2011-04-20 Catherine Moore <clm@codesourcery.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4a58c4bd 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470 198static const arm_feature_set arm_ext_m =
b2a5fbdc 199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 200static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 201static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 202static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 203static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 204static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
205
206static const arm_feature_set arm_arch_any = ARM_ANY;
207static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 210static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 211
2d447fca
JM
212static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
214static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 226static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 227static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
228static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
230static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
233static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 236
33a392fb 237static int mfloat_abi_opt = -1;
e74cfd16
PB
238/* Record user cpu selection for object attributes. */
239static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
240/* Must be long enough to hold any of the names in arm_cpus. */
241static char selected_cpu_name[16];
7cc69913 242#ifdef OBJ_ELF
deeaaff8
DJ
243# ifdef EABI_DEFAULT
244static int meabi_flags = EABI_DEFAULT;
245# else
d507cf36 246static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 247# endif
e1da3f5b 248
ee3c0378
AS
249static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
250
e1da3f5b 251bfd_boolean
5f4273c7 252arm_is_eabi (void)
e1da3f5b
PB
253{
254 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
255}
7cc69913 256#endif
b99bd4ef 257
b99bd4ef 258#ifdef OBJ_ELF
c19d1205 259/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
260symbolS * GOT_symbol;
261#endif
262
b99bd4ef
NC
263/* 0: assemble for ARM,
264 1: assemble for Thumb,
265 2: assemble for Thumb even though target CPU does not support thumb
266 instructions. */
267static int thumb_mode = 0;
8dc2430f
NC
268/* A value distinct from the possible values for thumb_mode that we
269 can use to record whether thumb_mode has been copied into the
270 tc_frag_data field of a frag. */
271#define MODE_RECORDED (1 << 4)
b99bd4ef 272
e07e6e58
NC
273/* Specifies the intrinsic IT insn behavior mode. */
274enum implicit_it_mode
275{
276 IMPLICIT_IT_MODE_NEVER = 0x00,
277 IMPLICIT_IT_MODE_ARM = 0x01,
278 IMPLICIT_IT_MODE_THUMB = 0x02,
279 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
280};
281static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
282
c19d1205
ZW
283/* If unified_syntax is true, we are processing the new unified
284 ARM/Thumb syntax. Important differences from the old ARM mode:
285
286 - Immediate operands do not require a # prefix.
287 - Conditional affixes always appear at the end of the
288 instruction. (For backward compatibility, those instructions
289 that formerly had them in the middle, continue to accept them
290 there.)
291 - The IT instruction may appear, and if it does is validated
292 against subsequent conditional affixes. It does not generate
293 machine code.
294
295 Important differences from the old Thumb mode:
296
297 - Immediate operands do not require a # prefix.
298 - Most of the V6T2 instructions are only available in unified mode.
299 - The .N and .W suffixes are recognized and honored (it is an error
300 if they cannot be honored).
301 - All instructions set the flags if and only if they have an 's' affix.
302 - Conditional affixes may be used. They are validated against
303 preceding IT instructions. Unlike ARM mode, you cannot use a
304 conditional affix except in the scope of an IT instruction. */
305
306static bfd_boolean unified_syntax = FALSE;
b99bd4ef 307
5287ad62
JB
308enum neon_el_type
309{
dcbf9037 310 NT_invtype,
5287ad62
JB
311 NT_untyped,
312 NT_integer,
313 NT_float,
314 NT_poly,
315 NT_signed,
dcbf9037 316 NT_unsigned
5287ad62
JB
317};
318
319struct neon_type_el
320{
321 enum neon_el_type type;
322 unsigned size;
323};
324
325#define NEON_MAX_TYPE_ELS 4
326
327struct neon_type
328{
329 struct neon_type_el el[NEON_MAX_TYPE_ELS];
330 unsigned elems;
331};
332
e07e6e58
NC
333enum it_instruction_type
334{
335 OUTSIDE_IT_INSN,
336 INSIDE_IT_INSN,
337 INSIDE_IT_LAST_INSN,
338 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
339 if inside, should be the last one. */
340 NEUTRAL_IT_INSN, /* This could be either inside or outside,
341 i.e. BKPT and NOP. */
342 IT_INSN /* The IT insn has been parsed. */
343};
344
b99bd4ef
NC
345struct arm_it
346{
c19d1205 347 const char * error;
b99bd4ef 348 unsigned long instruction;
c19d1205
ZW
349 int size;
350 int size_req;
351 int cond;
037e8744
JB
352 /* "uncond_value" is set to the value in place of the conditional field in
353 unconditional versions of the instruction, or -1 if nothing is
354 appropriate. */
355 int uncond_value;
5287ad62 356 struct neon_type vectype;
88714cb8
DG
357 /* This does not indicate an actual NEON instruction, only that
358 the mnemonic accepts neon-style type suffixes. */
359 int is_neon;
0110f2b8
PB
360 /* Set to the opcode if the instruction needs relaxation.
361 Zero if the instruction is not relaxed. */
362 unsigned long relax;
b99bd4ef
NC
363 struct
364 {
365 bfd_reloc_code_real_type type;
c19d1205
ZW
366 expressionS exp;
367 int pc_rel;
b99bd4ef 368 } reloc;
b99bd4ef 369
e07e6e58
NC
370 enum it_instruction_type it_insn_type;
371
c19d1205
ZW
372 struct
373 {
374 unsigned reg;
ca3f61f7 375 signed int imm;
dcbf9037 376 struct neon_type_el vectype;
ca3f61f7
NC
377 unsigned present : 1; /* Operand present. */
378 unsigned isreg : 1; /* Operand was a register. */
379 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
380 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
381 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 382 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
383 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
384 instructions. This allows us to disambiguate ARM <-> vector insns. */
385 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 386 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 387 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 388 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
389 unsigned hasreloc : 1; /* Operand has relocation suffix. */
390 unsigned writeback : 1; /* Operand has trailing ! */
391 unsigned preind : 1; /* Preindexed address. */
392 unsigned postind : 1; /* Postindexed address. */
393 unsigned negative : 1; /* Index register was negated. */
394 unsigned shifted : 1; /* Shift applied to operation. */
395 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 396 } operands[6];
b99bd4ef
NC
397};
398
c19d1205 399static struct arm_it inst;
b99bd4ef
NC
400
401#define NUM_FLOAT_VALS 8
402
05d2d07e 403const char * fp_const[] =
b99bd4ef
NC
404{
405 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
406};
407
c19d1205 408/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
409#define MAX_LITTLENUMS 6
410
411LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
412
413#define FAIL (-1)
414#define SUCCESS (0)
415
416#define SUFF_S 1
417#define SUFF_D 2
418#define SUFF_E 3
419#define SUFF_P 4
420
c19d1205
ZW
421#define CP_T_X 0x00008000
422#define CP_T_Y 0x00400000
b99bd4ef 423
c19d1205
ZW
424#define CONDS_BIT 0x00100000
425#define LOAD_BIT 0x00100000
b99bd4ef
NC
426
427#define DOUBLE_LOAD_FLAG 0x00000001
428
429struct asm_cond
430{
d3ce72d0 431 const char * template_name;
c921be7d 432 unsigned long value;
b99bd4ef
NC
433};
434
c19d1205 435#define COND_ALWAYS 0xE
b99bd4ef 436
b99bd4ef
NC
437struct asm_psr
438{
d3ce72d0 439 const char * template_name;
c921be7d 440 unsigned long field;
b99bd4ef
NC
441};
442
62b3e311
PB
443struct asm_barrier_opt
444{
d3ce72d0 445 const char * template_name;
c921be7d 446 unsigned long value;
62b3e311
PB
447};
448
2d2255b5 449/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
450#define SPSR_BIT (1 << 22)
451
c19d1205
ZW
452/* The individual PSR flag bits. */
453#define PSR_c (1 << 16)
454#define PSR_x (1 << 17)
455#define PSR_s (1 << 18)
456#define PSR_f (1 << 19)
b99bd4ef 457
c19d1205 458struct reloc_entry
bfae80f2 459{
c921be7d
NC
460 char * name;
461 bfd_reloc_code_real_type reloc;
bfae80f2
RE
462};
463
5287ad62 464enum vfp_reg_pos
bfae80f2 465{
5287ad62
JB
466 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
467 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
468};
469
470enum vfp_ldstm_type
471{
472 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
473};
474
dcbf9037
JB
475/* Bits for DEFINED field in neon_typed_alias. */
476#define NTA_HASTYPE 1
477#define NTA_HASINDEX 2
478
479struct neon_typed_alias
480{
c921be7d
NC
481 unsigned char defined;
482 unsigned char index;
483 struct neon_type_el eltype;
dcbf9037
JB
484};
485
c19d1205
ZW
486/* ARM register categories. This includes coprocessor numbers and various
487 architecture extensions' registers. */
488enum arm_reg_type
bfae80f2 489{
c19d1205
ZW
490 REG_TYPE_RN,
491 REG_TYPE_CP,
492 REG_TYPE_CN,
493 REG_TYPE_FN,
494 REG_TYPE_VFS,
495 REG_TYPE_VFD,
5287ad62 496 REG_TYPE_NQ,
037e8744 497 REG_TYPE_VFSD,
5287ad62 498 REG_TYPE_NDQ,
037e8744 499 REG_TYPE_NSDQ,
c19d1205
ZW
500 REG_TYPE_VFC,
501 REG_TYPE_MVF,
502 REG_TYPE_MVD,
503 REG_TYPE_MVFX,
504 REG_TYPE_MVDX,
505 REG_TYPE_MVAX,
506 REG_TYPE_DSPSC,
507 REG_TYPE_MMXWR,
508 REG_TYPE_MMXWC,
509 REG_TYPE_MMXWCG,
510 REG_TYPE_XSCALE,
90ec0d68 511 REG_TYPE_RNB
bfae80f2
RE
512};
513
dcbf9037
JB
514/* Structure for a hash table entry for a register.
515 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
516 information which states whether a vector type or index is specified (for a
517 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
518struct reg_entry
519{
c921be7d 520 const char * name;
90ec0d68 521 unsigned int number;
c921be7d
NC
522 unsigned char type;
523 unsigned char builtin;
524 struct neon_typed_alias * neon;
6c43fab6
RE
525};
526
c19d1205 527/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 528const char * const reg_expected_msgs[] =
c19d1205
ZW
529{
530 N_("ARM register expected"),
531 N_("bad or missing co-processor number"),
532 N_("co-processor register expected"),
533 N_("FPA register expected"),
534 N_("VFP single precision register expected"),
5287ad62
JB
535 N_("VFP/Neon double precision register expected"),
536 N_("Neon quad precision register expected"),
037e8744 537 N_("VFP single or double precision register expected"),
5287ad62 538 N_("Neon double or quad precision register expected"),
037e8744 539 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
540 N_("VFP system register expected"),
541 N_("Maverick MVF register expected"),
542 N_("Maverick MVD register expected"),
543 N_("Maverick MVFX register expected"),
544 N_("Maverick MVDX register expected"),
545 N_("Maverick MVAX register expected"),
546 N_("Maverick DSPSC register expected"),
547 N_("iWMMXt data register expected"),
548 N_("iWMMXt control register expected"),
549 N_("iWMMXt scalar register expected"),
550 N_("XScale accumulator register expected"),
6c43fab6
RE
551};
552
c19d1205
ZW
553/* Some well known registers that we refer to directly elsewhere. */
554#define REG_SP 13
555#define REG_LR 14
556#define REG_PC 15
404ff6b5 557
b99bd4ef
NC
558/* ARM instructions take 4bytes in the object file, Thumb instructions
559 take 2: */
c19d1205 560#define INSN_SIZE 4
b99bd4ef
NC
561
562struct asm_opcode
563{
564 /* Basic string to match. */
d3ce72d0 565 const char * template_name;
c19d1205
ZW
566
567 /* Parameters to instruction. */
5be8be5d 568 unsigned int operands[8];
c19d1205
ZW
569
570 /* Conditional tag - see opcode_lookup. */
571 unsigned int tag : 4;
b99bd4ef
NC
572
573 /* Basic instruction code. */
c19d1205 574 unsigned int avalue : 28;
b99bd4ef 575
c19d1205
ZW
576 /* Thumb-format instruction code. */
577 unsigned int tvalue;
b99bd4ef 578
90e4755a 579 /* Which architecture variant provides this instruction. */
c921be7d
NC
580 const arm_feature_set * avariant;
581 const arm_feature_set * tvariant;
c19d1205
ZW
582
583 /* Function to call to encode instruction in ARM format. */
584 void (* aencode) (void);
b99bd4ef 585
c19d1205
ZW
586 /* Function to call to encode instruction in Thumb format. */
587 void (* tencode) (void);
b99bd4ef
NC
588};
589
a737bd4d
NC
590/* Defines for various bits that we will want to toggle. */
591#define INST_IMMEDIATE 0x02000000
592#define OFFSET_REG 0x02000000
c19d1205 593#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
594#define SHIFT_BY_REG 0x00000010
595#define PRE_INDEX 0x01000000
596#define INDEX_UP 0x00800000
597#define WRITE_BACK 0x00200000
598#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 599#define CPSI_MMOD 0x00020000
90e4755a 600
a737bd4d
NC
601#define LITERAL_MASK 0xf000f000
602#define OPCODE_MASK 0xfe1fffff
603#define V4_STR_BIT 0x00000020
90e4755a 604
efd81785
PB
605#define T2_SUBS_PC_LR 0xf3de8f00
606
a737bd4d 607#define DATA_OP_SHIFT 21
90e4755a 608
ef8d22e6
PB
609#define T2_OPCODE_MASK 0xfe1fffff
610#define T2_DATA_OP_SHIFT 21
611
a737bd4d
NC
612/* Codes to distinguish the arithmetic instructions. */
613#define OPCODE_AND 0
614#define OPCODE_EOR 1
615#define OPCODE_SUB 2
616#define OPCODE_RSB 3
617#define OPCODE_ADD 4
618#define OPCODE_ADC 5
619#define OPCODE_SBC 6
620#define OPCODE_RSC 7
621#define OPCODE_TST 8
622#define OPCODE_TEQ 9
623#define OPCODE_CMP 10
624#define OPCODE_CMN 11
625#define OPCODE_ORR 12
626#define OPCODE_MOV 13
627#define OPCODE_BIC 14
628#define OPCODE_MVN 15
90e4755a 629
ef8d22e6
PB
630#define T2_OPCODE_AND 0
631#define T2_OPCODE_BIC 1
632#define T2_OPCODE_ORR 2
633#define T2_OPCODE_ORN 3
634#define T2_OPCODE_EOR 4
635#define T2_OPCODE_ADD 8
636#define T2_OPCODE_ADC 10
637#define T2_OPCODE_SBC 11
638#define T2_OPCODE_SUB 13
639#define T2_OPCODE_RSB 14
640
a737bd4d
NC
641#define T_OPCODE_MUL 0x4340
642#define T_OPCODE_TST 0x4200
643#define T_OPCODE_CMN 0x42c0
644#define T_OPCODE_NEG 0x4240
645#define T_OPCODE_MVN 0x43c0
90e4755a 646
a737bd4d
NC
647#define T_OPCODE_ADD_R3 0x1800
648#define T_OPCODE_SUB_R3 0x1a00
649#define T_OPCODE_ADD_HI 0x4400
650#define T_OPCODE_ADD_ST 0xb000
651#define T_OPCODE_SUB_ST 0xb080
652#define T_OPCODE_ADD_SP 0xa800
653#define T_OPCODE_ADD_PC 0xa000
654#define T_OPCODE_ADD_I8 0x3000
655#define T_OPCODE_SUB_I8 0x3800
656#define T_OPCODE_ADD_I3 0x1c00
657#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 658
a737bd4d
NC
659#define T_OPCODE_ASR_R 0x4100
660#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
661#define T_OPCODE_LSR_R 0x40c0
662#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
663#define T_OPCODE_ASR_I 0x1000
664#define T_OPCODE_LSL_I 0x0000
665#define T_OPCODE_LSR_I 0x0800
b99bd4ef 666
a737bd4d
NC
667#define T_OPCODE_MOV_I8 0x2000
668#define T_OPCODE_CMP_I8 0x2800
669#define T_OPCODE_CMP_LR 0x4280
670#define T_OPCODE_MOV_HR 0x4600
671#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 672
a737bd4d
NC
673#define T_OPCODE_LDR_PC 0x4800
674#define T_OPCODE_LDR_SP 0x9800
675#define T_OPCODE_STR_SP 0x9000
676#define T_OPCODE_LDR_IW 0x6800
677#define T_OPCODE_STR_IW 0x6000
678#define T_OPCODE_LDR_IH 0x8800
679#define T_OPCODE_STR_IH 0x8000
680#define T_OPCODE_LDR_IB 0x7800
681#define T_OPCODE_STR_IB 0x7000
682#define T_OPCODE_LDR_RW 0x5800
683#define T_OPCODE_STR_RW 0x5000
684#define T_OPCODE_LDR_RH 0x5a00
685#define T_OPCODE_STR_RH 0x5200
686#define T_OPCODE_LDR_RB 0x5c00
687#define T_OPCODE_STR_RB 0x5400
c9b604bd 688
a737bd4d
NC
689#define T_OPCODE_PUSH 0xb400
690#define T_OPCODE_POP 0xbc00
b99bd4ef 691
2fc8bdac 692#define T_OPCODE_BRANCH 0xe000
b99bd4ef 693
a737bd4d 694#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 695#define THUMB_PP_PC_LR 0x0100
c19d1205 696#define THUMB_LOAD_BIT 0x0800
53365c0d 697#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
698
699#define BAD_ARGS _("bad arguments to instruction")
fdfde340 700#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
701#define BAD_PC _("r15 not allowed here")
702#define BAD_COND _("instruction cannot be conditional")
703#define BAD_OVERLAP _("registers may not be the same")
704#define BAD_HIREG _("lo register required")
705#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 706#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
707#define BAD_BRANCH _("branch must be last instruction in IT block")
708#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 709#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
710#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
711#define BAD_IT_COND _("incorrect condition in IT block")
712#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 713#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
714#define BAD_PC_ADDRESSING \
715 _("cannot use register index with PC-relative addressing")
716#define BAD_PC_WRITEBACK \
717 _("cannot use writeback with PC-relative addressing")
c19d1205 718
c921be7d
NC
719static struct hash_control * arm_ops_hsh;
720static struct hash_control * arm_cond_hsh;
721static struct hash_control * arm_shift_hsh;
722static struct hash_control * arm_psr_hsh;
723static struct hash_control * arm_v7m_psr_hsh;
724static struct hash_control * arm_reg_hsh;
725static struct hash_control * arm_reloc_hsh;
726static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 727
b99bd4ef
NC
728/* Stuff needed to resolve the label ambiguity
729 As:
730 ...
731 label: <insn>
732 may differ from:
733 ...
734 label:
5f4273c7 735 <insn> */
b99bd4ef
NC
736
737symbolS * last_label_seen;
b34976b6 738static int label_is_thumb_function_name = FALSE;
e07e6e58 739
3d0c9500
NC
740/* Literal pool structure. Held on a per-section
741 and per-sub-section basis. */
a737bd4d 742
c19d1205 743#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 744typedef struct literal_pool
b99bd4ef 745{
c921be7d
NC
746 expressionS literals [MAX_LITERAL_POOL_SIZE];
747 unsigned int next_free_entry;
748 unsigned int id;
749 symbolS * symbol;
750 segT section;
751 subsegT sub_section;
752 struct literal_pool * next;
3d0c9500 753} literal_pool;
b99bd4ef 754
3d0c9500
NC
755/* Pointer to a linked list of literal pools. */
756literal_pool * list_of_pools = NULL;
e27ec89e 757
e07e6e58
NC
758#ifdef OBJ_ELF
759# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
760#else
761static struct current_it now_it;
762#endif
763
764static inline int
765now_it_compatible (int cond)
766{
767 return (cond & ~1) == (now_it.cc & ~1);
768}
769
770static inline int
771conditional_insn (void)
772{
773 return inst.cond != COND_ALWAYS;
774}
775
776static int in_it_block (void);
777
778static int handle_it_state (void);
779
780static void force_automatic_it_block_close (void);
781
c921be7d
NC
782static void it_fsm_post_encode (void);
783
e07e6e58
NC
784#define set_it_insn_type(type) \
785 do \
786 { \
787 inst.it_insn_type = type; \
788 if (handle_it_state () == FAIL) \
789 return; \
790 } \
791 while (0)
792
c921be7d
NC
793#define set_it_insn_type_nonvoid(type, failret) \
794 do \
795 { \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return failret; \
799 } \
800 while(0)
801
e07e6e58
NC
802#define set_it_insn_type_last() \
803 do \
804 { \
805 if (inst.cond == COND_ALWAYS) \
806 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
807 else \
808 set_it_insn_type (INSIDE_IT_LAST_INSN); \
809 } \
810 while (0)
811
c19d1205 812/* Pure syntax. */
b99bd4ef 813
c19d1205
ZW
814/* This array holds the chars that always start a comment. If the
815 pre-processor is disabled, these aren't very useful. */
816const char comment_chars[] = "@";
3d0c9500 817
c19d1205
ZW
818/* This array holds the chars that only start a comment at the beginning of
819 a line. If the line seems to have the form '# 123 filename'
820 .line and .file directives will appear in the pre-processed output. */
821/* Note that input_file.c hand checks for '#' at the beginning of the
822 first line of the input file. This is because the compiler outputs
823 #NO_APP at the beginning of its output. */
824/* Also note that comments like this one will always work. */
825const char line_comment_chars[] = "#";
3d0c9500 826
c19d1205 827const char line_separator_chars[] = ";";
b99bd4ef 828
c19d1205
ZW
829/* Chars that can be used to separate mant
830 from exp in floating point numbers. */
831const char EXP_CHARS[] = "eE";
3d0c9500 832
c19d1205
ZW
833/* Chars that mean this number is a floating point constant. */
834/* As in 0f12.456 */
835/* or 0d1.2345e12 */
b99bd4ef 836
c19d1205 837const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 838
c19d1205
ZW
839/* Prefix characters that indicate the start of an immediate
840 value. */
841#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 842
c19d1205
ZW
843/* Separator character handling. */
844
845#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
846
847static inline int
848skip_past_char (char ** str, char c)
849{
850 if (**str == c)
851 {
852 (*str)++;
853 return SUCCESS;
3d0c9500 854 }
c19d1205
ZW
855 else
856 return FAIL;
857}
c921be7d 858
c19d1205 859#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 860
c19d1205
ZW
861/* Arithmetic expressions (possibly involving symbols). */
862
863/* Return TRUE if anything in the expression is a bignum. */
864
865static int
866walk_no_bignums (symbolS * sp)
867{
868 if (symbol_get_value_expression (sp)->X_op == O_big)
869 return 1;
870
871 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 872 {
c19d1205
ZW
873 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
874 || (symbol_get_value_expression (sp)->X_op_symbol
875 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
876 }
877
c19d1205 878 return 0;
3d0c9500
NC
879}
880
c19d1205
ZW
881static int in_my_get_expression = 0;
882
883/* Third argument to my_get_expression. */
884#define GE_NO_PREFIX 0
885#define GE_IMM_PREFIX 1
886#define GE_OPT_PREFIX 2
5287ad62
JB
887/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
888 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
889#define GE_OPT_PREFIX_BIG 3
a737bd4d 890
b99bd4ef 891static int
c19d1205 892my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 893{
c19d1205
ZW
894 char * save_in;
895 segT seg;
b99bd4ef 896
c19d1205
ZW
897 /* In unified syntax, all prefixes are optional. */
898 if (unified_syntax)
5287ad62
JB
899 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
900 : GE_OPT_PREFIX;
b99bd4ef 901
c19d1205 902 switch (prefix_mode)
b99bd4ef 903 {
c19d1205
ZW
904 case GE_NO_PREFIX: break;
905 case GE_IMM_PREFIX:
906 if (!is_immediate_prefix (**str))
907 {
908 inst.error = _("immediate expression requires a # prefix");
909 return FAIL;
910 }
911 (*str)++;
912 break;
913 case GE_OPT_PREFIX:
5287ad62 914 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
915 if (is_immediate_prefix (**str))
916 (*str)++;
917 break;
918 default: abort ();
919 }
b99bd4ef 920
c19d1205 921 memset (ep, 0, sizeof (expressionS));
b99bd4ef 922
c19d1205
ZW
923 save_in = input_line_pointer;
924 input_line_pointer = *str;
925 in_my_get_expression = 1;
926 seg = expression (ep);
927 in_my_get_expression = 0;
928
f86adc07 929 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 930 {
f86adc07 931 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
932 *str = input_line_pointer;
933 input_line_pointer = save_in;
934 if (inst.error == NULL)
f86adc07
NS
935 inst.error = (ep->X_op == O_absent
936 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
937 return 1;
938 }
b99bd4ef 939
c19d1205
ZW
940#ifdef OBJ_AOUT
941 if (seg != absolute_section
942 && seg != text_section
943 && seg != data_section
944 && seg != bss_section
945 && seg != undefined_section)
946 {
947 inst.error = _("bad segment");
948 *str = input_line_pointer;
949 input_line_pointer = save_in;
950 return 1;
b99bd4ef 951 }
87975d2a
AM
952#else
953 (void) seg;
c19d1205 954#endif
b99bd4ef 955
c19d1205
ZW
956 /* Get rid of any bignums now, so that we don't generate an error for which
957 we can't establish a line number later on. Big numbers are never valid
958 in instructions, which is where this routine is always called. */
5287ad62
JB
959 if (prefix_mode != GE_OPT_PREFIX_BIG
960 && (ep->X_op == O_big
961 || (ep->X_add_symbol
962 && (walk_no_bignums (ep->X_add_symbol)
963 || (ep->X_op_symbol
964 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
965 {
966 inst.error = _("invalid constant");
967 *str = input_line_pointer;
968 input_line_pointer = save_in;
969 return 1;
970 }
b99bd4ef 971
c19d1205
ZW
972 *str = input_line_pointer;
973 input_line_pointer = save_in;
974 return 0;
b99bd4ef
NC
975}
976
c19d1205
ZW
977/* Turn a string in input_line_pointer into a floating point constant
978 of type TYPE, and store the appropriate bytes in *LITP. The number
979 of LITTLENUMS emitted is stored in *SIZEP. An error message is
980 returned, or NULL on OK.
b99bd4ef 981
c19d1205
ZW
982 Note that fp constants aren't represent in the normal way on the ARM.
983 In big endian mode, things are as expected. However, in little endian
984 mode fp constants are big-endian word-wise, and little-endian byte-wise
985 within the words. For example, (double) 1.1 in big endian mode is
986 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
987 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 988
c19d1205 989 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 990
c19d1205
ZW
991char *
992md_atof (int type, char * litP, int * sizeP)
993{
994 int prec;
995 LITTLENUM_TYPE words[MAX_LITTLENUMS];
996 char *t;
997 int i;
b99bd4ef 998
c19d1205
ZW
999 switch (type)
1000 {
1001 case 'f':
1002 case 'F':
1003 case 's':
1004 case 'S':
1005 prec = 2;
1006 break;
b99bd4ef 1007
c19d1205
ZW
1008 case 'd':
1009 case 'D':
1010 case 'r':
1011 case 'R':
1012 prec = 4;
1013 break;
b99bd4ef 1014
c19d1205
ZW
1015 case 'x':
1016 case 'X':
499ac353 1017 prec = 5;
c19d1205 1018 break;
b99bd4ef 1019
c19d1205
ZW
1020 case 'p':
1021 case 'P':
499ac353 1022 prec = 5;
c19d1205 1023 break;
a737bd4d 1024
c19d1205
ZW
1025 default:
1026 *sizeP = 0;
499ac353 1027 return _("Unrecognized or unsupported floating point constant");
c19d1205 1028 }
b99bd4ef 1029
c19d1205
ZW
1030 t = atof_ieee (input_line_pointer, type, words);
1031 if (t)
1032 input_line_pointer = t;
499ac353 1033 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1034
c19d1205
ZW
1035 if (target_big_endian)
1036 {
1037 for (i = 0; i < prec; i++)
1038 {
499ac353
NC
1039 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1040 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1041 }
1042 }
1043 else
1044 {
e74cfd16 1045 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1046 for (i = prec - 1; i >= 0; i--)
1047 {
499ac353
NC
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1050 }
1051 else
1052 /* For a 4 byte float the order of elements in `words' is 1 0.
1053 For an 8 byte float the order is 1 0 3 2. */
1054 for (i = 0; i < prec; i += 2)
1055 {
499ac353
NC
1056 md_number_to_chars (litP, (valueT) words[i + 1],
1057 sizeof (LITTLENUM_TYPE));
1058 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1059 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1060 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1061 }
1062 }
b99bd4ef 1063
499ac353 1064 return NULL;
c19d1205 1065}
b99bd4ef 1066
c19d1205
ZW
1067/* We handle all bad expressions here, so that we can report the faulty
1068 instruction in the error message. */
1069void
91d6fa6a 1070md_operand (expressionS * exp)
c19d1205
ZW
1071{
1072 if (in_my_get_expression)
91d6fa6a 1073 exp->X_op = O_illegal;
b99bd4ef
NC
1074}
1075
c19d1205 1076/* Immediate values. */
b99bd4ef 1077
c19d1205
ZW
1078/* Generic immediate-value read function for use in directives.
1079 Accepts anything that 'expression' can fold to a constant.
1080 *val receives the number. */
1081#ifdef OBJ_ELF
1082static int
1083immediate_for_directive (int *val)
b99bd4ef 1084{
c19d1205
ZW
1085 expressionS exp;
1086 exp.X_op = O_illegal;
b99bd4ef 1087
c19d1205
ZW
1088 if (is_immediate_prefix (*input_line_pointer))
1089 {
1090 input_line_pointer++;
1091 expression (&exp);
1092 }
b99bd4ef 1093
c19d1205
ZW
1094 if (exp.X_op != O_constant)
1095 {
1096 as_bad (_("expected #constant"));
1097 ignore_rest_of_line ();
1098 return FAIL;
1099 }
1100 *val = exp.X_add_number;
1101 return SUCCESS;
b99bd4ef 1102}
c19d1205 1103#endif
b99bd4ef 1104
c19d1205 1105/* Register parsing. */
b99bd4ef 1106
c19d1205
ZW
1107/* Generic register parser. CCP points to what should be the
1108 beginning of a register name. If it is indeed a valid register
1109 name, advance CCP over it and return the reg_entry structure;
1110 otherwise return NULL. Does not issue diagnostics. */
1111
1112static struct reg_entry *
1113arm_reg_parse_multi (char **ccp)
b99bd4ef 1114{
c19d1205
ZW
1115 char *start = *ccp;
1116 char *p;
1117 struct reg_entry *reg;
b99bd4ef 1118
c19d1205
ZW
1119#ifdef REGISTER_PREFIX
1120 if (*start != REGISTER_PREFIX)
01cfc07f 1121 return NULL;
c19d1205
ZW
1122 start++;
1123#endif
1124#ifdef OPTIONAL_REGISTER_PREFIX
1125 if (*start == OPTIONAL_REGISTER_PREFIX)
1126 start++;
1127#endif
b99bd4ef 1128
c19d1205
ZW
1129 p = start;
1130 if (!ISALPHA (*p) || !is_name_beginner (*p))
1131 return NULL;
b99bd4ef 1132
c19d1205
ZW
1133 do
1134 p++;
1135 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1136
1137 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1138
1139 if (!reg)
1140 return NULL;
1141
1142 *ccp = p;
1143 return reg;
b99bd4ef
NC
1144}
1145
1146static int
dcbf9037
JB
1147arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1148 enum arm_reg_type type)
b99bd4ef 1149{
c19d1205
ZW
1150 /* Alternative syntaxes are accepted for a few register classes. */
1151 switch (type)
1152 {
1153 case REG_TYPE_MVF:
1154 case REG_TYPE_MVD:
1155 case REG_TYPE_MVFX:
1156 case REG_TYPE_MVDX:
1157 /* Generic coprocessor register names are allowed for these. */
79134647 1158 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1159 return reg->number;
1160 break;
69b97547 1161
c19d1205
ZW
1162 case REG_TYPE_CP:
1163 /* For backward compatibility, a bare number is valid here. */
1164 {
1165 unsigned long processor = strtoul (start, ccp, 10);
1166 if (*ccp != start && processor <= 15)
1167 return processor;
1168 }
6057a28f 1169
c19d1205
ZW
1170 case REG_TYPE_MMXWC:
1171 /* WC includes WCG. ??? I'm not sure this is true for all
1172 instructions that take WC registers. */
79134647 1173 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1174 return reg->number;
6057a28f 1175 break;
c19d1205 1176
6057a28f 1177 default:
c19d1205 1178 break;
6057a28f
NC
1179 }
1180
dcbf9037
JB
1181 return FAIL;
1182}
1183
1184/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1185 return value is the register number or FAIL. */
1186
1187static int
1188arm_reg_parse (char **ccp, enum arm_reg_type type)
1189{
1190 char *start = *ccp;
1191 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1192 int ret;
1193
1194 /* Do not allow a scalar (reg+index) to parse as a register. */
1195 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1196 return FAIL;
1197
1198 if (reg && reg->type == type)
1199 return reg->number;
1200
1201 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1202 return ret;
1203
c19d1205
ZW
1204 *ccp = start;
1205 return FAIL;
1206}
69b97547 1207
dcbf9037
JB
1208/* Parse a Neon type specifier. *STR should point at the leading '.'
1209 character. Does no verification at this stage that the type fits the opcode
1210 properly. E.g.,
1211
1212 .i32.i32.s16
1213 .s32.f32
1214 .u16
1215
1216 Can all be legally parsed by this function.
1217
1218 Fills in neon_type struct pointer with parsed information, and updates STR
1219 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1220 type, FAIL if not. */
1221
1222static int
1223parse_neon_type (struct neon_type *type, char **str)
1224{
1225 char *ptr = *str;
1226
1227 if (type)
1228 type->elems = 0;
1229
1230 while (type->elems < NEON_MAX_TYPE_ELS)
1231 {
1232 enum neon_el_type thistype = NT_untyped;
1233 unsigned thissize = -1u;
1234
1235 if (*ptr != '.')
1236 break;
1237
1238 ptr++;
1239
1240 /* Just a size without an explicit type. */
1241 if (ISDIGIT (*ptr))
1242 goto parsesize;
1243
1244 switch (TOLOWER (*ptr))
1245 {
1246 case 'i': thistype = NT_integer; break;
1247 case 'f': thistype = NT_float; break;
1248 case 'p': thistype = NT_poly; break;
1249 case 's': thistype = NT_signed; break;
1250 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1251 case 'd':
1252 thistype = NT_float;
1253 thissize = 64;
1254 ptr++;
1255 goto done;
dcbf9037
JB
1256 default:
1257 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1258 return FAIL;
1259 }
1260
1261 ptr++;
1262
1263 /* .f is an abbreviation for .f32. */
1264 if (thistype == NT_float && !ISDIGIT (*ptr))
1265 thissize = 32;
1266 else
1267 {
1268 parsesize:
1269 thissize = strtoul (ptr, &ptr, 10);
1270
1271 if (thissize != 8 && thissize != 16 && thissize != 32
1272 && thissize != 64)
1273 {
1274 as_bad (_("bad size %d in type specifier"), thissize);
1275 return FAIL;
1276 }
1277 }
1278
037e8744 1279 done:
dcbf9037
JB
1280 if (type)
1281 {
1282 type->el[type->elems].type = thistype;
1283 type->el[type->elems].size = thissize;
1284 type->elems++;
1285 }
1286 }
1287
1288 /* Empty/missing type is not a successful parse. */
1289 if (type->elems == 0)
1290 return FAIL;
1291
1292 *str = ptr;
1293
1294 return SUCCESS;
1295}
1296
1297/* Errors may be set multiple times during parsing or bit encoding
1298 (particularly in the Neon bits), but usually the earliest error which is set
1299 will be the most meaningful. Avoid overwriting it with later (cascading)
1300 errors by calling this function. */
1301
1302static void
1303first_error (const char *err)
1304{
1305 if (!inst.error)
1306 inst.error = err;
1307}
1308
1309/* Parse a single type, e.g. ".s32", leading period included. */
1310static int
1311parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1312{
1313 char *str = *ccp;
1314 struct neon_type optype;
1315
1316 if (*str == '.')
1317 {
1318 if (parse_neon_type (&optype, &str) == SUCCESS)
1319 {
1320 if (optype.elems == 1)
1321 *vectype = optype.el[0];
1322 else
1323 {
1324 first_error (_("only one type should be specified for operand"));
1325 return FAIL;
1326 }
1327 }
1328 else
1329 {
1330 first_error (_("vector type expected"));
1331 return FAIL;
1332 }
1333 }
1334 else
1335 return FAIL;
5f4273c7 1336
dcbf9037 1337 *ccp = str;
5f4273c7 1338
dcbf9037
JB
1339 return SUCCESS;
1340}
1341
1342/* Special meanings for indices (which have a range of 0-7), which will fit into
1343 a 4-bit integer. */
1344
1345#define NEON_ALL_LANES 15
1346#define NEON_INTERLEAVE_LANES 14
1347
1348/* Parse either a register or a scalar, with an optional type. Return the
1349 register number, and optionally fill in the actual type of the register
1350 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1351 type/index information in *TYPEINFO. */
1352
1353static int
1354parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1355 enum arm_reg_type *rtype,
1356 struct neon_typed_alias *typeinfo)
1357{
1358 char *str = *ccp;
1359 struct reg_entry *reg = arm_reg_parse_multi (&str);
1360 struct neon_typed_alias atype;
1361 struct neon_type_el parsetype;
1362
1363 atype.defined = 0;
1364 atype.index = -1;
1365 atype.eltype.type = NT_invtype;
1366 atype.eltype.size = -1;
1367
1368 /* Try alternate syntax for some types of register. Note these are mutually
1369 exclusive with the Neon syntax extensions. */
1370 if (reg == NULL)
1371 {
1372 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1373 if (altreg != FAIL)
1374 *ccp = str;
1375 if (typeinfo)
1376 *typeinfo = atype;
1377 return altreg;
1378 }
1379
037e8744
JB
1380 /* Undo polymorphism when a set of register types may be accepted. */
1381 if ((type == REG_TYPE_NDQ
1382 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1383 || (type == REG_TYPE_VFSD
1384 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1385 || (type == REG_TYPE_NSDQ
1386 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1387 || reg->type == REG_TYPE_NQ))
1388 || (type == REG_TYPE_MMXWC
1389 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1390 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1391
1392 if (type != reg->type)
1393 return FAIL;
1394
1395 if (reg->neon)
1396 atype = *reg->neon;
5f4273c7 1397
dcbf9037
JB
1398 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1399 {
1400 if ((atype.defined & NTA_HASTYPE) != 0)
1401 {
1402 first_error (_("can't redefine type for operand"));
1403 return FAIL;
1404 }
1405 atype.defined |= NTA_HASTYPE;
1406 atype.eltype = parsetype;
1407 }
5f4273c7 1408
dcbf9037
JB
1409 if (skip_past_char (&str, '[') == SUCCESS)
1410 {
1411 if (type != REG_TYPE_VFD)
1412 {
1413 first_error (_("only D registers may be indexed"));
1414 return FAIL;
1415 }
5f4273c7 1416
dcbf9037
JB
1417 if ((atype.defined & NTA_HASINDEX) != 0)
1418 {
1419 first_error (_("can't change index for operand"));
1420 return FAIL;
1421 }
1422
1423 atype.defined |= NTA_HASINDEX;
1424
1425 if (skip_past_char (&str, ']') == SUCCESS)
1426 atype.index = NEON_ALL_LANES;
1427 else
1428 {
1429 expressionS exp;
1430
1431 my_get_expression (&exp, &str, GE_NO_PREFIX);
1432
1433 if (exp.X_op != O_constant)
1434 {
1435 first_error (_("constant expression required"));
1436 return FAIL;
1437 }
1438
1439 if (skip_past_char (&str, ']') == FAIL)
1440 return FAIL;
1441
1442 atype.index = exp.X_add_number;
1443 }
1444 }
5f4273c7 1445
dcbf9037
JB
1446 if (typeinfo)
1447 *typeinfo = atype;
5f4273c7 1448
dcbf9037
JB
1449 if (rtype)
1450 *rtype = type;
5f4273c7 1451
dcbf9037 1452 *ccp = str;
5f4273c7 1453
dcbf9037
JB
1454 return reg->number;
1455}
1456
1457/* Like arm_reg_parse, but allow allow the following extra features:
1458 - If RTYPE is non-zero, return the (possibly restricted) type of the
1459 register (e.g. Neon double or quad reg when either has been requested).
1460 - If this is a Neon vector type with additional type information, fill
1461 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1462 This function will fault on encountering a scalar. */
dcbf9037
JB
1463
1464static int
1465arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1466 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1467{
1468 struct neon_typed_alias atype;
1469 char *str = *ccp;
1470 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1471
1472 if (reg == FAIL)
1473 return FAIL;
1474
0855e32b
NS
1475 /* Do not allow regname(... to parse as a register. */
1476 if (*str == '(')
1477 return FAIL;
1478
dcbf9037
JB
1479 /* Do not allow a scalar (reg+index) to parse as a register. */
1480 if ((atype.defined & NTA_HASINDEX) != 0)
1481 {
1482 first_error (_("register operand expected, but got scalar"));
1483 return FAIL;
1484 }
1485
1486 if (vectype)
1487 *vectype = atype.eltype;
1488
1489 *ccp = str;
1490
1491 return reg;
1492}
1493
1494#define NEON_SCALAR_REG(X) ((X) >> 4)
1495#define NEON_SCALAR_INDEX(X) ((X) & 15)
1496
5287ad62
JB
1497/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1498 have enough information to be able to do a good job bounds-checking. So, we
1499 just do easy checks here, and do further checks later. */
1500
1501static int
dcbf9037 1502parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1503{
dcbf9037 1504 int reg;
5287ad62 1505 char *str = *ccp;
dcbf9037 1506 struct neon_typed_alias atype;
5f4273c7 1507
dcbf9037 1508 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1509
dcbf9037 1510 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1511 return FAIL;
5f4273c7 1512
dcbf9037 1513 if (atype.index == NEON_ALL_LANES)
5287ad62 1514 {
dcbf9037 1515 first_error (_("scalar must have an index"));
5287ad62
JB
1516 return FAIL;
1517 }
dcbf9037 1518 else if (atype.index >= 64 / elsize)
5287ad62 1519 {
dcbf9037 1520 first_error (_("scalar index out of range"));
5287ad62
JB
1521 return FAIL;
1522 }
5f4273c7 1523
dcbf9037
JB
1524 if (type)
1525 *type = atype.eltype;
5f4273c7 1526
5287ad62 1527 *ccp = str;
5f4273c7 1528
dcbf9037 1529 return reg * 16 + atype.index;
5287ad62
JB
1530}
1531
c19d1205 1532/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1533
c19d1205
ZW
1534static long
1535parse_reg_list (char ** strp)
1536{
1537 char * str = * strp;
1538 long range = 0;
1539 int another_range;
a737bd4d 1540
c19d1205
ZW
1541 /* We come back here if we get ranges concatenated by '+' or '|'. */
1542 do
6057a28f 1543 {
c19d1205 1544 another_range = 0;
a737bd4d 1545
c19d1205
ZW
1546 if (*str == '{')
1547 {
1548 int in_range = 0;
1549 int cur_reg = -1;
a737bd4d 1550
c19d1205
ZW
1551 str++;
1552 do
1553 {
1554 int reg;
6057a28f 1555
dcbf9037 1556 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1557 {
dcbf9037 1558 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1559 return FAIL;
1560 }
a737bd4d 1561
c19d1205
ZW
1562 if (in_range)
1563 {
1564 int i;
a737bd4d 1565
c19d1205
ZW
1566 if (reg <= cur_reg)
1567 {
dcbf9037 1568 first_error (_("bad range in register list"));
c19d1205
ZW
1569 return FAIL;
1570 }
40a18ebd 1571
c19d1205
ZW
1572 for (i = cur_reg + 1; i < reg; i++)
1573 {
1574 if (range & (1 << i))
1575 as_tsktsk
1576 (_("Warning: duplicated register (r%d) in register list"),
1577 i);
1578 else
1579 range |= 1 << i;
1580 }
1581 in_range = 0;
1582 }
a737bd4d 1583
c19d1205
ZW
1584 if (range & (1 << reg))
1585 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1586 reg);
1587 else if (reg <= cur_reg)
1588 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1589
c19d1205
ZW
1590 range |= 1 << reg;
1591 cur_reg = reg;
1592 }
1593 while (skip_past_comma (&str) != FAIL
1594 || (in_range = 1, *str++ == '-'));
1595 str--;
a737bd4d 1596
c19d1205
ZW
1597 if (*str++ != '}')
1598 {
dcbf9037 1599 first_error (_("missing `}'"));
c19d1205
ZW
1600 return FAIL;
1601 }
1602 }
1603 else
1604 {
91d6fa6a 1605 expressionS exp;
40a18ebd 1606
91d6fa6a 1607 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1608 return FAIL;
40a18ebd 1609
91d6fa6a 1610 if (exp.X_op == O_constant)
c19d1205 1611 {
91d6fa6a
NC
1612 if (exp.X_add_number
1613 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1614 {
1615 inst.error = _("invalid register mask");
1616 return FAIL;
1617 }
a737bd4d 1618
91d6fa6a 1619 if ((range & exp.X_add_number) != 0)
c19d1205 1620 {
91d6fa6a 1621 int regno = range & exp.X_add_number;
a737bd4d 1622
c19d1205
ZW
1623 regno &= -regno;
1624 regno = (1 << regno) - 1;
1625 as_tsktsk
1626 (_("Warning: duplicated register (r%d) in register list"),
1627 regno);
1628 }
a737bd4d 1629
91d6fa6a 1630 range |= exp.X_add_number;
c19d1205
ZW
1631 }
1632 else
1633 {
1634 if (inst.reloc.type != 0)
1635 {
1636 inst.error = _("expression too complex");
1637 return FAIL;
1638 }
a737bd4d 1639
91d6fa6a 1640 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1641 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1642 inst.reloc.pc_rel = 0;
1643 }
1644 }
a737bd4d 1645
c19d1205
ZW
1646 if (*str == '|' || *str == '+')
1647 {
1648 str++;
1649 another_range = 1;
1650 }
a737bd4d 1651 }
c19d1205 1652 while (another_range);
a737bd4d 1653
c19d1205
ZW
1654 *strp = str;
1655 return range;
a737bd4d
NC
1656}
1657
5287ad62
JB
1658/* Types of registers in a list. */
1659
1660enum reg_list_els
1661{
1662 REGLIST_VFP_S,
1663 REGLIST_VFP_D,
1664 REGLIST_NEON_D
1665};
1666
c19d1205
ZW
1667/* Parse a VFP register list. If the string is invalid return FAIL.
1668 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1669 register. Parses registers of type ETYPE.
1670 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1671 - Q registers can be used to specify pairs of D registers
1672 - { } can be omitted from around a singleton register list
1673 FIXME: This is not implemented, as it would require backtracking in
1674 some cases, e.g.:
1675 vtbl.8 d3,d4,d5
1676 This could be done (the meaning isn't really ambiguous), but doesn't
1677 fit in well with the current parsing framework.
dcbf9037
JB
1678 - 32 D registers may be used (also true for VFPv3).
1679 FIXME: Types are ignored in these register lists, which is probably a
1680 bug. */
6057a28f 1681
c19d1205 1682static int
037e8744 1683parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1684{
037e8744 1685 char *str = *ccp;
c19d1205
ZW
1686 int base_reg;
1687 int new_base;
21d799b5 1688 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1689 int max_regs = 0;
c19d1205
ZW
1690 int count = 0;
1691 int warned = 0;
1692 unsigned long mask = 0;
a737bd4d 1693 int i;
6057a28f 1694
037e8744 1695 if (*str != '{')
5287ad62
JB
1696 {
1697 inst.error = _("expecting {");
1698 return FAIL;
1699 }
6057a28f 1700
037e8744 1701 str++;
6057a28f 1702
5287ad62 1703 switch (etype)
c19d1205 1704 {
5287ad62 1705 case REGLIST_VFP_S:
c19d1205
ZW
1706 regtype = REG_TYPE_VFS;
1707 max_regs = 32;
5287ad62 1708 break;
5f4273c7 1709
5287ad62
JB
1710 case REGLIST_VFP_D:
1711 regtype = REG_TYPE_VFD;
b7fc2769 1712 break;
5f4273c7 1713
b7fc2769
JB
1714 case REGLIST_NEON_D:
1715 regtype = REG_TYPE_NDQ;
1716 break;
1717 }
1718
1719 if (etype != REGLIST_VFP_S)
1720 {
b1cc4aeb
PB
1721 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1722 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1723 {
1724 max_regs = 32;
1725 if (thumb_mode)
1726 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1727 fpu_vfp_ext_d32);
5287ad62
JB
1728 else
1729 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1730 fpu_vfp_ext_d32);
5287ad62
JB
1731 }
1732 else
1733 max_regs = 16;
c19d1205 1734 }
6057a28f 1735
c19d1205 1736 base_reg = max_regs;
a737bd4d 1737
c19d1205
ZW
1738 do
1739 {
5287ad62 1740 int setmask = 1, addregs = 1;
dcbf9037 1741
037e8744 1742 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1743
c19d1205 1744 if (new_base == FAIL)
a737bd4d 1745 {
dcbf9037 1746 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1747 return FAIL;
1748 }
5f4273c7 1749
b7fc2769
JB
1750 if (new_base >= max_regs)
1751 {
1752 first_error (_("register out of range in list"));
1753 return FAIL;
1754 }
5f4273c7 1755
5287ad62
JB
1756 /* Note: a value of 2 * n is returned for the register Q<n>. */
1757 if (regtype == REG_TYPE_NQ)
1758 {
1759 setmask = 3;
1760 addregs = 2;
1761 }
1762
c19d1205
ZW
1763 if (new_base < base_reg)
1764 base_reg = new_base;
a737bd4d 1765
5287ad62 1766 if (mask & (setmask << new_base))
c19d1205 1767 {
dcbf9037 1768 first_error (_("invalid register list"));
c19d1205 1769 return FAIL;
a737bd4d 1770 }
a737bd4d 1771
c19d1205
ZW
1772 if ((mask >> new_base) != 0 && ! warned)
1773 {
1774 as_tsktsk (_("register list not in ascending order"));
1775 warned = 1;
1776 }
0bbf2aa4 1777
5287ad62
JB
1778 mask |= setmask << new_base;
1779 count += addregs;
0bbf2aa4 1780
037e8744 1781 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1782 {
1783 int high_range;
0bbf2aa4 1784
037e8744 1785 str++;
0bbf2aa4 1786
037e8744 1787 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1788 == FAIL)
c19d1205
ZW
1789 {
1790 inst.error = gettext (reg_expected_msgs[regtype]);
1791 return FAIL;
1792 }
0bbf2aa4 1793
b7fc2769
JB
1794 if (high_range >= max_regs)
1795 {
1796 first_error (_("register out of range in list"));
1797 return FAIL;
1798 }
1799
5287ad62
JB
1800 if (regtype == REG_TYPE_NQ)
1801 high_range = high_range + 1;
1802
c19d1205
ZW
1803 if (high_range <= new_base)
1804 {
1805 inst.error = _("register range not in ascending order");
1806 return FAIL;
1807 }
0bbf2aa4 1808
5287ad62 1809 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1810 {
5287ad62 1811 if (mask & (setmask << new_base))
0bbf2aa4 1812 {
c19d1205
ZW
1813 inst.error = _("invalid register list");
1814 return FAIL;
0bbf2aa4 1815 }
c19d1205 1816
5287ad62
JB
1817 mask |= setmask << new_base;
1818 count += addregs;
0bbf2aa4 1819 }
0bbf2aa4 1820 }
0bbf2aa4 1821 }
037e8744 1822 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1823
037e8744 1824 str++;
0bbf2aa4 1825
c19d1205
ZW
1826 /* Sanity check -- should have raised a parse error above. */
1827 if (count == 0 || count > max_regs)
1828 abort ();
1829
1830 *pbase = base_reg;
1831
1832 /* Final test -- the registers must be consecutive. */
1833 mask >>= base_reg;
1834 for (i = 0; i < count; i++)
1835 {
1836 if ((mask & (1u << i)) == 0)
1837 {
1838 inst.error = _("non-contiguous register range");
1839 return FAIL;
1840 }
1841 }
1842
037e8744
JB
1843 *ccp = str;
1844
c19d1205 1845 return count;
b99bd4ef
NC
1846}
1847
dcbf9037
JB
1848/* True if two alias types are the same. */
1849
c921be7d 1850static bfd_boolean
dcbf9037
JB
1851neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1852{
1853 if (!a && !b)
c921be7d 1854 return TRUE;
5f4273c7 1855
dcbf9037 1856 if (!a || !b)
c921be7d 1857 return FALSE;
dcbf9037
JB
1858
1859 if (a->defined != b->defined)
c921be7d 1860 return FALSE;
5f4273c7 1861
dcbf9037
JB
1862 if ((a->defined & NTA_HASTYPE) != 0
1863 && (a->eltype.type != b->eltype.type
1864 || a->eltype.size != b->eltype.size))
c921be7d 1865 return FALSE;
dcbf9037
JB
1866
1867 if ((a->defined & NTA_HASINDEX) != 0
1868 && (a->index != b->index))
c921be7d 1869 return FALSE;
5f4273c7 1870
c921be7d 1871 return TRUE;
dcbf9037
JB
1872}
1873
5287ad62
JB
1874/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1875 The base register is put in *PBASE.
dcbf9037 1876 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1877 the return value.
1878 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1879 Bits [6:5] encode the list length (minus one).
1880 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1881
5287ad62 1882#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1883#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1884#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1885
1886static int
dcbf9037
JB
1887parse_neon_el_struct_list (char **str, unsigned *pbase,
1888 struct neon_type_el *eltype)
5287ad62
JB
1889{
1890 char *ptr = *str;
1891 int base_reg = -1;
1892 int reg_incr = -1;
1893 int count = 0;
1894 int lane = -1;
1895 int leading_brace = 0;
1896 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1897 const char *const incr_error = _("register stride must be 1 or 2");
1898 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1899 struct neon_typed_alias firsttype;
5f4273c7 1900
5287ad62
JB
1901 if (skip_past_char (&ptr, '{') == SUCCESS)
1902 leading_brace = 1;
5f4273c7 1903
5287ad62
JB
1904 do
1905 {
dcbf9037
JB
1906 struct neon_typed_alias atype;
1907 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1908
5287ad62
JB
1909 if (getreg == FAIL)
1910 {
dcbf9037 1911 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1912 return FAIL;
1913 }
5f4273c7 1914
5287ad62
JB
1915 if (base_reg == -1)
1916 {
1917 base_reg = getreg;
1918 if (rtype == REG_TYPE_NQ)
1919 {
1920 reg_incr = 1;
5287ad62 1921 }
dcbf9037 1922 firsttype = atype;
5287ad62
JB
1923 }
1924 else if (reg_incr == -1)
1925 {
1926 reg_incr = getreg - base_reg;
1927 if (reg_incr < 1 || reg_incr > 2)
1928 {
dcbf9037 1929 first_error (_(incr_error));
5287ad62
JB
1930 return FAIL;
1931 }
1932 }
1933 else if (getreg != base_reg + reg_incr * count)
1934 {
dcbf9037
JB
1935 first_error (_(incr_error));
1936 return FAIL;
1937 }
1938
c921be7d 1939 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1940 {
1941 first_error (_(type_error));
5287ad62
JB
1942 return FAIL;
1943 }
5f4273c7 1944
5287ad62
JB
1945 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1946 modes. */
1947 if (ptr[0] == '-')
1948 {
dcbf9037 1949 struct neon_typed_alias htype;
5287ad62
JB
1950 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1951 if (lane == -1)
1952 lane = NEON_INTERLEAVE_LANES;
1953 else if (lane != NEON_INTERLEAVE_LANES)
1954 {
dcbf9037 1955 first_error (_(type_error));
5287ad62
JB
1956 return FAIL;
1957 }
1958 if (reg_incr == -1)
1959 reg_incr = 1;
1960 else if (reg_incr != 1)
1961 {
dcbf9037 1962 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1963 return FAIL;
1964 }
1965 ptr++;
dcbf9037 1966 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1967 if (hireg == FAIL)
1968 {
dcbf9037
JB
1969 first_error (_(reg_expected_msgs[rtype]));
1970 return FAIL;
1971 }
c921be7d 1972 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1973 {
1974 first_error (_(type_error));
5287ad62
JB
1975 return FAIL;
1976 }
1977 count += hireg + dregs - getreg;
1978 continue;
1979 }
5f4273c7 1980
5287ad62
JB
1981 /* If we're using Q registers, we can't use [] or [n] syntax. */
1982 if (rtype == REG_TYPE_NQ)
1983 {
1984 count += 2;
1985 continue;
1986 }
5f4273c7 1987
dcbf9037 1988 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1989 {
dcbf9037
JB
1990 if (lane == -1)
1991 lane = atype.index;
1992 else if (lane != atype.index)
5287ad62 1993 {
dcbf9037
JB
1994 first_error (_(type_error));
1995 return FAIL;
5287ad62
JB
1996 }
1997 }
1998 else if (lane == -1)
1999 lane = NEON_INTERLEAVE_LANES;
2000 else if (lane != NEON_INTERLEAVE_LANES)
2001 {
dcbf9037 2002 first_error (_(type_error));
5287ad62
JB
2003 return FAIL;
2004 }
2005 count++;
2006 }
2007 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2008
5287ad62
JB
2009 /* No lane set by [x]. We must be interleaving structures. */
2010 if (lane == -1)
2011 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2012
5287ad62
JB
2013 /* Sanity check. */
2014 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2015 || (count > 1 && reg_incr == -1))
2016 {
dcbf9037 2017 first_error (_("error parsing element/structure list"));
5287ad62
JB
2018 return FAIL;
2019 }
2020
2021 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2022 {
dcbf9037 2023 first_error (_("expected }"));
5287ad62
JB
2024 return FAIL;
2025 }
5f4273c7 2026
5287ad62
JB
2027 if (reg_incr == -1)
2028 reg_incr = 1;
2029
dcbf9037
JB
2030 if (eltype)
2031 *eltype = firsttype.eltype;
2032
5287ad62
JB
2033 *pbase = base_reg;
2034 *str = ptr;
5f4273c7 2035
5287ad62
JB
2036 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2037}
2038
c19d1205
ZW
2039/* Parse an explicit relocation suffix on an expression. This is
2040 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2041 arm_reloc_hsh contains no entries, so this function can only
2042 succeed if there is no () after the word. Returns -1 on error,
2043 BFD_RELOC_UNUSED if there wasn't any suffix. */
2044static int
2045parse_reloc (char **str)
b99bd4ef 2046{
c19d1205
ZW
2047 struct reloc_entry *r;
2048 char *p, *q;
b99bd4ef 2049
c19d1205
ZW
2050 if (**str != '(')
2051 return BFD_RELOC_UNUSED;
b99bd4ef 2052
c19d1205
ZW
2053 p = *str + 1;
2054 q = p;
2055
2056 while (*q && *q != ')' && *q != ',')
2057 q++;
2058 if (*q != ')')
2059 return -1;
2060
21d799b5
NC
2061 if ((r = (struct reloc_entry *)
2062 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2063 return -1;
2064
2065 *str = q + 1;
2066 return r->reloc;
b99bd4ef
NC
2067}
2068
c19d1205
ZW
2069/* Directives: register aliases. */
2070
dcbf9037 2071static struct reg_entry *
90ec0d68 2072insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2073{
d3ce72d0 2074 struct reg_entry *new_reg;
c19d1205 2075 const char *name;
b99bd4ef 2076
d3ce72d0 2077 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2078 {
d3ce72d0 2079 if (new_reg->builtin)
c19d1205 2080 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2081
c19d1205
ZW
2082 /* Only warn about a redefinition if it's not defined as the
2083 same register. */
d3ce72d0 2084 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2085 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2086
d929913e 2087 return NULL;
c19d1205 2088 }
b99bd4ef 2089
c19d1205 2090 name = xstrdup (str);
d3ce72d0 2091 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2092
d3ce72d0
NC
2093 new_reg->name = name;
2094 new_reg->number = number;
2095 new_reg->type = type;
2096 new_reg->builtin = FALSE;
2097 new_reg->neon = NULL;
b99bd4ef 2098
d3ce72d0 2099 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2100 abort ();
5f4273c7 2101
d3ce72d0 2102 return new_reg;
dcbf9037
JB
2103}
2104
2105static void
2106insert_neon_reg_alias (char *str, int number, int type,
2107 struct neon_typed_alias *atype)
2108{
2109 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2110
dcbf9037
JB
2111 if (!reg)
2112 {
2113 first_error (_("attempt to redefine typed alias"));
2114 return;
2115 }
5f4273c7 2116
dcbf9037
JB
2117 if (atype)
2118 {
21d799b5
NC
2119 reg->neon = (struct neon_typed_alias *)
2120 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2121 *reg->neon = *atype;
2122 }
c19d1205 2123}
b99bd4ef 2124
c19d1205 2125/* Look for the .req directive. This is of the form:
b99bd4ef 2126
c19d1205 2127 new_register_name .req existing_register_name
b99bd4ef 2128
c19d1205 2129 If we find one, or if it looks sufficiently like one that we want to
d929913e 2130 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2131
d929913e 2132static bfd_boolean
c19d1205
ZW
2133create_register_alias (char * newname, char *p)
2134{
2135 struct reg_entry *old;
2136 char *oldname, *nbuf;
2137 size_t nlen;
b99bd4ef 2138
c19d1205
ZW
2139 /* The input scrubber ensures that whitespace after the mnemonic is
2140 collapsed to single spaces. */
2141 oldname = p;
2142 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2143 return FALSE;
b99bd4ef 2144
c19d1205
ZW
2145 oldname += 6;
2146 if (*oldname == '\0')
d929913e 2147 return FALSE;
b99bd4ef 2148
21d799b5 2149 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2150 if (!old)
b99bd4ef 2151 {
c19d1205 2152 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2153 return TRUE;
b99bd4ef
NC
2154 }
2155
c19d1205
ZW
2156 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2157 the desired alias name, and p points to its end. If not, then
2158 the desired alias name is in the global original_case_string. */
2159#ifdef TC_CASE_SENSITIVE
2160 nlen = p - newname;
2161#else
2162 newname = original_case_string;
2163 nlen = strlen (newname);
2164#endif
b99bd4ef 2165
21d799b5 2166 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2167 memcpy (nbuf, newname, nlen);
2168 nbuf[nlen] = '\0';
b99bd4ef 2169
c19d1205
ZW
2170 /* Create aliases under the new name as stated; an all-lowercase
2171 version of the new name; and an all-uppercase version of the new
2172 name. */
d929913e
NC
2173 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2174 {
2175 for (p = nbuf; *p; p++)
2176 *p = TOUPPER (*p);
c19d1205 2177
d929913e
NC
2178 if (strncmp (nbuf, newname, nlen))
2179 {
2180 /* If this attempt to create an additional alias fails, do not bother
2181 trying to create the all-lower case alias. We will fail and issue
2182 a second, duplicate error message. This situation arises when the
2183 programmer does something like:
2184 foo .req r0
2185 Foo .req r1
2186 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2187 the artificial FOO alias because it has already been created by the
d929913e
NC
2188 first .req. */
2189 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2190 return TRUE;
2191 }
c19d1205 2192
d929913e
NC
2193 for (p = nbuf; *p; p++)
2194 *p = TOLOWER (*p);
c19d1205 2195
d929913e
NC
2196 if (strncmp (nbuf, newname, nlen))
2197 insert_reg_alias (nbuf, old->number, old->type);
2198 }
c19d1205 2199
d929913e 2200 return TRUE;
b99bd4ef
NC
2201}
2202
dcbf9037
JB
2203/* Create a Neon typed/indexed register alias using directives, e.g.:
2204 X .dn d5.s32[1]
2205 Y .qn 6.s16
2206 Z .dn d7
2207 T .dn Z[0]
2208 These typed registers can be used instead of the types specified after the
2209 Neon mnemonic, so long as all operands given have types. Types can also be
2210 specified directly, e.g.:
5f4273c7 2211 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2212
c921be7d 2213static bfd_boolean
dcbf9037
JB
2214create_neon_reg_alias (char *newname, char *p)
2215{
2216 enum arm_reg_type basetype;
2217 struct reg_entry *basereg;
2218 struct reg_entry mybasereg;
2219 struct neon_type ntype;
2220 struct neon_typed_alias typeinfo;
12d6b0b7 2221 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2222 int namelen;
5f4273c7 2223
dcbf9037
JB
2224 typeinfo.defined = 0;
2225 typeinfo.eltype.type = NT_invtype;
2226 typeinfo.eltype.size = -1;
2227 typeinfo.index = -1;
5f4273c7 2228
dcbf9037 2229 nameend = p;
5f4273c7 2230
dcbf9037
JB
2231 if (strncmp (p, " .dn ", 5) == 0)
2232 basetype = REG_TYPE_VFD;
2233 else if (strncmp (p, " .qn ", 5) == 0)
2234 basetype = REG_TYPE_NQ;
2235 else
c921be7d 2236 return FALSE;
5f4273c7 2237
dcbf9037 2238 p += 5;
5f4273c7 2239
dcbf9037 2240 if (*p == '\0')
c921be7d 2241 return FALSE;
5f4273c7 2242
dcbf9037
JB
2243 basereg = arm_reg_parse_multi (&p);
2244
2245 if (basereg && basereg->type != basetype)
2246 {
2247 as_bad (_("bad type for register"));
c921be7d 2248 return FALSE;
dcbf9037
JB
2249 }
2250
2251 if (basereg == NULL)
2252 {
2253 expressionS exp;
2254 /* Try parsing as an integer. */
2255 my_get_expression (&exp, &p, GE_NO_PREFIX);
2256 if (exp.X_op != O_constant)
2257 {
2258 as_bad (_("expression must be constant"));
c921be7d 2259 return FALSE;
dcbf9037
JB
2260 }
2261 basereg = &mybasereg;
2262 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2263 : exp.X_add_number;
2264 basereg->neon = 0;
2265 }
2266
2267 if (basereg->neon)
2268 typeinfo = *basereg->neon;
2269
2270 if (parse_neon_type (&ntype, &p) == SUCCESS)
2271 {
2272 /* We got a type. */
2273 if (typeinfo.defined & NTA_HASTYPE)
2274 {
2275 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2276 return FALSE;
dcbf9037 2277 }
5f4273c7 2278
dcbf9037
JB
2279 typeinfo.defined |= NTA_HASTYPE;
2280 if (ntype.elems != 1)
2281 {
2282 as_bad (_("you must specify a single type only"));
c921be7d 2283 return FALSE;
dcbf9037
JB
2284 }
2285 typeinfo.eltype = ntype.el[0];
2286 }
5f4273c7 2287
dcbf9037
JB
2288 if (skip_past_char (&p, '[') == SUCCESS)
2289 {
2290 expressionS exp;
2291 /* We got a scalar index. */
5f4273c7 2292
dcbf9037
JB
2293 if (typeinfo.defined & NTA_HASINDEX)
2294 {
2295 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2296 return FALSE;
dcbf9037 2297 }
5f4273c7 2298
dcbf9037 2299 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2300
dcbf9037
JB
2301 if (exp.X_op != O_constant)
2302 {
2303 as_bad (_("scalar index must be constant"));
c921be7d 2304 return FALSE;
dcbf9037 2305 }
5f4273c7 2306
dcbf9037
JB
2307 typeinfo.defined |= NTA_HASINDEX;
2308 typeinfo.index = exp.X_add_number;
5f4273c7 2309
dcbf9037
JB
2310 if (skip_past_char (&p, ']') == FAIL)
2311 {
2312 as_bad (_("expecting ]"));
c921be7d 2313 return FALSE;
dcbf9037
JB
2314 }
2315 }
2316
15735687
NS
2317 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2318 the desired alias name, and p points to its end. If not, then
2319 the desired alias name is in the global original_case_string. */
2320#ifdef TC_CASE_SENSITIVE
dcbf9037 2321 namelen = nameend - newname;
15735687
NS
2322#else
2323 newname = original_case_string;
2324 namelen = strlen (newname);
2325#endif
2326
21d799b5 2327 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2328 strncpy (namebuf, newname, namelen);
2329 namebuf[namelen] = '\0';
5f4273c7 2330
dcbf9037
JB
2331 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2332 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2333
dcbf9037
JB
2334 /* Insert name in all uppercase. */
2335 for (p = namebuf; *p; p++)
2336 *p = TOUPPER (*p);
5f4273c7 2337
dcbf9037
JB
2338 if (strncmp (namebuf, newname, namelen))
2339 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2340 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2341
dcbf9037
JB
2342 /* Insert name in all lowercase. */
2343 for (p = namebuf; *p; p++)
2344 *p = TOLOWER (*p);
5f4273c7 2345
dcbf9037
JB
2346 if (strncmp (namebuf, newname, namelen))
2347 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2348 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2349
c921be7d 2350 return TRUE;
dcbf9037
JB
2351}
2352
c19d1205
ZW
2353/* Should never be called, as .req goes between the alias and the
2354 register name, not at the beginning of the line. */
c921be7d 2355
b99bd4ef 2356static void
c19d1205 2357s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2358{
c19d1205
ZW
2359 as_bad (_("invalid syntax for .req directive"));
2360}
b99bd4ef 2361
dcbf9037
JB
2362static void
2363s_dn (int a ATTRIBUTE_UNUSED)
2364{
2365 as_bad (_("invalid syntax for .dn directive"));
2366}
2367
2368static void
2369s_qn (int a ATTRIBUTE_UNUSED)
2370{
2371 as_bad (_("invalid syntax for .qn directive"));
2372}
2373
c19d1205
ZW
2374/* The .unreq directive deletes an alias which was previously defined
2375 by .req. For example:
b99bd4ef 2376
c19d1205
ZW
2377 my_alias .req r11
2378 .unreq my_alias */
b99bd4ef
NC
2379
2380static void
c19d1205 2381s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2382{
c19d1205
ZW
2383 char * name;
2384 char saved_char;
b99bd4ef 2385
c19d1205
ZW
2386 name = input_line_pointer;
2387
2388 while (*input_line_pointer != 0
2389 && *input_line_pointer != ' '
2390 && *input_line_pointer != '\n')
2391 ++input_line_pointer;
2392
2393 saved_char = *input_line_pointer;
2394 *input_line_pointer = 0;
2395
2396 if (!*name)
2397 as_bad (_("invalid syntax for .unreq directive"));
2398 else
2399 {
21d799b5
NC
2400 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2401 name);
c19d1205
ZW
2402
2403 if (!reg)
2404 as_bad (_("unknown register alias '%s'"), name);
2405 else if (reg->builtin)
2406 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2407 name);
2408 else
2409 {
d929913e
NC
2410 char * p;
2411 char * nbuf;
2412
db0bc284 2413 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2414 free ((char *) reg->name);
dcbf9037
JB
2415 if (reg->neon)
2416 free (reg->neon);
c19d1205 2417 free (reg);
d929913e
NC
2418
2419 /* Also locate the all upper case and all lower case versions.
2420 Do not complain if we cannot find one or the other as it
2421 was probably deleted above. */
5f4273c7 2422
d929913e
NC
2423 nbuf = strdup (name);
2424 for (p = nbuf; *p; p++)
2425 *p = TOUPPER (*p);
21d799b5 2426 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2427 if (reg)
2428 {
db0bc284 2429 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2430 free ((char *) reg->name);
2431 if (reg->neon)
2432 free (reg->neon);
2433 free (reg);
2434 }
2435
2436 for (p = nbuf; *p; p++)
2437 *p = TOLOWER (*p);
21d799b5 2438 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2439 if (reg)
2440 {
db0bc284 2441 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2442 free ((char *) reg->name);
2443 if (reg->neon)
2444 free (reg->neon);
2445 free (reg);
2446 }
2447
2448 free (nbuf);
c19d1205
ZW
2449 }
2450 }
b99bd4ef 2451
c19d1205 2452 *input_line_pointer = saved_char;
b99bd4ef
NC
2453 demand_empty_rest_of_line ();
2454}
2455
c19d1205
ZW
2456/* Directives: Instruction set selection. */
2457
2458#ifdef OBJ_ELF
2459/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2460 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2461 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2462 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2463
cd000bff
DJ
2464/* Create a new mapping symbol for the transition to STATE. */
2465
2466static void
2467make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2468{
a737bd4d 2469 symbolS * symbolP;
c19d1205
ZW
2470 const char * symname;
2471 int type;
b99bd4ef 2472
c19d1205 2473 switch (state)
b99bd4ef 2474 {
c19d1205
ZW
2475 case MAP_DATA:
2476 symname = "$d";
2477 type = BSF_NO_FLAGS;
2478 break;
2479 case MAP_ARM:
2480 symname = "$a";
2481 type = BSF_NO_FLAGS;
2482 break;
2483 case MAP_THUMB:
2484 symname = "$t";
2485 type = BSF_NO_FLAGS;
2486 break;
c19d1205
ZW
2487 default:
2488 abort ();
2489 }
2490
cd000bff 2491 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2492 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2493
2494 switch (state)
2495 {
2496 case MAP_ARM:
2497 THUMB_SET_FUNC (symbolP, 0);
2498 ARM_SET_THUMB (symbolP, 0);
2499 ARM_SET_INTERWORK (symbolP, support_interwork);
2500 break;
2501
2502 case MAP_THUMB:
2503 THUMB_SET_FUNC (symbolP, 1);
2504 ARM_SET_THUMB (symbolP, 1);
2505 ARM_SET_INTERWORK (symbolP, support_interwork);
2506 break;
2507
2508 case MAP_DATA:
2509 default:
cd000bff
DJ
2510 break;
2511 }
2512
2513 /* Save the mapping symbols for future reference. Also check that
2514 we do not place two mapping symbols at the same offset within a
2515 frag. We'll handle overlap between frags in
2de7820f
JZ
2516 check_mapping_symbols.
2517
2518 If .fill or other data filling directive generates zero sized data,
2519 the mapping symbol for the following code will have the same value
2520 as the one generated for the data filling directive. In this case,
2521 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2522 if (value == 0)
2523 {
2de7820f
JZ
2524 if (frag->tc_frag_data.first_map != NULL)
2525 {
2526 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2527 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2528 }
cd000bff
DJ
2529 frag->tc_frag_data.first_map = symbolP;
2530 }
2531 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2532 {
2533 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2534 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2535 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2536 }
cd000bff
DJ
2537 frag->tc_frag_data.last_map = symbolP;
2538}
2539
2540/* We must sometimes convert a region marked as code to data during
2541 code alignment, if an odd number of bytes have to be padded. The
2542 code mapping symbol is pushed to an aligned address. */
2543
2544static void
2545insert_data_mapping_symbol (enum mstate state,
2546 valueT value, fragS *frag, offsetT bytes)
2547{
2548 /* If there was already a mapping symbol, remove it. */
2549 if (frag->tc_frag_data.last_map != NULL
2550 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2551 {
2552 symbolS *symp = frag->tc_frag_data.last_map;
2553
2554 if (value == 0)
2555 {
2556 know (frag->tc_frag_data.first_map == symp);
2557 frag->tc_frag_data.first_map = NULL;
2558 }
2559 frag->tc_frag_data.last_map = NULL;
2560 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2561 }
cd000bff
DJ
2562
2563 make_mapping_symbol (MAP_DATA, value, frag);
2564 make_mapping_symbol (state, value + bytes, frag);
2565}
2566
2567static void mapping_state_2 (enum mstate state, int max_chars);
2568
2569/* Set the mapping state to STATE. Only call this when about to
2570 emit some STATE bytes to the file. */
2571
2572void
2573mapping_state (enum mstate state)
2574{
940b5ce0
DJ
2575 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2576
cd000bff
DJ
2577#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2578
2579 if (mapstate == state)
2580 /* The mapping symbol has already been emitted.
2581 There is nothing else to do. */
2582 return;
2583 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2584 /* This case will be evaluated later in the next else. */
2585 return;
2586 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2587 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2588 {
2589 /* Only add the symbol if the offset is > 0:
2590 if we're at the first frag, check it's size > 0;
2591 if we're not at the first frag, then for sure
2592 the offset is > 0. */
2593 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2594 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2595
2596 if (add_symbol)
2597 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2598 }
2599
2600 mapping_state_2 (state, 0);
2601#undef TRANSITION
2602}
2603
2604/* Same as mapping_state, but MAX_CHARS bytes have already been
2605 allocated. Put the mapping symbol that far back. */
2606
2607static void
2608mapping_state_2 (enum mstate state, int max_chars)
2609{
940b5ce0
DJ
2610 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2611
2612 if (!SEG_NORMAL (now_seg))
2613 return;
2614
cd000bff
DJ
2615 if (mapstate == state)
2616 /* The mapping symbol has already been emitted.
2617 There is nothing else to do. */
2618 return;
2619
cd000bff
DJ
2620 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2621 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2622}
2623#else
d3106081
NS
2624#define mapping_state(x) ((void)0)
2625#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2626#endif
2627
2628/* Find the real, Thumb encoded start of a Thumb function. */
2629
4343666d 2630#ifdef OBJ_COFF
c19d1205
ZW
2631static symbolS *
2632find_real_start (symbolS * symbolP)
2633{
2634 char * real_start;
2635 const char * name = S_GET_NAME (symbolP);
2636 symbolS * new_target;
2637
2638 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2639#define STUB_NAME ".real_start_of"
2640
2641 if (name == NULL)
2642 abort ();
2643
37f6032b
ZW
2644 /* The compiler may generate BL instructions to local labels because
2645 it needs to perform a branch to a far away location. These labels
2646 do not have a corresponding ".real_start_of" label. We check
2647 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2648 the ".real_start_of" convention for nonlocal branches. */
2649 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2650 return symbolP;
2651
37f6032b 2652 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2653 new_target = symbol_find (real_start);
2654
2655 if (new_target == NULL)
2656 {
bd3ba5d1 2657 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2658 new_target = symbolP;
2659 }
2660
c19d1205
ZW
2661 return new_target;
2662}
4343666d 2663#endif
c19d1205
ZW
2664
2665static void
2666opcode_select (int width)
2667{
2668 switch (width)
2669 {
2670 case 16:
2671 if (! thumb_mode)
2672 {
e74cfd16 2673 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2674 as_bad (_("selected processor does not support THUMB opcodes"));
2675
2676 thumb_mode = 1;
2677 /* No need to force the alignment, since we will have been
2678 coming from ARM mode, which is word-aligned. */
2679 record_alignment (now_seg, 1);
2680 }
c19d1205
ZW
2681 break;
2682
2683 case 32:
2684 if (thumb_mode)
2685 {
e74cfd16 2686 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2687 as_bad (_("selected processor does not support ARM opcodes"));
2688
2689 thumb_mode = 0;
2690
2691 if (!need_pass_2)
2692 frag_align (2, 0, 0);
2693
2694 record_alignment (now_seg, 1);
2695 }
c19d1205
ZW
2696 break;
2697
2698 default:
2699 as_bad (_("invalid instruction size selected (%d)"), width);
2700 }
2701}
2702
2703static void
2704s_arm (int ignore ATTRIBUTE_UNUSED)
2705{
2706 opcode_select (32);
2707 demand_empty_rest_of_line ();
2708}
2709
2710static void
2711s_thumb (int ignore ATTRIBUTE_UNUSED)
2712{
2713 opcode_select (16);
2714 demand_empty_rest_of_line ();
2715}
2716
2717static void
2718s_code (int unused ATTRIBUTE_UNUSED)
2719{
2720 int temp;
2721
2722 temp = get_absolute_expression ();
2723 switch (temp)
2724 {
2725 case 16:
2726 case 32:
2727 opcode_select (temp);
2728 break;
2729
2730 default:
2731 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2732 }
2733}
2734
2735static void
2736s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2737{
2738 /* If we are not already in thumb mode go into it, EVEN if
2739 the target processor does not support thumb instructions.
2740 This is used by gcc/config/arm/lib1funcs.asm for example
2741 to compile interworking support functions even if the
2742 target processor should not support interworking. */
2743 if (! thumb_mode)
2744 {
2745 thumb_mode = 2;
2746 record_alignment (now_seg, 1);
2747 }
2748
2749 demand_empty_rest_of_line ();
2750}
2751
2752static void
2753s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2754{
2755 s_thumb (0);
2756
2757 /* The following label is the name/address of the start of a Thumb function.
2758 We need to know this for the interworking support. */
2759 label_is_thumb_function_name = TRUE;
2760}
2761
2762/* Perform a .set directive, but also mark the alias as
2763 being a thumb function. */
2764
2765static void
2766s_thumb_set (int equiv)
2767{
2768 /* XXX the following is a duplicate of the code for s_set() in read.c
2769 We cannot just call that code as we need to get at the symbol that
2770 is created. */
2771 char * name;
2772 char delim;
2773 char * end_name;
2774 symbolS * symbolP;
2775
2776 /* Especial apologies for the random logic:
2777 This just grew, and could be parsed much more simply!
2778 Dean - in haste. */
2779 name = input_line_pointer;
2780 delim = get_symbol_end ();
2781 end_name = input_line_pointer;
2782 *end_name = delim;
2783
2784 if (*input_line_pointer != ',')
2785 {
2786 *end_name = 0;
2787 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2788 *end_name = delim;
2789 ignore_rest_of_line ();
2790 return;
2791 }
2792
2793 input_line_pointer++;
2794 *end_name = 0;
2795
2796 if (name[0] == '.' && name[1] == '\0')
2797 {
2798 /* XXX - this should not happen to .thumb_set. */
2799 abort ();
2800 }
2801
2802 if ((symbolP = symbol_find (name)) == NULL
2803 && (symbolP = md_undefined_symbol (name)) == NULL)
2804 {
2805#ifndef NO_LISTING
2806 /* When doing symbol listings, play games with dummy fragments living
2807 outside the normal fragment chain to record the file and line info
c19d1205 2808 for this symbol. */
b99bd4ef
NC
2809 if (listing & LISTING_SYMBOLS)
2810 {
2811 extern struct list_info_struct * listing_tail;
21d799b5 2812 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2813
2814 memset (dummy_frag, 0, sizeof (fragS));
2815 dummy_frag->fr_type = rs_fill;
2816 dummy_frag->line = listing_tail;
2817 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2818 dummy_frag->fr_symbol = symbolP;
2819 }
2820 else
2821#endif
2822 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2823
2824#ifdef OBJ_COFF
2825 /* "set" symbols are local unless otherwise specified. */
2826 SF_SET_LOCAL (symbolP);
2827#endif /* OBJ_COFF */
2828 } /* Make a new symbol. */
2829
2830 symbol_table_insert (symbolP);
2831
2832 * end_name = delim;
2833
2834 if (equiv
2835 && S_IS_DEFINED (symbolP)
2836 && S_GET_SEGMENT (symbolP) != reg_section)
2837 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2838
2839 pseudo_set (symbolP);
2840
2841 demand_empty_rest_of_line ();
2842
c19d1205 2843 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2844
2845 THUMB_SET_FUNC (symbolP, 1);
2846 ARM_SET_THUMB (symbolP, 1);
2847#if defined OBJ_ELF || defined OBJ_COFF
2848 ARM_SET_INTERWORK (symbolP, support_interwork);
2849#endif
2850}
2851
c19d1205 2852/* Directives: Mode selection. */
b99bd4ef 2853
c19d1205
ZW
2854/* .syntax [unified|divided] - choose the new unified syntax
2855 (same for Arm and Thumb encoding, modulo slight differences in what
2856 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2857static void
c19d1205 2858s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2859{
c19d1205
ZW
2860 char *name, delim;
2861
2862 name = input_line_pointer;
2863 delim = get_symbol_end ();
2864
2865 if (!strcasecmp (name, "unified"))
2866 unified_syntax = TRUE;
2867 else if (!strcasecmp (name, "divided"))
2868 unified_syntax = FALSE;
2869 else
2870 {
2871 as_bad (_("unrecognized syntax mode \"%s\""), name);
2872 return;
2873 }
2874 *input_line_pointer = delim;
b99bd4ef
NC
2875 demand_empty_rest_of_line ();
2876}
2877
c19d1205
ZW
2878/* Directives: sectioning and alignment. */
2879
2880/* Same as s_align_ptwo but align 0 => align 2. */
2881
b99bd4ef 2882static void
c19d1205 2883s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2884{
a737bd4d 2885 int temp;
dce323d1 2886 bfd_boolean fill_p;
c19d1205
ZW
2887 long temp_fill;
2888 long max_alignment = 15;
b99bd4ef
NC
2889
2890 temp = get_absolute_expression ();
c19d1205
ZW
2891 if (temp > max_alignment)
2892 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2893 else if (temp < 0)
b99bd4ef 2894 {
c19d1205
ZW
2895 as_bad (_("alignment negative. 0 assumed."));
2896 temp = 0;
2897 }
b99bd4ef 2898
c19d1205
ZW
2899 if (*input_line_pointer == ',')
2900 {
2901 input_line_pointer++;
2902 temp_fill = get_absolute_expression ();
dce323d1 2903 fill_p = TRUE;
b99bd4ef 2904 }
c19d1205 2905 else
dce323d1
PB
2906 {
2907 fill_p = FALSE;
2908 temp_fill = 0;
2909 }
b99bd4ef 2910
c19d1205
ZW
2911 if (!temp)
2912 temp = 2;
b99bd4ef 2913
c19d1205
ZW
2914 /* Only make a frag if we HAVE to. */
2915 if (temp && !need_pass_2)
dce323d1
PB
2916 {
2917 if (!fill_p && subseg_text_p (now_seg))
2918 frag_align_code (temp, 0);
2919 else
2920 frag_align (temp, (int) temp_fill, 0);
2921 }
c19d1205
ZW
2922 demand_empty_rest_of_line ();
2923
2924 record_alignment (now_seg, temp);
b99bd4ef
NC
2925}
2926
c19d1205
ZW
2927static void
2928s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2929{
c19d1205
ZW
2930 /* We don't support putting frags in the BSS segment, we fake it by
2931 marking in_bss, then looking at s_skip for clues. */
2932 subseg_set (bss_section, 0);
2933 demand_empty_rest_of_line ();
cd000bff
DJ
2934
2935#ifdef md_elf_section_change_hook
2936 md_elf_section_change_hook ();
2937#endif
c19d1205 2938}
b99bd4ef 2939
c19d1205
ZW
2940static void
2941s_even (int ignore ATTRIBUTE_UNUSED)
2942{
2943 /* Never make frag if expect extra pass. */
2944 if (!need_pass_2)
2945 frag_align (1, 0, 0);
b99bd4ef 2946
c19d1205 2947 record_alignment (now_seg, 1);
b99bd4ef 2948
c19d1205 2949 demand_empty_rest_of_line ();
b99bd4ef
NC
2950}
2951
c19d1205 2952/* Directives: Literal pools. */
a737bd4d 2953
c19d1205
ZW
2954static literal_pool *
2955find_literal_pool (void)
a737bd4d 2956{
c19d1205 2957 literal_pool * pool;
a737bd4d 2958
c19d1205 2959 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2960 {
c19d1205
ZW
2961 if (pool->section == now_seg
2962 && pool->sub_section == now_subseg)
2963 break;
a737bd4d
NC
2964 }
2965
c19d1205 2966 return pool;
a737bd4d
NC
2967}
2968
c19d1205
ZW
2969static literal_pool *
2970find_or_make_literal_pool (void)
a737bd4d 2971{
c19d1205
ZW
2972 /* Next literal pool ID number. */
2973 static unsigned int latest_pool_num = 1;
2974 literal_pool * pool;
a737bd4d 2975
c19d1205 2976 pool = find_literal_pool ();
a737bd4d 2977
c19d1205 2978 if (pool == NULL)
a737bd4d 2979 {
c19d1205 2980 /* Create a new pool. */
21d799b5 2981 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2982 if (! pool)
2983 return NULL;
a737bd4d 2984
c19d1205
ZW
2985 pool->next_free_entry = 0;
2986 pool->section = now_seg;
2987 pool->sub_section = now_subseg;
2988 pool->next = list_of_pools;
2989 pool->symbol = NULL;
2990
2991 /* Add it to the list. */
2992 list_of_pools = pool;
a737bd4d 2993 }
a737bd4d 2994
c19d1205
ZW
2995 /* New pools, and emptied pools, will have a NULL symbol. */
2996 if (pool->symbol == NULL)
a737bd4d 2997 {
c19d1205
ZW
2998 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2999 (valueT) 0, &zero_address_frag);
3000 pool->id = latest_pool_num ++;
a737bd4d
NC
3001 }
3002
c19d1205
ZW
3003 /* Done. */
3004 return pool;
a737bd4d
NC
3005}
3006
c19d1205 3007/* Add the literal in the global 'inst'
5f4273c7 3008 structure to the relevant literal pool. */
b99bd4ef
NC
3009
3010static int
c19d1205 3011add_to_lit_pool (void)
b99bd4ef 3012{
c19d1205
ZW
3013 literal_pool * pool;
3014 unsigned int entry;
b99bd4ef 3015
c19d1205
ZW
3016 pool = find_or_make_literal_pool ();
3017
3018 /* Check if this literal value is already in the pool. */
3019 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3020 {
c19d1205
ZW
3021 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3022 && (inst.reloc.exp.X_op == O_constant)
3023 && (pool->literals[entry].X_add_number
3024 == inst.reloc.exp.X_add_number)
3025 && (pool->literals[entry].X_unsigned
3026 == inst.reloc.exp.X_unsigned))
3027 break;
3028
3029 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3030 && (inst.reloc.exp.X_op == O_symbol)
3031 && (pool->literals[entry].X_add_number
3032 == inst.reloc.exp.X_add_number)
3033 && (pool->literals[entry].X_add_symbol
3034 == inst.reloc.exp.X_add_symbol)
3035 && (pool->literals[entry].X_op_symbol
3036 == inst.reloc.exp.X_op_symbol))
3037 break;
b99bd4ef
NC
3038 }
3039
c19d1205
ZW
3040 /* Do we need to create a new entry? */
3041 if (entry == pool->next_free_entry)
3042 {
3043 if (entry >= MAX_LITERAL_POOL_SIZE)
3044 {
3045 inst.error = _("literal pool overflow");
3046 return FAIL;
3047 }
3048
3049 pool->literals[entry] = inst.reloc.exp;
3050 pool->next_free_entry += 1;
3051 }
b99bd4ef 3052
c19d1205
ZW
3053 inst.reloc.exp.X_op = O_symbol;
3054 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3055 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3056
c19d1205 3057 return SUCCESS;
b99bd4ef
NC
3058}
3059
c19d1205
ZW
3060/* Can't use symbol_new here, so have to create a symbol and then at
3061 a later date assign it a value. Thats what these functions do. */
e16bb312 3062
c19d1205
ZW
3063static void
3064symbol_locate (symbolS * symbolP,
3065 const char * name, /* It is copied, the caller can modify. */
3066 segT segment, /* Segment identifier (SEG_<something>). */
3067 valueT valu, /* Symbol value. */
3068 fragS * frag) /* Associated fragment. */
3069{
3070 unsigned int name_length;
3071 char * preserved_copy_of_name;
e16bb312 3072
c19d1205
ZW
3073 name_length = strlen (name) + 1; /* +1 for \0. */
3074 obstack_grow (&notes, name, name_length);
21d799b5 3075 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3076
c19d1205
ZW
3077#ifdef tc_canonicalize_symbol_name
3078 preserved_copy_of_name =
3079 tc_canonicalize_symbol_name (preserved_copy_of_name);
3080#endif
b99bd4ef 3081
c19d1205 3082 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3083
c19d1205
ZW
3084 S_SET_SEGMENT (symbolP, segment);
3085 S_SET_VALUE (symbolP, valu);
3086 symbol_clear_list_pointers (symbolP);
b99bd4ef 3087
c19d1205 3088 symbol_set_frag (symbolP, frag);
b99bd4ef 3089
c19d1205
ZW
3090 /* Link to end of symbol chain. */
3091 {
3092 extern int symbol_table_frozen;
b99bd4ef 3093
c19d1205
ZW
3094 if (symbol_table_frozen)
3095 abort ();
3096 }
b99bd4ef 3097
c19d1205 3098 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3099
c19d1205 3100 obj_symbol_new_hook (symbolP);
b99bd4ef 3101
c19d1205
ZW
3102#ifdef tc_symbol_new_hook
3103 tc_symbol_new_hook (symbolP);
3104#endif
3105
3106#ifdef DEBUG_SYMS
3107 verify_symbol_chain (symbol_rootP, symbol_lastP);
3108#endif /* DEBUG_SYMS */
b99bd4ef
NC
3109}
3110
b99bd4ef 3111
c19d1205
ZW
3112static void
3113s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3114{
c19d1205
ZW
3115 unsigned int entry;
3116 literal_pool * pool;
3117 char sym_name[20];
b99bd4ef 3118
c19d1205
ZW
3119 pool = find_literal_pool ();
3120 if (pool == NULL
3121 || pool->symbol == NULL
3122 || pool->next_free_entry == 0)
3123 return;
b99bd4ef 3124
c19d1205 3125 mapping_state (MAP_DATA);
b99bd4ef 3126
c19d1205
ZW
3127 /* Align pool as you have word accesses.
