1].reg << 16;
15438 inst.instruction |= LOW4 (inst.operands[2].reg);
15439 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15440 break;
5f4273c7 15441
037e8744
JB
15442 case NS_FF: /* case 8 (fcpys). */
15443 do_vfp_nsyn_opcode ("fcpys");
15444 break;
5f4273c7 15445
037e8744
JB
15446 case NS_FI: /* case 10 (fconsts). */
15447 ldconst = "fconsts";
15448 encode_fconstd:
15449 if (is_quarter_float (inst.operands[1].imm))
5287ad62 15450 {
037e8744
JB
15451 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15452 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
15453 }
15454 else
037e8744
JB
15455 first_error (_("immediate out of range"));
15456 break;
5f4273c7 15457
037e8744
JB
15458 case NS_RF: /* case 12 (fmrs). */
15459 do_vfp_nsyn_opcode ("fmrs");
15460 break;
5f4273c7 15461
037e8744
JB
15462 case NS_FR: /* case 13 (fmsr). */
15463 do_vfp_nsyn_opcode ("fmsr");
15464 break;
5f4273c7 15465
037e8744
JB
15466 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15467 (one of which is a list), but we have parsed four. Do some fiddling to
15468 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15469 expect. */
15470 case NS_RRFF: /* case 14 (fmrrs). */
15471 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15472 _("VFP registers must be adjacent"));
15473 inst.operands[2].imm = 2;
15474 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15475 do_vfp_nsyn_opcode ("fmrrs");
15476 break;
5f4273c7 15477
037e8744
JB
15478 case NS_FFRR: /* case 15 (fmsrr). */
15479 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15480 _("VFP registers must be adjacent"));
15481 inst.operands[1] = inst.operands[2];
15482 inst.operands[2] = inst.operands[3];
15483 inst.operands[0].imm = 2;
15484 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15485 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 15486 break;
5f4273c7 15487
5287ad62
JB
15488 default:
15489 abort ();
15490 }
15491}
15492
15493static void
15494do_neon_rshift_round_imm (void)
15495{
037e8744 15496 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15497 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15498 int imm = inst.operands[2].imm;
15499
15500 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15501 if (imm == 0)
15502 {
15503 inst.operands[2].present = 0;
15504 do_neon_mov ();
15505 return;
15506 }
15507
15508 constraint (imm < 1 || (unsigned)imm > et.size,
15509 _("immediate out of range for shift"));
037e8744 15510 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
15511 et.size - imm);
15512}
15513
15514static void
15515do_neon_movl (void)
15516{
15517 struct neon_type_el et = neon_check_type (2, NS_QD,
15518 N_EQK | N_DBL, N_SU_32 | N_KEY);
15519 unsigned sizebits = et.size >> 3;
15520 inst.instruction |= sizebits << 19;
15521 neon_two_same (0, et.type == NT_unsigned, -1);
15522}
15523
15524static void
15525do_neon_trn (void)
15526{
037e8744 15527 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15528 struct neon_type_el et = neon_check_type (2, rs,
15529 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 15530 NEON_ENCODE (INTEGER, inst);
037e8744 15531 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15532}
15533
15534static void
15535do_neon_zip_uzp (void)
15536{
037e8744 15537 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15538 struct neon_type_el et = neon_check_type (2, rs,
15539 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15540 if (rs == NS_DD && et.size == 32)
15541 {
15542 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15543 inst.instruction = N_MNEM_vtrn;
15544 do_neon_trn ();
15545 return;
15546 }
037e8744 15547 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15548}
15549
15550static void
15551do_neon_sat_abs_neg (void)
15552{
037e8744 15553 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15554 struct neon_type_el et = neon_check_type (2, rs,
15555 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15556 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15557}
15558
15559static void
15560do_neon_pair_long (void)
15561{
037e8744 15562 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15563 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15564 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15565 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15566 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15567}
15568
15569static void
15570do_neon_recip_est (void)
15571{
037e8744 15572 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15573 struct neon_type_el et = neon_check_type (2, rs,
15574 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15575 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15576 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15577}
15578
15579static void
15580do_neon_cls (void)
15581{
037e8744 15582 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15583 struct neon_type_el et = neon_check_type (2, rs,
15584 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15585 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15586}
15587
15588static void
15589do_neon_clz (void)
15590{
037e8744 15591 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15592 struct neon_type_el et = neon_check_type (2, rs,
15593 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15594 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15595}
15596
15597static void
15598do_neon_cnt (void)
15599{
037e8744 15600 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15601 struct neon_type_el et = neon_check_type (2, rs,
15602 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15603 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15604}
15605
15606static void
15607do_neon_swp (void)
15608{
037e8744
JB
15609 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15610 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15611}
15612
15613static void
15614do_neon_tbl_tbx (void)
15615{
15616 unsigned listlenbits;
dcbf9037 15617 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15618
5287ad62
JB
15619 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15620 {
dcbf9037 15621 first_error (_("bad list length for table lookup"));
5287ad62
JB
15622 return;
15623 }
5f4273c7 15624
5287ad62
JB
15625 listlenbits = inst.operands[1].imm - 1;
15626 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15627 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15628 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15629 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15630 inst.instruction |= LOW4 (inst.operands[2].reg);
15631 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15632 inst.instruction |= listlenbits << 8;
5f4273c7 15633
88714cb8 15634 neon_dp_fixup (&inst);
5287ad62
JB
15635}
15636
15637static void
15638do_neon_ldm_stm (void)
15639{
15640 /* P, U and L bits are part of bitmask. */
15641 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15642 unsigned offsetbits = inst.operands[1].imm * 2;
15643
037e8744
JB
15644 if (inst.operands[1].issingle)
15645 {
15646 do_vfp_nsyn_ldm_stm (is_dbmode);
15647 return;
15648 }
15649
5287ad62
JB
15650 constraint (is_dbmode && !inst.operands[0].writeback,
15651 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15652
15653 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15654 _("register list must contain at least 1 and at most 16 "
15655 "registers"));
15656
15657 inst.instruction |= inst.operands[0].reg << 16;
15658 inst.instruction |= inst.operands[0].writeback << 21;
15659 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15660 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15661
15662 inst.instruction |= offsetbits;
5f4273c7 15663
037e8744 15664 do_vfp_cond_or_thumb ();
5287ad62
JB
15665}
15666
15667static void
15668do_neon_ldr_str (void)
15669{
5287ad62 15670 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15671
6844b2c2
MGD
15672 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15673 And is UNPREDICTABLE in thumb mode. */
fa94de6b 15674 if (!is_ldr
6844b2c2
MGD
15675 && inst.operands[1].reg == REG_PC
15676 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15677 {
15678 if (!thumb_mode && warn_on_deprecated)
15679 as_warn (_("Use of PC here is deprecated"));
15680 else
15681 inst.error = _("Use of PC here is UNPREDICTABLE");
15682 }
15683
037e8744
JB
15684 if (inst.operands[0].issingle)
15685 {
cd2f129f
JB
15686 if (is_ldr)
15687 do_vfp_nsyn_opcode ("flds");
15688 else
15689 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15690 }
15691 else
5287ad62 15692 {
cd2f129f
JB
15693 if (is_ldr)
15694 do_vfp_nsyn_opcode ("fldd");
5287ad62 15695 else
cd2f129f 15696 do_vfp_nsyn_opcode ("fstd");
5287ad62 15697 }
5287ad62
JB
15698}
15699
15700/* "interleave" version also handles non-interleaving register VLD1/VST1
15701 instructions. */
15702
15703static void
15704do_neon_ld_st_interleave (void)
15705{
037e8744 15706 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15707 N_8 | N_16 | N_32 | N_64);
15708 unsigned alignbits = 0;
15709 unsigned idx;
15710 /* The bits in this table go:
15711 0: register stride of one (0) or two (1)
15712 1,2: register list length, minus one (1, 2, 3, 4).
15713 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15714 We use -1 for invalid entries. */
15715 const int typetable[] =
15716 {
15717 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15718 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15719 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15720 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15721 };
15722 int typebits;
15723
dcbf9037
JB
15724 if (et.type == NT_invtype)
15725 return;
15726
5287ad62
JB
15727 if (inst.operands[1].immisalign)
15728 switch (inst.operands[1].imm >> 8)
15729 {
15730 case 64: alignbits = 1; break;
15731 case 128:
e23c0ad8
JZ
15732 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15733 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15734 goto bad_alignment;
15735 alignbits = 2;
15736 break;
15737 case 256:
e23c0ad8 15738 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15739 goto bad_alignment;
15740 alignbits = 3;
15741 break;
15742 default:
15743 bad_alignment:
dcbf9037 15744 first_error (_("bad alignment"));
5287ad62
JB
15745 return;
15746 }
15747
15748 inst.instruction |= alignbits << 4;
15749 inst.instruction |= neon_logbits (et.size) << 6;
15750
15751 /* Bits [4:6] of the immediate in a list specifier encode register stride
15752 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15753 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15754 up the right value for "type" in a table based on this value and the given
15755 list style, then stick it back. */
15756 idx = ((inst.operands[0].imm >> 4) & 7)
15757 | (((inst.instruction >> 8) & 3) << 3);
15758
15759 typebits = typetable[idx];
5f4273c7 15760
5287ad62
JB
15761 constraint (typebits == -1, _("bad list type for instruction"));
15762
15763 inst.instruction &= ~0xf00;
15764 inst.instruction |= typebits << 8;
15765}
15766
15767/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15768 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15769 otherwise. The variable arguments are a list of pairs of legal (size, align)
15770 values, terminated with -1. */
15771
15772static int
15773neon_alignment_bit (int size, int align, int *do_align, ...)
15774{
15775 va_list ap;
15776 int result = FAIL, thissize, thisalign;
5f4273c7 15777
5287ad62
JB
15778 if (!inst.operands[1].immisalign)
15779 {
15780 *do_align = 0;
15781 return SUCCESS;
15782 }
5f4273c7 15783
5287ad62
JB
15784 va_start (ap, do_align);
15785
15786 do
15787 {
15788 thissize = va_arg (ap, int);
15789 if (thissize == -1)
15790 break;
15791 thisalign = va_arg (ap, int);
15792
15793 if (size == thissize && align == thisalign)
15794 result = SUCCESS;
15795 }
15796 while (result != SUCCESS);
15797
15798 va_end (ap);
15799
15800 if (result == SUCCESS)
15801 *do_align = 1;
15802 else
dcbf9037 15803 first_error (_("unsupported alignment for instruction"));
5f4273c7 15804
5287ad62
JB
15805 return result;
15806}
15807
15808static void
15809do_neon_ld_st_lane (void)
15810{
037e8744 15811 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15812 int align_good, do_align = 0;
15813 int logsize = neon_logbits (et.size);
15814 int align = inst.operands[1].imm >> 8;
15815 int n = (inst.instruction >> 8) & 3;
15816 int max_el = 64 / et.size;
5f4273c7 15817
dcbf9037
JB
15818 if (et.type == NT_invtype)
15819 return;
5f4273c7 15820
5287ad62
JB
15821 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15822 _("bad list length"));
15823 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15824 _("scalar index out of range"));
15825 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15826 && et.size == 8,
15827 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15828
5287ad62
JB
15829 switch (n)
15830 {
15831 case 0: /* VLD1 / VST1. */
15832 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15833 32, 32, -1);
15834 if (align_good == FAIL)
15835 return;
15836 if (do_align)
15837 {
15838 unsigned alignbits = 0;
15839 switch (et.size)
15840 {
15841 case 16: alignbits = 0x1; break;
15842 case 32: alignbits = 0x3; break;
15843 default: ;
15844 }
15845 inst.instruction |= alignbits << 4;
15846 }
15847 break;
15848
15849 case 1: /* VLD2 / VST2. */
15850 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15851 32, 64, -1);
15852 if (align_good == FAIL)
15853 return;
15854 if (do_align)
15855 inst.instruction |= 1 << 4;
15856 break;
15857
15858 case 2: /* VLD3 / VST3. */
15859 constraint (inst.operands[1].immisalign,
15860 _("can't use alignment with this instruction"));
15861 break;
15862
15863 case 3: /* VLD4 / VST4. */
15864 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15865 16, 64, 32, 64, 32, 128, -1);
15866 if (align_good == FAIL)
15867 return;
15868 if (do_align)
15869 {
15870 unsigned alignbits = 0;
15871 switch (et.size)
15872 {
15873 case 8: alignbits = 0x1; break;
15874 case 16: alignbits = 0x1; break;
15875 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15876 default: ;
15877 }
15878 inst.instruction |= alignbits << 4;
15879 }
15880 break;
15881
15882 default: ;
15883 }
15884
15885 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15886 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15887 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15888
5287ad62
JB
15889 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15890 inst.instruction |= logsize << 10;
15891}
15892
15893/* Encode single n-element structure to all lanes VLD<n> instructions. */
15894
15895static void
15896do_neon_ld_dup (void)
15897{
037e8744 15898 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15899 int align_good, do_align = 0;
15900
dcbf9037
JB
15901 if (et.type == NT_invtype)
15902 return;
15903
5287ad62
JB
15904 switch ((inst.instruction >> 8) & 3)
15905 {
15906 case 0: /* VLD1. */
9c2799c2 15907 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15908 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15909 &do_align, 16, 16, 32, 32, -1);
15910 if (align_good == FAIL)
15911 return;
15912 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15913 {
15914 case 1: break;
15915 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15916 default: first_error (_("bad list length")); return;
5287ad62
JB
15917 }
15918 inst.instruction |= neon_logbits (et.size) << 6;
15919 break;
15920
15921 case 1: /* VLD2. */
15922 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15923 &do_align, 8, 16, 16, 32, 32, 64, -1);
15924 if (align_good == FAIL)
15925 return;
15926 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15927 _("bad list length"));
15928 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15929 inst.instruction |= 1 << 5;
15930 inst.instruction |= neon_logbits (et.size) << 6;
15931 break;
15932
15933 case 2: /* VLD3. */
15934 constraint (inst.operands[1].immisalign,
15935 _("can't use alignment with this instruction"));
15936 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15937 _("bad list length"));
15938 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15939 inst.instruction |= 1 << 5;
15940 inst.instruction |= neon_logbits (et.size) << 6;
15941 break;
15942
15943 case 3: /* VLD4. */
15944 {
15945 int align = inst.operands[1].imm >> 8;
15946 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15947 16, 64, 32, 64, 32, 128, -1);
15948 if (align_good == FAIL)
15949 return;
15950 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15951 _("bad list length"));
15952 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15953 inst.instruction |= 1 << 5;
15954 if (et.size == 32 && align == 128)
15955 inst.instruction |= 0x3 << 6;
15956 else
15957 inst.instruction |= neon_logbits (et.size) << 6;
15958 }
15959 break;
15960
15961 default: ;
15962 }
15963
15964 inst.instruction |= do_align << 4;
15965}
15966
15967/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15968 apart from bits [11:4]. */
15969
15970static void
15971do_neon_ldx_stx (void)
15972{
b1a769ed
DG
15973 if (inst.operands[1].isreg)
15974 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15975
5287ad62
JB
15976 switch (NEON_LANE (inst.operands[0].imm))
15977 {
15978 case NEON_INTERLEAVE_LANES:
88714cb8 15979 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15980 do_neon_ld_st_interleave ();
15981 break;
5f4273c7 15982
5287ad62 15983 case NEON_ALL_LANES:
88714cb8 15984 NEON_ENCODE (DUP, inst);
5287ad62
JB
15985 do_neon_ld_dup ();
15986 break;
5f4273c7 15987
5287ad62 15988 default:
88714cb8 15989 NEON_ENCODE (LANE, inst);
5287ad62
JB
15990 do_neon_ld_st_lane ();
15991 }
15992
15993 /* L bit comes from bit mask. */
15994 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15995 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15996 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15997
5287ad62
JB
15998 if (inst.operands[1].postind)
15999 {
16000 int postreg = inst.operands[1].imm & 0xf;
16001 constraint (!inst.operands[1].immisreg,
16002 _("post-index must be a register"));
16003 constraint (postreg == 0xd || postreg == 0xf,
16004 _("bad register for post-index"));
16005 inst.instruction |= postreg;
16006 }
16007 else if (inst.operands[1].writeback)
16008 {
16009 inst.instruction |= 0xd;
16010 }
16011 else
5f4273c7
NC
16012 inst.instruction |= 0xf;
16013
5287ad62
JB
16014 if (thumb_mode)
16015 inst.instruction |= 0xf9000000;
16016 else
16017 inst.instruction |= 0xf4000000;
16018}
33399f07
MGD
16019
16020/* FP v8. */
16021static void
16022do_vfp_nsyn_fpv8 (enum neon_shape rs)
16023{
16024 NEON_ENCODE (FPV8, inst);
16025
16026 if (rs == NS_FFF)
16027 do_vfp_sp_dyadic ();
16028 else
16029 do_vfp_dp_rd_rn_rm ();
16030
16031 if (rs == NS_DDD)
16032 inst.instruction |= 0x100;
16033
16034 inst.instruction |= 0xf0000000;
16035}
16036
16037static void
16038do_vsel (void)
16039{
16040 set_it_insn_type (OUTSIDE_IT_INSN);
16041
16042 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
16043 first_error (_("invalid instruction shape"));
16044}
16045
73924fbc
MGD
16046static void
16047do_vmaxnm (void)
16048{
16049 set_it_insn_type (OUTSIDE_IT_INSN);
16050
16051 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
16052 return;
16053
16054 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16055 return;
16056
16057 neon_dyadic_misc (NT_untyped, N_F32, 0);
16058}
16059
30bdf752
MGD
16060static void
16061do_vrint_1 (enum neon_cvt_mode mode)
16062{
16063 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_QQ, NS_NULL);
16064 struct neon_type_el et;
16065
16066 if (rs == NS_NULL)
16067 return;
16068
16069 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
16070 if (et.type != NT_invtype)
16071 {
16072 /* VFP encodings. */
16073 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
16074 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
16075 set_it_insn_type (OUTSIDE_IT_INSN);
16076
16077 NEON_ENCODE (FPV8, inst);
16078 if (rs == NS_FF)
16079 do_vfp_sp_monadic ();
16080 else
16081 do_vfp_dp_rd_rm ();
16082
16083 switch (mode)
16084 {
16085 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
16086 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
16087 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
16088 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
16089 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
16090 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
16091 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
16092 default: abort ();
16093 }
16094
16095 inst.instruction |= (rs == NS_DD) << 8;
16096 do_vfp_cond_or_thumb ();
16097 }
16098 else
16099 {
16100 /* Neon encodings (or something broken...). */
16101 inst.error = NULL;
16102 et = neon_check_type (2, rs, N_EQK, N_F32 | N_KEY);
16103
16104 if (et.type == NT_invtype)
16105 return;
16106
16107 set_it_insn_type (OUTSIDE_IT_INSN);
16108 NEON_ENCODE (FLOAT, inst);
16109
16110 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16111 return;
16112
16113 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16114 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16115 inst.instruction |= LOW4 (inst.operands[1].reg);
16116 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16117 inst.instruction |= neon_quad (rs) << 6;
16118 switch (mode)
16119 {
16120 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
16121 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
16122 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
16123 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
16124 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
16125 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
16126 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
16127 default: abort ();
16128 }
16129
16130 if (thumb_mode)
16131 inst.instruction |= 0xfc000000;
16132 else
16133 inst.instruction |= 0xf0000000;
16134 }
16135}
16136
16137static void
16138do_vrintx (void)
16139{
16140 do_vrint_1 (neon_cvt_mode_x);
16141}
16142
16143static void
16144do_vrintz (void)
16145{
16146 do_vrint_1 (neon_cvt_mode_z);
16147}
16148
16149static void
16150do_vrintr (void)
16151{
16152 do_vrint_1 (neon_cvt_mode_r);
16153}
16154
16155static void
16156do_vrinta (void)
16157{
16158 do_vrint_1 (neon_cvt_mode_a);
16159}
16160
16161static void
16162do_vrintn (void)
16163{
16164 do_vrint_1 (neon_cvt_mode_n);
16165}
16166
16167static void
16168do_vrintp (void)
16169{
16170 do_vrint_1 (neon_cvt_mode_p);
16171}
16172
16173static void
16174do_vrintm (void)
16175{
16176 do_vrint_1 (neon_cvt_mode_m);
16177}
16178
91ff7894
MGD
16179/* Crypto v1 instructions. */
16180static void
16181do_crypto_2op_1 (unsigned elttype, int op)
16182{
16183 set_it_insn_type (OUTSIDE_IT_INSN);
16184
16185 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
16186 == NT_invtype)
16187 return;
16188
16189 inst.error = NULL;
16190
16191 NEON_ENCODE (INTEGER, inst);
16192 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16193 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16194 inst.instruction |= LOW4 (inst.operands[1].reg);
16195 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16196 if (op != -1)
16197 inst.instruction |= op << 6;
16198
16199 if (thumb_mode)
16200 inst.instruction |= 0xfc000000;
16201 else
16202 inst.instruction |= 0xf0000000;
16203}
16204
48adcd8e
MGD
16205static void
16206do_crypto_3op_1 (int u, int op)
16207{
16208 set_it_insn_type (OUTSIDE_IT_INSN);
16209
16210 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
16211 N_32 | N_UNT | N_KEY).type == NT_invtype)
16212 return;
16213
16214 inst.error = NULL;
16215
16216 NEON_ENCODE (INTEGER, inst);
16217 neon_three_same (1, u, 8 << op);
16218}
16219
91ff7894
MGD
16220static void
16221do_aese (void)
16222{
16223 do_crypto_2op_1 (N_8, 0);
16224}
16225
16226static void
16227do_aesd (void)
16228{
16229 do_crypto_2op_1 (N_8, 1);
16230}
16231
16232static void
16233do_aesmc (void)
16234{
16235 do_crypto_2op_1 (N_8, 2);
16236}
16237
16238static void
16239do_aesimc (void)
16240{
16241 do_crypto_2op_1 (N_8, 3);
16242}
16243
48adcd8e
MGD
16244static void
16245do_sha1c (void)
16246{
16247 do_crypto_3op_1 (0, 0);
16248}
16249
16250static void
16251do_sha1p (void)
16252{
16253 do_crypto_3op_1 (0, 1);
16254}
16255
16256static void
16257do_sha1m (void)
16258{
16259 do_crypto_3op_1 (0, 2);
16260}
16261
16262static void
16263do_sha1su0 (void)
16264{
16265 do_crypto_3op_1 (0, 3);
16266}
91ff7894 16267
48adcd8e
MGD
16268static void
16269do_sha256h (void)
16270{
16271 do_crypto_3op_1 (1, 0);
16272}
16273
16274static void
16275do_sha256h2 (void)
16276{
16277 do_crypto_3op_1 (1, 1);
16278}
16279
16280static void
16281do_sha256su1 (void)
16282{
16283 do_crypto_3op_1 (1, 2);
16284}
3c9017d2
MGD
16285
16286static void
16287do_sha1h (void)
16288{
16289 do_crypto_2op_1 (N_32, -1);
16290}
16291
16292static void
16293do_sha1su1 (void)
16294{
16295 do_crypto_2op_1 (N_32, 0);
16296}
16297
16298static void
16299do_sha256su0 (void)
16300{
16301 do_crypto_2op_1 (N_32, 1);
16302}
5287ad62
JB
16303\f
16304/* Overall per-instruction processing. */
16305
16306/* We need to be able to fix up arbitrary expressions in some statements.
16307 This is so that we can handle symbols that are an arbitrary distance from
16308 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
16309 which returns part of an address in a form which will be valid for
16310 a data instruction. We do this by pushing the expression into a symbol
16311 in the expr_section, and creating a fix for that. */
16312
16313static void
16314fix_new_arm (fragS * frag,
16315 int where,
16316 short int size,
16317 expressionS * exp,
16318 int pc_rel,
16319 int reloc)
16320{
16321 fixS * new_fix;
16322
16323 switch (exp->X_op)
16324 {
16325 case O_constant:
6e7ce2cd
PB
16326 if (pc_rel)
16327 {
16328 /* Create an absolute valued symbol, so we have something to
16329 refer to in the object file. Unfortunately for us, gas's
16330 generic expression parsing will already have folded out
16331 any use of .set foo/.type foo %function that may have
16332 been used to set type information of the target location,
16333 that's being specified symbolically. We have to presume
16334 the user knows what they are doing. */
16335 char name[16 + 8];
16336 symbolS *symbol;
16337
16338 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
16339
16340 symbol = symbol_find_or_make (name);
16341 S_SET_SEGMENT (symbol, absolute_section);
16342 symbol_set_frag (symbol, &zero_address_frag);
16343 S_SET_VALUE (symbol, exp->X_add_number);
16344 exp->X_op = O_symbol;
16345 exp->X_add_symbol = symbol;
16346 exp->X_add_number = 0;
16347 }
16348 /* FALLTHROUGH */
5287ad62
JB
16349 case O_symbol:
16350 case O_add:
16351 case O_subtract:
21d799b5
NC
16352 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
16353 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
16354 break;
16355
16356 default:
21d799b5
NC
16357 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
16358 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
16359 break;
16360 }
16361
16362 /* Mark whether the fix is to a THUMB instruction, or an ARM
16363 instruction. */
16364 new_fix->tc_fix_data = thumb_mode;
16365}
16366
16367/* Create a frg for an instruction requiring relaxation. */
16368static void
16369output_relax_insn (void)
16370{
16371 char * to;
16372 symbolS *sym;
0110f2b8
PB
16373 int offset;
16374
6e1cb1a6
PB
16375 /* The size of the instruction is unknown, so tie the debug info to the
16376 start of the instruction. */
16377 dwarf2_emit_insn (0);
6e1cb1a6 16378
0110f2b8
PB
16379 switch (inst.reloc.exp.X_op)
16380 {
16381 case O_symbol:
16382 sym = inst.reloc.exp.X_add_symbol;
16383 offset = inst.reloc.exp.X_add_number;
16384 break;
16385 case O_constant:
16386 sym = NULL;
16387 offset = inst.reloc.exp.X_add_number;
16388 break;
16389 default:
16390 sym = make_expr_symbol (&inst.reloc.exp);
16391 offset = 0;
16392 break;
16393 }
16394 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
16395 inst.relax, sym, offset, NULL/*offset, opcode*/);
16396 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
16397}
16398
16399/* Write a 32-bit thumb instruction to buf. */
16400static void
16401put_thumb32_insn (char * buf, unsigned long insn)
16402{
16403 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
16404 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
16405}
16406
b99bd4ef 16407static void
c19d1205 16408output_inst (const char * str)
b99bd4ef 16409{
c19d1205 16410 char * to = NULL;
b99bd4ef 16411
c19d1205 16412 if (inst.error)
b99bd4ef 16413 {
c19d1205 16414 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
16415 return;
16416 }
5f4273c7
NC
16417 if (inst.relax)
16418 {
16419 output_relax_insn ();
0110f2b8 16420 return;
5f4273c7 16421 }
c19d1205
ZW
16422 if (inst.size == 0)
16423 return;
b99bd4ef 16424
c19d1205 16425 to = frag_more (inst.size);
8dc2430f
NC
16426 /* PR 9814: Record the thumb mode into the current frag so that we know
16427 what type of NOP padding to use, if necessary. We override any previous
16428 setting so that if the mode has changed then the NOPS that we use will
16429 match the encoding of the last instruction in the frag. */
cd000bff 16430 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
16431
16432 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 16433 {
9c2799c2 16434 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 16435 put_thumb32_insn (to, inst.instruction);
b99bd4ef 16436 }
c19d1205 16437 else if (inst.size > INSN_SIZE)
b99bd4ef 16438 {
9c2799c2 16439 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
16440 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16441 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 16442 }
c19d1205
ZW
16443 else
16444 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 16445
c19d1205
ZW
16446 if (inst.reloc.type != BFD_RELOC_UNUSED)
16447 fix_new_arm (frag_now, to - frag_now->fr_literal,
16448 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16449 inst.reloc.type);
b99bd4ef 16450
c19d1205 16451 dwarf2_emit_insn (inst.size);
c19d1205 16452}
b99bd4ef 16453
e07e6e58
NC
16454static char *
16455output_it_inst (int cond, int mask, char * to)
16456{
16457 unsigned long instruction = 0xbf00;
16458
16459 mask &= 0xf;
16460 instruction |= mask;
16461 instruction |= cond << 4;
16462
16463 if (to == NULL)
16464 {
16465 to = frag_more (2);
16466#ifdef OBJ_ELF
16467 dwarf2_emit_insn (2);
16468#endif
16469 }
16470
16471 md_number_to_chars (to, instruction, 2);
16472
16473 return to;
16474}
16475
c19d1205
ZW
16476/* Tag values used in struct asm_opcode's tag field. */
16477enum opcode_tag
16478{
16479 OT_unconditional, /* Instruction cannot be conditionalized.
16480 The ARM condition field is still 0xE. */
16481 OT_unconditionalF, /* Instruction cannot be conditionalized
16482 and carries 0xF in its ARM condition field. */
16483 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
16484 OT_csuffixF, /* Some forms of the instruction take a conditional
16485 suffix, others place 0xF where the condition field
16486 would be. */
c19d1205
ZW
16487 OT_cinfix3, /* Instruction takes a conditional infix,
16488 beginning at character index 3. (In
16489 unified mode, it becomes a suffix.) */
088fa78e
KH
16490 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16491 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
16492 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16493 character index 3, even in unified mode. Used for
16494 legacy instructions where suffix and infix forms
16495 may be ambiguous. */
c19d1205 16496 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 16497 suffix or an infix at character index 3. */
c19d1205
ZW
16498 OT_odd_infix_unc, /* This is the unconditional variant of an
16499 instruction that takes a conditional infix
16500 at an unusual position. In unified mode,
16501 this variant will accept a suffix. */
16502 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16503 are the conditional variants of instructions that
16504 take conditional infixes in unusual positions.
16505 The infix appears at character index
16506 (tag - OT_odd_infix_0). These are not accepted
16507 in unified mode. */
16508};
b99bd4ef 16509
c19d1205
ZW
16510/* Subroutine of md_assemble, responsible for looking up the primary
16511 opcode from the mnemonic the user wrote. STR points to the
16512 beginning of the mnemonic.
16513
16514 This is not simply a hash table lookup, because of conditional
16515 variants. Most instructions have conditional variants, which are
16516 expressed with a _conditional affix_ to the mnemonic. If we were
16517 to encode each conditional variant as a literal string in the opcode
16518 table, it would have approximately 20,000 entries.
16519
16520 Most mnemonics take this affix as a suffix, and in unified syntax,
16521 'most' is upgraded to 'all'. However, in the divided syntax, some
16522 instructions take the affix as an infix, notably the s-variants of
16523 the arithmetic instructions. Of those instructions, all but six
16524 have the infix appear after the third character of the mnemonic.
16525
16526 Accordingly, the algorithm for looking up primary opcodes given
16527 an identifier is:
16528
16529 1. Look up the identifier in the opcode table.
16530 If we find a match, go to step U.
16531
16532 2. Look up the last two characters of the identifier in the
16533 conditions table. If we find a match, look up the first N-2
16534 characters of the identifier in the opcode table. If we
16535 find a match, go to step CE.
16536
16537 3. Look up the fourth and fifth characters of the identifier in
16538 the conditions table. If we find a match, extract those
16539 characters from the identifier, and look up the remaining
16540 characters in the opcode table. If we find a match, go
16541 to step CM.
16542
16543 4. Fail.
16544
16545 U. Examine the tag field of the opcode structure, in case this is
16546 one of the six instructions with its conditional infix in an
16547 unusual place. If it is, the tag tells us where to find the
16548 infix; look it up in the conditions table and set inst.cond
16549 accordingly. Otherwise, this is an unconditional instruction.
16550 Again set inst.cond accordingly. Return the opcode structure.
16551
16552 CE. Examine the tag field to make sure this is an instruction that
16553 should receive a conditional suffix. If it is not, fail.
16554 Otherwise, set inst.cond from the suffix we already looked up,
16555 and return the opcode structure.
16556
16557 CM. Examine the tag field to make sure this is an instruction that
16558 should receive a conditional infix after the third character.
16559 If it is not, fail. Otherwise, undo the edits to the current
16560 line of input and proceed as for case CE. */
16561
16562static const struct asm_opcode *
16563opcode_lookup (char **str)
16564{
16565 char *end, *base;
16566 char *affix;
16567 const struct asm_opcode *opcode;
16568 const struct asm_cond *cond;
e3cb604e 16569 char save[2];
c19d1205
ZW
16570
16571 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 16572 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 16573 for (base = end = *str; *end != '\0'; end++)
721a8186 16574 if (*end == ' ' || *end == '.')
c19d1205 16575 break;
b99bd4ef 16576
c19d1205 16577 if (end == base)
c921be7d 16578 return NULL;
b99bd4ef 16579
5287ad62 16580 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 16581 if (end[0] == '.')
b99bd4ef 16582 {
5287ad62 16583 int offset = 2;
5f4273c7 16584
267d2029
JB
16585 /* The .w and .n suffixes are only valid if the unified syntax is in
16586 use. */
16587 if (unified_syntax && end[1] == 'w')
c19d1205 16588 inst.size_req = 4;
267d2029 16589 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
16590 inst.size_req = 2;
16591 else
5287ad62
JB
16592 offset = 0;
16593
16594 inst.vectype.elems = 0;
16595
16596 *str = end + offset;
b99bd4ef 16597
5f4273c7 16598 if (end[offset] == '.')
