* gas/config/tc-arm.c (do_t_bkpt_hlt1): New function.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
fa94de6b 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
3da1d841 35#include "libiberty.h"
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3 100/* The code that was here used to select a default CPU depending on compiler
fa94de6b 101 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
bca38921 198static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
7e806470 199static const arm_feature_set arm_ext_m =
b2a5fbdc 200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 201static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 202static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 203static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 204static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 205static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
206
207static const arm_feature_set arm_arch_any = ARM_ANY;
208static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 211static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 212
2d447fca
JM
213static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
215static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 227static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 228static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
229static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
231static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
234static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
bca38921
MGD
237static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
e74cfd16 243
33a392fb 244static int mfloat_abi_opt = -1;
e74cfd16
PB
245/* Record user cpu selection for object attributes. */
246static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
247/* Must be long enough to hold any of the names in arm_cpus. */
248static char selected_cpu_name[16];
8d67f500
NC
249
250/* Return if no cpu was selected on command-line. */
251static bfd_boolean
252no_cpu_selected (void)
253{
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256}
257
7cc69913 258#ifdef OBJ_ELF
deeaaff8
DJ
259# ifdef EABI_DEFAULT
260static int meabi_flags = EABI_DEFAULT;
261# else
d507cf36 262static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 263# endif
e1da3f5b 264
ee3c0378
AS
265static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
e1da3f5b 267bfd_boolean
5f4273c7 268arm_is_eabi (void)
e1da3f5b
PB
269{
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271}
7cc69913 272#endif
b99bd4ef 273
b99bd4ef 274#ifdef OBJ_ELF
c19d1205 275/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
276symbolS * GOT_symbol;
277#endif
278
b99bd4ef
NC
279/* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283static int thumb_mode = 0;
8dc2430f
NC
284/* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287#define MODE_RECORDED (1 << 4)
b99bd4ef 288
e07e6e58
NC
289/* Specifies the intrinsic IT insn behavior mode. */
290enum implicit_it_mode
291{
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296};
297static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
c19d1205
ZW
299/* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322static bfd_boolean unified_syntax = FALSE;
b99bd4ef 323
5287ad62
JB
324enum neon_el_type
325{
dcbf9037 326 NT_invtype,
5287ad62
JB
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
dcbf9037 332 NT_unsigned
5287ad62
JB
333};
334
335struct neon_type_el
336{
337 enum neon_el_type type;
338 unsigned size;
339};
340
341#define NEON_MAX_TYPE_ELS 4
342
343struct neon_type
344{
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347};
348
e07e6e58
NC
349enum it_instruction_type
350{
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359};
360
ad6cec43
MGD
361/* The maximum number of operands we need. */
362#define ARM_IT_MAX_OPERANDS 6
363
b99bd4ef
NC
364struct arm_it
365{
c19d1205 366 const char * error;
b99bd4ef 367 unsigned long instruction;
c19d1205
ZW
368 int size;
369 int size_req;
370 int cond;
037e8744
JB
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
5287ad62 375 struct neon_type vectype;
88714cb8
DG
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
0110f2b8
PB
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
b99bd4ef
NC
382 struct
383 {
384 bfd_reloc_code_real_type type;
c19d1205
ZW
385 expressionS exp;
386 int pc_rel;
b99bd4ef 387 } reloc;
b99bd4ef 388
e07e6e58
NC
389 enum it_instruction_type it_insn_type;
390
c19d1205
ZW
391 struct
392 {
393 unsigned reg;
ca3f61f7 394 signed int imm;
dcbf9037 395 struct neon_type_el vectype;
ca3f61f7
NC
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 415 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
416};
417
c19d1205 418static struct arm_it inst;
b99bd4ef
NC
419
420#define NUM_FLOAT_VALS 8
421
05d2d07e 422const char * fp_const[] =
b99bd4ef
NC
423{
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425};
426
c19d1205 427/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
428#define MAX_LITTLENUMS 6
429
430LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432#define FAIL (-1)
433#define SUCCESS (0)
434
435#define SUFF_S 1
436#define SUFF_D 2
437#define SUFF_E 3
438#define SUFF_P 4
439
c19d1205
ZW
440#define CP_T_X 0x00008000
441#define CP_T_Y 0x00400000
b99bd4ef 442
c19d1205
ZW
443#define CONDS_BIT 0x00100000
444#define LOAD_BIT 0x00100000
b99bd4ef
NC
445
446#define DOUBLE_LOAD_FLAG 0x00000001
447
448struct asm_cond
449{
d3ce72d0 450 const char * template_name;
c921be7d 451 unsigned long value;
b99bd4ef
NC
452};
453
c19d1205 454#define COND_ALWAYS 0xE
b99bd4ef 455
b99bd4ef
NC
456struct asm_psr
457{
d3ce72d0 458 const char * template_name;
c921be7d 459 unsigned long field;
b99bd4ef
NC
460};
461
62b3e311
PB
462struct asm_barrier_opt
463{
e797f7e0
MGD
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
62b3e311
PB
467};
468
2d2255b5 469/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
470#define SPSR_BIT (1 << 22)
471
c19d1205
ZW
472/* The individual PSR flag bits. */
473#define PSR_c (1 << 16)
474#define PSR_x (1 << 17)
475#define PSR_s (1 << 18)
476#define PSR_f (1 << 19)
b99bd4ef 477
c19d1205 478struct reloc_entry
bfae80f2 479{
c921be7d
NC
480 char * name;
481 bfd_reloc_code_real_type reloc;
bfae80f2
RE
482};
483
5287ad62 484enum vfp_reg_pos
bfae80f2 485{
5287ad62
JB
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
488};
489
490enum vfp_ldstm_type
491{
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493};
494
dcbf9037
JB
495/* Bits for DEFINED field in neon_typed_alias. */
496#define NTA_HASTYPE 1
497#define NTA_HASINDEX 2
498
499struct neon_typed_alias
500{
c921be7d
NC
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
dcbf9037
JB
504};
505
c19d1205
ZW
506/* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508enum arm_reg_type
bfae80f2 509{
c19d1205
ZW
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
5287ad62 516 REG_TYPE_NQ,
037e8744 517 REG_TYPE_VFSD,
5287ad62 518 REG_TYPE_NDQ,
037e8744 519 REG_TYPE_NSDQ,
c19d1205
ZW
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
90ec0d68 531 REG_TYPE_RNB
bfae80f2
RE
532};
533
dcbf9037
JB
534/* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
538struct reg_entry
539{
c921be7d 540 const char * name;
90ec0d68 541 unsigned int number;
c921be7d
NC
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
6c43fab6
RE
545};
546
c19d1205 547/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 548const char * const reg_expected_msgs[] =
c19d1205
ZW
549{
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
5287ad62
JB
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
037e8744 557 N_("VFP single or double precision register expected"),
5287ad62 558 N_("Neon double or quad precision register expected"),
037e8744 559 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
6c43fab6
RE
571};
572
c19d1205 573/* Some well known registers that we refer to directly elsewhere. */
bd340a04 574#define REG_R12 12
c19d1205
ZW
575#define REG_SP 13
576#define REG_LR 14
577#define REG_PC 15
404ff6b5 578
b99bd4ef
NC
579/* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
c19d1205 581#define INSN_SIZE 4
b99bd4ef
NC
582
583struct asm_opcode
584{
585 /* Basic string to match. */
d3ce72d0 586 const char * template_name;
c19d1205
ZW
587
588 /* Parameters to instruction. */
5be8be5d 589 unsigned int operands[8];
c19d1205
ZW
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
b99bd4ef
NC
593
594 /* Basic instruction code. */
c19d1205 595 unsigned int avalue : 28;
b99bd4ef 596
c19d1205
ZW
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
b99bd4ef 599
90e4755a 600 /* Which architecture variant provides this instruction. */
c921be7d
NC
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
c19d1205
ZW
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
b99bd4ef 606
c19d1205
ZW
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
b99bd4ef
NC
609};
610
a737bd4d
NC
611/* Defines for various bits that we will want to toggle. */
612#define INST_IMMEDIATE 0x02000000
613#define OFFSET_REG 0x02000000
c19d1205 614#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
615#define SHIFT_BY_REG 0x00000010
616#define PRE_INDEX 0x01000000
617#define INDEX_UP 0x00800000
618#define WRITE_BACK 0x00200000
619#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 620#define CPSI_MMOD 0x00020000
90e4755a 621
a737bd4d
NC
622#define LITERAL_MASK 0xf000f000
623#define OPCODE_MASK 0xfe1fffff
624#define V4_STR_BIT 0x00000020
90e4755a 625
efd81785
PB
626#define T2_SUBS_PC_LR 0xf3de8f00
627
a737bd4d 628#define DATA_OP_SHIFT 21
90e4755a 629
ef8d22e6
PB
630#define T2_OPCODE_MASK 0xfe1fffff
631#define T2_DATA_OP_SHIFT 21
632
6530b175
NC
633#define A_COND_MASK 0xf0000000
634#define A_PUSH_POP_OP_MASK 0x0fff0000
635
636/* Opcodes for pushing/poping registers to/from the stack. */
637#define A1_OPCODE_PUSH 0x092d0000
638#define A2_OPCODE_PUSH 0x052d0004
639#define A2_OPCODE_POP 0x049d0004
640
a737bd4d
NC
641/* Codes to distinguish the arithmetic instructions. */
642#define OPCODE_AND 0
643#define OPCODE_EOR 1
644#define OPCODE_SUB 2
645#define OPCODE_RSB 3
646#define OPCODE_ADD 4
647#define OPCODE_ADC 5
648#define OPCODE_SBC 6
649#define OPCODE_RSC 7
650#define OPCODE_TST 8
651#define OPCODE_TEQ 9
652#define OPCODE_CMP 10
653#define OPCODE_CMN 11
654#define OPCODE_ORR 12
655#define OPCODE_MOV 13
656#define OPCODE_BIC 14
657#define OPCODE_MVN 15
90e4755a 658
ef8d22e6
PB
659#define T2_OPCODE_AND 0
660#define T2_OPCODE_BIC 1
661#define T2_OPCODE_ORR 2
662#define T2_OPCODE_ORN 3
663#define T2_OPCODE_EOR 4
664#define T2_OPCODE_ADD 8
665#define T2_OPCODE_ADC 10
666#define T2_OPCODE_SBC 11
667#define T2_OPCODE_SUB 13
668#define T2_OPCODE_RSB 14
669
a737bd4d
NC
670#define T_OPCODE_MUL 0x4340
671#define T_OPCODE_TST 0x4200
672#define T_OPCODE_CMN 0x42c0
673#define T_OPCODE_NEG 0x4240
674#define T_OPCODE_MVN 0x43c0
90e4755a 675
a737bd4d
NC
676#define T_OPCODE_ADD_R3 0x1800
677#define T_OPCODE_SUB_R3 0x1a00
678#define T_OPCODE_ADD_HI 0x4400
679#define T_OPCODE_ADD_ST 0xb000
680#define T_OPCODE_SUB_ST 0xb080
681#define T_OPCODE_ADD_SP 0xa800
682#define T_OPCODE_ADD_PC 0xa000
683#define T_OPCODE_ADD_I8 0x3000
684#define T_OPCODE_SUB_I8 0x3800
685#define T_OPCODE_ADD_I3 0x1c00
686#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 687
a737bd4d
NC
688#define T_OPCODE_ASR_R 0x4100
689#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
690#define T_OPCODE_LSR_R 0x40c0
691#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
692#define T_OPCODE_ASR_I 0x1000
693#define T_OPCODE_LSL_I 0x0000
694#define T_OPCODE_LSR_I 0x0800
b99bd4ef 695
a737bd4d
NC
696#define T_OPCODE_MOV_I8 0x2000
697#define T_OPCODE_CMP_I8 0x2800
698#define T_OPCODE_CMP_LR 0x4280
699#define T_OPCODE_MOV_HR 0x4600
700#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 701
a737bd4d
NC
702#define T_OPCODE_LDR_PC 0x4800
703#define T_OPCODE_LDR_SP 0x9800
704#define T_OPCODE_STR_SP 0x9000
705#define T_OPCODE_LDR_IW 0x6800
706#define T_OPCODE_STR_IW 0x6000
707#define T_OPCODE_LDR_IH 0x8800
708#define T_OPCODE_STR_IH 0x8000
709#define T_OPCODE_LDR_IB 0x7800
710#define T_OPCODE_STR_IB 0x7000
711#define T_OPCODE_LDR_RW 0x5800
712#define T_OPCODE_STR_RW 0x5000
713#define T_OPCODE_LDR_RH 0x5a00
714#define T_OPCODE_STR_RH 0x5200
715#define T_OPCODE_LDR_RB 0x5c00
716#define T_OPCODE_STR_RB 0x5400
c9b604bd 717
a737bd4d
NC
718#define T_OPCODE_PUSH 0xb400
719#define T_OPCODE_POP 0xbc00
b99bd4ef 720
2fc8bdac 721#define T_OPCODE_BRANCH 0xe000
b99bd4ef 722
a737bd4d 723#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 724#define THUMB_PP_PC_LR 0x0100
c19d1205 725#define THUMB_LOAD_BIT 0x0800
53365c0d 726#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
727
728#define BAD_ARGS _("bad arguments to instruction")
fdfde340 729#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
730#define BAD_PC _("r15 not allowed here")
731#define BAD_COND _("instruction cannot be conditional")
732#define BAD_OVERLAP _("registers may not be the same")
733#define BAD_HIREG _("lo register required")
734#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 735#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
736#define BAD_BRANCH _("branch must be last instruction in IT block")
737#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 738#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
739#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740#define BAD_IT_COND _("incorrect condition in IT block")
741#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 742#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
743#define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745#define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
08f10d51 747#define BAD_RANGE _("branch out of range")
c19d1205 748
c921be7d
NC
749static struct hash_control * arm_ops_hsh;
750static struct hash_control * arm_cond_hsh;
751static struct hash_control * arm_shift_hsh;
752static struct hash_control * arm_psr_hsh;
753static struct hash_control * arm_v7m_psr_hsh;
754static struct hash_control * arm_reg_hsh;
755static struct hash_control * arm_reloc_hsh;
756static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 757
b99bd4ef
NC
758/* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
5f4273c7 765 <insn> */
b99bd4ef
NC
766
767symbolS * last_label_seen;
b34976b6 768static int label_is_thumb_function_name = FALSE;
e07e6e58 769
3d0c9500
NC
770/* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
a737bd4d 772
c19d1205 773#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 774typedef struct literal_pool
b99bd4ef 775{
c921be7d
NC
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
a8040cf2
NC
782#ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784#endif
c921be7d 785 struct literal_pool * next;
3d0c9500 786} literal_pool;
b99bd4ef 787
3d0c9500
NC
788/* Pointer to a linked list of literal pools. */
789literal_pool * list_of_pools = NULL;
e27ec89e 790
e07e6e58
NC
791#ifdef OBJ_ELF
792# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793#else
794static struct current_it now_it;
795#endif
796
797static inline int
798now_it_compatible (int cond)
799{
800 return (cond & ~1) == (now_it.cc & ~1);
801}
802
803static inline int
804conditional_insn (void)
805{
806 return inst.cond != COND_ALWAYS;
807}
808
809static int in_it_block (void);
810
811static int handle_it_state (void);
812
813static void force_automatic_it_block_close (void);
814
c921be7d
NC
815static void it_fsm_post_encode (void);
816
e07e6e58
NC
817#define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
c921be7d
NC
826#define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
e07e6e58
NC
835#define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
c19d1205 845/* Pure syntax. */
b99bd4ef 846
c19d1205
ZW
847/* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849const char comment_chars[] = "@";
3d0c9500 850
c19d1205
ZW
851/* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854/* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857/* Also note that comments like this one will always work. */
858const char line_comment_chars[] = "#";
3d0c9500 859
c19d1205 860const char line_separator_chars[] = ";";
b99bd4ef 861
c19d1205
ZW
862/* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864const char EXP_CHARS[] = "eE";
3d0c9500 865
c19d1205
ZW
866/* Chars that mean this number is a floating point constant. */
867/* As in 0f12.456 */
868/* or 0d1.2345e12 */
b99bd4ef 869
c19d1205 870const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 871
c19d1205
ZW
872/* Prefix characters that indicate the start of an immediate
873 value. */
874#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 875
c19d1205
ZW
876/* Separator character handling. */
877
878#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880static inline int
881skip_past_char (char ** str, char c)
882{
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
3d0c9500 887 }
c19d1205
ZW
888 else
889 return FAIL;
890}
c921be7d 891
c19d1205 892#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 893
c19d1205
ZW
894/* Arithmetic expressions (possibly involving symbols). */
895
896/* Return TRUE if anything in the expression is a bignum. */
897
898static int
899walk_no_bignums (symbolS * sp)
900{
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 905 {
c19d1205
ZW
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
909 }
910
c19d1205 911 return 0;
3d0c9500
NC
912}
913
c19d1205
ZW
914static int in_my_get_expression = 0;
915
916/* Third argument to my_get_expression. */
917#define GE_NO_PREFIX 0
918#define GE_IMM_PREFIX 1
919#define GE_OPT_PREFIX 2
5287ad62
JB
920/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922#define GE_OPT_PREFIX_BIG 3
a737bd4d 923
b99bd4ef 924static int
c19d1205 925my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 926{
c19d1205
ZW
927 char * save_in;
928 segT seg;
b99bd4ef 929
c19d1205
ZW
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
5287ad62
JB
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
b99bd4ef 934
c19d1205 935 switch (prefix_mode)
b99bd4ef 936 {
c19d1205
ZW
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
5287ad62 947 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
b99bd4ef 953
c19d1205 954 memset (ep, 0, sizeof (expressionS));
b99bd4ef 955
c19d1205
ZW
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
f86adc07 962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 963 {
f86adc07 964 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
f86adc07
NS
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
970 return 1;
971 }
b99bd4ef 972
c19d1205
ZW
973#ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
b99bd4ef 984 }
87975d2a
AM
985#else
986 (void) seg;
c19d1205 987#endif
b99bd4ef 988
c19d1205
ZW
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
5287ad62
JB
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
b99bd4ef 1004
c19d1205
ZW
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
b99bd4ef
NC
1008}
1009
c19d1205
ZW
1010/* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
b99bd4ef 1014
c19d1205
ZW
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1021
c19d1205 1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1023
c19d1205
ZW
1024char *
1025md_atof (int type, char * litP, int * sizeP)
1026{
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
b99bd4ef 1031
c19d1205
ZW
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
b99bd4ef 1040
c19d1205
ZW
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
b99bd4ef 1047
c19d1205
ZW
1048 case 'x':
1049 case 'X':
499ac353 1050 prec = 5;
c19d1205 1051 break;
b99bd4ef 1052
c19d1205
ZW
1053 case 'p':
1054 case 'P':
499ac353 1055 prec = 5;
c19d1205 1056 break;
a737bd4d 1057
c19d1205
ZW
1058 default:
1059 *sizeP = 0;
499ac353 1060 return _("Unrecognized or unsupported floating point constant");
c19d1205 1061 }
b99bd4ef 1062
c19d1205
ZW
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
499ac353 1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1067
c19d1205
ZW
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
499ac353
NC
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1074 }
1075 }
1076 else
1077 {
e74cfd16 1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1079 for (i = prec - 1; i >= 0; i--)
1080 {
499ac353
NC
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
499ac353
NC
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1094 }
1095 }
b99bd4ef 1096
499ac353 1097 return NULL;
c19d1205 1098}
b99bd4ef 1099
c19d1205
ZW
1100/* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102void
91d6fa6a 1103md_operand (expressionS * exp)
c19d1205
ZW
1104{
1105 if (in_my_get_expression)
91d6fa6a 1106 exp->X_op = O_illegal;
b99bd4ef
NC
1107}
1108
c19d1205 1109/* Immediate values. */
b99bd4ef 1110
c19d1205
ZW
1111/* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114#ifdef OBJ_ELF
1115static int
1116immediate_for_directive (int *val)
b99bd4ef 1117{
c19d1205
ZW
1118 expressionS exp;
1119 exp.X_op = O_illegal;
b99bd4ef 1120
c19d1205
ZW
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
b99bd4ef 1126
c19d1205
ZW
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
b99bd4ef 1135}
c19d1205 1136#endif
b99bd4ef 1137
c19d1205 1138/* Register parsing. */
b99bd4ef 1139
c19d1205
ZW
1140/* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145static struct reg_entry *
1146arm_reg_parse_multi (char **ccp)
b99bd4ef 1147{
c19d1205
ZW
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
b99bd4ef 1151
c19d1205
ZW
1152#ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
01cfc07f 1154 return NULL;
c19d1205
ZW
1155 start++;
1156#endif
1157#ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160#endif
b99bd4ef 1161
c19d1205
ZW
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
b99bd4ef 1165
c19d1205
ZW
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
b99bd4ef
NC
1177}
1178
1179static int
dcbf9037
JB
1180arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
b99bd4ef 1182{
c19d1205
ZW
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
79134647 1191 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1192 return reg->number;
1193 break;
69b97547 1194
c19d1205
ZW
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
6057a28f 1202
c19d1205
ZW
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
79134647 1206 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1207 return reg->number;
6057a28f 1208 break;
c19d1205 1209
6057a28f 1210 default:
c19d1205 1211 break;
6057a28f
NC
1212 }
1213
dcbf9037
JB
1214 return FAIL;
1215}
1216
1217/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220static int
1221arm_reg_parse (char **ccp, enum arm_reg_type type)
1222{
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
c19d1205
ZW
1237 *ccp = start;
1238 return FAIL;
1239}
69b97547 1240
dcbf9037
JB
1241/* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255static int
1256parse_neon_type (struct neon_type *type, char **str)
1257{
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
dcbf9037
JB
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
037e8744 1312 done:
dcbf9037
JB
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328}
1329
1330/* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335static void
1336first_error (const char *err)
1337{
1338 if (!inst.error)
1339 inst.error = err;
1340}
1341
1342/* Parse a single type, e.g. ".s32", leading period included. */
1343static int
1344parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345{
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
5f4273c7 1369
dcbf9037 1370 *ccp = str;
5f4273c7 1371
dcbf9037
JB
1372 return SUCCESS;
1373}
1374
1375/* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378#define NEON_ALL_LANES 15
1379#define NEON_INTERLEAVE_LANES 14
1380
1381/* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386static int
1387parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390{
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
037e8744
JB
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1423 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
5f4273c7 1430
dcbf9037
JB
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
5f4273c7 1441
dcbf9037
JB
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
5f4273c7 1449
dcbf9037
JB
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
5f4273c7 1478
dcbf9037
JB
1479 if (typeinfo)
1480 *typeinfo = atype;
5f4273c7 1481
dcbf9037
JB
1482 if (rtype)
1483 *rtype = type;
5f4273c7 1484
dcbf9037 1485 *ccp = str;
5f4273c7 1486
dcbf9037
JB
1487 return reg->number;
1488}
1489
1490/* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1495 This function will fault on encountering a scalar. */
dcbf9037
JB
1496
1497static int
1498arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500{
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
0855e32b
NS
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
dcbf9037
JB
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525}
1526
1527#define NEON_SCALAR_REG(X) ((X) >> 4)
1528#define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
5287ad62
JB
1530/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534static int
dcbf9037 1535parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1536{
dcbf9037 1537 int reg;
5287ad62 1538 char *str = *ccp;
dcbf9037 1539 struct neon_typed_alias atype;
5f4273c7 1540
dcbf9037 1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1542
dcbf9037 1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1544 return FAIL;
5f4273c7 1545
dcbf9037 1546 if (atype.index == NEON_ALL_LANES)
5287ad62 1547 {
dcbf9037 1548 first_error (_("scalar must have an index"));
5287ad62
JB
1549 return FAIL;
1550 }
dcbf9037 1551 else if (atype.index >= 64 / elsize)
5287ad62 1552 {
dcbf9037 1553 first_error (_("scalar index out of range"));
5287ad62
JB
1554 return FAIL;
1555 }
5f4273c7 1556
dcbf9037
JB
1557 if (type)
1558 *type = atype.eltype;
5f4273c7 1559
5287ad62 1560 *ccp = str;
5f4273c7 1561
dcbf9037 1562 return reg * 16 + atype.index;
5287ad62
JB
1563}
1564
c19d1205 1565/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1566
c19d1205
ZW
1567static long
1568parse_reg_list (char ** strp)
1569{
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
a737bd4d 1573
c19d1205
ZW
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
6057a28f 1576 {
c19d1205 1577 another_range = 0;
a737bd4d 1578
c19d1205
ZW
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
a737bd4d 1583
c19d1205
ZW
1584 str++;
1585 do
1586 {
1587 int reg;
6057a28f 1588
dcbf9037 1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1590 {
dcbf9037 1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1592 return FAIL;
1593 }
a737bd4d 1594
c19d1205
ZW
1595 if (in_range)
1596 {
1597 int i;
a737bd4d 1598
c19d1205
ZW
1599 if (reg <= cur_reg)
1600 {
dcbf9037 1601 first_error (_("bad range in register list"));
c19d1205
ZW
1602 return FAIL;
1603 }
40a18ebd 1604
c19d1205
ZW
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
a737bd4d 1616
c19d1205
ZW
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1622
c19d1205
ZW
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
a737bd4d 1629
c19d1205
ZW
1630 if (*str++ != '}')
1631 {
dcbf9037 1632 first_error (_("missing `}'"));
c19d1205
ZW
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
91d6fa6a 1638 expressionS exp;
40a18ebd 1639
91d6fa6a 1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1641 return FAIL;
40a18ebd 1642
91d6fa6a 1643 if (exp.X_op == O_constant)
c19d1205 1644 {
91d6fa6a
NC
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
a737bd4d 1651
91d6fa6a 1652 if ((range & exp.X_add_number) != 0)
c19d1205 1653 {
91d6fa6a 1654 int regno = range & exp.X_add_number;
a737bd4d 1655
c19d1205
ZW
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
a737bd4d 1662
91d6fa6a 1663 range |= exp.X_add_number;
c19d1205
ZW
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
a737bd4d 1672
91d6fa6a 1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
a737bd4d 1678
c19d1205
ZW
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
a737bd4d 1684 }
c19d1205 1685 while (another_range);
a737bd4d 1686
c19d1205
ZW
1687 *strp = str;
1688 return range;
a737bd4d
NC
1689}
1690
5287ad62
JB
1691/* Types of registers in a list. */
1692
1693enum reg_list_els
1694{
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698};
1699
c19d1205
ZW
1700/* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
dcbf9037
JB
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
6057a28f 1714
c19d1205 1715static int
037e8744 1716parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1717{
037e8744 1718 char *str = *ccp;
c19d1205
ZW
1719 int base_reg;
1720 int new_base;
21d799b5 1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1722 int max_regs = 0;
c19d1205
ZW
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
a737bd4d 1726 int i;
6057a28f 1727
037e8744 1728 if (*str != '{')
5287ad62
JB
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
6057a28f 1733
037e8744 1734 str++;
6057a28f 1735
5287ad62 1736 switch (etype)
c19d1205 1737 {
5287ad62 1738 case REGLIST_VFP_S:
c19d1205
ZW
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
5287ad62 1741 break;
5f4273c7 1742
5287ad62
JB
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
b7fc2769 1745 break;
5f4273c7 1746
b7fc2769
JB
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
b1cc4aeb
PB
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1760 fpu_vfp_ext_d32);
5287ad62
JB
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1763 fpu_vfp_ext_d32);
5287ad62
JB
1764 }
1765 else
1766 max_regs = 16;
c19d1205 1767 }
6057a28f 1768
c19d1205 1769 base_reg = max_regs;
a737bd4d 1770
c19d1205
ZW
1771 do
1772 {
5287ad62 1773 int setmask = 1, addregs = 1;
dcbf9037 1774
037e8744 1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1776
c19d1205 1777 if (new_base == FAIL)
a737bd4d 1778 {
dcbf9037 1779 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1780 return FAIL;
1781 }
5f4273c7 1782
b7fc2769
JB
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
5f4273c7 1788
5287ad62
JB
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
c19d1205
ZW
1796 if (new_base < base_reg)
1797 base_reg = new_base;
a737bd4d 1798
5287ad62 1799 if (mask & (setmask << new_base))
c19d1205 1800 {
dcbf9037 1801 first_error (_("invalid register list"));
c19d1205 1802 return FAIL;
a737bd4d 1803 }
a737bd4d 1804
c19d1205
ZW
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
0bbf2aa4 1810
5287ad62
JB
1811 mask |= setmask << new_base;
1812 count += addregs;
0bbf2aa4 1813
037e8744 1814 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1815 {
1816 int high_range;
0bbf2aa4 1817
037e8744 1818 str++;
0bbf2aa4 1819
037e8744 1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1821 == FAIL)
c19d1205
ZW
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
0bbf2aa4 1826
b7fc2769
JB
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
5287ad62
JB
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
c19d1205
ZW
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
0bbf2aa4 1841
5287ad62 1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1843 {
5287ad62 1844 if (mask & (setmask << new_base))
0bbf2aa4 1845 {
c19d1205
ZW
1846 inst.error = _("invalid register list");
1847 return FAIL;
0bbf2aa4 1848 }
c19d1205 1849
5287ad62
JB
1850 mask |= setmask << new_base;
1851 count += addregs;
0bbf2aa4 1852 }
0bbf2aa4 1853 }
0bbf2aa4 1854 }
037e8744 1855 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1856
037e8744 1857 str++;
0bbf2aa4 1858
c19d1205
ZW
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
037e8744
JB
1876 *ccp = str;
1877
c19d1205 1878 return count;
b99bd4ef
NC
1879}
1880
dcbf9037
JB
1881/* True if two alias types are the same. */
1882
c921be7d 1883static bfd_boolean
dcbf9037
JB
1884neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885{
1886 if (!a && !b)
c921be7d 1887 return TRUE;
5f4273c7 1888
dcbf9037 1889 if (!a || !b)
c921be7d 1890 return FALSE;
dcbf9037
JB
1891
1892 if (a->defined != b->defined)
c921be7d 1893 return FALSE;
5f4273c7 1894
dcbf9037
JB
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
c921be7d 1898 return FALSE;
dcbf9037
JB
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
c921be7d 1902 return FALSE;
5f4273c7 1903
c921be7d 1904 return TRUE;
dcbf9037
JB
1905}
1906
5287ad62
JB
1907/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
dcbf9037 1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1914
5287ad62 1915#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1916#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1917#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919static int
dcbf9037
JB
1920parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
5287ad62
JB
1922{
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1932 struct neon_typed_alias firsttype;
5f4273c7 1933
5287ad62
JB
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
5f4273c7 1936
5287ad62
JB
1937 do
1938 {
dcbf9037
JB
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
5287ad62
JB
1942 if (getreg == FAIL)
1943 {
dcbf9037 1944 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1945 return FAIL;
1946 }
5f4273c7 1947
5287ad62
JB
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
5287ad62 1954 }
dcbf9037 1955 firsttype = atype;
5287ad62
JB
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
dcbf9037 1962 first_error (_(incr_error));
5287ad62
JB
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
dcbf9037
JB
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
c921be7d 1972 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1973 {
1974 first_error (_(type_error));
5287ad62
JB
1975 return FAIL;
1976 }
5f4273c7 1977
5287ad62
JB
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
dcbf9037 1982 struct neon_typed_alias htype;
5287ad62
JB
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
dcbf9037 1988 first_error (_(type_error));
5287ad62
JB
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
dcbf9037 1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1996 return FAIL;
1997 }
1998 ptr++;
dcbf9037 1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
2000 if (hireg == FAIL)
2001 {
dcbf9037
JB
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
c921be7d 2005 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
2006 {
2007 first_error (_(type_error));
5287ad62
JB
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
5f4273c7 2013
5287ad62
JB
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
5f4273c7 2020
dcbf9037 2021 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 2022 {
dcbf9037
JB
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
5287ad62 2026 {
dcbf9037
JB
2027 first_error (_(type_error));
2028 return FAIL;
5287ad62
JB
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
dcbf9037 2035 first_error (_(type_error));
5287ad62
JB
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2041
5287ad62
JB
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2045
5287ad62
JB
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
dcbf9037 2050 first_error (_("error parsing element/structure list"));
5287ad62
JB
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
dcbf9037 2056 first_error (_("expected }"));
5287ad62
JB
2057 return FAIL;
2058 }
5f4273c7 2059
5287ad62
JB
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
dcbf9037
JB
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
5287ad62
JB
2066 *pbase = base_reg;
2067 *str = ptr;
5f4273c7 2068
5287ad62
JB
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070}
2071
c19d1205
ZW
2072/* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2077
c19d1205
ZW
2078static int
2079parse_reloc (char **str)
b99bd4ef 2080{
c19d1205
ZW
2081 struct reloc_entry *r;
2082 char *p, *q;
b99bd4ef 2083
c19d1205
ZW
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
b99bd4ef 2086
c19d1205
ZW
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
21d799b5
NC
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
b99bd4ef
NC
2101}
2102
c19d1205
ZW
2103/* Directives: register aliases. */
2104
dcbf9037 2105static struct reg_entry *
90ec0d68 2106insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2107{
d3ce72d0 2108 struct reg_entry *new_reg;
c19d1205 2109 const char *name;
b99bd4ef 2110
d3ce72d0 2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2112 {
d3ce72d0 2113 if (new_reg->builtin)
c19d1205 2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2115
c19d1205
ZW
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
d3ce72d0 2118 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2120
d929913e 2121 return NULL;
c19d1205 2122 }
b99bd4ef 2123
c19d1205 2124 name = xstrdup (str);
d3ce72d0 2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2126
d3ce72d0
NC
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
b99bd4ef 2132
d3ce72d0 2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2134 abort ();
5f4273c7 2135
d3ce72d0 2136 return new_reg;
dcbf9037
JB
2137}
2138
2139static void
2140insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142{
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2144
dcbf9037
JB
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
5f4273c7 2150
dcbf9037
JB
2151 if (atype)
2152 {
21d799b5
NC
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2155 *reg->neon = *atype;
2156 }
c19d1205 2157}
b99bd4ef 2158
c19d1205 2159/* Look for the .req directive. This is of the form:
b99bd4ef 2160
c19d1205 2161 new_register_name .req existing_register_name
b99bd4ef 2162
c19d1205 2163 If we find one, or if it looks sufficiently like one that we want to
d929913e 2164 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2165
d929913e 2166static bfd_boolean
c19d1205
ZW
2167create_register_alias (char * newname, char *p)
2168{
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
b99bd4ef 2172
c19d1205
ZW
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2177 return FALSE;
b99bd4ef 2178
c19d1205
ZW
2179 oldname += 6;
2180 if (*oldname == '\0')
d929913e 2181 return FALSE;
b99bd4ef 2182
21d799b5 2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2184 if (!old)
b99bd4ef 2185 {
c19d1205 2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2187 return TRUE;
b99bd4ef
NC
2188 }
2189
c19d1205
ZW
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193#ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195#else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198#endif
b99bd4ef 2199
21d799b5 2200 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
b99bd4ef 2203
c19d1205
ZW
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
d929913e
NC
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
c19d1205 2211
d929913e
NC
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2221 the artificial FOO alias because it has already been created by the
d929913e
NC
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
c19d1205 2226
d929913e
NC
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
c19d1205 2229
d929913e
NC
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
c19d1205 2233
d929913e 2234 return TRUE;
b99bd4ef
NC
2235}
2236
dcbf9037
JB
2237/* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
5f4273c7 2245 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2246
c921be7d 2247static bfd_boolean
dcbf9037
JB
2248create_neon_reg_alias (char *newname, char *p)
2249{
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
12d6b0b7 2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2256 int namelen;
5f4273c7 2257
dcbf9037
JB
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
5f4273c7 2262
dcbf9037 2263 nameend = p;
5f4273c7 2264
dcbf9037
JB
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
c921be7d 2270 return FALSE;
5f4273c7 2271
dcbf9037 2272 p += 5;
5f4273c7 2273
dcbf9037 2274 if (*p == '\0')
c921be7d 2275 return FALSE;
5f4273c7 2276
dcbf9037
JB
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
c921be7d 2282 return FALSE;
dcbf9037
JB
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
c921be7d 2293 return FALSE;
dcbf9037
JB
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2310 return FALSE;
dcbf9037 2311 }
5f4273c7 2312
dcbf9037
JB
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
c921be7d 2317 return FALSE;
dcbf9037
JB
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
5f4273c7 2321
dcbf9037
JB
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
5f4273c7 2326
dcbf9037
JB
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2330 return FALSE;
dcbf9037 2331 }
5f4273c7 2332
dcbf9037 2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2334
dcbf9037
JB
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
c921be7d 2338 return FALSE;
dcbf9037 2339 }
5f4273c7 2340
dcbf9037
JB
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
5f4273c7 2343
dcbf9037
JB
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
c921be7d 2347 return FALSE;
dcbf9037
JB
2348 }
2349 }
2350
15735687
NS
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354#ifdef TC_CASE_SENSITIVE
dcbf9037 2355 namelen = nameend - newname;
15735687
NS
2356#else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359#endif
2360
21d799b5 2361 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
5f4273c7 2364
dcbf9037
JB
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2367
dcbf9037
JB
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
5f4273c7 2371
dcbf9037
JB
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2375
dcbf9037
JB
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
5f4273c7 2379
dcbf9037
JB
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2383
c921be7d 2384 return TRUE;
dcbf9037
JB
2385}
2386
c19d1205
ZW
2387/* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
c921be7d 2389
b99bd4ef 2390static void
c19d1205 2391s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2392{
c19d1205
ZW
2393 as_bad (_("invalid syntax for .req directive"));
2394}
b99bd4ef 2395
dcbf9037
JB
2396static void
2397s_dn (int a ATTRIBUTE_UNUSED)
2398{
2399 as_bad (_("invalid syntax for .dn directive"));
2400}
2401
2402static void
2403s_qn (int a ATTRIBUTE_UNUSED)
2404{
2405 as_bad (_("invalid syntax for .qn directive"));
2406}
2407
c19d1205
ZW
2408/* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
b99bd4ef 2410
c19d1205
ZW
2411 my_alias .req r11
2412 .unreq my_alias */
b99bd4ef
NC
2413
2414static void
c19d1205 2415s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2416{
c19d1205
ZW
2417 char * name;
2418 char saved_char;
b99bd4ef 2419
c19d1205
ZW
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
21d799b5
NC
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
c19d1205
ZW
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
a1727c1a 2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2441 name);
2442 else
2443 {
d929913e
NC
2444 char * p;
2445 char * nbuf;
2446
db0bc284 2447 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2448 free ((char *) reg->name);
dcbf9037
JB
2449 if (reg->neon)
2450 free (reg->neon);
c19d1205 2451 free (reg);
d929913e
NC
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
5f4273c7 2456
d929913e
NC
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
21d799b5 2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2461 if (reg)
2462 {
db0bc284 2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
21d799b5 2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2473 if (reg)
2474 {
db0bc284 2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
c19d1205
ZW
2483 }
2484 }
b99bd4ef 2485
c19d1205 2486 *input_line_pointer = saved_char;
b99bd4ef
NC
2487 demand_empty_rest_of_line ();
2488}
2489
c19d1205
ZW
2490/* Directives: Instruction set selection. */
2491
2492#ifdef OBJ_ELF
2493/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
cd000bff
DJ
2498/* Create a new mapping symbol for the transition to STATE. */
2499
2500static void
2501make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2502{
a737bd4d 2503 symbolS * symbolP;
c19d1205
ZW
2504 const char * symname;
2505 int type;
b99bd4ef 2506
c19d1205 2507 switch (state)
b99bd4ef 2508 {
c19d1205
ZW
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
c19d1205
ZW
2521 default:
2522 abort ();
2523 }
2524
cd000bff 2525 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
cd000bff
DJ
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2de7820f
JZ
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2556 if (value == 0)
2557 {
2de7820f
JZ
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
cd000bff
DJ
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
cd000bff
DJ
2571 frag->tc_frag_data.last_map = symbolP;
2572}
2573
2574/* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578static void
2579insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581{
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2595 }
cd000bff
DJ
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599}
2600
2601static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603/* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606void
2607mapping_state (enum mstate state)
2608{
940b5ce0
DJ
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
cd000bff
DJ
2611#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
49c62a33
NC
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
cd000bff
DJ
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652#undef TRANSITION
2653}
2654
2655/* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658static void
2659mapping_state_2 (enum mstate state, int max_chars)
2660{
940b5ce0
DJ
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
cd000bff
DJ
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
cd000bff
DJ
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2673}
2674#else
d3106081
NS
2675#define mapping_state(x) ((void)0)
2676#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2677#endif
2678
2679/* Find the real, Thumb encoded start of a Thumb function. */
2680
4343666d 2681#ifdef OBJ_COFF
c19d1205
ZW
2682static symbolS *
2683find_real_start (symbolS * symbolP)
2684{
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690#define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
37f6032b
ZW
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2701 return symbolP;
2702
37f6032b 2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
bd3ba5d1 2708 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2709 new_target = symbolP;
2710 }
2711
c19d1205
ZW
2712 return new_target;
2713}
4343666d 2714#endif
c19d1205
ZW
2715
2716static void
2717opcode_select (int width)
2718{
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
e74cfd16 2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
c19d1205
ZW
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
e74cfd16 2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
c19d1205
ZW
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752}
2753
2754static void
2755s_arm (int ignore ATTRIBUTE_UNUSED)
2756{
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759}
2760
2761static void
2762s_thumb (int ignore ATTRIBUTE_UNUSED)
2763{
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766}
2767
2768static void
2769s_code (int unused ATTRIBUTE_UNUSED)
2770{
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784}
2785
2786static void
2787s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788{
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801}
2802
2803static void
2804s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805{
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811}
2812
2813/* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816static void
2817s_thumb_set (int equiv)
2818{
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856#ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
c19d1205 2859 for this symbol. */
b99bd4ef
NC
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
21d799b5 2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872#endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875#ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878#endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
c19d1205 2894 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898#if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900#endif
2901}
2902
c19d1205 2903/* Directives: Mode selection. */
b99bd4ef 2904
c19d1205
ZW
2905/* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2908static void
c19d1205 2909s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2910{
c19d1205
ZW
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
b99bd4ef
NC
2926 demand_empty_rest_of_line ();
2927}
2928
c19d1205
ZW
2929/* Directives: sectioning and alignment. */
2930
2931/* Same as s_align_ptwo but align 0 => align 2. */
2932
b99bd4ef 2933static void
c19d1205 2934s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2935{
a737bd4d 2936 int temp;
dce323d1 2937 bfd_boolean fill_p;
c19d1205
ZW
2938 long temp_fill;
2939 long max_alignment = 15;
b99bd4ef
NC
2940
2941 temp = get_absolute_expression ();
c19d1205
ZW
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
b99bd4ef 2945 {
c19d1205
ZW
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
b99bd4ef 2949
c19d1205
ZW
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
dce323d1 2954 fill_p = TRUE;
b99bd4ef 2955 }
c19d1205 2956 else
dce323d1
PB
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
b99bd4ef 2961
c19d1205
ZW
2962 if (!temp)
2963 temp = 2;
b99bd4ef 2964
c19d1205
ZW
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
dce323d1
PB
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
c19d1205
ZW
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
b99bd4ef
NC
2976}
2977
c19d1205
ZW
2978static void
2979s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2980{
c19d1205
ZW
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
cd000bff
DJ
2985
2986#ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988#endif
c19d1205 2989}
b99bd4ef 2990
c19d1205
ZW
2991static void
2992s_even (int ignore ATTRIBUTE_UNUSED)
2993{
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
b99bd4ef 2997
c19d1205 2998 record_alignment (now_seg, 1);
b99bd4ef 2999
c19d1205 3000 demand_empty_rest_of_line ();
b99bd4ef
NC
3001}
3002
c19d1205 3003/* Directives: Literal pools. */
a737bd4d 3004
c19d1205
ZW
3005static literal_pool *
3006find_literal_pool (void)
a737bd4d 3007{
c19d1205 3008 literal_pool * pool;
a737bd4d 3009
c19d1205 3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3011 {
c19d1205
ZW
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
a737bd4d
NC
3015 }
3016
c19d1205 3017 return pool;
a737bd4d
NC
3018}
3019
c19d1205
ZW
3020static literal_pool *
3021find_or_make_literal_pool (void)
a737bd4d 3022{
c19d1205
ZW
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
a737bd4d 3026
c19d1205 3027 pool = find_literal_pool ();
a737bd4d 3028
c19d1205 3029 if (pool == NULL)
a737bd4d 3030 {
c19d1205 3031 /* Create a new pool. */
21d799b5 3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
3033 if (! pool)
3034 return NULL;
a737bd4d 3035
c19d1205
ZW
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
a737bd4d 3044 }
a737bd4d 3045
c19d1205
ZW
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
a737bd4d 3048 {
c19d1205
ZW
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
a737bd4d
NC
3052 }
3053
c19d1205
ZW
3054 /* Done. */
3055 return pool;
a737bd4d
NC
3056}
3057
c19d1205 3058/* Add the literal in the global 'inst'
5f4273c7 3059 structure to the relevant literal pool. */
b99bd4ef
NC
3060
3061static int
c19d1205 3062add_to_lit_pool (void)
b99bd4ef 3063{
c19d1205
ZW
3064 literal_pool * pool;
3065 unsigned int entry;
b99bd4ef 3066
c19d1205
ZW
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3071 {
c19d1205
ZW
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
b99bd4ef
NC
3089 }
3090
c19d1205
ZW
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
a8040cf2
NC
3101#ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108#endif
c19d1205
ZW
3109 pool->next_free_entry += 1;
3110 }
b99bd4ef 3111
c19d1205
ZW
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3115
c19d1205 3116 return SUCCESS;
b99bd4ef
NC
3117}
3118
c19d1205
ZW
3119/* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
e16bb312 3121
c19d1205
ZW
3122static void
3123symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128{
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
e16bb312 3131
c19d1205
ZW
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
21d799b5 3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3135
c19d1205
ZW
3136#ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139#endif
b99bd4ef 3140
c19d1205 3141 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3142
c19d1205
ZW
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
b99bd4ef 3146
c19d1205 3147 symbol_set_frag (symbolP, frag);
b99bd4ef 3148
c19d1205
ZW
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
b99bd4ef 3152
c19d1205
ZW
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
b99bd4ef 3156
c19d1205 3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3158
c19d1205 3159 obj_symbol_new_hook (symbolP);
b99bd4ef 3160
c19d1205
ZW
3161#ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163#endif
3164
3165#ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167#endif /* DEBUG_SYMS */
b99bd4ef
NC
3168}
3169
b99bd4ef 3170
c19d1205
ZW
3171static void
3172s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3173{
c19d1205
ZW
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
b99bd4ef 3177
c19d1205
ZW
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
b99bd4ef 3183
c19d1205 3184 mapping_state (MAP_DATA);
b99bd4ef 3185
c19d1205
ZW
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
b99bd4ef 3190
c19d1205 3191 record_alignment (now_seg, 2);
b99bd4ef 3192
c19d1205 3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3194
c19d1205
ZW
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
b99bd4ef 3198
c19d1205 3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3200
c19d1205
ZW
3201#if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203#endif
6c43fab6 3204
c19d1205 3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3206 {
3207#ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210#endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
b99bd4ef 3214
c19d1205
ZW
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
b99bd4ef
NC
3218}
3219
c19d1205
ZW
3220#ifdef OBJ_ELF
3221/* Forward declarations for functions below, in the MD interface
3222 section. */
3223static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224static valueT create_unwind_entry (int);
3225static void start_unwind_section (const segT, int);
3226static void add_unwind_opcode (valueT, int);
3227static void flush_pending_unwind (void);
b99bd4ef 3228
c19d1205 3229/* Directives: Data. */
b99bd4ef 3230
c19d1205
ZW
3231static void
3232s_arm_elf_cons (int nbytes)
3233{
3234 expressionS exp;
b99bd4ef 3235
c19d1205
ZW
3236#ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238#endif
b99bd4ef 3239
c19d1205 3240 if (is_it_end_of_statement ())
b99bd4ef 3241 {
c19d1205
ZW
3242 demand_empty_rest_of_line ();
3243 return;
b99bd4ef
NC
3244 }
3245
c19d1205
ZW
3246#ifdef md_cons_align
3247 md_cons_align (nbytes);
3248#endif
b99bd4ef 3249
c19d1205
ZW
3250 mapping_state (MAP_DATA);
3251 do
b99bd4ef 3252 {
c19d1205
ZW
3253 int reloc;
3254 char *base = input_line_pointer;
b99bd4ef 3255
c19d1205 3256 expression (& exp);
b99bd4ef 3257
c19d1205
ZW
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
21d799b5
NC
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
c19d1205 3277 int size = bfd_get_reloc_size (howto);
b99bd4ef 3278
2fc8bdac
ZW
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
c19d1205 3286 if (size > nbytes)
2fc8bdac 3287 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
21d799b5 3297 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3310 }
3311 }
3312 }
b99bd4ef 3313 }
c19d1205 3314 while (*input_line_pointer++ == ',');
b99bd4ef 3315
c19d1205
ZW
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
b99bd4ef
NC
3319}
3320
c921be7d
NC
3321/* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324static void
3325emit_thumb32_expr (expressionS * exp)
3326{
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333}
3334
3335/* Guess the instruction size based on the opcode. */
3336
3337static int
3338thumb_insn_size (int opcode)
3339{
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346}
3347
3348static bfd_boolean
3349emit_insn (expressionS *exp, int nbytes)
3350{
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391}
3392
3393/* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396static void
3397s_arm_elf_inst (int nbytes)
3398{
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441}
b99bd4ef 3442
c19d1205 3443/* Parse a .rel31 directive. */
b99bd4ef 3444
c19d1205
ZW
3445static void
3446s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447{
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
b99bd4ef 3451
c19d1205
ZW
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
b99bd4ef 3457
c19d1205
ZW
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
b99bd4ef 3462
c19d1205
ZW
3463#ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465#endif
b99bd4ef 3466
c19d1205
ZW
3467#ifdef md_cons_align
3468 md_cons_align (4);
3469#endif
b99bd4ef 3470
c19d1205 3471 mapping_state (MAP_DATA);
b99bd4ef 3472
c19d1205 3473 expression (&exp);
b99bd4ef 3474
c19d1205
ZW
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
b99bd4ef 3479
c19d1205 3480 demand_empty_rest_of_line ();
b99bd4ef
NC
3481}
3482
c19d1205 3483/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3484
c19d1205 3485/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3486
c19d1205
ZW
3487static void
3488s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489{
3490 demand_empty_rest_of_line ();
921e5f0a
PB
3491 if (unwind.proc_start)
3492 {
c921be7d 3493 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3494 return;
3495 }
3496
c19d1205
ZW
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
b99bd4ef 3499
c19d1205
ZW
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
fdfde340 3507 unwind.fp_reg = REG_SP;
c19d1205
ZW
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510}
b99bd4ef 3511
b99bd4ef 3512
c19d1205
ZW
3513/* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
b99bd4ef 3515
c19d1205
ZW
3516static void
3517s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518{
3519 demand_empty_rest_of_line ();
921e5f0a 3520 if (!unwind.proc_start)
c921be7d 3521 as_bad (MISSING_FNSTART);
921e5f0a 3522
c19d1205 3523 if (unwind.table_entry)
6decc662 3524 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3525
c19d1205
ZW
3526 create_unwind_entry (1);
3527}
a737bd4d 3528
c19d1205 3529/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3530
c19d1205
ZW
3531static void
3532s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533{
3534 long where;
3535 char *ptr;
3536 valueT val;
940b5ce0 3537 unsigned int marked_pr_dependency;
f02232aa 3538
c19d1205 3539 demand_empty_rest_of_line ();
f02232aa 3540
921e5f0a
PB
3541 if (!unwind.proc_start)
3542 {
c921be7d 3543 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3544 return;
3545 }
3546
c19d1205
ZW
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
f02232aa 3552
c19d1205
ZW
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
b99bd4ef 3557
c19d1205 3558 ptr = frag_more (8);
5011093d 3559 memset (ptr, 0, 8);
c19d1205 3560 where = frag_now_fix () - 8;
f02232aa 3561
c19d1205
ZW
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
f02232aa 3565
c19d1205
ZW
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
940b5ce0
DJ
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
5f4273c7
NC
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
c19d1205
ZW
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3582 |= 1 << unwind.personality_index;
c19d1205 3583 }
f02232aa 3584
c19d1205
ZW
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
f02232aa 3592
c19d1205
ZW
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3595
3596 unwind.proc_start = NULL;
c19d1205 3597}
f02232aa 3598
f02232aa 3599
c19d1205 3600/* Parse an unwind_cantunwind directive. */
b99bd4ef 3601
c19d1205
ZW
3602static void
3603s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604{
3605 demand_empty_rest_of_line ();
921e5f0a 3606 if (!unwind.proc_start)
c921be7d 3607 as_bad (MISSING_FNSTART);
921e5f0a 3608
c19d1205
ZW
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3611
c19d1205
ZW
3612 unwind.personality_index = -2;
3613}
b99bd4ef 3614
b99bd4ef 3615
c19d1205 3616/* Parse a personalityindex directive. */
b99bd4ef 3617
c19d1205
ZW
3618static void
3619s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620{
3621 expressionS exp;
b99bd4ef 3622
921e5f0a 3623 if (!unwind.proc_start)
c921be7d 3624 as_bad (MISSING_FNSTART);
921e5f0a 3625
c19d1205
ZW
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3628
c19d1205 3629 expression (&exp);
b99bd4ef 3630
c19d1205
ZW
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3633 {
c19d1205
ZW
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
b99bd4ef
NC
3637 }
3638
c19d1205 3639 unwind.personality_index = exp.X_add_number;
b99bd4ef 3640
c19d1205
ZW
3641 demand_empty_rest_of_line ();
3642}
e16bb312 3643
e16bb312 3644
c19d1205 3645/* Parse a personality directive. */
e16bb312 3646
c19d1205
ZW
3647static void
3648s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649{
3650 char *name, *p, c;
a737bd4d 3651
921e5f0a 3652 if (!unwind.proc_start)
c921be7d 3653 as_bad (MISSING_FNSTART);
921e5f0a 3654
c19d1205
ZW
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
a737bd4d 3657
c19d1205
ZW
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664}
e16bb312 3665
e16bb312 3666
c19d1205 3667/* Parse a directive saving core registers. */
e16bb312 3668
c19d1205
ZW
3669static void
3670s_arm_unwind_save_core (void)
e16bb312 3671{
c19d1205
ZW
3672 valueT op;
3673 long range;
3674 int n;
e16bb312 3675
c19d1205
ZW
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
e16bb312 3678 {
c19d1205
ZW
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
e16bb312 3683
c19d1205 3684 demand_empty_rest_of_line ();
e16bb312 3685
c19d1205
ZW
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
e16bb312 3697
01ae4198
DJ
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
c19d1205 3700 {
01ae4198
DJ
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
0dd132b6 3716 else
01ae4198
DJ
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
c19d1205 3726 }
0dd132b6 3727
c19d1205
ZW
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
0dd132b6
NC
3733 }
3734
c19d1205
ZW
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
0dd132b6
NC
3741}
3742
c19d1205
ZW
3743
3744/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3745
3746static void
c19d1205 3747s_arm_unwind_save_fpa (int reg)
b99bd4ef 3748{
c19d1205
ZW
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
b99bd4ef 3752
c19d1205
ZW
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
b99bd4ef 3758
c19d1205 3759 if (exp.X_op != O_constant)
b99bd4ef 3760 {
c19d1205
ZW
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
b99bd4ef
NC
3763 return;
3764 }
3765
c19d1205
ZW
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3769 {
c19d1205
ZW
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
b99bd4ef
NC
3772 return;
3773 }
3774
c19d1205 3775 demand_empty_rest_of_line ();
b99bd4ef 3776
c19d1205
ZW
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
b99bd4ef
NC
3783 else
3784 {
c19d1205
ZW
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
b99bd4ef 3788 }
c19d1205 3789 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3790}
3791
c19d1205 3792
fa073d69
MS
3793/* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795static void
3796s_arm_unwind_save_vfp_armv6 (void)
3797{
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840}
3841
3842
3843/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3844
3845static void
c19d1205 3846s_arm_unwind_save_vfp (void)
b99bd4ef 3847{
c19d1205 3848 int count;
ca3f61f7 3849 unsigned int reg;
c19d1205 3850 valueT op;
b99bd4ef 3851
5287ad62 3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3853 if (count == FAIL)
b99bd4ef 3854 {
c19d1205
ZW
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
b99bd4ef
NC
3857 return;
3858 }
3859
c19d1205 3860 demand_empty_rest_of_line ();
b99bd4ef 3861
c19d1205 3862 if (reg == 8)
b99bd4ef 3863 {
c19d1205
ZW
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
b99bd4ef 3867 }
c19d1205 3868 else
b99bd4ef 3869 {
c19d1205
ZW
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
b99bd4ef 3873 }
c19d1205
ZW
3874 unwind.frame_size += count * 8 + 4;
3875}
b99bd4ef 3876
b99bd4ef 3877
c19d1205
ZW
3878/* Parse a directive saving iWMMXt data registers. */
3879
3880static void
3881s_arm_unwind_save_mmxwr (void)
3882{
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
b99bd4ef 3888
c19d1205
ZW
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
b99bd4ef 3891
c19d1205 3892 do
b99bd4ef 3893 {
dcbf9037 3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3895
c19d1205 3896 if (reg == FAIL)
b99bd4ef 3897 {
9b7132d3 3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3899 goto error;
b99bd4ef
NC
3900 }
3901
c19d1205
ZW
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
b99bd4ef 3905
c19d1205
ZW
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
dcbf9037 3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3910 if (hi_reg == FAIL)
3911 {
9b7132d3 3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3925
c19d1205
ZW
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
b99bd4ef 3928
c19d1205 3929 demand_empty_rest_of_line ();
b99bd4ef 3930
708587a4 3931 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3932 the list. */
3933 flush_pending_unwind ();
b99bd4ef 3934
c19d1205 3935 for (i = 0; i < 16; i++)
b99bd4ef 3936 {
c19d1205
ZW
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
b99bd4ef
NC
3939 }
3940
c19d1205
ZW
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
b99bd4ef 3945 {
c19d1205
ZW
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
b99bd4ef 3964
c19d1205
ZW
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
87a1fd79 3967 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
b99bd4ef
NC
3976 }
3977
c19d1205
ZW
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3982 {
c19d1205
ZW
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3988 preceding block. */
c19d1205
ZW
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
b99bd4ef
NC
4006 }
4007
c19d1205
ZW
4008 return;
4009error:
4010 ignore_rest_of_line ();
b99bd4ef
NC
4011}
4012
4013static void
c19d1205 4014s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4015{
c19d1205
ZW
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
b99bd4ef 4020
c19d1205
ZW
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
b99bd4ef 4023
c19d1205 4024 do
b99bd4ef 4025 {
dcbf9037 4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4027
c19d1205
ZW
4028 if (reg == FAIL)
4029 {
9b7132d3 4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4031 goto error;
4032 }
b99bd4ef 4033
c19d1205
ZW
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
b99bd4ef 4038
c19d1205
ZW
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
dcbf9037 4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4043 if (hi_reg == FAIL)
4044 {
9b7132d3 4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
b99bd4ef 4056 }
c19d1205 4057 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4058
c19d1205
ZW
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
b99bd4ef 4061
c19d1205
ZW
4062 demand_empty_rest_of_line ();
4063
708587a4 4064 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4065 the list. */
4066 flush_pending_unwind ();
b99bd4ef 4067
c19d1205 4068 for (reg = 0; reg < 16; reg++)
b99bd4ef 4069 {
c19d1205
ZW
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
b99bd4ef 4072 }
c19d1205
ZW
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076error:
4077 ignore_rest_of_line ();
b99bd4ef
NC
4078}
4079
c19d1205 4080
fa073d69
MS
4081/* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4083
b99bd4ef 4084static void
fa073d69 4085s_arm_unwind_save (int arch_v6)
b99bd4ef 4086{
c19d1205
ZW
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
b99bd4ef 4090
921e5f0a 4091 if (!unwind.proc_start)
c921be7d 4092 as_bad (MISSING_FNSTART);
921e5f0a 4093
c19d1205
ZW
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
b99bd4ef 4096
c19d1205 4097 if (*peek == '{')
b99bd4ef 4098 {
c19d1205
ZW
4099 had_brace = TRUE;
4100 peek++;
b99bd4ef
NC
4101 }
4102
c19d1205 4103 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4104
c19d1205 4105 if (!reg)
b99bd4ef 4106 {
c19d1205
ZW
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
b99bd4ef
NC
4109 return;
4110 }
4111
c19d1205 4112 switch (reg->type)
b99bd4ef 4113 {
c19d1205
ZW
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
93ac2687 4121 input_line_pointer = peek;
c19d1205 4122 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4123 return;
c19d1205
ZW
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
c19d1205
ZW
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
b99bd4ef 4138 }
c19d1205 4139}
b99bd4ef 4140
b99bd4ef 4141
c19d1205
ZW
4142/* Parse an unwind_movsp directive. */
4143
4144static void
4145s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146{
4147 int reg;
4148 valueT op;
4fa3602b 4149 int offset;
c19d1205 4150
921e5f0a 4151 if (!unwind.proc_start)
c921be7d 4152 as_bad (MISSING_FNSTART);
921e5f0a 4153
dcbf9037 4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4155 if (reg == FAIL)
b99bd4ef 4156 {
9b7132d3 4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4158 ignore_rest_of_line ();
b99bd4ef
NC
4159 return;
4160 }
4fa3602b
PB
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
c19d1205 4171 demand_empty_rest_of_line ();
b99bd4ef 4172
c19d1205 4173 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4174 {
c19d1205 4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4176 return;
4177 }
4178
c19d1205
ZW
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4181
c19d1205
ZW
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4fa3602b 4188 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4189 unwind.sp_restored = 1;
b05fe5cf
ZW
4190}
4191
c19d1205
ZW
4192/* Parse an unwind_pad directive. */
4193
b05fe5cf 4194static void