3128 Only make a frag if we have to. */
3129 if (!need_pass_2)
3130 frag_align (2, 0, 0);
b99bd4ef 3131
c19d1205 3132 record_alignment (now_seg, 2);
b99bd4ef 3133
c19d1205 3134 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3135
c19d1205
ZW
3136 symbol_locate (pool->symbol, sym_name, now_seg,
3137 (valueT) frag_now_fix (), frag_now);
3138 symbol_table_insert (pool->symbol);
b99bd4ef 3139
c19d1205 3140 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3141
c19d1205
ZW
3142#if defined OBJ_COFF || defined OBJ_ELF
3143 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3144#endif
6c43fab6 3145
c19d1205
ZW
3146 for (entry = 0; entry < pool->next_free_entry; entry ++)
3147 /* First output the expression in the instruction to the pool. */
3148 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3149
c19d1205
ZW
3150 /* Mark the pool as empty. */
3151 pool->next_free_entry = 0;
3152 pool->symbol = NULL;
b99bd4ef
NC
3153}
3154
c19d1205
ZW
3155#ifdef OBJ_ELF
3156/* Forward declarations for functions below, in the MD interface
3157 section. */
3158static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3159static valueT create_unwind_entry (int);
3160static void start_unwind_section (const segT, int);
3161static void add_unwind_opcode (valueT, int);
3162static void flush_pending_unwind (void);
b99bd4ef 3163
c19d1205 3164/* Directives: Data. */
b99bd4ef 3165
c19d1205
ZW
3166static void
3167s_arm_elf_cons (int nbytes)
3168{
3169 expressionS exp;
b99bd4ef 3170
c19d1205
ZW
3171#ifdef md_flush_pending_output
3172 md_flush_pending_output ();
3173#endif
b99bd4ef 3174
c19d1205 3175 if (is_it_end_of_statement ())
b99bd4ef 3176 {
c19d1205
ZW
3177 demand_empty_rest_of_line ();
3178 return;
b99bd4ef
NC
3179 }
3180
c19d1205
ZW
3181#ifdef md_cons_align
3182 md_cons_align (nbytes);
3183#endif
b99bd4ef 3184
c19d1205
ZW
3185 mapping_state (MAP_DATA);
3186 do
b99bd4ef 3187 {
c19d1205
ZW
3188 int reloc;
3189 char *base = input_line_pointer;
b99bd4ef 3190
c19d1205 3191 expression (& exp);
b99bd4ef 3192
c19d1205
ZW
3193 if (exp.X_op != O_symbol)
3194 emit_expr (&exp, (unsigned int) nbytes);
3195 else
3196 {
3197 char *before_reloc = input_line_pointer;
3198 reloc = parse_reloc (&input_line_pointer);
3199 if (reloc == -1)
3200 {
3201 as_bad (_("unrecognized relocation suffix"));
3202 ignore_rest_of_line ();
3203 return;
3204 }
3205 else if (reloc == BFD_RELOC_UNUSED)
3206 emit_expr (&exp, (unsigned int) nbytes);
3207 else
3208 {
21d799b5
NC
3209 reloc_howto_type *howto = (reloc_howto_type *)
3210 bfd_reloc_type_lookup (stdoutput,
3211 (bfd_reloc_code_real_type) reloc);
c19d1205 3212 int size = bfd_get_reloc_size (howto);
b99bd4ef 3213
2fc8bdac
ZW
3214 if (reloc == BFD_RELOC_ARM_PLT32)
3215 {
3216 as_bad (_("(plt) is only valid on branch targets"));
3217 reloc = BFD_RELOC_UNUSED;
3218 size = 0;
3219 }
3220
c19d1205 3221 if (size > nbytes)
2fc8bdac 3222 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3223 howto->name, nbytes);
3224 else
3225 {
3226 /* We've parsed an expression stopping at O_symbol.
3227 But there may be more expression left now that we
3228 have parsed the relocation marker. Parse it again.
3229 XXX Surely there is a cleaner way to do this. */
3230 char *p = input_line_pointer;
3231 int offset;
21d799b5 3232 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3233 memcpy (save_buf, base, input_line_pointer - base);
3234 memmove (base + (input_line_pointer - before_reloc),
3235 base, before_reloc - base);
3236
3237 input_line_pointer = base + (input_line_pointer-before_reloc);
3238 expression (&exp);
3239 memcpy (base, save_buf, p - base);
3240
3241 offset = nbytes - size;
3242 p = frag_more ((int) nbytes);
3243 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3244 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3245 }
3246 }
3247 }
b99bd4ef 3248 }
c19d1205 3249 while (*input_line_pointer++ == ',');
b99bd4ef 3250
c19d1205
ZW
3251 /* Put terminator back into stream. */
3252 input_line_pointer --;
3253 demand_empty_rest_of_line ();
b99bd4ef
NC
3254}
3255
c921be7d
NC
3256/* Emit an expression containing a 32-bit thumb instruction.
3257 Implementation based on put_thumb32_insn. */
3258
3259static void
3260emit_thumb32_expr (expressionS * exp)
3261{
3262 expressionS exp_high = *exp;
3263
3264 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3265 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3266 exp->X_add_number &= 0xffff;
3267 emit_expr (exp, (unsigned int) THUMB_SIZE);
3268}
3269
3270/* Guess the instruction size based on the opcode. */
3271
3272static int
3273thumb_insn_size (int opcode)
3274{
3275 if ((unsigned int) opcode < 0xe800u)
3276 return 2;
3277 else if ((unsigned int) opcode >= 0xe8000000u)
3278 return 4;
3279 else
3280 return 0;
3281}
3282
3283static bfd_boolean
3284emit_insn (expressionS *exp, int nbytes)
3285{
3286 int size = 0;
3287
3288 if (exp->X_op == O_constant)
3289 {
3290 size = nbytes;
3291
3292 if (size == 0)
3293 size = thumb_insn_size (exp->X_add_number);
3294
3295 if (size != 0)
3296 {
3297 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3298 {
3299 as_bad (_(".inst.n operand too big. "\
3300 "Use .inst.w instead"));
3301 size = 0;
3302 }
3303 else
3304 {
3305 if (now_it.state == AUTOMATIC_IT_BLOCK)
3306 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3307 else
3308 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3309
3310 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3311 emit_thumb32_expr (exp);
3312 else
3313 emit_expr (exp, (unsigned int) size);
3314
3315 it_fsm_post_encode ();
3316 }
3317 }
3318 else
3319 as_bad (_("cannot determine Thumb instruction size. " \
3320 "Use .inst.n/.inst.w instead"));
3321 }
3322 else
3323 as_bad (_("constant expression required"));
3324
3325 return (size != 0);
3326}
3327
3328/* Like s_arm_elf_cons but do not use md_cons_align and
3329 set the mapping state to MAP_ARM/MAP_THUMB. */
3330
3331static void
3332s_arm_elf_inst (int nbytes)
3333{
3334 if (is_it_end_of_statement ())
3335 {
3336 demand_empty_rest_of_line ();
3337 return;
3338 }
3339
3340 /* Calling mapping_state () here will not change ARM/THUMB,
3341 but will ensure not to be in DATA state. */
3342
3343 if (thumb_mode)
3344 mapping_state (MAP_THUMB);
3345 else
3346 {
3347 if (nbytes != 0)
3348 {
3349 as_bad (_("width suffixes are invalid in ARM mode"));
3350 ignore_rest_of_line ();
3351 return;
3352 }
3353
3354 nbytes = 4;
3355
3356 mapping_state (MAP_ARM);
3357 }
3358
3359 do
3360 {
3361 expressionS exp;
3362
3363 expression (& exp);
3364
3365 if (! emit_insn (& exp, nbytes))
3366 {
3367 ignore_rest_of_line ();
3368 return;
3369 }
3370 }
3371 while (*input_line_pointer++ == ',');
3372
3373 /* Put terminator back into stream. */
3374 input_line_pointer --;
3375 demand_empty_rest_of_line ();
3376}
b99bd4ef 3377
c19d1205 3378/* Parse a .rel31 directive. */
b99bd4ef 3379
c19d1205
ZW
3380static void
3381s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3382{
3383 expressionS exp;
3384 char *p;
3385 valueT highbit;
b99bd4ef 3386
c19d1205
ZW
3387 highbit = 0;
3388 if (*input_line_pointer == '1')
3389 highbit = 0x80000000;
3390 else if (*input_line_pointer != '0')
3391 as_bad (_("expected 0 or 1"));
b99bd4ef 3392
c19d1205
ZW
3393 input_line_pointer++;
3394 if (*input_line_pointer != ',')
3395 as_bad (_("missing comma"));
3396 input_line_pointer++;
b99bd4ef 3397
c19d1205
ZW
3398#ifdef md_flush_pending_output
3399 md_flush_pending_output ();
3400#endif
b99bd4ef 3401
c19d1205
ZW
3402#ifdef md_cons_align
3403 md_cons_align (4);
3404#endif
b99bd4ef 3405
c19d1205 3406 mapping_state (MAP_DATA);
b99bd4ef 3407
c19d1205 3408 expression (&exp);
b99bd4ef 3409
c19d1205
ZW
3410 p = frag_more (4);
3411 md_number_to_chars (p, highbit, 4);
3412 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3413 BFD_RELOC_ARM_PREL31);
b99bd4ef 3414
c19d1205 3415 demand_empty_rest_of_line ();
b99bd4ef
NC
3416}
3417
c19d1205 3418/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3419
c19d1205 3420/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3421
c19d1205
ZW
3422static void
3423s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3424{
3425 demand_empty_rest_of_line ();
921e5f0a
PB
3426 if (unwind.proc_start)
3427 {
c921be7d 3428 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3429 return;
3430 }
3431
c19d1205
ZW
3432 /* Mark the start of the function. */
3433 unwind.proc_start = expr_build_dot ();
b99bd4ef 3434
c19d1205
ZW
3435 /* Reset the rest of the unwind info. */
3436 unwind.opcode_count = 0;
3437 unwind.table_entry = NULL;
3438 unwind.personality_routine = NULL;
3439 unwind.personality_index = -1;
3440 unwind.frame_size = 0;
3441 unwind.fp_offset = 0;
fdfde340 3442 unwind.fp_reg = REG_SP;
c19d1205
ZW
3443 unwind.fp_used = 0;
3444 unwind.sp_restored = 0;
3445}
b99bd4ef 3446
b99bd4ef 3447
c19d1205
ZW
3448/* Parse a handlerdata directive. Creates the exception handling table entry
3449 for the function. */
b99bd4ef 3450
c19d1205
ZW
3451static void
3452s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3453{
3454 demand_empty_rest_of_line ();
921e5f0a 3455 if (!unwind.proc_start)
c921be7d 3456 as_bad (MISSING_FNSTART);
921e5f0a 3457
c19d1205 3458 if (unwind.table_entry)
6decc662 3459 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3460
c19d1205
ZW
3461 create_unwind_entry (1);
3462}
a737bd4d 3463
c19d1205 3464/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3465
c19d1205
ZW
3466static void
3467s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3468{
3469 long where;
3470 char *ptr;
3471 valueT val;
940b5ce0 3472 unsigned int marked_pr_dependency;
f02232aa 3473
c19d1205 3474 demand_empty_rest_of_line ();
f02232aa 3475
921e5f0a
PB
3476 if (!unwind.proc_start)
3477 {
c921be7d 3478 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3479 return;
3480 }
3481
c19d1205
ZW
3482 /* Add eh table entry. */
3483 if (unwind.table_entry == NULL)
3484 val = create_unwind_entry (0);
3485 else
3486 val = 0;
f02232aa 3487
c19d1205
ZW
3488 /* Add index table entry. This is two words. */
3489 start_unwind_section (unwind.saved_seg, 1);
3490 frag_align (2, 0, 0);
3491 record_alignment (now_seg, 2);
b99bd4ef 3492
c19d1205
ZW
3493 ptr = frag_more (8);
3494 where = frag_now_fix () - 8;
f02232aa 3495
c19d1205
ZW
3496 /* Self relative offset of the function start. */
3497 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3498 BFD_RELOC_ARM_PREL31);
f02232aa 3499
c19d1205
ZW
3500 /* Indicate dependency on EHABI-defined personality routines to the
3501 linker, if it hasn't been done already. */
940b5ce0
DJ
3502 marked_pr_dependency
3503 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3504 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3505 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3506 {
5f4273c7
NC
3507 static const char *const name[] =
3508 {
3509 "__aeabi_unwind_cpp_pr0",
3510 "__aeabi_unwind_cpp_pr1",
3511 "__aeabi_unwind_cpp_pr2"
3512 };
c19d1205
ZW
3513 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3514 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3515 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3516 |= 1 << unwind.personality_index;
c19d1205 3517 }
f02232aa 3518
c19d1205
ZW
3519 if (val)
3520 /* Inline exception table entry. */
3521 md_number_to_chars (ptr + 4, val, 4);
3522 else
3523 /* Self relative offset of the table entry. */
3524 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3525 BFD_RELOC_ARM_PREL31);
f02232aa 3526
c19d1205
ZW
3527 /* Restore the original section. */
3528 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3529
3530 unwind.proc_start = NULL;
c19d1205 3531}
f02232aa 3532
f02232aa 3533
c19d1205 3534/* Parse an unwind_cantunwind directive. */
b99bd4ef 3535
c19d1205
ZW
3536static void
3537s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3538{
3539 demand_empty_rest_of_line ();
921e5f0a 3540 if (!unwind.proc_start)
c921be7d 3541 as_bad (MISSING_FNSTART);
921e5f0a 3542
c19d1205
ZW
3543 if (unwind.personality_routine || unwind.personality_index != -1)
3544 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3545
c19d1205
ZW
3546 unwind.personality_index = -2;
3547}
b99bd4ef 3548
b99bd4ef 3549
c19d1205 3550/* Parse a personalityindex directive. */
b99bd4ef 3551
c19d1205
ZW
3552static void
3553s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3554{
3555 expressionS exp;
b99bd4ef 3556
921e5f0a 3557 if (!unwind.proc_start)
c921be7d 3558 as_bad (MISSING_FNSTART);
921e5f0a 3559
c19d1205
ZW
3560 if (unwind.personality_routine || unwind.personality_index != -1)
3561 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3562
c19d1205 3563 expression (&exp);
b99bd4ef 3564
c19d1205
ZW
3565 if (exp.X_op != O_constant
3566 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3567 {
c19d1205
ZW
3568 as_bad (_("bad personality routine number"));
3569 ignore_rest_of_line ();
3570 return;
b99bd4ef
NC
3571 }
3572
c19d1205 3573 unwind.personality_index = exp.X_add_number;
b99bd4ef 3574
c19d1205
ZW
3575 demand_empty_rest_of_line ();
3576}
e16bb312 3577
e16bb312 3578
c19d1205 3579/* Parse a personality directive. */
e16bb312 3580
c19d1205
ZW
3581static void
3582s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3583{
3584 char *name, *p, c;
a737bd4d 3585
921e5f0a 3586 if (!unwind.proc_start)
c921be7d 3587 as_bad (MISSING_FNSTART);
921e5f0a 3588
c19d1205
ZW
3589 if (unwind.personality_routine || unwind.personality_index != -1)
3590 as_bad (_("duplicate .personality directive"));
a737bd4d 3591
c19d1205
ZW
3592 name = input_line_pointer;
3593 c = get_symbol_end ();
3594 p = input_line_pointer;
3595 unwind.personality_routine = symbol_find_or_make (name);
3596 *p = c;
3597 demand_empty_rest_of_line ();
3598}
e16bb312 3599
e16bb312 3600
c19d1205 3601/* Parse a directive saving core registers. */
e16bb312 3602
c19d1205
ZW
3603static void
3604s_arm_unwind_save_core (void)
e16bb312 3605{
c19d1205
ZW
3606 valueT op;
3607 long range;
3608 int n;
e16bb312 3609
c19d1205
ZW
3610 range = parse_reg_list (&input_line_pointer);
3611 if (range == FAIL)
e16bb312 3612 {
c19d1205
ZW
3613 as_bad (_("expected register list"));
3614 ignore_rest_of_line ();
3615 return;
3616 }
e16bb312 3617
c19d1205 3618 demand_empty_rest_of_line ();
e16bb312 3619
c19d1205
ZW
3620 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3621 into .unwind_save {..., sp...}. We aren't bothered about the value of
3622 ip because it is clobbered by calls. */
3623 if (unwind.sp_restored && unwind.fp_reg == 12
3624 && (range & 0x3000) == 0x1000)
3625 {
3626 unwind.opcode_count--;
3627 unwind.sp_restored = 0;
3628 range = (range | 0x2000) & ~0x1000;
3629 unwind.pending_offset = 0;
3630 }
e16bb312 3631
01ae4198
DJ
3632 /* Pop r4-r15. */
3633 if (range & 0xfff0)
c19d1205 3634 {
01ae4198
DJ
3635 /* See if we can use the short opcodes. These pop a block of up to 8
3636 registers starting with r4, plus maybe r14. */
3637 for (n = 0; n < 8; n++)
3638 {
3639 /* Break at the first non-saved register. */
3640 if ((range & (1 << (n + 4))) == 0)
3641 break;
3642 }
3643 /* See if there are any other bits set. */
3644 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3645 {
3646 /* Use the long form. */
3647 op = 0x8000 | ((range >> 4) & 0xfff);
3648 add_unwind_opcode (op, 2);
3649 }
0dd132b6 3650 else
01ae4198
DJ
3651 {
3652 /* Use the short form. */
3653 if (range & 0x4000)
3654 op = 0xa8; /* Pop r14. */
3655 else
3656 op = 0xa0; /* Do not pop r14. */
3657 op |= (n - 1);
3658 add_unwind_opcode (op, 1);
3659 }
c19d1205 3660 }
0dd132b6 3661
c19d1205
ZW
3662 /* Pop r0-r3. */
3663 if (range & 0xf)
3664 {
3665 op = 0xb100 | (range & 0xf);
3666 add_unwind_opcode (op, 2);
0dd132b6
NC
3667 }
3668
c19d1205
ZW
3669 /* Record the number of bytes pushed. */
3670 for (n = 0; n < 16; n++)
3671 {
3672 if (range & (1 << n))
3673 unwind.frame_size += 4;
3674 }
0dd132b6
NC
3675}
3676
c19d1205
ZW
3677
3678/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3679
3680static void
c19d1205 3681s_arm_unwind_save_fpa (int reg)
b99bd4ef 3682{
c19d1205
ZW
3683 expressionS exp;
3684 int num_regs;
3685 valueT op;
b99bd4ef 3686
c19d1205
ZW
3687 /* Get Number of registers to transfer. */
3688 if (skip_past_comma (&input_line_pointer) != FAIL)
3689 expression (&exp);
3690 else
3691 exp.X_op = O_illegal;
b99bd4ef 3692
c19d1205 3693 if (exp.X_op != O_constant)
b99bd4ef 3694 {
c19d1205
ZW
3695 as_bad (_("expected , <constant>"));
3696 ignore_rest_of_line ();
b99bd4ef
NC
3697 return;
3698 }
3699
c19d1205
ZW
3700 num_regs = exp.X_add_number;
3701
3702 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3703 {
c19d1205
ZW
3704 as_bad (_("number of registers must be in the range [1:4]"));
3705 ignore_rest_of_line ();
b99bd4ef
NC
3706 return;
3707 }
3708
c19d1205 3709 demand_empty_rest_of_line ();
b99bd4ef 3710
c19d1205
ZW
3711 if (reg == 4)
3712 {
3713 /* Short form. */
3714 op = 0xb4 | (num_regs - 1);
3715 add_unwind_opcode (op, 1);
3716 }
b99bd4ef
NC
3717 else
3718 {
c19d1205
ZW
3719 /* Long form. */
3720 op = 0xc800 | (reg << 4) | (num_regs - 1);
3721 add_unwind_opcode (op, 2);
b99bd4ef 3722 }
c19d1205 3723 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3724}
3725
c19d1205 3726
fa073d69
MS
3727/* Parse a directive saving VFP registers for ARMv6 and above. */
3728
3729static void
3730s_arm_unwind_save_vfp_armv6 (void)
3731{
3732 int count;
3733 unsigned int start;
3734 valueT op;
3735 int num_vfpv3_regs = 0;
3736 int num_regs_below_16;
3737
3738 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3739 if (count == FAIL)
3740 {
3741 as_bad (_("expected register list"));
3742 ignore_rest_of_line ();
3743 return;
3744 }
3745
3746 demand_empty_rest_of_line ();
3747
3748 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3749 than FSTMX/FLDMX-style ones). */
3750
3751 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3752 if (start >= 16)
3753 num_vfpv3_regs = count;
3754 else if (start + count > 16)
3755 num_vfpv3_regs = start + count - 16;
3756
3757 if (num_vfpv3_regs > 0)
3758 {
3759 int start_offset = start > 16 ? start - 16 : 0;
3760 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3761 add_unwind_opcode (op, 2);
3762 }
3763
3764 /* Generate opcode for registers numbered in the range 0 .. 15. */
3765 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3766 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3767 if (num_regs_below_16 > 0)
3768 {
3769 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3770 add_unwind_opcode (op, 2);
3771 }
3772
3773 unwind.frame_size += count * 8;
3774}
3775
3776
3777/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3778
3779static void
c19d1205 3780s_arm_unwind_save_vfp (void)
b99bd4ef 3781{
c19d1205 3782 int count;
ca3f61f7 3783 unsigned int reg;
c19d1205 3784 valueT op;
b99bd4ef 3785
5287ad62 3786 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3787 if (count == FAIL)
b99bd4ef 3788 {
c19d1205
ZW
3789 as_bad (_("expected register list"));
3790 ignore_rest_of_line ();
b99bd4ef
NC
3791 return;
3792 }
3793
c19d1205 3794 demand_empty_rest_of_line ();
b99bd4ef 3795
c19d1205 3796 if (reg == 8)
b99bd4ef 3797 {
c19d1205
ZW
3798 /* Short form. */
3799 op = 0xb8 | (count - 1);
3800 add_unwind_opcode (op, 1);
b99bd4ef 3801 }
c19d1205 3802 else
b99bd4ef 3803 {
c19d1205
ZW
3804 /* Long form. */
3805 op = 0xb300 | (reg << 4) | (count - 1);
3806 add_unwind_opcode (op, 2);
b99bd4ef 3807 }
c19d1205
ZW
3808 unwind.frame_size += count * 8 + 4;
3809}
b99bd4ef 3810
b99bd4ef 3811
c19d1205
ZW
3812/* Parse a directive saving iWMMXt data registers. */
3813
3814static void
3815s_arm_unwind_save_mmxwr (void)
3816{
3817 int reg;
3818 int hi_reg;
3819 int i;
3820 unsigned mask = 0;
3821 valueT op;
b99bd4ef 3822
c19d1205
ZW
3823 if (*input_line_pointer == '{')
3824 input_line_pointer++;
b99bd4ef 3825
c19d1205 3826 do
b99bd4ef 3827 {
dcbf9037 3828 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3829
c19d1205 3830 if (reg == FAIL)
b99bd4ef 3831 {
9b7132d3 3832 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3833 goto error;
b99bd4ef
NC
3834 }
3835
c19d1205
ZW
3836 if (mask >> reg)
3837 as_tsktsk (_("register list not in ascending order"));
3838 mask |= 1 << reg;
b99bd4ef 3839
c19d1205
ZW
3840 if (*input_line_pointer == '-')
3841 {
3842 input_line_pointer++;
dcbf9037 3843 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3844 if (hi_reg == FAIL)
3845 {
9b7132d3 3846 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3847 goto error;
3848 }
3849 else if (reg >= hi_reg)
3850 {
3851 as_bad (_("bad register range"));
3852 goto error;
3853 }
3854 for (; reg < hi_reg; reg++)
3855 mask |= 1 << reg;
3856 }
3857 }
3858 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3859
c19d1205
ZW
3860 if (*input_line_pointer == '}')
3861 input_line_pointer++;
b99bd4ef 3862
c19d1205 3863 demand_empty_rest_of_line ();
b99bd4ef 3864
708587a4 3865 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3866 the list. */
3867 flush_pending_unwind ();
b99bd4ef 3868
c19d1205 3869 for (i = 0; i < 16; i++)
b99bd4ef 3870 {
c19d1205
ZW
3871 if (mask & (1 << i))
3872 unwind.frame_size += 8;
b99bd4ef
NC
3873 }
3874
c19d1205
ZW
3875 /* Attempt to combine with a previous opcode. We do this because gcc
3876 likes to output separate unwind directives for a single block of
3877 registers. */
3878 if (unwind.opcode_count > 0)
b99bd4ef 3879 {
c19d1205
ZW
3880 i = unwind.opcodes[unwind.opcode_count - 1];
3881 if ((i & 0xf8) == 0xc0)
3882 {
3883 i &= 7;
3884 /* Only merge if the blocks are contiguous. */
3885 if (i < 6)
3886 {
3887 if ((mask & 0xfe00) == (1 << 9))
3888 {
3889 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3890 unwind.opcode_count--;
3891 }
3892 }
3893 else if (i == 6 && unwind.opcode_count >= 2)
3894 {
3895 i = unwind.opcodes[unwind.opcode_count - 2];
3896 reg = i >> 4;
3897 i &= 0xf;
b99bd4ef 3898
c19d1205
ZW
3899 op = 0xffff << (reg - 1);
3900 if (reg > 0
87a1fd79 3901 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3902 {
3903 op = (1 << (reg + i + 1)) - 1;
3904 op &= ~((1 << reg) - 1);
3905 mask |= op;
3906 unwind.opcode_count -= 2;
3907 }
3908 }
3909 }
b99bd4ef
NC
3910 }
3911
c19d1205
ZW
3912 hi_reg = 15;
3913 /* We want to generate opcodes in the order the registers have been
3914 saved, ie. descending order. */
3915 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3916 {
c19d1205
ZW
3917 /* Save registers in blocks. */
3918 if (reg < 0
3919 || !(mask & (1 << reg)))
3920 {
3921 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3922 preceding block. */
c19d1205
ZW
3923 if (reg != hi_reg)
3924 {
3925 if (reg == 9)
3926 {
3927 /* Short form. */
3928 op = 0xc0 | (hi_reg - 10);
3929 add_unwind_opcode (op, 1);
3930 }
3931 else
3932 {
3933 /* Long form. */
3934 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3935 add_unwind_opcode (op, 2);
3936 }
3937 }
3938 hi_reg = reg - 1;
3939 }
b99bd4ef
NC
3940 }
3941
c19d1205
ZW
3942 return;
3943error:
3944 ignore_rest_of_line ();
b99bd4ef
NC
3945}
3946
3947static void
c19d1205 3948s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3949{
c19d1205
ZW
3950 int reg;
3951 int hi_reg;
3952 unsigned mask = 0;
3953 valueT op;
b99bd4ef 3954
c19d1205
ZW
3955 if (*input_line_pointer == '{')
3956 input_line_pointer++;
b99bd4ef 3957
c19d1205 3958 do
b99bd4ef 3959 {
dcbf9037 3960 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3961
c19d1205
ZW
3962 if (reg == FAIL)
3963 {
9b7132d3 3964 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3965 goto error;
3966 }
b99bd4ef 3967
c19d1205
ZW
3968 reg -= 8;
3969 if (mask >> reg)
3970 as_tsktsk (_("register list not in ascending order"));
3971 mask |= 1 << reg;
b99bd4ef 3972
c19d1205
ZW
3973 if (*input_line_pointer == '-')
3974 {
3975 input_line_pointer++;
dcbf9037 3976 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3977 if (hi_reg == FAIL)
3978 {
9b7132d3 3979 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3980 goto error;
3981 }
3982 else if (reg >= hi_reg)
3983 {
3984 as_bad (_("bad register range"));
3985 goto error;
3986 }
3987 for (; reg < hi_reg; reg++)
3988 mask |= 1 << reg;
3989 }
b99bd4ef 3990 }
c19d1205 3991 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3992
c19d1205
ZW
3993 if (*input_line_pointer == '}')
3994 input_line_pointer++;
b99bd4ef 3995
c19d1205
ZW
3996 demand_empty_rest_of_line ();
3997
708587a4 3998 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3999 the list. */
4000 flush_pending_unwind ();
b99bd4ef 4001
c19d1205 4002 for (reg = 0; reg < 16; reg++)
b99bd4ef 4003 {
c19d1205
ZW
4004 if (mask & (1 << reg))
4005 unwind.frame_size += 4;
b99bd4ef 4006 }
c19d1205
ZW
4007 op = 0xc700 | mask;
4008 add_unwind_opcode (op, 2);
4009 return;
4010error:
4011 ignore_rest_of_line ();
b99bd4ef
NC
4012}
4013
c19d1205 4014
fa073d69
MS
4015/* Parse an unwind_save directive.
4016 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4017
b99bd4ef 4018static void
fa073d69 4019s_arm_unwind_save (int arch_v6)
b99bd4ef 4020{
c19d1205
ZW
4021 char *peek;
4022 struct reg_entry *reg;
4023 bfd_boolean had_brace = FALSE;
b99bd4ef 4024
921e5f0a 4025 if (!unwind.proc_start)
c921be7d 4026 as_bad (MISSING_FNSTART);
921e5f0a 4027
c19d1205
ZW
4028 /* Figure out what sort of save we have. */
4029 peek = input_line_pointer;
b99bd4ef 4030
c19d1205 4031 if (*peek == '{')
b99bd4ef 4032 {
c19d1205
ZW
4033 had_brace = TRUE;
4034 peek++;
b99bd4ef
NC
4035 }
4036
c19d1205 4037 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4038
c19d1205 4039 if (!reg)
b99bd4ef 4040 {
c19d1205
ZW
4041 as_bad (_("register expected"));
4042 ignore_rest_of_line ();
b99bd4ef
NC
4043 return;
4044 }
4045
c19d1205 4046 switch (reg->type)
b99bd4ef 4047 {
c19d1205
ZW
4048 case REG_TYPE_FN:
4049 if (had_brace)
4050 {
4051 as_bad (_("FPA .unwind_save does not take a register list"));
4052 ignore_rest_of_line ();
4053 return;
4054 }
93ac2687 4055 input_line_pointer = peek;
c19d1205 4056 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4057 return;
c19d1205
ZW
4058
4059 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4060 case REG_TYPE_VFD:
4061 if (arch_v6)
4062 s_arm_unwind_save_vfp_armv6 ();
4063 else
4064 s_arm_unwind_save_vfp ();
4065 return;
c19d1205
ZW
4066 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4067 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4068
4069 default:
4070 as_bad (_(".unwind_save does not support this kind of register"));
4071 ignore_rest_of_line ();
b99bd4ef 4072 }
c19d1205 4073}
b99bd4ef 4074
b99bd4ef 4075
c19d1205
ZW
4076/* Parse an unwind_movsp directive. */
4077
4078static void
4079s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4080{
4081 int reg;
4082 valueT op;
4fa3602b 4083 int offset;
c19d1205 4084
921e5f0a 4085 if (!unwind.proc_start)
c921be7d 4086 as_bad (MISSING_FNSTART);
921e5f0a 4087
dcbf9037 4088 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4089 if (reg == FAIL)
b99bd4ef 4090 {
9b7132d3 4091 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4092 ignore_rest_of_line ();
b99bd4ef
NC
4093 return;
4094 }
4fa3602b
PB
4095
4096 /* Optional constant. */
4097 if (skip_past_comma (&input_line_pointer) != FAIL)
4098 {
4099 if (immediate_for_directive (&offset) == FAIL)
4100 return;
4101 }
4102 else
4103 offset = 0;
4104
c19d1205 4105 demand_empty_rest_of_line ();
b99bd4ef 4106
c19d1205 4107 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4108 {
c19d1205 4109 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4110 return;
4111 }
4112
c19d1205
ZW
4113 if (unwind.fp_reg != REG_SP)
4114 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4115
c19d1205
ZW
4116 /* Generate opcode to restore the value. */
4117 op = 0x90 | reg;
4118 add_unwind_opcode (op, 1);
4119
4120 /* Record the information for later. */
4121 unwind.fp_reg = reg;
4fa3602b 4122 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4123 unwind.sp_restored = 1;
b05fe5cf
ZW
4124}
4125
c19d1205
ZW
4126/* Parse an unwind_pad directive. */
4127
b05fe5cf 4128static void
c19d1205 4129s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4130{
c19d1205 4131 int offset;
b05fe5cf 4132
921e5f0a 4133 if (!unwind.proc_start)
c921be7d 4134 as_bad (MISSING_FNSTART);
921e5f0a 4135
c19d1205
ZW
4136 if (immediate_for_directive (&offset) == FAIL)
4137 return;
b99bd4ef 4138
c19d1205
ZW
4139 if (offset & 3)
4140 {
4141 as_bad (_("stack increment must be multiple of 4"));
4142 ignore_rest_of_line ();
4143 return;
4144 }
b99bd4ef 4145
c19d1205
ZW
4146 /* Don't generate any opcodes, just record the details for later. */
4147 unwind.frame_size += offset;
4148 unwind.pending_offset += offset;
4149
4150 demand_empty_rest_of_line ();
4151}
4152
4153/* Parse an unwind_setfp directive. */
4154
4155static void
4156s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4157{
c19d1205
ZW
4158 int sp_reg;
4159 int fp_reg;
4160 int offset;
4161
921e5f0a 4162 if (!unwind.proc_start)
c921be7d 4163 as_bad (MISSING_FNSTART);
921e5f0a 4164
dcbf9037 4165 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4166 if (skip_past_comma (&input_line_pointer) == FAIL)
4167 sp_reg = FAIL;
4168 else
dcbf9037 4169 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4170
c19d1205
ZW
4171 if (fp_reg == FAIL || sp_reg == FAIL)
4172 {
4173 as_bad (_("expected <reg>, <reg>"));
4174 ignore_rest_of_line ();
4175 return;
4176 }
b99bd4ef 4177
c19d1205
ZW
4178 /* Optional constant. */
4179 if (skip_past_comma (&input_line_pointer) != FAIL)
4180 {
4181 if (immediate_for_directive (&offset) == FAIL)
4182 return;
4183 }
4184 else
4185 offset = 0;
a737bd4d 4186
c19d1205 4187 demand_empty_rest_of_line ();
a737bd4d 4188
fdfde340 4189 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4190 {
c19d1205
ZW
4191 as_bad (_("register must be either sp or set by a previous"
4192 "unwind_movsp directive"));
4193 return;
a737bd4d
NC
4194 }
4195
c19d1205
ZW
4196 /* Don't generate any opcodes, just record the information for later. */
4197 unwind.fp_reg = fp_reg;
4198 unwind.fp_used = 1;
fdfde340 4199 if (sp_reg == REG_SP)
c19d1205
ZW
4200 unwind.fp_offset = unwind.frame_size - offset;
4201 else
4202 unwind.fp_offset -= offset;
a737bd4d
NC
4203}
4204
c19d1205
ZW
4205/* Parse an unwind_raw directive. */
4206
4207static void
4208s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4209{
c19d1205 4210 expressionS exp;
708587a4 4211 /* This is an arbitrary limit. */
c19d1205
ZW
4212 unsigned char op[16];
4213 int count;
a737bd4d 4214
921e5f0a 4215 if (!unwind.proc_start)
c921be7d 4216 as_bad (MISSING_FNSTART);
921e5f0a 4217
c19d1205
ZW
4218 expression (&exp);
4219 if (exp.X_op == O_constant
4220 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4221 {
c19d1205
ZW
4222 unwind.frame_size += exp.X_add_number;
4223 expression (&exp);
4224 }
4225 else
4226 exp.X_op = O_illegal;
a737bd4d 4227
c19d1205
ZW
4228 if (exp.X_op != O_constant)
4229 {
4230 as_bad (_("expected <offset>, <opcode>"));
4231 ignore_rest_of_line ();
4232 return;
4233 }
a737bd4d 4234
c19d1205 4235 count = 0;
a737bd4d 4236
c19d1205
ZW
4237 /* Parse the opcode. */
4238 for (;;)
4239 {
4240 if (count >= 16)
4241 {
4242 as_bad (_("unwind opcode too long"));
4243 ignore_rest_of_line ();
a737bd4d 4244 }
c19d1205 4245 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4246 {
c19d1205
ZW
4247 as_bad (_("invalid unwind opcode"));
4248 ignore_rest_of_line ();
4249 return;
a737bd4d 4250 }
c19d1205 4251 op[count++] = exp.X_add_number;
a737bd4d 4252
c19d1205
ZW
4253 /* Parse the next byte. */
4254 if (skip_past_comma (&input_line_pointer) == FAIL)
4255 break;
a737bd4d 4256
c19d1205
ZW
4257 expression (&exp);
4258 }
b99bd4ef 4259
c19d1205
ZW
4260 /* Add the opcode bytes in reverse order. */
4261 while (count--)
4262 add_unwind_opcode (op[count], 1);
b99bd4ef 4263
c19d1205 4264 demand_empty_rest_of_line ();
b99bd4ef 4265}
ee065d83
PB
4266
4267
4268/* Parse a .eabi_attribute directive. */
4269
4270static void
4271s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4272{
ee3c0378
AS
4273 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4274
4275 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4276 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4277}
4278
0855e32b
NS
4279/* Emit a tls fix for the symbol. */
4280
4281static void
4282s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4283{
4284 char *p;
4285 expressionS exp;
4286#ifdef md_flush_pending_output
4287 md_flush_pending_output ();
4288#endif
4289
4290#ifdef md_cons_align
4291 md_cons_align (4);
4292#endif
4293
4294 /* Since we're just labelling the code, there's no need to define a
4295 mapping symbol. */
4296 expression (&exp);
4297 p = obstack_next_free (&frchain_now->frch_obstack);
4298 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4299 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4300 : BFD_RELOC_ARM_TLS_DESCSEQ);
4301}
cdf9ccec 4302#endif /* OBJ_ELF */
0855e32b 4303
ee065d83 4304static void s_arm_arch (int);
7a1d4c38 4305static void s_arm_object_arch (int);
ee065d83
PB
4306static void s_arm_cpu (int);
4307static void s_arm_fpu (int);
69133863 4308static void s_arm_arch_extension (int);
b99bd4ef 4309
f0927246
NC
4310#ifdef TE_PE
4311
4312static void
5f4273c7 4313pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4314{
4315 expressionS exp;
4316
4317 do
4318 {
4319 expression (&exp);
4320 if (exp.X_op == O_symbol)
4321 exp.X_op = O_secrel;
4322
4323 emit_expr (&exp, 4);
4324 }
4325 while (*input_line_pointer++ == ',');
4326
4327 input_line_pointer--;
4328 demand_empty_rest_of_line ();
4329}
4330#endif /* TE_PE */
4331
c19d1205
ZW
4332/* This table describes all the machine specific pseudo-ops the assembler
4333 has to support. The fields are:
4334 pseudo-op name without dot
4335 function to call to execute this pseudo-op
4336 Integer arg to pass to the function. */
b99bd4ef 4337
c19d1205 4338const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4339{
c19d1205
ZW
4340 /* Never called because '.req' does not start a line. */
4341 { "req", s_req, 0 },
dcbf9037
JB
4342 /* Following two are likewise never called. */
4343 { "dn", s_dn, 0 },
4344 { "qn", s_qn, 0 },
c19d1205
ZW
4345 { "unreq", s_unreq, 0 },
4346 { "bss", s_bss, 0 },
4347 { "align", s_align, 0 },
4348 { "arm", s_arm, 0 },
4349 { "thumb", s_thumb, 0 },
4350 { "code", s_code, 0 },
4351 { "force_thumb", s_force_thumb, 0 },
4352 { "thumb_func", s_thumb_func, 0 },
4353 { "thumb_set", s_thumb_set, 0 },
4354 { "even", s_even, 0 },
4355 { "ltorg", s_ltorg, 0 },
4356 { "pool", s_ltorg, 0 },
4357 { "syntax", s_syntax, 0 },
8463be01
PB
4358 { "cpu", s_arm_cpu, 0 },
4359 { "arch", s_arm_arch, 0 },
7a1d4c38 4360 { "object_arch", s_arm_object_arch, 0 },
8463be01 4361 { "fpu", s_arm_fpu, 0 },
69133863 4362 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4363#ifdef OBJ_ELF
c921be7d
NC
4364 { "word", s_arm_elf_cons, 4 },
4365 { "long", s_arm_elf_cons, 4 },
4366 { "inst.n", s_arm_elf_inst, 2 },
4367 { "inst.w", s_arm_elf_inst, 4 },
4368 { "inst", s_arm_elf_inst, 0 },
4369 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4370 { "fnstart", s_arm_unwind_fnstart, 0 },
4371 { "fnend", s_arm_unwind_fnend, 0 },
4372 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4373 { "personality", s_arm_unwind_personality, 0 },
4374 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4375 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4376 { "save", s_arm_unwind_save, 0 },
fa073d69 4377 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4378 { "movsp", s_arm_unwind_movsp, 0 },
4379 { "pad", s_arm_unwind_pad, 0 },
4380 { "setfp", s_arm_unwind_setfp, 0 },
4381 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4382 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4383 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4384#else
4385 { "word", cons, 4},
f0927246
NC
4386
4387 /* These are used for dwarf. */
4388 {"2byte", cons, 2},
4389 {"4byte", cons, 4},
4390 {"8byte", cons, 8},
4391 /* These are used for dwarf2. */
4392 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4393 { "loc", dwarf2_directive_loc, 0 },
4394 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4395#endif
4396 { "extend", float_cons, 'x' },
4397 { "ldouble", float_cons, 'x' },
4398 { "packed", float_cons, 'p' },
f0927246
NC
4399#ifdef TE_PE
4400 {"secrel32", pe_directive_secrel, 0},
4401#endif
c19d1205
ZW
4402 { 0, 0, 0 }
4403};
4404\f
4405/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4406
c19d1205
ZW
4407/* Generic immediate-value read function for use in insn parsing.
4408 STR points to the beginning of the immediate (the leading #);
4409 VAL receives the value; if the value is outside [MIN, MAX]
4410 issue an error. PREFIX_OPT is true if the immediate prefix is
4411 optional. */
b99bd4ef 4412
c19d1205
ZW
4413static int
4414parse_immediate (char **str, int *val, int min, int max,
4415 bfd_boolean prefix_opt)
4416{
4417 expressionS exp;
4418 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4419 if (exp.X_op != O_constant)
b99bd4ef 4420 {
c19d1205
ZW
4421 inst.error = _("constant expression required");
4422 return FAIL;
4423 }
b99bd4ef 4424
c19d1205
ZW
4425 if (exp.X_add_number < min || exp.X_add_number > max)
4426 {
4427 inst.error = _("immediate value out of range");
4428 return FAIL;
4429 }
b99bd4ef 4430
c19d1205
ZW
4431 *val = exp.X_add_number;
4432 return SUCCESS;
4433}
b99bd4ef 4434
5287ad62 4435/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4436 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4437 instructions. Puts the result directly in inst.operands[i]. */
4438
4439static int
4440parse_big_immediate (char **str, int i)
4441{
4442 expressionS exp;
4443 char *ptr = *str;
4444
4445 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4446
4447 if (exp.X_op == O_constant)
036dc3f7
PB
4448 {
4449 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4450 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4451 O_constant. We have to be careful not to break compilation for
4452 32-bit X_add_number, though. */
4453 if ((exp.X_add_number & ~0xffffffffl) != 0)
4454 {
4455 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4456 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4457 inst.operands[i].regisimm = 1;
4458 }
4459 }
5287ad62 4460 else if (exp.X_op == O_big
95b75c01 4461 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4462 {
4463 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4464
5287ad62
JB
4465 /* Bignums have their least significant bits in
4466 generic_bignum[0]. Make sure we put 32 bits in imm and
4467 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4468 gas_assert (parts != 0);
95b75c01
NC
4469
4470 /* Make sure that the number is not too big.
4471 PR 11972: Bignums can now be sign-extended to the
4472 size of a .octa so check that the out of range bits
4473 are all zero or all one. */
4474 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4475 {
4476 LITTLENUM_TYPE m = -1;
4477
4478 if (generic_bignum[parts * 2] != 0
4479 && generic_bignum[parts * 2] != m)
4480 return FAIL;
4481
4482 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4483 if (generic_bignum[j] != generic_bignum[j-1])
4484 return FAIL;
4485 }
4486
5287ad62
JB
4487 inst.operands[i].imm = 0;
4488 for (j = 0; j < parts; j++, idx++)
4489 inst.operands[i].imm |= generic_bignum[idx]
4490 << (LITTLENUM_NUMBER_OF_BITS * j);
4491 inst.operands[i].reg = 0;
4492 for (j = 0; j < parts; j++, idx++)
4493 inst.operands[i].reg |= generic_bignum[idx]
4494 << (LITTLENUM_NUMBER_OF_BITS * j);
4495 inst.operands[i].regisimm = 1;
4496 }
4497 else
4498 return FAIL;
5f4273c7 4499
5287ad62
JB
4500 *str = ptr;
4501
4502 return SUCCESS;
4503}
4504
c19d1205
ZW
4505/* Returns the pseudo-register number of an FPA immediate constant,
4506 or FAIL if there isn't a valid constant here. */
b99bd4ef 4507
c19d1205
ZW
4508static int
4509parse_fpa_immediate (char ** str)
4510{
4511 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4512 char * save_in;
4513 expressionS exp;
4514 int i;
4515 int j;
b99bd4ef 4516
c19d1205
ZW
4517 /* First try and match exact strings, this is to guarantee
4518 that some formats will work even for cross assembly. */
b99bd4ef 4519
c19d1205
ZW
4520 for (i = 0; fp_const[i]; i++)
4521 {
4522 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4523 {
c19d1205 4524 char *start = *str;
b99bd4ef 4525
c19d1205
ZW
4526 *str += strlen (fp_const[i]);
4527 if (is_end_of_line[(unsigned char) **str])
4528 return i + 8;
4529 *str = start;
4530 }
4531 }
b99bd4ef 4532
c19d1205
ZW
4533 /* Just because we didn't get a match doesn't mean that the constant
4534 isn't valid, just that it is in a format that we don't
4535 automatically recognize. Try parsing it with the standard
4536 expression routines. */
b99bd4ef 4537
c19d1205 4538 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4539
c19d1205
ZW
4540 /* Look for a raw floating point number. */
4541 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4542 && is_end_of_line[(unsigned char) *save_in])
4543 {
4544 for (i = 0; i < NUM_FLOAT_VALS; i++)
4545 {
4546 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4547 {
c19d1205
ZW
4548 if (words[j] != fp_values[i][j])
4549 break;
b99bd4ef
NC
4550 }
4551
c19d1205 4552 if (j == MAX_LITTLENUMS)
b99bd4ef 4553 {
c19d1205
ZW
4554 *str = save_in;
4555 return i + 8;
b99bd4ef
NC
4556 }
4557 }
4558 }
b99bd4ef 4559
c19d1205
ZW
4560 /* Try and parse a more complex expression, this will probably fail
4561 unless the code uses a floating point prefix (eg "0f"). */
4562 save_in = input_line_pointer;
4563 input_line_pointer = *str;
4564 if (expression (&exp) == absolute_section
4565 && exp.X_op == O_big
4566 && exp.X_add_number < 0)
4567 {
4568 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4569 Ditto for 15. */
4570 if (gen_to_words (words, 5, (long) 15) == 0)
4571 {
4572 for (i = 0; i < NUM_FLOAT_VALS; i++)
4573 {
4574 for (j = 0; j < MAX_LITTLENUMS; j++)
4575 {
4576 if (words[j] != fp_values[i][j])
4577 break;
4578 }
b99bd4ef 4579
c19d1205
ZW
4580 if (j == MAX_LITTLENUMS)
4581 {
4582 *str = input_line_pointer;
4583 input_line_pointer = save_in;
4584 return i + 8;
4585 }
4586 }
4587 }
b99bd4ef
NC
4588 }
4589
c19d1205
ZW
4590 *str = input_line_pointer;
4591 input_line_pointer = save_in;
4592 inst.error = _("invalid FPA immediate expression");
4593 return FAIL;
b99bd4ef
NC
4594}
4595
136da414
JB
4596/* Returns 1 if a number has "quarter-precision" float format
4597 0baBbbbbbc defgh000 00000000 00000000. */
4598
4599static int
4600is_quarter_float (unsigned imm)
4601{
4602 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4603 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4604}
4605
4606/* Parse an 8-bit "quarter-precision" floating point number of the form:
4607 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4608 The zero and minus-zero cases need special handling, since they can't be
4609 encoded in the "quarter-precision" float format, but can nonetheless be
4610 loaded as integer constants. */
136da414
JB
4611
4612static unsigned
4613parse_qfloat_immediate (char **ccp, int *immed)
4614{
4615 char *str = *ccp;
c96612cc 4616 char *fpnum;
136da414 4617 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4618 int found_fpchar = 0;
5f4273c7 4619
136da414 4620 skip_past_char (&str, '#');
5f4273c7 4621
c96612cc
JB
4622 /* We must not accidentally parse an integer as a floating-point number. Make
4623 sure that the value we parse is not an integer by checking for special
4624 characters '.' or 'e'.
4625 FIXME: This is a horrible hack, but doing better is tricky because type
4626 information isn't in a very usable state at parse time. */
4627 fpnum = str;
4628 skip_whitespace (fpnum);
4629
4630 if (strncmp (fpnum, "0x", 2) == 0)
4631 return FAIL;
4632 else
4633 {
4634 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4635 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4636 {
4637 found_fpchar = 1;
4638 break;
4639 }
4640
4641 if (!found_fpchar)
4642 return FAIL;
4643 }
5f4273c7 4644
136da414
JB
4645 if ((str = atof_ieee (str, 's', words)) != NULL)
4646 {
4647 unsigned fpword = 0;
4648 int i;
5f4273c7 4649
136da414
JB
4650 /* Our FP word must be 32 bits (single-precision FP). */
4651 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4652 {
4653 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4654 fpword |= words[i];
4655 }
5f4273c7 4656
c96612cc 4657 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4658 *immed = fpword;
4659 else
4660 return FAIL;
4661
4662 *ccp = str;
5f4273c7 4663
136da414
JB
4664 return SUCCESS;
4665 }
5f4273c7 4666
136da414
JB
4667 return FAIL;
4668}
4669
c19d1205
ZW
4670/* Shift operands. */
4671enum shift_kind
b99bd4ef 4672{
c19d1205
ZW
4673 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4674};
b99bd4ef 4675
c19d1205
ZW
4676struct asm_shift_name
4677{
4678 const char *name;
4679 enum shift_kind kind;
4680};
b99bd4ef 4681
c19d1205
ZW
4682/* Third argument to parse_shift. */
4683enum parse_shift_mode
4684{
4685 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4686 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4687 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4688 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4689 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4690};
b99bd4ef 4691
c19d1205
ZW
4692/* Parse a <shift> specifier on an ARM data processing instruction.
4693 This has three forms:
b99bd4ef 4694
c19d1205
ZW
4695 (LSL|LSR|ASL|ASR|ROR) Rs
4696 (LSL|LSR|ASL|ASR|ROR) #imm
4697 RRX
b99bd4ef 4698
c19d1205
ZW
4699 Note that ASL is assimilated to LSL in the instruction encoding, and
4700 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4701
c19d1205
ZW
4702static int
4703parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4704{
c19d1205
ZW
4705 const struct asm_shift_name *shift_name;
4706 enum shift_kind shift;
4707 char *s = *str;
4708 char *p = s;
4709 int reg;
b99bd4ef 4710
c19d1205
ZW
4711 for (p = *str; ISALPHA (*p); p++)
4712 ;
b99bd4ef 4713
c19d1205 4714 if (p == *str)
b99bd4ef 4715 {
c19d1205
ZW
4716 inst.error = _("shift expression expected");
4717 return FAIL;
b99bd4ef
NC
4718 }
4719
21d799b5
NC
4720 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4721 p - *str);
c19d1205
ZW
4722
4723 if (shift_name == NULL)
b99bd4ef 4724 {
c19d1205
ZW
4725 inst.error = _("shift expression expected");
4726 return FAIL;
b99bd4ef
NC
4727 }
4728
c19d1205 4729 shift = shift_name->kind;
b99bd4ef 4730
c19d1205
ZW
4731 switch (mode)
4732 {
4733 case NO_SHIFT_RESTRICT:
4734 case SHIFT_IMMEDIATE: break;
b99bd4ef 4735
c19d1205
ZW
4736 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4737 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4738 {
4739 inst.error = _("'LSL' or 'ASR' required");
4740 return FAIL;
4741 }
4742 break;
b99bd4ef 4743
c19d1205
ZW
4744 case SHIFT_LSL_IMMEDIATE:
4745 if (shift != SHIFT_LSL)
4746 {
4747 inst.error = _("'LSL' required");
4748 return FAIL;
4749 }
4750 break;
b99bd4ef 4751
c19d1205
ZW
4752 case SHIFT_ASR_IMMEDIATE:
4753 if (shift != SHIFT_ASR)
4754 {
4755 inst.error = _("'ASR' required");
4756 return FAIL;
4757 }
4758 break;
b99bd4ef 4759
c19d1205
ZW
4760 default: abort ();
4761 }
b99bd4ef 4762
c19d1205
ZW
4763 if (shift != SHIFT_RRX)
4764 {
4765 /* Whitespace can appear here if the next thing is a bare digit. */
4766 skip_whitespace (p);
b99bd4ef 4767
c19d1205 4768 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4769 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4770 {
4771 inst.operands[i].imm = reg;
4772 inst.operands[i].immisreg = 1;
4773 }
4774 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4775 return FAIL;
4776 }
4777 inst.operands[i].shift_kind = shift;
4778 inst.operands[i].shifted = 1;
4779 *str = p;
4780 return SUCCESS;
b99bd4ef
NC
4781}
4782
c19d1205 4783/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4784
c19d1205
ZW
4785 #<immediate>
4786 #<immediate>, <rotate>
4787 <Rm>
4788 <Rm>, <shift>
b99bd4ef 4789
c19d1205
ZW
4790 where <shift> is defined by parse_shift above, and <rotate> is a
4791 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4792 is deferred to md_apply_fix. */
b99bd4ef 4793
c19d1205
ZW
4794static int
4795parse_shifter_operand (char **str, int i)
4796{
4797 int value;
91d6fa6a 4798 expressionS exp;
b99bd4ef 4799
dcbf9037 4800 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4801 {
4802 inst.operands[i].reg = value;
4803 inst.operands[i].isreg = 1;
b99bd4ef 4804
c19d1205
ZW
4805 /* parse_shift will override this if appropriate */
4806 inst.reloc.exp.X_op = O_constant;
4807 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4808
c19d1205
ZW
4809 if (skip_past_comma (str) == FAIL)
4810 return SUCCESS;
b99bd4ef 4811
c19d1205
ZW
4812 /* Shift operation on register. */
4813 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4814 }
4815
c19d1205
ZW
4816 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4817 return FAIL;
b99bd4ef 4818
c19d1205 4819 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4820 {
c19d1205 4821 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4822 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4823 return FAIL;
b99bd4ef 4824
91d6fa6a 4825 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4826 {
4827 inst.error = _("constant expression expected");
4828 return FAIL;
4829 }
b99bd4ef 4830
91d6fa6a 4831 value = exp.X_add_number;
c19d1205
ZW
4832 if (value < 0 || value > 30 || value % 2 != 0)
4833 {
4834 inst.error = _("invalid rotation");
4835 return FAIL;
4836 }
4837 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4838 {
4839 inst.error = _("invalid constant");
4840 return FAIL;
4841 }
09d92015 4842
55cf6793 4843 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4844 inst.reloc.exp.X_add_number
4845 = (((inst.reloc.exp.X_add_number << (32 - value))
4846 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4847 }
4848
c19d1205
ZW
4849 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4850 inst.reloc.pc_rel = 0;
4851 return SUCCESS;
09d92015
MM
4852}
4853
4962c51a
MS
4854/* Group relocation information. Each entry in the table contains the
4855 textual name of the relocation as may appear in assembler source
4856 and must end with a colon.
4857 Along with this textual name are the relocation codes to be used if
4858 the corresponding instruction is an ALU instruction (ADD or SUB only),
4859 an LDR, an LDRS, or an LDC. */
4860
4861struct group_reloc_table_entry
4862{
4863 const char *name;
4864 int alu_code;
4865 int ldr_code;
4866 int ldrs_code;
4867 int ldc_code;
4868};
4869
4870typedef enum
4871{
4872 /* Varieties of non-ALU group relocation. */
4873
4874 GROUP_LDR,
4875 GROUP_LDRS,
4876 GROUP_LDC
4877} group_reloc_type;
4878
4879static struct group_reloc_table_entry group_reloc_table[] =
4880 { /* Program counter relative: */
4881 { "pc_g0_nc",
4882 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4883 0, /* LDR */
4884 0, /* LDRS */
4885 0 }, /* LDC */
4886 { "pc_g0",
4887 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4888 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4889 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4890 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4891 { "pc_g1_nc",
4892 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4893 0, /* LDR */
4894 0, /* LDRS */
4895 0 }, /* LDC */
4896 { "pc_g1",
4897 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4898 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4899 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4900 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4901 { "pc_g2",
4902 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4903 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4904 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4905 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4906 /* Section base relative */
4907 { "sb_g0_nc",
4908 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4909 0, /* LDR */
4910 0, /* LDRS */
4911 0 }, /* LDC */
4912 { "sb_g0",
4913 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4914 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4915 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4916 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4917 { "sb_g1_nc",
4918 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4919 0, /* LDR */
4920 0, /* LDRS */
4921 0 }, /* LDC */
4922 { "sb_g1",
4923 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4924 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4925 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4926 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4927 { "sb_g2",
4928 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4929 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4930 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4931 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4932
4933/* Given the address of a pointer pointing to the textual name of a group
4934 relocation as may appear in assembler source, attempt to find its details
4935 in group_reloc_table. The pointer will be updated to the character after
4936 the trailing colon. On failure, FAIL will be returned; SUCCESS
4937 otherwise. On success, *entry will be updated to point at the relevant
4938 group_reloc_table entry. */
4939
4940static int
4941find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4942{
4943 unsigned int i;
4944 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4945 {
4946 int length = strlen (group_reloc_table[i].name);
4947
5f4273c7
NC
4948 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4949 && (*str)[length] == ':')
4962c51a
MS
4950 {
4951 *out = &group_reloc_table[i];
4952 *str += (length + 1);
4953 return SUCCESS;
4954 }
4955 }
4956
4957 return FAIL;
4958}
4959
4960/* Parse a <shifter_operand> for an ARM data processing instruction
4961 (as for parse_shifter_operand) where group relocations are allowed:
4962
4963 #<immediate>
4964 #<immediate>, <rotate>
4965 #:<group_reloc>:<expression>
4966 <Rm>
4967 <Rm>, <shift>
4968
4969 where <group_reloc> is one of the strings defined in group_reloc_table.
4970 The hashes are optional.
4971
4972 Everything else is as for parse_shifter_operand. */
4973
4974static parse_operand_result
4975parse_shifter_operand_group_reloc (char **str, int i)
4976{
4977 /* Determine if we have the sequence of characters #: or just :
4978 coming next. If we do, then we check for a group relocation.
4979 If we don't, punt the whole lot to parse_shifter_operand. */
4980
4981 if (((*str)[0] == '#' && (*str)[1] == ':')
4982 || (*str)[0] == ':')
4983 {
4984 struct group_reloc_table_entry *entry;
4985
4986 if ((*str)[0] == '#')
4987 (*str) += 2;
4988 else
4989 (*str)++;
4990
4991 /* Try to parse a group relocation. Anything else is an error. */
4992 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4993 {
4994 inst.error = _("unknown group relocation");
4995 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4996 }
4997
4998 /* We now have the group relocation table entry corresponding to
4999 the name in the assembler source. Next, we parse the expression. */
5000 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5001 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5002
5003 /* Record the relocation type (always the ALU variant here). */
21d799b5 5004 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5005 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5006
5007 return PARSE_OPERAND_SUCCESS;
5008 }
5009 else
5010 return parse_shifter_operand (str, i) == SUCCESS
5011 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5012
5013 /* Never reached. */
5014}
5015
8e560766
MGD
5016/* Parse a Neon alignment expression. Information is written to
5017 inst.operands[i]. We assume the initial ':' has been skipped.
5018
5019 align .imm = align << 8, .immisalign=1, .preind=0 */
5020static parse_operand_result
5021parse_neon_alignment (char **str, int i)
5022{
5023 char *p = *str;
5024 expressionS exp;
5025
5026 my_get_expression (&exp, &p, GE_NO_PREFIX);
5027
5028 if (exp.X_op != O_constant)
5029 {
5030 inst.error = _("alignment must be constant");
5031 return PARSE_OPERAND_FAIL;
5032 }
5033
5034 inst.operands[i].imm = exp.X_add_number << 8;
5035 inst.operands[i].immisalign = 1;
5036 /* Alignments are not pre-indexes. */
5037 inst.operands[i].preind = 0;
5038
5039 *str = p;
5040 return PARSE_OPERAND_SUCCESS;
5041}
5042
c19d1205
ZW
5043/* Parse all forms of an ARM address expression. Information is written
5044 to inst.operands[i] and/or inst.reloc.
09d92015 5045
c19d1205 5046 Preindexed addressing (.preind=1):
09d92015 5047
c19d1205
ZW
5048 [Rn, #offset] .reg=Rn .reloc.exp=offset
5049 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5050 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5051 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5052
c19d1205 5053 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5054
c19d1205 5055 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5056
c19d1205
ZW
5057 [Rn], #offset .reg=Rn .reloc.exp=offset
5058 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5061
c19d1205 5062 Unindexed addressing (.preind=0, .postind=0):
09d92015 5063
c19d1205 5064 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5065
c19d1205 5066 Other:
09d92015 5067
c19d1205
ZW
5068 [Rn]{!} shorthand for [Rn,#0]{!}
5069 =immediate .isreg=0 .reloc.exp=immediate
5070 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5071
c19d1205
ZW
5072 It is the caller's responsibility to check for addressing modes not
5073 supported by the instruction, and to set inst.reloc.type. */
5074
4962c51a
MS
5075static parse_operand_result
5076parse_address_main (char **str, int i, int group_relocations,
5077 group_reloc_type group_type)
09d92015 5078{
c19d1205
ZW
5079 char *p = *str;
5080 int reg;
09d92015 5081
c19d1205 5082 if (skip_past_char (&p, '[') == FAIL)
09d92015 5083 {
c19d1205
ZW
5084 if (skip_past_char (&p, '=') == FAIL)
5085 {
974da60d 5086 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5087 inst.reloc.pc_rel = 1;
5088 inst.operands[i].reg = REG_PC;
5089 inst.operands[i].isreg = 1;
5090 inst.operands[i].preind = 1;
5091 }
974da60d 5092 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5093
c19d1205 5094 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5095 return PARSE_OPERAND_FAIL;
09d92015 5096
c19d1205 5097 *str = p;
4962c51a 5098 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5099 }
5100
dcbf9037 5101 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5102 {
c19d1205 5103 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5104 return PARSE_OPERAND_FAIL;
09d92015 5105 }
c19d1205
ZW
5106 inst.operands[i].reg = reg;
5107 inst.operands[i].isreg = 1;
09d92015 5108
c19d1205 5109 if (skip_past_comma (&p) == SUCCESS)
09d92015 5110 {
c19d1205 5111 inst.operands[i].preind = 1;
09d92015 5112
c19d1205
ZW
5113 if (*p == '+') p++;
5114 else if (*p == '-') p++, inst.operands[i].negative = 1;
5115
dcbf9037 5116 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5117 {
c19d1205
ZW
5118 inst.operands[i].imm = reg;
5119 inst.operands[i].immisreg = 1;
5120
5121 if (skip_past_comma (&p) == SUCCESS)
5122 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5123 return PARSE_OPERAND_FAIL;
c19d1205 5124 }
5287ad62 5125 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5126 {
5127 /* FIXME: '@' should be used here, but it's filtered out by generic
5128 code before we get to see it here. This may be subject to
5129 change. */
5130 parse_operand_result result = parse_neon_alignment (&p, i);
5131
5132 if (result != PARSE_OPERAND_SUCCESS)
5133 return result;
5134 }
c19d1205
ZW
5135 else
5136 {
5137 if (inst.operands[i].negative)
5138 {
5139 inst.operands[i].negative = 0;
5140 p--;
5141 }
4962c51a 5142
5f4273c7
NC
5143 if (group_relocations
5144 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5145 {
5146 struct group_reloc_table_entry *entry;
5147
5148 /* Skip over the #: or : sequence. */
5149 if (*p == '#')
5150 p += 2;
5151 else
5152 p++;
5153
5154 /* Try to parse a group relocation. Anything else is an
5155 error. */
5156 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5157 {
5158 inst.error = _("unknown group relocation");
5159 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5160 }
5161
5162 /* We now have the group relocation table entry corresponding to
5163 the name in the assembler source. Next, we parse the
5164 expression. */
5165 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5166 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5167
5168 /* Record the relocation type. */
5169 switch (group_type)
5170 {
5171 case GROUP_LDR:
21d799b5 5172 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5173 break;
5174
5175 case GROUP_LDRS:
21d799b5 5176 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5177 break;
5178
5179 case GROUP_LDC:
21d799b5 5180 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5181 break;
5182
5183 default:
9c2799c2 5184 gas_assert (0);
4962c51a
MS
5185 }
5186
5187 if (inst.reloc.type == 0)
5188 {
5189 inst.error = _("this group relocation is not allowed on this instruction");
5190 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5191 }
5192 }
5193 else
5194 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5195 return PARSE_OPERAND_FAIL;
09d92015
MM
5196 }
5197 }
8e560766
MGD
5198 else if (skip_past_char (&p, ':') == SUCCESS)
5199 {
5200 /* FIXME: '@' should be used here, but it's filtered out by generic code
5201 before we get to see it here. This may be subject to change. */
5202 parse_operand_result result = parse_neon_alignment (&p, i);
5203
5204 if (result != PARSE_OPERAND_SUCCESS)
5205 return result;
5206 }
09d92015 5207
c19d1205 5208 if (skip_past_char (&p, ']') == FAIL)
09d92015 5209 {
c19d1205 5210 inst.error = _("']' expected");
4962c51a 5211 return PARSE_OPERAND_FAIL;
09d92015
MM
5212 }
5213
c19d1205
ZW
5214 if (skip_past_char (&p, '!') == SUCCESS)
5215 inst.operands[i].writeback = 1;
09d92015 5216
c19d1205 5217 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5218 {
c19d1205
ZW
5219 if (skip_past_char (&p, '{') == SUCCESS)
5220 {
5221 /* [Rn], {expr} - unindexed, with option */
5222 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5223 0, 255, TRUE) == FAIL)
4962c51a 5224 return PARSE_OPERAND_FAIL;
09d92015 5225
c19d1205
ZW
5226 if (skip_past_char (&p, '}') == FAIL)
5227 {
5228 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5229 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5230 }
5231 if (inst.operands[i].preind)
5232 {
5233 inst.error = _("cannot combine index with option");
4962c51a 5234 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5235 }
5236 *str = p;
4962c51a 5237 return PARSE_OPERAND_SUCCESS;
09d92015 5238 }
c19d1205
ZW
5239 else
5240 {
5241 inst.operands[i].postind = 1;
5242 inst.operands[i].writeback = 1;
09d92015 5243
c19d1205
ZW
5244 if (inst.operands[i].preind)
5245 {
5246 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5247 return PARSE_OPERAND_FAIL;
c19d1205 5248 }
09d92015 5249
c19d1205
ZW
5250 if (*p == '+') p++;
5251 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5252
dcbf9037 5253 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5254 {
5287ad62
JB
5255 /* We might be using the immediate for alignment already. If we
5256 are, OR the register number into the low-order bits. */
5257 if (inst.operands[i].immisalign)
5258 inst.operands[i].imm |= reg;
5259 else
5260 inst.operands[i].imm = reg;
c19d1205 5261 inst.operands[i].immisreg = 1;
a737bd4d 5262
c19d1205
ZW
5263 if (skip_past_comma (&p) == SUCCESS)
5264 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5265 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5266 }
5267 else
5268 {
5269 if (inst.operands[i].negative)
5270 {
5271 inst.operands[i].negative = 0;
5272 p--;
5273 }
5274 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5275 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5276 }
5277 }
a737bd4d
NC
5278 }
5279
c19d1205
ZW
5280 /* If at this point neither .preind nor .postind is set, we have a
5281 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5282 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5283 {
5284 inst.operands[i].preind = 1;
5285 inst.reloc.exp.X_op = O_constant;
5286 inst.reloc.exp.X_add_number = 0;
5287 }
5288 *str = p;
4962c51a
MS
5289 return PARSE_OPERAND_SUCCESS;
5290}
5291
5292static int
5293parse_address (char **str, int i)
5294{
21d799b5 5295 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5296 ? SUCCESS : FAIL;
5297}
5298
5299static parse_operand_result
5300parse_address_group_reloc (char **str, int i, group_reloc_type type)
5301{
5302 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5303}
5304
b6895b4f
PB
5305/* Parse an operand for a MOVW or MOVT instruction. */
5306static int
5307parse_half (char **str)
5308{
5309 char * p;
5f4273c7 5310
b6895b4f
PB
5311 p = *str;
5312 skip_past_char (&p, '#');
5f4273c7 5313 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5314 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5315 else if (strncasecmp (p, ":upper16:", 9) == 0)
5316 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5317
5318 if (inst.reloc.type != BFD_RELOC_UNUSED)
5319 {
5320 p += 9;
5f4273c7 5321 skip_whitespace (p);
b6895b4f
PB
5322 }
5323
5324 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5325 return FAIL;
5326
5327 if (inst.reloc.type == BFD_RELOC_UNUSED)
5328 {
5329 if (inst.reloc.exp.X_op != O_constant)
5330 {
5331 inst.error = _("constant expression expected");
5332 return FAIL;
5333 }
5334 if (inst.reloc.exp.X_add_number < 0
5335 || inst.reloc.exp.X_add_number > 0xffff)
5336 {
5337 inst.error = _("immediate value out of range");
5338 return FAIL;
5339 }
5340 }
5341 *str = p;
5342 return SUCCESS;
5343}
5344
c19d1205 5345/* Miscellaneous. */
a737bd4d 5346
c19d1205
ZW
5347/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5348 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5349static int
d2cd1205 5350parse_psr (char **str, bfd_boolean lhs)
09d92015 5351{
c19d1205
ZW
5352 char *p;
5353 unsigned long psr_field;
62b3e311
PB
5354 const struct asm_psr *psr;
5355 char *start;
d2cd1205 5356 bfd_boolean is_apsr = FALSE;
ac7f631b 5357 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5358
c19d1205
ZW
5359 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5360 feature for ease of use and backwards compatibility. */
5361 p = *str;
62b3e311 5362 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5363 {
5364 if (m_profile)
5365 goto unsupported_psr;
5366
5367 psr_field = SPSR_BIT;
5368 }
5369 else if (strncasecmp (p, "CPSR", 4) == 0)
5370 {
5371 if (m_profile)
5372 goto unsupported_psr;
5373
5374 psr_field = 0;
5375 }
5376 else if (strncasecmp (p, "APSR", 4) == 0)
5377 {
5378 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5379 and ARMv7-R architecture CPUs. */
5380 is_apsr = TRUE;
5381 psr_field = 0;
5382 }
5383 else if (m_profile)
62b3e311
PB
5384 {
5385 start = p;
5386 do
5387 p++;
5388 while (ISALNUM (*p) || *p == '_');
5389
d2cd1205
JB
5390 if (strncasecmp (start, "iapsr", 5) == 0
5391 || strncasecmp (start, "eapsr", 5) == 0
5392 || strncasecmp (start, "xpsr", 4) == 0
5393 || strncasecmp (start, "psr", 3) == 0)
5394 p = start + strcspn (start, "rR") + 1;
5395
21d799b5
NC
5396 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5397 p - start);
d2cd1205 5398
62b3e311
PB
5399 if (!psr)
5400 return FAIL;
09d92015 5401
d2cd1205
JB
5402 /* If APSR is being written, a bitfield may be specified. Note that
5403 APSR itself is handled above. */
5404 if (psr->field <= 3)
5405 {
5406 psr_field = psr->field;
5407 is_apsr = TRUE;
5408 goto check_suffix;
5409 }
5410
62b3e311 5411 *str = p;
d2cd1205
JB
5412 /* M-profile MSR instructions have the mask field set to "10", except
5413 *PSR variants which modify APSR, which may use a different mask (and
5414 have been handled already). Do that by setting the PSR_f field
5415 here. */
5416 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5417 }
d2cd1205
JB
5418 else
5419 goto unsupported_psr;
09d92015 5420
62b3e311 5421 p += 4;
d2cd1205 5422check_suffix:
c19d1205
ZW
5423 if (*p == '_')
5424 {
5425 /* A suffix follows. */
c19d1205
ZW
5426 p++;
5427 start = p;
a737bd4d 5428
c19d1205
ZW
5429 do
5430 p++;
5431 while (ISALNUM (*p) || *p == '_');
a737bd4d 5432
d2cd1205
JB
5433 if (is_apsr)
5434 {
5435 /* APSR uses a notation for bits, rather than fields. */
5436 unsigned int nzcvq_bits = 0;
5437 unsigned int g_bit = 0;
5438 char *bit;
5439
5440 for (bit = start; bit != p; bit++)
5441 {
5442 switch (TOLOWER (*bit))
5443 {
5444 case 'n':
5445 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5446 break;
5447
5448 case 'z':
5449 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5450 break;
5451
5452 case 'c':
5453 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5454 break;
5455
5456 case 'v':
5457 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5458 break;
5459
5460 case 'q':
5461 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5462 break;
5463
5464 case 'g':
5465 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5466 break;
5467
5468 default:
5469 inst.error = _("unexpected bit specified after APSR");
5470 return FAIL;
5471 }
5472 }
5473
5474 if (nzcvq_bits == 0x1f)
5475 psr_field |= PSR_f;
5476
5477 if (g_bit == 0x1)
5478 {
5479 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5480 {
5481 inst.error = _("selected processor does not "
5482 "support DSP extension");
5483 return FAIL;
5484 }
5485
5486 psr_field |= PSR_s;
5487 }
5488
5489 if ((nzcvq_bits & 0x20) != 0
5490 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5491 || (g_bit & 0x2) != 0)
5492 {
5493 inst.error = _("bad bitmask specified after APSR");
5494 return FAIL;
5495 }
5496 }
5497 else
5498 {
5499 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5500 p - start);
5501 if (!psr)
5502 goto error;
a737bd4d 5503
d2cd1205
JB
5504 psr_field |= psr->field;
5505 }
a737bd4d 5506 }
c19d1205 5507 else
a737bd4d 5508 {
c19d1205
ZW
5509 if (ISALNUM (*p))
5510 goto error; /* Garbage after "[CS]PSR". */
5511
d2cd1205
JB
5512 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5513 is deprecated, but allow it anyway. */
5514 if (is_apsr && lhs)
5515 {
5516 psr_field |= PSR_f;
5517 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5518 "deprecated"));
5519 }
5520 else if (!m_profile)
5521 /* These bits are never right for M-profile devices: don't set them
5522 (only code paths which read/write APSR reach here). */
5523 psr_field |= (PSR_c | PSR_f);
a737bd4d 5524 }
c19d1205
ZW
5525 *str = p;
5526 return psr_field;
a737bd4d 5527
d2cd1205
JB
5528 unsupported_psr:
5529 inst.error = _("selected processor does not support requested special "
5530 "purpose register");
5531 return FAIL;
5532
c19d1205
ZW
5533 error:
5534 inst.error = _("flag for {c}psr instruction expected");
5535 return FAIL;
a737bd4d
NC
5536}
5537
c19d1205
ZW
5538/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5539 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5540
c19d1205
ZW
5541static int
5542parse_cps_flags (char **str)
a737bd4d 5543{
c19d1205
ZW
5544 int val = 0;
5545 int saw_a_flag = 0;
5546 char *s = *str;
a737bd4d 5547
c19d1205
ZW
5548 for (;;)
5549 switch (*s++)
5550 {
5551 case '\0': case ',':
5552 goto done;
a737bd4d 5553
c19d1205
ZW
5554 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5555 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5556 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5557
c19d1205
ZW
5558 default:
5559 inst.error = _("unrecognized CPS flag");
5560 return FAIL;
5561 }
a737bd4d 5562
c19d1205
ZW
5563 done:
5564 if (saw_a_flag == 0)
a737bd4d 5565 {
c19d1205
ZW
5566 inst.error = _("missing CPS flags");
5567 return FAIL;
a737bd4d 5568 }
a737bd4d 5569
c19d1205
ZW
5570 *str = s - 1;
5571 return val;
a737bd4d
NC
5572}
5573
c19d1205
ZW
5574/* Parse an endian specifier ("BE" or "LE", case insensitive);
5575 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5576
5577static int
c19d1205 5578parse_endian_specifier (char **str)
a737bd4d 5579{
c19d1205
ZW
5580 int little_endian;
5581 char *s = *str;
a737bd4d 5582
c19d1205
ZW
5583 if (strncasecmp (s, "BE", 2))
5584 little_endian = 0;
5585 else if (strncasecmp (s, "LE", 2))
5586 little_endian = 1;
5587 else
a737bd4d 5588 {
c19d1205 5589 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5590 return FAIL;
5591 }
5592
c19d1205 5593 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5594 {
c19d1205 5595 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5596 return FAIL;
5597 }
5598
c19d1205
ZW
5599 *str = s + 2;
5600 return little_endian;
5601}
a737bd4d 5602
c19d1205
ZW
5603/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5604 value suitable for poking into the rotate field of an sxt or sxta
5605 instruction, or FAIL on error. */
5606
5607static int
5608parse_ror (char **str)
5609{
5610 int rot;
5611 char *s = *str;
5612
5613 if (strncasecmp (s, "ROR", 3) == 0)
5614 s += 3;
5615 else
a737bd4d 5616 {
c19d1205 5617 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5618 return FAIL;
5619 }
c19d1205
ZW
5620
5621 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5622 return FAIL;
5623
5624 switch (rot)
a737bd4d 5625 {
c19d1205
ZW
5626 case 0: *str = s; return 0x0;
5627 case 8: *str = s; return 0x1;
5628 case 16: *str = s; return 0x2;
5629 case 24: *str = s; return 0x3;
5630
5631 default:
5632 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5633 return FAIL;
5634 }
c19d1205 5635}
a737bd4d 5636
c19d1205
ZW
5637/* Parse a conditional code (from conds[] below). The value returned is in the
5638 range 0 .. 14, or FAIL. */
5639static int
5640parse_cond (char **str)
5641{
c462b453 5642 char *q;
c19d1205 5643 const struct asm_cond *c;
c462b453
PB
5644 int n;
5645 /* Condition codes are always 2 characters, so matching up to
5646 3 characters is sufficient. */
5647 char cond[3];
a737bd4d 5648
c462b453
PB
5649 q = *str;
5650 n = 0;
5651 while (ISALPHA (*q) && n < 3)
5652 {
e07e6e58 5653 cond[n] = TOLOWER (*q);
c462b453
PB
5654 q++;
5655 n++;
5656 }
a737bd4d 5657
21d799b5 5658 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5659 if (!c)
a737bd4d 5660 {
c19d1205 5661 inst.error = _("condition required");
a737bd4d
NC
5662 return FAIL;
5663 }
5664
c19d1205
ZW
5665 *str = q;
5666 return c->value;
5667}
5668
62b3e311
PB
5669/* Parse an option for a barrier instruction. Returns the encoding for the
5670 option, or FAIL. */
5671static int
5672parse_barrier (char **str)
5673{
5674 char *p, *q;
5675 const struct asm_barrier_opt *o;
5676
5677 p = q = *str;
5678 while (ISALPHA (*q))
5679 q++;
5680
21d799b5
NC
5681 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5682 q - p);
62b3e311
PB
5683 if (!o)
5684 return FAIL;
5685
5686 *str = q;
5687 return o->value;
5688}
5689
92e90b6e
PB
5690/* Parse the operands of a table branch instruction. Similar to a memory
5691 operand. */
5692static int
5693parse_tb (char **str)
5694{
5695 char * p = *str;
5696 int reg;
5697
5698 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5699 {
5700 inst.error = _("'[' expected");
5701 return FAIL;
5702 }
92e90b6e 5703
dcbf9037 5704 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5705 {
5706 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5707 return FAIL;
5708 }
5709 inst.operands[0].reg = reg;
5710
5711 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5712 {
5713 inst.error = _("',' expected");
5714 return FAIL;
5715 }
5f4273c7 5716
dcbf9037 5717 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5718 {
5719 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5720 return FAIL;
5721 }
5722 inst.operands[0].imm = reg;
5723
5724 if (skip_past_comma (&p) == SUCCESS)
5725 {
5726 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5727 return FAIL;
5728 if (inst.reloc.exp.X_add_number != 1)
5729 {
5730 inst.error = _("invalid shift");
5731 return FAIL;
5732 }
5733 inst.operands[0].shifted = 1;
5734 }
5735
5736 if (skip_past_char (&p, ']') == FAIL)
5737 {
5738 inst.error = _("']' expected");
5739 return FAIL;
5740 }
5741 *str = p;
5742 return SUCCESS;
5743}
5744
5287ad62
JB
5745/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5746 information on the types the operands can take and how they are encoded.
037e8744
JB
5747 Up to four operands may be read; this function handles setting the
5748 ".present" field for each read operand itself.