5287ad62 16599 {
267d2029
JB
16600 /* See if we have a Neon type suffix (possible in either unified or
16601 non-unified ARM syntax mode). */
dcbf9037 16602 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 16603 return NULL;
5287ad62
JB
16604 }
16605 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 16606 return NULL;
b99bd4ef 16607 }
c19d1205
ZW
16608 else
16609 *str = end;
b99bd4ef 16610
c19d1205 16611 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
16612 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16613 end - base);
c19d1205 16614 if (opcode)
b99bd4ef 16615 {
c19d1205
ZW
16616 /* step U */
16617 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 16618 {
c19d1205
ZW
16619 inst.cond = COND_ALWAYS;
16620 return opcode;
b99bd4ef 16621 }
b99bd4ef 16622
278df34e 16623 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
16624 as_warn (_("conditional infixes are deprecated in unified syntax"));
16625 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 16626 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 16627 gas_assert (cond);
b99bd4ef 16628
c19d1205
ZW
16629 inst.cond = cond->value;
16630 return opcode;
16631 }
b99bd4ef 16632
c19d1205
ZW
16633 /* Cannot have a conditional suffix on a mnemonic of less than two
16634 characters. */
16635 if (end - base < 3)
c921be7d 16636 return NULL;
b99bd4ef 16637
c19d1205
ZW
16638 /* Look for suffixed mnemonic. */
16639 affix = end - 2;
21d799b5
NC
16640 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16641 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16642 affix - base);
c19d1205
ZW
16643 if (opcode && cond)
16644 {
16645 /* step CE */
16646 switch (opcode->tag)
16647 {
e3cb604e
PB
16648 case OT_cinfix3_legacy:
16649 /* Ignore conditional suffixes matched on infix only mnemonics. */
16650 break;
16651
c19d1205 16652 case OT_cinfix3:
088fa78e 16653 case OT_cinfix3_deprecated:
c19d1205
ZW
16654 case OT_odd_infix_unc:
16655 if (!unified_syntax)
e3cb604e 16656 return 0;
c19d1205
ZW
16657 /* else fall through */
16658
16659 case OT_csuffix:
037e8744 16660 case OT_csuffixF:
c19d1205
ZW
16661 case OT_csuf_or_in3:
16662 inst.cond = cond->value;
16663 return opcode;
16664
16665 case OT_unconditional:
16666 case OT_unconditionalF:
dfa9f0d5 16667 if (thumb_mode)
c921be7d 16668 inst.cond = cond->value;
dfa9f0d5
PB
16669 else
16670 {
c921be7d 16671 /* Delayed diagnostic. */
dfa9f0d5
PB
16672 inst.error = BAD_COND;
16673 inst.cond = COND_ALWAYS;
16674 }
c19d1205 16675 return opcode;
b99bd4ef 16676
c19d1205 16677 default:
c921be7d 16678 return NULL;
c19d1205
ZW
16679 }
16680 }
b99bd4ef 16681
c19d1205
ZW
16682 /* Cannot have a usual-position infix on a mnemonic of less than
16683 six characters (five would be a suffix). */
16684 if (end - base < 6)
c921be7d 16685 return NULL;
b99bd4ef 16686
c19d1205
ZW
16687 /* Look for infixed mnemonic in the usual position. */
16688 affix = base + 3;
21d799b5 16689 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 16690 if (!cond)
c921be7d 16691 return NULL;
e3cb604e
PB
16692
16693 memcpy (save, affix, 2);
16694 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
16695 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16696 (end - base) - 2);
e3cb604e
PB
16697 memmove (affix + 2, affix, (end - affix) - 2);
16698 memcpy (affix, save, 2);
16699
088fa78e
KH
16700 if (opcode
16701 && (opcode->tag == OT_cinfix3
16702 || opcode->tag == OT_cinfix3_deprecated
16703 || opcode->tag == OT_csuf_or_in3
16704 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 16705 {
c921be7d 16706 /* Step CM. */
278df34e 16707 if (warn_on_deprecated && unified_syntax
088fa78e
KH
16708 && (opcode->tag == OT_cinfix3
16709 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
16710 as_warn (_("conditional infixes are deprecated in unified syntax"));
16711
16712 inst.cond = cond->value;
16713 return opcode;
b99bd4ef
NC
16714 }
16715
c921be7d 16716 return NULL;
b99bd4ef
NC
16717}
16718
e07e6e58
NC
16719/* This function generates an initial IT instruction, leaving its block
16720 virtually open for the new instructions. Eventually,
16721 the mask will be updated by now_it_add_mask () each time
16722 a new instruction needs to be included in the IT block.
16723 Finally, the block is closed with close_automatic_it_block ().
16724 The block closure can be requested either from md_assemble (),
16725 a tencode (), or due to a label hook. */
16726
16727static void
16728new_automatic_it_block (int cond)
16729{
16730 now_it.state = AUTOMATIC_IT_BLOCK;
16731 now_it.mask = 0x18;
16732 now_it.cc = cond;
16733 now_it.block_length = 1;
cd000bff 16734 mapping_state (MAP_THUMB);
e07e6e58 16735 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
16736 now_it.warn_deprecated = FALSE;
16737 now_it.insn_cond = TRUE;
e07e6e58
NC
16738}
16739
16740/* Close an automatic IT block.
16741 See comments in new_automatic_it_block (). */
16742
16743static void
16744close_automatic_it_block (void)
16745{
16746 now_it.mask = 0x10;
16747 now_it.block_length = 0;
16748}
16749
16750/* Update the mask of the current automatically-generated IT
16751 instruction. See comments in new_automatic_it_block (). */
16752
16753static void
16754now_it_add_mask (int cond)
16755{
16756#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16757#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16758 | ((bitvalue) << (nbit)))
e07e6e58 16759 const int resulting_bit = (cond & 1);
c921be7d 16760
e07e6e58
NC
16761 now_it.mask &= 0xf;
16762 now_it.mask = SET_BIT_VALUE (now_it.mask,
16763 resulting_bit,
16764 (5 - now_it.block_length));
16765 now_it.mask = SET_BIT_VALUE (now_it.mask,
16766 1,
16767 ((5 - now_it.block_length) - 1) );
16768 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16769
16770#undef CLEAR_BIT
16771#undef SET_BIT_VALUE
e07e6e58
NC
16772}
16773
16774/* The IT blocks handling machinery is accessed through the these functions:
16775 it_fsm_pre_encode () from md_assemble ()
16776 set_it_insn_type () optional, from the tencode functions
16777 set_it_insn_type_last () ditto
16778 in_it_block () ditto
16779 it_fsm_post_encode () from md_assemble ()
16780 force_automatic_it_block_close () from label habdling functions
16781
16782 Rationale:
16783 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16784 initializing the IT insn type with a generic initial value depending
16785 on the inst.condition.
16786 2) During the tencode function, two things may happen:
16787 a) The tencode function overrides the IT insn type by
16788 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16789 b) The tencode function queries the IT block state by
16790 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16791
16792 Both set_it_insn_type and in_it_block run the internal FSM state
16793 handling function (handle_it_state), because: a) setting the IT insn
16794 type may incur in an invalid state (exiting the function),
16795 and b) querying the state requires the FSM to be updated.
16796 Specifically we want to avoid creating an IT block for conditional
16797 branches, so it_fsm_pre_encode is actually a guess and we can't
16798 determine whether an IT block is required until the tencode () routine
16799 has decided what type of instruction this actually it.
16800 Because of this, if set_it_insn_type and in_it_block have to be used,
16801 set_it_insn_type has to be called first.
16802
16803 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16804 determines the insn IT type depending on the inst.cond code.
16805 When a tencode () routine encodes an instruction that can be
16806 either outside an IT block, or, in the case of being inside, has to be
16807 the last one, set_it_insn_type_last () will determine the proper
16808 IT instruction type based on the inst.cond code. Otherwise,
16809 set_it_insn_type can be called for overriding that logic or
16810 for covering other cases.
16811
16812 Calling handle_it_state () may not transition the IT block state to
16813 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16814 still queried. Instead, if the FSM determines that the state should
16815 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16816 after the tencode () function: that's what it_fsm_post_encode () does.
16817
16818 Since in_it_block () calls the state handling function to get an
16819 updated state, an error may occur (due to invalid insns combination).
16820 In that case, inst.error is set.
16821 Therefore, inst.error has to be checked after the execution of
16822 the tencode () routine.
16823
16824 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16825 any pending state change (if any) that didn't take place in
16826 handle_it_state () as explained above. */
16827
16828static void
16829it_fsm_pre_encode (void)
16830{
16831 if (inst.cond != COND_ALWAYS)
16832 inst.it_insn_type = INSIDE_IT_INSN;
16833 else
16834 inst.it_insn_type = OUTSIDE_IT_INSN;
16835
16836 now_it.state_handled = 0;
16837}
16838
16839/* IT state FSM handling function. */
16840
16841static int
16842handle_it_state (void)
16843{
16844 now_it.state_handled = 1;
5a01bb1d 16845 now_it.insn_cond = FALSE;
e07e6e58
NC
16846
16847 switch (now_it.state)
16848 {
16849 case OUTSIDE_IT_BLOCK:
16850 switch (inst.it_insn_type)
16851 {
16852 case OUTSIDE_IT_INSN:
16853 break;
16854
16855 case INSIDE_IT_INSN:
16856 case INSIDE_IT_LAST_INSN:
16857 if (thumb_mode == 0)
16858 {
c921be7d 16859 if (unified_syntax
e07e6e58
NC
16860 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16861 as_tsktsk (_("Warning: conditional outside an IT block"\
16862 " for Thumb."));
16863 }
16864 else
16865 {
16866 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16867 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16868 {
16869 /* Automatically generate the IT instruction. */
16870 new_automatic_it_block (inst.cond);
16871 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16872 close_automatic_it_block ();
16873 }
16874 else
16875 {
16876 inst.error = BAD_OUT_IT;
16877 return FAIL;
16878 }
16879 }
16880 break;
16881
16882 case IF_INSIDE_IT_LAST_INSN:
16883 case NEUTRAL_IT_INSN:
16884 break;
16885
16886 case IT_INSN:
16887 now_it.state = MANUAL_IT_BLOCK;
16888 now_it.block_length = 0;
16889 break;
16890 }
16891 break;
16892
16893 case AUTOMATIC_IT_BLOCK:
16894 /* Three things may happen now:
16895 a) We should increment current it block size;
16896 b) We should close current it block (closing insn or 4 insns);
16897 c) We should close current it block and start a new one (due
16898 to incompatible conditions or
16899 4 insns-length block reached). */
16900
16901 switch (inst.it_insn_type)
16902 {
16903 case OUTSIDE_IT_INSN:
16904 /* The closure of the block shall happen immediatelly,
16905 so any in_it_block () call reports the block as closed. */
16906 force_automatic_it_block_close ();
16907 break;
16908
16909 case INSIDE_IT_INSN:
16910 case INSIDE_IT_LAST_INSN:
16911 case IF_INSIDE_IT_LAST_INSN:
16912 now_it.block_length++;
16913
16914 if (now_it.block_length > 4
16915 || !now_it_compatible (inst.cond))
16916 {
16917 force_automatic_it_block_close ();
16918 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16919 new_automatic_it_block (inst.cond);
16920 }
16921 else
16922 {
5a01bb1d 16923 now_it.insn_cond = TRUE;
e07e6e58
NC
16924 now_it_add_mask (inst.cond);
16925 }
16926
16927 if (now_it.state == AUTOMATIC_IT_BLOCK
16928 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16929 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16930 close_automatic_it_block ();
16931 break;
16932
16933 case NEUTRAL_IT_INSN:
16934 now_it.block_length++;
5a01bb1d 16935 now_it.insn_cond = TRUE;
e07e6e58
NC
16936
16937 if (now_it.block_length > 4)
16938 force_automatic_it_block_close ();
16939 else
16940 now_it_add_mask (now_it.cc & 1);
16941 break;
16942
16943 case IT_INSN:
16944 close_automatic_it_block ();
16945 now_it.state = MANUAL_IT_BLOCK;
16946 break;
16947 }
16948 break;
16949
16950 case MANUAL_IT_BLOCK:
16951 {
16952 /* Check conditional suffixes. */
16953 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16954 int is_last;
16955 now_it.mask <<= 1;
16956 now_it.mask &= 0x1f;
16957 is_last = (now_it.mask == 0x10);
5a01bb1d 16958 now_it.insn_cond = TRUE;
e07e6e58
NC
16959
16960 switch (inst.it_insn_type)
16961 {
16962 case OUTSIDE_IT_INSN:
16963 inst.error = BAD_NOT_IT;
16964 return FAIL;
16965
16966 case INSIDE_IT_INSN:
16967 if (cond != inst.cond)
16968 {
16969 inst.error = BAD_IT_COND;
16970 return FAIL;
16971 }
16972 break;
16973
16974 case INSIDE_IT_LAST_INSN:
16975 case IF_INSIDE_IT_LAST_INSN:
16976 if (cond != inst.cond)
16977 {
16978 inst.error = BAD_IT_COND;
16979 return FAIL;
16980 }
16981 if (!is_last)
16982 {
16983 inst.error = BAD_BRANCH;
16984 return FAIL;
16985 }
16986 break;
16987
16988 case NEUTRAL_IT_INSN:
16989 /* The BKPT instruction is unconditional even in an IT block. */
16990 break;
16991
16992 case IT_INSN:
16993 inst.error = BAD_IT_IT;
16994 return FAIL;
16995 }
16996 }
16997 break;
16998 }
16999
17000 return SUCCESS;
17001}
17002
5a01bb1d
MGD
17003struct depr_insn_mask
17004{
17005 unsigned long pattern;
17006 unsigned long mask;
17007 const char* description;
17008};
17009
17010/* List of 16-bit instruction patterns deprecated in an IT block in
17011 ARMv8. */
17012static const struct depr_insn_mask depr_it_insns[] = {
17013 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
17014 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
17015 { 0xa000, 0xb800, N_("ADR") },
17016 { 0x4800, 0xf800, N_("Literal loads") },
17017 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
17018 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
17019 { 0, 0, NULL }
17020};
17021
e07e6e58
NC
17022static void
17023it_fsm_post_encode (void)
17024{
17025 int is_last;
17026
17027 if (!now_it.state_handled)
17028 handle_it_state ();
17029
5a01bb1d
MGD
17030 if (now_it.insn_cond
17031 && !now_it.warn_deprecated
17032 && warn_on_deprecated
17033 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
17034 {
17035 if (inst.instruction >= 0x10000)
17036 {
17037 as_warn (_("it blocks containing wide Thumb instructions are "
17038 "deprecated in ARMv8"));
17039 now_it.warn_deprecated = TRUE;
17040 }
17041 else
17042 {
17043 const struct depr_insn_mask *p = depr_it_insns;
17044
17045 while (p->mask != 0)
17046 {
17047 if ((inst.instruction & p->mask) == p->pattern)
17048 {
17049 as_warn (_("it blocks containing 16-bit Thumb intsructions "
17050 "of the following class are deprecated in ARMv8: "
17051 "%s"), p->description);
17052 now_it.warn_deprecated = TRUE;
17053 break;
17054 }
17055
17056 ++p;
17057 }
17058 }
17059
17060 if (now_it.block_length > 1)
17061 {
17062 as_warn (_("it blocks of more than one conditional instruction are "
17063 "deprecated in ARMv8"));
17064 now_it.warn_deprecated = TRUE;
17065 }
17066 }
17067
e07e6e58
NC
17068 is_last = (now_it.mask == 0x10);
17069 if (is_last)
17070 {
17071 now_it.state = OUTSIDE_IT_BLOCK;
17072 now_it.mask = 0;
17073 }
17074}
17075
17076static void
17077force_automatic_it_block_close (void)
17078{
17079 if (now_it.state == AUTOMATIC_IT_BLOCK)
17080 {
17081 close_automatic_it_block ();
17082 now_it.state = OUTSIDE_IT_BLOCK;
17083 now_it.mask = 0;
17084 }
17085}
17086
17087static int
17088in_it_block (void)
17089{
17090 if (!now_it.state_handled)
17091 handle_it_state ();
17092
17093 return now_it.state != OUTSIDE_IT_BLOCK;
17094}
17095
c19d1205
ZW
17096void
17097md_assemble (char *str)
b99bd4ef 17098{
c19d1205
ZW
17099 char *p = str;
17100 const struct asm_opcode * opcode;
b99bd4ef 17101
c19d1205
ZW
17102 /* Align the previous label if needed. */
17103 if (last_label_seen != NULL)
b99bd4ef 17104 {
c19d1205
ZW
17105 symbol_set_frag (last_label_seen, frag_now);
17106 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
17107 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
17108 }
17109
c19d1205
ZW
17110 memset (&inst, '\0', sizeof (inst));
17111 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 17112
c19d1205
ZW
17113 opcode = opcode_lookup (&p);
17114 if (!opcode)
b99bd4ef 17115 {
c19d1205 17116 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 17117 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
17118 if (! create_register_alias (str, p)
17119 && ! create_neon_reg_alias (str, p))
c19d1205 17120 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 17121
b99bd4ef
NC
17122 return;
17123 }
17124
278df34e 17125 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
17126 as_warn (_("s suffix on comparison instruction is deprecated"));
17127
037e8744
JB
17128 /* The value which unconditional instructions should have in place of the
17129 condition field. */
17130 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
17131
c19d1205 17132 if (thumb_mode)
b99bd4ef 17133 {
e74cfd16 17134 arm_feature_set variant;
8f06b2d8
PB
17135
17136 variant = cpu_variant;
17137 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
17138 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
17139 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 17140 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
17141 if (!opcode->tvariant
17142 || (thumb_mode == 1
17143 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 17144 {
bf3eeda7 17145 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
17146 return;
17147 }
c19d1205
ZW
17148 if (inst.cond != COND_ALWAYS && !unified_syntax
17149 && opcode->tencode != do_t_branch)
b99bd4ef 17150 {
c19d1205 17151 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
17152 return;
17153 }
17154
752d5da4 17155 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 17156 {
7e806470 17157 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
17158 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
17159 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
17160 {
17161 /* Two things are addressed here.
17162 1) Implicit require narrow instructions on Thumb-1.
17163 This avoids relaxation accidentally introducing Thumb-2
17164 instructions.
17165 2) Reject wide instructions in non Thumb-2 cores. */
17166 if (inst.size_req == 0)
17167 inst.size_req = 2;
17168 else if (inst.size_req == 4)
17169 {
bf3eeda7 17170 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
17171 return;
17172 }
17173 }
076d447c
PB
17174 }
17175
c19d1205
ZW
17176 inst.instruction = opcode->tvalue;
17177
5be8be5d 17178 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
17179 {
17180 /* Prepare the it_insn_type for those encodings that don't set
17181 it. */
17182 it_fsm_pre_encode ();
c19d1205 17183
e07e6e58
NC
17184 opcode->tencode ();
17185
17186 it_fsm_post_encode ();
17187 }
e27ec89e 17188
0110f2b8 17189 if (!(inst.error || inst.relax))
b99bd4ef 17190 {
9c2799c2 17191 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
17192 inst.size = (inst.instruction > 0xffff ? 4 : 2);
17193 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 17194 {
c19d1205 17195 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
17196 return;
17197 }
17198 }
076d447c
PB
17199
17200 /* Something has gone badly wrong if we try to relax a fixed size
17201 instruction. */
9c2799c2 17202 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 17203
e74cfd16
PB
17204 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17205 *opcode->tvariant);
ee065d83 17206 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 17207 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 17208 anything other than bl/blx and v6-M instructions.
ee065d83 17209 This is overly pessimistic for relaxable instructions. */
7e806470
PB
17210 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
17211 || inst.relax)
e07e6e58
NC
17212 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
17213 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
17214 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17215 arm_ext_v6t2);
cd000bff 17216
88714cb8
DG
17217 check_neon_suffixes;
17218
cd000bff 17219 if (!inst.error)
c877a2f2
NC
17220 {
17221 mapping_state (MAP_THUMB);
17222 }
c19d1205 17223 }
3e9e4fcf 17224 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 17225 {
845b51d6
PB
17226 bfd_boolean is_bx;
17227
17228 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
17229 is_bx = (opcode->aencode == do_bx);
17230
c19d1205 17231 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
17232 if (!(is_bx && fix_v4bx)
17233 && !(opcode->avariant &&
17234 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 17235 {
bf3eeda7 17236 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 17237 return;
b99bd4ef 17238 }
c19d1205 17239 if (inst.size_req)
b99bd4ef 17240 {
c19d1205
ZW
17241 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
17242 return;
b99bd4ef
NC
17243 }
17244
c19d1205
ZW
17245 inst.instruction = opcode->avalue;
17246 if (opcode->tag == OT_unconditionalF)
17247 inst.instruction |= 0xF << 28;
17248 else
17249 inst.instruction |= inst.cond << 28;
17250 inst.size = INSN_SIZE;
5be8be5d 17251 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
17252 {
17253 it_fsm_pre_encode ();
17254 opcode->aencode ();
17255 it_fsm_post_encode ();
17256 }
ee065d83
PB
17257 /* Arm mode bx is marked as both v4T and v5 because it's still required
17258 on a hypothetical non-thumb v5 core. */
845b51d6 17259 if (is_bx)
e74cfd16 17260 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 17261 else
e74cfd16
PB
17262 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
17263 *opcode->avariant);
88714cb8
DG
17264
17265 check_neon_suffixes;
17266
cd000bff 17267 if (!inst.error)
c877a2f2
NC
17268 {
17269 mapping_state (MAP_ARM);
17270 }
b99bd4ef 17271 }
3e9e4fcf
JB
17272 else
17273 {
17274 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
17275 "-- `%s'"), str);
17276 return;
17277 }
c19d1205
ZW
17278 output_inst (str);
17279}
b99bd4ef 17280
e07e6e58
NC
17281static void
17282check_it_blocks_finished (void)
17283{
17284#ifdef OBJ_ELF
17285 asection *sect;
17286
17287 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
17288 if (seg_info (sect)->tc_segment_info_data.current_it.state
17289 == MANUAL_IT_BLOCK)
17290 {
17291 as_warn (_("section '%s' finished with an open IT block."),
17292 sect->name);
17293 }
17294#else
17295 if (now_it.state == MANUAL_IT_BLOCK)
17296 as_warn (_("file finished with an open IT block."));
17297#endif
17298}
17299
c19d1205
ZW
17300/* Various frobbings of labels and their addresses. */
17301
17302void
17303arm_start_line_hook (void)
17304{
17305 last_label_seen = NULL;
b99bd4ef
NC
17306}
17307
c19d1205
ZW
17308void
17309arm_frob_label (symbolS * sym)
b99bd4ef 17310{
c19d1205 17311 last_label_seen = sym;
b99bd4ef 17312
c19d1205 17313 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 17314
c19d1205
ZW
17315#if defined OBJ_COFF || defined OBJ_ELF
17316 ARM_SET_INTERWORK (sym, support_interwork);
17317#endif
b99bd4ef 17318
e07e6e58
NC
17319 force_automatic_it_block_close ();
17320
5f4273c7 17321 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
17322 as Thumb functions. This is because these labels, whilst
17323 they exist inside Thumb code, are not the entry points for
17324 possible ARM->Thumb calls. Also, these labels can be used
17325 as part of a computed goto or switch statement. eg gcc
17326 can generate code that looks like this:
b99bd4ef 17327
c19d1205
ZW
17328 ldr r2, [pc, .Laaa]
17329 lsl r3, r3, #2
17330 ldr r2, [r3, r2]
17331 mov pc, r2
b99bd4ef 17332
c19d1205
ZW
17333 .Lbbb: .word .Lxxx
17334 .Lccc: .word .Lyyy
17335 ..etc...
17336 .Laaa: .word Lbbb
b99bd4ef 17337
c19d1205
ZW
17338 The first instruction loads the address of the jump table.
17339 The second instruction converts a table index into a byte offset.
17340 The third instruction gets the jump address out of the table.
17341 The fourth instruction performs the jump.
b99bd4ef 17342
c19d1205
ZW
17343 If the address stored at .Laaa is that of a symbol which has the
17344 Thumb_Func bit set, then the linker will arrange for this address
17345 to have the bottom bit set, which in turn would mean that the
17346 address computation performed by the third instruction would end
17347 up with the bottom bit set. Since the ARM is capable of unaligned
17348 word loads, the instruction would then load the incorrect address
17349 out of the jump table, and chaos would ensue. */
17350 if (label_is_thumb_function_name
17351 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
17352 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 17353 {
c19d1205
ZW
17354 /* When the address of a Thumb function is taken the bottom
17355 bit of that address should be set. This will allow
17356 interworking between Arm and Thumb functions to work
17357 correctly. */
b99bd4ef 17358
c19d1205 17359 THUMB_SET_FUNC (sym, 1);
b99bd4ef 17360
c19d1205 17361 label_is_thumb_function_name = FALSE;
b99bd4ef 17362 }
07a53e5c 17363
07a53e5c 17364 dwarf2_emit_label (sym);
b99bd4ef
NC
17365}
17366
c921be7d 17367bfd_boolean
c19d1205 17368arm_data_in_code (void)
b99bd4ef 17369{
c19d1205 17370 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 17371 {
c19d1205
ZW
17372 *input_line_pointer = '/';
17373 input_line_pointer += 5;
17374 *input_line_pointer = 0;
c921be7d 17375 return TRUE;
b99bd4ef
NC
17376 }
17377
c921be7d 17378 return FALSE;
b99bd4ef
NC
17379}
17380
c19d1205
ZW
17381char *
17382arm_canonicalize_symbol_name (char * name)
b99bd4ef 17383{
c19d1205 17384 int len;
b99bd4ef 17385
c19d1205
ZW
17386 if (thumb_mode && (len = strlen (name)) > 5
17387 && streq (name + len - 5, "/data"))
17388 *(name + len - 5) = 0;
b99bd4ef 17389
c19d1205 17390 return name;
b99bd4ef 17391}
c19d1205
ZW
17392\f
17393/* Table of all register names defined by default. The user can
17394 define additional names with .req. Note that all register names
17395 should appear in both upper and lowercase variants. Some registers
17396 also have mixed-case names. */
b99bd4ef 17397
dcbf9037 17398#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 17399#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 17400#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
17401#define REGSET(p,t) \
17402 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
17403 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
17404 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
17405 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
17406#define REGSETH(p,t) \
17407 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
17408 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
17409 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
17410 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
17411#define REGSET2(p,t) \
17412 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
17413 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
17414 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
17415 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
17416#define SPLRBANK(base,bank,t) \
17417 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
17418 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
17419 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
17420 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
17421 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
17422 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 17423
c19d1205 17424static const struct reg_entry reg_names[] =
7ed4c4c5 17425{
c19d1205
ZW
17426 /* ARM integer registers. */
17427 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 17428
c19d1205
ZW
17429 /* ATPCS synonyms. */
17430 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17431 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17432 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 17433
c19d1205
ZW
17434 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17435 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17436 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 17437
c19d1205
ZW
17438 /* Well-known aliases. */
17439 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17440 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17441
17442 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17443 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17444
17445 /* Coprocessor numbers. */
17446 REGSET(p, CP), REGSET(P, CP),
17447
17448 /* Coprocessor register numbers. The "cr" variants are for backward
17449 compatibility. */
17450 REGSET(c, CN), REGSET(C, CN),
17451 REGSET(cr, CN), REGSET(CR, CN),
17452
90ec0d68
MGD
17453 /* ARM banked registers. */
17454 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17455 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17456 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17457 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17458 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17459 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17460 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17461
17462 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17463 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17464 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17465 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17466 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17467 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
17468 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17469 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17470
17471 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17472 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17473 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17474 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17475 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17476 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17477 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 17478 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
17479 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17480
c19d1205
ZW
17481 /* FPA registers. */
17482 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17483 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17484
17485 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17486 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17487
17488 /* VFP SP registers. */
5287ad62
JB
17489 REGSET(s,VFS), REGSET(S,VFS),
17490 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
17491
17492 /* VFP DP Registers. */
5287ad62
JB
17493 REGSET(d,VFD), REGSET(D,VFD),
17494 /* Extra Neon DP registers. */
17495 REGSETH(d,VFD), REGSETH(D,VFD),
17496
17497 /* Neon QP registers. */
17498 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
17499
17500 /* VFP control registers. */
17501 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17502 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
17503 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17504 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17505 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17506 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
17507
17508 /* Maverick DSP coprocessor registers. */
17509 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17510 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17511
17512 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17513 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17514 REGDEF(dspsc,0,DSPSC),
17515
17516 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17517 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17518 REGDEF(DSPSC,0,DSPSC),
17519
17520 /* iWMMXt data registers - p0, c0-15. */
17521 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17522
17523 /* iWMMXt control registers - p1, c0-3. */
17524 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17525 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17526 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17527 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17528
17529 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17530 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17531 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17532 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17533 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17534
17535 /* XScale accumulator registers. */
17536 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17537};
17538#undef REGDEF
17539#undef REGNUM
17540#undef REGSET
7ed4c4c5 17541
c19d1205
ZW
17542/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17543 within psr_required_here. */
17544static const struct asm_psr psrs[] =
17545{
17546 /* Backward compatibility notation. Note that "all" is no longer
17547 truly all possible PSR bits. */
17548 {"all", PSR_c | PSR_f},
17549 {"flg", PSR_f},
17550 {"ctl", PSR_c},
17551
17552 /* Individual flags. */
17553 {"f", PSR_f},
17554 {"c", PSR_c},
17555 {"x", PSR_x},
17556 {"s", PSR_s},
59b42a0d 17557
c19d1205
ZW
17558 /* Combinations of flags. */
17559 {"fs", PSR_f | PSR_s},
17560 {"fx", PSR_f | PSR_x},
17561 {"fc", PSR_f | PSR_c},
17562 {"sf", PSR_s | PSR_f},
17563 {"sx", PSR_s | PSR_x},
17564 {"sc", PSR_s | PSR_c},
17565 {"xf", PSR_x | PSR_f},
17566 {"xs", PSR_x | PSR_s},
17567 {"xc", PSR_x | PSR_c},
17568 {"cf", PSR_c | PSR_f},
17569 {"cs", PSR_c | PSR_s},
17570 {"cx", PSR_c | PSR_x},
17571 {"fsx", PSR_f | PSR_s | PSR_x},
17572 {"fsc", PSR_f | PSR_s | PSR_c},
17573 {"fxs", PSR_f | PSR_x | PSR_s},
17574 {"fxc", PSR_f | PSR_x | PSR_c},
17575 {"fcs", PSR_f | PSR_c | PSR_s},
17576 {"fcx", PSR_f | PSR_c | PSR_x},
17577 {"sfx", PSR_s | PSR_f | PSR_x},
17578 {"sfc", PSR_s | PSR_f | PSR_c},
17579 {"sxf", PSR_s | PSR_x | PSR_f},
17580 {"sxc", PSR_s | PSR_x | PSR_c},
17581 {"scf", PSR_s | PSR_c | PSR_f},
17582 {"scx", PSR_s | PSR_c | PSR_x},
17583 {"xfs", PSR_x | PSR_f | PSR_s},
17584 {"xfc", PSR_x | PSR_f | PSR_c},
17585 {"xsf", PSR_x | PSR_s | PSR_f},
17586 {"xsc", PSR_x | PSR_s | PSR_c},
17587 {"xcf", PSR_x | PSR_c | PSR_f},
17588 {"xcs", PSR_x | PSR_c | PSR_s},
17589 {"cfs", PSR_c | PSR_f | PSR_s},
17590 {"cfx", PSR_c | PSR_f | PSR_x},
17591 {"csf", PSR_c | PSR_s | PSR_f},
17592 {"csx", PSR_c | PSR_s | PSR_x},
17593 {"cxf", PSR_c | PSR_x | PSR_f},
17594 {"cxs", PSR_c | PSR_x | PSR_s},
17595 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17596 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17597 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17598 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17599 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17600 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17601 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17602 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17603 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17604 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17605 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17606 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17607 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17608 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17609 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17610 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17611 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17612 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17613 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17614 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17615 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17616 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17617 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17618 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17619};
17620
62b3e311
PB
17621/* Table of V7M psr names. */
17622static const struct asm_psr v7m_psrs[] =
17623{
2b744c99
PB
17624 {"apsr", 0 }, {"APSR", 0 },
17625 {"iapsr", 1 }, {"IAPSR", 1 },
17626 {"eapsr", 2 }, {"EAPSR", 2 },
17627 {"psr", 3 }, {"PSR", 3 },
17628 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17629 {"ipsr", 5 }, {"IPSR", 5 },
17630 {"epsr", 6 }, {"EPSR", 6 },
17631 {"iepsr", 7 }, {"IEPSR", 7 },
17632 {"msp", 8 }, {"MSP", 8 },
17633 {"psp", 9 }, {"PSP", 9 },
17634 {"primask", 16}, {"PRIMASK", 16},
17635 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
17636 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17637 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
17638 {"faultmask", 19}, {"FAULTMASK", 19},
17639 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
17640};
17641
c19d1205
ZW
17642/* Table of all shift-in-operand names. */
17643static const struct asm_shift_name shift_names [] =
b99bd4ef 17644{
c19d1205
ZW
17645 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17646 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17647 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17648 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17649 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17650 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17651};
b99bd4ef 17652
c19d1205
ZW
17653/* Table of all explicit relocation names. */
17654#ifdef OBJ_ELF
17655static struct reloc_entry reloc_names[] =
17656{
17657 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17658 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17659 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17660 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17661 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17662 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17663 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17664 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17665 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17666 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 17667 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
17668 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17669 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17670 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17671 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17672 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17673 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17674 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
17675};
17676#endif
b99bd4ef 17677
c19d1205
ZW
17678/* Table of all conditional affixes. 0xF is not defined as a condition code. */
17679static const struct asm_cond conds[] =
17680{
17681 {"eq", 0x0},
17682 {"ne", 0x1},
17683 {"cs", 0x2}, {"hs", 0x2},
17684 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17685 {"mi", 0x4},
17686 {"pl", 0x5},
17687 {"vs", 0x6},
17688 {"vc", 0x7},
17689 {"hi", 0x8},
17690 {"ls", 0x9},
17691 {"ge", 0xa},
17692 {"lt", 0xb},
17693 {"gt", 0xc},
17694 {"le", 0xd},
17695 {"al", 0xe}
17696};
bfae80f2 17697
e797f7e0
MGD
17698#define UL_BARRIER(L,U,CODE,FEAT) \
17699 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17700 { U, CODE, ARM_FEATURE (FEAT, 0) }
17701
62b3e311
PB
17702static struct asm_barrier_opt barrier_opt_names[] =
17703{
e797f7e0
MGD
17704 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17705 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17706 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17707 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17708 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17709 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17710 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17711 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17712 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17713 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17714 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17715 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17716 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17717 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17718 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17719 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
17720};
17721
e797f7e0
MGD
17722#undef UL_BARRIER
17723
c19d1205
ZW
17724/* Table of ARM-format instructions. */
17725
17726/* Macros for gluing together operand strings. N.B. In all cases
17727 other than OPS0, the trailing OP_stop comes from default
17728 zero-initialization of the unspecified elements of the array. */
17729#define OPS0() { OP_stop, }
17730#define OPS1(a) { OP_##a, }
17731#define OPS2(a,b) { OP_##a,OP_##b, }
17732#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17733#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17734#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17735#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17736
5be8be5d
DG
17737/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17738 This is useful when mixing operands for ARM and THUMB, i.e. using the
17739 MIX_ARM_THUMB_OPERANDS macro.
17740 In order to use these macros, prefix the number of operands with _
17741 e.g. _3. */
17742#define OPS_1(a) { a, }
17743#define OPS_2(a,b) { a,b, }
17744#define OPS_3(a,b,c) { a,b,c, }
17745#define OPS_4(a,b,c,d) { a,b,c,d, }
17746#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17747#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17748
c19d1205
ZW
17749/* These macros abstract out the exact format of the mnemonic table and
17750 save some repeated characters. */
17751
17752/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17753#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17754 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 17755 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17756
17757/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17758 a T_MNEM_xyz enumerator. */
17759#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17760 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17761#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17762 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17763
17764/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17765 infix after the third character. */
17766#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 17767 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 17768 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 17769#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 17770 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 17771 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 17772#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17773 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 17774#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17775 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17776#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17777 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 17778#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17779 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17780
17781/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17782 appear in the condition table. */
17783#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 17784 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 17785 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17786
17787#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
17788 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17789 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17790 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17791 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17792 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17793 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17794 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17795 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17796 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17797 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17798 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17799 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17800 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17801 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17802 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17803 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17804 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17805 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17806 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
17807
17808#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
17809 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17810#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 17811 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17812
17813/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
17814 field is still 0xE. Many of the Thumb variants can be executed
17815 conditionally, so this is checked separately. */
c19d1205 17816#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17817 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17818 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17819
17820/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17821 condition code field. */
17822#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 17823 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17824 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17825
17826/* ARM-only variants of all the above. */
6a86118a 17827#define CE(mnem, op, nops, ops, ae) \
21d799b5 17828 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
17829
17830#define C3(mnem, op, nops, ops, ae) \
17831 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17832
e3cb604e
PB
17833/* Legacy mnemonics that always have conditional infix after the third
17834 character. */
17835#define CL(mnem, op, nops, ops, ae) \
21d799b5 17836 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17837 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17838
8f06b2d8
PB
17839/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17840#define cCE(mnem, op, nops, ops, ae) \
21d799b5 17841 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17842
e3cb604e
PB
17843/* Legacy coprocessor instructions where conditional infix and conditional
17844 suffix are ambiguous. For consistency this includes all FPA instructions,
17845 not just the potentially ambiguous ones. */
17846#define cCL(mnem, op, nops, ops, ae) \
21d799b5 17847 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17848 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17849
17850/* Coprocessor, takes either a suffix or a position-3 infix
17851 (for an FPA corner case). */
17852#define C3E(mnem, op, nops, ops, ae) \
21d799b5 17853 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 17854 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17855
6a86118a 17856#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
17857 { m1 #m2 m3, OPS##nops ops, \
17858 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
17859 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17860
17861#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
17862 xCM_ (m1, , m2, op, nops, ops, ae), \
17863 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17864 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17865 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17866 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17867 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17868 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17869 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17870 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17871 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17872 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17873 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17874 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17875 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17876 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17877 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17878 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17879 xCM_ (m1, le, m2, op, nops, ops, ae), \
17880 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
17881
17882#define UE(mnem, op, nops, ops, ae) \
17883 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17884
17885#define UF(mnem, op, nops, ops, ae) \
17886 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17887
5287ad62
JB
17888/* Neon data-processing. ARM versions are unconditional with cond=0xf.