c19d1205 4195s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4196{
c19d1205 4197 int offset;
b05fe5cf 4198
921e5f0a 4199 if (!unwind.proc_start)
c921be7d 4200 as_bad (MISSING_FNSTART);
921e5f0a 4201
c19d1205
ZW
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
b99bd4ef 4204
c19d1205
ZW
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
b99bd4ef 4211
c19d1205
ZW
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217}
4218
4219/* Parse an unwind_setfp directive. */
4220
4221static void
4222s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4223{
c19d1205
ZW
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
921e5f0a 4228 if (!unwind.proc_start)
c921be7d 4229 as_bad (MISSING_FNSTART);
921e5f0a 4230
dcbf9037 4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
dcbf9037 4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4236
c19d1205
ZW
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
b99bd4ef 4243
c19d1205
ZW
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
a737bd4d 4252
c19d1205 4253 demand_empty_rest_of_line ();
a737bd4d 4254
fdfde340 4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4256 {
c19d1205
ZW
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
a737bd4d
NC
4260 }
4261
c19d1205
ZW
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
fdfde340 4265 if (sp_reg == REG_SP)
c19d1205
ZW
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
a737bd4d
NC
4269}
4270
c19d1205
ZW
4271/* Parse an unwind_raw directive. */
4272
4273static void
4274s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4275{
c19d1205 4276 expressionS exp;
708587a4 4277 /* This is an arbitrary limit. */
c19d1205
ZW
4278 unsigned char op[16];
4279 int count;
a737bd4d 4280
921e5f0a 4281 if (!unwind.proc_start)
c921be7d 4282 as_bad (MISSING_FNSTART);
921e5f0a 4283
c19d1205
ZW
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4287 {
c19d1205
ZW
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
a737bd4d 4293
c19d1205
ZW
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
a737bd4d 4300
c19d1205 4301 count = 0;
a737bd4d 4302
c19d1205
ZW
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
a737bd4d 4310 }
c19d1205 4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4312 {
c19d1205
ZW
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
a737bd4d 4316 }
c19d1205 4317 op[count++] = exp.X_add_number;
a737bd4d 4318
c19d1205
ZW
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
a737bd4d 4322
c19d1205
ZW
4323 expression (&exp);
4324 }
b99bd4ef 4325
c19d1205
ZW
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
b99bd4ef 4329
c19d1205 4330 demand_empty_rest_of_line ();
b99bd4ef 4331}
ee065d83
PB
4332
4333
4334/* Parse a .eabi_attribute directive. */
4335
4336static void
4337s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338{
ee3c0378
AS
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4343}
4344
0855e32b
NS
4345/* Emit a tls fix for the symbol. */
4346
4347static void
4348s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349{
4350 char *p;
4351 expressionS exp;
4352#ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354#endif
4355
4356#ifdef md_cons_align
4357 md_cons_align (4);
4358#endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367}
cdf9ccec 4368#endif /* OBJ_ELF */
0855e32b 4369
ee065d83 4370static void s_arm_arch (int);
7a1d4c38 4371static void s_arm_object_arch (int);
ee065d83
PB
4372static void s_arm_cpu (int);
4373static void s_arm_fpu (int);
69133863 4374static void s_arm_arch_extension (int);
b99bd4ef 4375
f0927246
NC
4376#ifdef TE_PE
4377
4378static void
5f4273c7 4379pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4380{
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395}
4396#endif /* TE_PE */
4397
c19d1205
ZW
4398/* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
b99bd4ef 4403
c19d1205 4404const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4405{
c19d1205
ZW
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
dcbf9037
JB
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
c19d1205
ZW
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
8463be01
PB
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
7a1d4c38 4426 { "object_arch", s_arm_object_arch, 0 },
8463be01 4427 { "fpu", s_arm_fpu, 0 },
69133863 4428 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4429#ifdef OBJ_ELF
c921be7d
NC
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
fa073d69 4443 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4450#else
4451 { "word", cons, 4},
f0927246
NC
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4461#endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
f0927246
NC
4465#ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467#endif
c19d1205
ZW
4468 { 0, 0, 0 }
4469};
4470\f
4471/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4472
c19d1205
ZW
4473/* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
b99bd4ef 4478
c19d1205
ZW
4479static int
4480parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482{
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
b99bd4ef 4486 {
c19d1205
ZW
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
b99bd4ef 4490
c19d1205
ZW
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
b99bd4ef 4496
c19d1205
ZW
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499}
b99bd4ef 4500
5287ad62 4501/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505static int
4506parse_big_immediate (char **str, int i)
4507{
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
036dc3f7
PB
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
58ad575f 4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
5287ad62 4526 else if (exp.X_op == O_big
95b75c01 4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4530
5287ad62
JB
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4534 gas_assert (parts != 0);
95b75c01
NC
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
5287ad62
JB
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
5f4273c7 4565
5287ad62
JB
4566 *str = ptr;
4567
4568 return SUCCESS;
4569}
4570
c19d1205
ZW
4571/* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
b99bd4ef 4573
c19d1205
ZW
4574static int
4575parse_fpa_immediate (char ** str)
4576{
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
b99bd4ef 4582
c19d1205
ZW
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
b99bd4ef 4585
c19d1205
ZW
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4589 {
c19d1205 4590 char *start = *str;
b99bd4ef 4591
c19d1205
ZW
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
b99bd4ef 4598
c19d1205
ZW
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
b99bd4ef 4603
c19d1205 4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4605
c19d1205
ZW
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4613 {
c19d1205
ZW
4614 if (words[j] != fp_values[i][j])
4615 break;
b99bd4ef
NC
4616 }
4617
c19d1205 4618 if (j == MAX_LITTLENUMS)
b99bd4ef 4619 {
c19d1205
ZW
4620 *str = save_in;
4621 return i + 8;
b99bd4ef
NC
4622 }
4623 }
4624 }
b99bd4ef 4625
c19d1205
ZW
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
b99bd4ef 4645
c19d1205
ZW
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
b99bd4ef
NC
4654 }
4655
c19d1205
ZW
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
b99bd4ef
NC
4660}
4661
136da414
JB
4662/* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665static int
4666is_quarter_float (unsigned imm)
4667{
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670}
4671
4672/* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
136da414
JB
4677
4678static unsigned
4679parse_qfloat_immediate (char **ccp, int *immed)
4680{
4681 char *str = *ccp;
c96612cc 4682 char *fpnum;
136da414 4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4684 int found_fpchar = 0;
5f4273c7 4685
136da414 4686 skip_past_char (&str, '#');
5f4273c7 4687
c96612cc
JB
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
5f4273c7 4710
136da414
JB
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
5f4273c7 4715
136da414
JB
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
5f4273c7 4722
c96612cc 4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
5f4273c7 4729
136da414
JB
4730 return SUCCESS;
4731 }
5f4273c7 4732
136da414
JB
4733 return FAIL;
4734}
4735
c19d1205
ZW
4736/* Shift operands. */
4737enum shift_kind
b99bd4ef 4738{
c19d1205
ZW
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740};
b99bd4ef 4741
c19d1205
ZW
4742struct asm_shift_name
4743{
4744 const char *name;
4745 enum shift_kind kind;
4746};
b99bd4ef 4747
c19d1205
ZW
4748/* Third argument to parse_shift. */
4749enum parse_shift_mode
4750{
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756};
b99bd4ef 4757
c19d1205
ZW
4758/* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
b99bd4ef 4760
c19d1205
ZW
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
b99bd4ef 4764
c19d1205
ZW
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4767
c19d1205
ZW
4768static int
4769parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4770{
c19d1205
ZW
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
b99bd4ef 4776
c19d1205
ZW
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
b99bd4ef 4779
c19d1205 4780 if (p == *str)
b99bd4ef 4781 {
c19d1205
ZW
4782 inst.error = _("shift expression expected");
4783 return FAIL;
b99bd4ef
NC
4784 }
4785
21d799b5
NC
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
c19d1205
ZW
4788
4789 if (shift_name == NULL)
b99bd4ef 4790 {
c19d1205
ZW
4791 inst.error = _("shift expression expected");
4792 return FAIL;
b99bd4ef
NC
4793 }
4794
c19d1205 4795 shift = shift_name->kind;
b99bd4ef 4796
c19d1205
ZW
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
b99bd4ef 4801
c19d1205
ZW
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
b99bd4ef 4809
c19d1205
ZW
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
b99bd4ef 4817
c19d1205
ZW
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
b99bd4ef 4825
c19d1205
ZW
4826 default: abort ();
4827 }
b99bd4ef 4828
c19d1205
ZW
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
b99bd4ef 4833
c19d1205 4834 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
b99bd4ef
NC
4847}
4848
c19d1205 4849/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4850
c19d1205
ZW
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
b99bd4ef 4855
c19d1205
ZW
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4858 is deferred to md_apply_fix. */
b99bd4ef 4859
c19d1205
ZW
4860static int
4861parse_shifter_operand (char **str, int i)
4862{
4863 int value;
91d6fa6a 4864 expressionS exp;
b99bd4ef 4865
dcbf9037 4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
b99bd4ef 4870
c19d1205
ZW
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4874
c19d1205
ZW
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
b99bd4ef 4877
c19d1205
ZW
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4880 }
4881
c19d1205
ZW
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
b99bd4ef 4884
c19d1205 4885 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4886 {
c19d1205 4887 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4889 return FAIL;
b99bd4ef 4890
91d6fa6a 4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
b99bd4ef 4896
91d6fa6a 4897 value = exp.X_add_number;
c19d1205
ZW
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
09d92015 4908
a415b1cd
JB
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
09d92015
MM
4912 }
4913
c19d1205
ZW
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
09d92015
MM
4917}
4918
4962c51a
MS
4919/* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926struct group_reloc_table_entry
4927{
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933};
4934
4935typedef enum
4936{
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942} group_reloc_type;
4943
4944static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998/* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005static int
5006find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007{
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5f4273c7
NC
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
4962c51a
MS
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023}
5024
5025/* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039static parse_operand_result
5040parse_shifter_operand_group_reloc (char **str, int i)
5041{
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
21d799b5 5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5070 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079}
5080
8e560766
MGD
5081/* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5083
8e560766
MGD
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085static parse_operand_result
5086parse_neon_alignment (char **str, int i)
5087{
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106}
5107
c19d1205
ZW
5108/* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
09d92015 5110
c19d1205 5111 Preindexed addressing (.preind=1):
09d92015 5112
c19d1205
ZW
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5117
c19d1205 5118 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5119
c19d1205 5120 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5121
c19d1205
ZW
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5126
c19d1205 5127 Unindexed addressing (.preind=0, .postind=0):
09d92015 5128
c19d1205 5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5130
c19d1205 5131 Other:
09d92015 5132
c19d1205
ZW
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5136
c19d1205
ZW
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
4962c51a
MS
5140static parse_operand_result
5141parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
09d92015 5143{
c19d1205
ZW
5144 char *p = *str;
5145 int reg;
09d92015 5146
c19d1205 5147 if (skip_past_char (&p, '[') == FAIL)
09d92015 5148 {
c19d1205
ZW
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
974da60d 5151 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
974da60d 5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5158
c19d1205 5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5160 return PARSE_OPERAND_FAIL;
09d92015 5161
c19d1205 5162 *str = p;
4962c51a 5163 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5164 }
5165
dcbf9037 5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5167 {
c19d1205 5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5169 return PARSE_OPERAND_FAIL;
09d92015 5170 }
c19d1205
ZW
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
09d92015 5173
c19d1205 5174 if (skip_past_comma (&p) == SUCCESS)
09d92015 5175 {
c19d1205 5176 inst.operands[i].preind = 1;
09d92015 5177
c19d1205
ZW
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
dcbf9037 5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5182 {
c19d1205
ZW
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5188 return PARSE_OPERAND_FAIL;
c19d1205 5189 }
5287ad62 5190 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5196
8e560766
MGD
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
c19d1205
ZW
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
4962c51a 5207
5f4273c7
NC
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
21d799b5 5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5238 break;
5239
5240 case GROUP_LDRS:
21d799b5 5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5242 break;
5243
5244 case GROUP_LDC:
21d799b5 5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5246 break;
5247
5248 default:
9c2799c2 5249 gas_assert (0);
4962c51a
MS
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
26d97720
NS
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
09d92015
MM
5277 }
5278 }
8e560766
MGD
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5284
8e560766
MGD
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
09d92015 5288
c19d1205 5289 if (skip_past_char (&p, ']') == FAIL)
09d92015 5290 {
c19d1205 5291 inst.error = _("']' expected");
4962c51a 5292 return PARSE_OPERAND_FAIL;
09d92015
MM
5293 }
5294
c19d1205
ZW
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
09d92015 5297
c19d1205 5298 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5299 {
c19d1205
ZW
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5304 0, 255, TRUE) == FAIL)
4962c51a 5305 return PARSE_OPERAND_FAIL;
09d92015 5306
c19d1205
ZW
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5310 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
4962c51a 5315 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5316 }
5317 *str = p;
4962c51a 5318 return PARSE_OPERAND_SUCCESS;
09d92015 5319 }
c19d1205
ZW
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
09d92015 5324
c19d1205
ZW
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5328 return PARSE_OPERAND_FAIL;
c19d1205 5329 }
09d92015 5330
c19d1205
ZW
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5333
dcbf9037 5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5335 {
5287ad62
JB
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
c19d1205 5342 inst.operands[i].immisreg = 1;
a737bd4d 5343
c19d1205
ZW
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5346 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5347 }
5348 else
5349 {
26d97720 5350 char *q = p;
c19d1205
ZW
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5357 return PARSE_OPERAND_FAIL;
26d97720
NS
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
c19d1205
ZW
5371 }
5372 }
a737bd4d
NC
5373 }
5374
c19d1205
ZW
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
4962c51a
MS
5384 return PARSE_OPERAND_SUCCESS;
5385}
5386
5387static int
5388parse_address (char **str, int i)
5389{
21d799b5 5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5391 ? SUCCESS : FAIL;
5392}
5393
5394static parse_operand_result
5395parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396{
5397 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5398}
5399
b6895b4f
PB
5400/* Parse an operand for a MOVW or MOVT instruction. */
5401static int
5402parse_half (char **str)
5403{
5404 char * p;
5f4273c7 5405
b6895b4f
PB
5406 p = *str;
5407 skip_past_char (&p, '#');
5f4273c7 5408 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5f4273c7 5416 skip_whitespace (p);
b6895b4f
PB
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438}
5439
c19d1205 5440/* Miscellaneous. */
a737bd4d 5441
c19d1205
ZW
5442/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444static int
d2cd1205 5445parse_psr (char **str, bfd_boolean lhs)
09d92015 5446{
c19d1205
ZW
5447 char *p;
5448 unsigned long psr_field;
62b3e311
PB
5449 const struct asm_psr *psr;
5450 char *start;
d2cd1205 5451 bfd_boolean is_apsr = FALSE;
ac7f631b 5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5453
a4482bb6
NC
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
c19d1205
ZW
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
62b3e311 5463 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
fa94de6b 5467
d2cd1205
JB
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
62b3e311
PB
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
d2cd1205
JB
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
21d799b5
NC
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
d2cd1205 5499
62b3e311
PB
5500 if (!psr)
5501 return FAIL;
09d92015 5502
d2cd1205
JB
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
62b3e311 5512 *str = p;
d2cd1205
JB
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5518 }
d2cd1205
JB
5519 else
5520 goto unsupported_psr;
09d92015 5521
62b3e311 5522 p += 4;
d2cd1205 5523check_suffix:
c19d1205
ZW
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
c19d1205
ZW
5527 p++;
5528 start = p;
a737bd4d 5529
c19d1205
ZW
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
a737bd4d 5533
d2cd1205
JB
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
fa94de6b 5540
d2cd1205
JB
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
fa94de6b 5560
d2cd1205
JB
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
fa94de6b 5564
d2cd1205
JB
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
fa94de6b 5568
d2cd1205
JB
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
fa94de6b 5574
d2cd1205
JB
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
fa94de6b 5577
d2cd1205
JB
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
fa94de6b 5589
d2cd1205
JB
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
a737bd4d 5604
d2cd1205
JB
5605 psr_field |= psr->field;
5606 }
a737bd4d 5607 }
c19d1205 5608 else
a737bd4d 5609 {
c19d1205
ZW
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
d2cd1205
JB
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
a737bd4d 5625 }
c19d1205
ZW
5626 *str = p;
5627 return psr_field;
a737bd4d 5628
d2cd1205
JB
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
c19d1205
ZW
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
a737bd4d
NC
5637}
5638
c19d1205
ZW
5639/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5641
c19d1205
ZW
5642static int
5643parse_cps_flags (char **str)
a737bd4d 5644{
c19d1205
ZW
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
a737bd4d 5648
c19d1205
ZW
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
a737bd4d 5654
c19d1205
ZW
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5658
c19d1205
ZW
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
a737bd4d 5663
c19d1205
ZW
5664 done:
5665 if (saw_a_flag == 0)
a737bd4d 5666 {
c19d1205
ZW
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
a737bd4d 5669 }
a737bd4d 5670
c19d1205
ZW
5671 *str = s - 1;
5672 return val;
a737bd4d
NC
5673}
5674
c19d1205
ZW
5675/* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5677
5678static int
c19d1205 5679parse_endian_specifier (char **str)
a737bd4d 5680{
c19d1205
ZW
5681 int little_endian;
5682 char *s = *str;
a737bd4d 5683
c19d1205
ZW
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
a737bd4d 5689 {
c19d1205 5690 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5691 return FAIL;
5692 }
5693
c19d1205 5694 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5695 {
c19d1205 5696 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5697 return FAIL;
5698 }
5699
c19d1205
ZW
5700 *str = s + 2;
5701 return little_endian;
5702}
a737bd4d 5703
c19d1205
ZW
5704/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708static int
5709parse_ror (char **str)
5710{
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
a737bd4d 5717 {
c19d1205 5718 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5719 return FAIL;
5720 }
c19d1205
ZW
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
a737bd4d 5726 {
c19d1205
ZW
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5734 return FAIL;
5735 }
c19d1205 5736}
a737bd4d 5737
c19d1205
ZW
5738/* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740static int
5741parse_cond (char **str)
5742{
c462b453 5743 char *q;
c19d1205 5744 const struct asm_cond *c;
c462b453
PB
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
a737bd4d 5749
c462b453
PB
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
e07e6e58 5754 cond[n] = TOLOWER (*q);
c462b453
PB
5755 q++;
5756 n++;
5757 }
a737bd4d 5758
21d799b5 5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5760 if (!c)
a737bd4d 5761 {
c19d1205 5762 inst.error = _("condition required");
a737bd4d
NC
5763 return FAIL;
5764 }
5765
c19d1205
ZW
5766 *str = q;
5767 return c->value;
5768}
5769
e797f7e0
MGD
5770/* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772static bfd_boolean
5773mark_feature_used (const arm_feature_set *feature)
5774{
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787}
5788
62b3e311
PB
5789/* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791static int
5792parse_barrier (char **str)
5793{
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
21d799b5
NC
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
62b3e311
PB
5803 if (!o)
5804 return FAIL;
5805
e797f7e0
MGD
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
62b3e311
PB
5809 *str = q;
5810 return o->value;
5811}
5812
92e90b6e
PB
5813/* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815static int
5816parse_tb (char **str)
5817{
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
92e90b6e 5826
dcbf9037 5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5f4273c7 5839
dcbf9037 5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866}
5867
5287ad62
JB
5868/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
037e8744
JB
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5287ad62
JB
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875static int
5876parse_neon_mov (char **str, int *which_operand)
5877{
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
dcbf9037 5881 struct neon_type_el optype;
5f4273c7 5882
dcbf9037 5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
dcbf9037 5888 inst.operands[i].vectype = optype;
5287ad62
JB
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5f4273c7 5893
dcbf9037 5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5895 goto wanted_arm;
5f4273c7 5896
5287ad62
JB
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
037e8744 5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5902 != FAIL)
5287ad62
JB
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5f4273c7 5907
5287ad62
JB
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
dcbf9037 5913 inst.operands[i].vectype = optype;
5287ad62
JB
5914 inst.operands[i++].present = 1;
5915
dcbf9037 5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5917 {
037e8744
JB
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
037e8744 5922 inst.operands[i].present = 1;
5287ad62
JB
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
dcbf9037 5926 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5927 return FAIL;
5928 }
037e8744
JB
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5287ad62 5940 }
037e8744
JB
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5287ad62
JB
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
dcbf9037 5954 inst.operands[i].vectype = optype;
5287ad62 5955 inst.operands[i].present = 1;
5f4273c7 5956
037e8744
JB
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5f4273c7 5968
037e8744
JB
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5f4273c7 5971
037e8744
JB
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5f4273c7 5974
037e8744
JB
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
1b11b49f 5977 inst.operands[i].present = 1;
037e8744 5978 }
5287ad62 5979 }
4641781c
PB
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5287ad62
JB
5990 else
5991 {
dcbf9037 5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5993 return FAIL;
5994 }
5995 }
dcbf9037 5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
5f4273c7 6002
5287ad62
JB
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
5f4273c7 6005
dcbf9037 6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
dcbf9037 6012 inst.operands[i].vectype = optype;
5287ad62 6013 }
dcbf9037 6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
5f4273c7 6020
5287ad62
JB
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
5f4273c7 6023
037e8744 6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 6025 == FAIL)
5287ad62 6026 {
037e8744 6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
037e8744
JB
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 6035 inst.operands[i].vectype = optype;
5287ad62 6036 inst.operands[i].present = 1;
5f4273c7 6037
037e8744
JB
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
1b11b49f 6067 inst.operands[i].present = 1;
5287ad62
JB
6068 }
6069 }
6070 else
6071 {
dcbf9037 6072 first_error (_("parse error"));
5287ad62
JB
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
5f4273c7 6081 wanted_comma:
dcbf9037 6082 first_error (_("expected comma"));
5287ad62 6083 return FAIL;
5f4273c7
NC
6084
6085 wanted_arm:
dcbf9037 6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6087 return FAIL;
5287ad62
JB
6088}
6089
5be8be5d
DG
6090/* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
c19d1205
ZW
6095/* Matcher codes for parse_operands. */
6096enum operand_parse_code
6097{
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6105 optional trailing ! */
c19d1205
ZW
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
5287ad62
JB
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
037e8744 6114 OP_RVSD, /* VFP single or double precision register */
5287ad62 6115 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6116 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6117 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
037e8744 6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
5287ad62 6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6147
6148 OP_I0, /* immediate zero */
c19d1205
ZW
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
5287ad62 6152 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
5287ad62
JB
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
c19d1205 6158 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
c19d1205 6161 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
4962c51a 6169 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6170 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6183 OP_COND, /* conditional code */
92e90b6e 6184 OP_TB, /* Table branch. */
c19d1205 6185
037e8744
JB
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
c19d1205
ZW
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
5287ad62 6198 OP_oI32b, /* 1 .. 32 */
5f1af56b 6199 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6216
5be8be5d
DG
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
c19d1205
ZW
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223};
a737bd4d 6224
c19d1205
ZW
6225/* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229static int
5be8be5d 6230parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6231{
5be8be5d 6232 unsigned const int *upat = pattern;
c19d1205
ZW
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
99aad254 6235 int i, val = 0, backtrack_index = 0;
5287ad62 6236 enum arm_reg_type rtype;
4962c51a 6237 parse_operand_result result;
5be8be5d 6238 unsigned int op_parse_code;
c19d1205 6239
e07e6e58
NC
6240#define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
c19d1205 6247
e07e6e58
NC
6248#define po_reg_or_fail(regtype) \
6249 do \
dcbf9037 6250 { \
e07e6e58
NC
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
dcbf9037 6265 } \
e07e6e58
NC
6266 while (0)
6267
6268#define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
dcbf9037 6275 \
e07e6e58
NC
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286#define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295#define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306#define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314#define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
4962c51a 6324
52e7f43d
RE
6325#define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
c19d1205
ZW
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
5be8be5d
DG
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6359 {
6360 /* Remember where we are in case we need to backtrack. */
9c2799c2 6361 gas_assert (!backtrack_pos);
c19d1205
ZW
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
b6702015 6367 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6368 po_char_or_fail (',');
6369
5be8be5d 6370 switch (op_parse_code)
c19d1205
ZW
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
5be8be5d 6374 case OP_oRRnpcsp:
c19d1205 6375 case OP_RRnpc:
5be8be5d 6376 case OP_RRnpcsp:
c19d1205
ZW
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
c19d1205
ZW
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
5287ad62
JB
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
037e8744
JB
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
5287ad62
JB
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
037e8744
JB
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
5287ad62
JB
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
4316f0d2 6470 case OP_RNDQ_Ibig:
5287ad62 6471 {
4316f0d2 6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6473 break;
4316f0d2 6474 try_immbig:
5287ad62
JB
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
c19d1205
ZW
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
a737bd4d 6499
55881a11 6500 case OP_RRnpctw:
c19d1205 6501 case OP_RRw:
b6702015 6502 case OP_oRRw:
c19d1205
ZW
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5f1af56b 6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6572 {
c19d1205
ZW
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
a737bd4d 6584 }
c19d1205 6585 break;
a737bd4d 6586
b6895b4f
PB
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
e07e6e58 6592 /* Register or expression. */
c19d1205
ZW
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6595
e07e6e58 6596 /* Register or immediate. */
c19d1205
ZW
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6599
c19d1205
ZW
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
09d92015 6613
2d447fca
JM
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
e07e6e58 6617 /* Two kinds of register. */
c19d1205
ZW
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
09d92015 6633
41adaa5c
JM
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
c19d1205
ZW
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6653 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
c19d1205 6660
fa94de6b 6661 case OP_wPSR:
d2cd1205 6662 case OP_rPSR:
90ec0d68
MGD
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
d2cd1205
JB
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
037e8744
JB
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
f7c21dc7
NC
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
037e8744
JB
6699 }
6700 else
6701 goto failure;
6702 break;
6703
92e90b6e
PB
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
e07e6e58 6708 /* Register lists. */
c19d1205
ZW
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
09d92015 6717
c19d1205 6718 case OP_VRSLST:
5287ad62 6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6720 break;
09d92015 6721
c19d1205 6722 case OP_VRDLST:
5287ad62 6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6724 break;
a737bd4d 6725
037e8744
JB
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
5287ad62
JB
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
dcbf9037
JB
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
5287ad62
JB
6747 break;
6748
c19d1205
ZW
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
09d92015 6753
4962c51a
MS
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
c19d1205
ZW
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
09d92015 6772
4962c51a
MS
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
c19d1205
ZW
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
09d92015 6781
c19d1205
ZW
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
09d92015 6785
c19d1205
ZW
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
09d92015 6789
c19d1205 6790 default:
5be8be5d 6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6792 }
09d92015 6793
c19d1205
ZW
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
5be8be5d 6797 switch (op_parse_code)
c19d1205
ZW
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
b6702015 6803 case OP_oRRw:
c19d1205
ZW
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
09d92015 6808
5be8be5d
DG
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
55881a11 6820 case OP_RRnpctw:
fa94de6b
RM
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
55881a11
MGD
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
c19d1205
ZW
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
d2cd1205
JB
6830 case OP_wPSR:
6831 case OP_rPSR:
c19d1205 6832 case OP_COND:
52e7f43d 6833 case OP_oBARRIER_I15:
c19d1205
ZW
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
037e8744 6837 case OP_VRSDLST:
5287ad62
JB
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
c19d1205
ZW
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
a737bd4d 6844
c19d1205
ZW
6845 default:
6846 break;
6847 }
09d92015 6848
c19d1205
ZW
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
09d92015 6852
c19d1205 6853 bad_args:
09d92015 6854 inst.error = BAD_ARGS;
c19d1205
ZW
6855
6856 failure:
6857 if (!backtrack_pos)
d252fdde
PB
6858 {
6859 /* The parse routine should already have set inst.error, but set a
5f4273c7 6860 default here just in case. */
d252fdde
PB
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
c19d1205
ZW
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
d252fdde
PB
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
c19d1205
ZW
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
09d92015 6884 }
09d92015 6885
c19d1205
ZW
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
09d92015 6889
c19d1205 6890 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6891}
6892
c19d1205
ZW
6893#undef po_char_or_fail
6894#undef po_reg_or_fail
6895#undef po_reg_or_goto
6896#undef po_imm_or_fail
5287ad62 6897#undef po_scalar_or_fail
52e7f43d 6898#undef po_barrier_or_imm
e07e6e58 6899
c19d1205 6900/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6901#define constraint(expr, err) \
6902 do \
c19d1205 6903 { \
e07e6e58
NC
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
c19d1205 6909 } \
e07e6e58 6910 while (0)
c19d1205 6911
fdfde340
JM
6912/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915#define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
94206790
MM
6924/* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926#define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
c19d1205
ZW
6932/* Functions for operand encoding. ARM, then Thumb. */
6933
6934#define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936/* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939static unsigned int
6940encode_arm_immediate (unsigned int val)
09d92015 6941{
c19d1205
ZW
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
09d92015
MM
6949}
6950
c19d1205
ZW
6951/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953static unsigned int
6954encode_thumb32_immediate (unsigned int val)
09d92015 6955{
c19d1205 6956 unsigned int a, i;
09d92015 6957
9c3c69f2 6958 if (val <= 0xff)
c19d1205 6959 return val;
a737bd4d 6960
9c3c69f2 6961 for (i = 1; i <= 24; i++)
09d92015 6962 {
9c3c69f2
PB
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6966 }
a737bd4d 6967
c19d1205
ZW
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
09d92015 6973
c19d1205
ZW
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
a737bd4d 6977
c19d1205 6978 return FAIL;
09d92015 6979}
5287ad62 6980/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6981
6982static void
5287ad62
JB
6983encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984{
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
b1cc4aeb 6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6992 fpu_vfp_ext_d32);
5287ad62
JB
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6995 fpu_vfp_ext_d32);
5287ad62
JB
6996 }
6997 else
6998 {
dcbf9037 6999 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
7000 return;
7001 }
7002 }
7003
c19d1205 7004 switch (pos)
09d92015 7005 {
c19d1205
ZW
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
5287ad62
JB
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
5f4273c7 7021
5287ad62
JB
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
5f4273c7 7025
5287ad62
JB
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
c19d1205
ZW
7030 default:
7031 abort ();
09d92015 7032 }
09d92015
MM
7033}
7034
c19d1205 7035/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7036 if any, is handled by md_apply_fix. */
09d92015 7037static void
c19d1205 7038encode_arm_shift (int i)
09d92015 7039{
c19d1205
ZW
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
09d92015 7043 {
c19d1205
ZW
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7052 }
c19d1205 7053}
09d92015 7054
c19d1205
ZW
7055static void
7056encode_arm_shifter_operand (int i)
7057{
7058 if (inst.operands[i].isreg)
09d92015 7059 {
c19d1205
ZW
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
09d92015 7062 }
c19d1205 7063 else
a415b1cd
JB
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
09d92015
MM
7069}
7070
c19d1205 7071/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7072static void
c19d1205 7073encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7074{
2b2f5df9
NC
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
c19d1205 7080 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7081
c19d1205 7082 if (inst.operands[i].preind)
09d92015 7083 {
c19d1205
ZW
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
09d92015 7092
c19d1205
ZW
7093 }
7094 else if (inst.operands[i].postind)
7095 {
9c2799c2 7096 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
09d92015 7101 {
c19d1205 7102 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7103 return;
7104 }
7105
c19d1205
ZW
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
09d92015
MM
7112}
7113
c19d1205
ZW
7114/* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
a737bd4d 7118static void
c19d1205 7119encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7120{
5be8be5d
DG
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
c19d1205 7123 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7124
c19d1205 7125 if (inst.operands[i].immisreg)
09d92015 7126 {
5be8be5d
DG
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
c19d1205
ZW
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
09d92015 7144 }
c19d1205 7145 else /* immediate offset in inst.reloc */
09d92015 7146 {
5be8be5d
DG
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7155 BAD_PC_ADDRESSING);
23a10334 7156
dc5ec521 7157 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7162 }
7163
c19d1205 7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
09d92015 7171 }
09d92015
MM
7172}
7173
c19d1205
ZW
7174/* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179static void
7180encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7181{
c19d1205 7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7183 {
c19d1205
ZW
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
09d92015 7186 }
a737bd4d 7187
c19d1205 7188 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7189
c19d1205
ZW
7190 if (inst.operands[i].immisreg)
7191 {
5be8be5d
DG
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
c19d1205
ZW
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
5be8be5d
DG
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
c19d1205
ZW
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
c19d1205 7213 }
a737bd4d
NC
7214}
7215
c19d1205
ZW
7216/* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
09d92015 7223
c19d1205
ZW
7224static int
7225encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7226{
c19d1205 7227 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7228
9c2799c2 7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7230
c19d1205 7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7232 {
9c2799c2 7233 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
09d92015 7242 }
a737bd4d 7243
c19d1205
ZW
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
a737bd4d 7246
c19d1205 7247 if (inst.operands[i].writeback)
09d92015 7248 {
c19d1205
ZW
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
09d92015 7260 }
a737bd4d 7261
c19d1205 7262 if (reloc_override)
21d799b5 7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
26d97720
NS
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
c19d1205
ZW
7278 return SUCCESS;
7279}
a737bd4d 7280
c19d1205
ZW
7281/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
a737bd4d 7287
c19d1205
ZW
7288 inst.operands[i] describes the destination register. */
7289
c921be7d 7290static bfd_boolean
c19d1205
ZW
7291move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292{
53365c0d
PB
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
09d92015 7301 {
c19d1205 7302 inst.error = _("invalid pseudo operation");
c921be7d 7303 return TRUE;
09d92015 7304 }
c19d1205 7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7306 {
7307 inst.error = _("constant expression expected");
c921be7d 7308 return TRUE;
09d92015 7309 }
c19d1205 7310 if (inst.reloc.exp.X_op == O_constant)
09d92015 7311 {
c19d1205
ZW
7312 if (thumb_p)
7313 {
53365c0d 7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7319 return TRUE;
c19d1205
ZW
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
c921be7d 7331 return TRUE;
c19d1205 7332 }
09d92015 7333
c19d1205
ZW
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
c921be7d 7341 return TRUE;
c19d1205
ZW
7342 }
7343 }
09d92015
MM
7344 }
7345
c19d1205
ZW
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
c921be7d 7349 return TRUE;
c19d1205
ZW
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
c921be7d 7360 return FALSE;
09d92015
MM
7361}
7362
5f4273c7 7363/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
09d92015 7366
a737bd4d 7367static void
c19d1205 7368do_noargs (void)
09d92015 7369{
c19d1205 7370}
a737bd4d 7371
c19d1205
ZW
7372static void
7373do_rd (void)
7374{
7375 inst.instruction |= inst.operands[0].reg << 12;
7376}
a737bd4d 7377
c19d1205
ZW
7378static void
7379do_rd_rm (void)
7380{
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383}
09d92015 7384
c19d1205
ZW
7385static void
7386do_rd_rn (void)
7387{
7388 inst.instruction |= inst.operands[0].reg << 12;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390}
a737bd4d 7391
c19d1205
ZW
7392static void
7393do_rn_rd (void)
7394{
7395 inst.instruction |= inst.operands[0].reg << 16;
7396 inst.instruction |= inst.operands[1].reg << 12;
7397}
09d92015 7398
59d09be6
MGD
7399static bfd_boolean
7400check_obsolete (const arm_feature_set *feature, const char *msg)
7401{
7402 if (ARM_CPU_IS_ANY (cpu_variant))
7403 {
7404 as_warn ("%s", msg);
7405 return TRUE;
7406 }
7407 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7408 {
7409 as_bad ("%s", msg);
7410 return TRUE;
7411 }
7412
7413 return FALSE;
7414}
7415
c19d1205
ZW
7416static void
7417do_rd_rm_rn (void)
7418{
9a64e435 7419 unsigned Rn = inst.operands[2].reg;
708587a4 7420 /* Enforce restrictions on SWP instruction. */
9a64e435 7421 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7422 {
7423 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7424 _("Rn must not overlap other operands"));
7425
59d09be6
MGD
7426 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7427 */
7428 if (!check_obsolete (&arm_ext_v8,
7429 _("swp{b} use is obsoleted for ARMv8 and later"))
7430 && warn_on_deprecated
7431 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7432 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 7433 }
59d09be6 7434
c19d1205
ZW
7435 inst.instruction |= inst.operands[0].reg << 12;
7436 inst.instruction |= inst.operands[1].reg;
9a64e435 7437 inst.instruction |= Rn << 16;
c19d1205 7438}
09d92015 7439
c19d1205
ZW
7440static void
7441do_rd_rn_rm (void)
7442{
7443 inst.instruction |= inst.operands[0].reg << 12;
7444 inst.instruction |= inst.operands[1].reg << 16;
7445 inst.instruction |= inst.operands[2].reg;
7446}
a737bd4d 7447
c19d1205
ZW
7448static void
7449do_rm_rd_rn (void)
7450{
5be8be5d
DG
7451 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7452 constraint (((inst.reloc.exp.X_op != O_constant
7453 && inst.reloc.exp.X_op != O_illegal)
7454 || inst.reloc.exp.X_add_number != 0),
7455 BAD_ADDR_MODE);
c19d1205
ZW
7456 inst.instruction |= inst.operands[0].reg;
7457 inst.instruction |= inst.operands[1].reg << 12;
7458 inst.instruction |= inst.operands[2].reg << 16;
7459}
09d92015 7460
c19d1205
ZW
7461static void
7462do_imm0 (void)
7463{
7464 inst.instruction |= inst.operands[0].imm;
7465}
09d92015 7466
c19d1205
ZW
7467static void
7468do_rd_cpaddr (void)
7469{
7470 inst.instruction |= inst.operands[0].reg << 12;
7471 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7472}
a737bd4d 7473
c19d1205
ZW
7474/* ARM instructions, in alphabetical order by function name (except
7475 that wrapper functions appear immediately after the function they
7476 wrap). */
09d92015 7477
c19d1205
ZW
7478/* This is a pseudo-op of the form "adr rd, label" to be converted
7479 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7480
7481static void
c19d1205 7482do_adr (void)
09d92015 7483{
c19d1205 7484 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7485
c19d1205
ZW
7486 /* Frag hacking will turn this into a sub instruction if the offset turns
7487 out to be negative. */
7488 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7489 inst.reloc.pc_rel = 1;
2fc8bdac 7490 inst.reloc.exp.X_add_number -= 8;
c19d1205 7491}
b99bd4ef 7492
c19d1205
ZW
7493/* This is a pseudo-op of the form "adrl rd, label" to be converted
7494 into a relative address of the form:
7495 add rd, pc, #low(label-.-8)"
7496 add rd, rd, #high(label-.-8)" */
b99bd4ef 7497
c19d1205
ZW
7498static void
7499do_adrl (void)
7500{
7501 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7502
c19d1205
ZW
7503 /* Frag hacking will turn this into a sub instruction if the offset turns
7504 out to be negative. */
7505 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7506 inst.reloc.pc_rel = 1;
7507 inst.size = INSN_SIZE * 2;
2fc8bdac 7508 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7509}
7510
b99bd4ef 7511static void
c19d1205 7512do_arit (void)
b99bd4ef 7513{
c19d1205
ZW
7514 if (!inst.operands[1].present)
7515 inst.operands[1].reg = inst.operands[0].reg;
7516 inst.instruction |= inst.operands[0].reg << 12;
7517 inst.instruction |= inst.operands[1].reg << 16;
7518 encode_arm_shifter_operand (2);
7519}
b99bd4ef 7520
62b3e311
PB
7521static void
7522do_barrier (void)
7523{
7524 if (inst.operands[0].present)
7525 {
7526 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7527 && inst.operands[0].imm > 0xf
7528 && inst.operands[0].imm < 0x0,
bd3ba5d1 7529 _("bad barrier type"));
62b3e311
PB
7530 inst.instruction |= inst.operands[0].imm;
7531 }
7532 else
7533 inst.instruction |= 0xf;
7534}
7535
c19d1205
ZW
7536static void
7537do_bfc (void)
7538{
7539 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7540 constraint (msb > 32, _("bit-field extends past end of register"));
7541 /* The instruction encoding stores the LSB and MSB,
7542 not the LSB and width. */
7543 inst.instruction |= inst.operands[0].reg << 12;
7544 inst.instruction |= inst.operands[1].imm << 7;
7545 inst.instruction |= (msb - 1) << 16;
7546}
b99bd4ef 7547
c19d1205
ZW
7548static void
7549do_bfi (void)
7550{
7551 unsigned int msb;
b99bd4ef 7552
c19d1205
ZW
7553 /* #0 in second position is alternative syntax for bfc, which is
7554 the same instruction but with REG_PC in the Rm field. */
7555 if (!inst.operands[1].isreg)
7556 inst.operands[1].reg = REG_PC;
b99bd4ef 7557
c19d1205
ZW
7558 msb = inst.operands[2].imm + inst.operands[3].imm;
7559 constraint (msb > 32, _("bit-field extends past end of register"));
7560 /* The instruction encoding stores the LSB and MSB,
7561 not the LSB and width. */
7562 inst.instruction |= inst.operands[0].reg << 12;
7563 inst.instruction |= inst.operands[1].reg;
7564 inst.instruction |= inst.operands[2].imm << 7;
7565 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7566}
7567
b99bd4ef 7568static void
c19d1205 7569do_bfx (void)
b99bd4ef 7570{
c19d1205
ZW
7571 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7572 _("bit-field extends past end of register"));
7573 inst.instruction |= inst.operands[0].reg << 12;
7574 inst.instruction |= inst.operands[1].reg;
7575 inst.instruction |= inst.operands[2].imm << 7;
7576 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7577}
09d92015 7578
c19d1205
ZW
7579/* ARM V5 breakpoint instruction (argument parse)
7580 BKPT <16 bit unsigned immediate>
7581 Instruction is not conditional.
7582 The bit pattern given in insns[] has the COND_ALWAYS condition,
7583 and it is an error if the caller tried to override that. */
b99bd4ef 7584
c19d1205
ZW
7585static void
7586do_bkpt (void)
7587{
7588 /* Top 12 of 16 bits to bits 19:8. */
7589 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7590
c19d1205
ZW
7591 /* Bottom 4 of 16 bits to bits 3:0. */
7592 inst.instruction |= inst.operands[0].imm & 0xf;
7593}
09d92015 7594
c19d1205
ZW
7595static void
7596encode_branch (int default_reloc)
7597{
7598 if (inst.operands[0].hasreloc)
7599 {
0855e32b
NS
7600 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7601 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7602 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7603 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7604 ? BFD_RELOC_ARM_PLT32
7605 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7606 }
b99bd4ef 7607 else
9ae92b05 7608 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7609 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7610}
7611
b99bd4ef 7612static void
c19d1205 7613do_branch (void)
b99bd4ef 7614{
39b41c9c
PB
7615#ifdef OBJ_ELF
7616 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7617 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7618 else
7619#endif
7620 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7621}
7622
7623static void
7624do_bl (void)
7625{
7626#ifdef OBJ_ELF
7627 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7628 {
7629 if (inst.cond == COND_ALWAYS)
7630 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7631 else
7632 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7633 }
7634 else
7635#endif
7636 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7637}
b99bd4ef 7638
c19d1205
ZW
7639/* ARM V5 branch-link-exchange instruction (argument parse)
7640 BLX <target_addr> ie BLX(1)
7641 BLX{<condition>} <Rm> ie BLX(2)
7642 Unfortunately, there are two different opcodes for this mnemonic.
7643 So, the insns[].value is not used, and the code here zaps values
7644 into inst.instruction.
7645 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7646
c19d1205
ZW
7647static void
7648do_blx (void)
7649{
7650 if (inst.operands[0].isreg)
b99bd4ef 7651 {
c19d1205
ZW
7652 /* Arg is a register; the opcode provided by insns[] is correct.
7653 It is not illegal to do "blx pc", just useless. */
7654 if (inst.operands[0].reg == REG_PC)
7655 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7656
c19d1205
ZW
7657 inst.instruction |= inst.operands[0].reg;
7658 }
7659 else
b99bd4ef 7660 {
c19d1205 7661 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7662 conditionally, and the opcode must be adjusted.
7663 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7664 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7665 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7666 inst.instruction = 0xfa000000;
267bf995 7667 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7668 }
c19d1205
ZW
7669}
7670
7671static void
7672do_bx (void)
7673{
845b51d6
PB
7674 bfd_boolean want_reloc;
7675
c19d1205
ZW
7676 if (inst.operands[0].reg == REG_PC)
7677 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7678
c19d1205 7679 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7680 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7681 it is for ARMv4t or earlier. */
7682 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7683 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7684 want_reloc = TRUE;
7685
5ad34203 7686#ifdef OBJ_ELF
845b51d6 7687 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7688#endif
584206db 7689 want_reloc = FALSE;
845b51d6
PB
7690
7691 if (want_reloc)
7692 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7693}
7694
c19d1205
ZW
7695
7696/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7697
7698static void
c19d1205 7699do_bxj (void)
a737bd4d 7700{
c19d1205
ZW
7701 if (inst.operands[0].reg == REG_PC)
7702 as_tsktsk (_("use of r15 in bxj is not really useful"));
7703
7704 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7705}
7706
c19d1205
ZW
7707/* Co-processor data operation:
7708 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7709 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7710static void
7711do_cdp (void)
7712{
7713 inst.instruction |= inst.operands[0].reg << 8;
7714 inst.instruction |= inst.operands[1].imm << 20;
7715 inst.instruction |= inst.operands[2].reg << 12;
7716 inst.instruction |= inst.operands[3].reg << 16;
7717 inst.instruction |= inst.operands[4].reg;
7718 inst.instruction |= inst.operands[5].imm << 5;
7719}
a737bd4d
NC
7720
7721static void
c19d1205 7722do_cmp (void)
a737bd4d 7723{
c19d1205
ZW
7724 inst.instruction |= inst.operands[0].reg << 16;
7725 encode_arm_shifter_operand (1);
a737bd4d
NC
7726}
7727
c19d1205
ZW
7728/* Transfer between coprocessor and ARM registers.
7729 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7730 MRC2
7731 MCR{cond}
7732 MCR2
7733
7734 No special properties. */
09d92015 7735
dcbd0d71
MGD
7736struct deprecated_coproc_regs_s
7737{
7738 unsigned cp;
7739 int opc1;
7740 unsigned crn;
7741 unsigned crm;
7742 int opc2;
7743 arm_feature_set deprecated;
7744 arm_feature_set obsoleted;
7745 const char *dep_msg;
7746 const char *obs_msg;
7747};
7748
7749#define DEPR_ACCESS_V8 \
7750 N_("This coprocessor register access is deprecated in ARMv8")
7751
7752/* Table of all deprecated coprocessor registers. */
7753static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7754{
7755 {15, 0, 7, 10, 5, /* CP15DMB. */
7756 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7757 DEPR_ACCESS_V8, NULL},
7758 {15, 0, 7, 10, 4, /* CP15DSB. */
7759 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7760 DEPR_ACCESS_V8, NULL},
7761 {15, 0, 7, 5, 4, /* CP15ISB. */
7762 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7763 DEPR_ACCESS_V8, NULL},
7764 {14, 6, 1, 0, 0, /* TEEHBR. */
7765 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7766 DEPR_ACCESS_V8, NULL},
7767 {14, 6, 0, 0, 0, /* TEECR. */
7768 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7769 DEPR_ACCESS_V8, NULL},
7770};
7771
7772#undef DEPR_ACCESS_V8
7773
7774static const size_t deprecated_coproc_reg_count =
7775 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7776
09d92015 7777static void
c19d1205 7778do_co_reg (void)
09d92015 7779{
fdfde340 7780 unsigned Rd;
dcbd0d71 7781 size_t i;
fdfde340
JM
7782
7783 Rd = inst.operands[2].reg;
7784 if (thumb_mode)
7785 {
7786 if (inst.instruction == 0xee000010
7787 || inst.instruction == 0xfe000010)
7788 /* MCR, MCR2 */
7789 reject_bad_reg (Rd);
7790 else
7791 /* MRC, MRC2 */
7792 constraint (Rd == REG_SP, BAD_SP);
7793 }
7794 else
7795 {
7796 /* MCR */
7797 if (inst.instruction == 0xe000010)
7798 constraint (Rd == REG_PC, BAD_PC);
7799 }
7800
dcbd0d71
MGD
7801 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7802 {
7803 const struct deprecated_coproc_regs_s *r =
7804 deprecated_coproc_regs + i;
7805
7806 if (inst.operands[0].reg == r->cp
7807 && inst.operands[1].imm == r->opc1
7808 && inst.operands[3].reg == r->crn
7809 && inst.operands[4].reg == r->crm
7810 && inst.operands[5].imm == r->opc2)
7811 {
7812 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7813 && warn_on_deprecated
7814 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7815 as_warn ("%s", r->dep_msg);
7816 }
7817 }
fdfde340 7818
c19d1205
ZW
7819 inst.instruction |= inst.operands[0].reg << 8;
7820 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7821 inst.instruction |= Rd << 12;
c19d1205
ZW
7822 inst.instruction |= inst.operands[3].reg << 16;
7823 inst.instruction |= inst.operands[4].reg;
7824 inst.instruction |= inst.operands[5].imm << 5;
7825}
09d92015 7826
c19d1205
ZW
7827/* Transfer between coprocessor register and pair of ARM registers.
7828 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7829 MCRR2
7830 MRRC{cond}
7831 MRRC2
b99bd4ef 7832
c19d1205 7833 Two XScale instructions are special cases of these:
09d92015 7834
c19d1205
ZW
7835 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7836 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7837
5f4273c7 7838 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7839
c19d1205
ZW
7840static void
7841do_co_reg2c (void)
7842{
fdfde340
JM
7843 unsigned Rd, Rn;
7844
7845 Rd = inst.operands[2].reg;
7846 Rn = inst.operands[3].reg;
7847
7848 if (thumb_mode)
7849 {
7850 reject_bad_reg (Rd);
7851 reject_bad_reg (Rn);
7852 }
7853 else
7854 {
7855 constraint (Rd == REG_PC, BAD_PC);
7856 constraint (Rn == REG_PC, BAD_PC);
7857 }
7858
c19d1205
ZW
7859 inst.instruction |= inst.operands[0].reg << 8;
7860 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7861 inst.instruction |= Rd << 12;
7862 inst.instruction |= Rn << 16;
c19d1205 7863 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7864}
7865
c19d1205
ZW
7866static void
7867do_cpsi (void)
7868{
7869 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7870 if (inst.operands[1].present)
7871 {
7872 inst.instruction |= CPSI_MMOD;
7873 inst.instruction |= inst.operands[1].imm;
7874 }
c19d1205 7875}
b99bd4ef 7876
62b3e311
PB
7877static void
7878do_dbg (void)
7879{
7880 inst.instruction |= inst.operands[0].imm;
7881}
7882
eea54501
MGD
7883static void
7884do_div (void)
7885{
7886 unsigned Rd, Rn, Rm;
7887
7888 Rd = inst.operands[0].reg;
7889 Rn = (inst.operands[1].present
7890 ? inst.operands[1].reg : Rd);
7891 Rm = inst.operands[2].reg;
7892
7893 constraint ((Rd == REG_PC), BAD_PC);
7894 constraint ((Rn == REG_PC), BAD_PC);
7895 constraint ((Rm == REG_PC), BAD_PC);
7896
7897 inst.instruction |= Rd << 16;
7898 inst.instruction |= Rn << 0;
7899 inst.instruction |= Rm << 8;
7900}
7901
b99bd4ef 7902static void
c19d1205 7903do_it (void)
b99bd4ef 7904{
c19d1205 7905 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7906 process it to do the validation as if in
7907 thumb mode, just in case the code gets
7908 assembled for thumb using the unified syntax. */
7909
c19d1205 7910 inst.size = 0;
e07e6e58
NC
7911 if (unified_syntax)
7912 {
7913 set_it_insn_type (IT_INSN);
7914 now_it.mask = (inst.instruction & 0xf) | 0x10;
7915 now_it.cc = inst.operands[0].imm;
7916 }
09d92015 7917}
b99bd4ef 7918
6530b175
NC
7919/* If there is only one register in the register list,
7920 then return its register number. Otherwise return -1. */
7921static int
7922only_one_reg_in_list (int range)
7923{
7924 int i = ffs (range) - 1;
7925 return (i > 15 || range != (1 << i)) ? -1 : i;
7926}
7927
09d92015 7928static void
6530b175 7929encode_ldmstm(int from_push_pop_mnem)
ea6ef066 7930{
c19d1205
ZW
7931 int base_reg = inst.operands[0].reg;
7932 int range = inst.operands[1].imm;
6530b175 7933 int one_reg;
ea6ef066 7934
c19d1205
ZW
7935 inst.instruction |= base_reg << 16;
7936 inst.instruction |= range;
ea6ef066 7937
c19d1205
ZW
7938 if (inst.operands[1].writeback)
7939 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7940
c19d1205 7941 if (inst.operands[0].writeback)
ea6ef066 7942 {
c19d1205
ZW
7943 inst.instruction |= WRITE_BACK;
7944 /* Check for unpredictable uses of writeback. */
7945 if (inst.instruction & LOAD_BIT)
09d92015 7946 {
c19d1205
ZW
7947 /* Not allowed in LDM type 2. */
7948 if ((inst.instruction & LDM_TYPE_2_OR_3)
7949 && ((range & (1 << REG_PC)) == 0))
7950 as_warn (_("writeback of base register is UNPREDICTABLE"));
7951 /* Only allowed if base reg not in list for other types. */
7952 else if (range & (1 << base_reg))
7953 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7954 }
7955 else /* STM. */
7956 {
7957 /* Not allowed for type 2. */
7958 if (inst.instruction & LDM_TYPE_2_OR_3)
7959 as_warn (_("writeback of base register is UNPREDICTABLE"));
7960 /* Only allowed if base reg not in list, or first in list. */
7961 else if ((range & (1 << base_reg))
7962 && (range & ((1 << base_reg) - 1)))
7963 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7964 }
ea6ef066 7965 }
6530b175
NC
7966
7967 /* If PUSH/POP has only one register, then use the A2 encoding. */
7968 one_reg = only_one_reg_in_list (range);
7969 if (from_push_pop_mnem && one_reg >= 0)
7970 {
7971 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7972
7973 inst.instruction &= A_COND_MASK;
7974 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7975 inst.instruction |= one_reg << 12;
7976 }
7977}
7978
7979static void
7980do_ldmstm (void)
7981{
7982 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
7983}
7984
c19d1205
ZW
7985/* ARMv5TE load-consecutive (argument parse)
7986 Mode is like LDRH.
7987
7988 LDRccD R, mode
7989 STRccD R, mode. */
7990
a737bd4d 7991static void
c19d1205 7992do_ldrd (void)
a737bd4d 7993{
c19d1205 7994 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 7995 _("first transfer register must be even"));
c19d1205
ZW
7996 constraint (inst.operands[1].present
7997 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 7998 _("can only transfer two consecutive registers"));
c19d1205
ZW
7999 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8000 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8001
c19d1205
ZW
8002 if (!inst.operands[1].present)
8003 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8004
c56791bb
RE
8005 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8006 register and the first register written; we have to diagnose
8007 overlap between the base and the second register written here. */
ea6ef066 8008
c56791bb
RE
8009 if (inst.operands[2].reg == inst.operands[1].reg
8010 && (inst.operands[2].writeback || inst.operands[2].postind))
8011 as_warn (_("base register written back, and overlaps "
8012 "second transfer register"));
b05fe5cf 8013
c56791bb
RE
8014 if (!(inst.instruction & V4_STR_BIT))
8015 {
c19d1205 8016 /* For an index-register load, the index register must not overlap the
c56791bb
RE
8017 destination (even if not write-back). */
8018 if (inst.operands[2].immisreg
8019 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8020 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8021 as_warn (_("index register overlaps transfer register"));
b05fe5cf 8022 }
c19d1205
ZW
8023 inst.instruction |= inst.operands[0].reg << 12;
8024 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
8025}
8026
8027static void
c19d1205 8028do_ldrex (void)
b05fe5cf 8029{
c19d1205
ZW
8030 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8031 || inst.operands[1].postind || inst.operands[1].writeback
8032 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
8033 || inst.operands[1].negative
8034 /* This can arise if the programmer has written
8035 strex rN, rM, foo
8036 or if they have mistakenly used a register name as the last
8037 operand, eg:
8038 strex rN, rM, rX
8039 It is very difficult to distinguish between these two cases
8040 because "rX" might actually be a label. ie the register
8041 name has been occluded by a symbol of the same name. So we
8042 just generate a general 'bad addressing mode' type error
8043 message and leave it up to the programmer to discover the
8044 true cause and fix their mistake. */
8045 || (inst.operands[1].reg == REG_PC),
8046 BAD_ADDR_MODE);
b05fe5cf 8047
c19d1205
ZW
8048 constraint (inst.reloc.exp.X_op != O_constant
8049 || inst.reloc.exp.X_add_number != 0,
8050 _("offset must be zero in ARM encoding"));
b05fe5cf 8051
5be8be5d
DG
8052 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8053
c19d1205
ZW
8054 inst.instruction |= inst.operands[0].reg << 12;
8055 inst.instruction |= inst.operands[1].reg << 16;
8056 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
8057}
8058
8059static void
c19d1205 8060do_ldrexd (void)
b05fe5cf 8061{
c19d1205
ZW
8062 constraint (inst.operands[0].reg % 2 != 0,
8063 _("even register required"));
8064 constraint (inst.operands[1].present
8065 && inst.operands[1].reg != inst.operands[0].reg + 1,
8066 _("can only load two consecutive registers"));
8067 /* If op 1 were present and equal to PC, this function wouldn't
8068 have been called in the first place. */
8069 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 8070
c19d1205
ZW
8071 inst.instruction |= inst.operands[0].reg << 12;
8072 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
8073}
8074
1be5fd2e
NC
8075/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8076 which is not a multiple of four is UNPREDICTABLE. */
8077static void
8078check_ldr_r15_aligned (void)
8079{
8080 constraint (!(inst.operands[1].immisreg)
8081 && (inst.operands[0].reg == REG_PC
8082 && inst.operands[1].reg == REG_PC
8083 && (inst.reloc.exp.X_add_number & 0x3)),
8084 _("ldr to register 15 must be 4-byte alligned"));
8085}
8086
b05fe5cf 8087static void
c19d1205 8088do_ldst (void)
b05fe5cf 8089{
c19d1205
ZW
8090 inst.instruction |= inst.operands[0].reg << 12;
8091 if (!inst.operands[1].isreg)
8092 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 8093 return;
c19d1205 8094 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 8095 check_ldr_r15_aligned ();
b05fe5cf
ZW
8096}
8097
8098static void
c19d1205 8099do_ldstt (void)
b05fe5cf 8100{
c19d1205
ZW
8101 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8102 reject [Rn,...]. */
8103 if (inst.operands[1].preind)
b05fe5cf 8104 {
bd3ba5d1
NC
8105 constraint (inst.reloc.exp.X_op != O_constant
8106 || inst.reloc.exp.X_add_number != 0,
c19d1205 8107 _("this instruction requires a post-indexed address"));
b05fe5cf 8108
c19d1205
ZW
8109 inst.operands[1].preind = 0;
8110 inst.operands[1].postind = 1;
8111 inst.operands[1].writeback = 1;
b05fe5cf 8112 }
c19d1205
ZW
8113 inst.instruction |= inst.operands[0].reg << 12;
8114 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8115}
b05fe5cf 8116
c19d1205 8117/* Halfword and signed-byte load/store operations. */
b05fe5cf 8118
c19d1205
ZW
8119static void
8120do_ldstv4 (void)
8121{
ff4a8d2b 8122 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
8123 inst.instruction |= inst.operands[0].reg << 12;
8124 if (!inst.operands[1].isreg)
8125 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 8126 return;
c19d1205 8127 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
8128}
8129
8130static void
c19d1205 8131do_ldsttv4 (void)
b05fe5cf 8132{
c19d1205
ZW
8133 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8134 reject [Rn,...]. */
8135 if (inst.operands[1].preind)
b05fe5cf 8136 {
bd3ba5d1
NC
8137 constraint (inst.reloc.exp.X_op != O_constant
8138 || inst.reloc.exp.X_add_number != 0,
c19d1205 8139 _("this instruction requires a post-indexed address"));
b05fe5cf 8140
c19d1205
ZW
8141 inst.operands[1].preind = 0;
8142 inst.operands[1].postind = 1;
8143 inst.operands[1].writeback = 1;
b05fe5cf 8144 }
c19d1205
ZW
8145 inst.instruction |= inst.operands[0].reg << 12;
8146 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8147}
b05fe5cf 8148
c19d1205
ZW
8149/* Co-processor register load/store.