5287ad62
JB
5749 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5750 else returns FAIL. */
5751
5752static int
5753parse_neon_mov (char **str, int *which_operand)
5754{
5755 int i = *which_operand, val;
5756 enum arm_reg_type rtype;
5757 char *ptr = *str;
dcbf9037 5758 struct neon_type_el optype;
5f4273c7 5759
dcbf9037 5760 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5761 {
5762 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5763 inst.operands[i].reg = val;
5764 inst.operands[i].isscalar = 1;
dcbf9037 5765 inst.operands[i].vectype = optype;
5287ad62
JB
5766 inst.operands[i++].present = 1;
5767
5768 if (skip_past_comma (&ptr) == FAIL)
5769 goto wanted_comma;
5f4273c7 5770
dcbf9037 5771 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5772 goto wanted_arm;
5f4273c7 5773
5287ad62
JB
5774 inst.operands[i].reg = val;
5775 inst.operands[i].isreg = 1;
5776 inst.operands[i].present = 1;
5777 }
037e8744 5778 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5779 != FAIL)
5287ad62
JB
5780 {
5781 /* Cases 0, 1, 2, 3, 5 (D only). */
5782 if (skip_past_comma (&ptr) == FAIL)
5783 goto wanted_comma;
5f4273c7 5784
5287ad62
JB
5785 inst.operands[i].reg = val;
5786 inst.operands[i].isreg = 1;
5787 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5788 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5789 inst.operands[i].isvec = 1;
dcbf9037 5790 inst.operands[i].vectype = optype;
5287ad62
JB
5791 inst.operands[i++].present = 1;
5792
dcbf9037 5793 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5794 {
037e8744
JB
5795 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5796 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5797 inst.operands[i].reg = val;
5798 inst.operands[i].isreg = 1;
037e8744 5799 inst.operands[i].present = 1;
5287ad62
JB
5800
5801 if (rtype == REG_TYPE_NQ)
5802 {
dcbf9037 5803 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5804 return FAIL;
5805 }
037e8744
JB
5806 else if (rtype != REG_TYPE_VFS)
5807 {
5808 i++;
5809 if (skip_past_comma (&ptr) == FAIL)
5810 goto wanted_comma;
5811 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5812 goto wanted_arm;
5813 inst.operands[i].reg = val;
5814 inst.operands[i].isreg = 1;
5815 inst.operands[i].present = 1;
5816 }
5287ad62 5817 }
037e8744
JB
5818 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5819 &optype)) != FAIL)
5287ad62
JB
5820 {
5821 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5822 Case 1: VMOV<c><q> <Dd>, <Dm>
5823 Case 8: VMOV.F32 <Sd>, <Sm>
5824 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5825
5826 inst.operands[i].reg = val;
5827 inst.operands[i].isreg = 1;
5828 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5829 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5830 inst.operands[i].isvec = 1;
dcbf9037 5831 inst.operands[i].vectype = optype;
5287ad62 5832 inst.operands[i].present = 1;
5f4273c7 5833
037e8744
JB
5834 if (skip_past_comma (&ptr) == SUCCESS)
5835 {
5836 /* Case 15. */
5837 i++;
5838
5839 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5840 goto wanted_arm;
5841
5842 inst.operands[i].reg = val;
5843 inst.operands[i].isreg = 1;
5844 inst.operands[i++].present = 1;
5f4273c7 5845
037e8744
JB
5846 if (skip_past_comma (&ptr) == FAIL)
5847 goto wanted_comma;
5f4273c7 5848
037e8744
JB
5849 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5850 goto wanted_arm;
5f4273c7 5851
037e8744
JB
5852 inst.operands[i].reg = val;
5853 inst.operands[i].isreg = 1;
5854 inst.operands[i++].present = 1;
5855 }
5287ad62 5856 }
4641781c
PB
5857 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5858 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5859 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5860 Case 10: VMOV.F32 <Sd>, #<imm>
5861 Case 11: VMOV.F64 <Dd>, #<imm> */
5862 inst.operands[i].immisfloat = 1;
5863 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5864 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5865 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5866 ;
5287ad62
JB
5867 else
5868 {
dcbf9037 5869 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5870 return FAIL;
5871 }
5872 }
dcbf9037 5873 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5874 {
5875 /* Cases 6, 7. */
5876 inst.operands[i].reg = val;
5877 inst.operands[i].isreg = 1;
5878 inst.operands[i++].present = 1;
5f4273c7 5879
5287ad62
JB
5880 if (skip_past_comma (&ptr) == FAIL)
5881 goto wanted_comma;
5f4273c7 5882
dcbf9037 5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5884 {
5885 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].present = 1;
dcbf9037 5889 inst.operands[i].vectype = optype;
5287ad62 5890 }
dcbf9037 5891 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5892 {
5893 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5894 inst.operands[i].reg = val;
5895 inst.operands[i].isreg = 1;
5896 inst.operands[i++].present = 1;
5f4273c7 5897
5287ad62
JB
5898 if (skip_past_comma (&ptr) == FAIL)
5899 goto wanted_comma;
5f4273c7 5900
037e8744 5901 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5902 == FAIL)
5287ad62 5903 {
037e8744 5904 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5905 return FAIL;
5906 }
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
037e8744
JB
5910 inst.operands[i].isvec = 1;
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5912 inst.operands[i].vectype = optype;
5287ad62 5913 inst.operands[i].present = 1;
5f4273c7 5914
037e8744
JB
5915 if (rtype == REG_TYPE_VFS)
5916 {
5917 /* Case 14. */
5918 i++;
5919 if (skip_past_comma (&ptr) == FAIL)
5920 goto wanted_comma;
5921 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5922 &optype)) == FAIL)
5923 {
5924 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5925 return FAIL;
5926 }
5927 inst.operands[i].reg = val;
5928 inst.operands[i].isreg = 1;
5929 inst.operands[i].isvec = 1;
5930 inst.operands[i].issingle = 1;
5931 inst.operands[i].vectype = optype;
5932 inst.operands[i].present = 1;
5933 }
5934 }
5935 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5936 != FAIL)
5937 {
5938 /* Case 13. */
5939 inst.operands[i].reg = val;
5940 inst.operands[i].isreg = 1;
5941 inst.operands[i].isvec = 1;
5942 inst.operands[i].issingle = 1;
5943 inst.operands[i].vectype = optype;
5944 inst.operands[i++].present = 1;
5287ad62
JB
5945 }
5946 }
5947 else
5948 {
dcbf9037 5949 first_error (_("parse error"));
5287ad62
JB
5950 return FAIL;
5951 }
5952
5953 /* Successfully parsed the operands. Update args. */
5954 *which_operand = i;
5955 *str = ptr;
5956 return SUCCESS;
5957
5f4273c7 5958 wanted_comma:
dcbf9037 5959 first_error (_("expected comma"));
5287ad62 5960 return FAIL;
5f4273c7
NC
5961
5962 wanted_arm:
dcbf9037 5963 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5964 return FAIL;
5287ad62
JB
5965}
5966
5be8be5d
DG
5967/* Use this macro when the operand constraints are different
5968 for ARM and THUMB (e.g. ldrd). */
5969#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5970 ((arm_operand) | ((thumb_operand) << 16))
5971
c19d1205
ZW
5972/* Matcher codes for parse_operands. */
5973enum operand_parse_code
5974{
5975 OP_stop, /* end of line */
5976
5977 OP_RR, /* ARM register */
5978 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 5979 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 5980 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
5981 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5982 optional trailing ! */
c19d1205
ZW
5983 OP_RRw, /* ARM register, not r15, optional trailing ! */
5984 OP_RCP, /* Coprocessor number */
5985 OP_RCN, /* Coprocessor register */
5986 OP_RF, /* FPA register */
5987 OP_RVS, /* VFP single precision register */
5287ad62
JB
5988 OP_RVD, /* VFP double precision register (0..15) */
5989 OP_RND, /* Neon double precision register (0..31) */
5990 OP_RNQ, /* Neon quad precision register */
037e8744 5991 OP_RVSD, /* VFP single or double precision register */
5287ad62 5992 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5993 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5994 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5995 OP_RVC, /* VFP control register */
5996 OP_RMF, /* Maverick F register */
5997 OP_RMD, /* Maverick D register */
5998 OP_RMFX, /* Maverick FX register */
5999 OP_RMDX, /* Maverick DX register */
6000 OP_RMAX, /* Maverick AX register */
6001 OP_RMDS, /* Maverick DSPSC register */
6002 OP_RIWR, /* iWMMXt wR register */
6003 OP_RIWC, /* iWMMXt wC register */
6004 OP_RIWG, /* iWMMXt wCG register */
6005 OP_RXA, /* XScale accumulator register */
6006
6007 OP_REGLST, /* ARM register list */
6008 OP_VRSLST, /* VFP single-precision register list */
6009 OP_VRDLST, /* VFP double-precision register list */
037e8744 6010 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6011 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6012 OP_NSTRLST, /* Neon element/structure list */
6013
5287ad62 6014 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6015 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6016 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6017 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6018 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6019 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6020 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6021 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6022 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6023 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6024
6025 OP_I0, /* immediate zero */
c19d1205
ZW
6026 OP_I7, /* immediate value 0 .. 7 */
6027 OP_I15, /* 0 .. 15 */
6028 OP_I16, /* 1 .. 16 */
5287ad62 6029 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6030 OP_I31, /* 0 .. 31 */
6031 OP_I31w, /* 0 .. 31, optional trailing ! */
6032 OP_I32, /* 1 .. 32 */
5287ad62
JB
6033 OP_I32z, /* 0 .. 32 */
6034 OP_I63, /* 0 .. 63 */
c19d1205 6035 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6036 OP_I64, /* 1 .. 64 */
6037 OP_I64z, /* 0 .. 64 */
c19d1205 6038 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6039
6040 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6041 OP_I7b, /* 0 .. 7 */
6042 OP_I15b, /* 0 .. 15 */
6043 OP_I31b, /* 0 .. 31 */
6044
6045 OP_SH, /* shifter operand */
4962c51a 6046 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6047 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6048 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6049 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6050 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6051 OP_EXP, /* arbitrary expression */
6052 OP_EXPi, /* same, with optional immediate prefix */
6053 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6054 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6055
6056 OP_CPSF, /* CPS flags */
6057 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6058 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6059 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6060 OP_COND, /* conditional code */
92e90b6e 6061 OP_TB, /* Table branch. */
c19d1205 6062
037e8744
JB
6063 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6064
c19d1205
ZW
6065 OP_RRnpc_I0, /* ARM register or literal 0 */
6066 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6067 OP_RR_EXi, /* ARM register or expression with imm prefix */
6068 OP_RF_IF, /* FPA register or immediate */
6069 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6070 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6071
6072 /* Optional operands. */
6073 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6074 OP_oI31b, /* 0 .. 31 */
5287ad62 6075 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
6076 OP_oIffffb, /* 0 .. 65535 */
6077 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6078
6079 OP_oRR, /* ARM register */
6080 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6081 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6082 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6083 OP_oRND, /* Optional Neon double precision register */
6084 OP_oRNQ, /* Optional Neon quad precision register */
6085 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6086 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6087 OP_oSHll, /* LSL immediate */
6088 OP_oSHar, /* ASR immediate */
6089 OP_oSHllar, /* LSL or ASR immediate */
6090 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6091 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6092
5be8be5d
DG
6093 /* Some pre-defined mixed (ARM/THUMB) operands. */
6094 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6095 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6096 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6097
c19d1205
ZW
6098 OP_FIRST_OPTIONAL = OP_oI7b
6099};
a737bd4d 6100
c19d1205
ZW
6101/* Generic instruction operand parser. This does no encoding and no
6102 semantic validation; it merely squirrels values away in the inst
6103 structure. Returns SUCCESS or FAIL depending on whether the
6104 specified grammar matched. */
6105static int
5be8be5d 6106parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6107{
5be8be5d 6108 unsigned const int *upat = pattern;
c19d1205
ZW
6109 char *backtrack_pos = 0;
6110 const char *backtrack_error = 0;
6111 int i, val, backtrack_index = 0;
5287ad62 6112 enum arm_reg_type rtype;
4962c51a 6113 parse_operand_result result;
5be8be5d 6114 unsigned int op_parse_code;
c19d1205 6115
e07e6e58
NC
6116#define po_char_or_fail(chr) \
6117 do \
6118 { \
6119 if (skip_past_char (&str, chr) == FAIL) \
6120 goto bad_args; \
6121 } \
6122 while (0)
c19d1205 6123
e07e6e58
NC
6124#define po_reg_or_fail(regtype) \
6125 do \
dcbf9037 6126 { \
e07e6e58
NC
6127 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6128 & inst.operands[i].vectype); \
6129 if (val == FAIL) \
6130 { \
6131 first_error (_(reg_expected_msgs[regtype])); \
6132 goto failure; \
6133 } \
6134 inst.operands[i].reg = val; \
6135 inst.operands[i].isreg = 1; \
6136 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6137 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6138 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6139 || rtype == REG_TYPE_VFD \
6140 || rtype == REG_TYPE_NQ); \
dcbf9037 6141 } \
e07e6e58
NC
6142 while (0)
6143
6144#define po_reg_or_goto(regtype, label) \
6145 do \
6146 { \
6147 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6148 & inst.operands[i].vectype); \
6149 if (val == FAIL) \
6150 goto label; \
dcbf9037 6151 \
e07e6e58
NC
6152 inst.operands[i].reg = val; \
6153 inst.operands[i].isreg = 1; \
6154 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6155 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6156 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6157 || rtype == REG_TYPE_VFD \
6158 || rtype == REG_TYPE_NQ); \
6159 } \
6160 while (0)
6161
6162#define po_imm_or_fail(min, max, popt) \
6163 do \
6164 { \
6165 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6166 goto failure; \
6167 inst.operands[i].imm = val; \
6168 } \
6169 while (0)
6170
6171#define po_scalar_or_goto(elsz, label) \
6172 do \
6173 { \
6174 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6175 if (val == FAIL) \
6176 goto label; \
6177 inst.operands[i].reg = val; \
6178 inst.operands[i].isscalar = 1; \
6179 } \
6180 while (0)
6181
6182#define po_misc_or_fail(expr) \
6183 do \
6184 { \
6185 if (expr) \
6186 goto failure; \
6187 } \
6188 while (0)
6189
6190#define po_misc_or_fail_no_backtrack(expr) \
6191 do \
6192 { \
6193 result = expr; \
6194 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6195 backtrack_pos = 0; \
6196 if (result != PARSE_OPERAND_SUCCESS) \
6197 goto failure; \
6198 } \
6199 while (0)
4962c51a 6200
52e7f43d
RE
6201#define po_barrier_or_imm(str) \
6202 do \
6203 { \
6204 val = parse_barrier (&str); \
6205 if (val == FAIL) \
6206 { \
6207 if (ISALPHA (*str)) \
6208 goto failure; \
6209 else \
6210 goto immediate; \
6211 } \
6212 else \
6213 { \
6214 if ((inst.instruction & 0xf0) == 0x60 \
6215 && val != 0xf) \
6216 { \
6217 /* ISB can only take SY as an option. */ \
6218 inst.error = _("invalid barrier type"); \
6219 goto failure; \
6220 } \
6221 } \
6222 } \
6223 while (0)
6224
c19d1205
ZW
6225 skip_whitespace (str);
6226
6227 for (i = 0; upat[i] != OP_stop; i++)
6228 {
5be8be5d
DG
6229 op_parse_code = upat[i];
6230 if (op_parse_code >= 1<<16)
6231 op_parse_code = thumb ? (op_parse_code >> 16)
6232 : (op_parse_code & ((1<<16)-1));
6233
6234 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6235 {
6236 /* Remember where we are in case we need to backtrack. */
9c2799c2 6237 gas_assert (!backtrack_pos);
c19d1205
ZW
6238 backtrack_pos = str;
6239 backtrack_error = inst.error;
6240 backtrack_index = i;
6241 }
6242
b6702015 6243 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6244 po_char_or_fail (',');
6245
5be8be5d 6246 switch (op_parse_code)
c19d1205
ZW
6247 {
6248 /* Registers */
6249 case OP_oRRnpc:
5be8be5d 6250 case OP_oRRnpcsp:
c19d1205 6251 case OP_RRnpc:
5be8be5d 6252 case OP_RRnpcsp:
c19d1205
ZW
6253 case OP_oRR:
6254 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6255 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6256 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6257 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6258 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6259 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6260 case OP_oRND:
6261 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6262 case OP_RVC:
6263 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6264 break;
6265 /* Also accept generic coprocessor regs for unknown registers. */
6266 coproc_reg:
6267 po_reg_or_fail (REG_TYPE_CN);
6268 break;
c19d1205
ZW
6269 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6270 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6271 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6272 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6273 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6274 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6275 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6276 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6277 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6278 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6279 case OP_oRNQ:
6280 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6281 case OP_oRNDQ:
6282 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6283 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6284 case OP_oRNSDQ:
6285 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6286
6287 /* Neon scalar. Using an element size of 8 means that some invalid
6288 scalars are accepted here, so deal with those in later code. */
6289 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6290
5287ad62
JB
6291 case OP_RNDQ_I0:
6292 {
6293 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6294 break;
6295 try_imm0:
6296 po_imm_or_fail (0, 0, TRUE);
6297 }
6298 break;
6299
037e8744
JB
6300 case OP_RVSD_I0:
6301 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6302 break;
6303
5287ad62
JB
6304 case OP_RR_RNSC:
6305 {
6306 po_scalar_or_goto (8, try_rr);
6307 break;
6308 try_rr:
6309 po_reg_or_fail (REG_TYPE_RN);
6310 }
6311 break;
6312
037e8744
JB
6313 case OP_RNSDQ_RNSC:
6314 {
6315 po_scalar_or_goto (8, try_nsdq);
6316 break;
6317 try_nsdq:
6318 po_reg_or_fail (REG_TYPE_NSDQ);
6319 }
6320 break;
6321
5287ad62
JB
6322 case OP_RNDQ_RNSC:
6323 {
6324 po_scalar_or_goto (8, try_ndq);
6325 break;
6326 try_ndq:
6327 po_reg_or_fail (REG_TYPE_NDQ);
6328 }
6329 break;
6330
6331 case OP_RND_RNSC:
6332 {
6333 po_scalar_or_goto (8, try_vfd);
6334 break;
6335 try_vfd:
6336 po_reg_or_fail (REG_TYPE_VFD);
6337 }
6338 break;
6339
6340 case OP_VMOV:
6341 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6342 not careful then bad things might happen. */
6343 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6344 break;
6345
4316f0d2 6346 case OP_RNDQ_Ibig:
5287ad62 6347 {
4316f0d2 6348 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6349 break;
4316f0d2 6350 try_immbig:
5287ad62
JB
6351 /* There's a possibility of getting a 64-bit immediate here, so
6352 we need special handling. */
6353 if (parse_big_immediate (&str, i) == FAIL)
6354 {
6355 inst.error = _("immediate value is out of range");
6356 goto failure;
6357 }
6358 }
6359 break;
6360
6361 case OP_RNDQ_I63b:
6362 {
6363 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6364 break;
6365 try_shimm:
6366 po_imm_or_fail (0, 63, TRUE);
6367 }
6368 break;
c19d1205
ZW
6369
6370 case OP_RRnpcb:
6371 po_char_or_fail ('[');
6372 po_reg_or_fail (REG_TYPE_RN);
6373 po_char_or_fail (']');
6374 break;
a737bd4d 6375
55881a11 6376 case OP_RRnpctw:
c19d1205 6377 case OP_RRw:
b6702015 6378 case OP_oRRw:
c19d1205
ZW
6379 po_reg_or_fail (REG_TYPE_RN);
6380 if (skip_past_char (&str, '!') == SUCCESS)
6381 inst.operands[i].writeback = 1;
6382 break;
6383
6384 /* Immediates */
6385 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6386 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6387 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6388 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6389 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6390 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6391 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6392 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6393 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6394 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6395 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6396 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6397
6398 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6399 case OP_oI7b:
6400 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6401 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6402 case OP_oI31b:
6403 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6404 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6405 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6406
6407 /* Immediate variants */
6408 case OP_oI255c:
6409 po_char_or_fail ('{');
6410 po_imm_or_fail (0, 255, TRUE);
6411 po_char_or_fail ('}');
6412 break;
6413
6414 case OP_I31w:
6415 /* The expression parser chokes on a trailing !, so we have
6416 to find it first and zap it. */
6417 {
6418 char *s = str;
6419 while (*s && *s != ',')
6420 s++;
6421 if (s[-1] == '!')
6422 {
6423 s[-1] = '\0';
6424 inst.operands[i].writeback = 1;
6425 }
6426 po_imm_or_fail (0, 31, TRUE);
6427 if (str == s - 1)
6428 str = s;
6429 }
6430 break;
6431
6432 /* Expressions */
6433 case OP_EXPi: EXPi:
6434 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6435 GE_OPT_PREFIX));
6436 break;
6437
6438 case OP_EXP:
6439 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6440 GE_NO_PREFIX));
6441 break;
6442
6443 case OP_EXPr: EXPr:
6444 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6445 GE_NO_PREFIX));
6446 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6447 {
c19d1205
ZW
6448 val = parse_reloc (&str);
6449 if (val == -1)
6450 {
6451 inst.error = _("unrecognized relocation suffix");
6452 goto failure;
6453 }
6454 else if (val != BFD_RELOC_UNUSED)
6455 {
6456 inst.operands[i].imm = val;
6457 inst.operands[i].hasreloc = 1;
6458 }
a737bd4d 6459 }
c19d1205 6460 break;
a737bd4d 6461
b6895b4f
PB
6462 /* Operand for MOVW or MOVT. */
6463 case OP_HALF:
6464 po_misc_or_fail (parse_half (&str));
6465 break;
6466
e07e6e58 6467 /* Register or expression. */
c19d1205
ZW
6468 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6469 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6470
e07e6e58 6471 /* Register or immediate. */
c19d1205
ZW
6472 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6473 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6474
c19d1205
ZW
6475 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6476 IF:
6477 if (!is_immediate_prefix (*str))
6478 goto bad_args;
6479 str++;
6480 val = parse_fpa_immediate (&str);
6481 if (val == FAIL)
6482 goto failure;
6483 /* FPA immediates are encoded as registers 8-15.
6484 parse_fpa_immediate has already applied the offset. */
6485 inst.operands[i].reg = val;
6486 inst.operands[i].isreg = 1;
6487 break;
09d92015 6488
2d447fca
JM
6489 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6490 I32z: po_imm_or_fail (0, 32, FALSE); break;
6491
e07e6e58 6492 /* Two kinds of register. */
c19d1205
ZW
6493 case OP_RIWR_RIWC:
6494 {
6495 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6496 if (!rege
6497 || (rege->type != REG_TYPE_MMXWR
6498 && rege->type != REG_TYPE_MMXWC
6499 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6500 {
6501 inst.error = _("iWMMXt data or control register expected");
6502 goto failure;
6503 }
6504 inst.operands[i].reg = rege->number;
6505 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6506 }
6507 break;
09d92015 6508
41adaa5c
JM
6509 case OP_RIWC_RIWG:
6510 {
6511 struct reg_entry *rege = arm_reg_parse_multi (&str);
6512 if (!rege
6513 || (rege->type != REG_TYPE_MMXWC
6514 && rege->type != REG_TYPE_MMXWCG))
6515 {
6516 inst.error = _("iWMMXt control register expected");
6517 goto failure;
6518 }
6519 inst.operands[i].reg = rege->number;
6520 inst.operands[i].isreg = 1;
6521 }
6522 break;
6523
c19d1205
ZW
6524 /* Misc */
6525 case OP_CPSF: val = parse_cps_flags (&str); break;
6526 case OP_ENDI: val = parse_endian_specifier (&str); break;
6527 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6528 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6529 case OP_oBARRIER_I15:
6530 po_barrier_or_imm (str); break;
6531 immediate:
6532 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6533 goto failure;
6534 break;
c19d1205 6535
d2cd1205
JB
6536 case OP_wPSR:
6537 case OP_rPSR:
90ec0d68
MGD
6538 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6539 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6540 {
6541 inst.error = _("Banked registers are not available with this "
6542 "architecture.");
6543 goto failure;
6544 }
6545 break;
d2cd1205
JB
6546 try_psr:
6547 val = parse_psr (&str, op_parse_code == OP_wPSR);
6548 break;
037e8744
JB
6549
6550 case OP_APSR_RR:
6551 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6552 break;
6553 try_apsr:
6554 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6555 instruction). */
6556 if (strncasecmp (str, "APSR_", 5) == 0)
6557 {
6558 unsigned found = 0;
6559 str += 5;
6560 while (found < 15)
6561 switch (*str++)
6562 {
6563 case 'c': found = (found & 1) ? 16 : found | 1; break;
6564 case 'n': found = (found & 2) ? 16 : found | 2; break;
6565 case 'z': found = (found & 4) ? 16 : found | 4; break;
6566 case 'v': found = (found & 8) ? 16 : found | 8; break;
6567 default: found = 16;
6568 }
6569 if (found != 15)
6570 goto failure;
6571 inst.operands[i].isvec = 1;
f7c21dc7
NC
6572 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6573 inst.operands[i].reg = REG_PC;
037e8744
JB
6574 }
6575 else
6576 goto failure;
6577 break;
6578
92e90b6e
PB
6579 case OP_TB:
6580 po_misc_or_fail (parse_tb (&str));
6581 break;
6582
e07e6e58 6583 /* Register lists. */
c19d1205
ZW
6584 case OP_REGLST:
6585 val = parse_reg_list (&str);
6586 if (*str == '^')
6587 {
6588 inst.operands[1].writeback = 1;
6589 str++;
6590 }
6591 break;
09d92015 6592
c19d1205 6593 case OP_VRSLST:
5287ad62 6594 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6595 break;
09d92015 6596
c19d1205 6597 case OP_VRDLST:
5287ad62 6598 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6599 break;
a737bd4d 6600
037e8744
JB
6601 case OP_VRSDLST:
6602 /* Allow Q registers too. */
6603 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6604 REGLIST_NEON_D);
6605 if (val == FAIL)
6606 {
6607 inst.error = NULL;
6608 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6609 REGLIST_VFP_S);
6610 inst.operands[i].issingle = 1;
6611 }
6612 break;
6613
5287ad62
JB
6614 case OP_NRDLST:
6615 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6616 REGLIST_NEON_D);
6617 break;
6618
6619 case OP_NSTRLST:
dcbf9037
JB
6620 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6621 &inst.operands[i].vectype);
5287ad62
JB
6622 break;
6623
c19d1205
ZW
6624 /* Addressing modes */
6625 case OP_ADDR:
6626 po_misc_or_fail (parse_address (&str, i));
6627 break;
09d92015 6628
4962c51a
MS
6629 case OP_ADDRGLDR:
6630 po_misc_or_fail_no_backtrack (
6631 parse_address_group_reloc (&str, i, GROUP_LDR));
6632 break;
6633
6634 case OP_ADDRGLDRS:
6635 po_misc_or_fail_no_backtrack (
6636 parse_address_group_reloc (&str, i, GROUP_LDRS));
6637 break;
6638
6639 case OP_ADDRGLDC:
6640 po_misc_or_fail_no_backtrack (
6641 parse_address_group_reloc (&str, i, GROUP_LDC));
6642 break;
6643
c19d1205
ZW
6644 case OP_SH:
6645 po_misc_or_fail (parse_shifter_operand (&str, i));
6646 break;
09d92015 6647
4962c51a
MS
6648 case OP_SHG:
6649 po_misc_or_fail_no_backtrack (
6650 parse_shifter_operand_group_reloc (&str, i));
6651 break;
6652
c19d1205
ZW
6653 case OP_oSHll:
6654 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6655 break;
09d92015 6656
c19d1205
ZW
6657 case OP_oSHar:
6658 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6659 break;
09d92015 6660
c19d1205
ZW
6661 case OP_oSHllar:
6662 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6663 break;
09d92015 6664
c19d1205 6665 default:
5be8be5d 6666 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6667 }
09d92015 6668
c19d1205
ZW
6669 /* Various value-based sanity checks and shared operations. We
6670 do not signal immediate failures for the register constraints;
6671 this allows a syntax error to take precedence. */
5be8be5d 6672 switch (op_parse_code)
c19d1205
ZW
6673 {
6674 case OP_oRRnpc:
6675 case OP_RRnpc:
6676 case OP_RRnpcb:
6677 case OP_RRw:
b6702015 6678 case OP_oRRw:
c19d1205
ZW
6679 case OP_RRnpc_I0:
6680 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6681 inst.error = BAD_PC;
6682 break;
09d92015 6683
5be8be5d
DG
6684 case OP_oRRnpcsp:
6685 case OP_RRnpcsp:
6686 if (inst.operands[i].isreg)
6687 {
6688 if (inst.operands[i].reg == REG_PC)
6689 inst.error = BAD_PC;
6690 else if (inst.operands[i].reg == REG_SP)
6691 inst.error = BAD_SP;
6692 }
6693 break;
6694
55881a11
MGD
6695 case OP_RRnpctw:
6696 if (inst.operands[i].isreg
6697 && inst.operands[i].reg == REG_PC
6698 && (inst.operands[i].writeback || thumb))
6699 inst.error = BAD_PC;
6700 break;
6701
c19d1205
ZW
6702 case OP_CPSF:
6703 case OP_ENDI:
6704 case OP_oROR:
d2cd1205
JB
6705 case OP_wPSR:
6706 case OP_rPSR:
c19d1205 6707 case OP_COND:
52e7f43d 6708 case OP_oBARRIER_I15:
c19d1205
ZW
6709 case OP_REGLST:
6710 case OP_VRSLST:
6711 case OP_VRDLST:
037e8744 6712 case OP_VRSDLST:
5287ad62
JB
6713 case OP_NRDLST:
6714 case OP_NSTRLST:
c19d1205
ZW
6715 if (val == FAIL)
6716 goto failure;
6717 inst.operands[i].imm = val;
6718 break;
a737bd4d 6719
c19d1205
ZW
6720 default:
6721 break;
6722 }
09d92015 6723
c19d1205
ZW
6724 /* If we get here, this operand was successfully parsed. */
6725 inst.operands[i].present = 1;
6726 continue;
09d92015 6727
c19d1205 6728 bad_args:
09d92015 6729 inst.error = BAD_ARGS;
c19d1205
ZW
6730
6731 failure:
6732 if (!backtrack_pos)
d252fdde
PB
6733 {
6734 /* The parse routine should already have set inst.error, but set a
5f4273c7 6735 default here just in case. */
d252fdde
PB
6736 if (!inst.error)
6737 inst.error = _("syntax error");
6738 return FAIL;
6739 }
c19d1205
ZW
6740
6741 /* Do not backtrack over a trailing optional argument that
6742 absorbed some text. We will only fail again, with the
6743 'garbage following instruction' error message, which is
6744 probably less helpful than the current one. */
6745 if (backtrack_index == i && backtrack_pos != str
6746 && upat[i+1] == OP_stop)
d252fdde
PB
6747 {
6748 if (!inst.error)
6749 inst.error = _("syntax error");
6750 return FAIL;
6751 }
c19d1205
ZW
6752
6753 /* Try again, skipping the optional argument at backtrack_pos. */
6754 str = backtrack_pos;
6755 inst.error = backtrack_error;
6756 inst.operands[backtrack_index].present = 0;
6757 i = backtrack_index;
6758 backtrack_pos = 0;
09d92015 6759 }
09d92015 6760
c19d1205
ZW
6761 /* Check that we have parsed all the arguments. */
6762 if (*str != '\0' && !inst.error)
6763 inst.error = _("garbage following instruction");
09d92015 6764
c19d1205 6765 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6766}
6767
c19d1205
ZW
6768#undef po_char_or_fail
6769#undef po_reg_or_fail
6770#undef po_reg_or_goto
6771#undef po_imm_or_fail
5287ad62 6772#undef po_scalar_or_fail
52e7f43d 6773#undef po_barrier_or_imm
e07e6e58 6774
c19d1205 6775/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6776#define constraint(expr, err) \
6777 do \
c19d1205 6778 { \
e07e6e58
NC
6779 if (expr) \
6780 { \
6781 inst.error = err; \
6782 return; \
6783 } \
c19d1205 6784 } \
e07e6e58 6785 while (0)
c19d1205 6786
fdfde340
JM
6787/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6788 instructions are unpredictable if these registers are used. This
6789 is the BadReg predicate in ARM's Thumb-2 documentation. */
6790#define reject_bad_reg(reg) \
6791 do \
6792 if (reg == REG_SP || reg == REG_PC) \
6793 { \
6794 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6795 return; \
6796 } \
6797 while (0)
6798
94206790
MM
6799/* If REG is R13 (the stack pointer), warn that its use is
6800 deprecated. */
6801#define warn_deprecated_sp(reg) \
6802 do \
6803 if (warn_on_deprecated && reg == REG_SP) \
6804 as_warn (_("use of r13 is deprecated")); \
6805 while (0)
6806
c19d1205
ZW
6807/* Functions for operand encoding. ARM, then Thumb. */
6808
6809#define rotate_left(v, n) (v << n | v >> (32 - n))
6810
6811/* If VAL can be encoded in the immediate field of an ARM instruction,
6812 return the encoded form. Otherwise, return FAIL. */
6813
6814static unsigned int
6815encode_arm_immediate (unsigned int val)
09d92015 6816{
c19d1205
ZW
6817 unsigned int a, i;
6818
6819 for (i = 0; i < 32; i += 2)
6820 if ((a = rotate_left (val, i)) <= 0xff)
6821 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6822
6823 return FAIL;
09d92015
MM
6824}
6825
c19d1205
ZW
6826/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6827 return the encoded form. Otherwise, return FAIL. */
6828static unsigned int
6829encode_thumb32_immediate (unsigned int val)
09d92015 6830{
c19d1205 6831 unsigned int a, i;
09d92015 6832
9c3c69f2 6833 if (val <= 0xff)
c19d1205 6834 return val;
a737bd4d 6835
9c3c69f2 6836 for (i = 1; i <= 24; i++)
09d92015 6837 {
9c3c69f2
PB
6838 a = val >> i;
6839 if ((val & ~(0xff << i)) == 0)
6840 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6841 }
a737bd4d 6842
c19d1205
ZW
6843 a = val & 0xff;
6844 if (val == ((a << 16) | a))
6845 return 0x100 | a;
6846 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6847 return 0x300 | a;
09d92015 6848
c19d1205
ZW
6849 a = val & 0xff00;
6850 if (val == ((a << 16) | a))
6851 return 0x200 | (a >> 8);
a737bd4d 6852
c19d1205 6853 return FAIL;
09d92015 6854}
5287ad62 6855/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6856
6857static void
5287ad62
JB
6858encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6859{
6860 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6861 && reg > 15)
6862 {
b1cc4aeb 6863 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6864 {
6865 if (thumb_mode)
6866 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6867 fpu_vfp_ext_d32);
5287ad62
JB
6868 else
6869 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6870 fpu_vfp_ext_d32);
5287ad62
JB
6871 }
6872 else
6873 {
dcbf9037 6874 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6875 return;
6876 }
6877 }
6878
c19d1205 6879 switch (pos)
09d92015 6880 {
c19d1205
ZW
6881 case VFP_REG_Sd:
6882 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6883 break;
6884
6885 case VFP_REG_Sn:
6886 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6887 break;
6888
6889 case VFP_REG_Sm:
6890 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6891 break;
6892
5287ad62
JB
6893 case VFP_REG_Dd:
6894 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6895 break;
5f4273c7 6896
5287ad62
JB
6897 case VFP_REG_Dn:
6898 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6899 break;
5f4273c7 6900
5287ad62
JB
6901 case VFP_REG_Dm:
6902 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6903 break;
6904
c19d1205
ZW
6905 default:
6906 abort ();
09d92015 6907 }
09d92015
MM
6908}
6909
c19d1205 6910/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6911 if any, is handled by md_apply_fix. */
09d92015 6912static void
c19d1205 6913encode_arm_shift (int i)
09d92015 6914{
c19d1205
ZW
6915 if (inst.operands[i].shift_kind == SHIFT_RRX)
6916 inst.instruction |= SHIFT_ROR << 5;
6917 else
09d92015 6918 {
c19d1205
ZW
6919 inst.instruction |= inst.operands[i].shift_kind << 5;
6920 if (inst.operands[i].immisreg)
6921 {
6922 inst.instruction |= SHIFT_BY_REG;
6923 inst.instruction |= inst.operands[i].imm << 8;
6924 }
6925 else
6926 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6927 }
c19d1205 6928}
09d92015 6929
c19d1205
ZW
6930static void
6931encode_arm_shifter_operand (int i)
6932{
6933 if (inst.operands[i].isreg)
09d92015 6934 {
c19d1205
ZW
6935 inst.instruction |= inst.operands[i].reg;
6936 encode_arm_shift (i);
09d92015 6937 }
c19d1205
ZW
6938 else
6939 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6940}
6941
c19d1205 6942/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6943static void
c19d1205 6944encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6945{
9c2799c2 6946 gas_assert (inst.operands[i].isreg);
c19d1205 6947 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6948
c19d1205 6949 if (inst.operands[i].preind)
09d92015 6950 {
c19d1205
ZW
6951 if (is_t)
6952 {
6953 inst.error = _("instruction does not accept preindexed addressing");
6954 return;
6955 }
6956 inst.instruction |= PRE_INDEX;
6957 if (inst.operands[i].writeback)
6958 inst.instruction |= WRITE_BACK;
09d92015 6959
c19d1205
ZW
6960 }
6961 else if (inst.operands[i].postind)
6962 {
9c2799c2 6963 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
6964 if (is_t)
6965 inst.instruction |= WRITE_BACK;
6966 }
6967 else /* unindexed - only for coprocessor */
09d92015 6968 {
c19d1205 6969 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6970 return;
6971 }
6972
c19d1205
ZW
6973 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6974 && (((inst.instruction & 0x000f0000) >> 16)
6975 == ((inst.instruction & 0x0000f000) >> 12)))
6976 as_warn ((inst.instruction & LOAD_BIT)
6977 ? _("destination register same as write-back base")
6978 : _("source register same as write-back base"));
09d92015
MM
6979}
6980
c19d1205
ZW
6981/* inst.operands[i] was set up by parse_address. Encode it into an
6982 ARM-format mode 2 load or store instruction. If is_t is true,
6983 reject forms that cannot be used with a T instruction (i.e. not
6984 post-indexed). */
a737bd4d 6985static void
c19d1205 6986encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6987{
5be8be5d
DG
6988 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6989
c19d1205 6990 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6991
c19d1205 6992 if (inst.operands[i].immisreg)
09d92015 6993 {
5be8be5d
DG
6994 constraint ((inst.operands[i].imm == REG_PC
6995 || (is_pc && inst.operands[i].writeback)),
6996 BAD_PC_ADDRESSING);
c19d1205
ZW
6997 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6998 inst.instruction |= inst.operands[i].imm;
6999 if (!inst.operands[i].negative)
7000 inst.instruction |= INDEX_UP;
7001 if (inst.operands[i].shifted)
7002 {
7003 if (inst.operands[i].shift_kind == SHIFT_RRX)
7004 inst.instruction |= SHIFT_ROR << 5;
7005 else
7006 {
7007 inst.instruction |= inst.operands[i].shift_kind << 5;
7008 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7009 }
7010 }
09d92015 7011 }
c19d1205 7012 else /* immediate offset in inst.reloc */
09d92015 7013 {
5be8be5d
DG
7014 if (is_pc && !inst.reloc.pc_rel)
7015 {
7016 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7017
7018 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7019 cannot use PC in addressing.
7020 PC cannot be used in writeback addressing, either. */
7021 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7022 BAD_PC_ADDRESSING);
23a10334 7023
dc5ec521 7024 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7025 if (warn_on_deprecated
7026 && !is_load
7027 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7028 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7029 }
7030
c19d1205
ZW
7031 if (inst.reloc.type == BFD_RELOC_UNUSED)
7032 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 7033 }
09d92015
MM
7034}
7035
c19d1205
ZW
7036/* inst.operands[i] was set up by parse_address. Encode it into an
7037 ARM-format mode 3 load or store instruction. Reject forms that
7038 cannot be used with such instructions. If is_t is true, reject
7039 forms that cannot be used with a T instruction (i.e. not
7040 post-indexed). */
7041static void
7042encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7043{
c19d1205 7044 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7045 {
c19d1205
ZW
7046 inst.error = _("instruction does not accept scaled register index");
7047 return;
09d92015 7048 }
a737bd4d 7049
c19d1205 7050 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7051
c19d1205
ZW
7052 if (inst.operands[i].immisreg)
7053 {
5be8be5d
DG
7054 constraint ((inst.operands[i].imm == REG_PC
7055 || inst.operands[i].reg == REG_PC),
7056 BAD_PC_ADDRESSING);
c19d1205
ZW
7057 inst.instruction |= inst.operands[i].imm;
7058 if (!inst.operands[i].negative)
7059 inst.instruction |= INDEX_UP;
7060 }
7061 else /* immediate offset in inst.reloc */
7062 {
5be8be5d
DG
7063 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7064 && inst.operands[i].writeback),
7065 BAD_PC_WRITEBACK);
c19d1205
ZW
7066 inst.instruction |= HWOFFSET_IMM;
7067 if (inst.reloc.type == BFD_RELOC_UNUSED)
7068 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 7069 }
a737bd4d
NC
7070}
7071
c19d1205
ZW
7072/* inst.operands[i] was set up by parse_address. Encode it into an
7073 ARM-format instruction. Reject all forms which cannot be encoded
7074 into a coprocessor load/store instruction. If wb_ok is false,
7075 reject use of writeback; if unind_ok is false, reject use of
7076 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7077 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7078 (in which case it is preserved). */
09d92015 7079
c19d1205
ZW
7080static int
7081encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7082{
c19d1205 7083 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7084
9c2799c2 7085 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7086
c19d1205 7087 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7088 {
9c2799c2 7089 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7090 if (!unind_ok)
7091 {
7092 inst.error = _("instruction does not support unindexed addressing");
7093 return FAIL;
7094 }
7095 inst.instruction |= inst.operands[i].imm;
7096 inst.instruction |= INDEX_UP;
7097 return SUCCESS;
09d92015 7098 }
a737bd4d 7099
c19d1205
ZW
7100 if (inst.operands[i].preind)
7101 inst.instruction |= PRE_INDEX;
a737bd4d 7102
c19d1205 7103 if (inst.operands[i].writeback)
09d92015 7104 {
c19d1205
ZW
7105 if (inst.operands[i].reg == REG_PC)
7106 {
7107 inst.error = _("pc may not be used with write-back");
7108 return FAIL;
7109 }
7110 if (!wb_ok)
7111 {
7112 inst.error = _("instruction does not support writeback");
7113 return FAIL;
7114 }
7115 inst.instruction |= WRITE_BACK;
09d92015 7116 }
a737bd4d 7117
c19d1205 7118 if (reloc_override)
21d799b5 7119 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7120 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7121 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7122 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7123 {
7124 if (thumb_mode)
7125 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7126 else
7127 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7128 }
7129
c19d1205
ZW
7130 return SUCCESS;
7131}
a737bd4d 7132
c19d1205
ZW
7133/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7134 Determine whether it can be performed with a move instruction; if
7135 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7136 return TRUE; if it can't, convert inst.instruction to a literal-pool
7137 load and return FALSE. If this is not a valid thing to do in the
7138 current context, set inst.error and return TRUE.
a737bd4d 7139
c19d1205
ZW
7140 inst.operands[i] describes the destination register. */
7141
c921be7d 7142static bfd_boolean
c19d1205
ZW
7143move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7144{
53365c0d
PB
7145 unsigned long tbit;
7146
7147 if (thumb_p)
7148 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7149 else
7150 tbit = LOAD_BIT;
7151
7152 if ((inst.instruction & tbit) == 0)
09d92015 7153 {
c19d1205 7154 inst.error = _("invalid pseudo operation");
c921be7d 7155 return TRUE;
09d92015 7156 }
c19d1205 7157 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7158 {
7159 inst.error = _("constant expression expected");
c921be7d 7160 return TRUE;
09d92015 7161 }
c19d1205 7162 if (inst.reloc.exp.X_op == O_constant)
09d92015 7163 {
c19d1205
ZW
7164 if (thumb_p)
7165 {
53365c0d 7166 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7167 {
7168 /* This can be done with a mov(1) instruction. */
7169 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7170 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7171 return TRUE;
c19d1205
ZW
7172 }
7173 }
7174 else
7175 {
7176 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7177 if (value != FAIL)
7178 {
7179 /* This can be done with a mov instruction. */
7180 inst.instruction &= LITERAL_MASK;
7181 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7182 inst.instruction |= value & 0xfff;
c921be7d 7183 return TRUE;
c19d1205 7184 }
09d92015 7185
c19d1205
ZW
7186 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7187 if (value != FAIL)
7188 {
7189 /* This can be done with a mvn instruction. */
7190 inst.instruction &= LITERAL_MASK;
7191 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7192 inst.instruction |= value & 0xfff;
c921be7d 7193 return TRUE;
c19d1205
ZW
7194 }
7195 }
09d92015
MM
7196 }
7197
c19d1205
ZW
7198 if (add_to_lit_pool () == FAIL)
7199 {
7200 inst.error = _("literal pool insertion failed");
c921be7d 7201 return TRUE;
c19d1205
ZW
7202 }
7203 inst.operands[1].reg = REG_PC;
7204 inst.operands[1].isreg = 1;
7205 inst.operands[1].preind = 1;
7206 inst.reloc.pc_rel = 1;
7207 inst.reloc.type = (thumb_p
7208 ? BFD_RELOC_ARM_THUMB_OFFSET
7209 : (mode_3
7210 ? BFD_RELOC_ARM_HWLITERAL
7211 : BFD_RELOC_ARM_LITERAL));
c921be7d 7212 return FALSE;
09d92015
MM
7213}
7214
5f4273c7 7215/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7216 First some generics; their names are taken from the conventional
7217 bit positions for register arguments in ARM format instructions. */
09d92015 7218
a737bd4d 7219static void
c19d1205 7220do_noargs (void)
09d92015 7221{
c19d1205 7222}
a737bd4d 7223
c19d1205
ZW
7224static void
7225do_rd (void)
7226{
7227 inst.instruction |= inst.operands[0].reg << 12;
7228}
a737bd4d 7229
c19d1205
ZW
7230static void
7231do_rd_rm (void)
7232{
7233 inst.instruction |= inst.operands[0].reg << 12;
7234 inst.instruction |= inst.operands[1].reg;
7235}
09d92015 7236
c19d1205
ZW
7237static void
7238do_rd_rn (void)
7239{
7240 inst.instruction |= inst.operands[0].reg << 12;
7241 inst.instruction |= inst.operands[1].reg << 16;
7242}
a737bd4d 7243
c19d1205
ZW
7244static void
7245do_rn_rd (void)
7246{
7247 inst.instruction |= inst.operands[0].reg << 16;
7248 inst.instruction |= inst.operands[1].reg << 12;
7249}
09d92015 7250
c19d1205
ZW
7251static void
7252do_rd_rm_rn (void)
7253{
9a64e435 7254 unsigned Rn = inst.operands[2].reg;
708587a4 7255 /* Enforce restrictions on SWP instruction. */
9a64e435 7256 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7257 {
7258 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7259 _("Rn must not overlap other operands"));
7260
7261 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7262 if (warn_on_deprecated
7263 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7264 as_warn (_("swp{b} use is deprecated for this architecture"));
7265
7266 }
c19d1205
ZW
7267 inst.instruction |= inst.operands[0].reg << 12;
7268 inst.instruction |= inst.operands[1].reg;
9a64e435 7269 inst.instruction |= Rn << 16;
c19d1205 7270}
09d92015 7271
c19d1205
ZW
7272static void
7273do_rd_rn_rm (void)
7274{
7275 inst.instruction |= inst.operands[0].reg << 12;
7276 inst.instruction |= inst.operands[1].reg << 16;
7277 inst.instruction |= inst.operands[2].reg;
7278}
a737bd4d 7279
c19d1205
ZW
7280static void
7281do_rm_rd_rn (void)
7282{
5be8be5d
DG
7283 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7284 constraint (((inst.reloc.exp.X_op != O_constant
7285 && inst.reloc.exp.X_op != O_illegal)
7286 || inst.reloc.exp.X_add_number != 0),
7287 BAD_ADDR_MODE);
c19d1205
ZW
7288 inst.instruction |= inst.operands[0].reg;
7289 inst.instruction |= inst.operands[1].reg << 12;
7290 inst.instruction |= inst.operands[2].reg << 16;
7291}
09d92015 7292
c19d1205
ZW
7293static void
7294do_imm0 (void)
7295{
7296 inst.instruction |= inst.operands[0].imm;
7297}
09d92015 7298
c19d1205
ZW
7299static void
7300do_rd_cpaddr (void)
7301{
7302 inst.instruction |= inst.operands[0].reg << 12;
7303 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7304}
a737bd4d 7305
c19d1205
ZW
7306/* ARM instructions, in alphabetical order by function name (except
7307 that wrapper functions appear immediately after the function they
7308 wrap). */
09d92015 7309
c19d1205
ZW
7310/* This is a pseudo-op of the form "adr rd, label" to be converted
7311 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7312
7313static void
c19d1205 7314do_adr (void)
09d92015 7315{
c19d1205 7316 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7317
c19d1205
ZW
7318 /* Frag hacking will turn this into a sub instruction if the offset turns
7319 out to be negative. */
7320 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7321 inst.reloc.pc_rel = 1;
2fc8bdac 7322 inst.reloc.exp.X_add_number -= 8;
c19d1205 7323}
b99bd4ef 7324
c19d1205
ZW
7325/* This is a pseudo-op of the form "adrl rd, label" to be converted
7326 into a relative address of the form:
7327 add rd, pc, #low(label-.-8)"
7328 add rd, rd, #high(label-.-8)" */
b99bd4ef 7329
c19d1205
ZW
7330static void
7331do_adrl (void)
7332{
7333 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7334
c19d1205
ZW
7335 /* Frag hacking will turn this into a sub instruction if the offset turns
7336 out to be negative. */
7337 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7338 inst.reloc.pc_rel = 1;
7339 inst.size = INSN_SIZE * 2;
2fc8bdac 7340 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7341}
7342
b99bd4ef 7343static void
c19d1205 7344do_arit (void)
b99bd4ef 7345{
c19d1205
ZW
7346 if (!inst.operands[1].present)
7347 inst.operands[1].reg = inst.operands[0].reg;
7348 inst.instruction |= inst.operands[0].reg << 12;
7349 inst.instruction |= inst.operands[1].reg << 16;
7350 encode_arm_shifter_operand (2);
7351}
b99bd4ef 7352
62b3e311
PB
7353static void
7354do_barrier (void)
7355{
7356 if (inst.operands[0].present)
7357 {
7358 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7359 && inst.operands[0].imm > 0xf
7360 && inst.operands[0].imm < 0x0,
bd3ba5d1 7361 _("bad barrier type"));
62b3e311
PB
7362 inst.instruction |= inst.operands[0].imm;
7363 }
7364 else
7365 inst.instruction |= 0xf;
7366}
7367
c19d1205
ZW
7368static void
7369do_bfc (void)
7370{
7371 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7372 constraint (msb > 32, _("bit-field extends past end of register"));
7373 /* The instruction encoding stores the LSB and MSB,
7374 not the LSB and width. */
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 inst.instruction |= inst.operands[1].imm << 7;
7377 inst.instruction |= (msb - 1) << 16;
7378}
b99bd4ef 7379
c19d1205
ZW
7380static void
7381do_bfi (void)
7382{
7383 unsigned int msb;
b99bd4ef 7384
c19d1205
ZW
7385 /* #0 in second position is alternative syntax for bfc, which is
7386 the same instruction but with REG_PC in the Rm field. */
7387 if (!inst.operands[1].isreg)
7388 inst.operands[1].reg = REG_PC;
b99bd4ef 7389
c19d1205
ZW
7390 msb = inst.operands[2].imm + inst.operands[3].imm;
7391 constraint (msb > 32, _("bit-field extends past end of register"));
7392 /* The instruction encoding stores the LSB and MSB,
7393 not the LSB and width. */
7394 inst.instruction |= inst.operands[0].reg << 12;
7395 inst.instruction |= inst.operands[1].reg;
7396 inst.instruction |= inst.operands[2].imm << 7;
7397 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7398}
7399
b99bd4ef 7400static void
c19d1205 7401do_bfx (void)
b99bd4ef 7402{
c19d1205
ZW
7403 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7404 _("bit-field extends past end of register"));
7405 inst.instruction |= inst.operands[0].reg << 12;
7406 inst.instruction |= inst.operands[1].reg;
7407 inst.instruction |= inst.operands[2].imm << 7;
7408 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7409}
09d92015 7410
c19d1205
ZW
7411/* ARM V5 breakpoint instruction (argument parse)
7412 BKPT <16 bit unsigned immediate>
7413 Instruction is not conditional.
7414 The bit pattern given in insns[] has the COND_ALWAYS condition,
7415 and it is an error if the caller tried to override that. */
b99bd4ef 7416
c19d1205
ZW
7417static void
7418do_bkpt (void)
7419{
7420 /* Top 12 of 16 bits to bits 19:8. */
7421 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7422
c19d1205
ZW
7423 /* Bottom 4 of 16 bits to bits 3:0. */
7424 inst.instruction |= inst.operands[0].imm & 0xf;
7425}
09d92015 7426
c19d1205
ZW
7427static void
7428encode_branch (int default_reloc)
7429{
7430 if (inst.operands[0].hasreloc)
7431 {
0855e32b
NS
7432 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7433 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7434 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7435 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7436 ? BFD_RELOC_ARM_PLT32
7437 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7438 }
b99bd4ef 7439 else
9ae92b05 7440 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7441 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7442}
7443
b99bd4ef 7444static void
c19d1205 7445do_branch (void)
b99bd4ef 7446{
39b41c9c
PB
7447#ifdef OBJ_ELF
7448 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7449 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7450 else
7451#endif
7452 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7453}
7454
7455static void
7456do_bl (void)
7457{
7458#ifdef OBJ_ELF
7459 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7460 {
7461 if (inst.cond == COND_ALWAYS)
7462 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7463 else
7464 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7465 }
7466 else
7467#endif
7468 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7469}
b99bd4ef 7470
c19d1205
ZW
7471/* ARM V5 branch-link-exchange instruction (argument parse)
7472 BLX <target_addr> ie BLX(1)
7473 BLX{<condition>} <Rm> ie BLX(2)
7474 Unfortunately, there are two different opcodes for this mnemonic.
7475 So, the insns[].value is not used, and the code here zaps values
7476 into inst.instruction.
7477 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7478
c19d1205
ZW
7479static void
7480do_blx (void)
7481{
7482 if (inst.operands[0].isreg)
b99bd4ef 7483 {
c19d1205
ZW
7484 /* Arg is a register; the opcode provided by insns[] is correct.
7485 It is not illegal to do "blx pc", just useless. */
7486 if (inst.operands[0].reg == REG_PC)
7487 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7488
c19d1205
ZW
7489 inst.instruction |= inst.operands[0].reg;
7490 }
7491 else
b99bd4ef 7492 {
c19d1205 7493 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7494 conditionally, and the opcode must be adjusted.
7495 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7496 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7497 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7498 inst.instruction = 0xfa000000;
267bf995 7499 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7500 }
c19d1205
ZW
7501}
7502
7503static void
7504do_bx (void)
7505{
845b51d6
PB
7506 bfd_boolean want_reloc;
7507
c19d1205
ZW
7508 if (inst.operands[0].reg == REG_PC)
7509 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7510
c19d1205 7511 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7512 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7513 it is for ARMv4t or earlier. */
7514 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7515 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7516 want_reloc = TRUE;
7517
5ad34203 7518#ifdef OBJ_ELF
845b51d6 7519 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7520#endif
584206db 7521 want_reloc = FALSE;
845b51d6
PB
7522
7523 if (want_reloc)
7524 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7525}
7526
c19d1205
ZW
7527
7528/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7529
7530static void
c19d1205 7531do_bxj (void)
a737bd4d 7532{
c19d1205
ZW
7533 if (inst.operands[0].reg == REG_PC)
7534 as_tsktsk (_("use of r15 in bxj is not really useful"));
7535
7536 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7537}
7538
c19d1205
ZW
7539/* Co-processor data operation:
7540 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7541 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7542static void
7543do_cdp (void)
7544{
7545 inst.instruction |= inst.operands[0].reg << 8;
7546 inst.instruction |= inst.operands[1].imm << 20;
7547 inst.instruction |= inst.operands[2].reg << 12;
7548 inst.instruction |= inst.operands[3].reg << 16;
7549 inst.instruction |= inst.operands[4].reg;
7550 inst.instruction |= inst.operands[5].imm << 5;
7551}
a737bd4d
NC
7552
7553static void
c19d1205 7554do_cmp (void)
a737bd4d 7555{
c19d1205
ZW
7556 inst.instruction |= inst.operands[0].reg << 16;
7557 encode_arm_shifter_operand (1);
a737bd4d
NC
7558}
7559
c19d1205
ZW
7560/* Transfer between coprocessor and ARM registers.
7561 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7562 MRC2
7563 MCR{cond}
7564 MCR2
7565
7566 No special properties. */
09d92015
MM
7567
7568static void
c19d1205 7569do_co_reg (void)
09d92015 7570{
fdfde340
JM
7571 unsigned Rd;
7572
7573 Rd = inst.operands[2].reg;
7574 if (thumb_mode)
7575 {
7576 if (inst.instruction == 0xee000010
7577 || inst.instruction == 0xfe000010)
7578 /* MCR, MCR2 */
7579 reject_bad_reg (Rd);
7580 else
7581 /* MRC, MRC2 */
7582 constraint (Rd == REG_SP, BAD_SP);
7583 }
7584 else
7585 {
7586 /* MCR */
7587 if (inst.instruction == 0xe000010)
7588 constraint (Rd == REG_PC, BAD_PC);
7589 }
7590
7591
c19d1205
ZW
7592 inst.instruction |= inst.operands[0].reg << 8;
7593 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7594 inst.instruction |= Rd << 12;
c19d1205
ZW
7595 inst.instruction |= inst.operands[3].reg << 16;
7596 inst.instruction |= inst.operands[4].reg;
7597 inst.instruction |= inst.operands[5].imm << 5;
7598}
09d92015 7599
c19d1205
ZW
7600/* Transfer between coprocessor register and pair of ARM registers.
7601 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7602 MCRR2
7603 MRRC{cond}
7604 MRRC2
b99bd4ef 7605
c19d1205 7606 Two XScale instructions are special cases of these:
09d92015 7607
c19d1205
ZW
7608 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7609 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7610
5f4273c7 7611 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7612
c19d1205
ZW
7613static void
7614do_co_reg2c (void)
7615{
fdfde340
JM
7616 unsigned Rd, Rn;
7617
7618 Rd = inst.operands[2].reg;
7619 Rn = inst.operands[3].reg;
7620
7621 if (thumb_mode)
7622 {
7623 reject_bad_reg (Rd);
7624 reject_bad_reg (Rn);
7625 }
7626 else
7627 {
7628 constraint (Rd == REG_PC, BAD_PC);
7629 constraint (Rn == REG_PC, BAD_PC);
7630 }
7631
c19d1205
ZW
7632 inst.instruction |= inst.operands[0].reg << 8;
7633 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7634 inst.instruction |= Rd << 12;
7635 inst.instruction |= Rn << 16;
c19d1205 7636 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7637}
7638
c19d1205
ZW
7639static void
7640do_cpsi (void)
7641{
7642 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7643 if (inst.operands[1].present)
7644 {
7645 inst.instruction |= CPSI_MMOD;
7646 inst.instruction |= inst.operands[1].imm;
7647 }
c19d1205 7648}
b99bd4ef 7649
62b3e311
PB
7650static void
7651do_dbg (void)
7652{
7653 inst.instruction |= inst.operands[0].imm;
7654}
7655
eea54501
MGD
7656static void
7657do_div (void)
7658{
7659 unsigned Rd, Rn, Rm;
7660
7661 Rd = inst.operands[0].reg;
7662 Rn = (inst.operands[1].present
7663 ? inst.operands[1].reg : Rd);
7664 Rm = inst.operands[2].reg;
7665
7666 constraint ((Rd == REG_PC), BAD_PC);
7667 constraint ((Rn == REG_PC), BAD_PC);
7668 constraint ((Rm == REG_PC), BAD_PC);
7669
7670 inst.instruction |= Rd << 16;
7671 inst.instruction |= Rn << 0;
7672 inst.instruction |= Rm << 8;
7673}
7674
b99bd4ef 7675static void
c19d1205 7676do_it (void)
b99bd4ef 7677{
c19d1205 7678 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7679 process it to do the validation as if in
7680 thumb mode, just in case the code gets
7681 assembled for thumb using the unified syntax. */
7682
c19d1205 7683 inst.size = 0;
e07e6e58
NC
7684 if (unified_syntax)
7685 {
7686 set_it_insn_type (IT_INSN);
7687 now_it.mask = (inst.instruction & 0xf) | 0x10;
7688 now_it.cc = inst.operands[0].imm;
7689 }
09d92015 7690}
b99bd4ef 7691
09d92015 7692static void
c19d1205 7693do_ldmstm (void)
ea6ef066 7694{
c19d1205
ZW
7695 int base_reg = inst.operands[0].reg;
7696 int range = inst.operands[1].imm;
ea6ef066 7697
c19d1205
ZW
7698 inst.instruction |= base_reg << 16;
7699 inst.instruction |= range;
ea6ef066 7700
c19d1205
ZW
7701 if (inst.operands[1].writeback)
7702 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7703
c19d1205 7704 if (inst.operands[0].writeback)
ea6ef066 7705 {
c19d1205
ZW
7706 inst.instruction |= WRITE_BACK;
7707 /* Check for unpredictable uses of writeback. */
7708 if (inst.instruction & LOAD_BIT)
09d92015 7709 {
c19d1205
ZW
7710 /* Not allowed in LDM type 2. */
7711 if ((inst.instruction & LDM_TYPE_2_OR_3)
7712 && ((range & (1 << REG_PC)) == 0))
7713 as_warn (_("writeback of base register is UNPREDICTABLE"));
7714 /* Only allowed if base reg not in list for other types. */
7715 else if (range & (1 << base_reg))
7716 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7717 }
7718 else /* STM. */
7719 {
7720 /* Not allowed for type 2. */
7721 if (inst.instruction & LDM_TYPE_2_OR_3)
7722 as_warn (_("writeback of base register is UNPREDICTABLE"));
7723 /* Only allowed if base reg not in list, or first in list. */
7724 else if ((range & (1 << base_reg))
7725 && (range & ((1 << base_reg) - 1)))
7726 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7727 }
ea6ef066 7728 }
a737bd4d
NC
7729}
7730
c19d1205
ZW
7731/* ARMv5TE load-consecutive (argument parse)
7732 Mode is like LDRH.
7733
7734 LDRccD R, mode
7735 STRccD R, mode. */
7736
a737bd4d 7737static void
c19d1205 7738do_ldrd (void)
a737bd4d 7739{
c19d1205
ZW
7740 constraint (inst.operands[0].reg % 2 != 0,
7741 _("first destination register must be even"));
7742 constraint (inst.operands[1].present
7743 && inst.operands[1].reg != inst.operands[0].reg + 1,
7744 _("can only load two consecutive registers"));
7745 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7746 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7747
c19d1205
ZW
7748 if (!inst.operands[1].present)
7749 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7750
c19d1205 7751 if (inst.instruction & LOAD_BIT)
a737bd4d 7752 {
c19d1205
ZW
7753 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7754 register and the first register written; we have to diagnose
7755 overlap between the base and the second register written here. */
ea6ef066 7756
c19d1205
ZW
7757 if (inst.operands[2].reg == inst.operands[1].reg
7758 && (inst.operands[2].writeback || inst.operands[2].postind))
7759 as_warn (_("base register written back, and overlaps "
7760 "second destination register"));
b05fe5cf 7761
c19d1205
ZW
7762 /* For an index-register load, the index register must not overlap the
7763 destination (even if not write-back). */
7764 else if (inst.operands[2].immisreg
ca3f61f7
NC
7765 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7766 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7767 as_warn (_("index register overlaps destination register"));
b05fe5cf 7768 }
c19d1205
ZW
7769
7770 inst.instruction |= inst.operands[0].reg << 12;
7771 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7772}
7773
7774static void
c19d1205 7775do_ldrex (void)
b05fe5cf 7776{
c19d1205
ZW
7777 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7778 || inst.operands[1].postind || inst.operands[1].writeback
7779 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7780 || inst.operands[1].negative
7781 /* This can arise if the programmer has written
7782 strex rN, rM, foo
7783 or if they have mistakenly used a register name as the last
7784 operand, eg:
7785 strex rN, rM, rX
7786 It is very difficult to distinguish between these two cases
7787 because "rX" might actually be a label. ie the register
7788 name has been occluded by a symbol of the same name. So we
7789 just generate a general 'bad addressing mode' type error
7790 message and leave it up to the programmer to discover the
7791 true cause and fix their mistake. */
7792 || (inst.operands[1].reg == REG_PC),
7793 BAD_ADDR_MODE);
b05fe5cf 7794
c19d1205
ZW
7795 constraint (inst.reloc.exp.X_op != O_constant
7796 || inst.reloc.exp.X_add_number != 0,
7797 _("offset must be zero in ARM encoding"));
b05fe5cf 7798
5be8be5d
DG
7799 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7800
c19d1205
ZW
7801 inst.instruction |= inst.operands[0].reg << 12;
7802 inst.instruction |= inst.operands[1].reg << 16;
7803 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7804}
7805
7806static void
c19d1205 7807do_ldrexd (void)
b05fe5cf 7808{
c19d1205
ZW
7809 constraint (inst.operands[0].reg % 2 != 0,
7810 _("even register required"));
7811 constraint (inst.operands[1].present
7812 && inst.operands[1].reg != inst.operands[0].reg + 1,
7813 _("can only load two consecutive registers"));
7814 /* If op 1 were present and equal to PC, this function wouldn't
7815 have been called in the first place. */
7816 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7817
c19d1205
ZW
7818 inst.instruction |= inst.operands[0].reg << 12;
7819 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7820}
7821
7822static void
c19d1205 7823do_ldst (void)
b05fe5cf 7824{
c19d1205
ZW
7825 inst.instruction |= inst.operands[0].reg << 12;
7826 if (!inst.operands[1].isreg)
7827 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7828 return;
c19d1205 7829 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7830}
7831
7832static void
c19d1205 7833do_ldstt (void)
b05fe5cf 7834{
c19d1205
ZW
7835 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7836 reject [Rn,...]. */
7837 if (inst.operands[1].preind)
b05fe5cf 7838 {
bd3ba5d1
NC
7839 constraint (inst.reloc.exp.X_op != O_constant
7840 || inst.reloc.exp.X_add_number != 0,
c19d1205 7841 _("this instruction requires a post-indexed address"));
b05fe5cf 7842
c19d1205
ZW
7843 inst.operands[1].preind = 0;
7844 inst.operands[1].postind = 1;
7845 inst.operands[1].writeback = 1;
b05fe5cf 7846 }
c19d1205
ZW
7847 inst.instruction |= inst.operands[0].reg << 12;
7848 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7849}
b05fe5cf 7850
c19d1205 7851/* Halfword and signed-byte load/store operations. */
b05fe5cf 7852
c19d1205
ZW
7853static void
7854do_ldstv4 (void)
7855{
ff4a8d2b 7856 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7857 inst.instruction |= inst.operands[0].reg << 12;
7858 if (!inst.operands[1].isreg)
7859 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7860 return;
c19d1205 7861 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7862}
7863
7864static void
c19d1205 7865do_ldsttv4 (void)
b05fe5cf 7866{
c19d1205
ZW
7867 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7868 reject [Rn,...]. */
7869 if (inst.operands[1].preind)
b05fe5cf 7870 {
bd3ba5d1
NC
7871 constraint (inst.reloc.exp.X_op != O_constant
7872 || inst.reloc.exp.X_add_number != 0,
c19d1205 7873 _("this instruction requires a post-indexed address"));
b05fe5cf 7874
c19d1205
ZW
7875 inst.operands[1].preind = 0;
7876 inst.operands[1].postind = 1;
7877 inst.operands[1].writeback = 1;
b05fe5cf 7878 }
c19d1205
ZW
7879 inst.instruction |= inst.operands[0].reg << 12;
7880 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7881}
b05fe5cf 7882
c19d1205
ZW
7883/* Co-processor register load/store.
7884 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7885static void
7886do_lstc (void)
7887{
7888 inst.instruction |= inst.operands[0].reg << 8;
7889 inst.instruction |= inst.operands[1].reg << 12;
7890 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7891}
7892
b05fe5cf 7893static void
c19d1205 7894do_mlas (void)
b05fe5cf 7895{
8fb9d7b9 7896 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7897 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7898 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7899 && !(inst.instruction & 0x00400000))
8fb9d7b9 7900 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7901
c19d1205
ZW
7902 inst.instruction |= inst.operands[0].reg << 16;
7903 inst.instruction |= inst.operands[1].reg;
7904 inst.instruction |= inst.operands[2].reg << 8;
7905 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7906}
b05fe5cf 7907
c19d1205
ZW
7908static void
7909do_mov (void)
7910{
7911 inst.instruction |= inst.operands[0].reg << 12;
7912 encode_arm_shifter_operand (1);
7913}
b05fe5cf 7914
c19d1205
ZW
7915/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7916static void
7917do_mov16 (void)
7918{
b6895b4f
PB
7919 bfd_vma imm;
7920 bfd_boolean top;
7921
7922 top = (inst.instruction & 0x00400000) != 0;
7923 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7924 _(":lower16: not allowed this instruction"));
7925 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7926 _(":upper16: not allowed instruction"));
c19d1205 7927 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7928 if (inst.reloc.type == BFD_RELOC_UNUSED)
7929 {
7930 imm = inst.reloc.exp.X_add_number;
7931 /* The value is in two pieces: 0:11, 16:19. */
7932 inst.instruction |= (imm & 0x00000fff);
7933 inst.instruction |= (imm & 0x0000f000) << 4;
7934 }
b05fe5cf 7935}
b99bd4ef 7936
037e8744
JB
7937static void do_vfp_nsyn_opcode (const char *);
7938
7939static int
7940do_vfp_nsyn_mrs (void)
7941{
7942 if (inst.operands[0].isvec)
7943 {
7944 if (inst.operands[1].reg != 1)
7945 first_error (_("operand 1 must be FPSCR"));
7946 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7947 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7948 do_vfp_nsyn_opcode ("fmstat");
7949 }
7950 else if (inst.operands[1].isvec)
7951 do_vfp_nsyn_opcode ("fmrx");
7952 else
7953 return FAIL;
5f4273c7 7954
037e8744
JB
7955 return SUCCESS;
7956}
7957
7958static int
7959do_vfp_nsyn_msr (void)
7960{
7961 if (inst.operands[0].isvec)
7962 do_vfp_nsyn_opcode ("fmxr");
7963 else
7964 return FAIL;
7965
7966 return SUCCESS;
7967}
7968
f7c21dc7
NC
7969static void
7970do_vmrs (void)
7971{
7972 unsigned Rt = inst.operands[0].reg;
7973
7974 if (thumb_mode && inst.operands[0].reg == REG_SP)
7975 {
7976 inst.error = BAD_SP;
7977 return;
7978 }
7979
7980 /* APSR_ sets isvec. All other refs to PC are illegal. */
7981 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7982 {
7983 inst.error = BAD_PC;
7984 return;
7985 }
7986
7987 if (inst.operands[1].reg != 1)
7988 first_error (_("operand 1 must be FPSCR"));
7989
7990 inst.instruction |= (Rt << 12);
7991}
7992
7993static void
7994do_vmsr (void)
7995{
7996 unsigned Rt = inst.operands[1].reg;
7997
7998 if (thumb_mode)
7999 reject_bad_reg (Rt);
8000 else if (Rt == REG_PC)
8001 {
8002 inst.error = BAD_PC;
8003 return;
8004 }
8005
8006 if (inst.operands[0].reg != 1)
8007 first_error (_("operand 0 must be FPSCR"));
8008
8009 inst.instruction |= (Rt << 12);
8010}
8011
b99bd4ef 8012static void
c19d1205 8013do_mrs (void)
b99bd4ef 8014{
90ec0d68
MGD
8015 unsigned br;
8016
037e8744
JB
8017 if (do_vfp_nsyn_mrs () == SUCCESS)
8018 return;
8019
ff4a8d2b 8020 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8021 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8022
8023 if (inst.operands[1].isreg)
8024 {
8025 br = inst.operands[1].reg;
8026 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8027 as_bad (_("bad register for mrs"));
8028 }
8029 else
8030 {
8031 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8032 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8033 != (PSR_c|PSR_f),
d2cd1205 8034 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8035 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8036 }
8037
8038 inst.instruction |= br;
c19d1205 8039}
b99bd4ef 8040
c19d1205
ZW
8041/* Two possible forms:
8042 "{C|S}PSR_<field>, Rm",
8043 "{C|S}PSR_f, #expression". */
b99bd4ef 8044
c19d1205
ZW
8045static void
8046do_msr (void)
8047{
037e8744
JB
8048 if (do_vfp_nsyn_msr () == SUCCESS)
8049 return;
8050
c19d1205
ZW
8051 inst.instruction |= inst.operands[0].imm;
8052 if (inst.operands[1].isreg)
8053 inst.instruction |= inst.operands[1].reg;
8054 else
b99bd4ef 8055 {
c19d1205
ZW
8056 inst.instruction |= INST_IMMEDIATE;
8057 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8058 inst.reloc.pc_rel = 0;
b99bd4ef 8059 }
b99bd4ef
NC
8060}
8061
c19d1205
ZW
8062static void
8063do_mul (void)
a737bd4d 8064{
ff4a8d2b
NC
8065 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8066
c19d1205
ZW
8067 if (!inst.operands[2].present)
8068 inst.operands[2].reg = inst.operands[0].reg;
8069 inst.instruction |= inst.operands[0].reg << 16;
8070 inst.instruction |= inst.operands[1].reg;
8071 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8072
8fb9d7b9
MS
8073 if (inst.operands[0].reg == inst.operands[1].reg
8074 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8075 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8076}
8077
c19d1205
ZW
8078/* Long Multiply Parser
8079 UMULL RdLo, RdHi, Rm, Rs
8080 SMULL RdLo, RdHi, Rm, Rs
8081 UMLAL RdLo, RdHi, Rm, Rs
8082 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8083
8084static void
c19d1205 8085do_mull (void)
b99bd4ef 8086{
c19d1205
ZW
8087 inst.instruction |= inst.operands[0].reg << 12;
8088 inst.instruction |= inst.operands[1].reg << 16;
8089 inst.instruction |= inst.operands[2].reg;
8090 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8091
682b27ad
PB
8092 /* rdhi and rdlo must be different. */
8093 if (inst.operands[0].reg == inst.operands[1].reg)
8094 as_tsktsk (_("rdhi and rdlo must be different"));
8095
8096 /* rdhi, rdlo and rm must all be different before armv6. */
8097 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8098 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8099 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8100 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8101}
b99bd4ef 8102
c19d1205
ZW
8103static void
8104do_nop (void)
8105{
e7495e45
NS
8106 if (inst.operands[0].present
8107 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8108 {
8109 /* Architectural NOP hints are CPSR sets with no bits selected. */
8110 inst.instruction &= 0xf0000000;
e7495e45
NS
8111 inst.instruction |= 0x0320f000;
8112 if (inst.operands[0].present)
8113 inst.instruction |= inst.operands[0].imm;
c19d1205 8114 }
b99bd4ef
NC
8115}
8116
c19d1205
ZW
8117/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8118 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8119 Condition defaults to COND_ALWAYS.
8120 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8121
8122static void
c19d1205 8123do_pkhbt (void)
b99bd4ef 8124{
c19d1205
ZW
8125 inst.instruction |= inst.operands[0].reg << 12;
8126 inst.instruction |= inst.operands[1].reg << 16;
8127 inst.instruction |= inst.operands[2].reg;
8128 if (inst.operands[3].present)
8129 encode_arm_shift (3);
8130}
b99bd4ef 8131
c19d1205 8132/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8133
c19d1205
ZW
8134static void
8135do_pkhtb (void)
8136{
8137 if (!inst.operands[3].present)
b99bd4ef 8138 {
c19d1205
ZW
8139 /* If the shift specifier is omitted, turn the instruction
8140 into pkhbt rd, rm, rn. */
8141 inst.instruction &= 0xfff00010;
8142 inst.instruction |= inst.operands[0].reg << 12;
8143 inst.instruction |= inst.operands[1].reg;
8144 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8145 }
8146 else
8147 {
c19d1205
ZW
8148 inst.instruction |= inst.operands[0].reg << 12;
8149 inst.instruction |= inst.operands[1].reg << 16;
8150 inst.instruction |= inst.operands[2].reg;
8151 encode_arm_shift (3);
b99bd4ef
NC
8152 }
8153}
8154
c19d1205 8155/* ARMv5TE: Preload-Cache
60e5ef9f 8156 MP Extensions: Preload for write
c19d1205 8157
60e5ef9f 8158 PLD(W) <addr_mode>
c19d1205
ZW
8159
8160 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8161
8162static void
c19d1205 8163do_pld (void)
b99bd4ef 8164{
c19d1205
ZW
8165 constraint (!inst.operands[0].isreg,
8166 _("'[' expected after PLD mnemonic"));
8167 constraint (inst.operands[0].postind,
8168 _("post-indexed expression used in preload instruction"));
8169 constraint (inst.operands[0].writeback,
8170 _("writeback used in preload instruction"));
8171 constraint (!inst.operands[0].preind,
8172 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8173 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8174}
b99bd4ef 8175
62b3e311
PB
8176/* ARMv7: PLI <addr_mode> */
8177static void
8178do_pli (void)
8179{
8180 constraint (!inst.operands[0].isreg,
8181 _("'[' expected after PLI mnemonic"));
8182 constraint (inst.operands[0].postind,
8183 _("post-indexed expression used in preload instruction"));
8184 constraint (inst.operands[0].writeback,
8185 _("writeback used in preload instruction"));
8186 constraint (!inst.operands[0].preind,
8187 _("unindexed addressing used in preload instruction"));
8188 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8189 inst.instruction &= ~PRE_INDEX;
8190}
8191
c19d1205
ZW
8192static void
8193do_push_pop (void)
8194{
8195 inst.operands[1] = inst.operands[0];
8196 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8197 inst.operands[0].isreg = 1;
8198 inst.operands[0].writeback = 1;
8199 inst.operands[0].reg = REG_SP;
8200 do_ldmstm ();
8201}
b99bd4ef 8202
c19d1205
ZW
8203/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8204 word at the specified address and the following word
8205 respectively.
8206 Unconditionally executed.
8207 Error if Rn is R15. */
b99bd4ef 8208
c19d1205
ZW
8209static void
8210do_rfe (void)
8211{
8212 inst.instruction |= inst.operands[0].reg << 16;
8213 if (inst.operands[0].writeback)
8214 inst.instruction |= WRITE_BACK;
8215}
b99bd4ef 8216
c19d1205 8217/* ARM V6 ssat (argument parse). */
b99bd4ef 8218
c19d1205
ZW
8219static void
8220do_ssat (void)
8221{
8222 inst.instruction |= inst.operands[0].reg << 12;
8223 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8224 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8225
c19d1205
ZW
8226 if (inst.operands[3].present)
8227 encode_arm_shift (3);
b99bd4ef
NC
8228}
8229
c19d1205 8230/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8231
8232static void
c19d1205 8233do_usat (void)
b99bd4ef 8234{
c19d1205
ZW
8235 inst.instruction |= inst.operands[0].reg << 12;
8236 inst.instruction |= inst.operands[1].imm << 16;
8237 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8238
c19d1205
ZW
8239 if (inst.operands[3].present)
8240 encode_arm_shift (3);
b99bd4ef
NC
8241}
8242
c19d1205 8243/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8244
8245static void
c19d1205 8246do_ssat16 (void)
09d92015 8247{
c19d1205
ZW
8248 inst.instruction |= inst.operands[0].reg << 12;
8249 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8250 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8251}
8252
c19d1205
ZW
8253static void
8254do_usat16 (void)
a737bd4d 8255{
c19d1205
ZW
8256 inst.instruction |= inst.operands[0].reg << 12;
8257 inst.instruction |= inst.operands[1].imm << 16;
8258 inst.instruction |= inst.operands[2].reg;
8259}
a737bd4d 8260
c19d1205
ZW
8261/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8262 preserving the other bits.
a737bd4d 8263
c19d1205
ZW
8264 setend <endian_specifier>, where <endian_specifier> is either
8265 BE or LE. */
a737bd4d 8266
c19d1205
ZW
8267static void
8268do_setend (void)
8269{
8270 if (inst.operands[0].imm)
8271 inst.instruction |= 0x200;
a737bd4d
NC
8272}
8273
8274static void
c19d1205 8275do_shift (void)
a737bd4d 8276{
c19d1205
ZW
8277 unsigned int Rm = (inst.operands[1].present
8278 ? inst.operands[1].reg
8279 : inst.operands[0].reg);
a737bd4d 8280
c19d1205
ZW
8281 inst.instruction |= inst.operands[0].reg << 12;
8282 inst.instruction |= Rm;
8283 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8284 {
c19d1205
ZW
8285 inst.instruction |= inst.operands[2].reg << 8;
8286 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
8287 }
8288 else
c19d1205 8289 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8290}
8291
09d92015 8292static void
3eb17e6b 8293do_smc (void)
09d92015 8294{
3eb17e6b 8295 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8296 inst.reloc.pc_rel = 0;
09d92015
MM
8297}
8298
90ec0d68
MGD
8299static void
8300do_hvc (void)
8301{
8302 inst.reloc.type = BFD_RELOC_ARM_HVC;
8303 inst.reloc.pc_rel = 0;
8304}
8305
09d92015 8306static void
c19d1205 8307do_swi (void)
09d92015 8308{
c19d1205
ZW
8309 inst.reloc.type = BFD_RELOC_ARM_SWI;
8310 inst.reloc.pc_rel = 0;
09d92015
MM
8311}
8312
c19d1205
ZW
8313/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8314 SMLAxy{cond} Rd,Rm,Rs,Rn
8315 SMLAWy{cond} Rd,Rm,Rs,Rn
8316 Error if any register is R15. */
e16bb312 8317
c19d1205
ZW
8318static void
8319do_smla (void)
e16bb312 8320{
c19d1205
ZW
8321 inst.instruction |= inst.operands[0].reg << 16;
8322 inst.instruction |= inst.operands[1].reg;
8323 inst.instruction |= inst.operands[2].reg << 8;
8324 inst.instruction |= inst.operands[3].reg << 12;
8325}
a737bd4d 8326
c19d1205
ZW
8327/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8328 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8329 Error if any register is R15.
8330 Warning if Rdlo == Rdhi. */
a737bd4d 8331
c19d1205
ZW
8332static void
8333do_smlal (void)
8334{
8335 inst.instruction |= inst.operands[0].reg << 12;
8336 inst.instruction |= inst.operands[1].reg << 16;
8337 inst.instruction |= inst.operands[2].reg;
8338 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8339
c19d1205
ZW
8340 if (inst.operands[0].reg == inst.operands[1].reg)
8341 as_tsktsk (_("rdhi and rdlo must be different"));
8342}
a737bd4d 8343
c19d1205
ZW
8344/* ARM V5E (El Segundo) signed-multiply (argument parse)
8345 SMULxy{cond} Rd,Rm,Rs
8346 Error if any register is R15. */
a737bd4d 8347
c19d1205
ZW
8348static void
8349do_smul (void)
8350{
8351 inst.instruction |= inst.operands[0].reg << 16;
8352 inst.instruction |= inst.operands[1].reg;
8353 inst.instruction |= inst.operands[2].reg << 8;
8354}
a737bd4d 8355
b6702015
PB
8356/* ARM V6 srs (argument parse). The variable fields in the encoding are
8357 the same for both ARM and Thumb-2. */
a737bd4d 8358
c19d1205
ZW
8359static void
8360do_srs (void)
8361{
b6702015
PB
8362 int reg;
8363
8364 if (inst.operands[0].present)
8365 {
8366 reg = inst.operands[0].reg;
fdfde340 8367 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8368 }
8369 else
fdfde340 8370 reg = REG_SP;
b6702015
PB
8371
8372 inst.instruction |= reg << 16;
8373 inst.instruction |= inst.operands[1].imm;
8374 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8375 inst.instruction |= WRITE_BACK;
8376}
a737bd4d 8377
c19d1205 8378/* ARM V6 strex (argument parse). */
a737bd4d 8379
c19d1205
ZW
8380static void
8381do_strex (void)
8382{
8383 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8384 || inst.operands[2].postind || inst.operands[2].writeback
8385 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8386 || inst.operands[2].negative
8387 /* See comment in do_ldrex(). */
8388 || (inst.operands[2].reg == REG_PC),
8389 BAD_ADDR_MODE);
a737bd4d 8390
c19d1205
ZW
8391 constraint (inst.operands[0].reg == inst.operands[1].reg
8392 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8393
c19d1205
ZW
8394 constraint (inst.reloc.exp.X_op != O_constant
8395 || inst.reloc.exp.X_add_number != 0,
8396 _("offset must be zero in ARM encoding"));
a737bd4d 8397
c19d1205
ZW
8398 inst.instruction |= inst.operands[0].reg << 12;
8399 inst.instruction |= inst.operands[1].reg;
8400 inst.instruction |= inst.operands[2].reg << 16;
8401 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8402}
8403
8404static void
c19d1205 8405do_strexd (void)
e16bb312 8406{
c19d1205
ZW
8407 constraint (inst.operands[1].reg % 2 != 0,
8408 _("even register required"));
8409 constraint (inst.operands[2].present
8410 && inst.operands[2].reg != inst.operands[1].reg + 1,
8411 _("can only store two consecutive registers"));
8412 /* If op 2 were present and equal to PC, this function wouldn't
8413 have been called in the first place. */
8414 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8415
c19d1205
ZW
8416 constraint (inst.operands[0].reg == inst.operands[1].reg
8417 || inst.operands[0].reg == inst.operands[1].reg + 1
8418 || inst.operands[0].reg == inst.operands[3].reg,
8419 BAD_OVERLAP);
e16bb312 8420
c19d1205
ZW
8421 inst.instruction |= inst.operands[0].reg << 12;
8422 inst.instruction |= inst.operands[1].reg;
8423 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8424}
8425
c19d1205
ZW
8426/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8427 extends it to 32-bits, and adds the result to a value in another
8428 register. You can specify a rotation by 0, 8, 16, or 24 bits
8429 before extracting the 16-bit value.
8430 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8431 Condition defaults to COND_ALWAYS.
8432 Error if any register uses R15. */
8433
e16bb312 8434static void
c19d1205 8435do_sxtah (void)
e16bb312 8436{
c19d1205
ZW
8437 inst.instruction |= inst.operands[0].reg << 12;
8438 inst.instruction |= inst.operands[1].reg << 16;
8439 inst.instruction |= inst.operands[2].reg;
8440 inst.instruction |= inst.operands[3].imm << 10;
8441}
e16bb312 8442
c19d1205 8443/* ARM V6 SXTH.
e16bb312 8444
c19d1205
ZW
8445 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8446 Condition defaults to COND_ALWAYS.