17889 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17890 use the same encoding function for each. */
17891#define NUF(mnem, op, nops, ops, enc) \
17892 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17893 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17894
17895/* Neon data processing, version which indirects through neon_enc_tab for
17896 the various overloaded versions of opcodes. */
17897#define nUF(mnem, op, nops, ops, enc) \
21d799b5 17898 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17899 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17900
17901/* Neon insn with conditional suffix for the ARM version, non-overloaded
17902 version. */
037e8744
JB
17903#define NCE_tag(mnem, op, nops, ops, enc, tag) \
17904 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
17905 THUMB_VARIANT, do_##enc, do_##enc }
17906
037e8744 17907#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 17908 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17909
17910#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 17911 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17912
5287ad62 17913/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 17914#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17915 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17916 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17917
037e8744 17918#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17919 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17920
17921#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17922 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17923
c19d1205
ZW
17924#define do_0 0
17925
c19d1205 17926static const struct asm_opcode insns[] =
bfae80f2 17927{
e74cfd16
PB
17928#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17929#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17930 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17931 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17932 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17933 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17934 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17935 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17936 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17937 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17938 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17939 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17940 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17941 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17942 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17943 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17944 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17945 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17946
17947 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17948 for setting PSR flag bits. They are obsolete in V6 and do not
17949 have Thumb equivalents. */
21d799b5
NC
17950 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17951 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17952 CL("tstp", 110f000, 2, (RR, SH), cmp),
17953 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17954 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17955 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17956 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17957 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17958 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17959
17960 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17961 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17962 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17963 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17964
17965 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17966 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17967 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17968 OP_RRnpc),
17969 OP_ADDRGLDR),ldst, t_ldst),
17970 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17971
17972 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17973 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17974 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17975 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17976 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17977 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17978
17979 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17980 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17981 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17982 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17983
c19d1205 17984 /* Pseudo ops. */
21d799b5 17985 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17986 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17987 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17988
17989 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17990 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17991 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17992 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17993 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17994 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17995 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17996 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17997 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17998 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17999 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
18000 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
18001 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 18002
16a4cf17 18003 /* These may simplify to neg. */
21d799b5
NC
18004 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
18005 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 18006
c921be7d
NC
18007#undef THUMB_VARIANT
18008#define THUMB_VARIANT & arm_ext_v6
18009
21d799b5 18010 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
18011
18012 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
18013#undef THUMB_VARIANT
18014#define THUMB_VARIANT & arm_ext_v6t2
18015
21d799b5
NC
18016 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18017 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
18018 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 18019
5be8be5d
DG
18020 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18021 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
18022 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
18023 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 18024
21d799b5
NC
18025 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18026 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 18027
21d799b5
NC
18028 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
18029 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
18030
18031 /* V1 instructions with no Thumb analogue at all. */
21d799b5 18032 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
18033 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
18034
18035 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
18036 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
18037 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
18038 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
18039 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
18040 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
18041 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
18042 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
18043
c921be7d
NC
18044#undef ARM_VARIANT
18045#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
18046#undef THUMB_VARIANT
18047#define THUMB_VARIANT & arm_ext_v4t
18048
21d799b5
NC
18049 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
18050 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 18051
c921be7d
NC
18052#undef THUMB_VARIANT
18053#define THUMB_VARIANT & arm_ext_v6t2
18054
21d799b5 18055 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
18056 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
18057
18058 /* Generic coprocessor instructions. */
21d799b5
NC
18059 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18060 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18061 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18062 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18063 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18064 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 18065 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 18066
c921be7d
NC
18067#undef ARM_VARIANT
18068#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
18069
21d799b5 18070 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
18071 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
18072
c921be7d
NC
18073#undef ARM_VARIANT
18074#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
18075#undef THUMB_VARIANT
18076#define THUMB_VARIANT & arm_ext_msr
18077
d2cd1205
JB
18078 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
18079 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 18080
c921be7d
NC
18081#undef ARM_VARIANT
18082#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
18083#undef THUMB_VARIANT
18084#define THUMB_VARIANT & arm_ext_v6t2
18085
21d799b5
NC
18086 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18087 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18088 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18089 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18090 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18091 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18092 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18093 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 18094
c921be7d
NC
18095#undef ARM_VARIANT
18096#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
18097#undef THUMB_VARIANT
18098#define THUMB_VARIANT & arm_ext_v4t
18099
5be8be5d
DG
18100 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18101 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18102 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18103 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18104 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18105 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 18106
c921be7d
NC
18107#undef ARM_VARIANT
18108#define ARM_VARIANT & arm_ext_v4t_5
18109
c19d1205
ZW
18110 /* ARM Architecture 4T. */
18111 /* Note: bx (and blx) are required on V5, even if the processor does
18112 not support Thumb. */
21d799b5 18113 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 18114
c921be7d
NC
18115#undef ARM_VARIANT
18116#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
18117#undef THUMB_VARIANT
18118#define THUMB_VARIANT & arm_ext_v5t
18119
c19d1205
ZW
18120 /* Note: blx has 2 variants; the .value coded here is for
18121 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
18122 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
18123 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 18124
c921be7d
NC
18125#undef THUMB_VARIANT
18126#define THUMB_VARIANT & arm_ext_v6t2
18127
21d799b5
NC
18128 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
18129 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18130 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18131 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18132 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18133 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18134 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18135 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 18136
c921be7d
NC
18137#undef ARM_VARIANT
18138#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
18139#undef THUMB_VARIANT
18140#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 18141
21d799b5
NC
18142 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18143 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18144 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18145 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 18146
21d799b5
NC
18147 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18148 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 18149
21d799b5
NC
18150 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18151 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18152 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18153 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 18154
21d799b5
NC
18155 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18156 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18157 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18158 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 18159
21d799b5
NC
18160 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18161 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 18162
03ee1b7f
NC
18163 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18164 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18165 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18166 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 18167
c921be7d
NC
18168#undef ARM_VARIANT
18169#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
18170#undef THUMB_VARIANT
18171#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 18172
21d799b5 18173 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
18174 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
18175 ldrd, t_ldstd),
18176 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
18177 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 18178
21d799b5
NC
18179 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18180 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 18181
c921be7d
NC
18182#undef ARM_VARIANT
18183#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
18184
21d799b5 18185 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 18186
c921be7d
NC
18187#undef ARM_VARIANT
18188#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
18189#undef THUMB_VARIANT
18190#define THUMB_VARIANT & arm_ext_v6
18191
21d799b5
NC
18192 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
18193 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
18194 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18195 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18196 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18197 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18198 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18199 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18200 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18201 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 18202
c921be7d
NC
18203#undef THUMB_VARIANT
18204#define THUMB_VARIANT & arm_ext_v6t2
18205
5be8be5d
DG
18206 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
18207 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18208 strex, t_strex),
21d799b5
NC
18209 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18210 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 18211
21d799b5
NC
18212 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
18213 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 18214
9e3c6df6 18215/* ARM V6 not included in V7M. */
c921be7d
NC
18216#undef THUMB_VARIANT
18217#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
18218 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18219 UF(rfeib, 9900a00, 1, (RRw), rfe),
18220 UF(rfeda, 8100a00, 1, (RRw), rfe),
18221 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18222 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18223 UF(rfefa, 9900a00, 1, (RRw), rfe),
18224 UF(rfeea, 8100a00, 1, (RRw), rfe),
18225 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18226 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18227 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
18228 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
18229 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 18230
9e3c6df6
PB
18231/* ARM V6 not included in V7M (eg. integer SIMD). */
18232#undef THUMB_VARIANT
18233#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
18234 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
18235 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
18236 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
18237 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18238 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18239 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18240 /* Old name for QASX. */
21d799b5
NC
18241 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18242 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18243 /* Old name for QSAX. */
21d799b5
NC
18244 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18245 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18246 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18247 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18248 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18249 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18250 /* Old name for SASX. */
21d799b5
NC
18251 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18252 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18253 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18254 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18255 /* Old name for SHASX. */
21d799b5
NC
18256 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18257 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18258 /* Old name for SHSAX. */
21d799b5
NC
18259 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18260 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18261 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18262 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18263 /* Old name for SSAX. */
21d799b5
NC
18264 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18265 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18266 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18267 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18268 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18269 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18270 /* Old name for UASX. */
21d799b5
NC
18271 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18272 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18273 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18274 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18275 /* Old name for UHASX. */
21d799b5
NC
18276 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18277 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18278 /* Old name for UHSAX. */
21d799b5
NC
18279 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18280 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18281 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18282 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18283 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18284 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18285 /* Old name for UQASX. */
21d799b5
NC
18286 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18287 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18288 /* Old name for UQSAX. */
21d799b5
NC
18289 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18290 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18291 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18292 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18293 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 18294 /* Old name for USAX. */
21d799b5
NC
18295 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18296 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
18297 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18298 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18299 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18300 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18301 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18302 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18303 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18304 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18305 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18306 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18307 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18308 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18309 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18310 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18311 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18312 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18313 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18314 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18315 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18316 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18317 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18318 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18319 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18320 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18321 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18322 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18323 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
18324 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
18325 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
18326 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18327 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18328 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 18329
c921be7d
NC
18330#undef ARM_VARIANT
18331#define ARM_VARIANT & arm_ext_v6k
18332#undef THUMB_VARIANT
18333#define THUMB_VARIANT & arm_ext_v6k
18334
21d799b5
NC
18335 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
18336 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
18337 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
18338 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 18339
c921be7d
NC
18340#undef THUMB_VARIANT
18341#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
18342 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
18343 ldrexd, t_ldrexd),
18344 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
18345 RRnpcb), strexd, t_strexd),
ebdca51a 18346
c921be7d
NC
18347#undef THUMB_VARIANT
18348#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
18349 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
18350 rd_rn, rd_rn),
18351 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
18352 rd_rn, rd_rn),
18353 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 18354 strex, t_strexbh),
5be8be5d 18355 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 18356 strex, t_strexbh),
21d799b5 18357 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 18358
c921be7d 18359#undef ARM_VARIANT
f4c65163
MGD
18360#define ARM_VARIANT & arm_ext_sec
18361#undef THUMB_VARIANT
18362#define THUMB_VARIANT & arm_ext_sec
c921be7d 18363
21d799b5 18364 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 18365
90ec0d68
MGD
18366#undef ARM_VARIANT
18367#define ARM_VARIANT & arm_ext_virt
18368#undef THUMB_VARIANT
18369#define THUMB_VARIANT & arm_ext_virt
18370
18371 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
18372 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
18373
c921be7d
NC
18374#undef ARM_VARIANT
18375#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
18376#undef THUMB_VARIANT
18377#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 18378
21d799b5
NC
18379 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
18380 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
18381 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18382 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 18383
21d799b5
NC
18384 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18385 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
18386 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
18387 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 18388
5be8be5d
DG
18389 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18390 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18391 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18392 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 18393
bf3eeda7
NS
18394 /* Thumb-only instructions. */
18395#undef ARM_VARIANT
18396#define ARM_VARIANT NULL
18397 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
18398 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
18399
18400 /* ARM does not really have an IT instruction, so always allow it.
18401 The opcode is copied from Thumb in order to allow warnings in
18402 -mimplicit-it=[never | arm] modes. */
18403#undef ARM_VARIANT
18404#define ARM_VARIANT & arm_ext_v1
18405
21d799b5
NC
18406 TUE("it", bf08, bf08, 1, (COND), it, t_it),
18407 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
18408 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
18409 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
18410 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
18411 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
18412 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
18413 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
18414 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
18415 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
18416 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
18417 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
18418 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
18419 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
18420 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 18421 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
18422 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
18423 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 18424
92e90b6e 18425 /* Thumb2 only instructions. */
c921be7d
NC
18426#undef ARM_VARIANT
18427#define ARM_VARIANT NULL
92e90b6e 18428
21d799b5
NC
18429 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18430 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18431 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18432 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18433 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18434 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 18435
eea54501
MGD
18436 /* Hardware division instructions. */
18437#undef ARM_VARIANT
18438#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
18439#undef THUMB_VARIANT
18440#define THUMB_VARIANT & arm_ext_div
18441
eea54501
MGD
18442 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18443 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 18444
7e806470 18445 /* ARM V6M/V7 instructions. */
c921be7d
NC
18446#undef ARM_VARIANT
18447#define ARM_VARIANT & arm_ext_barrier
18448#undef THUMB_VARIANT
18449#define THUMB_VARIANT & arm_ext_barrier
18450
52e7f43d
RE
18451 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
18452 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
18453 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 18454
62b3e311 18455 /* ARM V7 instructions. */
c921be7d
NC
18456#undef ARM_VARIANT
18457#define ARM_VARIANT & arm_ext_v7
18458#undef THUMB_VARIANT
18459#define THUMB_VARIANT & arm_ext_v7
18460
21d799b5
NC
18461 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18462 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 18463
60e5ef9f
MGD
18464#undef ARM_VARIANT
18465#define ARM_VARIANT & arm_ext_mp
18466#undef THUMB_VARIANT
18467#define THUMB_VARIANT & arm_ext_mp
18468
18469 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18470
53c4b28b
MGD
18471 /* AArchv8 instructions. */
18472#undef ARM_VARIANT
18473#define ARM_VARIANT & arm_ext_v8
18474#undef THUMB_VARIANT
18475#define THUMB_VARIANT & arm_ext_v8
18476
18477 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
8884b720 18478 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
4b8c8c02
RE
18479 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18480 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
9eb6c0f1 18481 ldrexd, t_ldrexd),
4b8c8c02
RE
18482 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18483 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18484 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18485 stlex, t_stlex),
18486 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
9eb6c0f1 18487 strexd, t_strexd),
4b8c8c02
RE
18488 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18489 stlex, t_stlex),
18490 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18491 stlex, t_stlex),
18492 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18493 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18494 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18495 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18496 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18497 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
53c4b28b 18498
8884b720 18499 /* ARMv8 T32 only. */
b79f7053
MGD
18500#undef ARM_VARIANT
18501#define ARM_VARIANT NULL
18502 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18503 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18504 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18505
33399f07
MGD
18506 /* FP for ARMv8. */
18507#undef ARM_VARIANT
18508#define ARM_VARIANT & fpu_vfp_ext_armv8
18509#undef THUMB_VARIANT
18510#define THUMB_VARIANT & fpu_vfp_ext_armv8
18511
18512 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18513 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18514 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18515 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
18516 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18517 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
7e8e6784
MGD
18518 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
18519 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
18520 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
18521 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
30bdf752
MGD
18522 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
18523 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
18524 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
18525 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
18526 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
18527 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
18528 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
33399f07 18529
91ff7894
MGD
18530 /* Crypto v1 extensions. */
18531#undef ARM_VARIANT
18532#define ARM_VARIANT & fpu_crypto_ext_armv8
18533#undef THUMB_VARIANT
18534#define THUMB_VARIANT & fpu_crypto_ext_armv8
18535
18536 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
18537 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
18538 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
18539 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
18540 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
18541 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
18542 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
18543 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
18544 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
18545 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
18546 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
18547 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
18548 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
18549 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 18550
c921be7d
NC
18551#undef ARM_VARIANT
18552#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
18553#undef THUMB_VARIANT
18554#define THUMB_VARIANT NULL
c921be7d 18555
21d799b5
NC
18556 cCE("wfs", e200110, 1, (RR), rd),
18557 cCE("rfs", e300110, 1, (RR), rd),
18558 cCE("wfc", e400110, 1, (RR), rd),
18559 cCE("rfc", e500110, 1, (RR), rd),
18560
18561 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18562 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18563 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18564 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18565
18566 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18567 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18568 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18569 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18570
18571 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18572 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18573 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18574 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18575 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18576 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18577 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18578 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18579 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18580 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18581 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18582 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18583
18584 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18585 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18586 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18587 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18588 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18589 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18590 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18591 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18592 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18593 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18594 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18595 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18596
18597 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18598 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18599 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18600 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18601 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18602 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18603 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18604 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18605 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18606 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18607 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18608 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18609
18610 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18611 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18612 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18613 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18614 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18615 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18616 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18617 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18618 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18619 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18620 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18621 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18622
18623 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18624 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18625 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18626 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18627 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18628 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18629 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18630 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18631 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18632 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18633 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18634 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18635
18636 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18637 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18638 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18639 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18640 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18641 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18642 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18643 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18644 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18645 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18646 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18647 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18648
18649 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18650 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18651 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18652 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18653 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18654 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18655 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18656 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18657 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18658 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18659 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18660 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18661
18662 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18663 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18664 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18665 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18666 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18667 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18668 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18669 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18670 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18671 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18672 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18673 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18674
18675 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18676 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18677 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18678 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18679 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18680 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18681 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18682 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18683 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18684 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18685 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18686 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18687
18688 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18689 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18690 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18691 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18692 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18693 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18694 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18695 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18696 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18697 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18698 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18699 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18700
18701 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18702 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18703 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18704 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18705 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18706 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18707 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18708 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18709 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18710 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18711 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18712 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18713
18714 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18715 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18716 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18717 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18718 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18719 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18720 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18721 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18722 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18723 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18724 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18725 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18726
18727 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18728 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18729 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18730 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18731 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18732 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18733 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18734 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18735 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18736 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18737 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18738 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18739
18740 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18741 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18742 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18743 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18744 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18745 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18746 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18747 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18748 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18749 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18750 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18751 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18752
18753 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18754 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18755 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18756 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18757 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18758 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18759 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18760 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18761 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18762 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18763 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18764 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18765
18766 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18767 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18768 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18769 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18770 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18771 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18772 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18773 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18774 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18775 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18776 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18777 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18778
18779 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18780 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18781 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18782 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18783 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18784 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18785 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18786 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18787 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18788 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18789 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18790 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18791
18792 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18793 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18794 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18795 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18796 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18797 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18798 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18799 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18800 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18801 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18802 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18803 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18804
18805 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18806 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18807 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18808 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18809 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18810 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18811 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18812 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18813 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18814 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18815 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18816 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18817
18818 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18819 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18820 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18821 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18822 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18823 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18824 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18825 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18826 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18827 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18828 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18829 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18830
18831 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18832 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18833 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18834 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18835 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18836 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18837 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18838 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18839 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18840 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18841 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18842 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18843
18844 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18845 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18846 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18847 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18848 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18849 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18850 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18851 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18852 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18853 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18854 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18855 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18856
18857 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18858 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18859 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18860 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18861 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18862 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18863 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18864 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18865 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18866 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18867 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18868 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18869
18870 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18871 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18872 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18873 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18874 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18875 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18876 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18877 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18878 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18879 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18880 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18881 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18882
18883 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18884 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18885 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18886 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18887 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18888 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18889 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18890 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18891 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18892 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18893 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18894 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18895
18896 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18897 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18898 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18899 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18900 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18901 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18902 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18903 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18904 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18905 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18906 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18907 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18908
18909 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18910 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18911 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18912 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18913 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18914 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18915 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18916 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18917 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18918 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18919 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18920 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18921
18922 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18923 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18924 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18925 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18926 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18927 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18928 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18929 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18930 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18931 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18932 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18933 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18934
18935 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18936 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18937 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18938 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18939 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18940 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18941 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18942 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18943 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18944 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18945 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18946 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18947
18948 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18949 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18950 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18951 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18952
18953 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18954 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18955 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18956 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18957 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18958 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18959 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18960 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18961 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18962 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18963 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18964 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 18965
c19d1205
ZW
18966 /* The implementation of the FIX instruction is broken on some
18967 assemblers, in that it accepts a precision specifier as well as a
18968 rounding specifier, despite the fact that this is meaningless.
18969 To be more compatible, we accept it as well, though of course it
18970 does not set any bits. */
21d799b5
NC
18971 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18972 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18973 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18974 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18975 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18976 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18977 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18978 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18979 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18980 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18981 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18982 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18983 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 18984
c19d1205 18985 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
18986#undef ARM_VARIANT
18987#define ARM_VARIANT & fpu_fpa_ext_v2
18988
21d799b5
NC
18989 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18990 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18991 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18992 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18993 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18994 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 18995
c921be7d
NC
18996#undef ARM_VARIANT
18997#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18998
c19d1205 18999 /* Moves and type conversions. */
21d799b5
NC
19000 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
19001 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
19002 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
19003 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
19004 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
19005 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
19006 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
19007 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
19008 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
19009 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19010 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
19011 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
19012 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
19013 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
19014
19015 /* Memory operations. */
21d799b5
NC
19016 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
19017 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
19018 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19019 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19020 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19021 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19022 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19023 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19024 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19025 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19026 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19027 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
19028 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19029 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
19030 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19031 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
19032 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
19033 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 19034
c19d1205 19035 /* Monadic operations. */
21d799b5
NC
19036 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
19037 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
19038 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
19039
19040 /* Dyadic operations. */
21d799b5
NC
19041 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19042 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19043 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19044 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19045 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19046 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19047 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19048 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19049 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 19050
c19d1205 19051 /* Comparisons. */
21d799b5
NC
19052 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
19053 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
19054 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
19055 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 19056
62f3b8c8
PB
19057 /* Double precision load/store are still present on single precision
19058 implementations. */
19059 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
19060 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
19061 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19062 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19063 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19064 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19065 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19066 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
19067 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
19068 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 19069
c921be7d
NC
19070#undef ARM_VARIANT
19071#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
19072
c19d1205 19073 /* Moves and type conversions. */
21d799b5
NC
19074 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19075 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19076 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19077 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
19078 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
19079 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
19080 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
19081 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
19082 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
19083 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19084 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19085 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19086 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 19087
c19d1205 19088 /* Monadic operations. */
21d799b5
NC
19089 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19090 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19091 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
19092
19093 /* Dyadic operations. */
21d799b5
NC
19094 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19095 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19096 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19097 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19098 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19099 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19100 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19101 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19102 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 19103
c19d1205 19104 /* Comparisons. */
21d799b5
NC
19105 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19106 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
19107 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19108 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 19109
c921be7d
NC
19110#undef ARM_VARIANT
19111#define ARM_VARIANT & fpu_vfp_ext_v2
19112
21d799b5
NC
19113 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
19114 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
19115 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
19116 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 19117
037e8744
JB
19118/* Instructions which may belong to either the Neon or VFP instruction sets.
19119 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
19120#undef ARM_VARIANT
19121#define ARM_VARIANT & fpu_vfp_ext_v1xd
19122#undef THUMB_VARIANT
19123#define THUMB_VARIANT & fpu_vfp_ext_v1xd
19124
037e8744
JB
19125 /* These mnemonics are unique to VFP. */
19126 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
19127 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
19128 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19129 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19130 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19131 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
19132 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
19133 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
19134 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
19135 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
19136
19137 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
19138 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
19139 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19140 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 19141
21d799b5
NC
19142 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19143 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
19144
19145 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19146 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19147
55881a11
MGD
19148 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19149 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19150 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19151 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19152 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19153 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
19154 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19155 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 19156
5f1af56b 19157 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 19158 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
c70a8987
MGD
19159 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
19160 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
f31fef98 19161
037e8744
JB
19162
19163 /* NOTE: All VMOV encoding is special-cased! */
19164 NCE(vmov, 0, 1, (VMOV), neon_mov),
19165 NCE(vmovq, 0, 1, (VMOV), neon_mov),
19166
c921be7d
NC
19167#undef THUMB_VARIANT
19168#define THUMB_VARIANT & fpu_neon_ext_v1
19169#undef ARM_VARIANT
19170#define ARM_VARIANT & fpu_neon_ext_v1
19171
5287ad62
JB
19172 /* Data processing with three registers of the same length. */
19173 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
19174 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
19175 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
19176 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19177 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19178 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19179 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19180 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19181 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19182 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
19183 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19184 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19185 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19186 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
19187 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19188 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19189 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19190 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
19191 /* If not immediate, fall back to neon_dyadic_i64_su.
19192 shl_imm should accept I8 I16 I32 I64,
19193 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
19194 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
19195 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
19196 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
19197 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 19198 /* Logic ops, types optional & ignored. */
4316f0d2
DG
19199 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19200 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19201 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19202 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19203 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19204 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19205 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19206 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19207 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
19208 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
19209 /* Bitfield ops, untyped. */
19210 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19211 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19212 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19213 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19214 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19215 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19216 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
19217 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19218 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19219 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19220 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19221 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19222 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
19223 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
19224 back to neon_dyadic_if_su. */
21d799b5
NC
19225 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19226 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19227 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19228 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19229 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19230 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19231 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19232 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 19233 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
19234 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
19235 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 19236 /* As above, D registers only. */
21d799b5
NC
19237 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19238 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 19239 /* Int and float variants, signedness unimportant. */
21d799b5
NC
19240 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19241 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19242 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 19243 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
19244 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19245 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
19246 /* vtst takes sizes 8, 16, 32. */
19247 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
19248 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
19249 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 19250 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 19251 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
19252 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19253 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19254 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19255 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
19256 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19257 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19258 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19259 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
19260 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19261 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19262 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19263 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
19264 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19265 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19266 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19267 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19268
19269 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 19270 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
19271 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
19272
19273 /* Data processing with two registers and a shift amount. */
19274 /* Right shifts, and variants with rounding.
19275 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
19276 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19277 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19278 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19279 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19280 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19281 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19282 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19283 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19284 /* Shift and insert. Sizes accepted 8 16 32 64. */
19285 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
19286 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
19287 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
19288 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
19289 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
19290 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
19291 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
19292 /* Right shift immediate, saturating & narrowing, with rounding variants.
19293 Types accepted S16 S32 S64 U16 U32 U64. */
19294 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19295 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19296 /* As above, unsigned. Types accepted S16 S32 S64. */
19297 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19298 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19299 /* Right shift narrowing. Types accepted I16 I32 I64. */
19300 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19301 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19302 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 19303 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 19304 /* CVT with optional immediate for fixed-point variant. */
21d799b5 19305 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 19306
4316f0d2
DG
19307 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
19308 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
19309
19310 /* Data processing, three registers of different lengths. */
19311 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
19312 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
19313 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
19314 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
19315 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
19316 /* If not scalar, fall back to neon_dyadic_long.
19317 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
19318 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19319 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
19320 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
19321 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19322 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19323 /* Dyadic, narrowing insns. Types I16 I32 I64. */
19324 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19325 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19326 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19327 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19328 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
19329 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19330 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19331 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
19332 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
19333 S16 S32 U16 U32. */
21d799b5 19334 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
19335
19336 /* Extract. Size 8. */
3b8d421e
PB
19337 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
19338 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
19339
19340 /* Two registers, miscellaneous. */
19341 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
19342 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
19343 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
19344 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
19345 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
19346 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
19347 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
19348 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
19349 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
19350 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
19351 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
19352 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
19353 /* VMOVN. Types I16 I32 I64. */
21d799b5 19354 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 19355 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 19356 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 19357 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 19358 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
19359 /* VZIP / VUZP. Sizes 8 16 32. */
19360 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
19361 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
19362 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
19363 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
19364 /* VQABS / VQNEG. Types S8 S16 S32. */
19365 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19366 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
19367 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19368 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
19369 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
19370 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
19371 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
19372 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
19373 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
19374 /* Reciprocal estimates. Types U32 F32. */
19375 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
19376 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
19377 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
19378 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
19379 /* VCLS. Types S8 S16 S32. */
19380 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
19381 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
19382 /* VCLZ. Types I8 I16 I32. */
19383 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
19384 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
19385 /* VCNT. Size 8. */
19386 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
19387 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
19388 /* Two address, untyped. */
19389 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
19390 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
19391 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
19392 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
19393 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
19394
19395 /* Table lookup. Size 8. */
19396 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19397 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19398
c921be7d
NC
19399#undef THUMB_VARIANT
19400#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
19401#undef ARM_VARIANT
19402#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
19403
5287ad62 19404 /* Neon element/structure load/store. */
21d799b5
NC
19405 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19406 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19407 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19408 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19409 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19410 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19411 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19412 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 19413
c921be7d 19414#undef THUMB_VARIANT
62f3b8c8
PB
19415#define THUMB_VARIANT &fpu_vfp_ext_v3xd
19416#undef ARM_VARIANT
19417#define ARM_VARIANT &fpu_vfp_ext_v3xd
19418 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
19419 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19420 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19421 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19422 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19423 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19424 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19425 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19426 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19427
19428#undef THUMB_VARIANT
c921be7d
NC
19429#define THUMB_VARIANT & fpu_vfp_ext_v3
19430#undef ARM_VARIANT
19431#define ARM_VARIANT & fpu_vfp_ext_v3
19432
21d799b5 19433 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 19434 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 19435 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 19436 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 19437 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 19438 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 19439 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 19440 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 19441 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 19442
62f3b8c8
PB
19443#undef ARM_VARIANT
19444#define ARM_VARIANT &fpu_vfp_ext_fma
19445#undef THUMB_VARIANT
19446#define THUMB_VARIANT &fpu_vfp_ext_fma
19447 /* Mnemonics shared by Neon and VFP. These are included in the
19448 VFP FMA variant; NEON and VFP FMA always includes the NEON
19449 FMA instructions. */
19450 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19451 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19452 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
19453 the v form should always be used. */
19454 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19455 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19456 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19457 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19458 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19459 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19460
5287ad62 19461#undef THUMB_VARIANT
c921be7d
NC
19462#undef ARM_VARIANT
19463#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19464
21d799b5
NC
19465 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19466 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19467 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19468 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19469 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19470 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19471 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19472 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 19473
c921be7d
NC
19474#undef ARM_VARIANT
19475#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19476
21d799b5
NC
19477 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19478 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19479 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19480 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19481 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19482 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19483 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19484 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19485 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19486 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19487 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19488 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19489 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19490 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19491 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19492 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19493 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19494 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19495 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19496 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19497 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19498 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19499 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19500 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19501 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19502 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19503 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19504 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19505 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19506 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19507 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19508 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19509 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19510 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19511 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19512 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19513 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19514 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19515 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19516 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19517 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19518 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19519 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19520 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19521 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19522 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19523 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19524 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19525 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19526 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19527 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19528 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19529 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19530 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19531 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19532 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19533 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19534 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19535 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19536 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19537 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19538 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19539 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19540 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19541 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19542 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19543 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19544 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19545 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19546 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19547 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19548 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19549 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19550 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19551 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19552 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19553 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19554 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19555 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19556 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19557 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19558 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19559 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19560 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19561 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19562 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19563 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19564 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19565 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19566 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19567 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19568 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19569 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19570 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19571 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19572 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19573 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19574 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19575 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19576 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19577 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19578 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19579 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19580 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19581 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19582 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19583 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19584 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19585 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19586 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19587 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19588 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19589 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19590 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19591 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19592 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19593 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19594 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19595 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19596 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19597 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19598 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19599 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19600 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19601 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19602 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19603 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19604 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19605 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19606 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19607 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19608 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19609 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19610 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19611 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19612 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19613 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19614 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19615 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19616 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19617 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19618 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19619 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19620 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19621 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19622 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19623 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19624 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19625 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19626 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19627 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19628 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19629 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19630 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19631 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19632 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19633 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19634 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19635 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19636 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19637 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19638 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 19639
c921be7d
NC
19640#undef ARM_VARIANT
19641#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19642
21d799b5
NC
19643 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19644 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19645 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19646 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19647 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19648 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19649 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19650 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19651 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19652 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19653 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19654 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19655 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19656 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19657 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19658 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19659 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19660 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19661 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19662 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19663 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19664 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19665 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19666 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19667 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19668 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19669 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19670 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19671 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19672 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19673 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19674 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19675 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19676 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19677 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19678 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19679 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19680 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19681 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19682 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19683 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19684 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19685 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19686 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19687 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19688 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19689 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19690 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19691 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19692 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19693 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19694 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19695 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19696 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19697 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19698 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19699 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 19700
c921be7d
NC
19701#undef ARM_VARIANT
19702#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19703
21d799b5
NC
19704 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19705 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19706 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19707 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19708 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19709 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19710 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19711 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19712 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19713 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19714 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19715 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19716 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19717 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19718 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19719 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19720 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19721 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19722 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19723 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19724 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19725 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19726 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19727 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19728 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19729 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19730 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19731 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19732 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19733 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19734 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19735 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19736 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19737 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19738 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19739 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19740 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19741 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19742 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19743 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19744 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19745 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19746 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19747 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19748 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19749 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19750 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19751 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19752 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19753 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19754 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19755 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19756 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19757 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19758 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19759 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19760 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19761 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19762 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19763 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19764 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19765 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19766 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19767 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19768 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19769 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19770 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19771 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19772 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19773 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19774 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19775 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19776 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19777 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19778 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19779 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
19780};
19781#undef ARM_VARIANT
19782#undef THUMB_VARIANT
19783#undef TCE
19784#undef TCM
19785#undef TUE
19786#undef TUF
19787#undef TCC
8f06b2d8 19788#undef cCE
e3cb604e
PB
19789#undef cCL
19790#undef C3E
c19d1205
ZW
19791#undef CE
19792#undef CM
19793#undef UE
19794#undef UF
19795#undef UT
5287ad62
JB
19796#undef NUF
19797#undef nUF
19798#undef NCE
19799#undef nCE
c19d1205
ZW
19800#undef OPS0
19801#undef OPS1
19802#undef OPS2
19803#undef OPS3
19804#undef OPS4
19805#undef OPS5
19806#undef OPS6
19807#undef do_0
19808\f
19809/* MD interface: bits in the object file. */
bfae80f2 19810
c19d1205
ZW
19811/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19812 for use in the a.out file, and stores them in the array pointed to by buf.