8150 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8151static void
8152do_lstc (void)
8153{
8154 inst.instruction |= inst.operands[0].reg << 8;
8155 inst.instruction |= inst.operands[1].reg << 12;
8156 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
8157}
8158
b05fe5cf 8159static void
c19d1205 8160do_mlas (void)
b05fe5cf 8161{
8fb9d7b9 8162 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 8163 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 8164 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 8165 && !(inst.instruction & 0x00400000))
8fb9d7b9 8166 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 8167
c19d1205
ZW
8168 inst.instruction |= inst.operands[0].reg << 16;
8169 inst.instruction |= inst.operands[1].reg;
8170 inst.instruction |= inst.operands[2].reg << 8;
8171 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 8172}
b05fe5cf 8173
c19d1205
ZW
8174static void
8175do_mov (void)
8176{
8177 inst.instruction |= inst.operands[0].reg << 12;
8178 encode_arm_shifter_operand (1);
8179}
b05fe5cf 8180
c19d1205
ZW
8181/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8182static void
8183do_mov16 (void)
8184{
b6895b4f
PB
8185 bfd_vma imm;
8186 bfd_boolean top;
8187
8188 top = (inst.instruction & 0x00400000) != 0;
8189 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8190 _(":lower16: not allowed this instruction"));
8191 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8192 _(":upper16: not allowed instruction"));
c19d1205 8193 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
8194 if (inst.reloc.type == BFD_RELOC_UNUSED)
8195 {
8196 imm = inst.reloc.exp.X_add_number;
8197 /* The value is in two pieces: 0:11, 16:19. */
8198 inst.instruction |= (imm & 0x00000fff);
8199 inst.instruction |= (imm & 0x0000f000) << 4;
8200 }
b05fe5cf 8201}
b99bd4ef 8202
037e8744
JB
8203static void do_vfp_nsyn_opcode (const char *);
8204
8205static int
8206do_vfp_nsyn_mrs (void)
8207{
8208 if (inst.operands[0].isvec)
8209 {
8210 if (inst.operands[1].reg != 1)
8211 first_error (_("operand 1 must be FPSCR"));
8212 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8213 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8214 do_vfp_nsyn_opcode ("fmstat");
8215 }
8216 else if (inst.operands[1].isvec)
8217 do_vfp_nsyn_opcode ("fmrx");
8218 else
8219 return FAIL;
5f4273c7 8220
037e8744
JB
8221 return SUCCESS;
8222}
8223
8224static int
8225do_vfp_nsyn_msr (void)
8226{
8227 if (inst.operands[0].isvec)
8228 do_vfp_nsyn_opcode ("fmxr");
8229 else
8230 return FAIL;
8231
8232 return SUCCESS;
8233}
8234
f7c21dc7
NC
8235static void
8236do_vmrs (void)
8237{
8238 unsigned Rt = inst.operands[0].reg;
fa94de6b 8239
f7c21dc7
NC
8240 if (thumb_mode && inst.operands[0].reg == REG_SP)
8241 {
8242 inst.error = BAD_SP;
8243 return;
8244 }
8245
8246 /* APSR_ sets isvec. All other refs to PC are illegal. */
8247 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8248 {
8249 inst.error = BAD_PC;
8250 return;
8251 }
8252
7465e07a
NC
8253 switch (inst.operands[1].reg)
8254 {
8255 case 0: /* FPSID */
8256 case 1: /* FPSCR */
8257 case 6: /* MVFR1 */
8258 case 7: /* MVFR0 */
8259 case 8: /* FPEXC */
8260 inst.instruction |= (inst.operands[1].reg << 16);
8261 break;
8262 default:
8263 first_error (_("operand 1 must be a VFP extension System Register"));
8264 }
f7c21dc7
NC
8265
8266 inst.instruction |= (Rt << 12);
8267}
8268
8269static void
8270do_vmsr (void)
8271{
8272 unsigned Rt = inst.operands[1].reg;
fa94de6b 8273
f7c21dc7
NC
8274 if (thumb_mode)
8275 reject_bad_reg (Rt);
8276 else if (Rt == REG_PC)
8277 {
8278 inst.error = BAD_PC;
8279 return;
8280 }
8281
7465e07a
NC
8282 switch (inst.operands[0].reg)
8283 {
8284 case 0: /* FPSID */
8285 case 1: /* FPSCR */
8286 case 8: /* FPEXC */
8287 inst.instruction |= (inst.operands[0].reg << 16);
8288 break;
8289 default:
8290 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8291 }
f7c21dc7
NC
8292
8293 inst.instruction |= (Rt << 12);
8294}
8295
b99bd4ef 8296static void
c19d1205 8297do_mrs (void)
b99bd4ef 8298{
90ec0d68
MGD
8299 unsigned br;
8300
037e8744
JB
8301 if (do_vfp_nsyn_mrs () == SUCCESS)
8302 return;
8303
ff4a8d2b 8304 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8305 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8306
8307 if (inst.operands[1].isreg)
8308 {
8309 br = inst.operands[1].reg;
8310 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8311 as_bad (_("bad register for mrs"));
8312 }
8313 else
8314 {
8315 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8316 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8317 != (PSR_c|PSR_f),
d2cd1205 8318 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8319 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8320 }
8321
8322 inst.instruction |= br;
c19d1205 8323}
b99bd4ef 8324
c19d1205
ZW
8325/* Two possible forms:
8326 "{C|S}PSR_<field>, Rm",
8327 "{C|S}PSR_f, #expression". */
b99bd4ef 8328
c19d1205
ZW
8329static void
8330do_msr (void)
8331{
037e8744
JB
8332 if (do_vfp_nsyn_msr () == SUCCESS)
8333 return;
8334
c19d1205
ZW
8335 inst.instruction |= inst.operands[0].imm;
8336 if (inst.operands[1].isreg)
8337 inst.instruction |= inst.operands[1].reg;
8338 else
b99bd4ef 8339 {
c19d1205
ZW
8340 inst.instruction |= INST_IMMEDIATE;
8341 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8342 inst.reloc.pc_rel = 0;
b99bd4ef 8343 }
b99bd4ef
NC
8344}
8345
c19d1205
ZW
8346static void
8347do_mul (void)
a737bd4d 8348{
ff4a8d2b
NC
8349 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8350
c19d1205
ZW
8351 if (!inst.operands[2].present)
8352 inst.operands[2].reg = inst.operands[0].reg;
8353 inst.instruction |= inst.operands[0].reg << 16;
8354 inst.instruction |= inst.operands[1].reg;
8355 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8356
8fb9d7b9
MS
8357 if (inst.operands[0].reg == inst.operands[1].reg
8358 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8359 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8360}
8361
c19d1205
ZW
8362/* Long Multiply Parser
8363 UMULL RdLo, RdHi, Rm, Rs
8364 SMULL RdLo, RdHi, Rm, Rs
8365 UMLAL RdLo, RdHi, Rm, Rs
8366 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8367
8368static void
c19d1205 8369do_mull (void)
b99bd4ef 8370{
c19d1205
ZW
8371 inst.instruction |= inst.operands[0].reg << 12;
8372 inst.instruction |= inst.operands[1].reg << 16;
8373 inst.instruction |= inst.operands[2].reg;
8374 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8375
682b27ad
PB
8376 /* rdhi and rdlo must be different. */
8377 if (inst.operands[0].reg == inst.operands[1].reg)
8378 as_tsktsk (_("rdhi and rdlo must be different"));
8379
8380 /* rdhi, rdlo and rm must all be different before armv6. */
8381 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8382 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8383 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8384 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8385}
b99bd4ef 8386
c19d1205
ZW
8387static void
8388do_nop (void)
8389{
e7495e45
NS
8390 if (inst.operands[0].present
8391 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8392 {
8393 /* Architectural NOP hints are CPSR sets with no bits selected. */
8394 inst.instruction &= 0xf0000000;
e7495e45
NS
8395 inst.instruction |= 0x0320f000;
8396 if (inst.operands[0].present)
8397 inst.instruction |= inst.operands[0].imm;
c19d1205 8398 }
b99bd4ef
NC
8399}
8400
c19d1205
ZW
8401/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8402 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8403 Condition defaults to COND_ALWAYS.
8404 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8405
8406static void
c19d1205 8407do_pkhbt (void)
b99bd4ef 8408{
c19d1205
ZW
8409 inst.instruction |= inst.operands[0].reg << 12;
8410 inst.instruction |= inst.operands[1].reg << 16;
8411 inst.instruction |= inst.operands[2].reg;
8412 if (inst.operands[3].present)
8413 encode_arm_shift (3);
8414}
b99bd4ef 8415
c19d1205 8416/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8417
c19d1205
ZW
8418static void
8419do_pkhtb (void)
8420{
8421 if (!inst.operands[3].present)
b99bd4ef 8422 {
c19d1205
ZW
8423 /* If the shift specifier is omitted, turn the instruction
8424 into pkhbt rd, rm, rn. */
8425 inst.instruction &= 0xfff00010;
8426 inst.instruction |= inst.operands[0].reg << 12;
8427 inst.instruction |= inst.operands[1].reg;
8428 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8429 }
8430 else
8431 {
c19d1205
ZW
8432 inst.instruction |= inst.operands[0].reg << 12;
8433 inst.instruction |= inst.operands[1].reg << 16;
8434 inst.instruction |= inst.operands[2].reg;
8435 encode_arm_shift (3);
b99bd4ef
NC
8436 }
8437}
8438
c19d1205 8439/* ARMv5TE: Preload-Cache
60e5ef9f 8440 MP Extensions: Preload for write
c19d1205 8441
60e5ef9f 8442 PLD(W) <addr_mode>
c19d1205
ZW
8443
8444 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8445
8446static void
c19d1205 8447do_pld (void)
b99bd4ef 8448{
c19d1205
ZW
8449 constraint (!inst.operands[0].isreg,
8450 _("'[' expected after PLD mnemonic"));
8451 constraint (inst.operands[0].postind,
8452 _("post-indexed expression used in preload instruction"));
8453 constraint (inst.operands[0].writeback,
8454 _("writeback used in preload instruction"));
8455 constraint (!inst.operands[0].preind,
8456 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8457 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8458}
b99bd4ef 8459
62b3e311
PB
8460/* ARMv7: PLI <addr_mode> */
8461static void
8462do_pli (void)
8463{
8464 constraint (!inst.operands[0].isreg,
8465 _("'[' expected after PLI mnemonic"));
8466 constraint (inst.operands[0].postind,
8467 _("post-indexed expression used in preload instruction"));
8468 constraint (inst.operands[0].writeback,
8469 _("writeback used in preload instruction"));
8470 constraint (!inst.operands[0].preind,
8471 _("unindexed addressing used in preload instruction"));
8472 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8473 inst.instruction &= ~PRE_INDEX;
8474}
8475
c19d1205
ZW
8476static void
8477do_push_pop (void)
8478{
8479 inst.operands[1] = inst.operands[0];
8480 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8481 inst.operands[0].isreg = 1;
8482 inst.operands[0].writeback = 1;
8483 inst.operands[0].reg = REG_SP;
6530b175 8484 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 8485}
b99bd4ef 8486
c19d1205
ZW
8487/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8488 word at the specified address and the following word
8489 respectively.
8490 Unconditionally executed.
8491 Error if Rn is R15. */
b99bd4ef 8492
c19d1205
ZW
8493static void
8494do_rfe (void)
8495{
8496 inst.instruction |= inst.operands[0].reg << 16;
8497 if (inst.operands[0].writeback)
8498 inst.instruction |= WRITE_BACK;
8499}
b99bd4ef 8500
c19d1205 8501/* ARM V6 ssat (argument parse). */
b99bd4ef 8502
c19d1205
ZW
8503static void
8504do_ssat (void)
8505{
8506 inst.instruction |= inst.operands[0].reg << 12;
8507 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8508 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8509
c19d1205
ZW
8510 if (inst.operands[3].present)
8511 encode_arm_shift (3);
b99bd4ef
NC
8512}
8513
c19d1205 8514/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8515
8516static void
c19d1205 8517do_usat (void)
b99bd4ef 8518{
c19d1205
ZW
8519 inst.instruction |= inst.operands[0].reg << 12;
8520 inst.instruction |= inst.operands[1].imm << 16;
8521 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8522
c19d1205
ZW
8523 if (inst.operands[3].present)
8524 encode_arm_shift (3);
b99bd4ef
NC
8525}
8526
c19d1205 8527/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8528
8529static void
c19d1205 8530do_ssat16 (void)
09d92015 8531{
c19d1205
ZW
8532 inst.instruction |= inst.operands[0].reg << 12;
8533 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8534 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8535}
8536
c19d1205
ZW
8537static void
8538do_usat16 (void)
a737bd4d 8539{
c19d1205
ZW
8540 inst.instruction |= inst.operands[0].reg << 12;
8541 inst.instruction |= inst.operands[1].imm << 16;
8542 inst.instruction |= inst.operands[2].reg;
8543}
a737bd4d 8544
c19d1205
ZW
8545/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8546 preserving the other bits.
a737bd4d 8547
c19d1205
ZW
8548 setend <endian_specifier>, where <endian_specifier> is either
8549 BE or LE. */
a737bd4d 8550
c19d1205
ZW
8551static void
8552do_setend (void)
8553{
12e37cbc
MGD
8554 if (warn_on_deprecated
8555 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8556 as_warn (_("setend use is deprecated for ARMv8"));
8557
c19d1205
ZW
8558 if (inst.operands[0].imm)
8559 inst.instruction |= 0x200;
a737bd4d
NC
8560}
8561
8562static void
c19d1205 8563do_shift (void)
a737bd4d 8564{
c19d1205
ZW
8565 unsigned int Rm = (inst.operands[1].present
8566 ? inst.operands[1].reg
8567 : inst.operands[0].reg);
a737bd4d 8568
c19d1205
ZW
8569 inst.instruction |= inst.operands[0].reg << 12;
8570 inst.instruction |= Rm;
8571 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8572 {
c19d1205
ZW
8573 inst.instruction |= inst.operands[2].reg << 8;
8574 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
8575 /* PR 12854: Error on extraneous shifts. */
8576 constraint (inst.operands[2].shifted,
8577 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
8578 }
8579 else
c19d1205 8580 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8581}
8582
09d92015 8583static void
3eb17e6b 8584do_smc (void)
09d92015 8585{
3eb17e6b 8586 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8587 inst.reloc.pc_rel = 0;
09d92015
MM
8588}
8589
90ec0d68
MGD
8590static void
8591do_hvc (void)
8592{
8593 inst.reloc.type = BFD_RELOC_ARM_HVC;
8594 inst.reloc.pc_rel = 0;
8595}
8596
09d92015 8597static void
c19d1205 8598do_swi (void)
09d92015 8599{
c19d1205
ZW
8600 inst.reloc.type = BFD_RELOC_ARM_SWI;
8601 inst.reloc.pc_rel = 0;
09d92015
MM
8602}
8603
c19d1205
ZW
8604/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8605 SMLAxy{cond} Rd,Rm,Rs,Rn
8606 SMLAWy{cond} Rd,Rm,Rs,Rn
8607 Error if any register is R15. */
e16bb312 8608
c19d1205
ZW
8609static void
8610do_smla (void)
e16bb312 8611{
c19d1205
ZW
8612 inst.instruction |= inst.operands[0].reg << 16;
8613 inst.instruction |= inst.operands[1].reg;
8614 inst.instruction |= inst.operands[2].reg << 8;
8615 inst.instruction |= inst.operands[3].reg << 12;
8616}
a737bd4d 8617
c19d1205
ZW
8618/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8619 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8620 Error if any register is R15.
8621 Warning if Rdlo == Rdhi. */
a737bd4d 8622
c19d1205
ZW
8623static void
8624do_smlal (void)
8625{
8626 inst.instruction |= inst.operands[0].reg << 12;
8627 inst.instruction |= inst.operands[1].reg << 16;
8628 inst.instruction |= inst.operands[2].reg;
8629 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8630
c19d1205
ZW
8631 if (inst.operands[0].reg == inst.operands[1].reg)
8632 as_tsktsk (_("rdhi and rdlo must be different"));
8633}
a737bd4d 8634
c19d1205
ZW
8635/* ARM V5E (El Segundo) signed-multiply (argument parse)
8636 SMULxy{cond} Rd,Rm,Rs
8637 Error if any register is R15. */
a737bd4d 8638
c19d1205
ZW
8639static void
8640do_smul (void)
8641{
8642 inst.instruction |= inst.operands[0].reg << 16;
8643 inst.instruction |= inst.operands[1].reg;
8644 inst.instruction |= inst.operands[2].reg << 8;
8645}
a737bd4d 8646
b6702015
PB
8647/* ARM V6 srs (argument parse). The variable fields in the encoding are
8648 the same for both ARM and Thumb-2. */
a737bd4d 8649
c19d1205
ZW
8650static void
8651do_srs (void)
8652{
b6702015
PB
8653 int reg;
8654
8655 if (inst.operands[0].present)
8656 {
8657 reg = inst.operands[0].reg;
fdfde340 8658 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8659 }
8660 else
fdfde340 8661 reg = REG_SP;
b6702015
PB
8662
8663 inst.instruction |= reg << 16;
8664 inst.instruction |= inst.operands[1].imm;
8665 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8666 inst.instruction |= WRITE_BACK;
8667}
a737bd4d 8668
c19d1205 8669/* ARM V6 strex (argument parse). */
a737bd4d 8670
c19d1205
ZW
8671static void
8672do_strex (void)
8673{
8674 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8675 || inst.operands[2].postind || inst.operands[2].writeback
8676 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8677 || inst.operands[2].negative
8678 /* See comment in do_ldrex(). */
8679 || (inst.operands[2].reg == REG_PC),
8680 BAD_ADDR_MODE);
a737bd4d 8681
c19d1205
ZW
8682 constraint (inst.operands[0].reg == inst.operands[1].reg
8683 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8684
c19d1205
ZW
8685 constraint (inst.reloc.exp.X_op != O_constant
8686 || inst.reloc.exp.X_add_number != 0,
8687 _("offset must be zero in ARM encoding"));
a737bd4d 8688
c19d1205
ZW
8689 inst.instruction |= inst.operands[0].reg << 12;
8690 inst.instruction |= inst.operands[1].reg;
8691 inst.instruction |= inst.operands[2].reg << 16;
8692 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8693}
8694
877807f8
NC
8695static void
8696do_t_strexbh (void)
8697{
8698 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8699 || inst.operands[2].postind || inst.operands[2].writeback
8700 || inst.operands[2].immisreg || inst.operands[2].shifted
8701 || inst.operands[2].negative,
8702 BAD_ADDR_MODE);
8703
8704 constraint (inst.operands[0].reg == inst.operands[1].reg
8705 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8706
8707 do_rm_rd_rn ();
8708}
8709
e16bb312 8710static void
c19d1205 8711do_strexd (void)
e16bb312 8712{
c19d1205
ZW
8713 constraint (inst.operands[1].reg % 2 != 0,
8714 _("even register required"));
8715 constraint (inst.operands[2].present
8716 && inst.operands[2].reg != inst.operands[1].reg + 1,
8717 _("can only store two consecutive registers"));
8718 /* If op 2 were present and equal to PC, this function wouldn't
8719 have been called in the first place. */
8720 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8721
c19d1205
ZW
8722 constraint (inst.operands[0].reg == inst.operands[1].reg
8723 || inst.operands[0].reg == inst.operands[1].reg + 1
8724 || inst.operands[0].reg == inst.operands[3].reg,
8725 BAD_OVERLAP);
e16bb312 8726
c19d1205
ZW
8727 inst.instruction |= inst.operands[0].reg << 12;
8728 inst.instruction |= inst.operands[1].reg;
8729 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8730}
8731
c19d1205
ZW
8732/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8733 extends it to 32-bits, and adds the result to a value in another
8734 register. You can specify a rotation by 0, 8, 16, or 24 bits
8735 before extracting the 16-bit value.
8736 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8737 Condition defaults to COND_ALWAYS.
8738 Error if any register uses R15. */
8739
e16bb312 8740static void
c19d1205 8741do_sxtah (void)
e16bb312 8742{
c19d1205
ZW
8743 inst.instruction |= inst.operands[0].reg << 12;
8744 inst.instruction |= inst.operands[1].reg << 16;
8745 inst.instruction |= inst.operands[2].reg;
8746 inst.instruction |= inst.operands[3].imm << 10;
8747}
e16bb312 8748
c19d1205 8749/* ARM V6 SXTH.
e16bb312 8750
c19d1205
ZW
8751 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8752 Condition defaults to COND_ALWAYS.
8753 Error if any register uses R15. */
e16bb312
NC
8754
8755static void
c19d1205 8756do_sxth (void)
e16bb312 8757{
c19d1205
ZW
8758 inst.instruction |= inst.operands[0].reg << 12;
8759 inst.instruction |= inst.operands[1].reg;
8760 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8761}
c19d1205
ZW
8762\f
8763/* VFP instructions. In a logical order: SP variant first, monad
8764 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8765
8766static void
c19d1205 8767do_vfp_sp_monadic (void)
e16bb312 8768{
5287ad62
JB
8769 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8770 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8771}
8772
8773static void
c19d1205 8774do_vfp_sp_dyadic (void)
e16bb312 8775{
5287ad62
JB
8776 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8777 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8778 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8779}
8780
8781static void
c19d1205 8782do_vfp_sp_compare_z (void)
e16bb312 8783{
5287ad62 8784 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8785}
8786
8787static void
c19d1205 8788do_vfp_dp_sp_cvt (void)
e16bb312 8789{
5287ad62
JB
8790 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8791 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8792}
8793
8794static void
c19d1205 8795do_vfp_sp_dp_cvt (void)
e16bb312 8796{
5287ad62
JB
8797 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8798 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8799}
8800
8801static void
c19d1205 8802do_vfp_reg_from_sp (void)
e16bb312 8803{
c19d1205 8804 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8805 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8806}
8807
8808static void
c19d1205 8809do_vfp_reg2_from_sp2 (void)
e16bb312 8810{
c19d1205
ZW
8811 constraint (inst.operands[2].imm != 2,
8812 _("only two consecutive VFP SP registers allowed here"));
8813 inst.instruction |= inst.operands[0].reg << 12;
8814 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8815 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8816}
8817
8818static void
c19d1205 8819do_vfp_sp_from_reg (void)
e16bb312 8820{
5287ad62 8821 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8822 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8823}
8824
8825static void
c19d1205 8826do_vfp_sp2_from_reg2 (void)
e16bb312 8827{
c19d1205
ZW
8828 constraint (inst.operands[0].imm != 2,
8829 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8830 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8831 inst.instruction |= inst.operands[1].reg << 12;
8832 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8833}
8834
8835static void
c19d1205 8836do_vfp_sp_ldst (void)
e16bb312 8837{
5287ad62 8838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8839 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8840}
8841
8842static void
c19d1205 8843do_vfp_dp_ldst (void)
e16bb312 8844{
5287ad62 8845 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8846 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8847}
8848
c19d1205 8849
e16bb312 8850static void
c19d1205 8851vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8852{
c19d1205
ZW
8853 if (inst.operands[0].writeback)
8854 inst.instruction |= WRITE_BACK;
8855 else
8856 constraint (ldstm_type != VFP_LDSTMIA,
8857 _("this addressing mode requires base-register writeback"));
8858 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8859 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8860 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8861}
8862
8863static void
c19d1205 8864vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8865{
c19d1205 8866 int count;
e16bb312 8867
c19d1205
ZW
8868 if (inst.operands[0].writeback)
8869 inst.instruction |= WRITE_BACK;
8870 else
8871 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8872 _("this addressing mode requires base-register writeback"));
e16bb312 8873
c19d1205 8874 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8875 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8876
c19d1205
ZW
8877 count = inst.operands[1].imm << 1;
8878 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8879 count += 1;
e16bb312 8880
c19d1205 8881 inst.instruction |= count;
e16bb312
NC
8882}
8883
8884static void
c19d1205 8885do_vfp_sp_ldstmia (void)
e16bb312 8886{
c19d1205 8887 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8888}
8889
8890static void
c19d1205 8891do_vfp_sp_ldstmdb (void)
e16bb312 8892{
c19d1205 8893 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8894}
8895
8896static void
c19d1205 8897do_vfp_dp_ldstmia (void)
e16bb312 8898{
c19d1205 8899 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8900}
8901
8902static void
c19d1205 8903do_vfp_dp_ldstmdb (void)
e16bb312 8904{
c19d1205 8905 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8906}
8907
8908static void
c19d1205 8909do_vfp_xp_ldstmia (void)
e16bb312 8910{
c19d1205
ZW
8911 vfp_dp_ldstm (VFP_LDSTMIAX);
8912}
e16bb312 8913
c19d1205
ZW
8914static void
8915do_vfp_xp_ldstmdb (void)
8916{
8917 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8918}
5287ad62
JB
8919
8920static void
8921do_vfp_dp_rd_rm (void)
8922{
8923 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8924 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8925}
8926
8927static void
8928do_vfp_dp_rn_rd (void)
8929{
8930 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8931 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8932}
8933
8934static void
8935do_vfp_dp_rd_rn (void)
8936{
8937 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8938 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8939}
8940
8941static void
8942do_vfp_dp_rd_rn_rm (void)
8943{
8944 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8945 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8946 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8947}
8948
8949static void
8950do_vfp_dp_rd (void)
8951{
8952 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8953}
8954
8955static void
8956do_vfp_dp_rm_rd_rn (void)
8957{
8958 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8959 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8960 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8961}
8962
8963/* VFPv3 instructions. */
8964static void
8965do_vfp_sp_const (void)
8966{
8967 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8968 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8969 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8970}
8971
8972static void
8973do_vfp_dp_const (void)
8974{
8975 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8976 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8977 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8978}
8979
8980static void
8981vfp_conv (int srcsize)
8982{
5f1af56b
MGD
8983 int immbits = srcsize - inst.operands[1].imm;
8984
fa94de6b
RM
8985 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8986 {
5f1af56b
MGD
8987 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8988 i.e. immbits must be in range 0 - 16. */
8989 inst.error = _("immediate value out of range, expected range [0, 16]");
8990 return;
8991 }
fa94de6b 8992 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
8993 {
8994 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8995 i.e. immbits must be in range 0 - 31. */
8996 inst.error = _("immediate value out of range, expected range [1, 32]");
8997 return;
8998 }
8999
5287ad62
JB
9000 inst.instruction |= (immbits & 1) << 5;
9001 inst.instruction |= (immbits >> 1);
9002}
9003
9004static void
9005do_vfp_sp_conv_16 (void)
9006{
9007 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9008 vfp_conv (16);
9009}
9010
9011static void
9012do_vfp_dp_conv_16 (void)
9013{
9014 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9015 vfp_conv (16);
9016}
9017
9018static void
9019do_vfp_sp_conv_32 (void)
9020{
9021 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9022 vfp_conv (32);
9023}
9024
9025static void
9026do_vfp_dp_conv_32 (void)
9027{
9028 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9029 vfp_conv (32);
9030}
c19d1205
ZW
9031\f
9032/* FPA instructions. Also in a logical order. */
e16bb312 9033
c19d1205
ZW
9034static void
9035do_fpa_cmp (void)
9036{
9037 inst.instruction |= inst.operands[0].reg << 16;
9038 inst.instruction |= inst.operands[1].reg;
9039}
b99bd4ef
NC
9040
9041static void
c19d1205 9042do_fpa_ldmstm (void)
b99bd4ef 9043{
c19d1205
ZW
9044 inst.instruction |= inst.operands[0].reg << 12;
9045 switch (inst.operands[1].imm)
9046 {
9047 case 1: inst.instruction |= CP_T_X; break;
9048 case 2: inst.instruction |= CP_T_Y; break;
9049 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9050 case 4: break;
9051 default: abort ();
9052 }
b99bd4ef 9053
c19d1205
ZW
9054 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9055 {
9056 /* The instruction specified "ea" or "fd", so we can only accept
9057 [Rn]{!}. The instruction does not really support stacking or
9058 unstacking, so we have to emulate these by setting appropriate
9059 bits and offsets. */
9060 constraint (inst.reloc.exp.X_op != O_constant
9061 || inst.reloc.exp.X_add_number != 0,
9062 _("this instruction does not support indexing"));
b99bd4ef 9063
c19d1205
ZW
9064 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9065 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 9066
c19d1205
ZW
9067 if (!(inst.instruction & INDEX_UP))
9068 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 9069
c19d1205
ZW
9070 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9071 {
9072 inst.operands[2].preind = 0;
9073 inst.operands[2].postind = 1;
9074 }
9075 }
b99bd4ef 9076
c19d1205 9077 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 9078}
c19d1205
ZW
9079\f
9080/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 9081
c19d1205
ZW
9082static void
9083do_iwmmxt_tandorc (void)
9084{
9085 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9086}
b99bd4ef 9087
c19d1205
ZW
9088static void
9089do_iwmmxt_textrc (void)
9090{
9091 inst.instruction |= inst.operands[0].reg << 12;
9092 inst.instruction |= inst.operands[1].imm;
9093}
b99bd4ef
NC
9094
9095static void
c19d1205 9096do_iwmmxt_textrm (void)
b99bd4ef 9097{
c19d1205
ZW
9098 inst.instruction |= inst.operands[0].reg << 12;
9099 inst.instruction |= inst.operands[1].reg << 16;
9100 inst.instruction |= inst.operands[2].imm;
9101}
b99bd4ef 9102
c19d1205
ZW
9103static void
9104do_iwmmxt_tinsr (void)
9105{
9106 inst.instruction |= inst.operands[0].reg << 16;
9107 inst.instruction |= inst.operands[1].reg << 12;
9108 inst.instruction |= inst.operands[2].imm;
9109}
b99bd4ef 9110
c19d1205
ZW
9111static void
9112do_iwmmxt_tmia (void)
9113{
9114 inst.instruction |= inst.operands[0].reg << 5;
9115 inst.instruction |= inst.operands[1].reg;
9116 inst.instruction |= inst.operands[2].reg << 12;
9117}
b99bd4ef 9118
c19d1205
ZW
9119static void
9120do_iwmmxt_waligni (void)
9121{
9122 inst.instruction |= inst.operands[0].reg << 12;
9123 inst.instruction |= inst.operands[1].reg << 16;
9124 inst.instruction |= inst.operands[2].reg;
9125 inst.instruction |= inst.operands[3].imm << 20;
9126}
b99bd4ef 9127
2d447fca
JM
9128static void
9129do_iwmmxt_wmerge (void)
9130{
9131 inst.instruction |= inst.operands[0].reg << 12;
9132 inst.instruction |= inst.operands[1].reg << 16;
9133 inst.instruction |= inst.operands[2].reg;
9134 inst.instruction |= inst.operands[3].imm << 21;
9135}
9136
c19d1205
ZW
9137static void
9138do_iwmmxt_wmov (void)
9139{
9140 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9141 inst.instruction |= inst.operands[0].reg << 12;
9142 inst.instruction |= inst.operands[1].reg << 16;
9143 inst.instruction |= inst.operands[1].reg;
9144}
b99bd4ef 9145
c19d1205
ZW
9146static void
9147do_iwmmxt_wldstbh (void)
9148{
8f06b2d8 9149 int reloc;
c19d1205 9150 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
9151 if (thumb_mode)
9152 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9153 else
9154 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9155 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
9156}
9157
c19d1205
ZW
9158static void
9159do_iwmmxt_wldstw (void)
9160{
9161 /* RIWR_RIWC clears .isreg for a control register. */
9162 if (!inst.operands[0].isreg)
9163 {
9164 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9165 inst.instruction |= 0xf0000000;
9166 }
b99bd4ef 9167
c19d1205
ZW
9168 inst.instruction |= inst.operands[0].reg << 12;
9169 encode_arm_cp_address (1, TRUE, TRUE, 0);
9170}
b99bd4ef
NC
9171
9172static void
c19d1205 9173do_iwmmxt_wldstd (void)
b99bd4ef 9174{
c19d1205 9175 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
9176 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9177 && inst.operands[1].immisreg)
9178 {
9179 inst.instruction &= ~0x1a000ff;
9180 inst.instruction |= (0xf << 28);
9181 if (inst.operands[1].preind)
9182 inst.instruction |= PRE_INDEX;
9183 if (!inst.operands[1].negative)
9184 inst.instruction |= INDEX_UP;
9185 if (inst.operands[1].writeback)
9186 inst.instruction |= WRITE_BACK;
9187 inst.instruction |= inst.operands[1].reg << 16;
9188 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9189 inst.instruction |= inst.operands[1].imm;
9190 }
9191 else
9192 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 9193}
b99bd4ef 9194
c19d1205
ZW
9195static void
9196do_iwmmxt_wshufh (void)
9197{
9198 inst.instruction |= inst.operands[0].reg << 12;
9199 inst.instruction |= inst.operands[1].reg << 16;
9200 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9201 inst.instruction |= (inst.operands[2].imm & 0x0f);
9202}
b99bd4ef 9203
c19d1205
ZW
9204static void
9205do_iwmmxt_wzero (void)
9206{
9207 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9208 inst.instruction |= inst.operands[0].reg;
9209 inst.instruction |= inst.operands[0].reg << 12;
9210 inst.instruction |= inst.operands[0].reg << 16;
9211}
2d447fca
JM
9212
9213static void
9214do_iwmmxt_wrwrwr_or_imm5 (void)
9215{
9216 if (inst.operands[2].isreg)
9217 do_rd_rn_rm ();
9218 else {
9219 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9220 _("immediate operand requires iWMMXt2"));
9221 do_rd_rn ();
9222 if (inst.operands[2].imm == 0)
9223 {
9224 switch ((inst.instruction >> 20) & 0xf)
9225 {
9226 case 4:
9227 case 5:
9228 case 6:
5f4273c7 9229 case 7:
2d447fca
JM
9230 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9231 inst.operands[2].imm = 16;
9232 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9233 break;
9234 case 8:
9235 case 9:
9236 case 10:
9237 case 11:
9238 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9239 inst.operands[2].imm = 32;
9240 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9241 break;
9242 case 12:
9243 case 13:
9244 case 14:
9245 case 15:
9246 {
9247 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9248 unsigned long wrn;
9249 wrn = (inst.instruction >> 16) & 0xf;
9250 inst.instruction &= 0xff0fff0f;
9251 inst.instruction |= wrn;
9252 /* Bail out here; the instruction is now assembled. */
9253 return;
9254 }
9255 }
9256 }
9257 /* Map 32 -> 0, etc. */
9258 inst.operands[2].imm &= 0x1f;
9259 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9260 }
9261}
c19d1205
ZW
9262\f
9263/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9264 operations first, then control, shift, and load/store. */
b99bd4ef 9265
c19d1205 9266/* Insns like "foo X,Y,Z". */
b99bd4ef 9267
c19d1205
ZW
9268static void
9269do_mav_triple (void)
9270{
9271 inst.instruction |= inst.operands[0].reg << 16;
9272 inst.instruction |= inst.operands[1].reg;
9273 inst.instruction |= inst.operands[2].reg << 12;
9274}
b99bd4ef 9275
c19d1205
ZW
9276/* Insns like "foo W,X,Y,Z".
9277 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9278
c19d1205
ZW
9279static void
9280do_mav_quad (void)
9281{
9282 inst.instruction |= inst.operands[0].reg << 5;
9283 inst.instruction |= inst.operands[1].reg << 12;
9284 inst.instruction |= inst.operands[2].reg << 16;
9285 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9286}
9287
c19d1205
ZW
9288/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9289static void
9290do_mav_dspsc (void)
a737bd4d 9291{
c19d1205
ZW
9292 inst.instruction |= inst.operands[1].reg << 12;
9293}
a737bd4d 9294
c19d1205
ZW
9295/* Maverick shift immediate instructions.
9296 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9297 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9298
c19d1205
ZW
9299static void
9300do_mav_shift (void)
9301{
9302 int imm = inst.operands[2].imm;
a737bd4d 9303
c19d1205
ZW
9304 inst.instruction |= inst.operands[0].reg << 12;
9305 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9306
c19d1205
ZW
9307 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9308 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9309 Bit 4 should be 0. */
9310 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9311
c19d1205
ZW
9312 inst.instruction |= imm;
9313}
9314\f
9315/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9316
c19d1205
ZW
9317/* Xscale multiply-accumulate (argument parse)
9318 MIAcc acc0,Rm,Rs
9319 MIAPHcc acc0,Rm,Rs
9320 MIAxycc acc0,Rm,Rs. */
a737bd4d 9321
c19d1205
ZW
9322static void
9323do_xsc_mia (void)
9324{
9325 inst.instruction |= inst.operands[1].reg;
9326 inst.instruction |= inst.operands[2].reg << 12;
9327}
a737bd4d 9328
c19d1205 9329/* Xscale move-accumulator-register (argument parse)
a737bd4d 9330
c19d1205 9331 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9332
c19d1205
ZW
9333static void
9334do_xsc_mar (void)
9335{
9336 inst.instruction |= inst.operands[1].reg << 12;
9337 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9338}
9339
c19d1205 9340/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9341
c19d1205 9342 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9343
9344static void
c19d1205 9345do_xsc_mra (void)
b99bd4ef 9346{
c19d1205
ZW
9347 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9348 inst.instruction |= inst.operands[0].reg << 12;
9349 inst.instruction |= inst.operands[1].reg << 16;
9350}
9351\f
9352/* Encoding functions relevant only to Thumb. */
b99bd4ef 9353
c19d1205
ZW
9354/* inst.operands[i] is a shifted-register operand; encode
9355 it into inst.instruction in the format used by Thumb32. */
9356
9357static void
9358encode_thumb32_shifted_operand (int i)
9359{
9360 unsigned int value = inst.reloc.exp.X_add_number;
9361 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9362
9c3c69f2
PB
9363 constraint (inst.operands[i].immisreg,
9364 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9365 inst.instruction |= inst.operands[i].reg;
9366 if (shift == SHIFT_RRX)
9367 inst.instruction |= SHIFT_ROR << 4;
9368 else
b99bd4ef 9369 {
c19d1205
ZW
9370 constraint (inst.reloc.exp.X_op != O_constant,
9371 _("expression too complex"));
9372
9373 constraint (value > 32
9374 || (value == 32 && (shift == SHIFT_LSL
9375 || shift == SHIFT_ROR)),
9376 _("shift expression is too large"));
9377
9378 if (value == 0)
9379 shift = SHIFT_LSL;
9380 else if (value == 32)
9381 value = 0;
9382
9383 inst.instruction |= shift << 4;
9384 inst.instruction |= (value & 0x1c) << 10;
9385 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9386 }
c19d1205 9387}
b99bd4ef 9388
b99bd4ef 9389
c19d1205
ZW
9390/* inst.operands[i] was set up by parse_address. Encode it into a
9391 Thumb32 format load or store instruction. Reject forms that cannot
9392 be used with such instructions. If is_t is true, reject forms that
9393 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9394 that cannot be used with a D instruction. If it is a store insn,
9395 reject PC in Rn. */
b99bd4ef 9396
c19d1205
ZW
9397static void
9398encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9399{
5be8be5d 9400 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9401
9402 constraint (!inst.operands[i].isreg,
53365c0d 9403 _("Instruction does not support =N addresses"));
b99bd4ef 9404
c19d1205
ZW
9405 inst.instruction |= inst.operands[i].reg << 16;
9406 if (inst.operands[i].immisreg)
b99bd4ef 9407 {
5be8be5d 9408 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9409 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9410 constraint (inst.operands[i].negative,
9411 _("Thumb does not support negative register indexing"));
9412 constraint (inst.operands[i].postind,
9413 _("Thumb does not support register post-indexing"));
9414 constraint (inst.operands[i].writeback,
9415 _("Thumb does not support register indexing with writeback"));
9416 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9417 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9418
f40d1643 9419 inst.instruction |= inst.operands[i].imm;
c19d1205 9420 if (inst.operands[i].shifted)
b99bd4ef 9421 {
c19d1205
ZW
9422 constraint (inst.reloc.exp.X_op != O_constant,
9423 _("expression too complex"));
9c3c69f2
PB
9424 constraint (inst.reloc.exp.X_add_number < 0
9425 || inst.reloc.exp.X_add_number > 3,
c19d1205 9426 _("shift out of range"));
9c3c69f2 9427 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9428 }
9429 inst.reloc.type = BFD_RELOC_UNUSED;
9430 }
9431 else if (inst.operands[i].preind)
9432 {
5be8be5d 9433 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9434 constraint (is_t && inst.operands[i].writeback,
c19d1205 9435 _("cannot use writeback with this instruction"));
5be8be5d
DG
9436 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9437 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9438
9439 if (is_d)
9440 {
9441 inst.instruction |= 0x01000000;
9442 if (inst.operands[i].writeback)
9443 inst.instruction |= 0x00200000;
b99bd4ef 9444 }
c19d1205 9445 else
b99bd4ef 9446 {
c19d1205
ZW
9447 inst.instruction |= 0x00000c00;
9448 if (inst.operands[i].writeback)
9449 inst.instruction |= 0x00000100;
b99bd4ef 9450 }
c19d1205 9451 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9452 }
c19d1205 9453 else if (inst.operands[i].postind)
b99bd4ef 9454 {
9c2799c2 9455 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9456 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9457 constraint (is_t, _("cannot use post-indexing with this instruction"));
9458
9459 if (is_d)
9460 inst.instruction |= 0x00200000;
9461 else
9462 inst.instruction |= 0x00000900;
9463 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9464 }
9465 else /* unindexed - only for coprocessor */
9466 inst.error = _("instruction does not accept unindexed addressing");
9467}
9468
9469/* Table of Thumb instructions which exist in both 16- and 32-bit
9470 encodings (the latter only in post-V6T2 cores). The index is the
9471 value used in the insns table below. When there is more than one
9472 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9473 holds variant (1).
9474 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9475#define T16_32_TAB \
21d799b5
NC
9476 X(_adc, 4140, eb400000), \
9477 X(_adcs, 4140, eb500000), \
9478 X(_add, 1c00, eb000000), \
9479 X(_adds, 1c00, eb100000), \
9480 X(_addi, 0000, f1000000), \
9481 X(_addis, 0000, f1100000), \
9482 X(_add_pc,000f, f20f0000), \
9483 X(_add_sp,000d, f10d0000), \
9484 X(_adr, 000f, f20f0000), \
9485 X(_and, 4000, ea000000), \
9486 X(_ands, 4000, ea100000), \
9487 X(_asr, 1000, fa40f000), \
9488 X(_asrs, 1000, fa50f000), \
9489 X(_b, e000, f000b000), \
9490 X(_bcond, d000, f0008000), \
9491 X(_bic, 4380, ea200000), \
9492 X(_bics, 4380, ea300000), \
9493 X(_cmn, 42c0, eb100f00), \
9494 X(_cmp, 2800, ebb00f00), \
9495 X(_cpsie, b660, f3af8400), \
9496 X(_cpsid, b670, f3af8600), \
9497 X(_cpy, 4600, ea4f0000), \
9498 X(_dec_sp,80dd, f1ad0d00), \
9499 X(_eor, 4040, ea800000), \
9500 X(_eors, 4040, ea900000), \
9501 X(_inc_sp,00dd, f10d0d00), \
9502 X(_ldmia, c800, e8900000), \
9503 X(_ldr, 6800, f8500000), \
9504 X(_ldrb, 7800, f8100000), \
9505 X(_ldrh, 8800, f8300000), \
9506 X(_ldrsb, 5600, f9100000), \
9507 X(_ldrsh, 5e00, f9300000), \
9508 X(_ldr_pc,4800, f85f0000), \
9509 X(_ldr_pc2,4800, f85f0000), \
9510 X(_ldr_sp,9800, f85d0000), \
9511 X(_lsl, 0000, fa00f000), \
9512 X(_lsls, 0000, fa10f000), \
9513 X(_lsr, 0800, fa20f000), \
9514 X(_lsrs, 0800, fa30f000), \
9515 X(_mov, 2000, ea4f0000), \
9516 X(_movs, 2000, ea5f0000), \
9517 X(_mul, 4340, fb00f000), \
9518 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9519 X(_mvn, 43c0, ea6f0000), \
9520 X(_mvns, 43c0, ea7f0000), \
9521 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9522 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9523 X(_orr, 4300, ea400000), \
9524 X(_orrs, 4300, ea500000), \
9525 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9526 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9527 X(_rev, ba00, fa90f080), \
9528 X(_rev16, ba40, fa90f090), \
9529 X(_revsh, bac0, fa90f0b0), \
9530 X(_ror, 41c0, fa60f000), \
9531 X(_rors, 41c0, fa70f000), \
9532 X(_sbc, 4180, eb600000), \
9533 X(_sbcs, 4180, eb700000), \
9534 X(_stmia, c000, e8800000), \
9535 X(_str, 6000, f8400000), \
9536 X(_strb, 7000, f8000000), \
9537 X(_strh, 8000, f8200000), \
9538 X(_str_sp,9000, f84d0000), \
9539 X(_sub, 1e00, eba00000), \
9540 X(_subs, 1e00, ebb00000), \
9541 X(_subi, 8000, f1a00000), \
9542 X(_subis, 8000, f1b00000), \
9543 X(_sxtb, b240, fa4ff080), \
9544 X(_sxth, b200, fa0ff080), \
9545 X(_tst, 4200, ea100f00), \
9546 X(_uxtb, b2c0, fa5ff080), \
9547 X(_uxth, b280, fa1ff080), \
9548 X(_nop, bf00, f3af8000), \
9549 X(_yield, bf10, f3af8001), \
9550 X(_wfe, bf20, f3af8002), \
9551 X(_wfi, bf30, f3af8003), \
53c4b28b
MGD
9552 X(_sev, bf40, f3af8004), \
9553 X(_sevl, bf50, f3af8005)
c19d1205
ZW
9554
9555/* To catch errors in encoding functions, the codes are all offset by
9556 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9557 as 16-bit instructions. */
21d799b5 9558#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9559enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9560#undef X
9561
9562#define X(a,b,c) 0x##b
9563static const unsigned short thumb_op16[] = { T16_32_TAB };
9564#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9565#undef X
9566
9567#define X(a,b,c) 0x##c
9568static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9569#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9570#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9571#undef X
9572#undef T16_32_TAB
9573
9574/* Thumb instruction encoders, in alphabetical order. */
9575
92e90b6e 9576/* ADDW or SUBW. */
c921be7d 9577
92e90b6e
PB
9578static void
9579do_t_add_sub_w (void)
9580{
9581 int Rd, Rn;
9582
9583 Rd = inst.operands[0].reg;
9584 Rn = inst.operands[1].reg;
9585
539d4391
NC
9586 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9587 is the SP-{plus,minus}-immediate form of the instruction. */
9588 if (Rn == REG_SP)
9589 constraint (Rd == REG_PC, BAD_PC);
9590 else
9591 reject_bad_reg (Rd);
fdfde340 9592
92e90b6e
PB
9593 inst.instruction |= (Rn << 16) | (Rd << 8);
9594 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9595}
9596
c19d1205
ZW
9597/* Parse an add or subtract instruction. We get here with inst.instruction
9598 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9599
9600static void
9601do_t_add_sub (void)
9602{
9603 int Rd, Rs, Rn;
9604
9605 Rd = inst.operands[0].reg;
9606 Rs = (inst.operands[1].present
9607 ? inst.operands[1].reg /* Rd, Rs, foo */
9608 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9609
e07e6e58
NC
9610 if (Rd == REG_PC)
9611 set_it_insn_type_last ();
9612
c19d1205
ZW
9613 if (unified_syntax)
9614 {
0110f2b8
PB
9615 bfd_boolean flags;
9616 bfd_boolean narrow;
9617 int opcode;
9618
9619 flags = (inst.instruction == T_MNEM_adds
9620 || inst.instruction == T_MNEM_subs);
9621 if (flags)
e07e6e58 9622 narrow = !in_it_block ();
0110f2b8 9623 else
e07e6e58 9624 narrow = in_it_block ();
c19d1205 9625 if (!inst.operands[2].isreg)
b99bd4ef 9626 {
16805f35
PB
9627 int add;
9628
fdfde340
JM
9629 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9630
16805f35
PB
9631 add = (inst.instruction == T_MNEM_add
9632 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9633 opcode = 0;
9634 if (inst.size_req != 4)
9635 {
0110f2b8
PB
9636 /* Attempt to use a narrow opcode, with relaxation if
9637 appropriate. */
9638 if (Rd == REG_SP && Rs == REG_SP && !flags)
9639 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9640 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9641 opcode = T_MNEM_add_sp;
9642 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9643 opcode = T_MNEM_add_pc;
9644 else if (Rd <= 7 && Rs <= 7 && narrow)
9645 {
9646 if (flags)
9647 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9648 else
9649 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9650 }
9651 if (opcode)
9652 {
9653 inst.instruction = THUMB_OP16(opcode);
9654 inst.instruction |= (Rd << 4) | Rs;
9655 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9656 if (inst.size_req != 2)
9657 inst.relax = opcode;
9658 }
9659 else
9660 constraint (inst.size_req == 2, BAD_HIREG);
9661 }
9662 if (inst.size_req == 4
9663 || (inst.size_req != 2 && !opcode))
9664 {
efd81785
PB
9665 if (Rd == REG_PC)
9666 {
fdfde340 9667 constraint (add, BAD_PC);
efd81785
PB
9668 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9669 _("only SUBS PC, LR, #const allowed"));
9670 constraint (inst.reloc.exp.X_op != O_constant,
9671 _("expression too complex"));
9672 constraint (inst.reloc.exp.X_add_number < 0
9673 || inst.reloc.exp.X_add_number > 0xff,
9674 _("immediate value out of range"));
9675 inst.instruction = T2_SUBS_PC_LR
9676 | inst.reloc.exp.X_add_number;
9677 inst.reloc.type = BFD_RELOC_UNUSED;
9678 return;
9679 }
9680 else if (Rs == REG_PC)
16805f35
PB
9681 {
9682 /* Always use addw/subw. */
9683 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9684 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9685 }
9686 else
9687 {
9688 inst.instruction = THUMB_OP32 (inst.instruction);
9689 inst.instruction = (inst.instruction & 0xe1ffffff)
9690 | 0x10000000;
9691 if (flags)
9692 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9693 else
9694 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9695 }
dc4503c6
PB
9696 inst.instruction |= Rd << 8;
9697 inst.instruction |= Rs << 16;
0110f2b8 9698 }
b99bd4ef 9699 }
c19d1205
ZW
9700 else
9701 {
5f4cb198
NC
9702 unsigned int value = inst.reloc.exp.X_add_number;
9703 unsigned int shift = inst.operands[2].shift_kind;
9704
c19d1205
ZW
9705 Rn = inst.operands[2].reg;
9706 /* See if we can do this with a 16-bit instruction. */
9707 if (!inst.operands[2].shifted && inst.size_req != 4)
9708 {
e27ec89e
PB
9709 if (Rd > 7 || Rs > 7 || Rn > 7)
9710 narrow = FALSE;
9711
9712 if (narrow)
c19d1205 9713 {
e27ec89e
PB
9714 inst.instruction = ((inst.instruction == T_MNEM_adds
9715 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9716 ? T_OPCODE_ADD_R3
9717 : T_OPCODE_SUB_R3);
9718 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9719 return;
9720 }
b99bd4ef 9721
7e806470 9722 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9723 {
7e806470
PB
9724 /* Thumb-1 cores (except v6-M) require at least one high
9725 register in a narrow non flag setting add. */
9726 if (Rd > 7 || Rn > 7
9727 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9728 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9729 {
7e806470
PB
9730 if (Rd == Rn)
9731 {
9732 Rn = Rs;
9733 Rs = Rd;
9734 }
c19d1205
ZW
9735 inst.instruction = T_OPCODE_ADD_HI;
9736 inst.instruction |= (Rd & 8) << 4;
9737 inst.instruction |= (Rd & 7);
9738 inst.instruction |= Rn << 3;
9739 return;
9740 }
c19d1205
ZW
9741 }
9742 }
c921be7d 9743
fdfde340
JM
9744 constraint (Rd == REG_PC, BAD_PC);
9745 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9746 constraint (Rs == REG_PC, BAD_PC);
9747 reject_bad_reg (Rn);
9748
c19d1205
ZW
9749 /* If we get here, it can't be done in 16 bits. */
9750 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9751 _("shift must be constant"));
9752 inst.instruction = THUMB_OP32 (inst.instruction);
9753 inst.instruction |= Rd << 8;
9754 inst.instruction |= Rs << 16;
5f4cb198
NC
9755 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9756 _("shift value over 3 not allowed in thumb mode"));
9757 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9758 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
9759 encode_thumb32_shifted_operand (2);
9760 }
9761 }
9762 else
9763 {
9764 constraint (inst.instruction == T_MNEM_adds
9765 || inst.instruction == T_MNEM_subs,
9766 BAD_THUMB32);
b99bd4ef 9767
c19d1205 9768 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9769 {
c19d1205
ZW
9770 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9771 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9772 BAD_HIREG);
9773
9774 inst.instruction = (inst.instruction == T_MNEM_add
9775 ? 0x0000 : 0x8000);
9776 inst.instruction |= (Rd << 4) | Rs;
9777 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9778 return;
9779 }
9780
c19d1205
ZW
9781 Rn = inst.operands[2].reg;
9782 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9783
c19d1205
ZW
9784 /* We now have Rd, Rs, and Rn set to registers. */
9785 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9786 {
c19d1205
ZW
9787 /* Can't do this for SUB. */
9788 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9789 inst.instruction = T_OPCODE_ADD_HI;
9790 inst.instruction |= (Rd & 8) << 4;
9791 inst.instruction |= (Rd & 7);
9792 if (Rs == Rd)
9793 inst.instruction |= Rn << 3;
9794 else if (Rn == Rd)
9795 inst.instruction |= Rs << 3;
9796 else
9797 constraint (1, _("dest must overlap one source register"));
9798 }
9799 else
9800 {
9801 inst.instruction = (inst.instruction == T_MNEM_add
9802 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9803 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9804 }
b99bd4ef 9805 }
b99bd4ef
NC
9806}
9807
c19d1205
ZW
9808static void
9809do_t_adr (void)
9810{
fdfde340
JM
9811 unsigned Rd;
9812
9813 Rd = inst.operands[0].reg;
9814 reject_bad_reg (Rd);
9815
9816 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9817 {
9818 /* Defer to section relaxation. */
9819 inst.relax = inst.instruction;
9820 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9821 inst.instruction |= Rd << 4;
0110f2b8
PB
9822 }
9823 else if (unified_syntax && inst.size_req != 2)
e9f89963 9824 {
0110f2b8 9825 /* Generate a 32-bit opcode. */
e9f89963 9826 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9827 inst.instruction |= Rd << 8;
e9f89963
PB
9828 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9829 inst.reloc.pc_rel = 1;
9830 }
9831 else
9832 {
0110f2b8 9833 /* Generate a 16-bit opcode. */
e9f89963
PB
9834 inst.instruction = THUMB_OP16 (inst.instruction);
9835 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9836 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9837 inst.reloc.pc_rel = 1;
b99bd4ef 9838
fdfde340 9839 inst.instruction |= Rd << 4;
e9f89963 9840 }
c19d1205 9841}
b99bd4ef 9842
c19d1205
ZW
9843/* Arithmetic instructions for which there is just one 16-bit
9844 instruction encoding, and it allows only two low registers.