8447 Error if any register uses R15. */
e16bb312
NC
8448
8449static void
c19d1205 8450do_sxth (void)
e16bb312 8451{
c19d1205
ZW
8452 inst.instruction |= inst.operands[0].reg << 12;
8453 inst.instruction |= inst.operands[1].reg;
8454 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8455}
c19d1205
ZW
8456\f
8457/* VFP instructions. In a logical order: SP variant first, monad
8458 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8459
8460static void
c19d1205 8461do_vfp_sp_monadic (void)
e16bb312 8462{
5287ad62
JB
8463 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8464 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8465}
8466
8467static void
c19d1205 8468do_vfp_sp_dyadic (void)
e16bb312 8469{
5287ad62
JB
8470 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8471 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8472 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8473}
8474
8475static void
c19d1205 8476do_vfp_sp_compare_z (void)
e16bb312 8477{
5287ad62 8478 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8479}
8480
8481static void
c19d1205 8482do_vfp_dp_sp_cvt (void)
e16bb312 8483{
5287ad62
JB
8484 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8485 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8486}
8487
8488static void
c19d1205 8489do_vfp_sp_dp_cvt (void)
e16bb312 8490{
5287ad62
JB
8491 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8492 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8493}
8494
8495static void
c19d1205 8496do_vfp_reg_from_sp (void)
e16bb312 8497{
c19d1205 8498 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8499 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8500}
8501
8502static void
c19d1205 8503do_vfp_reg2_from_sp2 (void)
e16bb312 8504{
c19d1205
ZW
8505 constraint (inst.operands[2].imm != 2,
8506 _("only two consecutive VFP SP registers allowed here"));
8507 inst.instruction |= inst.operands[0].reg << 12;
8508 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8509 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8510}
8511
8512static void
c19d1205 8513do_vfp_sp_from_reg (void)
e16bb312 8514{
5287ad62 8515 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8516 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8517}
8518
8519static void
c19d1205 8520do_vfp_sp2_from_reg2 (void)
e16bb312 8521{
c19d1205
ZW
8522 constraint (inst.operands[0].imm != 2,
8523 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8524 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8525 inst.instruction |= inst.operands[1].reg << 12;
8526 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8527}
8528
8529static void
c19d1205 8530do_vfp_sp_ldst (void)
e16bb312 8531{
5287ad62 8532 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8533 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8534}
8535
8536static void
c19d1205 8537do_vfp_dp_ldst (void)
e16bb312 8538{
5287ad62 8539 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8540 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8541}
8542
c19d1205 8543
e16bb312 8544static void
c19d1205 8545vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8546{
c19d1205
ZW
8547 if (inst.operands[0].writeback)
8548 inst.instruction |= WRITE_BACK;
8549 else
8550 constraint (ldstm_type != VFP_LDSTMIA,
8551 _("this addressing mode requires base-register writeback"));
8552 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8554 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8555}
8556
8557static void
c19d1205 8558vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8559{
c19d1205 8560 int count;
e16bb312 8561
c19d1205
ZW
8562 if (inst.operands[0].writeback)
8563 inst.instruction |= WRITE_BACK;
8564 else
8565 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8566 _("this addressing mode requires base-register writeback"));
e16bb312 8567
c19d1205 8568 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8569 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8570
c19d1205
ZW
8571 count = inst.operands[1].imm << 1;
8572 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8573 count += 1;
e16bb312 8574
c19d1205 8575 inst.instruction |= count;
e16bb312
NC
8576}
8577
8578static void
c19d1205 8579do_vfp_sp_ldstmia (void)
e16bb312 8580{
c19d1205 8581 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8582}
8583
8584static void
c19d1205 8585do_vfp_sp_ldstmdb (void)
e16bb312 8586{
c19d1205 8587 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8588}
8589
8590static void
c19d1205 8591do_vfp_dp_ldstmia (void)
e16bb312 8592{
c19d1205 8593 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8594}
8595
8596static void
c19d1205 8597do_vfp_dp_ldstmdb (void)
e16bb312 8598{
c19d1205 8599 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8600}
8601
8602static void
c19d1205 8603do_vfp_xp_ldstmia (void)
e16bb312 8604{
c19d1205
ZW
8605 vfp_dp_ldstm (VFP_LDSTMIAX);
8606}
e16bb312 8607
c19d1205
ZW
8608static void
8609do_vfp_xp_ldstmdb (void)
8610{
8611 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8612}
5287ad62
JB
8613
8614static void
8615do_vfp_dp_rd_rm (void)
8616{
8617 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8618 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8619}
8620
8621static void
8622do_vfp_dp_rn_rd (void)
8623{
8624 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8625 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8626}
8627
8628static void
8629do_vfp_dp_rd_rn (void)
8630{
8631 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8632 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8633}
8634
8635static void
8636do_vfp_dp_rd_rn_rm (void)
8637{
8638 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8639 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8640 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8641}
8642
8643static void
8644do_vfp_dp_rd (void)
8645{
8646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8647}
8648
8649static void
8650do_vfp_dp_rm_rd_rn (void)
8651{
8652 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8653 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8654 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8655}
8656
8657/* VFPv3 instructions. */
8658static void
8659do_vfp_sp_const (void)
8660{
8661 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8662 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8663 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8664}
8665
8666static void
8667do_vfp_dp_const (void)
8668{
8669 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8670 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8671 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8672}
8673
8674static void
8675vfp_conv (int srcsize)
8676{
8677 unsigned immbits = srcsize - inst.operands[1].imm;
8678 inst.instruction |= (immbits & 1) << 5;
8679 inst.instruction |= (immbits >> 1);
8680}
8681
8682static void
8683do_vfp_sp_conv_16 (void)
8684{
8685 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8686 vfp_conv (16);
8687}
8688
8689static void
8690do_vfp_dp_conv_16 (void)
8691{
8692 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8693 vfp_conv (16);
8694}
8695
8696static void
8697do_vfp_sp_conv_32 (void)
8698{
8699 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8700 vfp_conv (32);
8701}
8702
8703static void
8704do_vfp_dp_conv_32 (void)
8705{
8706 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8707 vfp_conv (32);
8708}
c19d1205
ZW
8709\f
8710/* FPA instructions. Also in a logical order. */
e16bb312 8711
c19d1205
ZW
8712static void
8713do_fpa_cmp (void)
8714{
8715 inst.instruction |= inst.operands[0].reg << 16;
8716 inst.instruction |= inst.operands[1].reg;
8717}
b99bd4ef
NC
8718
8719static void
c19d1205 8720do_fpa_ldmstm (void)
b99bd4ef 8721{
c19d1205
ZW
8722 inst.instruction |= inst.operands[0].reg << 12;
8723 switch (inst.operands[1].imm)
8724 {
8725 case 1: inst.instruction |= CP_T_X; break;
8726 case 2: inst.instruction |= CP_T_Y; break;
8727 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8728 case 4: break;
8729 default: abort ();
8730 }
b99bd4ef 8731
c19d1205
ZW
8732 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8733 {
8734 /* The instruction specified "ea" or "fd", so we can only accept
8735 [Rn]{!}. The instruction does not really support stacking or
8736 unstacking, so we have to emulate these by setting appropriate
8737 bits and offsets. */
8738 constraint (inst.reloc.exp.X_op != O_constant
8739 || inst.reloc.exp.X_add_number != 0,
8740 _("this instruction does not support indexing"));
b99bd4ef 8741
c19d1205
ZW
8742 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8743 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8744
c19d1205
ZW
8745 if (!(inst.instruction & INDEX_UP))
8746 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8747
c19d1205
ZW
8748 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8749 {
8750 inst.operands[2].preind = 0;
8751 inst.operands[2].postind = 1;
8752 }
8753 }
b99bd4ef 8754
c19d1205 8755 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8756}
c19d1205
ZW
8757\f
8758/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8759
c19d1205
ZW
8760static void
8761do_iwmmxt_tandorc (void)
8762{
8763 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8764}
b99bd4ef 8765
c19d1205
ZW
8766static void
8767do_iwmmxt_textrc (void)
8768{
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].imm;
8771}
b99bd4ef
NC
8772
8773static void
c19d1205 8774do_iwmmxt_textrm (void)
b99bd4ef 8775{
c19d1205
ZW
8776 inst.instruction |= inst.operands[0].reg << 12;
8777 inst.instruction |= inst.operands[1].reg << 16;
8778 inst.instruction |= inst.operands[2].imm;
8779}
b99bd4ef 8780
c19d1205
ZW
8781static void
8782do_iwmmxt_tinsr (void)
8783{
8784 inst.instruction |= inst.operands[0].reg << 16;
8785 inst.instruction |= inst.operands[1].reg << 12;
8786 inst.instruction |= inst.operands[2].imm;
8787}
b99bd4ef 8788
c19d1205
ZW
8789static void
8790do_iwmmxt_tmia (void)
8791{
8792 inst.instruction |= inst.operands[0].reg << 5;
8793 inst.instruction |= inst.operands[1].reg;
8794 inst.instruction |= inst.operands[2].reg << 12;
8795}
b99bd4ef 8796
c19d1205
ZW
8797static void
8798do_iwmmxt_waligni (void)
8799{
8800 inst.instruction |= inst.operands[0].reg << 12;
8801 inst.instruction |= inst.operands[1].reg << 16;
8802 inst.instruction |= inst.operands[2].reg;
8803 inst.instruction |= inst.operands[3].imm << 20;
8804}
b99bd4ef 8805
2d447fca
JM
8806static void
8807do_iwmmxt_wmerge (void)
8808{
8809 inst.instruction |= inst.operands[0].reg << 12;
8810 inst.instruction |= inst.operands[1].reg << 16;
8811 inst.instruction |= inst.operands[2].reg;
8812 inst.instruction |= inst.operands[3].imm << 21;
8813}
8814
c19d1205
ZW
8815static void
8816do_iwmmxt_wmov (void)
8817{
8818 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8819 inst.instruction |= inst.operands[0].reg << 12;
8820 inst.instruction |= inst.operands[1].reg << 16;
8821 inst.instruction |= inst.operands[1].reg;
8822}
b99bd4ef 8823
c19d1205
ZW
8824static void
8825do_iwmmxt_wldstbh (void)
8826{
8f06b2d8 8827 int reloc;
c19d1205 8828 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8829 if (thumb_mode)
8830 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8831 else
8832 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8833 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8834}
8835
c19d1205
ZW
8836static void
8837do_iwmmxt_wldstw (void)
8838{
8839 /* RIWR_RIWC clears .isreg for a control register. */
8840 if (!inst.operands[0].isreg)
8841 {
8842 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8843 inst.instruction |= 0xf0000000;
8844 }
b99bd4ef 8845
c19d1205
ZW
8846 inst.instruction |= inst.operands[0].reg << 12;
8847 encode_arm_cp_address (1, TRUE, TRUE, 0);
8848}
b99bd4ef
NC
8849
8850static void
c19d1205 8851do_iwmmxt_wldstd (void)
b99bd4ef 8852{
c19d1205 8853 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8854 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8855 && inst.operands[1].immisreg)
8856 {
8857 inst.instruction &= ~0x1a000ff;
8858 inst.instruction |= (0xf << 28);
8859 if (inst.operands[1].preind)
8860 inst.instruction |= PRE_INDEX;
8861 if (!inst.operands[1].negative)
8862 inst.instruction |= INDEX_UP;
8863 if (inst.operands[1].writeback)
8864 inst.instruction |= WRITE_BACK;
8865 inst.instruction |= inst.operands[1].reg << 16;
8866 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8867 inst.instruction |= inst.operands[1].imm;
8868 }
8869 else
8870 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8871}
b99bd4ef 8872
c19d1205
ZW
8873static void
8874do_iwmmxt_wshufh (void)
8875{
8876 inst.instruction |= inst.operands[0].reg << 12;
8877 inst.instruction |= inst.operands[1].reg << 16;
8878 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8879 inst.instruction |= (inst.operands[2].imm & 0x0f);
8880}
b99bd4ef 8881
c19d1205
ZW
8882static void
8883do_iwmmxt_wzero (void)
8884{
8885 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8886 inst.instruction |= inst.operands[0].reg;
8887 inst.instruction |= inst.operands[0].reg << 12;
8888 inst.instruction |= inst.operands[0].reg << 16;
8889}
2d447fca
JM
8890
8891static void
8892do_iwmmxt_wrwrwr_or_imm5 (void)
8893{
8894 if (inst.operands[2].isreg)
8895 do_rd_rn_rm ();
8896 else {
8897 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8898 _("immediate operand requires iWMMXt2"));
8899 do_rd_rn ();
8900 if (inst.operands[2].imm == 0)
8901 {
8902 switch ((inst.instruction >> 20) & 0xf)
8903 {
8904 case 4:
8905 case 5:
8906 case 6:
5f4273c7 8907 case 7:
2d447fca
JM
8908 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8909 inst.operands[2].imm = 16;
8910 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8911 break;
8912 case 8:
8913 case 9:
8914 case 10:
8915 case 11:
8916 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8917 inst.operands[2].imm = 32;
8918 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8919 break;
8920 case 12:
8921 case 13:
8922 case 14:
8923 case 15:
8924 {
8925 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8926 unsigned long wrn;
8927 wrn = (inst.instruction >> 16) & 0xf;
8928 inst.instruction &= 0xff0fff0f;
8929 inst.instruction |= wrn;
8930 /* Bail out here; the instruction is now assembled. */
8931 return;
8932 }
8933 }
8934 }
8935 /* Map 32 -> 0, etc. */
8936 inst.operands[2].imm &= 0x1f;
8937 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8938 }
8939}
c19d1205
ZW
8940\f
8941/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8942 operations first, then control, shift, and load/store. */
b99bd4ef 8943
c19d1205 8944/* Insns like "foo X,Y,Z". */
b99bd4ef 8945
c19d1205
ZW
8946static void
8947do_mav_triple (void)
8948{
8949 inst.instruction |= inst.operands[0].reg << 16;
8950 inst.instruction |= inst.operands[1].reg;
8951 inst.instruction |= inst.operands[2].reg << 12;
8952}
b99bd4ef 8953
c19d1205
ZW
8954/* Insns like "foo W,X,Y,Z".
8955 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8956
c19d1205
ZW
8957static void
8958do_mav_quad (void)
8959{
8960 inst.instruction |= inst.operands[0].reg << 5;
8961 inst.instruction |= inst.operands[1].reg << 12;
8962 inst.instruction |= inst.operands[2].reg << 16;
8963 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8964}
8965
c19d1205
ZW
8966/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8967static void
8968do_mav_dspsc (void)
a737bd4d 8969{
c19d1205
ZW
8970 inst.instruction |= inst.operands[1].reg << 12;
8971}
a737bd4d 8972
c19d1205
ZW
8973/* Maverick shift immediate instructions.
8974 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8975 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8976
c19d1205
ZW
8977static void
8978do_mav_shift (void)
8979{
8980 int imm = inst.operands[2].imm;
a737bd4d 8981
c19d1205
ZW
8982 inst.instruction |= inst.operands[0].reg << 12;
8983 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8984
c19d1205
ZW
8985 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8986 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8987 Bit 4 should be 0. */
8988 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8989
c19d1205
ZW
8990 inst.instruction |= imm;
8991}
8992\f
8993/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8994
c19d1205
ZW
8995/* Xscale multiply-accumulate (argument parse)
8996 MIAcc acc0,Rm,Rs
8997 MIAPHcc acc0,Rm,Rs
8998 MIAxycc acc0,Rm,Rs. */
a737bd4d 8999
c19d1205
ZW
9000static void
9001do_xsc_mia (void)
9002{
9003 inst.instruction |= inst.operands[1].reg;
9004 inst.instruction |= inst.operands[2].reg << 12;
9005}
a737bd4d 9006
c19d1205 9007/* Xscale move-accumulator-register (argument parse)
a737bd4d 9008
c19d1205 9009 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9010
c19d1205
ZW
9011static void
9012do_xsc_mar (void)
9013{
9014 inst.instruction |= inst.operands[1].reg << 12;
9015 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9016}
9017
c19d1205 9018/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9019
c19d1205 9020 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9021
9022static void
c19d1205 9023do_xsc_mra (void)
b99bd4ef 9024{
c19d1205
ZW
9025 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9026 inst.instruction |= inst.operands[0].reg << 12;
9027 inst.instruction |= inst.operands[1].reg << 16;
9028}
9029\f
9030/* Encoding functions relevant only to Thumb. */
b99bd4ef 9031
c19d1205
ZW
9032/* inst.operands[i] is a shifted-register operand; encode
9033 it into inst.instruction in the format used by Thumb32. */
9034
9035static void
9036encode_thumb32_shifted_operand (int i)
9037{
9038 unsigned int value = inst.reloc.exp.X_add_number;
9039 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9040
9c3c69f2
PB
9041 constraint (inst.operands[i].immisreg,
9042 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9043 inst.instruction |= inst.operands[i].reg;
9044 if (shift == SHIFT_RRX)
9045 inst.instruction |= SHIFT_ROR << 4;
9046 else
b99bd4ef 9047 {
c19d1205
ZW
9048 constraint (inst.reloc.exp.X_op != O_constant,
9049 _("expression too complex"));
9050
9051 constraint (value > 32
9052 || (value == 32 && (shift == SHIFT_LSL
9053 || shift == SHIFT_ROR)),
9054 _("shift expression is too large"));
9055
9056 if (value == 0)
9057 shift = SHIFT_LSL;
9058 else if (value == 32)
9059 value = 0;
9060
9061 inst.instruction |= shift << 4;
9062 inst.instruction |= (value & 0x1c) << 10;
9063 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9064 }
c19d1205 9065}
b99bd4ef 9066
b99bd4ef 9067
c19d1205
ZW
9068/* inst.operands[i] was set up by parse_address. Encode it into a
9069 Thumb32 format load or store instruction. Reject forms that cannot
9070 be used with such instructions. If is_t is true, reject forms that
9071 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9072 that cannot be used with a D instruction. If it is a store insn,
9073 reject PC in Rn. */
b99bd4ef 9074
c19d1205
ZW
9075static void
9076encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9077{
5be8be5d 9078 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9079
9080 constraint (!inst.operands[i].isreg,
53365c0d 9081 _("Instruction does not support =N addresses"));
b99bd4ef 9082
c19d1205
ZW
9083 inst.instruction |= inst.operands[i].reg << 16;
9084 if (inst.operands[i].immisreg)
b99bd4ef 9085 {
5be8be5d 9086 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9087 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9088 constraint (inst.operands[i].negative,
9089 _("Thumb does not support negative register indexing"));
9090 constraint (inst.operands[i].postind,
9091 _("Thumb does not support register post-indexing"));
9092 constraint (inst.operands[i].writeback,
9093 _("Thumb does not support register indexing with writeback"));
9094 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9095 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9096
f40d1643 9097 inst.instruction |= inst.operands[i].imm;
c19d1205 9098 if (inst.operands[i].shifted)
b99bd4ef 9099 {
c19d1205
ZW
9100 constraint (inst.reloc.exp.X_op != O_constant,
9101 _("expression too complex"));
9c3c69f2
PB
9102 constraint (inst.reloc.exp.X_add_number < 0
9103 || inst.reloc.exp.X_add_number > 3,
c19d1205 9104 _("shift out of range"));
9c3c69f2 9105 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9106 }
9107 inst.reloc.type = BFD_RELOC_UNUSED;
9108 }
9109 else if (inst.operands[i].preind)
9110 {
5be8be5d 9111 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9112 constraint (is_t && inst.operands[i].writeback,
c19d1205 9113 _("cannot use writeback with this instruction"));
5be8be5d
DG
9114 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9115 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9116
9117 if (is_d)
9118 {
9119 inst.instruction |= 0x01000000;
9120 if (inst.operands[i].writeback)
9121 inst.instruction |= 0x00200000;
b99bd4ef 9122 }
c19d1205 9123 else
b99bd4ef 9124 {
c19d1205
ZW
9125 inst.instruction |= 0x00000c00;
9126 if (inst.operands[i].writeback)
9127 inst.instruction |= 0x00000100;
b99bd4ef 9128 }
c19d1205 9129 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9130 }
c19d1205 9131 else if (inst.operands[i].postind)
b99bd4ef 9132 {
9c2799c2 9133 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9134 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9135 constraint (is_t, _("cannot use post-indexing with this instruction"));
9136
9137 if (is_d)
9138 inst.instruction |= 0x00200000;
9139 else
9140 inst.instruction |= 0x00000900;
9141 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9142 }
9143 else /* unindexed - only for coprocessor */
9144 inst.error = _("instruction does not accept unindexed addressing");
9145}
9146
9147/* Table of Thumb instructions which exist in both 16- and 32-bit
9148 encodings (the latter only in post-V6T2 cores). The index is the
9149 value used in the insns table below. When there is more than one
9150 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9151 holds variant (1).
9152 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9153#define T16_32_TAB \
21d799b5
NC
9154 X(_adc, 4140, eb400000), \
9155 X(_adcs, 4140, eb500000), \
9156 X(_add, 1c00, eb000000), \
9157 X(_adds, 1c00, eb100000), \
9158 X(_addi, 0000, f1000000), \
9159 X(_addis, 0000, f1100000), \
9160 X(_add_pc,000f, f20f0000), \
9161 X(_add_sp,000d, f10d0000), \
9162 X(_adr, 000f, f20f0000), \
9163 X(_and, 4000, ea000000), \
9164 X(_ands, 4000, ea100000), \
9165 X(_asr, 1000, fa40f000), \
9166 X(_asrs, 1000, fa50f000), \
9167 X(_b, e000, f000b000), \
9168 X(_bcond, d000, f0008000), \
9169 X(_bic, 4380, ea200000), \
9170 X(_bics, 4380, ea300000), \
9171 X(_cmn, 42c0, eb100f00), \
9172 X(_cmp, 2800, ebb00f00), \
9173 X(_cpsie, b660, f3af8400), \
9174 X(_cpsid, b670, f3af8600), \
9175 X(_cpy, 4600, ea4f0000), \
9176 X(_dec_sp,80dd, f1ad0d00), \
9177 X(_eor, 4040, ea800000), \
9178 X(_eors, 4040, ea900000), \
9179 X(_inc_sp,00dd, f10d0d00), \
9180 X(_ldmia, c800, e8900000), \
9181 X(_ldr, 6800, f8500000), \
9182 X(_ldrb, 7800, f8100000), \
9183 X(_ldrh, 8800, f8300000), \
9184 X(_ldrsb, 5600, f9100000), \
9185 X(_ldrsh, 5e00, f9300000), \
9186 X(_ldr_pc,4800, f85f0000), \
9187 X(_ldr_pc2,4800, f85f0000), \
9188 X(_ldr_sp,9800, f85d0000), \
9189 X(_lsl, 0000, fa00f000), \
9190 X(_lsls, 0000, fa10f000), \
9191 X(_lsr, 0800, fa20f000), \
9192 X(_lsrs, 0800, fa30f000), \
9193 X(_mov, 2000, ea4f0000), \
9194 X(_movs, 2000, ea5f0000), \
9195 X(_mul, 4340, fb00f000), \
9196 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9197 X(_mvn, 43c0, ea6f0000), \
9198 X(_mvns, 43c0, ea7f0000), \
9199 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9200 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9201 X(_orr, 4300, ea400000), \
9202 X(_orrs, 4300, ea500000), \
9203 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9204 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9205 X(_rev, ba00, fa90f080), \
9206 X(_rev16, ba40, fa90f090), \
9207 X(_revsh, bac0, fa90f0b0), \
9208 X(_ror, 41c0, fa60f000), \
9209 X(_rors, 41c0, fa70f000), \
9210 X(_sbc, 4180, eb600000), \
9211 X(_sbcs, 4180, eb700000), \
9212 X(_stmia, c000, e8800000), \
9213 X(_str, 6000, f8400000), \
9214 X(_strb, 7000, f8000000), \
9215 X(_strh, 8000, f8200000), \
9216 X(_str_sp,9000, f84d0000), \
9217 X(_sub, 1e00, eba00000), \
9218 X(_subs, 1e00, ebb00000), \
9219 X(_subi, 8000, f1a00000), \
9220 X(_subis, 8000, f1b00000), \
9221 X(_sxtb, b240, fa4ff080), \
9222 X(_sxth, b200, fa0ff080), \
9223 X(_tst, 4200, ea100f00), \
9224 X(_uxtb, b2c0, fa5ff080), \
9225 X(_uxth, b280, fa1ff080), \
9226 X(_nop, bf00, f3af8000), \
9227 X(_yield, bf10, f3af8001), \
9228 X(_wfe, bf20, f3af8002), \
9229 X(_wfi, bf30, f3af8003), \
9230 X(_sev, bf40, f3af8004),
c19d1205
ZW
9231
9232/* To catch errors in encoding functions, the codes are all offset by
9233 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9234 as 16-bit instructions. */
21d799b5 9235#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9236enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9237#undef X
9238
9239#define X(a,b,c) 0x##b
9240static const unsigned short thumb_op16[] = { T16_32_TAB };
9241#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9242#undef X
9243
9244#define X(a,b,c) 0x##c
9245static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9246#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9247#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9248#undef X
9249#undef T16_32_TAB
9250
9251/* Thumb instruction encoders, in alphabetical order. */
9252
92e90b6e 9253/* ADDW or SUBW. */
c921be7d 9254
92e90b6e
PB
9255static void
9256do_t_add_sub_w (void)
9257{
9258 int Rd, Rn;
9259
9260 Rd = inst.operands[0].reg;
9261 Rn = inst.operands[1].reg;
9262
539d4391
NC
9263 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9264 is the SP-{plus,minus}-immediate form of the instruction. */
9265 if (Rn == REG_SP)
9266 constraint (Rd == REG_PC, BAD_PC);
9267 else
9268 reject_bad_reg (Rd);
fdfde340 9269
92e90b6e
PB
9270 inst.instruction |= (Rn << 16) | (Rd << 8);
9271 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9272}
9273
c19d1205
ZW
9274/* Parse an add or subtract instruction. We get here with inst.instruction
9275 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9276
9277static void
9278do_t_add_sub (void)
9279{
9280 int Rd, Rs, Rn;
9281
9282 Rd = inst.operands[0].reg;
9283 Rs = (inst.operands[1].present
9284 ? inst.operands[1].reg /* Rd, Rs, foo */
9285 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9286
e07e6e58
NC
9287 if (Rd == REG_PC)
9288 set_it_insn_type_last ();
9289
c19d1205
ZW
9290 if (unified_syntax)
9291 {
0110f2b8
PB
9292 bfd_boolean flags;
9293 bfd_boolean narrow;
9294 int opcode;
9295
9296 flags = (inst.instruction == T_MNEM_adds
9297 || inst.instruction == T_MNEM_subs);
9298 if (flags)
e07e6e58 9299 narrow = !in_it_block ();
0110f2b8 9300 else
e07e6e58 9301 narrow = in_it_block ();
c19d1205 9302 if (!inst.operands[2].isreg)
b99bd4ef 9303 {
16805f35
PB
9304 int add;
9305
fdfde340
JM
9306 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9307
16805f35
PB
9308 add = (inst.instruction == T_MNEM_add
9309 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9310 opcode = 0;
9311 if (inst.size_req != 4)
9312 {
0110f2b8
PB
9313 /* Attempt to use a narrow opcode, with relaxation if
9314 appropriate. */
9315 if (Rd == REG_SP && Rs == REG_SP && !flags)
9316 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9317 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9318 opcode = T_MNEM_add_sp;
9319 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9320 opcode = T_MNEM_add_pc;
9321 else if (Rd <= 7 && Rs <= 7 && narrow)
9322 {
9323 if (flags)
9324 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9325 else
9326 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9327 }
9328 if (opcode)
9329 {
9330 inst.instruction = THUMB_OP16(opcode);
9331 inst.instruction |= (Rd << 4) | Rs;
9332 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9333 if (inst.size_req != 2)
9334 inst.relax = opcode;
9335 }
9336 else
9337 constraint (inst.size_req == 2, BAD_HIREG);
9338 }
9339 if (inst.size_req == 4
9340 || (inst.size_req != 2 && !opcode))
9341 {
efd81785
PB
9342 if (Rd == REG_PC)
9343 {
fdfde340 9344 constraint (add, BAD_PC);
efd81785
PB
9345 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9346 _("only SUBS PC, LR, #const allowed"));
9347 constraint (inst.reloc.exp.X_op != O_constant,
9348 _("expression too complex"));
9349 constraint (inst.reloc.exp.X_add_number < 0
9350 || inst.reloc.exp.X_add_number > 0xff,
9351 _("immediate value out of range"));
9352 inst.instruction = T2_SUBS_PC_LR
9353 | inst.reloc.exp.X_add_number;
9354 inst.reloc.type = BFD_RELOC_UNUSED;
9355 return;
9356 }
9357 else if (Rs == REG_PC)
16805f35
PB
9358 {
9359 /* Always use addw/subw. */
9360 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9361 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9362 }
9363 else
9364 {
9365 inst.instruction = THUMB_OP32 (inst.instruction);
9366 inst.instruction = (inst.instruction & 0xe1ffffff)
9367 | 0x10000000;
9368 if (flags)
9369 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9370 else
9371 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9372 }
dc4503c6
PB
9373 inst.instruction |= Rd << 8;
9374 inst.instruction |= Rs << 16;
0110f2b8 9375 }
b99bd4ef 9376 }
c19d1205
ZW
9377 else
9378 {
9379 Rn = inst.operands[2].reg;
9380 /* See if we can do this with a 16-bit instruction. */
9381 if (!inst.operands[2].shifted && inst.size_req != 4)
9382 {
e27ec89e
PB
9383 if (Rd > 7 || Rs > 7 || Rn > 7)
9384 narrow = FALSE;
9385
9386 if (narrow)
c19d1205 9387 {
e27ec89e
PB
9388 inst.instruction = ((inst.instruction == T_MNEM_adds
9389 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9390 ? T_OPCODE_ADD_R3
9391 : T_OPCODE_SUB_R3);
9392 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9393 return;
9394 }
b99bd4ef 9395
7e806470 9396 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9397 {
7e806470
PB
9398 /* Thumb-1 cores (except v6-M) require at least one high
9399 register in a narrow non flag setting add. */
9400 if (Rd > 7 || Rn > 7
9401 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9402 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9403 {
7e806470
PB
9404 if (Rd == Rn)
9405 {
9406 Rn = Rs;
9407 Rs = Rd;
9408 }
c19d1205
ZW
9409 inst.instruction = T_OPCODE_ADD_HI;
9410 inst.instruction |= (Rd & 8) << 4;
9411 inst.instruction |= (Rd & 7);
9412 inst.instruction |= Rn << 3;
9413 return;
9414 }
c19d1205
ZW
9415 }
9416 }
c921be7d 9417
fdfde340
JM
9418 constraint (Rd == REG_PC, BAD_PC);
9419 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9420 constraint (Rs == REG_PC, BAD_PC);
9421 reject_bad_reg (Rn);
9422
c19d1205
ZW
9423 /* If we get here, it can't be done in 16 bits. */
9424 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9425 _("shift must be constant"));
9426 inst.instruction = THUMB_OP32 (inst.instruction);
9427 inst.instruction |= Rd << 8;
9428 inst.instruction |= Rs << 16;
9429 encode_thumb32_shifted_operand (2);
9430 }
9431 }
9432 else
9433 {
9434 constraint (inst.instruction == T_MNEM_adds
9435 || inst.instruction == T_MNEM_subs,
9436 BAD_THUMB32);
b99bd4ef 9437
c19d1205 9438 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9439 {
c19d1205
ZW
9440 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9441 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9442 BAD_HIREG);
9443
9444 inst.instruction = (inst.instruction == T_MNEM_add
9445 ? 0x0000 : 0x8000);
9446 inst.instruction |= (Rd << 4) | Rs;
9447 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9448 return;
9449 }
9450
c19d1205
ZW
9451 Rn = inst.operands[2].reg;
9452 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9453
c19d1205
ZW
9454 /* We now have Rd, Rs, and Rn set to registers. */
9455 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9456 {
c19d1205
ZW
9457 /* Can't do this for SUB. */
9458 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9459 inst.instruction = T_OPCODE_ADD_HI;
9460 inst.instruction |= (Rd & 8) << 4;
9461 inst.instruction |= (Rd & 7);
9462 if (Rs == Rd)
9463 inst.instruction |= Rn << 3;
9464 else if (Rn == Rd)
9465 inst.instruction |= Rs << 3;
9466 else
9467 constraint (1, _("dest must overlap one source register"));
9468 }
9469 else
9470 {
9471 inst.instruction = (inst.instruction == T_MNEM_add
9472 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9473 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9474 }
b99bd4ef 9475 }
b99bd4ef
NC
9476}
9477
c19d1205
ZW
9478static void
9479do_t_adr (void)
9480{
fdfde340
JM
9481 unsigned Rd;
9482
9483 Rd = inst.operands[0].reg;
9484 reject_bad_reg (Rd);
9485
9486 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9487 {
9488 /* Defer to section relaxation. */
9489 inst.relax = inst.instruction;
9490 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9491 inst.instruction |= Rd << 4;
0110f2b8
PB
9492 }
9493 else if (unified_syntax && inst.size_req != 2)
e9f89963 9494 {
0110f2b8 9495 /* Generate a 32-bit opcode. */
e9f89963 9496 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9497 inst.instruction |= Rd << 8;
e9f89963
PB
9498 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9499 inst.reloc.pc_rel = 1;
9500 }
9501 else
9502 {
0110f2b8 9503 /* Generate a 16-bit opcode. */
e9f89963
PB
9504 inst.instruction = THUMB_OP16 (inst.instruction);
9505 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9506 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9507 inst.reloc.pc_rel = 1;
b99bd4ef 9508
fdfde340 9509 inst.instruction |= Rd << 4;
e9f89963 9510 }
c19d1205 9511}
b99bd4ef 9512
c19d1205
ZW
9513/* Arithmetic instructions for which there is just one 16-bit
9514 instruction encoding, and it allows only two low registers.
9515 For maximal compatibility with ARM syntax, we allow three register
9516 operands even when Thumb-32 instructions are not available, as long
9517 as the first two are identical. For instance, both "sbc r0,r1" and
9518 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9519static void
c19d1205 9520do_t_arit3 (void)
b99bd4ef 9521{
c19d1205 9522 int Rd, Rs, Rn;
b99bd4ef 9523
c19d1205
ZW
9524 Rd = inst.operands[0].reg;
9525 Rs = (inst.operands[1].present
9526 ? inst.operands[1].reg /* Rd, Rs, foo */
9527 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9528 Rn = inst.operands[2].reg;
b99bd4ef 9529
fdfde340
JM
9530 reject_bad_reg (Rd);
9531 reject_bad_reg (Rs);
9532 if (inst.operands[2].isreg)
9533 reject_bad_reg (Rn);
9534
c19d1205 9535 if (unified_syntax)
b99bd4ef 9536 {
c19d1205
ZW
9537 if (!inst.operands[2].isreg)
9538 {
9539 /* For an immediate, we always generate a 32-bit opcode;
9540 section relaxation will shrink it later if possible. */
9541 inst.instruction = THUMB_OP32 (inst.instruction);
9542 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9543 inst.instruction |= Rd << 8;
9544 inst.instruction |= Rs << 16;
9545 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9546 }
9547 else
9548 {
e27ec89e
PB
9549 bfd_boolean narrow;
9550
c19d1205 9551 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9552 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9553 narrow = !in_it_block ();
e27ec89e 9554 else
e07e6e58 9555 narrow = in_it_block ();
e27ec89e
PB
9556
9557 if (Rd > 7 || Rn > 7 || Rs > 7)
9558 narrow = FALSE;
9559 if (inst.operands[2].shifted)
9560 narrow = FALSE;
9561 if (inst.size_req == 4)
9562 narrow = FALSE;
9563
9564 if (narrow
c19d1205
ZW
9565 && Rd == Rs)
9566 {
9567 inst.instruction = THUMB_OP16 (inst.instruction);
9568 inst.instruction |= Rd;
9569 inst.instruction |= Rn << 3;
9570 return;
9571 }
b99bd4ef 9572
c19d1205
ZW
9573 /* If we get here, it can't be done in 16 bits. */
9574 constraint (inst.operands[2].shifted
9575 && inst.operands[2].immisreg,
9576 _("shift must be constant"));
9577 inst.instruction = THUMB_OP32 (inst.instruction);
9578 inst.instruction |= Rd << 8;
9579 inst.instruction |= Rs << 16;
9580 encode_thumb32_shifted_operand (2);
9581 }
a737bd4d 9582 }
c19d1205 9583 else
b99bd4ef 9584 {
c19d1205
ZW
9585 /* On its face this is a lie - the instruction does set the
9586 flags. However, the only supported mnemonic in this mode
9587 says it doesn't. */
9588 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9589
c19d1205
ZW
9590 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9591 _("unshifted register required"));
9592 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9593 constraint (Rd != Rs,
9594 _("dest and source1 must be the same register"));
a737bd4d 9595
c19d1205
ZW
9596 inst.instruction = THUMB_OP16 (inst.instruction);
9597 inst.instruction |= Rd;
9598 inst.instruction |= Rn << 3;
b99bd4ef 9599 }
a737bd4d 9600}
b99bd4ef 9601
c19d1205
ZW
9602/* Similarly, but for instructions where the arithmetic operation is
9603 commutative, so we can allow either of them to be different from
9604 the destination operand in a 16-bit instruction. For instance, all
9605 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9606 accepted. */
9607static void
9608do_t_arit3c (void)
a737bd4d 9609{
c19d1205 9610 int Rd, Rs, Rn;
b99bd4ef 9611
c19d1205
ZW
9612 Rd = inst.operands[0].reg;
9613 Rs = (inst.operands[1].present
9614 ? inst.operands[1].reg /* Rd, Rs, foo */
9615 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9616 Rn = inst.operands[2].reg;
c921be7d 9617
fdfde340
JM
9618 reject_bad_reg (Rd);
9619 reject_bad_reg (Rs);
9620 if (inst.operands[2].isreg)
9621 reject_bad_reg (Rn);
a737bd4d 9622
c19d1205 9623 if (unified_syntax)
a737bd4d 9624 {
c19d1205 9625 if (!inst.operands[2].isreg)
b99bd4ef 9626 {
c19d1205
ZW
9627 /* For an immediate, we always generate a 32-bit opcode;
9628 section relaxation will shrink it later if possible. */
9629 inst.instruction = THUMB_OP32 (inst.instruction);
9630 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9631 inst.instruction |= Rd << 8;
9632 inst.instruction |= Rs << 16;
9633 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9634 }
c19d1205 9635 else
a737bd4d 9636 {
e27ec89e
PB
9637 bfd_boolean narrow;
9638
c19d1205 9639 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9640 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9641 narrow = !in_it_block ();
e27ec89e 9642 else
e07e6e58 9643 narrow = in_it_block ();
e27ec89e
PB
9644
9645 if (Rd > 7 || Rn > 7 || Rs > 7)
9646 narrow = FALSE;
9647 if (inst.operands[2].shifted)
9648 narrow = FALSE;
9649 if (inst.size_req == 4)
9650 narrow = FALSE;
9651
9652 if (narrow)
a737bd4d 9653 {
c19d1205 9654 if (Rd == Rs)
a737bd4d 9655 {
c19d1205
ZW
9656 inst.instruction = THUMB_OP16 (inst.instruction);
9657 inst.instruction |= Rd;
9658 inst.instruction |= Rn << 3;
9659 return;
a737bd4d 9660 }
c19d1205 9661 if (Rd == Rn)
a737bd4d 9662 {
c19d1205
ZW
9663 inst.instruction = THUMB_OP16 (inst.instruction);
9664 inst.instruction |= Rd;
9665 inst.instruction |= Rs << 3;
9666 return;
a737bd4d
NC
9667 }
9668 }
c19d1205
ZW
9669
9670 /* If we get here, it can't be done in 16 bits. */
9671 constraint (inst.operands[2].shifted
9672 && inst.operands[2].immisreg,
9673 _("shift must be constant"));
9674 inst.instruction = THUMB_OP32 (inst.instruction);
9675 inst.instruction |= Rd << 8;
9676 inst.instruction |= Rs << 16;
9677 encode_thumb32_shifted_operand (2);
a737bd4d 9678 }
b99bd4ef 9679 }
c19d1205
ZW
9680 else
9681 {
9682 /* On its face this is a lie - the instruction does set the
9683 flags. However, the only supported mnemonic in this mode
9684 says it doesn't. */
9685 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9686
c19d1205
ZW
9687 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9688 _("unshifted register required"));
9689 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9690
9691 inst.instruction = THUMB_OP16 (inst.instruction);
9692 inst.instruction |= Rd;
9693
9694 if (Rd == Rs)
9695 inst.instruction |= Rn << 3;
9696 else if (Rd == Rn)
9697 inst.instruction |= Rs << 3;
9698 else
9699 constraint (1, _("dest must overlap one source register"));
9700 }
a737bd4d
NC
9701}
9702
62b3e311
PB
9703static void
9704do_t_barrier (void)
9705{
9706 if (inst.operands[0].present)
9707 {
9708 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9709 && inst.operands[0].imm > 0xf
9710 && inst.operands[0].imm < 0x0,
bd3ba5d1 9711 _("bad barrier type"));
62b3e311
PB
9712 inst.instruction |= inst.operands[0].imm;
9713 }
9714 else
9715 inst.instruction |= 0xf;
9716}
9717
c19d1205
ZW
9718static void
9719do_t_bfc (void)
a737bd4d 9720{
fdfde340 9721 unsigned Rd;
c19d1205
ZW
9722 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9723 constraint (msb > 32, _("bit-field extends past end of register"));
9724 /* The instruction encoding stores the LSB and MSB,
9725 not the LSB and width. */
fdfde340
JM
9726 Rd = inst.operands[0].reg;
9727 reject_bad_reg (Rd);
9728 inst.instruction |= Rd << 8;
c19d1205
ZW
9729 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9730 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9731 inst.instruction |= msb - 1;
b99bd4ef
NC
9732}
9733
c19d1205
ZW
9734static void
9735do_t_bfi (void)
b99bd4ef 9736{
fdfde340 9737 int Rd, Rn;
c19d1205 9738 unsigned int msb;
b99bd4ef 9739
fdfde340
JM
9740 Rd = inst.operands[0].reg;
9741 reject_bad_reg (Rd);
9742
c19d1205
ZW
9743 /* #0 in second position is alternative syntax for bfc, which is
9744 the same instruction but with REG_PC in the Rm field. */
9745 if (!inst.operands[1].isreg)
fdfde340
JM
9746 Rn = REG_PC;
9747 else
9748 {
9749 Rn = inst.operands[1].reg;
9750 reject_bad_reg (Rn);
9751 }
b99bd4ef 9752
c19d1205
ZW
9753 msb = inst.operands[2].imm + inst.operands[3].imm;
9754 constraint (msb > 32, _("bit-field extends past end of register"));
9755 /* The instruction encoding stores the LSB and MSB,
9756 not the LSB and width. */
fdfde340
JM
9757 inst.instruction |= Rd << 8;
9758 inst.instruction |= Rn << 16;
c19d1205
ZW
9759 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9760 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9761 inst.instruction |= msb - 1;
b99bd4ef
NC
9762}
9763
c19d1205
ZW
9764static void
9765do_t_bfx (void)
b99bd4ef 9766{
fdfde340
JM
9767 unsigned Rd, Rn;
9768
9769 Rd = inst.operands[0].reg;
9770 Rn = inst.operands[1].reg;
9771
9772 reject_bad_reg (Rd);
9773 reject_bad_reg (Rn);
9774
c19d1205
ZW
9775 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9776 _("bit-field extends past end of register"));
fdfde340
JM
9777 inst.instruction |= Rd << 8;
9778 inst.instruction |= Rn << 16;
c19d1205
ZW
9779 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9780 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9781 inst.instruction |= inst.operands[3].imm - 1;
9782}
b99bd4ef 9783
c19d1205
ZW
9784/* ARM V5 Thumb BLX (argument parse)
9785 BLX <target_addr> which is BLX(1)
9786 BLX <Rm> which is BLX(2)
9787 Unfortunately, there are two different opcodes for this mnemonic.
9788 So, the insns[].value is not used, and the code here zaps values
9789 into inst.instruction.
b99bd4ef 9790
c19d1205
ZW
9791 ??? How to take advantage of the additional two bits of displacement
9792 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9793
c19d1205
ZW
9794static void
9795do_t_blx (void)
9796{
e07e6e58
NC
9797 set_it_insn_type_last ();
9798
c19d1205 9799 if (inst.operands[0].isreg)
fdfde340
JM
9800 {
9801 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9802 /* We have a register, so this is BLX(2). */
9803 inst.instruction |= inst.operands[0].reg << 3;
9804 }
b99bd4ef
NC
9805 else
9806 {
c19d1205 9807 /* No register. This must be BLX(1). */
2fc8bdac 9808 inst.instruction = 0xf000e800;
0855e32b 9809 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
9810 }
9811}
9812
c19d1205
ZW
9813static void
9814do_t_branch (void)
b99bd4ef 9815{
0110f2b8 9816 int opcode;
dfa9f0d5 9817 int cond;
9ae92b05 9818 int reloc;
dfa9f0d5 9819
e07e6e58
NC
9820 cond = inst.cond;
9821 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9822
9823 if (in_it_block ())
dfa9f0d5
PB
9824 {
9825 /* Conditional branches inside IT blocks are encoded as unconditional
9826 branches. */
9827 cond = COND_ALWAYS;
dfa9f0d5
PB
9828 }
9829 else
9830 cond = inst.cond;
9831
9832 if (cond != COND_ALWAYS)
0110f2b8
PB
9833 opcode = T_MNEM_bcond;
9834 else
9835 opcode = inst.instruction;
9836
12d6b0b7
RS
9837 if (unified_syntax
9838 && (inst.size_req == 4
9839 || (inst.size_req != 2 && inst.operands[0].hasreloc)))
c19d1205 9840 {
0110f2b8 9841 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9842 if (cond == COND_ALWAYS)
9ae92b05 9843 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9844 else
9845 {
9c2799c2 9846 gas_assert (cond != 0xF);
dfa9f0d5 9847 inst.instruction |= cond << 22;
9ae92b05 9848 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
9849 }
9850 }
b99bd4ef
NC
9851 else
9852 {
0110f2b8 9853 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9854 if (cond == COND_ALWAYS)
9ae92b05 9855 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 9856 else
b99bd4ef 9857 {
dfa9f0d5 9858 inst.instruction |= cond << 8;
9ae92b05 9859 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9860 }
0110f2b8
PB
9861 /* Allow section relaxation. */
9862 if (unified_syntax && inst.size_req != 2)
9863 inst.relax = opcode;
b99bd4ef 9864 }
9ae92b05 9865 inst.reloc.type = reloc;
c19d1205 9866 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9867}
9868
9869static void
c19d1205 9870do_t_bkpt (void)
b99bd4ef 9871{
dfa9f0d5
PB
9872 constraint (inst.cond != COND_ALWAYS,
9873 _("instruction is always unconditional"));
c19d1205 9874 if (inst.operands[0].present)
b99bd4ef 9875 {
c19d1205
ZW
9876 constraint (inst.operands[0].imm > 255,
9877 _("immediate value out of range"));
9878 inst.instruction |= inst.operands[0].imm;
e07e6e58 9879 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9880 }
b99bd4ef
NC
9881}
9882
9883static void
c19d1205 9884do_t_branch23 (void)
b99bd4ef 9885{
e07e6e58 9886 set_it_insn_type_last ();
0855e32b
NS
9887 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
9888
9889 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9890 this file. We used to simply ignore the PLT reloc type here --
9891 the branch encoding is now needed to deal with TLSCALL relocs.
9892 So if we see a PLT reloc now, put it back to how it used to be to
9893 keep the preexisting behaviour. */
9894 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
9895 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 9896
4343666d 9897#if defined(OBJ_COFF)
c19d1205
ZW
9898 /* If the destination of the branch is a defined symbol which does not have
9899 the THUMB_FUNC attribute, then we must be calling a function which has
9900 the (interfacearm) attribute. We look for the Thumb entry point to that
9901 function and change the branch to refer to that function instead. */
9902 if ( inst.reloc.exp.X_op == O_symbol
9903 && inst.reloc.exp.X_add_symbol != NULL
9904 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9905 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9906 inst.reloc.exp.X_add_symbol =
9907 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9908#endif
90e4755a
RE
9909}
9910
9911static void
c19d1205 9912do_t_bx (void)
90e4755a 9913{
e07e6e58 9914 set_it_insn_type_last ();
c19d1205
ZW
9915 inst.instruction |= inst.operands[0].reg << 3;
9916 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9917 should cause the alignment to be checked once it is known. This is
9918 because BX PC only works if the instruction is word aligned. */
9919}
90e4755a 9920
c19d1205
ZW
9921static void
9922do_t_bxj (void)
9923{
fdfde340 9924 int Rm;
90e4755a 9925
e07e6e58 9926 set_it_insn_type_last ();
fdfde340
JM
9927 Rm = inst.operands[0].reg;
9928 reject_bad_reg (Rm);
9929 inst.instruction |= Rm << 16;
90e4755a
RE
9930}
9931
9932static void
c19d1205 9933do_t_clz (void)
90e4755a 9934{
fdfde340
JM
9935 unsigned Rd;
9936 unsigned Rm;
9937
9938 Rd = inst.operands[0].reg;
9939 Rm = inst.operands[1].reg;
9940
9941 reject_bad_reg (Rd);
9942 reject_bad_reg (Rm);
9943
9944 inst.instruction |= Rd << 8;
9945 inst.instruction |= Rm << 16;
9946 inst.instruction |= Rm;
c19d1205 9947}
90e4755a 9948
dfa9f0d5
PB
9949static void
9950do_t_cps (void)
9951{
e07e6e58 9952 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
9953 inst.instruction |= inst.operands[0].imm;
9954}
9955
c19d1205
ZW
9956static void
9957do_t_cpsi (void)
9958{
e07e6e58 9959 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 9960 if (unified_syntax
62b3e311
PB
9961 && (inst.operands[1].present || inst.size_req == 4)
9962 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9963 {
c19d1205
ZW
9964 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9965 inst.instruction = 0xf3af8000;
9966 inst.instruction |= imod << 9;
9967 inst.instruction |= inst.operands[0].imm << 5;
9968 if (inst.operands[1].present)
9969 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9970 }
c19d1205 9971 else
90e4755a 9972 {
62b3e311
PB
9973 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9974 && (inst.operands[0].imm & 4),
9975 _("selected processor does not support 'A' form "
9976 "of this instruction"));
9977 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9978 _("Thumb does not support the 2-argument "
9979 "form of this instruction"));
9980 inst.instruction |= inst.operands[0].imm;
90e4755a 9981 }
90e4755a
RE
9982}
9983
c19d1205
ZW
9984/* THUMB CPY instruction (argument parse). */
9985
90e4755a 9986static void
c19d1205 9987do_t_cpy (void)
90e4755a 9988{
c19d1205 9989 if (inst.size_req == 4)
90e4755a 9990 {
c19d1205
ZW
9991 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9992 inst.instruction |= inst.operands[0].reg << 8;
9993 inst.instruction |= inst.operands[1].reg;
90e4755a 9994 }
c19d1205 9995 else
90e4755a 9996 {
c19d1205
ZW
9997 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9998 inst.instruction |= (inst.operands[0].reg & 0x7);
9999 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10000 }
90e4755a
RE
10001}
10002
90e4755a 10003static void
25fe350b 10004do_t_cbz (void)
90e4755a 10005{
e07e6e58 10006 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10007 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10008 inst.instruction |= inst.operands[0].reg;
10009 inst.reloc.pc_rel = 1;
10010 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10011}
90e4755a 10012
62b3e311
PB
10013static void
10014do_t_dbg (void)
10015{
10016 inst.instruction |= inst.operands[0].imm;
10017}
10018
10019static void
10020do_t_div (void)
10021{
fdfde340
JM
10022 unsigned Rd, Rn, Rm;
10023
10024 Rd = inst.operands[0].reg;
10025 Rn = (inst.operands[1].present
10026 ? inst.operands[1].reg : Rd);
10027 Rm = inst.operands[2].reg;
10028
10029 reject_bad_reg (Rd);
10030 reject_bad_reg (Rn);
10031 reject_bad_reg (Rm);
10032
10033 inst.instruction |= Rd << 8;
10034 inst.instruction |= Rn << 16;
10035 inst.instruction |= Rm;
62b3e311
PB
10036}
10037
c19d1205
ZW
10038static void
10039do_t_hint (void)
10040{
10041 if (unified_syntax && inst.size_req == 4)
10042 inst.instruction = THUMB_OP32 (inst.instruction);
10043 else
10044 inst.instruction = THUMB_OP16 (inst.instruction);
10045}
90e4755a 10046
c19d1205
ZW
10047static void
10048do_t_it (void)
10049{
10050 unsigned int cond = inst.operands[0].imm;
e27ec89e 10051
e07e6e58
NC
10052 set_it_insn_type (IT_INSN);
10053 now_it.mask = (inst.instruction & 0xf) | 0x10;
10054 now_it.cc = cond;
e27ec89e
PB
10055
10056 /* If the condition is a negative condition, invert the mask. */
c19d1205 10057 if ((cond & 0x1) == 0x0)
90e4755a 10058 {
c19d1205 10059 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10060
c19d1205
ZW
10061 if ((mask & 0x7) == 0)
10062 /* no conversion needed */;
10063 else if ((mask & 0x3) == 0)
e27ec89e
PB
10064 mask ^= 0x8;
10065 else if ((mask & 0x1) == 0)
10066 mask ^= 0xC;
c19d1205 10067 else
e27ec89e 10068 mask ^= 0xE;
90e4755a 10069
e27ec89e
PB
10070 inst.instruction &= 0xfff0;
10071 inst.instruction |= mask;
c19d1205 10072 }
90e4755a 10073
c19d1205
ZW
10074 inst.instruction |= cond << 4;
10075}
90e4755a 10076
3c707909
PB
10077/* Helper function used for both push/pop and ldm/stm. */
10078static void
10079encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10080{
10081 bfd_boolean load;
10082
10083 load = (inst.instruction & (1 << 20)) != 0;
10084
10085 if (mask & (1 << 13))
10086 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10087
10088 if ((mask & (1 << base)) != 0
10089 && writeback)
10090 inst.error = _("having the base register in the register list when "
10091 "using write back is UNPREDICTABLE");
10092
3c707909
PB
10093 if (load)
10094 {
e07e6e58
NC
10095 if (mask & (1 << 15))
10096 {
10097 if (mask & (1 << 14))
10098 inst.error = _("LR and PC should not both be in register list");
10099 else
10100 set_it_insn_type_last ();
10101 }
3c707909
PB
10102 }
10103 else
10104 {
10105 if (mask & (1 << 15))
10106 inst.error = _("PC not allowed in register list");
3c707909
PB
10107 }
10108
10109 if ((mask & (mask - 1)) == 0)
10110 {
10111 /* Single register transfers implemented as str/ldr. */
10112 if (writeback)
10113 {
10114 if (inst.instruction & (1 << 23))
10115 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10116 else
10117 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10118 }
10119 else
10120 {
10121 if (inst.instruction & (1 << 23))
10122 inst.instruction = 0x00800000; /* ia -> [base] */
10123 else
10124 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10125 }
10126
10127 inst.instruction |= 0xf8400000;
10128 if (load)
10129 inst.instruction |= 0x00100000;
10130
5f4273c7 10131 mask = ffs (mask) - 1;
3c707909
PB
10132 mask <<= 12;
10133 }
10134 else if (writeback)
10135 inst.instruction |= WRITE_BACK;
10136
10137 inst.instruction |= mask;
10138 inst.instruction |= base << 16;
10139}
10140
c19d1205
ZW
10141static void
10142do_t_ldmstm (void)
10143{
10144 /* This really doesn't seem worth it. */
10145 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10146 _("expression too complex"));
10147 constraint (inst.operands[1].writeback,
10148 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10149
c19d1205
ZW
10150 if (unified_syntax)
10151 {
3c707909
PB
10152 bfd_boolean narrow;
10153 unsigned mask;
10154
10155 narrow = FALSE;
c19d1205
ZW
10156 /* See if we can use a 16-bit instruction. */
10157 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10158 && inst.size_req != 4
3c707909 10159 && !(inst.operands[1].imm & ~0xff))
90e4755a 10160 {
3c707909 10161 mask = 1 << inst.operands[0].reg;
90e4755a 10162
eab4f823 10163 if (inst.operands[0].reg <= 7)
90e4755a 10164 {
3c707909 10165 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10166 ? inst.operands[0].writeback
10167 : (inst.operands[0].writeback
10168 == !(inst.operands[1].imm & mask)))
10169 {
10170 if (inst.instruction == T_MNEM_stmia
10171 && (inst.operands[1].imm & mask)
10172 && (inst.operands[1].imm & (mask - 1)))
10173 as_warn (_("value stored for r%d is UNKNOWN"),
10174 inst.operands[0].reg);
3c707909 10175
eab4f823
MGD
10176 inst.instruction = THUMB_OP16 (inst.instruction);
10177 inst.instruction |= inst.operands[0].reg << 8;
10178 inst.instruction |= inst.operands[1].imm;
10179 narrow = TRUE;
10180 }
10181 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10182 {
10183 /* This means 1 register in reg list one of 3 situations:
10184 1. Instruction is stmia, but without writeback.
10185 2. lmdia without writeback, but with Rn not in
10186 reglist.
10187 3. ldmia with writeback, but with Rn in reglist.
10188 Case 3 is UNPREDICTABLE behaviour, so we handle
10189 case 1 and 2 which can be converted into a 16-bit
10190 str or ldr. The SP cases are handled below. */
10191 unsigned long opcode;
10192 /* First, record an error for Case 3. */
10193 if (inst.operands[1].imm & mask
10194 && inst.operands[0].writeback)
10195 inst.error =
10196 _("having the base register in the register list when "
10197 "using write back is UNPREDICTABLE");
10198
10199 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10200 : T_MNEM_ldr);
10201 inst.instruction = THUMB_OP16 (opcode);
10202 inst.instruction |= inst.operands[0].reg << 3;
10203 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10204 narrow = TRUE;
10205 }
90e4755a 10206 }
eab4f823 10207 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10208 {
eab4f823
MGD
10209 if (inst.operands[0].writeback)
10210 {
10211 inst.instruction =
10212 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10213 ? T_MNEM_push : T_MNEM_pop);
10214 inst.instruction |= inst.operands[1].imm;
10215 narrow = TRUE;
10216 }
10217 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10218 {
10219 inst.instruction =
10220 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10221 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10222 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10223 narrow = TRUE;
10224 }
90e4755a 10225 }
3c707909
PB
10226 }
10227
10228 if (!narrow)
10229 {
c19d1205
ZW
10230 if (inst.instruction < 0xffff)
10231 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10232
5f4273c7
NC
10233 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10234 inst.operands[0].writeback);
90e4755a
RE
10235 }
10236 }
c19d1205 10237 else
90e4755a 10238 {
c19d1205
ZW
10239 constraint (inst.operands[0].reg > 7
10240 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10241 constraint (inst.instruction != T_MNEM_ldmia
10242 && inst.instruction != T_MNEM_stmia,
10243 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10244 if (inst.instruction == T_MNEM_stmia)
f03698e6 10245 {
c19d1205
ZW
10246 if (!inst.operands[0].writeback)
10247 as_warn (_("this instruction will write back the base register"));
10248 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10249 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10250 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10251 inst.operands[0].reg);
f03698e6 10252 }
c19d1205 10253 else
90e4755a 10254 {
c19d1205
ZW
10255 if (!inst.operands[0].writeback
10256 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10257 as_warn (_("this instruction will write back the base register"));
10258 else if (inst.operands[0].writeback
10259 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10260 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10261 }
10262
c19d1205
ZW
10263 inst.instruction = THUMB_OP16 (inst.instruction);
10264 inst.instruction |= inst.operands[0].reg << 8;
10265 inst.instruction |= inst.operands[1].imm;
10266 }
10267}
e28cd48c 10268
c19d1205
ZW
10269static void
10270do_t_ldrex (void)
10271{
10272 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10273 || inst.operands[1].postind || inst.operands[1].writeback
10274 || inst.operands[1].immisreg || inst.operands[1].shifted
10275 || inst.operands[1].negative,
01cfc07f 10276 BAD_ADDR_MODE);
e28cd48c 10277
5be8be5d
DG
10278 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10279
c19d1205
ZW
10280 inst.instruction |= inst.operands[0].reg << 12;
10281 inst.instruction |= inst.operands[1].reg << 16;
10282 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10283}
e28cd48c 10284
c19d1205
ZW
10285static void
10286do_t_ldrexd (void)
10287{
10288 if (!inst.operands[1].present)
1cac9012 10289 {
c19d1205
ZW
10290 constraint (inst.operands[0].reg == REG_LR,
10291 _("r14 not allowed as first register "
10292 "when second register is omitted"));
10293 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10294 }
c19d1205
ZW
10295 constraint (inst.operands[0].reg == inst.operands[1].reg,
10296 BAD_OVERLAP);
b99bd4ef 10297
c19d1205
ZW
10298 inst.instruction |= inst.operands[0].reg << 12;
10299 inst.instruction |= inst.operands[1].reg << 8;
10300 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10301}
10302
10303static void
c19d1205 10304do_t_ldst (void)
b99bd4ef 10305{
0110f2b8
PB
10306 unsigned long opcode;
10307 int Rn;
10308
e07e6e58
NC
10309 if (inst.operands[0].isreg
10310 && !inst.operands[0].preind
10311 && inst.operands[0].reg == REG_PC)
10312 set_it_insn_type_last ();
10313
0110f2b8 10314 opcode = inst.instruction;
c19d1205 10315 if (unified_syntax)
b99bd4ef 10316 {
53365c0d
PB
10317 if (!inst.operands[1].isreg)
10318 {
10319 if (opcode <= 0xffff)
10320 inst.instruction = THUMB_OP32 (opcode);
10321 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10322 return;
10323 }
0110f2b8
PB
10324 if (inst.operands[1].isreg
10325 && !inst.operands[1].writeback
c19d1205
ZW
10326 && !inst.operands[1].shifted && !inst.operands[1].postind
10327 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10328 && opcode <= 0xffff
10329 && inst.size_req != 4)
c19d1205 10330 {
0110f2b8
PB
10331 /* Insn may have a 16-bit form. */
10332 Rn = inst.operands[1].reg;
10333 if (inst.operands[1].immisreg)
10334 {
10335 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10336 /* [Rn, Rik] */
0110f2b8
PB
10337 if (Rn <= 7 && inst.operands[1].imm <= 7)
10338 goto op16;
5be8be5d
DG
10339 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10340 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10341 }
10342 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10343 && opcode != T_MNEM_ldrsb)
10344 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10345 || (Rn == REG_SP && opcode == T_MNEM_str))
10346 {
10347 /* [Rn, #const] */
10348 if (Rn > 7)
10349 {
10350 if (Rn == REG_PC)
10351 {
10352 if (inst.reloc.pc_rel)
10353 opcode = T_MNEM_ldr_pc2;
10354 else
10355 opcode = T_MNEM_ldr_pc;
10356 }
10357 else
10358 {
10359 if (opcode == T_MNEM_ldr)
10360 opcode = T_MNEM_ldr_sp;
10361 else
10362 opcode = T_MNEM_str_sp;
10363 }
10364 inst.instruction = inst.operands[0].reg << 8;
10365 }
10366 else
10367 {
10368 inst.instruction = inst.operands[0].reg;
10369 inst.instruction |= inst.operands[1].reg << 3;
10370 }
10371 inst.instruction |= THUMB_OP16 (opcode);
10372 if (inst.size_req == 2)
10373 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10374 else
10375 inst.relax = opcode;
10376 return;
10377 }
c19d1205 10378 }
0110f2b8 10379 /* Definitely a 32-bit variant. */
5be8be5d
DG
10380
10381 /* Do some validations regarding addressing modes. */
10382 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10383 && opcode != T_MNEM_str)
10384 reject_bad_reg (inst.operands[1].imm);
10385
0110f2b8 10386 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10387 inst.instruction |= inst.operands[0].reg << 12;
10388 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10389 return;
10390 }
10391
c19d1205
ZW
10392 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10393
10394 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10395 {
c19d1205
ZW
10396 /* Only [Rn,Rm] is acceptable. */
10397 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10398 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10399 || inst.operands[1].postind || inst.operands[1].shifted
10400 || inst.operands[1].negative,
10401 _("Thumb does not support this addressing mode"));
10402 inst.instruction = THUMB_OP16 (inst.instruction);
10403 goto op16;
b99bd4ef 10404 }
5f4273c7 10405
c19d1205
ZW
10406 inst.instruction = THUMB_OP16 (inst.instruction);
10407 if (!inst.operands[1].isreg)
10408 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10409 return;
b99bd4ef 10410
c19d1205
ZW
10411 constraint (!inst.operands[1].preind
10412 || inst.operands[1].shifted
10413 || inst.operands[1].writeback,
10414 _("Thumb does not support this addressing mode"));
10415 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10416 {
c19d1205
ZW
10417 constraint (inst.instruction & 0x0600,
10418 _("byte or halfword not valid for base register"));
10419 constraint (inst.operands[1].reg == REG_PC
10420 && !(inst.instruction & THUMB_LOAD_BIT),
10421 _("r15 based store not allowed"));
10422 constraint (inst.operands[1].immisreg,
10423 _("invalid base register for register offset"));
b99bd4ef 10424
c19d1205
ZW
10425 if (inst.operands[1].reg == REG_PC)
10426 inst.instruction = T_OPCODE_LDR_PC;
10427 else if (inst.instruction & THUMB_LOAD_BIT)
10428 inst.instruction = T_OPCODE_LDR_SP;
10429 else
10430 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10431
c19d1205
ZW
10432 inst.instruction |= inst.operands[0].reg << 8;
10433 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10434 return;
10435 }
90e4755a 10436
c19d1205
ZW
10437 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10438 if (!inst.operands[1].immisreg)
10439 {
10440 /* Immediate offset. */
10441 inst.instruction |= inst.operands[0].reg;
10442 inst.instruction |= inst.operands[1].reg << 3;
10443 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10444 return;
10445 }
90e4755a 10446
c19d1205
ZW
10447 /* Register offset. */
10448 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10449 constraint (inst.operands[1].negative,
10450 _("Thumb does not support this addressing mode"));
90e4755a 10451
c19d1205
ZW
10452 op16:
10453 switch (inst.instruction)
10454 {
10455 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10456 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10457 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10458 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10459 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10460 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10461 case 0x5600 /* ldrsb */:
10462 case 0x5e00 /* ldrsh */: break;
10463 default: abort ();
10464 }
90e4755a 10465
c19d1205
ZW
10466 inst.instruction |= inst.operands[0].reg;
10467 inst.instruction |= inst.operands[1].reg << 3;
10468 inst.instruction |= inst.operands[1].imm << 6;
10469}
90e4755a 10470
c19d1205
ZW
10471static void
10472do_t_ldstd (void)
10473{
10474 if (!inst.operands[1].present)
b99bd4ef 10475 {
c19d1205
ZW
10476 inst.operands[1].reg = inst.operands[0].reg + 1;
10477 constraint (inst.operands[0].reg == REG_LR,
10478 _("r14 not allowed here"));
b99bd4ef 10479 }
c19d1205
ZW
10480 inst.instruction |= inst.operands[0].reg << 12;
10481 inst.instruction |= inst.operands[1].reg << 8;
10482 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10483}
10484
c19d1205
ZW
10485static void
10486do_t_ldstt (void)
10487{
10488 inst.instruction |= inst.operands[0].reg << 12;
10489 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10490}
a737bd4d 10491
b99bd4ef 10492static void
c19d1205 10493do_t_mla (void)
b99bd4ef 10494{
fdfde340 10495 unsigned Rd, Rn, Rm, Ra;
c921be7d 10496
fdfde340
JM
10497 Rd = inst.operands[0].reg;
10498 Rn = inst.operands[1].reg;
10499 Rm = inst.operands[2].reg;
10500 Ra = inst.operands[3].reg;
10501
10502 reject_bad_reg (Rd);
10503 reject_bad_reg (Rn);
10504 reject_bad_reg (Rm);
10505 reject_bad_reg (Ra);
10506
10507 inst.instruction |= Rd << 8;
10508 inst.instruction |= Rn << 16;
10509 inst.instruction |= Rm;
10510 inst.instruction |= Ra << 12;
c19d1205 10511}
b99bd4ef 10512
c19d1205
ZW
10513static void
10514do_t_mlal (void)
10515{
fdfde340
JM
10516 unsigned RdLo, RdHi, Rn, Rm;
10517
10518 RdLo = inst.operands[0].reg;
10519 RdHi = inst.operands[1].reg;
10520 Rn = inst.operands[2].reg;
10521 Rm = inst.operands[3].reg;
10522
10523 reject_bad_reg (RdLo);
10524 reject_bad_reg (RdHi);
10525 reject_bad_reg (Rn);
10526 reject_bad_reg (Rm);
10527
10528 inst.instruction |= RdLo << 12;
10529 inst.instruction |= RdHi << 8;
10530 inst.instruction |= Rn << 16;
10531 inst.instruction |= Rm;
c19d1205 10532}
b99bd4ef 10533
c19d1205
ZW
10534static void
10535do_t_mov_cmp (void)
10536{
fdfde340
JM
10537 unsigned Rn, Rm;
10538
10539 Rn = inst.operands[0].reg;
10540 Rm = inst.operands[1].reg;
10541
e07e6e58
NC
10542 if (Rn == REG_PC)
10543 set_it_insn_type_last ();
10544
c19d1205 10545 if (unified_syntax)
b99bd4ef 10546 {
c19d1205
ZW
10547 int r0off = (inst.instruction == T_MNEM_mov
10548 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10549 unsigned long opcode;
3d388997
PB
10550 bfd_boolean narrow;
10551 bfd_boolean low_regs;
10552
fdfde340 10553 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10554 opcode = inst.instruction;
e07e6e58 10555 if (in_it_block ())
0110f2b8 10556 narrow = opcode != T_MNEM_movs;
3d388997 10557 else
0110f2b8 10558 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10559 if (inst.size_req == 4
10560 || inst.operands[1].shifted)
10561 narrow = FALSE;
10562
efd81785
PB
10563 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10564 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10565 && !inst.operands[1].shifted
fdfde340
JM
10566 && Rn == REG_PC
10567 && Rm == REG_LR)
efd81785
PB
10568 {
10569 inst.instruction = T2_SUBS_PC_LR;
10570 return;
10571 }
10572
fdfde340
JM
10573 if (opcode == T_MNEM_cmp)
10574 {
10575 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10576 if (narrow)
10577 {
10578 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10579 but valid. */
10580 warn_deprecated_sp (Rm);
10581 /* R15 was documented as a valid choice for Rm in ARMv6,
10582 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10583 tools reject R15, so we do too. */
10584 constraint (Rm == REG_PC, BAD_PC);
10585 }
10586 else
10587 reject_bad_reg (Rm);
fdfde340
JM
10588 }
10589 else if (opcode == T_MNEM_mov
10590 || opcode == T_MNEM_movs)
10591 {
10592 if (inst.operands[1].isreg)
10593 {
10594 if (opcode == T_MNEM_movs)
10595 {
10596 reject_bad_reg (Rn);
10597 reject_bad_reg (Rm);
10598 }
76fa04a4
MGD
10599 else if (narrow)
10600 {
10601 /* This is mov.n. */
10602 if ((Rn == REG_SP || Rn == REG_PC)
10603 && (Rm == REG_SP || Rm == REG_PC))
10604 {
10605 as_warn (_("Use of r%u as a source register is "
10606 "deprecated when r%u is the destination "
10607 "register."), Rm, Rn);
10608 }
10609 }
10610 else
10611 {
10612 /* This is mov.w. */
10613 constraint (Rn == REG_PC, BAD_PC);
10614 constraint (Rm == REG_PC, BAD_PC);
10615 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10616 }
fdfde340
JM
10617 }
10618 else
10619 reject_bad_reg (Rn);
10620 }
10621
c19d1205
ZW
10622 if (!inst.operands[1].isreg)
10623 {
0110f2b8 10624 /* Immediate operand. */
e07e6e58 10625 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10626 narrow = 0;
10627 if (low_regs && narrow)
10628 {
10629 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10630 inst.instruction |= Rn << 8;
0110f2b8
PB
10631 if (inst.size_req == 2)
10632 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10633 else
10634 inst.relax = opcode;
10635 }
10636 else
10637 {
10638 inst.instruction = THUMB_OP32 (inst.instruction);
10639 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10640 inst.instruction |= Rn << r0off;
0110f2b8
PB
10641 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10642 }
c19d1205 10643 }
728ca7c9
PB
10644 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10645 && (inst.instruction == T_MNEM_mov
10646 || inst.instruction == T_MNEM_movs))
10647 {
10648 /* Register shifts are encoded as separate shift instructions. */
10649 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10650
e07e6e58 10651 if (in_it_block ())
728ca7c9
PB
10652 narrow = !flags;
10653 else
10654 narrow = flags;
10655
10656 if (inst.size_req == 4)
10657 narrow = FALSE;
10658
10659 if (!low_regs || inst.operands[1].imm > 7)
10660 narrow = FALSE;
10661
fdfde340 10662 if (Rn != Rm)
728ca7c9
PB
10663 narrow = FALSE;
10664
10665 switch (inst.operands[1].shift_kind)
10666 {
10667 case SHIFT_LSL:
10668 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10669 break;
10670 case SHIFT_ASR:
10671 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10672 break;
10673 case SHIFT_LSR:
10674 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10675 break;
10676 case SHIFT_ROR:
10677 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10678 break;
10679 default:
5f4273c7 10680 abort ();
728ca7c9
PB
10681 }
10682
10683 inst.instruction = opcode;
10684 if (narrow)
10685 {
fdfde340 10686 inst.instruction |= Rn;
728ca7c9
PB
10687 inst.instruction |= inst.operands[1].imm << 3;
10688 }
10689 else
10690 {
10691 if (flags)
10692 inst.instruction |= CONDS_BIT;
10693
fdfde340
JM
10694 inst.instruction |= Rn << 8;
10695 inst.instruction |= Rm << 16;
728ca7c9
PB
10696 inst.instruction |= inst.operands[1].imm;
10697 }
10698 }
3d388997 10699 else if (!narrow)
c19d1205 10700 {
728ca7c9
PB
10701 /* Some mov with immediate shift have narrow variants.
10702 Register shifts are handled above. */
10703 if (low_regs && inst.operands[1].shifted
10704 && (inst.instruction == T_MNEM_mov
10705 || inst.instruction == T_MNEM_movs))
10706 {
e07e6e58 10707 if (in_it_block ())
728ca7c9
PB
10708 narrow = (inst.instruction == T_MNEM_mov);
10709 else
10710 narrow = (inst.instruction == T_MNEM_movs);
10711 }
10712
10713 if (narrow)
10714 {
10715 switch (inst.operands[1].shift_kind)
10716 {
10717 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10718 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10719 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10720 default: narrow = FALSE; break;
10721 }
10722 }
10723
10724 if (narrow)
10725 {
fdfde340
JM
10726 inst.instruction |= Rn;
10727 inst.instruction |= Rm << 3;
728ca7c9
PB
10728 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10729 }
10730 else
10731 {
10732 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10733 inst.instruction |= Rn << r0off;
728ca7c9
PB
10734 encode_thumb32_shifted_operand (1);
10735 }
c19d1205
ZW
10736 }
10737 else
10738 switch (inst.instruction)
10739 {
10740 case T_MNEM_mov:
10741 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10742 inst.instruction |= (Rn & 0x8) << 4;
10743 inst.instruction |= (Rn & 0x7);
10744 inst.instruction |= Rm << 3;
c19d1205 10745 break;
b99bd4ef 10746
c19d1205
ZW
10747 case T_MNEM_movs:
10748 /* We know we have low registers at this point.