19813 This knows about the endian-ness of the target machine and does
19814 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19815 2 (short) and 4 (long) Floating numbers are put out as a series of
19816 LITTLENUMS (shorts, here at least). */
b99bd4ef 19817
c19d1205
ZW
19818void
19819md_number_to_chars (char * buf, valueT val, int n)
19820{
19821 if (target_big_endian)
19822 number_to_chars_bigendian (buf, val, n);
19823 else
19824 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
19825}
19826
c19d1205
ZW
19827static valueT
19828md_chars_to_number (char * buf, int n)
bfae80f2 19829{
c19d1205
ZW
19830 valueT result = 0;
19831 unsigned char * where = (unsigned char *) buf;
bfae80f2 19832
c19d1205 19833 if (target_big_endian)
b99bd4ef 19834 {
c19d1205
ZW
19835 while (n--)
19836 {
19837 result <<= 8;
19838 result |= (*where++ & 255);
19839 }
b99bd4ef 19840 }
c19d1205 19841 else
b99bd4ef 19842 {
c19d1205
ZW
19843 while (n--)
19844 {
19845 result <<= 8;
19846 result |= (where[n] & 255);
19847 }
bfae80f2 19848 }
b99bd4ef 19849
c19d1205 19850 return result;
bfae80f2 19851}
b99bd4ef 19852
c19d1205 19853/* MD interface: Sections. */
b99bd4ef 19854
fa94de6b
RM
19855/* Calculate the maximum variable size (i.e., excluding fr_fix)
19856 that an rs_machine_dependent frag may reach. */
19857
19858unsigned int
19859arm_frag_max_var (fragS *fragp)
19860{
19861 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19862 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19863
19864 Note that we generate relaxable instructions even for cases that don't
19865 really need it, like an immediate that's a trivial constant. So we're
19866 overestimating the instruction size for some of those cases. Rather
19867 than putting more intelligence here, it would probably be better to
19868 avoid generating a relaxation frag in the first place when it can be
19869 determined up front that a short instruction will suffice. */
19870
19871 gas_assert (fragp->fr_type == rs_machine_dependent);
19872 return INSN_SIZE;
19873}
19874
0110f2b8
PB
19875/* Estimate the size of a frag before relaxing. Assume everything fits in
19876 2 bytes. */
19877
c19d1205 19878int
0110f2b8 19879md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
19880 segT segtype ATTRIBUTE_UNUSED)
19881{
0110f2b8
PB
19882 fragp->fr_var = 2;
19883 return 2;
19884}
19885
19886/* Convert a machine dependent frag. */
19887
19888void
19889md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19890{
19891 unsigned long insn;
19892 unsigned long old_op;
19893 char *buf;
19894 expressionS exp;
19895 fixS *fixp;
19896 int reloc_type;
19897 int pc_rel;
19898 int opcode;
19899
19900 buf = fragp->fr_literal + fragp->fr_fix;
19901
19902 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
19903 if (fragp->fr_symbol)
19904 {
0110f2b8
PB
19905 exp.X_op = O_symbol;
19906 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
19907 }
19908 else
19909 {
0110f2b8 19910 exp.X_op = O_constant;
5f4273c7 19911 }
0110f2b8
PB
19912 exp.X_add_number = fragp->fr_offset;
19913 opcode = fragp->fr_subtype;
19914 switch (opcode)
19915 {
19916 case T_MNEM_ldr_pc:
19917 case T_MNEM_ldr_pc2:
19918 case T_MNEM_ldr_sp:
19919 case T_MNEM_str_sp:
19920 case T_MNEM_ldr:
19921 case T_MNEM_ldrb:
19922 case T_MNEM_ldrh:
19923 case T_MNEM_str:
19924 case T_MNEM_strb:
19925 case T_MNEM_strh:
19926 if (fragp->fr_var == 4)
19927 {
5f4273c7 19928 insn = THUMB_OP32 (opcode);
0110f2b8
PB
19929 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19930 {
19931 insn |= (old_op & 0x700) << 4;
19932 }
19933 else
19934 {
19935 insn |= (old_op & 7) << 12;
19936 insn |= (old_op & 0x38) << 13;
19937 }
19938 insn |= 0x00000c00;
19939 put_thumb32_insn (buf, insn);
19940 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19941 }
19942 else
19943 {
19944 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19945 }
19946 pc_rel = (opcode == T_MNEM_ldr_pc2);
19947 break;
19948 case T_MNEM_adr:
19949 if (fragp->fr_var == 4)
19950 {
19951 insn = THUMB_OP32 (opcode);
19952 insn |= (old_op & 0xf0) << 4;
19953 put_thumb32_insn (buf, insn);
19954 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19955 }
19956 else
19957 {
19958 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19959 exp.X_add_number -= 4;
19960 }
19961 pc_rel = 1;
19962 break;
19963 case T_MNEM_mov:
19964 case T_MNEM_movs:
19965 case T_MNEM_cmp:
19966 case T_MNEM_cmn:
19967 if (fragp->fr_var == 4)
19968 {
19969 int r0off = (opcode == T_MNEM_mov
19970 || opcode == T_MNEM_movs) ? 0 : 8;
19971 insn = THUMB_OP32 (opcode);
19972 insn = (insn & 0xe1ffffff) | 0x10000000;
19973 insn |= (old_op & 0x700) << r0off;
19974 put_thumb32_insn (buf, insn);
19975 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19976 }
19977 else
19978 {
19979 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19980 }
19981 pc_rel = 0;
19982 break;
19983 case T_MNEM_b:
19984 if (fragp->fr_var == 4)
19985 {
19986 insn = THUMB_OP32(opcode);
19987 put_thumb32_insn (buf, insn);
19988 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19989 }
19990 else
19991 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19992 pc_rel = 1;
19993 break;
19994 case T_MNEM_bcond:
19995 if (fragp->fr_var == 4)
19996 {
19997 insn = THUMB_OP32(opcode);
19998 insn |= (old_op & 0xf00) << 14;
19999 put_thumb32_insn (buf, insn);
20000 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
20001 }
20002 else
20003 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
20004 pc_rel = 1;
20005 break;
20006 case T_MNEM_add_sp:
20007 case T_MNEM_add_pc:
20008 case T_MNEM_inc_sp:
20009 case T_MNEM_dec_sp:
20010 if (fragp->fr_var == 4)
20011 {
20012 /* ??? Choose between add and addw. */
20013 insn = THUMB_OP32 (opcode);
20014 insn |= (old_op & 0xf0) << 4;
20015 put_thumb32_insn (buf, insn);
16805f35
PB
20016 if (opcode == T_MNEM_add_pc)
20017 reloc_type = BFD_RELOC_ARM_T32_IMM12;
20018 else
20019 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
20020 }
20021 else
20022 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20023 pc_rel = 0;
20024 break;
20025
20026 case T_MNEM_addi:
20027 case T_MNEM_addis:
20028 case T_MNEM_subi:
20029 case T_MNEM_subis:
20030 if (fragp->fr_var == 4)
20031 {
20032 insn = THUMB_OP32 (opcode);
20033 insn |= (old_op & 0xf0) << 4;
20034 insn |= (old_op & 0xf) << 16;
20035 put_thumb32_insn (buf, insn);
16805f35
PB
20036 if (insn & (1 << 20))
20037 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
20038 else
20039 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
20040 }
20041 else
20042 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
20043 pc_rel = 0;
20044 break;
20045 default:
5f4273c7 20046 abort ();
0110f2b8
PB
20047 }
20048 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 20049 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
20050 fixp->fx_file = fragp->fr_file;
20051 fixp->fx_line = fragp->fr_line;
20052 fragp->fr_fix += fragp->fr_var;
20053}
20054
20055/* Return the size of a relaxable immediate operand instruction.
20056 SHIFT and SIZE specify the form of the allowable immediate. */
20057static int
20058relax_immediate (fragS *fragp, int size, int shift)
20059{
20060 offsetT offset;
20061 offsetT mask;
20062 offsetT low;
20063
20064 /* ??? Should be able to do better than this. */
20065 if (fragp->fr_symbol)
20066 return 4;
20067
20068 low = (1 << shift) - 1;
20069 mask = (1 << (shift + size)) - (1 << shift);
20070 offset = fragp->fr_offset;
20071 /* Force misaligned offsets to 32-bit variant. */
20072 if (offset & low)
5e77afaa 20073 return 4;
0110f2b8
PB
20074 if (offset & ~mask)
20075 return 4;
20076 return 2;
20077}
20078
5e77afaa
PB
20079/* Get the address of a symbol during relaxation. */
20080static addressT
5f4273c7 20081relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
20082{
20083 fragS *sym_frag;
20084 addressT addr;
20085 symbolS *sym;
20086
20087 sym = fragp->fr_symbol;
20088 sym_frag = symbol_get_frag (sym);
20089 know (S_GET_SEGMENT (sym) != absolute_section
20090 || sym_frag == &zero_address_frag);
20091 addr = S_GET_VALUE (sym) + fragp->fr_offset;
20092
20093 /* If frag has yet to be reached on this pass, assume it will
20094 move by STRETCH just as we did. If this is not so, it will
20095 be because some frag between grows, and that will force
20096 another pass. */
20097
20098 if (stretch != 0
20099 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
20100 {
20101 fragS *f;
20102
20103 /* Adjust stretch for any alignment frag. Note that if have
20104 been expanding the earlier code, the symbol may be
20105 defined in what appears to be an earlier frag. FIXME:
20106 This doesn't handle the fr_subtype field, which specifies
20107 a maximum number of bytes to skip when doing an
20108 alignment. */
20109 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
20110 {
20111 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
20112 {
20113 if (stretch < 0)
20114 stretch = - ((- stretch)
20115 & ~ ((1 << (int) f->fr_offset) - 1));
20116 else
20117 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
20118 if (stretch == 0)
20119 break;
20120 }
20121 }
20122 if (f != NULL)
20123 addr += stretch;
20124 }
5e77afaa
PB
20125
20126 return addr;
20127}
20128
0110f2b8
PB
20129/* Return the size of a relaxable adr pseudo-instruction or PC-relative
20130 load. */
20131static int
5e77afaa 20132relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
20133{
20134 addressT addr;
20135 offsetT val;
20136
20137 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
20138 if (fragp->fr_symbol == NULL
20139 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
20140 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20141 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
20142 return 4;
20143
5f4273c7 20144 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
20145 addr = fragp->fr_address + fragp->fr_fix;
20146 addr = (addr + 4) & ~3;
5e77afaa 20147 /* Force misaligned targets to 32-bit variant. */
0110f2b8 20148 if (val & 3)
5e77afaa 20149 return 4;
0110f2b8
PB
20150 val -= addr;
20151 if (val < 0 || val > 1020)
20152 return 4;
20153 return 2;
20154}
20155
20156/* Return the size of a relaxable add/sub immediate instruction. */
20157static int
20158relax_addsub (fragS *fragp, asection *sec)
20159{
20160 char *buf;
20161 int op;
20162
20163 buf = fragp->fr_literal + fragp->fr_fix;
20164 op = bfd_get_16(sec->owner, buf);
20165 if ((op & 0xf) == ((op >> 4) & 0xf))
20166 return relax_immediate (fragp, 8, 0);
20167 else
20168 return relax_immediate (fragp, 3, 0);
20169}
20170
20171
20172/* Return the size of a relaxable branch instruction. BITS is the
20173 size of the offset field in the narrow instruction. */
20174
20175static int
5e77afaa 20176relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
20177{
20178 addressT addr;
20179 offsetT val;
20180 offsetT limit;
20181
20182 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 20183 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
20184 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20185 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
20186 return 4;
20187
267bf995
RR
20188#ifdef OBJ_ELF
20189 if (S_IS_DEFINED (fragp->fr_symbol)
20190 && ARM_IS_FUNC (fragp->fr_symbol))
20191 return 4;
0d9b4b55
NC
20192
20193 /* PR 12532. Global symbols with default visibility might
20194 be preempted, so do not relax relocations to them. */
20195 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
20196 && (! S_IS_LOCAL (fragp->fr_symbol)))
20197 return 4;
267bf995
RR
20198#endif
20199
5f4273c7 20200 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
20201 addr = fragp->fr_address + fragp->fr_fix + 4;
20202 val -= addr;
20203
20204 /* Offset is a signed value *2 */
20205 limit = 1 << bits;
20206 if (val >= limit || val < -limit)
20207 return 4;
20208 return 2;
20209}
20210
20211
20212/* Relax a machine dependent frag. This returns the amount by which
20213 the current size of the frag should change. */
20214
20215int
5e77afaa 20216arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
20217{
20218 int oldsize;
20219 int newsize;
20220
20221 oldsize = fragp->fr_var;
20222 switch (fragp->fr_subtype)
20223 {
20224 case T_MNEM_ldr_pc2:
5f4273c7 20225 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
20226 break;
20227 case T_MNEM_ldr_pc:
20228 case T_MNEM_ldr_sp:
20229 case T_MNEM_str_sp:
5f4273c7 20230 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
20231 break;
20232 case T_MNEM_ldr:
20233 case T_MNEM_str:
5f4273c7 20234 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
20235 break;
20236 case T_MNEM_ldrh:
20237 case T_MNEM_strh:
5f4273c7 20238 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
20239 break;
20240 case T_MNEM_ldrb:
20241 case T_MNEM_strb:
5f4273c7 20242 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
20243 break;
20244 case T_MNEM_adr:
5f4273c7 20245 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
20246 break;
20247 case T_MNEM_mov:
20248 case T_MNEM_movs:
20249 case T_MNEM_cmp:
20250 case T_MNEM_cmn:
5f4273c7 20251 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
20252 break;
20253 case T_MNEM_b:
5f4273c7 20254 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
20255 break;
20256 case T_MNEM_bcond:
5f4273c7 20257 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
20258 break;
20259 case T_MNEM_add_sp:
20260 case T_MNEM_add_pc:
20261 newsize = relax_immediate (fragp, 8, 2);
20262 break;
20263 case T_MNEM_inc_sp:
20264 case T_MNEM_dec_sp:
20265 newsize = relax_immediate (fragp, 7, 2);
20266 break;
20267 case T_MNEM_addi:
20268 case T_MNEM_addis:
20269 case T_MNEM_subi:
20270 case T_MNEM_subis:
20271 newsize = relax_addsub (fragp, sec);
20272 break;
20273 default:
5f4273c7 20274 abort ();
0110f2b8 20275 }
5e77afaa
PB
20276
20277 fragp->fr_var = newsize;
20278 /* Freeze wide instructions that are at or before the same location as
20279 in the previous pass. This avoids infinite loops.
5f4273c7
NC
20280 Don't freeze them unconditionally because targets may be artificially
20281 misaligned by the expansion of preceding frags. */
5e77afaa 20282 if (stretch <= 0 && newsize > 2)
0110f2b8 20283 {
0110f2b8 20284 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 20285 frag_wane (fragp);
0110f2b8 20286 }
5e77afaa 20287
0110f2b8 20288 return newsize - oldsize;
c19d1205 20289}
b99bd4ef 20290
c19d1205 20291/* Round up a section size to the appropriate boundary. */
b99bd4ef 20292
c19d1205
ZW
20293valueT
20294md_section_align (segT segment ATTRIBUTE_UNUSED,
20295 valueT size)
20296{
f0927246
NC
20297#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
20298 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
20299 {
20300 /* For a.out, force the section size to be aligned. If we don't do
20301 this, BFD will align it for us, but it will not write out the
20302 final bytes of the section. This may be a bug in BFD, but it is
20303 easier to fix it here since that is how the other a.out targets
20304 work. */
20305 int align;
20306
20307 align = bfd_get_section_alignment (stdoutput, segment);
20308 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
20309 }
c19d1205 20310#endif
f0927246
NC
20311
20312 return size;
bfae80f2 20313}
b99bd4ef 20314
c19d1205
ZW
20315/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
20316 of an rs_align_code fragment. */
20317
20318void
20319arm_handle_align (fragS * fragP)
bfae80f2 20320{
e7495e45
NS
20321 static char const arm_noop[2][2][4] =
20322 {
20323 { /* ARMv1 */
20324 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
20325 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
20326 },
20327 { /* ARMv6k */
20328 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
20329 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
20330 },
20331 };
20332 static char const thumb_noop[2][2][2] =
20333 {
20334 { /* Thumb-1 */
20335 {0xc0, 0x46}, /* LE */
20336 {0x46, 0xc0}, /* BE */
20337 },
20338 { /* Thumb-2 */
20339 {0x00, 0xbf}, /* LE */
20340 {0xbf, 0x00} /* BE */
20341 }
20342 };
20343 static char const wide_thumb_noop[2][4] =
20344 { /* Wide Thumb-2 */
20345 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
20346 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
20347 };
c921be7d 20348
e7495e45 20349 unsigned bytes, fix, noop_size;
c19d1205
ZW
20350 char * p;
20351 const char * noop;
e7495e45 20352 const char *narrow_noop = NULL;
cd000bff
DJ
20353#ifdef OBJ_ELF
20354 enum mstate state;
20355#endif
bfae80f2 20356
c19d1205 20357 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
20358 return;
20359
c19d1205
ZW
20360 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
20361 p = fragP->fr_literal + fragP->fr_fix;
20362 fix = 0;
bfae80f2 20363
c19d1205
ZW
20364 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
20365 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 20366
cd000bff 20367 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 20368
cd000bff 20369 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 20370 {
e7495e45
NS
20371 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
20372 {
20373 narrow_noop = thumb_noop[1][target_big_endian];
20374 noop = wide_thumb_noop[target_big_endian];
20375 }
c19d1205 20376 else
e7495e45
NS
20377 noop = thumb_noop[0][target_big_endian];
20378 noop_size = 2;
cd000bff
DJ
20379#ifdef OBJ_ELF
20380 state = MAP_THUMB;
20381#endif
7ed4c4c5
NC
20382 }
20383 else
20384 {
e7495e45
NS
20385 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
20386 [target_big_endian];
20387 noop_size = 4;
cd000bff
DJ
20388#ifdef OBJ_ELF
20389 state = MAP_ARM;
20390#endif
7ed4c4c5 20391 }
c921be7d 20392
e7495e45 20393 fragP->fr_var = noop_size;
c921be7d 20394
c19d1205 20395 if (bytes & (noop_size - 1))
7ed4c4c5 20396 {
c19d1205 20397 fix = bytes & (noop_size - 1);
cd000bff
DJ
20398#ifdef OBJ_ELF
20399 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
20400#endif
c19d1205
ZW
20401 memset (p, 0, fix);
20402 p += fix;
20403 bytes -= fix;
a737bd4d 20404 }
a737bd4d 20405
e7495e45
NS
20406 if (narrow_noop)
20407 {
20408 if (bytes & noop_size)
20409 {
20410 /* Insert a narrow noop. */
20411 memcpy (p, narrow_noop, noop_size);
20412 p += noop_size;
20413 bytes -= noop_size;
20414 fix += noop_size;
20415 }
20416
20417 /* Use wide noops for the remainder */
20418 noop_size = 4;
20419 }
20420
c19d1205 20421 while (bytes >= noop_size)
a737bd4d 20422 {
c19d1205
ZW
20423 memcpy (p, noop, noop_size);
20424 p += noop_size;
20425 bytes -= noop_size;
20426 fix += noop_size;
a737bd4d
NC
20427 }
20428
c19d1205 20429 fragP->fr_fix += fix;
a737bd4d
NC
20430}
20431
c19d1205
ZW
20432/* Called from md_do_align. Used to create an alignment
20433 frag in a code section. */
20434
20435void
20436arm_frag_align_code (int n, int max)
bfae80f2 20437{
c19d1205 20438 char * p;
7ed4c4c5 20439
c19d1205 20440 /* We assume that there will never be a requirement
6ec8e702 20441 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 20442 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
20443 {
20444 char err_msg[128];
20445
fa94de6b 20446 sprintf (err_msg,
6ec8e702
NC
20447 _("alignments greater than %d bytes not supported in .text sections."),
20448 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 20449 as_fatal ("%s", err_msg);
6ec8e702 20450 }
bfae80f2 20451
c19d1205
ZW
20452 p = frag_var (rs_align_code,
20453 MAX_MEM_FOR_RS_ALIGN_CODE,
20454 1,
20455 (relax_substateT) max,
20456 (symbolS *) NULL,
20457 (offsetT) n,
20458 (char *) NULL);
20459 *p = 0;
20460}
bfae80f2 20461
8dc2430f
NC
20462/* Perform target specific initialisation of a frag.
20463 Note - despite the name this initialisation is not done when the frag
20464 is created, but only when its type is assigned. A frag can be created
20465 and used a long time before its type is set, so beware of assuming that
20466 this initialisationis performed first. */
bfae80f2 20467
cd000bff
DJ
20468#ifndef OBJ_ELF
20469void
20470arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20471{
20472 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 20473 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
20474}
20475
20476#else /* OBJ_ELF is defined. */
c19d1205 20477void
cd000bff 20478arm_init_frag (fragS * fragP, int max_chars)
c19d1205 20479{
8dc2430f
NC
20480 /* If the current ARM vs THUMB mode has not already
20481 been recorded into this frag then do so now. */
cd000bff
DJ
20482 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20483 {
20484 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20485
20486 /* Record a mapping symbol for alignment frags. We will delete this
20487 later if the alignment ends up empty. */
20488 switch (fragP->fr_type)
20489 {
20490 case rs_align:
20491 case rs_align_test:
20492 case rs_fill:
20493 mapping_state_2 (MAP_DATA, max_chars);
20494 break;
20495 case rs_align_code:
20496 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20497 break;
20498 default:
20499 break;
20500 }
20501 }
bfae80f2
RE
20502}
20503
c19d1205
ZW
20504/* When we change sections we need to issue a new mapping symbol. */
20505
20506void
20507arm_elf_change_section (void)
bfae80f2 20508{
c19d1205
ZW
20509 /* Link an unlinked unwind index table section to the .text section. */
20510 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20511 && elf_linked_to_section (now_seg) == NULL)
20512 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
20513}
20514
c19d1205
ZW
20515int
20516arm_elf_section_type (const char * str, size_t len)
e45d0630 20517{
c19d1205
ZW
20518 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20519 return SHT_ARM_EXIDX;
e45d0630 20520
c19d1205
ZW
20521 return -1;
20522}
20523\f
20524/* Code to deal with unwinding tables. */
e45d0630 20525
c19d1205 20526static void add_unwind_adjustsp (offsetT);
e45d0630 20527
5f4273c7 20528/* Generate any deferred unwind frame offset. */
e45d0630 20529
bfae80f2 20530static void
c19d1205 20531flush_pending_unwind (void)
bfae80f2 20532{
c19d1205 20533 offsetT offset;
bfae80f2 20534
c19d1205
ZW
20535 offset = unwind.pending_offset;
20536 unwind.pending_offset = 0;
20537 if (offset != 0)
20538 add_unwind_adjustsp (offset);
bfae80f2
RE
20539}
20540
c19d1205
ZW
20541/* Add an opcode to this list for this function. Two-byte opcodes should
20542 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20543 order. */
20544
bfae80f2 20545static void
c19d1205 20546add_unwind_opcode (valueT op, int length)
bfae80f2 20547{
c19d1205
ZW
20548 /* Add any deferred stack adjustment. */
20549 if (unwind.pending_offset)
20550 flush_pending_unwind ();
bfae80f2 20551
c19d1205 20552 unwind.sp_restored = 0;
bfae80f2 20553
c19d1205 20554 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 20555 {
c19d1205
ZW
20556 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20557 if (unwind.opcodes)
21d799b5
NC
20558 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20559 unwind.opcode_alloc);
c19d1205 20560 else
21d799b5 20561 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 20562 }
c19d1205 20563 while (length > 0)
bfae80f2 20564 {
c19d1205
ZW
20565 length--;
20566 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20567 op >>= 8;
20568 unwind.opcode_count++;
bfae80f2 20569 }
bfae80f2
RE
20570}
20571
c19d1205
ZW
20572/* Add unwind opcodes to adjust the stack pointer. */
20573
bfae80f2 20574static void
c19d1205 20575add_unwind_adjustsp (offsetT offset)
bfae80f2 20576{
c19d1205 20577 valueT op;
bfae80f2 20578
c19d1205 20579 if (offset > 0x200)
bfae80f2 20580 {
c19d1205
ZW
20581 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20582 char bytes[5];
20583 int n;
20584 valueT o;
bfae80f2 20585
c19d1205
ZW
20586 /* Long form: 0xb2, uleb128. */
20587 /* This might not fit in a word so add the individual bytes,
20588 remembering the list is built in reverse order. */
20589 o = (valueT) ((offset - 0x204) >> 2);
20590 if (o == 0)
20591 add_unwind_opcode (0, 1);
bfae80f2 20592
c19d1205
ZW
20593 /* Calculate the uleb128 encoding of the offset. */
20594 n = 0;
20595 while (o)
20596 {
20597 bytes[n] = o & 0x7f;
20598 o >>= 7;
20599 if (o)
20600 bytes[n] |= 0x80;
20601 n++;
20602 }
20603 /* Add the insn. */
20604 for (; n; n--)
20605 add_unwind_opcode (bytes[n - 1], 1);
20606 add_unwind_opcode (0xb2, 1);
20607 }
20608 else if (offset > 0x100)
bfae80f2 20609 {
c19d1205
ZW
20610 /* Two short opcodes. */
20611 add_unwind_opcode (0x3f, 1);
20612 op = (offset - 0x104) >> 2;
20613 add_unwind_opcode (op, 1);
bfae80f2 20614 }
c19d1205
ZW
20615 else if (offset > 0)
20616 {
20617 /* Short opcode. */
20618 op = (offset - 4) >> 2;
20619 add_unwind_opcode (op, 1);
20620 }
20621 else if (offset < 0)
bfae80f2 20622 {
c19d1205
ZW
20623 offset = -offset;
20624 while (offset > 0x100)
bfae80f2 20625 {
c19d1205
ZW
20626 add_unwind_opcode (0x7f, 1);
20627 offset -= 0x100;
bfae80f2 20628 }
c19d1205
ZW
20629 op = ((offset - 4) >> 2) | 0x40;
20630 add_unwind_opcode (op, 1);
bfae80f2 20631 }
bfae80f2
RE
20632}
20633
c19d1205
ZW
20634/* Finish the list of unwind opcodes for this function. */
20635static void
20636finish_unwind_opcodes (void)
bfae80f2 20637{
c19d1205 20638 valueT op;
bfae80f2 20639
c19d1205 20640 if (unwind.fp_used)
bfae80f2 20641 {
708587a4 20642 /* Adjust sp as necessary. */
c19d1205
ZW
20643 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20644 flush_pending_unwind ();
bfae80f2 20645
c19d1205
ZW
20646 /* After restoring sp from the frame pointer. */
20647 op = 0x90 | unwind.fp_reg;
20648 add_unwind_opcode (op, 1);
20649 }
20650 else
20651 flush_pending_unwind ();
bfae80f2
RE
20652}
20653
bfae80f2 20654
c19d1205
ZW
20655/* Start an exception table entry. If idx is nonzero this is an index table
20656 entry. */
bfae80f2
RE
20657
20658static void
c19d1205 20659start_unwind_section (const segT text_seg, int idx)
bfae80f2 20660{
c19d1205
ZW
20661 const char * text_name;
20662 const char * prefix;
20663 const char * prefix_once;
20664 const char * group_name;
20665 size_t prefix_len;
20666 size_t text_len;
20667 char * sec_name;
20668 size_t sec_name_len;
20669 int type;
20670 int flags;
20671 int linkonce;
bfae80f2 20672
c19d1205 20673 if (idx)
bfae80f2 20674 {
c19d1205
ZW
20675 prefix = ELF_STRING_ARM_unwind;
20676 prefix_once = ELF_STRING_ARM_unwind_once;
20677 type = SHT_ARM_EXIDX;
bfae80f2 20678 }
c19d1205 20679 else
bfae80f2 20680 {
c19d1205
ZW
20681 prefix = ELF_STRING_ARM_unwind_info;
20682 prefix_once = ELF_STRING_ARM_unwind_info_once;
20683 type = SHT_PROGBITS;
bfae80f2
RE
20684 }
20685
c19d1205
ZW
20686 text_name = segment_name (text_seg);
20687 if (streq (text_name, ".text"))
20688 text_name = "";
20689
20690 if (strncmp (text_name, ".gnu.linkonce.t.",
20691 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 20692 {
c19d1205
ZW
20693 prefix = prefix_once;
20694 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
20695 }
20696
c19d1205
ZW
20697 prefix_len = strlen (prefix);
20698 text_len = strlen (text_name);
20699 sec_name_len = prefix_len + text_len;
21d799b5 20700 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
20701 memcpy (sec_name, prefix, prefix_len);
20702 memcpy (sec_name + prefix_len, text_name, text_len);
20703 sec_name[prefix_len + text_len] = '\0';
bfae80f2 20704
c19d1205
ZW
20705 flags = SHF_ALLOC;
20706 linkonce = 0;
20707 group_name = 0;
bfae80f2 20708
c19d1205
ZW
20709 /* Handle COMDAT group. */
20710 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 20711 {
c19d1205
ZW
20712 group_name = elf_group_name (text_seg);
20713 if (group_name == NULL)
20714 {
bd3ba5d1 20715 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
20716 segment_name (text_seg));
20717 ignore_rest_of_line ();
20718 return;
20719 }
20720 flags |= SHF_GROUP;
20721 linkonce = 1;
bfae80f2
RE
20722 }
20723
c19d1205 20724 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 20725
5f4273c7 20726 /* Set the section link for index tables. */
c19d1205
ZW
20727 if (idx)
20728 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
20729}
20730
bfae80f2 20731
c19d1205
ZW
20732/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20733 personality routine data. Returns zero, or the index table value for
20734 and inline entry. */
20735
20736static valueT
20737create_unwind_entry (int have_data)
bfae80f2 20738{
c19d1205
ZW
20739 int size;
20740 addressT where;
20741 char *ptr;
20742 /* The current word of data. */
20743 valueT data;
20744 /* The number of bytes left in this word. */
20745 int n;
bfae80f2 20746
c19d1205 20747 finish_unwind_opcodes ();
bfae80f2 20748
c19d1205
ZW
20749 /* Remember the current text section. */
20750 unwind.saved_seg = now_seg;
20751 unwind.saved_subseg = now_subseg;
bfae80f2 20752
c19d1205 20753 start_unwind_section (now_seg, 0);
bfae80f2 20754
c19d1205 20755 if (unwind.personality_routine == NULL)
bfae80f2 20756 {
c19d1205
ZW
20757 if (unwind.personality_index == -2)
20758 {
20759 if (have_data)
5f4273c7 20760 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
20761 return 1; /* EXIDX_CANTUNWIND. */
20762 }
bfae80f2 20763
c19d1205
ZW
20764 /* Use a default personality routine if none is specified. */
20765 if (unwind.personality_index == -1)
20766 {
20767 if (unwind.opcode_count > 3)
20768 unwind.personality_index = 1;
20769 else
20770 unwind.personality_index = 0;
20771 }
bfae80f2 20772
c19d1205
ZW
20773 /* Space for the personality routine entry. */
20774 if (unwind.personality_index == 0)
20775 {
20776 if (unwind.opcode_count > 3)
20777 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 20778
c19d1205
ZW
20779 if (!have_data)
20780 {
20781 /* All the data is inline in the index table. */
20782 data = 0x80;
20783 n = 3;
20784 while (unwind.opcode_count > 0)
20785 {
20786 unwind.opcode_count--;
20787 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20788 n--;
20789 }
bfae80f2 20790
c19d1205
ZW
20791 /* Pad with "finish" opcodes. */
20792 while (n--)
20793 data = (data << 8) | 0xb0;
bfae80f2 20794
c19d1205
ZW
20795 return data;
20796 }
20797 size = 0;
20798 }
20799 else
20800 /* We get two opcodes "free" in the first word. */
20801 size = unwind.opcode_count - 2;
20802 }
20803 else
5011093d
NC
20804 {
20805 gas_assert (unwind.personality_index == -1);
20806
20807 /* An extra byte is required for the opcode count. */
20808 size = unwind.opcode_count + 1;
20809 }
bfae80f2 20810
c19d1205
ZW
20811 size = (size + 3) >> 2;
20812 if (size > 0xff)
20813 as_bad (_("too many unwind opcodes"));
bfae80f2 20814
c19d1205
ZW
20815 frag_align (2, 0, 0);
20816 record_alignment (now_seg, 2);
20817 unwind.table_entry = expr_build_dot ();
20818
20819 /* Allocate the table entry. */
20820 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
20821 /* PR 13449: Zero the table entries in case some of them are not used. */
20822 memset (ptr, 0, (size << 2) + 4);
c19d1205 20823 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 20824
c19d1205 20825 switch (unwind.personality_index)
bfae80f2 20826 {
c19d1205
ZW
20827 case -1:
20828 /* ??? Should this be a PLT generating relocation? */
20829 /* Custom personality routine. */
20830 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20831 BFD_RELOC_ARM_PREL31);
bfae80f2 20832
c19d1205
ZW
20833 where += 4;
20834 ptr += 4;
bfae80f2 20835
c19d1205 20836 /* Set the first byte to the number of additional words. */
5011093d 20837 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
20838 n = 3;
20839 break;
bfae80f2 20840
c19d1205
ZW
20841 /* ABI defined personality routines. */
20842 case 0:
20843 /* Three opcodes bytes are packed into the first word. */
20844 data = 0x80;
20845 n = 3;
20846 break;
bfae80f2 20847
c19d1205
ZW
20848 case 1:
20849 case 2:
20850 /* The size and first two opcode bytes go in the first word. */
20851 data = ((0x80 + unwind.personality_index) << 8) | size;
20852 n = 2;
20853 break;
bfae80f2 20854
c19d1205
ZW
20855 default:
20856 /* Should never happen. */
20857 abort ();
20858 }
bfae80f2 20859
c19d1205
ZW
20860 /* Pack the opcodes into words (MSB first), reversing the list at the same
20861 time. */
20862 while (unwind.opcode_count > 0)
20863 {
20864 if (n == 0)
20865 {
20866 md_number_to_chars (ptr, data, 4);
20867 ptr += 4;
20868 n = 4;
20869 data = 0;
20870 }
20871 unwind.opcode_count--;
20872 n--;
20873 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20874 }
20875
20876 /* Finish off the last word. */
20877 if (n < 4)
20878 {
20879 /* Pad with "finish" opcodes. */
20880 while (n--)
20881 data = (data << 8) | 0xb0;
20882
20883 md_number_to_chars (ptr, data, 4);
20884 }
20885
20886 if (!have_data)
20887 {
20888 /* Add an empty descriptor if there is no user-specified data. */
20889 ptr = frag_more (4);
20890 md_number_to_chars (ptr, 0, 4);
20891 }
20892
20893 return 0;
bfae80f2
RE
20894}
20895
f0927246
NC
20896
20897/* Initialize the DWARF-2 unwind information for this procedure. */
20898
20899void
20900tc_arm_frame_initial_instructions (void)
20901{
20902 cfi_add_CFA_def_cfa (REG_SP, 0);
20903}
20904#endif /* OBJ_ELF */
20905
c19d1205
ZW
20906/* Convert REGNAME to a DWARF-2 register number. */
20907
20908int
1df69f4f 20909tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 20910{
1df69f4f 20911 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
20912
20913 if (reg == FAIL)
20914 return -1;
20915
20916 return reg;
bfae80f2
RE
20917}
20918
f0927246 20919#ifdef TE_PE
c19d1205 20920void
f0927246 20921tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 20922{
91d6fa6a 20923 expressionS exp;
bfae80f2 20924
91d6fa6a
NC
20925 exp.X_op = O_secrel;
20926 exp.X_add_symbol = symbol;
20927 exp.X_add_number = 0;
20928 emit_expr (&exp, size);
f0927246
NC
20929}
20930#endif
bfae80f2 20931
c19d1205 20932/* MD interface: Symbol and relocation handling. */
bfae80f2 20933
2fc8bdac
ZW
20934/* Return the address within the segment that a PC-relative fixup is
20935 relative to. For ARM, PC-relative fixups applied to instructions
20936 are generally relative to the location of the fixup plus 8 bytes.