9845 For maximal compatibility with ARM syntax, we allow three register
9846 operands even when Thumb-32 instructions are not available, as long
9847 as the first two are identical. For instance, both "sbc r0,r1" and
9848 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9849static void
c19d1205 9850do_t_arit3 (void)
b99bd4ef 9851{
c19d1205 9852 int Rd, Rs, Rn;
b99bd4ef 9853
c19d1205
ZW
9854 Rd = inst.operands[0].reg;
9855 Rs = (inst.operands[1].present
9856 ? inst.operands[1].reg /* Rd, Rs, foo */
9857 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9858 Rn = inst.operands[2].reg;
b99bd4ef 9859
fdfde340
JM
9860 reject_bad_reg (Rd);
9861 reject_bad_reg (Rs);
9862 if (inst.operands[2].isreg)
9863 reject_bad_reg (Rn);
9864
c19d1205 9865 if (unified_syntax)
b99bd4ef 9866 {
c19d1205
ZW
9867 if (!inst.operands[2].isreg)
9868 {
9869 /* For an immediate, we always generate a 32-bit opcode;
9870 section relaxation will shrink it later if possible. */
9871 inst.instruction = THUMB_OP32 (inst.instruction);
9872 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9873 inst.instruction |= Rd << 8;
9874 inst.instruction |= Rs << 16;
9875 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9876 }
9877 else
9878 {
e27ec89e
PB
9879 bfd_boolean narrow;
9880
c19d1205 9881 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9882 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9883 narrow = !in_it_block ();
e27ec89e 9884 else
e07e6e58 9885 narrow = in_it_block ();
e27ec89e
PB
9886
9887 if (Rd > 7 || Rn > 7 || Rs > 7)
9888 narrow = FALSE;
9889 if (inst.operands[2].shifted)
9890 narrow = FALSE;
9891 if (inst.size_req == 4)
9892 narrow = FALSE;
9893
9894 if (narrow
c19d1205
ZW
9895 && Rd == Rs)
9896 {
9897 inst.instruction = THUMB_OP16 (inst.instruction);
9898 inst.instruction |= Rd;
9899 inst.instruction |= Rn << 3;
9900 return;
9901 }
b99bd4ef 9902
c19d1205
ZW
9903 /* If we get here, it can't be done in 16 bits. */
9904 constraint (inst.operands[2].shifted
9905 && inst.operands[2].immisreg,
9906 _("shift must be constant"));
9907 inst.instruction = THUMB_OP32 (inst.instruction);
9908 inst.instruction |= Rd << 8;
9909 inst.instruction |= Rs << 16;
9910 encode_thumb32_shifted_operand (2);
9911 }
a737bd4d 9912 }
c19d1205 9913 else
b99bd4ef 9914 {
c19d1205
ZW
9915 /* On its face this is a lie - the instruction does set the
9916 flags. However, the only supported mnemonic in this mode
9917 says it doesn't. */
9918 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9919
c19d1205
ZW
9920 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9921 _("unshifted register required"));
9922 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9923 constraint (Rd != Rs,
9924 _("dest and source1 must be the same register"));
a737bd4d 9925
c19d1205
ZW
9926 inst.instruction = THUMB_OP16 (inst.instruction);
9927 inst.instruction |= Rd;
9928 inst.instruction |= Rn << 3;
b99bd4ef 9929 }
a737bd4d 9930}
b99bd4ef 9931
c19d1205
ZW
9932/* Similarly, but for instructions where the arithmetic operation is
9933 commutative, so we can allow either of them to be different from
9934 the destination operand in a 16-bit instruction. For instance, all
9935 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9936 accepted. */
9937static void
9938do_t_arit3c (void)
a737bd4d 9939{
c19d1205 9940 int Rd, Rs, Rn;
b99bd4ef 9941
c19d1205
ZW
9942 Rd = inst.operands[0].reg;
9943 Rs = (inst.operands[1].present
9944 ? inst.operands[1].reg /* Rd, Rs, foo */
9945 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9946 Rn = inst.operands[2].reg;
c921be7d 9947
fdfde340
JM
9948 reject_bad_reg (Rd);
9949 reject_bad_reg (Rs);
9950 if (inst.operands[2].isreg)
9951 reject_bad_reg (Rn);
a737bd4d 9952
c19d1205 9953 if (unified_syntax)
a737bd4d 9954 {
c19d1205 9955 if (!inst.operands[2].isreg)
b99bd4ef 9956 {
c19d1205
ZW
9957 /* For an immediate, we always generate a 32-bit opcode;
9958 section relaxation will shrink it later if possible. */
9959 inst.instruction = THUMB_OP32 (inst.instruction);
9960 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9961 inst.instruction |= Rd << 8;
9962 inst.instruction |= Rs << 16;
9963 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9964 }
c19d1205 9965 else
a737bd4d 9966 {
e27ec89e
PB
9967 bfd_boolean narrow;
9968
c19d1205 9969 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9970 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9971 narrow = !in_it_block ();
e27ec89e 9972 else
e07e6e58 9973 narrow = in_it_block ();
e27ec89e
PB
9974
9975 if (Rd > 7 || Rn > 7 || Rs > 7)
9976 narrow = FALSE;
9977 if (inst.operands[2].shifted)
9978 narrow = FALSE;
9979 if (inst.size_req == 4)
9980 narrow = FALSE;
9981
9982 if (narrow)
a737bd4d 9983 {
c19d1205 9984 if (Rd == Rs)
a737bd4d 9985 {
c19d1205
ZW
9986 inst.instruction = THUMB_OP16 (inst.instruction);
9987 inst.instruction |= Rd;
9988 inst.instruction |= Rn << 3;
9989 return;
a737bd4d 9990 }
c19d1205 9991 if (Rd == Rn)
a737bd4d 9992 {
c19d1205
ZW
9993 inst.instruction = THUMB_OP16 (inst.instruction);
9994 inst.instruction |= Rd;
9995 inst.instruction |= Rs << 3;
9996 return;
a737bd4d
NC
9997 }
9998 }
c19d1205
ZW
9999
10000 /* If we get here, it can't be done in 16 bits. */
10001 constraint (inst.operands[2].shifted
10002 && inst.operands[2].immisreg,
10003 _("shift must be constant"));
10004 inst.instruction = THUMB_OP32 (inst.instruction);
10005 inst.instruction |= Rd << 8;
10006 inst.instruction |= Rs << 16;
10007 encode_thumb32_shifted_operand (2);
a737bd4d 10008 }
b99bd4ef 10009 }
c19d1205
ZW
10010 else
10011 {
10012 /* On its face this is a lie - the instruction does set the
10013 flags. However, the only supported mnemonic in this mode
10014 says it doesn't. */
10015 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10016
c19d1205
ZW
10017 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10018 _("unshifted register required"));
10019 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10020
10021 inst.instruction = THUMB_OP16 (inst.instruction);
10022 inst.instruction |= Rd;
10023
10024 if (Rd == Rs)
10025 inst.instruction |= Rn << 3;
10026 else if (Rd == Rn)
10027 inst.instruction |= Rs << 3;
10028 else
10029 constraint (1, _("dest must overlap one source register"));
10030 }
a737bd4d
NC
10031}
10032
62b3e311
PB
10033static void
10034do_t_barrier (void)
10035{
10036 if (inst.operands[0].present)
10037 {
10038 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
10039 && inst.operands[0].imm > 0xf
10040 && inst.operands[0].imm < 0x0,
bd3ba5d1 10041 _("bad barrier type"));
62b3e311
PB
10042 inst.instruction |= inst.operands[0].imm;
10043 }
10044 else
10045 inst.instruction |= 0xf;
10046}
10047
c19d1205
ZW
10048static void
10049do_t_bfc (void)
a737bd4d 10050{
fdfde340 10051 unsigned Rd;
c19d1205
ZW
10052 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10053 constraint (msb > 32, _("bit-field extends past end of register"));
10054 /* The instruction encoding stores the LSB and MSB,
10055 not the LSB and width. */
fdfde340
JM
10056 Rd = inst.operands[0].reg;
10057 reject_bad_reg (Rd);
10058 inst.instruction |= Rd << 8;
c19d1205
ZW
10059 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10060 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10061 inst.instruction |= msb - 1;
b99bd4ef
NC
10062}
10063
c19d1205
ZW
10064static void
10065do_t_bfi (void)
b99bd4ef 10066{
fdfde340 10067 int Rd, Rn;
c19d1205 10068 unsigned int msb;
b99bd4ef 10069
fdfde340
JM
10070 Rd = inst.operands[0].reg;
10071 reject_bad_reg (Rd);
10072
c19d1205
ZW
10073 /* #0 in second position is alternative syntax for bfc, which is
10074 the same instruction but with REG_PC in the Rm field. */
10075 if (!inst.operands[1].isreg)
fdfde340
JM
10076 Rn = REG_PC;
10077 else
10078 {
10079 Rn = inst.operands[1].reg;
10080 reject_bad_reg (Rn);
10081 }
b99bd4ef 10082
c19d1205
ZW
10083 msb = inst.operands[2].imm + inst.operands[3].imm;
10084 constraint (msb > 32, _("bit-field extends past end of register"));
10085 /* The instruction encoding stores the LSB and MSB,
10086 not the LSB and width. */
fdfde340
JM
10087 inst.instruction |= Rd << 8;
10088 inst.instruction |= Rn << 16;
c19d1205
ZW
10089 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10090 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10091 inst.instruction |= msb - 1;
b99bd4ef
NC
10092}
10093
c19d1205
ZW
10094static void
10095do_t_bfx (void)
b99bd4ef 10096{
fdfde340
JM
10097 unsigned Rd, Rn;
10098
10099 Rd = inst.operands[0].reg;
10100 Rn = inst.operands[1].reg;
10101
10102 reject_bad_reg (Rd);
10103 reject_bad_reg (Rn);
10104
c19d1205
ZW
10105 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10106 _("bit-field extends past end of register"));
fdfde340
JM
10107 inst.instruction |= Rd << 8;
10108 inst.instruction |= Rn << 16;
c19d1205
ZW
10109 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10110 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10111 inst.instruction |= inst.operands[3].imm - 1;
10112}
b99bd4ef 10113
c19d1205
ZW
10114/* ARM V5 Thumb BLX (argument parse)
10115 BLX <target_addr> which is BLX(1)
10116 BLX <Rm> which is BLX(2)
10117 Unfortunately, there are two different opcodes for this mnemonic.
10118 So, the insns[].value is not used, and the code here zaps values
10119 into inst.instruction.
b99bd4ef 10120
c19d1205
ZW
10121 ??? How to take advantage of the additional two bits of displacement
10122 available in Thumb32 mode? Need new relocation? */
b99bd4ef 10123
c19d1205
ZW
10124static void
10125do_t_blx (void)
10126{
e07e6e58
NC
10127 set_it_insn_type_last ();
10128
c19d1205 10129 if (inst.operands[0].isreg)
fdfde340
JM
10130 {
10131 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10132 /* We have a register, so this is BLX(2). */
10133 inst.instruction |= inst.operands[0].reg << 3;
10134 }
b99bd4ef
NC
10135 else
10136 {
c19d1205 10137 /* No register. This must be BLX(1). */
2fc8bdac 10138 inst.instruction = 0xf000e800;
0855e32b 10139 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
10140 }
10141}
10142
c19d1205
ZW
10143static void
10144do_t_branch (void)
b99bd4ef 10145{
0110f2b8 10146 int opcode;
dfa9f0d5 10147 int cond;
9ae92b05 10148 int reloc;
dfa9f0d5 10149
e07e6e58
NC
10150 cond = inst.cond;
10151 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10152
10153 if (in_it_block ())
dfa9f0d5
PB
10154 {
10155 /* Conditional branches inside IT blocks are encoded as unconditional
10156 branches. */
10157 cond = COND_ALWAYS;
dfa9f0d5
PB
10158 }
10159 else
10160 cond = inst.cond;
10161
10162 if (cond != COND_ALWAYS)
0110f2b8
PB
10163 opcode = T_MNEM_bcond;
10164 else
10165 opcode = inst.instruction;
10166
12d6b0b7
RS
10167 if (unified_syntax
10168 && (inst.size_req == 4
10960bfb
PB
10169 || (inst.size_req != 2
10170 && (inst.operands[0].hasreloc
10171 || inst.reloc.exp.X_op == O_constant))))
c19d1205 10172 {
0110f2b8 10173 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 10174 if (cond == COND_ALWAYS)
9ae92b05 10175 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
10176 else
10177 {
9c2799c2 10178 gas_assert (cond != 0xF);
dfa9f0d5 10179 inst.instruction |= cond << 22;
9ae92b05 10180 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
10181 }
10182 }
b99bd4ef
NC
10183 else
10184 {
0110f2b8 10185 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 10186 if (cond == COND_ALWAYS)
9ae92b05 10187 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 10188 else
b99bd4ef 10189 {
dfa9f0d5 10190 inst.instruction |= cond << 8;
9ae92b05 10191 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 10192 }
0110f2b8
PB
10193 /* Allow section relaxation. */
10194 if (unified_syntax && inst.size_req != 2)
10195 inst.relax = opcode;
b99bd4ef 10196 }
9ae92b05 10197 inst.reloc.type = reloc;
c19d1205 10198 inst.reloc.pc_rel = 1;
b99bd4ef
NC
10199}
10200
8884b720
MGD
10201/* Actually do the work for Thumb state bkpt and hlt. The only difference
10202 between the two is the maximum immediate allowed - which is passed in
10203 RANGE. */
b99bd4ef 10204static void
8884b720 10205do_t_bkpt_hlt1 (int range)
b99bd4ef 10206{
dfa9f0d5
PB
10207 constraint (inst.cond != COND_ALWAYS,
10208 _("instruction is always unconditional"));
c19d1205 10209 if (inst.operands[0].present)
b99bd4ef 10210 {
8884b720 10211 constraint (inst.operands[0].imm > range,
c19d1205
ZW
10212 _("immediate value out of range"));
10213 inst.instruction |= inst.operands[0].imm;
b99bd4ef 10214 }
8884b720
MGD
10215
10216 set_it_insn_type (NEUTRAL_IT_INSN);
10217}
10218
10219static void
10220do_t_hlt (void)
10221{
10222 do_t_bkpt_hlt1 (63);
10223}
10224
10225static void
10226do_t_bkpt (void)
10227{
10228 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
10229}
10230
10231static void
c19d1205 10232do_t_branch23 (void)
b99bd4ef 10233{
e07e6e58 10234 set_it_insn_type_last ();
0855e32b 10235 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 10236
0855e32b
NS
10237 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10238 this file. We used to simply ignore the PLT reloc type here --
10239 the branch encoding is now needed to deal with TLSCALL relocs.
10240 So if we see a PLT reloc now, put it back to how it used to be to
10241 keep the preexisting behaviour. */
10242 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10243 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 10244
4343666d 10245#if defined(OBJ_COFF)
c19d1205
ZW
10246 /* If the destination of the branch is a defined symbol which does not have
10247 the THUMB_FUNC attribute, then we must be calling a function which has
10248 the (interfacearm) attribute. We look for the Thumb entry point to that
10249 function and change the branch to refer to that function instead. */
10250 if ( inst.reloc.exp.X_op == O_symbol
10251 && inst.reloc.exp.X_add_symbol != NULL
10252 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10253 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10254 inst.reloc.exp.X_add_symbol =
10255 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 10256#endif
90e4755a
RE
10257}
10258
10259static void
c19d1205 10260do_t_bx (void)
90e4755a 10261{
e07e6e58 10262 set_it_insn_type_last ();
c19d1205
ZW
10263 inst.instruction |= inst.operands[0].reg << 3;
10264 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10265 should cause the alignment to be checked once it is known. This is
10266 because BX PC only works if the instruction is word aligned. */
10267}
90e4755a 10268
c19d1205
ZW
10269static void
10270do_t_bxj (void)
10271{
fdfde340 10272 int Rm;
90e4755a 10273
e07e6e58 10274 set_it_insn_type_last ();
fdfde340
JM
10275 Rm = inst.operands[0].reg;
10276 reject_bad_reg (Rm);
10277 inst.instruction |= Rm << 16;
90e4755a
RE
10278}
10279
10280static void
c19d1205 10281do_t_clz (void)
90e4755a 10282{
fdfde340
JM
10283 unsigned Rd;
10284 unsigned Rm;
10285
10286 Rd = inst.operands[0].reg;
10287 Rm = inst.operands[1].reg;
10288
10289 reject_bad_reg (Rd);
10290 reject_bad_reg (Rm);
10291
10292 inst.instruction |= Rd << 8;
10293 inst.instruction |= Rm << 16;
10294 inst.instruction |= Rm;
c19d1205 10295}
90e4755a 10296
dfa9f0d5
PB
10297static void
10298do_t_cps (void)
10299{
e07e6e58 10300 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10301 inst.instruction |= inst.operands[0].imm;
10302}
10303
c19d1205
ZW
10304static void
10305do_t_cpsi (void)
10306{
e07e6e58 10307 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10308 if (unified_syntax
62b3e311
PB
10309 && (inst.operands[1].present || inst.size_req == 4)
10310 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10311 {
c19d1205
ZW
10312 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10313 inst.instruction = 0xf3af8000;
10314 inst.instruction |= imod << 9;
10315 inst.instruction |= inst.operands[0].imm << 5;
10316 if (inst.operands[1].present)
10317 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10318 }
c19d1205 10319 else
90e4755a 10320 {
62b3e311
PB
10321 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10322 && (inst.operands[0].imm & 4),
10323 _("selected processor does not support 'A' form "
10324 "of this instruction"));
10325 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10326 _("Thumb does not support the 2-argument "
10327 "form of this instruction"));
10328 inst.instruction |= inst.operands[0].imm;
90e4755a 10329 }
90e4755a
RE
10330}
10331
c19d1205
ZW
10332/* THUMB CPY instruction (argument parse). */
10333
90e4755a 10334static void
c19d1205 10335do_t_cpy (void)
90e4755a 10336{
c19d1205 10337 if (inst.size_req == 4)
90e4755a 10338 {
c19d1205
ZW
10339 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10340 inst.instruction |= inst.operands[0].reg << 8;
10341 inst.instruction |= inst.operands[1].reg;
90e4755a 10342 }
c19d1205 10343 else
90e4755a 10344 {
c19d1205
ZW
10345 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10346 inst.instruction |= (inst.operands[0].reg & 0x7);
10347 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10348 }
90e4755a
RE
10349}
10350
90e4755a 10351static void
25fe350b 10352do_t_cbz (void)
90e4755a 10353{
e07e6e58 10354 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10355 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10356 inst.instruction |= inst.operands[0].reg;
10357 inst.reloc.pc_rel = 1;
10358 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10359}
90e4755a 10360
62b3e311
PB
10361static void
10362do_t_dbg (void)
10363{
10364 inst.instruction |= inst.operands[0].imm;
10365}
10366
10367static void
10368do_t_div (void)
10369{
fdfde340
JM
10370 unsigned Rd, Rn, Rm;
10371
10372 Rd = inst.operands[0].reg;
10373 Rn = (inst.operands[1].present
10374 ? inst.operands[1].reg : Rd);
10375 Rm = inst.operands[2].reg;
10376
10377 reject_bad_reg (Rd);
10378 reject_bad_reg (Rn);
10379 reject_bad_reg (Rm);
10380
10381 inst.instruction |= Rd << 8;
10382 inst.instruction |= Rn << 16;
10383 inst.instruction |= Rm;
62b3e311
PB
10384}
10385
c19d1205
ZW
10386static void
10387do_t_hint (void)
10388{
10389 if (unified_syntax && inst.size_req == 4)
10390 inst.instruction = THUMB_OP32 (inst.instruction);
10391 else
10392 inst.instruction = THUMB_OP16 (inst.instruction);
10393}
90e4755a 10394
c19d1205
ZW
10395static void
10396do_t_it (void)
10397{
10398 unsigned int cond = inst.operands[0].imm;
e27ec89e 10399
e07e6e58
NC
10400 set_it_insn_type (IT_INSN);
10401 now_it.mask = (inst.instruction & 0xf) | 0x10;
10402 now_it.cc = cond;
5a01bb1d 10403 now_it.warn_deprecated = FALSE;
e27ec89e
PB
10404
10405 /* If the condition is a negative condition, invert the mask. */
c19d1205 10406 if ((cond & 0x1) == 0x0)
90e4755a 10407 {
c19d1205 10408 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10409
c19d1205 10410 if ((mask & 0x7) == 0)
5a01bb1d
MGD
10411 {
10412 /* No conversion needed. */
10413 now_it.block_length = 1;
10414 }
c19d1205 10415 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
10416 {
10417 mask ^= 0x8;
10418 now_it.block_length = 2;
10419 }
e27ec89e 10420 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
10421 {
10422 mask ^= 0xC;
10423 now_it.block_length = 3;
10424 }
c19d1205 10425 else
5a01bb1d
MGD
10426 {
10427 mask ^= 0xE;
10428 now_it.block_length = 4;
10429 }
90e4755a 10430
e27ec89e
PB
10431 inst.instruction &= 0xfff0;
10432 inst.instruction |= mask;
c19d1205 10433 }
90e4755a 10434
c19d1205
ZW
10435 inst.instruction |= cond << 4;
10436}
90e4755a 10437
3c707909
PB
10438/* Helper function used for both push/pop and ldm/stm. */
10439static void
10440encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10441{
10442 bfd_boolean load;
10443
10444 load = (inst.instruction & (1 << 20)) != 0;
10445
10446 if (mask & (1 << 13))
10447 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10448
10449 if ((mask & (1 << base)) != 0
10450 && writeback)
10451 inst.error = _("having the base register in the register list when "
10452 "using write back is UNPREDICTABLE");
10453
3c707909
PB
10454 if (load)
10455 {
e07e6e58
NC
10456 if (mask & (1 << 15))
10457 {
10458 if (mask & (1 << 14))
10459 inst.error = _("LR and PC should not both be in register list");
10460 else
10461 set_it_insn_type_last ();
10462 }
3c707909
PB
10463 }
10464 else
10465 {
10466 if (mask & (1 << 15))
10467 inst.error = _("PC not allowed in register list");
3c707909
PB
10468 }
10469
10470 if ((mask & (mask - 1)) == 0)
10471 {
10472 /* Single register transfers implemented as str/ldr. */
10473 if (writeback)
10474 {
10475 if (inst.instruction & (1 << 23))
10476 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10477 else
10478 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10479 }
10480 else
10481 {
10482 if (inst.instruction & (1 << 23))
10483 inst.instruction = 0x00800000; /* ia -> [base] */
10484 else
10485 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10486 }
10487
10488 inst.instruction |= 0xf8400000;
10489 if (load)
10490 inst.instruction |= 0x00100000;
10491
5f4273c7 10492 mask = ffs (mask) - 1;
3c707909
PB
10493 mask <<= 12;
10494 }
10495 else if (writeback)
10496 inst.instruction |= WRITE_BACK;
10497
10498 inst.instruction |= mask;
10499 inst.instruction |= base << 16;
10500}
10501
c19d1205
ZW
10502static void
10503do_t_ldmstm (void)
10504{
10505 /* This really doesn't seem worth it. */
10506 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10507 _("expression too complex"));
10508 constraint (inst.operands[1].writeback,
10509 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10510
c19d1205
ZW
10511 if (unified_syntax)
10512 {
3c707909
PB
10513 bfd_boolean narrow;
10514 unsigned mask;
10515
10516 narrow = FALSE;
c19d1205
ZW
10517 /* See if we can use a 16-bit instruction. */
10518 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10519 && inst.size_req != 4
3c707909 10520 && !(inst.operands[1].imm & ~0xff))
90e4755a 10521 {
3c707909 10522 mask = 1 << inst.operands[0].reg;
90e4755a 10523
eab4f823 10524 if (inst.operands[0].reg <= 7)
90e4755a 10525 {
3c707909 10526 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10527 ? inst.operands[0].writeback
10528 : (inst.operands[0].writeback
10529 == !(inst.operands[1].imm & mask)))
10530 {
10531 if (inst.instruction == T_MNEM_stmia
10532 && (inst.operands[1].imm & mask)
10533 && (inst.operands[1].imm & (mask - 1)))
10534 as_warn (_("value stored for r%d is UNKNOWN"),
10535 inst.operands[0].reg);
3c707909 10536
eab4f823
MGD
10537 inst.instruction = THUMB_OP16 (inst.instruction);
10538 inst.instruction |= inst.operands[0].reg << 8;
10539 inst.instruction |= inst.operands[1].imm;
10540 narrow = TRUE;
10541 }
10542 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10543 {
10544 /* This means 1 register in reg list one of 3 situations:
10545 1. Instruction is stmia, but without writeback.
10546 2. lmdia without writeback, but with Rn not in
10547 reglist.
10548 3. ldmia with writeback, but with Rn in reglist.
10549 Case 3 is UNPREDICTABLE behaviour, so we handle
10550 case 1 and 2 which can be converted into a 16-bit
10551 str or ldr. The SP cases are handled below. */
10552 unsigned long opcode;
10553 /* First, record an error for Case 3. */
10554 if (inst.operands[1].imm & mask
10555 && inst.operands[0].writeback)
fa94de6b 10556 inst.error =
eab4f823
MGD
10557 _("having the base register in the register list when "
10558 "using write back is UNPREDICTABLE");
fa94de6b
RM
10559
10560 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
10561 : T_MNEM_ldr);
10562 inst.instruction = THUMB_OP16 (opcode);
10563 inst.instruction |= inst.operands[0].reg << 3;
10564 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10565 narrow = TRUE;
10566 }
90e4755a 10567 }
eab4f823 10568 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10569 {
eab4f823
MGD
10570 if (inst.operands[0].writeback)
10571 {
fa94de6b 10572 inst.instruction =
eab4f823
MGD
10573 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10574 ? T_MNEM_push : T_MNEM_pop);
10575 inst.instruction |= inst.operands[1].imm;
10576 narrow = TRUE;
10577 }
10578 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10579 {
fa94de6b 10580 inst.instruction =
eab4f823
MGD
10581 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10582 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10583 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10584 narrow = TRUE;
10585 }
90e4755a 10586 }
3c707909
PB
10587 }
10588
10589 if (!narrow)
10590 {
c19d1205
ZW
10591 if (inst.instruction < 0xffff)
10592 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10593
5f4273c7
NC
10594 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10595 inst.operands[0].writeback);
90e4755a
RE
10596 }
10597 }
c19d1205 10598 else
90e4755a 10599 {
c19d1205
ZW
10600 constraint (inst.operands[0].reg > 7
10601 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10602 constraint (inst.instruction != T_MNEM_ldmia
10603 && inst.instruction != T_MNEM_stmia,
10604 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10605 if (inst.instruction == T_MNEM_stmia)
f03698e6 10606 {
c19d1205
ZW
10607 if (!inst.operands[0].writeback)
10608 as_warn (_("this instruction will write back the base register"));
10609 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10610 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10611 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10612 inst.operands[0].reg);
f03698e6 10613 }
c19d1205 10614 else
90e4755a 10615 {
c19d1205
ZW
10616 if (!inst.operands[0].writeback
10617 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10618 as_warn (_("this instruction will write back the base register"));
10619 else if (inst.operands[0].writeback
10620 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10621 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10622 }
10623
c19d1205
ZW
10624 inst.instruction = THUMB_OP16 (inst.instruction);
10625 inst.instruction |= inst.operands[0].reg << 8;
10626 inst.instruction |= inst.operands[1].imm;
10627 }
10628}
e28cd48c 10629
c19d1205
ZW
10630static void
10631do_t_ldrex (void)
10632{
10633 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10634 || inst.operands[1].postind || inst.operands[1].writeback
10635 || inst.operands[1].immisreg || inst.operands[1].shifted
10636 || inst.operands[1].negative,
01cfc07f 10637 BAD_ADDR_MODE);
e28cd48c 10638
5be8be5d
DG
10639 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10640
c19d1205
ZW
10641 inst.instruction |= inst.operands[0].reg << 12;
10642 inst.instruction |= inst.operands[1].reg << 16;
10643 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10644}
e28cd48c 10645
c19d1205
ZW
10646static void
10647do_t_ldrexd (void)
10648{
10649 if (!inst.operands[1].present)
1cac9012 10650 {
c19d1205
ZW
10651 constraint (inst.operands[0].reg == REG_LR,
10652 _("r14 not allowed as first register "
10653 "when second register is omitted"));
10654 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10655 }
c19d1205
ZW
10656 constraint (inst.operands[0].reg == inst.operands[1].reg,
10657 BAD_OVERLAP);
b99bd4ef 10658
c19d1205
ZW
10659 inst.instruction |= inst.operands[0].reg << 12;
10660 inst.instruction |= inst.operands[1].reg << 8;
10661 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10662}
10663
10664static void
c19d1205 10665do_t_ldst (void)
b99bd4ef 10666{
0110f2b8
PB
10667 unsigned long opcode;
10668 int Rn;
10669
e07e6e58
NC
10670 if (inst.operands[0].isreg
10671 && !inst.operands[0].preind
10672 && inst.operands[0].reg == REG_PC)
10673 set_it_insn_type_last ();
10674
0110f2b8 10675 opcode = inst.instruction;
c19d1205 10676 if (unified_syntax)
b99bd4ef 10677 {
53365c0d
PB
10678 if (!inst.operands[1].isreg)
10679 {
10680 if (opcode <= 0xffff)
10681 inst.instruction = THUMB_OP32 (opcode);
10682 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10683 return;
10684 }
0110f2b8
PB
10685 if (inst.operands[1].isreg
10686 && !inst.operands[1].writeback
c19d1205
ZW
10687 && !inst.operands[1].shifted && !inst.operands[1].postind
10688 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10689 && opcode <= 0xffff
10690 && inst.size_req != 4)
c19d1205 10691 {
0110f2b8
PB
10692 /* Insn may have a 16-bit form. */
10693 Rn = inst.operands[1].reg;
10694 if (inst.operands[1].immisreg)
10695 {
10696 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10697 /* [Rn, Rik] */
0110f2b8
PB
10698 if (Rn <= 7 && inst.operands[1].imm <= 7)
10699 goto op16;
5be8be5d
DG
10700 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10701 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10702 }
10703 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10704 && opcode != T_MNEM_ldrsb)
10705 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10706 || (Rn == REG_SP && opcode == T_MNEM_str))
10707 {
10708 /* [Rn, #const] */
10709 if (Rn > 7)
10710 {
10711 if (Rn == REG_PC)
10712 {
10713 if (inst.reloc.pc_rel)
10714 opcode = T_MNEM_ldr_pc2;
10715 else
10716 opcode = T_MNEM_ldr_pc;
10717 }
10718 else
10719 {
10720 if (opcode == T_MNEM_ldr)
10721 opcode = T_MNEM_ldr_sp;
10722 else
10723 opcode = T_MNEM_str_sp;
10724 }
10725 inst.instruction = inst.operands[0].reg << 8;
10726 }
10727 else
10728 {
10729 inst.instruction = inst.operands[0].reg;
10730 inst.instruction |= inst.operands[1].reg << 3;
10731 }
10732 inst.instruction |= THUMB_OP16 (opcode);
10733 if (inst.size_req == 2)
10734 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10735 else
10736 inst.relax = opcode;
10737 return;
10738 }
c19d1205 10739 }
0110f2b8 10740 /* Definitely a 32-bit variant. */
5be8be5d 10741
8d67f500
NC
10742 /* Warning for Erratum 752419. */
10743 if (opcode == T_MNEM_ldr
10744 && inst.operands[0].reg == REG_SP
10745 && inst.operands[1].writeback == 1
10746 && !inst.operands[1].immisreg)
10747 {
10748 if (no_cpu_selected ()
10749 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10750 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10751 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10752 as_warn (_("This instruction may be unpredictable "
10753 "if executed on M-profile cores "
10754 "with interrupts enabled."));
10755 }
10756
5be8be5d 10757 /* Do some validations regarding addressing modes. */
1be5fd2e 10758 if (inst.operands[1].immisreg)
5be8be5d
DG
10759 reject_bad_reg (inst.operands[1].imm);
10760
1be5fd2e
NC
10761 constraint (inst.operands[1].writeback == 1
10762 && inst.operands[0].reg == inst.operands[1].reg,
10763 BAD_OVERLAP);
10764
0110f2b8 10765 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10766 inst.instruction |= inst.operands[0].reg << 12;
10767 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 10768 check_ldr_r15_aligned ();
b99bd4ef
NC
10769 return;
10770 }
10771
c19d1205
ZW
10772 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10773
10774 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10775 {
c19d1205
ZW
10776 /* Only [Rn,Rm] is acceptable. */
10777 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10778 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10779 || inst.operands[1].postind || inst.operands[1].shifted
10780 || inst.operands[1].negative,
10781 _("Thumb does not support this addressing mode"));
10782 inst.instruction = THUMB_OP16 (inst.instruction);
10783 goto op16;
b99bd4ef 10784 }
5f4273c7 10785
c19d1205
ZW
10786 inst.instruction = THUMB_OP16 (inst.instruction);
10787 if (!inst.operands[1].isreg)
10788 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10789 return;
b99bd4ef 10790
c19d1205
ZW
10791 constraint (!inst.operands[1].preind
10792 || inst.operands[1].shifted
10793 || inst.operands[1].writeback,
10794 _("Thumb does not support this addressing mode"));
10795 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10796 {
c19d1205
ZW
10797 constraint (inst.instruction & 0x0600,
10798 _("byte or halfword not valid for base register"));
10799 constraint (inst.operands[1].reg == REG_PC
10800 && !(inst.instruction & THUMB_LOAD_BIT),
10801 _("r15 based store not allowed"));
10802 constraint (inst.operands[1].immisreg,
10803 _("invalid base register for register offset"));
b99bd4ef 10804
c19d1205
ZW
10805 if (inst.operands[1].reg == REG_PC)
10806 inst.instruction = T_OPCODE_LDR_PC;
10807 else if (inst.instruction & THUMB_LOAD_BIT)
10808 inst.instruction = T_OPCODE_LDR_SP;
10809 else
10810 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10811
c19d1205
ZW
10812 inst.instruction |= inst.operands[0].reg << 8;
10813 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10814 return;
10815 }
90e4755a 10816
c19d1205
ZW
10817 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10818 if (!inst.operands[1].immisreg)
10819 {
10820 /* Immediate offset. */
10821 inst.instruction |= inst.operands[0].reg;
10822 inst.instruction |= inst.operands[1].reg << 3;
10823 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10824 return;
10825 }
90e4755a 10826
c19d1205
ZW
10827 /* Register offset. */
10828 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10829 constraint (inst.operands[1].negative,
10830 _("Thumb does not support this addressing mode"));
90e4755a 10831
c19d1205
ZW
10832 op16:
10833 switch (inst.instruction)
10834 {
10835 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10836 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10837 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10838 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10839 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10840 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10841 case 0x5600 /* ldrsb */:
10842 case 0x5e00 /* ldrsh */: break;
10843 default: abort ();
10844 }
90e4755a 10845
c19d1205
ZW
10846 inst.instruction |= inst.operands[0].reg;
10847 inst.instruction |= inst.operands[1].reg << 3;
10848 inst.instruction |= inst.operands[1].imm << 6;
10849}
90e4755a 10850
c19d1205
ZW
10851static void
10852do_t_ldstd (void)
10853{
10854 if (!inst.operands[1].present)
b99bd4ef 10855 {
c19d1205
ZW
10856 inst.operands[1].reg = inst.operands[0].reg + 1;
10857 constraint (inst.operands[0].reg == REG_LR,
10858 _("r14 not allowed here"));
bd340a04
MGD
10859 constraint (inst.operands[0].reg == REG_R12,
10860 _("r12 not allowed here"));
b99bd4ef 10861 }
bd340a04
MGD
10862
10863 if (inst.operands[2].writeback
10864 && (inst.operands[0].reg == inst.operands[2].reg
10865 || inst.operands[1].reg == inst.operands[2].reg))
10866 as_warn (_("base register written back, and overlaps "
10867 "one of transfer registers"));
10868
c19d1205
ZW
10869 inst.instruction |= inst.operands[0].reg << 12;
10870 inst.instruction |= inst.operands[1].reg << 8;
10871 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10872}
10873
c19d1205
ZW
10874static void
10875do_t_ldstt (void)
10876{
10877 inst.instruction |= inst.operands[0].reg << 12;
10878 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10879}
a737bd4d 10880
b99bd4ef 10881static void
c19d1205 10882do_t_mla (void)
b99bd4ef 10883{
fdfde340 10884 unsigned Rd, Rn, Rm, Ra;
c921be7d 10885
fdfde340
JM
10886 Rd = inst.operands[0].reg;
10887 Rn = inst.operands[1].reg;
10888 Rm = inst.operands[2].reg;
10889 Ra = inst.operands[3].reg;
10890
10891 reject_bad_reg (Rd);
10892 reject_bad_reg (Rn);
10893 reject_bad_reg (Rm);
10894 reject_bad_reg (Ra);
10895
10896 inst.instruction |= Rd << 8;
10897 inst.instruction |= Rn << 16;
10898 inst.instruction |= Rm;
10899 inst.instruction |= Ra << 12;
c19d1205 10900}
b99bd4ef 10901
c19d1205
ZW
10902static void
10903do_t_mlal (void)
10904{
fdfde340
JM
10905 unsigned RdLo, RdHi, Rn, Rm;
10906
10907 RdLo = inst.operands[0].reg;
10908 RdHi = inst.operands[1].reg;
10909 Rn = inst.operands[2].reg;
10910 Rm = inst.operands[3].reg;
10911
10912 reject_bad_reg (RdLo);
10913 reject_bad_reg (RdHi);
10914 reject_bad_reg (Rn);
10915 reject_bad_reg (Rm);
10916
10917 inst.instruction |= RdLo << 12;
10918 inst.instruction |= RdHi << 8;
10919 inst.instruction |= Rn << 16;
10920 inst.instruction |= Rm;
c19d1205 10921}
b99bd4ef 10922
c19d1205
ZW
10923static void
10924do_t_mov_cmp (void)
10925{
fdfde340
JM
10926 unsigned Rn, Rm;
10927
10928 Rn = inst.operands[0].reg;
10929 Rm = inst.operands[1].reg;
10930
e07e6e58
NC
10931 if (Rn == REG_PC)
10932 set_it_insn_type_last ();
10933
c19d1205 10934 if (unified_syntax)
b99bd4ef 10935 {
c19d1205
ZW
10936 int r0off = (inst.instruction == T_MNEM_mov
10937 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10938 unsigned long opcode;
3d388997
PB
10939 bfd_boolean narrow;
10940 bfd_boolean low_regs;
10941
fdfde340 10942 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10943 opcode = inst.instruction;
e07e6e58 10944 if (in_it_block ())
0110f2b8 10945 narrow = opcode != T_MNEM_movs;
3d388997 10946 else
0110f2b8 10947 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10948 if (inst.size_req == 4
10949 || inst.operands[1].shifted)
10950 narrow = FALSE;
10951
efd81785
PB
10952 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10953 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10954 && !inst.operands[1].shifted
fdfde340
JM
10955 && Rn == REG_PC
10956 && Rm == REG_LR)
efd81785
PB
10957 {
10958 inst.instruction = T2_SUBS_PC_LR;
10959 return;
10960 }
10961
fdfde340
JM
10962 if (opcode == T_MNEM_cmp)
10963 {
10964 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10965 if (narrow)
10966 {
10967 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10968 but valid. */
10969 warn_deprecated_sp (Rm);
10970 /* R15 was documented as a valid choice for Rm in ARMv6,
10971 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10972 tools reject R15, so we do too. */
10973 constraint (Rm == REG_PC, BAD_PC);
10974 }
10975 else
10976 reject_bad_reg (Rm);
fdfde340
JM
10977 }
10978 else if (opcode == T_MNEM_mov
10979 || opcode == T_MNEM_movs)
10980 {
10981 if (inst.operands[1].isreg)
10982 {
10983 if (opcode == T_MNEM_movs)
10984 {
10985 reject_bad_reg (Rn);
10986 reject_bad_reg (Rm);
10987 }
76fa04a4
MGD
10988 else if (narrow)
10989 {
10990 /* This is mov.n. */
10991 if ((Rn == REG_SP || Rn == REG_PC)
10992 && (Rm == REG_SP || Rm == REG_PC))
10993 {
10994 as_warn (_("Use of r%u as a source register is "
10995 "deprecated when r%u is the destination "
10996 "register."), Rm, Rn);
10997 }
10998 }
10999 else
11000 {
11001 /* This is mov.w. */
11002 constraint (Rn == REG_PC, BAD_PC);
11003 constraint (Rm == REG_PC, BAD_PC);
11004 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11005 }
fdfde340
JM
11006 }
11007 else
11008 reject_bad_reg (Rn);
11009 }
11010
c19d1205
ZW
11011 if (!inst.operands[1].isreg)
11012 {
0110f2b8 11013 /* Immediate operand. */
e07e6e58 11014 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
11015 narrow = 0;
11016 if (low_regs && narrow)
11017 {
11018 inst.instruction = THUMB_OP16 (opcode);
fdfde340 11019 inst.instruction |= Rn << 8;
0110f2b8
PB
11020 if (inst.size_req == 2)
11021 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11022 else
11023 inst.relax = opcode;
11024 }
11025 else
11026 {
11027 inst.instruction = THUMB_OP32 (inst.instruction);
11028 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11029 inst.instruction |= Rn << r0off;
0110f2b8
PB
11030 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11031 }
c19d1205 11032 }
728ca7c9
PB
11033 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11034 && (inst.instruction == T_MNEM_mov
11035 || inst.instruction == T_MNEM_movs))
11036 {
11037 /* Register shifts are encoded as separate shift instructions. */
11038 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11039
e07e6e58 11040 if (in_it_block ())
728ca7c9
PB
11041 narrow = !flags;
11042 else
11043 narrow = flags;
11044
11045 if (inst.size_req == 4)
11046 narrow = FALSE;
11047
11048 if (!low_regs || inst.operands[1].imm > 7)
11049 narrow = FALSE;
11050
fdfde340 11051 if (Rn != Rm)
728ca7c9
PB
11052 narrow = FALSE;
11053
11054 switch (inst.operands[1].shift_kind)
11055 {
11056 case SHIFT_LSL:
11057 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11058 break;
11059 case SHIFT_ASR:
11060 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11061 break;
11062 case SHIFT_LSR:
11063 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11064 break;
11065 case SHIFT_ROR:
11066 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11067 break;
11068 default:
5f4273c7 11069 abort ();
728ca7c9
PB
11070 }
11071
11072 inst.instruction = opcode;
11073 if (narrow)
11074 {
fdfde340 11075 inst.instruction |= Rn;
728ca7c9
PB
11076 inst.instruction |= inst.operands[1].imm << 3;
11077 }
11078 else
11079 {
11080 if (flags)
11081 inst.instruction |= CONDS_BIT;
11082
fdfde340
JM
11083 inst.instruction |= Rn << 8;
11084 inst.instruction |= Rm << 16;
728ca7c9
PB
11085 inst.instruction |= inst.operands[1].imm;
11086 }
11087 }
3d388997 11088 else if (!narrow)
c19d1205 11089 {
728ca7c9
PB
11090 /* Some mov with immediate shift have narrow variants.
11091 Register shifts are handled above. */
11092 if (low_regs && inst.operands[1].shifted
11093 && (inst.instruction == T_MNEM_mov
11094 || inst.instruction == T_MNEM_movs))
11095 {
e07e6e58 11096 if (in_it_block ())
728ca7c9
PB
11097 narrow = (inst.instruction == T_MNEM_mov);
11098 else
11099 narrow = (inst.instruction == T_MNEM_movs);
11100 }
11101
11102 if (narrow)
11103 {
11104 switch (inst.operands[1].shift_kind)
11105 {
11106 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11107 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11108 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11109 default: narrow = FALSE; break;
11110 }
11111 }
11112
11113 if (narrow)
11114 {
fdfde340
JM
11115 inst.instruction |= Rn;
11116 inst.instruction |= Rm << 3;
728ca7c9
PB
11117 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11118 }
11119 else
11120 {
11121 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11122 inst.instruction |= Rn << r0off;
728ca7c9
PB
11123 encode_thumb32_shifted_operand (1);
11124 }
c19d1205
ZW
11125 }
11126 else
11127 switch (inst.instruction)
11128 {
11129 case T_MNEM_mov:
837b3435 11130 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
11131 results. Don't allow this. */
11132 if (low_regs)
11133 {
11134 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11135 "MOV Rd, Rs with two low registers is not "
11136 "permitted on this architecture");
fa94de6b 11137 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
11138 arm_ext_v6);
11139 }
11140
c19d1205 11141 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
11142 inst.instruction |= (Rn & 0x8) << 4;
11143 inst.instruction |= (Rn & 0x7);
11144 inst.instruction |= Rm << 3;
c19d1205 11145 break;
b99bd4ef 11146
c19d1205
ZW
11147 case T_MNEM_movs:
11148 /* We know we have low registers at this point.
941a8a52
MGD
11149 Generate LSLS Rd, Rs, #0. */
11150 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
11151 inst.instruction |= Rn;
11152 inst.instruction |= Rm << 3;
c19d1205
ZW
11153 break;
11154
11155 case T_MNEM_cmp:
3d388997 11156 if (low_regs)
c19d1205
ZW
11157 {
11158 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
11159 inst.instruction |= Rn;
11160 inst.instruction |= Rm << 3;
c19d1205
ZW
11161 }
11162 else
11163 {
11164 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
11165 inst.instruction |= (Rn & 0x8) << 4;
11166 inst.instruction |= (Rn & 0x7);
11167 inst.instruction |= Rm << 3;
c19d1205
ZW
11168 }
11169 break;
11170 }
b99bd4ef
NC
11171 return;
11172 }
11173
c19d1205 11174 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
11175
11176 /* PR 10443: Do not silently ignore shifted operands. */
11177 constraint (inst.operands[1].shifted,
11178 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11179
c19d1205 11180 if (inst.operands[1].isreg)
b99bd4ef 11181 {
fdfde340 11182 if (Rn < 8 && Rm < 8)
b99bd4ef 11183 {
c19d1205
ZW
11184 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11185 since a MOV instruction produces unpredictable results. */
11186 if (inst.instruction == T_OPCODE_MOV_I8)
11187 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 11188 else
c19d1205 11189 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 11190
fdfde340
JM
11191 inst.instruction |= Rn;
11192 inst.instruction |= Rm << 3;
b99bd4ef
NC
11193 }
11194 else
11195 {
c19d1205
ZW
11196 if (inst.instruction == T_OPCODE_MOV_I8)
11197 inst.instruction = T_OPCODE_MOV_HR;
11198 else
11199 inst.instruction = T_OPCODE_CMP_HR;
11200 do_t_cpy ();
b99bd4ef
NC
11201 }
11202 }
c19d1205 11203 else
b99bd4ef 11204 {
fdfde340 11205 constraint (Rn > 7,
c19d1205 11206 _("only lo regs allowed with immediate"));
fdfde340 11207 inst.instruction |= Rn << 8;
c19d1205
ZW
11208 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11209 }
11210}
b99bd4ef 11211
c19d1205
ZW
11212static void
11213do_t_mov16 (void)
11214{
fdfde340 11215 unsigned Rd;
b6895b4f
PB
11216 bfd_vma imm;
11217 bfd_boolean top;
11218
11219 top = (inst.instruction & 0x00800000) != 0;
11220 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11221 {
11222 constraint (top, _(":lower16: not allowed this instruction"));
11223 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11224 }
11225 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11226 {
11227 constraint (!top, _(":upper16: not allowed this instruction"));
11228 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11229 }
11230
fdfde340
JM
11231 Rd = inst.operands[0].reg;
11232 reject_bad_reg (Rd);
11233
11234 inst.instruction |= Rd << 8;
b6895b4f
PB
11235 if (inst.reloc.type == BFD_RELOC_UNUSED)
11236 {
11237 imm = inst.reloc.exp.X_add_number;
11238 inst.instruction |= (imm & 0xf000) << 4;
11239 inst.instruction |= (imm & 0x0800) << 15;
11240 inst.instruction |= (imm & 0x0700) << 4;
11241 inst.instruction |= (imm & 0x00ff);
11242 }
c19d1205 11243}
b99bd4ef 11244
c19d1205
ZW
11245static void
11246do_t_mvn_tst (void)
11247{
fdfde340 11248 unsigned Rn, Rm;
c921be7d 11249
fdfde340
JM
11250 Rn = inst.operands[0].reg;
11251 Rm = inst.operands[1].reg;
11252
11253 if (inst.instruction == T_MNEM_cmp
11254 || inst.instruction == T_MNEM_cmn)
11255 constraint (Rn == REG_PC, BAD_PC);
11256 else
11257 reject_bad_reg (Rn);
11258 reject_bad_reg (Rm);
11259
c19d1205
ZW
11260 if (unified_syntax)
11261 {
11262 int r0off = (inst.instruction == T_MNEM_mvn
11263 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
11264 bfd_boolean narrow;
11265
11266 if (inst.size_req == 4
11267 || inst.instruction > 0xffff
11268 || inst.operands[1].shifted
fdfde340 11269 || Rn > 7 || Rm > 7)
3d388997
PB
11270 narrow = FALSE;
11271 else if (inst.instruction == T_MNEM_cmn)
11272 narrow = TRUE;
11273 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11274 narrow = !in_it_block ();
3d388997 11275 else
e07e6e58 11276 narrow = in_it_block ();
3d388997 11277
c19d1205 11278 if (!inst.operands[1].isreg)
b99bd4ef 11279 {
c19d1205
ZW
11280 /* For an immediate, we always generate a 32-bit opcode;
11281 section relaxation will shrink it later if possible. */
11282 if (inst.instruction < 0xffff)
11283 inst.instruction = THUMB_OP32 (inst.instruction);
11284 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11285 inst.instruction |= Rn << r0off;
c19d1205 11286 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11287 }
c19d1205 11288 else
b99bd4ef 11289 {
c19d1205 11290 /* See if we can do this with a 16-bit instruction. */
3d388997 11291 if (narrow)
b99bd4ef 11292 {
c19d1205 11293 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11294 inst.instruction |= Rn;
11295 inst.instruction |= Rm << 3;
b99bd4ef 11296 }
c19d1205 11297 else
b99bd4ef 11298 {
c19d1205
ZW
11299 constraint (inst.operands[1].shifted
11300 && inst.operands[1].immisreg,
11301 _("shift must be constant"));
11302 if (inst.instruction < 0xffff)
11303 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11304 inst.instruction |= Rn << r0off;
c19d1205 11305 encode_thumb32_shifted_operand (1);
b99bd4ef 11306 }
b99bd4ef
NC
11307 }
11308 }
11309 else
11310 {
c19d1205
ZW
11311 constraint (inst.instruction > 0xffff
11312 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11313 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11314 _("unshifted register required"));
fdfde340 11315 constraint (Rn > 7 || Rm > 7,
c19d1205 11316 BAD_HIREG);
b99bd4ef 11317
c19d1205 11318 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11319 inst.instruction |= Rn;
11320 inst.instruction |= Rm << 3;
b99bd4ef 11321 }
b99bd4ef
NC
11322}
11323
b05fe5cf 11324static void
c19d1205 11325do_t_mrs (void)
b05fe5cf 11326{
fdfde340 11327 unsigned Rd;
037e8744
JB
11328
11329 if (do_vfp_nsyn_mrs () == SUCCESS)
11330 return;
11331
90ec0d68
MGD
11332 Rd = inst.operands[0].reg;
11333 reject_bad_reg (Rd);
11334 inst.instruction |= Rd << 8;
11335
11336 if (inst.operands[1].isreg)
62b3e311 11337 {
90ec0d68
MGD
11338 unsigned br = inst.operands[1].reg;
11339 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11340 as_bad (_("bad register for mrs"));
11341
11342 inst.instruction |= br & (0xf << 16);
11343 inst.instruction |= (br & 0x300) >> 4;
11344 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11345 }
11346 else
11347 {
90ec0d68 11348 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11349
d2cd1205 11350 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
11351 {
11352 /* PR gas/12698: The constraint is only applied for m_profile.
11353 If the user has specified -march=all, we want to ignore it as
11354 we are building for any CPU type, including non-m variants. */
11355 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11356 constraint ((flags != 0) && m_profile, _("selected processor does "
11357 "not support requested special purpose register"));
11358 }
90ec0d68 11359 else
d2cd1205
JB
11360 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11361 devices). */
11362 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11363 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11364
90ec0d68
MGD
11365 inst.instruction |= (flags & SPSR_BIT) >> 2;
11366 inst.instruction |= inst.operands[1].imm & 0xff;
11367 inst.instruction |= 0xf0000;
11368 }
c19d1205 11369}
b05fe5cf 11370
c19d1205
ZW
11371static void
11372do_t_msr (void)
11373{
62b3e311 11374 int flags;
fdfde340 11375 unsigned Rn;
62b3e311 11376
037e8744
JB
11377 if (do_vfp_nsyn_msr () == SUCCESS)
11378 return;
11379
c19d1205
ZW
11380 constraint (!inst.operands[1].isreg,
11381 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11382
11383 if (inst.operands[0].isreg)
11384 flags = (int)(inst.operands[0].reg);
11385 else
11386 flags = inst.operands[0].imm;
11387
d2cd1205 11388 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11389 {
d2cd1205
JB
11390 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11391
1a43faaf
NC
11392 /* PR gas/12698: The constraint is only applied for m_profile.