941a8a52
MGD
10749 Generate LSLS Rd, Rs, #0. */
10750 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10751 inst.instruction |= Rn;
10752 inst.instruction |= Rm << 3;
c19d1205
ZW
10753 break;
10754
10755 case T_MNEM_cmp:
3d388997 10756 if (low_regs)
c19d1205
ZW
10757 {
10758 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10759 inst.instruction |= Rn;
10760 inst.instruction |= Rm << 3;
c19d1205
ZW
10761 }
10762 else
10763 {
10764 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10765 inst.instruction |= (Rn & 0x8) << 4;
10766 inst.instruction |= (Rn & 0x7);
10767 inst.instruction |= Rm << 3;
c19d1205
ZW
10768 }
10769 break;
10770 }
b99bd4ef
NC
10771 return;
10772 }
10773
c19d1205 10774 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10775
10776 /* PR 10443: Do not silently ignore shifted operands. */
10777 constraint (inst.operands[1].shifted,
10778 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10779
c19d1205 10780 if (inst.operands[1].isreg)
b99bd4ef 10781 {
fdfde340 10782 if (Rn < 8 && Rm < 8)
b99bd4ef 10783 {
c19d1205
ZW
10784 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10785 since a MOV instruction produces unpredictable results. */
10786 if (inst.instruction == T_OPCODE_MOV_I8)
10787 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10788 else
c19d1205 10789 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10790
fdfde340
JM
10791 inst.instruction |= Rn;
10792 inst.instruction |= Rm << 3;
b99bd4ef
NC
10793 }
10794 else
10795 {
c19d1205
ZW
10796 if (inst.instruction == T_OPCODE_MOV_I8)
10797 inst.instruction = T_OPCODE_MOV_HR;
10798 else
10799 inst.instruction = T_OPCODE_CMP_HR;
10800 do_t_cpy ();
b99bd4ef
NC
10801 }
10802 }
c19d1205 10803 else
b99bd4ef 10804 {
fdfde340 10805 constraint (Rn > 7,
c19d1205 10806 _("only lo regs allowed with immediate"));
fdfde340 10807 inst.instruction |= Rn << 8;
c19d1205
ZW
10808 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10809 }
10810}
b99bd4ef 10811
c19d1205
ZW
10812static void
10813do_t_mov16 (void)
10814{
fdfde340 10815 unsigned Rd;
b6895b4f
PB
10816 bfd_vma imm;
10817 bfd_boolean top;
10818
10819 top = (inst.instruction & 0x00800000) != 0;
10820 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10821 {
10822 constraint (top, _(":lower16: not allowed this instruction"));
10823 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10824 }
10825 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10826 {
10827 constraint (!top, _(":upper16: not allowed this instruction"));
10828 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10829 }
10830
fdfde340
JM
10831 Rd = inst.operands[0].reg;
10832 reject_bad_reg (Rd);
10833
10834 inst.instruction |= Rd << 8;
b6895b4f
PB
10835 if (inst.reloc.type == BFD_RELOC_UNUSED)
10836 {
10837 imm = inst.reloc.exp.X_add_number;
10838 inst.instruction |= (imm & 0xf000) << 4;
10839 inst.instruction |= (imm & 0x0800) << 15;
10840 inst.instruction |= (imm & 0x0700) << 4;
10841 inst.instruction |= (imm & 0x00ff);
10842 }
c19d1205 10843}
b99bd4ef 10844
c19d1205
ZW
10845static void
10846do_t_mvn_tst (void)
10847{
fdfde340 10848 unsigned Rn, Rm;
c921be7d 10849
fdfde340
JM
10850 Rn = inst.operands[0].reg;
10851 Rm = inst.operands[1].reg;
10852
10853 if (inst.instruction == T_MNEM_cmp
10854 || inst.instruction == T_MNEM_cmn)
10855 constraint (Rn == REG_PC, BAD_PC);
10856 else
10857 reject_bad_reg (Rn);
10858 reject_bad_reg (Rm);
10859
c19d1205
ZW
10860 if (unified_syntax)
10861 {
10862 int r0off = (inst.instruction == T_MNEM_mvn
10863 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10864 bfd_boolean narrow;
10865
10866 if (inst.size_req == 4
10867 || inst.instruction > 0xffff
10868 || inst.operands[1].shifted
fdfde340 10869 || Rn > 7 || Rm > 7)
3d388997
PB
10870 narrow = FALSE;
10871 else if (inst.instruction == T_MNEM_cmn)
10872 narrow = TRUE;
10873 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10874 narrow = !in_it_block ();
3d388997 10875 else
e07e6e58 10876 narrow = in_it_block ();
3d388997 10877
c19d1205 10878 if (!inst.operands[1].isreg)
b99bd4ef 10879 {
c19d1205
ZW
10880 /* For an immediate, we always generate a 32-bit opcode;
10881 section relaxation will shrink it later if possible. */
10882 if (inst.instruction < 0xffff)
10883 inst.instruction = THUMB_OP32 (inst.instruction);
10884 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10885 inst.instruction |= Rn << r0off;
c19d1205 10886 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10887 }
c19d1205 10888 else
b99bd4ef 10889 {
c19d1205 10890 /* See if we can do this with a 16-bit instruction. */
3d388997 10891 if (narrow)
b99bd4ef 10892 {
c19d1205 10893 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10894 inst.instruction |= Rn;
10895 inst.instruction |= Rm << 3;
b99bd4ef 10896 }
c19d1205 10897 else
b99bd4ef 10898 {
c19d1205
ZW
10899 constraint (inst.operands[1].shifted
10900 && inst.operands[1].immisreg,
10901 _("shift must be constant"));
10902 if (inst.instruction < 0xffff)
10903 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10904 inst.instruction |= Rn << r0off;
c19d1205 10905 encode_thumb32_shifted_operand (1);
b99bd4ef 10906 }
b99bd4ef
NC
10907 }
10908 }
10909 else
10910 {
c19d1205
ZW
10911 constraint (inst.instruction > 0xffff
10912 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10913 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10914 _("unshifted register required"));
fdfde340 10915 constraint (Rn > 7 || Rm > 7,
c19d1205 10916 BAD_HIREG);
b99bd4ef 10917
c19d1205 10918 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10919 inst.instruction |= Rn;
10920 inst.instruction |= Rm << 3;
b99bd4ef 10921 }
b99bd4ef
NC
10922}
10923
b05fe5cf 10924static void
c19d1205 10925do_t_mrs (void)
b05fe5cf 10926{
fdfde340 10927 unsigned Rd;
037e8744
JB
10928
10929 if (do_vfp_nsyn_mrs () == SUCCESS)
10930 return;
10931
90ec0d68
MGD
10932 Rd = inst.operands[0].reg;
10933 reject_bad_reg (Rd);
10934 inst.instruction |= Rd << 8;
10935
10936 if (inst.operands[1].isreg)
62b3e311 10937 {
90ec0d68
MGD
10938 unsigned br = inst.operands[1].reg;
10939 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
10940 as_bad (_("bad register for mrs"));
10941
10942 inst.instruction |= br & (0xf << 16);
10943 inst.instruction |= (br & 0x300) >> 4;
10944 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
10945 }
10946 else
10947 {
90ec0d68 10948 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 10949
d2cd1205
JB
10950 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
10951 constraint (flags != 0, _("selected processor does not support "
10952 "requested special purpose register"));
90ec0d68 10953 else
d2cd1205
JB
10954 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
10955 devices). */
10956 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10957 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 10958
90ec0d68
MGD
10959 inst.instruction |= (flags & SPSR_BIT) >> 2;
10960 inst.instruction |= inst.operands[1].imm & 0xff;
10961 inst.instruction |= 0xf0000;
10962 }
c19d1205 10963}
b05fe5cf 10964
c19d1205
ZW
10965static void
10966do_t_msr (void)
10967{
62b3e311 10968 int flags;
fdfde340 10969 unsigned Rn;
62b3e311 10970
037e8744
JB
10971 if (do_vfp_nsyn_msr () == SUCCESS)
10972 return;
10973
c19d1205
ZW
10974 constraint (!inst.operands[1].isreg,
10975 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
10976
10977 if (inst.operands[0].isreg)
10978 flags = (int)(inst.operands[0].reg);
10979 else
10980 flags = inst.operands[0].imm;
10981
d2cd1205 10982 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 10983 {
d2cd1205
JB
10984 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10985
10986 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
10987 && (bits & ~(PSR_s | PSR_f)) != 0)
10988 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
10989 && bits != PSR_f),
10990 _("selected processor does not support requested special "
10991 "purpose register"));
62b3e311
PB
10992 }
10993 else
d2cd1205
JB
10994 constraint ((flags & 0xff) != 0, _("selected processor does not support "
10995 "requested special purpose register"));
c921be7d 10996
fdfde340
JM
10997 Rn = inst.operands[1].reg;
10998 reject_bad_reg (Rn);
10999
62b3e311 11000 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11001 inst.instruction |= (flags & 0xf0000) >> 8;
11002 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11003 inst.instruction |= (flags & 0xff);
fdfde340 11004 inst.instruction |= Rn << 16;
c19d1205 11005}
b05fe5cf 11006
c19d1205
ZW
11007static void
11008do_t_mul (void)
11009{
17828f45 11010 bfd_boolean narrow;
fdfde340 11011 unsigned Rd, Rn, Rm;
17828f45 11012
c19d1205
ZW
11013 if (!inst.operands[2].present)
11014 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11015
fdfde340
JM
11016 Rd = inst.operands[0].reg;
11017 Rn = inst.operands[1].reg;
11018 Rm = inst.operands[2].reg;
11019
17828f45 11020 if (unified_syntax)
b05fe5cf 11021 {
17828f45 11022 if (inst.size_req == 4
fdfde340
JM
11023 || (Rd != Rn
11024 && Rd != Rm)
11025 || Rn > 7
11026 || Rm > 7)
17828f45
JM
11027 narrow = FALSE;
11028 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11029 narrow = !in_it_block ();
17828f45 11030 else
e07e6e58 11031 narrow = in_it_block ();
b05fe5cf 11032 }
c19d1205 11033 else
b05fe5cf 11034 {
17828f45 11035 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11036 constraint (Rn > 7 || Rm > 7,
c19d1205 11037 BAD_HIREG);
17828f45
JM
11038 narrow = TRUE;
11039 }
b05fe5cf 11040
17828f45
JM
11041 if (narrow)
11042 {
11043 /* 16-bit MULS/Conditional MUL. */
c19d1205 11044 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11045 inst.instruction |= Rd;
b05fe5cf 11046
fdfde340
JM
11047 if (Rd == Rn)
11048 inst.instruction |= Rm << 3;
11049 else if (Rd == Rm)
11050 inst.instruction |= Rn << 3;
c19d1205
ZW
11051 else
11052 constraint (1, _("dest must overlap one source register"));
11053 }
17828f45
JM
11054 else
11055 {
e07e6e58
NC
11056 constraint (inst.instruction != T_MNEM_mul,
11057 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11058 /* 32-bit MUL. */
11059 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11060 inst.instruction |= Rd << 8;
11061 inst.instruction |= Rn << 16;
11062 inst.instruction |= Rm << 0;
11063
11064 reject_bad_reg (Rd);
11065 reject_bad_reg (Rn);
11066 reject_bad_reg (Rm);
17828f45 11067 }
c19d1205 11068}
b05fe5cf 11069
c19d1205
ZW
11070static void
11071do_t_mull (void)
11072{
fdfde340 11073 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11074
fdfde340
JM
11075 RdLo = inst.operands[0].reg;
11076 RdHi = inst.operands[1].reg;
11077 Rn = inst.operands[2].reg;
11078 Rm = inst.operands[3].reg;
11079
11080 reject_bad_reg (RdLo);
11081 reject_bad_reg (RdHi);
11082 reject_bad_reg (Rn);
11083 reject_bad_reg (Rm);
11084
11085 inst.instruction |= RdLo << 12;
11086 inst.instruction |= RdHi << 8;
11087 inst.instruction |= Rn << 16;
11088 inst.instruction |= Rm;
11089
11090 if (RdLo == RdHi)
c19d1205
ZW
11091 as_tsktsk (_("rdhi and rdlo must be different"));
11092}
b05fe5cf 11093
c19d1205
ZW
11094static void
11095do_t_nop (void)
11096{
e07e6e58
NC
11097 set_it_insn_type (NEUTRAL_IT_INSN);
11098
c19d1205
ZW
11099 if (unified_syntax)
11100 {
11101 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11102 {
c19d1205
ZW
11103 inst.instruction = THUMB_OP32 (inst.instruction);
11104 inst.instruction |= inst.operands[0].imm;
11105 }
11106 else
11107 {
bc2d1808
NC
11108 /* PR9722: Check for Thumb2 availability before
11109 generating a thumb2 nop instruction. */
afa62d5e 11110 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11111 {
11112 inst.instruction = THUMB_OP16 (inst.instruction);
11113 inst.instruction |= inst.operands[0].imm << 4;
11114 }
11115 else
11116 inst.instruction = 0x46c0;
c19d1205
ZW
11117 }
11118 }
11119 else
11120 {
11121 constraint (inst.operands[0].present,
11122 _("Thumb does not support NOP with hints"));
11123 inst.instruction = 0x46c0;
11124 }
11125}
b05fe5cf 11126
c19d1205
ZW
11127static void
11128do_t_neg (void)
11129{
11130 if (unified_syntax)
11131 {
3d388997
PB
11132 bfd_boolean narrow;
11133
11134 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11135 narrow = !in_it_block ();
3d388997 11136 else
e07e6e58 11137 narrow = in_it_block ();
3d388997
PB
11138 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11139 narrow = FALSE;
11140 if (inst.size_req == 4)
11141 narrow = FALSE;
11142
11143 if (!narrow)
c19d1205
ZW
11144 {
11145 inst.instruction = THUMB_OP32 (inst.instruction);
11146 inst.instruction |= inst.operands[0].reg << 8;
11147 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11148 }
11149 else
11150 {
c19d1205
ZW
11151 inst.instruction = THUMB_OP16 (inst.instruction);
11152 inst.instruction |= inst.operands[0].reg;
11153 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11154 }
11155 }
11156 else
11157 {
c19d1205
ZW
11158 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11159 BAD_HIREG);
11160 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11161
11162 inst.instruction = THUMB_OP16 (inst.instruction);
11163 inst.instruction |= inst.operands[0].reg;
11164 inst.instruction |= inst.operands[1].reg << 3;
11165 }
11166}
11167
1c444d06
JM
11168static void
11169do_t_orn (void)
11170{
11171 unsigned Rd, Rn;
11172
11173 Rd = inst.operands[0].reg;
11174 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11175
fdfde340
JM
11176 reject_bad_reg (Rd);
11177 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11178 reject_bad_reg (Rn);
11179
1c444d06
JM
11180 inst.instruction |= Rd << 8;
11181 inst.instruction |= Rn << 16;
11182
11183 if (!inst.operands[2].isreg)
11184 {
11185 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11186 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11187 }
11188 else
11189 {
11190 unsigned Rm;
11191
11192 Rm = inst.operands[2].reg;
fdfde340 11193 reject_bad_reg (Rm);
1c444d06
JM
11194
11195 constraint (inst.operands[2].shifted
11196 && inst.operands[2].immisreg,
11197 _("shift must be constant"));
11198 encode_thumb32_shifted_operand (2);
11199 }
11200}
11201
c19d1205
ZW
11202static void
11203do_t_pkhbt (void)
11204{
fdfde340
JM
11205 unsigned Rd, Rn, Rm;
11206
11207 Rd = inst.operands[0].reg;
11208 Rn = inst.operands[1].reg;
11209 Rm = inst.operands[2].reg;
11210
11211 reject_bad_reg (Rd);
11212 reject_bad_reg (Rn);
11213 reject_bad_reg (Rm);
11214
11215 inst.instruction |= Rd << 8;
11216 inst.instruction |= Rn << 16;
11217 inst.instruction |= Rm;
c19d1205
ZW
11218 if (inst.operands[3].present)
11219 {
11220 unsigned int val = inst.reloc.exp.X_add_number;
11221 constraint (inst.reloc.exp.X_op != O_constant,
11222 _("expression too complex"));
11223 inst.instruction |= (val & 0x1c) << 10;
11224 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11225 }
c19d1205 11226}
b05fe5cf 11227
c19d1205
ZW
11228static void
11229do_t_pkhtb (void)
11230{
11231 if (!inst.operands[3].present)
1ef52f49
NC
11232 {
11233 unsigned Rtmp;
11234
11235 inst.instruction &= ~0x00000020;
11236
11237 /* PR 10168. Swap the Rm and Rn registers. */
11238 Rtmp = inst.operands[1].reg;
11239 inst.operands[1].reg = inst.operands[2].reg;
11240 inst.operands[2].reg = Rtmp;
11241 }
c19d1205 11242 do_t_pkhbt ();
b05fe5cf
ZW
11243}
11244
c19d1205
ZW
11245static void
11246do_t_pld (void)
11247{
fdfde340
JM
11248 if (inst.operands[0].immisreg)
11249 reject_bad_reg (inst.operands[0].imm);
11250
c19d1205
ZW
11251 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11252}
b05fe5cf 11253
c19d1205
ZW
11254static void
11255do_t_push_pop (void)
b99bd4ef 11256{
e9f89963 11257 unsigned mask;
5f4273c7 11258
c19d1205
ZW
11259 constraint (inst.operands[0].writeback,
11260 _("push/pop do not support {reglist}^"));
11261 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11262 _("expression too complex"));
b99bd4ef 11263
e9f89963
PB
11264 mask = inst.operands[0].imm;
11265 if ((mask & ~0xff) == 0)
3c707909 11266 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11267 else if ((inst.instruction == T_MNEM_push
e9f89963 11268 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11269 || (inst.instruction == T_MNEM_pop
e9f89963 11270 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11271 {
c19d1205
ZW
11272 inst.instruction = THUMB_OP16 (inst.instruction);
11273 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11274 inst.instruction |= mask & 0xff;
c19d1205
ZW
11275 }
11276 else if (unified_syntax)
11277 {
3c707909 11278 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11279 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11280 }
11281 else
11282 {
11283 inst.error = _("invalid register list to push/pop instruction");
11284 return;
11285 }
c19d1205 11286}
b99bd4ef 11287
c19d1205
ZW
11288static void
11289do_t_rbit (void)
11290{
fdfde340
JM
11291 unsigned Rd, Rm;
11292
11293 Rd = inst.operands[0].reg;
11294 Rm = inst.operands[1].reg;
11295
11296 reject_bad_reg (Rd);
11297 reject_bad_reg (Rm);
11298
11299 inst.instruction |= Rd << 8;
11300 inst.instruction |= Rm << 16;
11301 inst.instruction |= Rm;
c19d1205 11302}
b99bd4ef 11303
c19d1205
ZW
11304static void
11305do_t_rev (void)
11306{
fdfde340
JM
11307 unsigned Rd, Rm;
11308
11309 Rd = inst.operands[0].reg;
11310 Rm = inst.operands[1].reg;
11311
11312 reject_bad_reg (Rd);
11313 reject_bad_reg (Rm);
11314
11315 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11316 && inst.size_req != 4)
11317 {
11318 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11319 inst.instruction |= Rd;
11320 inst.instruction |= Rm << 3;
c19d1205
ZW
11321 }
11322 else if (unified_syntax)
11323 {
11324 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11325 inst.instruction |= Rd << 8;
11326 inst.instruction |= Rm << 16;
11327 inst.instruction |= Rm;
c19d1205
ZW
11328 }
11329 else
11330 inst.error = BAD_HIREG;
11331}
b99bd4ef 11332
1c444d06
JM
11333static void
11334do_t_rrx (void)
11335{
11336 unsigned Rd, Rm;
11337
11338 Rd = inst.operands[0].reg;
11339 Rm = inst.operands[1].reg;
11340
fdfde340
JM
11341 reject_bad_reg (Rd);
11342 reject_bad_reg (Rm);
c921be7d 11343
1c444d06
JM
11344 inst.instruction |= Rd << 8;
11345 inst.instruction |= Rm;
11346}
11347
c19d1205
ZW
11348static void
11349do_t_rsb (void)
11350{
fdfde340 11351 unsigned Rd, Rs;
b99bd4ef 11352
c19d1205
ZW
11353 Rd = inst.operands[0].reg;
11354 Rs = (inst.operands[1].present
11355 ? inst.operands[1].reg /* Rd, Rs, foo */
11356 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11357
fdfde340
JM
11358 reject_bad_reg (Rd);
11359 reject_bad_reg (Rs);
11360 if (inst.operands[2].isreg)
11361 reject_bad_reg (inst.operands[2].reg);
11362
c19d1205
ZW
11363 inst.instruction |= Rd << 8;
11364 inst.instruction |= Rs << 16;
11365 if (!inst.operands[2].isreg)
11366 {
026d3abb
PB
11367 bfd_boolean narrow;
11368
11369 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11370 narrow = !in_it_block ();
026d3abb 11371 else
e07e6e58 11372 narrow = in_it_block ();
026d3abb
PB
11373
11374 if (Rd > 7 || Rs > 7)
11375 narrow = FALSE;
11376
11377 if (inst.size_req == 4 || !unified_syntax)
11378 narrow = FALSE;
11379
11380 if (inst.reloc.exp.X_op != O_constant
11381 || inst.reloc.exp.X_add_number != 0)
11382 narrow = FALSE;
11383
11384 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11385 relaxation, but it doesn't seem worth the hassle. */
11386 if (narrow)
11387 {
11388 inst.reloc.type = BFD_RELOC_UNUSED;
11389 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11390 inst.instruction |= Rs << 3;
11391 inst.instruction |= Rd;
11392 }
11393 else
11394 {
11395 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11396 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11397 }
c19d1205
ZW
11398 }
11399 else
11400 encode_thumb32_shifted_operand (2);
11401}
b99bd4ef 11402
c19d1205
ZW
11403static void
11404do_t_setend (void)
11405{
e07e6e58 11406 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11407 if (inst.operands[0].imm)
11408 inst.instruction |= 0x8;
11409}
b99bd4ef 11410
c19d1205
ZW
11411static void
11412do_t_shift (void)
11413{
11414 if (!inst.operands[1].present)
11415 inst.operands[1].reg = inst.operands[0].reg;
11416
11417 if (unified_syntax)
11418 {
3d388997
PB
11419 bfd_boolean narrow;
11420 int shift_kind;
11421
11422 switch (inst.instruction)
11423 {
11424 case T_MNEM_asr:
11425 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11426 case T_MNEM_lsl:
11427 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11428 case T_MNEM_lsr:
11429 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11430 case T_MNEM_ror:
11431 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11432 default: abort ();
11433 }
11434
11435 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11436 narrow = !in_it_block ();
3d388997 11437 else
e07e6e58 11438 narrow = in_it_block ();
3d388997
PB
11439 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11440 narrow = FALSE;
11441 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11442 narrow = FALSE;
11443 if (inst.operands[2].isreg
11444 && (inst.operands[1].reg != inst.operands[0].reg
11445 || inst.operands[2].reg > 7))
11446 narrow = FALSE;
11447 if (inst.size_req == 4)
11448 narrow = FALSE;
11449
fdfde340
JM
11450 reject_bad_reg (inst.operands[0].reg);
11451 reject_bad_reg (inst.operands[1].reg);
c921be7d 11452
3d388997 11453 if (!narrow)
c19d1205
ZW
11454 {
11455 if (inst.operands[2].isreg)
b99bd4ef 11456 {
fdfde340 11457 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11458 inst.instruction = THUMB_OP32 (inst.instruction);
11459 inst.instruction |= inst.operands[0].reg << 8;
11460 inst.instruction |= inst.operands[1].reg << 16;
11461 inst.instruction |= inst.operands[2].reg;
11462 }
11463 else
11464 {
11465 inst.operands[1].shifted = 1;
3d388997 11466 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11467 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11468 ? T_MNEM_movs : T_MNEM_mov);
11469 inst.instruction |= inst.operands[0].reg << 8;
11470 encode_thumb32_shifted_operand (1);
11471 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11472 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11473 }
11474 }
11475 else
11476 {
c19d1205 11477 if (inst.operands[2].isreg)
b99bd4ef 11478 {
3d388997 11479 switch (shift_kind)
b99bd4ef 11480 {
3d388997
PB
11481 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11482 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11483 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11484 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11485 default: abort ();
b99bd4ef 11486 }
5f4273c7 11487
c19d1205
ZW
11488 inst.instruction |= inst.operands[0].reg;
11489 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11490 }
11491 else
11492 {
3d388997 11493 switch (shift_kind)
b99bd4ef 11494 {
3d388997
PB
11495 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11496 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11497 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11498 default: abort ();
b99bd4ef 11499 }
c19d1205
ZW
11500 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11501 inst.instruction |= inst.operands[0].reg;
11502 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11503 }
11504 }
c19d1205
ZW
11505 }
11506 else
11507 {
11508 constraint (inst.operands[0].reg > 7
11509 || inst.operands[1].reg > 7, BAD_HIREG);
11510 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11511
c19d1205
ZW
11512 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11513 {
11514 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11515 constraint (inst.operands[0].reg != inst.operands[1].reg,
11516 _("source1 and dest must be same register"));
b99bd4ef 11517
c19d1205
ZW
11518 switch (inst.instruction)
11519 {
11520 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11521 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11522 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11523 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11524 default: abort ();
11525 }
5f4273c7 11526
c19d1205
ZW
11527 inst.instruction |= inst.operands[0].reg;
11528 inst.instruction |= inst.operands[2].reg << 3;
11529 }
11530 else
b99bd4ef 11531 {
c19d1205
ZW
11532 switch (inst.instruction)
11533 {
11534 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11535 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11536 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11537 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11538 default: abort ();
11539 }
11540 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11541 inst.instruction |= inst.operands[0].reg;
11542 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11543 }
11544 }
b99bd4ef
NC
11545}
11546
11547static void
c19d1205 11548do_t_simd (void)
b99bd4ef 11549{
fdfde340
JM
11550 unsigned Rd, Rn, Rm;
11551
11552 Rd = inst.operands[0].reg;
11553 Rn = inst.operands[1].reg;
11554 Rm = inst.operands[2].reg;
11555
11556 reject_bad_reg (Rd);
11557 reject_bad_reg (Rn);
11558 reject_bad_reg (Rm);
11559
11560 inst.instruction |= Rd << 8;
11561 inst.instruction |= Rn << 16;
11562 inst.instruction |= Rm;
c19d1205 11563}
b99bd4ef 11564
03ee1b7f
NC
11565static void
11566do_t_simd2 (void)
11567{
11568 unsigned Rd, Rn, Rm;
11569
11570 Rd = inst.operands[0].reg;
11571 Rm = inst.operands[1].reg;
11572 Rn = inst.operands[2].reg;
11573
11574 reject_bad_reg (Rd);
11575 reject_bad_reg (Rn);
11576 reject_bad_reg (Rm);
11577
11578 inst.instruction |= Rd << 8;
11579 inst.instruction |= Rn << 16;
11580 inst.instruction |= Rm;
11581}
11582
c19d1205 11583static void
3eb17e6b 11584do_t_smc (void)
c19d1205
ZW
11585{
11586 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
11587 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11588 _("SMC is not permitted on this architecture"));
c19d1205
ZW
11589 constraint (inst.reloc.exp.X_op != O_constant,
11590 _("expression too complex"));
11591 inst.reloc.type = BFD_RELOC_UNUSED;
11592 inst.instruction |= (value & 0xf000) >> 12;
11593 inst.instruction |= (value & 0x0ff0);
11594 inst.instruction |= (value & 0x000f) << 16;
11595}
b99bd4ef 11596
90ec0d68
MGD
11597static void
11598do_t_hvc (void)
11599{
11600 unsigned int value = inst.reloc.exp.X_add_number;
11601
11602 inst.reloc.type = BFD_RELOC_UNUSED;
11603 inst.instruction |= (value & 0x0fff);
11604 inst.instruction |= (value & 0xf000) << 4;
11605}
11606
c19d1205 11607static void
3a21c15a 11608do_t_ssat_usat (int bias)
c19d1205 11609{
fdfde340
JM
11610 unsigned Rd, Rn;
11611
11612 Rd = inst.operands[0].reg;
11613 Rn = inst.operands[2].reg;
11614
11615 reject_bad_reg (Rd);
11616 reject_bad_reg (Rn);
11617
11618 inst.instruction |= Rd << 8;
3a21c15a 11619 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11620 inst.instruction |= Rn << 16;
b99bd4ef 11621
c19d1205 11622 if (inst.operands[3].present)
b99bd4ef 11623 {
3a21c15a
NC
11624 offsetT shift_amount = inst.reloc.exp.X_add_number;
11625
11626 inst.reloc.type = BFD_RELOC_UNUSED;
11627
c19d1205
ZW
11628 constraint (inst.reloc.exp.X_op != O_constant,
11629 _("expression too complex"));
b99bd4ef 11630
3a21c15a 11631 if (shift_amount != 0)
6189168b 11632 {
3a21c15a
NC
11633 constraint (shift_amount > 31,
11634 _("shift expression is too large"));
11635
c19d1205 11636 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11637 inst.instruction |= 0x00200000; /* sh bit. */
11638
11639 inst.instruction |= (shift_amount & 0x1c) << 10;
11640 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11641 }
11642 }
b99bd4ef 11643}
c921be7d 11644
3a21c15a
NC
11645static void
11646do_t_ssat (void)
11647{
11648 do_t_ssat_usat (1);
11649}
b99bd4ef 11650
0dd132b6 11651static void
c19d1205 11652do_t_ssat16 (void)
0dd132b6 11653{
fdfde340
JM
11654 unsigned Rd, Rn;
11655
11656 Rd = inst.operands[0].reg;
11657 Rn = inst.operands[2].reg;
11658
11659 reject_bad_reg (Rd);
11660 reject_bad_reg (Rn);
11661
11662 inst.instruction |= Rd << 8;
c19d1205 11663 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11664 inst.instruction |= Rn << 16;
c19d1205 11665}
0dd132b6 11666
c19d1205
ZW
11667static void
11668do_t_strex (void)
11669{
11670 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11671 || inst.operands[2].postind || inst.operands[2].writeback
11672 || inst.operands[2].immisreg || inst.operands[2].shifted
11673 || inst.operands[2].negative,
01cfc07f 11674 BAD_ADDR_MODE);
0dd132b6 11675
5be8be5d
DG
11676 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11677
c19d1205
ZW
11678 inst.instruction |= inst.operands[0].reg << 8;
11679 inst.instruction |= inst.operands[1].reg << 12;
11680 inst.instruction |= inst.operands[2].reg << 16;
11681 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11682}
11683
b99bd4ef 11684static void
c19d1205 11685do_t_strexd (void)
b99bd4ef 11686{
c19d1205
ZW
11687 if (!inst.operands[2].present)
11688 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11689
c19d1205
ZW
11690 constraint (inst.operands[0].reg == inst.operands[1].reg
11691 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11692 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11693 BAD_OVERLAP);
b99bd4ef 11694
c19d1205
ZW
11695 inst.instruction |= inst.operands[0].reg;
11696 inst.instruction |= inst.operands[1].reg << 12;
11697 inst.instruction |= inst.operands[2].reg << 8;
11698 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11699}
11700
11701static void
c19d1205 11702do_t_sxtah (void)
b99bd4ef 11703{
fdfde340
JM
11704 unsigned Rd, Rn, Rm;
11705
11706 Rd = inst.operands[0].reg;
11707 Rn = inst.operands[1].reg;
11708 Rm = inst.operands[2].reg;
11709
11710 reject_bad_reg (Rd);
11711 reject_bad_reg (Rn);
11712 reject_bad_reg (Rm);
11713
11714 inst.instruction |= Rd << 8;
11715 inst.instruction |= Rn << 16;
11716 inst.instruction |= Rm;
c19d1205
ZW
11717 inst.instruction |= inst.operands[3].imm << 4;
11718}
b99bd4ef 11719
c19d1205
ZW
11720static void
11721do_t_sxth (void)
11722{
fdfde340
JM
11723 unsigned Rd, Rm;
11724
11725 Rd = inst.operands[0].reg;
11726 Rm = inst.operands[1].reg;
11727
11728 reject_bad_reg (Rd);
11729 reject_bad_reg (Rm);
c921be7d
NC
11730
11731 if (inst.instruction <= 0xffff
11732 && inst.size_req != 4
fdfde340 11733 && Rd <= 7 && Rm <= 7
c19d1205 11734 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11735 {
c19d1205 11736 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11737 inst.instruction |= Rd;
11738 inst.instruction |= Rm << 3;
b99bd4ef 11739 }
c19d1205 11740 else if (unified_syntax)
b99bd4ef 11741 {
c19d1205
ZW
11742 if (inst.instruction <= 0xffff)
11743 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11744 inst.instruction |= Rd << 8;
11745 inst.instruction |= Rm;
c19d1205 11746 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11747 }
c19d1205 11748 else
b99bd4ef 11749 {
c19d1205
ZW
11750 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11751 _("Thumb encoding does not support rotation"));
11752 constraint (1, BAD_HIREG);
b99bd4ef 11753 }
c19d1205 11754}
b99bd4ef 11755
c19d1205
ZW
11756static void
11757do_t_swi (void)
11758{
b2a5fbdc
MGD
11759 /* We have to do the following check manually as ARM_EXT_OS only applies
11760 to ARM_EXT_V6M. */
11761 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11762 {
ac7f631b
NC
11763 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11764 /* This only applies to the v6m howver, not later architectures. */
11765 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
11766 as_bad (_("SVC is not permitted on this architecture"));
11767 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11768 }
11769
c19d1205
ZW
11770 inst.reloc.type = BFD_RELOC_ARM_SWI;
11771}
b99bd4ef 11772
92e90b6e
PB
11773static void
11774do_t_tb (void)
11775{
fdfde340 11776 unsigned Rn, Rm;
92e90b6e
PB
11777 int half;
11778
11779 half = (inst.instruction & 0x10) != 0;
e07e6e58 11780 set_it_insn_type_last ();
dfa9f0d5
PB
11781 constraint (inst.operands[0].immisreg,
11782 _("instruction requires register index"));
fdfde340
JM
11783
11784 Rn = inst.operands[0].reg;
11785 Rm = inst.operands[0].imm;
c921be7d 11786
fdfde340
JM
11787 constraint (Rn == REG_SP, BAD_SP);
11788 reject_bad_reg (Rm);
11789
92e90b6e
PB
11790 constraint (!half && inst.operands[0].shifted,
11791 _("instruction does not allow shifted index"));
fdfde340 11792 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11793}
11794
c19d1205
ZW
11795static void
11796do_t_usat (void)
11797{
3a21c15a 11798 do_t_ssat_usat (0);
b99bd4ef
NC
11799}
11800
11801static void
c19d1205 11802do_t_usat16 (void)
b99bd4ef 11803{
fdfde340
JM
11804 unsigned Rd, Rn;
11805
11806 Rd = inst.operands[0].reg;
11807 Rn = inst.operands[2].reg;
11808
11809 reject_bad_reg (Rd);
11810 reject_bad_reg (Rn);
11811
11812 inst.instruction |= Rd << 8;
c19d1205 11813 inst.instruction |= inst.operands[1].imm;
fdfde340 11814 inst.instruction |= Rn << 16;
b99bd4ef 11815}
c19d1205 11816
5287ad62 11817/* Neon instruction encoder helpers. */
5f4273c7 11818
5287ad62 11819/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11820
5287ad62
JB
11821/* An "invalid" code for the following tables. */
11822#define N_INV -1u
11823
11824struct neon_tab_entry
b99bd4ef 11825{
5287ad62
JB
11826 unsigned integer;
11827 unsigned float_or_poly;
11828 unsigned scalar_or_imm;
11829};
5f4273c7 11830
5287ad62
JB
11831/* Map overloaded Neon opcodes to their respective encodings. */
11832#define NEON_ENC_TAB \
11833 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11834 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11835 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11836 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11837 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11838 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11839 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11840 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11841 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11842 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11843 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11844 /* Register variants of the following two instructions are encoded as
e07e6e58 11845 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11846 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11847 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11848 X(vfma, N_INV, 0x0000c10, N_INV), \
11849 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11850 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11851 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11852 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11853 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11854 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11855 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11856 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11857 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11858 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11859 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11860 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11861 X(vshl, 0x0000400, N_INV, 0x0800510), \
11862 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11863 X(vand, 0x0000110, N_INV, 0x0800030), \
11864 X(vbic, 0x0100110, N_INV, 0x0800030), \
11865 X(veor, 0x1000110, N_INV, N_INV), \
11866 X(vorn, 0x0300110, N_INV, 0x0800010), \
11867 X(vorr, 0x0200110, N_INV, 0x0800010), \
11868 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11869 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11870 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11871 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11872 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11873 X(vst1, 0x0000000, 0x0800000, N_INV), \
11874 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11875 X(vst2, 0x0000100, 0x0800100, N_INV), \
11876 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11877 X(vst3, 0x0000200, 0x0800200, N_INV), \
11878 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11879 X(vst4, 0x0000300, 0x0800300, N_INV), \
11880 X(vmovn, 0x1b20200, N_INV, N_INV), \
11881 X(vtrn, 0x1b20080, N_INV, N_INV), \
11882 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11883 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11884 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11885 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11886 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11887 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11888 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11889 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11890 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11891 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11892 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11893
11894enum neon_opc
11895{
11896#define X(OPC,I,F,S) N_MNEM_##OPC
11897NEON_ENC_TAB
11898#undef X
11899};
b99bd4ef 11900
5287ad62
JB
11901static const struct neon_tab_entry neon_enc_tab[] =
11902{
11903#define X(OPC,I,F,S) { (I), (F), (S) }
11904NEON_ENC_TAB
11905#undef X
11906};
b99bd4ef 11907
88714cb8
DG
11908/* Do not use these macros; instead, use NEON_ENCODE defined below. */
11909#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11910#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11911#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11912#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11913#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11914#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11915#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11916#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11917#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11918#define NEON_ENC_SINGLE_(X) \
037e8744 11919 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 11920#define NEON_ENC_DOUBLE_(X) \
037e8744 11921 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11922
88714cb8
DG
11923#define NEON_ENCODE(type, inst) \
11924 do \
11925 { \
11926 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11927 inst.is_neon = 1; \
11928 } \
11929 while (0)
11930
11931#define check_neon_suffixes \
11932 do \
11933 { \
11934 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11935 { \
11936 as_bad (_("invalid neon suffix for non neon instruction")); \
11937 return; \
11938 } \
11939 } \
11940 while (0)
11941
037e8744
JB
11942/* Define shapes for instruction operands. The following mnemonic characters
11943 are used in this table:
5287ad62 11944
037e8744 11945 F - VFP S<n> register
5287ad62
JB
11946 D - Neon D<n> register
11947 Q - Neon Q<n> register
11948 I - Immediate
11949 S - Scalar
11950 R - ARM register
11951 L - D<n> register list
5f4273c7 11952
037e8744
JB
11953 This table is used to generate various data:
11954 - enumerations of the form NS_DDR to be used as arguments to
11955 neon_select_shape.
11956 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 11957 - a table used to drive neon_select_shape. */
b99bd4ef 11958
037e8744
JB
11959#define NEON_SHAPE_DEF \
11960 X(3, (D, D, D), DOUBLE), \
11961 X(3, (Q, Q, Q), QUAD), \
11962 X(3, (D, D, I), DOUBLE), \
11963 X(3, (Q, Q, I), QUAD), \
11964 X(3, (D, D, S), DOUBLE), \
11965 X(3, (Q, Q, S), QUAD), \
11966 X(2, (D, D), DOUBLE), \
11967 X(2, (Q, Q), QUAD), \
11968 X(2, (D, S), DOUBLE), \
11969 X(2, (Q, S), QUAD), \
11970 X(2, (D, R), DOUBLE), \
11971 X(2, (Q, R), QUAD), \
11972 X(2, (D, I), DOUBLE), \
11973 X(2, (Q, I), QUAD), \
11974 X(3, (D, L, D), DOUBLE), \
11975 X(2, (D, Q), MIXED), \
11976 X(2, (Q, D), MIXED), \
11977 X(3, (D, Q, I), MIXED), \
11978 X(3, (Q, D, I), MIXED), \
11979 X(3, (Q, D, D), MIXED), \
11980 X(3, (D, Q, Q), MIXED), \
11981 X(3, (Q, Q, D), MIXED), \
11982 X(3, (Q, D, S), MIXED), \
11983 X(3, (D, Q, S), MIXED), \
11984 X(4, (D, D, D, I), DOUBLE), \
11985 X(4, (Q, Q, Q, I), QUAD), \
11986 X(2, (F, F), SINGLE), \
11987 X(3, (F, F, F), SINGLE), \
11988 X(2, (F, I), SINGLE), \
11989 X(2, (F, D), MIXED), \
11990 X(2, (D, F), MIXED), \
11991 X(3, (F, F, I), MIXED), \
11992 X(4, (R, R, F, F), SINGLE), \
11993 X(4, (F, F, R, R), SINGLE), \
11994 X(3, (D, R, R), DOUBLE), \
11995 X(3, (R, R, D), DOUBLE), \
11996 X(2, (S, R), SINGLE), \
11997 X(2, (R, S), SINGLE), \
11998 X(2, (F, R), SINGLE), \
11999 X(2, (R, F), SINGLE)
12000
12001#define S2(A,B) NS_##A##B
12002#define S3(A,B,C) NS_##A##B##C
12003#define S4(A,B,C,D) NS_##A##B##C##D
12004
12005#define X(N, L, C) S##N L
12006
5287ad62
JB
12007enum neon_shape
12008{
037e8744
JB
12009 NEON_SHAPE_DEF,
12010 NS_NULL
5287ad62 12011};
b99bd4ef 12012
037e8744
JB
12013#undef X
12014#undef S2
12015#undef S3
12016#undef S4
12017
12018enum neon_shape_class
12019{
12020 SC_SINGLE,
12021 SC_DOUBLE,
12022 SC_QUAD,
12023 SC_MIXED
12024};
12025
12026#define X(N, L, C) SC_##C
12027
12028static enum neon_shape_class neon_shape_class[] =
12029{
12030 NEON_SHAPE_DEF
12031};
12032
12033#undef X
12034
12035enum neon_shape_el
12036{
12037 SE_F,
12038 SE_D,
12039 SE_Q,
12040 SE_I,
12041 SE_S,
12042 SE_R,
12043 SE_L
12044};
12045
12046/* Register widths of above. */
12047static unsigned neon_shape_el_size[] =
12048{
12049 32,
12050 64,
12051 128,
12052 0,
12053 32,
12054 32,
12055 0
12056};
12057
12058struct neon_shape_info
12059{
12060 unsigned els;
12061 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12062};
12063
12064#define S2(A,B) { SE_##A, SE_##B }
12065#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12066#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12067
12068#define X(N, L, C) { N, S##N L }
12069
12070static struct neon_shape_info neon_shape_tab[] =
12071{
12072 NEON_SHAPE_DEF
12073};
12074
12075#undef X
12076#undef S2
12077#undef S3
12078#undef S4
12079
5287ad62
JB
12080/* Bit masks used in type checking given instructions.
12081 'N_EQK' means the type must be the same as (or based on in some way) the key
12082 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12083 set, various other bits can be set as well in order to modify the meaning of
12084 the type constraint. */
12085
12086enum neon_type_mask
12087{
8e79c3df
CM
12088 N_S8 = 0x0000001,
12089 N_S16 = 0x0000002,
12090 N_S32 = 0x0000004,
12091 N_S64 = 0x0000008,
12092 N_U8 = 0x0000010,
12093 N_U16 = 0x0000020,
12094 N_U32 = 0x0000040,
12095 N_U64 = 0x0000080,
12096 N_I8 = 0x0000100,
12097 N_I16 = 0x0000200,
12098 N_I32 = 0x0000400,
12099 N_I64 = 0x0000800,
12100 N_8 = 0x0001000,
12101 N_16 = 0x0002000,
12102 N_32 = 0x0004000,
12103 N_64 = 0x0008000,
12104 N_P8 = 0x0010000,
12105 N_P16 = 0x0020000,
12106 N_F16 = 0x0040000,
12107 N_F32 = 0x0080000,
12108 N_F64 = 0x0100000,
c921be7d
NC
12109 N_KEY = 0x1000000, /* Key element (main type specifier). */
12110 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12111 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12112 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12113 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12114 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12115 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12116 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12117 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12118 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12119 N_UTYP = 0,
037e8744 12120 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12121};
12122
dcbf9037
JB
12123#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12124
5287ad62
JB
12125#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12126#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12127#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12128#define N_SUF_32 (N_SU_32 | N_F32)
12129#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12130#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12131
12132/* Pass this as the first type argument to neon_check_type to ignore types
12133 altogether. */
12134#define N_IGNORE_TYPE (N_KEY | N_EQK)
12135
037e8744
JB
12136/* Select a "shape" for the current instruction (describing register types or
12137 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12138 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12139 function of operand parsing, so this function doesn't need to be called.
12140 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12141
12142static enum neon_shape
037e8744 12143neon_select_shape (enum neon_shape shape, ...)
5287ad62 12144{
037e8744
JB
12145 va_list ap;
12146 enum neon_shape first_shape = shape;
5287ad62
JB
12147
12148 /* Fix missing optional operands. FIXME: we don't know at this point how
12149 many arguments we should have, so this makes the assumption that we have
12150 > 1. This is true of all current Neon opcodes, I think, but may not be
12151 true in the future. */
12152 if (!inst.operands[1].present)
12153 inst.operands[1] = inst.operands[0];
12154
037e8744 12155 va_start (ap, shape);
5f4273c7 12156
21d799b5 12157 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12158 {
12159 unsigned j;
12160 int matches = 1;
12161
12162 for (j = 0; j < neon_shape_tab[shape].els; j++)
12163 {
12164 if (!inst.operands[j].present)
12165 {
12166 matches = 0;
12167 break;
12168 }
12169
12170 switch (neon_shape_tab[shape].el[j])
12171 {
12172 case SE_F:
12173 if (!(inst.operands[j].isreg
12174 && inst.operands[j].isvec
12175 && inst.operands[j].issingle
12176 && !inst.operands[j].isquad))
12177 matches = 0;
12178 break;
12179
12180 case SE_D:
12181 if (!(inst.operands[j].isreg
12182 && inst.operands[j].isvec
12183 && !inst.operands[j].isquad
12184 && !inst.operands[j].issingle))
12185 matches = 0;
12186 break;
12187
12188 case SE_R:
12189 if (!(inst.operands[j].isreg
12190 && !inst.operands[j].isvec))
12191 matches = 0;
12192 break;
12193
12194 case SE_Q:
12195 if (!(inst.operands[j].isreg
12196 && inst.operands[j].isvec
12197 && inst.operands[j].isquad
12198 && !inst.operands[j].issingle))
12199 matches = 0;
12200 break;
12201
12202 case SE_I:
12203 if (!(!inst.operands[j].isreg
12204 && !inst.operands[j].isscalar))
12205 matches = 0;
12206 break;
12207
12208 case SE_S:
12209 if (!(!inst.operands[j].isreg
12210 && inst.operands[j].isscalar))
12211 matches = 0;
12212 break;
12213
12214 case SE_L:
12215 break;
12216 }
3fde54a2
JZ
12217 if (!matches)
12218 break;
037e8744
JB
12219 }
12220 if (matches)
5287ad62 12221 break;
037e8744 12222 }
5f4273c7 12223
037e8744 12224 va_end (ap);
5287ad62 12225
037e8744
JB
12226 if (shape == NS_NULL && first_shape != NS_NULL)
12227 first_error (_("invalid instruction shape"));
5287ad62 12228
037e8744
JB
12229 return shape;
12230}
5287ad62 12231
037e8744
JB
12232/* True if SHAPE is predominantly a quadword operation (most of the time, this
12233 means the Q bit should be set). */
12234
12235static int
12236neon_quad (enum neon_shape shape)
12237{
12238 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12239}
037e8744 12240
5287ad62
JB
12241static void
12242neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12243 unsigned *g_size)
12244{
12245 /* Allow modification to be made to types which are constrained to be
12246 based on the key element, based on bits set alongside N_EQK. */
12247 if ((typebits & N_EQK) != 0)
12248 {
12249 if ((typebits & N_HLF) != 0)
12250 *g_size /= 2;
12251 else if ((typebits & N_DBL) != 0)
12252 *g_size *= 2;
12253 if ((typebits & N_SGN) != 0)
12254 *g_type = NT_signed;
12255 else if ((typebits & N_UNS) != 0)
12256 *g_type = NT_unsigned;
12257 else if ((typebits & N_INT) != 0)
12258 *g_type = NT_integer;
12259 else if ((typebits & N_FLT) != 0)
12260 *g_type = NT_float;
dcbf9037
JB
12261 else if ((typebits & N_SIZ) != 0)
12262 *g_type = NT_untyped;
5287ad62
JB
12263 }
12264}
5f4273c7 12265
5287ad62
JB
12266/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12267 operand type, i.e. the single type specified in a Neon instruction when it
12268 is the only one given. */
12269
12270static struct neon_type_el
12271neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12272{
12273 struct neon_type_el dest = *key;
5f4273c7 12274
9c2799c2 12275 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12276
5287ad62
JB
12277 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12278
12279 return dest;
12280}
12281
12282/* Convert Neon type and size into compact bitmask representation. */
12283
12284static enum neon_type_mask
12285type_chk_of_el_type (enum neon_el_type type, unsigned size)
12286{
12287 switch (type)
12288 {
12289 case NT_untyped:
12290 switch (size)
12291 {
12292 case 8: return N_8;
12293 case 16: return N_16;
12294 case 32: return N_32;
12295 case 64: return N_64;
12296 default: ;
12297 }
12298 break;
12299
12300 case NT_integer:
12301 switch (size)
12302 {
12303 case 8: return N_I8;
12304 case 16: return N_I16;
12305 case 32: return N_I32;
12306 case 64: return N_I64;
12307 default: ;
12308 }
12309 break;
12310
12311 case NT_float:
037e8744
JB
12312 switch (size)
12313 {
8e79c3df 12314 case 16: return N_F16;
037e8744
JB
12315 case 32: return N_F32;
12316 case 64: return N_F64;
12317 default: ;
12318 }
5287ad62
JB
12319 break;
12320
12321 case NT_poly:
12322 switch (size)
12323 {
12324 case 8: return N_P8;
12325 case 16: return N_P16;
12326 default: ;
12327 }
12328 break;
12329
12330 case NT_signed:
12331 switch (size)
12332 {
12333 case 8: return N_S8;
12334 case 16: return N_S16;
12335 case 32: return N_S32;
12336 case 64: return N_S64;
12337 default: ;
12338 }
12339 break;
12340
12341 case NT_unsigned:
12342 switch (size)
12343 {
12344 case 8: return N_U8;
12345 case 16: return N_U16;
12346 case 32: return N_U32;
12347 case 64: return N_U64;
12348 default: ;
12349 }
12350 break;
12351
12352 default: ;
12353 }
5f4273c7 12354
5287ad62
JB
12355 return N_UTYP;
12356}
12357
12358/* Convert compact Neon bitmask type representation to a type and size. Only
12359 handles the case where a single bit is set in the mask. */
12360
dcbf9037 12361static int
5287ad62
JB
12362el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12363 enum neon_type_mask mask)
12364{
dcbf9037
JB
12365 if ((mask & N_EQK) != 0)
12366 return FAIL;
12367
5287ad62
JB
12368 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12369 *size = 8;
dcbf9037 12370 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12371 *size = 16;
dcbf9037 12372 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12373 *size = 32;
037e8744 12374 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12375 *size = 64;
dcbf9037
JB
12376 else
12377 return FAIL;
12378
5287ad62
JB
12379 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12380 *type = NT_signed;
dcbf9037 12381 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12382 *type = NT_unsigned;
dcbf9037 12383 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12384 *type = NT_integer;
dcbf9037 12385 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12386 *type = NT_untyped;
dcbf9037 12387 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12388 *type = NT_poly;
037e8744 12389 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12390 *type = NT_float;
dcbf9037
JB
12391 else
12392 return FAIL;
5f4273c7 12393
dcbf9037 12394 return SUCCESS;
5287ad62
JB
12395}
12396
12397/* Modify a bitmask of allowed types. This is only needed for type
12398 relaxation. */
12399
12400static unsigned
12401modify_types_allowed (unsigned allowed, unsigned mods)
12402{
12403 unsigned size;
12404 enum neon_el_type type;
12405 unsigned destmask;
12406 int i;
5f4273c7 12407
5287ad62 12408 destmask = 0;
5f4273c7 12409
5287ad62
JB
12410 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12411 {
21d799b5
NC
12412 if (el_type_of_type_chk (&type, &size,
12413 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12414 {
12415 neon_modify_type_size (mods, &type, &size);
12416 destmask |= type_chk_of_el_type (type, size);
12417 }
5287ad62 12418 }
5f4273c7 12419
5287ad62
JB
12420 return destmask;
12421}
12422
12423/* Check type and return type classification.
12424 The manual states (paraphrase): If one datatype is given, it indicates the
12425 type given in:
12426 - the second operand, if there is one
12427 - the operand, if there is no second operand
12428 - the result, if there are no operands.
12429 This isn't quite good enough though, so we use a concept of a "key" datatype
12430 which is set on a per-instruction basis, which is the one which matters when
12431 only one data type is written.
12432 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12433 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12434
12435static struct neon_type_el
12436neon_check_type (unsigned els, enum neon_shape ns, ...)
12437{
12438 va_list ap;
12439 unsigned i, pass, key_el = 0;
12440 unsigned types[NEON_MAX_TYPE_ELS];
12441 enum neon_el_type k_type = NT_invtype;
12442 unsigned k_size = -1u;
12443 struct neon_type_el badtype = {NT_invtype, -1};
12444 unsigned key_allowed = 0;
12445
12446 /* Optional registers in Neon instructions are always (not) in operand 1.
12447 Fill in the missing operand here, if it was omitted. */
12448 if (els > 1 && !inst.operands[1].present)
12449 inst.operands[1] = inst.operands[0];
12450
12451 /* Suck up all the varargs. */
12452 va_start (ap, ns);
12453 for (i = 0; i < els; i++)
12454 {
12455 unsigned thisarg = va_arg (ap, unsigned);
12456 if (thisarg == N_IGNORE_TYPE)
12457 {
12458 va_end (ap);
12459 return badtype;
12460 }
12461 types[i] = thisarg;
12462 if ((thisarg & N_KEY) != 0)
12463 key_el = i;
12464 }
12465 va_end (ap);
12466
dcbf9037
JB
12467 if (inst.vectype.elems > 0)
12468 for (i = 0; i < els; i++)
12469 if (inst.operands[i].vectype.type != NT_invtype)
12470 {
12471 first_error (_("types specified in both the mnemonic and operands"));
12472 return badtype;
12473 }
12474
5287ad62
JB
12475 /* Duplicate inst.vectype elements here as necessary.
12476 FIXME: No idea if this is exactly the same as the ARM assembler,
12477 particularly when an insn takes one register and one non-register
12478 operand. */
12479 if (inst.vectype.elems == 1 && els > 1)
12480 {
12481 unsigned j;
12482 inst.vectype.elems = els;
12483 inst.vectype.el[key_el] = inst.vectype.el[0];
12484 for (j = 0; j < els; j++)
dcbf9037
JB
12485 if (j != key_el)
12486 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12487 types[j]);
12488 }
12489 else if (inst.vectype.elems == 0 && els > 0)
12490 {
12491 unsigned j;
12492 /* No types were given after the mnemonic, so look for types specified
12493 after each operand. We allow some flexibility here; as long as the
12494 "key" operand has a type, we can infer the others. */
12495 for (j = 0; j < els; j++)
12496 if (inst.operands[j].vectype.type != NT_invtype)
12497 inst.vectype.el[j] = inst.operands[j].vectype;
12498
12499 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12500 {
dcbf9037
JB
12501 for (j = 0; j < els; j++)
12502 if (inst.operands[j].vectype.type == NT_invtype)
12503 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12504 types[j]);
12505 }
12506 else
12507 {
12508 first_error (_("operand types can't be inferred"));
12509 return badtype;
5287ad62
JB
12510 }
12511 }
12512 else if (inst.vectype.elems != els)
12513 {
dcbf9037 12514 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12515 return badtype;
12516 }
12517
12518 for (pass = 0; pass < 2; pass++)
12519 {
12520 for (i = 0; i < els; i++)
12521 {
12522 unsigned thisarg = types[i];
12523 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12524 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12525 enum neon_el_type g_type = inst.vectype.el[i].type;
12526 unsigned g_size = inst.vectype.el[i].size;
12527
12528 /* Decay more-specific signed & unsigned types to sign-insensitive
12529 integer types if sign-specific variants are unavailable. */
12530 if ((g_type == NT_signed || g_type == NT_unsigned)
12531 && (types_allowed & N_SU_ALL) == 0)
12532 g_type = NT_integer;
12533
12534 /* If only untyped args are allowed, decay any more specific types to
12535 them. Some instructions only care about signs for some element
12536 sizes, so handle that properly. */
12537 if ((g_size == 8 && (types_allowed & N_8) != 0)
12538 || (g_size == 16 && (types_allowed & N_16) != 0)
12539 || (g_size == 32 && (types_allowed & N_32) != 0)
12540 || (g_size == 64 && (types_allowed & N_64) != 0))
12541 g_type = NT_untyped;
12542
12543 if (pass == 0)
12544 {
12545 if ((thisarg & N_KEY) != 0)
12546 {
12547 k_type = g_type;
12548 k_size = g_size;
12549 key_allowed = thisarg & ~N_KEY;
12550 }
12551 }
12552 else
12553 {
037e8744
JB
12554 if ((thisarg & N_VFP) != 0)
12555 {
99b253c5
NC
12556 enum neon_shape_el regshape;
12557 unsigned regwidth, match;
12558
12559 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12560 if (ns == NS_NULL)
12561 {
12562 first_error (_("invalid instruction shape"));
12563 return badtype;
12564 }
12565 regshape = neon_shape_tab[ns].el[i];
12566 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12567
12568 /* In VFP mode, operands must match register widths. If we
12569 have a key operand, use its width, else use the width of
12570 the current operand. */
12571 if (k_size != -1u)
12572 match = k_size;
12573 else
12574 match = g_size;
12575
12576 if (regwidth != match)
12577 {
12578 first_error (_("operand size must match register width"));
12579 return badtype;
12580 }
12581 }
5f4273c7 12582
5287ad62
JB
12583 if ((thisarg & N_EQK) == 0)
12584 {
12585 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12586
12587 if ((given_type & types_allowed) == 0)
12588 {
dcbf9037 12589 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12590 return badtype;
12591 }
12592 }
12593 else
12594 {
12595 enum neon_el_type mod_k_type = k_type;
12596 unsigned mod_k_size = k_size;
12597 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12598 if (g_type != mod_k_type || g_size != mod_k_size)
12599 {
dcbf9037 12600 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12601 return badtype;
12602 }
12603 }
12604 }
12605 }
12606 }
12607
12608 return inst.vectype.el[key_el];
12609}
12610
037e8744 12611/* Neon-style VFP instruction forwarding. */
5287ad62 12612
037e8744
JB
12613/* Thumb VFP instructions have 0xE in the condition field. */
12614
12615static void
12616do_vfp_cond_or_thumb (void)
5287ad62 12617{
88714cb8
DG
12618 inst.is_neon = 1;
12619
5287ad62 12620 if (thumb_mode)
037e8744 12621 inst.instruction |= 0xe0000000;
5287ad62 12622 else
037e8744 12623 inst.instruction |= inst.cond << 28;
5287ad62
JB
12624}
12625
037e8744
JB
12626/* Look up and encode a simple mnemonic, for use as a helper function for the
12627 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12628 etc. It is assumed that operand parsing has already been done, and that the
12629 operands are in the form expected by the given opcode (this isn't necessarily
12630 the same as the form in which they were parsed, hence some massaging must
12631 take place before this function is called).
12632 Checks current arch version against that in the looked-up opcode. */
5287ad62 12633
037e8744
JB
12634static void
12635do_vfp_nsyn_opcode (const char *opname)
5287ad62 12636{
037e8744 12637 const struct asm_opcode *opcode;
5f4273c7 12638
21d799b5 12639 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12640
037e8744
JB
12641 if (!opcode)
12642 abort ();
5287ad62 12643
037e8744
JB
12644 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12645 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12646 _(BAD_FPU));
5287ad62 12647
88714cb8
DG
12648 inst.is_neon = 1;
12649
037e8744
JB
12650 if (thumb_mode)
12651 {
12652 inst.instruction = opcode->tvalue;
12653 opcode->tencode ();
12654 }
12655 else
12656 {
12657 inst.instruction = (inst.cond << 28) | opcode->avalue;
12658 opcode->aencode ();
12659 }
12660}
5287ad62
JB
12661
12662static void
037e8744 12663do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12664{
037e8744
JB
12665 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12666
12667 if (rs == NS_FFF)
12668 {
12669 if (is_add)
12670 do_vfp_nsyn_opcode ("fadds");
12671 else
12672 do_vfp_nsyn_opcode ("fsubs");
12673 }
12674 else
12675 {
12676 if (is_add)
12677 do_vfp_nsyn_opcode ("faddd");
12678 else
12679 do_vfp_nsyn_opcode ("fsubd");
12680 }
12681}
12682
12683/* Check operand types to see if this is a VFP instruction, and if so call
12684 PFN (). */
12685
12686static int
12687try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12688{
12689 enum neon_shape rs;
12690 struct neon_type_el et;
12691
12692 switch (args)
12693 {
12694 case 2:
12695 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12696 et = neon_check_type (2, rs,
12697 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12698 break;
5f4273c7 12699
037e8744
JB
12700 case 3:
12701 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12702 et = neon_check_type (3, rs,
12703 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12704 break;
12705
12706 default:
12707 abort ();
12708 }
12709
12710 if (et.type != NT_invtype)
12711 {
12712 pfn (rs);
12713 return SUCCESS;
12714 }
037e8744 12715
99b253c5 12716 inst.error = NULL;
037e8744
JB
12717 return FAIL;
12718}
12719
12720static void
12721do_vfp_nsyn_mla_mls (enum neon_shape rs)
12722{
12723 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12724
037e8744
JB
12725 if (rs == NS_FFF)
12726 {
12727 if (is_mla)
12728 do_vfp_nsyn_opcode ("fmacs");
12729 else
1ee69515 12730 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12731 }
12732 else
12733 {
12734 if (is_mla)
12735 do_vfp_nsyn_opcode ("fmacd");
12736 else
1ee69515 12737 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12738 }
12739}
12740
62f3b8c8
PB
12741static void
12742do_vfp_nsyn_fma_fms (enum neon_shape rs)
12743{
12744 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12745
12746 if (rs == NS_FFF)
12747 {
12748 if (is_fma)
12749 do_vfp_nsyn_opcode ("ffmas");
12750 else
12751 do_vfp_nsyn_opcode ("ffnmas");
12752 }
12753 else
12754 {
12755 if (is_fma)
12756 do_vfp_nsyn_opcode ("ffmad");
12757 else
12758 do_vfp_nsyn_opcode ("ffnmad");
12759 }
12760}
12761
037e8744
JB
12762static void
12763do_vfp_nsyn_mul (enum neon_shape rs)
12764{
12765 if (rs == NS_FFF)
12766 do_vfp_nsyn_opcode ("fmuls");
12767 else
12768 do_vfp_nsyn_opcode ("fmuld");
12769}
12770
12771static void
12772do_vfp_nsyn_abs_neg (enum neon_shape rs)
12773{
12774 int is_neg = (inst.instruction & 0x80) != 0;
12775 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12776
12777 if (rs == NS_FF)
12778 {
12779 if (is_neg)
12780 do_vfp_nsyn_opcode ("fnegs");
12781 else
12782 do_vfp_nsyn_opcode ("fabss");
12783 }
12784 else
12785 {
12786 if (is_neg)
12787 do_vfp_nsyn_opcode ("fnegd");
12788 else
12789 do_vfp_nsyn_opcode ("fabsd");
12790 }
12791}
12792
12793/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12794 insns belong to Neon, and are handled elsewhere. */
12795
12796static void
12797do_vfp_nsyn_ldm_stm (int is_dbmode)
12798{
12799 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12800 if (is_ldm)
12801 {
12802 if (is_dbmode)
12803 do_vfp_nsyn_opcode ("fldmdbs");
12804 else
12805 do_vfp_nsyn_opcode ("fldmias");
12806 }
12807 else
12808 {
12809 if (is_dbmode)
12810 do_vfp_nsyn_opcode ("fstmdbs");
12811 else
12812 do_vfp_nsyn_opcode ("fstmias");
12813 }
12814}
12815
037e8744
JB
12816static void
12817do_vfp_nsyn_sqrt (void)
12818{
12819 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12820 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12821
037e8744
JB
12822 if (rs == NS_FF)
12823 do_vfp_nsyn_opcode ("fsqrts");
12824 else
12825 do_vfp_nsyn_opcode ("fsqrtd");
12826}
12827
12828static void
12829do_vfp_nsyn_div (void)
12830{
12831 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12832 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12833 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12834
037e8744
JB
12835 if (rs == NS_FFF)
12836 do_vfp_nsyn_opcode ("fdivs");
12837 else
12838 do_vfp_nsyn_opcode ("fdivd");
12839}
12840
12841static void
12842do_vfp_nsyn_nmul (void)
12843{
12844 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12845 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12846 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12847
037e8744
JB
12848 if (rs == NS_FFF)
12849 {
88714cb8 12850 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12851 do_vfp_sp_dyadic ();
12852 }
12853 else
12854 {
88714cb8 12855 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12856 do_vfp_dp_rd_rn_rm ();
12857 }
12858 do_vfp_cond_or_thumb ();
12859}
12860
12861static void
12862do_vfp_nsyn_cmp (void)
12863{
12864 if (inst.operands[1].isreg)
12865 {
12866 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12867 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12868
037e8744
JB
12869 if (rs == NS_FF)
12870 {
88714cb8 12871 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12872 do_vfp_sp_monadic ();
12873 }
12874 else
12875 {
88714cb8 12876 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12877 do_vfp_dp_rd_rm ();
12878 }
12879 }
12880 else
12881 {
12882 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12883 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12884
12885 switch (inst.instruction & 0x0fffffff)
12886 {
12887 case N_MNEM_vcmp:
12888 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12889 break;
12890 case N_MNEM_vcmpe:
12891 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12892 break;
12893 default:
12894 abort ();
12895 }
5f4273c7 12896
037e8744
JB
12897 if (rs == NS_FI)
12898 {
88714cb8 12899 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12900 do_vfp_sp_compare_z ();
12901 }
12902 else
12903 {
88714cb8 12904 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12905 do_vfp_dp_rd ();
12906 }
12907 }
12908 do_vfp_cond_or_thumb ();
12909}
12910
12911static void
12912nsyn_insert_sp (void)
12913{
12914 inst.operands[1] = inst.operands[0];
12915 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12916 inst.operands[0].reg = REG_SP;
037e8744
JB
12917 inst.operands[0].isreg = 1;
12918 inst.operands[0].writeback = 1;
12919 inst.operands[0].present = 1;
12920}
12921
12922static void
12923do_vfp_nsyn_push (void)
12924{
12925 nsyn_insert_sp ();
12926 if (inst.operands[1].issingle)
12927 do_vfp_nsyn_opcode ("fstmdbs");
12928 else
12929 do_vfp_nsyn_opcode ("fstmdbd");
12930}
12931
12932static void
12933do_vfp_nsyn_pop (void)
12934{
12935 nsyn_insert_sp ();
12936 if (inst.operands[1].issingle)
22b5b651 12937 do_vfp_nsyn_opcode ("fldmias");
037e8744 12938 else
22b5b651 12939 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
12940}
12941
12942/* Fix up Neon data-processing instructions, ORing in the correct bits for
12943 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12944
88714cb8
DG
12945static void
12946neon_dp_fixup (struct arm_it* insn)
037e8744 12947{
88714cb8
DG
12948 unsigned int i = insn->instruction;
12949 insn->is_neon = 1;
12950
037e8744
JB
12951 if (thumb_mode)
12952 {
12953 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12954 if (i & (1 << 24))
12955 i |= 1 << 28;
5f4273c7 12956
037e8744 12957 i &= ~(1 << 24);
5f4273c7 12958
037e8744
JB
12959 i |= 0xef000000;
12960 }
12961 else
12962 i |= 0xf2000000;
5f4273c7 12963
88714cb8 12964 insn->instruction = i;
037e8744
JB
12965}
12966
12967/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12968 (0, 1, 2, 3). */
12969
12970static unsigned
12971neon_logbits (unsigned x)
12972{
12973 return ffs (x) - 4;
12974}
12975
12976#define LOW4(R) ((R) & 0xf)
12977#define HI1(R) (((R) >> 4) & 1)
12978
12979/* Encode insns with bit pattern:
12980
12981 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12982 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 12983
037e8744
JB
12984 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12985 different meaning for some instruction. */
12986
12987static void
12988neon_three_same (int isquad, int ubit, int size)
12989{
12990 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12992 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12993 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12994 inst.instruction |= LOW4 (inst.operands[2].reg);
12995 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12996 inst.instruction |= (isquad != 0) << 6;
12997 inst.instruction |= (ubit != 0) << 24;
12998 if (size != -1)
12999 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13000
88714cb8 13001 neon_dp_fixup (&inst);
037e8744
JB
13002}
13003
13004/* Encode instructions of the form:
13005
13006 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13007 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13008
13009 Don't write size if SIZE == -1. */
13010
13011static void
13012neon_two_same (int qbit, int ubit, int size)
13013{
13014 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13015 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13016 inst.instruction |= LOW4 (inst.operands[1].reg);
13017 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13018 inst.instruction |= (qbit != 0) << 6;
13019 inst.instruction |= (ubit != 0) << 24;
13020
13021 if (size != -1)
13022 inst.instruction |= neon_logbits (size) << 18;
13023
88714cb8 13024 neon_dp_fixup (&inst);
5287ad62
JB
13025}
13026
13027/* Neon instruction encoders, in approximate order of appearance. */
13028
13029static void
13030do_neon_dyadic_i_su (void)
13031{
037e8744 13032 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13033 struct neon_type_el et = neon_check_type (3, rs,
13034 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13035 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13036}
13037
13038static void
13039do_neon_dyadic_i64_su (void)
13040{
037e8744 13041 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13042 struct neon_type_el et = neon_check_type (3, rs,
13043 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13044 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13045}
13046
13047static void
13048neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13049 unsigned immbits)
13050{
13051 unsigned size = et.size >> 3;
13052 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13053 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13054 inst.instruction |= LOW4 (inst.operands[1].reg);
13055 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13056 inst.instruction |= (isquad != 0) << 6;
13057 inst.instruction |= immbits << 16;
13058 inst.instruction |= (size >> 3) << 7;
13059 inst.instruction |= (size & 0x7) << 19;
13060 if (write_ubit)
13061 inst.instruction |= (uval != 0) << 24;
13062
88714cb8 13063 neon_dp_fixup (&inst);
5287ad62
JB
13064}
13065
13066static void
13067do_neon_shl_imm (void)
13068{
13069 if (!inst.operands[2].isreg)
13070 {
037e8744 13071 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13072 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13073 NEON_ENCODE (IMMED, inst);
037e8744 13074 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13075 }
13076 else
13077 {
037e8744 13078 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13079 struct neon_type_el et = neon_check_type (3, rs,
13080 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13081 unsigned int tmp;
13082
13083 /* VSHL/VQSHL 3-register variants have syntax such as:
13084 vshl.xx Dd, Dm, Dn
13085 whereas other 3-register operations encoded by neon_three_same have
13086 syntax like:
13087 vadd.xx Dd, Dn, Dm
13088 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13089 here. */
13090 tmp = inst.operands[2].reg;
13091 inst.operands[2].reg = inst.operands[1].reg;
13092 inst.operands[1].reg = tmp;
88714cb8 13093 NEON_ENCODE (INTEGER, inst);
037e8744 13094 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13095 }
13096}
13097
13098static void
13099do_neon_qshl_imm (void)
13100{
13101 if (!inst.operands[2].isreg)
13102 {
037e8744 13103 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13104 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13105
88714cb8 13106 NEON_ENCODE (IMMED, inst);
037e8744 13107 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13108 inst.operands[2].imm);
13109 }
13110 else
13111 {
037e8744 13112 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13113 struct neon_type_el et = neon_check_type (3, rs,
13114 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13115 unsigned int tmp;
13116
13117 /* See note in do_neon_shl_imm. */
13118 tmp = inst.operands[2].reg;
13119 inst.operands[2].reg = inst.operands[1].reg;
13120 inst.operands[1].reg = tmp;
88714cb8 13121 NEON_ENCODE (INTEGER, inst);
037e8744 13122 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13123 }
13124}
13125
627907b7
JB
13126static void
13127do_neon_rshl (void)
13128{
13129 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13130 struct neon_type_el et = neon_check_type (3, rs,
13131 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13132 unsigned int tmp;
13133
13134 tmp = inst.operands[2].reg;
13135 inst.operands[2].reg = inst.operands[1].reg;
13136 inst.operands[1].reg = tmp;
13137 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13138}
13139
5287ad62
JB
13140static int
13141neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13142{
036dc3f7
PB
13143 /* Handle .I8 pseudo-instructions. */
13144 if (size == 8)
5287ad62 13145 {
5287ad62
JB
13146 /* Unfortunately, this will make everything apart from zero out-of-range.
13147 FIXME is this the intended semantics? There doesn't seem much point in
13148 accepting .I8 if so. */
13149 immediate |= immediate << 8;
13150 size = 16;
036dc3f7
PB
13151 }
13152
13153 if (size >= 32)
13154 {
13155 if (immediate == (immediate & 0x000000ff))
13156 {
13157 *immbits = immediate;
13158 return 0x1;
13159 }
13160 else if (immediate == (immediate & 0x0000ff00))
13161 {
13162 *immbits = immediate >> 8;
13163 return 0x3;
13164 }
13165 else if (immediate == (immediate & 0x00ff0000))
13166 {
13167 *immbits = immediate >> 16;
13168 return 0x5;
13169 }
13170 else if (immediate == (immediate & 0xff000000))
13171 {
13172 *immbits = immediate >> 24;
13173 return 0x7;
13174 }
13175 if ((immediate & 0xffff) != (immediate >> 16))
13176 goto bad_immediate;
13177 immediate &= 0xffff;
5287ad62
JB
13178 }
13179
13180 if (immediate == (immediate & 0x000000ff))
13181 {
13182 *immbits = immediate;
036dc3f7 13183 return 0x9;
5287ad62
JB
13184 }
13185 else if (immediate == (immediate & 0x0000ff00))
13186 {
13187 *immbits = immediate >> 8;
036dc3f7 13188 return 0xb;
5287ad62
JB
13189 }
13190
13191 bad_immediate:
dcbf9037 13192 first_error (_("immediate value out of range"));
5287ad62
JB
13193 return FAIL;
13194}
13195
13196/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13197 A, B, C, D. */
13198
13199static int
13200neon_bits_same_in_bytes (unsigned imm)
13201{
13202 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13203 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13204 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13205 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13206}
13207
13208/* For immediate of above form, return 0bABCD. */
13209
13210static unsigned
13211neon_squash_bits (unsigned imm)
13212{
13213 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13214 | ((imm & 0x01000000) >> 21);
13215}
13216
136da414 13217/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13218
13219static unsigned
13220neon_qfloat_bits (unsigned imm)
13221{
136da414 13222 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13223}
13224
13225/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13226 the instruction. *OP is passed as the initial value of the op field, and
13227 may be set to a different value depending on the constant (i.e.
13228 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13229 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13230 try smaller element sizes. */
5287ad62
JB
13231
13232static int
c96612cc
JB
13233neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13234 unsigned *immbits, int *op, int size,
13235 enum neon_el_type type)
5287ad62 13236{
c96612cc
JB
13237 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13238 float. */
13239 if (type == NT_float && !float_p)
13240 return FAIL;
13241
136da414
JB
13242 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13243 {
13244 if (size != 32 || *op == 1)
13245 return FAIL;
13246 *immbits = neon_qfloat_bits (immlo);
13247 return 0xf;
13248 }
036dc3f7
PB
13249
13250 if (size == 64)
5287ad62 13251 {
036dc3f7
PB
13252 if (neon_bits_same_in_bytes (immhi)
13253 && neon_bits_same_in_bytes (immlo))
13254 {
13255 if (*op == 1)
13256 return FAIL;
13257 *immbits = (neon_squash_bits (immhi) << 4)
13258 | neon_squash_bits (immlo);
13259 *op = 1;
13260 return 0xe;
13261 }
13262
13263 if (immhi != immlo)
13264 return FAIL;
5287ad62 13265 }
036dc3f7
PB
13266
13267 if (size >= 32)
5287ad62 13268 {
036dc3f7
PB
13269 if (immlo == (immlo & 0x000000ff))
13270 {
13271 *immbits = immlo;
13272 return 0x0;
13273 }
13274 else if (immlo == (immlo & 0x0000ff00))
13275 {
13276 *immbits = immlo >> 8;
13277 return 0x2;
13278 }
13279 else if (immlo == (immlo & 0x00ff0000))
13280 {
13281 *immbits = immlo >> 16;
13282 return 0x4;
13283 }
13284 else if (immlo == (immlo & 0xff000000))
13285 {
13286 *immbits = immlo >> 24;
13287 return 0x6;
13288 }
13289 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13290 {
13291 *immbits = (immlo >> 8) & 0xff;
13292 return 0xc;
13293 }
13294 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13295 {
13296 *immbits = (immlo >> 16) & 0xff;
13297 return 0xd;
13298 }
13299
13300 if ((immlo & 0xffff) != (immlo >> 16))
13301 return FAIL;
13302 immlo &= 0xffff;
5287ad62 13303 }
036dc3f7
PB
13304
13305 if (size >= 16)
5287ad62 13306 {
036dc3f7
PB
13307 if (immlo == (immlo & 0x000000ff))
13308 {
13309 *immbits = immlo;
13310 return 0x8;
13311 }
13312 else if (immlo == (immlo & 0x0000ff00))
13313 {
13314 *immbits = immlo >> 8;
13315 return 0xa;
13316 }
13317
13318 if ((immlo & 0xff) != (immlo >> 8))
13319 return FAIL;
13320 immlo &= 0xff;
5287ad62 13321 }
036dc3f7
PB
13322
13323 if (immlo == (immlo & 0x000000ff))
5287ad62 13324 {
036dc3f7
PB
13325 /* Don't allow MVN with 8-bit immediate. */
13326 if (*op == 1)
13327 return FAIL;
13328 *immbits = immlo;
13329 return 0xe;
5287ad62 13330 }
5287ad62
JB
13331
13332 return FAIL;
13333}
13334
13335/* Write immediate bits [7:0] to the following locations:
13336
13337 |28/24|23 19|18 16|15 4|3 0|
13338 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13339
13340 This function is used by VMOV/VMVN/VORR/VBIC. */
13341
13342static void
13343neon_write_immbits (unsigned immbits)
13344{
13345 inst.instruction |= immbits & 0xf;
13346 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13347 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13348}
13349
13350/* Invert low-order SIZE bits of XHI:XLO. */
13351
13352static void
13353neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13354{
13355 unsigned immlo = xlo ? *xlo : 0;
13356 unsigned immhi = xhi ? *xhi : 0;
13357
13358 switch (size)
13359 {
13360 case 8:
13361 immlo = (~immlo) & 0xff;
13362 break;
13363
13364 case 16:
13365 immlo = (~immlo) & 0xffff;
13366 break;
13367
13368 case 64:
13369 immhi = (~immhi) & 0xffffffff;
13370 /* fall through. */
13371
13372 case 32:
13373 immlo = (~immlo) & 0xffffffff;
13374 break;
13375
13376 default:
13377 abort ();
13378 }
13379
13380 if (xlo)
13381 *xlo = immlo;
13382
13383 if (xhi)
13384 *xhi = immhi;
13385}
13386
13387static void
13388do_neon_logic (void)
13389{
13390 if (inst.operands[2].present && inst.operands[2].isreg)
13391 {
037e8744 13392 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13393 neon_check_type (3, rs, N_IGNORE_TYPE);
13394 /* U bit and size field were set as part of the bitmask. */
88714cb8 13395 NEON_ENCODE (INTEGER, inst);
037e8744 13396 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13397 }
13398 else
13399 {
4316f0d2
DG
13400 const int three_ops_form = (inst.operands[2].present
13401 && !inst.operands[2].isreg);
13402 const int immoperand = (three_ops_form ? 2 : 1);
13403 enum neon_shape rs = (three_ops_form
13404 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13405 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13406 struct neon_type_el et = neon_check_type (2, rs,
13407 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13408 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13409 unsigned immbits;
13410 int cmode;
5f4273c7 13411
5287ad62
JB
13412 if (et.type == NT_invtype)
13413 return;
5f4273c7 13414
4316f0d2
DG
13415 if (three_ops_form)
13416 constraint (inst.operands[0].reg != inst.operands[1].reg,
13417 _("first and second operands shall be the same register"));
13418
88714cb8 13419 NEON_ENCODE (IMMED, inst);
5287ad62 13420
4316f0d2 13421 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13422 if (et.size == 64)
13423 {
13424 /* .i64 is a pseudo-op, so the immediate must be a repeating
13425 pattern. */
4316f0d2
DG
13426 if (immbits != (inst.operands[immoperand].regisimm ?
13427 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13428 {
13429 /* Set immbits to an invalid constant. */
13430 immbits = 0xdeadbeef;
13431 }
13432 }
13433
5287ad62
JB
13434 switch (opcode)
13435 {
13436 case N_MNEM_vbic:
036dc3f7 13437 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13438 break;
5f4273c7 13439
5287ad62 13440 case N_MNEM_vorr:
036dc3f7 13441 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13442 break;
5f4273c7 13443
5287ad62
JB
13444 case N_MNEM_vand:
13445 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13446 neon_invert_size (&immbits, 0, et.size);
13447 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13448 break;
5f4273c7 13449
5287ad62
JB
13450 case N_MNEM_vorn:
13451 /* Pseudo-instruction for VORR. */
5287ad62
JB
13452 neon_invert_size (&immbits, 0, et.size);
13453 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13454 break;
5f4273c7 13455
5287ad62
JB
13456 default:
13457 abort ();
13458 }
13459
13460 if (cmode == FAIL)
13461 return;
13462
037e8744 13463 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13464 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13465 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13466 inst.instruction |= cmode << 8;
13467 neon_write_immbits (immbits);
5f4273c7 13468
88714cb8 13469 neon_dp_fixup (&inst);
5287ad62
JB
13470 }
13471}
13472
13473static void
13474do_neon_bitfield (void)
13475{
037e8744 13476 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13477 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13478 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13479}
13480
13481static void
dcbf9037
JB
13482neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13483 unsigned destbits)
5287ad62 13484{
037e8744 13485 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13486 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13487 types | N_KEY);
5287ad62
JB
13488 if (et.type == NT_float)
13489 {
88714cb8 13490 NEON_ENCODE (FLOAT, inst);
037e8744 13491 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13492 }
13493 else
13494 {
88714cb8 13495 NEON_ENCODE (INTEGER, inst);
037e8744 13496 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13497 }
13498}
13499
13500static void
13501do_neon_dyadic_if_su (void)
13502{
dcbf9037 13503 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13504}
13505
13506static void
13507do_neon_dyadic_if_su_d (void)
13508{
13509 /* This version only allow D registers, but that constraint is enforced during
13510 operand parsing so we don't need to do anything extra here. */
dcbf9037 13511 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13512}
13513
5287ad62
JB
13514static void
13515do_neon_dyadic_if_i_d (void)
13516{
428e3f1f
PB
13517 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13518 affected if we specify unsigned args. */
13519 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13520}
13521
037e8744
JB
13522enum vfp_or_neon_is_neon_bits
13523{
13524 NEON_CHECK_CC = 1,
13525 NEON_CHECK_ARCH = 2
13526};
13527
13528/* Call this function if an instruction which may have belonged to the VFP or
13529 Neon instruction sets, but turned out to be a Neon instruction (due to the
13530 operand types involved, etc.). We have to check and/or fix-up a couple of
13531 things:
13532
13533 - Make sure the user hasn't attempted to make a Neon instruction
13534 conditional.
13535 - Alter the value in the condition code field if necessary.
13536 - Make sure that the arch supports Neon instructions.
13537
13538 Which of these operations take place depends on bits from enum
13539 vfp_or_neon_is_neon_bits.
13540
13541 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13542 current instruction's condition is COND_ALWAYS, the condition field is
13543 changed to inst.uncond_value. This is necessary because instructions shared
13544 between VFP and Neon may be conditional for the VFP variants only, and the
13545 unconditional Neon version must have, e.g., 0xF in the condition field. */
13546
13547static int
13548vfp_or_neon_is_neon (unsigned check)
13549{
13550 /* Conditions are always legal in Thumb mode (IT blocks). */
13551 if (!thumb_mode && (check & NEON_CHECK_CC))
13552 {
13553 if (inst.cond != COND_ALWAYS)
13554 {
13555 first_error (_(BAD_COND));
13556 return FAIL;
13557 }
13558 if (inst.uncond_value != -1)
13559 inst.instruction |= inst.uncond_value << 28;
13560 }
5f4273c7 13561
037e8744
JB
13562 if ((check & NEON_CHECK_ARCH)
13563 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13564 {
13565 first_error (_(BAD_FPU));
13566 return FAIL;
13567 }
5f4273c7 13568
037e8744
JB
13569 return SUCCESS;
13570}
13571
5287ad62
JB
13572static void
13573do_neon_addsub_if_i (void)
13574{
037e8744
JB
13575 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13576 return;
13577
13578 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13579 return;
13580
5287ad62
JB
13581 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13582 affected if we specify unsigned args. */
dcbf9037 13583 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13584}
13585
13586/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13587 result to be:
13588 V<op> A,B (A is operand 0, B is operand 2)
13589 to mean:
13590 V<op> A,B,A
13591 not:
13592 V<op> A,B,B
13593 so handle that case specially. */
13594
13595static void
13596neon_exchange_operands (void)
13597{
13598 void *scratch = alloca (sizeof (inst.operands[0]));
13599 if (inst.operands[1].present)
13600 {
13601 /* Swap operands[1] and operands[2]. */
13602 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13603 inst.operands[1] = inst.operands[2];
13604 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13605 }
13606 else
13607 {
13608 inst.operands[1] = inst.operands[2];
13609 inst.operands[2] = inst.operands[0];
13610 }
13611}
13612
13613static void
13614neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13615{
13616 if (inst.operands[2].isreg)
13617 {
13618 if (invert)
13619 neon_exchange_operands ();
dcbf9037 13620 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13621 }
13622 else
13623 {
037e8744 13624 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13625 struct neon_type_el et = neon_check_type (2, rs,
13626 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13627
88714cb8 13628 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13629 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13630 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13631 inst.instruction |= LOW4 (inst.operands[1].reg);
13632 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13633 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13634 inst.instruction |= (et.type == NT_float) << 10;
13635 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13636
88714cb8 13637 neon_dp_fixup (&inst);
5287ad62
JB
13638 }
13639}
13640
13641static void
13642do_neon_cmp (void)
13643{
13644 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13645}
13646
13647static void
13648do_neon_cmp_inv (void)
13649{
13650 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13651}
13652
13653static void
13654do_neon_ceq (void)
13655{
13656 neon_compare (N_IF_32, N_IF_32, FALSE);
13657}
13658
13659/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13660 scalars, which are encoded in 5 bits, M : Rm.
13661 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13662 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13663 index in M. */
13664
13665static unsigned
13666neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13667{
dcbf9037
JB
13668 unsigned regno = NEON_SCALAR_REG (scalar);
13669 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13670
13671 switch (elsize)
13672 {
13673 case 16:
13674 if (regno > 7 || elno > 3)
13675 goto bad_scalar;
13676 return regno | (elno << 3);
5f4273c7 13677
5287ad62
JB
13678 case 32:
13679 if (regno > 15 || elno > 1)
13680 goto bad_scalar;
13681 return regno | (elno << 4);
13682
13683 default:
13684 bad_scalar:
dcbf9037 13685 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13686 }
13687
13688 return 0;
13689}
13690
13691/* Encode multiply / multiply-accumulate scalar instructions. */
13692
13693static void
13694neon_mul_mac (struct neon_type_el et, int ubit)
13695{
dcbf9037
JB
13696 unsigned scalar;
13697
13698 /* Give a more helpful error message if we have an invalid type. */
13699 if (et.type == NT_invtype)
13700 return;
5f4273c7 13701
dcbf9037 13702 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13703 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13704 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13705 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13706 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13707 inst.instruction |= LOW4 (scalar);
13708 inst.instruction |= HI1 (scalar) << 5;
13709 inst.instruction |= (et.type == NT_float) << 8;
13710 inst.instruction |= neon_logbits (et.size) << 20;
13711 inst.instruction |= (ubit != 0) << 24;
13712
88714cb8 13713 neon_dp_fixup (&inst);
5287ad62
JB
13714}
13715
13716static void
13717do_neon_mac_maybe_scalar (void)
13718{
037e8744
JB
13719 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13720 return;
13721
13722 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13723 return;
13724
5287ad62
JB
13725 if (inst.operands[2].isscalar)
13726 {
037e8744 13727 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13728 struct neon_type_el et = neon_check_type (3, rs,
13729 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13730 NEON_ENCODE (SCALAR, inst);
037e8744 13731 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13732 }
13733 else
428e3f1f
PB
13734 {
13735 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13736 affected if we specify unsigned args. */
13737 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13738 }
5287ad62
JB
13739}
13740
62f3b8c8
PB
13741static void
13742do_neon_fmac (void)
13743{
13744 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13745 return;
13746
13747 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13748 return;
13749
13750 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13751}
13752
5287ad62
JB
13753static void
13754do_neon_tst (void)
13755{
037e8744 13756 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13757 struct neon_type_el et = neon_check_type (3, rs,
13758 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13759 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13760}
13761
13762/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13763 same types as the MAC equivalents. The polynomial type for this instruction
13764 is encoded the same as the integer type. */
13765
13766static void
13767do_neon_mul (void)
13768{
037e8744
JB
13769 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13770 return;
13771
13772 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13773 return;
13774
5287ad62
JB
13775 if (inst.operands[2].isscalar)
13776 do_neon_mac_maybe_scalar ();
13777 else
dcbf9037 13778 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13779}
13780
13781static void
13782do_neon_qdmulh (void)
13783{
13784 if (inst.operands[2].isscalar)
13785 {
037e8744 13786 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13787 struct neon_type_el et = neon_check_type (3, rs,
13788 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13789 NEON_ENCODE (SCALAR, inst);
037e8744 13790 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13791 }
13792 else
13793 {
037e8744 13794 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13795 struct neon_type_el et = neon_check_type (3, rs,
13796 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13797 NEON_ENCODE (INTEGER, inst);
5287ad62 13798 /* The U bit (rounding) comes from bit mask. */
037e8744 13799 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13800 }
13801}
13802
13803static void
13804do_neon_fcmp_absolute (void)
13805{
037e8744 13806 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13807 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13808 /* Size field comes from bit mask. */
037e8744 13809 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13810}
13811
13812static void
13813do_neon_fcmp_absolute_inv (void)
13814{
13815 neon_exchange_operands ();
13816 do_neon_fcmp_absolute ();
13817}
13818
13819static void
13820do_neon_step (void)
13821{
037e8744 13822 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13823 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13824 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13825}
13826
13827static void
13828do_neon_abs_neg (void)
13829{
037e8744
JB
13830 enum neon_shape rs;
13831 struct neon_type_el et;
5f4273c7 13832
037e8744
JB
13833 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13834 return;
13835
13836 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13837 return;
13838
13839 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13840 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13841
5287ad62
JB
13842 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13843 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13844 inst.instruction |= LOW4 (inst.operands[1].reg);
13845 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13846 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13847 inst.instruction |= (et.type == NT_float) << 10;
13848 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13849
88714cb8 13850 neon_dp_fixup (&inst);
5287ad62
JB
13851}
13852
13853static void
13854do_neon_sli (void)
13855{
037e8744 13856 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13857 struct neon_type_el et = neon_check_type (2, rs,
13858 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13859 int imm = inst.operands[2].imm;
13860 constraint (imm < 0 || (unsigned)imm >= et.size,
13861 _("immediate out of range for insert"));
037e8744 13862 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13863}
13864
13865static void
13866do_neon_sri (void)
13867{
037e8744 13868 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13869 struct neon_type_el et = neon_check_type (2, rs,
13870 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13871 int imm = inst.operands[2].imm;
13872 constraint (imm < 1 || (unsigned)imm > et.size,
13873 _("immediate out of range for insert"));
037e8744 13874 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13875}
13876
13877static void
13878do_neon_qshlu_imm (void)
13879{
037e8744 13880 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13881 struct neon_type_el et = neon_check_type (2, rs,
13882 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13883 int imm = inst.operands[2].imm;
13884 constraint (imm < 0 || (unsigned)imm >= et.size,
13885 _("immediate out of range for shift"));
13886 /* Only encodes the 'U present' variant of the instruction.
13887 In this case, signed types have OP (bit 8) set to 0.
13888 Unsigned types have OP set to 1. */
13889 inst.instruction |= (et.type == NT_unsigned) << 8;
13890 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13891 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13892}
13893
13894static void
13895do_neon_qmovn (void)
13896{
13897 struct neon_type_el et = neon_check_type (2, NS_DQ,
13898 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13899 /* Saturating move where operands can be signed or unsigned, and the
13900 destination has the same signedness. */
88714cb8 13901 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13902 if (et.type == NT_unsigned)
13903 inst.instruction |= 0xc0;
13904 else
13905 inst.instruction |= 0x80;
13906 neon_two_same (0, 1, et.size / 2);
13907}
13908
13909static void
13910do_neon_qmovun (void)
13911{
13912 struct neon_type_el et = neon_check_type (2, NS_DQ,
13913 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13914 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 13915 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13916 neon_two_same (0, 1, et.size / 2);
13917}
13918
13919static void
13920do_neon_rshift_sat_narrow (void)
13921{
13922 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13923 or unsigned. If operands are unsigned, results must also be unsigned. */
13924 struct neon_type_el et = neon_check_type (2, NS_DQI,
13925 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13926 int imm = inst.operands[2].imm;
13927 /* This gets the bounds check, size encoding and immediate bits calculation
13928 right. */
13929 et.size /= 2;
5f4273c7 13930
5287ad62
JB
13931 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13932 VQMOVN.I<size> <Dd>, <Qm>. */
13933 if (imm == 0)
13934 {
13935 inst.operands[2].present = 0;
13936 inst.instruction = N_MNEM_vqmovn;
13937 do_neon_qmovn ();
13938 return;
13939 }
5f4273c7 13940
5287ad62
JB
13941 constraint (imm < 1 || (unsigned)imm > et.size,
13942 _("immediate out of range"));
13943 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13944}
13945
13946static void
13947do_neon_rshift_sat_narrow_u (void)
13948{
13949 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13950 or unsigned. If operands are unsigned, results must also be unsigned. */
13951 struct neon_type_el et = neon_check_type (2, NS_DQI,
13952 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13953 int imm = inst.operands[2].imm;
13954 /* This gets the bounds check, size encoding and immediate bits calculation
13955 right. */
13956 et.size /= 2;
13957
13958 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13959 VQMOVUN.I<size> <Dd>, <Qm>. */
13960 if (imm == 0)
13961 {
13962 inst.operands[2].present = 0;
13963 inst.instruction = N_MNEM_vqmovun;
13964 do_neon_qmovun ();
13965 return;
13966 }
13967
13968 constraint (imm < 1 || (unsigned)imm > et.size,
13969 _("immediate out of range"));
13970 /* FIXME: The manual is kind of unclear about what value U should have in
13971 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13972 must be 1. */
13973 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13974}
13975
13976static void
13977do_neon_movn (void)
13978{
13979 struct neon_type_el et = neon_check_type (2, NS_DQ,
13980 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 13981 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13982 neon_two_same (0, 1, et.size / 2);
13983}
13984
13985static void
13986do_neon_rshift_narrow (void)
13987{
13988 struct neon_type_el et = neon_check_type (2, NS_DQI,
13989 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13990 int imm = inst.operands[2].imm;
13991 /* This gets the bounds check, size encoding and immediate bits calculation
13992 right. */
13993 et.size /= 2;
5f4273c7 13994
5287ad62
JB
13995 /* If immediate is zero then we are a pseudo-instruction for
13996 VMOVN.I<size> <Dd>, <Qm> */
13997 if (imm == 0)
13998 {
13999 inst.operands[2].present = 0;
14000 inst.instruction = N_MNEM_vmovn;
14001 do_neon_movn ();
14002 return;
14003 }
5f4273c7 14004
5287ad62
JB
14005 constraint (imm < 1 || (unsigned)imm > et.size,
14006 _("immediate out of range for narrowing operation"));
14007 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14008}
14009
14010static void
14011do_neon_shll (void)
14012{
14013 /* FIXME: Type checking when lengthening. */
14014 struct neon_type_el et = neon_check_type (2, NS_QDI,
14015 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14016 unsigned imm = inst.operands[2].imm;
14017
14018 if (imm == et.size)
14019 {
14020 /* Maximum shift variant. */
88714cb8 14021 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14022 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14023 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14024 inst.instruction |= LOW4 (inst.operands[1].reg);
14025 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14026 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14027
88714cb8 14028 neon_dp_fixup (&inst);
5287ad62
JB
14029 }
14030 else
14031 {
14032 /* A more-specific type check for non-max versions. */
14033 et = neon_check_type (2, NS_QDI,
14034 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14035 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14036 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14037 }
14038}
14039
037e8744 14040/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14041 the current instruction is. */
14042
14043static int
14044neon_cvt_flavour (enum neon_shape rs)
14045{
037e8744
JB
14046#define CVT_VAR(C,X,Y) \
14047 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14048 if (et.type != NT_invtype) \
14049 { \
14050 inst.error = NULL; \
14051 return (C); \
5287ad62
JB
14052 }
14053 struct neon_type_el et;
037e8744
JB
14054 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14055 || rs == NS_FF) ? N_VFP : 0;
14056 /* The instruction versions which take an immediate take one register
14057 argument, which is extended to the width of the full register. Thus the
14058 "source" and "destination" registers must have the same width. Hack that
14059 here by making the size equal to the key (wider, in this case) operand. */
14060 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14061
5287ad62
JB
14062 CVT_VAR (0, N_S32, N_F32);
14063 CVT_VAR (1, N_U32, N_F32);
14064 CVT_VAR (2, N_F32, N_S32);
14065 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
14066 /* Half-precision conversions. */
14067 CVT_VAR (4, N_F32, N_F16);
14068 CVT_VAR (5, N_F16, N_F32);
5f4273c7 14069
037e8744 14070 whole_reg = N_VFP;
5f4273c7 14071
037e8744 14072 /* VFP instructions. */
8e79c3df
CM
14073 CVT_VAR (6, N_F32, N_F64);
14074 CVT_VAR (7, N_F64, N_F32);
14075 CVT_VAR (8, N_S32, N_F64 | key);
14076 CVT_VAR (9, N_U32, N_F64 | key);
14077 CVT_VAR (10, N_F64 | key, N_S32);
14078 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 14079 /* VFP instructions with bitshift. */
8e79c3df
CM
14080 CVT_VAR (12, N_F32 | key, N_S16);
14081 CVT_VAR (13, N_F32 | key, N_U16);
14082 CVT_VAR (14, N_F64 | key, N_S16);
14083 CVT_VAR (15, N_F64 | key, N_U16);
14084 CVT_VAR (16, N_S16, N_F32 | key);
14085 CVT_VAR (17, N_U16, N_F32 | key);
14086 CVT_VAR (18, N_S16, N_F64 | key);
14087 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 14088
5287ad62
JB
14089 return -1;
14090#undef CVT_VAR
14091}
14092
037e8744
JB
14093/* Neon-syntax VFP conversions. */
14094
5287ad62 14095static void
037e8744 14096do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 14097{
037e8744 14098 const char *opname = 0;
5f4273c7 14099
037e8744 14100 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14101 {
037e8744
JB
14102 /* Conversions with immediate bitshift. */
14103 const char *enc[] =
14104 {
14105 "ftosls",
14106 "ftouls",
14107 "fsltos",
14108 "fultos",
14109 NULL,
14110 NULL,
8e79c3df
CM
14111 NULL,
14112 NULL,
037e8744
JB
14113 "ftosld",
14114 "ftould",
14115 "fsltod",
14116 "fultod",
14117 "fshtos",
14118 "fuhtos",
14119 "fshtod",
14120 "fuhtod",
14121 "ftoshs",
14122 "ftouhs",
14123 "ftoshd",
14124 "ftouhd"
14125 };
14126
14127 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14128 {
14129 opname = enc[flavour];
14130 constraint (inst.operands[0].reg != inst.operands[1].reg,
14131 _("operands 0 and 1 must be the same register"));
14132 inst.operands[1] = inst.operands[2];
14133 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14134 }
5287ad62
JB
14135 }
14136 else
14137 {
037e8744
JB
14138 /* Conversions without bitshift. */
14139 const char *enc[] =
14140 {
14141 "ftosis",
14142 "ftouis",
14143 "fsitos",
14144 "fuitos",
8e79c3df
CM
14145 "NULL",
14146 "NULL",
037e8744
JB
14147 "fcvtsd",
14148 "fcvtds",
14149 "ftosid",
14150 "ftouid",
14151 "fsitod",
14152 "fuitod"
14153 };
14154
14155 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14156 opname = enc[flavour];
14157 }
14158
14159 if (opname)
14160 do_vfp_nsyn_opcode (opname);
14161}
14162
14163static void
14164do_vfp_nsyn_cvtz (void)
14165{
14166 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14167 int flavour = neon_cvt_flavour (rs);
14168 const char *enc[] =
14169 {
14170 "ftosizs",
14171 "ftouizs",
14172 NULL,
14173 NULL,
14174 NULL,
14175 NULL,
8e79c3df
CM
14176 NULL,
14177 NULL,
037e8744
JB
14178 "ftosizd",
14179 "ftouizd"
14180 };
14181
14182 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14183 do_vfp_nsyn_opcode (enc[flavour]);
14184}
f31fef98 14185
037e8744 14186static void
e3e535bc 14187do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14188{
14189 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14190 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14191 int flavour = neon_cvt_flavour (rs);
14192
e3e535bc
NC
14193 /* PR11109: Handle round-to-zero for VCVT conversions. */
14194 if (round_to_zero
14195 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14196 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14197 && (rs == NS_FD || rs == NS_FF))
14198 {
14199 do_vfp_nsyn_cvtz ();
14200 return;
14201 }
14202
037e8744 14203 /* VFP rather than Neon conversions. */
8e79c3df 14204 if (flavour >= 6)
037e8744
JB
14205 {
14206 do_vfp_nsyn_cvt (rs, flavour);
14207 return;
14208 }
14209
14210 switch (rs)
14211 {
14212 case NS_DDI:
14213 case NS_QQI:
14214 {
35997600
NC
14215 unsigned immbits;
14216 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14217
037e8744
JB
14218 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14219 return;
14220
14221 /* Fixed-point conversion with #0 immediate is encoded as an
14222 integer conversion. */
14223 if (inst.operands[2].present && inst.operands[2].imm == 0)
14224 goto int_encode;
35997600 14225 immbits = 32 - inst.operands[2].imm;
88714cb8 14226 NEON_ENCODE (IMMED, inst);
037e8744
JB
14227 if (flavour != -1)
14228 inst.instruction |= enctab[flavour];
14229 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14230 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14231 inst.instruction |= LOW4 (inst.operands[1].reg);
14232 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14233 inst.instruction |= neon_quad (rs) << 6;
14234 inst.instruction |= 1 << 21;
14235 inst.instruction |= immbits << 16;
14236
88714cb8 14237 neon_dp_fixup (&inst);
037e8744
JB
14238 }
14239 break;
14240
14241 case NS_DD:
14242 case NS_QQ:
14243 int_encode:
14244 {
14245 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14246
88714cb8 14247 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14248
14249 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14250 return;
14251
14252 if (flavour != -1)
14253 inst.instruction |= enctab[flavour];
14254
14255 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14256 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14257 inst.instruction |= LOW4 (inst.operands[1].reg);
14258 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14259 inst.instruction |= neon_quad (rs) << 6;
14260 inst.instruction |= 2 << 18;
14261
88714cb8 14262 neon_dp_fixup (&inst);
037e8744
JB
14263 }
14264 break;
14265
8e79c3df
CM
14266 /* Half-precision conversions for Advanced SIMD -- neon. */
14267 case NS_QD:
14268 case NS_DQ:
14269
14270 if ((rs == NS_DQ)
14271 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14272 {
14273 as_bad (_("operand size must match register width"));
14274 break;
14275 }
14276
14277 if ((rs == NS_QD)
14278 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14279 {
14280 as_bad (_("operand size must match register width"));
14281 break;
14282 }
14283
14284 if (rs == NS_DQ)
14285 inst.instruction = 0x3b60600;
14286 else
14287 inst.instruction = 0x3b60700;
14288
14289 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14290 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14291 inst.instruction |= LOW4 (inst.operands[1].reg);
14292 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14293 neon_dp_fixup (&inst);
8e79c3df
CM
14294 break;
14295
037e8744
JB
14296 default:
14297 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14298 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14299 }
5287ad62
JB
14300}
14301
e3e535bc
NC
14302static void
14303do_neon_cvtr (void)
14304{
14305 do_neon_cvt_1 (FALSE);
14306}
14307
14308static void
14309do_neon_cvt (void)
14310{
14311 do_neon_cvt_1 (TRUE);
14312}
14313
8e79c3df
CM
14314static void
14315do_neon_cvtb (void)
14316{
14317 inst.instruction = 0xeb20a40;
14318
14319 /* The sizes are attached to the mnemonic. */
14320 if (inst.vectype.el[0].type != NT_invtype
14321 && inst.vectype.el[0].size == 16)
14322 inst.instruction |= 0x00010000;
14323
14324 /* Programmer's syntax: the sizes are attached to the operands. */
14325 else if (inst.operands[0].vectype.type != NT_invtype
14326 && inst.operands[0].vectype.size == 16)
14327 inst.instruction |= 0x00010000;
14328
14329 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14330 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14331 do_vfp_cond_or_thumb ();
14332}
14333
14334
14335static void
14336do_neon_cvtt (void)
14337{
14338 do_neon_cvtb ();
14339 inst.instruction |= 0x80;
14340}
14341
5287ad62
JB
14342static void
14343neon_move_immediate (void)
14344{
037e8744
JB
14345 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14346 struct neon_type_el et = neon_check_type (2, rs,
14347 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14348 unsigned immlo, immhi = 0, immbits;
c96612cc 14349 int op, cmode, float_p;
5287ad62 14350
037e8744
JB
14351 constraint (et.type == NT_invtype,
14352 _("operand size must be specified for immediate VMOV"));
14353
5287ad62
JB
14354 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14355 op = (inst.instruction & (1 << 5)) != 0;
14356
14357 immlo = inst.operands[1].imm;
14358 if (inst.operands[1].regisimm)
14359 immhi = inst.operands[1].reg;
14360
14361 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14362 _("immediate has bits set outside the operand size"));
14363
c96612cc
JB
14364 float_p = inst.operands[1].immisfloat;
14365
14366 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14367 et.size, et.type)) == FAIL)
5287ad62
JB
14368 {
14369 /* Invert relevant bits only. */
14370 neon_invert_size (&immlo, &immhi, et.size);
14371 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14372 with one or the other; those cases are caught by
14373 neon_cmode_for_move_imm. */
14374 op = !op;
c96612cc
JB
14375 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14376 &op, et.size, et.type)) == FAIL)
5287ad62 14377 {
dcbf9037 14378 first_error (_("immediate out of range"));
5287ad62
JB
14379 return;
14380 }
14381 }
14382
14383 inst.instruction &= ~(1 << 5);
14384 inst.instruction |= op << 5;
14385
14386 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14387 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14388 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14389 inst.instruction |= cmode << 8;
14390
14391 neon_write_immbits (immbits);
14392}
14393
14394static void
14395do_neon_mvn (void)
14396{
14397 if (inst.operands[1].isreg)
14398 {
037e8744 14399 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14400
88714cb8 14401 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14402 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14403 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14404 inst.instruction |= LOW4 (inst.operands[1].reg);
14405 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14406 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14407 }
14408 else
14409 {
88714cb8 14410 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14411 neon_move_immediate ();
14412 }
14413
88714cb8 14414 neon_dp_fixup (&inst);
5287ad62
JB
14415}
14416
14417/* Encode instructions of form:
14418
14419 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14420 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14421
14422static void
14423neon_mixed_length (struct neon_type_el et, unsigned size)
14424{
14425 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14426 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14427 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14428 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14429 inst.instruction |= LOW4 (inst.operands[2].reg);
14430 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14431 inst.instruction |= (et.type == NT_unsigned) << 24;
14432 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14433
88714cb8 14434 neon_dp_fixup (&inst);
5287ad62
JB
14435}
14436
14437static void
14438do_neon_dyadic_long (void)
14439{
14440 /* FIXME: Type checking for lengthening op. */
14441 struct neon_type_el et = neon_check_type (3, NS_QDD,
14442 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14443 neon_mixed_length (et, et.size);
14444}
14445
14446static void
14447do_neon_abal (void)
14448{
14449 struct neon_type_el et = neon_check_type (3, NS_QDD,
14450 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14451 neon_mixed_length (et, et.size);
14452}
14453
14454static void
14455neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14456{
14457 if (inst.operands[2].isscalar)
14458 {
dcbf9037
JB
14459 struct neon_type_el et = neon_check_type (3, NS_QDS,
14460 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14461 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14462 neon_mul_mac (et, et.type == NT_unsigned);
14463 }
14464 else
14465 {
14466 struct neon_type_el et = neon_check_type (3, NS_QDD,
14467 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14468 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14469 neon_mixed_length (et, et.size);
14470 }
14471}
14472
14473static void
14474do_neon_mac_maybe_scalar_long (void)
14475{
14476 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14477}
14478
14479static void
14480do_neon_dyadic_wide (void)
14481{
14482 struct neon_type_el et = neon_check_type (3, NS_QQD,
14483 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14484 neon_mixed_length (et, et.size);
14485}
14486
14487static void
14488do_neon_dyadic_narrow (void)
14489{
14490 struct neon_type_el et = neon_check_type (3, NS_QDD,
14491 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14492 /* Operand sign is unimportant, and the U bit is part of the opcode,
14493 so force the operand type to integer. */
14494 et.type = NT_integer;
5287ad62
JB
14495 neon_mixed_length (et, et.size / 2);
14496}
14497
14498static void
14499do_neon_mul_sat_scalar_long (void)
14500{
14501 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14502}
14503
14504static void
14505do_neon_vmull (void)
14506{
14507 if (inst.operands[2].isscalar)
14508 do_neon_mac_maybe_scalar_long ();
14509 else
14510 {
14511 struct neon_type_el et = neon_check_type (3, NS_QDD,
14512 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14513 if (et.type == NT_poly)
88714cb8 14514 NEON_ENCODE (POLY, inst);
5287ad62 14515 else
88714cb8 14516 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14517 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14518 zero. Should be OK as-is. */
14519 neon_mixed_length (et, et.size);
14520 }
14521}
14522
14523static void
14524do_neon_ext (void)
14525{
037e8744 14526 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14527 struct neon_type_el et = neon_check_type (3, rs,
14528 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14529 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14530
14531 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14532 _("shift out of range"));
5287ad62
JB
14533 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14534 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14535 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14536 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14537 inst.instruction |= LOW4 (inst.operands[2].reg);
14538 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14539 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14540 inst.instruction |= imm << 8;
5f4273c7 14541
88714cb8 14542 neon_dp_fixup (&inst);
5287ad62
JB
14543}
14544
14545static void
14546do_neon_rev (void)
14547{
037e8744 14548 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14549 struct neon_type_el et = neon_check_type (2, rs,
14550 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14551 unsigned op = (inst.instruction >> 7) & 3;
14552 /* N (width of reversed regions) is encoded as part of the bitmask. We
14553 extract it here to check the elements to be reversed are smaller.