20937 Thumb branches are offset by 4, and Thumb loads relative to PC
20938 require special handling. */
bfae80f2 20939
c19d1205 20940long
2fc8bdac 20941md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 20942{
2fc8bdac
ZW
20943 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20944
20945 /* If this is pc-relative and we are going to emit a relocation
20946 then we just want to put out any pipeline compensation that the linker
53baae48
NC
20947 will need. Otherwise we want to use the calculated base.
20948 For WinCE we skip the bias for externals as well, since this
20949 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 20950 if (fixP->fx_pcrel
2fc8bdac 20951 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
20952 || (arm_force_relocation (fixP)
20953#ifdef TE_WINCE
20954 && !S_IS_EXTERNAL (fixP->fx_addsy)
20955#endif
20956 )))
2fc8bdac 20957 base = 0;
bfae80f2 20958
267bf995 20959
c19d1205 20960 switch (fixP->fx_r_type)
bfae80f2 20961 {
2fc8bdac
ZW
20962 /* PC relative addressing on the Thumb is slightly odd as the
20963 bottom two bits of the PC are forced to zero for the
20964 calculation. This happens *after* application of the
20965 pipeline offset. However, Thumb adrl already adjusts for
20966 this, so we need not do it again. */
c19d1205 20967 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 20968 return base & ~3;
c19d1205
ZW
20969
20970 case BFD_RELOC_ARM_THUMB_OFFSET:
20971 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 20972 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 20973 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 20974 return (base + 4) & ~3;
c19d1205 20975
2fc8bdac
ZW
20976 /* Thumb branches are simply offset by +4. */
20977 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20978 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20979 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20980 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 20981 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 20982 return base + 4;
bfae80f2 20983
267bf995 20984 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
20985 if (fixP->fx_addsy
20986 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20987 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20988 && ARM_IS_FUNC (fixP->fx_addsy)
20989 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20990 base = fixP->fx_where + fixP->fx_frag->fr_address;
20991 return base + 4;
20992
00adf2d4
JB
20993 /* BLX is like branches above, but forces the low two bits of PC to
20994 zero. */
486499d0
CL
20995 case BFD_RELOC_THUMB_PCREL_BLX:
20996 if (fixP->fx_addsy
20997 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20998 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20999 && THUMB_IS_FUNC (fixP->fx_addsy)
21000 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21001 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
21002 return (base + 4) & ~3;
21003
2fc8bdac
ZW
21004 /* ARM mode branches are offset by +8. However, the Windows CE
21005 loader expects the relocation not to take this into account. */
267bf995 21006 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
21007 if (fixP->fx_addsy
21008 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21009 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21010 && ARM_IS_FUNC (fixP->fx_addsy)
21011 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21012 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 21013 return base + 8;
267bf995 21014
486499d0
CL
21015 case BFD_RELOC_ARM_PCREL_CALL:
21016 if (fixP->fx_addsy
21017 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21018 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21019 && THUMB_IS_FUNC (fixP->fx_addsy)
21020 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21021 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 21022 return base + 8;
267bf995 21023
2fc8bdac 21024 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 21025 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 21026 case BFD_RELOC_ARM_PLT32:
c19d1205 21027#ifdef TE_WINCE
5f4273c7 21028 /* When handling fixups immediately, because we have already
53baae48
NC
21029 discovered the value of a symbol, or the address of the frag involved
21030 we must account for the offset by +8, as the OS loader will never see the reloc.
21031 see fixup_segment() in write.c
21032 The S_IS_EXTERNAL test handles the case of global symbols.
21033 Those need the calculated base, not just the pipe compensation the linker will need. */
21034 if (fixP->fx_pcrel
21035 && fixP->fx_addsy != NULL
21036 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21037 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
21038 return base + 8;
2fc8bdac 21039 return base;
c19d1205 21040#else
2fc8bdac 21041 return base + 8;
c19d1205 21042#endif
2fc8bdac 21043
267bf995 21044
2fc8bdac
ZW
21045 /* ARM mode loads relative to PC are also offset by +8. Unlike
21046 branches, the Windows CE loader *does* expect the relocation
21047 to take this into account. */
21048 case BFD_RELOC_ARM_OFFSET_IMM:
21049 case BFD_RELOC_ARM_OFFSET_IMM8:
21050 case BFD_RELOC_ARM_HWLITERAL:
21051 case BFD_RELOC_ARM_LITERAL:
21052 case BFD_RELOC_ARM_CP_OFF_IMM:
21053 return base + 8;
21054
21055
21056 /* Other PC-relative relocations are un-offset. */
21057 default:
21058 return base;
21059 }
bfae80f2
RE
21060}
21061
c19d1205
ZW
21062/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
21063 Otherwise we have no need to default values of symbols. */
21064
21065symbolS *
21066md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 21067{
c19d1205
ZW
21068#ifdef OBJ_ELF
21069 if (name[0] == '_' && name[1] == 'G'
21070 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
21071 {
21072 if (!GOT_symbol)
21073 {
21074 if (symbol_find (name))
bd3ba5d1 21075 as_bad (_("GOT already in the symbol table"));
bfae80f2 21076
c19d1205
ZW
21077 GOT_symbol = symbol_new (name, undefined_section,
21078 (valueT) 0, & zero_address_frag);
21079 }
bfae80f2 21080
c19d1205 21081 return GOT_symbol;
bfae80f2 21082 }
c19d1205 21083#endif
bfae80f2 21084
c921be7d 21085 return NULL;
bfae80f2
RE
21086}
21087
55cf6793 21088/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
21089 computed as two separate immediate values, added together. We
21090 already know that this value cannot be computed by just one ARM
21091 instruction. */
21092
21093static unsigned int
21094validate_immediate_twopart (unsigned int val,
21095 unsigned int * highpart)
bfae80f2 21096{
c19d1205
ZW
21097 unsigned int a;
21098 unsigned int i;
bfae80f2 21099
c19d1205
ZW
21100 for (i = 0; i < 32; i += 2)
21101 if (((a = rotate_left (val, i)) & 0xff) != 0)
21102 {
21103 if (a & 0xff00)
21104 {
21105 if (a & ~ 0xffff)
21106 continue;
21107 * highpart = (a >> 8) | ((i + 24) << 7);
21108 }
21109 else if (a & 0xff0000)
21110 {
21111 if (a & 0xff000000)
21112 continue;
21113 * highpart = (a >> 16) | ((i + 16) << 7);
21114 }
21115 else
21116 {
9c2799c2 21117 gas_assert (a & 0xff000000);
c19d1205
ZW
21118 * highpart = (a >> 24) | ((i + 8) << 7);
21119 }
bfae80f2 21120
c19d1205
ZW
21121 return (a & 0xff) | (i << 7);
21122 }
bfae80f2 21123
c19d1205 21124 return FAIL;
bfae80f2
RE
21125}
21126
c19d1205
ZW
21127static int
21128validate_offset_imm (unsigned int val, int hwse)
21129{
21130 if ((hwse && val > 255) || val > 4095)
21131 return FAIL;
21132 return val;
21133}
bfae80f2 21134
55cf6793 21135/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
21136 negative immediate constant by altering the instruction. A bit of
21137 a hack really.
21138 MOV <-> MVN
21139 AND <-> BIC
21140 ADC <-> SBC
21141 by inverting the second operand, and
21142 ADD <-> SUB
21143 CMP <-> CMN
21144 by negating the second operand. */
bfae80f2 21145
c19d1205
ZW
21146static int
21147negate_data_op (unsigned long * instruction,
21148 unsigned long value)
bfae80f2 21149{
c19d1205
ZW
21150 int op, new_inst;
21151 unsigned long negated, inverted;
bfae80f2 21152
c19d1205
ZW
21153 negated = encode_arm_immediate (-value);
21154 inverted = encode_arm_immediate (~value);
bfae80f2 21155
c19d1205
ZW
21156 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
21157 switch (op)
bfae80f2 21158 {
c19d1205
ZW
21159 /* First negates. */
21160 case OPCODE_SUB: /* ADD <-> SUB */
21161 new_inst = OPCODE_ADD;
21162 value = negated;
21163 break;
bfae80f2 21164
c19d1205
ZW
21165 case OPCODE_ADD:
21166 new_inst = OPCODE_SUB;
21167 value = negated;
21168 break;
bfae80f2 21169
c19d1205
ZW
21170 case OPCODE_CMP: /* CMP <-> CMN */
21171 new_inst = OPCODE_CMN;
21172 value = negated;
21173 break;
bfae80f2 21174
c19d1205
ZW
21175 case OPCODE_CMN:
21176 new_inst = OPCODE_CMP;
21177 value = negated;
21178 break;
bfae80f2 21179
c19d1205
ZW
21180 /* Now Inverted ops. */
21181 case OPCODE_MOV: /* MOV <-> MVN */
21182 new_inst = OPCODE_MVN;
21183 value = inverted;
21184 break;
bfae80f2 21185
c19d1205
ZW
21186 case OPCODE_MVN:
21187 new_inst = OPCODE_MOV;
21188 value = inverted;
21189 break;
bfae80f2 21190
c19d1205
ZW
21191 case OPCODE_AND: /* AND <-> BIC */
21192 new_inst = OPCODE_BIC;
21193 value = inverted;
21194 break;
bfae80f2 21195
c19d1205
ZW
21196 case OPCODE_BIC:
21197 new_inst = OPCODE_AND;
21198 value = inverted;
21199 break;
bfae80f2 21200
c19d1205
ZW
21201 case OPCODE_ADC: /* ADC <-> SBC */
21202 new_inst = OPCODE_SBC;
21203 value = inverted;
21204 break;
bfae80f2 21205
c19d1205
ZW
21206 case OPCODE_SBC:
21207 new_inst = OPCODE_ADC;
21208 value = inverted;
21209 break;
bfae80f2 21210
c19d1205
ZW
21211 /* We cannot do anything. */
21212 default:
21213 return FAIL;
b99bd4ef
NC
21214 }
21215
c19d1205
ZW
21216 if (value == (unsigned) FAIL)
21217 return FAIL;
21218
21219 *instruction &= OPCODE_MASK;
21220 *instruction |= new_inst << DATA_OP_SHIFT;
21221 return value;
b99bd4ef
NC
21222}
21223
ef8d22e6
PB
21224/* Like negate_data_op, but for Thumb-2. */
21225
21226static unsigned int
16dd5e42 21227thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
21228{
21229 int op, new_inst;
21230 int rd;
16dd5e42 21231 unsigned int negated, inverted;
ef8d22e6
PB
21232
21233 negated = encode_thumb32_immediate (-value);
21234 inverted = encode_thumb32_immediate (~value);
21235
21236 rd = (*instruction >> 8) & 0xf;
21237 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
21238 switch (op)
21239 {
21240 /* ADD <-> SUB. Includes CMP <-> CMN. */
21241 case T2_OPCODE_SUB:
21242 new_inst = T2_OPCODE_ADD;
21243 value = negated;
21244 break;
21245
21246 case T2_OPCODE_ADD:
21247 new_inst = T2_OPCODE_SUB;
21248 value = negated;
21249 break;
21250
21251 /* ORR <-> ORN. Includes MOV <-> MVN. */
21252 case T2_OPCODE_ORR:
21253 new_inst = T2_OPCODE_ORN;
21254 value = inverted;
21255 break;
21256
21257 case T2_OPCODE_ORN:
21258 new_inst = T2_OPCODE_ORR;
21259 value = inverted;
21260 break;
21261
21262 /* AND <-> BIC. TST has no inverted equivalent. */
21263 case T2_OPCODE_AND:
21264 new_inst = T2_OPCODE_BIC;
21265 if (rd == 15)
21266 value = FAIL;
21267 else
21268 value = inverted;
21269 break;
21270
21271 case T2_OPCODE_BIC:
21272 new_inst = T2_OPCODE_AND;
21273 value = inverted;
21274 break;
21275
21276 /* ADC <-> SBC */
21277 case T2_OPCODE_ADC:
21278 new_inst = T2_OPCODE_SBC;
21279 value = inverted;
21280 break;
21281
21282 case T2_OPCODE_SBC:
21283 new_inst = T2_OPCODE_ADC;
21284 value = inverted;
21285 break;
21286
21287 /* We cannot do anything. */
21288 default:
21289 return FAIL;
21290 }
21291
16dd5e42 21292 if (value == (unsigned int)FAIL)
ef8d22e6
PB
21293 return FAIL;
21294
21295 *instruction &= T2_OPCODE_MASK;
21296 *instruction |= new_inst << T2_DATA_OP_SHIFT;
21297 return value;
21298}
21299
8f06b2d8
PB
21300/* Read a 32-bit thumb instruction from buf. */
21301static unsigned long
21302get_thumb32_insn (char * buf)
21303{
21304 unsigned long insn;
21305 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
21306 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21307
21308 return insn;
21309}
21310
a8bc6c78
PB
21311
21312/* We usually want to set the low bit on the address of thumb function
21313 symbols. In particular .word foo - . should have the low bit set.
21314 Generic code tries to fold the difference of two symbols to
21315 a constant. Prevent this and force a relocation when the first symbols
21316 is a thumb function. */
c921be7d
NC
21317
21318bfd_boolean
a8bc6c78
PB
21319arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
21320{
21321 if (op == O_subtract
21322 && l->X_op == O_symbol
21323 && r->X_op == O_symbol
21324 && THUMB_IS_FUNC (l->X_add_symbol))
21325 {
21326 l->X_op = O_subtract;
21327 l->X_op_symbol = r->X_add_symbol;
21328 l->X_add_number -= r->X_add_number;
c921be7d 21329 return TRUE;
a8bc6c78 21330 }
c921be7d 21331
a8bc6c78 21332 /* Process as normal. */
c921be7d 21333 return FALSE;
a8bc6c78
PB
21334}
21335
4a42ebbc
RR
21336/* Encode Thumb2 unconditional branches and calls. The encoding
21337 for the 2 are identical for the immediate values. */
21338
21339static void
21340encode_thumb2_b_bl_offset (char * buf, offsetT value)
21341{
21342#define T2I1I2MASK ((1 << 13) | (1 << 11))
21343 offsetT newval;
21344 offsetT newval2;
21345 addressT S, I1, I2, lo, hi;
21346
21347 S = (value >> 24) & 0x01;
21348 I1 = (value >> 23) & 0x01;
21349 I2 = (value >> 22) & 0x01;
21350 hi = (value >> 12) & 0x3ff;
fa94de6b 21351 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
21352 newval = md_chars_to_number (buf, THUMB_SIZE);
21353 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21354 newval |= (S << 10) | hi;
21355 newval2 &= ~T2I1I2MASK;
21356 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
21357 md_number_to_chars (buf, newval, THUMB_SIZE);
21358 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21359}
21360
c19d1205 21361void
55cf6793 21362md_apply_fix (fixS * fixP,
c19d1205
ZW
21363 valueT * valP,
21364 segT seg)
21365{
21366 offsetT value = * valP;
21367 offsetT newval;
21368 unsigned int newimm;
21369 unsigned long temp;
21370 int sign;
21371 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 21372
9c2799c2 21373 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 21374
c19d1205 21375 /* Note whether this will delete the relocation. */
4962c51a 21376
c19d1205
ZW
21377 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
21378 fixP->fx_done = 1;
b99bd4ef 21379
adbaf948 21380 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 21381 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
21382 for emit_reloc. */
21383 value &= 0xffffffff;
21384 value ^= 0x80000000;
5f4273c7 21385 value -= 0x80000000;
adbaf948
ZW
21386
21387 *valP = value;
c19d1205 21388 fixP->fx_addnumber = value;
b99bd4ef 21389
adbaf948
ZW
21390 /* Same treatment for fixP->fx_offset. */
21391 fixP->fx_offset &= 0xffffffff;
21392 fixP->fx_offset ^= 0x80000000;
21393 fixP->fx_offset -= 0x80000000;
21394
c19d1205 21395 switch (fixP->fx_r_type)
b99bd4ef 21396 {
c19d1205
ZW
21397 case BFD_RELOC_NONE:
21398 /* This will need to go in the object file. */
21399 fixP->fx_done = 0;
21400 break;
b99bd4ef 21401
c19d1205
ZW
21402 case BFD_RELOC_ARM_IMMEDIATE:
21403 /* We claim that this fixup has been processed here,
21404 even if in fact we generate an error because we do
21405 not have a reloc for it, so tc_gen_reloc will reject it. */
21406 fixP->fx_done = 1;
b99bd4ef 21407
77db8e2e 21408 if (fixP->fx_addsy)
b99bd4ef 21409 {
77db8e2e 21410 const char *msg = 0;
b99bd4ef 21411
77db8e2e
NC
21412 if (! S_IS_DEFINED (fixP->fx_addsy))
21413 msg = _("undefined symbol %s used as an immediate value");
21414 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21415 msg = _("symbol %s is in a different section");
21416 else if (S_IS_WEAK (fixP->fx_addsy))
21417 msg = _("symbol %s is weak and may be overridden later");
21418
21419 if (msg)
21420 {
21421 as_bad_where (fixP->fx_file, fixP->fx_line,
21422 msg, S_GET_NAME (fixP->fx_addsy));
21423 break;
21424 }
42e5fcbf
AS
21425 }
21426
c19d1205
ZW
21427 temp = md_chars_to_number (buf, INSN_SIZE);
21428
5e73442d
SL
21429 /* If the offset is negative, we should use encoding A2 for ADR. */
21430 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
21431 newimm = negate_data_op (&temp, value);
21432 else
21433 {
21434 newimm = encode_arm_immediate (value);
21435
21436 /* If the instruction will fail, see if we can fix things up by
21437 changing the opcode. */
21438 if (newimm == (unsigned int) FAIL)
21439 newimm = negate_data_op (&temp, value);
21440 }
21441
21442 if (newimm == (unsigned int) FAIL)
b99bd4ef 21443 {
c19d1205
ZW
21444 as_bad_where (fixP->fx_file, fixP->fx_line,
21445 _("invalid constant (%lx) after fixup"),
21446 (unsigned long) value);
21447 break;
b99bd4ef 21448 }
b99bd4ef 21449
c19d1205
ZW
21450 newimm |= (temp & 0xfffff000);
21451 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21452 break;
b99bd4ef 21453
c19d1205
ZW
21454 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21455 {
21456 unsigned int highpart = 0;
21457 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 21458
77db8e2e 21459 if (fixP->fx_addsy)
42e5fcbf 21460 {
77db8e2e 21461 const char *msg = 0;
42e5fcbf 21462
77db8e2e
NC
21463 if (! S_IS_DEFINED (fixP->fx_addsy))
21464 msg = _("undefined symbol %s used as an immediate value");
21465 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21466 msg = _("symbol %s is in a different section");
21467 else if (S_IS_WEAK (fixP->fx_addsy))
21468 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 21469
77db8e2e
NC
21470 if (msg)
21471 {
21472 as_bad_where (fixP->fx_file, fixP->fx_line,
21473 msg, S_GET_NAME (fixP->fx_addsy));
21474 break;
21475 }
21476 }
fa94de6b 21477
c19d1205
ZW
21478 newimm = encode_arm_immediate (value);
21479 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 21480
c19d1205
ZW
21481 /* If the instruction will fail, see if we can fix things up by
21482 changing the opcode. */
21483 if (newimm == (unsigned int) FAIL
21484 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21485 {
21486 /* No ? OK - try using two ADD instructions to generate
21487 the value. */
21488 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 21489
c19d1205
ZW
21490 /* Yes - then make sure that the second instruction is
21491 also an add. */
21492 if (newimm != (unsigned int) FAIL)
21493 newinsn = temp;
21494 /* Still No ? Try using a negated value. */
21495 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21496 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21497 /* Otherwise - give up. */
21498 else
21499 {
21500 as_bad_where (fixP->fx_file, fixP->fx_line,
21501 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21502 (long) value);
21503 break;
21504 }
b99bd4ef 21505
c19d1205
ZW
21506 /* Replace the first operand in the 2nd instruction (which
21507 is the PC) with the destination register. We have
21508 already added in the PC in the first instruction and we
21509 do not want to do it again. */
21510 newinsn &= ~ 0xf0000;
21511 newinsn |= ((newinsn & 0x0f000) << 4);
21512 }
b99bd4ef 21513
c19d1205
ZW
21514 newimm |= (temp & 0xfffff000);
21515 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 21516
c19d1205
ZW
21517 highpart |= (newinsn & 0xfffff000);
21518 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21519 }
21520 break;
b99bd4ef 21521
c19d1205 21522 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21523 if (!fixP->fx_done && seg->use_rela_p)
21524 value = 0;
21525
c19d1205 21526 case BFD_RELOC_ARM_LITERAL:
26d97720 21527 sign = value > 0;
b99bd4ef 21528
c19d1205
ZW
21529 if (value < 0)
21530 value = - value;
b99bd4ef 21531
c19d1205 21532 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 21533 {
c19d1205
ZW
21534 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21535 as_bad_where (fixP->fx_file, fixP->fx_line,
21536 _("invalid literal constant: pool needs to be closer"));
21537 else
21538 as_bad_where (fixP->fx_file, fixP->fx_line,
21539 _("bad immediate value for offset (%ld)"),
21540 (long) value);
21541 break;
f03698e6
RE
21542 }
21543
c19d1205 21544 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
21545 if (value == 0)
21546 newval &= 0xfffff000;
21547 else
21548 {
21549 newval &= 0xff7ff000;
21550 newval |= value | (sign ? INDEX_UP : 0);
21551 }
c19d1205
ZW
21552 md_number_to_chars (buf, newval, INSN_SIZE);
21553 break;
b99bd4ef 21554
c19d1205
ZW
21555 case BFD_RELOC_ARM_OFFSET_IMM8:
21556 case BFD_RELOC_ARM_HWLITERAL:
26d97720 21557 sign = value > 0;
b99bd4ef 21558
c19d1205
ZW
21559 if (value < 0)
21560 value = - value;
b99bd4ef 21561
c19d1205 21562 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 21563 {
c19d1205
ZW
21564 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21565 as_bad_where (fixP->fx_file, fixP->fx_line,
21566 _("invalid literal constant: pool needs to be closer"));
21567 else
f9d4405b 21568 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
21569 (long) value);
21570 break;
b99bd4ef
NC
21571 }
21572
c19d1205 21573 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
21574 if (value == 0)
21575 newval &= 0xfffff0f0;
21576 else
21577 {
21578 newval &= 0xff7ff0f0;
21579 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21580 }
c19d1205
ZW
21581 md_number_to_chars (buf, newval, INSN_SIZE);
21582 break;
b99bd4ef 21583
c19d1205
ZW
21584 case BFD_RELOC_ARM_T32_OFFSET_U8:
21585 if (value < 0 || value > 1020 || value % 4 != 0)
21586 as_bad_where (fixP->fx_file, fixP->fx_line,
21587 _("bad immediate value for offset (%ld)"), (long) value);
21588 value /= 4;
b99bd4ef 21589
c19d1205 21590 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
21591 newval |= value;
21592 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21593 break;
b99bd4ef 21594
c19d1205
ZW
21595 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21596 /* This is a complicated relocation used for all varieties of Thumb32
21597 load/store instruction with immediate offset:
21598
21599 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21600 *4, optional writeback(W)
21601 (doubleword load/store)
21602
21603 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21604 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21605 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21606 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21607 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21608
21609 Uppercase letters indicate bits that are already encoded at
21610 this point. Lowercase letters are our problem. For the
21611 second block of instructions, the secondary opcode nybble
21612 (bits 8..11) is present, and bit 23 is zero, even if this is
21613 a PC-relative operation. */
21614 newval = md_chars_to_number (buf, THUMB_SIZE);
21615 newval <<= 16;
21616 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 21617
c19d1205 21618 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 21619 {
c19d1205
ZW
21620 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21621 if (value >= 0)
21622 newval |= (1 << 23);
21623 else
21624 value = -value;
21625 if (value % 4 != 0)
21626 {
21627 as_bad_where (fixP->fx_file, fixP->fx_line,
21628 _("offset not a multiple of 4"));
21629 break;
21630 }
21631 value /= 4;
216d22bc 21632 if (value > 0xff)
c19d1205
ZW
21633 {
21634 as_bad_where (fixP->fx_file, fixP->fx_line,
21635 _("offset out of range"));
21636 break;
21637 }
21638 newval &= ~0xff;
b99bd4ef 21639 }
c19d1205 21640 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 21641 {
c19d1205
ZW
21642 /* PC-relative, 12-bit offset. */
21643 if (value >= 0)
21644 newval |= (1 << 23);
21645 else
21646 value = -value;
216d22bc 21647 if (value > 0xfff)
c19d1205
ZW
21648 {
21649 as_bad_where (fixP->fx_file, fixP->fx_line,
21650 _("offset out of range"));
21651 break;
21652 }
21653 newval &= ~0xfff;
b99bd4ef 21654 }
c19d1205 21655 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 21656 {
c19d1205
ZW
21657 /* Writeback: 8-bit, +/- offset. */
21658 if (value >= 0)
21659 newval |= (1 << 9);
21660 else
21661 value = -value;
216d22bc 21662 if (value > 0xff)
c19d1205
ZW
21663 {
21664 as_bad_where (fixP->fx_file, fixP->fx_line,
21665 _("offset out of range"));
21666 break;
21667 }
21668 newval &= ~0xff;
b99bd4ef 21669 }
c19d1205 21670 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 21671 {
c19d1205 21672 /* T-instruction: positive 8-bit offset. */
216d22bc 21673 if (value < 0 || value > 0xff)
b99bd4ef 21674 {
c19d1205
ZW
21675 as_bad_where (fixP->fx_file, fixP->fx_line,
21676 _("offset out of range"));
21677 break;
b99bd4ef 21678 }
c19d1205
ZW
21679 newval &= ~0xff;
21680 newval |= value;
b99bd4ef
NC
21681 }
21682 else
b99bd4ef 21683 {
c19d1205
ZW
21684 /* Positive 12-bit or negative 8-bit offset. */
21685 int limit;
21686 if (value >= 0)
b99bd4ef 21687 {
c19d1205
ZW
21688 newval |= (1 << 23);
21689 limit = 0xfff;
21690 }
21691 else
21692 {
21693 value = -value;
21694 limit = 0xff;
21695 }
21696 if (value > limit)
21697 {
21698 as_bad_where (fixP->fx_file, fixP->fx_line,
21699 _("offset out of range"));
21700 break;
b99bd4ef 21701 }
c19d1205 21702 newval &= ~limit;
b99bd4ef 21703 }
b99bd4ef 21704
c19d1205
ZW
21705 newval |= value;
21706 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21707 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21708 break;
404ff6b5 21709
c19d1205
ZW
21710 case BFD_RELOC_ARM_SHIFT_IMM:
21711 newval = md_chars_to_number (buf, INSN_SIZE);
21712 if (((unsigned long) value) > 32
21713 || (value == 32
21714 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21715 {
21716 as_bad_where (fixP->fx_file, fixP->fx_line,
21717 _("shift expression is too large"));
21718 break;
21719 }
404ff6b5 21720
c19d1205
ZW
21721 if (value == 0)
21722 /* Shifts of zero must be done as lsl. */
21723 newval &= ~0x60;
21724 else if (value == 32)
21725 value = 0;
21726 newval &= 0xfffff07f;
21727 newval |= (value & 0x1f) << 7;
21728 md_number_to_chars (buf, newval, INSN_SIZE);
21729 break;
404ff6b5 21730
c19d1205 21731 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 21732 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 21733 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 21734 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
21735 /* We claim that this fixup has been processed here,
21736 even if in fact we generate an error because we do
21737 not have a reloc for it, so tc_gen_reloc will reject it. */
21738 fixP->fx_done = 1;
404ff6b5 21739
c19d1205
ZW
21740 if (fixP->fx_addsy
21741 && ! S_IS_DEFINED (fixP->fx_addsy))
21742 {
21743 as_bad_where (fixP->fx_file, fixP->fx_line,
21744 _("undefined symbol %s used as an immediate value"),
21745 S_GET_NAME (fixP->fx_addsy));
21746 break;
21747 }
404ff6b5 21748
c19d1205
ZW
21749 newval = md_chars_to_number (buf, THUMB_SIZE);
21750 newval <<= 16;
21751 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 21752
16805f35
PB
21753 newimm = FAIL;
21754 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21755 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
21756 {
21757 newimm = encode_thumb32_immediate (value);
21758 if (newimm == (unsigned int) FAIL)
21759 newimm = thumb32_negate_data_op (&newval, value);
21760 }
16805f35
PB
21761 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21762 && newimm == (unsigned int) FAIL)
92e90b6e 21763 {
16805f35
PB
21764 /* Turn add/sum into addw/subw. */
21765 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21766 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
21767 /* No flat 12-bit imm encoding for addsw/subsw. */
21768 if ((newval & 0x00100000) == 0)
e9f89963 21769 {
40f246e3
NC
21770 /* 12 bit immediate for addw/subw. */
21771 if (value < 0)
21772 {
21773 value = -value;
21774 newval ^= 0x00a00000;
21775 }
21776 if (value > 0xfff)
21777 newimm = (unsigned int) FAIL;
21778 else
21779 newimm = value;
e9f89963 21780 }
92e90b6e 21781 }
cc8a6dd0 21782
c19d1205 21783 if (newimm == (unsigned int)FAIL)
3631a3c8 21784 {
c19d1205
ZW
21785 as_bad_where (fixP->fx_file, fixP->fx_line,
21786 _("invalid constant (%lx) after fixup"),
21787 (unsigned long) value);
21788 break;
3631a3c8
NC
21789 }
21790
c19d1205
ZW
21791 newval |= (newimm & 0x800) << 15;
21792 newval |= (newimm & 0x700) << 4;
21793 newval |= (newimm & 0x0ff);
cc8a6dd0 21794
c19d1205
ZW
21795 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21796 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21797 break;
a737bd4d 21798
3eb17e6b 21799 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
21800 if (((unsigned long) value) > 0xffff)
21801 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 21802 _("invalid smc expression"));
2fc8bdac 21803 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21804 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21805 md_number_to_chars (buf, newval, INSN_SIZE);
21806 break;
a737bd4d 21807
90ec0d68
MGD
21808 case BFD_RELOC_ARM_HVC:
21809 if (((unsigned long) value) > 0xffff)
21810 as_bad_where (fixP->fx_file, fixP->fx_line,
21811 _("invalid hvc expression"));
21812 newval = md_chars_to_number (buf, INSN_SIZE);
21813 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21814 md_number_to_chars (buf, newval, INSN_SIZE);
21815 break;
21816
c19d1205 21817 case BFD_RELOC_ARM_SWI:
adbaf948 21818 if (fixP->tc_fix_data != 0)
c19d1205
ZW
21819 {
21820 if (((unsigned long) value) > 0xff)
21821 as_bad_where (fixP->fx_file, fixP->fx_line,
21822 _("invalid swi expression"));
2fc8bdac 21823 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
21824 newval |= value;
21825 md_number_to_chars (buf, newval, THUMB_SIZE);
21826 }
21827 else
21828 {
21829 if (((unsigned long) value) > 0x00ffffff)
21830 as_bad_where (fixP->fx_file, fixP->fx_line,
21831 _("invalid swi expression"));
2fc8bdac 21832 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21833 newval |= value;
21834 md_number_to_chars (buf, newval, INSN_SIZE);
21835 }
21836 break;
a737bd4d 21837
c19d1205
ZW
21838 case BFD_RELOC_ARM_MULTI:
21839 if (((unsigned long) value) > 0xffff)
21840 as_bad_where (fixP->fx_file, fixP->fx_line,
21841 _("invalid expression in load/store multiple"));
21842 newval = value | md_chars_to_number (buf, INSN_SIZE);
21843 md_number_to_chars (buf, newval, INSN_SIZE);
21844 break;
a737bd4d 21845
c19d1205 21846#ifdef OBJ_ELF
39b41c9c 21847 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
21848
21849 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21850 && fixP->fx_addsy
34e77a92 21851 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21852 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21853 && THUMB_IS_FUNC (fixP->fx_addsy))
21854 /* Flip the bl to blx. This is a simple flip
21855 bit here because we generate PCREL_CALL for
21856 unconditional bls. */
21857 {
21858 newval = md_chars_to_number (buf, INSN_SIZE);
21859 newval = newval | 0x10000000;
21860 md_number_to_chars (buf, newval, INSN_SIZE);
21861 temp = 1;
21862 fixP->fx_done = 1;
21863 }
39b41c9c
PB
21864 else
21865 temp = 3;
21866 goto arm_branch_common;
21867
21868 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
21869 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21870 && fixP->fx_addsy
34e77a92 21871 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21872 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21873 && THUMB_IS_FUNC (fixP->fx_addsy))
21874 {
21875 /* This would map to a bl<cond>, b<cond>,
21876 b<always> to a Thumb function. We
21877 need to force a relocation for this particular
21878 case. */
21879 newval = md_chars_to_number (buf, INSN_SIZE);
21880 fixP->fx_done = 0;
21881 }
21882
2fc8bdac 21883 case BFD_RELOC_ARM_PLT32:
c19d1205 21884#endif
39b41c9c
PB
21885 case BFD_RELOC_ARM_PCREL_BRANCH:
21886 temp = 3;
21887 goto arm_branch_common;
a737bd4d 21888
39b41c9c 21889 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 21890
39b41c9c 21891 temp = 1;
267bf995
RR
21892 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21893 && fixP->fx_addsy
34e77a92 21894 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21895 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21896 && ARM_IS_FUNC (fixP->fx_addsy))
21897 {
21898 /* Flip the blx to a bl and warn. */
21899 const char *name = S_GET_NAME (fixP->fx_addsy);
21900 newval = 0xeb000000;
21901 as_warn_where (fixP->fx_file, fixP->fx_line,
21902 _("blx to '%s' an ARM ISA state function changed to bl"),
21903 name);
21904 md_number_to_chars (buf, newval, INSN_SIZE);
21905 temp = 3;
21906 fixP->fx_done = 1;
21907 }
21908
21909#ifdef OBJ_ELF
21910 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21911 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21912#endif
21913
39b41c9c 21914 arm_branch_common:
c19d1205 21915 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
21916 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21917 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21918 also be be clear. */
21919 if (value & temp)
c19d1205 21920 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
21921 _("misaligned branch destination"));
21922 if ((value & (offsetT)0xfe000000) != (offsetT)0
21923 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 21924 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21925
2fc8bdac 21926 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21927 {
2fc8bdac
ZW
21928 newval = md_chars_to_number (buf, INSN_SIZE);
21929 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
21930 /* Set the H bit on BLX instructions. */
21931 if (temp == 1)
21932 {
21933 if (value & 2)
21934 newval |= 0x01000000;
21935 else
21936 newval &= ~0x01000000;
21937 }
2fc8bdac 21938 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 21939 }
c19d1205 21940 break;
a737bd4d 21941
25fe350b
MS
21942 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21943 /* CBZ can only branch forward. */
a737bd4d 21944
738755b0
MS
21945 /* Attempts to use CBZ to branch to the next instruction
21946 (which, strictly speaking, are prohibited) will be turned into
21947 no-ops.