11393 If the user has specified -march=all, we want to ignore it as
11394 we are building for any CPU type, including non-m variants. */
11395 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11396 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11397 && (bits & ~(PSR_s | PSR_f)) != 0)
11398 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11399 && bits != PSR_f)) && m_profile,
11400 _("selected processor does not support requested special "
11401 "purpose register"));
62b3e311
PB
11402 }
11403 else
d2cd1205
JB
11404 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11405 "requested special purpose register"));
c921be7d 11406
fdfde340
JM
11407 Rn = inst.operands[1].reg;
11408 reject_bad_reg (Rn);
11409
62b3e311 11410 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11411 inst.instruction |= (flags & 0xf0000) >> 8;
11412 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11413 inst.instruction |= (flags & 0xff);
fdfde340 11414 inst.instruction |= Rn << 16;
c19d1205 11415}
b05fe5cf 11416
c19d1205
ZW
11417static void
11418do_t_mul (void)
11419{
17828f45 11420 bfd_boolean narrow;
fdfde340 11421 unsigned Rd, Rn, Rm;
17828f45 11422
c19d1205
ZW
11423 if (!inst.operands[2].present)
11424 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11425
fdfde340
JM
11426 Rd = inst.operands[0].reg;
11427 Rn = inst.operands[1].reg;
11428 Rm = inst.operands[2].reg;
11429
17828f45 11430 if (unified_syntax)
b05fe5cf 11431 {
17828f45 11432 if (inst.size_req == 4
fdfde340
JM
11433 || (Rd != Rn
11434 && Rd != Rm)
11435 || Rn > 7
11436 || Rm > 7)
17828f45
JM
11437 narrow = FALSE;
11438 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11439 narrow = !in_it_block ();
17828f45 11440 else
e07e6e58 11441 narrow = in_it_block ();
b05fe5cf 11442 }
c19d1205 11443 else
b05fe5cf 11444 {
17828f45 11445 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11446 constraint (Rn > 7 || Rm > 7,
c19d1205 11447 BAD_HIREG);
17828f45
JM
11448 narrow = TRUE;
11449 }
b05fe5cf 11450
17828f45
JM
11451 if (narrow)
11452 {
11453 /* 16-bit MULS/Conditional MUL. */
c19d1205 11454 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11455 inst.instruction |= Rd;
b05fe5cf 11456
fdfde340
JM
11457 if (Rd == Rn)
11458 inst.instruction |= Rm << 3;
11459 else if (Rd == Rm)
11460 inst.instruction |= Rn << 3;
c19d1205
ZW
11461 else
11462 constraint (1, _("dest must overlap one source register"));
11463 }
17828f45
JM
11464 else
11465 {
e07e6e58
NC
11466 constraint (inst.instruction != T_MNEM_mul,
11467 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11468 /* 32-bit MUL. */
11469 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11470 inst.instruction |= Rd << 8;
11471 inst.instruction |= Rn << 16;
11472 inst.instruction |= Rm << 0;
11473
11474 reject_bad_reg (Rd);
11475 reject_bad_reg (Rn);
11476 reject_bad_reg (Rm);
17828f45 11477 }
c19d1205 11478}
b05fe5cf 11479
c19d1205
ZW
11480static void
11481do_t_mull (void)
11482{
fdfde340 11483 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11484
fdfde340
JM
11485 RdLo = inst.operands[0].reg;
11486 RdHi = inst.operands[1].reg;
11487 Rn = inst.operands[2].reg;
11488 Rm = inst.operands[3].reg;
11489
11490 reject_bad_reg (RdLo);
11491 reject_bad_reg (RdHi);
11492 reject_bad_reg (Rn);
11493 reject_bad_reg (Rm);
11494
11495 inst.instruction |= RdLo << 12;
11496 inst.instruction |= RdHi << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm;
11499
11500 if (RdLo == RdHi)
c19d1205
ZW
11501 as_tsktsk (_("rdhi and rdlo must be different"));
11502}
b05fe5cf 11503
c19d1205
ZW
11504static void
11505do_t_nop (void)
11506{
e07e6e58
NC
11507 set_it_insn_type (NEUTRAL_IT_INSN);
11508
c19d1205
ZW
11509 if (unified_syntax)
11510 {
11511 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11512 {
c19d1205
ZW
11513 inst.instruction = THUMB_OP32 (inst.instruction);
11514 inst.instruction |= inst.operands[0].imm;
11515 }
11516 else
11517 {
bc2d1808
NC
11518 /* PR9722: Check for Thumb2 availability before
11519 generating a thumb2 nop instruction. */
afa62d5e 11520 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11521 {
11522 inst.instruction = THUMB_OP16 (inst.instruction);
11523 inst.instruction |= inst.operands[0].imm << 4;
11524 }
11525 else
11526 inst.instruction = 0x46c0;
c19d1205
ZW
11527 }
11528 }
11529 else
11530 {
11531 constraint (inst.operands[0].present,
11532 _("Thumb does not support NOP with hints"));
11533 inst.instruction = 0x46c0;
11534 }
11535}
b05fe5cf 11536
c19d1205
ZW
11537static void
11538do_t_neg (void)
11539{
11540 if (unified_syntax)
11541 {
3d388997
PB
11542 bfd_boolean narrow;
11543
11544 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11545 narrow = !in_it_block ();
3d388997 11546 else
e07e6e58 11547 narrow = in_it_block ();
3d388997
PB
11548 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11549 narrow = FALSE;
11550 if (inst.size_req == 4)
11551 narrow = FALSE;
11552
11553 if (!narrow)
c19d1205
ZW
11554 {
11555 inst.instruction = THUMB_OP32 (inst.instruction);
11556 inst.instruction |= inst.operands[0].reg << 8;
11557 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11558 }
11559 else
11560 {
c19d1205
ZW
11561 inst.instruction = THUMB_OP16 (inst.instruction);
11562 inst.instruction |= inst.operands[0].reg;
11563 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11564 }
11565 }
11566 else
11567 {
c19d1205
ZW
11568 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11569 BAD_HIREG);
11570 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11571
11572 inst.instruction = THUMB_OP16 (inst.instruction);
11573 inst.instruction |= inst.operands[0].reg;
11574 inst.instruction |= inst.operands[1].reg << 3;
11575 }
11576}
11577
1c444d06
JM
11578static void
11579do_t_orn (void)
11580{
11581 unsigned Rd, Rn;
11582
11583 Rd = inst.operands[0].reg;
11584 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11585
fdfde340
JM
11586 reject_bad_reg (Rd);
11587 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11588 reject_bad_reg (Rn);
11589
1c444d06
JM
11590 inst.instruction |= Rd << 8;
11591 inst.instruction |= Rn << 16;
11592
11593 if (!inst.operands[2].isreg)
11594 {
11595 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11596 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11597 }
11598 else
11599 {
11600 unsigned Rm;
11601
11602 Rm = inst.operands[2].reg;
fdfde340 11603 reject_bad_reg (Rm);
1c444d06
JM
11604
11605 constraint (inst.operands[2].shifted
11606 && inst.operands[2].immisreg,
11607 _("shift must be constant"));
11608 encode_thumb32_shifted_operand (2);
11609 }
11610}
11611
c19d1205
ZW
11612static void
11613do_t_pkhbt (void)
11614{
fdfde340
JM
11615 unsigned Rd, Rn, Rm;
11616
11617 Rd = inst.operands[0].reg;
11618 Rn = inst.operands[1].reg;
11619 Rm = inst.operands[2].reg;
11620
11621 reject_bad_reg (Rd);
11622 reject_bad_reg (Rn);
11623 reject_bad_reg (Rm);
11624
11625 inst.instruction |= Rd << 8;
11626 inst.instruction |= Rn << 16;
11627 inst.instruction |= Rm;
c19d1205
ZW
11628 if (inst.operands[3].present)
11629 {
11630 unsigned int val = inst.reloc.exp.X_add_number;
11631 constraint (inst.reloc.exp.X_op != O_constant,
11632 _("expression too complex"));
11633 inst.instruction |= (val & 0x1c) << 10;
11634 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11635 }
c19d1205 11636}
b05fe5cf 11637
c19d1205
ZW
11638static void
11639do_t_pkhtb (void)
11640{
11641 if (!inst.operands[3].present)
1ef52f49
NC
11642 {
11643 unsigned Rtmp;
11644
11645 inst.instruction &= ~0x00000020;
11646
11647 /* PR 10168. Swap the Rm and Rn registers. */
11648 Rtmp = inst.operands[1].reg;
11649 inst.operands[1].reg = inst.operands[2].reg;
11650 inst.operands[2].reg = Rtmp;
11651 }
c19d1205 11652 do_t_pkhbt ();
b05fe5cf
ZW
11653}
11654
c19d1205
ZW
11655static void
11656do_t_pld (void)
11657{
fdfde340
JM
11658 if (inst.operands[0].immisreg)
11659 reject_bad_reg (inst.operands[0].imm);
11660
c19d1205
ZW
11661 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11662}
b05fe5cf 11663
c19d1205
ZW
11664static void
11665do_t_push_pop (void)
b99bd4ef 11666{
e9f89963 11667 unsigned mask;
5f4273c7 11668
c19d1205
ZW
11669 constraint (inst.operands[0].writeback,
11670 _("push/pop do not support {reglist}^"));
11671 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11672 _("expression too complex"));
b99bd4ef 11673
e9f89963
PB
11674 mask = inst.operands[0].imm;
11675 if ((mask & ~0xff) == 0)
3c707909 11676 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11677 else if ((inst.instruction == T_MNEM_push
e9f89963 11678 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11679 || (inst.instruction == T_MNEM_pop
e9f89963 11680 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11681 {
c19d1205
ZW
11682 inst.instruction = THUMB_OP16 (inst.instruction);
11683 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11684 inst.instruction |= mask & 0xff;
c19d1205
ZW
11685 }
11686 else if (unified_syntax)
11687 {
3c707909 11688 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11689 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11690 }
11691 else
11692 {
11693 inst.error = _("invalid register list to push/pop instruction");
11694 return;
11695 }
c19d1205 11696}
b99bd4ef 11697
c19d1205
ZW
11698static void
11699do_t_rbit (void)
11700{
fdfde340
JM
11701 unsigned Rd, Rm;
11702
11703 Rd = inst.operands[0].reg;
11704 Rm = inst.operands[1].reg;
11705
11706 reject_bad_reg (Rd);
11707 reject_bad_reg (Rm);
11708
11709 inst.instruction |= Rd << 8;
11710 inst.instruction |= Rm << 16;
11711 inst.instruction |= Rm;
c19d1205 11712}
b99bd4ef 11713
c19d1205
ZW
11714static void
11715do_t_rev (void)
11716{
fdfde340
JM
11717 unsigned Rd, Rm;
11718
11719 Rd = inst.operands[0].reg;
11720 Rm = inst.operands[1].reg;
11721
11722 reject_bad_reg (Rd);
11723 reject_bad_reg (Rm);
11724
11725 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11726 && inst.size_req != 4)
11727 {
11728 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11729 inst.instruction |= Rd;
11730 inst.instruction |= Rm << 3;
c19d1205
ZW
11731 }
11732 else if (unified_syntax)
11733 {
11734 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
c19d1205
ZW
11738 }
11739 else
11740 inst.error = BAD_HIREG;
11741}
b99bd4ef 11742
1c444d06
JM
11743static void
11744do_t_rrx (void)
11745{
11746 unsigned Rd, Rm;
11747
11748 Rd = inst.operands[0].reg;
11749 Rm = inst.operands[1].reg;
11750
fdfde340
JM
11751 reject_bad_reg (Rd);
11752 reject_bad_reg (Rm);
c921be7d 11753
1c444d06
JM
11754 inst.instruction |= Rd << 8;
11755 inst.instruction |= Rm;
11756}
11757
c19d1205
ZW
11758static void
11759do_t_rsb (void)
11760{
fdfde340 11761 unsigned Rd, Rs;
b99bd4ef 11762
c19d1205
ZW
11763 Rd = inst.operands[0].reg;
11764 Rs = (inst.operands[1].present
11765 ? inst.operands[1].reg /* Rd, Rs, foo */
11766 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11767
fdfde340
JM
11768 reject_bad_reg (Rd);
11769 reject_bad_reg (Rs);
11770 if (inst.operands[2].isreg)
11771 reject_bad_reg (inst.operands[2].reg);
11772
c19d1205
ZW
11773 inst.instruction |= Rd << 8;
11774 inst.instruction |= Rs << 16;
11775 if (!inst.operands[2].isreg)
11776 {
026d3abb
PB
11777 bfd_boolean narrow;
11778
11779 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11780 narrow = !in_it_block ();
026d3abb 11781 else
e07e6e58 11782 narrow = in_it_block ();
026d3abb
PB
11783
11784 if (Rd > 7 || Rs > 7)
11785 narrow = FALSE;
11786
11787 if (inst.size_req == 4 || !unified_syntax)
11788 narrow = FALSE;
11789
11790 if (inst.reloc.exp.X_op != O_constant
11791 || inst.reloc.exp.X_add_number != 0)
11792 narrow = FALSE;
11793
11794 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11795 relaxation, but it doesn't seem worth the hassle. */
11796 if (narrow)
11797 {
11798 inst.reloc.type = BFD_RELOC_UNUSED;
11799 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11800 inst.instruction |= Rs << 3;
11801 inst.instruction |= Rd;
11802 }
11803 else
11804 {
11805 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11806 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11807 }
c19d1205
ZW
11808 }
11809 else
11810 encode_thumb32_shifted_operand (2);
11811}
b99bd4ef 11812
c19d1205
ZW
11813static void
11814do_t_setend (void)
11815{
12e37cbc
MGD
11816 if (warn_on_deprecated
11817 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11818 as_warn (_("setend use is deprecated for ARMv8"));
11819
e07e6e58 11820 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11821 if (inst.operands[0].imm)
11822 inst.instruction |= 0x8;
11823}
b99bd4ef 11824
c19d1205
ZW
11825static void
11826do_t_shift (void)
11827{
11828 if (!inst.operands[1].present)
11829 inst.operands[1].reg = inst.operands[0].reg;
11830
11831 if (unified_syntax)
11832 {
3d388997
PB
11833 bfd_boolean narrow;
11834 int shift_kind;
11835
11836 switch (inst.instruction)
11837 {
11838 case T_MNEM_asr:
11839 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11840 case T_MNEM_lsl:
11841 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11842 case T_MNEM_lsr:
11843 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11844 case T_MNEM_ror:
11845 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11846 default: abort ();
11847 }
11848
11849 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11850 narrow = !in_it_block ();
3d388997 11851 else
e07e6e58 11852 narrow = in_it_block ();
3d388997
PB
11853 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11854 narrow = FALSE;
11855 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11856 narrow = FALSE;
11857 if (inst.operands[2].isreg
11858 && (inst.operands[1].reg != inst.operands[0].reg
11859 || inst.operands[2].reg > 7))
11860 narrow = FALSE;
11861 if (inst.size_req == 4)
11862 narrow = FALSE;
11863
fdfde340
JM
11864 reject_bad_reg (inst.operands[0].reg);
11865 reject_bad_reg (inst.operands[1].reg);
c921be7d 11866
3d388997 11867 if (!narrow)
c19d1205
ZW
11868 {
11869 if (inst.operands[2].isreg)
b99bd4ef 11870 {
fdfde340 11871 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11872 inst.instruction = THUMB_OP32 (inst.instruction);
11873 inst.instruction |= inst.operands[0].reg << 8;
11874 inst.instruction |= inst.operands[1].reg << 16;
11875 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
11876
11877 /* PR 12854: Error on extraneous shifts. */
11878 constraint (inst.operands[2].shifted,
11879 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11880 }
11881 else
11882 {
11883 inst.operands[1].shifted = 1;
3d388997 11884 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11885 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11886 ? T_MNEM_movs : T_MNEM_mov);
11887 inst.instruction |= inst.operands[0].reg << 8;
11888 encode_thumb32_shifted_operand (1);
11889 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11890 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11891 }
11892 }
11893 else
11894 {
c19d1205 11895 if (inst.operands[2].isreg)
b99bd4ef 11896 {
3d388997 11897 switch (shift_kind)
b99bd4ef 11898 {
3d388997
PB
11899 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11900 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11901 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11902 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11903 default: abort ();
b99bd4ef 11904 }
5f4273c7 11905
c19d1205
ZW
11906 inst.instruction |= inst.operands[0].reg;
11907 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11908
11909 /* PR 12854: Error on extraneous shifts. */
11910 constraint (inst.operands[2].shifted,
11911 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
11912 }
11913 else
11914 {
3d388997 11915 switch (shift_kind)
b99bd4ef 11916 {
3d388997
PB
11917 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11918 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11919 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11920 default: abort ();
b99bd4ef 11921 }
c19d1205
ZW
11922 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11923 inst.instruction |= inst.operands[0].reg;
11924 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11925 }
11926 }
c19d1205
ZW
11927 }
11928 else
11929 {
11930 constraint (inst.operands[0].reg > 7
11931 || inst.operands[1].reg > 7, BAD_HIREG);
11932 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11933
c19d1205
ZW
11934 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11935 {
11936 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11937 constraint (inst.operands[0].reg != inst.operands[1].reg,
11938 _("source1 and dest must be same register"));
b99bd4ef 11939
c19d1205
ZW
11940 switch (inst.instruction)
11941 {
11942 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11943 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11944 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11945 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11946 default: abort ();
11947 }
5f4273c7 11948
c19d1205
ZW
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11951
11952 /* PR 12854: Error on extraneous shifts. */
11953 constraint (inst.operands[2].shifted,
11954 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11955 }
11956 else
b99bd4ef 11957 {
c19d1205
ZW
11958 switch (inst.instruction)
11959 {
11960 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11961 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11962 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11963 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11964 default: abort ();
11965 }
11966 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11967 inst.instruction |= inst.operands[0].reg;
11968 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11969 }
11970 }
b99bd4ef
NC
11971}
11972
11973static void
c19d1205 11974do_t_simd (void)
b99bd4ef 11975{
fdfde340
JM
11976 unsigned Rd, Rn, Rm;
11977
11978 Rd = inst.operands[0].reg;
11979 Rn = inst.operands[1].reg;
11980 Rm = inst.operands[2].reg;
11981
11982 reject_bad_reg (Rd);
11983 reject_bad_reg (Rn);
11984 reject_bad_reg (Rm);
11985
11986 inst.instruction |= Rd << 8;
11987 inst.instruction |= Rn << 16;
11988 inst.instruction |= Rm;
c19d1205 11989}
b99bd4ef 11990
03ee1b7f
NC
11991static void
11992do_t_simd2 (void)
11993{
11994 unsigned Rd, Rn, Rm;
11995
11996 Rd = inst.operands[0].reg;
11997 Rm = inst.operands[1].reg;
11998 Rn = inst.operands[2].reg;
11999
12000 reject_bad_reg (Rd);
12001 reject_bad_reg (Rn);
12002 reject_bad_reg (Rm);
12003
12004 inst.instruction |= Rd << 8;
12005 inst.instruction |= Rn << 16;
12006 inst.instruction |= Rm;
12007}
12008
c19d1205 12009static void
3eb17e6b 12010do_t_smc (void)
c19d1205
ZW
12011{
12012 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
12013 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12014 _("SMC is not permitted on this architecture"));
c19d1205
ZW
12015 constraint (inst.reloc.exp.X_op != O_constant,
12016 _("expression too complex"));
12017 inst.reloc.type = BFD_RELOC_UNUSED;
12018 inst.instruction |= (value & 0xf000) >> 12;
12019 inst.instruction |= (value & 0x0ff0);
12020 inst.instruction |= (value & 0x000f) << 16;
12021}
b99bd4ef 12022
90ec0d68
MGD
12023static void
12024do_t_hvc (void)
12025{
12026 unsigned int value = inst.reloc.exp.X_add_number;
12027
12028 inst.reloc.type = BFD_RELOC_UNUSED;
12029 inst.instruction |= (value & 0x0fff);
12030 inst.instruction |= (value & 0xf000) << 4;
12031}
12032
c19d1205 12033static void
3a21c15a 12034do_t_ssat_usat (int bias)
c19d1205 12035{
fdfde340
JM
12036 unsigned Rd, Rn;
12037
12038 Rd = inst.operands[0].reg;
12039 Rn = inst.operands[2].reg;
12040
12041 reject_bad_reg (Rd);
12042 reject_bad_reg (Rn);
12043
12044 inst.instruction |= Rd << 8;
3a21c15a 12045 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 12046 inst.instruction |= Rn << 16;
b99bd4ef 12047
c19d1205 12048 if (inst.operands[3].present)
b99bd4ef 12049 {
3a21c15a
NC
12050 offsetT shift_amount = inst.reloc.exp.X_add_number;
12051
12052 inst.reloc.type = BFD_RELOC_UNUSED;
12053
c19d1205
ZW
12054 constraint (inst.reloc.exp.X_op != O_constant,
12055 _("expression too complex"));
b99bd4ef 12056
3a21c15a 12057 if (shift_amount != 0)
6189168b 12058 {
3a21c15a
NC
12059 constraint (shift_amount > 31,
12060 _("shift expression is too large"));
12061
c19d1205 12062 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
12063 inst.instruction |= 0x00200000; /* sh bit. */
12064
12065 inst.instruction |= (shift_amount & 0x1c) << 10;
12066 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
12067 }
12068 }
b99bd4ef 12069}
c921be7d 12070
3a21c15a
NC
12071static void
12072do_t_ssat (void)
12073{
12074 do_t_ssat_usat (1);
12075}
b99bd4ef 12076
0dd132b6 12077static void
c19d1205 12078do_t_ssat16 (void)
0dd132b6 12079{
fdfde340
JM
12080 unsigned Rd, Rn;
12081
12082 Rd = inst.operands[0].reg;
12083 Rn = inst.operands[2].reg;
12084
12085 reject_bad_reg (Rd);
12086 reject_bad_reg (Rn);
12087
12088 inst.instruction |= Rd << 8;
c19d1205 12089 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 12090 inst.instruction |= Rn << 16;
c19d1205 12091}
0dd132b6 12092
c19d1205
ZW
12093static void
12094do_t_strex (void)
12095{
12096 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12097 || inst.operands[2].postind || inst.operands[2].writeback
12098 || inst.operands[2].immisreg || inst.operands[2].shifted
12099 || inst.operands[2].negative,
01cfc07f 12100 BAD_ADDR_MODE);
0dd132b6 12101
5be8be5d
DG
12102 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12103
c19d1205
ZW
12104 inst.instruction |= inst.operands[0].reg << 8;
12105 inst.instruction |= inst.operands[1].reg << 12;
12106 inst.instruction |= inst.operands[2].reg << 16;
12107 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
12108}
12109
b99bd4ef 12110static void
c19d1205 12111do_t_strexd (void)
b99bd4ef 12112{
c19d1205
ZW
12113 if (!inst.operands[2].present)
12114 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 12115
c19d1205
ZW
12116 constraint (inst.operands[0].reg == inst.operands[1].reg
12117 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 12118 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 12119 BAD_OVERLAP);
b99bd4ef 12120
c19d1205
ZW
12121 inst.instruction |= inst.operands[0].reg;
12122 inst.instruction |= inst.operands[1].reg << 12;
12123 inst.instruction |= inst.operands[2].reg << 8;
12124 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
12125}
12126
12127static void
c19d1205 12128do_t_sxtah (void)
b99bd4ef 12129{
fdfde340
JM
12130 unsigned Rd, Rn, Rm;
12131
12132 Rd = inst.operands[0].reg;
12133 Rn = inst.operands[1].reg;
12134 Rm = inst.operands[2].reg;
12135
12136 reject_bad_reg (Rd);
12137 reject_bad_reg (Rn);
12138 reject_bad_reg (Rm);
12139
12140 inst.instruction |= Rd << 8;
12141 inst.instruction |= Rn << 16;
12142 inst.instruction |= Rm;
c19d1205
ZW
12143 inst.instruction |= inst.operands[3].imm << 4;
12144}
b99bd4ef 12145
c19d1205
ZW
12146static void
12147do_t_sxth (void)
12148{
fdfde340
JM
12149 unsigned Rd, Rm;
12150
12151 Rd = inst.operands[0].reg;
12152 Rm = inst.operands[1].reg;
12153
12154 reject_bad_reg (Rd);
12155 reject_bad_reg (Rm);
c921be7d
NC
12156
12157 if (inst.instruction <= 0xffff
12158 && inst.size_req != 4
fdfde340 12159 && Rd <= 7 && Rm <= 7
c19d1205 12160 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 12161 {
c19d1205 12162 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12163 inst.instruction |= Rd;
12164 inst.instruction |= Rm << 3;
b99bd4ef 12165 }
c19d1205 12166 else if (unified_syntax)
b99bd4ef 12167 {
c19d1205
ZW
12168 if (inst.instruction <= 0xffff)
12169 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12170 inst.instruction |= Rd << 8;
12171 inst.instruction |= Rm;
c19d1205 12172 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 12173 }
c19d1205 12174 else
b99bd4ef 12175 {
c19d1205
ZW
12176 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12177 _("Thumb encoding does not support rotation"));
12178 constraint (1, BAD_HIREG);
b99bd4ef 12179 }
c19d1205 12180}
b99bd4ef 12181
c19d1205
ZW
12182static void
12183do_t_swi (void)
12184{
b2a5fbdc
MGD
12185 /* We have to do the following check manually as ARM_EXT_OS only applies
12186 to ARM_EXT_V6M. */
12187 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12188 {
ac7f631b
NC
12189 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12190 /* This only applies to the v6m howver, not later architectures. */
12191 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
12192 as_bad (_("SVC is not permitted on this architecture"));
12193 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12194 }
12195
c19d1205
ZW
12196 inst.reloc.type = BFD_RELOC_ARM_SWI;
12197}
b99bd4ef 12198
92e90b6e
PB
12199static void
12200do_t_tb (void)
12201{
fdfde340 12202 unsigned Rn, Rm;
92e90b6e
PB
12203 int half;
12204
12205 half = (inst.instruction & 0x10) != 0;
e07e6e58 12206 set_it_insn_type_last ();
dfa9f0d5
PB
12207 constraint (inst.operands[0].immisreg,
12208 _("instruction requires register index"));
fdfde340
JM
12209
12210 Rn = inst.operands[0].reg;
12211 Rm = inst.operands[0].imm;
c921be7d 12212
fdfde340
JM
12213 constraint (Rn == REG_SP, BAD_SP);
12214 reject_bad_reg (Rm);
12215
92e90b6e
PB
12216 constraint (!half && inst.operands[0].shifted,
12217 _("instruction does not allow shifted index"));
fdfde340 12218 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
12219}
12220
c19d1205
ZW
12221static void
12222do_t_usat (void)
12223{
3a21c15a 12224 do_t_ssat_usat (0);
b99bd4ef
NC
12225}
12226
12227static void
c19d1205 12228do_t_usat16 (void)
b99bd4ef 12229{
fdfde340
JM
12230 unsigned Rd, Rn;
12231
12232 Rd = inst.operands[0].reg;
12233 Rn = inst.operands[2].reg;
12234
12235 reject_bad_reg (Rd);
12236 reject_bad_reg (Rn);
12237
12238 inst.instruction |= Rd << 8;
c19d1205 12239 inst.instruction |= inst.operands[1].imm;
fdfde340 12240 inst.instruction |= Rn << 16;
b99bd4ef 12241}
c19d1205 12242
5287ad62 12243/* Neon instruction encoder helpers. */
5f4273c7 12244
5287ad62 12245/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 12246
5287ad62
JB
12247/* An "invalid" code for the following tables. */
12248#define N_INV -1u
12249
12250struct neon_tab_entry
b99bd4ef 12251{
5287ad62
JB
12252 unsigned integer;
12253 unsigned float_or_poly;
12254 unsigned scalar_or_imm;
12255};
5f4273c7 12256
5287ad62
JB
12257/* Map overloaded Neon opcodes to their respective encodings. */
12258#define NEON_ENC_TAB \
12259 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12260 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12261 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12262 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12263 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12264 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12265 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12266 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12267 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12268 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12269 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12270 /* Register variants of the following two instructions are encoded as
e07e6e58 12271 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
12272 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12273 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
12274 X(vfma, N_INV, 0x0000c10, N_INV), \
12275 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
12276 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12277 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12278 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12279 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12280 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12281 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12282 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12283 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12284 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12285 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12286 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12287 X(vshl, 0x0000400, N_INV, 0x0800510), \
12288 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12289 X(vand, 0x0000110, N_INV, 0x0800030), \
12290 X(vbic, 0x0100110, N_INV, 0x0800030), \
12291 X(veor, 0x1000110, N_INV, N_INV), \
12292 X(vorn, 0x0300110, N_INV, 0x0800010), \
12293 X(vorr, 0x0200110, N_INV, 0x0800010), \
12294 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12295 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12296 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12297 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12298 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12299 X(vst1, 0x0000000, 0x0800000, N_INV), \
12300 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12301 X(vst2, 0x0000100, 0x0800100, N_INV), \
12302 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12303 X(vst3, 0x0000200, 0x0800200, N_INV), \
12304 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12305 X(vst4, 0x0000300, 0x0800300, N_INV), \
12306 X(vmovn, 0x1b20200, N_INV, N_INV), \
12307 X(vtrn, 0x1b20080, N_INV, N_INV), \
12308 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
12309 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12310 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
12311 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12312 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
12313 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12314 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
12315 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12316 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12317 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12318 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
12319
12320enum neon_opc
12321{
12322#define X(OPC,I,F,S) N_MNEM_##OPC
12323NEON_ENC_TAB
12324#undef X
12325};
b99bd4ef 12326
5287ad62
JB
12327static const struct neon_tab_entry neon_enc_tab[] =
12328{
12329#define X(OPC,I,F,S) { (I), (F), (S) }
12330NEON_ENC_TAB
12331#undef X
12332};
b99bd4ef 12333
88714cb8
DG
12334/* Do not use these macros; instead, use NEON_ENCODE defined below. */
12335#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12336#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12337#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12338#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12339#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12340#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12341#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12342#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12343#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12344#define NEON_ENC_SINGLE_(X) \
037e8744 12345 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 12346#define NEON_ENC_DOUBLE_(X) \
037e8744 12347 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 12348
88714cb8
DG
12349#define NEON_ENCODE(type, inst) \
12350 do \
12351 { \
12352 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12353 inst.is_neon = 1; \
12354 } \
12355 while (0)
12356
12357#define check_neon_suffixes \
12358 do \
12359 { \
12360 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12361 { \
12362 as_bad (_("invalid neon suffix for non neon instruction")); \
12363 return; \
12364 } \
12365 } \
12366 while (0)
12367
037e8744
JB
12368/* Define shapes for instruction operands. The following mnemonic characters
12369 are used in this table:
5287ad62 12370
037e8744 12371 F - VFP S<n> register
5287ad62
JB
12372 D - Neon D<n> register
12373 Q - Neon Q<n> register
12374 I - Immediate
12375 S - Scalar
12376 R - ARM register
12377 L - D<n> register list
5f4273c7 12378
037e8744
JB
12379 This table is used to generate various data:
12380 - enumerations of the form NS_DDR to be used as arguments to
12381 neon_select_shape.
12382 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12383 - a table used to drive neon_select_shape. */
b99bd4ef 12384
037e8744
JB
12385#define NEON_SHAPE_DEF \
12386 X(3, (D, D, D), DOUBLE), \
12387 X(3, (Q, Q, Q), QUAD), \
12388 X(3, (D, D, I), DOUBLE), \
12389 X(3, (Q, Q, I), QUAD), \
12390 X(3, (D, D, S), DOUBLE), \
12391 X(3, (Q, Q, S), QUAD), \
12392 X(2, (D, D), DOUBLE), \
12393 X(2, (Q, Q), QUAD), \
12394 X(2, (D, S), DOUBLE), \
12395 X(2, (Q, S), QUAD), \
12396 X(2, (D, R), DOUBLE), \
12397 X(2, (Q, R), QUAD), \
12398 X(2, (D, I), DOUBLE), \
12399 X(2, (Q, I), QUAD), \
12400 X(3, (D, L, D), DOUBLE), \
12401 X(2, (D, Q), MIXED), \
12402 X(2, (Q, D), MIXED), \
12403 X(3, (D, Q, I), MIXED), \
12404 X(3, (Q, D, I), MIXED), \
12405 X(3, (Q, D, D), MIXED), \
12406 X(3, (D, Q, Q), MIXED), \
12407 X(3, (Q, Q, D), MIXED), \
12408 X(3, (Q, D, S), MIXED), \
12409 X(3, (D, Q, S), MIXED), \
12410 X(4, (D, D, D, I), DOUBLE), \
12411 X(4, (Q, Q, Q, I), QUAD), \
12412 X(2, (F, F), SINGLE), \
12413 X(3, (F, F, F), SINGLE), \
12414 X(2, (F, I), SINGLE), \
12415 X(2, (F, D), MIXED), \
12416 X(2, (D, F), MIXED), \
12417 X(3, (F, F, I), MIXED), \
12418 X(4, (R, R, F, F), SINGLE), \
12419 X(4, (F, F, R, R), SINGLE), \
12420 X(3, (D, R, R), DOUBLE), \
12421 X(3, (R, R, D), DOUBLE), \
12422 X(2, (S, R), SINGLE), \
12423 X(2, (R, S), SINGLE), \
12424 X(2, (F, R), SINGLE), \
12425 X(2, (R, F), SINGLE)
12426
12427#define S2(A,B) NS_##A##B
12428#define S3(A,B,C) NS_##A##B##C
12429#define S4(A,B,C,D) NS_##A##B##C##D
12430
12431#define X(N, L, C) S##N L
12432
5287ad62
JB
12433enum neon_shape
12434{
037e8744
JB
12435 NEON_SHAPE_DEF,
12436 NS_NULL
5287ad62 12437};
b99bd4ef 12438
037e8744
JB
12439#undef X
12440#undef S2
12441#undef S3
12442#undef S4
12443
12444enum neon_shape_class
12445{
12446 SC_SINGLE,
12447 SC_DOUBLE,
12448 SC_QUAD,
12449 SC_MIXED
12450};
12451
12452#define X(N, L, C) SC_##C
12453
12454static enum neon_shape_class neon_shape_class[] =
12455{
12456 NEON_SHAPE_DEF
12457};
12458
12459#undef X
12460
12461enum neon_shape_el
12462{
12463 SE_F,
12464 SE_D,
12465 SE_Q,
12466 SE_I,
12467 SE_S,
12468 SE_R,
12469 SE_L
12470};
12471
12472/* Register widths of above. */
12473static unsigned neon_shape_el_size[] =
12474{
12475 32,
12476 64,
12477 128,
12478 0,
12479 32,
12480 32,
12481 0
12482};
12483
12484struct neon_shape_info
12485{
12486 unsigned els;
12487 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12488};
12489
12490#define S2(A,B) { SE_##A, SE_##B }
12491#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12492#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12493
12494#define X(N, L, C) { N, S##N L }
12495
12496static struct neon_shape_info neon_shape_tab[] =
12497{
12498 NEON_SHAPE_DEF
12499};
12500
12501#undef X
12502#undef S2
12503#undef S3
12504#undef S4
12505
5287ad62
JB
12506/* Bit masks used in type checking given instructions.
12507 'N_EQK' means the type must be the same as (or based on in some way) the key
12508 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12509 set, various other bits can be set as well in order to modify the meaning of
12510 the type constraint. */
12511
12512enum neon_type_mask
12513{
8e79c3df
CM
12514 N_S8 = 0x0000001,
12515 N_S16 = 0x0000002,
12516 N_S32 = 0x0000004,
12517 N_S64 = 0x0000008,
12518 N_U8 = 0x0000010,
12519 N_U16 = 0x0000020,
12520 N_U32 = 0x0000040,
12521 N_U64 = 0x0000080,
12522 N_I8 = 0x0000100,
12523 N_I16 = 0x0000200,
12524 N_I32 = 0x0000400,
12525 N_I64 = 0x0000800,
12526 N_8 = 0x0001000,
12527 N_16 = 0x0002000,
12528 N_32 = 0x0004000,
12529 N_64 = 0x0008000,
12530 N_P8 = 0x0010000,
12531 N_P16 = 0x0020000,
12532 N_F16 = 0x0040000,
12533 N_F32 = 0x0080000,
12534 N_F64 = 0x0100000,
c921be7d
NC
12535 N_KEY = 0x1000000, /* Key element (main type specifier). */
12536 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12537 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12538 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12539 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12540 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12541 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12542 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12543 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12544 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12545 N_UTYP = 0,
037e8744 12546 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12547};
12548
dcbf9037
JB
12549#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12550
5287ad62
JB
12551#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12552#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12553#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12554#define N_SUF_32 (N_SU_32 | N_F32)
12555#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12556#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12557
12558/* Pass this as the first type argument to neon_check_type to ignore types
12559 altogether. */
12560#define N_IGNORE_TYPE (N_KEY | N_EQK)
12561
037e8744
JB
12562/* Select a "shape" for the current instruction (describing register types or
12563 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12564 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12565 function of operand parsing, so this function doesn't need to be called.
12566 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12567
12568static enum neon_shape
037e8744 12569neon_select_shape (enum neon_shape shape, ...)
5287ad62 12570{
037e8744
JB
12571 va_list ap;
12572 enum neon_shape first_shape = shape;
5287ad62
JB
12573
12574 /* Fix missing optional operands. FIXME: we don't know at this point how
12575 many arguments we should have, so this makes the assumption that we have
12576 > 1. This is true of all current Neon opcodes, I think, but may not be
12577 true in the future. */
12578 if (!inst.operands[1].present)
12579 inst.operands[1] = inst.operands[0];
12580
037e8744 12581 va_start (ap, shape);
5f4273c7 12582
21d799b5 12583 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12584 {
12585 unsigned j;
12586 int matches = 1;
12587
12588 for (j = 0; j < neon_shape_tab[shape].els; j++)
12589 {
12590 if (!inst.operands[j].present)
12591 {
12592 matches = 0;
12593 break;
12594 }
12595
12596 switch (neon_shape_tab[shape].el[j])
12597 {
12598 case SE_F:
12599 if (!(inst.operands[j].isreg
12600 && inst.operands[j].isvec
12601 && inst.operands[j].issingle
12602 && !inst.operands[j].isquad))
12603 matches = 0;
12604 break;
12605
12606 case SE_D:
12607 if (!(inst.operands[j].isreg
12608 && inst.operands[j].isvec
12609 && !inst.operands[j].isquad
12610 && !inst.operands[j].issingle))
12611 matches = 0;
12612 break;
12613
12614 case SE_R:
12615 if (!(inst.operands[j].isreg
12616 && !inst.operands[j].isvec))
12617 matches = 0;
12618 break;
12619
12620 case SE_Q:
12621 if (!(inst.operands[j].isreg
12622 && inst.operands[j].isvec
12623 && inst.operands[j].isquad
12624 && !inst.operands[j].issingle))
12625 matches = 0;
12626 break;
12627
12628 case SE_I:
12629 if (!(!inst.operands[j].isreg
12630 && !inst.operands[j].isscalar))
12631 matches = 0;
12632 break;
12633
12634 case SE_S:
12635 if (!(!inst.operands[j].isreg
12636 && inst.operands[j].isscalar))
12637 matches = 0;
12638 break;
12639
12640 case SE_L:
12641 break;
12642 }
3fde54a2
JZ
12643 if (!matches)
12644 break;
037e8744 12645 }
ad6cec43
MGD
12646 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12647 /* We've matched all the entries in the shape table, and we don't
12648 have any left over operands which have not been matched. */
5287ad62 12649 break;
037e8744 12650 }
5f4273c7 12651
037e8744 12652 va_end (ap);
5287ad62 12653
037e8744
JB
12654 if (shape == NS_NULL && first_shape != NS_NULL)
12655 first_error (_("invalid instruction shape"));
5287ad62 12656
037e8744
JB
12657 return shape;
12658}
5287ad62 12659
037e8744
JB
12660/* True if SHAPE is predominantly a quadword operation (most of the time, this
12661 means the Q bit should be set). */
12662
12663static int
12664neon_quad (enum neon_shape shape)
12665{
12666 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12667}
037e8744 12668
5287ad62
JB
12669static void
12670neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12671 unsigned *g_size)
12672{
12673 /* Allow modification to be made to types which are constrained to be
12674 based on the key element, based on bits set alongside N_EQK. */
12675 if ((typebits & N_EQK) != 0)
12676 {
12677 if ((typebits & N_HLF) != 0)
12678 *g_size /= 2;
12679 else if ((typebits & N_DBL) != 0)
12680 *g_size *= 2;
12681 if ((typebits & N_SGN) != 0)
12682 *g_type = NT_signed;
12683 else if ((typebits & N_UNS) != 0)
12684 *g_type = NT_unsigned;
12685 else if ((typebits & N_INT) != 0)
12686 *g_type = NT_integer;
12687 else if ((typebits & N_FLT) != 0)
12688 *g_type = NT_float;
dcbf9037
JB
12689 else if ((typebits & N_SIZ) != 0)
12690 *g_type = NT_untyped;
5287ad62
JB
12691 }
12692}
5f4273c7 12693
5287ad62
JB
12694/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12695 operand type, i.e. the single type specified in a Neon instruction when it
12696 is the only one given. */
12697
12698static struct neon_type_el
12699neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12700{
12701 struct neon_type_el dest = *key;
5f4273c7 12702
9c2799c2 12703 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12704
5287ad62
JB
12705 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12706
12707 return dest;
12708}
12709
12710/* Convert Neon type and size into compact bitmask representation. */
12711
12712static enum neon_type_mask
12713type_chk_of_el_type (enum neon_el_type type, unsigned size)
12714{
12715 switch (type)
12716 {
12717 case NT_untyped:
12718 switch (size)
12719 {
12720 case 8: return N_8;
12721 case 16: return N_16;
12722 case 32: return N_32;
12723 case 64: return N_64;
12724 default: ;
12725 }
12726 break;
12727
12728 case NT_integer:
12729 switch (size)
12730 {
12731 case 8: return N_I8;
12732 case 16: return N_I16;
12733 case 32: return N_I32;
12734 case 64: return N_I64;
12735 default: ;
12736 }
12737 break;
12738
12739 case NT_float:
037e8744
JB
12740 switch (size)
12741 {
8e79c3df 12742 case 16: return N_F16;
037e8744
JB
12743 case 32: return N_F32;
12744 case 64: return N_F64;
12745 default: ;
12746 }
5287ad62
JB
12747 break;
12748
12749 case NT_poly:
12750 switch (size)
12751 {
12752 case 8: return N_P8;
12753 case 16: return N_P16;
12754 default: ;
12755 }
12756 break;
12757
12758 case NT_signed:
12759 switch (size)
12760 {
12761 case 8: return N_S8;
12762 case 16: return N_S16;
12763 case 32: return N_S32;
12764 case 64: return N_S64;
12765 default: ;
12766 }
12767 break;
12768
12769 case NT_unsigned:
12770 switch (size)
12771 {
12772 case 8: return N_U8;
12773 case 16: return N_U16;
12774 case 32: return N_U32;
12775 case 64: return N_U64;
12776 default: ;
12777 }
12778 break;
12779
12780 default: ;
12781 }
5f4273c7 12782
5287ad62
JB
12783 return N_UTYP;
12784}
12785
12786/* Convert compact Neon bitmask type representation to a type and size. Only
12787 handles the case where a single bit is set in the mask. */
12788
dcbf9037 12789static int
5287ad62
JB
12790el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12791 enum neon_type_mask mask)
12792{
dcbf9037
JB
12793 if ((mask & N_EQK) != 0)
12794 return FAIL;
12795
5287ad62
JB
12796 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12797 *size = 8;
dcbf9037 12798 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12799 *size = 16;
dcbf9037 12800 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12801 *size = 32;
037e8744 12802 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12803 *size = 64;
dcbf9037
JB
12804 else
12805 return FAIL;
12806
5287ad62
JB
12807 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12808 *type = NT_signed;
dcbf9037 12809 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12810 *type = NT_unsigned;
dcbf9037 12811 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12812 *type = NT_integer;
dcbf9037 12813 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12814 *type = NT_untyped;
dcbf9037 12815 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12816 *type = NT_poly;
037e8744 12817 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12818 *type = NT_float;
dcbf9037
JB
12819 else
12820 return FAIL;
5f4273c7 12821
dcbf9037 12822 return SUCCESS;
5287ad62
JB
12823}
12824
12825/* Modify a bitmask of allowed types. This is only needed for type
12826 relaxation. */
12827
12828static unsigned
12829modify_types_allowed (unsigned allowed, unsigned mods)
12830{
12831 unsigned size;
12832 enum neon_el_type type;
12833 unsigned destmask;
12834 int i;
5f4273c7 12835
5287ad62 12836 destmask = 0;
5f4273c7 12837
5287ad62
JB
12838 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12839 {
21d799b5
NC
12840 if (el_type_of_type_chk (&type, &size,
12841 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12842 {
12843 neon_modify_type_size (mods, &type, &size);
12844 destmask |= type_chk_of_el_type (type, size);
12845 }
5287ad62 12846 }
5f4273c7 12847
5287ad62
JB
12848 return destmask;
12849}
12850
12851/* Check type and return type classification.
12852 The manual states (paraphrase): If one datatype is given, it indicates the
12853 type given in:
12854 - the second operand, if there is one
12855 - the operand, if there is no second operand
12856 - the result, if there are no operands.
12857 This isn't quite good enough though, so we use a concept of a "key" datatype
12858 which is set on a per-instruction basis, which is the one which matters when
12859 only one data type is written.
12860 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12861 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12862
12863static struct neon_type_el
12864neon_check_type (unsigned els, enum neon_shape ns, ...)
12865{
12866 va_list ap;
12867 unsigned i, pass, key_el = 0;
12868 unsigned types[NEON_MAX_TYPE_ELS];
12869 enum neon_el_type k_type = NT_invtype;
12870 unsigned k_size = -1u;
12871 struct neon_type_el badtype = {NT_invtype, -1};
12872 unsigned key_allowed = 0;
12873
12874 /* Optional registers in Neon instructions are always (not) in operand 1.
12875 Fill in the missing operand here, if it was omitted. */
12876 if (els > 1 && !inst.operands[1].present)
12877 inst.operands[1] = inst.operands[0];
12878
12879 /* Suck up all the varargs. */
12880 va_start (ap, ns);
12881 for (i = 0; i < els; i++)
12882 {
12883 unsigned thisarg = va_arg (ap, unsigned);
12884 if (thisarg == N_IGNORE_TYPE)
12885 {
12886 va_end (ap);
12887 return badtype;
12888 }
12889 types[i] = thisarg;
12890 if ((thisarg & N_KEY) != 0)
12891 key_el = i;
12892 }
12893 va_end (ap);
12894
dcbf9037
JB
12895 if (inst.vectype.elems > 0)
12896 for (i = 0; i < els; i++)
12897 if (inst.operands[i].vectype.type != NT_invtype)
12898 {
12899 first_error (_("types specified in both the mnemonic and operands"));
12900 return badtype;
12901 }
12902
5287ad62
JB
12903 /* Duplicate inst.vectype elements here as necessary.
12904 FIXME: No idea if this is exactly the same as the ARM assembler,
12905 particularly when an insn takes one register and one non-register
12906 operand. */
12907 if (inst.vectype.elems == 1 && els > 1)
12908 {
12909 unsigned j;
12910 inst.vectype.elems = els;
12911 inst.vectype.el[key_el] = inst.vectype.el[0];
12912 for (j = 0; j < els; j++)
dcbf9037
JB
12913 if (j != key_el)
12914 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12915 types[j]);
12916 }
12917 else if (inst.vectype.elems == 0 && els > 0)
12918 {
12919 unsigned j;
12920 /* No types were given after the mnemonic, so look for types specified
12921 after each operand. We allow some flexibility here; as long as the
12922 "key" operand has a type, we can infer the others. */
12923 for (j = 0; j < els; j++)
12924 if (inst.operands[j].vectype.type != NT_invtype)
12925 inst.vectype.el[j] = inst.operands[j].vectype;
12926
12927 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12928 {
dcbf9037
JB
12929 for (j = 0; j < els; j++)
12930 if (inst.operands[j].vectype.type == NT_invtype)
12931 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12932 types[j]);
12933 }
12934 else
12935 {
12936 first_error (_("operand types can't be inferred"));
12937 return badtype;
5287ad62
JB
12938 }
12939 }
12940 else if (inst.vectype.elems != els)
12941 {
dcbf9037 12942 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12943 return badtype;
12944 }
12945
12946 for (pass = 0; pass < 2; pass++)
12947 {
12948 for (i = 0; i < els; i++)
12949 {
12950 unsigned thisarg = types[i];
12951 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12952 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12953 enum neon_el_type g_type = inst.vectype.el[i].type;
12954 unsigned g_size = inst.vectype.el[i].size;
12955
12956 /* Decay more-specific signed & unsigned types to sign-insensitive
12957 integer types if sign-specific variants are unavailable. */
12958 if ((g_type == NT_signed || g_type == NT_unsigned)
12959 && (types_allowed & N_SU_ALL) == 0)
12960 g_type = NT_integer;
12961
12962 /* If only untyped args are allowed, decay any more specific types to
12963 them. Some instructions only care about signs for some element
12964 sizes, so handle that properly. */
12965 if ((g_size == 8 && (types_allowed & N_8) != 0)
12966 || (g_size == 16 && (types_allowed & N_16) != 0)
12967 || (g_size == 32 && (types_allowed & N_32) != 0)
12968 || (g_size == 64 && (types_allowed & N_64) != 0))
12969 g_type = NT_untyped;
12970
12971 if (pass == 0)
12972 {
12973 if ((thisarg & N_KEY) != 0)
12974 {
12975 k_type = g_type;
12976 k_size = g_size;
12977 key_allowed = thisarg & ~N_KEY;
12978 }
12979 }
12980 else
12981 {
037e8744
JB
12982 if ((thisarg & N_VFP) != 0)
12983 {
99b253c5
NC
12984 enum neon_shape_el regshape;
12985 unsigned regwidth, match;
12986
12987 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12988 if (ns == NS_NULL)
12989 {
12990 first_error (_("invalid instruction shape"));
12991 return badtype;
12992 }
12993 regshape = neon_shape_tab[ns].el[i];
12994 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12995
12996 /* In VFP mode, operands must match register widths. If we
12997 have a key operand, use its width, else use the width of
12998 the current operand. */
12999 if (k_size != -1u)
13000 match = k_size;
13001 else
13002 match = g_size;
13003
13004 if (regwidth != match)
13005 {
13006 first_error (_("operand size must match register width"));
13007 return badtype;
13008 }
13009 }
5f4273c7 13010
5287ad62
JB
13011 if ((thisarg & N_EQK) == 0)
13012 {
13013 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13014
13015 if ((given_type & types_allowed) == 0)
13016 {
dcbf9037 13017 first_error (_("bad type in Neon instruction"));
5287ad62
JB
13018 return badtype;
13019 }
13020 }
13021 else
13022 {
13023 enum neon_el_type mod_k_type = k_type;
13024 unsigned mod_k_size = k_size;
13025 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13026 if (g_type != mod_k_type || g_size != mod_k_size)
13027 {
dcbf9037 13028 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
13029 return badtype;
13030 }
13031 }
13032 }
13033 }
13034 }
13035
13036 return inst.vectype.el[key_el];
13037}
13038
037e8744 13039/* Neon-style VFP instruction forwarding. */
5287ad62 13040
037e8744
JB
13041/* Thumb VFP instructions have 0xE in the condition field. */
13042
13043static void
13044do_vfp_cond_or_thumb (void)
5287ad62 13045{
88714cb8
DG
13046 inst.is_neon = 1;
13047
5287ad62 13048 if (thumb_mode)
037e8744 13049 inst.instruction |= 0xe0000000;
5287ad62 13050 else
037e8744 13051 inst.instruction |= inst.cond << 28;
5287ad62
JB
13052}
13053
037e8744
JB
13054/* Look up and encode a simple mnemonic, for use as a helper function for the
13055 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13056 etc. It is assumed that operand parsing has already been done, and that the
13057 operands are in the form expected by the given opcode (this isn't necessarily
13058 the same as the form in which they were parsed, hence some massaging must
13059 take place before this function is called).
13060 Checks current arch version against that in the looked-up opcode. */
5287ad62 13061
037e8744
JB
13062static void
13063do_vfp_nsyn_opcode (const char *opname)
5287ad62 13064{
037e8744 13065 const struct asm_opcode *opcode;
5f4273c7 13066
21d799b5 13067 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 13068
037e8744
JB
13069 if (!opcode)
13070 abort ();
5287ad62 13071
037e8744
JB
13072 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13073 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13074 _(BAD_FPU));
5287ad62 13075
88714cb8
DG
13076 inst.is_neon = 1;
13077
037e8744
JB
13078 if (thumb_mode)
13079 {
13080 inst.instruction = opcode->tvalue;
13081 opcode->tencode ();
13082 }
13083 else
13084 {
13085 inst.instruction = (inst.cond << 28) | opcode->avalue;
13086 opcode->aencode ();
13087 }
13088}
5287ad62
JB
13089
13090static void
037e8744 13091do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 13092{
037e8744
JB
13093 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13094
13095 if (rs == NS_FFF)
13096 {
13097 if (is_add)
13098 do_vfp_nsyn_opcode ("fadds");
13099 else
13100 do_vfp_nsyn_opcode ("fsubs");
13101 }
13102 else
13103 {
13104 if (is_add)
13105 do_vfp_nsyn_opcode ("faddd");
13106 else
13107 do_vfp_nsyn_opcode ("fsubd");
13108 }
13109}
13110
13111/* Check operand types to see if this is a VFP instruction, and if so call
13112 PFN (). */
13113
13114static int
13115try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13116{
13117 enum neon_shape rs;
13118 struct neon_type_el et;
13119
13120 switch (args)
13121 {
13122 case 2:
13123 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13124 et = neon_check_type (2, rs,
13125 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13126 break;
5f4273c7 13127
037e8744
JB
13128 case 3:
13129 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13130 et = neon_check_type (3, rs,
13131 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13132 break;
13133
13134 default:
13135 abort ();
13136 }
13137
13138 if (et.type != NT_invtype)
13139 {
13140 pfn (rs);
13141 return SUCCESS;
13142 }
037e8744 13143
99b253c5 13144 inst.error = NULL;
037e8744
JB
13145 return FAIL;
13146}
13147
13148static void
13149do_vfp_nsyn_mla_mls (enum neon_shape rs)
13150{
13151 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 13152
037e8744
JB
13153 if (rs == NS_FFF)
13154 {
13155 if (is_mla)
13156 do_vfp_nsyn_opcode ("fmacs");
13157 else
1ee69515 13158 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
13159 }
13160 else
13161 {
13162 if (is_mla)
13163 do_vfp_nsyn_opcode ("fmacd");
13164 else
1ee69515 13165 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
13166 }
13167}
13168
62f3b8c8
PB
13169static void
13170do_vfp_nsyn_fma_fms (enum neon_shape rs)
13171{
13172 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13173
13174 if (rs == NS_FFF)
13175 {
13176 if (is_fma)
13177 do_vfp_nsyn_opcode ("ffmas");
13178 else
13179 do_vfp_nsyn_opcode ("ffnmas");
13180 }
13181 else
13182 {
13183 if (is_fma)
13184 do_vfp_nsyn_opcode ("ffmad");
13185 else
13186 do_vfp_nsyn_opcode ("ffnmad");
13187 }
13188}
13189
037e8744
JB
13190static void
13191do_vfp_nsyn_mul (enum neon_shape rs)
13192{
13193 if (rs == NS_FFF)
13194 do_vfp_nsyn_opcode ("fmuls");
13195 else
13196 do_vfp_nsyn_opcode ("fmuld");
13197}
13198
13199static void
13200do_vfp_nsyn_abs_neg (enum neon_shape rs)
13201{
13202 int is_neg = (inst.instruction & 0x80) != 0;
13203 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13204
13205 if (rs == NS_FF)
13206 {
13207 if (is_neg)
13208 do_vfp_nsyn_opcode ("fnegs");
13209 else
13210 do_vfp_nsyn_opcode ("fabss");
13211 }
13212 else
13213 {
13214 if (is_neg)
13215 do_vfp_nsyn_opcode ("fnegd");
13216 else
13217 do_vfp_nsyn_opcode ("fabsd");
13218 }
13219}
13220
13221/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13222 insns belong to Neon, and are handled elsewhere. */
13223
13224static void
13225do_vfp_nsyn_ldm_stm (int is_dbmode)
13226{
13227 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13228 if (is_ldm)
13229 {
13230 if (is_dbmode)
13231 do_vfp_nsyn_opcode ("fldmdbs");
13232 else
13233 do_vfp_nsyn_opcode ("fldmias");
13234 }
13235 else
13236 {
13237 if (is_dbmode)
13238 do_vfp_nsyn_opcode ("fstmdbs");
13239 else
13240 do_vfp_nsyn_opcode ("fstmias");
13241 }
13242}
13243
037e8744
JB
13244static void
13245do_vfp_nsyn_sqrt (void)
13246{
13247 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13248 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13249
037e8744
JB
13250 if (rs == NS_FF)
13251 do_vfp_nsyn_opcode ("fsqrts");
13252 else
13253 do_vfp_nsyn_opcode ("fsqrtd");
13254}
13255
13256static void
13257do_vfp_nsyn_div (void)
13258{
13259 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13260 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13261 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13262
037e8744
JB
13263 if (rs == NS_FFF)
13264 do_vfp_nsyn_opcode ("fdivs");
13265 else
13266 do_vfp_nsyn_opcode ("fdivd");
13267}
13268
13269static void
13270do_vfp_nsyn_nmul (void)
13271{
13272 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13273 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13274 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13275
037e8744
JB
13276 if (rs == NS_FFF)
13277 {
88714cb8 13278 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13279 do_vfp_sp_dyadic ();
13280 }
13281 else
13282 {
88714cb8 13283 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13284 do_vfp_dp_rd_rn_rm ();
13285 }
13286 do_vfp_cond_or_thumb ();
13287}
13288
13289static void
13290do_vfp_nsyn_cmp (void)
13291{
13292 if (inst.operands[1].isreg)
13293 {
13294 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13295 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13296
037e8744
JB
13297 if (rs == NS_FF)
13298 {
88714cb8 13299 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13300 do_vfp_sp_monadic ();
13301 }
13302 else
13303 {
88714cb8 13304 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13305 do_vfp_dp_rd_rm ();
13306 }
13307 }
13308 else
13309 {
13310 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13311 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13312
13313 switch (inst.instruction & 0x0fffffff)
13314 {
13315 case N_MNEM_vcmp:
13316 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13317 break;
13318 case N_MNEM_vcmpe:
13319 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13320 break;
13321 default:
13322 abort ();
13323 }
5f4273c7 13324
037e8744
JB
13325 if (rs == NS_FI)
13326 {
88714cb8 13327 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13328 do_vfp_sp_compare_z ();
13329 }
13330 else
13331 {
88714cb8 13332 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13333 do_vfp_dp_rd ();
13334 }
13335 }
13336 do_vfp_cond_or_thumb ();
13337}
13338
13339static void
13340nsyn_insert_sp (void)
13341{
13342 inst.operands[1] = inst.operands[0];
13343 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 13344 inst.operands[0].reg = REG_SP;
037e8744
JB
13345 inst.operands[0].isreg = 1;
13346 inst.operands[0].writeback = 1;
13347 inst.operands[0].present = 1;
13348}
13349
13350static void
13351do_vfp_nsyn_push (void)
13352{
13353 nsyn_insert_sp ();
13354 if (inst.operands[1].issingle)
13355 do_vfp_nsyn_opcode ("fstmdbs");
13356 else
13357 do_vfp_nsyn_opcode ("fstmdbd");
13358}
13359
13360static void
13361do_vfp_nsyn_pop (void)
13362{
13363 nsyn_insert_sp ();
13364 if (inst.operands[1].issingle)
22b5b651 13365 do_vfp_nsyn_opcode ("fldmias");
037e8744 13366 else
22b5b651 13367 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13368}
13369
13370/* Fix up Neon data-processing instructions, ORing in the correct bits for
13371 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13372
88714cb8
DG
13373static void
13374neon_dp_fixup (struct arm_it* insn)
037e8744 13375{
88714cb8
DG
13376 unsigned int i = insn->instruction;
13377 insn->is_neon = 1;
13378
037e8744
JB
13379 if (thumb_mode)
13380 {
13381 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13382 if (i & (1 << 24))
13383 i |= 1 << 28;
5f4273c7 13384
037e8744 13385 i &= ~(1 << 24);
5f4273c7 13386
037e8744
JB
13387 i |= 0xef000000;
13388 }
13389 else
13390 i |= 0xf2000000;
5f4273c7 13391
88714cb8 13392 insn->instruction = i;
037e8744
JB
13393}
13394
13395/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13396 (0, 1, 2, 3). */
13397
13398static unsigned
13399neon_logbits (unsigned x)
13400{
13401 return ffs (x) - 4;
13402}
13403
13404#define LOW4(R) ((R) & 0xf)
13405#define HI1(R) (((R) >> 4) & 1)
13406
13407/* Encode insns with bit pattern:
13408
13409 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13410 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13411
037e8744
JB
13412 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13413 different meaning for some instruction. */
13414
13415static void
13416neon_three_same (int isquad, int ubit, int size)
13417{
13418 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13419 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13420 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13421 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13422 inst.instruction |= LOW4 (inst.operands[2].reg);
13423 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13424 inst.instruction |= (isquad != 0) << 6;
13425 inst.instruction |= (ubit != 0) << 24;
13426 if (size != -1)
13427 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13428
88714cb8 13429 neon_dp_fixup (&inst);
037e8744
JB
13430}
13431
13432/* Encode instructions of the form:
13433
13434 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13435 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13436
13437 Don't write size if SIZE == -1. */
13438
13439static void
13440neon_two_same (int qbit, int ubit, int size)
13441{
13442 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13443 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13444 inst.instruction |= LOW4 (inst.operands[1].reg);
13445 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13446 inst.instruction |= (qbit != 0) << 6;
13447 inst.instruction |= (ubit != 0) << 24;
13448
13449 if (size != -1)
13450 inst.instruction |= neon_logbits (size) << 18;
13451
88714cb8 13452 neon_dp_fixup (&inst);
5287ad62
JB
13453}
13454
13455/* Neon instruction encoders, in approximate order of appearance. */
13456
13457static void
13458do_neon_dyadic_i_su (void)
13459{
037e8744 13460 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13461 struct neon_type_el et = neon_check_type (3, rs,
13462 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13463 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13464}
13465
13466static void
13467do_neon_dyadic_i64_su (void)
13468{
037e8744 13469 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13470 struct neon_type_el et = neon_check_type (3, rs,
13471 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13472 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13473}
13474
13475static void
13476neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13477 unsigned immbits)
13478{
13479 unsigned size = et.size >> 3;
13480 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13481 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13482 inst.instruction |= LOW4 (inst.operands[1].reg);
13483 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13484 inst.instruction |= (isquad != 0) << 6;
13485 inst.instruction |= immbits << 16;
13486 inst.instruction |= (size >> 3) << 7;
13487 inst.instruction |= (size & 0x7) << 19;
13488 if (write_ubit)
13489 inst.instruction |= (uval != 0) << 24;
13490
88714cb8 13491 neon_dp_fixup (&inst);
5287ad62
JB
13492}
13493
13494static void
13495do_neon_shl_imm (void)
13496{
13497 if (!inst.operands[2].isreg)
13498 {
037e8744 13499 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13500 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13501 NEON_ENCODE (IMMED, inst);
037e8744 13502 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13503 }
13504 else
13505 {
037e8744 13506 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13507 struct neon_type_el et = neon_check_type (3, rs,
13508 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13509 unsigned int tmp;
13510
13511 /* VSHL/VQSHL 3-register variants have syntax such as:
13512 vshl.xx Dd, Dm, Dn
13513 whereas other 3-register operations encoded by neon_three_same have
13514 syntax like:
13515 vadd.xx Dd, Dn, Dm
13516 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13517 here. */
13518 tmp = inst.operands[2].reg;
13519 inst.operands[2].reg = inst.operands[1].reg;
13520 inst.operands[1].reg = tmp;
88714cb8 13521 NEON_ENCODE (INTEGER, inst);
037e8744 13522 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13523 }
13524}
13525
13526static void
13527do_neon_qshl_imm (void)
13528{
13529 if (!inst.operands[2].isreg)
13530 {
037e8744 13531 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13532 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13533
88714cb8 13534 NEON_ENCODE (IMMED, inst);
037e8744 13535 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13536 inst.operands[2].imm);
13537 }
13538 else
13539 {
037e8744 13540 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13541 struct neon_type_el et = neon_check_type (3, rs,
13542 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13543 unsigned int tmp;
13544
13545 /* See note in do_neon_shl_imm. */
13546 tmp = inst.operands[2].reg;
13547 inst.operands[2].reg = inst.operands[1].reg;
13548 inst.operands[1].reg = tmp;
88714cb8 13549 NEON_ENCODE (INTEGER, inst);
037e8744 13550 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13551 }
13552}
13553
627907b7
JB
13554static void
13555do_neon_rshl (void)
13556{
13557 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13558 struct neon_type_el et = neon_check_type (3, rs,
13559 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13560 unsigned int tmp;
13561
13562 tmp = inst.operands[2].reg;
13563 inst.operands[2].reg = inst.operands[1].reg;
13564 inst.operands[1].reg = tmp;
13565 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13566}
13567
5287ad62
JB
13568static int
13569neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13570{
036dc3f7
PB
13571 /* Handle .I8 pseudo-instructions. */
13572 if (size == 8)
5287ad62 13573 {
5287ad62
JB
13574 /* Unfortunately, this will make everything apart from zero out-of-range.
13575 FIXME is this the intended semantics? There doesn't seem much point in
13576 accepting .I8 if so. */
13577 immediate |= immediate << 8;
13578 size = 16;
036dc3f7
PB
13579 }
13580
13581 if (size >= 32)
13582 {
13583 if (immediate == (immediate & 0x000000ff))
13584 {
13585 *immbits = immediate;
13586 return 0x1;
13587 }
13588 else if (immediate == (immediate & 0x0000ff00))
13589 {
13590 *immbits = immediate >> 8;
13591 return 0x3;
13592 }
13593 else if (immediate == (immediate & 0x00ff0000))
13594 {
13595 *immbits = immediate >> 16;
13596 return 0x5;
13597 }
13598 else if (immediate == (immediate & 0xff000000))
13599 {
13600 *immbits = immediate >> 24;
13601 return 0x7;
13602 }
13603 if ((immediate & 0xffff) != (immediate >> 16))
13604 goto bad_immediate;
13605 immediate &= 0xffff;
5287ad62
JB
13606 }
13607
13608 if (immediate == (immediate & 0x000000ff))
13609 {
13610 *immbits = immediate;
036dc3f7 13611 return 0x9;
5287ad62
JB
13612 }
13613 else if (immediate == (immediate & 0x0000ff00))
13614 {
13615 *immbits = immediate >> 8;
036dc3f7 13616 return 0xb;
5287ad62
JB
13617 }
13618
13619 bad_immediate:
dcbf9037 13620 first_error (_("immediate value out of range"));
5287ad62
JB
13621 return FAIL;
13622}
13623
13624/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13625 A, B, C, D. */
13626
13627static int
13628neon_bits_same_in_bytes (unsigned imm)
13629{
13630 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13631 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13632 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13633 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13634}
13635
13636/* For immediate of above form, return 0bABCD. */
13637
13638static unsigned
13639neon_squash_bits (unsigned imm)
13640{
13641 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13642 | ((imm & 0x01000000) >> 21);
13643}
13644
136da414 13645/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13646
13647static unsigned
13648neon_qfloat_bits (unsigned imm)
13649{
136da414 13650 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13651}
13652
13653/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13654 the instruction. *OP is passed as the initial value of the op field, and
13655 may be set to a different value depending on the constant (i.e.
13656 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13657 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13658 try smaller element sizes. */
5287ad62
JB
13659
13660static int
c96612cc
JB
13661neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13662 unsigned *immbits, int *op, int size,
13663 enum neon_el_type type)
5287ad62 13664{
c96612cc
JB
13665 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13666 float. */
13667 if (type == NT_float && !float_p)
13668 return FAIL;
13669
136da414
JB
13670 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13671 {
13672 if (size != 32 || *op == 1)
13673 return FAIL;
13674 *immbits = neon_qfloat_bits (immlo);
13675 return 0xf;
13676 }
036dc3f7
PB
13677
13678 if (size == 64)
5287ad62 13679 {
036dc3f7
PB
13680 if (neon_bits_same_in_bytes (immhi)
13681 && neon_bits_same_in_bytes (immlo))
13682 {
13683 if (*op == 1)
13684 return FAIL;
13685 *immbits = (neon_squash_bits (immhi) << 4)
13686 | neon_squash_bits (immlo);
13687 *op = 1;
13688 return 0xe;
13689 }
13690
13691 if (immhi != immlo)
13692 return FAIL;
5287ad62 13693 }
036dc3f7
PB
13694
13695 if (size >= 32)
5287ad62 13696 {
036dc3f7
PB
13697 if (immlo == (immlo & 0x000000ff))
13698 {
13699 *immbits = immlo;
13700 return 0x0;
13701 }
13702 else if (immlo == (immlo & 0x0000ff00))
13703 {
13704 *immbits = immlo >> 8;
13705 return 0x2;
13706 }
13707 else if (immlo == (immlo & 0x00ff0000))
13708 {
13709 *immbits = immlo >> 16;
13710 return 0x4;
13711 }
13712 else if (immlo == (immlo & 0xff000000))
13713 {
13714 *immbits = immlo >> 24;
13715 return 0x6;
13716 }
13717 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13718 {
13719 *immbits = (immlo >> 8) & 0xff;
13720 return 0xc;
13721 }
13722 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13723 {
13724 *immbits = (immlo >> 16) & 0xff;
13725 return 0xd;
13726 }
13727
13728 if ((immlo & 0xffff) != (immlo >> 16))
13729 return FAIL;
13730 immlo &= 0xffff;
5287ad62 13731 }
036dc3f7
PB
13732
13733 if (size >= 16)
5287ad62 13734 {
036dc3f7
PB
13735 if (immlo == (immlo & 0x000000ff))
13736 {
13737 *immbits = immlo;
13738 return 0x8;
13739 }
13740 else if (immlo == (immlo & 0x0000ff00))
13741 {
13742 *immbits = immlo >> 8;
13743 return 0xa;
13744 }
13745
13746 if ((immlo & 0xff) != (immlo >> 8))
13747 return FAIL;
13748 immlo &= 0xff;
5287ad62 13749 }
036dc3f7
PB
13750
13751 if (immlo == (immlo & 0x000000ff))
5287ad62 13752 {
036dc3f7
PB
13753 /* Don't allow MVN with 8-bit immediate. */
13754 if (*op == 1)
13755 return FAIL;
13756 *immbits = immlo;
13757 return 0xe;
5287ad62 13758 }
5287ad62
JB
13759
13760 return FAIL;
13761}
13762
13763/* Write immediate bits [7:0] to the following locations:
13764
13765 |28/24|23 19|18 16|15 4|3 0|
13766 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13767
13768 This function is used by VMOV/VMVN/VORR/VBIC. */
13769
13770static void
13771neon_write_immbits (unsigned immbits)
13772{
13773 inst.instruction |= immbits & 0xf;
13774 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13775 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13776}
13777
13778/* Invert low-order SIZE bits of XHI:XLO. */
13779
13780static void
13781neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13782{
13783 unsigned immlo = xlo ? *xlo : 0;
13784 unsigned immhi = xhi ? *xhi : 0;
13785
13786 switch (size)
13787 {
13788 case 8:
13789 immlo = (~immlo) & 0xff;
13790 break;
13791
13792 case 16:
13793 immlo = (~immlo) & 0xffff;
13794 break;
13795
13796 case 64:
13797 immhi = (~immhi) & 0xffffffff;
13798 /* fall through. */
13799
13800 case 32:
13801 immlo = (~immlo) & 0xffffffff;
13802 break;
13803
13804 default:
13805 abort ();
13806 }
13807
13808 if (xlo)
13809 *xlo = immlo;
13810
13811 if (xhi)
13812 *xhi = immhi;
13813}
13814
13815static void
13816do_neon_logic (void)
13817{
13818 if (inst.operands[2].present && inst.operands[2].isreg)
13819 {
037e8744 13820 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13821 neon_check_type (3, rs, N_IGNORE_TYPE);
13822 /* U bit and size field were set as part of the bitmask. */
88714cb8 13823 NEON_ENCODE (INTEGER, inst);
037e8744 13824 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13825 }
13826 else
13827 {
4316f0d2
DG
13828 const int three_ops_form = (inst.operands[2].present
13829 && !inst.operands[2].isreg);
13830 const int immoperand = (three_ops_form ? 2 : 1);
13831 enum neon_shape rs = (three_ops_form
13832 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13833 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13834 struct neon_type_el et = neon_check_type (2, rs,
13835 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13836 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13837 unsigned immbits;
13838 int cmode;
5f4273c7 13839
5287ad62
JB
13840 if (et.type == NT_invtype)
13841 return;
5f4273c7 13842
4316f0d2
DG
13843 if (three_ops_form)
13844 constraint (inst.operands[0].reg != inst.operands[1].reg,
13845 _("first and second operands shall be the same register"));
13846
88714cb8 13847 NEON_ENCODE (IMMED, inst);
5287ad62 13848
4316f0d2 13849 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13850 if (et.size == 64)
13851 {
13852 /* .i64 is a pseudo-op, so the immediate must be a repeating
13853 pattern. */
4316f0d2
DG
13854 if (immbits != (inst.operands[immoperand].regisimm ?