14554 Otherwise we'd get a reserved instruction. */
14555 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14556 gas_assert (elsize != 0);
5287ad62
JB
14557 constraint (et.size >= elsize,
14558 _("elements must be smaller than reversal region"));
037e8744 14559 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14560}
14561
14562static void
14563do_neon_dup (void)
14564{
14565 if (inst.operands[1].isscalar)
14566 {
037e8744 14567 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14568 struct neon_type_el et = neon_check_type (2, rs,
14569 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14570 unsigned sizebits = et.size >> 3;
dcbf9037 14571 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14572 int logsize = neon_logbits (et.size);
dcbf9037 14573 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14574
14575 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14576 return;
14577
88714cb8 14578 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14579 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14580 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14581 inst.instruction |= LOW4 (dm);
14582 inst.instruction |= HI1 (dm) << 5;
037e8744 14583 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14584 inst.instruction |= x << 17;
14585 inst.instruction |= sizebits << 16;
5f4273c7 14586
88714cb8 14587 neon_dp_fixup (&inst);
5287ad62
JB
14588 }
14589 else
14590 {
037e8744
JB
14591 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14592 struct neon_type_el et = neon_check_type (2, rs,
14593 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14594 /* Duplicate ARM register to lanes of vector. */
88714cb8 14595 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14596 switch (et.size)
14597 {
14598 case 8: inst.instruction |= 0x400000; break;
14599 case 16: inst.instruction |= 0x000020; break;
14600 case 32: inst.instruction |= 0x000000; break;
14601 default: break;
14602 }
14603 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14604 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14605 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14606 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14607 /* The encoding for this instruction is identical for the ARM and Thumb
14608 variants, except for the condition field. */
037e8744 14609 do_vfp_cond_or_thumb ();
5287ad62
JB
14610 }
14611}
14612
14613/* VMOV has particularly many variations. It can be one of:
14614 0. VMOV<c><q> <Qd>, <Qm>
14615 1. VMOV<c><q> <Dd>, <Dm>
14616 (Register operations, which are VORR with Rm = Rn.)
14617 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14618 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14619 (Immediate loads.)
14620 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14621 (ARM register to scalar.)
14622 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14623 (Two ARM registers to vector.)
14624 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14625 (Scalar to ARM register.)
14626 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14627 (Vector to two ARM registers.)
037e8744
JB
14628 8. VMOV.F32 <Sd>, <Sm>
14629 9. VMOV.F64 <Dd>, <Dm>
14630 (VFP register moves.)
14631 10. VMOV.F32 <Sd>, #imm
14632 11. VMOV.F64 <Dd>, #imm
14633 (VFP float immediate load.)
14634 12. VMOV <Rd>, <Sm>
14635 (VFP single to ARM reg.)
14636 13. VMOV <Sd>, <Rm>
14637 (ARM reg to VFP single.)
14638 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14639 (Two ARM regs to two VFP singles.)
14640 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14641 (Two VFP singles to two ARM regs.)
5f4273c7 14642
037e8744
JB
14643 These cases can be disambiguated using neon_select_shape, except cases 1/9
14644 and 3/11 which depend on the operand type too.
5f4273c7 14645
5287ad62 14646 All the encoded bits are hardcoded by this function.
5f4273c7 14647
b7fc2769
JB
14648 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14649 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14650
5287ad62 14651 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14652 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14653
14654static void
14655do_neon_mov (void)
14656{
037e8744
JB
14657 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14658 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14659 NS_NULL);
14660 struct neon_type_el et;
14661 const char *ldconst = 0;
5287ad62 14662
037e8744 14663 switch (rs)
5287ad62 14664 {
037e8744
JB
14665 case NS_DD: /* case 1/9. */
14666 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14667 /* It is not an error here if no type is given. */
14668 inst.error = NULL;
14669 if (et.type == NT_float && et.size == 64)
5287ad62 14670 {
037e8744
JB
14671 do_vfp_nsyn_opcode ("fcpyd");
14672 break;
5287ad62 14673 }
037e8744 14674 /* fall through. */
5287ad62 14675
037e8744
JB
14676 case NS_QQ: /* case 0/1. */
14677 {
14678 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14679 return;
14680 /* The architecture manual I have doesn't explicitly state which
14681 value the U bit should have for register->register moves, but
14682 the equivalent VORR instruction has U = 0, so do that. */
14683 inst.instruction = 0x0200110;
14684 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14685 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14686 inst.instruction |= LOW4 (inst.operands[1].reg);
14687 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14688 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14689 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14690 inst.instruction |= neon_quad (rs) << 6;
14691
88714cb8 14692 neon_dp_fixup (&inst);
037e8744
JB
14693 }
14694 break;
5f4273c7 14695
037e8744
JB
14696 case NS_DI: /* case 3/11. */
14697 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14698 inst.error = NULL;
14699 if (et.type == NT_float && et.size == 64)
5287ad62 14700 {
037e8744
JB
14701 /* case 11 (fconstd). */
14702 ldconst = "fconstd";
14703 goto encode_fconstd;
5287ad62 14704 }
037e8744
JB
14705 /* fall through. */
14706
14707 case NS_QI: /* case 2/3. */
14708 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14709 return;
14710 inst.instruction = 0x0800010;
14711 neon_move_immediate ();
88714cb8 14712 neon_dp_fixup (&inst);
5287ad62 14713 break;
5f4273c7 14714
037e8744
JB
14715 case NS_SR: /* case 4. */
14716 {
14717 unsigned bcdebits = 0;
91d6fa6a 14718 int logsize;
037e8744
JB
14719 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14720 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14721
91d6fa6a
NC
14722 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14723 logsize = neon_logbits (et.size);
14724
037e8744
JB
14725 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14726 _(BAD_FPU));
14727 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14728 && et.size != 32, _(BAD_FPU));
14729 constraint (et.type == NT_invtype, _("bad type for scalar"));
14730 constraint (x >= 64 / et.size, _("scalar index out of range"));
14731
14732 switch (et.size)
14733 {
14734 case 8: bcdebits = 0x8; break;
14735 case 16: bcdebits = 0x1; break;
14736 case 32: bcdebits = 0x0; break;
14737 default: ;
14738 }
14739
14740 bcdebits |= x << logsize;
14741
14742 inst.instruction = 0xe000b10;
14743 do_vfp_cond_or_thumb ();
14744 inst.instruction |= LOW4 (dn) << 16;
14745 inst.instruction |= HI1 (dn) << 7;
14746 inst.instruction |= inst.operands[1].reg << 12;
14747 inst.instruction |= (bcdebits & 3) << 5;
14748 inst.instruction |= (bcdebits >> 2) << 21;
14749 }
14750 break;
5f4273c7 14751
037e8744 14752 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14753 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14754 _(BAD_FPU));
b7fc2769 14755
037e8744
JB
14756 inst.instruction = 0xc400b10;
14757 do_vfp_cond_or_thumb ();
14758 inst.instruction |= LOW4 (inst.operands[0].reg);
14759 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14760 inst.instruction |= inst.operands[1].reg << 12;
14761 inst.instruction |= inst.operands[2].reg << 16;
14762 break;
5f4273c7 14763
037e8744
JB
14764 case NS_RS: /* case 6. */
14765 {
91d6fa6a 14766 unsigned logsize;
037e8744
JB
14767 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14768 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14769 unsigned abcdebits = 0;
14770
91d6fa6a
NC
14771 et = neon_check_type (2, NS_NULL,
14772 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14773 logsize = neon_logbits (et.size);
14774
037e8744
JB
14775 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14776 _(BAD_FPU));
14777 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14778 && et.size != 32, _(BAD_FPU));
14779 constraint (et.type == NT_invtype, _("bad type for scalar"));
14780 constraint (x >= 64 / et.size, _("scalar index out of range"));
14781
14782 switch (et.size)
14783 {
14784 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14785 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14786 case 32: abcdebits = 0x00; break;
14787 default: ;
14788 }
14789
14790 abcdebits |= x << logsize;
14791 inst.instruction = 0xe100b10;
14792 do_vfp_cond_or_thumb ();
14793 inst.instruction |= LOW4 (dn) << 16;
14794 inst.instruction |= HI1 (dn) << 7;
14795 inst.instruction |= inst.operands[0].reg << 12;
14796 inst.instruction |= (abcdebits & 3) << 5;
14797 inst.instruction |= (abcdebits >> 2) << 21;
14798 }
14799 break;
5f4273c7 14800
037e8744
JB
14801 case NS_RRD: /* case 7 (fmrrd). */
14802 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14803 _(BAD_FPU));
14804
14805 inst.instruction = 0xc500b10;
14806 do_vfp_cond_or_thumb ();
14807 inst.instruction |= inst.operands[0].reg << 12;
14808 inst.instruction |= inst.operands[1].reg << 16;
14809 inst.instruction |= LOW4 (inst.operands[2].reg);
14810 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14811 break;
5f4273c7 14812
037e8744
JB
14813 case NS_FF: /* case 8 (fcpys). */
14814 do_vfp_nsyn_opcode ("fcpys");
14815 break;
5f4273c7 14816
037e8744
JB
14817 case NS_FI: /* case 10 (fconsts). */
14818 ldconst = "fconsts";
14819 encode_fconstd:
14820 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14821 {
037e8744
JB
14822 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14823 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14824 }
14825 else
037e8744
JB
14826 first_error (_("immediate out of range"));
14827 break;
5f4273c7 14828
037e8744
JB
14829 case NS_RF: /* case 12 (fmrs). */
14830 do_vfp_nsyn_opcode ("fmrs");
14831 break;
5f4273c7 14832
037e8744
JB
14833 case NS_FR: /* case 13 (fmsr). */
14834 do_vfp_nsyn_opcode ("fmsr");
14835 break;
5f4273c7 14836
037e8744
JB
14837 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14838 (one of which is a list), but we have parsed four. Do some fiddling to
14839 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14840 expect. */
14841 case NS_RRFF: /* case 14 (fmrrs). */
14842 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14843 _("VFP registers must be adjacent"));
14844 inst.operands[2].imm = 2;
14845 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14846 do_vfp_nsyn_opcode ("fmrrs");
14847 break;
5f4273c7 14848
037e8744
JB
14849 case NS_FFRR: /* case 15 (fmsrr). */
14850 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14851 _("VFP registers must be adjacent"));
14852 inst.operands[1] = inst.operands[2];
14853 inst.operands[2] = inst.operands[3];
14854 inst.operands[0].imm = 2;
14855 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14856 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14857 break;
5f4273c7 14858
5287ad62
JB
14859 default:
14860 abort ();
14861 }
14862}
14863
14864static void
14865do_neon_rshift_round_imm (void)
14866{
037e8744 14867 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14868 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14869 int imm = inst.operands[2].imm;
14870
14871 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14872 if (imm == 0)
14873 {
14874 inst.operands[2].present = 0;
14875 do_neon_mov ();
14876 return;
14877 }
14878
14879 constraint (imm < 1 || (unsigned)imm > et.size,
14880 _("immediate out of range for shift"));
037e8744 14881 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14882 et.size - imm);
14883}
14884
14885static void
14886do_neon_movl (void)
14887{
14888 struct neon_type_el et = neon_check_type (2, NS_QD,
14889 N_EQK | N_DBL, N_SU_32 | N_KEY);
14890 unsigned sizebits = et.size >> 3;
14891 inst.instruction |= sizebits << 19;
14892 neon_two_same (0, et.type == NT_unsigned, -1);
14893}
14894
14895static void
14896do_neon_trn (void)
14897{
037e8744 14898 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14899 struct neon_type_el et = neon_check_type (2, rs,
14900 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14901 NEON_ENCODE (INTEGER, inst);
037e8744 14902 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14903}
14904
14905static void
14906do_neon_zip_uzp (void)
14907{
037e8744 14908 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14909 struct neon_type_el et = neon_check_type (2, rs,
14910 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14911 if (rs == NS_DD && et.size == 32)
14912 {
14913 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14914 inst.instruction = N_MNEM_vtrn;
14915 do_neon_trn ();
14916 return;
14917 }
037e8744 14918 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14919}
14920
14921static void
14922do_neon_sat_abs_neg (void)
14923{
037e8744 14924 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14925 struct neon_type_el et = neon_check_type (2, rs,
14926 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14927 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14928}
14929
14930static void
14931do_neon_pair_long (void)
14932{
037e8744 14933 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14934 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14935 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14936 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 14937 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14938}
14939
14940static void
14941do_neon_recip_est (void)
14942{
037e8744 14943 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14944 struct neon_type_el et = neon_check_type (2, rs,
14945 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14946 inst.instruction |= (et.type == NT_float) << 8;
037e8744 14947 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14948}
14949
14950static void
14951do_neon_cls (void)
14952{
037e8744 14953 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14954 struct neon_type_el et = neon_check_type (2, rs,
14955 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14956 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14957}
14958
14959static void
14960do_neon_clz (void)
14961{
037e8744 14962 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14963 struct neon_type_el et = neon_check_type (2, rs,
14964 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 14965 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14966}
14967
14968static void
14969do_neon_cnt (void)
14970{
037e8744 14971 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14972 struct neon_type_el et = neon_check_type (2, rs,
14973 N_EQK | N_INT, N_8 | N_KEY);
037e8744 14974 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14975}
14976
14977static void
14978do_neon_swp (void)
14979{
037e8744
JB
14980 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14981 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
14982}
14983
14984static void
14985do_neon_tbl_tbx (void)
14986{
14987 unsigned listlenbits;
dcbf9037 14988 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 14989
5287ad62
JB
14990 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14991 {
dcbf9037 14992 first_error (_("bad list length for table lookup"));
5287ad62
JB
14993 return;
14994 }
5f4273c7 14995
5287ad62
JB
14996 listlenbits = inst.operands[1].imm - 1;
14997 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14998 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14999 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15000 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15001 inst.instruction |= LOW4 (inst.operands[2].reg);
15002 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15003 inst.instruction |= listlenbits << 8;
5f4273c7 15004
88714cb8 15005 neon_dp_fixup (&inst);
5287ad62
JB
15006}
15007
15008static void
15009do_neon_ldm_stm (void)
15010{
15011 /* P, U and L bits are part of bitmask. */
15012 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15013 unsigned offsetbits = inst.operands[1].imm * 2;
15014
037e8744
JB
15015 if (inst.operands[1].issingle)
15016 {
15017 do_vfp_nsyn_ldm_stm (is_dbmode);
15018 return;
15019 }
15020
5287ad62
JB
15021 constraint (is_dbmode && !inst.operands[0].writeback,
15022 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15023
15024 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15025 _("register list must contain at least 1 and at most 16 "
15026 "registers"));
15027
15028 inst.instruction |= inst.operands[0].reg << 16;
15029 inst.instruction |= inst.operands[0].writeback << 21;
15030 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15031 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15032
15033 inst.instruction |= offsetbits;
5f4273c7 15034
037e8744 15035 do_vfp_cond_or_thumb ();
5287ad62
JB
15036}
15037
15038static void
15039do_neon_ldr_str (void)
15040{
5287ad62 15041 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15042
6844b2c2
MGD
15043 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15044 And is UNPREDICTABLE in thumb mode. */
15045 if (!is_ldr
15046 && inst.operands[1].reg == REG_PC
15047 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15048 {
15049 if (!thumb_mode && warn_on_deprecated)
15050 as_warn (_("Use of PC here is deprecated"));
15051 else
15052 inst.error = _("Use of PC here is UNPREDICTABLE");
15053 }
15054
037e8744
JB
15055 if (inst.operands[0].issingle)
15056 {
cd2f129f
JB
15057 if (is_ldr)
15058 do_vfp_nsyn_opcode ("flds");
15059 else
15060 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15061 }
15062 else
5287ad62 15063 {
cd2f129f
JB
15064 if (is_ldr)
15065 do_vfp_nsyn_opcode ("fldd");
5287ad62 15066 else
cd2f129f 15067 do_vfp_nsyn_opcode ("fstd");
5287ad62 15068 }
5287ad62
JB
15069}
15070
15071/* "interleave" version also handles non-interleaving register VLD1/VST1
15072 instructions. */
15073
15074static void
15075do_neon_ld_st_interleave (void)
15076{
037e8744 15077 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15078 N_8 | N_16 | N_32 | N_64);
15079 unsigned alignbits = 0;
15080 unsigned idx;
15081 /* The bits in this table go:
15082 0: register stride of one (0) or two (1)
15083 1,2: register list length, minus one (1, 2, 3, 4).
15084 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15085 We use -1 for invalid entries. */
15086 const int typetable[] =
15087 {
15088 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15089 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15090 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15091 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15092 };
15093 int typebits;
15094
dcbf9037
JB
15095 if (et.type == NT_invtype)
15096 return;
15097
5287ad62
JB
15098 if (inst.operands[1].immisalign)
15099 switch (inst.operands[1].imm >> 8)
15100 {
15101 case 64: alignbits = 1; break;
15102 case 128:
e23c0ad8
JZ
15103 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15104 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15105 goto bad_alignment;
15106 alignbits = 2;
15107 break;
15108 case 256:
e23c0ad8 15109 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15110 goto bad_alignment;
15111 alignbits = 3;
15112 break;
15113 default:
15114 bad_alignment:
dcbf9037 15115 first_error (_("bad alignment"));
5287ad62
JB
15116 return;
15117 }
15118
15119 inst.instruction |= alignbits << 4;
15120 inst.instruction |= neon_logbits (et.size) << 6;
15121
15122 /* Bits [4:6] of the immediate in a list specifier encode register stride
15123 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15124 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15125 up the right value for "type" in a table based on this value and the given
15126 list style, then stick it back. */
15127 idx = ((inst.operands[0].imm >> 4) & 7)
15128 | (((inst.instruction >> 8) & 3) << 3);
15129
15130 typebits = typetable[idx];
5f4273c7 15131
5287ad62
JB
15132 constraint (typebits == -1, _("bad list type for instruction"));
15133
15134 inst.instruction &= ~0xf00;
15135 inst.instruction |= typebits << 8;
15136}
15137
15138/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15139 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15140 otherwise. The variable arguments are a list of pairs of legal (size, align)
15141 values, terminated with -1. */
15142
15143static int
15144neon_alignment_bit (int size, int align, int *do_align, ...)
15145{
15146 va_list ap;
15147 int result = FAIL, thissize, thisalign;
5f4273c7 15148
5287ad62
JB
15149 if (!inst.operands[1].immisalign)
15150 {
15151 *do_align = 0;
15152 return SUCCESS;
15153 }
5f4273c7 15154
5287ad62
JB
15155 va_start (ap, do_align);
15156
15157 do
15158 {
15159 thissize = va_arg (ap, int);
15160 if (thissize == -1)
15161 break;
15162 thisalign = va_arg (ap, int);
15163
15164 if (size == thissize && align == thisalign)
15165 result = SUCCESS;
15166 }
15167 while (result != SUCCESS);
15168
15169 va_end (ap);
15170
15171 if (result == SUCCESS)
15172 *do_align = 1;
15173 else
dcbf9037 15174 first_error (_("unsupported alignment for instruction"));
5f4273c7 15175
5287ad62
JB
15176 return result;
15177}
15178
15179static void
15180do_neon_ld_st_lane (void)
15181{
037e8744 15182 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15183 int align_good, do_align = 0;
15184 int logsize = neon_logbits (et.size);
15185 int align = inst.operands[1].imm >> 8;
15186 int n = (inst.instruction >> 8) & 3;
15187 int max_el = 64 / et.size;
5f4273c7 15188
dcbf9037
JB
15189 if (et.type == NT_invtype)
15190 return;
5f4273c7 15191
5287ad62
JB
15192 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15193 _("bad list length"));
15194 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15195 _("scalar index out of range"));
15196 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15197 && et.size == 8,
15198 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15199
5287ad62
JB
15200 switch (n)
15201 {
15202 case 0: /* VLD1 / VST1. */
15203 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15204 32, 32, -1);
15205 if (align_good == FAIL)
15206 return;
15207 if (do_align)
15208 {
15209 unsigned alignbits = 0;
15210 switch (et.size)
15211 {
15212 case 16: alignbits = 0x1; break;
15213 case 32: alignbits = 0x3; break;
15214 default: ;
15215 }
15216 inst.instruction |= alignbits << 4;
15217 }
15218 break;
15219
15220 case 1: /* VLD2 / VST2. */
15221 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15222 32, 64, -1);
15223 if (align_good == FAIL)
15224 return;
15225 if (do_align)
15226 inst.instruction |= 1 << 4;
15227 break;
15228
15229 case 2: /* VLD3 / VST3. */
15230 constraint (inst.operands[1].immisalign,
15231 _("can't use alignment with this instruction"));
15232 break;
15233
15234 case 3: /* VLD4 / VST4. */
15235 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15236 16, 64, 32, 64, 32, 128, -1);
15237 if (align_good == FAIL)
15238 return;
15239 if (do_align)
15240 {
15241 unsigned alignbits = 0;
15242 switch (et.size)
15243 {
15244 case 8: alignbits = 0x1; break;
15245 case 16: alignbits = 0x1; break;
15246 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15247 default: ;
15248 }
15249 inst.instruction |= alignbits << 4;
15250 }
15251 break;
15252
15253 default: ;
15254 }
15255
15256 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15257 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15258 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15259
5287ad62
JB
15260 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15261 inst.instruction |= logsize << 10;
15262}
15263
15264/* Encode single n-element structure to all lanes VLD<n> instructions. */
15265
15266static void
15267do_neon_ld_dup (void)
15268{
037e8744 15269 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15270 int align_good, do_align = 0;
15271
dcbf9037
JB
15272 if (et.type == NT_invtype)
15273 return;
15274
5287ad62
JB
15275 switch ((inst.instruction >> 8) & 3)
15276 {
15277 case 0: /* VLD1. */
9c2799c2 15278 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15279 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15280 &do_align, 16, 16, 32, 32, -1);
15281 if (align_good == FAIL)
15282 return;
15283 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15284 {
15285 case 1: break;
15286 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15287 default: first_error (_("bad list length")); return;
5287ad62
JB
15288 }
15289 inst.instruction |= neon_logbits (et.size) << 6;
15290 break;
15291
15292 case 1: /* VLD2. */
15293 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15294 &do_align, 8, 16, 16, 32, 32, 64, -1);
15295 if (align_good == FAIL)
15296 return;
15297 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15298 _("bad list length"));
15299 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15300 inst.instruction |= 1 << 5;
15301 inst.instruction |= neon_logbits (et.size) << 6;
15302 break;
15303
15304 case 2: /* VLD3. */
15305 constraint (inst.operands[1].immisalign,
15306 _("can't use alignment with this instruction"));
15307 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15308 _("bad list length"));
15309 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15310 inst.instruction |= 1 << 5;
15311 inst.instruction |= neon_logbits (et.size) << 6;
15312 break;
15313
15314 case 3: /* VLD4. */
15315 {
15316 int align = inst.operands[1].imm >> 8;
15317 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15318 16, 64, 32, 64, 32, 128, -1);
15319 if (align_good == FAIL)
15320 return;
15321 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15322 _("bad list length"));
15323 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15324 inst.instruction |= 1 << 5;
15325 if (et.size == 32 && align == 128)
15326 inst.instruction |= 0x3 << 6;
15327 else
15328 inst.instruction |= neon_logbits (et.size) << 6;
15329 }
15330 break;
15331
15332 default: ;
15333 }
15334
15335 inst.instruction |= do_align << 4;
15336}
15337
15338/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15339 apart from bits [11:4]. */
15340
15341static void
15342do_neon_ldx_stx (void)
15343{
b1a769ed
DG
15344 if (inst.operands[1].isreg)
15345 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15346
5287ad62
JB
15347 switch (NEON_LANE (inst.operands[0].imm))
15348 {
15349 case NEON_INTERLEAVE_LANES:
88714cb8 15350 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15351 do_neon_ld_st_interleave ();
15352 break;
5f4273c7 15353
5287ad62 15354 case NEON_ALL_LANES:
88714cb8 15355 NEON_ENCODE (DUP, inst);
5287ad62
JB
15356 do_neon_ld_dup ();
15357 break;
5f4273c7 15358
5287ad62 15359 default:
88714cb8 15360 NEON_ENCODE (LANE, inst);
5287ad62
JB
15361 do_neon_ld_st_lane ();
15362 }
15363
15364 /* L bit comes from bit mask. */
15365 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15366 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15367 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15368
5287ad62
JB
15369 if (inst.operands[1].postind)
15370 {
15371 int postreg = inst.operands[1].imm & 0xf;
15372 constraint (!inst.operands[1].immisreg,
15373 _("post-index must be a register"));
15374 constraint (postreg == 0xd || postreg == 0xf,
15375 _("bad register for post-index"));
15376 inst.instruction |= postreg;
15377 }
15378 else if (inst.operands[1].writeback)
15379 {
15380 inst.instruction |= 0xd;
15381 }
15382 else
5f4273c7
NC
15383 inst.instruction |= 0xf;
15384
5287ad62
JB
15385 if (thumb_mode)
15386 inst.instruction |= 0xf9000000;
15387 else
15388 inst.instruction |= 0xf4000000;
15389}
5287ad62
JB
15390\f
15391/* Overall per-instruction processing. */
15392
15393/* We need to be able to fix up arbitrary expressions in some statements.
15394 This is so that we can handle symbols that are an arbitrary distance from
15395 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15396 which returns part of an address in a form which will be valid for
15397 a data instruction. We do this by pushing the expression into a symbol
15398 in the expr_section, and creating a fix for that. */
15399
15400static void
15401fix_new_arm (fragS * frag,
15402 int where,
15403 short int size,
15404 expressionS * exp,
15405 int pc_rel,
15406 int reloc)
15407{
15408 fixS * new_fix;
15409
15410 switch (exp->X_op)
15411 {
15412 case O_constant:
15413 case O_symbol:
15414 case O_add:
15415 case O_subtract:
21d799b5
NC
15416 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15417 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15418 break;
15419
15420 default:
21d799b5
NC
15421 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15422 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15423 break;
15424 }
15425
15426 /* Mark whether the fix is to a THUMB instruction, or an ARM
15427 instruction. */
15428 new_fix->tc_fix_data = thumb_mode;
15429}
15430
15431/* Create a frg for an instruction requiring relaxation. */
15432static void
15433output_relax_insn (void)
15434{
15435 char * to;
15436 symbolS *sym;
0110f2b8
PB
15437 int offset;
15438
6e1cb1a6
PB
15439 /* The size of the instruction is unknown, so tie the debug info to the
15440 start of the instruction. */
15441 dwarf2_emit_insn (0);
6e1cb1a6 15442
0110f2b8
PB
15443 switch (inst.reloc.exp.X_op)
15444 {
15445 case O_symbol:
15446 sym = inst.reloc.exp.X_add_symbol;
15447 offset = inst.reloc.exp.X_add_number;
15448 break;
15449 case O_constant:
15450 sym = NULL;
15451 offset = inst.reloc.exp.X_add_number;
15452 break;
15453 default:
15454 sym = make_expr_symbol (&inst.reloc.exp);
15455 offset = 0;
15456 break;
15457 }
15458 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15459 inst.relax, sym, offset, NULL/*offset, opcode*/);
15460 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15461}
15462
15463/* Write a 32-bit thumb instruction to buf. */
15464static void
15465put_thumb32_insn (char * buf, unsigned long insn)
15466{
15467 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15468 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15469}
15470
b99bd4ef 15471static void
c19d1205 15472output_inst (const char * str)
b99bd4ef 15473{
c19d1205 15474 char * to = NULL;
b99bd4ef 15475
c19d1205 15476 if (inst.error)
b99bd4ef 15477 {
c19d1205 15478 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15479 return;
15480 }
5f4273c7
NC
15481 if (inst.relax)
15482 {
15483 output_relax_insn ();
0110f2b8 15484 return;
5f4273c7 15485 }
c19d1205
ZW
15486 if (inst.size == 0)
15487 return;
b99bd4ef 15488
c19d1205 15489 to = frag_more (inst.size);
8dc2430f
NC
15490 /* PR 9814: Record the thumb mode into the current frag so that we know
15491 what type of NOP padding to use, if necessary. We override any previous
15492 setting so that if the mode has changed then the NOPS that we use will
15493 match the encoding of the last instruction in the frag. */
cd000bff 15494 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15495
15496 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15497 {
9c2799c2 15498 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15499 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15500 }
c19d1205 15501 else if (inst.size > INSN_SIZE)
b99bd4ef 15502 {
9c2799c2 15503 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15504 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15505 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15506 }
c19d1205
ZW
15507 else
15508 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15509
c19d1205
ZW
15510 if (inst.reloc.type != BFD_RELOC_UNUSED)
15511 fix_new_arm (frag_now, to - frag_now->fr_literal,
15512 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15513 inst.reloc.type);
b99bd4ef 15514
c19d1205 15515 dwarf2_emit_insn (inst.size);
c19d1205 15516}
b99bd4ef 15517
e07e6e58
NC
15518static char *
15519output_it_inst (int cond, int mask, char * to)
15520{
15521 unsigned long instruction = 0xbf00;
15522
15523 mask &= 0xf;
15524 instruction |= mask;
15525 instruction |= cond << 4;
15526
15527 if (to == NULL)
15528 {
15529 to = frag_more (2);
15530#ifdef OBJ_ELF
15531 dwarf2_emit_insn (2);
15532#endif
15533 }
15534
15535 md_number_to_chars (to, instruction, 2);
15536
15537 return to;
15538}
15539
c19d1205
ZW
15540/* Tag values used in struct asm_opcode's tag field. */
15541enum opcode_tag
15542{
15543 OT_unconditional, /* Instruction cannot be conditionalized.
15544 The ARM condition field is still 0xE. */
15545 OT_unconditionalF, /* Instruction cannot be conditionalized
15546 and carries 0xF in its ARM condition field. */
15547 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15548 OT_csuffixF, /* Some forms of the instruction take a conditional
15549 suffix, others place 0xF where the condition field
15550 would be. */
c19d1205
ZW
15551 OT_cinfix3, /* Instruction takes a conditional infix,
15552 beginning at character index 3. (In
15553 unified mode, it becomes a suffix.) */
088fa78e
KH
15554 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15555 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15556 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15557 character index 3, even in unified mode. Used for
15558 legacy instructions where suffix and infix forms
15559 may be ambiguous. */
c19d1205 15560 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15561 suffix or an infix at character index 3. */
c19d1205
ZW
15562 OT_odd_infix_unc, /* This is the unconditional variant of an
15563 instruction that takes a conditional infix
15564 at an unusual position. In unified mode,
15565 this variant will accept a suffix. */
15566 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15567 are the conditional variants of instructions that
15568 take conditional infixes in unusual positions.
15569 The infix appears at character index
15570 (tag - OT_odd_infix_0). These are not accepted
15571 in unified mode. */
15572};
b99bd4ef 15573
c19d1205
ZW
15574/* Subroutine of md_assemble, responsible for looking up the primary
15575 opcode from the mnemonic the user wrote. STR points to the
15576 beginning of the mnemonic.
15577
15578 This is not simply a hash table lookup, because of conditional
15579 variants. Most instructions have conditional variants, which are
15580 expressed with a _conditional affix_ to the mnemonic. If we were
15581 to encode each conditional variant as a literal string in the opcode
15582 table, it would have approximately 20,000 entries.
15583
15584 Most mnemonics take this affix as a suffix, and in unified syntax,
15585 'most' is upgraded to 'all'. However, in the divided syntax, some
15586 instructions take the affix as an infix, notably the s-variants of
15587 the arithmetic instructions. Of those instructions, all but six
15588 have the infix appear after the third character of the mnemonic.
15589
15590 Accordingly, the algorithm for looking up primary opcodes given
15591 an identifier is:
15592
15593 1. Look up the identifier in the opcode table.
15594 If we find a match, go to step U.
15595
15596 2. Look up the last two characters of the identifier in the
15597 conditions table. If we find a match, look up the first N-2
15598 characters of the identifier in the opcode table. If we
15599 find a match, go to step CE.
15600
15601 3. Look up the fourth and fifth characters of the identifier in
15602 the conditions table. If we find a match, extract those
15603 characters from the identifier, and look up the remaining
15604 characters in the opcode table. If we find a match, go
15605 to step CM.
15606
15607 4. Fail.
15608
15609 U. Examine the tag field of the opcode structure, in case this is
15610 one of the six instructions with its conditional infix in an
15611 unusual place. If it is, the tag tells us where to find the
15612 infix; look it up in the conditions table and set inst.cond
15613 accordingly. Otherwise, this is an unconditional instruction.
15614 Again set inst.cond accordingly. Return the opcode structure.
15615
15616 CE. Examine the tag field to make sure this is an instruction that
15617 should receive a conditional suffix. If it is not, fail.
15618 Otherwise, set inst.cond from the suffix we already looked up,
15619 and return the opcode structure.
15620
15621 CM. Examine the tag field to make sure this is an instruction that
15622 should receive a conditional infix after the third character.
15623 If it is not, fail. Otherwise, undo the edits to the current
15624 line of input and proceed as for case CE. */
15625
15626static const struct asm_opcode *
15627opcode_lookup (char **str)
15628{
15629 char *end, *base;
15630 char *affix;
15631 const struct asm_opcode *opcode;
15632 const struct asm_cond *cond;
e3cb604e 15633 char save[2];
c19d1205
ZW
15634
15635 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15636 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15637 for (base = end = *str; *end != '\0'; end++)
721a8186 15638 if (*end == ' ' || *end == '.')
c19d1205 15639 break;
b99bd4ef 15640
c19d1205 15641 if (end == base)
c921be7d 15642 return NULL;
b99bd4ef 15643
5287ad62 15644 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15645 if (end[0] == '.')
b99bd4ef 15646 {
5287ad62 15647 int offset = 2;
5f4273c7 15648
267d2029
JB
15649 /* The .w and .n suffixes are only valid if the unified syntax is in
15650 use. */
15651 if (unified_syntax && end[1] == 'w')
c19d1205 15652 inst.size_req = 4;
267d2029 15653 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15654 inst.size_req = 2;
15655 else
5287ad62
JB
15656 offset = 0;
15657
15658 inst.vectype.elems = 0;
15659
15660 *str = end + offset;
b99bd4ef 15661
5f4273c7 15662 if (end[offset] == '.')
5287ad62 15663 {
267d2029
JB
15664 /* See if we have a Neon type suffix (possible in either unified or
15665 non-unified ARM syntax mode). */
dcbf9037 15666 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15667 return NULL;
5287ad62
JB
15668 }
15669 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15670 return NULL;
b99bd4ef 15671 }
c19d1205
ZW
15672 else
15673 *str = end;
b99bd4ef 15674
c19d1205 15675 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15676 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15677 end - base);
c19d1205 15678 if (opcode)
b99bd4ef 15679 {
c19d1205
ZW
15680 /* step U */
15681 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15682 {
c19d1205
ZW
15683 inst.cond = COND_ALWAYS;
15684 return opcode;
b99bd4ef 15685 }
b99bd4ef 15686
278df34e 15687 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15688 as_warn (_("conditional infixes are deprecated in unified syntax"));
15689 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15690 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15691 gas_assert (cond);
b99bd4ef 15692
c19d1205
ZW
15693 inst.cond = cond->value;
15694 return opcode;
15695 }
b99bd4ef 15696
c19d1205
ZW
15697 /* Cannot have a conditional suffix on a mnemonic of less than two
15698 characters. */
15699 if (end - base < 3)
c921be7d 15700 return NULL;
b99bd4ef 15701
c19d1205
ZW
15702 /* Look for suffixed mnemonic. */
15703 affix = end - 2;
21d799b5
NC
15704 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15705 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15706 affix - base);
c19d1205
ZW
15707 if (opcode && cond)
15708 {
15709 /* step CE */
15710 switch (opcode->tag)
15711 {
e3cb604e
PB
15712 case OT_cinfix3_legacy:
15713 /* Ignore conditional suffixes matched on infix only mnemonics. */
15714 break;
15715
c19d1205 15716 case OT_cinfix3:
088fa78e 15717 case OT_cinfix3_deprecated:
c19d1205
ZW
15718 case OT_odd_infix_unc:
15719 if (!unified_syntax)
e3cb604e 15720 return 0;
c19d1205
ZW
15721 /* else fall through */
15722
15723 case OT_csuffix:
037e8744 15724 case OT_csuffixF:
c19d1205
ZW
15725 case OT_csuf_or_in3:
15726 inst.cond = cond->value;
15727 return opcode;
15728
15729 case OT_unconditional:
15730 case OT_unconditionalF:
dfa9f0d5 15731 if (thumb_mode)
c921be7d 15732 inst.cond = cond->value;
dfa9f0d5
PB
15733 else
15734 {
c921be7d 15735 /* Delayed diagnostic. */
dfa9f0d5
PB
15736 inst.error = BAD_COND;
15737 inst.cond = COND_ALWAYS;
15738 }
c19d1205 15739 return opcode;
b99bd4ef 15740
c19d1205 15741 default:
c921be7d 15742 return NULL;
c19d1205
ZW
15743 }
15744 }
b99bd4ef 15745
c19d1205
ZW
15746 /* Cannot have a usual-position infix on a mnemonic of less than
15747 six characters (five would be a suffix). */
15748 if (end - base < 6)
c921be7d 15749 return NULL;
b99bd4ef 15750
c19d1205
ZW
15751 /* Look for infixed mnemonic in the usual position. */
15752 affix = base + 3;
21d799b5 15753 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15754 if (!cond)
c921be7d 15755 return NULL;
e3cb604e
PB
15756
15757 memcpy (save, affix, 2);
15758 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15759 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15760 (end - base) - 2);
e3cb604e
PB
15761 memmove (affix + 2, affix, (end - affix) - 2);
15762 memcpy (affix, save, 2);
15763
088fa78e
KH
15764 if (opcode
15765 && (opcode->tag == OT_cinfix3
15766 || opcode->tag == OT_cinfix3_deprecated
15767 || opcode->tag == OT_csuf_or_in3
15768 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15769 {
c921be7d 15770 /* Step CM. */
278df34e 15771 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15772 && (opcode->tag == OT_cinfix3
15773 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15774 as_warn (_("conditional infixes are deprecated in unified syntax"));
15775
15776 inst.cond = cond->value;
15777 return opcode;
b99bd4ef
NC
15778 }
15779
c921be7d 15780 return NULL;
b99bd4ef
NC
15781}
15782
e07e6e58
NC
15783/* This function generates an initial IT instruction, leaving its block
15784 virtually open for the new instructions. Eventually,
15785 the mask will be updated by now_it_add_mask () each time
15786 a new instruction needs to be included in the IT block.
15787 Finally, the block is closed with close_automatic_it_block ().
15788 The block closure can be requested either from md_assemble (),
15789 a tencode (), or due to a label hook. */
15790
15791static void
15792new_automatic_it_block (int cond)
15793{
15794 now_it.state = AUTOMATIC_IT_BLOCK;
15795 now_it.mask = 0x18;
15796 now_it.cc = cond;
15797 now_it.block_length = 1;
cd000bff 15798 mapping_state (MAP_THUMB);
e07e6e58
NC
15799 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15800}
15801
15802/* Close an automatic IT block.
15803 See comments in new_automatic_it_block (). */
15804
15805static void
15806close_automatic_it_block (void)
15807{
15808 now_it.mask = 0x10;
15809 now_it.block_length = 0;
15810}
15811
15812/* Update the mask of the current automatically-generated IT
15813 instruction. See comments in new_automatic_it_block (). */
15814
15815static void
15816now_it_add_mask (int cond)
15817{
15818#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15819#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15820 | ((bitvalue) << (nbit)))
e07e6e58 15821 const int resulting_bit = (cond & 1);
c921be7d 15822
e07e6e58
NC
15823 now_it.mask &= 0xf;
15824 now_it.mask = SET_BIT_VALUE (now_it.mask,
15825 resulting_bit,
15826 (5 - now_it.block_length));
15827 now_it.mask = SET_BIT_VALUE (now_it.mask,
15828 1,
15829 ((5 - now_it.block_length) - 1) );
15830 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15831
15832#undef CLEAR_BIT
15833#undef SET_BIT_VALUE
e07e6e58
NC
15834}
15835
15836/* The IT blocks handling machinery is accessed through the these functions:
15837 it_fsm_pre_encode () from md_assemble ()
15838 set_it_insn_type () optional, from the tencode functions
15839 set_it_insn_type_last () ditto
15840 in_it_block () ditto
15841 it_fsm_post_encode () from md_assemble ()
15842 force_automatic_it_block_close () from label habdling functions
15843
15844 Rationale:
15845 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15846 initializing the IT insn type with a generic initial value depending
15847 on the inst.condition.
15848 2) During the tencode function, two things may happen:
15849 a) The tencode function overrides the IT insn type by
15850 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15851 b) The tencode function queries the IT block state by
15852 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15853
15854 Both set_it_insn_type and in_it_block run the internal FSM state
15855 handling function (handle_it_state), because: a) setting the IT insn
15856 type may incur in an invalid state (exiting the function),
15857 and b) querying the state requires the FSM to be updated.
15858 Specifically we want to avoid creating an IT block for conditional
15859 branches, so it_fsm_pre_encode is actually a guess and we can't
15860 determine whether an IT block is required until the tencode () routine
15861 has decided what type of instruction this actually it.
15862 Because of this, if set_it_insn_type and in_it_block have to be used,
15863 set_it_insn_type has to be called first.
15864
15865 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15866 determines the insn IT type depending on the inst.cond code.
15867 When a tencode () routine encodes an instruction that can be
15868 either outside an IT block, or, in the case of being inside, has to be
15869 the last one, set_it_insn_type_last () will determine the proper
15870 IT instruction type based on the inst.cond code. Otherwise,
15871 set_it_insn_type can be called for overriding that logic or
15872 for covering other cases.
15873
15874 Calling handle_it_state () may not transition the IT block state to
15875 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15876 still queried. Instead, if the FSM determines that the state should
15877 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15878 after the tencode () function: that's what it_fsm_post_encode () does.
15879
15880 Since in_it_block () calls the state handling function to get an
15881 updated state, an error may occur (due to invalid insns combination).
15882 In that case, inst.error is set.
15883 Therefore, inst.error has to be checked after the execution of
15884 the tencode () routine.
15885
15886 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15887 any pending state change (if any) that didn't take place in
15888 handle_it_state () as explained above. */
15889
15890static void
15891it_fsm_pre_encode (void)
15892{
15893 if (inst.cond != COND_ALWAYS)
15894 inst.it_insn_type = INSIDE_IT_INSN;
15895 else
15896 inst.it_insn_type = OUTSIDE_IT_INSN;
15897
15898 now_it.state_handled = 0;
15899}
15900
15901/* IT state FSM handling function. */
15902
15903static int
15904handle_it_state (void)
15905{
15906 now_it.state_handled = 1;
15907
15908 switch (now_it.state)
15909 {
15910 case OUTSIDE_IT_BLOCK:
15911 switch (inst.it_insn_type)
15912 {
15913 case OUTSIDE_IT_INSN:
15914 break;
15915
15916 case INSIDE_IT_INSN:
15917 case INSIDE_IT_LAST_INSN:
15918 if (thumb_mode == 0)
15919 {
c921be7d 15920 if (unified_syntax
e07e6e58
NC
15921 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15922 as_tsktsk (_("Warning: conditional outside an IT block"\
15923 " for Thumb."));
15924 }
15925 else
15926 {
15927 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15928 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15929 {
15930 /* Automatically generate the IT instruction. */
15931 new_automatic_it_block (inst.cond);
15932 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15933 close_automatic_it_block ();
15934 }
15935 else
15936 {
15937 inst.error = BAD_OUT_IT;
15938 return FAIL;
15939 }
15940 }
15941 break;
15942
15943 case IF_INSIDE_IT_LAST_INSN:
15944 case NEUTRAL_IT_INSN:
15945 break;
15946
15947 case IT_INSN:
15948 now_it.state = MANUAL_IT_BLOCK;
15949 now_it.block_length = 0;
15950 break;
15951 }
15952 break;
15953
15954 case AUTOMATIC_IT_BLOCK:
15955 /* Three things may happen now:
15956 a) We should increment current it block size;
15957 b) We should close current it block (closing insn or 4 insns);
15958 c) We should close current it block and start a new one (due
15959 to incompatible conditions or
15960 4 insns-length block reached). */
15961
15962 switch (inst.it_insn_type)
15963 {
15964 case OUTSIDE_IT_INSN:
15965 /* The closure of the block shall happen immediatelly,
15966 so any in_it_block () call reports the block as closed. */
15967 force_automatic_it_block_close ();
15968 break;
15969
15970 case INSIDE_IT_INSN:
15971 case INSIDE_IT_LAST_INSN:
15972 case IF_INSIDE_IT_LAST_INSN:
15973 now_it.block_length++;
15974
15975 if (now_it.block_length > 4
15976 || !now_it_compatible (inst.cond))
15977 {
15978 force_automatic_it_block_close ();
15979 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15980 new_automatic_it_block (inst.cond);
15981 }
15982 else
15983 {
15984 now_it_add_mask (inst.cond);
15985 }
15986
15987 if (now_it.state == AUTOMATIC_IT_BLOCK
15988 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15989 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15990 close_automatic_it_block ();
15991 break;
15992
15993 case NEUTRAL_IT_INSN:
15994 now_it.block_length++;
15995
15996 if (now_it.block_length > 4)
15997 force_automatic_it_block_close ();
15998 else
15999 now_it_add_mask (now_it.cc & 1);
16000 break;
16001
16002 case IT_INSN:
16003 close_automatic_it_block ();
16004 now_it.state = MANUAL_IT_BLOCK;
16005 break;
16006 }
16007 break;
16008
16009 case MANUAL_IT_BLOCK:
16010 {
16011 /* Check conditional suffixes. */
16012 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16013 int is_last;
16014 now_it.mask <<= 1;
16015 now_it.mask &= 0x1f;
16016 is_last = (now_it.mask == 0x10);
16017
16018 switch (inst.it_insn_type)
16019 {
16020 case OUTSIDE_IT_INSN:
16021 inst.error = BAD_NOT_IT;
16022 return FAIL;
16023
16024 case INSIDE_IT_INSN:
16025 if (cond != inst.cond)
16026 {
16027 inst.error = BAD_IT_COND;
16028 return FAIL;
16029 }
16030 break;
16031
16032 case INSIDE_IT_LAST_INSN:
16033 case IF_INSIDE_IT_LAST_INSN:
16034 if (cond != inst.cond)
16035 {
16036 inst.error = BAD_IT_COND;
16037 return FAIL;
16038 }
16039 if (!is_last)
16040 {
16041 inst.error = BAD_BRANCH;
16042 return FAIL;
16043 }
16044 break;
16045
16046 case NEUTRAL_IT_INSN:
16047 /* The BKPT instruction is unconditional even in an IT block. */
16048 break;
16049
16050 case IT_INSN:
16051 inst.error = BAD_IT_IT;
16052 return FAIL;
16053 }
16054 }
16055 break;
16056 }
16057
16058 return SUCCESS;
16059}
16060
16061static void
16062it_fsm_post_encode (void)
16063{
16064 int is_last;
16065
16066 if (!now_it.state_handled)
16067 handle_it_state ();
16068
16069 is_last = (now_it.mask == 0x10);
16070 if (is_last)
16071 {
16072 now_it.state = OUTSIDE_IT_BLOCK;
16073 now_it.mask = 0;
16074 }
16075}
16076
16077static void
16078force_automatic_it_block_close (void)
16079{
16080 if (now_it.state == AUTOMATIC_IT_BLOCK)
16081 {
16082 close_automatic_it_block ();
16083 now_it.state = OUTSIDE_IT_BLOCK;
16084 now_it.mask = 0;
16085 }
16086}
16087
16088static int
16089in_it_block (void)
16090{
16091 if (!now_it.state_handled)
16092 handle_it_state ();
16093
16094 return now_it.state != OUTSIDE_IT_BLOCK;
16095}
16096
c19d1205
ZW
16097void
16098md_assemble (char *str)
b99bd4ef 16099{
c19d1205
ZW
16100 char *p = str;
16101 const struct asm_opcode * opcode;
b99bd4ef 16102
c19d1205
ZW
16103 /* Align the previous label if needed. */
16104 if (last_label_seen != NULL)
b99bd4ef 16105 {
c19d1205
ZW
16106 symbol_set_frag (last_label_seen, frag_now);
16107 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16108 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16109 }
16110
c19d1205
ZW
16111 memset (&inst, '\0', sizeof (inst));
16112 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16113
c19d1205
ZW
16114 opcode = opcode_lookup (&p);
16115 if (!opcode)
b99bd4ef 16116 {
c19d1205 16117 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16118 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16119 if (! create_register_alias (str, p)
16120 && ! create_neon_reg_alias (str, p))
c19d1205 16121 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16122
b99bd4ef
NC
16123 return;
16124 }
16125
278df34e 16126 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16127 as_warn (_("s suffix on comparison instruction is deprecated"));
16128
037e8744
JB
16129 /* The value which unconditional instructions should have in place of the
16130 condition field. */
16131 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16132
c19d1205 16133 if (thumb_mode)
b99bd4ef 16134 {
e74cfd16 16135 arm_feature_set variant;
8f06b2d8
PB
16136
16137 variant = cpu_variant;
16138 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16139 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16140 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16141 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16142 if (!opcode->tvariant
16143 || (thumb_mode == 1
16144 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16145 {
bf3eeda7 16146 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16147 return;
16148 }
c19d1205
ZW
16149 if (inst.cond != COND_ALWAYS && !unified_syntax
16150 && opcode->tencode != do_t_branch)
b99bd4ef 16151 {
c19d1205 16152 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16153 return;
16154 }
16155
752d5da4 16156 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16157 {
7e806470 16158 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16159 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16160 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16161 {
16162 /* Two things are addressed here.
16163 1) Implicit require narrow instructions on Thumb-1.
16164 This avoids relaxation accidentally introducing Thumb-2
16165 instructions.
16166 2) Reject wide instructions in non Thumb-2 cores. */
16167 if (inst.size_req == 0)
16168 inst.size_req = 2;
16169 else if (inst.size_req == 4)
16170 {
bf3eeda7 16171 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16172 return;
16173 }
16174 }
076d447c
PB
16175 }
16176
c19d1205
ZW
16177 inst.instruction = opcode->tvalue;
16178
5be8be5d 16179 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16180 {
16181 /* Prepare the it_insn_type for those encodings that don't set
16182 it. */
16183 it_fsm_pre_encode ();
c19d1205 16184
e07e6e58
NC
16185 opcode->tencode ();
16186
16187 it_fsm_post_encode ();
16188 }
e27ec89e 16189
0110f2b8 16190 if (!(inst.error || inst.relax))
b99bd4ef 16191 {
9c2799c2 16192 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16193 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16194 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16195 {
c19d1205 16196 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16197 return;
16198 }
16199 }
076d447c
PB
16200
16201 /* Something has gone badly wrong if we try to relax a fixed size
16202 instruction. */
9c2799c2 16203 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16204
e74cfd16
PB
16205 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16206 *opcode->tvariant);
ee065d83 16207 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16208 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16209 anything other than bl/blx and v6-M instructions.
ee065d83 16210 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16211 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16212 || inst.relax)
e07e6e58
NC
16213 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16214 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16215 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16216 arm_ext_v6t2);
cd000bff 16217
88714cb8
DG
16218 check_neon_suffixes;
16219
cd000bff 16220 if (!inst.error)
c877a2f2
NC
16221 {
16222 mapping_state (MAP_THUMB);
16223 }
c19d1205 16224 }
3e9e4fcf 16225 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16226 {
845b51d6
PB
16227 bfd_boolean is_bx;
16228
16229 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16230 is_bx = (opcode->aencode == do_bx);
16231
c19d1205 16232 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16233 if (!(is_bx && fix_v4bx)
16234 && !(opcode->avariant &&
16235 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16236 {
bf3eeda7 16237 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16238 return;
b99bd4ef 16239 }
c19d1205 16240 if (inst.size_req)
b99bd4ef 16241 {
c19d1205
ZW
16242 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16243 return;
b99bd4ef
NC
16244 }
16245
c19d1205
ZW
16246 inst.instruction = opcode->avalue;
16247 if (opcode->tag == OT_unconditionalF)
16248 inst.instruction |= 0xF << 28;
16249 else
16250 inst.instruction |= inst.cond << 28;
16251 inst.size = INSN_SIZE;
5be8be5d 16252 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16253 {
16254 it_fsm_pre_encode ();
16255 opcode->aencode ();
16256 it_fsm_post_encode ();
16257 }
ee065d83
PB
16258 /* Arm mode bx is marked as both v4T and v5 because it's still required
16259 on a hypothetical non-thumb v5 core. */
845b51d6 16260 if (is_bx)
e74cfd16 16261 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16262 else
e74cfd16
PB
16263 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16264 *opcode->avariant);
88714cb8
DG
16265
16266 check_neon_suffixes;
16267
cd000bff 16268 if (!inst.error)
c877a2f2
NC
16269 {
16270 mapping_state (MAP_ARM);
16271 }
b99bd4ef 16272 }
3e9e4fcf
JB
16273 else
16274 {
16275 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16276 "-- `%s'"), str);
16277 return;
16278 }
c19d1205
ZW
16279 output_inst (str);
16280}
b99bd4ef 16281
e07e6e58
NC
16282static void
16283check_it_blocks_finished (void)
16284{
16285#ifdef OBJ_ELF
16286 asection *sect;
16287
16288 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16289 if (seg_info (sect)->tc_segment_info_data.current_it.state
16290 == MANUAL_IT_BLOCK)
16291 {
16292 as_warn (_("section '%s' finished with an open IT block."),
16293 sect->name);
16294 }
16295#else
16296 if (now_it.state == MANUAL_IT_BLOCK)
16297 as_warn (_("file finished with an open IT block."));
16298#endif
16299}
16300
c19d1205
ZW
16301/* Various frobbings of labels and their addresses. */
16302
16303void
16304arm_start_line_hook (void)
16305{
16306 last_label_seen = NULL;
b99bd4ef
NC
16307}
16308
c19d1205
ZW
16309void
16310arm_frob_label (symbolS * sym)
b99bd4ef 16311{
c19d1205 16312 last_label_seen = sym;
b99bd4ef 16313
c19d1205 16314 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16315
c19d1205
ZW
16316#if defined OBJ_COFF || defined OBJ_ELF
16317 ARM_SET_INTERWORK (sym, support_interwork);
16318#endif
b99bd4ef 16319
e07e6e58
NC
16320 force_automatic_it_block_close ();
16321
5f4273c7 16322 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16323 as Thumb functions. This is because these labels, whilst
16324 they exist inside Thumb code, are not the entry points for
16325 possible ARM->Thumb calls. Also, these labels can be used
16326 as part of a computed goto or switch statement. eg gcc
16327 can generate code that looks like this:
b99bd4ef 16328
c19d1205
ZW
16329 ldr r2, [pc, .Laaa]
16330 lsl r3, r3, #2
16331 ldr r2, [r3, r2]
16332 mov pc, r2
b99bd4ef 16333
c19d1205
ZW
16334 .Lbbb: .word .Lxxx
16335 .Lccc: .word .Lyyy
16336 ..etc...
16337 .Laaa: .word Lbbb
b99bd4ef 16338
c19d1205
ZW
16339 The first instruction loads the address of the jump table.
16340 The second instruction converts a table index into a byte offset.
16341 The third instruction gets the jump address out of the table.
16342 The fourth instruction performs the jump.
b99bd4ef 16343
c19d1205
ZW
16344 If the address stored at .Laaa is that of a symbol which has the
16345 Thumb_Func bit set, then the linker will arrange for this address
16346 to have the bottom bit set, which in turn would mean that the
16347 address computation performed by the third instruction would end
16348 up with the bottom bit set. Since the ARM is capable of unaligned
16349 word loads, the instruction would then load the incorrect address
16350 out of the jump table, and chaos would ensue. */
16351 if (label_is_thumb_function_name
16352 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16353 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16354 {
c19d1205
ZW
16355 /* When the address of a Thumb function is taken the bottom
16356 bit of that address should be set. This will allow
16357 interworking between Arm and Thumb functions to work
16358 correctly. */
b99bd4ef 16359
c19d1205 16360 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16361
c19d1205 16362 label_is_thumb_function_name = FALSE;
b99bd4ef 16363 }
07a53e5c 16364
07a53e5c 16365 dwarf2_emit_label (sym);
b99bd4ef
NC
16366}
16367
c921be7d 16368bfd_boolean
c19d1205 16369arm_data_in_code (void)
b99bd4ef 16370{
c19d1205 16371 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16372 {
c19d1205
ZW
16373 *input_line_pointer = '/';
16374 input_line_pointer += 5;
16375 *input_line_pointer = 0;
c921be7d 16376 return TRUE;
b99bd4ef
NC
16377 }
16378
c921be7d 16379 return FALSE;
b99bd4ef
NC
16380}
16381
c19d1205
ZW
16382char *
16383arm_canonicalize_symbol_name (char * name)
b99bd4ef 16384{
c19d1205 16385 int len;
b99bd4ef 16386
c19d1205
ZW
16387 if (thumb_mode && (len = strlen (name)) > 5
16388 && streq (name + len - 5, "/data"))
16389 *(name + len - 5) = 0;
b99bd4ef 16390
c19d1205 16391 return name;
b99bd4ef 16392}
c19d1205
ZW
16393\f
16394/* Table of all register names defined by default. The user can
16395 define additional names with .req. Note that all register names
16396 should appear in both upper and lowercase variants. Some registers
16397 also have mixed-case names. */
b99bd4ef 16398
dcbf9037 16399#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16400#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16401#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16402#define REGSET(p,t) \
16403 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16404 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16405 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16406 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16407#define REGSETH(p,t) \
16408 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16409 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16410 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16411 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16412#define REGSET2(p,t) \
16413 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16414 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16415 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16416 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16417#define SPLRBANK(base,bank,t) \
16418 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16419 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16420 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16421 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16422 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16423 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16424
c19d1205 16425static const struct reg_entry reg_names[] =
7ed4c4c5 16426{
c19d1205
ZW
16427 /* ARM integer registers. */
16428 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16429
c19d1205
ZW
16430 /* ATPCS synonyms. */
16431 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16432 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16433 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16434
c19d1205
ZW
16435 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16436 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16437 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16438
c19d1205
ZW
16439 /* Well-known aliases. */
16440 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16441 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16442
16443 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16444 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16445
16446 /* Coprocessor numbers. */
16447 REGSET(p, CP), REGSET(P, CP),
16448
16449 /* Coprocessor register numbers. The "cr" variants are for backward
16450 compatibility. */
16451 REGSET(c, CN), REGSET(C, CN),
16452 REGSET(cr, CN), REGSET(CR, CN),
16453
90ec0d68
MGD
16454 /* ARM banked registers. */
16455 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16456 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16457 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16458 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16459 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16460 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16461 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16462
16463 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16464 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16465 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16466 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16467 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16468 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16469 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16470 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16471
16472 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16473 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16474 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16475 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16476 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16477 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16478 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16479 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16480 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16481
c19d1205
ZW
16482 /* FPA registers. */
16483 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16484 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16485
16486 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16487 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16488
16489 /* VFP SP registers. */
5287ad62
JB
16490 REGSET(s,VFS), REGSET(S,VFS),
16491 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16492
16493 /* VFP DP Registers. */
5287ad62
JB
16494 REGSET(d,VFD), REGSET(D,VFD),
16495 /* Extra Neon DP registers. */
16496 REGSETH(d,VFD), REGSETH(D,VFD),
16497
16498 /* Neon QP registers. */
16499 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16500
16501 /* VFP control registers. */
16502 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16503 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16504 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16505 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16506 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16507 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16508
16509 /* Maverick DSP coprocessor registers. */
16510 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16511 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16512
16513 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16514 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16515 REGDEF(dspsc,0,DSPSC),
16516
16517 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16518 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16519 REGDEF(DSPSC,0,DSPSC),
16520
16521 /* iWMMXt data registers - p0, c0-15. */
16522 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16523
16524 /* iWMMXt control registers - p1, c0-3. */
16525 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16526 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16527 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16528 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16529
16530 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16531 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16532 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16533 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16534 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16535
16536 /* XScale accumulator registers. */
16537 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16538};
16539#undef REGDEF
16540#undef REGNUM
16541#undef REGSET
7ed4c4c5 16542
c19d1205
ZW
16543/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16544 within psr_required_here. */
16545static const struct asm_psr psrs[] =
16546{
16547 /* Backward compatibility notation. Note that "all" is no longer
16548 truly all possible PSR bits. */
16549 {"all", PSR_c | PSR_f},
16550 {"flg", PSR_f},
16551 {"ctl", PSR_c},
16552
16553 /* Individual flags. */
16554 {"f", PSR_f},
16555 {"c", PSR_c},
16556 {"x", PSR_x},
16557 {"s", PSR_s},
59b42a0d 16558
c19d1205
ZW
16559 /* Combinations of flags. */
16560 {"fs", PSR_f | PSR_s},
16561 {"fx", PSR_f | PSR_x},
16562 {"fc", PSR_f | PSR_c},
16563 {"sf", PSR_s | PSR_f},
16564 {"sx", PSR_s | PSR_x},
16565 {"sc", PSR_s | PSR_c},
16566 {"xf", PSR_x | PSR_f},
16567 {"xs", PSR_x | PSR_s},
16568 {"xc", PSR_x | PSR_c},
16569 {"cf", PSR_c | PSR_f},
16570 {"cs", PSR_c | PSR_s},
16571 {"cx", PSR_c | PSR_x},
16572 {"fsx", PSR_f | PSR_s | PSR_x},
16573 {"fsc", PSR_f | PSR_s | PSR_c},
16574 {"fxs", PSR_f | PSR_x | PSR_s},
16575 {"fxc", PSR_f | PSR_x | PSR_c},
16576 {"fcs", PSR_f | PSR_c | PSR_s},
16577 {"fcx", PSR_f | PSR_c | PSR_x},
16578 {"sfx", PSR_s | PSR_f | PSR_x},
16579 {"sfc", PSR_s | PSR_f | PSR_c},
16580 {"sxf", PSR_s | PSR_x | PSR_f},
16581 {"sxc", PSR_s | PSR_x | PSR_c},
16582 {"scf", PSR_s | PSR_c | PSR_f},
16583 {"scx", PSR_s | PSR_c | PSR_x},
16584 {"xfs", PSR_x | PSR_f | PSR_s},
16585 {"xfc", PSR_x | PSR_f | PSR_c},
16586 {"xsf", PSR_x | PSR_s | PSR_f},
16587 {"xsc", PSR_x | PSR_s | PSR_c},
16588 {"xcf", PSR_x | PSR_c | PSR_f},
16589 {"xcs", PSR_x | PSR_c | PSR_s},
16590 {"cfs", PSR_c | PSR_f | PSR_s},
16591 {"cfx", PSR_c | PSR_f | PSR_x},
16592 {"csf", PSR_c | PSR_s | PSR_f},
16593 {"csx", PSR_c | PSR_s | PSR_x},
16594 {"cxf", PSR_c | PSR_x | PSR_f},
16595 {"cxs", PSR_c | PSR_x | PSR_s},
16596 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16597 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16598 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16599 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16600 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16601 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16602 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16603 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16604 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16605 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16606 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16607 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16608 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16609 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16610 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16611 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16612 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16613 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16614 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16615 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16616 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16617 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16618 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16619 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16620};
16621
62b3e311
PB
16622/* Table of V7M psr names. */
16623static const struct asm_psr v7m_psrs[] =
16624{
2b744c99
PB
16625 {"apsr", 0 }, {"APSR", 0 },
16626 {"iapsr", 1 }, {"IAPSR", 1 },
16627 {"eapsr", 2 }, {"EAPSR", 2 },
16628 {"psr", 3 }, {"PSR", 3 },
16629 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16630 {"ipsr", 5 }, {"IPSR", 5 },
16631 {"epsr", 6 }, {"EPSR", 6 },
16632 {"iepsr", 7 }, {"IEPSR", 7 },
16633 {"msp", 8 }, {"MSP", 8 },
16634 {"psp", 9 }, {"PSP", 9 },
16635 {"primask", 16}, {"PRIMASK", 16},
16636 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
16637 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16638 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
16639 {"faultmask", 19}, {"FAULTMASK", 19},
16640 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16641};
16642
c19d1205
ZW
16643/* Table of all shift-in-operand names. */
16644static const struct asm_shift_name shift_names [] =
b99bd4ef 16645{
c19d1205
ZW
16646 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16647 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16648 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16649 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16650 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16651 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16652};
b99bd4ef 16653
c19d1205
ZW
16654/* Table of all explicit relocation names. */
16655#ifdef OBJ_ELF
16656static struct reloc_entry reloc_names[] =
16657{
16658 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16659 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16660 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16661 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16662 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16663 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16664 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16665 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16666 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16667 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 16668 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
16669 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16670 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16671 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16672 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16673 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16674 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16675 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
16676};
16677#endif
b99bd4ef 16678
c19d1205
ZW
16679/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16680static const struct asm_cond conds[] =
16681{
16682 {"eq", 0x0},
16683 {"ne", 0x1},
16684 {"cs", 0x2}, {"hs", 0x2},
16685 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16686 {"mi", 0x4},
16687 {"pl", 0x5},
16688 {"vs", 0x6},
16689 {"vc", 0x7},
16690 {"hi", 0x8},
16691 {"ls", 0x9},
16692 {"ge", 0xa},
16693 {"lt", 0xb},
16694 {"gt", 0xc},
16695 {"le", 0xd},
16696 {"al", 0xe}
16697};
bfae80f2 16698
62b3e311
PB
16699static struct asm_barrier_opt barrier_opt_names[] =
16700{
52e7f43d
RE
16701 { "sy", 0xf }, { "SY", 0xf },
16702 { "un", 0x7 }, { "UN", 0x7 },
16703 { "st", 0xe }, { "ST", 0xe },
16704 { "unst", 0x6 }, { "UNST", 0x6 },
16705 { "ish", 0xb }, { "ISH", 0xb },
16706 { "sh", 0xb }, { "SH", 0xb },
16707 { "ishst", 0xa }, { "ISHST", 0xa },
16708 { "shst", 0xa }, { "SHST", 0xa },
16709 { "nsh", 0x7 }, { "NSH", 0x7 },
16710 { "nshst", 0x6 }, { "NSHST", 0x6 },
16711 { "osh", 0x3 }, { "OSH", 0x3 },
16712 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16713};
16714
c19d1205
ZW
16715/* Table of ARM-format instructions. */
16716
16717/* Macros for gluing together operand strings. N.B. In all cases
16718 other than OPS0, the trailing OP_stop comes from default
16719 zero-initialization of the unspecified elements of the array. */
16720#define OPS0() { OP_stop, }
16721#define OPS1(a) { OP_##a, }
16722#define OPS2(a,b) { OP_##a,OP_##b, }
16723#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16724#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16725#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16726#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16727
5be8be5d
DG
16728/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16729 This is useful when mixing operands for ARM and THUMB, i.e. using the
16730 MIX_ARM_THUMB_OPERANDS macro.
16731 In order to use these macros, prefix the number of operands with _
16732 e.g. _3. */
16733#define OPS_1(a) { a, }
16734#define OPS_2(a,b) { a,b, }
16735#define OPS_3(a,b,c) { a,b,c, }
16736#define OPS_4(a,b,c,d) { a,b,c,d, }
16737#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16738#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16739
c19d1205
ZW
16740/* These macros abstract out the exact format of the mnemonic table and
16741 save some repeated characters. */
16742
16743/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16744#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16745 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16746 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16747
16748/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16749 a T_MNEM_xyz enumerator. */
16750#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16751 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16752#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16753 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16754
16755/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16756 infix after the third character. */
16757#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16758 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16759 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16760#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16761 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16762 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16763#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16764 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16765#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16766 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16767#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16768 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16769#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16770 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16771
16772/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16773 appear in the condition table. */
16774#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16775 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16776 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16777
16778#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16779 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16780 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16781 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16782 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16783 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16784 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16785 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16786 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16787 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16788 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16789 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16790 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16791 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16792 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16793 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16794 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16795 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16796 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16797 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16798
16799#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16800 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16801#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16802 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16803
16804/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16805 field is still 0xE. Many of the Thumb variants can be executed
16806 conditionally, so this is checked separately. */
c19d1205 16807#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16808 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16809 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16810
16811/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16812 condition code field. */
16813#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16814 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16815 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16816
16817/* ARM-only variants of all the above. */
6a86118a 16818#define CE(mnem, op, nops, ops, ae) \
21d799b5 16819 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16820
16821#define C3(mnem, op, nops, ops, ae) \
16822 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16823
e3cb604e
PB
16824/* Legacy mnemonics that always have conditional infix after the third
16825 character. */
16826#define CL(mnem, op, nops, ops, ae) \
21d799b5 16827 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16828 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16829
8f06b2d8
PB
16830/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16831#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16832 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16833
e3cb604e
PB
16834/* Legacy coprocessor instructions where conditional infix and conditional
16835 suffix are ambiguous. For consistency this includes all FPA instructions,
16836 not just the potentially ambiguous ones. */
16837#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16838 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16839 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16840
16841/* Coprocessor, takes either a suffix or a position-3 infix
16842 (for an FPA corner case). */
16843#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16844 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16845 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16846
6a86118a 16847#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16848 { m1 #m2 m3, OPS##nops ops, \
16849 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16850 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16851
16852#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16853 xCM_ (m1, , m2, op, nops, ops, ae), \
16854 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16855 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16856 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16857 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16858 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16859 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16860 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16861 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16862 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16863 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16864 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16865 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16866 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16867 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16868 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16869 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16870 xCM_ (m1, le, m2, op, nops, ops, ae), \
16871 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16872
16873#define UE(mnem, op, nops, ops, ae) \
16874 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16875
16876#define UF(mnem, op, nops, ops, ae) \
16877 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16878
5287ad62
JB
16879/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16880 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16881 use the same encoding function for each. */
16882#define NUF(mnem, op, nops, ops, enc) \
16883 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16884 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16885
16886/* Neon data processing, version which indirects through neon_enc_tab for
16887 the various overloaded versions of opcodes. */
16888#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16889 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16890 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16891
16892/* Neon insn with conditional suffix for the ARM version, non-overloaded
16893 version. */
037e8744
JB
16894#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16895 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16896 THUMB_VARIANT, do_##enc, do_##enc }
16897
037e8744 16898#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16899 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16900
16901#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16902 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16903
5287ad62 16904/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16905#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 16906 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16907 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16908
037e8744 16909#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 16910 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16911
16912#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 16913 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16914
c19d1205
ZW
16915#define do_0 0
16916
c19d1205 16917static const struct asm_opcode insns[] =
bfae80f2 16918{
e74cfd16
PB
16919#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16920#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
16921 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16922 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16923 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16924 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16925 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16926 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16927 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16928 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16929 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16930 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16931 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16932 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16933 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16934 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16935 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16936 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
16937
16938 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16939 for setting PSR flag bits. They are obsolete in V6 and do not
16940 have Thumb equivalents. */
21d799b5
NC
16941 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16942 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16943 CL("tstp", 110f000, 2, (RR, SH), cmp),
16944 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16945 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16946 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16947 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16948 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16949 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16950
16951 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16952 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16953 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16954 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16955
16956 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
16957 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16958 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16959 OP_RRnpc),
16960 OP_ADDRGLDR),ldst, t_ldst),
16961 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
16962
16963 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16964 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16965 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16966 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16967 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16968 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16969
16970 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16971 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16972 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16973 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 16974
c19d1205 16975 /* Pseudo ops. */
21d799b5 16976 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 16977 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 16978 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
16979
16980 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
16981 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16982 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16983 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16984 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16985 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16986 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16987 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16988 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16989 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16990 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16991 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16992 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 16993
16a4cf17 16994 /* These may simplify to neg. */
21d799b5
NC
16995 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16996 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 16997
c921be7d
NC
16998#undef THUMB_VARIANT
16999#define THUMB_VARIANT & arm_ext_v6
17000
21d799b5 17001 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17002
17003 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17004#undef THUMB_VARIANT
17005#define THUMB_VARIANT & arm_ext_v6t2
17006
21d799b5
NC
17007 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17008 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17009 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17010
5be8be5d
DG
17011 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17012 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17013 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17014 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17015
21d799b5
NC
17016 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17017 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17018
21d799b5
NC
17019 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17020 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17021
17022 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17023 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17024 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17025
17026 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17027 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17028 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17029 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17030 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17031 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17032 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17033 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17034
c921be7d
NC
17035#undef ARM_VARIANT
17036#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17037#undef THUMB_VARIANT
17038#define THUMB_VARIANT & arm_ext_v4t
17039
21d799b5
NC
17040 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17041 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17042
c921be7d
NC
17043#undef THUMB_VARIANT
17044#define THUMB_VARIANT & arm_ext_v6t2
17045
21d799b5 17046 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17047 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17048
17049 /* Generic coprocessor instructions. */
21d799b5
NC
17050 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17051 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17052 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17053 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17054 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17055 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17056 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17057
c921be7d
NC
17058#undef ARM_VARIANT
17059#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17060
21d799b5 17061 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17062 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17063
c921be7d
NC
17064#undef ARM_VARIANT
17065#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17066#undef THUMB_VARIANT
17067#define THUMB_VARIANT & arm_ext_msr
17068
d2cd1205
JB
17069 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17070 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17071
c921be7d
NC
17072#undef ARM_VARIANT
17073#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17074#undef THUMB_VARIANT
17075#define THUMB_VARIANT & arm_ext_v6t2
17076
21d799b5
NC
17077 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17078 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17079 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17080 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17081 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17082 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17083 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17084 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17085
c921be7d
NC
17086#undef ARM_VARIANT
17087#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17088#undef THUMB_VARIANT
17089#define THUMB_VARIANT & arm_ext_v4t
17090
5be8be5d
DG
17091 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17092 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17093 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17094 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17095 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17096 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17097
c921be7d
NC
17098#undef ARM_VARIANT
17099#define ARM_VARIANT & arm_ext_v4t_5
17100
c19d1205
ZW
17101 /* ARM Architecture 4T. */
17102 /* Note: bx (and blx) are required on V5, even if the processor does
17103 not support Thumb. */
21d799b5 17104 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17105
c921be7d
NC
17106#undef ARM_VARIANT
17107#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17108#undef THUMB_VARIANT
17109#define THUMB_VARIANT & arm_ext_v5t
17110
c19d1205
ZW
17111 /* Note: blx has 2 variants; the .value coded here is for
17112 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17113 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17114 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17115
c921be7d
NC
17116#undef THUMB_VARIANT
17117#define THUMB_VARIANT & arm_ext_v6t2
17118
21d799b5
NC
17119 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17120 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17121 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17122 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17123 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17124 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17125 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17126 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17127
c921be7d
NC
17128#undef ARM_VARIANT
17129#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17130#undef THUMB_VARIANT
17131#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17132
21d799b5
NC
17133 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17134 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17135 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17136 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17137
21d799b5
NC
17138 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17139 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17140
21d799b5
NC
17141 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17142 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17143 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17144 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17145
21d799b5
NC
17146 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17147 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17148 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17149 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17150
21d799b5
NC
17151 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17152 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17153
03ee1b7f
NC
17154 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17155 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17156 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17157 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17158
c921be7d
NC
17159#undef ARM_VARIANT
17160#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17161#undef THUMB_VARIANT
17162#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17163
21d799b5 17164 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17165 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17166 ldrd, t_ldstd),
17167 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17168 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17169
21d799b5
NC
17170 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17171 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17172
c921be7d
NC
17173#undef ARM_VARIANT
17174#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17175
21d799b5 17176 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17177
c921be7d
NC
17178#undef ARM_VARIANT
17179#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17180#undef THUMB_VARIANT
17181#define THUMB_VARIANT & arm_ext_v6
17182
21d799b5
NC
17183 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17184 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17185 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17186 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17187 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17188 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17189 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17190 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17191 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17192 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17193
c921be7d
NC
17194#undef THUMB_VARIANT
17195#define THUMB_VARIANT & arm_ext_v6t2
17196
5be8be5d
DG
17197 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17198 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17199 strex, t_strex),
21d799b5
NC
17200 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17201 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17202
21d799b5
NC
17203 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17204 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17205
9e3c6df6 17206/* ARM V6 not included in V7M. */
c921be7d
NC
17207#undef THUMB_VARIANT
17208#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17209 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17210 UF(rfeib, 9900a00, 1, (RRw), rfe),
17211 UF(rfeda, 8100a00, 1, (RRw), rfe),
17212 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17213 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17214 UF(rfefa, 9900a00, 1, (RRw), rfe),
17215 UF(rfeea, 8100a00, 1, (RRw), rfe),
17216 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17217 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17218 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17219 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17220 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17221
9e3c6df6
PB
17222/* ARM V6 not included in V7M (eg. integer SIMD). */
17223#undef THUMB_VARIANT
17224#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17225 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17226 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17227 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17228 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17229 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17230 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17231 /* Old name for QASX. */
21d799b5
NC
17232 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17233 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17234 /* Old name for QSAX. */
21d799b5
NC
17235 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17236 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17237 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17238 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17239 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17240 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17241 /* Old name for SASX. */
21d799b5
NC
17242 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17243 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17244 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17245 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17246 /* Old name for SHASX. */
21d799b5
NC
17247 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17248 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17249 /* Old name for SHSAX. */
21d799b5
NC
17250 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17251 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17252 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17253 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17254 /* Old name for SSAX. */
21d799b5
NC
17255 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17256 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17257 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17258 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17259 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17260 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17261 /* Old name for UASX. */
21d799b5
NC
17262 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17263 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17264 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17265 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17266 /* Old name for UHASX. */
21d799b5
NC
17267 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17268 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17269 /* Old name for UHSAX. */
21d799b5
NC
17270 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17271 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17272 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17273 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17274 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17275 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17276 /* Old name for UQASX. */
21d799b5
NC
17277 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17278 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17279 /* Old name for UQSAX. */
21d799b5
NC
17280 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17281 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17282 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17283 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17284 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17285 /* Old name for USAX. */
21d799b5
NC
17286 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17287 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17288 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17289 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17290 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17291 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17292 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17293 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17294 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17295 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17296 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17297 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17298 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17299 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17300 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17301 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17302 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17303 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17304 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17305 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17306 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17307 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17308 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17309 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17310 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17311 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17312 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17313 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17314 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17315 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17316 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17317 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17318 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17319 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17320
c921be7d
NC
17321#undef ARM_VARIANT
17322#define ARM_VARIANT & arm_ext_v6k
17323#undef THUMB_VARIANT
17324#define THUMB_VARIANT & arm_ext_v6k
17325
21d799b5
NC
17326 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17327 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17328 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17329 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17330
c921be7d
NC
17331#undef THUMB_VARIANT
17332#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17333 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17334 ldrexd, t_ldrexd),
17335 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17336 RRnpcb), strexd, t_strexd),
ebdca51a 17337
c921be7d
NC
17338#undef THUMB_VARIANT
17339#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17340 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17341 rd_rn, rd_rn),
17342 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17343 rd_rn, rd_rn),
17344 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17345 strex, rm_rd_rn),
17346 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17347 strex, rm_rd_rn),
21d799b5 17348 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17349
c921be7d 17350#undef ARM_VARIANT
f4c65163
MGD
17351#define ARM_VARIANT & arm_ext_sec
17352#undef THUMB_VARIANT
17353#define THUMB_VARIANT & arm_ext_sec
c921be7d 17354
21d799b5 17355 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17356
90ec0d68
MGD
17357#undef ARM_VARIANT
17358#define ARM_VARIANT & arm_ext_virt
17359#undef THUMB_VARIANT
17360#define THUMB_VARIANT & arm_ext_virt
17361
17362 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17363 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17364
c921be7d
NC
17365#undef ARM_VARIANT
17366#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17367#undef THUMB_VARIANT
17368#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17369
21d799b5
NC
17370 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17371 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17372 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17373 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17374
21d799b5
NC
17375 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17376 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17377 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17378 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17379
5be8be5d
DG
17380 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17381 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17382 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17383 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17384
bf3eeda7
NS
17385 /* Thumb-only instructions. */
17386#undef ARM_VARIANT
17387#define ARM_VARIANT NULL
17388 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17389 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17390
17391 /* ARM does not really have an IT instruction, so always allow it.
17392 The opcode is copied from Thumb in order to allow warnings in
17393 -mimplicit-it=[never | arm] modes. */
17394#undef ARM_VARIANT
17395#define ARM_VARIANT & arm_ext_v1
17396
21d799b5
NC
17397 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17398 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17399 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17400 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17401 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17402 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17403 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17404 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17405 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17406 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17407 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17408 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17409 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17410 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17411 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17412 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17413 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17414 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17415
92e90b6e 17416 /* Thumb2 only instructions. */
c921be7d
NC
17417#undef ARM_VARIANT
17418#define ARM_VARIANT NULL
92e90b6e 17419
21d799b5
NC
17420 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17421 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17422 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17423 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17424 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17425 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17426
eea54501
MGD
17427 /* Hardware division instructions. */
17428#undef ARM_VARIANT
17429#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17430#undef THUMB_VARIANT
17431#define THUMB_VARIANT & arm_ext_div
17432
eea54501
MGD
17433 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17434 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17435
7e806470 17436 /* ARM V6M/V7 instructions. */
c921be7d
NC
17437#undef ARM_VARIANT
17438#define ARM_VARIANT & arm_ext_barrier
17439#undef THUMB_VARIANT
17440#define THUMB_VARIANT & arm_ext_barrier
17441
52e7f43d
RE
17442 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17443 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17444 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17445
62b3e311 17446 /* ARM V7 instructions. */
c921be7d
NC
17447#undef ARM_VARIANT
17448#define ARM_VARIANT & arm_ext_v7
17449#undef THUMB_VARIANT
17450#define THUMB_VARIANT & arm_ext_v7
17451
21d799b5
NC
17452 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17453 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17454
60e5ef9f
MGD
17455#undef ARM_VARIANT
17456#define ARM_VARIANT & arm_ext_mp
17457#undef THUMB_VARIANT
17458#define THUMB_VARIANT & arm_ext_mp
17459
17460 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17461
c921be7d
NC
17462#undef ARM_VARIANT
17463#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17464
21d799b5
NC
17465 cCE("wfs", e200110, 1, (RR), rd),
17466 cCE("rfs", e300110, 1, (RR), rd),
17467 cCE("wfc", e400110, 1, (RR), rd),
17468 cCE("rfc", e500110, 1, (RR), rd),
17469
17470 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17471 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17472 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17473 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17474
17475 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17476 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17477 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17478 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17479
17480 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17481 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17482 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17483 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17484 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17485 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17486 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17487 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17488 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17489 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17490 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17491 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17492
17493 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17494 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17495 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17496 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17497 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17498 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17499 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17500 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17501 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17502 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17503 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17504 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17505
17506 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17507 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17508 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17509 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17510 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17511 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17512 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17513 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17514 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17515 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17516 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17517 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17518
17519 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17520 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17521 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17522 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17523 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17524 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17525 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17526 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17527 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17528 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17529 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17530 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17531
17532 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17533 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17534 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17535 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17536 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17537 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17538 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17539 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17540 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17541 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17542 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17543 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17544
17545 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17546 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17547 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17548 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17549 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17550 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17551 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17552 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17553 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17554 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17555 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17556 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17557
17558 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17559 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17560 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17561 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17562 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17563 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17564 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17565 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17566 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17567 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17568 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17569 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17570
17571 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17572 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17573 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17574 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17575 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17576 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17577 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17578 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17579 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17580 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17581 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17582 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17583
17584 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17585 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17586 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17587 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17588 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17589 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17590 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17591 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17592 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17593 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17594 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17595 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17596
17597 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17598 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17599 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17600 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17601 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17602 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17603 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17604 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17605 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17606 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17607 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17608 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17609
17610 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17611 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17612 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17613 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17614 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17615 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17616 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17617 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17618 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17619 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17620 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17621 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17622
17623 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17624 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17625 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17626 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17627 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17628 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17629 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17630 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17631 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17632 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17633 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17634 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17635
17636 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17637 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17638 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17639 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17640 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17641 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17642 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17643 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17644 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17645 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17646 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17647 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17648
17649 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17650 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17651 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17652 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17653 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17654 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17655 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17656 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17657 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17658 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17659 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17660 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17661
17662 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17663 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17664 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17665 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17666 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17667 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17668 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17669 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17670 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17671 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17672 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17673 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17674
17675 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17676 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17677 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17678 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17679 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17680 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17681 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17682 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17683 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17684 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17685 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17686 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17687
17688 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17689 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17690 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17691 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17692 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17693 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17694 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17695 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17696 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17697 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17698 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17699 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17700
17701 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17702 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17703 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17704 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17705 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17706 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17707 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17708 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17709 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17710 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17711 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17712 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17713
17714 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17715 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17716 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17717 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17718 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17719 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17720 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17721 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17722 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17723 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17724 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17725 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17726
17727 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17728 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17729 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17730 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17731 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17732 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17733 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17734 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17735 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17736 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17737 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17738 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17739
17740 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17741 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17742 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17743 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17744 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17745 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17746 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17747 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17748 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17749 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17750 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17751 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17752
17753 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17754 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17755 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17756 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17757 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17758 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17759 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17760 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17761 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17762 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17763 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17764 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17765
17766 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17767 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17768 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17769 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17770 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17771 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17772 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17773 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17774 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17775 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17776 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17777 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17778
17779 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17780 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17781 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17782 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17783 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17784 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17785 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17786 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17787 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17788 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17789 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17790 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17791
17792 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17793 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17794 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17795 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17796 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17797 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17798 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17799 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17800 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17801 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17802 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17803 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17804
17805 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17806 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17807 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17808 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17809 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17810 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17811 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17812 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17813 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17814 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17815 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17816 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17817
17818 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17819 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17820 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17821 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17822 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17823 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17824 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17825 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17826 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17827 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17828 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17829 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17830
17831 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17832 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17833 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17834 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17835 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17836 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17837 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17838 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17839 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17840 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17841 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17842 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17843
17844 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17845 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17846 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17847 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17848 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17849 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17850 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17851 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17852 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17853 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17854 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17855 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17856
17857 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17858 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17859 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17860 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17861
17862 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17863 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17864 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17865 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17866 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17867 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17868 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17869 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17870 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17871 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17872 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17873 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17874
c19d1205
ZW
17875 /* The implementation of the FIX instruction is broken on some
17876 assemblers, in that it accepts a precision specifier as well as a
17877 rounding specifier, despite the fact that this is meaningless.