21948
21949 FIXME: It may be better to remove the instruction completely and
21950 perform relaxation. */
21951 if (value == -2)
2fc8bdac
ZW
21952 {
21953 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 21954 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
21955 md_number_to_chars (buf, newval, THUMB_SIZE);
21956 }
738755b0
MS
21957 else
21958 {
21959 if (value & ~0x7e)
08f10d51 21960 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0
MS
21961
21962 if (fixP->fx_done || !seg->use_rela_p)
21963 {
21964 newval = md_chars_to_number (buf, THUMB_SIZE);
21965 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21966 md_number_to_chars (buf, newval, THUMB_SIZE);
21967 }
21968 }
c19d1205 21969 break;
a737bd4d 21970
c19d1205 21971 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 21972 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 21973 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21974
2fc8bdac
ZW
21975 if (fixP->fx_done || !seg->use_rela_p)
21976 {
21977 newval = md_chars_to_number (buf, THUMB_SIZE);
21978 newval |= (value & 0x1ff) >> 1;
21979 md_number_to_chars (buf, newval, THUMB_SIZE);
21980 }
c19d1205 21981 break;
a737bd4d 21982
c19d1205 21983 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 21984 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 21985 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21986
2fc8bdac
ZW
21987 if (fixP->fx_done || !seg->use_rela_p)
21988 {
21989 newval = md_chars_to_number (buf, THUMB_SIZE);
21990 newval |= (value & 0xfff) >> 1;
21991 md_number_to_chars (buf, newval, THUMB_SIZE);
21992 }
c19d1205 21993 break;
a737bd4d 21994
c19d1205 21995 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
21996 if (fixP->fx_addsy
21997 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21998 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21999 && ARM_IS_FUNC (fixP->fx_addsy)
22000 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22001 {
22002 /* Force a relocation for a branch 20 bits wide. */
22003 fixP->fx_done = 0;
22004 }
08f10d51 22005 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
22006 as_bad_where (fixP->fx_file, fixP->fx_line,
22007 _("conditional branch out of range"));
404ff6b5 22008
2fc8bdac
ZW
22009 if (fixP->fx_done || !seg->use_rela_p)
22010 {
22011 offsetT newval2;
22012 addressT S, J1, J2, lo, hi;
404ff6b5 22013
2fc8bdac
ZW
22014 S = (value & 0x00100000) >> 20;
22015 J2 = (value & 0x00080000) >> 19;
22016 J1 = (value & 0x00040000) >> 18;
22017 hi = (value & 0x0003f000) >> 12;
22018 lo = (value & 0x00000ffe) >> 1;
6c43fab6 22019
2fc8bdac
ZW
22020 newval = md_chars_to_number (buf, THUMB_SIZE);
22021 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22022 newval |= (S << 10) | hi;
22023 newval2 |= (J1 << 13) | (J2 << 11) | lo;
22024 md_number_to_chars (buf, newval, THUMB_SIZE);
22025 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
22026 }
c19d1205 22027 break;
6c43fab6 22028
c19d1205 22029 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
22030 /* If there is a blx from a thumb state function to
22031 another thumb function flip this to a bl and warn
22032 about it. */
22033
22034 if (fixP->fx_addsy
34e77a92 22035 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
22036 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
22037 && THUMB_IS_FUNC (fixP->fx_addsy))
22038 {
22039 const char *name = S_GET_NAME (fixP->fx_addsy);
22040 as_warn_where (fixP->fx_file, fixP->fx_line,
22041 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
22042 name);
22043 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22044 newval = newval | 0x1000;
22045 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22046 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22047 fixP->fx_done = 1;
22048 }
22049
22050
22051 goto thumb_bl_common;
22052
c19d1205 22053 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
22054 /* A bl from Thumb state ISA to an internal ARM state function
22055 is converted to a blx. */
22056 if (fixP->fx_addsy
22057 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 22058 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
22059 && ARM_IS_FUNC (fixP->fx_addsy)
22060 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
22061 {
22062 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
22063 newval = newval & ~0x1000;
22064 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
22065 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
22066 fixP->fx_done = 1;
22067 }
22068
22069 thumb_bl_common:
22070
22071#ifdef OBJ_ELF
2b2f5df9
NC
22072 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
22073 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
267bf995
RR
22074 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
22075#endif
22076
2fc8bdac
ZW
22077 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
22078 /* For a BLX instruction, make sure that the relocation is rounded up
22079 to a word boundary. This follows the semantics of the instruction
22080 which specifies that bit 1 of the target address will come from bit
22081 1 of the base address. */
22082 value = (value + 1) & ~ 1;
404ff6b5 22083
2b2f5df9
NC
22084 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
22085 {
22086 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
22087 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22088 else if ((value & ~0x1ffffff)
22089 && ((value & ~0x1ffffff) != ~0x1ffffff))
22090 as_bad_where (fixP->fx_file, fixP->fx_line,
22091 _("Thumb2 branch out of range"));
22092 }
4a42ebbc
RR
22093
22094 if (fixP->fx_done || !seg->use_rela_p)
22095 encode_thumb2_b_bl_offset (buf, value);
22096
c19d1205 22097 break;
404ff6b5 22098
c19d1205 22099 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
22100 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
22101 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 22102
2fc8bdac 22103 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 22104 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 22105
2fc8bdac 22106 break;
a737bd4d 22107
2fc8bdac
ZW
22108 case BFD_RELOC_8:
22109 if (fixP->fx_done || !seg->use_rela_p)
22110 md_number_to_chars (buf, value, 1);
c19d1205 22111 break;
a737bd4d 22112
c19d1205 22113 case BFD_RELOC_16:
2fc8bdac 22114 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 22115 md_number_to_chars (buf, value, 2);
c19d1205 22116 break;
a737bd4d 22117
c19d1205 22118#ifdef OBJ_ELF
0855e32b
NS
22119 case BFD_RELOC_ARM_TLS_CALL:
22120 case BFD_RELOC_ARM_THM_TLS_CALL:
22121 case BFD_RELOC_ARM_TLS_DESCSEQ:
22122 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22123 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22124 break;
22125
22126 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
22127 case BFD_RELOC_ARM_TLS_GD32:
22128 case BFD_RELOC_ARM_TLS_LE32:
22129 case BFD_RELOC_ARM_TLS_IE32:
22130 case BFD_RELOC_ARM_TLS_LDM32:
22131 case BFD_RELOC_ARM_TLS_LDO32:
22132 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22133 /* fall through */
6c43fab6 22134
c19d1205
ZW
22135 case BFD_RELOC_ARM_GOT32:
22136 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
22137 if (fixP->fx_done || !seg->use_rela_p)
22138 md_number_to_chars (buf, 0, 4);
c19d1205 22139 break;
b43420e6
NC
22140
22141 case BFD_RELOC_ARM_GOT_PREL:
22142 if (fixP->fx_done || !seg->use_rela_p)
22143 md_number_to_chars (buf, value, 4);
22144 break;
22145
9a6f4e97
NS
22146 case BFD_RELOC_ARM_TARGET2:
22147 /* TARGET2 is not partial-inplace, so we need to write the
22148 addend here for REL targets, because it won't be written out
22149 during reloc processing later. */
22150 if (fixP->fx_done || !seg->use_rela_p)
22151 md_number_to_chars (buf, fixP->fx_offset, 4);
22152 break;
c19d1205 22153#endif
6c43fab6 22154
c19d1205
ZW
22155 case BFD_RELOC_RVA:
22156 case BFD_RELOC_32:
22157 case BFD_RELOC_ARM_TARGET1:
22158 case BFD_RELOC_ARM_ROSEGREL32:
22159 case BFD_RELOC_ARM_SBREL32:
22160 case BFD_RELOC_32_PCREL:
f0927246
NC
22161#ifdef TE_PE
22162 case BFD_RELOC_32_SECREL:
22163#endif
2fc8bdac 22164 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
22165#ifdef TE_WINCE
22166 /* For WinCE we only do this for pcrel fixups. */
22167 if (fixP->fx_done || fixP->fx_pcrel)
22168#endif
22169 md_number_to_chars (buf, value, 4);
c19d1205 22170 break;
6c43fab6 22171
c19d1205
ZW
22172#ifdef OBJ_ELF
22173 case BFD_RELOC_ARM_PREL31:
2fc8bdac 22174 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
22175 {
22176 newval = md_chars_to_number (buf, 4) & 0x80000000;
22177 if ((value ^ (value >> 1)) & 0x40000000)
22178 {
22179 as_bad_where (fixP->fx_file, fixP->fx_line,
22180 _("rel31 relocation overflow"));
22181 }
22182 newval |= value & 0x7fffffff;
22183 md_number_to_chars (buf, newval, 4);
22184 }
22185 break;
c19d1205 22186#endif
a737bd4d 22187
c19d1205 22188 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 22189 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
22190 if (value < -1023 || value > 1023 || (value & 3))
22191 as_bad_where (fixP->fx_file, fixP->fx_line,
22192 _("co-processor offset out of range"));
22193 cp_off_common:
26d97720 22194 sign = value > 0;
c19d1205
ZW
22195 if (value < 0)
22196 value = -value;
8f06b2d8
PB
22197 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22198 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22199 newval = md_chars_to_number (buf, INSN_SIZE);
22200 else
22201 newval = get_thumb32_insn (buf);
26d97720
NS
22202 if (value == 0)
22203 newval &= 0xffffff00;
22204 else
22205 {
22206 newval &= 0xff7fff00;
22207 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
22208 }
8f06b2d8
PB
22209 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22210 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22211 md_number_to_chars (buf, newval, INSN_SIZE);
22212 else
22213 put_thumb32_insn (buf, newval);
c19d1205 22214 break;
a737bd4d 22215
c19d1205 22216 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 22217 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
22218 if (value < -255 || value > 255)
22219 as_bad_where (fixP->fx_file, fixP->fx_line,
22220 _("co-processor offset out of range"));
df7849c5 22221 value *= 4;
c19d1205 22222 goto cp_off_common;
6c43fab6 22223
c19d1205
ZW
22224 case BFD_RELOC_ARM_THUMB_OFFSET:
22225 newval = md_chars_to_number (buf, THUMB_SIZE);
22226 /* Exactly what ranges, and where the offset is inserted depends
22227 on the type of instruction, we can establish this from the
22228 top 4 bits. */
22229 switch (newval >> 12)
22230 {
22231 case 4: /* PC load. */
22232 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
22233 forced to zero for these loads; md_pcrel_from has already
22234 compensated for this. */
22235 if (value & 3)
22236 as_bad_where (fixP->fx_file, fixP->fx_line,
22237 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
22238 (((unsigned long) fixP->fx_frag->fr_address
22239 + (unsigned long) fixP->fx_where) & ~3)
22240 + (unsigned long) value);
a737bd4d 22241
c19d1205
ZW
22242 if (value & ~0x3fc)
22243 as_bad_where (fixP->fx_file, fixP->fx_line,
22244 _("invalid offset, value too big (0x%08lX)"),
22245 (long) value);
a737bd4d 22246
c19d1205
ZW
22247 newval |= value >> 2;
22248 break;
a737bd4d 22249
c19d1205
ZW
22250 case 9: /* SP load/store. */
22251 if (value & ~0x3fc)
22252 as_bad_where (fixP->fx_file, fixP->fx_line,
22253 _("invalid offset, value too big (0x%08lX)"),
22254 (long) value);
22255 newval |= value >> 2;
22256 break;
6c43fab6 22257
c19d1205
ZW
22258 case 6: /* Word load/store. */
22259 if (value & ~0x7c)
22260 as_bad_where (fixP->fx_file, fixP->fx_line,
22261 _("invalid offset, value too big (0x%08lX)"),
22262 (long) value);
22263 newval |= value << 4; /* 6 - 2. */
22264 break;
a737bd4d 22265
c19d1205
ZW
22266 case 7: /* Byte load/store. */
22267 if (value & ~0x1f)
22268 as_bad_where (fixP->fx_file, fixP->fx_line,
22269 _("invalid offset, value too big (0x%08lX)"),
22270 (long) value);
22271 newval |= value << 6;
22272 break;
a737bd4d 22273
c19d1205
ZW
22274 case 8: /* Halfword load/store. */
22275 if (value & ~0x3e)
22276 as_bad_where (fixP->fx_file, fixP->fx_line,
22277 _("invalid offset, value too big (0x%08lX)"),
22278 (long) value);
22279 newval |= value << 5; /* 6 - 1. */
22280 break;
a737bd4d 22281
c19d1205
ZW
22282 default:
22283 as_bad_where (fixP->fx_file, fixP->fx_line,
22284 "Unable to process relocation for thumb opcode: %lx",
22285 (unsigned long) newval);
22286 break;
22287 }
22288 md_number_to_chars (buf, newval, THUMB_SIZE);
22289 break;
a737bd4d 22290
c19d1205
ZW
22291 case BFD_RELOC_ARM_THUMB_ADD:
22292 /* This is a complicated relocation, since we use it for all of
22293 the following immediate relocations:
a737bd4d 22294
c19d1205
ZW
22295 3bit ADD/SUB
22296 8bit ADD/SUB
22297 9bit ADD/SUB SP word-aligned
22298 10bit ADD PC/SP word-aligned
a737bd4d 22299
c19d1205
ZW
22300 The type of instruction being processed is encoded in the
22301 instruction field:
a737bd4d 22302
c19d1205
ZW
22303 0x8000 SUB
22304 0x00F0 Rd
22305 0x000F Rs
22306 */
22307 newval = md_chars_to_number (buf, THUMB_SIZE);
22308 {
22309 int rd = (newval >> 4) & 0xf;
22310 int rs = newval & 0xf;
22311 int subtract = !!(newval & 0x8000);
a737bd4d 22312
c19d1205
ZW
22313 /* Check for HI regs, only very restricted cases allowed:
22314 Adjusting SP, and using PC or SP to get an address. */
22315 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
22316 || (rs > 7 && rs != REG_SP && rs != REG_PC))
22317 as_bad_where (fixP->fx_file, fixP->fx_line,
22318 _("invalid Hi register with immediate"));
a737bd4d 22319
c19d1205
ZW
22320 /* If value is negative, choose the opposite instruction. */
22321 if (value < 0)
22322 {
22323 value = -value;
22324 subtract = !subtract;
22325 if (value < 0)
22326 as_bad_where (fixP->fx_file, fixP->fx_line,
22327 _("immediate value out of range"));
22328 }
a737bd4d 22329
c19d1205
ZW
22330 if (rd == REG_SP)
22331 {
22332 if (value & ~0x1fc)
22333 as_bad_where (fixP->fx_file, fixP->fx_line,
22334 _("invalid immediate for stack address calculation"));
22335 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
22336 newval |= value >> 2;
22337 }
22338 else if (rs == REG_PC || rs == REG_SP)
22339 {
22340 if (subtract || value & ~0x3fc)
22341 as_bad_where (fixP->fx_file, fixP->fx_line,
22342 _("invalid immediate for address calculation (value = 0x%08lX)"),
22343 (unsigned long) value);
22344 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
22345 newval |= rd << 8;
22346 newval |= value >> 2;
22347 }
22348 else if (rs == rd)
22349 {
22350 if (value & ~0xff)
22351 as_bad_where (fixP->fx_file, fixP->fx_line,
22352 _("immediate value out of range"));
22353 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
22354 newval |= (rd << 8) | value;
22355 }
22356 else
22357 {
22358 if (value & ~0x7)
22359 as_bad_where (fixP->fx_file, fixP->fx_line,
22360 _("immediate value out of range"));
22361 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
22362 newval |= rd | (rs << 3) | (value << 6);
22363 }
22364 }
22365 md_number_to_chars (buf, newval, THUMB_SIZE);
22366 break;
a737bd4d 22367
c19d1205
ZW
22368 case BFD_RELOC_ARM_THUMB_IMM:
22369 newval = md_chars_to_number (buf, THUMB_SIZE);
22370 if (value < 0 || value > 255)
22371 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 22372 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
22373 (long) value);
22374 newval |= value;
22375 md_number_to_chars (buf, newval, THUMB_SIZE);
22376 break;
a737bd4d 22377
c19d1205
ZW
22378 case BFD_RELOC_ARM_THUMB_SHIFT:
22379 /* 5bit shift value (0..32). LSL cannot take 32. */
22380 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
22381 temp = newval & 0xf800;
22382 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
22383 as_bad_where (fixP->fx_file, fixP->fx_line,
22384 _("invalid shift value: %ld"), (long) value);
22385 /* Shifts of zero must be encoded as LSL. */
22386 if (value == 0)
22387 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
22388 /* Shifts of 32 are encoded as zero. */
22389 else if (value == 32)
22390 value = 0;
22391 newval |= value << 6;
22392 md_number_to_chars (buf, newval, THUMB_SIZE);
22393 break;
a737bd4d 22394
c19d1205
ZW
22395 case BFD_RELOC_VTABLE_INHERIT:
22396 case BFD_RELOC_VTABLE_ENTRY:
22397 fixP->fx_done = 0;
22398 return;
6c43fab6 22399
b6895b4f
PB
22400 case BFD_RELOC_ARM_MOVW:
22401 case BFD_RELOC_ARM_MOVT:
22402 case BFD_RELOC_ARM_THUMB_MOVW:
22403 case BFD_RELOC_ARM_THUMB_MOVT:
22404 if (fixP->fx_done || !seg->use_rela_p)
22405 {
22406 /* REL format relocations are limited to a 16-bit addend. */
22407 if (!fixP->fx_done)
22408 {
39623e12 22409 if (value < -0x8000 || value > 0x7fff)
b6895b4f 22410 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 22411 _("offset out of range"));
b6895b4f
PB
22412 }
22413 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22414 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22415 {
22416 value >>= 16;
22417 }
22418
22419 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22420 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22421 {
22422 newval = get_thumb32_insn (buf);
22423 newval &= 0xfbf08f00;
22424 newval |= (value & 0xf000) << 4;
22425 newval |= (value & 0x0800) << 15;
22426 newval |= (value & 0x0700) << 4;
22427 newval |= (value & 0x00ff);
22428 put_thumb32_insn (buf, newval);
22429 }
22430 else
22431 {
22432 newval = md_chars_to_number (buf, 4);
22433 newval &= 0xfff0f000;
22434 newval |= value & 0x0fff;
22435 newval |= (value & 0xf000) << 4;
22436 md_number_to_chars (buf, newval, 4);
22437 }
22438 }
22439 return;
22440
4962c51a
MS
22441 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22442 case BFD_RELOC_ARM_ALU_PC_G0:
22443 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22444 case BFD_RELOC_ARM_ALU_PC_G1:
22445 case BFD_RELOC_ARM_ALU_PC_G2:
22446 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22447 case BFD_RELOC_ARM_ALU_SB_G0:
22448 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22449 case BFD_RELOC_ARM_ALU_SB_G1:
22450 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 22451 gas_assert (!fixP->fx_done);
4962c51a
MS
22452 if (!seg->use_rela_p)
22453 {
22454 bfd_vma insn;
22455 bfd_vma encoded_addend;
22456 bfd_vma addend_abs = abs (value);
22457
22458 /* Check that the absolute value of the addend can be
22459 expressed as an 8-bit constant plus a rotation. */
22460 encoded_addend = encode_arm_immediate (addend_abs);
22461 if (encoded_addend == (unsigned int) FAIL)
22462 as_bad_where (fixP->fx_file, fixP->fx_line,
22463 _("the offset 0x%08lX is not representable"),
495bde8e 22464 (unsigned long) addend_abs);
4962c51a
MS
22465
22466 /* Extract the instruction. */
22467 insn = md_chars_to_number (buf, INSN_SIZE);
22468
22469 /* If the addend is positive, use an ADD instruction.
22470 Otherwise use a SUB. Take care not to destroy the S bit. */
22471 insn &= 0xff1fffff;
22472 if (value < 0)
22473 insn |= 1 << 22;
22474 else
22475 insn |= 1 << 23;
22476
22477 /* Place the encoded addend into the first 12 bits of the
22478 instruction. */
22479 insn &= 0xfffff000;
22480 insn |= encoded_addend;
5f4273c7
NC
22481
22482 /* Update the instruction. */
4962c51a
MS
22483 md_number_to_chars (buf, insn, INSN_SIZE);
22484 }
22485 break;
22486
22487 case BFD_RELOC_ARM_LDR_PC_G0:
22488 case BFD_RELOC_ARM_LDR_PC_G1:
22489 case BFD_RELOC_ARM_LDR_PC_G2:
22490 case BFD_RELOC_ARM_LDR_SB_G0:
22491 case BFD_RELOC_ARM_LDR_SB_G1:
22492 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 22493 gas_assert (!fixP->fx_done);
4962c51a
MS
22494 if (!seg->use_rela_p)
22495 {
22496 bfd_vma insn;
22497 bfd_vma addend_abs = abs (value);
22498
22499 /* Check that the absolute value of the addend can be
22500 encoded in 12 bits. */
22501 if (addend_abs >= 0x1000)
22502 as_bad_where (fixP->fx_file, fixP->fx_line,
22503 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 22504 (unsigned long) addend_abs);
4962c51a
MS
22505
22506 /* Extract the instruction. */
22507 insn = md_chars_to_number (buf, INSN_SIZE);
22508
22509 /* If the addend is negative, clear bit 23 of the instruction.
22510 Otherwise set it. */
22511 if (value < 0)
22512 insn &= ~(1 << 23);
22513 else
22514 insn |= 1 << 23;
22515
22516 /* Place the absolute value of the addend into the first 12 bits
22517 of the instruction. */
22518 insn &= 0xfffff000;
22519 insn |= addend_abs;
5f4273c7
NC
22520
22521 /* Update the instruction. */
4962c51a
MS
22522 md_number_to_chars (buf, insn, INSN_SIZE);
22523 }
22524 break;
22525
22526 case BFD_RELOC_ARM_LDRS_PC_G0:
22527 case BFD_RELOC_ARM_LDRS_PC_G1:
22528 case BFD_RELOC_ARM_LDRS_PC_G2:
22529 case BFD_RELOC_ARM_LDRS_SB_G0:
22530 case BFD_RELOC_ARM_LDRS_SB_G1:
22531 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 22532 gas_assert (!fixP->fx_done);
4962c51a
MS
22533 if (!seg->use_rela_p)
22534 {
22535 bfd_vma insn;
22536 bfd_vma addend_abs = abs (value);
22537
22538 /* Check that the absolute value of the addend can be
22539 encoded in 8 bits. */
22540 if (addend_abs >= 0x100)
22541 as_bad_where (fixP->fx_file, fixP->fx_line,
22542 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 22543 (unsigned long) addend_abs);
4962c51a
MS
22544
22545 /* Extract the instruction. */
22546 insn = md_chars_to_number (buf, INSN_SIZE);
22547
22548 /* If the addend is negative, clear bit 23 of the instruction.
22549 Otherwise set it. */
22550 if (value < 0)
22551 insn &= ~(1 << 23);
22552 else
22553 insn |= 1 << 23;
22554
22555 /* Place the first four bits of the absolute value of the addend
22556 into the first 4 bits of the instruction, and the remaining
22557 four into bits 8 .. 11. */
22558 insn &= 0xfffff0f0;
22559 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
22560
22561 /* Update the instruction. */
4962c51a
MS
22562 md_number_to_chars (buf, insn, INSN_SIZE);
22563 }
22564 break;
22565
22566 case BFD_RELOC_ARM_LDC_PC_G0:
22567 case BFD_RELOC_ARM_LDC_PC_G1:
22568 case BFD_RELOC_ARM_LDC_PC_G2:
22569 case BFD_RELOC_ARM_LDC_SB_G0:
22570 case BFD_RELOC_ARM_LDC_SB_G1:
22571 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 22572 gas_assert (!fixP->fx_done);
4962c51a
MS
22573 if (!seg->use_rela_p)
22574 {
22575 bfd_vma insn;
22576 bfd_vma addend_abs = abs (value);
22577
22578 /* Check that the absolute value of the addend is a multiple of
22579 four and, when divided by four, fits in 8 bits. */
22580 if (addend_abs & 0x3)
22581 as_bad_where (fixP->fx_file, fixP->fx_line,
22582 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 22583 (unsigned long) addend_abs);
4962c51a
MS
22584
22585 if ((addend_abs >> 2) > 0xff)
22586 as_bad_where (fixP->fx_file, fixP->fx_line,
22587 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 22588 (unsigned long) addend_abs);
4962c51a
MS
22589
22590 /* Extract the instruction. */
22591 insn = md_chars_to_number (buf, INSN_SIZE);
22592
22593 /* If the addend is negative, clear bit 23 of the instruction.
22594 Otherwise set it. */
22595 if (value < 0)
22596 insn &= ~(1 << 23);
22597 else
22598 insn |= 1 << 23;
22599
22600 /* Place the addend (divided by four) into the first eight
22601 bits of the instruction. */
22602 insn &= 0xfffffff0;
22603 insn |= addend_abs >> 2;
5f4273c7
NC
22604
22605 /* Update the instruction. */
4962c51a
MS
22606 md_number_to_chars (buf, insn, INSN_SIZE);
22607 }
22608 break;
22609
845b51d6
PB
22610 case BFD_RELOC_ARM_V4BX:
22611 /* This will need to go in the object file. */
22612 fixP->fx_done = 0;
22613 break;
22614
c19d1205
ZW
22615 case BFD_RELOC_UNUSED:
22616 default:
22617 as_bad_where (fixP->fx_file, fixP->fx_line,
22618 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22619 }
6c43fab6
RE
22620}
22621
c19d1205
ZW
22622/* Translate internal representation of relocation info to BFD target
22623 format. */
a737bd4d 22624
c19d1205 22625arelent *
00a97672 22626tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 22627{
c19d1205
ZW
22628 arelent * reloc;
22629 bfd_reloc_code_real_type code;
a737bd4d 22630
21d799b5 22631 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 22632
21d799b5 22633 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
22634 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22635 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 22636
2fc8bdac 22637 if (fixp->fx_pcrel)
00a97672
RS
22638 {
22639 if (section->use_rela_p)
22640 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22641 else
22642 fixp->fx_offset = reloc->address;
22643 }
c19d1205 22644 reloc->addend = fixp->fx_offset;
a737bd4d 22645
c19d1205 22646 switch (fixp->fx_r_type)
a737bd4d 22647 {
c19d1205
ZW
22648 case BFD_RELOC_8:
22649 if (fixp->fx_pcrel)
22650 {
22651 code = BFD_RELOC_8_PCREL;
22652 break;
22653 }
a737bd4d 22654
c19d1205
ZW
22655 case BFD_RELOC_16:
22656 if (fixp->fx_pcrel)
22657 {
22658 code = BFD_RELOC_16_PCREL;
22659 break;
22660 }
6c43fab6 22661
c19d1205
ZW
22662 case BFD_RELOC_32:
22663 if (fixp->fx_pcrel)
22664 {
22665 code = BFD_RELOC_32_PCREL;
22666 break;
22667 }
a737bd4d 22668
b6895b4f
PB
22669 case BFD_RELOC_ARM_MOVW:
22670 if (fixp->fx_pcrel)
22671 {
22672 code = BFD_RELOC_ARM_MOVW_PCREL;
22673 break;
22674 }
22675
22676 case BFD_RELOC_ARM_MOVT:
22677 if (fixp->fx_pcrel)
22678 {
22679 code = BFD_RELOC_ARM_MOVT_PCREL;
22680 break;
22681 }
22682
22683 case BFD_RELOC_ARM_THUMB_MOVW:
22684 if (fixp->fx_pcrel)
22685 {
22686 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22687 break;
22688 }
22689
22690 case BFD_RELOC_ARM_THUMB_MOVT:
22691 if (fixp->fx_pcrel)
22692 {
22693 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22694 break;
22695 }
22696
c19d1205
ZW
22697 case BFD_RELOC_NONE:
22698 case BFD_RELOC_ARM_PCREL_BRANCH:
22699 case BFD_RELOC_ARM_PCREL_BLX:
22700 case BFD_RELOC_RVA:
22701 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22702 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22703 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22704 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22705 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22706 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
22707 case BFD_RELOC_VTABLE_ENTRY:
22708 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
22709#ifdef TE_PE
22710 case BFD_RELOC_32_SECREL:
22711#endif
c19d1205
ZW
22712 code = fixp->fx_r_type;
22713 break;
a737bd4d 22714
00adf2d4
JB
22715 case BFD_RELOC_THUMB_PCREL_BLX:
22716#ifdef OBJ_ELF
22717 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22718 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22719 else
22720#endif
22721 code = BFD_RELOC_THUMB_PCREL_BLX;
22722 break;
22723
c19d1205
ZW
22724 case BFD_RELOC_ARM_LITERAL:
22725 case BFD_RELOC_ARM_HWLITERAL:
22726 /* If this is called then the a literal has
22727 been referenced across a section boundary. */
22728 as_bad_where (fixp->fx_file, fixp->fx_line,
22729 _("literal referenced across section boundary"));
22730 return NULL;
a737bd4d 22731
c19d1205 22732#ifdef OBJ_ELF
0855e32b
NS
22733 case BFD_RELOC_ARM_TLS_CALL:
22734 case BFD_RELOC_ARM_THM_TLS_CALL:
22735 case BFD_RELOC_ARM_TLS_DESCSEQ:
22736 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
22737 case BFD_RELOC_ARM_GOT32:
22738 case BFD_RELOC_ARM_GOTOFF:
b43420e6 22739 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
22740 case BFD_RELOC_ARM_PLT32:
22741 case BFD_RELOC_ARM_TARGET1:
22742 case BFD_RELOC_ARM_ROSEGREL32:
22743 case BFD_RELOC_ARM_SBREL32:
22744 case BFD_RELOC_ARM_PREL31:
22745 case BFD_RELOC_ARM_TARGET2:
22746 case BFD_RELOC_ARM_TLS_LE32:
22747 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
22748 case BFD_RELOC_ARM_PCREL_CALL:
22749 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
22750 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22751 case BFD_RELOC_ARM_ALU_PC_G0:
22752 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22753 case BFD_RELOC_ARM_ALU_PC_G1:
22754 case BFD_RELOC_ARM_ALU_PC_G2:
22755 case BFD_RELOC_ARM_LDR_PC_G0:
22756 case BFD_RELOC_ARM_LDR_PC_G1:
22757 case BFD_RELOC_ARM_LDR_PC_G2:
22758 case BFD_RELOC_ARM_LDRS_PC_G0:
22759 case BFD_RELOC_ARM_LDRS_PC_G1:
22760 case BFD_RELOC_ARM_LDRS_PC_G2:
22761 case BFD_RELOC_ARM_LDC_PC_G0:
22762 case BFD_RELOC_ARM_LDC_PC_G1:
22763 case BFD_RELOC_ARM_LDC_PC_G2:
22764 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22765 case BFD_RELOC_ARM_ALU_SB_G0:
22766 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22767 case BFD_RELOC_ARM_ALU_SB_G1:
22768 case BFD_RELOC_ARM_ALU_SB_G2:
22769 case BFD_RELOC_ARM_LDR_SB_G0:
22770 case BFD_RELOC_ARM_LDR_SB_G1:
22771 case BFD_RELOC_ARM_LDR_SB_G2:
22772 case BFD_RELOC_ARM_LDRS_SB_G0:
22773 case BFD_RELOC_ARM_LDRS_SB_G1:
22774 case BFD_RELOC_ARM_LDRS_SB_G2:
22775 case BFD_RELOC_ARM_LDC_SB_G0:
22776 case BFD_RELOC_ARM_LDC_SB_G1:
22777 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 22778 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
22779 code = fixp->fx_r_type;
22780 break;
a737bd4d 22781
0855e32b 22782 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
22783 case BFD_RELOC_ARM_TLS_GD32:
22784 case BFD_RELOC_ARM_TLS_IE32:
22785 case BFD_RELOC_ARM_TLS_LDM32:
22786 /* BFD will include the symbol's address in the addend.