13855 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13856 {
13857 /* Set immbits to an invalid constant. */
13858 immbits = 0xdeadbeef;
13859 }
13860 }
13861
5287ad62
JB
13862 switch (opcode)
13863 {
13864 case N_MNEM_vbic:
036dc3f7 13865 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13866 break;
5f4273c7 13867
5287ad62 13868 case N_MNEM_vorr:
036dc3f7 13869 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13870 break;
5f4273c7 13871
5287ad62
JB
13872 case N_MNEM_vand:
13873 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13874 neon_invert_size (&immbits, 0, et.size);
13875 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13876 break;
5f4273c7 13877
5287ad62
JB
13878 case N_MNEM_vorn:
13879 /* Pseudo-instruction for VORR. */
5287ad62
JB
13880 neon_invert_size (&immbits, 0, et.size);
13881 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13882 break;
5f4273c7 13883
5287ad62
JB
13884 default:
13885 abort ();
13886 }
13887
13888 if (cmode == FAIL)
13889 return;
13890
037e8744 13891 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13892 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13893 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13894 inst.instruction |= cmode << 8;
13895 neon_write_immbits (immbits);
5f4273c7 13896
88714cb8 13897 neon_dp_fixup (&inst);
5287ad62
JB
13898 }
13899}
13900
13901static void
13902do_neon_bitfield (void)
13903{
037e8744 13904 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13905 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13906 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13907}
13908
13909static void
dcbf9037
JB
13910neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13911 unsigned destbits)
5287ad62 13912{
037e8744 13913 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13914 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13915 types | N_KEY);
5287ad62
JB
13916 if (et.type == NT_float)
13917 {
88714cb8 13918 NEON_ENCODE (FLOAT, inst);
037e8744 13919 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13920 }
13921 else
13922 {
88714cb8 13923 NEON_ENCODE (INTEGER, inst);
037e8744 13924 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13925 }
13926}
13927
13928static void
13929do_neon_dyadic_if_su (void)
13930{
dcbf9037 13931 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13932}
13933
13934static void
13935do_neon_dyadic_if_su_d (void)
13936{
13937 /* This version only allow D registers, but that constraint is enforced during
13938 operand parsing so we don't need to do anything extra here. */
dcbf9037 13939 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13940}
13941
5287ad62
JB
13942static void
13943do_neon_dyadic_if_i_d (void)
13944{
428e3f1f
PB
13945 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13946 affected if we specify unsigned args. */
13947 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13948}
13949
037e8744
JB
13950enum vfp_or_neon_is_neon_bits
13951{
13952 NEON_CHECK_CC = 1,
13953 NEON_CHECK_ARCH = 2
13954};
13955
13956/* Call this function if an instruction which may have belonged to the VFP or
13957 Neon instruction sets, but turned out to be a Neon instruction (due to the
13958 operand types involved, etc.). We have to check and/or fix-up a couple of
13959 things:
13960
13961 - Make sure the user hasn't attempted to make a Neon instruction
13962 conditional.
13963 - Alter the value in the condition code field if necessary.
13964 - Make sure that the arch supports Neon instructions.
13965
13966 Which of these operations take place depends on bits from enum
13967 vfp_or_neon_is_neon_bits.
13968
13969 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13970 current instruction's condition is COND_ALWAYS, the condition field is
13971 changed to inst.uncond_value. This is necessary because instructions shared
13972 between VFP and Neon may be conditional for the VFP variants only, and the
13973 unconditional Neon version must have, e.g., 0xF in the condition field. */
13974
13975static int
13976vfp_or_neon_is_neon (unsigned check)
13977{
13978 /* Conditions are always legal in Thumb mode (IT blocks). */
13979 if (!thumb_mode && (check & NEON_CHECK_CC))
13980 {
13981 if (inst.cond != COND_ALWAYS)
13982 {
13983 first_error (_(BAD_COND));
13984 return FAIL;
13985 }
13986 if (inst.uncond_value != -1)
13987 inst.instruction |= inst.uncond_value << 28;
13988 }
5f4273c7 13989
037e8744
JB
13990 if ((check & NEON_CHECK_ARCH)
13991 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13992 {
13993 first_error (_(BAD_FPU));
13994 return FAIL;
13995 }
5f4273c7 13996
037e8744
JB
13997 return SUCCESS;
13998}
13999
5287ad62
JB
14000static void
14001do_neon_addsub_if_i (void)
14002{
037e8744
JB
14003 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14004 return;
14005
14006 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14007 return;
14008
5287ad62
JB
14009 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14010 affected if we specify unsigned args. */
dcbf9037 14011 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
14012}
14013
14014/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14015 result to be:
14016 V<op> A,B (A is operand 0, B is operand 2)
14017 to mean:
14018 V<op> A,B,A
14019 not:
14020 V<op> A,B,B
14021 so handle that case specially. */
14022
14023static void
14024neon_exchange_operands (void)
14025{
14026 void *scratch = alloca (sizeof (inst.operands[0]));
14027 if (inst.operands[1].present)
14028 {
14029 /* Swap operands[1] and operands[2]. */
14030 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14031 inst.operands[1] = inst.operands[2];
14032 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14033 }
14034 else
14035 {
14036 inst.operands[1] = inst.operands[2];
14037 inst.operands[2] = inst.operands[0];
14038 }
14039}
14040
14041static void
14042neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14043{
14044 if (inst.operands[2].isreg)
14045 {
14046 if (invert)
14047 neon_exchange_operands ();
dcbf9037 14048 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
14049 }
14050 else
14051 {
037e8744 14052 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
14053 struct neon_type_el et = neon_check_type (2, rs,
14054 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 14055
88714cb8 14056 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14057 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14058 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14059 inst.instruction |= LOW4 (inst.operands[1].reg);
14060 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14061 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14062 inst.instruction |= (et.type == NT_float) << 10;
14063 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14064
88714cb8 14065 neon_dp_fixup (&inst);
5287ad62
JB
14066 }
14067}
14068
14069static void
14070do_neon_cmp (void)
14071{
14072 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14073}
14074
14075static void
14076do_neon_cmp_inv (void)
14077{
14078 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14079}
14080
14081static void
14082do_neon_ceq (void)
14083{
14084 neon_compare (N_IF_32, N_IF_32, FALSE);
14085}
14086
14087/* For multiply instructions, we have the possibility of 16-bit or 32-bit
14088 scalars, which are encoded in 5 bits, M : Rm.
14089 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14090 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14091 index in M. */
14092
14093static unsigned
14094neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14095{
dcbf9037
JB
14096 unsigned regno = NEON_SCALAR_REG (scalar);
14097 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
14098
14099 switch (elsize)
14100 {
14101 case 16:
14102 if (regno > 7 || elno > 3)
14103 goto bad_scalar;
14104 return regno | (elno << 3);
5f4273c7 14105
5287ad62
JB
14106 case 32:
14107 if (regno > 15 || elno > 1)
14108 goto bad_scalar;
14109 return regno | (elno << 4);
14110
14111 default:
14112 bad_scalar:
dcbf9037 14113 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
14114 }
14115
14116 return 0;
14117}
14118
14119/* Encode multiply / multiply-accumulate scalar instructions. */
14120
14121static void
14122neon_mul_mac (struct neon_type_el et, int ubit)
14123{
dcbf9037
JB
14124 unsigned scalar;
14125
14126 /* Give a more helpful error message if we have an invalid type. */
14127 if (et.type == NT_invtype)
14128 return;
5f4273c7 14129
dcbf9037 14130 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
14131 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14132 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14133 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14134 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14135 inst.instruction |= LOW4 (scalar);
14136 inst.instruction |= HI1 (scalar) << 5;
14137 inst.instruction |= (et.type == NT_float) << 8;
14138 inst.instruction |= neon_logbits (et.size) << 20;
14139 inst.instruction |= (ubit != 0) << 24;
14140
88714cb8 14141 neon_dp_fixup (&inst);
5287ad62
JB
14142}
14143
14144static void
14145do_neon_mac_maybe_scalar (void)
14146{
037e8744
JB
14147 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14148 return;
14149
14150 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14151 return;
14152
5287ad62
JB
14153 if (inst.operands[2].isscalar)
14154 {
037e8744 14155 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14156 struct neon_type_el et = neon_check_type (3, rs,
14157 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 14158 NEON_ENCODE (SCALAR, inst);
037e8744 14159 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14160 }
14161 else
428e3f1f
PB
14162 {
14163 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14164 affected if we specify unsigned args. */
14165 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14166 }
5287ad62
JB
14167}
14168
62f3b8c8
PB
14169static void
14170do_neon_fmac (void)
14171{
14172 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14173 return;
14174
14175 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14176 return;
14177
14178 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14179}
14180
5287ad62
JB
14181static void
14182do_neon_tst (void)
14183{
037e8744 14184 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14185 struct neon_type_el et = neon_check_type (3, rs,
14186 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 14187 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14188}
14189
14190/* VMUL with 3 registers allows the P8 type. The scalar version supports the
14191 same types as the MAC equivalents. The polynomial type for this instruction
14192 is encoded the same as the integer type. */
14193
14194static void
14195do_neon_mul (void)
14196{
037e8744
JB
14197 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14198 return;
14199
14200 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14201 return;
14202
5287ad62
JB
14203 if (inst.operands[2].isscalar)
14204 do_neon_mac_maybe_scalar ();
14205 else
dcbf9037 14206 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
14207}
14208
14209static void
14210do_neon_qdmulh (void)
14211{
14212 if (inst.operands[2].isscalar)
14213 {
037e8744 14214 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14215 struct neon_type_el et = neon_check_type (3, rs,
14216 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14217 NEON_ENCODE (SCALAR, inst);
037e8744 14218 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14219 }
14220 else
14221 {
037e8744 14222 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14223 struct neon_type_el et = neon_check_type (3, rs,
14224 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14225 NEON_ENCODE (INTEGER, inst);
5287ad62 14226 /* The U bit (rounding) comes from bit mask. */
037e8744 14227 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14228 }
14229}
14230
14231static void
14232do_neon_fcmp_absolute (void)
14233{
037e8744 14234 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14235 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14236 /* Size field comes from bit mask. */
037e8744 14237 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
14238}
14239
14240static void
14241do_neon_fcmp_absolute_inv (void)
14242{
14243 neon_exchange_operands ();
14244 do_neon_fcmp_absolute ();
14245}
14246
14247static void
14248do_neon_step (void)
14249{
037e8744 14250 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14251 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 14252 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14253}
14254
14255static void
14256do_neon_abs_neg (void)
14257{
037e8744
JB
14258 enum neon_shape rs;
14259 struct neon_type_el et;
5f4273c7 14260
037e8744
JB
14261 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14262 return;
14263
14264 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14265 return;
14266
14267 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14268 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 14269
5287ad62
JB
14270 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14271 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14272 inst.instruction |= LOW4 (inst.operands[1].reg);
14273 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14274 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14275 inst.instruction |= (et.type == NT_float) << 10;
14276 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14277
88714cb8 14278 neon_dp_fixup (&inst);
5287ad62
JB
14279}
14280
14281static void
14282do_neon_sli (void)
14283{
037e8744 14284 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14285 struct neon_type_el et = neon_check_type (2, rs,
14286 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14287 int imm = inst.operands[2].imm;
14288 constraint (imm < 0 || (unsigned)imm >= et.size,
14289 _("immediate out of range for insert"));
037e8744 14290 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14291}
14292
14293static void
14294do_neon_sri (void)
14295{
037e8744 14296 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14297 struct neon_type_el et = neon_check_type (2, rs,
14298 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14299 int imm = inst.operands[2].imm;
14300 constraint (imm < 1 || (unsigned)imm > et.size,
14301 _("immediate out of range for insert"));
037e8744 14302 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
14303}
14304
14305static void
14306do_neon_qshlu_imm (void)
14307{
037e8744 14308 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14309 struct neon_type_el et = neon_check_type (2, rs,
14310 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14311 int imm = inst.operands[2].imm;
14312 constraint (imm < 0 || (unsigned)imm >= et.size,
14313 _("immediate out of range for shift"));
14314 /* Only encodes the 'U present' variant of the instruction.
14315 In this case, signed types have OP (bit 8) set to 0.
14316 Unsigned types have OP set to 1. */
14317 inst.instruction |= (et.type == NT_unsigned) << 8;
14318 /* The rest of the bits are the same as other immediate shifts. */
037e8744 14319 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14320}
14321
14322static void
14323do_neon_qmovn (void)
14324{
14325 struct neon_type_el et = neon_check_type (2, NS_DQ,
14326 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14327 /* Saturating move where operands can be signed or unsigned, and the
14328 destination has the same signedness. */
88714cb8 14329 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14330 if (et.type == NT_unsigned)
14331 inst.instruction |= 0xc0;
14332 else
14333 inst.instruction |= 0x80;
14334 neon_two_same (0, 1, et.size / 2);
14335}
14336
14337static void
14338do_neon_qmovun (void)
14339{
14340 struct neon_type_el et = neon_check_type (2, NS_DQ,
14341 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14342 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 14343 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14344 neon_two_same (0, 1, et.size / 2);
14345}
14346
14347static void
14348do_neon_rshift_sat_narrow (void)
14349{
14350 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14351 or unsigned. If operands are unsigned, results must also be unsigned. */
14352 struct neon_type_el et = neon_check_type (2, NS_DQI,
14353 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14354 int imm = inst.operands[2].imm;
14355 /* This gets the bounds check, size encoding and immediate bits calculation
14356 right. */
14357 et.size /= 2;
5f4273c7 14358
5287ad62
JB
14359 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14360 VQMOVN.I<size> <Dd>, <Qm>. */
14361 if (imm == 0)
14362 {
14363 inst.operands[2].present = 0;
14364 inst.instruction = N_MNEM_vqmovn;
14365 do_neon_qmovn ();
14366 return;
14367 }
5f4273c7 14368
5287ad62
JB
14369 constraint (imm < 1 || (unsigned)imm > et.size,
14370 _("immediate out of range"));
14371 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14372}
14373
14374static void
14375do_neon_rshift_sat_narrow_u (void)
14376{
14377 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14378 or unsigned. If operands are unsigned, results must also be unsigned. */
14379 struct neon_type_el et = neon_check_type (2, NS_DQI,
14380 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14381 int imm = inst.operands[2].imm;
14382 /* This gets the bounds check, size encoding and immediate bits calculation
14383 right. */
14384 et.size /= 2;
14385
14386 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14387 VQMOVUN.I<size> <Dd>, <Qm>. */
14388 if (imm == 0)
14389 {
14390 inst.operands[2].present = 0;
14391 inst.instruction = N_MNEM_vqmovun;
14392 do_neon_qmovun ();
14393 return;
14394 }
14395
14396 constraint (imm < 1 || (unsigned)imm > et.size,
14397 _("immediate out of range"));
14398 /* FIXME: The manual is kind of unclear about what value U should have in
14399 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14400 must be 1. */
14401 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14402}
14403
14404static void
14405do_neon_movn (void)
14406{
14407 struct neon_type_el et = neon_check_type (2, NS_DQ,
14408 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14409 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14410 neon_two_same (0, 1, et.size / 2);
14411}
14412
14413static void
14414do_neon_rshift_narrow (void)
14415{
14416 struct neon_type_el et = neon_check_type (2, NS_DQI,
14417 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14418 int imm = inst.operands[2].imm;
14419 /* This gets the bounds check, size encoding and immediate bits calculation
14420 right. */
14421 et.size /= 2;
5f4273c7 14422
5287ad62
JB
14423 /* If immediate is zero then we are a pseudo-instruction for
14424 VMOVN.I<size> <Dd>, <Qm> */
14425 if (imm == 0)
14426 {
14427 inst.operands[2].present = 0;
14428 inst.instruction = N_MNEM_vmovn;
14429 do_neon_movn ();
14430 return;
14431 }
5f4273c7 14432
5287ad62
JB
14433 constraint (imm < 1 || (unsigned)imm > et.size,
14434 _("immediate out of range for narrowing operation"));
14435 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14436}
14437
14438static void
14439do_neon_shll (void)
14440{
14441 /* FIXME: Type checking when lengthening. */
14442 struct neon_type_el et = neon_check_type (2, NS_QDI,
14443 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14444 unsigned imm = inst.operands[2].imm;
14445
14446 if (imm == et.size)
14447 {
14448 /* Maximum shift variant. */
88714cb8 14449 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14450 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14451 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14452 inst.instruction |= LOW4 (inst.operands[1].reg);
14453 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14454 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14455
88714cb8 14456 neon_dp_fixup (&inst);
5287ad62
JB
14457 }
14458 else
14459 {
14460 /* A more-specific type check for non-max versions. */
14461 et = neon_check_type (2, NS_QDI,
14462 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14463 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14464 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14465 }
14466}
14467
037e8744 14468/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14469 the current instruction is. */
14470
14471static int
14472neon_cvt_flavour (enum neon_shape rs)
14473{
037e8744
JB
14474#define CVT_VAR(C,X,Y) \
14475 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14476 if (et.type != NT_invtype) \
14477 { \
14478 inst.error = NULL; \
14479 return (C); \
5287ad62
JB
14480 }
14481 struct neon_type_el et;
037e8744
JB
14482 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14483 || rs == NS_FF) ? N_VFP : 0;
14484 /* The instruction versions which take an immediate take one register
14485 argument, which is extended to the width of the full register. Thus the
14486 "source" and "destination" registers must have the same width. Hack that
14487 here by making the size equal to the key (wider, in this case) operand. */
14488 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14489
5287ad62
JB
14490 CVT_VAR (0, N_S32, N_F32);
14491 CVT_VAR (1, N_U32, N_F32);
14492 CVT_VAR (2, N_F32, N_S32);
14493 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
14494 /* Half-precision conversions. */
14495 CVT_VAR (4, N_F32, N_F16);
14496 CVT_VAR (5, N_F16, N_F32);
5f4273c7 14497
037e8744 14498 whole_reg = N_VFP;
5f4273c7 14499
037e8744 14500 /* VFP instructions. */
8e79c3df
CM
14501 CVT_VAR (6, N_F32, N_F64);
14502 CVT_VAR (7, N_F64, N_F32);
14503 CVT_VAR (8, N_S32, N_F64 | key);
14504 CVT_VAR (9, N_U32, N_F64 | key);
14505 CVT_VAR (10, N_F64 | key, N_S32);
14506 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 14507 /* VFP instructions with bitshift. */
8e79c3df
CM
14508 CVT_VAR (12, N_F32 | key, N_S16);
14509 CVT_VAR (13, N_F32 | key, N_U16);
14510 CVT_VAR (14, N_F64 | key, N_S16);
14511 CVT_VAR (15, N_F64 | key, N_U16);
14512 CVT_VAR (16, N_S16, N_F32 | key);
14513 CVT_VAR (17, N_U16, N_F32 | key);
14514 CVT_VAR (18, N_S16, N_F64 | key);
14515 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 14516
5287ad62
JB
14517 return -1;
14518#undef CVT_VAR
14519}
14520
037e8744
JB
14521/* Neon-syntax VFP conversions. */
14522
5287ad62 14523static void
037e8744 14524do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 14525{
037e8744 14526 const char *opname = 0;
5f4273c7 14527
037e8744 14528 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14529 {
037e8744
JB
14530 /* Conversions with immediate bitshift. */
14531 const char *enc[] =
14532 {
14533 "ftosls",
14534 "ftouls",
14535 "fsltos",
14536 "fultos",
14537 NULL,
14538 NULL,
8e79c3df
CM
14539 NULL,
14540 NULL,
037e8744
JB
14541 "ftosld",
14542 "ftould",
14543 "fsltod",
14544 "fultod",
14545 "fshtos",
14546 "fuhtos",
14547 "fshtod",
14548 "fuhtod",
14549 "ftoshs",
14550 "ftouhs",
14551 "ftoshd",
14552 "ftouhd"
14553 };
14554
14555 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14556 {
14557 opname = enc[flavour];
14558 constraint (inst.operands[0].reg != inst.operands[1].reg,
14559 _("operands 0 and 1 must be the same register"));
14560 inst.operands[1] = inst.operands[2];
14561 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14562 }
5287ad62
JB
14563 }
14564 else
14565 {
037e8744
JB
14566 /* Conversions without bitshift. */
14567 const char *enc[] =
14568 {
14569 "ftosis",
14570 "ftouis",
14571 "fsitos",
14572 "fuitos",
8e79c3df
CM
14573 "NULL",
14574 "NULL",
037e8744
JB
14575 "fcvtsd",
14576 "fcvtds",
14577 "ftosid",
14578 "ftouid",
14579 "fsitod",
14580 "fuitod"
14581 };
14582
14583 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14584 opname = enc[flavour];
14585 }
14586
14587 if (opname)
14588 do_vfp_nsyn_opcode (opname);
14589}
14590
14591static void
14592do_vfp_nsyn_cvtz (void)
14593{
14594 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14595 int flavour = neon_cvt_flavour (rs);
14596 const char *enc[] =
14597 {
14598 "ftosizs",
14599 "ftouizs",
14600 NULL,
14601 NULL,
14602 NULL,
14603 NULL,
8e79c3df
CM
14604 NULL,
14605 NULL,
037e8744
JB
14606 "ftosizd",
14607 "ftouizd"
14608 };
14609
14610 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14611 do_vfp_nsyn_opcode (enc[flavour]);
14612}
f31fef98 14613
037e8744 14614static void
e3e535bc 14615do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14616{
14617 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14618 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
14619 int flavour = neon_cvt_flavour (rs);
14620
e3e535bc
NC
14621 /* PR11109: Handle round-to-zero for VCVT conversions. */
14622 if (round_to_zero
14623 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14624 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14625 && (rs == NS_FD || rs == NS_FF))
14626 {
14627 do_vfp_nsyn_cvtz ();
14628 return;
14629 }
14630
037e8744 14631 /* VFP rather than Neon conversions. */
8e79c3df 14632 if (flavour >= 6)
037e8744
JB
14633 {
14634 do_vfp_nsyn_cvt (rs, flavour);
14635 return;
14636 }
14637
14638 switch (rs)
14639 {
14640 case NS_DDI:
14641 case NS_QQI:
14642 {
35997600
NC
14643 unsigned immbits;
14644 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14645
037e8744
JB
14646 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14647 return;
14648
14649 /* Fixed-point conversion with #0 immediate is encoded as an
14650 integer conversion. */
14651 if (inst.operands[2].present && inst.operands[2].imm == 0)
14652 goto int_encode;
35997600 14653 immbits = 32 - inst.operands[2].imm;
88714cb8 14654 NEON_ENCODE (IMMED, inst);
037e8744
JB
14655 if (flavour != -1)
14656 inst.instruction |= enctab[flavour];
14657 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14658 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14659 inst.instruction |= LOW4 (inst.operands[1].reg);
14660 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14661 inst.instruction |= neon_quad (rs) << 6;
14662 inst.instruction |= 1 << 21;
14663 inst.instruction |= immbits << 16;
14664
88714cb8 14665 neon_dp_fixup (&inst);
037e8744
JB
14666 }
14667 break;
14668
14669 case NS_DD:
14670 case NS_QQ:
14671 int_encode:
14672 {
14673 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14674
88714cb8 14675 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14676
14677 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14678 return;
14679
14680 if (flavour != -1)
14681 inst.instruction |= enctab[flavour];
14682
14683 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14684 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14685 inst.instruction |= LOW4 (inst.operands[1].reg);
14686 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14687 inst.instruction |= neon_quad (rs) << 6;
14688 inst.instruction |= 2 << 18;
14689
88714cb8 14690 neon_dp_fixup (&inst);
037e8744
JB
14691 }
14692 break;
14693
8e79c3df
CM
14694 /* Half-precision conversions for Advanced SIMD -- neon. */
14695 case NS_QD:
14696 case NS_DQ:
14697
14698 if ((rs == NS_DQ)
14699 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14700 {
14701 as_bad (_("operand size must match register width"));
14702 break;
14703 }
14704
14705 if ((rs == NS_QD)
14706 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14707 {
14708 as_bad (_("operand size must match register width"));
14709 break;
14710 }
14711
14712 if (rs == NS_DQ)
14713 inst.instruction = 0x3b60600;
14714 else
14715 inst.instruction = 0x3b60700;
14716
14717 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14718 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14719 inst.instruction |= LOW4 (inst.operands[1].reg);
14720 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14721 neon_dp_fixup (&inst);
8e79c3df
CM
14722 break;
14723
037e8744
JB
14724 default:
14725 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14726 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14727 }
5287ad62
JB
14728}
14729
e3e535bc
NC
14730static void
14731do_neon_cvtr (void)
14732{
14733 do_neon_cvt_1 (FALSE);
14734}
14735
14736static void
14737do_neon_cvt (void)
14738{
14739 do_neon_cvt_1 (TRUE);
14740}
14741
8e79c3df
CM
14742static void
14743do_neon_cvtb (void)
14744{
14745 inst.instruction = 0xeb20a40;
14746
14747 /* The sizes are attached to the mnemonic. */
14748 if (inst.vectype.el[0].type != NT_invtype
14749 && inst.vectype.el[0].size == 16)
14750 inst.instruction |= 0x00010000;
14751
14752 /* Programmer's syntax: the sizes are attached to the operands. */
14753 else if (inst.operands[0].vectype.type != NT_invtype
14754 && inst.operands[0].vectype.size == 16)
14755 inst.instruction |= 0x00010000;
14756
14757 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14758 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14759 do_vfp_cond_or_thumb ();
14760}
14761
14762
14763static void
14764do_neon_cvtt (void)
14765{
14766 do_neon_cvtb ();
14767 inst.instruction |= 0x80;
14768}
14769
5287ad62
JB
14770static void
14771neon_move_immediate (void)
14772{
037e8744
JB
14773 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14774 struct neon_type_el et = neon_check_type (2, rs,
14775 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14776 unsigned immlo, immhi = 0, immbits;
c96612cc 14777 int op, cmode, float_p;
5287ad62 14778
037e8744
JB
14779 constraint (et.type == NT_invtype,
14780 _("operand size must be specified for immediate VMOV"));
14781
5287ad62
JB
14782 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14783 op = (inst.instruction & (1 << 5)) != 0;
14784
14785 immlo = inst.operands[1].imm;
14786 if (inst.operands[1].regisimm)
14787 immhi = inst.operands[1].reg;
14788
14789 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14790 _("immediate has bits set outside the operand size"));
14791
c96612cc
JB
14792 float_p = inst.operands[1].immisfloat;
14793
14794 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14795 et.size, et.type)) == FAIL)
5287ad62
JB
14796 {
14797 /* Invert relevant bits only. */
14798 neon_invert_size (&immlo, &immhi, et.size);
14799 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14800 with one or the other; those cases are caught by
14801 neon_cmode_for_move_imm. */
14802 op = !op;
c96612cc
JB
14803 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14804 &op, et.size, et.type)) == FAIL)
5287ad62 14805 {
dcbf9037 14806 first_error (_("immediate out of range"));
5287ad62
JB
14807 return;
14808 }
14809 }
14810
14811 inst.instruction &= ~(1 << 5);
14812 inst.instruction |= op << 5;
14813
14814 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14816 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14817 inst.instruction |= cmode << 8;
14818
14819 neon_write_immbits (immbits);
14820}
14821
14822static void
14823do_neon_mvn (void)
14824{
14825 if (inst.operands[1].isreg)
14826 {
037e8744 14827 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14828
88714cb8 14829 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14832 inst.instruction |= LOW4 (inst.operands[1].reg);
14833 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14834 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14835 }
14836 else
14837 {
88714cb8 14838 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14839 neon_move_immediate ();
14840 }
14841
88714cb8 14842 neon_dp_fixup (&inst);
5287ad62
JB
14843}
14844
14845/* Encode instructions of form:
14846
14847 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14848 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14849
14850static void
14851neon_mixed_length (struct neon_type_el et, unsigned size)
14852{
14853 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14854 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14855 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14856 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14857 inst.instruction |= LOW4 (inst.operands[2].reg);
14858 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14859 inst.instruction |= (et.type == NT_unsigned) << 24;
14860 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14861
88714cb8 14862 neon_dp_fixup (&inst);
5287ad62
JB
14863}
14864
14865static void
14866do_neon_dyadic_long (void)
14867{
14868 /* FIXME: Type checking for lengthening op. */
14869 struct neon_type_el et = neon_check_type (3, NS_QDD,
14870 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14871 neon_mixed_length (et, et.size);
14872}
14873
14874static void
14875do_neon_abal (void)
14876{
14877 struct neon_type_el et = neon_check_type (3, NS_QDD,
14878 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14879 neon_mixed_length (et, et.size);
14880}
14881
14882static void
14883neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14884{
14885 if (inst.operands[2].isscalar)
14886 {
dcbf9037
JB
14887 struct neon_type_el et = neon_check_type (3, NS_QDS,
14888 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14889 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14890 neon_mul_mac (et, et.type == NT_unsigned);
14891 }
14892 else
14893 {
14894 struct neon_type_el et = neon_check_type (3, NS_QDD,
14895 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14896 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14897 neon_mixed_length (et, et.size);
14898 }
14899}
14900
14901static void
14902do_neon_mac_maybe_scalar_long (void)
14903{
14904 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14905}
14906
14907static void
14908do_neon_dyadic_wide (void)
14909{
14910 struct neon_type_el et = neon_check_type (3, NS_QQD,
14911 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14912 neon_mixed_length (et, et.size);
14913}
14914
14915static void
14916do_neon_dyadic_narrow (void)
14917{
14918 struct neon_type_el et = neon_check_type (3, NS_QDD,
14919 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14920 /* Operand sign is unimportant, and the U bit is part of the opcode,
14921 so force the operand type to integer. */
14922 et.type = NT_integer;
5287ad62
JB
14923 neon_mixed_length (et, et.size / 2);
14924}
14925
14926static void
14927do_neon_mul_sat_scalar_long (void)
14928{
14929 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14930}
14931
14932static void
14933do_neon_vmull (void)
14934{
14935 if (inst.operands[2].isscalar)
14936 do_neon_mac_maybe_scalar_long ();
14937 else
14938 {
14939 struct neon_type_el et = neon_check_type (3, NS_QDD,
14940 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14941 if (et.type == NT_poly)
88714cb8 14942 NEON_ENCODE (POLY, inst);
5287ad62 14943 else
88714cb8 14944 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14945 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14946 zero. Should be OK as-is. */
14947 neon_mixed_length (et, et.size);
14948 }
14949}
14950
14951static void
14952do_neon_ext (void)
14953{
037e8744 14954 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14955 struct neon_type_el et = neon_check_type (3, rs,
14956 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14957 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14958
14959 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14960 _("shift out of range"));
5287ad62
JB
14961 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14962 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14963 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14964 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14965 inst.instruction |= LOW4 (inst.operands[2].reg);
14966 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14967 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14968 inst.instruction |= imm << 8;
5f4273c7 14969
88714cb8 14970 neon_dp_fixup (&inst);
5287ad62
JB
14971}
14972
14973static void
14974do_neon_rev (void)
14975{
037e8744 14976 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14977 struct neon_type_el et = neon_check_type (2, rs,
14978 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14979 unsigned op = (inst.instruction >> 7) & 3;
14980 /* N (width of reversed regions) is encoded as part of the bitmask. We
14981 extract it here to check the elements to be reversed are smaller.
14982 Otherwise we'd get a reserved instruction. */
14983 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14984 gas_assert (elsize != 0);
5287ad62
JB
14985 constraint (et.size >= elsize,
14986 _("elements must be smaller than reversal region"));
037e8744 14987 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14988}
14989
14990static void
14991do_neon_dup (void)
14992{
14993 if (inst.operands[1].isscalar)
14994 {
037e8744 14995 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14996 struct neon_type_el et = neon_check_type (2, rs,
14997 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14998 unsigned sizebits = et.size >> 3;
dcbf9037 14999 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 15000 int logsize = neon_logbits (et.size);
dcbf9037 15001 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
15002
15003 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15004 return;
15005
88714cb8 15006 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
15007 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15008 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15009 inst.instruction |= LOW4 (dm);
15010 inst.instruction |= HI1 (dm) << 5;
037e8744 15011 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15012 inst.instruction |= x << 17;
15013 inst.instruction |= sizebits << 16;
5f4273c7 15014
88714cb8 15015 neon_dp_fixup (&inst);
5287ad62
JB
15016 }
15017 else
15018 {
037e8744
JB
15019 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15020 struct neon_type_el et = neon_check_type (2, rs,
15021 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 15022 /* Duplicate ARM register to lanes of vector. */
88714cb8 15023 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
15024 switch (et.size)
15025 {
15026 case 8: inst.instruction |= 0x400000; break;
15027 case 16: inst.instruction |= 0x000020; break;
15028 case 32: inst.instruction |= 0x000000; break;
15029 default: break;
15030 }
15031 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15032 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15033 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 15034 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
15035 /* The encoding for this instruction is identical for the ARM and Thumb
15036 variants, except for the condition field. */
037e8744 15037 do_vfp_cond_or_thumb ();
5287ad62
JB
15038 }
15039}
15040
15041/* VMOV has particularly many variations. It can be one of:
15042 0. VMOV<c><q> <Qd>, <Qm>
15043 1. VMOV<c><q> <Dd>, <Dm>
15044 (Register operations, which are VORR with Rm = Rn.)
15045 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15046 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15047 (Immediate loads.)
15048 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15049 (ARM register to scalar.)
15050 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15051 (Two ARM registers to vector.)
15052 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15053 (Scalar to ARM register.)
15054 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15055 (Vector to two ARM registers.)
037e8744
JB
15056 8. VMOV.F32 <Sd>, <Sm>
15057 9. VMOV.F64 <Dd>, <Dm>
15058 (VFP register moves.)
15059 10. VMOV.F32 <Sd>, #imm
15060 11. VMOV.F64 <Dd>, #imm
15061 (VFP float immediate load.)
15062 12. VMOV <Rd>, <Sm>
15063 (VFP single to ARM reg.)
15064 13. VMOV <Sd>, <Rm>
15065 (ARM reg to VFP single.)
15066 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15067 (Two ARM regs to two VFP singles.)
15068 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15069 (Two VFP singles to two ARM regs.)
5f4273c7 15070
037e8744
JB
15071 These cases can be disambiguated using neon_select_shape, except cases 1/9
15072 and 3/11 which depend on the operand type too.
5f4273c7 15073
5287ad62 15074 All the encoded bits are hardcoded by this function.
5f4273c7 15075
b7fc2769
JB
15076 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15077 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 15078
5287ad62 15079 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 15080 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
15081
15082static void
15083do_neon_mov (void)
15084{
037e8744
JB
15085 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15086 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15087 NS_NULL);
15088 struct neon_type_el et;
15089 const char *ldconst = 0;
5287ad62 15090
037e8744 15091 switch (rs)
5287ad62 15092 {
037e8744
JB
15093 case NS_DD: /* case 1/9. */
15094 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15095 /* It is not an error here if no type is given. */
15096 inst.error = NULL;
15097 if (et.type == NT_float && et.size == 64)
5287ad62 15098 {
037e8744
JB
15099 do_vfp_nsyn_opcode ("fcpyd");
15100 break;
5287ad62 15101 }
037e8744 15102 /* fall through. */
5287ad62 15103
037e8744
JB
15104 case NS_QQ: /* case 0/1. */
15105 {
15106 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15107 return;
15108 /* The architecture manual I have doesn't explicitly state which
15109 value the U bit should have for register->register moves, but
15110 the equivalent VORR instruction has U = 0, so do that. */
15111 inst.instruction = 0x0200110;
15112 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15113 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15114 inst.instruction |= LOW4 (inst.operands[1].reg);
15115 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15116 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15117 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15118 inst.instruction |= neon_quad (rs) << 6;
15119
88714cb8 15120 neon_dp_fixup (&inst);
037e8744
JB
15121 }
15122 break;
5f4273c7 15123
037e8744
JB
15124 case NS_DI: /* case 3/11. */
15125 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15126 inst.error = NULL;
15127 if (et.type == NT_float && et.size == 64)
5287ad62 15128 {
037e8744
JB
15129 /* case 11 (fconstd). */
15130 ldconst = "fconstd";
15131 goto encode_fconstd;
5287ad62 15132 }
037e8744
JB
15133 /* fall through. */
15134
15135 case NS_QI: /* case 2/3. */
15136 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15137 return;
15138 inst.instruction = 0x0800010;
15139 neon_move_immediate ();
88714cb8 15140 neon_dp_fixup (&inst);
5287ad62 15141 break;
5f4273c7 15142
037e8744
JB
15143 case NS_SR: /* case 4. */
15144 {
15145 unsigned bcdebits = 0;
91d6fa6a 15146 int logsize;
037e8744
JB
15147 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15148 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15149
91d6fa6a
NC
15150 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15151 logsize = neon_logbits (et.size);
15152
037e8744
JB
15153 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15154 _(BAD_FPU));
15155 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15156 && et.size != 32, _(BAD_FPU));
15157 constraint (et.type == NT_invtype, _("bad type for scalar"));
15158 constraint (x >= 64 / et.size, _("scalar index out of range"));
15159
15160 switch (et.size)
15161 {
15162 case 8: bcdebits = 0x8; break;
15163 case 16: bcdebits = 0x1; break;
15164 case 32: bcdebits = 0x0; break;
15165 default: ;
15166 }
15167
15168 bcdebits |= x << logsize;
15169
15170 inst.instruction = 0xe000b10;
15171 do_vfp_cond_or_thumb ();
15172 inst.instruction |= LOW4 (dn) << 16;
15173 inst.instruction |= HI1 (dn) << 7;
15174 inst.instruction |= inst.operands[1].reg << 12;
15175 inst.instruction |= (bcdebits & 3) << 5;
15176 inst.instruction |= (bcdebits >> 2) << 21;
15177 }
15178 break;
5f4273c7 15179
037e8744 15180 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 15181 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 15182 _(BAD_FPU));
b7fc2769 15183
037e8744
JB
15184 inst.instruction = 0xc400b10;
15185 do_vfp_cond_or_thumb ();
15186 inst.instruction |= LOW4 (inst.operands[0].reg);
15187 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15188 inst.instruction |= inst.operands[1].reg << 12;
15189 inst.instruction |= inst.operands[2].reg << 16;
15190 break;
5f4273c7 15191
037e8744
JB
15192 case NS_RS: /* case 6. */
15193 {
91d6fa6a 15194 unsigned logsize;
037e8744
JB
15195 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15196 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15197 unsigned abcdebits = 0;
15198
91d6fa6a
NC
15199 et = neon_check_type (2, NS_NULL,
15200 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15201 logsize = neon_logbits (et.size);
15202
037e8744
JB
15203 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15204 _(BAD_FPU));
15205 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15206 && et.size != 32, _(BAD_FPU));
15207 constraint (et.type == NT_invtype, _("bad type for scalar"));
15208 constraint (x >= 64 / et.size, _("scalar index out of range"));
15209
15210 switch (et.size)
15211 {
15212 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15213 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15214 case 32: abcdebits = 0x00; break;
15215 default: ;
15216 }
15217
15218 abcdebits |= x << logsize;
15219 inst.instruction = 0xe100b10;
15220 do_vfp_cond_or_thumb ();
15221 inst.instruction |= LOW4 (dn) << 16;
15222 inst.instruction |= HI1 (dn) << 7;
15223 inst.instruction |= inst.operands[0].reg << 12;
15224 inst.instruction |= (abcdebits & 3) << 5;
15225 inst.instruction |= (abcdebits >> 2) << 21;
15226 }
15227 break;
5f4273c7 15228
037e8744
JB
15229 case NS_RRD: /* case 7 (fmrrd). */
15230 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15231 _(BAD_FPU));
15232
15233 inst.instruction = 0xc500b10;
15234 do_vfp_cond_or_thumb ();
15235 inst.instruction |= inst.operands[0].reg << 12;
15236 inst.instruction |= inst.operands[1].reg << 16;
15237 inst.instruction |= LOW4 (inst.operands[2].reg);
15238 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15239 break;
5f4273c7 15240
037e8744
JB
15241 case NS_FF: /* case 8 (fcpys). */
15242 do_vfp_nsyn_opcode ("fcpys");
15243 break;
5f4273c7 15244
037e8744
JB
15245 case NS_FI: /* case 10 (fconsts). */
15246 ldconst = "fconsts";
15247 encode_fconstd:
15248 if (is_quarter_float (inst.operands[1].imm))
5287ad62 15249 {
037e8744
JB
15250 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15251 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
15252 }
15253 else
037e8744
JB
15254 first_error (_("immediate out of range"));
15255 break;
5f4273c7 15256
037e8744
JB
15257 case NS_RF: /* case 12 (fmrs). */
15258 do_vfp_nsyn_opcode ("fmrs");
15259 break;
5f4273c7 15260
037e8744
JB
15261 case NS_FR: /* case 13 (fmsr). */
15262 do_vfp_nsyn_opcode ("fmsr");
15263 break;
5f4273c7 15264
037e8744
JB
15265 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15266 (one of which is a list), but we have parsed four. Do some fiddling to
15267 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15268 expect. */
15269 case NS_RRFF: /* case 14 (fmrrs). */
15270 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15271 _("VFP registers must be adjacent"));
15272 inst.operands[2].imm = 2;
15273 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15274 do_vfp_nsyn_opcode ("fmrrs");
15275 break;
5f4273c7 15276
037e8744
JB
15277 case NS_FFRR: /* case 15 (fmsrr). */
15278 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15279 _("VFP registers must be adjacent"));
15280 inst.operands[1] = inst.operands[2];
15281 inst.operands[2] = inst.operands[3];
15282 inst.operands[0].imm = 2;
15283 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15284 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 15285 break;
5f4273c7 15286
5287ad62
JB
15287 default:
15288 abort ();
15289 }
15290}
15291
15292static void
15293do_neon_rshift_round_imm (void)
15294{
037e8744 15295 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15296 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15297 int imm = inst.operands[2].imm;
15298
15299 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15300 if (imm == 0)
15301 {
15302 inst.operands[2].present = 0;
15303 do_neon_mov ();
15304 return;
15305 }
15306
15307 constraint (imm < 1 || (unsigned)imm > et.size,
15308 _("immediate out of range for shift"));
037e8744 15309 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
15310 et.size - imm);
15311}
15312
15313static void
15314do_neon_movl (void)
15315{
15316 struct neon_type_el et = neon_check_type (2, NS_QD,
15317 N_EQK | N_DBL, N_SU_32 | N_KEY);
15318 unsigned sizebits = et.size >> 3;
15319 inst.instruction |= sizebits << 19;
15320 neon_two_same (0, et.type == NT_unsigned, -1);
15321}
15322
15323static void
15324do_neon_trn (void)
15325{
037e8744 15326 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15327 struct neon_type_el et = neon_check_type (2, rs,
15328 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 15329 NEON_ENCODE (INTEGER, inst);
037e8744 15330 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15331}
15332
15333static void
15334do_neon_zip_uzp (void)
15335{
037e8744 15336 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15337 struct neon_type_el et = neon_check_type (2, rs,
15338 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15339 if (rs == NS_DD && et.size == 32)
15340 {
15341 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15342 inst.instruction = N_MNEM_vtrn;
15343 do_neon_trn ();
15344 return;
15345 }
037e8744 15346 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15347}
15348
15349static void
15350do_neon_sat_abs_neg (void)
15351{
037e8744 15352 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15353 struct neon_type_el et = neon_check_type (2, rs,
15354 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15355 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15356}
15357
15358static void
15359do_neon_pair_long (void)
15360{
037e8744 15361 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15362 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15363 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15364 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15365 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15366}
15367
15368static void
15369do_neon_recip_est (void)
15370{
037e8744 15371 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15372 struct neon_type_el et = neon_check_type (2, rs,
15373 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15374 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15375 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15376}
15377
15378static void
15379do_neon_cls (void)
15380{
037e8744 15381 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15382 struct neon_type_el et = neon_check_type (2, rs,
15383 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15384 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15385}
15386
15387static void
15388do_neon_clz (void)
15389{
037e8744 15390 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15391 struct neon_type_el et = neon_check_type (2, rs,
15392 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15393 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15394}
15395
15396static void
15397do_neon_cnt (void)
15398{
037e8744 15399 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15400 struct neon_type_el et = neon_check_type (2, rs,
15401 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15402 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15403}
15404
15405static void
15406do_neon_swp (void)
15407{
037e8744
JB
15408 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15409 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15410}
15411
15412static void
15413do_neon_tbl_tbx (void)
15414{
15415 unsigned listlenbits;
dcbf9037 15416 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15417
5287ad62
JB
15418 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15419 {
dcbf9037 15420 first_error (_("bad list length for table lookup"));
5287ad62
JB
15421 return;
15422 }
5f4273c7 15423
5287ad62
JB
15424 listlenbits = inst.operands[1].imm - 1;
15425 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15426 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15427 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15428 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15429 inst.instruction |= LOW4 (inst.operands[2].reg);
15430 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15431 inst.instruction |= listlenbits << 8;
5f4273c7 15432
88714cb8 15433 neon_dp_fixup (&inst);
5287ad62
JB
15434}
15435
15436static void
15437do_neon_ldm_stm (void)
15438{
15439 /* P, U and L bits are part of bitmask. */
15440 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15441 unsigned offsetbits = inst.operands[1].imm * 2;
15442
037e8744
JB
15443 if (inst.operands[1].issingle)
15444 {
15445 do_vfp_nsyn_ldm_stm (is_dbmode);
15446 return;
15447 }
15448
5287ad62
JB
15449 constraint (is_dbmode && !inst.operands[0].writeback,
15450 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15451
15452 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15453 _("register list must contain at least 1 and at most 16 "
15454 "registers"));
15455
15456 inst.instruction |= inst.operands[0].reg << 16;
15457 inst.instruction |= inst.operands[0].writeback << 21;
15458 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15459 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15460
15461 inst.instruction |= offsetbits;
5f4273c7 15462
037e8744 15463 do_vfp_cond_or_thumb ();
5287ad62
JB
15464}
15465
15466static void
15467do_neon_ldr_str (void)
15468{
5287ad62 15469 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15470
6844b2c2
MGD
15471 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15472 And is UNPREDICTABLE in thumb mode. */
fa94de6b 15473 if (!is_ldr
6844b2c2
MGD
15474 && inst.operands[1].reg == REG_PC
15475 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15476 {
15477 if (!thumb_mode && warn_on_deprecated)
15478 as_warn (_("Use of PC here is deprecated"));
15479 else
15480 inst.error = _("Use of PC here is UNPREDICTABLE");
15481 }
15482
037e8744
JB
15483 if (inst.operands[0].issingle)
15484 {
cd2f129f
JB
15485 if (is_ldr)
15486 do_vfp_nsyn_opcode ("flds");
15487 else
15488 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15489 }
15490 else
5287ad62 15491 {
cd2f129f
JB
15492 if (is_ldr)
15493 do_vfp_nsyn_opcode ("fldd");
5287ad62 15494 else
cd2f129f 15495 do_vfp_nsyn_opcode ("fstd");
5287ad62 15496 }
5287ad62
JB
15497}
15498
15499/* "interleave" version also handles non-interleaving register VLD1/VST1
15500 instructions. */
15501
15502static void
15503do_neon_ld_st_interleave (void)
15504{
037e8744 15505 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15506 N_8 | N_16 | N_32 | N_64);
15507 unsigned alignbits = 0;
15508 unsigned idx;
15509 /* The bits in this table go:
15510 0: register stride of one (0) or two (1)
15511 1,2: register list length, minus one (1, 2, 3, 4).
15512 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15513 We use -1 for invalid entries. */
15514 const int typetable[] =
15515 {
15516 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15517 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15518 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15519 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15520 };
15521 int typebits;
15522
dcbf9037
JB
15523 if (et.type == NT_invtype)
15524 return;
15525
5287ad62
JB
15526 if (inst.operands[1].immisalign)
15527 switch (inst.operands[1].imm >> 8)
15528 {
15529 case 64: alignbits = 1; break;
15530 case 128:
e23c0ad8
JZ
15531 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15532 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15533 goto bad_alignment;
15534 alignbits = 2;
15535 break;
15536 case 256:
e23c0ad8 15537 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15538 goto bad_alignment;
15539 alignbits = 3;
15540 break;
15541 default:
15542 bad_alignment:
dcbf9037 15543 first_error (_("bad alignment"));
5287ad62
JB
15544 return;
15545 }
15546
15547 inst.instruction |= alignbits << 4;
15548 inst.instruction |= neon_logbits (et.size) << 6;
15549
15550 /* Bits [4:6] of the immediate in a list specifier encode register stride
15551 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15552 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15553 up the right value for "type" in a table based on this value and the given
15554 list style, then stick it back. */
15555 idx = ((inst.operands[0].imm >> 4) & 7)
15556 | (((inst.instruction >> 8) & 3) << 3);
15557
15558 typebits = typetable[idx];
5f4273c7 15559
5287ad62
JB
15560 constraint (typebits == -1, _("bad list type for instruction"));
15561
15562 inst.instruction &= ~0xf00;
15563 inst.instruction |= typebits << 8;
15564}
15565
15566/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15567 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15568 otherwise. The variable arguments are a list of pairs of legal (size, align)
15569 values, terminated with -1. */
15570
15571static int
15572neon_alignment_bit (int size, int align, int *do_align, ...)
15573{
15574 va_list ap;
15575 int result = FAIL, thissize, thisalign;
5f4273c7 15576
5287ad62
JB
15577 if (!inst.operands[1].immisalign)
15578 {
15579 *do_align = 0;
15580 return SUCCESS;
15581 }
5f4273c7 15582
5287ad62
JB
15583 va_start (ap, do_align);
15584
15585 do
15586 {
15587 thissize = va_arg (ap, int);
15588 if (thissize == -1)
15589 break;
15590 thisalign = va_arg (ap, int);
15591
15592 if (size == thissize && align == thisalign)
15593 result = SUCCESS;
15594 }
15595 while (result != SUCCESS);
15596
15597 va_end (ap);
15598
15599 if (result == SUCCESS)
15600 *do_align = 1;
15601 else
dcbf9037 15602 first_error (_("unsupported alignment for instruction"));
5f4273c7 15603
5287ad62
JB
15604 return result;
15605}
15606
15607static void
15608do_neon_ld_st_lane (void)
15609{
037e8744 15610 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15611 int align_good, do_align = 0;
15612 int logsize = neon_logbits (et.size);
15613 int align = inst.operands[1].imm >> 8;
15614 int n = (inst.instruction >> 8) & 3;
15615 int max_el = 64 / et.size;
5f4273c7 15616
dcbf9037
JB
15617 if (et.type == NT_invtype)
15618 return;
5f4273c7 15619
5287ad62
JB
15620 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15621 _("bad list length"));
15622 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15623 _("scalar index out of range"));
15624 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15625 && et.size == 8,
15626 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15627
5287ad62
JB
15628 switch (n)
15629 {
15630 case 0: /* VLD1 / VST1. */
15631 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15632 32, 32, -1);
15633 if (align_good == FAIL)
15634 return;
15635 if (do_align)
15636 {
15637 unsigned alignbits = 0;
15638 switch (et.size)
15639 {
15640 case 16: alignbits = 0x1; break;
15641 case 32: alignbits = 0x3; break;
15642 default: ;
15643 }
15644 inst.instruction |= alignbits << 4;
15645 }
15646 break;
15647
15648 case 1: /* VLD2 / VST2. */
15649 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15650 32, 64, -1);
15651 if (align_good == FAIL)
15652 return;
15653 if (do_align)
15654 inst.instruction |= 1 << 4;
15655 break;
15656
15657 case 2: /* VLD3 / VST3. */
15658 constraint (inst.operands[1].immisalign,
15659 _("can't use alignment with this instruction"));
15660 break;
15661
15662 case 3: /* VLD4 / VST4. */
15663 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15664 16, 64, 32, 64, 32, 128, -1);
15665 if (align_good == FAIL)
15666 return;
15667 if (do_align)
15668 {
15669 unsigned alignbits = 0;
15670 switch (et.size)
15671 {
15672 case 8: alignbits = 0x1; break;
15673 case 16: alignbits = 0x1; break;
15674 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15675 default: ;
15676 }
15677 inst.instruction |= alignbits << 4;
15678 }
15679 break;
15680
15681 default: ;
15682 }
15683
15684 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15685 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15686 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15687
5287ad62
JB
15688 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15689 inst.instruction |= logsize << 10;
15690}
15691
15692/* Encode single n-element structure to all lanes VLD<n> instructions. */
15693
15694static void
15695do_neon_ld_dup (void)
15696{
037e8744 15697 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15698 int align_good, do_align = 0;
15699
dcbf9037
JB
15700 if (et.type == NT_invtype)
15701 return;
15702
5287ad62
JB
15703 switch ((inst.instruction >> 8) & 3)
15704 {
15705 case 0: /* VLD1. */
9c2799c2 15706 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15707 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15708 &do_align, 16, 16, 32, 32, -1);
15709 if (align_good == FAIL)
15710 return;
15711 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15712 {
15713 case 1: break;
15714 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15715 default: first_error (_("bad list length")); return;
5287ad62
JB
15716 }
15717 inst.instruction |= neon_logbits (et.size) << 6;
15718 break;
15719
15720 case 1: /* VLD2. */
15721 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15722 &do_align, 8, 16, 16, 32, 32, 64, -1);
15723 if (align_good == FAIL)
15724 return;
15725 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15726 _("bad list length"));
15727 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15728 inst.instruction |= 1 << 5;
15729 inst.instruction |= neon_logbits (et.size) << 6;
15730 break;
15731
15732 case 2: /* VLD3. */
15733 constraint (inst.operands[1].immisalign,
15734 _("can't use alignment with this instruction"));
15735 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15736 _("bad list length"));
15737 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15738 inst.instruction |= 1 << 5;
15739 inst.instruction |= neon_logbits (et.size) << 6;
15740 break;
15741
15742 case 3: /* VLD4. */
15743 {
15744 int align = inst.operands[1].imm >> 8;
15745 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15746 16, 64, 32, 64, 32, 128, -1);
15747 if (align_good == FAIL)
15748 return;
15749 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15750 _("bad list length"));
15751 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15752 inst.instruction |= 1 << 5;
15753 if (et.size == 32 && align == 128)
15754 inst.instruction |= 0x3 << 6;
15755 else
15756 inst.instruction |= neon_logbits (et.size) << 6;
15757 }
15758 break;
15759
15760 default: ;
15761 }
15762
15763 inst.instruction |= do_align << 4;
15764}
15765
15766/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15767 apart from bits [11:4]. */
15768
15769static void
15770do_neon_ldx_stx (void)
15771{
b1a769ed
DG
15772 if (inst.operands[1].isreg)
15773 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15774
5287ad62
JB
15775 switch (NEON_LANE (inst.operands[0].imm))
15776 {
15777 case NEON_INTERLEAVE_LANES:
88714cb8 15778 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15779 do_neon_ld_st_interleave ();
15780 break;
5f4273c7 15781
5287ad62 15782 case NEON_ALL_LANES:
88714cb8 15783 NEON_ENCODE (DUP, inst);
5287ad62
JB
15784 do_neon_ld_dup ();
15785 break;
5f4273c7 15786
5287ad62 15787 default:
88714cb8 15788 NEON_ENCODE (LANE, inst);
5287ad62
JB
15789 do_neon_ld_st_lane ();
15790 }
15791
15792 /* L bit comes from bit mask. */
15793 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15794 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15795 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15796
5287ad62
JB
15797 if (inst.operands[1].postind)
15798 {
15799 int postreg = inst.operands[1].imm & 0xf;
15800 constraint (!inst.operands[1].immisreg,
15801 _("post-index must be a register"));
15802 constraint (postreg == 0xd || postreg == 0xf,
15803 _("bad register for post-index"));
15804 inst.instruction |= postreg;
15805 }
15806 else if (inst.operands[1].writeback)
15807 {
15808 inst.instruction |= 0xd;
15809 }
15810 else
5f4273c7
NC
15811 inst.instruction |= 0xf;
15812
5287ad62
JB
15813 if (thumb_mode)
15814 inst.instruction |= 0xf9000000;
15815 else
15816 inst.instruction |= 0xf4000000;
15817}
5287ad62
JB
15818\f
15819/* Overall per-instruction processing. */
15820
15821/* We need to be able to fix up arbitrary expressions in some statements.
15822 This is so that we can handle symbols that are an arbitrary distance from
15823 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15824 which returns part of an address in a form which will be valid for
15825 a data instruction. We do this by pushing the expression into a symbol
15826 in the expr_section, and creating a fix for that. */
15827
15828static void
15829fix_new_arm (fragS * frag,
15830 int where,
15831 short int size,
15832 expressionS * exp,
15833 int pc_rel,
15834 int reloc)
15835{
15836 fixS * new_fix;
15837
15838 switch (exp->X_op)
15839 {
15840 case O_constant:
6e7ce2cd
PB
15841 if (pc_rel)
15842 {
15843 /* Create an absolute valued symbol, so we have something to
15844 refer to in the object file. Unfortunately for us, gas's
15845 generic expression parsing will already have folded out
15846 any use of .set foo/.type foo %function that may have
15847 been used to set type information of the target location,
15848 that's being specified symbolically. We have to presume
15849 the user knows what they are doing. */
15850 char name[16 + 8];
15851 symbolS *symbol;
15852
15853 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15854
15855 symbol = symbol_find_or_make (name);
15856 S_SET_SEGMENT (symbol, absolute_section);
15857 symbol_set_frag (symbol, &zero_address_frag);
15858 S_SET_VALUE (symbol, exp->X_add_number);
15859 exp->X_op = O_symbol;
15860 exp->X_add_symbol = symbol;
15861 exp->X_add_number = 0;
15862 }
15863 /* FALLTHROUGH */
5287ad62
JB
15864 case O_symbol:
15865 case O_add:
15866 case O_subtract:
21d799b5
NC
15867 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15868 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15869 break;
15870
15871 default:
21d799b5
NC
15872 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15873 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15874 break;
15875 }
15876
15877 /* Mark whether the fix is to a THUMB instruction, or an ARM
15878 instruction. */
15879 new_fix->tc_fix_data = thumb_mode;
15880}
15881
15882/* Create a frg for an instruction requiring relaxation. */
15883static void
15884output_relax_insn (void)
15885{
15886 char * to;
15887 symbolS *sym;
0110f2b8
PB
15888 int offset;
15889
6e1cb1a6
PB
15890 /* The size of the instruction is unknown, so tie the debug info to the
15891 start of the instruction. */
15892 dwarf2_emit_insn (0);
6e1cb1a6 15893
0110f2b8
PB
15894 switch (inst.reloc.exp.X_op)
15895 {
15896 case O_symbol:
15897 sym = inst.reloc.exp.X_add_symbol;
15898 offset = inst.reloc.exp.X_add_number;
15899 break;
15900 case O_constant:
15901 sym = NULL;
15902 offset = inst.reloc.exp.X_add_number;
15903 break;
15904 default:
15905 sym = make_expr_symbol (&inst.reloc.exp);
15906 offset = 0;
15907 break;
15908 }
15909 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15910 inst.relax, sym, offset, NULL/*offset, opcode*/);
15911 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15912}
15913
15914/* Write a 32-bit thumb instruction to buf. */
15915static void
15916put_thumb32_insn (char * buf, unsigned long insn)
15917{
15918 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15919 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15920}
15921
b99bd4ef 15922static void
c19d1205 15923output_inst (const char * str)
b99bd4ef 15924{
c19d1205 15925 char * to = NULL;
b99bd4ef 15926
c19d1205 15927 if (inst.error)
b99bd4ef 15928 {
c19d1205 15929 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15930 return;
15931 }
5f4273c7
NC
15932 if (inst.relax)
15933 {
15934 output_relax_insn ();
0110f2b8 15935 return;
5f4273c7 15936 }
c19d1205
ZW
15937 if (inst.size == 0)
15938 return;
b99bd4ef 15939
c19d1205 15940 to = frag_more (inst.size);
8dc2430f
NC
15941 /* PR 9814: Record the thumb mode into the current frag so that we know
15942 what type of NOP padding to use, if necessary. We override any previous
15943 setting so that if the mode has changed then the NOPS that we use will
15944 match the encoding of the last instruction in the frag. */
cd000bff 15945 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15946
15947 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15948 {
9c2799c2 15949 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15950 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15951 }
c19d1205 15952 else if (inst.size > INSN_SIZE)
b99bd4ef 15953 {
9c2799c2 15954 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15955 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15956 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15957 }
c19d1205
ZW
15958 else
15959 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15960
c19d1205
ZW
15961 if (inst.reloc.type != BFD_RELOC_UNUSED)
15962 fix_new_arm (frag_now, to - frag_now->fr_literal,
15963 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15964 inst.reloc.type);
b99bd4ef 15965
c19d1205 15966 dwarf2_emit_insn (inst.size);
c19d1205 15967}
b99bd4ef 15968
e07e6e58
NC
15969static char *
15970output_it_inst (int cond, int mask, char * to)
15971{
15972 unsigned long instruction = 0xbf00;
15973
15974 mask &= 0xf;
15975 instruction |= mask;
15976 instruction |= cond << 4;
15977
15978 if (to == NULL)
15979 {
15980 to = frag_more (2);
15981#ifdef OBJ_ELF
15982 dwarf2_emit_insn (2);
15983#endif
15984 }
15985
15986 md_number_to_chars (to, instruction, 2);
15987
15988 return to;
15989}
15990
c19d1205
ZW
15991/* Tag values used in struct asm_opcode's tag field. */
15992enum opcode_tag
15993{
15994 OT_unconditional, /* Instruction cannot be conditionalized.
15995 The ARM condition field is still 0xE. */
15996 OT_unconditionalF, /* Instruction cannot be conditionalized
15997 and carries 0xF in its ARM condition field. */
15998 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15999 OT_csuffixF, /* Some forms of the instruction take a conditional
16000 suffix, others place 0xF where the condition field
16001 would be. */
c19d1205
ZW
16002 OT_cinfix3, /* Instruction takes a conditional infix,
16003 beginning at character index 3. (In
16004 unified mode, it becomes a suffix.) */
088fa78e
KH
16005 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16006 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
16007 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16008 character index 3, even in unified mode. Used for
16009 legacy instructions where suffix and infix forms
16010 may be ambiguous. */
c19d1205 16011 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 16012 suffix or an infix at character index 3. */
c19d1205
ZW
16013 OT_odd_infix_unc, /* This is the unconditional variant of an
16014 instruction that takes a conditional infix
16015 at an unusual position. In unified mode,
16016 this variant will accept a suffix. */
16017 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16018 are the conditional variants of instructions that
16019 take conditional infixes in unusual positions.