17878 To be more compatible, we accept it as well, though of course it
17879 does not set any bits. */
21d799b5
NC
17880 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17881 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17882 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17883 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17884 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17885 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17886 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17887 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17888 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17889 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17890 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17891 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17892 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17893
c19d1205 17894 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17895#undef ARM_VARIANT
17896#define ARM_VARIANT & fpu_fpa_ext_v2
17897
21d799b5
NC
17898 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17899 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17900 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17901 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17902 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17903 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17904
c921be7d
NC
17905#undef ARM_VARIANT
17906#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17907
c19d1205 17908 /* Moves and type conversions. */
21d799b5
NC
17909 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17910 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17911 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17912 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
17913 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17914 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
17915 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17916 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17917 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17918 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17919 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17920 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17921 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17922 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
17923
17924 /* Memory operations. */
21d799b5
NC
17925 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17926 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
17927 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17928 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17929 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17930 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17931 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17932 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17933 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17934 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17935 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17936 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17937 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17938 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17939 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17940 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17941 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17942 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 17943
c19d1205 17944 /* Monadic operations. */
21d799b5
NC
17945 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17946 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17947 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
17948
17949 /* Dyadic operations. */
21d799b5
NC
17950 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17951 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17952 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17953 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17954 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17955 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17956 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17957 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17958 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 17959
c19d1205 17960 /* Comparisons. */
21d799b5
NC
17961 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17962 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17963 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17964 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 17965
62f3b8c8
PB
17966 /* Double precision load/store are still present on single precision
17967 implementations. */
17968 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17969 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
17970 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17971 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17972 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17973 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17974 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17975 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17976 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17977 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 17978
c921be7d
NC
17979#undef ARM_VARIANT
17980#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17981
c19d1205 17982 /* Moves and type conversions. */
21d799b5
NC
17983 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17984 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17985 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17986 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17987 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17988 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17989 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17990 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17991 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17992 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17993 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17994 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17995 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 17996
c19d1205 17997 /* Monadic operations. */
21d799b5
NC
17998 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17999 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18000 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18001
18002 /* Dyadic operations. */
21d799b5
NC
18003 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18004 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18005 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18006 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18007 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18008 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18009 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18010 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18011 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18012
c19d1205 18013 /* Comparisons. */
21d799b5
NC
18014 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18015 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18016 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18017 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18018
c921be7d
NC
18019#undef ARM_VARIANT
18020#define ARM_VARIANT & fpu_vfp_ext_v2
18021
21d799b5
NC
18022 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18023 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18024 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18025 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18026
037e8744
JB
18027/* Instructions which may belong to either the Neon or VFP instruction sets.
18028 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18029#undef ARM_VARIANT
18030#define ARM_VARIANT & fpu_vfp_ext_v1xd
18031#undef THUMB_VARIANT
18032#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18033
037e8744
JB
18034 /* These mnemonics are unique to VFP. */
18035 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18036 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18037 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18038 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18039 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18040 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18041 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18042 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18043 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18044 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18045
18046 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18047 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18048 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18049 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18050
21d799b5
NC
18051 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18052 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18053
18054 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18055 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18056
55881a11
MGD
18057 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18058 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18059 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18060 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18061 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18062 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18063 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18064 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18065
e3e535bc
NC
18066 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
18067 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18068 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18069 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18070
037e8744
JB
18071
18072 /* NOTE: All VMOV encoding is special-cased! */
18073 NCE(vmov, 0, 1, (VMOV), neon_mov),
18074 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18075
c921be7d
NC
18076#undef THUMB_VARIANT
18077#define THUMB_VARIANT & fpu_neon_ext_v1
18078#undef ARM_VARIANT
18079#define ARM_VARIANT & fpu_neon_ext_v1
18080
5287ad62
JB
18081 /* Data processing with three registers of the same length. */
18082 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18083 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18084 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18085 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18086 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18087 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18088 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18089 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18090 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18091 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18092 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18093 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18094 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18095 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18096 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18097 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18098 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18099 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18100 /* If not immediate, fall back to neon_dyadic_i64_su.
18101 shl_imm should accept I8 I16 I32 I64,
18102 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18103 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18104 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18105 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18106 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18107 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18108 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18109 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18110 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18111 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18112 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18113 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18114 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18115 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18116 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18117 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18118 /* Bitfield ops, untyped. */
18119 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18120 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18121 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18122 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18123 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18124 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18125 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18126 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18127 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18128 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18129 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18130 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18131 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18132 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18133 back to neon_dyadic_if_su. */
21d799b5
NC
18134 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18135 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18136 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18137 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18138 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18139 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18140 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18141 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18142 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18143 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18144 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18145 /* As above, D registers only. */
21d799b5
NC
18146 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18147 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18148 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18149 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18150 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18151 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18152 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18153 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18154 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18155 /* vtst takes sizes 8, 16, 32. */
18156 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18157 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18158 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18159 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18160 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18161 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18162 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18163 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18164 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18165 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18166 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18167 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18168 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18169 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18170 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18171 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18172 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18173 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18174 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18175 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18176 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18177
18178 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18179 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18180 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18181
18182 /* Data processing with two registers and a shift amount. */
18183 /* Right shifts, and variants with rounding.
18184 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18185 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18186 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18187 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18188 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18189 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18190 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18191 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18192 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18193 /* Shift and insert. Sizes accepted 8 16 32 64. */
18194 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18195 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18196 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18197 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18198 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18199 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18200 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18201 /* Right shift immediate, saturating & narrowing, with rounding variants.
18202 Types accepted S16 S32 S64 U16 U32 U64. */
18203 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18204 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18205 /* As above, unsigned. Types accepted S16 S32 S64. */
18206 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18207 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18208 /* Right shift narrowing. Types accepted I16 I32 I64. */
18209 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18210 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18211 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18212 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18213 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18214 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18215
4316f0d2
DG
18216 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18217 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18218
18219 /* Data processing, three registers of different lengths. */
18220 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18221 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18222 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18223 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18224 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18225 /* If not scalar, fall back to neon_dyadic_long.
18226 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18227 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18228 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18229 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18230 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18231 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18232 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18233 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18234 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18235 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18236 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18237 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18238 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18239 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18240 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18241 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18242 S16 S32 U16 U32. */
21d799b5 18243 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18244
18245 /* Extract. Size 8. */
3b8d421e
PB
18246 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18247 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18248
18249 /* Two registers, miscellaneous. */
18250 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18251 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18252 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18253 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18254 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18255 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18256 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18257 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18258 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18259 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18260 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18261 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18262 /* VMOVN. Types I16 I32 I64. */
21d799b5 18263 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18264 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18265 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18266 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18267 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18268 /* VZIP / VUZP. Sizes 8 16 32. */
18269 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18270 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18271 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18272 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18273 /* VQABS / VQNEG. Types S8 S16 S32. */
18274 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18275 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18276 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18277 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18278 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18279 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18280 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18281 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18282 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18283 /* Reciprocal estimates. Types U32 F32. */
18284 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18285 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18286 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18287 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18288 /* VCLS. Types S8 S16 S32. */
18289 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18290 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18291 /* VCLZ. Types I8 I16 I32. */
18292 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18293 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18294 /* VCNT. Size 8. */
18295 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18296 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18297 /* Two address, untyped. */
18298 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18299 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18300 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18301 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18302 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18303
18304 /* Table lookup. Size 8. */
18305 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18306 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18307
c921be7d
NC
18308#undef THUMB_VARIANT
18309#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18310#undef ARM_VARIANT
18311#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18312
5287ad62 18313 /* Neon element/structure load/store. */
21d799b5
NC
18314 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18315 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18316 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18317 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18318 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18319 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18320 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18321 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18322
c921be7d 18323#undef THUMB_VARIANT
62f3b8c8
PB
18324#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18325#undef ARM_VARIANT
18326#define ARM_VARIANT &fpu_vfp_ext_v3xd
18327 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18328 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18329 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18330 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18331 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18332 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18333 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18334 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18335 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18336
18337#undef THUMB_VARIANT
c921be7d
NC
18338#define THUMB_VARIANT & fpu_vfp_ext_v3
18339#undef ARM_VARIANT
18340#define ARM_VARIANT & fpu_vfp_ext_v3
18341
21d799b5 18342 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18343 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18344 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18345 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18346 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18347 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18348 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18349 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18350 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18351
62f3b8c8
PB
18352#undef ARM_VARIANT
18353#define ARM_VARIANT &fpu_vfp_ext_fma
18354#undef THUMB_VARIANT
18355#define THUMB_VARIANT &fpu_vfp_ext_fma
18356 /* Mnemonics shared by Neon and VFP. These are included in the
18357 VFP FMA variant; NEON and VFP FMA always includes the NEON
18358 FMA instructions. */
18359 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18360 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18361 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18362 the v form should always be used. */
18363 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18364 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18365 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18366 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18367 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18368 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18369
5287ad62 18370#undef THUMB_VARIANT
c921be7d
NC
18371#undef ARM_VARIANT
18372#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18373
21d799b5
NC
18374 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18375 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18376 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18377 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18378 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18379 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18380 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18381 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18382
c921be7d
NC
18383#undef ARM_VARIANT
18384#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18385
21d799b5
NC
18386 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18387 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18388 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18389 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18390 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18391 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18392 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18393 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18394 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18395 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18396 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18397 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18398 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18399 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18400 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18401 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18402 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18403 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18404 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18405 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18406 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18407 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18408 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18409 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18410 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18411 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18412 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18413 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18414 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18415 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18416 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18417 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18418 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18419 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18420 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18421 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18422 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18423 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18424 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18425 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18426 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18427 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18428 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18429 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18430 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18431 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18432 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18433 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18434 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18435 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18436 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18437 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18438 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18439 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18440 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18441 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18442 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18443 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18444 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18445 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18446 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18447 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18448 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18449 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18450 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18451 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18452 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18453 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18454 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18455 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18456 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18457 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18458 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18459 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18460 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18461 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18462 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18463 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18464 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18465 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18466 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18467 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18468 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18469 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18470 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18471 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18472 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18473 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18474 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18475 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18476 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18477 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18478 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18479 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18480 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18481 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18482 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18483 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18484 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18485 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18486 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18487 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18488 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18489 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18490 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18491 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18492 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18493 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18494 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18495 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18496 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18497 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18498 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18499 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18500 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18501 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18502 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18503 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18504 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18505 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18506 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18507 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18508 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18509 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18510 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18511 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18512 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18513 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18514 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18515 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18516 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18517 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18518 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18519 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18520 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18521 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18522 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18523 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18524 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18525 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18526 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18527 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18528 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18529 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18530 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18531 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18532 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18533 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18534 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18535 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18536 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18537 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18538 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18539 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18540 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18541 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18542 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18543 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18544 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18545 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18546 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18547 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18548
c921be7d
NC
18549#undef ARM_VARIANT
18550#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18551
21d799b5
NC
18552 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18553 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18554 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18555 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18556 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18557 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18558 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18559 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18560 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18561 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18562 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18563 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18564 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18565 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18566 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18567 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18568 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18569 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18570 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18571 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18572 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18573 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18574 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18575 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18576 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18577 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18578 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18579 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18580 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18581 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18582 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18583 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18584 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18585 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18586 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18587 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18588 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18589 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18590 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18591 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18592 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18593 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18594 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18595 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18596 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18597 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18598 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18599 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18600 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18601 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18602 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18603 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18604 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18605 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18606 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18607 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18608 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18609
c921be7d
NC
18610#undef ARM_VARIANT
18611#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18612
21d799b5
NC
18613 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18614 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18615 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18616 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18617 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18618 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18619 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18620 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18621 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18622 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18623 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18624 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18625 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18626 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18627 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18628 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18629 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18630 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18631 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18632 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18633 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18634 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18635 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18636 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18637 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18638 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18639 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18640 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18641 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18642 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18643 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18644 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18645 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18646 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18647 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18648 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18649 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18650 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18651 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18652 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18653 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18654 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18655 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18656 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18657 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18658 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18659 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18660 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18661 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18662 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18663 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18664 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18665 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18666 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18667 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18668 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18669 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18670 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18671 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18672 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18673 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18674 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18675 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18676 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18677 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18678 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18679 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18680 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18681 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18682 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18683 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18684 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18685 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18686 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18687 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18688 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18689};
18690#undef ARM_VARIANT
18691#undef THUMB_VARIANT
18692#undef TCE
18693#undef TCM
18694#undef TUE
18695#undef TUF
18696#undef TCC
8f06b2d8 18697#undef cCE
e3cb604e
PB
18698#undef cCL
18699#undef C3E
c19d1205
ZW
18700#undef CE
18701#undef CM
18702#undef UE
18703#undef UF
18704#undef UT
5287ad62
JB
18705#undef NUF
18706#undef nUF
18707#undef NCE
18708#undef nCE
c19d1205
ZW
18709#undef OPS0
18710#undef OPS1
18711#undef OPS2
18712#undef OPS3
18713#undef OPS4
18714#undef OPS5
18715#undef OPS6
18716#undef do_0
18717\f
18718/* MD interface: bits in the object file. */
bfae80f2 18719
c19d1205
ZW
18720/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18721 for use in the a.out file, and stores them in the array pointed to by buf.
18722 This knows about the endian-ness of the target machine and does
18723 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18724 2 (short) and 4 (long) Floating numbers are put out as a series of
18725 LITTLENUMS (shorts, here at least). */
b99bd4ef 18726
c19d1205
ZW
18727void
18728md_number_to_chars (char * buf, valueT val, int n)
18729{
18730 if (target_big_endian)
18731 number_to_chars_bigendian (buf, val, n);
18732 else
18733 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18734}
18735
c19d1205
ZW
18736static valueT
18737md_chars_to_number (char * buf, int n)
bfae80f2 18738{
c19d1205
ZW
18739 valueT result = 0;
18740 unsigned char * where = (unsigned char *) buf;
bfae80f2 18741
c19d1205 18742 if (target_big_endian)
b99bd4ef 18743 {
c19d1205
ZW
18744 while (n--)
18745 {
18746 result <<= 8;
18747 result |= (*where++ & 255);
18748 }
b99bd4ef 18749 }
c19d1205 18750 else
b99bd4ef 18751 {
c19d1205
ZW
18752 while (n--)
18753 {
18754 result <<= 8;
18755 result |= (where[n] & 255);
18756 }
bfae80f2 18757 }
b99bd4ef 18758
c19d1205 18759 return result;
bfae80f2 18760}
b99bd4ef 18761
c19d1205 18762/* MD interface: Sections. */
b99bd4ef 18763
0110f2b8
PB
18764/* Estimate the size of a frag before relaxing. Assume everything fits in
18765 2 bytes. */
18766
c19d1205 18767int
0110f2b8 18768md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18769 segT segtype ATTRIBUTE_UNUSED)
18770{
0110f2b8
PB
18771 fragp->fr_var = 2;
18772 return 2;
18773}
18774
18775/* Convert a machine dependent frag. */
18776
18777void
18778md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18779{
18780 unsigned long insn;
18781 unsigned long old_op;
18782 char *buf;
18783 expressionS exp;
18784 fixS *fixp;
18785 int reloc_type;
18786 int pc_rel;
18787 int opcode;
18788
18789 buf = fragp->fr_literal + fragp->fr_fix;
18790
18791 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18792 if (fragp->fr_symbol)
18793 {
0110f2b8
PB
18794 exp.X_op = O_symbol;
18795 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18796 }
18797 else
18798 {
0110f2b8 18799 exp.X_op = O_constant;
5f4273c7 18800 }
0110f2b8
PB
18801 exp.X_add_number = fragp->fr_offset;
18802 opcode = fragp->fr_subtype;
18803 switch (opcode)
18804 {
18805 case T_MNEM_ldr_pc:
18806 case T_MNEM_ldr_pc2:
18807 case T_MNEM_ldr_sp:
18808 case T_MNEM_str_sp:
18809 case T_MNEM_ldr:
18810 case T_MNEM_ldrb:
18811 case T_MNEM_ldrh:
18812 case T_MNEM_str:
18813 case T_MNEM_strb:
18814 case T_MNEM_strh:
18815 if (fragp->fr_var == 4)
18816 {
5f4273c7 18817 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18818 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18819 {
18820 insn |= (old_op & 0x700) << 4;
18821 }
18822 else
18823 {
18824 insn |= (old_op & 7) << 12;
18825 insn |= (old_op & 0x38) << 13;
18826 }
18827 insn |= 0x00000c00;
18828 put_thumb32_insn (buf, insn);
18829 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18830 }
18831 else
18832 {
18833 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18834 }
18835 pc_rel = (opcode == T_MNEM_ldr_pc2);
18836 break;
18837 case T_MNEM_adr:
18838 if (fragp->fr_var == 4)
18839 {
18840 insn = THUMB_OP32 (opcode);
18841 insn |= (old_op & 0xf0) << 4;
18842 put_thumb32_insn (buf, insn);
18843 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18844 }
18845 else
18846 {
18847 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18848 exp.X_add_number -= 4;
18849 }
18850 pc_rel = 1;
18851 break;
18852 case T_MNEM_mov:
18853 case T_MNEM_movs:
18854 case T_MNEM_cmp:
18855 case T_MNEM_cmn:
18856 if (fragp->fr_var == 4)
18857 {
18858 int r0off = (opcode == T_MNEM_mov
18859 || opcode == T_MNEM_movs) ? 0 : 8;
18860 insn = THUMB_OP32 (opcode);
18861 insn = (insn & 0xe1ffffff) | 0x10000000;
18862 insn |= (old_op & 0x700) << r0off;
18863 put_thumb32_insn (buf, insn);
18864 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18865 }
18866 else
18867 {
18868 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18869 }
18870 pc_rel = 0;
18871 break;
18872 case T_MNEM_b:
18873 if (fragp->fr_var == 4)
18874 {
18875 insn = THUMB_OP32(opcode);
18876 put_thumb32_insn (buf, insn);
18877 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18878 }
18879 else
18880 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18881 pc_rel = 1;
18882 break;
18883 case T_MNEM_bcond:
18884 if (fragp->fr_var == 4)
18885 {
18886 insn = THUMB_OP32(opcode);
18887 insn |= (old_op & 0xf00) << 14;
18888 put_thumb32_insn (buf, insn);
18889 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18890 }
18891 else
18892 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18893 pc_rel = 1;
18894 break;
18895 case T_MNEM_add_sp:
18896 case T_MNEM_add_pc:
18897 case T_MNEM_inc_sp:
18898 case T_MNEM_dec_sp:
18899 if (fragp->fr_var == 4)
18900 {
18901 /* ??? Choose between add and addw. */
18902 insn = THUMB_OP32 (opcode);
18903 insn |= (old_op & 0xf0) << 4;
18904 put_thumb32_insn (buf, insn);
16805f35
PB
18905 if (opcode == T_MNEM_add_pc)
18906 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18907 else
18908 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
18909 }
18910 else
18911 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18912 pc_rel = 0;
18913 break;
18914
18915 case T_MNEM_addi:
18916 case T_MNEM_addis:
18917 case T_MNEM_subi:
18918 case T_MNEM_subis:
18919 if (fragp->fr_var == 4)
18920 {
18921 insn = THUMB_OP32 (opcode);
18922 insn |= (old_op & 0xf0) << 4;
18923 insn |= (old_op & 0xf) << 16;
18924 put_thumb32_insn (buf, insn);
16805f35
PB
18925 if (insn & (1 << 20))
18926 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18927 else
18928 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
18929 }
18930 else
18931 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18932 pc_rel = 0;
18933 break;
18934 default:
5f4273c7 18935 abort ();
0110f2b8
PB
18936 }
18937 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 18938 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
18939 fixp->fx_file = fragp->fr_file;
18940 fixp->fx_line = fragp->fr_line;
18941 fragp->fr_fix += fragp->fr_var;
18942}
18943
18944/* Return the size of a relaxable immediate operand instruction.
18945 SHIFT and SIZE specify the form of the allowable immediate. */
18946static int
18947relax_immediate (fragS *fragp, int size, int shift)
18948{
18949 offsetT offset;
18950 offsetT mask;
18951 offsetT low;
18952
18953 /* ??? Should be able to do better than this. */
18954 if (fragp->fr_symbol)
18955 return 4;
18956
18957 low = (1 << shift) - 1;
18958 mask = (1 << (shift + size)) - (1 << shift);
18959 offset = fragp->fr_offset;
18960 /* Force misaligned offsets to 32-bit variant. */
18961 if (offset & low)
5e77afaa 18962 return 4;
0110f2b8
PB
18963 if (offset & ~mask)
18964 return 4;
18965 return 2;
18966}
18967
5e77afaa
PB
18968/* Get the address of a symbol during relaxation. */
18969static addressT
5f4273c7 18970relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
18971{
18972 fragS *sym_frag;
18973 addressT addr;
18974 symbolS *sym;
18975
18976 sym = fragp->fr_symbol;
18977 sym_frag = symbol_get_frag (sym);
18978 know (S_GET_SEGMENT (sym) != absolute_section
18979 || sym_frag == &zero_address_frag);
18980 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18981
18982 /* If frag has yet to be reached on this pass, assume it will
18983 move by STRETCH just as we did. If this is not so, it will
18984 be because some frag between grows, and that will force
18985 another pass. */
18986
18987 if (stretch != 0
18988 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
18989 {
18990 fragS *f;
18991
18992 /* Adjust stretch for any alignment frag. Note that if have
18993 been expanding the earlier code, the symbol may be
18994 defined in what appears to be an earlier frag. FIXME:
18995 This doesn't handle the fr_subtype field, which specifies
18996 a maximum number of bytes to skip when doing an
18997 alignment. */
18998 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18999 {
19000 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19001 {
19002 if (stretch < 0)
19003 stretch = - ((- stretch)
19004 & ~ ((1 << (int) f->fr_offset) - 1));
19005 else
19006 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19007 if (stretch == 0)
19008 break;
19009 }
19010 }
19011 if (f != NULL)
19012 addr += stretch;
19013 }
5e77afaa
PB
19014
19015 return addr;
19016}
19017
0110f2b8
PB
19018/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19019 load. */
19020static int
5e77afaa 19021relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19022{
19023 addressT addr;
19024 offsetT val;
19025
19026 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19027 if (fragp->fr_symbol == NULL
19028 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19029 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19030 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19031 return 4;
19032
5f4273c7 19033 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19034 addr = fragp->fr_address + fragp->fr_fix;
19035 addr = (addr + 4) & ~3;
5e77afaa 19036 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19037 if (val & 3)
5e77afaa 19038 return 4;
0110f2b8
PB
19039 val -= addr;
19040 if (val < 0 || val > 1020)
19041 return 4;
19042 return 2;
19043}
19044
19045/* Return the size of a relaxable add/sub immediate instruction. */
19046static int
19047relax_addsub (fragS *fragp, asection *sec)
19048{
19049 char *buf;
19050 int op;
19051
19052 buf = fragp->fr_literal + fragp->fr_fix;
19053 op = bfd_get_16(sec->owner, buf);
19054 if ((op & 0xf) == ((op >> 4) & 0xf))
19055 return relax_immediate (fragp, 8, 0);
19056 else
19057 return relax_immediate (fragp, 3, 0);
19058}
19059
19060
19061/* Return the size of a relaxable branch instruction. BITS is the
19062 size of the offset field in the narrow instruction. */
19063
19064static int
5e77afaa 19065relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19066{
19067 addressT addr;
19068 offsetT val;
19069 offsetT limit;
19070
19071 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19072 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19073 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19074 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19075 return 4;
19076
267bf995
RR
19077#ifdef OBJ_ELF
19078 if (S_IS_DEFINED (fragp->fr_symbol)
19079 && ARM_IS_FUNC (fragp->fr_symbol))
19080 return 4;
0d9b4b55
NC
19081
19082 /* PR 12532. Global symbols with default visibility might
19083 be preempted, so do not relax relocations to them. */
19084 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19085 && (! S_IS_LOCAL (fragp->fr_symbol)))
19086 return 4;
267bf995
RR
19087#endif
19088
5f4273c7 19089 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19090 addr = fragp->fr_address + fragp->fr_fix + 4;
19091 val -= addr;
19092
19093 /* Offset is a signed value *2 */
19094 limit = 1 << bits;
19095 if (val >= limit || val < -limit)
19096 return 4;
19097 return 2;
19098}
19099
19100
19101/* Relax a machine dependent frag. This returns the amount by which
19102 the current size of the frag should change. */
19103
19104int
5e77afaa 19105arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19106{
19107 int oldsize;
19108 int newsize;
19109
19110 oldsize = fragp->fr_var;
19111 switch (fragp->fr_subtype)
19112 {
19113 case T_MNEM_ldr_pc2:
5f4273c7 19114 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19115 break;
19116 case T_MNEM_ldr_pc:
19117 case T_MNEM_ldr_sp:
19118 case T_MNEM_str_sp:
5f4273c7 19119 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19120 break;
19121 case T_MNEM_ldr:
19122 case T_MNEM_str:
5f4273c7 19123 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19124 break;
19125 case T_MNEM_ldrh:
19126 case T_MNEM_strh:
5f4273c7 19127 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19128 break;
19129 case T_MNEM_ldrb:
19130 case T_MNEM_strb:
5f4273c7 19131 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19132 break;
19133 case T_MNEM_adr:
5f4273c7 19134 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19135 break;
19136 case T_MNEM_mov:
19137 case T_MNEM_movs:
19138 case T_MNEM_cmp:
19139 case T_MNEM_cmn:
5f4273c7 19140 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19141 break;
19142 case T_MNEM_b:
5f4273c7 19143 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19144 break;
19145 case T_MNEM_bcond:
5f4273c7 19146 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19147 break;
19148 case T_MNEM_add_sp:
19149 case T_MNEM_add_pc:
19150 newsize = relax_immediate (fragp, 8, 2);
19151 break;
19152 case T_MNEM_inc_sp:
19153 case T_MNEM_dec_sp:
19154 newsize = relax_immediate (fragp, 7, 2);
19155 break;
19156 case T_MNEM_addi:
19157 case T_MNEM_addis:
19158 case T_MNEM_subi:
19159 case T_MNEM_subis:
19160 newsize = relax_addsub (fragp, sec);
19161 break;
19162 default:
5f4273c7 19163 abort ();
0110f2b8 19164 }
5e77afaa
PB
19165
19166 fragp->fr_var = newsize;
19167 /* Freeze wide instructions that are at or before the same location as
19168 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19169 Don't freeze them unconditionally because targets may be artificially
19170 misaligned by the expansion of preceding frags. */
5e77afaa 19171 if (stretch <= 0 && newsize > 2)
0110f2b8 19172 {
0110f2b8 19173 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19174 frag_wane (fragp);
0110f2b8 19175 }
5e77afaa 19176
0110f2b8 19177 return newsize - oldsize;
c19d1205 19178}
b99bd4ef 19179
c19d1205 19180/* Round up a section size to the appropriate boundary. */
b99bd4ef 19181
c19d1205
ZW
19182valueT
19183md_section_align (segT segment ATTRIBUTE_UNUSED,
19184 valueT size)
19185{
f0927246
NC
19186#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19187 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19188 {
19189 /* For a.out, force the section size to be aligned. If we don't do
19190 this, BFD will align it for us, but it will not write out the
19191 final bytes of the section. This may be a bug in BFD, but it is
19192 easier to fix it here since that is how the other a.out targets
19193 work. */
19194 int align;
19195
19196 align = bfd_get_section_alignment (stdoutput, segment);
19197 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19198 }
c19d1205 19199#endif
f0927246
NC
19200
19201 return size;
bfae80f2 19202}
b99bd4ef 19203
c19d1205
ZW
19204/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19205 of an rs_align_code fragment. */
19206
19207void
19208arm_handle_align (fragS * fragP)
bfae80f2 19209{
e7495e45
NS
19210 static char const arm_noop[2][2][4] =
19211 {
19212 { /* ARMv1 */
19213 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19214 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19215 },
19216 { /* ARMv6k */
19217 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19218 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19219 },
19220 };
19221 static char const thumb_noop[2][2][2] =
19222 {
19223 { /* Thumb-1 */
19224 {0xc0, 0x46}, /* LE */
19225 {0x46, 0xc0}, /* BE */
19226 },
19227 { /* Thumb-2 */
19228 {0x00, 0xbf}, /* LE */
19229 {0xbf, 0x00} /* BE */
19230 }
19231 };
19232 static char const wide_thumb_noop[2][4] =
19233 { /* Wide Thumb-2 */
19234 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19235 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19236 };
c921be7d 19237
e7495e45 19238 unsigned bytes, fix, noop_size;
c19d1205
ZW
19239 char * p;
19240 const char * noop;
e7495e45 19241 const char *narrow_noop = NULL;
cd000bff
DJ
19242#ifdef OBJ_ELF
19243 enum mstate state;
19244#endif
bfae80f2 19245
c19d1205 19246 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19247 return;
19248
c19d1205
ZW
19249 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19250 p = fragP->fr_literal + fragP->fr_fix;
19251 fix = 0;
bfae80f2 19252
c19d1205
ZW
19253 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19254 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19255
cd000bff 19256 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19257
cd000bff 19258 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19259 {
e7495e45
NS
19260 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19261 {
19262 narrow_noop = thumb_noop[1][target_big_endian];
19263 noop = wide_thumb_noop[target_big_endian];
19264 }
c19d1205 19265 else
e7495e45
NS
19266 noop = thumb_noop[0][target_big_endian];
19267 noop_size = 2;
cd000bff
DJ
19268#ifdef OBJ_ELF
19269 state = MAP_THUMB;
19270#endif
7ed4c4c5
NC
19271 }
19272 else
19273 {
e7495e45
NS
19274 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19275 [target_big_endian];
19276 noop_size = 4;
cd000bff
DJ
19277#ifdef OBJ_ELF
19278 state = MAP_ARM;
19279#endif
7ed4c4c5 19280 }
c921be7d 19281
e7495e45 19282 fragP->fr_var = noop_size;
c921be7d 19283
c19d1205 19284 if (bytes & (noop_size - 1))
7ed4c4c5 19285 {
c19d1205 19286 fix = bytes & (noop_size - 1);
cd000bff
DJ
19287#ifdef OBJ_ELF
19288 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19289#endif
c19d1205
ZW
19290 memset (p, 0, fix);
19291 p += fix;
19292 bytes -= fix;
a737bd4d 19293 }
a737bd4d 19294
e7495e45
NS
19295 if (narrow_noop)
19296 {
19297 if (bytes & noop_size)
19298 {
19299 /* Insert a narrow noop. */
19300 memcpy (p, narrow_noop, noop_size);
19301 p += noop_size;
19302 bytes -= noop_size;
19303 fix += noop_size;
19304 }
19305
19306 /* Use wide noops for the remainder */
19307 noop_size = 4;
19308 }
19309
c19d1205 19310 while (bytes >= noop_size)
a737bd4d 19311 {
c19d1205
ZW
19312 memcpy (p, noop, noop_size);
19313 p += noop_size;
19314 bytes -= noop_size;
19315 fix += noop_size;
a737bd4d
NC
19316 }
19317
c19d1205 19318 fragP->fr_fix += fix;
a737bd4d
NC
19319}
19320
c19d1205
ZW
19321/* Called from md_do_align. Used to create an alignment
19322 frag in a code section. */
19323
19324void
19325arm_frag_align_code (int n, int max)
bfae80f2 19326{
c19d1205 19327 char * p;
7ed4c4c5 19328
c19d1205 19329 /* We assume that there will never be a requirement
6ec8e702 19330 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19331 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19332 {
19333 char err_msg[128];
19334
19335 sprintf (err_msg,
19336 _("alignments greater than %d bytes not supported in .text sections."),
19337 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19338 as_fatal ("%s", err_msg);
6ec8e702 19339 }
bfae80f2 19340
c19d1205
ZW
19341 p = frag_var (rs_align_code,
19342 MAX_MEM_FOR_RS_ALIGN_CODE,
19343 1,
19344 (relax_substateT) max,
19345 (symbolS *) NULL,
19346 (offsetT) n,
19347 (char *) NULL);
19348 *p = 0;
19349}
bfae80f2 19350
8dc2430f
NC
19351/* Perform target specific initialisation of a frag.
19352 Note - despite the name this initialisation is not done when the frag
19353 is created, but only when its type is assigned. A frag can be created
19354 and used a long time before its type is set, so beware of assuming that
19355 this initialisationis performed first. */
bfae80f2 19356
cd000bff
DJ
19357#ifndef OBJ_ELF
19358void
19359arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19360{
19361 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19362 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19363}
19364
19365#else /* OBJ_ELF is defined. */
c19d1205 19366void
cd000bff 19367arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19368{
8dc2430f
NC
19369 /* If the current ARM vs THUMB mode has not already
19370 been recorded into this frag then do so now. */
cd000bff
DJ
19371 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19372 {
19373 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19374
19375 /* Record a mapping symbol for alignment frags. We will delete this
19376 later if the alignment ends up empty. */
19377 switch (fragP->fr_type)
19378 {
19379 case rs_align:
19380 case rs_align_test:
19381 case rs_fill:
19382 mapping_state_2 (MAP_DATA, max_chars);
19383 break;
19384 case rs_align_code:
19385 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19386 break;
19387 default:
19388 break;
19389 }
19390 }
bfae80f2
RE
19391}
19392
c19d1205
ZW
19393/* When we change sections we need to issue a new mapping symbol. */
19394
19395void
19396arm_elf_change_section (void)
bfae80f2 19397{
c19d1205
ZW
19398 /* Link an unlinked unwind index table section to the .text section. */
19399 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19400 && elf_linked_to_section (now_seg) == NULL)
19401 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19402}
19403
c19d1205
ZW
19404int
19405arm_elf_section_type (const char * str, size_t len)
e45d0630 19406{
c19d1205
ZW
19407 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19408 return SHT_ARM_EXIDX;
e45d0630 19409
c19d1205
ZW
19410 return -1;
19411}
19412\f
19413/* Code to deal with unwinding tables. */
e45d0630 19414
c19d1205 19415static void add_unwind_adjustsp (offsetT);
e45d0630 19416
5f4273c7 19417/* Generate any deferred unwind frame offset. */
e45d0630 19418
bfae80f2 19419static void
c19d1205 19420flush_pending_unwind (void)
bfae80f2 19421{
c19d1205 19422 offsetT offset;
bfae80f2 19423
c19d1205
ZW
19424 offset = unwind.pending_offset;
19425 unwind.pending_offset = 0;
19426 if (offset != 0)
19427 add_unwind_adjustsp (offset);
bfae80f2
RE
19428}
19429
c19d1205
ZW
19430/* Add an opcode to this list for this function. Two-byte opcodes should
19431 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19432 order. */
19433
bfae80f2 19434static void
c19d1205 19435add_unwind_opcode (valueT op, int length)
bfae80f2 19436{
c19d1205
ZW
19437 /* Add any deferred stack adjustment. */
19438 if (unwind.pending_offset)
19439 flush_pending_unwind ();
bfae80f2 19440
c19d1205 19441 unwind.sp_restored = 0;
bfae80f2 19442
c19d1205 19443 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19444 {
c19d1205
ZW
19445 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19446 if (unwind.opcodes)
21d799b5
NC
19447 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19448 unwind.opcode_alloc);
c19d1205 19449 else
21d799b5 19450 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19451 }
c19d1205 19452 while (length > 0)
bfae80f2 19453 {
c19d1205
ZW
19454 length--;
19455 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19456 op >>= 8;
19457 unwind.opcode_count++;
bfae80f2 19458 }
bfae80f2
RE
19459}
19460
c19d1205
ZW
19461/* Add unwind opcodes to adjust the stack pointer. */
19462
bfae80f2 19463static void
c19d1205 19464add_unwind_adjustsp (offsetT offset)
bfae80f2 19465{
c19d1205 19466 valueT op;
bfae80f2 19467
c19d1205 19468 if (offset > 0x200)
bfae80f2 19469 {
c19d1205
ZW
19470 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19471 char bytes[5];
19472 int n;
19473 valueT o;
bfae80f2 19474
c19d1205
ZW
19475 /* Long form: 0xb2, uleb128. */
19476 /* This might not fit in a word so add the individual bytes,
19477 remembering the list is built in reverse order. */
19478 o = (valueT) ((offset - 0x204) >> 2);
19479 if (o == 0)
19480 add_unwind_opcode (0, 1);
bfae80f2 19481
c19d1205
ZW
19482 /* Calculate the uleb128 encoding of the offset. */
19483 n = 0;
19484 while (o)
19485 {
19486 bytes[n] = o & 0x7f;
19487 o >>= 7;
19488 if (o)
19489 bytes[n] |= 0x80;
19490 n++;
19491 }
19492 /* Add the insn. */
19493 for (; n; n--)
19494 add_unwind_opcode (bytes[n - 1], 1);
19495 add_unwind_opcode (0xb2, 1);
19496 }
19497 else if (offset > 0x100)
bfae80f2 19498 {
c19d1205
ZW
19499 /* Two short opcodes. */
19500 add_unwind_opcode (0x3f, 1);
19501 op = (offset - 0x104) >> 2;
19502 add_unwind_opcode (op, 1);
bfae80f2 19503 }
c19d1205
ZW
19504 else if (offset > 0)
19505 {
19506 /* Short opcode. */
19507 op = (offset - 4) >> 2;
19508 add_unwind_opcode (op, 1);
19509 }
19510 else if (offset < 0)
bfae80f2 19511 {
c19d1205
ZW
19512 offset = -offset;
19513 while (offset > 0x100)
bfae80f2 19514 {
c19d1205
ZW
19515 add_unwind_opcode (0x7f, 1);
19516 offset -= 0x100;
bfae80f2 19517 }
c19d1205
ZW
19518 op = ((offset - 4) >> 2) | 0x40;
19519 add_unwind_opcode (op, 1);
bfae80f2 19520 }
bfae80f2
RE
19521}
19522
c19d1205
ZW
19523/* Finish the list of unwind opcodes for this function. */
19524static void
19525finish_unwind_opcodes (void)
bfae80f2 19526{
c19d1205 19527 valueT op;
bfae80f2 19528
c19d1205 19529 if (unwind.fp_used)
bfae80f2 19530 {
708587a4 19531 /* Adjust sp as necessary. */
c19d1205
ZW
19532 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19533 flush_pending_unwind ();
bfae80f2 19534
c19d1205
ZW
19535 /* After restoring sp from the frame pointer. */
19536 op = 0x90 | unwind.fp_reg;
19537 add_unwind_opcode (op, 1);
19538 }
19539 else
19540 flush_pending_unwind ();
bfae80f2
RE
19541}
19542
bfae80f2 19543
c19d1205
ZW
19544/* Start an exception table entry. If idx is nonzero this is an index table
19545 entry. */
bfae80f2
RE
19546
19547static void
c19d1205 19548start_unwind_section (const segT text_seg, int idx)
bfae80f2 19549{
c19d1205
ZW
19550 const char * text_name;
19551 const char * prefix;
19552 const char * prefix_once;
19553 const char * group_name;
19554 size_t prefix_len;
19555 size_t text_len;
19556 char * sec_name;
19557 size_t sec_name_len;
19558 int type;
19559 int flags;
19560 int linkonce;
bfae80f2 19561
c19d1205 19562 if (idx)
bfae80f2 19563 {
c19d1205
ZW
19564 prefix = ELF_STRING_ARM_unwind;
19565 prefix_once = ELF_STRING_ARM_unwind_once;
19566 type = SHT_ARM_EXIDX;
bfae80f2 19567 }
c19d1205 19568 else
bfae80f2 19569 {
c19d1205
ZW
19570 prefix = ELF_STRING_ARM_unwind_info;
19571 prefix_once = ELF_STRING_ARM_unwind_info_once;
19572 type = SHT_PROGBITS;
bfae80f2
RE
19573 }
19574
c19d1205
ZW
19575 text_name = segment_name (text_seg);
19576 if (streq (text_name, ".text"))
19577 text_name = "";
19578
19579 if (strncmp (text_name, ".gnu.linkonce.t.",
19580 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19581 {
c19d1205
ZW
19582 prefix = prefix_once;
19583 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19584 }
19585
c19d1205
ZW
19586 prefix_len = strlen (prefix);
19587 text_len = strlen (text_name);
19588 sec_name_len = prefix_len + text_len;
21d799b5 19589 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19590 memcpy (sec_name, prefix, prefix_len);
19591 memcpy (sec_name + prefix_len, text_name, text_len);
19592 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19593
c19d1205
ZW
19594 flags = SHF_ALLOC;
19595 linkonce = 0;
19596 group_name = 0;
bfae80f2 19597
c19d1205
ZW
19598 /* Handle COMDAT group. */
19599 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19600 {
c19d1205
ZW
19601 group_name = elf_group_name (text_seg);
19602 if (group_name == NULL)
19603 {
bd3ba5d1 19604 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19605 segment_name (text_seg));
19606 ignore_rest_of_line ();
19607 return;
19608 }
19609 flags |= SHF_GROUP;
19610 linkonce = 1;
bfae80f2
RE
19611 }
19612
c19d1205 19613 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19614
5f4273c7 19615 /* Set the section link for index tables. */
c19d1205
ZW
19616 if (idx)
19617 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19618}
19619
bfae80f2 19620
c19d1205
ZW
19621/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19622 personality routine data. Returns zero, or the index table value for
19623 and inline entry. */
19624
19625static valueT
19626create_unwind_entry (int have_data)
bfae80f2 19627{
c19d1205
ZW
19628 int size;
19629 addressT where;
19630 char *ptr;
19631 /* The current word of data. */
19632 valueT data;
19633 /* The number of bytes left in this word. */
19634 int n;
bfae80f2 19635
c19d1205 19636 finish_unwind_opcodes ();
bfae80f2 19637
c19d1205
ZW
19638 /* Remember the current text section. */
19639 unwind.saved_seg = now_seg;
19640 unwind.saved_subseg = now_subseg;
bfae80f2 19641
c19d1205 19642 start_unwind_section (now_seg, 0);
bfae80f2 19643
c19d1205 19644 if (unwind.personality_routine == NULL)
bfae80f2 19645 {
c19d1205
ZW
19646 if (unwind.personality_index == -2)
19647 {
19648 if (have_data)
5f4273c7 19649 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19650 return 1; /* EXIDX_CANTUNWIND. */
19651 }
bfae80f2 19652
c19d1205
ZW
19653 /* Use a default personality routine if none is specified. */
19654 if (unwind.personality_index == -1)
19655 {
19656 if (unwind.opcode_count > 3)
19657 unwind.personality_index = 1;
19658 else
19659 unwind.personality_index = 0;
19660 }
bfae80f2 19661
c19d1205
ZW
19662 /* Space for the personality routine entry. */
19663 if (unwind.personality_index == 0)
19664 {
19665 if (unwind.opcode_count > 3)
19666 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19667
c19d1205
ZW
19668 if (!have_data)
19669 {
19670 /* All the data is inline in the index table. */
19671 data = 0x80;
19672 n = 3;
19673 while (unwind.opcode_count > 0)
19674 {
19675 unwind.opcode_count--;
19676 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19677 n--;
19678 }
bfae80f2 19679
c19d1205
ZW
19680 /* Pad with "finish" opcodes. */
19681 while (n--)
19682 data = (data << 8) | 0xb0;
bfae80f2 19683
c19d1205
ZW
19684 return data;
19685 }
19686 size = 0;
19687 }
19688 else
19689 /* We get two opcodes "free" in the first word. */
19690 size = unwind.opcode_count - 2;
19691 }
19692 else
19693 /* An extra byte is required for the opcode count. */
19694 size = unwind.opcode_count + 1;
bfae80f2 19695
c19d1205
ZW
19696 size = (size + 3) >> 2;
19697 if (size > 0xff)
19698 as_bad (_("too many unwind opcodes"));
bfae80f2 19699
c19d1205
ZW
19700 frag_align (2, 0, 0);
19701 record_alignment (now_seg, 2);
19702 unwind.table_entry = expr_build_dot ();
19703
19704 /* Allocate the table entry. */
19705 ptr = frag_more ((size << 2) + 4);
19706 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19707
c19d1205 19708 switch (unwind.personality_index)
bfae80f2 19709 {
c19d1205
ZW
19710 case -1:
19711 /* ??? Should this be a PLT generating relocation? */
19712 /* Custom personality routine. */
19713 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19714 BFD_RELOC_ARM_PREL31);
bfae80f2 19715
c19d1205
ZW
19716 where += 4;
19717 ptr += 4;
bfae80f2 19718
c19d1205
ZW
19719 /* Set the first byte to the number of additional words. */
19720 data = size - 1;
19721 n = 3;
19722 break;
bfae80f2 19723
c19d1205
ZW
19724 /* ABI defined personality routines. */
19725 case 0:
19726 /* Three opcodes bytes are packed into the first word. */
19727 data = 0x80;
19728 n = 3;
19729 break;
bfae80f2 19730
c19d1205
ZW
19731 case 1:
19732 case 2:
19733 /* The size and first two opcode bytes go in the first word. */
19734 data = ((0x80 + unwind.personality_index) << 8) | size;
19735 n = 2;
19736 break;
bfae80f2 19737
c19d1205
ZW
19738 default:
19739 /* Should never happen. */
19740 abort ();
19741 }
bfae80f2 19742
c19d1205
ZW
19743 /* Pack the opcodes into words (MSB first), reversing the list at the same
19744 time. */
19745 while (unwind.opcode_count > 0)
19746 {
19747 if (n == 0)
19748 {
19749 md_number_to_chars (ptr, data, 4);
19750 ptr += 4;
19751 n = 4;
19752 data = 0;
19753 }
19754 unwind.opcode_count--;
19755 n--;
19756 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19757 }
19758
19759 /* Finish off the last word. */
19760 if (n < 4)
19761 {
19762 /* Pad with "finish" opcodes. */
19763 while (n--)
19764 data = (data << 8) | 0xb0;
19765
19766 md_number_to_chars (ptr, data, 4);
19767 }
19768
19769 if (!have_data)
19770 {
19771 /* Add an empty descriptor if there is no user-specified data. */
19772 ptr = frag_more (4);
19773 md_number_to_chars (ptr, 0, 4);
19774 }
19775
19776 return 0;
bfae80f2
RE
19777}
19778
f0927246
NC
19779
19780/* Initialize the DWARF-2 unwind information for this procedure. */
19781
19782void
19783tc_arm_frame_initial_instructions (void)
19784{
19785 cfi_add_CFA_def_cfa (REG_SP, 0);
19786}
19787#endif /* OBJ_ELF */
19788
c19d1205
ZW
19789/* Convert REGNAME to a DWARF-2 register number. */
19790
19791int
1df69f4f 19792tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19793{
1df69f4f 19794 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19795
19796 if (reg == FAIL)
19797 return -1;
19798
19799 return reg;
bfae80f2
RE
19800}
19801
f0927246 19802#ifdef TE_PE
c19d1205 19803void
f0927246 19804tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19805{
91d6fa6a 19806 expressionS exp;
bfae80f2 19807
91d6fa6a
NC
19808 exp.X_op = O_secrel;
19809 exp.X_add_symbol = symbol;
19810 exp.X_add_number = 0;
19811 emit_expr (&exp, size);
f0927246
NC
19812}
19813#endif
bfae80f2 19814
c19d1205 19815/* MD interface: Symbol and relocation handling. */
bfae80f2 19816
2fc8bdac
ZW
19817/* Return the address within the segment that a PC-relative fixup is
19818 relative to. For ARM, PC-relative fixups applied to instructions
19819 are generally relative to the location of the fixup plus 8 bytes.
19820 Thumb branches are offset by 4, and Thumb loads relative to PC
19821 require special handling. */
bfae80f2 19822
c19d1205 19823long
2fc8bdac 19824md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19825{
2fc8bdac
ZW
19826 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19827
19828 /* If this is pc-relative and we are going to emit a relocation
19829 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19830 will need. Otherwise we want to use the calculated base.
19831 For WinCE we skip the bias for externals as well, since this
19832 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19833 if (fixP->fx_pcrel
2fc8bdac 19834 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19835 || (arm_force_relocation (fixP)
19836#ifdef TE_WINCE
19837 && !S_IS_EXTERNAL (fixP->fx_addsy)
19838#endif
19839 )))
2fc8bdac 19840 base = 0;
bfae80f2 19841
267bf995 19842
c19d1205 19843 switch (fixP->fx_r_type)
bfae80f2 19844 {
2fc8bdac
ZW
19845 /* PC relative addressing on the Thumb is slightly odd as the
19846 bottom two bits of the PC are forced to zero for the
19847 calculation. This happens *after* application of the
19848 pipeline offset. However, Thumb adrl already adjusts for
19849 this, so we need not do it again. */
c19d1205 19850 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19851 return base & ~3;
c19d1205
ZW
19852
19853 case BFD_RELOC_ARM_THUMB_OFFSET:
19854 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19855 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19856 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19857 return (base + 4) & ~3;
c19d1205 19858
2fc8bdac
ZW
19859 /* Thumb branches are simply offset by +4. */
19860 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19861 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19862 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19863 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19864 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19865 return base + 4;
bfae80f2 19866
267bf995 19867 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19868 if (fixP->fx_addsy
19869 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19870 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19871 && ARM_IS_FUNC (fixP->fx_addsy)
19872 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19873 base = fixP->fx_where + fixP->fx_frag->fr_address;
19874 return base + 4;
19875
00adf2d4
JB
19876 /* BLX is like branches above, but forces the low two bits of PC to
19877 zero. */
486499d0
CL
19878 case BFD_RELOC_THUMB_PCREL_BLX:
19879 if (fixP->fx_addsy
19880 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19881 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19882 && THUMB_IS_FUNC (fixP->fx_addsy)
19883 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19884 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19885 return (base + 4) & ~3;
19886
2fc8bdac
ZW
19887 /* ARM mode branches are offset by +8. However, the Windows CE
19888 loader expects the relocation not to take this into account. */
267bf995 19889 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
19890 if (fixP->fx_addsy
19891 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19892 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19893 && ARM_IS_FUNC (fixP->fx_addsy)
19894 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19895 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19896 return base + 8;
267bf995 19897
486499d0
CL
19898 case BFD_RELOC_ARM_PCREL_CALL:
19899 if (fixP->fx_addsy
19900 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 19901 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
19902 && THUMB_IS_FUNC (fixP->fx_addsy)
19903 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19904 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19905 return base + 8;
267bf995 19906
2fc8bdac 19907 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 19908 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 19909 case BFD_RELOC_ARM_PLT32:
c19d1205 19910#ifdef TE_WINCE
5f4273c7 19911 /* When handling fixups immediately, because we have already
53baae48
NC
19912 discovered the value of a symbol, or the address of the frag involved
19913 we must account for the offset by +8, as the OS loader will never see the reloc.
19914 see fixup_segment() in write.c
19915 The S_IS_EXTERNAL test handles the case of global symbols.
19916 Those need the calculated base, not just the pipe compensation the linker will need. */
19917 if (fixP->fx_pcrel
19918 && fixP->fx_addsy != NULL
19919 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19920 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19921 return base + 8;
2fc8bdac 19922 return base;
c19d1205 19923#else
2fc8bdac 19924 return base + 8;
c19d1205 19925#endif
2fc8bdac 19926
267bf995 19927
2fc8bdac
ZW
19928 /* ARM mode loads relative to PC are also offset by +8. Unlike
19929 branches, the Windows CE loader *does* expect the relocation
19930 to take this into account. */
19931 case BFD_RELOC_ARM_OFFSET_IMM:
19932 case BFD_RELOC_ARM_OFFSET_IMM8:
19933 case BFD_RELOC_ARM_HWLITERAL:
19934 case BFD_RELOC_ARM_LITERAL:
19935 case BFD_RELOC_ARM_CP_OFF_IMM:
19936 return base + 8;
19937
19938
19939 /* Other PC-relative relocations are un-offset. */
19940 default:
19941 return base;
19942 }
bfae80f2
RE
19943}
19944
c19d1205
ZW
19945/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19946 Otherwise we have no need to default values of symbols. */
19947
19948symbolS *
19949md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 19950{
c19d1205
ZW
19951#ifdef OBJ_ELF
19952 if (name[0] == '_' && name[1] == 'G'
19953 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19954 {
19955 if (!GOT_symbol)
19956 {
19957 if (symbol_find (name))
bd3ba5d1 19958 as_bad (_("GOT already in the symbol table"));
bfae80f2 19959
c19d1205
ZW
19960 GOT_symbol = symbol_new (name, undefined_section,
19961 (valueT) 0, & zero_address_frag);
19962 }
bfae80f2 19963
c19d1205 19964 return GOT_symbol;
bfae80f2 19965 }
c19d1205 19966#endif
bfae80f2 19967
c921be7d 19968 return NULL;
bfae80f2
RE
19969}
19970
55cf6793 19971/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
19972 computed as two separate immediate values, added together. We
19973 already know that this value cannot be computed by just one ARM
19974 instruction. */
19975
19976static unsigned int
19977validate_immediate_twopart (unsigned int val,
19978 unsigned int * highpart)
bfae80f2 19979{
c19d1205
ZW
19980 unsigned int a;
19981 unsigned int i;
bfae80f2 19982
c19d1205
ZW
19983 for (i = 0; i < 32; i += 2)
19984 if (((a = rotate_left (val, i)) & 0xff) != 0)
19985 {
19986 if (a & 0xff00)
19987 {
19988 if (a & ~ 0xffff)
19989 continue;
19990 * highpart = (a >> 8) | ((i + 24) << 7);
19991 }
19992 else if (a & 0xff0000)
19993 {
19994 if (a & 0xff000000)
19995 continue;
19996 * highpart = (a >> 16) | ((i + 16) << 7);
19997 }
19998 else
19999 {
9c2799c2 20000 gas_assert (a & 0xff000000);
c19d1205
ZW
20001 * highpart = (a >> 24) | ((i + 8) << 7);
20002 }
bfae80f2 20003
c19d1205
ZW
20004 return (a & 0xff) | (i << 7);
20005 }
bfae80f2 20006
c19d1205 20007 return FAIL;
bfae80f2
RE
20008}
20009
c19d1205
ZW
20010static int
20011validate_offset_imm (unsigned int val, int hwse)
20012{
20013 if ((hwse && val > 255) || val > 4095)
20014 return FAIL;
20015 return val;
20016}
bfae80f2 20017
55cf6793 20018/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20019 negative immediate constant by altering the instruction. A bit of
20020 a hack really.
20021 MOV <-> MVN
20022 AND <-> BIC
20023 ADC <-> SBC
20024 by inverting the second operand, and
20025 ADD <-> SUB
20026 CMP <-> CMN
20027 by negating the second operand. */
bfae80f2 20028
c19d1205
ZW
20029static int
20030negate_data_op (unsigned long * instruction,
20031 unsigned long value)
bfae80f2 20032{
c19d1205
ZW
20033 int op, new_inst;
20034 unsigned long negated, inverted;
bfae80f2 20035
c19d1205
ZW
20036 negated = encode_arm_immediate (-value);
20037 inverted = encode_arm_immediate (~value);
bfae80f2 20038
c19d1205
ZW
20039 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20040 switch (op)
bfae80f2 20041 {
c19d1205
ZW
20042 /* First negates. */
20043 case OPCODE_SUB: /* ADD <-> SUB */
20044 new_inst = OPCODE_ADD;
20045 value = negated;
20046 break;
bfae80f2 20047
c19d1205
ZW
20048 case OPCODE_ADD:
20049 new_inst = OPCODE_SUB;
20050 value = negated;
20051 break;
bfae80f2 20052
c19d1205
ZW
20053 case OPCODE_CMP: /* CMP <-> CMN */
20054 new_inst = OPCODE_CMN;
20055 value = negated;
20056 break;
bfae80f2 20057
c19d1205
ZW
20058 case OPCODE_CMN:
20059 new_inst = OPCODE_CMP;
20060 value = negated;
20061 break;
bfae80f2 20062
c19d1205
ZW
20063 /* Now Inverted ops. */
20064 case OPCODE_MOV: /* MOV <-> MVN */
20065 new_inst = OPCODE_MVN;
20066 value = inverted;
20067 break;
bfae80f2 20068
c19d1205
ZW
20069 case OPCODE_MVN:
20070 new_inst = OPCODE_MOV;
20071 value = inverted;
20072 break;
bfae80f2 20073
c19d1205
ZW
20074 case OPCODE_AND: /* AND <-> BIC */
20075 new_inst = OPCODE_BIC;
20076 value = inverted;
20077 break;
bfae80f2 20078
c19d1205
ZW
20079 case OPCODE_BIC:
20080 new_inst = OPCODE_AND;
20081 value = inverted;
20082 break;
bfae80f2 20083
c19d1205
ZW
20084 case OPCODE_ADC: /* ADC <-> SBC */
20085 new_inst = OPCODE_SBC;
20086 value = inverted;
20087 break;
bfae80f2 20088
c19d1205
ZW
20089 case OPCODE_SBC:
20090 new_inst = OPCODE_ADC;
20091 value = inverted;
20092 break;
bfae80f2 20093
c19d1205
ZW
20094 /* We cannot do anything. */
20095 default:
20096 return FAIL;
b99bd4ef
NC
20097 }
20098
c19d1205
ZW
20099 if (value == (unsigned) FAIL)
20100 return FAIL;
20101
20102 *instruction &= OPCODE_MASK;
20103 *instruction |= new_inst << DATA_OP_SHIFT;
20104 return value;
b99bd4ef
NC
20105}
20106
ef8d22e6
PB
20107/* Like negate_data_op, but for Thumb-2. */
20108
20109static unsigned int
16dd5e42 20110thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20111{
20112 int op, new_inst;
20113 int rd;
16dd5e42 20114 unsigned int negated, inverted;
ef8d22e6
PB
20115
20116 negated = encode_thumb32_immediate (-value);
20117 inverted = encode_thumb32_immediate (~value);
20118
20119 rd = (*instruction >> 8) & 0xf;
20120 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20121 switch (op)
20122 {
20123 /* ADD <-> SUB. Includes CMP <-> CMN. */
20124 case T2_OPCODE_SUB:
20125 new_inst = T2_OPCODE_ADD;
20126 value = negated;
20127 break;
20128
20129 case T2_OPCODE_ADD:
20130 new_inst = T2_OPCODE_SUB;
20131 value = negated;
20132 break;
20133
20134 /* ORR <-> ORN. Includes MOV <-> MVN. */
20135 case T2_OPCODE_ORR:
20136 new_inst = T2_OPCODE_ORN;
20137 value = inverted;
20138 break;
20139
20140 case T2_OPCODE_ORN:
20141 new_inst = T2_OPCODE_ORR;
20142 value = inverted;
20143 break;
20144
20145 /* AND <-> BIC. TST has no inverted equivalent. */
20146 case T2_OPCODE_AND:
20147 new_inst = T2_OPCODE_BIC;
20148 if (rd == 15)
20149 value = FAIL;
20150 else
20151 value = inverted;
20152 break;
20153
20154 case T2_OPCODE_BIC:
20155 new_inst = T2_OPCODE_AND;
20156 value = inverted;
20157 break;
20158
20159 /* ADC <-> SBC */
20160 case T2_OPCODE_ADC:
20161 new_inst = T2_OPCODE_SBC;
20162 value = inverted;
20163 break;
20164
20165 case T2_OPCODE_SBC:
20166 new_inst = T2_OPCODE_ADC;
20167 value = inverted;
20168 break;
20169
20170 /* We cannot do anything. */
20171 default:
20172 return FAIL;
20173 }
20174
16dd5e42 20175 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20176 return FAIL;
20177
20178 *instruction &= T2_OPCODE_MASK;
20179 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20180 return value;
20181}
20182
8f06b2d8
PB
20183/* Read a 32-bit thumb instruction from buf. */
20184static unsigned long
20185get_thumb32_insn (char * buf)
20186{
20187 unsigned long insn;
20188 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20189 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20190
20191 return insn;
20192}
20193
a8bc6c78
PB
20194
20195/* We usually want to set the low bit on the address of thumb function
20196 symbols. In particular .word foo - . should have the low bit set.
20197 Generic code tries to fold the difference of two symbols to
20198 a constant. Prevent this and force a relocation when the first symbols
20199 is a thumb function. */
c921be7d
NC
20200
20201bfd_boolean
a8bc6c78
PB
20202arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20203{
20204 if (op == O_subtract
20205 && l->X_op == O_symbol
20206 && r->X_op == O_symbol
20207 && THUMB_IS_FUNC (l->X_add_symbol))
20208 {
20209 l->X_op = O_subtract;
20210 l->X_op_symbol = r->X_add_symbol;
20211 l->X_add_number -= r->X_add_number;
c921be7d 20212 return TRUE;
a8bc6c78 20213 }
c921be7d 20214
a8bc6c78 20215 /* Process as normal. */
c921be7d 20216 return FALSE;
a8bc6c78
PB
20217}
20218
4a42ebbc
RR
20219/* Encode Thumb2 unconditional branches and calls. The encoding
20220 for the 2 are identical for the immediate values. */
20221
20222static void
20223encode_thumb2_b_bl_offset (char * buf, offsetT value)
20224{
20225#define T2I1I2MASK ((1 << 13) | (1 << 11))
20226 offsetT newval;
20227 offsetT newval2;
20228 addressT S, I1, I2, lo, hi;
20229
20230 S = (value >> 24) & 0x01;
20231 I1 = (value >> 23) & 0x01;
20232 I2 = (value >> 22) & 0x01;
20233 hi = (value >> 12) & 0x3ff;
20234 lo = (value >> 1) & 0x7ff;
20235 newval = md_chars_to_number (buf, THUMB_SIZE);
20236 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20237 newval |= (S << 10) | hi;
20238 newval2 &= ~T2I1I2MASK;
20239 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20240 md_number_to_chars (buf, newval, THUMB_SIZE);
20241 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20242}
20243
c19d1205 20244void
55cf6793 20245md_apply_fix (fixS * fixP,
c19d1205
ZW
20246 valueT * valP,
20247 segT seg)
20248{
20249 offsetT value = * valP;
20250 offsetT newval;
20251 unsigned int newimm;
20252 unsigned long temp;
20253 int sign;
20254 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20255
9c2799c2 20256 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20257
c19d1205 20258 /* Note whether this will delete the relocation. */
4962c51a 20259
c19d1205
ZW
20260 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20261 fixP->fx_done = 1;
b99bd4ef 20262
adbaf948 20263 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20264 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20265 for emit_reloc. */
20266 value &= 0xffffffff;
20267 value ^= 0x80000000;
5f4273c7 20268 value -= 0x80000000;
adbaf948
ZW
20269
20270 *valP = value;
c19d1205 20271 fixP->fx_addnumber = value;
b99bd4ef 20272
adbaf948
ZW
20273 /* Same treatment for fixP->fx_offset. */
20274 fixP->fx_offset &= 0xffffffff;
20275 fixP->fx_offset ^= 0x80000000;
20276 fixP->fx_offset -= 0x80000000;
20277
c19d1205 20278 switch (fixP->fx_r_type)
b99bd4ef 20279 {
c19d1205
ZW
20280 case BFD_RELOC_NONE:
20281 /* This will need to go in the object file. */
20282 fixP->fx_done = 0;
20283 break;
b99bd4ef 20284
c19d1205
ZW
20285 case BFD_RELOC_ARM_IMMEDIATE:
20286 /* We claim that this fixup has been processed here,
20287 even if in fact we generate an error because we do
20288 not have a reloc for it, so tc_gen_reloc will reject it. */
20289 fixP->fx_done = 1;
b99bd4ef 20290
77db8e2e 20291 if (fixP->fx_addsy)
b99bd4ef 20292 {
77db8e2e 20293 const char *msg = 0;
b99bd4ef 20294
77db8e2e
NC
20295 if (! S_IS_DEFINED (fixP->fx_addsy))
20296 msg = _("undefined symbol %s used as an immediate value");
20297 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20298 msg = _("symbol %s is in a different section");
20299 else if (S_IS_WEAK (fixP->fx_addsy))
20300 msg = _("symbol %s is weak and may be overridden later");
20301
20302 if (msg)
20303 {
20304 as_bad_where (fixP->fx_file, fixP->fx_line,
20305 msg, S_GET_NAME (fixP->fx_addsy));
20306 break;
20307 }
42e5fcbf
AS
20308 }
20309
c19d1205
ZW
20310 newimm = encode_arm_immediate (value);
20311 temp = md_chars_to_number (buf, INSN_SIZE);
20312
20313 /* If the instruction will fail, see if we can fix things up by
20314 changing the opcode. */
20315 if (newimm == (unsigned int) FAIL
20316 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 20317 {
c19d1205
ZW
20318 as_bad_where (fixP->fx_file, fixP->fx_line,
20319 _("invalid constant (%lx) after fixup"),
20320 (unsigned long) value);
20321 break;
b99bd4ef 20322 }
b99bd4ef 20323
c19d1205
ZW
20324 newimm |= (temp & 0xfffff000);
20325 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20326 break;
b99bd4ef 20327
c19d1205
ZW
20328 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20329 {
20330 unsigned int highpart = 0;
20331 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20332
77db8e2e 20333 if (fixP->fx_addsy)
42e5fcbf 20334 {
77db8e2e 20335 const char *msg = 0;
42e5fcbf 20336
77db8e2e
NC
20337 if (! S_IS_DEFINED (fixP->fx_addsy))
20338 msg = _("undefined symbol %s used as an immediate value");
20339 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20340 msg = _("symbol %s is in a different section");
20341 else if (S_IS_WEAK (fixP->fx_addsy))
20342 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20343
77db8e2e
NC
20344 if (msg)
20345 {
20346 as_bad_where (fixP->fx_file, fixP->fx_line,
20347 msg, S_GET_NAME (fixP->fx_addsy));
20348 break;
20349 }
20350 }
20351
c19d1205
ZW
20352 newimm = encode_arm_immediate (value);
20353 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20354
c19d1205
ZW
20355 /* If the instruction will fail, see if we can fix things up by
20356 changing the opcode. */
20357 if (newimm == (unsigned int) FAIL
20358 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20359 {
20360 /* No ? OK - try using two ADD instructions to generate
20361 the value. */
20362 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20363
c19d1205
ZW
20364 /* Yes - then make sure that the second instruction is
20365 also an add. */
20366 if (newimm != (unsigned int) FAIL)
20367 newinsn = temp;
20368 /* Still No ? Try using a negated value. */
20369 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20370 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20371 /* Otherwise - give up. */
20372 else
20373 {
20374 as_bad_where (fixP->fx_file, fixP->fx_line,
20375 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20376 (long) value);
20377 break;
20378 }
b99bd4ef 20379
c19d1205
ZW
20380 /* Replace the first operand in the 2nd instruction (which
20381 is the PC) with the destination register. We have
20382 already added in the PC in the first instruction and we
20383 do not want to do it again. */
20384 newinsn &= ~ 0xf0000;
20385 newinsn |= ((newinsn & 0x0f000) << 4);
20386 }
b99bd4ef 20387
c19d1205
ZW
20388 newimm |= (temp & 0xfffff000);
20389 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20390
c19d1205
ZW
20391 highpart |= (newinsn & 0xfffff000);
20392 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20393 }
20394 break;
b99bd4ef 20395
c19d1205 20396 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20397 if (!fixP->fx_done && seg->use_rela_p)
20398 value = 0;
20399
c19d1205
ZW
20400 case BFD_RELOC_ARM_LITERAL:
20401 sign = value >= 0;
b99bd4ef 20402
c19d1205
ZW
20403 if (value < 0)
20404 value = - value;
b99bd4ef 20405
c19d1205 20406 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20407 {
c19d1205
ZW
20408 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20409 as_bad_where (fixP->fx_file, fixP->fx_line,
20410 _("invalid literal constant: pool needs to be closer"));
20411 else
20412 as_bad_where (fixP->fx_file, fixP->fx_line,
20413 _("bad immediate value for offset (%ld)"),
20414 (long) value);
20415 break;
f03698e6
RE
20416 }
20417
c19d1205
ZW
20418 newval = md_chars_to_number (buf, INSN_SIZE);
20419 newval &= 0xff7ff000;
20420 newval |= value | (sign ? INDEX_UP : 0);
20421 md_number_to_chars (buf, newval, INSN_SIZE);
20422 break;
b99bd4ef 20423
c19d1205
ZW
20424 case BFD_RELOC_ARM_OFFSET_IMM8:
20425 case BFD_RELOC_ARM_HWLITERAL:
20426 sign = value >= 0;
b99bd4ef 20427
c19d1205
ZW
20428 if (value < 0)
20429 value = - value;
b99bd4ef 20430
c19d1205 20431 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20432 {
c19d1205
ZW
20433 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20434 as_bad_where (fixP->fx_file, fixP->fx_line,
20435 _("invalid literal constant: pool needs to be closer"));
20436 else
f9d4405b 20437 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20438 (long) value);
20439 break;
b99bd4ef
NC
20440 }
20441
c19d1205
ZW
20442 newval = md_chars_to_number (buf, INSN_SIZE);
20443 newval &= 0xff7ff0f0;
20444 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20445 md_number_to_chars (buf, newval, INSN_SIZE);
20446 break;
b99bd4ef 20447
c19d1205
ZW
20448 case BFD_RELOC_ARM_T32_OFFSET_U8:
20449 if (value < 0 || value > 1020 || value % 4 != 0)
20450 as_bad_where (fixP->fx_file, fixP->fx_line,
20451 _("bad immediate value for offset (%ld)"), (long) value);
20452 value /= 4;
b99bd4ef 20453
c19d1205 20454 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20455 newval |= value;
20456 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20457 break;
b99bd4ef 20458
c19d1205
ZW
20459 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20460 /* This is a complicated relocation used for all varieties of Thumb32
20461 load/store instruction with immediate offset:
20462
20463 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20464 *4, optional writeback(W)
20465 (doubleword load/store)
20466
20467 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20468 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20469 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20470 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20471 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20472
20473 Uppercase letters indicate bits that are already encoded at
20474 this point. Lowercase letters are our problem. For the
20475 second block of instructions, the secondary opcode nybble
20476 (bits 8..11) is present, and bit 23 is zero, even if this is
20477 a PC-relative operation. */
20478 newval = md_chars_to_number (buf, THUMB_SIZE);
20479 newval <<= 16;
20480 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20481
c19d1205 20482 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20483 {
c19d1205
ZW
20484 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20485 if (value >= 0)
20486 newval |= (1 << 23);
20487 else
20488 value = -value;
20489 if (value % 4 != 0)
20490 {
20491 as_bad_where (fixP->fx_file, fixP->fx_line,
20492 _("offset not a multiple of 4"));
20493 break;
20494 }
20495 value /= 4;
216d22bc 20496 if (value > 0xff)
c19d1205
ZW
20497 {
20498 as_bad_where (fixP->fx_file, fixP->fx_line,
20499 _("offset out of range"));
20500 break;
20501 }
20502 newval &= ~0xff;
b99bd4ef 20503 }
c19d1205 20504 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20505 {
c19d1205
ZW
20506 /* PC-relative, 12-bit offset. */
20507 if (value >= 0)
20508 newval |= (1 << 23);
20509 else
20510 value = -value;
216d22bc 20511 if (value > 0xfff)
c19d1205
ZW
20512 {
20513 as_bad_where (fixP->fx_file, fixP->fx_line,
20514 _("offset out of range"));
20515 break;
20516 }
20517 newval &= ~0xfff;
b99bd4ef 20518 }
c19d1205 20519 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20520 {
c19d1205
ZW
20521 /* Writeback: 8-bit, +/- offset. */
20522 if (value >= 0)
20523 newval |= (1 << 9);
20524 else
20525 value = -value;
216d22bc 20526 if (value > 0xff)
c19d1205
ZW
20527 {
20528 as_bad_where (fixP->fx_file, fixP->fx_line,
20529 _("offset out of range"));
20530 break;
20531 }
20532 newval &= ~0xff;
b99bd4ef 20533 }
c19d1205 20534 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20535 {
c19d1205 20536 /* T-instruction: positive 8-bit offset. */
216d22bc 20537 if (value < 0 || value > 0xff)
b99bd4ef 20538 {
c19d1205
ZW
20539 as_bad_where (fixP->fx_file, fixP->fx_line,
20540 _("offset out of range"));
20541 break;
b99bd4ef 20542 }
c19d1205
ZW
20543 newval &= ~0xff;
20544 newval |= value;
b99bd4ef
NC
20545 }
20546 else
b99bd4ef 20547 {
c19d1205
ZW
20548 /* Positive 12-bit or negative 8-bit offset. */
20549 int limit;
20550 if (value >= 0)
b99bd4ef 20551 {
c19d1205
ZW
20552 newval |= (1 << 23);
20553 limit = 0xfff;
20554 }
20555 else
20556 {
20557 value = -value;
20558 limit = 0xff;
20559 }
20560 if (value > limit)
20561 {
20562 as_bad_where (fixP->fx_file, fixP->fx_line,
20563 _("offset out of range"));
20564 break;
b99bd4ef 20565 }
c19d1205 20566 newval &= ~limit;
b99bd4ef 20567 }
b99bd4ef 20568
c19d1205
ZW
20569 newval |= value;
20570 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20571 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20572 break;
404ff6b5 20573
c19d1205
ZW
20574 case BFD_RELOC_ARM_SHIFT_IMM:
20575 newval = md_chars_to_number (buf, INSN_SIZE);
20576 if (((unsigned long) value) > 32
20577 || (value == 32
20578 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20579 {
20580 as_bad_where (fixP->fx_file, fixP->fx_line,
20581 _("shift expression is too large"));
20582 break;
20583 }
404ff6b5 20584
c19d1205
ZW
20585 if (value == 0)
20586 /* Shifts of zero must be done as lsl. */
20587 newval &= ~0x60;
20588 else if (value == 32)
20589 value = 0;
20590 newval &= 0xfffff07f;
20591 newval |= (value & 0x1f) << 7;
20592 md_number_to_chars (buf, newval, INSN_SIZE);
20593 break;
404ff6b5 20594
c19d1205 20595 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20596 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20597 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20598 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20599 /* We claim that this fixup has been processed here,
20600 even if in fact we generate an error because we do
20601 not have a reloc for it, so tc_gen_reloc will reject it. */
20602 fixP->fx_done = 1;
404ff6b5 20603
c19d1205
ZW
20604 if (fixP->fx_addsy
20605 && ! S_IS_DEFINED (fixP->fx_addsy))
20606 {
20607 as_bad_where (fixP->fx_file, fixP->fx_line,
20608 _("undefined symbol %s used as an immediate value"),
20609 S_GET_NAME (fixP->fx_addsy));
20610 break;
20611 }
404ff6b5 20612
c19d1205
ZW
20613 newval = md_chars_to_number (buf, THUMB_SIZE);
20614 newval <<= 16;
20615 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20616
16805f35
PB
20617 newimm = FAIL;
20618 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20619 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20620 {
20621 newimm = encode_thumb32_immediate (value);
20622 if (newimm == (unsigned int) FAIL)
20623 newimm = thumb32_negate_data_op (&newval, value);
20624 }
16805f35
PB
20625 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20626 && newimm == (unsigned int) FAIL)
92e90b6e 20627 {
16805f35
PB
20628 /* Turn add/sum into addw/subw. */
20629 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20630 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
20631 /* No flat 12-bit imm encoding for addsw/subsw. */
20632 if ((newval & 0x00100000) == 0)
e9f89963 20633 {
40f246e3
NC
20634 /* 12 bit immediate for addw/subw. */
20635 if (value < 0)
20636 {
20637 value = -value;
20638 newval ^= 0x00a00000;
20639 }
20640 if (value > 0xfff)
20641 newimm = (unsigned int) FAIL;
20642 else
20643 newimm = value;
e9f89963 20644 }
92e90b6e 20645 }
cc8a6dd0 20646
c19d1205 20647 if (newimm == (unsigned int)FAIL)
3631a3c8 20648 {
c19d1205
ZW
20649 as_bad_where (fixP->fx_file, fixP->fx_line,
20650 _("invalid constant (%lx) after fixup"),
20651 (unsigned long) value);
20652 break;
3631a3c8
NC
20653 }
20654
c19d1205
ZW
20655 newval |= (newimm & 0x800) << 15;
20656 newval |= (newimm & 0x700) << 4;
20657 newval |= (newimm & 0x0ff);
cc8a6dd0 20658
c19d1205
ZW
20659 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20660 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20661 break;
a737bd4d 20662
3eb17e6b 20663 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20664 if (((unsigned long) value) > 0xffff)
20665 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20666 _("invalid smc expression"));
2fc8bdac 20667 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20668 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20669 md_number_to_chars (buf, newval, INSN_SIZE);
20670 break;
a737bd4d 20671
90ec0d68
MGD
20672 case BFD_RELOC_ARM_HVC:
20673 if (((unsigned long) value) > 0xffff)
20674 as_bad_where (fixP->fx_file, fixP->fx_line,
20675 _("invalid hvc expression"));
20676 newval = md_chars_to_number (buf, INSN_SIZE);
20677 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20678 md_number_to_chars (buf, newval, INSN_SIZE);
20679 break;
20680
c19d1205 20681 case BFD_RELOC_ARM_SWI:
adbaf948 20682 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20683 {
20684 if (((unsigned long) value) > 0xff)
20685 as_bad_where (fixP->fx_file, fixP->fx_line,
20686 _("invalid swi expression"));
2fc8bdac 20687 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20688 newval |= value;
20689 md_number_to_chars (buf, newval, THUMB_SIZE);
20690 }
20691 else
20692 {
20693 if (((unsigned long) value) > 0x00ffffff)
20694 as_bad_where (fixP->fx_file, fixP->fx_line,
20695 _("invalid swi expression"));
2fc8bdac 20696 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20697 newval |= value;
20698 md_number_to_chars (buf, newval, INSN_SIZE);
20699 }
20700 break;
a737bd4d 20701
c19d1205
ZW
20702 case BFD_RELOC_ARM_MULTI:
20703 if (((unsigned long) value) > 0xffff)
20704 as_bad_where (fixP->fx_file, fixP->fx_line,
20705 _("invalid expression in load/store multiple"));
20706 newval = value | md_chars_to_number (buf, INSN_SIZE);
20707 md_number_to_chars (buf, newval, INSN_SIZE);
20708 break;
a737bd4d 20709
c19d1205 20710#ifdef OBJ_ELF
39b41c9c 20711 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20712
20713 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20714 && fixP->fx_addsy
34e77a92 20715 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20716 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20717 && THUMB_IS_FUNC (fixP->fx_addsy))
20718 /* Flip the bl to blx. This is a simple flip
20719 bit here because we generate PCREL_CALL for
20720 unconditional bls. */
20721 {
20722 newval = md_chars_to_number (buf, INSN_SIZE);
20723 newval = newval | 0x10000000;
20724 md_number_to_chars (buf, newval, INSN_SIZE);
20725 temp = 1;
20726 fixP->fx_done = 1;
20727 }
39b41c9c
PB
20728 else
20729 temp = 3;
20730 goto arm_branch_common;
20731
20732 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20733 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20734 && fixP->fx_addsy
34e77a92 20735 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20736 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20737 && THUMB_IS_FUNC (fixP->fx_addsy))
20738 {
20739 /* This would map to a bl<cond>, b<cond>,
20740 b<always> to a Thumb function. We
20741 need to force a relocation for this particular
20742 case. */
20743 newval = md_chars_to_number (buf, INSN_SIZE);
20744 fixP->fx_done = 0;
20745 }
20746
2fc8bdac 20747 case BFD_RELOC_ARM_PLT32:
c19d1205 20748#endif
39b41c9c
PB
20749 case BFD_RELOC_ARM_PCREL_BRANCH:
20750 temp = 3;
20751 goto arm_branch_common;
a737bd4d 20752
39b41c9c 20753 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20754
39b41c9c 20755 temp = 1;
267bf995
RR
20756 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20757 && fixP->fx_addsy
34e77a92 20758 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20759 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20760 && ARM_IS_FUNC (fixP->fx_addsy))
20761 {
20762 /* Flip the blx to a bl and warn. */
20763 const char *name = S_GET_NAME (fixP->fx_addsy);
20764 newval = 0xeb000000;
20765 as_warn_where (fixP->fx_file, fixP->fx_line,
20766 _("blx to '%s' an ARM ISA state function changed to bl"),
20767 name);
20768 md_number_to_chars (buf, newval, INSN_SIZE);
20769 temp = 3;
20770 fixP->fx_done = 1;
20771 }
20772
20773#ifdef OBJ_ELF
20774 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20775 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20776#endif
20777
39b41c9c 20778 arm_branch_common:
c19d1205 20779 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20780 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20781 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20782 also be be clear. */
20783 if (value & temp)
c19d1205 20784 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20785 _("misaligned branch destination"));
20786 if ((value & (offsetT)0xfe000000) != (offsetT)0
20787 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20788 as_bad_where (fixP->fx_file, fixP->fx_line,
20789 _("branch out of range"));
a737bd4d 20790
2fc8bdac 20791 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20792 {
2fc8bdac
ZW
20793 newval = md_chars_to_number (buf, INSN_SIZE);
20794 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20795 /* Set the H bit on BLX instructions. */
20796 if (temp == 1)
20797 {
20798 if (value & 2)
20799 newval |= 0x01000000;
20800 else
20801 newval &= ~0x01000000;
20802 }
2fc8bdac 20803 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20804 }
c19d1205 20805 break;
a737bd4d 20806
25fe350b
MS
20807 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20808 /* CBZ can only branch forward. */
a737bd4d 20809
738755b0
MS
20810 /* Attempts to use CBZ to branch to the next instruction
20811 (which, strictly speaking, are prohibited) will be turned into
20812 no-ops.