22787 But we don't want that, so subtract it out again here. */
22788 if (!S_IS_COMMON (fixp->fx_addsy))
22789 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22790 code = fixp->fx_r_type;
22791 break;
22792#endif
a737bd4d 22793
c19d1205
ZW
22794 case BFD_RELOC_ARM_IMMEDIATE:
22795 as_bad_where (fixp->fx_file, fixp->fx_line,
22796 _("internal relocation (type: IMMEDIATE) not fixed up"));
22797 return NULL;
a737bd4d 22798
c19d1205
ZW
22799 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22800 as_bad_where (fixp->fx_file, fixp->fx_line,
22801 _("ADRL used for a symbol not defined in the same file"));
22802 return NULL;
a737bd4d 22803
c19d1205 22804 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
22805 if (section->use_rela_p)
22806 {
22807 code = fixp->fx_r_type;
22808 break;
22809 }
22810
c19d1205
ZW
22811 if (fixp->fx_addsy != NULL
22812 && !S_IS_DEFINED (fixp->fx_addsy)
22813 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 22814 {
c19d1205
ZW
22815 as_bad_where (fixp->fx_file, fixp->fx_line,
22816 _("undefined local label `%s'"),
22817 S_GET_NAME (fixp->fx_addsy));
22818 return NULL;
a737bd4d
NC
22819 }
22820
c19d1205
ZW
22821 as_bad_where (fixp->fx_file, fixp->fx_line,
22822 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22823 return NULL;
a737bd4d 22824
c19d1205
ZW
22825 default:
22826 {
22827 char * type;
6c43fab6 22828
c19d1205
ZW
22829 switch (fixp->fx_r_type)
22830 {
22831 case BFD_RELOC_NONE: type = "NONE"; break;
22832 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22833 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 22834 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
22835 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22836 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22837 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 22838 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 22839 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
22840 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22841 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22842 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22843 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22844 default: type = _("<unknown>"); break;
22845 }
22846 as_bad_where (fixp->fx_file, fixp->fx_line,
22847 _("cannot represent %s relocation in this object file format"),
22848 type);
22849 return NULL;
22850 }
a737bd4d 22851 }
6c43fab6 22852
c19d1205
ZW
22853#ifdef OBJ_ELF
22854 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22855 && GOT_symbol
22856 && fixp->fx_addsy == GOT_symbol)
22857 {
22858 code = BFD_RELOC_ARM_GOTPC;
22859 reloc->addend = fixp->fx_offset = reloc->address;
22860 }
22861#endif
6c43fab6 22862
c19d1205 22863 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 22864
c19d1205
ZW
22865 if (reloc->howto == NULL)
22866 {
22867 as_bad_where (fixp->fx_file, fixp->fx_line,
22868 _("cannot represent %s relocation in this object file format"),
22869 bfd_get_reloc_code_name (code));
22870 return NULL;
22871 }
6c43fab6 22872
c19d1205
ZW
22873 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22874 vtable entry to be used in the relocation's section offset. */
22875 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22876 reloc->address = fixp->fx_offset;
6c43fab6 22877
c19d1205 22878 return reloc;
6c43fab6
RE
22879}
22880
c19d1205 22881/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 22882
c19d1205
ZW
22883void
22884cons_fix_new_arm (fragS * frag,
22885 int where,
22886 int size,
22887 expressionS * exp)
6c43fab6 22888{
c19d1205
ZW
22889 bfd_reloc_code_real_type type;
22890 int pcrel = 0;
6c43fab6 22891
c19d1205
ZW
22892 /* Pick a reloc.
22893 FIXME: @@ Should look at CPU word size. */
22894 switch (size)
22895 {
22896 case 1:
22897 type = BFD_RELOC_8;
22898 break;
22899 case 2:
22900 type = BFD_RELOC_16;
22901 break;
22902 case 4:
22903 default:
22904 type = BFD_RELOC_32;
22905 break;
22906 case 8:
22907 type = BFD_RELOC_64;
22908 break;
22909 }
6c43fab6 22910
f0927246
NC
22911#ifdef TE_PE
22912 if (exp->X_op == O_secrel)
22913 {
22914 exp->X_op = O_symbol;
22915 type = BFD_RELOC_32_SECREL;
22916 }
22917#endif
22918
c19d1205
ZW
22919 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22920}
6c43fab6 22921
4343666d 22922#if defined (OBJ_COFF)
c19d1205
ZW
22923void
22924arm_validate_fix (fixS * fixP)
6c43fab6 22925{
c19d1205
ZW
22926 /* If the destination of the branch is a defined symbol which does not have
22927 the THUMB_FUNC attribute, then we must be calling a function which has
22928 the (interfacearm) attribute. We look for the Thumb entry point to that
22929 function and change the branch to refer to that function instead. */
22930 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22931 && fixP->fx_addsy != NULL
22932 && S_IS_DEFINED (fixP->fx_addsy)
22933 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 22934 {
c19d1205 22935 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 22936 }
c19d1205
ZW
22937}
22938#endif
6c43fab6 22939
267bf995 22940
c19d1205
ZW
22941int
22942arm_force_relocation (struct fix * fixp)
22943{
22944#if defined (OBJ_COFF) && defined (TE_PE)
22945 if (fixp->fx_r_type == BFD_RELOC_RVA)
22946 return 1;
22947#endif
6c43fab6 22948
267bf995
RR
22949 /* In case we have a call or a branch to a function in ARM ISA mode from
22950 a thumb function or vice-versa force the relocation. These relocations
22951 are cleared off for some cores that might have blx and simple transformations
22952 are possible. */
22953
22954#ifdef OBJ_ELF
22955 switch (fixp->fx_r_type)
22956 {
22957 case BFD_RELOC_ARM_PCREL_JUMP:
22958 case BFD_RELOC_ARM_PCREL_CALL:
22959 case BFD_RELOC_THUMB_PCREL_BLX:
22960 if (THUMB_IS_FUNC (fixp->fx_addsy))
22961 return 1;
22962 break;
22963
22964 case BFD_RELOC_ARM_PCREL_BLX:
22965 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22966 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22967 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22968 if (ARM_IS_FUNC (fixp->fx_addsy))
22969 return 1;
22970 break;
22971
22972 default:
22973 break;
22974 }
22975#endif
22976
b5884301
PB
22977 /* Resolve these relocations even if the symbol is extern or weak.
22978 Technically this is probably wrong due to symbol preemption.
22979 In practice these relocations do not have enough range to be useful
22980 at dynamic link time, and some code (e.g. in the Linux kernel)
22981 expects these references to be resolved. */
c19d1205
ZW
22982 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22983 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 22984 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 22985 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
22986 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22987 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22988 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 22989 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
22990 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22991 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
22992 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22993 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22994 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22995 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 22996 return 0;
a737bd4d 22997
4962c51a
MS
22998 /* Always leave these relocations for the linker. */
22999 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23000 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23001 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
23002 return 1;
23003
f0291e4c
PB
23004 /* Always generate relocations against function symbols. */
23005 if (fixp->fx_r_type == BFD_RELOC_32
23006 && fixp->fx_addsy
23007 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
23008 return 1;
23009
c19d1205 23010 return generic_force_reloc (fixp);
404ff6b5
AH
23011}
23012
0ffdc86c 23013#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
23014/* Relocations against function names must be left unadjusted,
23015 so that the linker can use this information to generate interworking
23016 stubs. The MIPS version of this function
c19d1205
ZW
23017 also prevents relocations that are mips-16 specific, but I do not
23018 know why it does this.
404ff6b5 23019
c19d1205
ZW
23020 FIXME:
23021 There is one other problem that ought to be addressed here, but
23022 which currently is not: Taking the address of a label (rather
23023 than a function) and then later jumping to that address. Such
23024 addresses also ought to have their bottom bit set (assuming that
23025 they reside in Thumb code), but at the moment they will not. */
404ff6b5 23026
c19d1205
ZW
23027bfd_boolean
23028arm_fix_adjustable (fixS * fixP)
404ff6b5 23029{
c19d1205
ZW
23030 if (fixP->fx_addsy == NULL)
23031 return 1;
404ff6b5 23032
e28387c3
PB
23033 /* Preserve relocations against symbols with function type. */
23034 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 23035 return FALSE;
e28387c3 23036
c19d1205
ZW
23037 if (THUMB_IS_FUNC (fixP->fx_addsy)
23038 && fixP->fx_subsy == NULL)
c921be7d 23039 return FALSE;
a737bd4d 23040
c19d1205
ZW
23041 /* We need the symbol name for the VTABLE entries. */
23042 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
23043 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 23044 return FALSE;
404ff6b5 23045
c19d1205
ZW
23046 /* Don't allow symbols to be discarded on GOT related relocs. */
23047 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
23048 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
23049 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
23050 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
23051 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
23052 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
23053 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
23054 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
23055 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
23056 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
23057 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
23058 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
23059 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 23060 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 23061 return FALSE;
a737bd4d 23062
4962c51a
MS
23063 /* Similarly for group relocations. */
23064 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
23065 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
23066 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 23067 return FALSE;
4962c51a 23068
79947c54
CD
23069 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
23070 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
23071 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
23072 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
23073 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
23074 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
23075 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
23076 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
23077 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 23078 return FALSE;
79947c54 23079
c921be7d 23080 return TRUE;
a737bd4d 23081}
0ffdc86c
NC
23082#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
23083
23084#ifdef OBJ_ELF
404ff6b5 23085
c19d1205
ZW
23086const char *
23087elf32_arm_target_format (void)
404ff6b5 23088{
c19d1205
ZW
23089#ifdef TE_SYMBIAN
23090 return (target_big_endian
23091 ? "elf32-bigarm-symbian"
23092 : "elf32-littlearm-symbian");
23093#elif defined (TE_VXWORKS)
23094 return (target_big_endian
23095 ? "elf32-bigarm-vxworks"
23096 : "elf32-littlearm-vxworks");
b38cadfb
NC
23097#elif defined (TE_NACL)
23098 return (target_big_endian
23099 ? "elf32-bigarm-nacl"
23100 : "elf32-littlearm-nacl");
c19d1205
ZW
23101#else
23102 if (target_big_endian)
23103 return "elf32-bigarm";
23104 else
23105 return "elf32-littlearm";
23106#endif
404ff6b5
AH
23107}
23108
c19d1205
ZW
23109void
23110armelf_frob_symbol (symbolS * symp,
23111 int * puntp)
404ff6b5 23112{
c19d1205
ZW
23113 elf_frob_symbol (symp, puntp);
23114}
23115#endif
404ff6b5 23116
c19d1205 23117/* MD interface: Finalization. */
a737bd4d 23118
c19d1205
ZW
23119void
23120arm_cleanup (void)
23121{
23122 literal_pool * pool;
a737bd4d 23123
e07e6e58
NC
23124 /* Ensure that all the IT blocks are properly closed. */
23125 check_it_blocks_finished ();
23126
c19d1205
ZW
23127 for (pool = list_of_pools; pool; pool = pool->next)
23128 {
5f4273c7 23129 /* Put it at the end of the relevant section. */
c19d1205
ZW
23130 subseg_set (pool->section, pool->sub_section);
23131#ifdef OBJ_ELF
23132 arm_elf_change_section ();
23133#endif
23134 s_ltorg (0);
23135 }
404ff6b5
AH
23136}
23137
cd000bff
DJ
23138#ifdef OBJ_ELF
23139/* Remove any excess mapping symbols generated for alignment frags in
23140 SEC. We may have created a mapping symbol before a zero byte
23141 alignment; remove it if there's a mapping symbol after the
23142 alignment. */
23143static void
23144check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
23145 void *dummy ATTRIBUTE_UNUSED)
23146{
23147 segment_info_type *seginfo = seg_info (sec);
23148 fragS *fragp;
23149
23150 if (seginfo == NULL || seginfo->frchainP == NULL)
23151 return;
23152
23153 for (fragp = seginfo->frchainP->frch_root;
23154 fragp != NULL;
23155 fragp = fragp->fr_next)
23156 {
23157 symbolS *sym = fragp->tc_frag_data.last_map;
23158 fragS *next = fragp->fr_next;
23159
23160 /* Variable-sized frags have been converted to fixed size by
23161 this point. But if this was variable-sized to start with,
23162 there will be a fixed-size frag after it. So don't handle
23163 next == NULL. */
23164 if (sym == NULL || next == NULL)
23165 continue;
23166
23167 if (S_GET_VALUE (sym) < next->fr_address)
23168 /* Not at the end of this frag. */
23169 continue;
23170 know (S_GET_VALUE (sym) == next->fr_address);
23171
23172 do
23173 {
23174 if (next->tc_frag_data.first_map != NULL)
23175 {
23176 /* Next frag starts with a mapping symbol. Discard this
23177 one. */
23178 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23179 break;
23180 }
23181
23182 if (next->fr_next == NULL)
23183 {
23184 /* This mapping symbol is at the end of the section. Discard
23185 it. */
23186 know (next->fr_fix == 0 && next->fr_var == 0);
23187 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23188 break;
23189 }
23190
23191 /* As long as we have empty frags without any mapping symbols,
23192 keep looking. */
23193 /* If the next frag is non-empty and does not start with a
23194 mapping symbol, then this mapping symbol is required. */
23195 if (next->fr_address != next->fr_next->fr_address)
23196 break;
23197
23198 next = next->fr_next;
23199 }
23200 while (next != NULL);
23201 }
23202}
23203#endif
23204
c19d1205
ZW
23205/* Adjust the symbol table. This marks Thumb symbols as distinct from
23206 ARM ones. */
404ff6b5 23207
c19d1205
ZW
23208void
23209arm_adjust_symtab (void)
404ff6b5 23210{
c19d1205
ZW
23211#ifdef OBJ_COFF
23212 symbolS * sym;
404ff6b5 23213
c19d1205
ZW
23214 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23215 {
23216 if (ARM_IS_THUMB (sym))
23217 {
23218 if (THUMB_IS_FUNC (sym))
23219 {
23220 /* Mark the symbol as a Thumb function. */
23221 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
23222 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
23223 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 23224
c19d1205
ZW
23225 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
23226 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
23227 else
23228 as_bad (_("%s: unexpected function type: %d"),
23229 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
23230 }
23231 else switch (S_GET_STORAGE_CLASS (sym))
23232 {
23233 case C_EXT:
23234 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
23235 break;
23236 case C_STAT:
23237 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
23238 break;
23239 case C_LABEL:
23240 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
23241 break;
23242 default:
23243 /* Do nothing. */
23244 break;
23245 }
23246 }
a737bd4d 23247
c19d1205
ZW
23248 if (ARM_IS_INTERWORK (sym))
23249 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 23250 }
c19d1205
ZW
23251#endif
23252#ifdef OBJ_ELF
23253 symbolS * sym;
23254 char bind;
404ff6b5 23255
c19d1205 23256 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 23257 {
c19d1205
ZW
23258 if (ARM_IS_THUMB (sym))
23259 {
23260 elf_symbol_type * elf_sym;
404ff6b5 23261
c19d1205
ZW
23262 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
23263 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 23264
b0796911
PB
23265 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
23266 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
23267 {
23268 /* If it's a .thumb_func, declare it as so,
23269 otherwise tag label as .code 16. */
23270 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
23271 elf_sym->internal_elf_sym.st_target_internal
23272 = ST_BRANCH_TO_THUMB;
3ba67470 23273 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
23274 elf_sym->internal_elf_sym.st_info =
23275 ELF_ST_INFO (bind, STT_ARM_16BIT);
23276 }
23277 }
23278 }
cd000bff
DJ
23279
23280 /* Remove any overlapping mapping symbols generated by alignment frags. */
23281 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
23282 /* Now do generic ELF adjustments. */
23283 elf_adjust_symtab ();
c19d1205 23284#endif
404ff6b5
AH
23285}
23286
c19d1205 23287/* MD interface: Initialization. */
404ff6b5 23288
a737bd4d 23289static void
c19d1205 23290set_constant_flonums (void)
a737bd4d 23291{
c19d1205 23292 int i;
404ff6b5 23293
c19d1205
ZW
23294 for (i = 0; i < NUM_FLOAT_VALS; i++)
23295 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
23296 abort ();
a737bd4d 23297}
404ff6b5 23298
3e9e4fcf
JB
23299/* Auto-select Thumb mode if it's the only available instruction set for the
23300 given architecture. */
23301
23302static void
23303autoselect_thumb_from_cpu_variant (void)
23304{
23305 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23306 opcode_select (16);
23307}
23308
c19d1205
ZW
23309void
23310md_begin (void)
a737bd4d 23311{
c19d1205
ZW
23312 unsigned mach;
23313 unsigned int i;
404ff6b5 23314
c19d1205
ZW
23315 if ( (arm_ops_hsh = hash_new ()) == NULL
23316 || (arm_cond_hsh = hash_new ()) == NULL
23317 || (arm_shift_hsh = hash_new ()) == NULL
23318 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 23319 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 23320 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
23321 || (arm_reloc_hsh = hash_new ()) == NULL
23322 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
23323 as_fatal (_("virtual memory exhausted"));
23324
23325 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 23326 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 23327 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 23328 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 23329 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 23330 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 23331 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 23332 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 23333 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
23334 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
23335 (void *) (v7m_psrs + i));
c19d1205 23336 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 23337 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
23338 for (i = 0;
23339 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
23340 i++)
d3ce72d0 23341 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 23342 (void *) (barrier_opt_names + i));
c19d1205 23343#ifdef OBJ_ELF
3da1d841
NC
23344 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
23345 {
23346 struct reloc_entry * entry = reloc_names + i;
23347
23348 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
23349 /* This makes encode_branch() use the EABI versions of this relocation. */
23350 entry->reloc = BFD_RELOC_UNUSED;
23351
23352 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
23353 }
c19d1205
ZW
23354#endif
23355
23356 set_constant_flonums ();
404ff6b5 23357
c19d1205
ZW
23358 /* Set the cpu variant based on the command-line options. We prefer
23359 -mcpu= over -march= if both are set (as for GCC); and we prefer
23360 -mfpu= over any other way of setting the floating point unit.
23361 Use of legacy options with new options are faulted. */
e74cfd16 23362 if (legacy_cpu)
404ff6b5 23363 {
e74cfd16 23364 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
23365 as_bad (_("use of old and new-style options to set CPU type"));
23366
23367 mcpu_cpu_opt = legacy_cpu;
404ff6b5 23368 }
e74cfd16 23369 else if (!mcpu_cpu_opt)
c19d1205 23370 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 23371
e74cfd16 23372 if (legacy_fpu)
c19d1205 23373 {
e74cfd16 23374 if (mfpu_opt)
c19d1205 23375 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
23376
23377 mfpu_opt = legacy_fpu;
23378 }
e74cfd16 23379 else if (!mfpu_opt)
03b1477f 23380 {
45eb4c1b
NS
23381#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
23382 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
23383 /* Some environments specify a default FPU. If they don't, infer it
23384 from the processor. */
e74cfd16 23385 if (mcpu_fpu_opt)
03b1477f
RE
23386 mfpu_opt = mcpu_fpu_opt;
23387 else
23388 mfpu_opt = march_fpu_opt;
39c2da32 23389#else
e74cfd16 23390 mfpu_opt = &fpu_default;
39c2da32 23391#endif
03b1477f
RE
23392 }
23393
e74cfd16 23394 if (!mfpu_opt)
03b1477f 23395 {
493cb6ef 23396 if (mcpu_cpu_opt != NULL)
e74cfd16 23397 mfpu_opt = &fpu_default;
493cb6ef 23398 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 23399 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 23400 else
e74cfd16 23401 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
23402 }
23403
ee065d83 23404#ifdef CPU_DEFAULT
e74cfd16 23405 if (!mcpu_cpu_opt)
ee065d83 23406 {
e74cfd16
PB
23407 mcpu_cpu_opt = &cpu_default;
23408 selected_cpu = cpu_default;
ee065d83 23409 }
e74cfd16
PB
23410#else
23411 if (mcpu_cpu_opt)
23412 selected_cpu = *mcpu_cpu_opt;
ee065d83 23413 else
e74cfd16 23414 mcpu_cpu_opt = &arm_arch_any;
ee065d83 23415#endif
03b1477f 23416
e74cfd16 23417 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 23418
3e9e4fcf
JB
23419 autoselect_thumb_from_cpu_variant ();
23420
e74cfd16 23421 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 23422
f17c130b 23423#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 23424 {
7cc69913
NC
23425 unsigned int flags = 0;
23426
23427#if defined OBJ_ELF
23428 flags = meabi_flags;
d507cf36
PB
23429
23430 switch (meabi_flags)
33a392fb 23431 {
d507cf36 23432 case EF_ARM_EABI_UNKNOWN:
7cc69913 23433#endif
d507cf36
PB
23434 /* Set the flags in the private structure. */
23435 if (uses_apcs_26) flags |= F_APCS26;
23436 if (support_interwork) flags |= F_INTERWORK;
23437 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 23438 if (pic_code) flags |= F_PIC;
e74cfd16 23439 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
23440 flags |= F_SOFT_FLOAT;
23441
d507cf36
PB
23442 switch (mfloat_abi_opt)
23443 {
23444 case ARM_FLOAT_ABI_SOFT:
23445 case ARM_FLOAT_ABI_SOFTFP:
23446 flags |= F_SOFT_FLOAT;
23447 break;
33a392fb 23448
d507cf36
PB
23449 case ARM_FLOAT_ABI_HARD:
23450 if (flags & F_SOFT_FLOAT)
23451 as_bad (_("hard-float conflicts with specified fpu"));
23452 break;
23453 }
03b1477f 23454
e74cfd16
PB
23455 /* Using pure-endian doubles (even if soft-float). */
23456 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 23457 flags |= F_VFP_FLOAT;
f17c130b 23458
fde78edd 23459#if defined OBJ_ELF
e74cfd16 23460 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 23461 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
23462 break;
23463
8cb51566 23464 case EF_ARM_EABI_VER4:
3a4a14e9 23465 case EF_ARM_EABI_VER5:
c19d1205 23466 /* No additional flags to set. */
d507cf36
PB
23467 break;
23468
23469 default:
23470 abort ();
23471 }
7cc69913 23472#endif
b99bd4ef
NC
23473 bfd_set_private_flags (stdoutput, flags);
23474
23475 /* We have run out flags in the COFF header to encode the
23476 status of ATPCS support, so instead we create a dummy,
c19d1205 23477 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
23478 if (atpcs)
23479 {
23480 asection * sec;
23481
23482 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23483
23484 if (sec != NULL)
23485 {
23486 bfd_set_section_flags
23487 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23488 bfd_set_section_size (stdoutput, sec, 0);
23489 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23490 }
23491 }
7cc69913 23492 }
f17c130b 23493#endif
b99bd4ef
NC
23494
23495 /* Record the CPU type as well. */
2d447fca
JM
23496 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23497 mach = bfd_mach_arm_iWMMXt2;
23498 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 23499 mach = bfd_mach_arm_iWMMXt;
e74cfd16 23500 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 23501 mach = bfd_mach_arm_XScale;
e74cfd16 23502 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 23503 mach = bfd_mach_arm_ep9312;
e74cfd16 23504 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 23505 mach = bfd_mach_arm_5TE;
e74cfd16 23506 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 23507 {
e74cfd16 23508 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
23509 mach = bfd_mach_arm_5T;
23510 else
23511 mach = bfd_mach_arm_5;
23512 }
e74cfd16 23513 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 23514 {
e74cfd16 23515 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
23516 mach = bfd_mach_arm_4T;
23517 else
23518 mach = bfd_mach_arm_4;
23519 }
e74cfd16 23520 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 23521 mach = bfd_mach_arm_3M;
e74cfd16
PB
23522 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23523 mach = bfd_mach_arm_3;
23524 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23525 mach = bfd_mach_arm_2a;
23526 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23527 mach = bfd_mach_arm_2;
23528 else
23529 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
23530
23531 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23532}
23533
c19d1205 23534/* Command line processing. */
b99bd4ef 23535
c19d1205
ZW
23536/* md_parse_option
23537 Invocation line includes a switch not recognized by the base assembler.
23538 See if it's a processor-specific option.
b99bd4ef 23539
c19d1205
ZW
23540 This routine is somewhat complicated by the need for backwards
23541 compatibility (since older releases of gcc can't be changed).
23542 The new options try to make the interface as compatible as
23543 possible with GCC.
b99bd4ef 23544
c19d1205 23545 New options (supported) are:
b99bd4ef 23546
c19d1205
ZW
23547 -mcpu=<cpu name> Assemble for selected processor
23548 -march=<architecture name> Assemble for selected architecture
23549 -mfpu=<fpu architecture> Assemble for selected FPU.
23550 -EB/-mbig-endian Big-endian
23551 -EL/-mlittle-endian Little-endian
23552 -k Generate PIC code
23553 -mthumb Start in Thumb mode
23554 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 23555
278df34e 23556 -m[no-]warn-deprecated Warn about deprecated features
267bf995 23557
c19d1205 23558 For now we will also provide support for:
b99bd4ef 23559
c19d1205
ZW
23560 -mapcs-32 32-bit Program counter
23561 -mapcs-26 26-bit Program counter
23562 -macps-float Floats passed in FP registers
23563 -mapcs-reentrant Reentrant code
23564 -matpcs
23565 (sometime these will probably be replaced with -mapcs=<list of options>
23566 and -matpcs=<list of options>)
b99bd4ef 23567
c19d1205
ZW
23568 The remaining options are only supported for back-wards compatibility.
23569 Cpu variants, the arm part is optional:
23570 -m[arm]1 Currently not supported.
23571 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23572 -m[arm]3 Arm 3 processor
23573 -m[arm]6[xx], Arm 6 processors
23574 -m[arm]7[xx][t][[d]m] Arm 7 processors
23575 -m[arm]8[10] Arm 8 processors
23576 -m[arm]9[20][tdmi] Arm 9 processors
23577 -mstrongarm[110[0]] StrongARM processors
23578 -mxscale XScale processors
23579 -m[arm]v[2345[t[e]]] Arm architectures
23580 -mall All (except the ARM1)
23581 FP variants:
23582 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23583 -mfpe-old (No float load/store multiples)
23584 -mvfpxd VFP Single precision
23585 -mvfp All VFP
23586 -mno-fpu Disable all floating point instructions
b99bd4ef 23587
c19d1205
ZW
23588 The following CPU names are recognized:
23589 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23590 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23591 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23592 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23593 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23594 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23595 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 23596
c19d1205 23597 */
b99bd4ef 23598
c19d1205 23599const char * md_shortopts = "m:k";
b99bd4ef 23600
c19d1205
ZW
23601#ifdef ARM_BI_ENDIAN
23602#define OPTION_EB (OPTION_MD_BASE + 0)
23603#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 23604#else
c19d1205
ZW
23605#if TARGET_BYTES_BIG_ENDIAN
23606#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 23607#else
c19d1205
ZW
23608#define OPTION_EL (OPTION_MD_BASE + 1)
23609#endif
b99bd4ef 23610#endif
845b51d6 23611#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 23612
c19d1205 23613struct option md_longopts[] =
b99bd4ef 23614{
c19d1205
ZW
23615#ifdef OPTION_EB
23616 {"EB", no_argument, NULL, OPTION_EB},
23617#endif
23618#ifdef OPTION_EL
23619 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 23620#endif
845b51d6 23621 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
23622 {NULL, no_argument, NULL, 0}
23623};
b99bd4ef 23624
c19d1205 23625size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 23626
c19d1205 23627struct arm_option_table
b99bd4ef 23628{
c19d1205
ZW
23629 char *option; /* Option name to match. */
23630 char *help; /* Help information. */
23631 int *var; /* Variable to change. */
23632 int value; /* What to change it to. */
23633 char *deprecated; /* If non-null, print this message. */
23634};
b99bd4ef 23635
c19d1205
ZW
23636struct arm_option_table arm_opts[] =
23637{
23638 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23639 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23640 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23641 &support_interwork, 1, NULL},
23642 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23643 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23644 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23645 1, NULL},
23646 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23647 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23648 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23649 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23650 NULL},
b99bd4ef 23651
c19d1205
ZW
23652 /* These are recognized by the assembler, but have no affect on code. */
23653 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23654 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
23655
23656 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23657 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23658 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
23659 {NULL, NULL, NULL, 0, NULL}
23660};
23661
23662struct arm_legacy_option_table
23663{
23664 char *option; /* Option name to match. */
23665 const arm_feature_set **var; /* Variable to change. */
23666 const arm_feature_set value; /* What to change it to. */
23667 char *deprecated; /* If non-null, print this message. */
23668};
b99bd4ef 23669
e74cfd16
PB
23670const struct arm_legacy_option_table arm_legacy_opts[] =
23671{
c19d1205
ZW
23672 /* DON'T add any new processors to this list -- we want the whole list
23673 to go away... Add them to the processors table instead. */
e74cfd16
PB
23674 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23675 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23676 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23677 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23678 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23679 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23680 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23681 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23682 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23683 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23684 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23685 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23686 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23687 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23688 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23689 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23690 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23691 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23692 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23693 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23694 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23695 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23696 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23697 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23698 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23699 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23700 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23701 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23702 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23703 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23704 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23705 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23706 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23707 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23708 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23709 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23710 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23711 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23712 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23713 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23714 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23715 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23716 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23717 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23718 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23719 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23720 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23721 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23722 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23723 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23724 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23725 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23726 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23727 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23728 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23729 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23730 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23731 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23732 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23733 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23734 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23735 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23736 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23737 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23738 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23739 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23740 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23741 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23742 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23743 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23744 N_("use -mcpu=strongarm110")},
e74cfd16 23745 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23746 N_("use -mcpu=strongarm1100")},
e74cfd16 23747 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23748 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
23749 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23750 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23751 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 23752
c19d1205 23753 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
23754 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23755 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23756 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23757 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23758 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23759 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23760 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23761 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23762 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23763 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23764 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23765 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23766 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23767 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23768 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23769 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23770 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23771 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 23772
c19d1205 23773 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
23774 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23775 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23776 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23777 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 23778 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 23779
e74cfd16 23780 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 23781};
7ed4c4c5 23782
c19d1205 23783struct arm_cpu_option_table
7ed4c4c5 23784{
c19d1205 23785 char *name;
f3bad469 23786 size_t name_len;
e74cfd16 23787 const arm_feature_set value;
c19d1205
ZW
23788 /* For some CPUs we assume an FPU unless the user explicitly sets
23789 -mfpu=... */
e74cfd16 23790 const arm_feature_set default_fpu;
ee065d83
PB
23791 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23792 case. */
23793 const char *canonical_name;
c19d1205 23794};
7ed4c4c5 23795
c19d1205
ZW
23796/* This list should, at a minimum, contain all the cpu names
23797 recognized by GCC. */
f3bad469 23798#define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
e74cfd16 23799static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 23800{
f3bad469
MGD
23801 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23802 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23803 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23804 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23805 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23806 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23807 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23808 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23809 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23810 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23811 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23812 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23813 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23814 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23815 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23816 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23817 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23818 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23819 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23820 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23821 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23822 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23823 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23824 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23825 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23826 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23827 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23828 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23829 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23830 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23831 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23832 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23833 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23834 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23835 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23836 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23837 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23838 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23839 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23840 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23841 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23842 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23843 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23844 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23845 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23846 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
c19d1205
ZW
23847 /* For V5 or later processors we default to using VFP; but the user
23848 should really set the FPU type explicitly. */
f3bad469
MGD
23849 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23850 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23851 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23852 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23853 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23854 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23855 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23856 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23857 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23858 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23859 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23860 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23861 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23862 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23863 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23864 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23865 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23866 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23867 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23868 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23869 "ARM1026EJ-S"),
23870 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23871 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23872 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23873 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23874 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23875 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23876 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23877 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23878 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23879 "ARM1136JF-S"),
23880 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23881 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23882 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23883 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23884 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23885 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23886 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23887 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23888 FPU_NONE, "Cortex-A5"),
23889 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23890 FPU_ARCH_NEON_VFP_V4,
23891 "Cortex-A7"),
23892 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23893 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 23894 | FPU_NEON_EXT_V1),
f3bad469
MGD
23895 "Cortex-A8"),
23896 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23897 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 23898 | FPU_NEON_EXT_V1),
f3bad469
MGD
23899 "Cortex-A9"),
23900 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23901 FPU_ARCH_NEON_VFP_V4,
23902 "Cortex-A15"),
23903 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23904 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23905 "Cortex-R4F"),
23906 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23907 FPU_NONE, "Cortex-R5"),
23908 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23909 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23910 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23911 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
ce32bd10 23912 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
c19d1205 23913 /* ??? XSCALE is really an architecture. */
f3bad469 23914 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23915 /* ??? iwmmxt is not a processor. */
f3bad469
MGD
23916 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23917 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23918 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23919 /* Maverick */
f3bad469
MGD
23920 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23921 FPU_ARCH_MAVERICK,
23922 "ARM920T"),
23923 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 23924};
f3bad469 23925#undef ARM_CPU_OPT
7ed4c4c5 23926
c19d1205 23927struct arm_arch_option_table
7ed4c4c5 23928{
c19d1205 23929 char *name;
f3bad469 23930 size_t name_len;
e74cfd16
PB
23931 const arm_feature_set value;
23932 const arm_feature_set default_fpu;
c19d1205 23933};
7ed4c4c5 23934
c19d1205
ZW
23935/* This list should, at a minimum, contain all the architecture names
23936 recognized by GCC. */
f3bad469 23937#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
e74cfd16 23938static const struct arm_arch_option_table arm_archs[] =
c19d1205 23939{
f3bad469
MGD
23940 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23941 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23942 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23943 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23944 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23945 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23946 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23947 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23948 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23949 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23950 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23951 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23952 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23953 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23954 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23955 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23956 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23957 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23958 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23959 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23960 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23961 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23962 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23963 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23964 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23965 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23966 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23967 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23968 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
c450d570
PB
23969 /* The official spelling of the ARMv7 profile variants is the dashed form.