16020 The infix appears at character index
16021 (tag - OT_odd_infix_0). These are not accepted
16022 in unified mode. */
16023};
b99bd4ef 16024
c19d1205
ZW
16025/* Subroutine of md_assemble, responsible for looking up the primary
16026 opcode from the mnemonic the user wrote. STR points to the
16027 beginning of the mnemonic.
16028
16029 This is not simply a hash table lookup, because of conditional
16030 variants. Most instructions have conditional variants, which are
16031 expressed with a _conditional affix_ to the mnemonic. If we were
16032 to encode each conditional variant as a literal string in the opcode
16033 table, it would have approximately 20,000 entries.
16034
16035 Most mnemonics take this affix as a suffix, and in unified syntax,
16036 'most' is upgraded to 'all'. However, in the divided syntax, some
16037 instructions take the affix as an infix, notably the s-variants of
16038 the arithmetic instructions. Of those instructions, all but six
16039 have the infix appear after the third character of the mnemonic.
16040
16041 Accordingly, the algorithm for looking up primary opcodes given
16042 an identifier is:
16043
16044 1. Look up the identifier in the opcode table.
16045 If we find a match, go to step U.
16046
16047 2. Look up the last two characters of the identifier in the
16048 conditions table. If we find a match, look up the first N-2
16049 characters of the identifier in the opcode table. If we
16050 find a match, go to step CE.
16051
16052 3. Look up the fourth and fifth characters of the identifier in
16053 the conditions table. If we find a match, extract those
16054 characters from the identifier, and look up the remaining
16055 characters in the opcode table. If we find a match, go
16056 to step CM.
16057
16058 4. Fail.
16059
16060 U. Examine the tag field of the opcode structure, in case this is
16061 one of the six instructions with its conditional infix in an
16062 unusual place. If it is, the tag tells us where to find the
16063 infix; look it up in the conditions table and set inst.cond
16064 accordingly. Otherwise, this is an unconditional instruction.
16065 Again set inst.cond accordingly. Return the opcode structure.
16066
16067 CE. Examine the tag field to make sure this is an instruction that
16068 should receive a conditional suffix. If it is not, fail.
16069 Otherwise, set inst.cond from the suffix we already looked up,
16070 and return the opcode structure.
16071
16072 CM. Examine the tag field to make sure this is an instruction that
16073 should receive a conditional infix after the third character.
16074 If it is not, fail. Otherwise, undo the edits to the current
16075 line of input and proceed as for case CE. */
16076
16077static const struct asm_opcode *
16078opcode_lookup (char **str)
16079{
16080 char *end, *base;
16081 char *affix;
16082 const struct asm_opcode *opcode;
16083 const struct asm_cond *cond;
e3cb604e 16084 char save[2];
c19d1205
ZW
16085
16086 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 16087 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 16088 for (base = end = *str; *end != '\0'; end++)
721a8186 16089 if (*end == ' ' || *end == '.')
c19d1205 16090 break;
b99bd4ef 16091
c19d1205 16092 if (end == base)
c921be7d 16093 return NULL;
b99bd4ef 16094
5287ad62 16095 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 16096 if (end[0] == '.')
b99bd4ef 16097 {
5287ad62 16098 int offset = 2;
5f4273c7 16099
267d2029
JB
16100 /* The .w and .n suffixes are only valid if the unified syntax is in
16101 use. */
16102 if (unified_syntax && end[1] == 'w')
c19d1205 16103 inst.size_req = 4;
267d2029 16104 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
16105 inst.size_req = 2;
16106 else
5287ad62
JB
16107 offset = 0;
16108
16109 inst.vectype.elems = 0;
16110
16111 *str = end + offset;
b99bd4ef 16112
5f4273c7 16113 if (end[offset] == '.')
5287ad62 16114 {
267d2029
JB
16115 /* See if we have a Neon type suffix (possible in either unified or
16116 non-unified ARM syntax mode). */
dcbf9037 16117 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 16118 return NULL;
5287ad62
JB
16119 }
16120 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 16121 return NULL;
b99bd4ef 16122 }
c19d1205
ZW
16123 else
16124 *str = end;
b99bd4ef 16125
c19d1205 16126 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
16127 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16128 end - base);
c19d1205 16129 if (opcode)
b99bd4ef 16130 {
c19d1205
ZW
16131 /* step U */
16132 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 16133 {
c19d1205
ZW
16134 inst.cond = COND_ALWAYS;
16135 return opcode;
b99bd4ef 16136 }
b99bd4ef 16137
278df34e 16138 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
16139 as_warn (_("conditional infixes are deprecated in unified syntax"));
16140 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 16141 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 16142 gas_assert (cond);
b99bd4ef 16143
c19d1205
ZW
16144 inst.cond = cond->value;
16145 return opcode;
16146 }
b99bd4ef 16147
c19d1205
ZW
16148 /* Cannot have a conditional suffix on a mnemonic of less than two
16149 characters. */
16150 if (end - base < 3)
c921be7d 16151 return NULL;
b99bd4ef 16152
c19d1205
ZW
16153 /* Look for suffixed mnemonic. */
16154 affix = end - 2;
21d799b5
NC
16155 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16156 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16157 affix - base);
c19d1205
ZW
16158 if (opcode && cond)
16159 {
16160 /* step CE */
16161 switch (opcode->tag)
16162 {
e3cb604e
PB
16163 case OT_cinfix3_legacy:
16164 /* Ignore conditional suffixes matched on infix only mnemonics. */
16165 break;
16166
c19d1205 16167 case OT_cinfix3:
088fa78e 16168 case OT_cinfix3_deprecated:
c19d1205
ZW
16169 case OT_odd_infix_unc:
16170 if (!unified_syntax)
e3cb604e 16171 return 0;
c19d1205
ZW
16172 /* else fall through */
16173
16174 case OT_csuffix:
037e8744 16175 case OT_csuffixF:
c19d1205
ZW
16176 case OT_csuf_or_in3:
16177 inst.cond = cond->value;
16178 return opcode;
16179
16180 case OT_unconditional:
16181 case OT_unconditionalF:
dfa9f0d5 16182 if (thumb_mode)
c921be7d 16183 inst.cond = cond->value;
dfa9f0d5
PB
16184 else
16185 {
c921be7d 16186 /* Delayed diagnostic. */
dfa9f0d5
PB
16187 inst.error = BAD_COND;
16188 inst.cond = COND_ALWAYS;
16189 }
c19d1205 16190 return opcode;
b99bd4ef 16191
c19d1205 16192 default:
c921be7d 16193 return NULL;
c19d1205
ZW
16194 }
16195 }
b99bd4ef 16196
c19d1205
ZW
16197 /* Cannot have a usual-position infix on a mnemonic of less than
16198 six characters (five would be a suffix). */
16199 if (end - base < 6)
c921be7d 16200 return NULL;
b99bd4ef 16201
c19d1205
ZW
16202 /* Look for infixed mnemonic in the usual position. */
16203 affix = base + 3;
21d799b5 16204 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 16205 if (!cond)
c921be7d 16206 return NULL;
e3cb604e
PB
16207
16208 memcpy (save, affix, 2);
16209 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
16210 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16211 (end - base) - 2);
e3cb604e
PB
16212 memmove (affix + 2, affix, (end - affix) - 2);
16213 memcpy (affix, save, 2);
16214
088fa78e
KH
16215 if (opcode
16216 && (opcode->tag == OT_cinfix3
16217 || opcode->tag == OT_cinfix3_deprecated
16218 || opcode->tag == OT_csuf_or_in3
16219 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 16220 {
c921be7d 16221 /* Step CM. */
278df34e 16222 if (warn_on_deprecated && unified_syntax
088fa78e
KH
16223 && (opcode->tag == OT_cinfix3
16224 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
16225 as_warn (_("conditional infixes are deprecated in unified syntax"));
16226
16227 inst.cond = cond->value;
16228 return opcode;
b99bd4ef
NC
16229 }
16230
c921be7d 16231 return NULL;
b99bd4ef
NC
16232}
16233
e07e6e58
NC
16234/* This function generates an initial IT instruction, leaving its block
16235 virtually open for the new instructions. Eventually,
16236 the mask will be updated by now_it_add_mask () each time
16237 a new instruction needs to be included in the IT block.
16238 Finally, the block is closed with close_automatic_it_block ().
16239 The block closure can be requested either from md_assemble (),
16240 a tencode (), or due to a label hook. */
16241
16242static void
16243new_automatic_it_block (int cond)
16244{
16245 now_it.state = AUTOMATIC_IT_BLOCK;
16246 now_it.mask = 0x18;
16247 now_it.cc = cond;
16248 now_it.block_length = 1;
cd000bff 16249 mapping_state (MAP_THUMB);
e07e6e58 16250 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
16251 now_it.warn_deprecated = FALSE;
16252 now_it.insn_cond = TRUE;
e07e6e58
NC
16253}
16254
16255/* Close an automatic IT block.
16256 See comments in new_automatic_it_block (). */
16257
16258static void
16259close_automatic_it_block (void)
16260{
16261 now_it.mask = 0x10;
16262 now_it.block_length = 0;
16263}
16264
16265/* Update the mask of the current automatically-generated IT
16266 instruction. See comments in new_automatic_it_block (). */
16267
16268static void
16269now_it_add_mask (int cond)
16270{
16271#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16272#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16273 | ((bitvalue) << (nbit)))
e07e6e58 16274 const int resulting_bit = (cond & 1);
c921be7d 16275
e07e6e58
NC
16276 now_it.mask &= 0xf;
16277 now_it.mask = SET_BIT_VALUE (now_it.mask,
16278 resulting_bit,
16279 (5 - now_it.block_length));
16280 now_it.mask = SET_BIT_VALUE (now_it.mask,
16281 1,
16282 ((5 - now_it.block_length) - 1) );
16283 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16284
16285#undef CLEAR_BIT
16286#undef SET_BIT_VALUE
e07e6e58
NC
16287}
16288
16289/* The IT blocks handling machinery is accessed through the these functions:
16290 it_fsm_pre_encode () from md_assemble ()
16291 set_it_insn_type () optional, from the tencode functions
16292 set_it_insn_type_last () ditto
16293 in_it_block () ditto
16294 it_fsm_post_encode () from md_assemble ()
16295 force_automatic_it_block_close () from label habdling functions
16296
16297 Rationale:
16298 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16299 initializing the IT insn type with a generic initial value depending
16300 on the inst.condition.
16301 2) During the tencode function, two things may happen:
16302 a) The tencode function overrides the IT insn type by
16303 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16304 b) The tencode function queries the IT block state by
16305 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16306
16307 Both set_it_insn_type and in_it_block run the internal FSM state
16308 handling function (handle_it_state), because: a) setting the IT insn
16309 type may incur in an invalid state (exiting the function),
16310 and b) querying the state requires the FSM to be updated.
16311 Specifically we want to avoid creating an IT block for conditional
16312 branches, so it_fsm_pre_encode is actually a guess and we can't
16313 determine whether an IT block is required until the tencode () routine
16314 has decided what type of instruction this actually it.
16315 Because of this, if set_it_insn_type and in_it_block have to be used,
16316 set_it_insn_type has to be called first.
16317
16318 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16319 determines the insn IT type depending on the inst.cond code.
16320 When a tencode () routine encodes an instruction that can be
16321 either outside an IT block, or, in the case of being inside, has to be
16322 the last one, set_it_insn_type_last () will determine the proper
16323 IT instruction type based on the inst.cond code. Otherwise,
16324 set_it_insn_type can be called for overriding that logic or
16325 for covering other cases.
16326
16327 Calling handle_it_state () may not transition the IT block state to
16328 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16329 still queried. Instead, if the FSM determines that the state should
16330 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16331 after the tencode () function: that's what it_fsm_post_encode () does.
16332
16333 Since in_it_block () calls the state handling function to get an
16334 updated state, an error may occur (due to invalid insns combination).
16335 In that case, inst.error is set.
16336 Therefore, inst.error has to be checked after the execution of
16337 the tencode () routine.
16338
16339 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16340 any pending state change (if any) that didn't take place in
16341 handle_it_state () as explained above. */
16342
16343static void
16344it_fsm_pre_encode (void)
16345{
16346 if (inst.cond != COND_ALWAYS)
16347 inst.it_insn_type = INSIDE_IT_INSN;
16348 else
16349 inst.it_insn_type = OUTSIDE_IT_INSN;
16350
16351 now_it.state_handled = 0;
16352}
16353
16354/* IT state FSM handling function. */
16355
16356static int
16357handle_it_state (void)
16358{
16359 now_it.state_handled = 1;
5a01bb1d 16360 now_it.insn_cond = FALSE;
e07e6e58
NC
16361
16362 switch (now_it.state)
16363 {
16364 case OUTSIDE_IT_BLOCK:
16365 switch (inst.it_insn_type)
16366 {
16367 case OUTSIDE_IT_INSN:
16368 break;
16369
16370 case INSIDE_IT_INSN:
16371 case INSIDE_IT_LAST_INSN:
16372 if (thumb_mode == 0)
16373 {
c921be7d 16374 if (unified_syntax
e07e6e58
NC
16375 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16376 as_tsktsk (_("Warning: conditional outside an IT block"\
16377 " for Thumb."));
16378 }
16379 else
16380 {
16381 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16382 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16383 {
16384 /* Automatically generate the IT instruction. */
16385 new_automatic_it_block (inst.cond);
16386 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16387 close_automatic_it_block ();
16388 }
16389 else
16390 {
16391 inst.error = BAD_OUT_IT;
16392 return FAIL;
16393 }
16394 }
16395 break;
16396
16397 case IF_INSIDE_IT_LAST_INSN:
16398 case NEUTRAL_IT_INSN:
16399 break;
16400
16401 case IT_INSN:
16402 now_it.state = MANUAL_IT_BLOCK;
16403 now_it.block_length = 0;
16404 break;
16405 }
16406 break;
16407
16408 case AUTOMATIC_IT_BLOCK:
16409 /* Three things may happen now:
16410 a) We should increment current it block size;
16411 b) We should close current it block (closing insn or 4 insns);
16412 c) We should close current it block and start a new one (due
16413 to incompatible conditions or
16414 4 insns-length block reached). */
16415
16416 switch (inst.it_insn_type)
16417 {
16418 case OUTSIDE_IT_INSN:
16419 /* The closure of the block shall happen immediatelly,
16420 so any in_it_block () call reports the block as closed. */
16421 force_automatic_it_block_close ();
16422 break;
16423
16424 case INSIDE_IT_INSN:
16425 case INSIDE_IT_LAST_INSN:
16426 case IF_INSIDE_IT_LAST_INSN:
16427 now_it.block_length++;
16428
16429 if (now_it.block_length > 4
16430 || !now_it_compatible (inst.cond))
16431 {
16432 force_automatic_it_block_close ();
16433 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16434 new_automatic_it_block (inst.cond);
16435 }
16436 else
16437 {
5a01bb1d 16438 now_it.insn_cond = TRUE;
e07e6e58
NC
16439 now_it_add_mask (inst.cond);
16440 }
16441
16442 if (now_it.state == AUTOMATIC_IT_BLOCK
16443 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16444 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16445 close_automatic_it_block ();
16446 break;
16447
16448 case NEUTRAL_IT_INSN:
16449 now_it.block_length++;
5a01bb1d 16450 now_it.insn_cond = TRUE;
e07e6e58
NC
16451
16452 if (now_it.block_length > 4)
16453 force_automatic_it_block_close ();
16454 else
16455 now_it_add_mask (now_it.cc & 1);
16456 break;
16457
16458 case IT_INSN:
16459 close_automatic_it_block ();
16460 now_it.state = MANUAL_IT_BLOCK;
16461 break;
16462 }
16463 break;
16464
16465 case MANUAL_IT_BLOCK:
16466 {
16467 /* Check conditional suffixes. */
16468 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16469 int is_last;
16470 now_it.mask <<= 1;
16471 now_it.mask &= 0x1f;
16472 is_last = (now_it.mask == 0x10);
5a01bb1d 16473 now_it.insn_cond = TRUE;
e07e6e58
NC
16474
16475 switch (inst.it_insn_type)
16476 {
16477 case OUTSIDE_IT_INSN:
16478 inst.error = BAD_NOT_IT;
16479 return FAIL;
16480
16481 case INSIDE_IT_INSN:
16482 if (cond != inst.cond)
16483 {
16484 inst.error = BAD_IT_COND;
16485 return FAIL;
16486 }
16487 break;
16488
16489 case INSIDE_IT_LAST_INSN:
16490 case IF_INSIDE_IT_LAST_INSN:
16491 if (cond != inst.cond)
16492 {
16493 inst.error = BAD_IT_COND;
16494 return FAIL;
16495 }
16496 if (!is_last)
16497 {
16498 inst.error = BAD_BRANCH;
16499 return FAIL;
16500 }
16501 break;
16502
16503 case NEUTRAL_IT_INSN:
16504 /* The BKPT instruction is unconditional even in an IT block. */
16505 break;
16506
16507 case IT_INSN:
16508 inst.error = BAD_IT_IT;
16509 return FAIL;
16510 }
16511 }
16512 break;
16513 }
16514
16515 return SUCCESS;
16516}
16517
5a01bb1d
MGD
16518struct depr_insn_mask
16519{
16520 unsigned long pattern;
16521 unsigned long mask;
16522 const char* description;
16523};
16524
16525/* List of 16-bit instruction patterns deprecated in an IT block in
16526 ARMv8. */
16527static const struct depr_insn_mask depr_it_insns[] = {
16528 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16529 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16530 { 0xa000, 0xb800, N_("ADR") },
16531 { 0x4800, 0xf800, N_("Literal loads") },
16532 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16533 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16534 { 0, 0, NULL }
16535};
16536
e07e6e58
NC
16537static void
16538it_fsm_post_encode (void)
16539{
16540 int is_last;
16541
16542 if (!now_it.state_handled)
16543 handle_it_state ();
16544
5a01bb1d
MGD
16545 if (now_it.insn_cond
16546 && !now_it.warn_deprecated
16547 && warn_on_deprecated
16548 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16549 {
16550 if (inst.instruction >= 0x10000)
16551 {
16552 as_warn (_("it blocks containing wide Thumb instructions are "
16553 "deprecated in ARMv8"));
16554 now_it.warn_deprecated = TRUE;
16555 }
16556 else
16557 {
16558 const struct depr_insn_mask *p = depr_it_insns;
16559
16560 while (p->mask != 0)
16561 {
16562 if ((inst.instruction & p->mask) == p->pattern)
16563 {
16564 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16565 "of the following class are deprecated in ARMv8: "
16566 "%s"), p->description);
16567 now_it.warn_deprecated = TRUE;
16568 break;
16569 }
16570
16571 ++p;
16572 }
16573 }
16574
16575 if (now_it.block_length > 1)
16576 {
16577 as_warn (_("it blocks of more than one conditional instruction are "
16578 "deprecated in ARMv8"));
16579 now_it.warn_deprecated = TRUE;
16580 }
16581 }
16582
e07e6e58
NC
16583 is_last = (now_it.mask == 0x10);
16584 if (is_last)
16585 {
16586 now_it.state = OUTSIDE_IT_BLOCK;
16587 now_it.mask = 0;
16588 }
16589}
16590
16591static void
16592force_automatic_it_block_close (void)
16593{
16594 if (now_it.state == AUTOMATIC_IT_BLOCK)
16595 {
16596 close_automatic_it_block ();
16597 now_it.state = OUTSIDE_IT_BLOCK;
16598 now_it.mask = 0;
16599 }
16600}
16601
16602static int
16603in_it_block (void)
16604{
16605 if (!now_it.state_handled)
16606 handle_it_state ();
16607
16608 return now_it.state != OUTSIDE_IT_BLOCK;
16609}
16610
c19d1205
ZW
16611void
16612md_assemble (char *str)
b99bd4ef 16613{
c19d1205
ZW
16614 char *p = str;
16615 const struct asm_opcode * opcode;
b99bd4ef 16616
c19d1205
ZW
16617 /* Align the previous label if needed. */
16618 if (last_label_seen != NULL)
b99bd4ef 16619 {
c19d1205
ZW
16620 symbol_set_frag (last_label_seen, frag_now);
16621 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16622 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16623 }
16624
c19d1205
ZW
16625 memset (&inst, '\0', sizeof (inst));
16626 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16627
c19d1205
ZW
16628 opcode = opcode_lookup (&p);
16629 if (!opcode)
b99bd4ef 16630 {
c19d1205 16631 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16632 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16633 if (! create_register_alias (str, p)
16634 && ! create_neon_reg_alias (str, p))
c19d1205 16635 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16636
b99bd4ef
NC
16637 return;
16638 }
16639
278df34e 16640 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16641 as_warn (_("s suffix on comparison instruction is deprecated"));
16642
037e8744
JB
16643 /* The value which unconditional instructions should have in place of the
16644 condition field. */
16645 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16646
c19d1205 16647 if (thumb_mode)
b99bd4ef 16648 {
e74cfd16 16649 arm_feature_set variant;
8f06b2d8
PB
16650
16651 variant = cpu_variant;
16652 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16653 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16654 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16655 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16656 if (!opcode->tvariant
16657 || (thumb_mode == 1
16658 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16659 {
bf3eeda7 16660 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16661 return;
16662 }
c19d1205
ZW
16663 if (inst.cond != COND_ALWAYS && !unified_syntax
16664 && opcode->tencode != do_t_branch)
b99bd4ef 16665 {
c19d1205 16666 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16667 return;
16668 }
16669
752d5da4 16670 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16671 {
7e806470 16672 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16673 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16674 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16675 {
16676 /* Two things are addressed here.
16677 1) Implicit require narrow instructions on Thumb-1.
16678 This avoids relaxation accidentally introducing Thumb-2
16679 instructions.
16680 2) Reject wide instructions in non Thumb-2 cores. */
16681 if (inst.size_req == 0)
16682 inst.size_req = 2;
16683 else if (inst.size_req == 4)
16684 {
bf3eeda7 16685 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16686 return;
16687 }
16688 }
076d447c
PB
16689 }
16690
c19d1205
ZW
16691 inst.instruction = opcode->tvalue;
16692
5be8be5d 16693 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16694 {
16695 /* Prepare the it_insn_type for those encodings that don't set
16696 it. */
16697 it_fsm_pre_encode ();
c19d1205 16698
e07e6e58
NC
16699 opcode->tencode ();
16700
16701 it_fsm_post_encode ();
16702 }
e27ec89e 16703
0110f2b8 16704 if (!(inst.error || inst.relax))
b99bd4ef 16705 {
9c2799c2 16706 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16707 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16708 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16709 {
c19d1205 16710 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16711 return;
16712 }
16713 }
076d447c
PB
16714
16715 /* Something has gone badly wrong if we try to relax a fixed size
16716 instruction. */
9c2799c2 16717 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16718
e74cfd16
PB
16719 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16720 *opcode->tvariant);
ee065d83 16721 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16722 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16723 anything other than bl/blx and v6-M instructions.
ee065d83 16724 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16725 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16726 || inst.relax)
e07e6e58
NC
16727 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16728 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16729 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16730 arm_ext_v6t2);
cd000bff 16731
88714cb8
DG
16732 check_neon_suffixes;
16733
cd000bff 16734 if (!inst.error)
c877a2f2
NC
16735 {
16736 mapping_state (MAP_THUMB);
16737 }
c19d1205 16738 }
3e9e4fcf 16739 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16740 {
845b51d6
PB
16741 bfd_boolean is_bx;
16742
16743 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16744 is_bx = (opcode->aencode == do_bx);
16745
c19d1205 16746 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16747 if (!(is_bx && fix_v4bx)
16748 && !(opcode->avariant &&
16749 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16750 {
bf3eeda7 16751 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16752 return;
b99bd4ef 16753 }
c19d1205 16754 if (inst.size_req)
b99bd4ef 16755 {
c19d1205
ZW
16756 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16757 return;
b99bd4ef
NC
16758 }
16759
c19d1205
ZW
16760 inst.instruction = opcode->avalue;
16761 if (opcode->tag == OT_unconditionalF)
16762 inst.instruction |= 0xF << 28;
16763 else
16764 inst.instruction |= inst.cond << 28;
16765 inst.size = INSN_SIZE;
5be8be5d 16766 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16767 {
16768 it_fsm_pre_encode ();
16769 opcode->aencode ();
16770 it_fsm_post_encode ();
16771 }
ee065d83
PB
16772 /* Arm mode bx is marked as both v4T and v5 because it's still required
16773 on a hypothetical non-thumb v5 core. */
845b51d6 16774 if (is_bx)
e74cfd16 16775 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16776 else
e74cfd16
PB
16777 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16778 *opcode->avariant);
88714cb8
DG
16779
16780 check_neon_suffixes;
16781
cd000bff 16782 if (!inst.error)
c877a2f2
NC
16783 {
16784 mapping_state (MAP_ARM);
16785 }
b99bd4ef 16786 }
3e9e4fcf
JB
16787 else
16788 {
16789 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16790 "-- `%s'"), str);
16791 return;
16792 }
c19d1205
ZW
16793 output_inst (str);
16794}
b99bd4ef 16795
e07e6e58
NC
16796static void
16797check_it_blocks_finished (void)
16798{
16799#ifdef OBJ_ELF
16800 asection *sect;
16801
16802 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16803 if (seg_info (sect)->tc_segment_info_data.current_it.state
16804 == MANUAL_IT_BLOCK)
16805 {
16806 as_warn (_("section '%s' finished with an open IT block."),
16807 sect->name);
16808 }
16809#else
16810 if (now_it.state == MANUAL_IT_BLOCK)
16811 as_warn (_("file finished with an open IT block."));
16812#endif
16813}
16814
c19d1205
ZW
16815/* Various frobbings of labels and their addresses. */
16816
16817void
16818arm_start_line_hook (void)
16819{
16820 last_label_seen = NULL;
b99bd4ef
NC
16821}
16822
c19d1205
ZW
16823void
16824arm_frob_label (symbolS * sym)
b99bd4ef 16825{
c19d1205 16826 last_label_seen = sym;
b99bd4ef 16827
c19d1205 16828 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16829
c19d1205
ZW
16830#if defined OBJ_COFF || defined OBJ_ELF
16831 ARM_SET_INTERWORK (sym, support_interwork);
16832#endif
b99bd4ef 16833
e07e6e58
NC
16834 force_automatic_it_block_close ();
16835
5f4273c7 16836 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16837 as Thumb functions. This is because these labels, whilst
16838 they exist inside Thumb code, are not the entry points for
16839 possible ARM->Thumb calls. Also, these labels can be used
16840 as part of a computed goto or switch statement. eg gcc
16841 can generate code that looks like this:
b99bd4ef 16842
c19d1205
ZW
16843 ldr r2, [pc, .Laaa]
16844 lsl r3, r3, #2
16845 ldr r2, [r3, r2]
16846 mov pc, r2
b99bd4ef 16847
c19d1205
ZW
16848 .Lbbb: .word .Lxxx
16849 .Lccc: .word .Lyyy
16850 ..etc...
16851 .Laaa: .word Lbbb
b99bd4ef 16852
c19d1205
ZW
16853 The first instruction loads the address of the jump table.
16854 The second instruction converts a table index into a byte offset.
16855 The third instruction gets the jump address out of the table.
16856 The fourth instruction performs the jump.
b99bd4ef 16857
c19d1205
ZW
16858 If the address stored at .Laaa is that of a symbol which has the
16859 Thumb_Func bit set, then the linker will arrange for this address
16860 to have the bottom bit set, which in turn would mean that the
16861 address computation performed by the third instruction would end
16862 up with the bottom bit set. Since the ARM is capable of unaligned
16863 word loads, the instruction would then load the incorrect address
16864 out of the jump table, and chaos would ensue. */
16865 if (label_is_thumb_function_name
16866 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16867 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16868 {
c19d1205
ZW
16869 /* When the address of a Thumb function is taken the bottom
16870 bit of that address should be set. This will allow
16871 interworking between Arm and Thumb functions to work
16872 correctly. */
b99bd4ef 16873
c19d1205 16874 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16875
c19d1205 16876 label_is_thumb_function_name = FALSE;
b99bd4ef 16877 }
07a53e5c 16878
07a53e5c 16879 dwarf2_emit_label (sym);
b99bd4ef
NC
16880}
16881
c921be7d 16882bfd_boolean
c19d1205 16883arm_data_in_code (void)
b99bd4ef 16884{
c19d1205 16885 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16886 {
c19d1205
ZW
16887 *input_line_pointer = '/';
16888 input_line_pointer += 5;
16889 *input_line_pointer = 0;
c921be7d 16890 return TRUE;
b99bd4ef
NC
16891 }
16892
c921be7d 16893 return FALSE;
b99bd4ef
NC
16894}
16895
c19d1205
ZW
16896char *
16897arm_canonicalize_symbol_name (char * name)
b99bd4ef 16898{
c19d1205 16899 int len;
b99bd4ef 16900
c19d1205
ZW
16901 if (thumb_mode && (len = strlen (name)) > 5
16902 && streq (name + len - 5, "/data"))
16903 *(name + len - 5) = 0;
b99bd4ef 16904
c19d1205 16905 return name;
b99bd4ef 16906}
c19d1205
ZW
16907\f
16908/* Table of all register names defined by default. The user can
16909 define additional names with .req. Note that all register names
16910 should appear in both upper and lowercase variants. Some registers
16911 also have mixed-case names. */
b99bd4ef 16912
dcbf9037 16913#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16914#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16915#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16916#define REGSET(p,t) \
16917 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16918 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16919 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16920 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16921#define REGSETH(p,t) \
16922 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16923 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16924 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16925 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16926#define REGSET2(p,t) \
16927 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16928 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16929 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16930 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
16931#define SPLRBANK(base,bank,t) \
16932 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16933 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16934 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16935 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16936 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16937 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 16938
c19d1205 16939static const struct reg_entry reg_names[] =
7ed4c4c5 16940{
c19d1205
ZW
16941 /* ARM integer registers. */
16942 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16943
c19d1205
ZW
16944 /* ATPCS synonyms. */
16945 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16946 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16947 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16948
c19d1205
ZW
16949 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16950 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16951 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16952
c19d1205
ZW
16953 /* Well-known aliases. */
16954 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16955 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16956
16957 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16958 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16959
16960 /* Coprocessor numbers. */
16961 REGSET(p, CP), REGSET(P, CP),
16962
16963 /* Coprocessor register numbers. The "cr" variants are for backward
16964 compatibility. */
16965 REGSET(c, CN), REGSET(C, CN),
16966 REGSET(cr, CN), REGSET(CR, CN),
16967
90ec0d68
MGD
16968 /* ARM banked registers. */
16969 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16970 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16971 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16972 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16973 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16974 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16975 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16976
16977 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16978 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16979 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16980 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16981 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16982 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16983 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16984 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16985
16986 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16987 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16988 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16989 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16990 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16991 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16992 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 16993 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
16994 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16995
c19d1205
ZW
16996 /* FPA registers. */
16997 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16998 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16999
17000 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17001 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17002
17003 /* VFP SP registers. */
5287ad62
JB
17004 REGSET(s,VFS), REGSET(S,VFS),
17005 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
17006
17007 /* VFP DP Registers. */
5287ad62
JB
17008 REGSET(d,VFD), REGSET(D,VFD),
17009 /* Extra Neon DP registers. */
17010 REGSETH(d,VFD), REGSETH(D,VFD),
17011
17012 /* Neon QP registers. */
17013 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
17014
17015 /* VFP control registers. */
17016 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17017 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
17018 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17019 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17020 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17021 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
17022
17023 /* Maverick DSP coprocessor registers. */
17024 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17025 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17026
17027 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17028 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17029 REGDEF(dspsc,0,DSPSC),
17030
17031 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17032 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17033 REGDEF(DSPSC,0,DSPSC),
17034
17035 /* iWMMXt data registers - p0, c0-15. */
17036 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17037
17038 /* iWMMXt control registers - p1, c0-3. */
17039 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17040 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17041 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17042 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17043
17044 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17045 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17046 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17047 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17048 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17049
17050 /* XScale accumulator registers. */
17051 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17052};
17053#undef REGDEF
17054#undef REGNUM
17055#undef REGSET
7ed4c4c5 17056
c19d1205
ZW
17057/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17058 within psr_required_here. */
17059static const struct asm_psr psrs[] =
17060{
17061 /* Backward compatibility notation. Note that "all" is no longer
17062 truly all possible PSR bits. */
17063 {"all", PSR_c | PSR_f},
17064 {"flg", PSR_f},
17065 {"ctl", PSR_c},
17066
17067 /* Individual flags. */
17068 {"f", PSR_f},
17069 {"c", PSR_c},
17070 {"x", PSR_x},
17071 {"s", PSR_s},
59b42a0d 17072
c19d1205
ZW
17073 /* Combinations of flags. */
17074 {"fs", PSR_f | PSR_s},
17075 {"fx", PSR_f | PSR_x},
17076 {"fc", PSR_f | PSR_c},
17077 {"sf", PSR_s | PSR_f},
17078 {"sx", PSR_s | PSR_x},
17079 {"sc", PSR_s | PSR_c},
17080 {"xf", PSR_x | PSR_f},
17081 {"xs", PSR_x | PSR_s},
17082 {"xc", PSR_x | PSR_c},
17083 {"cf", PSR_c | PSR_f},
17084 {"cs", PSR_c | PSR_s},
17085 {"cx", PSR_c | PSR_x},
17086 {"fsx", PSR_f | PSR_s | PSR_x},
17087 {"fsc", PSR_f | PSR_s | PSR_c},
17088 {"fxs", PSR_f | PSR_x | PSR_s},
17089 {"fxc", PSR_f | PSR_x | PSR_c},
17090 {"fcs", PSR_f | PSR_c | PSR_s},
17091 {"fcx", PSR_f | PSR_c | PSR_x},
17092 {"sfx", PSR_s | PSR_f | PSR_x},
17093 {"sfc", PSR_s | PSR_f | PSR_c},
17094 {"sxf", PSR_s | PSR_x | PSR_f},
17095 {"sxc", PSR_s | PSR_x | PSR_c},
17096 {"scf", PSR_s | PSR_c | PSR_f},
17097 {"scx", PSR_s | PSR_c | PSR_x},
17098 {"xfs", PSR_x | PSR_f | PSR_s},
17099 {"xfc", PSR_x | PSR_f | PSR_c},
17100 {"xsf", PSR_x | PSR_s | PSR_f},
17101 {"xsc", PSR_x | PSR_s | PSR_c},
17102 {"xcf", PSR_x | PSR_c | PSR_f},
17103 {"xcs", PSR_x | PSR_c | PSR_s},
17104 {"cfs", PSR_c | PSR_f | PSR_s},
17105 {"cfx", PSR_c | PSR_f | PSR_x},
17106 {"csf", PSR_c | PSR_s | PSR_f},
17107 {"csx", PSR_c | PSR_s | PSR_x},
17108 {"cxf", PSR_c | PSR_x | PSR_f},
17109 {"cxs", PSR_c | PSR_x | PSR_s},
17110 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17111 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17112 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17113 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17114 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17115 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17116 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17117 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17118 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17119 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17120 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17121 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17122 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17123 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17124 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17125 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17126 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17127 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17128 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17129 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17130 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17131 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17132 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17133 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17134};
17135
62b3e311
PB
17136/* Table of V7M psr names. */
17137static const struct asm_psr v7m_psrs[] =
17138{
2b744c99
PB
17139 {"apsr", 0 }, {"APSR", 0 },
17140 {"iapsr", 1 }, {"IAPSR", 1 },
17141 {"eapsr", 2 }, {"EAPSR", 2 },
17142 {"psr", 3 }, {"PSR", 3 },
17143 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17144 {"ipsr", 5 }, {"IPSR", 5 },
17145 {"epsr", 6 }, {"EPSR", 6 },
17146 {"iepsr", 7 }, {"IEPSR", 7 },
17147 {"msp", 8 }, {"MSP", 8 },
17148 {"psp", 9 }, {"PSP", 9 },
17149 {"primask", 16}, {"PRIMASK", 16},
17150 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
17151 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17152 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
17153 {"faultmask", 19}, {"FAULTMASK", 19},
17154 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
17155};
17156
c19d1205
ZW
17157/* Table of all shift-in-operand names. */
17158static const struct asm_shift_name shift_names [] =
b99bd4ef 17159{
c19d1205
ZW
17160 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17161 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17162 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17163 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17164 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17165 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17166};
b99bd4ef 17167
c19d1205
ZW
17168/* Table of all explicit relocation names. */
17169#ifdef OBJ_ELF
17170static struct reloc_entry reloc_names[] =
17171{
17172 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17173 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17174 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17175 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17176 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17177 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17178 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17179 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17180 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17181 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 17182 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
17183 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17184 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17185 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17186 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17187 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17188 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17189 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
17190};
17191#endif
b99bd4ef 17192
c19d1205
ZW
17193/* Table of all conditional affixes. 0xF is not defined as a condition code. */
17194static const struct asm_cond conds[] =
17195{
17196 {"eq", 0x0},
17197 {"ne", 0x1},
17198 {"cs", 0x2}, {"hs", 0x2},
17199 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17200 {"mi", 0x4},
17201 {"pl", 0x5},
17202 {"vs", 0x6},
17203 {"vc", 0x7},
17204 {"hi", 0x8},
17205 {"ls", 0x9},
17206 {"ge", 0xa},
17207 {"lt", 0xb},
17208 {"gt", 0xc},
17209 {"le", 0xd},
17210 {"al", 0xe}
17211};
bfae80f2 17212
e797f7e0
MGD
17213#define UL_BARRIER(L,U,CODE,FEAT) \
17214 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17215 { U, CODE, ARM_FEATURE (FEAT, 0) }
17216
62b3e311
PB
17217static struct asm_barrier_opt barrier_opt_names[] =
17218{
e797f7e0
MGD
17219 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17220 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17221 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17222 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17223 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17224 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17225 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17226 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17227 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17228 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17229 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17230 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17231 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17232 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17233 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17234 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
17235};
17236
e797f7e0
MGD
17237#undef UL_BARRIER
17238
c19d1205
ZW
17239/* Table of ARM-format instructions. */
17240
17241/* Macros for gluing together operand strings. N.B. In all cases
17242 other than OPS0, the trailing OP_stop comes from default
17243 zero-initialization of the unspecified elements of the array. */
17244#define OPS0() { OP_stop, }
17245#define OPS1(a) { OP_##a, }
17246#define OPS2(a,b) { OP_##a,OP_##b, }
17247#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17248#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17249#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17250#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17251
5be8be5d
DG
17252/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17253 This is useful when mixing operands for ARM and THUMB, i.e. using the
17254 MIX_ARM_THUMB_OPERANDS macro.
17255 In order to use these macros, prefix the number of operands with _
17256 e.g. _3. */
17257#define OPS_1(a) { a, }
17258#define OPS_2(a,b) { a,b, }
17259#define OPS_3(a,b,c) { a,b,c, }
17260#define OPS_4(a,b,c,d) { a,b,c,d, }
17261#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17262#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17263
c19d1205
ZW
17264/* These macros abstract out the exact format of the mnemonic table and
17265 save some repeated characters. */
17266
17267/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17268#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17269 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 17270 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17271
17272/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17273 a T_MNEM_xyz enumerator. */
17274#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17275 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17276#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17277 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17278
17279/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17280 infix after the third character. */
17281#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 17282 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 17283 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 17284#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 17285 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 17286 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 17287#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17288 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 17289#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17290 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17291#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17292 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 17293#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17294 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17295
17296/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17297 appear in the condition table. */
17298#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 17299 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 17300 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17301
17302#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
17303 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17304 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17305 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17306 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17307 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17308 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17309 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17310 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17311 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17312 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17313 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17314 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17315 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17316 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17317 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17318 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17319 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17320 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17321 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
17322
17323#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
17324 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17325#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 17326 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17327
17328/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
17329 field is still 0xE. Many of the Thumb variants can be executed
17330 conditionally, so this is checked separately. */
c19d1205 17331#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17332 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17333 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17334
17335/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17336 condition code field. */
17337#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 17338 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17339 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17340
17341/* ARM-only variants of all the above. */
6a86118a 17342#define CE(mnem, op, nops, ops, ae) \
21d799b5 17343 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
17344
17345#define C3(mnem, op, nops, ops, ae) \
17346 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17347
e3cb604e
PB
17348/* Legacy mnemonics that always have conditional infix after the third
17349 character. */
17350#define CL(mnem, op, nops, ops, ae) \
21d799b5 17351 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17352 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17353
8f06b2d8
PB
17354/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17355#define cCE(mnem, op, nops, ops, ae) \
21d799b5 17356 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17357
e3cb604e
PB
17358/* Legacy coprocessor instructions where conditional infix and conditional
17359 suffix are ambiguous. For consistency this includes all FPA instructions,
17360 not just the potentially ambiguous ones. */
17361#define cCL(mnem, op, nops, ops, ae) \
21d799b5 17362 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17363 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17364
17365/* Coprocessor, takes either a suffix or a position-3 infix
17366 (for an FPA corner case). */
17367#define C3E(mnem, op, nops, ops, ae) \
21d799b5 17368 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 17369 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17370
6a86118a 17371#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
17372 { m1 #m2 m3, OPS##nops ops, \
17373 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
17374 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17375
17376#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
17377 xCM_ (m1, , m2, op, nops, ops, ae), \
17378 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17379 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17380 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17381 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17382 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17383 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17384 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17385 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17386 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17387 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17388 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17389 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17390 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17391 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17392 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17393 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17394 xCM_ (m1, le, m2, op, nops, ops, ae), \
17395 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
17396
17397#define UE(mnem, op, nops, ops, ae) \
17398 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17399
17400#define UF(mnem, op, nops, ops, ae) \
17401 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17402
5287ad62
JB
17403/* Neon data-processing. ARM versions are unconditional with cond=0xf.
17404 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17405 use the same encoding function for each. */
17406#define NUF(mnem, op, nops, ops, enc) \
17407 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17408 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17409
17410/* Neon data processing, version which indirects through neon_enc_tab for
17411 the various overloaded versions of opcodes. */
17412#define nUF(mnem, op, nops, ops, enc) \
21d799b5 17413 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17414 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17415
17416/* Neon insn with conditional suffix for the ARM version, non-overloaded
17417 version. */
037e8744
JB
17418#define NCE_tag(mnem, op, nops, ops, enc, tag) \
17419 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
17420 THUMB_VARIANT, do_##enc, do_##enc }
17421
037e8744 17422#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 17423 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17424
17425#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 17426 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17427
5287ad62 17428/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 17429#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17430 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17431 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17432
037e8744 17433#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17434 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17435
17436#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17437 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17438
c19d1205
ZW
17439#define do_0 0
17440
c19d1205 17441static const struct asm_opcode insns[] =
bfae80f2 17442{
e74cfd16
PB
17443#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17444#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17445 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17446 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17447 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17448 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17449 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17450 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17451 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17452 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17453 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17454 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17455 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17456 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17457 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17458 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17459 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17460 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17461
17462 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17463 for setting PSR flag bits. They are obsolete in V6 and do not
17464 have Thumb equivalents. */
21d799b5
NC
17465 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17466 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17467 CL("tstp", 110f000, 2, (RR, SH), cmp),
17468 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17469 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17470 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17471 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17472 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17473 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17474
17475 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17476 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17477 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17478 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17479
17480 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17481 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17482 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17483 OP_RRnpc),
17484 OP_ADDRGLDR),ldst, t_ldst),
17485 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17486
17487 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17488 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17489 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17490 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17491 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17492 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17493
17494 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17495 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17496 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17497 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17498
c19d1205 17499 /* Pseudo ops. */
21d799b5 17500 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17501 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17502 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17503
17504 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17505 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17506 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17507 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17508 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17509 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17510 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17511 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17512 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17513 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17514 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17515 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17516 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17517
16a4cf17 17518 /* These may simplify to neg. */
21d799b5
NC
17519 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17520 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17521
c921be7d
NC
17522#undef THUMB_VARIANT
17523#define THUMB_VARIANT & arm_ext_v6
17524
21d799b5 17525 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17526
17527 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17528#undef THUMB_VARIANT
17529#define THUMB_VARIANT & arm_ext_v6t2
17530
21d799b5
NC
17531 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17532 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17533 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17534
5be8be5d
DG
17535 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17536 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17537 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17538 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17539
21d799b5
NC
17540 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17541 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17542
21d799b5
NC
17543 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17544 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17545
17546 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17547 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17548 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17549
17550 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17551 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17552 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17553 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17554 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17555 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17556 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17557 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17558
c921be7d
NC
17559#undef ARM_VARIANT
17560#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17561#undef THUMB_VARIANT
17562#define THUMB_VARIANT & arm_ext_v4t
17563
21d799b5
NC
17564 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17565 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17566
c921be7d
NC
17567#undef THUMB_VARIANT
17568#define THUMB_VARIANT & arm_ext_v6t2
17569
21d799b5 17570 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17571 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17572
17573 /* Generic coprocessor instructions. */
21d799b5
NC
17574 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17575 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17576 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17577 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17578 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17579 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17580 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17581
c921be7d
NC
17582#undef ARM_VARIANT
17583#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17584
21d799b5 17585 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17586 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17587
c921be7d
NC
17588#undef ARM_VARIANT
17589#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17590#undef THUMB_VARIANT
17591#define THUMB_VARIANT & arm_ext_msr
17592
d2cd1205
JB
17593 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17594 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17595
c921be7d
NC
17596#undef ARM_VARIANT
17597#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17598#undef THUMB_VARIANT
17599#define THUMB_VARIANT & arm_ext_v6t2
17600
21d799b5
NC
17601 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17602 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17603 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17604 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17605 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17606 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17607 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17608 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17609
c921be7d
NC
17610#undef ARM_VARIANT
17611#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17612#undef THUMB_VARIANT
17613#define THUMB_VARIANT & arm_ext_v4t
17614
5be8be5d
DG
17615 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17616 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17617 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17618 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17619 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17620 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17621
c921be7d
NC
17622#undef ARM_VARIANT
17623#define ARM_VARIANT & arm_ext_v4t_5
17624
c19d1205
ZW
17625 /* ARM Architecture 4T. */
17626 /* Note: bx (and blx) are required on V5, even if the processor does
17627 not support Thumb. */
21d799b5 17628 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17629
c921be7d
NC
17630#undef ARM_VARIANT
17631#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17632#undef THUMB_VARIANT
17633#define THUMB_VARIANT & arm_ext_v5t
17634
c19d1205
ZW
17635 /* Note: blx has 2 variants; the .value coded here is for
17636 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17637 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17638 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17639
c921be7d
NC
17640#undef THUMB_VARIANT
17641#define THUMB_VARIANT & arm_ext_v6t2
17642
21d799b5
NC
17643 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17644 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17645 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17646 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17647 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17648 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17649 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17650 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17651
c921be7d
NC
17652#undef ARM_VARIANT
17653#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17654#undef THUMB_VARIANT
17655#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17656
21d799b5
NC
17657 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17658 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17659 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17660 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17661
21d799b5
NC
17662 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17663 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17664
21d799b5
NC
17665 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17666 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17667 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17668 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17669
21d799b5
NC
17670 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17671 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17672 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17673 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17674
21d799b5
NC
17675 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17676 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17677
03ee1b7f
NC
17678 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17679 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17680 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17681 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17682
c921be7d
NC
17683#undef ARM_VARIANT
17684#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17685#undef THUMB_VARIANT
17686#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17687
21d799b5 17688 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17689 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17690 ldrd, t_ldstd),
17691 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17692 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17693
21d799b5
NC
17694 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17695 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17696
c921be7d
NC
17697#undef ARM_VARIANT
17698#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17699
21d799b5 17700 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17701
c921be7d
NC
17702#undef ARM_VARIANT
17703#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17704#undef THUMB_VARIANT
17705#define THUMB_VARIANT & arm_ext_v6
17706
21d799b5
NC
17707 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17708 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17709 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17710 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17711 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17712 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17713 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17714 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17715 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17716 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17717
c921be7d
NC
17718#undef THUMB_VARIANT
17719#define THUMB_VARIANT & arm_ext_v6t2
17720
5be8be5d
DG
17721 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17722 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17723 strex, t_strex),
21d799b5
NC
17724 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17725 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17726
21d799b5
NC
17727 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17728 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17729
9e3c6df6 17730/* ARM V6 not included in V7M. */
c921be7d
NC
17731#undef THUMB_VARIANT
17732#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17733 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17734 UF(rfeib, 9900a00, 1, (RRw), rfe),
17735 UF(rfeda, 8100a00, 1, (RRw), rfe),
17736 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17737 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17738 UF(rfefa, 9900a00, 1, (RRw), rfe),
17739 UF(rfeea, 8100a00, 1, (RRw), rfe),
17740 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17741 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17742 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17743 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17744 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17745
9e3c6df6
PB
17746/* ARM V6 not included in V7M (eg. integer SIMD). */
17747#undef THUMB_VARIANT
17748#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17749 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17750 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17751 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17752 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17753 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17754 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17755 /* Old name for QASX. */
21d799b5
NC
17756 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17757 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17758 /* Old name for QSAX. */
21d799b5
NC
17759 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17760 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17761 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17762 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17763 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17764 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17765 /* Old name for SASX. */
21d799b5
NC
17766 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17767 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17768 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17769 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17770 /* Old name for SHASX. */
21d799b5
NC
17771 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17772 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17773 /* Old name for SHSAX. */
21d799b5
NC
17774 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17775 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17776 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17777 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17778 /* Old name for SSAX. */
21d799b5
NC
17779 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17780 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17781 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17782 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17783 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17784 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17785 /* Old name for UASX. */
21d799b5
NC
17786 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17787 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17788 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17789 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17790 /* Old name for UHASX. */
21d799b5
NC
17791 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17792 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17793 /* Old name for UHSAX. */
21d799b5
NC
17794 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17795 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17796 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17797 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17798 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17799 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17800 /* Old name for UQASX. */
21d799b5
NC
17801 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17802 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17803 /* Old name for UQSAX. */
21d799b5
NC
17804 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17805 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17806 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17807 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17808 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17809 /* Old name for USAX. */
21d799b5
NC
17810 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17811 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17812 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17813 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17814 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17815 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17816 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17817 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17818 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17819 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17820 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17821 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17822 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17823 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17824 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17825 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17826 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17827 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17828 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17829 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17830 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17831 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17832 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17833 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17834 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17835 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17836 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17837 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17838 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17839 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17840 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17841 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17842 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17843 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17844
c921be7d
NC
17845#undef ARM_VARIANT
17846#define ARM_VARIANT & arm_ext_v6k
17847#undef THUMB_VARIANT
17848#define THUMB_VARIANT & arm_ext_v6k
17849
21d799b5
NC
17850 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17851 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17852 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17853 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17854
c921be7d
NC
17855#undef THUMB_VARIANT
17856#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17857 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17858 ldrexd, t_ldrexd),
17859 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17860 RRnpcb), strexd, t_strexd),
ebdca51a 17861
c921be7d
NC
17862#undef THUMB_VARIANT
17863#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17864 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17865 rd_rn, rd_rn),
17866 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17867 rd_rn, rd_rn),
17868 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17869 strex, t_strexbh),
5be8be5d 17870 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17871 strex, t_strexbh),
21d799b5 17872 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17873
c921be7d 17874#undef ARM_VARIANT
f4c65163
MGD
17875#define ARM_VARIANT & arm_ext_sec
17876#undef THUMB_VARIANT
17877#define THUMB_VARIANT & arm_ext_sec
c921be7d 17878
21d799b5 17879 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17880
90ec0d68
MGD
17881#undef ARM_VARIANT
17882#define ARM_VARIANT & arm_ext_virt
17883#undef THUMB_VARIANT
17884#define THUMB_VARIANT & arm_ext_virt
17885
17886 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17887 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17888
c921be7d
NC
17889#undef ARM_VARIANT
17890#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17891#undef THUMB_VARIANT
17892#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17893
21d799b5
NC
17894 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17895 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17896 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17897 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17898
21d799b5
NC
17899 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17900 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17901 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17902 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17903
5be8be5d
DG
17904 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17905 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17906 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17907 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17908
bf3eeda7
NS
17909 /* Thumb-only instructions. */
17910#undef ARM_VARIANT
17911#define ARM_VARIANT NULL
17912 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17913 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17914
17915 /* ARM does not really have an IT instruction, so always allow it.
17916 The opcode is copied from Thumb in order to allow warnings in
17917 -mimplicit-it=[never | arm] modes. */
17918#undef ARM_VARIANT
17919#define ARM_VARIANT & arm_ext_v1
17920
21d799b5
NC
17921 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17922 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17923 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17924 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17925 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17926 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17927 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17928 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17929 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17930 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17931 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17932 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17933 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17934 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17935 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17936 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17937 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17938 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17939
92e90b6e 17940 /* Thumb2 only instructions. */
c921be7d
NC
17941#undef ARM_VARIANT
17942#define ARM_VARIANT NULL
92e90b6e 17943
21d799b5
NC
17944 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17945 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17946 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17947 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17948 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17949 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17950
eea54501
MGD
17951 /* Hardware division instructions. */
17952#undef ARM_VARIANT
17953#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
17954#undef THUMB_VARIANT
17955#define THUMB_VARIANT & arm_ext_div
17956
eea54501
MGD
17957 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17958 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 17959
7e806470 17960 /* ARM V6M/V7 instructions. */
c921be7d
NC
17961#undef ARM_VARIANT
17962#define ARM_VARIANT & arm_ext_barrier
17963#undef THUMB_VARIANT
17964#define THUMB_VARIANT & arm_ext_barrier
17965
52e7f43d
RE
17966 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17967 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17968 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17969
62b3e311 17970 /* ARM V7 instructions. */
c921be7d
NC
17971#undef ARM_VARIANT
17972#define ARM_VARIANT & arm_ext_v7
17973#undef THUMB_VARIANT
17974#define THUMB_VARIANT & arm_ext_v7
17975
21d799b5
NC
17976 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17977 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17978
60e5ef9f
MGD
17979#undef ARM_VARIANT
17980#define ARM_VARIANT & arm_ext_mp
17981#undef THUMB_VARIANT
17982#define THUMB_VARIANT & arm_ext_mp
17983
17984 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17985
53c4b28b
MGD
17986 /* AArchv8 instructions. */
17987#undef ARM_VARIANT
17988#define ARM_VARIANT & arm_ext_v8
17989#undef THUMB_VARIANT
17990#define THUMB_VARIANT & arm_ext_v8
17991
17992 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
8884b720 17993 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
53c4b28b 17994
8884b720 17995 /* ARMv8 T32 only. */
b79f7053
MGD
17996#undef ARM_VARIANT
17997#define ARM_VARIANT NULL
17998 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
17999 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18000 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18001
c921be7d
NC
18002#undef ARM_VARIANT
18003#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
18004#undef THUMB_VARIANT
18005#define THUMB_VARIANT NULL
c921be7d 18006
21d799b5
NC
18007 cCE("wfs", e200110, 1, (RR), rd),
18008 cCE("rfs", e300110, 1, (RR), rd),
18009 cCE("wfc", e400110, 1, (RR), rd),
18010 cCE("rfc", e500110, 1, (RR), rd),
18011
18012 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18013 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18014 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18015 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18016
18017 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18018 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18019 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18020 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18021
18022 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18023 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18024 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18025 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18026 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18027 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18028 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18029 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18030 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18031 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18032 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18033 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18034
18035 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18036 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18037 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18038 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18039 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18040 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18041 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18042 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18043 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18044 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18045 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18046 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18047
18048 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18049 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18050 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18051 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18052 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18053 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18054 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18055 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18056 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18057 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18058 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18059 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18060
18061 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18062 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18063 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18064 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18065 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18066 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18067 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18068 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18069 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18070 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18071 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18072 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18073
18074 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18075 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18076 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18077 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18078 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18079 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18080 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18081 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18082 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18083 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18084 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18085 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18086
18087 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18088 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18089 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18090 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18091 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18092 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18093 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18094 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18095 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18096 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18097 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18098 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18099
18100 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18101 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18102 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18103 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18104 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18105 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18106 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18107 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18108 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18109 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18110 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18111 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18112
18113 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18114 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18115 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18116 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18117 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18118 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18119 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18120 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18121 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18122 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18123 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18124 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18125
18126 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18127 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18128 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18129 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18130 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18131 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18132 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18133 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18134 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18135 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18136 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18137 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18138
18139 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18140 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18141 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18142 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18143 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18144 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18145 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18146 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18147 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18148 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18149 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18150 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18151
18152 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18153 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18154 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18155 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18156 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18157 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18158 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18159 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18160 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18161 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18162 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18163 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18164
18165 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18166 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18167 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18168 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18169 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18170 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18171 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18172 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18173 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18174 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18175 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18176 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18177
18178 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18179 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18180 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18181 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18182 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18183 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18184 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18185 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18186 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18187 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18188 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18189 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18190
18191 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18192 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18193 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18194 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18195 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18196 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18197 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18198 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18199 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18200 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18201 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18202 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18203
18204 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18205 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18206 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18207 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18208 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18209 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18210 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18211 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18212 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18213 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18214 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18215 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18216
18217 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18218 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18219 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18220 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18221 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18222 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18223 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18224 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18225 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18226 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18227 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18228 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18229
18230 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18231 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18232 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18233 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18234 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18235 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18236 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18237 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18238 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18239 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18240 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18241 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18242
18243 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18244 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18245 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18246 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18247 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18248 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18249 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18250 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18251 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18252 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18253 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18254 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18255
18256 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18257 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18258 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18259 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18260 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18261 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18262 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18263 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18264 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18265 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18266 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18267 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18268
18269 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18270 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18271 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18272 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18273 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18274 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18275 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18276 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18277 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18278 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18279 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18280 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18281
18282 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18283 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18284 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18285 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18286 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18287 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18288 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18289 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18290 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18291 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18292 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18293 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18294
18295 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18296 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18297 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18298 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18299 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18300 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18301 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18302 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18303 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18304 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18305 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18306 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18307
18308 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18309 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18310 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18311 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18312 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18313 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18314 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18315 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18316 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18317 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18318 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18319 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18320
18321 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18322 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18323 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18324 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18325 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18326 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18327 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18328 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18329 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18330 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18331 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18332 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18333
18334 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18335 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18336 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18337 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18338 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18339 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18340 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18341 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18342 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18343 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18344 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18345 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18346
18347 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18348 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18349 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18350 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18351 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18352 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18353 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18354 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18355 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18356 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18357 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18358 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18359
18360 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18361 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18362 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18363 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18364 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18365 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18366 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18367 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18368 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18369 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18370 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18371 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18372
18373 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18374 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18375 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18376 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18377 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18378 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18379 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18380 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18381 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18382 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18383 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18384 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18385
18386 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18387 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18388 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18389 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18390 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18391 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18392 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18393 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18394 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18395 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18396 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18397 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18398
18399 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18400 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18401 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18402 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18403
18404 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18405 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18406 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18407 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18408 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18409 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18410 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18411 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18412 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18413 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18414 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18415 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 18416
c19d1205
ZW
18417 /* The implementation of the FIX instruction is broken on some
18418 assemblers, in that it accepts a precision specifier as well as a
18419 rounding specifier, despite the fact that this is meaningless.