20813
20814 FIXME: It may be better to remove the instruction completely and
20815 perform relaxation. */
20816 if (value == -2)
2fc8bdac
ZW
20817 {
20818 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20819 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20820 md_number_to_chars (buf, newval, THUMB_SIZE);
20821 }
738755b0
MS
20822 else
20823 {
20824 if (value & ~0x7e)
20825 as_bad_where (fixP->fx_file, fixP->fx_line,
20826 _("branch out of range"));
20827
20828 if (fixP->fx_done || !seg->use_rela_p)
20829 {
20830 newval = md_chars_to_number (buf, THUMB_SIZE);
20831 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20832 md_number_to_chars (buf, newval, THUMB_SIZE);
20833 }
20834 }
c19d1205 20835 break;
a737bd4d 20836
c19d1205 20837 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20838 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20839 as_bad_where (fixP->fx_file, fixP->fx_line,
20840 _("branch out of range"));
a737bd4d 20841
2fc8bdac
ZW
20842 if (fixP->fx_done || !seg->use_rela_p)
20843 {
20844 newval = md_chars_to_number (buf, THUMB_SIZE);
20845 newval |= (value & 0x1ff) >> 1;
20846 md_number_to_chars (buf, newval, THUMB_SIZE);
20847 }
c19d1205 20848 break;
a737bd4d 20849
c19d1205 20850 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20851 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20852 as_bad_where (fixP->fx_file, fixP->fx_line,
20853 _("branch out of range"));
a737bd4d 20854
2fc8bdac
ZW
20855 if (fixP->fx_done || !seg->use_rela_p)
20856 {
20857 newval = md_chars_to_number (buf, THUMB_SIZE);
20858 newval |= (value & 0xfff) >> 1;
20859 md_number_to_chars (buf, newval, THUMB_SIZE);
20860 }
c19d1205 20861 break;
a737bd4d 20862
c19d1205 20863 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20864 if (fixP->fx_addsy
20865 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20866 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20867 && ARM_IS_FUNC (fixP->fx_addsy)
20868 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20869 {
20870 /* Force a relocation for a branch 20 bits wide. */
20871 fixP->fx_done = 0;
20872 }
2fc8bdac
ZW
20873 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20874 as_bad_where (fixP->fx_file, fixP->fx_line,
20875 _("conditional branch out of range"));
404ff6b5 20876
2fc8bdac
ZW
20877 if (fixP->fx_done || !seg->use_rela_p)
20878 {
20879 offsetT newval2;
20880 addressT S, J1, J2, lo, hi;
404ff6b5 20881
2fc8bdac
ZW
20882 S = (value & 0x00100000) >> 20;
20883 J2 = (value & 0x00080000) >> 19;
20884 J1 = (value & 0x00040000) >> 18;
20885 hi = (value & 0x0003f000) >> 12;
20886 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20887
2fc8bdac
ZW
20888 newval = md_chars_to_number (buf, THUMB_SIZE);
20889 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20890 newval |= (S << 10) | hi;
20891 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20892 md_number_to_chars (buf, newval, THUMB_SIZE);
20893 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20894 }
c19d1205 20895 break;
6c43fab6 20896
c19d1205 20897 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
20898
20899 /* If there is a blx from a thumb state function to
20900 another thumb function flip this to a bl and warn
20901 about it. */
20902
20903 if (fixP->fx_addsy
34e77a92 20904 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20905 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20906 && THUMB_IS_FUNC (fixP->fx_addsy))
20907 {
20908 const char *name = S_GET_NAME (fixP->fx_addsy);
20909 as_warn_where (fixP->fx_file, fixP->fx_line,
20910 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20911 name);
20912 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20913 newval = newval | 0x1000;
20914 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20915 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20916 fixP->fx_done = 1;
20917 }
20918
20919
20920 goto thumb_bl_common;
20921
c19d1205 20922 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
20923
20924 /* A bl from Thumb state ISA to an internal ARM state function
20925 is converted to a blx. */
20926 if (fixP->fx_addsy
20927 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20928 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20929 && ARM_IS_FUNC (fixP->fx_addsy)
20930 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20931 {
20932 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20933 newval = newval & ~0x1000;
20934 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20935 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20936 fixP->fx_done = 1;
20937 }
20938
20939 thumb_bl_common:
20940
20941#ifdef OBJ_ELF
20942 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20943 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20944 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20945#endif
20946
2fc8bdac
ZW
20947 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20948 /* For a BLX instruction, make sure that the relocation is rounded up
20949 to a word boundary. This follows the semantics of the instruction
20950 which specifies that bit 1 of the target address will come from bit
20951 1 of the base address. */
20952 value = (value + 1) & ~ 1;
404ff6b5 20953
2fc8bdac 20954
4a42ebbc
RR
20955 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20956 {
20957 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20958 {
20959 as_bad_where (fixP->fx_file, fixP->fx_line,
20960 _("branch out of range"));
20961 }
20962 else if ((value & ~0x1ffffff)
20963 && ((value & ~0x1ffffff) != ~0x1ffffff))
20964 {
20965 as_bad_where (fixP->fx_file, fixP->fx_line,
20966 _("Thumb2 branch out of range"));
20967 }
c19d1205 20968 }
4a42ebbc
RR
20969
20970 if (fixP->fx_done || !seg->use_rela_p)
20971 encode_thumb2_b_bl_offset (buf, value);
20972
c19d1205 20973 break;
404ff6b5 20974
c19d1205 20975 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
20976 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20977 as_bad_where (fixP->fx_file, fixP->fx_line,
20978 _("branch out of range"));
6c43fab6 20979
2fc8bdac 20980 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 20981 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 20982
2fc8bdac 20983 break;
a737bd4d 20984
2fc8bdac
ZW
20985 case BFD_RELOC_8:
20986 if (fixP->fx_done || !seg->use_rela_p)
20987 md_number_to_chars (buf, value, 1);
c19d1205 20988 break;
a737bd4d 20989
c19d1205 20990 case BFD_RELOC_16:
2fc8bdac 20991 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20992 md_number_to_chars (buf, value, 2);
c19d1205 20993 break;
a737bd4d 20994
c19d1205 20995#ifdef OBJ_ELF
0855e32b
NS
20996 case BFD_RELOC_ARM_TLS_CALL:
20997 case BFD_RELOC_ARM_THM_TLS_CALL:
20998 case BFD_RELOC_ARM_TLS_DESCSEQ:
20999 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21000 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21001 break;
21002
21003 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21004 case BFD_RELOC_ARM_TLS_GD32:
21005 case BFD_RELOC_ARM_TLS_LE32:
21006 case BFD_RELOC_ARM_TLS_IE32:
21007 case BFD_RELOC_ARM_TLS_LDM32:
21008 case BFD_RELOC_ARM_TLS_LDO32:
21009 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21010 /* fall through */
6c43fab6 21011
c19d1205
ZW
21012 case BFD_RELOC_ARM_GOT32:
21013 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21014 if (fixP->fx_done || !seg->use_rela_p)
21015 md_number_to_chars (buf, 0, 4);
c19d1205 21016 break;
b43420e6
NC
21017
21018 case BFD_RELOC_ARM_GOT_PREL:
21019 if (fixP->fx_done || !seg->use_rela_p)
21020 md_number_to_chars (buf, value, 4);
21021 break;
21022
9a6f4e97
NS
21023 case BFD_RELOC_ARM_TARGET2:
21024 /* TARGET2 is not partial-inplace, so we need to write the
21025 addend here for REL targets, because it won't be written out
21026 during reloc processing later. */
21027 if (fixP->fx_done || !seg->use_rela_p)
21028 md_number_to_chars (buf, fixP->fx_offset, 4);
21029 break;
c19d1205 21030#endif
6c43fab6 21031
c19d1205
ZW
21032 case BFD_RELOC_RVA:
21033 case BFD_RELOC_32:
21034 case BFD_RELOC_ARM_TARGET1:
21035 case BFD_RELOC_ARM_ROSEGREL32:
21036 case BFD_RELOC_ARM_SBREL32:
21037 case BFD_RELOC_32_PCREL:
f0927246
NC
21038#ifdef TE_PE
21039 case BFD_RELOC_32_SECREL:
21040#endif
2fc8bdac 21041 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21042#ifdef TE_WINCE
21043 /* For WinCE we only do this for pcrel fixups. */
21044 if (fixP->fx_done || fixP->fx_pcrel)
21045#endif
21046 md_number_to_chars (buf, value, 4);
c19d1205 21047 break;
6c43fab6 21048
c19d1205
ZW
21049#ifdef OBJ_ELF
21050 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21051 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21052 {
21053 newval = md_chars_to_number (buf, 4) & 0x80000000;
21054 if ((value ^ (value >> 1)) & 0x40000000)
21055 {
21056 as_bad_where (fixP->fx_file, fixP->fx_line,
21057 _("rel31 relocation overflow"));
21058 }
21059 newval |= value & 0x7fffffff;
21060 md_number_to_chars (buf, newval, 4);
21061 }
21062 break;
c19d1205 21063#endif
a737bd4d 21064
c19d1205 21065 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21066 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21067 if (value < -1023 || value > 1023 || (value & 3))
21068 as_bad_where (fixP->fx_file, fixP->fx_line,
21069 _("co-processor offset out of range"));
21070 cp_off_common:
21071 sign = value >= 0;
21072 if (value < 0)
21073 value = -value;
8f06b2d8
PB
21074 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21075 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21076 newval = md_chars_to_number (buf, INSN_SIZE);
21077 else
21078 newval = get_thumb32_insn (buf);
21079 newval &= 0xff7fff00;
c19d1205 21080 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
21081 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21082 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21083 md_number_to_chars (buf, newval, INSN_SIZE);
21084 else
21085 put_thumb32_insn (buf, newval);
c19d1205 21086 break;
a737bd4d 21087
c19d1205 21088 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21089 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21090 if (value < -255 || value > 255)
21091 as_bad_where (fixP->fx_file, fixP->fx_line,
21092 _("co-processor offset out of range"));
df7849c5 21093 value *= 4;
c19d1205 21094 goto cp_off_common;
6c43fab6 21095
c19d1205
ZW
21096 case BFD_RELOC_ARM_THUMB_OFFSET:
21097 newval = md_chars_to_number (buf, THUMB_SIZE);
21098 /* Exactly what ranges, and where the offset is inserted depends
21099 on the type of instruction, we can establish this from the
21100 top 4 bits. */
21101 switch (newval >> 12)
21102 {
21103 case 4: /* PC load. */
21104 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21105 forced to zero for these loads; md_pcrel_from has already
21106 compensated for this. */
21107 if (value & 3)
21108 as_bad_where (fixP->fx_file, fixP->fx_line,
21109 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21110 (((unsigned long) fixP->fx_frag->fr_address
21111 + (unsigned long) fixP->fx_where) & ~3)
21112 + (unsigned long) value);
a737bd4d 21113
c19d1205
ZW
21114 if (value & ~0x3fc)
21115 as_bad_where (fixP->fx_file, fixP->fx_line,
21116 _("invalid offset, value too big (0x%08lX)"),
21117 (long) value);
a737bd4d 21118
c19d1205
ZW
21119 newval |= value >> 2;
21120 break;
a737bd4d 21121
c19d1205
ZW
21122 case 9: /* SP load/store. */
21123 if (value & ~0x3fc)
21124 as_bad_where (fixP->fx_file, fixP->fx_line,
21125 _("invalid offset, value too big (0x%08lX)"),
21126 (long) value);
21127 newval |= value >> 2;
21128 break;
6c43fab6 21129
c19d1205
ZW
21130 case 6: /* Word load/store. */
21131 if (value & ~0x7c)
21132 as_bad_where (fixP->fx_file, fixP->fx_line,
21133 _("invalid offset, value too big (0x%08lX)"),
21134 (long) value);
21135 newval |= value << 4; /* 6 - 2. */
21136 break;
a737bd4d 21137
c19d1205
ZW
21138 case 7: /* Byte load/store. */
21139 if (value & ~0x1f)
21140 as_bad_where (fixP->fx_file, fixP->fx_line,
21141 _("invalid offset, value too big (0x%08lX)"),
21142 (long) value);
21143 newval |= value << 6;
21144 break;
a737bd4d 21145
c19d1205
ZW
21146 case 8: /* Halfword load/store. */
21147 if (value & ~0x3e)
21148 as_bad_where (fixP->fx_file, fixP->fx_line,
21149 _("invalid offset, value too big (0x%08lX)"),
21150 (long) value);
21151 newval |= value << 5; /* 6 - 1. */
21152 break;
a737bd4d 21153
c19d1205
ZW
21154 default:
21155 as_bad_where (fixP->fx_file, fixP->fx_line,
21156 "Unable to process relocation for thumb opcode: %lx",
21157 (unsigned long) newval);
21158 break;
21159 }
21160 md_number_to_chars (buf, newval, THUMB_SIZE);
21161 break;
a737bd4d 21162
c19d1205
ZW
21163 case BFD_RELOC_ARM_THUMB_ADD:
21164 /* This is a complicated relocation, since we use it for all of
21165 the following immediate relocations:
a737bd4d 21166
c19d1205
ZW
21167 3bit ADD/SUB
21168 8bit ADD/SUB
21169 9bit ADD/SUB SP word-aligned
21170 10bit ADD PC/SP word-aligned
a737bd4d 21171
c19d1205
ZW
21172 The type of instruction being processed is encoded in the
21173 instruction field:
a737bd4d 21174
c19d1205
ZW
21175 0x8000 SUB
21176 0x00F0 Rd
21177 0x000F Rs
21178 */
21179 newval = md_chars_to_number (buf, THUMB_SIZE);
21180 {
21181 int rd = (newval >> 4) & 0xf;
21182 int rs = newval & 0xf;
21183 int subtract = !!(newval & 0x8000);
a737bd4d 21184
c19d1205
ZW
21185 /* Check for HI regs, only very restricted cases allowed:
21186 Adjusting SP, and using PC or SP to get an address. */
21187 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21188 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21189 as_bad_where (fixP->fx_file, fixP->fx_line,
21190 _("invalid Hi register with immediate"));
a737bd4d 21191
c19d1205
ZW
21192 /* If value is negative, choose the opposite instruction. */
21193 if (value < 0)
21194 {
21195 value = -value;
21196 subtract = !subtract;
21197 if (value < 0)
21198 as_bad_where (fixP->fx_file, fixP->fx_line,
21199 _("immediate value out of range"));
21200 }
a737bd4d 21201
c19d1205
ZW
21202 if (rd == REG_SP)
21203 {
21204 if (value & ~0x1fc)
21205 as_bad_where (fixP->fx_file, fixP->fx_line,
21206 _("invalid immediate for stack address calculation"));
21207 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21208 newval |= value >> 2;
21209 }
21210 else if (rs == REG_PC || rs == REG_SP)
21211 {
21212 if (subtract || value & ~0x3fc)
21213 as_bad_where (fixP->fx_file, fixP->fx_line,
21214 _("invalid immediate for address calculation (value = 0x%08lX)"),
21215 (unsigned long) value);
21216 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21217 newval |= rd << 8;
21218 newval |= value >> 2;
21219 }
21220 else if (rs == rd)
21221 {
21222 if (value & ~0xff)
21223 as_bad_where (fixP->fx_file, fixP->fx_line,
21224 _("immediate value out of range"));
21225 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21226 newval |= (rd << 8) | value;
21227 }
21228 else
21229 {
21230 if (value & ~0x7)
21231 as_bad_where (fixP->fx_file, fixP->fx_line,
21232 _("immediate value out of range"));
21233 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21234 newval |= rd | (rs << 3) | (value << 6);
21235 }
21236 }
21237 md_number_to_chars (buf, newval, THUMB_SIZE);
21238 break;
a737bd4d 21239
c19d1205
ZW
21240 case BFD_RELOC_ARM_THUMB_IMM:
21241 newval = md_chars_to_number (buf, THUMB_SIZE);
21242 if (value < 0 || value > 255)
21243 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21244 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21245 (long) value);
21246 newval |= value;
21247 md_number_to_chars (buf, newval, THUMB_SIZE);
21248 break;
a737bd4d 21249
c19d1205
ZW
21250 case BFD_RELOC_ARM_THUMB_SHIFT:
21251 /* 5bit shift value (0..32). LSL cannot take 32. */
21252 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21253 temp = newval & 0xf800;
21254 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21255 as_bad_where (fixP->fx_file, fixP->fx_line,
21256 _("invalid shift value: %ld"), (long) value);
21257 /* Shifts of zero must be encoded as LSL. */
21258 if (value == 0)
21259 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21260 /* Shifts of 32 are encoded as zero. */
21261 else if (value == 32)
21262 value = 0;
21263 newval |= value << 6;
21264 md_number_to_chars (buf, newval, THUMB_SIZE);
21265 break;
a737bd4d 21266
c19d1205
ZW
21267 case BFD_RELOC_VTABLE_INHERIT:
21268 case BFD_RELOC_VTABLE_ENTRY:
21269 fixP->fx_done = 0;
21270 return;
6c43fab6 21271
b6895b4f
PB
21272 case BFD_RELOC_ARM_MOVW:
21273 case BFD_RELOC_ARM_MOVT:
21274 case BFD_RELOC_ARM_THUMB_MOVW:
21275 case BFD_RELOC_ARM_THUMB_MOVT:
21276 if (fixP->fx_done || !seg->use_rela_p)
21277 {
21278 /* REL format relocations are limited to a 16-bit addend. */
21279 if (!fixP->fx_done)
21280 {
39623e12 21281 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21282 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21283 _("offset out of range"));
b6895b4f
PB
21284 }
21285 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21286 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21287 {
21288 value >>= 16;
21289 }
21290
21291 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21292 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21293 {
21294 newval = get_thumb32_insn (buf);
21295 newval &= 0xfbf08f00;
21296 newval |= (value & 0xf000) << 4;
21297 newval |= (value & 0x0800) << 15;
21298 newval |= (value & 0x0700) << 4;
21299 newval |= (value & 0x00ff);
21300 put_thumb32_insn (buf, newval);
21301 }
21302 else
21303 {
21304 newval = md_chars_to_number (buf, 4);
21305 newval &= 0xfff0f000;
21306 newval |= value & 0x0fff;
21307 newval |= (value & 0xf000) << 4;
21308 md_number_to_chars (buf, newval, 4);
21309 }
21310 }
21311 return;
21312
4962c51a
MS
21313 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21314 case BFD_RELOC_ARM_ALU_PC_G0:
21315 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21316 case BFD_RELOC_ARM_ALU_PC_G1:
21317 case BFD_RELOC_ARM_ALU_PC_G2:
21318 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21319 case BFD_RELOC_ARM_ALU_SB_G0:
21320 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21321 case BFD_RELOC_ARM_ALU_SB_G1:
21322 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21323 gas_assert (!fixP->fx_done);
4962c51a
MS
21324 if (!seg->use_rela_p)
21325 {
21326 bfd_vma insn;
21327 bfd_vma encoded_addend;
21328 bfd_vma addend_abs = abs (value);
21329
21330 /* Check that the absolute value of the addend can be
21331 expressed as an 8-bit constant plus a rotation. */
21332 encoded_addend = encode_arm_immediate (addend_abs);
21333 if (encoded_addend == (unsigned int) FAIL)
21334 as_bad_where (fixP->fx_file, fixP->fx_line,
21335 _("the offset 0x%08lX is not representable"),
495bde8e 21336 (unsigned long) addend_abs);
4962c51a
MS
21337
21338 /* Extract the instruction. */
21339 insn = md_chars_to_number (buf, INSN_SIZE);
21340
21341 /* If the addend is positive, use an ADD instruction.
21342 Otherwise use a SUB. Take care not to destroy the S bit. */
21343 insn &= 0xff1fffff;
21344 if (value < 0)
21345 insn |= 1 << 22;
21346 else
21347 insn |= 1 << 23;
21348
21349 /* Place the encoded addend into the first 12 bits of the
21350 instruction. */
21351 insn &= 0xfffff000;
21352 insn |= encoded_addend;
5f4273c7
NC
21353
21354 /* Update the instruction. */
4962c51a
MS
21355 md_number_to_chars (buf, insn, INSN_SIZE);
21356 }
21357 break;
21358
21359 case BFD_RELOC_ARM_LDR_PC_G0:
21360 case BFD_RELOC_ARM_LDR_PC_G1:
21361 case BFD_RELOC_ARM_LDR_PC_G2:
21362 case BFD_RELOC_ARM_LDR_SB_G0:
21363 case BFD_RELOC_ARM_LDR_SB_G1:
21364 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21365 gas_assert (!fixP->fx_done);
4962c51a
MS
21366 if (!seg->use_rela_p)
21367 {
21368 bfd_vma insn;
21369 bfd_vma addend_abs = abs (value);
21370
21371 /* Check that the absolute value of the addend can be
21372 encoded in 12 bits. */
21373 if (addend_abs >= 0x1000)
21374 as_bad_where (fixP->fx_file, fixP->fx_line,
21375 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21376 (unsigned long) addend_abs);
4962c51a
MS
21377
21378 /* Extract the instruction. */
21379 insn = md_chars_to_number (buf, INSN_SIZE);
21380
21381 /* If the addend is negative, clear bit 23 of the instruction.
21382 Otherwise set it. */
21383 if (value < 0)
21384 insn &= ~(1 << 23);
21385 else
21386 insn |= 1 << 23;
21387
21388 /* Place the absolute value of the addend into the first 12 bits
21389 of the instruction. */
21390 insn &= 0xfffff000;
21391 insn |= addend_abs;
5f4273c7
NC
21392
21393 /* Update the instruction. */
4962c51a
MS
21394 md_number_to_chars (buf, insn, INSN_SIZE);
21395 }
21396 break;
21397
21398 case BFD_RELOC_ARM_LDRS_PC_G0:
21399 case BFD_RELOC_ARM_LDRS_PC_G1:
21400 case BFD_RELOC_ARM_LDRS_PC_G2:
21401 case BFD_RELOC_ARM_LDRS_SB_G0:
21402 case BFD_RELOC_ARM_LDRS_SB_G1:
21403 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21404 gas_assert (!fixP->fx_done);
4962c51a
MS
21405 if (!seg->use_rela_p)
21406 {
21407 bfd_vma insn;
21408 bfd_vma addend_abs = abs (value);
21409
21410 /* Check that the absolute value of the addend can be
21411 encoded in 8 bits. */
21412 if (addend_abs >= 0x100)
21413 as_bad_where (fixP->fx_file, fixP->fx_line,
21414 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21415 (unsigned long) addend_abs);
4962c51a
MS
21416
21417 /* Extract the instruction. */
21418 insn = md_chars_to_number (buf, INSN_SIZE);
21419
21420 /* If the addend is negative, clear bit 23 of the instruction.
21421 Otherwise set it. */
21422 if (value < 0)
21423 insn &= ~(1 << 23);
21424 else
21425 insn |= 1 << 23;
21426
21427 /* Place the first four bits of the absolute value of the addend
21428 into the first 4 bits of the instruction, and the remaining
21429 four into bits 8 .. 11. */
21430 insn &= 0xfffff0f0;
21431 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21432
21433 /* Update the instruction. */
4962c51a
MS
21434 md_number_to_chars (buf, insn, INSN_SIZE);
21435 }
21436 break;
21437
21438 case BFD_RELOC_ARM_LDC_PC_G0:
21439 case BFD_RELOC_ARM_LDC_PC_G1:
21440 case BFD_RELOC_ARM_LDC_PC_G2:
21441 case BFD_RELOC_ARM_LDC_SB_G0:
21442 case BFD_RELOC_ARM_LDC_SB_G1:
21443 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21444 gas_assert (!fixP->fx_done);
4962c51a
MS
21445 if (!seg->use_rela_p)
21446 {
21447 bfd_vma insn;
21448 bfd_vma addend_abs = abs (value);
21449
21450 /* Check that the absolute value of the addend is a multiple of
21451 four and, when divided by four, fits in 8 bits. */
21452 if (addend_abs & 0x3)
21453 as_bad_where (fixP->fx_file, fixP->fx_line,
21454 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21455 (unsigned long) addend_abs);
4962c51a
MS
21456
21457 if ((addend_abs >> 2) > 0xff)
21458 as_bad_where (fixP->fx_file, fixP->fx_line,
21459 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21460 (unsigned long) addend_abs);
4962c51a
MS
21461
21462 /* Extract the instruction. */
21463 insn = md_chars_to_number (buf, INSN_SIZE);
21464
21465 /* If the addend is negative, clear bit 23 of the instruction.
21466 Otherwise set it. */
21467 if (value < 0)
21468 insn &= ~(1 << 23);
21469 else
21470 insn |= 1 << 23;
21471
21472 /* Place the addend (divided by four) into the first eight
21473 bits of the instruction. */
21474 insn &= 0xfffffff0;
21475 insn |= addend_abs >> 2;
5f4273c7
NC
21476
21477 /* Update the instruction. */
4962c51a
MS
21478 md_number_to_chars (buf, insn, INSN_SIZE);
21479 }
21480 break;
21481
845b51d6
PB
21482 case BFD_RELOC_ARM_V4BX:
21483 /* This will need to go in the object file. */
21484 fixP->fx_done = 0;
21485 break;
21486
c19d1205
ZW
21487 case BFD_RELOC_UNUSED:
21488 default:
21489 as_bad_where (fixP->fx_file, fixP->fx_line,
21490 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21491 }
6c43fab6
RE
21492}
21493
c19d1205
ZW
21494/* Translate internal representation of relocation info to BFD target
21495 format. */
a737bd4d 21496
c19d1205 21497arelent *
00a97672 21498tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21499{
c19d1205
ZW
21500 arelent * reloc;
21501 bfd_reloc_code_real_type code;
a737bd4d 21502
21d799b5 21503 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21504
21d799b5 21505 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21506 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21507 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21508
2fc8bdac 21509 if (fixp->fx_pcrel)
00a97672
RS
21510 {
21511 if (section->use_rela_p)
21512 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21513 else
21514 fixp->fx_offset = reloc->address;
21515 }
c19d1205 21516 reloc->addend = fixp->fx_offset;
a737bd4d 21517
c19d1205 21518 switch (fixp->fx_r_type)
a737bd4d 21519 {
c19d1205
ZW
21520 case BFD_RELOC_8:
21521 if (fixp->fx_pcrel)
21522 {
21523 code = BFD_RELOC_8_PCREL;
21524 break;
21525 }
a737bd4d 21526
c19d1205
ZW
21527 case BFD_RELOC_16:
21528 if (fixp->fx_pcrel)
21529 {
21530 code = BFD_RELOC_16_PCREL;
21531 break;
21532 }
6c43fab6 21533
c19d1205
ZW
21534 case BFD_RELOC_32:
21535 if (fixp->fx_pcrel)
21536 {
21537 code = BFD_RELOC_32_PCREL;
21538 break;
21539 }
a737bd4d 21540
b6895b4f
PB
21541 case BFD_RELOC_ARM_MOVW:
21542 if (fixp->fx_pcrel)
21543 {
21544 code = BFD_RELOC_ARM_MOVW_PCREL;
21545 break;
21546 }
21547
21548 case BFD_RELOC_ARM_MOVT:
21549 if (fixp->fx_pcrel)
21550 {
21551 code = BFD_RELOC_ARM_MOVT_PCREL;
21552 break;
21553 }
21554
21555 case BFD_RELOC_ARM_THUMB_MOVW:
21556 if (fixp->fx_pcrel)
21557 {
21558 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21559 break;
21560 }
21561
21562 case BFD_RELOC_ARM_THUMB_MOVT:
21563 if (fixp->fx_pcrel)
21564 {
21565 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21566 break;
21567 }
21568
c19d1205
ZW
21569 case BFD_RELOC_NONE:
21570 case BFD_RELOC_ARM_PCREL_BRANCH:
21571 case BFD_RELOC_ARM_PCREL_BLX:
21572 case BFD_RELOC_RVA:
21573 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21574 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21575 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21576 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21577 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21578 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21579 case BFD_RELOC_VTABLE_ENTRY:
21580 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21581#ifdef TE_PE
21582 case BFD_RELOC_32_SECREL:
21583#endif
c19d1205
ZW
21584 code = fixp->fx_r_type;
21585 break;
a737bd4d 21586
00adf2d4
JB
21587 case BFD_RELOC_THUMB_PCREL_BLX:
21588#ifdef OBJ_ELF
21589 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21590 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21591 else
21592#endif
21593 code = BFD_RELOC_THUMB_PCREL_BLX;
21594 break;
21595
c19d1205
ZW
21596 case BFD_RELOC_ARM_LITERAL:
21597 case BFD_RELOC_ARM_HWLITERAL:
21598 /* If this is called then the a literal has
21599 been referenced across a section boundary. */
21600 as_bad_where (fixp->fx_file, fixp->fx_line,
21601 _("literal referenced across section boundary"));
21602 return NULL;
a737bd4d 21603
c19d1205 21604#ifdef OBJ_ELF
0855e32b
NS
21605 case BFD_RELOC_ARM_TLS_CALL:
21606 case BFD_RELOC_ARM_THM_TLS_CALL:
21607 case BFD_RELOC_ARM_TLS_DESCSEQ:
21608 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
21609 case BFD_RELOC_ARM_GOT32:
21610 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21611 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21612 case BFD_RELOC_ARM_PLT32:
21613 case BFD_RELOC_ARM_TARGET1:
21614 case BFD_RELOC_ARM_ROSEGREL32:
21615 case BFD_RELOC_ARM_SBREL32:
21616 case BFD_RELOC_ARM_PREL31:
21617 case BFD_RELOC_ARM_TARGET2:
21618 case BFD_RELOC_ARM_TLS_LE32:
21619 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21620 case BFD_RELOC_ARM_PCREL_CALL:
21621 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21622 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21623 case BFD_RELOC_ARM_ALU_PC_G0:
21624 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21625 case BFD_RELOC_ARM_ALU_PC_G1:
21626 case BFD_RELOC_ARM_ALU_PC_G2:
21627 case BFD_RELOC_ARM_LDR_PC_G0:
21628 case BFD_RELOC_ARM_LDR_PC_G1:
21629 case BFD_RELOC_ARM_LDR_PC_G2:
21630 case BFD_RELOC_ARM_LDRS_PC_G0:
21631 case BFD_RELOC_ARM_LDRS_PC_G1:
21632 case BFD_RELOC_ARM_LDRS_PC_G2:
21633 case BFD_RELOC_ARM_LDC_PC_G0:
21634 case BFD_RELOC_ARM_LDC_PC_G1:
21635 case BFD_RELOC_ARM_LDC_PC_G2:
21636 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21637 case BFD_RELOC_ARM_ALU_SB_G0:
21638 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21639 case BFD_RELOC_ARM_ALU_SB_G1:
21640 case BFD_RELOC_ARM_ALU_SB_G2:
21641 case BFD_RELOC_ARM_LDR_SB_G0:
21642 case BFD_RELOC_ARM_LDR_SB_G1:
21643 case BFD_RELOC_ARM_LDR_SB_G2:
21644 case BFD_RELOC_ARM_LDRS_SB_G0:
21645 case BFD_RELOC_ARM_LDRS_SB_G1:
21646 case BFD_RELOC_ARM_LDRS_SB_G2:
21647 case BFD_RELOC_ARM_LDC_SB_G0:
21648 case BFD_RELOC_ARM_LDC_SB_G1:
21649 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21650 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21651 code = fixp->fx_r_type;
21652 break;
a737bd4d 21653
0855e32b 21654 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21655 case BFD_RELOC_ARM_TLS_GD32:
21656 case BFD_RELOC_ARM_TLS_IE32:
21657 case BFD_RELOC_ARM_TLS_LDM32:
21658 /* BFD will include the symbol's address in the addend.
21659 But we don't want that, so subtract it out again here. */
21660 if (!S_IS_COMMON (fixp->fx_addsy))
21661 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21662 code = fixp->fx_r_type;
21663 break;
21664#endif
a737bd4d 21665
c19d1205
ZW
21666 case BFD_RELOC_ARM_IMMEDIATE:
21667 as_bad_where (fixp->fx_file, fixp->fx_line,
21668 _("internal relocation (type: IMMEDIATE) not fixed up"));
21669 return NULL;
a737bd4d 21670
c19d1205
ZW
21671 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21672 as_bad_where (fixp->fx_file, fixp->fx_line,
21673 _("ADRL used for a symbol not defined in the same file"));
21674 return NULL;
a737bd4d 21675
c19d1205 21676 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21677 if (section->use_rela_p)
21678 {
21679 code = fixp->fx_r_type;
21680 break;
21681 }
21682
c19d1205
ZW
21683 if (fixp->fx_addsy != NULL
21684 && !S_IS_DEFINED (fixp->fx_addsy)
21685 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21686 {
c19d1205
ZW
21687 as_bad_where (fixp->fx_file, fixp->fx_line,
21688 _("undefined local label `%s'"),
21689 S_GET_NAME (fixp->fx_addsy));
21690 return NULL;
a737bd4d
NC
21691 }
21692
c19d1205
ZW
21693 as_bad_where (fixp->fx_file, fixp->fx_line,
21694 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21695 return NULL;
a737bd4d 21696
c19d1205
ZW
21697 default:
21698 {
21699 char * type;
6c43fab6 21700
c19d1205
ZW
21701 switch (fixp->fx_r_type)
21702 {
21703 case BFD_RELOC_NONE: type = "NONE"; break;
21704 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21705 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21706 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21707 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21708 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21709 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21710 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21711 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21712 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21713 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21714 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21715 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21716 default: type = _("<unknown>"); break;
21717 }
21718 as_bad_where (fixp->fx_file, fixp->fx_line,
21719 _("cannot represent %s relocation in this object file format"),
21720 type);
21721 return NULL;
21722 }
a737bd4d 21723 }
6c43fab6 21724
c19d1205
ZW
21725#ifdef OBJ_ELF
21726 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21727 && GOT_symbol
21728 && fixp->fx_addsy == GOT_symbol)
21729 {
21730 code = BFD_RELOC_ARM_GOTPC;
21731 reloc->addend = fixp->fx_offset = reloc->address;
21732 }
21733#endif
6c43fab6 21734
c19d1205 21735 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21736
c19d1205
ZW
21737 if (reloc->howto == NULL)
21738 {
21739 as_bad_where (fixp->fx_file, fixp->fx_line,
21740 _("cannot represent %s relocation in this object file format"),
21741 bfd_get_reloc_code_name (code));
21742 return NULL;
21743 }
6c43fab6 21744
c19d1205
ZW
21745 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21746 vtable entry to be used in the relocation's section offset. */
21747 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21748 reloc->address = fixp->fx_offset;
6c43fab6 21749
c19d1205 21750 return reloc;
6c43fab6
RE
21751}
21752
c19d1205 21753/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21754
c19d1205
ZW
21755void
21756cons_fix_new_arm (fragS * frag,
21757 int where,
21758 int size,
21759 expressionS * exp)
6c43fab6 21760{
c19d1205
ZW
21761 bfd_reloc_code_real_type type;
21762 int pcrel = 0;
6c43fab6 21763
c19d1205
ZW
21764 /* Pick a reloc.
21765 FIXME: @@ Should look at CPU word size. */
21766 switch (size)
21767 {
21768 case 1:
21769 type = BFD_RELOC_8;
21770 break;
21771 case 2:
21772 type = BFD_RELOC_16;
21773 break;
21774 case 4:
21775 default:
21776 type = BFD_RELOC_32;
21777 break;
21778 case 8:
21779 type = BFD_RELOC_64;
21780 break;
21781 }
6c43fab6 21782
f0927246
NC
21783#ifdef TE_PE
21784 if (exp->X_op == O_secrel)
21785 {
21786 exp->X_op = O_symbol;
21787 type = BFD_RELOC_32_SECREL;
21788 }
21789#endif
21790
c19d1205
ZW
21791 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21792}
6c43fab6 21793
4343666d 21794#if defined (OBJ_COFF)
c19d1205
ZW
21795void
21796arm_validate_fix (fixS * fixP)
6c43fab6 21797{
c19d1205
ZW
21798 /* If the destination of the branch is a defined symbol which does not have
21799 the THUMB_FUNC attribute, then we must be calling a function which has
21800 the (interfacearm) attribute. We look for the Thumb entry point to that
21801 function and change the branch to refer to that function instead. */
21802 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21803 && fixP->fx_addsy != NULL
21804 && S_IS_DEFINED (fixP->fx_addsy)
21805 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21806 {
c19d1205 21807 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21808 }
c19d1205
ZW
21809}
21810#endif
6c43fab6 21811
267bf995 21812
c19d1205
ZW
21813int
21814arm_force_relocation (struct fix * fixp)
21815{
21816#if defined (OBJ_COFF) && defined (TE_PE)
21817 if (fixp->fx_r_type == BFD_RELOC_RVA)
21818 return 1;
21819#endif
6c43fab6 21820
267bf995
RR
21821 /* In case we have a call or a branch to a function in ARM ISA mode from
21822 a thumb function or vice-versa force the relocation. These relocations
21823 are cleared off for some cores that might have blx and simple transformations
21824 are possible. */
21825
21826#ifdef OBJ_ELF
21827 switch (fixp->fx_r_type)
21828 {
21829 case BFD_RELOC_ARM_PCREL_JUMP:
21830 case BFD_RELOC_ARM_PCREL_CALL:
21831 case BFD_RELOC_THUMB_PCREL_BLX:
21832 if (THUMB_IS_FUNC (fixp->fx_addsy))
21833 return 1;
21834 break;
21835
21836 case BFD_RELOC_ARM_PCREL_BLX:
21837 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21838 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21839 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21840 if (ARM_IS_FUNC (fixp->fx_addsy))
21841 return 1;
21842 break;
21843
21844 default:
21845 break;
21846 }
21847#endif
21848
c19d1205
ZW
21849 /* Resolve these relocations even if the symbol is extern or weak. */
21850 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21851 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 21852 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 21853 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21854 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21855 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21856 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 21857 return 0;
a737bd4d 21858
4962c51a
MS
21859 /* Always leave these relocations for the linker. */
21860 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21861 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21862 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21863 return 1;
21864
f0291e4c
PB
21865 /* Always generate relocations against function symbols. */
21866 if (fixp->fx_r_type == BFD_RELOC_32
21867 && fixp->fx_addsy
21868 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21869 return 1;
21870
c19d1205 21871 return generic_force_reloc (fixp);
404ff6b5
AH
21872}
21873
0ffdc86c 21874#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21875/* Relocations against function names must be left unadjusted,
21876 so that the linker can use this information to generate interworking
21877 stubs. The MIPS version of this function
c19d1205
ZW
21878 also prevents relocations that are mips-16 specific, but I do not
21879 know why it does this.
404ff6b5 21880
c19d1205
ZW
21881 FIXME:
21882 There is one other problem that ought to be addressed here, but
21883 which currently is not: Taking the address of a label (rather
21884 than a function) and then later jumping to that address. Such
21885 addresses also ought to have their bottom bit set (assuming that
21886 they reside in Thumb code), but at the moment they will not. */
404ff6b5 21887
c19d1205
ZW
21888bfd_boolean
21889arm_fix_adjustable (fixS * fixP)
404ff6b5 21890{
c19d1205
ZW
21891 if (fixP->fx_addsy == NULL)
21892 return 1;
404ff6b5 21893
e28387c3
PB
21894 /* Preserve relocations against symbols with function type. */
21895 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 21896 return FALSE;
e28387c3 21897
c19d1205
ZW
21898 if (THUMB_IS_FUNC (fixP->fx_addsy)
21899 && fixP->fx_subsy == NULL)
c921be7d 21900 return FALSE;
a737bd4d 21901
c19d1205
ZW
21902 /* We need the symbol name for the VTABLE entries. */
21903 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21904 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 21905 return FALSE;
404ff6b5 21906
c19d1205
ZW
21907 /* Don't allow symbols to be discarded on GOT related relocs. */
21908 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21909 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21910 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21911 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21912 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21913 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21914 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21915 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
21916 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
21917 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
21918 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
21919 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
21920 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 21921 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 21922 return FALSE;
a737bd4d 21923
4962c51a
MS
21924 /* Similarly for group relocations. */
21925 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21926 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21927 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 21928 return FALSE;
4962c51a 21929
79947c54
CD
21930 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21931 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21932 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21933 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21934 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21935 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21936 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21937 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21938 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 21939 return FALSE;
79947c54 21940
c921be7d 21941 return TRUE;
a737bd4d 21942}
0ffdc86c
NC
21943#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21944
21945#ifdef OBJ_ELF
404ff6b5 21946
c19d1205
ZW
21947const char *
21948elf32_arm_target_format (void)
404ff6b5 21949{
c19d1205
ZW
21950#ifdef TE_SYMBIAN
21951 return (target_big_endian
21952 ? "elf32-bigarm-symbian"
21953 : "elf32-littlearm-symbian");
21954#elif defined (TE_VXWORKS)
21955 return (target_big_endian
21956 ? "elf32-bigarm-vxworks"
21957 : "elf32-littlearm-vxworks");
21958#else
21959 if (target_big_endian)
21960 return "elf32-bigarm";
21961 else
21962 return "elf32-littlearm";
21963#endif
404ff6b5
AH
21964}
21965
c19d1205
ZW
21966void
21967armelf_frob_symbol (symbolS * symp,
21968 int * puntp)
404ff6b5 21969{
c19d1205
ZW
21970 elf_frob_symbol (symp, puntp);
21971}
21972#endif
404ff6b5 21973
c19d1205 21974/* MD interface: Finalization. */
a737bd4d 21975
c19d1205
ZW
21976void
21977arm_cleanup (void)
21978{
21979 literal_pool * pool;
a737bd4d 21980
e07e6e58
NC
21981 /* Ensure that all the IT blocks are properly closed. */
21982 check_it_blocks_finished ();
21983
c19d1205
ZW
21984 for (pool = list_of_pools; pool; pool = pool->next)
21985 {
5f4273c7 21986 /* Put it at the end of the relevant section. */
c19d1205
ZW
21987 subseg_set (pool->section, pool->sub_section);
21988#ifdef OBJ_ELF
21989 arm_elf_change_section ();
21990#endif
21991 s_ltorg (0);
21992 }
404ff6b5
AH
21993}
21994
cd000bff
DJ
21995#ifdef OBJ_ELF
21996/* Remove any excess mapping symbols generated for alignment frags in
21997 SEC. We may have created a mapping symbol before a zero byte
21998 alignment; remove it if there's a mapping symbol after the
21999 alignment. */
22000static void
22001check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22002 void *dummy ATTRIBUTE_UNUSED)
22003{
22004 segment_info_type *seginfo = seg_info (sec);
22005 fragS *fragp;
22006
22007 if (seginfo == NULL || seginfo->frchainP == NULL)
22008 return;
22009
22010 for (fragp = seginfo->frchainP->frch_root;
22011 fragp != NULL;
22012 fragp = fragp->fr_next)
22013 {
22014 symbolS *sym = fragp->tc_frag_data.last_map;
22015 fragS *next = fragp->fr_next;
22016
22017 /* Variable-sized frags have been converted to fixed size by
22018 this point. But if this was variable-sized to start with,
22019 there will be a fixed-size frag after it. So don't handle
22020 next == NULL. */
22021 if (sym == NULL || next == NULL)
22022 continue;
22023
22024 if (S_GET_VALUE (sym) < next->fr_address)
22025 /* Not at the end of this frag. */
22026 continue;
22027 know (S_GET_VALUE (sym) == next->fr_address);
22028
22029 do
22030 {
22031 if (next->tc_frag_data.first_map != NULL)
22032 {
22033 /* Next frag starts with a mapping symbol. Discard this
22034 one. */
22035 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22036 break;
22037 }
22038
22039 if (next->fr_next == NULL)
22040 {
22041 /* This mapping symbol is at the end of the section. Discard
22042 it. */
22043 know (next->fr_fix == 0 && next->fr_var == 0);
22044 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22045 break;
22046 }
22047
22048 /* As long as we have empty frags without any mapping symbols,
22049 keep looking. */
22050 /* If the next frag is non-empty and does not start with a
22051 mapping symbol, then this mapping symbol is required. */
22052 if (next->fr_address != next->fr_next->fr_address)
22053 break;
22054
22055 next = next->fr_next;
22056 }
22057 while (next != NULL);
22058 }
22059}
22060#endif
22061
c19d1205
ZW
22062/* Adjust the symbol table. This marks Thumb symbols as distinct from
22063 ARM ones. */
404ff6b5 22064
c19d1205
ZW
22065void
22066arm_adjust_symtab (void)
404ff6b5 22067{
c19d1205
ZW
22068#ifdef OBJ_COFF
22069 symbolS * sym;
404ff6b5 22070
c19d1205
ZW
22071 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22072 {
22073 if (ARM_IS_THUMB (sym))
22074 {
22075 if (THUMB_IS_FUNC (sym))
22076 {
22077 /* Mark the symbol as a Thumb function. */
22078 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22079 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22080 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22081
c19d1205
ZW
22082 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22083 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22084 else
22085 as_bad (_("%s: unexpected function type: %d"),
22086 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22087 }
22088 else switch (S_GET_STORAGE_CLASS (sym))
22089 {
22090 case C_EXT:
22091 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22092 break;
22093 case C_STAT:
22094 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22095 break;
22096 case C_LABEL:
22097 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22098 break;
22099 default:
22100 /* Do nothing. */
22101 break;
22102 }
22103 }
a737bd4d 22104
c19d1205
ZW
22105 if (ARM_IS_INTERWORK (sym))
22106 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22107 }
c19d1205
ZW
22108#endif
22109#ifdef OBJ_ELF
22110 symbolS * sym;
22111 char bind;
404ff6b5 22112
c19d1205 22113 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22114 {
c19d1205
ZW
22115 if (ARM_IS_THUMB (sym))
22116 {
22117 elf_symbol_type * elf_sym;
404ff6b5 22118
c19d1205
ZW
22119 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22120 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22121
b0796911
PB
22122 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22123 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22124 {
22125 /* If it's a .thumb_func, declare it as so,
22126 otherwise tag label as .code 16. */
22127 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22128 elf_sym->internal_elf_sym.st_target_internal
22129 = ST_BRANCH_TO_THUMB;
3ba67470 22130 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22131 elf_sym->internal_elf_sym.st_info =
22132 ELF_ST_INFO (bind, STT_ARM_16BIT);
22133 }
22134 }
22135 }
cd000bff
DJ
22136
22137 /* Remove any overlapping mapping symbols generated by alignment frags. */
22138 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22139 /* Now do generic ELF adjustments. */
22140 elf_adjust_symtab ();
c19d1205 22141#endif
404ff6b5
AH
22142}
22143
c19d1205 22144/* MD interface: Initialization. */
404ff6b5 22145
a737bd4d 22146static void
c19d1205 22147set_constant_flonums (void)
a737bd4d 22148{
c19d1205 22149 int i;
404ff6b5 22150
c19d1205
ZW
22151 for (i = 0; i < NUM_FLOAT_VALS; i++)
22152 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22153 abort ();
a737bd4d 22154}
404ff6b5 22155
3e9e4fcf
JB
22156/* Auto-select Thumb mode if it's the only available instruction set for the
22157 given architecture. */
22158
22159static void
22160autoselect_thumb_from_cpu_variant (void)
22161{
22162 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22163 opcode_select (16);
22164}
22165
c19d1205
ZW
22166void
22167md_begin (void)
a737bd4d 22168{
c19d1205
ZW
22169 unsigned mach;
22170 unsigned int i;
404ff6b5 22171
c19d1205
ZW
22172 if ( (arm_ops_hsh = hash_new ()) == NULL
22173 || (arm_cond_hsh = hash_new ()) == NULL
22174 || (arm_shift_hsh = hash_new ()) == NULL
22175 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22176 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22177 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22178 || (arm_reloc_hsh = hash_new ()) == NULL
22179 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22180 as_fatal (_("virtual memory exhausted"));
22181
22182 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22183 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22184 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22185 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22186 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22187 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22188 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22189 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22190 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22191 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22192 (void *) (v7m_psrs + i));
c19d1205 22193 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22194 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22195 for (i = 0;
22196 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22197 i++)
d3ce72d0 22198 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22199 (void *) (barrier_opt_names + i));
c19d1205
ZW
22200#ifdef OBJ_ELF
22201 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 22202 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
22203#endif
22204
22205 set_constant_flonums ();
404ff6b5 22206
c19d1205
ZW
22207 /* Set the cpu variant based on the command-line options. We prefer
22208 -mcpu= over -march= if both are set (as for GCC); and we prefer
22209 -mfpu= over any other way of setting the floating point unit.
22210 Use of legacy options with new options are faulted. */
e74cfd16 22211 if (legacy_cpu)
404ff6b5 22212 {
e74cfd16 22213 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22214 as_bad (_("use of old and new-style options to set CPU type"));
22215
22216 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22217 }
e74cfd16 22218 else if (!mcpu_cpu_opt)
c19d1205 22219 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22220
e74cfd16 22221 if (legacy_fpu)
c19d1205 22222 {
e74cfd16 22223 if (mfpu_opt)
c19d1205 22224 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22225
22226 mfpu_opt = legacy_fpu;
22227 }
e74cfd16 22228 else if (!mfpu_opt)
03b1477f 22229 {
45eb4c1b
NS
22230#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22231 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22232 /* Some environments specify a default FPU. If they don't, infer it
22233 from the processor. */
e74cfd16 22234 if (mcpu_fpu_opt)
03b1477f
RE
22235 mfpu_opt = mcpu_fpu_opt;
22236 else
22237 mfpu_opt = march_fpu_opt;
39c2da32 22238#else
e74cfd16 22239 mfpu_opt = &fpu_default;
39c2da32 22240#endif
03b1477f
RE
22241 }
22242
e74cfd16 22243 if (!mfpu_opt)
03b1477f 22244 {
493cb6ef 22245 if (mcpu_cpu_opt != NULL)
e74cfd16 22246 mfpu_opt = &fpu_default;
493cb6ef 22247 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22248 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22249 else
e74cfd16 22250 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22251 }
22252
ee065d83 22253#ifdef CPU_DEFAULT
e74cfd16 22254 if (!mcpu_cpu_opt)
ee065d83 22255 {
e74cfd16
PB
22256 mcpu_cpu_opt = &cpu_default;
22257 selected_cpu = cpu_default;
ee065d83 22258 }
e74cfd16
PB
22259#else
22260 if (mcpu_cpu_opt)
22261 selected_cpu = *mcpu_cpu_opt;
ee065d83 22262 else
e74cfd16 22263 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22264#endif
03b1477f 22265
e74cfd16 22266 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22267
3e9e4fcf
JB
22268 autoselect_thumb_from_cpu_variant ();
22269
e74cfd16 22270 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22271
f17c130b 22272#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22273 {
7cc69913
NC
22274 unsigned int flags = 0;
22275
22276#if defined OBJ_ELF
22277 flags = meabi_flags;
d507cf36
PB
22278
22279 switch (meabi_flags)
33a392fb 22280 {
d507cf36 22281 case EF_ARM_EABI_UNKNOWN:
7cc69913 22282#endif
d507cf36
PB
22283 /* Set the flags in the private structure. */
22284 if (uses_apcs_26) flags |= F_APCS26;
22285 if (support_interwork) flags |= F_INTERWORK;
22286 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22287 if (pic_code) flags |= F_PIC;
e74cfd16 22288 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22289 flags |= F_SOFT_FLOAT;
22290
d507cf36
PB
22291 switch (mfloat_abi_opt)
22292 {
22293 case ARM_FLOAT_ABI_SOFT:
22294 case ARM_FLOAT_ABI_SOFTFP:
22295 flags |= F_SOFT_FLOAT;
22296 break;
33a392fb 22297
d507cf36
PB
22298 case ARM_FLOAT_ABI_HARD:
22299 if (flags & F_SOFT_FLOAT)
22300 as_bad (_("hard-float conflicts with specified fpu"));
22301 break;
22302 }
03b1477f 22303
e74cfd16
PB
22304 /* Using pure-endian doubles (even if soft-float). */
22305 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22306 flags |= F_VFP_FLOAT;
f17c130b 22307
fde78edd 22308#if defined OBJ_ELF
e74cfd16 22309 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22310 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22311 break;
22312
8cb51566 22313 case EF_ARM_EABI_VER4:
3a4a14e9 22314 case EF_ARM_EABI_VER5:
c19d1205 22315 /* No additional flags to set. */
d507cf36
PB
22316 break;
22317
22318 default:
22319 abort ();
22320 }
7cc69913 22321#endif
b99bd4ef
NC
22322 bfd_set_private_flags (stdoutput, flags);
22323
22324 /* We have run out flags in the COFF header to encode the
22325 status of ATPCS support, so instead we create a dummy,
c19d1205 22326 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22327 if (atpcs)
22328 {
22329 asection * sec;
22330
22331 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22332
22333 if (sec != NULL)
22334 {
22335 bfd_set_section_flags
22336 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22337 bfd_set_section_size (stdoutput, sec, 0);
22338 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22339 }
22340 }
7cc69913 22341 }
f17c130b 22342#endif
b99bd4ef
NC
22343
22344 /* Record the CPU type as well. */
2d447fca
JM
22345 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22346 mach = bfd_mach_arm_iWMMXt2;
22347 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22348 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22349 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22350 mach = bfd_mach_arm_XScale;
e74cfd16 22351 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22352 mach = bfd_mach_arm_ep9312;
e74cfd16 22353 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22354 mach = bfd_mach_arm_5TE;
e74cfd16 22355 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22356 {
e74cfd16 22357 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22358 mach = bfd_mach_arm_5T;
22359 else
22360 mach = bfd_mach_arm_5;
22361 }
e74cfd16 22362 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22363 {
e74cfd16 22364 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22365 mach = bfd_mach_arm_4T;
22366 else
22367 mach = bfd_mach_arm_4;
22368 }
e74cfd16 22369 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22370 mach = bfd_mach_arm_3M;
e74cfd16
PB
22371 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22372 mach = bfd_mach_arm_3;
22373 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22374 mach = bfd_mach_arm_2a;
22375 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22376 mach = bfd_mach_arm_2;
22377 else
22378 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22379
22380 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22381}
22382
c19d1205 22383/* Command line processing. */
b99bd4ef 22384
c19d1205
ZW
22385/* md_parse_option
22386 Invocation line includes a switch not recognized by the base assembler.
22387 See if it's a processor-specific option.
b99bd4ef 22388
c19d1205
ZW
22389 This routine is somewhat complicated by the need for backwards
22390 compatibility (since older releases of gcc can't be changed).
22391 The new options try to make the interface as compatible as
22392 possible with GCC.
b99bd4ef 22393
c19d1205 22394 New options (supported) are:
b99bd4ef 22395
c19d1205
ZW
22396 -mcpu=<cpu name> Assemble for selected processor
22397 -march=<architecture name> Assemble for selected architecture
22398 -mfpu=<fpu architecture> Assemble for selected FPU.
22399 -EB/-mbig-endian Big-endian
22400 -EL/-mlittle-endian Little-endian
22401 -k Generate PIC code
22402 -mthumb Start in Thumb mode
22403 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 22404
278df34e 22405 -m[no-]warn-deprecated Warn about deprecated features
267bf995 22406
c19d1205 22407 For now we will also provide support for:
b99bd4ef 22408
c19d1205
ZW
22409 -mapcs-32 32-bit Program counter
22410 -mapcs-26 26-bit Program counter
22411 -macps-float Floats passed in FP registers
22412 -mapcs-reentrant Reentrant code
22413 -matpcs
22414 (sometime these will probably be replaced with -mapcs=<list of options>
22415 and -matpcs=<list of options>)
b99bd4ef 22416
c19d1205
ZW
22417 The remaining options are only supported for back-wards compatibility.
22418 Cpu variants, the arm part is optional:
22419 -m[arm]1 Currently not supported.
22420 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22421 -m[arm]3 Arm 3 processor
22422 -m[arm]6[xx], Arm 6 processors
22423 -m[arm]7[xx][t][[d]m] Arm 7 processors
22424 -m[arm]8[10] Arm 8 processors
22425 -m[arm]9[20][tdmi] Arm 9 processors
22426 -mstrongarm[110[0]] StrongARM processors
22427 -mxscale XScale processors
22428 -m[arm]v[2345[t[e]]] Arm architectures
22429 -mall All (except the ARM1)
22430 FP variants:
22431 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22432 -mfpe-old (No float load/store multiples)
22433 -mvfpxd VFP Single precision
22434 -mvfp All VFP
22435 -mno-fpu Disable all floating point instructions
b99bd4ef 22436
c19d1205
ZW
22437 The following CPU names are recognized:
22438 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22439 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22440 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22441 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22442 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22443 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22444 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22445
c19d1205 22446 */
b99bd4ef 22447
c19d1205 22448const char * md_shortopts = "m:k";
b99bd4ef 22449
c19d1205
ZW
22450#ifdef ARM_BI_ENDIAN
22451#define OPTION_EB (OPTION_MD_BASE + 0)
22452#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22453#else
c19d1205
ZW
22454#if TARGET_BYTES_BIG_ENDIAN
22455#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22456#else
c19d1205
ZW
22457#define OPTION_EL (OPTION_MD_BASE + 1)
22458#endif
b99bd4ef 22459#endif
845b51d6 22460#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22461
c19d1205 22462struct option md_longopts[] =
b99bd4ef 22463{
c19d1205
ZW
22464#ifdef OPTION_EB
22465 {"EB", no_argument, NULL, OPTION_EB},
22466#endif
22467#ifdef OPTION_EL
22468 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22469#endif
845b51d6 22470 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22471 {NULL, no_argument, NULL, 0}
22472};
b99bd4ef 22473
c19d1205 22474size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22475
c19d1205 22476struct arm_option_table
b99bd4ef 22477{
c19d1205
ZW
22478 char *option; /* Option name to match. */
22479 char *help; /* Help information. */
22480 int *var; /* Variable to change. */
22481 int value; /* What to change it to. */
22482 char *deprecated; /* If non-null, print this message. */
22483};
b99bd4ef 22484
c19d1205
ZW
22485struct arm_option_table arm_opts[] =
22486{
22487 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22488 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22489 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22490 &support_interwork, 1, NULL},
22491 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22492 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22493 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22494 1, NULL},
22495 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22496 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22497 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22498 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22499 NULL},
b99bd4ef 22500
c19d1205
ZW
22501 /* These are recognized by the assembler, but have no affect on code. */
22502 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22503 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22504
22505 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22506 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22507 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22508 {NULL, NULL, NULL, 0, NULL}
22509};
22510
22511struct arm_legacy_option_table
22512{
22513 char *option; /* Option name to match. */
22514 const arm_feature_set **var; /* Variable to change. */
22515 const arm_feature_set value; /* What to change it to. */
22516 char *deprecated; /* If non-null, print this message. */
22517};
b99bd4ef 22518
e74cfd16
PB
22519const struct arm_legacy_option_table arm_legacy_opts[] =
22520{
c19d1205
ZW
22521 /* DON'T add any new processors to this list -- we want the whole list
22522 to go away... Add them to the processors table instead. */
e74cfd16
PB
22523 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22524 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22525 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22526 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22527 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22528 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22529 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22530 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22531 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22532 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22533 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22534 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22535 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22536 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22537 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22538 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22539 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22540 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22541 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22542 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22543 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22544 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22545 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22546 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22547 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22548 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22549 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22550 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22551 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22552 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22553 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22554 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22555 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22556 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22557 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22558 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22559 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22560 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22561 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22562 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22563 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22564 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22565 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22566 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22567 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22568 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22569 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22570 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22571 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22572 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22573 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22574 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22575 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22576 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22577 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22578 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22579 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22580 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22581 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22582 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22583 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22584 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22585 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22586 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22587 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22588 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22589 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22590 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22591 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22592 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22593 N_("use -mcpu=strongarm110")},
e74cfd16 22594 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22595 N_("use -mcpu=strongarm1100")},
e74cfd16 22596 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22597 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22598 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22599 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22600 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22601
c19d1205 22602 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22603 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22604 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22605 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22606 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22607 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22608 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22609 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22610 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22611 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22612 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22613 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22614 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22615 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22616 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22617 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22618 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22619 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22620 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22621
c19d1205 22622 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22623 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22624 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22625 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22626 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22627 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22628
e74cfd16 22629 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22630};
7ed4c4c5 22631
c19d1205 22632struct arm_cpu_option_table
7ed4c4c5 22633{
c19d1205 22634 char *name;
e74cfd16 22635 const arm_feature_set value;
c19d1205
ZW
22636 /* For some CPUs we assume an FPU unless the user explicitly sets
22637 -mfpu=... */
e74cfd16 22638 const arm_feature_set default_fpu;
ee065d83
PB
22639 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22640 case. */
22641 const char *canonical_name;
c19d1205 22642};
7ed4c4c5 22643
c19d1205
ZW
22644/* This list should, at a minimum, contain all the cpu names
22645 recognized by GCC. */
e74cfd16 22646static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22647{
ee065d83
PB
22648 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22649 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22650 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22651 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22652 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22653 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22654 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22655 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22656 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22657 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22658 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22659 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22660 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22661 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22662 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22663 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22664 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22665 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22666 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22667 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22668 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22669 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22670 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22671 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22672 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22673 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22674 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22675 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22676 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22677 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22678 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22679 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22680 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22681 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22682 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22683 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22684 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22685 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22686 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22687 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22688 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22689 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22690 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22691 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22692 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22693 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22694 /* For V5 or later processors we default to using VFP; but the user
22695 should really set the FPU type explicitly. */
ee065d83
PB
22696 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22697 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22698 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22699 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22700 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22701 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22702 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22703 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22704 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22705 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22706 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22707 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22708 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22709 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22710 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22711 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22712 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22713 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22714 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22715 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22716 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
4a58c4bd
NC
22717 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22718 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22719 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22720 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
7fac0536 22721 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22722 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22723 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22724 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22725 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
4ff9b924
MGD
22726 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22727 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
ee065d83
PB
22728 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22729 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22730 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22731 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
f4c65163
MGD
22732 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22733 FPU_NONE, "Cortex-A5"},
22734 {"cortex-a8", ARM_ARCH_V7A_SEC,
22735 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22736 | FPU_NEON_EXT_V1),
4ff9b924 22737 "Cortex-A8"},
f4c65163
MGD
22738 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22739 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22740 | FPU_NEON_EXT_V1),
4ff9b924 22741 "Cortex-A9"},
90ec0d68 22742 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
eea54501 22743 FPU_ARCH_NEON_VFP_V4,
dbb1f804 22744 "Cortex-A15"},
4ff9b924
MGD
22745 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22746 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22747 "Cortex-R4F"},
22748 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22749 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
b2a5fbdc
MGD
22750 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22751 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
c19d1205 22752 /* ??? XSCALE is really an architecture. */
ee065d83 22753 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22754 /* ??? iwmmxt is not a processor. */
ee065d83 22755 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22756 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22757 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22758 /* Maverick */
e07e6e58 22759 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22760 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22761};
7ed4c4c5 22762
c19d1205 22763struct arm_arch_option_table
7ed4c4c5 22764{
c19d1205 22765 char *name;
e74cfd16
PB
22766 const arm_feature_set value;
22767 const arm_feature_set default_fpu;
c19d1205 22768};
7ed4c4c5 22769
c19d1205
ZW
22770/* This list should, at a minimum, contain all the architecture names
22771 recognized by GCC. */
e74cfd16 22772static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22773{
22774 {"all", ARM_ANY, FPU_ARCH_FPA},
22775 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22776 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22777 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22778 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22779 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22780 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22781 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22782 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22783 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22784 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22785 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22786 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22787 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22788 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22789 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22790 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22791 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22792 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22793 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22794 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22795 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22796 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22797 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22798 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22799 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22800 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
b2a5fbdc 22801 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
62b3e311 22802 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22803 /* The official spelling of the ARMv7 profile variants is the dashed form.
22804 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22805 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22806 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22807 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22808 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22809 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22810 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22811 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22812 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22813 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22814 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22815 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22816};
7ed4c4c5 22817
69133863
MGD
22818/* ISA extensions in the co-processor and main instruction set space. */
22819struct arm_option_extension_value_table
c19d1205
ZW
22820{
22821 char *name;
e74cfd16 22822 const arm_feature_set value;
69133863 22823 const arm_feature_set allowed_archs;
c19d1205 22824};
7ed4c4c5 22825
69133863
MGD
22826/* The following table must be in alphabetical order with a NULL last entry.
22827 */
22828static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 22829{
eea54501
MGD
22830 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22831 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863
MGD
22832 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22833 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22834 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
60e5ef9f
MGD
22835 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22836 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
b2a5fbdc
MGD
22837 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22838 ARM_FEATURE (ARM_EXT_V6M, 0)},
f4c65163
MGD
22839 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22840 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
90ec0d68
MGD
22841 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22842 ARM_FEATURE (ARM_EXT_V7A, 0)},
69133863 22843 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
60e5ef9f 22844 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
69133863
MGD
22845};
22846
22847/* ISA floating-point and Advanced SIMD extensions. */
22848struct arm_option_fpu_value_table
22849{
22850 char *name;
22851 const arm_feature_set value;
c19d1205 22852};
7ed4c4c5 22853
c19d1205
ZW
22854/* This list should, at a minimum, contain all the fpu names
22855 recognized by GCC. */
69133863 22856static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
22857{
22858 {"softfpa", FPU_NONE},
22859 {"fpe", FPU_ARCH_FPE},
22860 {"fpe2", FPU_ARCH_FPE},
22861 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22862 {"fpa", FPU_ARCH_FPA},
22863 {"fpa10", FPU_ARCH_FPA},
22864 {"fpa11", FPU_ARCH_FPA},
22865 {"arm7500fe", FPU_ARCH_FPA},
22866 {"softvfp", FPU_ARCH_VFP},
22867 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22868 {"vfp", FPU_ARCH_VFP_V2},
22869 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22870 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22871 {"vfp10", FPU_ARCH_VFP_V2},
22872 {"vfp10-r0", FPU_ARCH_VFP_V1},
22873 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22874 {"vfpv2", FPU_ARCH_VFP_V2},
22875 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22876 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22877 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
22878 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22879 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22880 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
22881 {"arm1020t", FPU_ARCH_VFP_V1},
22882 {"arm1020e", FPU_ARCH_VFP_V2},
22883 {"arm1136jfs", FPU_ARCH_VFP_V2},
22884 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22885 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 22886 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 22887 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
22888 {"vfpv4", FPU_ARCH_VFP_V4},
22889 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 22890 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 22891 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
22892 {NULL, ARM_ARCH_NONE}
22893};
22894
22895struct arm_option_value_table
22896{
22897 char *name;
22898 long value;
c19d1205 22899};
7ed4c4c5 22900
e74cfd16 22901static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
22902{
22903 {"hard", ARM_FLOAT_ABI_HARD},
22904 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22905 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 22906 {NULL, 0}
c19d1205 22907};
7ed4c4c5 22908
c19d1205 22909#ifdef OBJ_ELF
3a4a14e9 22910/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 22911static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
22912{
22913 {"gnu", EF_ARM_EABI_UNKNOWN},
22914 {"4", EF_ARM_EABI_VER4},
3a4a14e9 22915 {"5", EF_ARM_EABI_VER5},
e74cfd16 22916 {NULL, 0}
c19d1205
ZW
22917};
22918#endif
7ed4c4c5 22919
c19d1205
ZW
22920struct arm_long_option_table
22921{
22922 char * option; /* Substring to match. */
22923 char * help; /* Help information. */
22924 int (* func) (char * subopt); /* Function to decode sub-option. */
22925 char * deprecated; /* If non-null, print this message. */
22926};
7ed4c4c5 22927
c921be7d 22928static bfd_boolean
e74cfd16 22929arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 22930{
21d799b5
NC
22931 arm_feature_set *ext_set = (arm_feature_set *)
22932 xmalloc (sizeof (arm_feature_set));
e74cfd16 22933
69133863
MGD
22934 /* We insist on extensions being specified in alphabetical order, and with
22935 extensions being added before being removed. We achieve this by having
22936 the global ARM_EXTENSIONS table in alphabetical order, and using the
22937 ADDING_VALUE variable to indicate whether we are adding an extension (1)
22938 or removing it (0) and only allowing it to change in the order
22939 -1 -> 1 -> 0. */
22940 const struct arm_option_extension_value_table * opt = NULL;
22941 int adding_value = -1;
22942
e74cfd16
PB
22943 /* Copy the feature set, so that we can modify it. */
22944 *ext_set = **opt_p;
22945 *opt_p = ext_set;
22946
c19d1205 22947 while (str != NULL && *str != 0)
7ed4c4c5 22948 {
c19d1205 22949 char * ext;
69133863 22950 size_t optlen;
7ed4c4c5 22951
c19d1205
ZW
22952 if (*str != '+')
22953 {
22954 as_bad (_("invalid architectural extension"));
c921be7d 22955 return FALSE;
c19d1205 22956 }
7ed4c4c5 22957
c19d1205
ZW
22958 str++;
22959 ext = strchr (str, '+');
7ed4c4c5 22960
c19d1205
ZW
22961 if (ext != NULL)
22962 optlen = ext - str;
22963 else
22964 optlen = strlen (str);
7ed4c4c5 22965
69133863
MGD
22966 if (optlen >= 2
22967 && strncmp (str, "no", 2) == 0)
22968 {
22969 if (adding_value != 0)
22970 {
22971 adding_value = 0;
22972 opt = arm_extensions;
22973 }
22974
22975 optlen -= 2;
22976 str += 2;
22977 }
22978 else if (optlen > 0)
22979 {
22980 if (adding_value == -1)
22981 {
22982 adding_value = 1;
22983 opt = arm_extensions;
22984 }
22985 else if (adding_value != 1)
22986 {
22987 as_bad (_("must specify extensions to add before specifying "
22988 "those to remove"));
22989 return FALSE;
22990 }
22991 }
22992
c19d1205
ZW
22993 if (optlen == 0)
22994 {
22995 as_bad (_("missing architectural extension"));
c921be7d 22996 return FALSE;
c19d1205 22997 }
7ed4c4c5 22998
69133863
MGD
22999 gas_assert (adding_value != -1);
23000 gas_assert (opt != NULL);
23001
23002 /* Scan over the options table trying to find an exact match. */
23003 for (; opt->name != NULL; opt++)
23004 if (strncmp (opt->name, str, optlen) == 0
23005 && strlen (opt->name) == optlen)
c19d1205 23006 {
69133863
MGD
23007 /* Check we can apply the extension to this architecture. */
23008 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23009 {
23010 as_bad (_("extension does not apply to the base architecture"));
23011 return FALSE;
23012 }
23013
23014 /* Add or remove the extension. */
23015 if (adding_value)
23016 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23017 else
23018 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23019
c19d1205
ZW
23020 break;
23021 }
7ed4c4c5 23022
c19d1205
ZW
23023 if (opt->name == NULL)
23024 {
69133863
MGD
23025 /* Did we fail to find an extension because it wasn't specified in
23026 alphabetical order, or because it does not exist? */
23027
23028 for (opt = arm_extensions; opt->name != NULL; opt++)
23029 if (strncmp (opt->name, str, optlen) == 0)
23030 break;
23031
23032 if (opt->name == NULL)
23033 as_bad (_("unknown architectural extension `%s'"), str);
23034 else
23035 as_bad (_("architectural extensions must be specified in "
23036 "alphabetical order"));
23037
c921be7d 23038 return FALSE;
c19d1205 23039 }
69133863
MGD
23040 else
23041 {
23042 /* We should skip the extension we've just matched the next time
23043 round. */
23044 opt++;
23045 }
7ed4c4c5 23046
c19d1205
ZW
23047 str = ext;
23048 };
7ed4c4c5 23049
c921be7d 23050 return TRUE;
c19d1205 23051}
7ed4c4c5 23052
c921be7d 23053static bfd_boolean
c19d1205 23054arm_parse_cpu (char * str)
7ed4c4c5 23055{
e74cfd16 23056 const struct arm_cpu_option_table * opt;
c19d1205
ZW
23057 char * ext = strchr (str, '+');
23058 int optlen;
7ed4c4c5 23059
c19d1205
ZW
23060 if (ext != NULL)
23061 optlen = ext - str;
7ed4c4c5 23062 else
c19d1205 23063 optlen = strlen (str);
7ed4c4c5 23064
c19d1205 23065 if (optlen == 0)
7ed4c4c5 23066 {
c19d1205 23067 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23068 return FALSE;
7ed4c4c5
NC
23069 }
23070
c19d1205
ZW
23071 for (opt = arm_cpus; opt->name != NULL; opt++)
23072 if (strncmp (opt->name, str, optlen) == 0)
23073 {
e74cfd16
PB
23074 mcpu_cpu_opt = &opt->value;
23075 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23076 if (opt->canonical_name)
5f4273c7 23077 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23078 else
23079 {
23080 int i;
c921be7d 23081
ee065d83
PB
23082 for (i = 0; i < optlen; i++)
23083 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23084 selected_cpu_name[i] = 0;
23085 }
7ed4c4c5 23086
c19d1205
ZW
23087 if (ext != NULL)
23088 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23089
c921be7d 23090 return TRUE;
c19d1205 23091 }
7ed4c4c5 23092
c19d1205 23093 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23094 return FALSE;
7ed4c4c5
NC
23095}
23096
c921be7d 23097static bfd_boolean
c19d1205 23098arm_parse_arch (char * str)
7ed4c4c5 23099{
e74cfd16 23100 const struct arm_arch_option_table *opt;
c19d1205
ZW
23101 char *ext = strchr (str, '+');
23102 int optlen;
7ed4c4c5 23103
c19d1205
ZW
23104 if (ext != NULL)
23105 optlen = ext - str;
7ed4c4c5 23106 else
c19d1205 23107 optlen = strlen (str);
7ed4c4c5 23108
c19d1205 23109 if (optlen == 0)
7ed4c4c5 23110 {
c19d1205 23111 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23112 return FALSE;
7ed4c4c5
NC
23113 }
23114
c19d1205 23115 for (opt = arm_archs; opt->name != NULL; opt++)
69133863 23116 if (strncmp (opt->name, str, optlen) == 0)
c19d1205 23117 {
e74cfd16
PB
23118 march_cpu_opt = &opt->value;
23119 march_fpu_opt = &opt->default_fpu;
5f4273c7 23120 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23121
c19d1205
ZW
23122 if (ext != NULL)
23123 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23124
c921be7d 23125 return TRUE;
c19d1205
ZW
23126 }
23127
23128 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23129 return FALSE;
7ed4c4c5 23130}
eb043451 23131
c921be7d 23132static bfd_boolean
c19d1205
ZW
23133arm_parse_fpu (char * str)
23134{
69133863 23135 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23136
c19d1205
ZW
23137 for (opt = arm_fpus; opt->name != NULL; opt++)
23138 if (streq (opt->name, str))
23139 {
e74cfd16 23140 mfpu_opt = &opt->value;
c921be7d 23141 return TRUE;
c19d1205 23142 }
b99bd4ef 23143
c19d1205 23144 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23145 return FALSE;
c19d1205
ZW
23146}
23147
c921be7d 23148static bfd_boolean
c19d1205 23149arm_parse_float_abi (char * str)
b99bd4ef 23150{
e74cfd16 23151 const struct arm_option_value_table * opt;
b99bd4ef 23152
c19d1205
ZW
23153 for (opt = arm_float_abis; opt->name != NULL; opt++)
23154 if (streq (opt->name, str))
23155 {
23156 mfloat_abi_opt = opt->value;
c921be7d 23157 return TRUE;
c19d1205 23158 }
cc8a6dd0 23159
c19d1205 23160 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23161 return FALSE;
c19d1205 23162}
b99bd4ef 23163
c19d1205 23164#ifdef OBJ_ELF
c921be7d 23165static bfd_boolean
c19d1205
ZW
23166arm_parse_eabi (char * str)
23167{
e74cfd16 23168 const struct arm_option_value_table *opt;
cc8a6dd0 23169
c19d1205
ZW
23170 for (opt = arm_eabis; opt->name != NULL; opt++)
23171 if (streq (opt->name, str))
23172 {
23173 meabi_flags = opt->value;
c921be7d 23174 return TRUE;
c19d1205
ZW
23175 }
23176 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23177 return FALSE;
c19d1205
ZW
23178}
23179#endif
cc8a6dd0 23180
c921be7d 23181static bfd_boolean
e07e6e58
NC
23182arm_parse_it_mode (char * str)
23183{
c921be7d 23184 bfd_boolean ret = TRUE;
e07e6e58
NC
23185
23186 if (streq ("arm", str))
23187 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23188 else if (streq ("thumb", str))
23189 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23190 else if (streq ("always", str))
23191 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23192 else if (streq ("never", str))
23193 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23194 else
23195 {
23196 as_bad (_("unknown implicit IT mode `%s', should be "\
23197 "arm, thumb, always, or never."), str);
c921be7d 23198 ret = FALSE;
e07e6e58
NC
23199 }
23200
23201 return ret;
23202}
23203
c19d1205
ZW
23204struct arm_long_option_table arm_long_opts[] =
23205{
23206 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23207 arm_parse_cpu, NULL},
23208 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23209 arm_parse_arch, NULL},
23210 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23211 arm_parse_fpu, NULL},
23212 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23213 arm_parse_float_abi, NULL},
23214#ifdef OBJ_ELF
7fac0536 23215 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23216 arm_parse_eabi, NULL},
23217#endif
e07e6e58
NC
23218 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23219 arm_parse_it_mode, NULL},
c19d1205
ZW
23220 {NULL, NULL, 0, NULL}
23221};
cc8a6dd0 23222
c19d1205
ZW
23223int
23224md_parse_option (int c, char * arg)
23225{
23226 struct arm_option_table *opt;
e74cfd16 23227 const struct arm_legacy_option_table *fopt;
c19d1205 23228 struct arm_long_option_table *lopt;
b99bd4ef 23229
c19d1205 23230 switch (c)
b99bd4ef 23231 {
c19d1205
ZW
23232#ifdef OPTION_EB
23233 case OPTION_EB:
23234 target_big_endian = 1;
23235 break;
23236#endif
cc8a6dd0 23237
c19d1205
ZW
23238#ifdef OPTION_EL
23239 case OPTION_EL:
23240 target_big_endian = 0;
23241 break;
23242#endif
b99bd4ef 23243
845b51d6
PB
23244 case OPTION_FIX_V4BX:
23245 fix_v4bx = TRUE;
23246 break;
23247
c19d1205
ZW
23248 case 'a':
23249 /* Listing option. Just ignore these, we don't support additional
23250 ones. */
23251 return 0;
b99bd4ef 23252
c19d1205
ZW
23253 default:
23254 for (opt = arm_opts; opt->option != NULL; opt++)
23255 {
23256 if (c == opt->option[0]
23257 && ((arg == NULL && opt->option[1] == 0)
23258 || streq (arg, opt->option + 1)))
23259 {
c19d1205 23260 /* If the option is deprecated, tell the user. */
278df34e 23261 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23262 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23263 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23264
c19d1205
ZW
23265 if (opt->var != NULL)
23266 *opt->var = opt->value;
cc8a6dd0 23267
c19d1205
ZW
23268 return 1;
23269 }
23270 }
b99bd4ef 23271
e74cfd16
PB
23272 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23273 {
23274 if (c == fopt->option[0]
23275 && ((arg == NULL && fopt->option[1] == 0)
23276 || streq (arg, fopt->option + 1)))
23277 {
e74cfd16 23278 /* If the option is deprecated, tell the user. */
278df34e 23279 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23280 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23281 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23282
23283 if (fopt->var != NULL)
23284 *fopt->var = &fopt->value;
23285
23286 return 1;
23287 }
23288 }
23289
c19d1205
ZW
23290 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23291 {
23292 /* These options are expected to have an argument. */
23293 if (c == lopt->option[0]
23294 && arg != NULL
23295 && strncmp (arg, lopt->option + 1,
23296 strlen (lopt->option + 1)) == 0)
23297 {
c19d1205 23298 /* If the option is deprecated, tell the user. */
278df34e 23299 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23300 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23301 _(lopt->deprecated));
b99bd4ef 23302
c19d1205
ZW
23303 /* Call the sup-option parser. */
23304 return lopt->func (arg + strlen (lopt->option) - 1);
23305 }
23306 }
a737bd4d 23307
c19d1205
ZW
23308 return 0;
23309 }
a394c00f 23310
c19d1205
ZW
23311 return 1;
23312}
a394c00f 23313
c19d1205
ZW
23314void
23315md_show_usage (FILE * fp)
a394c00f 23316{
c19d1205
ZW
23317 struct arm_option_table *opt;
23318 struct arm_long_option_table *lopt;
a394c00f 23319
c19d1205 23320 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23321
c19d1205
ZW
23322 for (opt = arm_opts; opt->option != NULL; opt++)
23323 if (opt->help != NULL)
23324 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23325
c19d1205
ZW
23326 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23327 if (lopt->help != NULL)
23328 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23329
c19d1205
ZW
23330#ifdef OPTION_EB
23331 fprintf (fp, _("\
23332 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23333#endif
23334
c19d1205
ZW
23335#ifdef OPTION_EL
23336 fprintf (fp, _("\
23337 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23338#endif
845b51d6
PB
23339
23340 fprintf (fp, _("\
23341 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23342}
ee065d83
PB
23343
23344
23345#ifdef OBJ_ELF
62b3e311
PB
23346typedef struct
23347{
23348 int val;
23349 arm_feature_set flags;
23350} cpu_arch_ver_table;
23351
23352/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23353 least features first. */
23354static const cpu_arch_ver_table cpu_arch_ver[] =
23355{
23356 {1, ARM_ARCH_V4},
23357 {2, ARM_ARCH_V4T},
23358 {3, ARM_ARCH_V5},
ee3c0378 23359 {3, ARM_ARCH_V5T},
62b3e311
PB
23360 {4, ARM_ARCH_V5TE},
23361 {5, ARM_ARCH_V5TEJ},
23362 {6, ARM_ARCH_V6},
7e806470 23363 {9, ARM_ARCH_V6K},
f4c65163 23364 {7, ARM_ARCH_V6Z},
91e22acd 23365 {11, ARM_ARCH_V6M},
b2a5fbdc 23366 {12, ARM_ARCH_V6SM},
7e806470 23367 {8, ARM_ARCH_V6T2},
62b3e311
PB
23368 {10, ARM_ARCH_V7A},
23369 {10, ARM_ARCH_V7R},
23370 {10, ARM_ARCH_V7M},
23371 {0, ARM_ARCH_NONE}
23372};
23373
ee3c0378
AS
23374/* Set an attribute if it has not already been set by the user. */
23375static void
23376aeabi_set_attribute_int (int tag, int value)
23377{
23378 if (tag < 1
23379 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23380 || !attributes_set_explicitly[tag])
23381 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23382}
23383
23384static void
23385aeabi_set_attribute_string (int tag, const char *value)
23386{
23387 if (tag < 1
23388 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23389 || !attributes_set_explicitly[tag])
23390 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23391}
23392
ee065d83
PB
23393/* Set the public EABI object attributes. */
23394static void
23395aeabi_set_public_attributes (void)
23396{
23397 int arch;
90ec0d68 23398 int virt_sec = 0;
e74cfd16 23399 arm_feature_set flags;
62b3e311
PB
23400 arm_feature_set tmp;
23401 const cpu_arch_ver_table *p;
ee065d83
PB
23402
23403 /* Choose the architecture based on the capabilities of the requested cpu
23404 (if any) and/or the instructions actually used. */
e74cfd16
PB
23405 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23406 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23407 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
23408 /*Allow the user to override the reported architecture. */
23409 if (object_arch)
23410 {
23411 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23412 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23413 }
23414
251665fc
MGD
23415 /* We need to make sure that the attributes do not identify us as v6S-M
23416 when the only v6S-M feature in use is the Operating System Extensions. */
23417 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23418 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23419 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23420
62b3e311
PB
23421 tmp = flags;
23422 arch = 0;
23423 for (p = cpu_arch_ver; p->val; p++)
23424 {
23425 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23426 {
23427 arch = p->val;
23428 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23429 }
23430 }
ee065d83 23431
9e3c6df6
PB
23432 /* The table lookup above finds the last architecture to contribute
23433 a new feature. Unfortunately, Tag13 is a subset of the union of
23434 v6T2 and v7-M, so it is never seen as contributing a new feature.
23435 We can not search for the last entry which is entirely used,
23436 because if no CPU is specified we build up only those flags
23437 actually used. Perhaps we should separate out the specified
23438 and implicit cases. Avoid taking this path for -march=all by
23439 checking for contradictory v7-A / v7-M features. */
23440 if (arch == 10
23441 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23442 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23443 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23444 arch = 13;
23445
ee065d83
PB
23446 /* Tag_CPU_name. */
23447 if (selected_cpu_name[0])
23448 {
91d6fa6a 23449 char *q;
ee065d83 23450
91d6fa6a
NC
23451 q = selected_cpu_name;
23452 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
23453 {
23454 int i;
5f4273c7 23455
91d6fa6a
NC
23456 q += 4;
23457 for (i = 0; q[i]; i++)
23458 q[i] = TOUPPER (q[i]);
ee065d83 23459 }
91d6fa6a 23460 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 23461 }
62f3b8c8 23462
ee065d83 23463 /* Tag_CPU_arch. */
ee3c0378 23464 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 23465
62b3e311
PB
23466 /* Tag_CPU_arch_profile. */
23467 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 23468 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 23469 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 23470 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 23471 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 23472 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 23473
ee065d83 23474 /* Tag_ARM_ISA_use. */
ee3c0378
AS
23475 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23476 || arch == 0)
23477 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 23478
ee065d83 23479 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
23480 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23481 || arch == 0)
23482 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23483 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 23484
ee065d83 23485 /* Tag_VFP_arch. */
62f3b8c8
PB
23486 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23487 aeabi_set_attribute_int (Tag_VFP_arch,
23488 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23489 ? 5 : 6);
23490 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 23491 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 23492 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
23493 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23494 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23495 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23496 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23497 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23498 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 23499
4547cb56
NC
23500 /* Tag_ABI_HardFP_use. */
23501 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23502 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23503 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23504
ee065d83 23505 /* Tag_WMMX_arch. */
ee3c0378
AS
23506 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23507 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23508 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23509 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 23510
ee3c0378 23511 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 23512 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
23513 aeabi_set_attribute_int
23514 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23515 ? 2 : 1));
23516
ee3c0378 23517 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 23518 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 23519 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
23520
23521 /* Tag_DIV_use. */
eea54501
MGD
23522 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23523 aeabi_set_attribute_int (Tag_DIV_use, 2);
23524 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
4547cb56 23525 aeabi_set_attribute_int (Tag_DIV_use, 0);
4547cb56
NC
23526 else
23527 aeabi_set_attribute_int (Tag_DIV_use, 1);
60e5ef9f
MGD
23528
23529 /* Tag_MP_extension_use. */
23530 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23531 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
23532
23533 /* Tag Virtualization_use. */
23534 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
23535 virt_sec |= 1;
23536 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23537 virt_sec |= 2;
23538 if (virt_sec != 0)
23539 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
23540}
23541
104d59d1 23542/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
23543void
23544arm_md_end (void)
23545{
ee065d83
PB
23546 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23547 return;
23548
23549 aeabi_set_public_attributes ();
ee065d83 23550}
8463be01 23551#endif /* OBJ_ELF */
ee065d83
PB
23552
23553
23554/* Parse a .cpu directive. */
23555
23556static void
23557s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23558{
e74cfd16 23559 const struct arm_cpu_option_table *opt;
ee065d83
PB
23560 char *name;
23561 char saved_char;
23562
23563 name = input_line_pointer;
5f4273c7 23564 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23565 input_line_pointer++;
23566 saved_char = *input_line_pointer;
23567 *input_line_pointer = 0;
23568
23569 /* Skip the first "all" entry. */
23570 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23571 if (streq (opt->name, name))
23572 {
e74cfd16
PB
23573 mcpu_cpu_opt = &opt->value;
23574 selected_cpu = opt->value;
ee065d83 23575 if (opt->canonical_name)
5f4273c7 23576 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23577 else
23578 {
23579 int i;
23580 for (i = 0; opt->name[i]; i++)
23581 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23582 selected_cpu_name[i] = 0;
23583 }
e74cfd16 23584 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23585 *input_line_pointer = saved_char;
23586 demand_empty_rest_of_line ();
23587 return;
23588 }
23589 as_bad (_("unknown cpu `%s'"), name);
23590 *input_line_pointer = saved_char;
23591 ignore_rest_of_line ();
23592}
23593
23594
23595/* Parse a .arch directive. */
23596
23597static void
23598s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23599{
e74cfd16 23600 const struct arm_arch_option_table *opt;
ee065d83
PB
23601 char saved_char;
23602 char *name;
23603
23604 name = input_line_pointer;
5f4273c7 23605 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23606 input_line_pointer++;
23607 saved_char = *input_line_pointer;
23608 *input_line_pointer = 0;
23609
23610 /* Skip the first "all" entry. */
23611 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23612 if (streq (opt->name, name))
23613 {
e74cfd16
PB
23614 mcpu_cpu_opt = &opt->value;
23615 selected_cpu = opt->value;
5f4273c7 23616 strcpy (selected_cpu_name, opt->name);
e74cfd16 23617 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23618 *input_line_pointer = saved_char;
23619 demand_empty_rest_of_line ();
23620 return;
23621 }
23622
23623 as_bad (_("unknown architecture `%s'\n"), name);
23624 *input_line_pointer = saved_char;
23625 ignore_rest_of_line ();
23626}
23627
23628
7a1d4c38
PB
23629/* Parse a .object_arch directive. */
23630
23631static void
23632s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23633{
23634 const struct arm_arch_option_table *opt;
23635 char saved_char;
23636 char *name;
23637
23638 name = input_line_pointer;
5f4273c7 23639 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23640 input_line_pointer++;
23641 saved_char = *input_line_pointer;
23642 *input_line_pointer = 0;
23643
23644 /* Skip the first "all" entry. */
23645 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23646 if (streq (opt->name, name))
23647 {
23648 object_arch = &opt->value;
23649 *input_line_pointer = saved_char;
23650 demand_empty_rest_of_line ();
23651 return;
23652 }
23653
23654 as_bad (_("unknown architecture `%s'\n"), name);
23655 *input_line_pointer = saved_char;
23656 ignore_rest_of_line ();
23657}
23658
69133863
MGD
23659/* Parse a .arch_extension directive. */
23660
23661static void
23662s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23663{
23664 const struct arm_option_extension_value_table *opt;
23665 char saved_char;
23666 char *name;
23667 int adding_value = 1;
23668
23669 name = input_line_pointer;
23670 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23671 input_line_pointer++;
23672 saved_char = *input_line_pointer;
23673 *input_line_pointer = 0;
23674
23675 if (strlen (name) >= 2
23676 && strncmp (name, "no", 2) == 0)
23677 {
23678 adding_value = 0;
23679 name += 2;
23680 }
23681
23682 for (opt = arm_extensions; opt->name != NULL; opt++)
23683 if (streq (opt->name, name))
23684 {
23685 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23686 {
23687 as_bad (_("architectural extension `%s' is not allowed for the "
23688 "current base architecture"), name);
23689 break;
23690 }
23691
23692 if (adding_value)
23693 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23694 else
23695 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23696
23697 mcpu_cpu_opt = &selected_cpu;
23698 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23699 *input_line_pointer = saved_char;
23700 demand_empty_rest_of_line ();
23701 return;
23702 }
23703
23704 if (opt->name == NULL)
23705 as_bad (_("unknown architecture `%s'\n"), name);
23706
23707 *input_line_pointer = saved_char;
23708 ignore_rest_of_line ();
23709}
23710
ee065d83
PB
23711/* Parse a .fpu directive. */
23712
23713static void
23714s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23715{
69133863 23716 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
23717 char saved_char;
23718 char *name;
23719
23720 name = input_line_pointer;
5f4273c7 23721 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23722 input_line_pointer++;
23723 saved_char = *input_line_pointer;
23724 *input_line_pointer = 0;
5f4273c7 23725
ee065d83
PB
23726 for (opt = arm_fpus; opt->name != NULL; opt++)
23727 if (streq (opt->name, name))
23728 {
e74cfd16
PB
23729 mfpu_opt = &opt->value;
23730 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23731 *input_line_pointer = saved_char;
23732 demand_empty_rest_of_line ();
23733 return;
23734 }
23735
23736 as_bad (_("unknown floating point format `%s'\n"), name);
23737 *input_line_pointer = saved_char;
23738 ignore_rest_of_line ();
23739}
ee065d83 23740
794ba86a 23741/* Copy symbol information. */
f31fef98 23742
794ba86a
DJ
23743void
23744arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23745{
23746 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23747}
e04befd0 23748
f31fef98 23749#ifdef OBJ_ELF
e04befd0
AS
23750/* Given a symbolic attribute NAME, return the proper integer value.
23751 Returns -1 if the attribute is not known. */
f31fef98 23752
e04befd0
AS
23753int
23754arm_convert_symbolic_attribute (const char *name)
23755{
f31fef98
NC
23756 static const struct
23757 {
23758 const char * name;
23759 const int tag;
23760 }
23761 attribute_table[] =
23762 {
23763 /* When you modify this table you should
23764 also modify the list in doc/c-arm.texi. */
e04befd0 23765#define T(tag) {#tag, tag}
f31fef98
NC
23766 T (Tag_CPU_raw_name),
23767 T (Tag_CPU_name),
23768 T (Tag_CPU_arch),
23769 T (Tag_CPU_arch_profile),
23770 T (Tag_ARM_ISA_use),
23771 T (Tag_THUMB_ISA_use),
75375b3e 23772 T (Tag_FP_arch),
f31fef98
NC
23773 T (Tag_VFP_arch),
23774 T (Tag_WMMX_arch),
23775 T (Tag_Advanced_SIMD_arch),
23776 T (Tag_PCS_config),
23777 T (Tag_ABI_PCS_R9_use),
23778 T (Tag_ABI_PCS_RW_data),
23779 T (Tag_ABI_PCS_RO_data),
23780 T (Tag_ABI_PCS_GOT_use),
23781 T (Tag_ABI_PCS_wchar_t),
23782 T (Tag_ABI_FP_rounding),
23783 T (Tag_ABI_FP_denormal),
23784 T (Tag_ABI_FP_exceptions),
23785 T (Tag_ABI_FP_user_exceptions),
23786 T (Tag_ABI_FP_number_model),
75375b3e 23787 T (Tag_ABI_align_needed),
f31fef98 23788 T (Tag_ABI_align8_needed),
75375b3e 23789 T (Tag_ABI_align_preserved),
f31fef98
NC
23790 T (Tag_ABI_align8_preserved),
23791 T (Tag_ABI_enum_size),
23792 T (Tag_ABI_HardFP_use),
23793 T (Tag_ABI_VFP_args),
23794 T (Tag_ABI_WMMX_args),
23795 T (Tag_ABI_optimization_goals),
23796 T (Tag_ABI_FP_optimization_goals),
23797 T (Tag_compatibility),
23798 T (Tag_CPU_unaligned_access),
75375b3e 23799 T (Tag_FP_HP_extension),
f31fef98
NC
23800 T (Tag_VFP_HP_extension),
23801 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23802 T (Tag_MPextension_use),
23803 T (Tag_DIV_use),
f31fef98
NC
23804 T (Tag_nodefaults),
23805 T (Tag_also_compatible_with),
23806 T (Tag_conformance),
23807 T (Tag_T2EE_use),
23808 T (Tag_Virtualization_use),
cd21e546 23809 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23810#undef T
f31fef98 23811 };
e04befd0
AS
23812 unsigned int i;
23813
23814 if (name == NULL)
23815 return -1;
23816
f31fef98 23817 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23818 if (streq (name, attribute_table[i].name))
e04befd0
AS
23819 return attribute_table[i].tag;
23820
23821 return -1;
23822}
267bf995
RR
23823
23824
23825/* Apply sym value for relocations only in the case that
23826 they are for local symbols and you have the respective
23827 architectural feature for blx and simple switches. */
23828int
23829arm_apply_sym_value (struct fix * fixP)
23830{
23831 if (fixP->fx_addsy
23832 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 23833 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
23834 {
23835 switch (fixP->fx_r_type)
23836 {
23837 case BFD_RELOC_ARM_PCREL_BLX:
23838 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23839 if (ARM_IS_FUNC (fixP->fx_addsy))
23840 return 1;
23841 break;
23842
23843 case BFD_RELOC_ARM_PCREL_CALL:
23844 case BFD_RELOC_THUMB_PCREL_BLX:
23845 if (THUMB_IS_FUNC (fixP->fx_addsy))
23846 return 1;
23847 break;
23848
23849 default:
23850 break;
23851 }
23852
23853 }
23854 return 0;
23855}
f31fef98 23856#endif /* OBJ_ELF */
This page took 2.260744 seconds and 4 git commands to generate.