23970 Accept the non-dashed form for compatibility with old toolchains. */
f3bad469
MGD
23971 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23972 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23973 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23974 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23975 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23976 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23977 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
bca38921 23978 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
f3bad469
MGD
23979 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23980 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23981 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23982 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 23983};
f3bad469 23984#undef ARM_ARCH_OPT
7ed4c4c5 23985
69133863
MGD
23986/* ISA extensions in the co-processor and main instruction set space. */
23987struct arm_option_extension_value_table
c19d1205
ZW
23988{
23989 char *name;
f3bad469 23990 size_t name_len;
e74cfd16 23991 const arm_feature_set value;
69133863 23992 const arm_feature_set allowed_archs;
c19d1205 23993};
7ed4c4c5 23994
69133863
MGD
23995/* The following table must be in alphabetical order with a NULL last entry.
23996 */
f3bad469 23997#define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
69133863 23998static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 23999{
bca38921
MGD
24000 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
24001 ARM_FEATURE (ARM_EXT_V8, 0)),
24002 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
24003 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
24004 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
24005 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
24006 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
24007 ARM_EXT_OPT ("iwmmxt2",
24008 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
24009 ARM_EXT_OPT ("maverick",
24010 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
24011 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
24012 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
bca38921
MGD
24013 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
24014 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
24015 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
24016 ARM_FEATURE (ARM_EXT_V6M, 0)),
24017 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
24018 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
24019 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
24020 | ARM_EXT_DIV, 0),
24021 ARM_FEATURE (ARM_EXT_V7A, 0)),
24022 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
24023 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
69133863 24024};
f3bad469 24025#undef ARM_EXT_OPT
69133863
MGD
24026
24027/* ISA floating-point and Advanced SIMD extensions. */
24028struct arm_option_fpu_value_table
24029{
24030 char *name;
24031 const arm_feature_set value;
c19d1205 24032};
7ed4c4c5 24033
c19d1205
ZW
24034/* This list should, at a minimum, contain all the fpu names
24035 recognized by GCC. */
69133863 24036static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
24037{
24038 {"softfpa", FPU_NONE},
24039 {"fpe", FPU_ARCH_FPE},
24040 {"fpe2", FPU_ARCH_FPE},
24041 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
24042 {"fpa", FPU_ARCH_FPA},
24043 {"fpa10", FPU_ARCH_FPA},
24044 {"fpa11", FPU_ARCH_FPA},
24045 {"arm7500fe", FPU_ARCH_FPA},
24046 {"softvfp", FPU_ARCH_VFP},
24047 {"softvfp+vfp", FPU_ARCH_VFP_V2},
24048 {"vfp", FPU_ARCH_VFP_V2},
24049 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 24050 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
24051 {"vfp10", FPU_ARCH_VFP_V2},
24052 {"vfp10-r0", FPU_ARCH_VFP_V1},
24053 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
24054 {"vfpv2", FPU_ARCH_VFP_V2},
24055 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 24056 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 24057 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
24058 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
24059 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
24060 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
24061 {"arm1020t", FPU_ARCH_VFP_V1},
24062 {"arm1020e", FPU_ARCH_VFP_V2},
24063 {"arm1136jfs", FPU_ARCH_VFP_V2},
24064 {"arm1136jf-s", FPU_ARCH_VFP_V2},
24065 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 24066 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 24067 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
24068 {"vfpv4", FPU_ARCH_VFP_V4},
24069 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 24070 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 24071 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
24072 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
24073 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
24074 {"crypto-neon-fp-armv8",
24075 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
e74cfd16
PB
24076 {NULL, ARM_ARCH_NONE}
24077};
24078
24079struct arm_option_value_table
24080{
24081 char *name;
24082 long value;
c19d1205 24083};
7ed4c4c5 24084
e74cfd16 24085static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
24086{
24087 {"hard", ARM_FLOAT_ABI_HARD},
24088 {"softfp", ARM_FLOAT_ABI_SOFTFP},
24089 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 24090 {NULL, 0}
c19d1205 24091};
7ed4c4c5 24092
c19d1205 24093#ifdef OBJ_ELF
3a4a14e9 24094/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 24095static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
24096{
24097 {"gnu", EF_ARM_EABI_UNKNOWN},
24098 {"4", EF_ARM_EABI_VER4},
3a4a14e9 24099 {"5", EF_ARM_EABI_VER5},
e74cfd16 24100 {NULL, 0}
c19d1205
ZW
24101};
24102#endif
7ed4c4c5 24103
c19d1205
ZW
24104struct arm_long_option_table
24105{
24106 char * option; /* Substring to match. */
24107 char * help; /* Help information. */
24108 int (* func) (char * subopt); /* Function to decode sub-option. */
24109 char * deprecated; /* If non-null, print this message. */
24110};
7ed4c4c5 24111
c921be7d 24112static bfd_boolean
f3bad469 24113arm_parse_extension (char *str, const arm_feature_set **opt_p)
7ed4c4c5 24114{
21d799b5
NC
24115 arm_feature_set *ext_set = (arm_feature_set *)
24116 xmalloc (sizeof (arm_feature_set));
e74cfd16 24117
69133863 24118 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
24119 extensions being added before being removed. We achieve this by having
24120 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 24121 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 24122 or removing it (0) and only allowing it to change in the order
69133863
MGD
24123 -1 -> 1 -> 0. */
24124 const struct arm_option_extension_value_table * opt = NULL;
24125 int adding_value = -1;
24126
e74cfd16
PB
24127 /* Copy the feature set, so that we can modify it. */
24128 *ext_set = **opt_p;
24129 *opt_p = ext_set;
24130
c19d1205 24131 while (str != NULL && *str != 0)
7ed4c4c5 24132 {
f3bad469
MGD
24133 char *ext;
24134 size_t len;
7ed4c4c5 24135
c19d1205
ZW
24136 if (*str != '+')
24137 {
24138 as_bad (_("invalid architectural extension"));
c921be7d 24139 return FALSE;
c19d1205 24140 }
7ed4c4c5 24141
c19d1205
ZW
24142 str++;
24143 ext = strchr (str, '+');
7ed4c4c5 24144
c19d1205 24145 if (ext != NULL)
f3bad469 24146 len = ext - str;
c19d1205 24147 else
f3bad469 24148 len = strlen (str);
7ed4c4c5 24149
f3bad469 24150 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
24151 {
24152 if (adding_value != 0)
24153 {
24154 adding_value = 0;
24155 opt = arm_extensions;
24156 }
24157
f3bad469 24158 len -= 2;
69133863
MGD
24159 str += 2;
24160 }
f3bad469 24161 else if (len > 0)
69133863
MGD
24162 {
24163 if (adding_value == -1)
24164 {
24165 adding_value = 1;
24166 opt = arm_extensions;
24167 }
24168 else if (adding_value != 1)
24169 {
24170 as_bad (_("must specify extensions to add before specifying "
24171 "those to remove"));
24172 return FALSE;
24173 }
24174 }
24175
f3bad469 24176 if (len == 0)
c19d1205
ZW
24177 {
24178 as_bad (_("missing architectural extension"));
c921be7d 24179 return FALSE;
c19d1205 24180 }
7ed4c4c5 24181
69133863
MGD
24182 gas_assert (adding_value != -1);
24183 gas_assert (opt != NULL);
24184
24185 /* Scan over the options table trying to find an exact match. */
24186 for (; opt->name != NULL; opt++)
f3bad469 24187 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 24188 {
69133863
MGD
24189 /* Check we can apply the extension to this architecture. */
24190 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
24191 {
24192 as_bad (_("extension does not apply to the base architecture"));
24193 return FALSE;
24194 }
24195
24196 /* Add or remove the extension. */
24197 if (adding_value)
24198 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
24199 else
24200 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
24201
c19d1205
ZW
24202 break;
24203 }
7ed4c4c5 24204
c19d1205
ZW
24205 if (opt->name == NULL)
24206 {
69133863
MGD
24207 /* Did we fail to find an extension because it wasn't specified in
24208 alphabetical order, or because it does not exist? */
24209
24210 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 24211 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
24212 break;
24213
24214 if (opt->name == NULL)
24215 as_bad (_("unknown architectural extension `%s'"), str);
24216 else
24217 as_bad (_("architectural extensions must be specified in "
24218 "alphabetical order"));
24219
c921be7d 24220 return FALSE;
c19d1205 24221 }
69133863
MGD
24222 else
24223 {
24224 /* We should skip the extension we've just matched the next time
24225 round. */
24226 opt++;
24227 }
7ed4c4c5 24228
c19d1205
ZW
24229 str = ext;
24230 };
7ed4c4c5 24231
c921be7d 24232 return TRUE;
c19d1205 24233}
7ed4c4c5 24234
c921be7d 24235static bfd_boolean
f3bad469 24236arm_parse_cpu (char *str)
7ed4c4c5 24237{
f3bad469
MGD
24238 const struct arm_cpu_option_table *opt;
24239 char *ext = strchr (str, '+');
24240 size_t len;
7ed4c4c5 24241
c19d1205 24242 if (ext != NULL)
f3bad469 24243 len = ext - str;
7ed4c4c5 24244 else
f3bad469 24245 len = strlen (str);
7ed4c4c5 24246
f3bad469 24247 if (len == 0)
7ed4c4c5 24248 {
c19d1205 24249 as_bad (_("missing cpu name `%s'"), str);
c921be7d 24250 return FALSE;
7ed4c4c5
NC
24251 }
24252
c19d1205 24253 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 24254 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 24255 {
e74cfd16
PB
24256 mcpu_cpu_opt = &opt->value;
24257 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 24258 if (opt->canonical_name)
5f4273c7 24259 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
24260 else
24261 {
f3bad469 24262 size_t i;
c921be7d 24263
f3bad469 24264 for (i = 0; i < len; i++)
ee065d83
PB
24265 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24266 selected_cpu_name[i] = 0;
24267 }
7ed4c4c5 24268
c19d1205
ZW
24269 if (ext != NULL)
24270 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 24271
c921be7d 24272 return TRUE;
c19d1205 24273 }
7ed4c4c5 24274
c19d1205 24275 as_bad (_("unknown cpu `%s'"), str);
c921be7d 24276 return FALSE;
7ed4c4c5
NC
24277}
24278
c921be7d 24279static bfd_boolean
f3bad469 24280arm_parse_arch (char *str)
7ed4c4c5 24281{
e74cfd16 24282 const struct arm_arch_option_table *opt;
c19d1205 24283 char *ext = strchr (str, '+');
f3bad469 24284 size_t len;
7ed4c4c5 24285
c19d1205 24286 if (ext != NULL)
f3bad469 24287 len = ext - str;
7ed4c4c5 24288 else
f3bad469 24289 len = strlen (str);
7ed4c4c5 24290
f3bad469 24291 if (len == 0)
7ed4c4c5 24292 {
c19d1205 24293 as_bad (_("missing architecture name `%s'"), str);
c921be7d 24294 return FALSE;
7ed4c4c5
NC
24295 }
24296
c19d1205 24297 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 24298 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 24299 {
e74cfd16
PB
24300 march_cpu_opt = &opt->value;
24301 march_fpu_opt = &opt->default_fpu;
5f4273c7 24302 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 24303
c19d1205
ZW
24304 if (ext != NULL)
24305 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 24306
c921be7d 24307 return TRUE;
c19d1205
ZW
24308 }
24309
24310 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 24311 return FALSE;
7ed4c4c5 24312}
eb043451 24313
c921be7d 24314static bfd_boolean
c19d1205
ZW
24315arm_parse_fpu (char * str)
24316{
69133863 24317 const struct arm_option_fpu_value_table * opt;
b99bd4ef 24318
c19d1205
ZW
24319 for (opt = arm_fpus; opt->name != NULL; opt++)
24320 if (streq (opt->name, str))
24321 {
e74cfd16 24322 mfpu_opt = &opt->value;
c921be7d 24323 return TRUE;
c19d1205 24324 }
b99bd4ef 24325
c19d1205 24326 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 24327 return FALSE;
c19d1205
ZW
24328}
24329
c921be7d 24330static bfd_boolean
c19d1205 24331arm_parse_float_abi (char * str)
b99bd4ef 24332{
e74cfd16 24333 const struct arm_option_value_table * opt;
b99bd4ef 24334
c19d1205
ZW
24335 for (opt = arm_float_abis; opt->name != NULL; opt++)
24336 if (streq (opt->name, str))
24337 {
24338 mfloat_abi_opt = opt->value;
c921be7d 24339 return TRUE;
c19d1205 24340 }
cc8a6dd0 24341
c19d1205 24342 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 24343 return FALSE;
c19d1205 24344}
b99bd4ef 24345
c19d1205 24346#ifdef OBJ_ELF
c921be7d 24347static bfd_boolean
c19d1205
ZW
24348arm_parse_eabi (char * str)
24349{
e74cfd16 24350 const struct arm_option_value_table *opt;
cc8a6dd0 24351
c19d1205
ZW
24352 for (opt = arm_eabis; opt->name != NULL; opt++)
24353 if (streq (opt->name, str))
24354 {
24355 meabi_flags = opt->value;
c921be7d 24356 return TRUE;
c19d1205
ZW
24357 }
24358 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 24359 return FALSE;
c19d1205
ZW
24360}
24361#endif
cc8a6dd0 24362
c921be7d 24363static bfd_boolean
e07e6e58
NC
24364arm_parse_it_mode (char * str)
24365{
c921be7d 24366 bfd_boolean ret = TRUE;
e07e6e58
NC
24367
24368 if (streq ("arm", str))
24369 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
24370 else if (streq ("thumb", str))
24371 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
24372 else if (streq ("always", str))
24373 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
24374 else if (streq ("never", str))
24375 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
24376 else
24377 {
24378 as_bad (_("unknown implicit IT mode `%s', should be "\
24379 "arm, thumb, always, or never."), str);
c921be7d 24380 ret = FALSE;
e07e6e58
NC
24381 }
24382
24383 return ret;
24384}
24385
c19d1205
ZW
24386struct arm_long_option_table arm_long_opts[] =
24387{
24388 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
24389 arm_parse_cpu, NULL},
24390 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
24391 arm_parse_arch, NULL},
24392 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
24393 arm_parse_fpu, NULL},
24394 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
24395 arm_parse_float_abi, NULL},
24396#ifdef OBJ_ELF
7fac0536 24397 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
24398 arm_parse_eabi, NULL},
24399#endif
e07e6e58
NC
24400 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
24401 arm_parse_it_mode, NULL},
c19d1205
ZW
24402 {NULL, NULL, 0, NULL}
24403};
cc8a6dd0 24404
c19d1205
ZW
24405int
24406md_parse_option (int c, char * arg)
24407{
24408 struct arm_option_table *opt;
e74cfd16 24409 const struct arm_legacy_option_table *fopt;
c19d1205 24410 struct arm_long_option_table *lopt;
b99bd4ef 24411
c19d1205 24412 switch (c)
b99bd4ef 24413 {
c19d1205
ZW
24414#ifdef OPTION_EB
24415 case OPTION_EB:
24416 target_big_endian = 1;
24417 break;
24418#endif
cc8a6dd0 24419
c19d1205
ZW
24420#ifdef OPTION_EL
24421 case OPTION_EL:
24422 target_big_endian = 0;
24423 break;
24424#endif
b99bd4ef 24425
845b51d6
PB
24426 case OPTION_FIX_V4BX:
24427 fix_v4bx = TRUE;
24428 break;
24429
c19d1205
ZW
24430 case 'a':
24431 /* Listing option. Just ignore these, we don't support additional
24432 ones. */
24433 return 0;
b99bd4ef 24434
c19d1205
ZW
24435 default:
24436 for (opt = arm_opts; opt->option != NULL; opt++)
24437 {
24438 if (c == opt->option[0]
24439 && ((arg == NULL && opt->option[1] == 0)
24440 || streq (arg, opt->option + 1)))
24441 {
c19d1205 24442 /* If the option is deprecated, tell the user. */
278df34e 24443 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
24444 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24445 arg ? arg : "", _(opt->deprecated));
b99bd4ef 24446
c19d1205
ZW
24447 if (opt->var != NULL)
24448 *opt->var = opt->value;
cc8a6dd0 24449
c19d1205
ZW
24450 return 1;
24451 }
24452 }
b99bd4ef 24453
e74cfd16
PB
24454 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
24455 {
24456 if (c == fopt->option[0]
24457 && ((arg == NULL && fopt->option[1] == 0)
24458 || streq (arg, fopt->option + 1)))
24459 {
e74cfd16 24460 /* If the option is deprecated, tell the user. */
278df34e 24461 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
24462 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24463 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
24464
24465 if (fopt->var != NULL)
24466 *fopt->var = &fopt->value;
24467
24468 return 1;
24469 }
24470 }
24471
c19d1205
ZW
24472 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24473 {
24474 /* These options are expected to have an argument. */
24475 if (c == lopt->option[0]
24476 && arg != NULL
24477 && strncmp (arg, lopt->option + 1,
24478 strlen (lopt->option + 1)) == 0)
24479 {
c19d1205 24480 /* If the option is deprecated, tell the user. */
278df34e 24481 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
24482 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24483 _(lopt->deprecated));
b99bd4ef 24484
c19d1205
ZW
24485 /* Call the sup-option parser. */
24486 return lopt->func (arg + strlen (lopt->option) - 1);
24487 }
24488 }
a737bd4d 24489
c19d1205
ZW
24490 return 0;
24491 }
a394c00f 24492
c19d1205
ZW
24493 return 1;
24494}
a394c00f 24495
c19d1205
ZW
24496void
24497md_show_usage (FILE * fp)
a394c00f 24498{
c19d1205
ZW
24499 struct arm_option_table *opt;
24500 struct arm_long_option_table *lopt;
a394c00f 24501
c19d1205 24502 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 24503
c19d1205
ZW
24504 for (opt = arm_opts; opt->option != NULL; opt++)
24505 if (opt->help != NULL)
24506 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 24507
c19d1205
ZW
24508 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24509 if (lopt->help != NULL)
24510 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 24511
c19d1205
ZW
24512#ifdef OPTION_EB
24513 fprintf (fp, _("\
24514 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
24515#endif
24516
c19d1205
ZW
24517#ifdef OPTION_EL
24518 fprintf (fp, _("\
24519 -EL assemble code for a little-endian cpu\n"));
a737bd4d 24520#endif
845b51d6
PB
24521
24522 fprintf (fp, _("\
24523 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 24524}
ee065d83
PB
24525
24526
24527#ifdef OBJ_ELF
62b3e311
PB
24528typedef struct
24529{
24530 int val;
24531 arm_feature_set flags;
24532} cpu_arch_ver_table;
24533
24534/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24535 least features first. */
24536static const cpu_arch_ver_table cpu_arch_ver[] =
24537{
24538 {1, ARM_ARCH_V4},
24539 {2, ARM_ARCH_V4T},
24540 {3, ARM_ARCH_V5},
ee3c0378 24541 {3, ARM_ARCH_V5T},
62b3e311
PB
24542 {4, ARM_ARCH_V5TE},
24543 {5, ARM_ARCH_V5TEJ},
24544 {6, ARM_ARCH_V6},
7e806470 24545 {9, ARM_ARCH_V6K},
f4c65163 24546 {7, ARM_ARCH_V6Z},
91e22acd 24547 {11, ARM_ARCH_V6M},
b2a5fbdc 24548 {12, ARM_ARCH_V6SM},
7e806470 24549 {8, ARM_ARCH_V6T2},
bca38921 24550 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
62b3e311
PB
24551 {10, ARM_ARCH_V7R},
24552 {10, ARM_ARCH_V7M},
bca38921 24553 {14, ARM_ARCH_V8A},
62b3e311
PB
24554 {0, ARM_ARCH_NONE}
24555};
24556
ee3c0378
AS
24557/* Set an attribute if it has not already been set by the user. */
24558static void
24559aeabi_set_attribute_int (int tag, int value)
24560{
24561 if (tag < 1
24562 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24563 || !attributes_set_explicitly[tag])
24564 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24565}
24566
24567static void
24568aeabi_set_attribute_string (int tag, const char *value)
24569{
24570 if (tag < 1
24571 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24572 || !attributes_set_explicitly[tag])
24573 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24574}
24575
ee065d83
PB
24576/* Set the public EABI object attributes. */
24577static void
24578aeabi_set_public_attributes (void)
24579{
24580 int arch;
69239280 24581 char profile;
90ec0d68 24582 int virt_sec = 0;
bca38921 24583 int fp16_optional = 0;
e74cfd16 24584 arm_feature_set flags;
62b3e311
PB
24585 arm_feature_set tmp;
24586 const cpu_arch_ver_table *p;
ee065d83
PB
24587
24588 /* Choose the architecture based on the capabilities of the requested cpu
24589 (if any) and/or the instructions actually used. */
e74cfd16
PB
24590 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24591 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24592 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
ddd7f988
RE
24593
24594 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24595 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24596
24597 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24598 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24599
24600 /* Allow the user to override the reported architecture. */
7a1d4c38
PB
24601 if (object_arch)
24602 {
24603 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24604 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24605 }
24606
251665fc
MGD
24607 /* We need to make sure that the attributes do not identify us as v6S-M
24608 when the only v6S-M feature in use is the Operating System Extensions. */
24609 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24610 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24611 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24612
62b3e311
PB
24613 tmp = flags;
24614 arch = 0;
24615 for (p = cpu_arch_ver; p->val; p++)
24616 {
24617 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24618 {
24619 arch = p->val;
24620 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24621 }
24622 }
ee065d83 24623
9e3c6df6
PB
24624 /* The table lookup above finds the last architecture to contribute
24625 a new feature. Unfortunately, Tag13 is a subset of the union of
24626 v6T2 and v7-M, so it is never seen as contributing a new feature.
24627 We can not search for the last entry which is entirely used,
24628 because if no CPU is specified we build up only those flags
24629 actually used. Perhaps we should separate out the specified
24630 and implicit cases. Avoid taking this path for -march=all by
24631 checking for contradictory v7-A / v7-M features. */
24632 if (arch == 10
24633 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24634 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24635 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24636 arch = 13;
24637
ee065d83
PB
24638 /* Tag_CPU_name. */
24639 if (selected_cpu_name[0])
24640 {
91d6fa6a 24641 char *q;
ee065d83 24642
91d6fa6a
NC
24643 q = selected_cpu_name;
24644 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
24645 {
24646 int i;
5f4273c7 24647
91d6fa6a
NC
24648 q += 4;
24649 for (i = 0; q[i]; i++)
24650 q[i] = TOUPPER (q[i]);
ee065d83 24651 }
91d6fa6a 24652 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 24653 }
62f3b8c8 24654
ee065d83 24655 /* Tag_CPU_arch. */
ee3c0378 24656 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 24657
62b3e311
PB
24658 /* Tag_CPU_arch_profile. */
24659 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
69239280 24660 profile = 'A';
62b3e311 24661 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
69239280 24662 profile = 'R';
7e806470 24663 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
69239280
MGD
24664 profile = 'M';
24665 else
24666 profile = '\0';
24667
24668 if (profile != '\0')
24669 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 24670
ee065d83 24671 /* Tag_ARM_ISA_use. */
ee3c0378
AS
24672 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24673 || arch == 0)
24674 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 24675
ee065d83 24676 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
24677 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24678 || arch == 0)
24679 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24680 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 24681
ee065d83 24682 /* Tag_VFP_arch. */
bca38921
MGD
24683 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24684 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24685 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
24686 aeabi_set_attribute_int (Tag_VFP_arch,
24687 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24688 ? 5 : 6);
24689 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
24690 {
24691 fp16_optional = 1;
24692 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24693 }
ada65aa3 24694 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
24695 {
24696 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24697 fp16_optional = 1;
24698 }
ee3c0378
AS
24699 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24700 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24701 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24702 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24703 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 24704
4547cb56
NC
24705 /* Tag_ABI_HardFP_use. */
24706 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24707 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24708 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24709
ee065d83 24710 /* Tag_WMMX_arch. */
ee3c0378
AS
24711 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24712 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24713 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24714 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 24715
ee3c0378 24716 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
bca38921
MGD
24717 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24718 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24719 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24720 {
24721 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24722 {
24723 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24724 }
24725 else
24726 {
24727 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24728 fp16_optional = 1;
24729 }
24730 }
fa94de6b 24731
ee3c0378 24732 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 24733 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 24734 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 24735
69239280
MGD
24736 /* Tag_DIV_use.
24737
24738 We set Tag_DIV_use to two when integer divide instructions have been used
24739 in ARM state, or when Thumb integer divide instructions have been used,
24740 but we have no architecture profile set, nor have we any ARM instructions.
24741
bca38921
MGD
24742 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24743 architecture.
24744
69239280 24745 For new architectures we will have to check these tests. */
bca38921
MGD
24746 gas_assert (arch <= TAG_CPU_ARCH_V8);
24747 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24748 aeabi_set_attribute_int (Tag_DIV_use, 0);
24749 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24750 || (profile == '\0'
24751 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24752 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 24753 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
24754
24755 /* Tag_MP_extension_use. */
24756 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24757 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
24758
24759 /* Tag Virtualization_use. */
24760 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
24761 virt_sec |= 1;
24762 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24763 virt_sec |= 2;
24764 if (virt_sec != 0)
24765 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
24766}
24767
104d59d1 24768/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
24769void
24770arm_md_end (void)
24771{
ee065d83
PB
24772 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24773 return;
24774
24775 aeabi_set_public_attributes ();
ee065d83 24776}
8463be01 24777#endif /* OBJ_ELF */
ee065d83
PB
24778
24779
24780/* Parse a .cpu directive. */
24781
24782static void
24783s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24784{
e74cfd16 24785 const struct arm_cpu_option_table *opt;
ee065d83
PB
24786 char *name;
24787 char saved_char;
24788
24789 name = input_line_pointer;
5f4273c7 24790 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24791 input_line_pointer++;
24792 saved_char = *input_line_pointer;
24793 *input_line_pointer = 0;
24794
24795 /* Skip the first "all" entry. */
24796 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24797 if (streq (opt->name, name))
24798 {
e74cfd16
PB
24799 mcpu_cpu_opt = &opt->value;
24800 selected_cpu = opt->value;
ee065d83 24801 if (opt->canonical_name)
5f4273c7 24802 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
24803 else
24804 {
24805 int i;
24806 for (i = 0; opt->name[i]; i++)
24807 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 24808
ee065d83
PB
24809 selected_cpu_name[i] = 0;
24810 }
e74cfd16 24811 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24812 *input_line_pointer = saved_char;
24813 demand_empty_rest_of_line ();
24814 return;
24815 }
24816 as_bad (_("unknown cpu `%s'"), name);
24817 *input_line_pointer = saved_char;
24818 ignore_rest_of_line ();
24819}
24820
24821
24822/* Parse a .arch directive. */
24823
24824static void
24825s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24826{
e74cfd16 24827 const struct arm_arch_option_table *opt;
ee065d83
PB
24828 char saved_char;
24829 char *name;
24830
24831 name = input_line_pointer;
5f4273c7 24832 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24833 input_line_pointer++;
24834 saved_char = *input_line_pointer;
24835 *input_line_pointer = 0;
24836
24837 /* Skip the first "all" entry. */
24838 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24839 if (streq (opt->name, name))
24840 {
e74cfd16
PB
24841 mcpu_cpu_opt = &opt->value;
24842 selected_cpu = opt->value;
5f4273c7 24843 strcpy (selected_cpu_name, opt->name);
e74cfd16 24844 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24845 *input_line_pointer = saved_char;
24846 demand_empty_rest_of_line ();
24847 return;
24848 }
24849
24850 as_bad (_("unknown architecture `%s'\n"), name);
24851 *input_line_pointer = saved_char;
24852 ignore_rest_of_line ();
24853}
24854
24855
7a1d4c38
PB
24856/* Parse a .object_arch directive. */
24857
24858static void
24859s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24860{
24861 const struct arm_arch_option_table *opt;
24862 char saved_char;
24863 char *name;
24864
24865 name = input_line_pointer;
5f4273c7 24866 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
24867 input_line_pointer++;
24868 saved_char = *input_line_pointer;
24869 *input_line_pointer = 0;
24870
24871 /* Skip the first "all" entry. */
24872 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24873 if (streq (opt->name, name))
24874 {
24875 object_arch = &opt->value;
24876 *input_line_pointer = saved_char;
24877 demand_empty_rest_of_line ();
24878 return;
24879 }
24880
24881 as_bad (_("unknown architecture `%s'\n"), name);
24882 *input_line_pointer = saved_char;
24883 ignore_rest_of_line ();
24884}
24885
69133863
MGD
24886/* Parse a .arch_extension directive. */
24887
24888static void
24889s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24890{
24891 const struct arm_option_extension_value_table *opt;
24892 char saved_char;
24893 char *name;
24894 int adding_value = 1;
24895
24896 name = input_line_pointer;
24897 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24898 input_line_pointer++;
24899 saved_char = *input_line_pointer;
24900 *input_line_pointer = 0;
24901
24902 if (strlen (name) >= 2
24903 && strncmp (name, "no", 2) == 0)
24904 {
24905 adding_value = 0;
24906 name += 2;
24907 }
24908
24909 for (opt = arm_extensions; opt->name != NULL; opt++)
24910 if (streq (opt->name, name))
24911 {
24912 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24913 {
24914 as_bad (_("architectural extension `%s' is not allowed for the "
24915 "current base architecture"), name);
24916 break;
24917 }
24918
24919 if (adding_value)
24920 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24921 else
24922 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24923
24924 mcpu_cpu_opt = &selected_cpu;
24925 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24926 *input_line_pointer = saved_char;
24927 demand_empty_rest_of_line ();
24928 return;
24929 }
24930
24931 if (opt->name == NULL)
24932 as_bad (_("unknown architecture `%s'\n"), name);
24933
24934 *input_line_pointer = saved_char;
24935 ignore_rest_of_line ();
24936}
24937
ee065d83
PB
24938/* Parse a .fpu directive. */
24939
24940static void
24941s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24942{
69133863 24943 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
24944 char saved_char;
24945 char *name;
24946
24947 name = input_line_pointer;
5f4273c7 24948 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24949 input_line_pointer++;
24950 saved_char = *input_line_pointer;
24951 *input_line_pointer = 0;
5f4273c7 24952
ee065d83
PB
24953 for (opt = arm_fpus; opt->name != NULL; opt++)
24954 if (streq (opt->name, name))
24955 {
e74cfd16
PB
24956 mfpu_opt = &opt->value;
24957 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24958 *input_line_pointer = saved_char;
24959 demand_empty_rest_of_line ();
24960 return;
24961 }
24962
24963 as_bad (_("unknown floating point format `%s'\n"), name);
24964 *input_line_pointer = saved_char;
24965 ignore_rest_of_line ();
24966}
ee065d83 24967
794ba86a 24968/* Copy symbol information. */
f31fef98 24969
794ba86a
DJ
24970void
24971arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24972{
24973 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24974}
e04befd0 24975
f31fef98 24976#ifdef OBJ_ELF
e04befd0
AS
24977/* Given a symbolic attribute NAME, return the proper integer value.
24978 Returns -1 if the attribute is not known. */
f31fef98 24979
e04befd0
AS
24980int
24981arm_convert_symbolic_attribute (const char *name)
24982{
f31fef98
NC
24983 static const struct
24984 {
24985 const char * name;
24986 const int tag;
24987 }
24988 attribute_table[] =
24989 {
24990 /* When you modify this table you should
24991 also modify the list in doc/c-arm.texi. */
e04befd0 24992#define T(tag) {#tag, tag}
f31fef98
NC
24993 T (Tag_CPU_raw_name),
24994 T (Tag_CPU_name),
24995 T (Tag_CPU_arch),
24996 T (Tag_CPU_arch_profile),
24997 T (Tag_ARM_ISA_use),
24998 T (Tag_THUMB_ISA_use),
75375b3e 24999 T (Tag_FP_arch),
f31fef98
NC
25000 T (Tag_VFP_arch),
25001 T (Tag_WMMX_arch),
25002 T (Tag_Advanced_SIMD_arch),
25003 T (Tag_PCS_config),
25004 T (Tag_ABI_PCS_R9_use),
25005 T (Tag_ABI_PCS_RW_data),
25006 T (Tag_ABI_PCS_RO_data),
25007 T (Tag_ABI_PCS_GOT_use),
25008 T (Tag_ABI_PCS_wchar_t),
25009 T (Tag_ABI_FP_rounding),
25010 T (Tag_ABI_FP_denormal),
25011 T (Tag_ABI_FP_exceptions),
25012 T (Tag_ABI_FP_user_exceptions),
25013 T (Tag_ABI_FP_number_model),
75375b3e 25014 T (Tag_ABI_align_needed),
f31fef98 25015 T (Tag_ABI_align8_needed),
75375b3e 25016 T (Tag_ABI_align_preserved),
f31fef98
NC
25017 T (Tag_ABI_align8_preserved),
25018 T (Tag_ABI_enum_size),
25019 T (Tag_ABI_HardFP_use),
25020 T (Tag_ABI_VFP_args),
25021 T (Tag_ABI_WMMX_args),
25022 T (Tag_ABI_optimization_goals),
25023 T (Tag_ABI_FP_optimization_goals),
25024 T (Tag_compatibility),
25025 T (Tag_CPU_unaligned_access),
75375b3e 25026 T (Tag_FP_HP_extension),
f31fef98
NC
25027 T (Tag_VFP_HP_extension),
25028 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
25029 T (Tag_MPextension_use),
25030 T (Tag_DIV_use),
f31fef98
NC
25031 T (Tag_nodefaults),
25032 T (Tag_also_compatible_with),
25033 T (Tag_conformance),
25034 T (Tag_T2EE_use),
25035 T (Tag_Virtualization_use),
cd21e546 25036 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 25037#undef T
f31fef98 25038 };
e04befd0
AS
25039 unsigned int i;
25040
25041 if (name == NULL)
25042 return -1;
25043
f31fef98 25044 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 25045 if (streq (name, attribute_table[i].name))
e04befd0
AS
25046 return attribute_table[i].tag;
25047
25048 return -1;
25049}
267bf995
RR
25050
25051
25052/* Apply sym value for relocations only in the case that
25053 they are for local symbols and you have the respective
25054 architectural feature for blx and simple switches. */
25055int
25056arm_apply_sym_value (struct fix * fixP)
25057{
25058 if (fixP->fx_addsy
25059 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 25060 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
25061 {
25062 switch (fixP->fx_r_type)
25063 {
25064 case BFD_RELOC_ARM_PCREL_BLX:
25065 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25066 if (ARM_IS_FUNC (fixP->fx_addsy))
25067 return 1;
25068 break;
25069
25070 case BFD_RELOC_ARM_PCREL_CALL:
25071 case BFD_RELOC_THUMB_PCREL_BLX:
25072 if (THUMB_IS_FUNC (fixP->fx_addsy))
25073 return 1;
25074 break;
25075
25076 default:
25077 break;
25078 }
25079
25080 }
25081 return 0;
25082}
f31fef98 25083#endif /* OBJ_ELF */
This page took 2.481632 seconds and 4 git commands to generate.