18420 To be more compatible, we accept it as well, though of course it
18421 does not set any bits. */
21d799b5
NC
18422 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18423 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18424 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18425 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18426 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18427 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18428 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18429 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18430 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18431 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18432 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18433 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18434 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 18435
c19d1205 18436 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
18437#undef ARM_VARIANT
18438#define ARM_VARIANT & fpu_fpa_ext_v2
18439
21d799b5
NC
18440 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18441 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18442 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18443 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18444 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18445 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 18446
c921be7d
NC
18447#undef ARM_VARIANT
18448#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18449
c19d1205 18450 /* Moves and type conversions. */
21d799b5
NC
18451 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18452 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18453 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18454 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
18455 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18456 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
18457 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18458 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18459 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18460 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18461 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18462 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18463 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18464 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
18465
18466 /* Memory operations. */
21d799b5
NC
18467 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18468 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
18469 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18470 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18471 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18472 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18473 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18474 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18475 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18476 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18477 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18478 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18479 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18480 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18481 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18482 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18483 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18484 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 18485
c19d1205 18486 /* Monadic operations. */
21d799b5
NC
18487 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18488 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18489 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
18490
18491 /* Dyadic operations. */
21d799b5
NC
18492 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18493 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18494 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18495 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18496 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18497 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18498 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18499 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18500 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18501
c19d1205 18502 /* Comparisons. */
21d799b5
NC
18503 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18504 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18505 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18506 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18507
62f3b8c8
PB
18508 /* Double precision load/store are still present on single precision
18509 implementations. */
18510 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18511 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18512 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18513 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18514 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18515 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18516 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18517 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18518 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18519 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18520
c921be7d
NC
18521#undef ARM_VARIANT
18522#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18523
c19d1205 18524 /* Moves and type conversions. */
21d799b5
NC
18525 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18526 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18527 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18528 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18529 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18530 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18531 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18532 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18533 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18534 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18535 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18536 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18537 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 18538
c19d1205 18539 /* Monadic operations. */
21d799b5
NC
18540 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18541 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18542 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18543
18544 /* Dyadic operations. */
21d799b5
NC
18545 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18546 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18547 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18548 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18549 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18550 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18551 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18552 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18553 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18554
c19d1205 18555 /* Comparisons. */
21d799b5
NC
18556 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18557 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18558 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18559 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18560
c921be7d
NC
18561#undef ARM_VARIANT
18562#define ARM_VARIANT & fpu_vfp_ext_v2
18563
21d799b5
NC
18564 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18565 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18566 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18567 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18568
037e8744
JB
18569/* Instructions which may belong to either the Neon or VFP instruction sets.
18570 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18571#undef ARM_VARIANT
18572#define ARM_VARIANT & fpu_vfp_ext_v1xd
18573#undef THUMB_VARIANT
18574#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18575
037e8744
JB
18576 /* These mnemonics are unique to VFP. */
18577 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18578 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18579 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18580 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18581 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18582 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18583 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18584 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18585 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18586 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18587
18588 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18589 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18590 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18591 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18592
21d799b5
NC
18593 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18594 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18595
18596 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18597 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18598
55881a11
MGD
18599 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18600 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18601 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18602 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18603 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18604 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18605 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18606 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18607
5f1af56b 18608 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 18609 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18610 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18611 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18612
037e8744
JB
18613
18614 /* NOTE: All VMOV encoding is special-cased! */
18615 NCE(vmov, 0, 1, (VMOV), neon_mov),
18616 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18617
c921be7d
NC
18618#undef THUMB_VARIANT
18619#define THUMB_VARIANT & fpu_neon_ext_v1
18620#undef ARM_VARIANT
18621#define ARM_VARIANT & fpu_neon_ext_v1
18622
5287ad62
JB
18623 /* Data processing with three registers of the same length. */
18624 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18625 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18626 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18627 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18628 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18629 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18630 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18631 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18632 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18633 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18634 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18635 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18636 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18637 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18638 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18639 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18640 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18641 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18642 /* If not immediate, fall back to neon_dyadic_i64_su.
18643 shl_imm should accept I8 I16 I32 I64,
18644 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18645 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18646 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18647 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18648 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18649 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18650 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18651 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18652 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18653 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18654 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18655 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18656 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18657 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18658 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18659 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18660 /* Bitfield ops, untyped. */
18661 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18662 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18663 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18664 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18665 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18666 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18667 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18668 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18669 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18670 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18671 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18672 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18673 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18674 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18675 back to neon_dyadic_if_su. */
21d799b5
NC
18676 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18677 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18678 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18679 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18680 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18681 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18682 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18683 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18684 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18685 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18686 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18687 /* As above, D registers only. */
21d799b5
NC
18688 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18689 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18690 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18691 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18692 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18693 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18694 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18695 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18696 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18697 /* vtst takes sizes 8, 16, 32. */
18698 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18699 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18700 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18701 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18702 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18703 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18704 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18705 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18706 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18707 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18708 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18709 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18710 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18711 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18712 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18713 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18714 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18715 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18716 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18717 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18718 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18719
18720 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18721 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18722 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18723
18724 /* Data processing with two registers and a shift amount. */
18725 /* Right shifts, and variants with rounding.
18726 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18727 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18728 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18729 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18730 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18731 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18732 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18733 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18734 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18735 /* Shift and insert. Sizes accepted 8 16 32 64. */
18736 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18737 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18738 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18739 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18740 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18741 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18742 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18743 /* Right shift immediate, saturating & narrowing, with rounding variants.
18744 Types accepted S16 S32 S64 U16 U32 U64. */
18745 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18746 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18747 /* As above, unsigned. Types accepted S16 S32 S64. */
18748 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18749 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18750 /* Right shift narrowing. Types accepted I16 I32 I64. */
18751 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18752 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18753 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18754 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18755 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18756 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18757
4316f0d2
DG
18758 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18759 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18760
18761 /* Data processing, three registers of different lengths. */
18762 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18763 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18764 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18765 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18766 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18767 /* If not scalar, fall back to neon_dyadic_long.
18768 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18769 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18770 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18771 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18772 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18773 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18774 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18775 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18776 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18777 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18778 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18779 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18780 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18781 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18782 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18783 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18784 S16 S32 U16 U32. */
21d799b5 18785 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18786
18787 /* Extract. Size 8. */
3b8d421e
PB
18788 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18789 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18790
18791 /* Two registers, miscellaneous. */
18792 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18793 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18794 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18795 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18796 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18797 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18798 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18799 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18800 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18801 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18802 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18803 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18804 /* VMOVN. Types I16 I32 I64. */
21d799b5 18805 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18806 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18807 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18808 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18809 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18810 /* VZIP / VUZP. Sizes 8 16 32. */
18811 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18812 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18813 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18814 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18815 /* VQABS / VQNEG. Types S8 S16 S32. */
18816 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18817 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18818 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18819 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18820 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18821 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18822 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18823 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18824 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18825 /* Reciprocal estimates. Types U32 F32. */
18826 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18827 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18828 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18829 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18830 /* VCLS. Types S8 S16 S32. */
18831 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18832 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18833 /* VCLZ. Types I8 I16 I32. */
18834 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18835 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18836 /* VCNT. Size 8. */
18837 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18838 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18839 /* Two address, untyped. */
18840 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18841 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18842 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18843 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18844 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18845
18846 /* Table lookup. Size 8. */
18847 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18848 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18849
c921be7d
NC
18850#undef THUMB_VARIANT
18851#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18852#undef ARM_VARIANT
18853#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18854
5287ad62 18855 /* Neon element/structure load/store. */
21d799b5
NC
18856 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18857 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18858 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18859 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18860 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18861 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18862 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18863 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18864
c921be7d 18865#undef THUMB_VARIANT
62f3b8c8
PB
18866#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18867#undef ARM_VARIANT
18868#define ARM_VARIANT &fpu_vfp_ext_v3xd
18869 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18870 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18871 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18872 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18873 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18874 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18875 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18876 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18877 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18878
18879#undef THUMB_VARIANT
c921be7d
NC
18880#define THUMB_VARIANT & fpu_vfp_ext_v3
18881#undef ARM_VARIANT
18882#define ARM_VARIANT & fpu_vfp_ext_v3
18883
21d799b5 18884 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18885 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18886 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18887 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18888 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18889 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18890 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18891 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18892 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18893
62f3b8c8
PB
18894#undef ARM_VARIANT
18895#define ARM_VARIANT &fpu_vfp_ext_fma
18896#undef THUMB_VARIANT
18897#define THUMB_VARIANT &fpu_vfp_ext_fma
18898 /* Mnemonics shared by Neon and VFP. These are included in the
18899 VFP FMA variant; NEON and VFP FMA always includes the NEON
18900 FMA instructions. */
18901 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18902 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18903 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18904 the v form should always be used. */
18905 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18906 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18907 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18908 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18909 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18910 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18911
5287ad62 18912#undef THUMB_VARIANT
c921be7d
NC
18913#undef ARM_VARIANT
18914#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18915
21d799b5
NC
18916 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18917 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18918 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18919 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18920 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18921 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18922 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18923 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 18924
c921be7d
NC
18925#undef ARM_VARIANT
18926#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18927
21d799b5
NC
18928 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18929 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18930 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18931 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18932 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18933 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18934 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18935 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18936 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18937 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18938 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18939 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18940 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18941 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18942 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18943 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18944 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18945 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18946 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18947 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18948 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18949 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18950 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18951 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18952 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18953 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18954 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18955 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18956 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18957 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18958 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18959 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18960 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18961 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18962 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18963 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18964 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18965 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18966 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18967 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18968 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18969 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18970 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18971 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18972 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18973 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18974 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18975 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18976 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18977 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18978 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18979 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18980 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18981 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18982 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18983 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18984 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18985 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18986 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18987 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18988 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18989 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18990 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18991 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18992 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18993 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18994 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18995 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18996 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18997 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18998 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18999 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19000 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19001 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19002 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19003 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19004 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19005 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19006 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19007 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19008 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19009 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19010 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19011 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19012 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19013 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19014 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19015 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19016 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19017 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19018 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19019 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19020 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19021 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19022 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19023 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19024 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19025 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19026 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19027 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19028 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19029 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19030 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19031 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19032 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19033 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19034 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19035 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19036 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19037 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19038 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19039 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19040 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19041 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19042 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19043 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19044 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19045 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19046 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19047 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19048 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19049 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19050 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19051 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19052 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19053 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19054 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19055 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19056 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19057 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19058 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19059 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19060 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19061 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19062 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19063 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19064 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19065 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19066 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19067 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19068 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19069 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19070 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19071 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19072 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19073 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19074 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19075 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19076 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19077 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19078 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19079 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19080 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19081 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19082 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19083 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19084 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19085 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19086 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19087 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19088 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19089 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 19090
c921be7d
NC
19091#undef ARM_VARIANT
19092#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19093
21d799b5
NC
19094 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19095 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19096 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19097 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19098 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19099 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19100 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19101 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19102 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19103 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19104 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19105 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19106 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19107 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19108 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19109 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19110 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19111 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19112 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19113 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19114 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19115 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19116 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19117 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19118 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19119 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19120 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19121 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19122 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19123 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19124 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19125 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19126 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19127 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19128 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19129 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19130 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19131 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19132 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19133 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19134 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19135 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19136 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19137 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19138 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19139 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19140 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19141 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19142 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19143 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19144 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19145 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19146 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19147 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19148 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19149 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19150 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 19151
c921be7d
NC
19152#undef ARM_VARIANT
19153#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19154
21d799b5
NC
19155 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19156 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19157 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19158 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19159 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19160 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19161 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19162 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19163 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19164 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19165 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19166 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19167 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19168 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19169 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19170 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19171 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19172 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19173 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19174 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19175 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19176 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19177 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19178 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19179 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19180 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19181 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19182 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19183 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19184 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19185 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19186 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19187 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19188 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19189 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19190 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19191 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19192 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19193 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19194 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19195 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19196 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19197 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19198 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19199 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19200 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19201 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19202 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19203 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19204 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19205 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19206 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19207 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19208 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19209 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19210 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19211 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19212 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19213 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19214 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19215 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19216 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19217 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19218 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19219 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19220 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19221 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19222 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19223 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19224 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19225 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19226 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19227 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19228 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19229 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19230 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
19231};
19232#undef ARM_VARIANT
19233#undef THUMB_VARIANT
19234#undef TCE
19235#undef TCM
19236#undef TUE
19237#undef TUF
19238#undef TCC
8f06b2d8 19239#undef cCE
e3cb604e
PB
19240#undef cCL
19241#undef C3E
c19d1205
ZW
19242#undef CE
19243#undef CM
19244#undef UE
19245#undef UF
19246#undef UT
5287ad62
JB
19247#undef NUF
19248#undef nUF
19249#undef NCE
19250#undef nCE
c19d1205
ZW
19251#undef OPS0
19252#undef OPS1
19253#undef OPS2
19254#undef OPS3
19255#undef OPS4
19256#undef OPS5
19257#undef OPS6
19258#undef do_0
19259\f
19260/* MD interface: bits in the object file. */
bfae80f2 19261
c19d1205
ZW
19262/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19263 for use in the a.out file, and stores them in the array pointed to by buf.
19264 This knows about the endian-ness of the target machine and does
19265 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19266 2 (short) and 4 (long) Floating numbers are put out as a series of
19267 LITTLENUMS (shorts, here at least). */
b99bd4ef 19268
c19d1205
ZW
19269void
19270md_number_to_chars (char * buf, valueT val, int n)
19271{
19272 if (target_big_endian)
19273 number_to_chars_bigendian (buf, val, n);
19274 else
19275 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
19276}
19277
c19d1205
ZW
19278static valueT
19279md_chars_to_number (char * buf, int n)
bfae80f2 19280{
c19d1205
ZW
19281 valueT result = 0;
19282 unsigned char * where = (unsigned char *) buf;
bfae80f2 19283
c19d1205 19284 if (target_big_endian)
b99bd4ef 19285 {
c19d1205
ZW
19286 while (n--)
19287 {
19288 result <<= 8;
19289 result |= (*where++ & 255);
19290 }
b99bd4ef 19291 }
c19d1205 19292 else
b99bd4ef 19293 {
c19d1205
ZW
19294 while (n--)
19295 {
19296 result <<= 8;
19297 result |= (where[n] & 255);
19298 }
bfae80f2 19299 }
b99bd4ef 19300
c19d1205 19301 return result;
bfae80f2 19302}
b99bd4ef 19303
c19d1205 19304/* MD interface: Sections. */
b99bd4ef 19305
fa94de6b
RM
19306/* Calculate the maximum variable size (i.e., excluding fr_fix)
19307 that an rs_machine_dependent frag may reach. */
19308
19309unsigned int
19310arm_frag_max_var (fragS *fragp)
19311{
19312 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19313 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19314
19315 Note that we generate relaxable instructions even for cases that don't
19316 really need it, like an immediate that's a trivial constant. So we're
19317 overestimating the instruction size for some of those cases. Rather
19318 than putting more intelligence here, it would probably be better to
19319 avoid generating a relaxation frag in the first place when it can be
19320 determined up front that a short instruction will suffice. */
19321
19322 gas_assert (fragp->fr_type == rs_machine_dependent);
19323 return INSN_SIZE;
19324}
19325
0110f2b8
PB
19326/* Estimate the size of a frag before relaxing. Assume everything fits in
19327 2 bytes. */
19328
c19d1205 19329int
0110f2b8 19330md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
19331 segT segtype ATTRIBUTE_UNUSED)
19332{
0110f2b8
PB
19333 fragp->fr_var = 2;
19334 return 2;
19335}
19336
19337/* Convert a machine dependent frag. */
19338
19339void
19340md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19341{
19342 unsigned long insn;
19343 unsigned long old_op;
19344 char *buf;
19345 expressionS exp;
19346 fixS *fixp;
19347 int reloc_type;
19348 int pc_rel;
19349 int opcode;
19350
19351 buf = fragp->fr_literal + fragp->fr_fix;
19352
19353 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
19354 if (fragp->fr_symbol)
19355 {
0110f2b8
PB
19356 exp.X_op = O_symbol;
19357 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
19358 }
19359 else
19360 {
0110f2b8 19361 exp.X_op = O_constant;
5f4273c7 19362 }
0110f2b8
PB
19363 exp.X_add_number = fragp->fr_offset;
19364 opcode = fragp->fr_subtype;
19365 switch (opcode)
19366 {
19367 case T_MNEM_ldr_pc:
19368 case T_MNEM_ldr_pc2:
19369 case T_MNEM_ldr_sp:
19370 case T_MNEM_str_sp:
19371 case T_MNEM_ldr:
19372 case T_MNEM_ldrb:
19373 case T_MNEM_ldrh:
19374 case T_MNEM_str:
19375 case T_MNEM_strb:
19376 case T_MNEM_strh:
19377 if (fragp->fr_var == 4)
19378 {
5f4273c7 19379 insn = THUMB_OP32 (opcode);
0110f2b8
PB
19380 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19381 {
19382 insn |= (old_op & 0x700) << 4;
19383 }
19384 else
19385 {
19386 insn |= (old_op & 7) << 12;
19387 insn |= (old_op & 0x38) << 13;
19388 }
19389 insn |= 0x00000c00;
19390 put_thumb32_insn (buf, insn);
19391 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19392 }
19393 else
19394 {
19395 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19396 }
19397 pc_rel = (opcode == T_MNEM_ldr_pc2);
19398 break;
19399 case T_MNEM_adr:
19400 if (fragp->fr_var == 4)
19401 {
19402 insn = THUMB_OP32 (opcode);
19403 insn |= (old_op & 0xf0) << 4;
19404 put_thumb32_insn (buf, insn);
19405 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19406 }
19407 else
19408 {
19409 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19410 exp.X_add_number -= 4;
19411 }
19412 pc_rel = 1;
19413 break;
19414 case T_MNEM_mov:
19415 case T_MNEM_movs:
19416 case T_MNEM_cmp:
19417 case T_MNEM_cmn:
19418 if (fragp->fr_var == 4)
19419 {
19420 int r0off = (opcode == T_MNEM_mov
19421 || opcode == T_MNEM_movs) ? 0 : 8;
19422 insn = THUMB_OP32 (opcode);
19423 insn = (insn & 0xe1ffffff) | 0x10000000;
19424 insn |= (old_op & 0x700) << r0off;
19425 put_thumb32_insn (buf, insn);
19426 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19427 }
19428 else
19429 {
19430 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19431 }
19432 pc_rel = 0;
19433 break;
19434 case T_MNEM_b:
19435 if (fragp->fr_var == 4)
19436 {
19437 insn = THUMB_OP32(opcode);
19438 put_thumb32_insn (buf, insn);
19439 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19440 }
19441 else
19442 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19443 pc_rel = 1;
19444 break;
19445 case T_MNEM_bcond:
19446 if (fragp->fr_var == 4)
19447 {
19448 insn = THUMB_OP32(opcode);
19449 insn |= (old_op & 0xf00) << 14;
19450 put_thumb32_insn (buf, insn);
19451 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19452 }
19453 else
19454 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19455 pc_rel = 1;
19456 break;
19457 case T_MNEM_add_sp:
19458 case T_MNEM_add_pc:
19459 case T_MNEM_inc_sp:
19460 case T_MNEM_dec_sp:
19461 if (fragp->fr_var == 4)
19462 {
19463 /* ??? Choose between add and addw. */
19464 insn = THUMB_OP32 (opcode);
19465 insn |= (old_op & 0xf0) << 4;
19466 put_thumb32_insn (buf, insn);
16805f35
PB
19467 if (opcode == T_MNEM_add_pc)
19468 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19469 else
19470 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
19471 }
19472 else
19473 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19474 pc_rel = 0;
19475 break;
19476
19477 case T_MNEM_addi:
19478 case T_MNEM_addis:
19479 case T_MNEM_subi:
19480 case T_MNEM_subis:
19481 if (fragp->fr_var == 4)
19482 {
19483 insn = THUMB_OP32 (opcode);
19484 insn |= (old_op & 0xf0) << 4;
19485 insn |= (old_op & 0xf) << 16;
19486 put_thumb32_insn (buf, insn);
16805f35
PB
19487 if (insn & (1 << 20))
19488 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19489 else
19490 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
19491 }
19492 else
19493 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19494 pc_rel = 0;
19495 break;
19496 default:
5f4273c7 19497 abort ();
0110f2b8
PB
19498 }
19499 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 19500 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
19501 fixp->fx_file = fragp->fr_file;
19502 fixp->fx_line = fragp->fr_line;
19503 fragp->fr_fix += fragp->fr_var;
19504}
19505
19506/* Return the size of a relaxable immediate operand instruction.
19507 SHIFT and SIZE specify the form of the allowable immediate. */
19508static int
19509relax_immediate (fragS *fragp, int size, int shift)
19510{
19511 offsetT offset;
19512 offsetT mask;
19513 offsetT low;
19514
19515 /* ??? Should be able to do better than this. */
19516 if (fragp->fr_symbol)
19517 return 4;
19518
19519 low = (1 << shift) - 1;
19520 mask = (1 << (shift + size)) - (1 << shift);
19521 offset = fragp->fr_offset;
19522 /* Force misaligned offsets to 32-bit variant. */
19523 if (offset & low)
5e77afaa 19524 return 4;
0110f2b8
PB
19525 if (offset & ~mask)
19526 return 4;
19527 return 2;
19528}
19529
5e77afaa
PB
19530/* Get the address of a symbol during relaxation. */
19531static addressT
5f4273c7 19532relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19533{
19534 fragS *sym_frag;
19535 addressT addr;
19536 symbolS *sym;
19537
19538 sym = fragp->fr_symbol;
19539 sym_frag = symbol_get_frag (sym);
19540 know (S_GET_SEGMENT (sym) != absolute_section
19541 || sym_frag == &zero_address_frag);
19542 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19543
19544 /* If frag has yet to be reached on this pass, assume it will
19545 move by STRETCH just as we did. If this is not so, it will
19546 be because some frag between grows, and that will force
19547 another pass. */
19548
19549 if (stretch != 0
19550 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
19551 {
19552 fragS *f;
19553
19554 /* Adjust stretch for any alignment frag. Note that if have
19555 been expanding the earlier code, the symbol may be
19556 defined in what appears to be an earlier frag. FIXME:
19557 This doesn't handle the fr_subtype field, which specifies
19558 a maximum number of bytes to skip when doing an
19559 alignment. */
19560 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19561 {
19562 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19563 {
19564 if (stretch < 0)
19565 stretch = - ((- stretch)
19566 & ~ ((1 << (int) f->fr_offset) - 1));
19567 else
19568 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19569 if (stretch == 0)
19570 break;
19571 }
19572 }
19573 if (f != NULL)
19574 addr += stretch;
19575 }
5e77afaa
PB
19576
19577 return addr;
19578}
19579
0110f2b8
PB
19580/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19581 load. */
19582static int
5e77afaa 19583relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19584{
19585 addressT addr;
19586 offsetT val;
19587
19588 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19589 if (fragp->fr_symbol == NULL
19590 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19591 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19592 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19593 return 4;
19594
5f4273c7 19595 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19596 addr = fragp->fr_address + fragp->fr_fix;
19597 addr = (addr + 4) & ~3;
5e77afaa 19598 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19599 if (val & 3)
5e77afaa 19600 return 4;
0110f2b8
PB
19601 val -= addr;
19602 if (val < 0 || val > 1020)
19603 return 4;
19604 return 2;
19605}
19606
19607/* Return the size of a relaxable add/sub immediate instruction. */
19608static int
19609relax_addsub (fragS *fragp, asection *sec)
19610{
19611 char *buf;
19612 int op;
19613
19614 buf = fragp->fr_literal + fragp->fr_fix;
19615 op = bfd_get_16(sec->owner, buf);
19616 if ((op & 0xf) == ((op >> 4) & 0xf))
19617 return relax_immediate (fragp, 8, 0);
19618 else
19619 return relax_immediate (fragp, 3, 0);
19620}
19621
19622
19623/* Return the size of a relaxable branch instruction. BITS is the
19624 size of the offset field in the narrow instruction. */
19625
19626static int
5e77afaa 19627relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19628{
19629 addressT addr;
19630 offsetT val;
19631 offsetT limit;
19632
19633 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19634 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19635 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19636 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19637 return 4;
19638
267bf995
RR
19639#ifdef OBJ_ELF
19640 if (S_IS_DEFINED (fragp->fr_symbol)
19641 && ARM_IS_FUNC (fragp->fr_symbol))
19642 return 4;
0d9b4b55
NC
19643
19644 /* PR 12532. Global symbols with default visibility might
19645 be preempted, so do not relax relocations to them. */
19646 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19647 && (! S_IS_LOCAL (fragp->fr_symbol)))
19648 return 4;
267bf995
RR
19649#endif
19650
5f4273c7 19651 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19652 addr = fragp->fr_address + fragp->fr_fix + 4;
19653 val -= addr;
19654
19655 /* Offset is a signed value *2 */
19656 limit = 1 << bits;
19657 if (val >= limit || val < -limit)
19658 return 4;
19659 return 2;
19660}
19661
19662
19663/* Relax a machine dependent frag. This returns the amount by which
19664 the current size of the frag should change. */
19665
19666int
5e77afaa 19667arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19668{
19669 int oldsize;
19670 int newsize;
19671
19672 oldsize = fragp->fr_var;
19673 switch (fragp->fr_subtype)
19674 {
19675 case T_MNEM_ldr_pc2:
5f4273c7 19676 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19677 break;
19678 case T_MNEM_ldr_pc:
19679 case T_MNEM_ldr_sp:
19680 case T_MNEM_str_sp:
5f4273c7 19681 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19682 break;
19683 case T_MNEM_ldr:
19684 case T_MNEM_str:
5f4273c7 19685 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19686 break;
19687 case T_MNEM_ldrh:
19688 case T_MNEM_strh:
5f4273c7 19689 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19690 break;
19691 case T_MNEM_ldrb:
19692 case T_MNEM_strb:
5f4273c7 19693 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19694 break;
19695 case T_MNEM_adr:
5f4273c7 19696 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19697 break;
19698 case T_MNEM_mov:
19699 case T_MNEM_movs:
19700 case T_MNEM_cmp:
19701 case T_MNEM_cmn:
5f4273c7 19702 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19703 break;
19704 case T_MNEM_b:
5f4273c7 19705 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19706 break;
19707 case T_MNEM_bcond:
5f4273c7 19708 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19709 break;
19710 case T_MNEM_add_sp:
19711 case T_MNEM_add_pc:
19712 newsize = relax_immediate (fragp, 8, 2);
19713 break;
19714 case T_MNEM_inc_sp:
19715 case T_MNEM_dec_sp:
19716 newsize = relax_immediate (fragp, 7, 2);
19717 break;
19718 case T_MNEM_addi:
19719 case T_MNEM_addis:
19720 case T_MNEM_subi:
19721 case T_MNEM_subis:
19722 newsize = relax_addsub (fragp, sec);
19723 break;
19724 default:
5f4273c7 19725 abort ();
0110f2b8 19726 }
5e77afaa
PB
19727
19728 fragp->fr_var = newsize;
19729 /* Freeze wide instructions that are at or before the same location as
19730 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19731 Don't freeze them unconditionally because targets may be artificially
19732 misaligned by the expansion of preceding frags. */
5e77afaa 19733 if (stretch <= 0 && newsize > 2)
0110f2b8 19734 {
0110f2b8 19735 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19736 frag_wane (fragp);
0110f2b8 19737 }
5e77afaa 19738
0110f2b8 19739 return newsize - oldsize;
c19d1205 19740}
b99bd4ef 19741
c19d1205 19742/* Round up a section size to the appropriate boundary. */
b99bd4ef 19743
c19d1205
ZW
19744valueT
19745md_section_align (segT segment ATTRIBUTE_UNUSED,
19746 valueT size)
19747{
f0927246
NC
19748#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19749 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19750 {
19751 /* For a.out, force the section size to be aligned. If we don't do
19752 this, BFD will align it for us, but it will not write out the
19753 final bytes of the section. This may be a bug in BFD, but it is
19754 easier to fix it here since that is how the other a.out targets
19755 work. */
19756 int align;
19757
19758 align = bfd_get_section_alignment (stdoutput, segment);
19759 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19760 }
c19d1205 19761#endif
f0927246
NC
19762
19763 return size;
bfae80f2 19764}
b99bd4ef 19765
c19d1205
ZW
19766/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19767 of an rs_align_code fragment. */
19768
19769void
19770arm_handle_align (fragS * fragP)
bfae80f2 19771{
e7495e45
NS
19772 static char const arm_noop[2][2][4] =
19773 {
19774 { /* ARMv1 */
19775 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19776 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19777 },
19778 { /* ARMv6k */
19779 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19780 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19781 },
19782 };
19783 static char const thumb_noop[2][2][2] =
19784 {
19785 { /* Thumb-1 */
19786 {0xc0, 0x46}, /* LE */
19787 {0x46, 0xc0}, /* BE */
19788 },
19789 { /* Thumb-2 */
19790 {0x00, 0xbf}, /* LE */
19791 {0xbf, 0x00} /* BE */
19792 }
19793 };
19794 static char const wide_thumb_noop[2][4] =
19795 { /* Wide Thumb-2 */
19796 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19797 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19798 };
c921be7d 19799
e7495e45 19800 unsigned bytes, fix, noop_size;
c19d1205
ZW
19801 char * p;
19802 const char * noop;
e7495e45 19803 const char *narrow_noop = NULL;
cd000bff
DJ
19804#ifdef OBJ_ELF
19805 enum mstate state;
19806#endif
bfae80f2 19807
c19d1205 19808 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19809 return;
19810
c19d1205
ZW
19811 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19812 p = fragP->fr_literal + fragP->fr_fix;
19813 fix = 0;
bfae80f2 19814
c19d1205
ZW
19815 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19816 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19817
cd000bff 19818 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19819
cd000bff 19820 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19821 {
e7495e45
NS
19822 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19823 {
19824 narrow_noop = thumb_noop[1][target_big_endian];
19825 noop = wide_thumb_noop[target_big_endian];
19826 }
c19d1205 19827 else
e7495e45
NS
19828 noop = thumb_noop[0][target_big_endian];
19829 noop_size = 2;
cd000bff
DJ
19830#ifdef OBJ_ELF
19831 state = MAP_THUMB;
19832#endif
7ed4c4c5
NC
19833 }
19834 else
19835 {
e7495e45
NS
19836 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19837 [target_big_endian];
19838 noop_size = 4;
cd000bff
DJ
19839#ifdef OBJ_ELF
19840 state = MAP_ARM;
19841#endif
7ed4c4c5 19842 }
c921be7d 19843
e7495e45 19844 fragP->fr_var = noop_size;
c921be7d 19845
c19d1205 19846 if (bytes & (noop_size - 1))
7ed4c4c5 19847 {
c19d1205 19848 fix = bytes & (noop_size - 1);
cd000bff
DJ
19849#ifdef OBJ_ELF
19850 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19851#endif
c19d1205
ZW
19852 memset (p, 0, fix);
19853 p += fix;
19854 bytes -= fix;
a737bd4d 19855 }
a737bd4d 19856
e7495e45
NS
19857 if (narrow_noop)
19858 {
19859 if (bytes & noop_size)
19860 {
19861 /* Insert a narrow noop. */
19862 memcpy (p, narrow_noop, noop_size);
19863 p += noop_size;
19864 bytes -= noop_size;
19865 fix += noop_size;
19866 }
19867
19868 /* Use wide noops for the remainder */
19869 noop_size = 4;
19870 }
19871
c19d1205 19872 while (bytes >= noop_size)
a737bd4d 19873 {
c19d1205
ZW
19874 memcpy (p, noop, noop_size);
19875 p += noop_size;
19876 bytes -= noop_size;
19877 fix += noop_size;
a737bd4d
NC
19878 }
19879
c19d1205 19880 fragP->fr_fix += fix;
a737bd4d
NC
19881}
19882
c19d1205
ZW
19883/* Called from md_do_align. Used to create an alignment
19884 frag in a code section. */
19885
19886void
19887arm_frag_align_code (int n, int max)
bfae80f2 19888{
c19d1205 19889 char * p;
7ed4c4c5 19890
c19d1205 19891 /* We assume that there will never be a requirement
6ec8e702 19892 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19893 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19894 {
19895 char err_msg[128];
19896
fa94de6b 19897 sprintf (err_msg,
6ec8e702
NC
19898 _("alignments greater than %d bytes not supported in .text sections."),
19899 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 19900 as_fatal ("%s", err_msg);
6ec8e702 19901 }
bfae80f2 19902
c19d1205
ZW
19903 p = frag_var (rs_align_code,
19904 MAX_MEM_FOR_RS_ALIGN_CODE,
19905 1,
19906 (relax_substateT) max,
19907 (symbolS *) NULL,
19908 (offsetT) n,
19909 (char *) NULL);
19910 *p = 0;
19911}
bfae80f2 19912
8dc2430f
NC
19913/* Perform target specific initialisation of a frag.
19914 Note - despite the name this initialisation is not done when the frag
19915 is created, but only when its type is assigned. A frag can be created
19916 and used a long time before its type is set, so beware of assuming that
19917 this initialisationis performed first. */
bfae80f2 19918
cd000bff
DJ
19919#ifndef OBJ_ELF
19920void
19921arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19922{
19923 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 19924 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
19925}
19926
19927#else /* OBJ_ELF is defined. */
c19d1205 19928void
cd000bff 19929arm_init_frag (fragS * fragP, int max_chars)
c19d1205 19930{
8dc2430f
NC
19931 /* If the current ARM vs THUMB mode has not already
19932 been recorded into this frag then do so now. */
cd000bff
DJ
19933 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19934 {
19935 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19936
19937 /* Record a mapping symbol for alignment frags. We will delete this
19938 later if the alignment ends up empty. */
19939 switch (fragP->fr_type)
19940 {
19941 case rs_align:
19942 case rs_align_test:
19943 case rs_fill:
19944 mapping_state_2 (MAP_DATA, max_chars);
19945 break;
19946 case rs_align_code:
19947 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19948 break;
19949 default:
19950 break;
19951 }
19952 }
bfae80f2
RE
19953}
19954
c19d1205
ZW
19955/* When we change sections we need to issue a new mapping symbol. */
19956
19957void
19958arm_elf_change_section (void)
bfae80f2 19959{
c19d1205
ZW
19960 /* Link an unlinked unwind index table section to the .text section. */
19961 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19962 && elf_linked_to_section (now_seg) == NULL)
19963 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
19964}
19965
c19d1205
ZW
19966int
19967arm_elf_section_type (const char * str, size_t len)
e45d0630 19968{
c19d1205
ZW
19969 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19970 return SHT_ARM_EXIDX;
e45d0630 19971
c19d1205
ZW
19972 return -1;
19973}
19974\f
19975/* Code to deal with unwinding tables. */
e45d0630 19976
c19d1205 19977static void add_unwind_adjustsp (offsetT);
e45d0630 19978
5f4273c7 19979/* Generate any deferred unwind frame offset. */
e45d0630 19980
bfae80f2 19981static void
c19d1205 19982flush_pending_unwind (void)
bfae80f2 19983{
c19d1205 19984 offsetT offset;
bfae80f2 19985
c19d1205
ZW
19986 offset = unwind.pending_offset;
19987 unwind.pending_offset = 0;
19988 if (offset != 0)
19989 add_unwind_adjustsp (offset);
bfae80f2
RE
19990}
19991
c19d1205
ZW
19992/* Add an opcode to this list for this function. Two-byte opcodes should
19993 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19994 order. */
19995
bfae80f2 19996static void
c19d1205 19997add_unwind_opcode (valueT op, int length)
bfae80f2 19998{
c19d1205
ZW
19999 /* Add any deferred stack adjustment. */
20000 if (unwind.pending_offset)
20001 flush_pending_unwind ();
bfae80f2 20002
c19d1205 20003 unwind.sp_restored = 0;
bfae80f2 20004
c19d1205 20005 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 20006 {
c19d1205
ZW
20007 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20008 if (unwind.opcodes)
21d799b5
NC
20009 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20010 unwind.opcode_alloc);
c19d1205 20011 else
21d799b5 20012 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 20013 }
c19d1205 20014 while (length > 0)
bfae80f2 20015 {
c19d1205
ZW
20016 length--;
20017 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20018 op >>= 8;
20019 unwind.opcode_count++;
bfae80f2 20020 }
bfae80f2
RE
20021}
20022
c19d1205
ZW
20023/* Add unwind opcodes to adjust the stack pointer. */
20024
bfae80f2 20025static void
c19d1205 20026add_unwind_adjustsp (offsetT offset)
bfae80f2 20027{
c19d1205 20028 valueT op;
bfae80f2 20029
c19d1205 20030 if (offset > 0x200)
bfae80f2 20031 {
c19d1205
ZW
20032 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20033 char bytes[5];
20034 int n;
20035 valueT o;
bfae80f2 20036
c19d1205
ZW
20037 /* Long form: 0xb2, uleb128. */
20038 /* This might not fit in a word so add the individual bytes,
20039 remembering the list is built in reverse order. */
20040 o = (valueT) ((offset - 0x204) >> 2);
20041 if (o == 0)
20042 add_unwind_opcode (0, 1);
bfae80f2 20043
c19d1205
ZW
20044 /* Calculate the uleb128 encoding of the offset. */
20045 n = 0;
20046 while (o)
20047 {
20048 bytes[n] = o & 0x7f;
20049 o >>= 7;
20050 if (o)
20051 bytes[n] |= 0x80;
20052 n++;
20053 }
20054 /* Add the insn. */
20055 for (; n; n--)
20056 add_unwind_opcode (bytes[n - 1], 1);
20057 add_unwind_opcode (0xb2, 1);
20058 }
20059 else if (offset > 0x100)
bfae80f2 20060 {
c19d1205
ZW
20061 /* Two short opcodes. */
20062 add_unwind_opcode (0x3f, 1);
20063 op = (offset - 0x104) >> 2;
20064 add_unwind_opcode (op, 1);
bfae80f2 20065 }
c19d1205
ZW
20066 else if (offset > 0)
20067 {
20068 /* Short opcode. */
20069 op = (offset - 4) >> 2;
20070 add_unwind_opcode (op, 1);
20071 }
20072 else if (offset < 0)
bfae80f2 20073 {
c19d1205
ZW
20074 offset = -offset;
20075 while (offset > 0x100)
bfae80f2 20076 {
c19d1205
ZW
20077 add_unwind_opcode (0x7f, 1);
20078 offset -= 0x100;
bfae80f2 20079 }
c19d1205
ZW
20080 op = ((offset - 4) >> 2) | 0x40;
20081 add_unwind_opcode (op, 1);
bfae80f2 20082 }
bfae80f2
RE
20083}
20084
c19d1205
ZW
20085/* Finish the list of unwind opcodes for this function. */
20086static void
20087finish_unwind_opcodes (void)
bfae80f2 20088{
c19d1205 20089 valueT op;
bfae80f2 20090
c19d1205 20091 if (unwind.fp_used)
bfae80f2 20092 {
708587a4 20093 /* Adjust sp as necessary. */
c19d1205
ZW
20094 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20095 flush_pending_unwind ();
bfae80f2 20096
c19d1205
ZW
20097 /* After restoring sp from the frame pointer. */
20098 op = 0x90 | unwind.fp_reg;
20099 add_unwind_opcode (op, 1);
20100 }
20101 else
20102 flush_pending_unwind ();
bfae80f2
RE
20103}
20104
bfae80f2 20105
c19d1205
ZW
20106/* Start an exception table entry. If idx is nonzero this is an index table
20107 entry. */
bfae80f2
RE
20108
20109static void
c19d1205 20110start_unwind_section (const segT text_seg, int idx)
bfae80f2 20111{
c19d1205
ZW
20112 const char * text_name;
20113 const char * prefix;
20114 const char * prefix_once;
20115 const char * group_name;
20116 size_t prefix_len;
20117 size_t text_len;
20118 char * sec_name;
20119 size_t sec_name_len;
20120 int type;
20121 int flags;
20122 int linkonce;
bfae80f2 20123
c19d1205 20124 if (idx)
bfae80f2 20125 {
c19d1205
ZW
20126 prefix = ELF_STRING_ARM_unwind;
20127 prefix_once = ELF_STRING_ARM_unwind_once;
20128 type = SHT_ARM_EXIDX;
bfae80f2 20129 }
c19d1205 20130 else
bfae80f2 20131 {
c19d1205
ZW
20132 prefix = ELF_STRING_ARM_unwind_info;
20133 prefix_once = ELF_STRING_ARM_unwind_info_once;
20134 type = SHT_PROGBITS;
bfae80f2
RE
20135 }
20136
c19d1205
ZW
20137 text_name = segment_name (text_seg);
20138 if (streq (text_name, ".text"))
20139 text_name = "";
20140
20141 if (strncmp (text_name, ".gnu.linkonce.t.",
20142 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 20143 {
c19d1205
ZW
20144 prefix = prefix_once;
20145 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
20146 }
20147
c19d1205
ZW
20148 prefix_len = strlen (prefix);
20149 text_len = strlen (text_name);
20150 sec_name_len = prefix_len + text_len;
21d799b5 20151 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
20152 memcpy (sec_name, prefix, prefix_len);
20153 memcpy (sec_name + prefix_len, text_name, text_len);
20154 sec_name[prefix_len + text_len] = '\0';
bfae80f2 20155
c19d1205
ZW
20156 flags = SHF_ALLOC;
20157 linkonce = 0;
20158 group_name = 0;
bfae80f2 20159
c19d1205
ZW
20160 /* Handle COMDAT group. */
20161 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 20162 {
c19d1205
ZW
20163 group_name = elf_group_name (text_seg);
20164 if (group_name == NULL)
20165 {
bd3ba5d1 20166 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
20167 segment_name (text_seg));
20168 ignore_rest_of_line ();
20169 return;
20170 }
20171 flags |= SHF_GROUP;
20172 linkonce = 1;
bfae80f2
RE
20173 }
20174
c19d1205 20175 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 20176
5f4273c7 20177 /* Set the section link for index tables. */
c19d1205
ZW
20178 if (idx)
20179 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
20180}
20181
bfae80f2 20182
c19d1205
ZW
20183/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20184 personality routine data. Returns zero, or the index table value for
20185 and inline entry. */
20186
20187static valueT
20188create_unwind_entry (int have_data)
bfae80f2 20189{
c19d1205
ZW
20190 int size;
20191 addressT where;
20192 char *ptr;
20193 /* The current word of data. */
20194 valueT data;
20195 /* The number of bytes left in this word. */
20196 int n;
bfae80f2 20197
c19d1205 20198 finish_unwind_opcodes ();
bfae80f2 20199
c19d1205
ZW
20200 /* Remember the current text section. */
20201 unwind.saved_seg = now_seg;
20202 unwind.saved_subseg = now_subseg;
bfae80f2 20203
c19d1205 20204 start_unwind_section (now_seg, 0);
bfae80f2 20205
c19d1205 20206 if (unwind.personality_routine == NULL)
bfae80f2 20207 {
c19d1205
ZW
20208 if (unwind.personality_index == -2)
20209 {
20210 if (have_data)
5f4273c7 20211 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
20212 return 1; /* EXIDX_CANTUNWIND. */
20213 }
bfae80f2 20214
c19d1205
ZW
20215 /* Use a default personality routine if none is specified. */
20216 if (unwind.personality_index == -1)
20217 {
20218 if (unwind.opcode_count > 3)
20219 unwind.personality_index = 1;
20220 else
20221 unwind.personality_index = 0;
20222 }
bfae80f2 20223
c19d1205
ZW
20224 /* Space for the personality routine entry. */
20225 if (unwind.personality_index == 0)
20226 {
20227 if (unwind.opcode_count > 3)
20228 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 20229
c19d1205
ZW
20230 if (!have_data)
20231 {
20232 /* All the data is inline in the index table. */
20233 data = 0x80;
20234 n = 3;
20235 while (unwind.opcode_count > 0)
20236 {
20237 unwind.opcode_count--;
20238 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20239 n--;
20240 }
bfae80f2 20241
c19d1205
ZW
20242 /* Pad with "finish" opcodes. */
20243 while (n--)
20244 data = (data << 8) | 0xb0;
bfae80f2 20245
c19d1205
ZW
20246 return data;
20247 }
20248 size = 0;
20249 }
20250 else
20251 /* We get two opcodes "free" in the first word. */
20252 size = unwind.opcode_count - 2;
20253 }
20254 else
5011093d
NC
20255 {
20256 gas_assert (unwind.personality_index == -1);
20257
20258 /* An extra byte is required for the opcode count. */
20259 size = unwind.opcode_count + 1;
20260 }
bfae80f2 20261
c19d1205
ZW
20262 size = (size + 3) >> 2;
20263 if (size > 0xff)
20264 as_bad (_("too many unwind opcodes"));
bfae80f2 20265
c19d1205
ZW
20266 frag_align (2, 0, 0);
20267 record_alignment (now_seg, 2);
20268 unwind.table_entry = expr_build_dot ();
20269
20270 /* Allocate the table entry. */
20271 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
20272 /* PR 13449: Zero the table entries in case some of them are not used. */
20273 memset (ptr, 0, (size << 2) + 4);
c19d1205 20274 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 20275
c19d1205 20276 switch (unwind.personality_index)
bfae80f2 20277 {
c19d1205
ZW
20278 case -1:
20279 /* ??? Should this be a PLT generating relocation? */
20280 /* Custom personality routine. */
20281 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20282 BFD_RELOC_ARM_PREL31);
bfae80f2 20283
c19d1205
ZW
20284 where += 4;
20285 ptr += 4;
bfae80f2 20286
c19d1205 20287 /* Set the first byte to the number of additional words. */
5011093d 20288 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
20289 n = 3;
20290 break;
bfae80f2 20291
c19d1205
ZW
20292 /* ABI defined personality routines. */
20293 case 0:
20294 /* Three opcodes bytes are packed into the first word. */
20295 data = 0x80;
20296 n = 3;
20297 break;
bfae80f2 20298
c19d1205
ZW
20299 case 1:
20300 case 2:
20301 /* The size and first two opcode bytes go in the first word. */
20302 data = ((0x80 + unwind.personality_index) << 8) | size;
20303 n = 2;
20304 break;
bfae80f2 20305
c19d1205
ZW
20306 default:
20307 /* Should never happen. */
20308 abort ();
20309 }
bfae80f2 20310
c19d1205
ZW
20311 /* Pack the opcodes into words (MSB first), reversing the list at the same
20312 time. */
20313 while (unwind.opcode_count > 0)
20314 {
20315 if (n == 0)
20316 {
20317 md_number_to_chars (ptr, data, 4);
20318 ptr += 4;
20319 n = 4;
20320 data = 0;
20321 }
20322 unwind.opcode_count--;
20323 n--;
20324 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20325 }
20326
20327 /* Finish off the last word. */
20328 if (n < 4)
20329 {
20330 /* Pad with "finish" opcodes. */
20331 while (n--)
20332 data = (data << 8) | 0xb0;
20333
20334 md_number_to_chars (ptr, data, 4);
20335 }
20336
20337 if (!have_data)
20338 {
20339 /* Add an empty descriptor if there is no user-specified data. */
20340 ptr = frag_more (4);
20341 md_number_to_chars (ptr, 0, 4);
20342 }
20343
20344 return 0;
bfae80f2
RE
20345}
20346
f0927246
NC
20347
20348/* Initialize the DWARF-2 unwind information for this procedure. */
20349
20350void
20351tc_arm_frame_initial_instructions (void)
20352{
20353 cfi_add_CFA_def_cfa (REG_SP, 0);
20354}
20355#endif /* OBJ_ELF */
20356
c19d1205
ZW
20357/* Convert REGNAME to a DWARF-2 register number. */
20358
20359int
1df69f4f 20360tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 20361{
1df69f4f 20362 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
20363
20364 if (reg == FAIL)
20365 return -1;
20366
20367 return reg;
bfae80f2
RE
20368}
20369
f0927246 20370#ifdef TE_PE
c19d1205 20371void
f0927246 20372tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 20373{
91d6fa6a 20374 expressionS exp;
bfae80f2 20375
91d6fa6a
NC
20376 exp.X_op = O_secrel;
20377 exp.X_add_symbol = symbol;
20378 exp.X_add_number = 0;
20379 emit_expr (&exp, size);
f0927246
NC
20380}
20381#endif
bfae80f2 20382
c19d1205 20383/* MD interface: Symbol and relocation handling. */
bfae80f2 20384
2fc8bdac
ZW
20385/* Return the address within the segment that a PC-relative fixup is
20386 relative to. For ARM, PC-relative fixups applied to instructions
20387 are generally relative to the location of the fixup plus 8 bytes.
20388 Thumb branches are offset by 4, and Thumb loads relative to PC
20389 require special handling. */
bfae80f2 20390
c19d1205 20391long
2fc8bdac 20392md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 20393{
2fc8bdac
ZW
20394 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20395
20396 /* If this is pc-relative and we are going to emit a relocation
20397 then we just want to put out any pipeline compensation that the linker
53baae48
NC
20398 will need. Otherwise we want to use the calculated base.
20399 For WinCE we skip the bias for externals as well, since this
20400 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 20401 if (fixP->fx_pcrel
2fc8bdac 20402 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
20403 || (arm_force_relocation (fixP)
20404#ifdef TE_WINCE
20405 && !S_IS_EXTERNAL (fixP->fx_addsy)
20406#endif
20407 )))
2fc8bdac 20408 base = 0;
bfae80f2 20409
267bf995 20410
c19d1205 20411 switch (fixP->fx_r_type)
bfae80f2 20412 {
2fc8bdac
ZW
20413 /* PC relative addressing on the Thumb is slightly odd as the
20414 bottom two bits of the PC are forced to zero for the
20415 calculation. This happens *after* application of the
20416 pipeline offset. However, Thumb adrl already adjusts for
20417 this, so we need not do it again. */
c19d1205 20418 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 20419 return base & ~3;
c19d1205
ZW
20420
20421 case BFD_RELOC_ARM_THUMB_OFFSET:
20422 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 20423 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 20424 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 20425 return (base + 4) & ~3;
c19d1205 20426
2fc8bdac
ZW
20427 /* Thumb branches are simply offset by +4. */
20428 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20429 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20430 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20431 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 20432 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 20433 return base + 4;
bfae80f2 20434
267bf995 20435 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
20436 if (fixP->fx_addsy
20437 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20438 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20439 && ARM_IS_FUNC (fixP->fx_addsy)
20440 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20441 base = fixP->fx_where + fixP->fx_frag->fr_address;
20442 return base + 4;
20443
00adf2d4
JB
20444 /* BLX is like branches above, but forces the low two bits of PC to
20445 zero. */
486499d0
CL
20446 case BFD_RELOC_THUMB_PCREL_BLX:
20447 if (fixP->fx_addsy
20448 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20449 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20450 && THUMB_IS_FUNC (fixP->fx_addsy)
20451 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20452 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
20453 return (base + 4) & ~3;
20454
2fc8bdac
ZW
20455 /* ARM mode branches are offset by +8. However, the Windows CE
20456 loader expects the relocation not to take this into account. */
267bf995 20457 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
20458 if (fixP->fx_addsy
20459 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20460 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20461 && ARM_IS_FUNC (fixP->fx_addsy)
20462 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20463 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20464 return base + 8;
267bf995 20465
486499d0
CL
20466 case BFD_RELOC_ARM_PCREL_CALL:
20467 if (fixP->fx_addsy
20468 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20469 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20470 && THUMB_IS_FUNC (fixP->fx_addsy)
20471 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20472 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20473 return base + 8;
267bf995 20474
2fc8bdac 20475 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 20476 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 20477 case BFD_RELOC_ARM_PLT32:
c19d1205 20478#ifdef TE_WINCE
5f4273c7 20479 /* When handling fixups immediately, because we have already
53baae48
NC
20480 discovered the value of a symbol, or the address of the frag involved
20481 we must account for the offset by +8, as the OS loader will never see the reloc.
20482 see fixup_segment() in write.c
20483 The S_IS_EXTERNAL test handles the case of global symbols.
20484 Those need the calculated base, not just the pipe compensation the linker will need. */
20485 if (fixP->fx_pcrel
20486 && fixP->fx_addsy != NULL
20487 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20488 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20489 return base + 8;
2fc8bdac 20490 return base;
c19d1205 20491#else
2fc8bdac 20492 return base + 8;
c19d1205 20493#endif
2fc8bdac 20494
267bf995 20495
2fc8bdac
ZW
20496 /* ARM mode loads relative to PC are also offset by +8. Unlike
20497 branches, the Windows CE loader *does* expect the relocation
20498 to take this into account. */
20499 case BFD_RELOC_ARM_OFFSET_IMM:
20500 case BFD_RELOC_ARM_OFFSET_IMM8:
20501 case BFD_RELOC_ARM_HWLITERAL:
20502 case BFD_RELOC_ARM_LITERAL:
20503 case BFD_RELOC_ARM_CP_OFF_IMM:
20504 return base + 8;
20505
20506
20507 /* Other PC-relative relocations are un-offset. */
20508 default:
20509 return base;
20510 }
bfae80f2
RE
20511}
20512
c19d1205
ZW
20513/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20514 Otherwise we have no need to default values of symbols. */
20515
20516symbolS *
20517md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 20518{
c19d1205
ZW
20519#ifdef OBJ_ELF
20520 if (name[0] == '_' && name[1] == 'G'
20521 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20522 {
20523 if (!GOT_symbol)
20524 {
20525 if (symbol_find (name))
bd3ba5d1 20526 as_bad (_("GOT already in the symbol table"));
bfae80f2 20527
c19d1205
ZW
20528 GOT_symbol = symbol_new (name, undefined_section,
20529 (valueT) 0, & zero_address_frag);
20530 }
bfae80f2 20531
c19d1205 20532 return GOT_symbol;
bfae80f2 20533 }
c19d1205 20534#endif
bfae80f2 20535
c921be7d 20536 return NULL;
bfae80f2
RE
20537}
20538
55cf6793 20539/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
20540 computed as two separate immediate values, added together. We
20541 already know that this value cannot be computed by just one ARM
20542 instruction. */
20543
20544static unsigned int
20545validate_immediate_twopart (unsigned int val,
20546 unsigned int * highpart)
bfae80f2 20547{
c19d1205
ZW
20548 unsigned int a;
20549 unsigned int i;
bfae80f2 20550
c19d1205
ZW
20551 for (i = 0; i < 32; i += 2)
20552 if (((a = rotate_left (val, i)) & 0xff) != 0)
20553 {
20554 if (a & 0xff00)
20555 {
20556 if (a & ~ 0xffff)
20557 continue;
20558 * highpart = (a >> 8) | ((i + 24) << 7);
20559 }
20560 else if (a & 0xff0000)
20561 {
20562 if (a & 0xff000000)
20563 continue;
20564 * highpart = (a >> 16) | ((i + 16) << 7);
20565 }
20566 else
20567 {
9c2799c2 20568 gas_assert (a & 0xff000000);
c19d1205
ZW
20569 * highpart = (a >> 24) | ((i + 8) << 7);
20570 }
bfae80f2 20571
c19d1205
ZW
20572 return (a & 0xff) | (i << 7);
20573 }
bfae80f2 20574
c19d1205 20575 return FAIL;
bfae80f2
RE
20576}
20577
c19d1205
ZW
20578static int
20579validate_offset_imm (unsigned int val, int hwse)
20580{
20581 if ((hwse && val > 255) || val > 4095)
20582 return FAIL;
20583 return val;
20584}
bfae80f2 20585
55cf6793 20586/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20587 negative immediate constant by altering the instruction. A bit of
20588 a hack really.
20589 MOV <-> MVN
20590 AND <-> BIC
20591 ADC <-> SBC
20592 by inverting the second operand, and
20593 ADD <-> SUB
20594 CMP <-> CMN
20595 by negating the second operand. */
bfae80f2 20596
c19d1205
ZW
20597static int
20598negate_data_op (unsigned long * instruction,
20599 unsigned long value)
bfae80f2 20600{
c19d1205
ZW
20601 int op, new_inst;
20602 unsigned long negated, inverted;
bfae80f2 20603
c19d1205
ZW
20604 negated = encode_arm_immediate (-value);
20605 inverted = encode_arm_immediate (~value);
bfae80f2 20606
c19d1205
ZW
20607 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20608 switch (op)
bfae80f2 20609 {
c19d1205
ZW
20610 /* First negates. */
20611 case OPCODE_SUB: /* ADD <-> SUB */
20612 new_inst = OPCODE_ADD;
20613 value = negated;
20614 break;
bfae80f2 20615
c19d1205
ZW
20616 case OPCODE_ADD:
20617 new_inst = OPCODE_SUB;
20618 value = negated;
20619 break;
bfae80f2 20620
c19d1205
ZW
20621 case OPCODE_CMP: /* CMP <-> CMN */
20622 new_inst = OPCODE_CMN;
20623 value = negated;
20624 break;
bfae80f2 20625
c19d1205
ZW
20626 case OPCODE_CMN:
20627 new_inst = OPCODE_CMP;
20628 value = negated;
20629 break;
bfae80f2 20630
c19d1205
ZW
20631 /* Now Inverted ops. */
20632 case OPCODE_MOV: /* MOV <-> MVN */
20633 new_inst = OPCODE_MVN;
20634 value = inverted;
20635 break;
bfae80f2 20636
c19d1205
ZW
20637 case OPCODE_MVN:
20638 new_inst = OPCODE_MOV;
20639 value = inverted;
20640 break;
bfae80f2 20641
c19d1205
ZW
20642 case OPCODE_AND: /* AND <-> BIC */
20643 new_inst = OPCODE_BIC;
20644 value = inverted;
20645 break;
bfae80f2 20646
c19d1205
ZW
20647 case OPCODE_BIC:
20648 new_inst = OPCODE_AND;
20649 value = inverted;
20650 break;
bfae80f2 20651
c19d1205
ZW
20652 case OPCODE_ADC: /* ADC <-> SBC */
20653 new_inst = OPCODE_SBC;
20654 value = inverted;
20655 break;
bfae80f2 20656
c19d1205
ZW
20657 case OPCODE_SBC:
20658 new_inst = OPCODE_ADC;
20659 value = inverted;
20660 break;
bfae80f2 20661
c19d1205
ZW
20662 /* We cannot do anything. */
20663 default:
20664 return FAIL;
b99bd4ef
NC
20665 }
20666
c19d1205
ZW
20667 if (value == (unsigned) FAIL)
20668 return FAIL;
20669
20670 *instruction &= OPCODE_MASK;
20671 *instruction |= new_inst << DATA_OP_SHIFT;
20672 return value;
b99bd4ef
NC
20673}
20674
ef8d22e6
PB
20675/* Like negate_data_op, but for Thumb-2. */
20676
20677static unsigned int
16dd5e42 20678thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20679{
20680 int op, new_inst;
20681 int rd;
16dd5e42 20682 unsigned int negated, inverted;
ef8d22e6
PB
20683
20684 negated = encode_thumb32_immediate (-value);
20685 inverted = encode_thumb32_immediate (~value);
20686
20687 rd = (*instruction >> 8) & 0xf;
20688 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20689 switch (op)
20690 {
20691 /* ADD <-> SUB. Includes CMP <-> CMN. */
20692 case T2_OPCODE_SUB:
20693 new_inst = T2_OPCODE_ADD;
20694 value = negated;
20695 break;
20696
20697 case T2_OPCODE_ADD:
20698 new_inst = T2_OPCODE_SUB;
20699 value = negated;
20700 break;
20701
20702 /* ORR <-> ORN. Includes MOV <-> MVN. */
20703 case T2_OPCODE_ORR:
20704 new_inst = T2_OPCODE_ORN;
20705 value = inverted;
20706 break;
20707
20708 case T2_OPCODE_ORN:
20709 new_inst = T2_OPCODE_ORR;
20710 value = inverted;
20711 break;
20712
20713 /* AND <-> BIC. TST has no inverted equivalent. */
20714 case T2_OPCODE_AND:
20715 new_inst = T2_OPCODE_BIC;
20716 if (rd == 15)
20717 value = FAIL;
20718 else
20719 value = inverted;
20720 break;
20721
20722 case T2_OPCODE_BIC:
20723 new_inst = T2_OPCODE_AND;
20724 value = inverted;
20725 break;
20726
20727 /* ADC <-> SBC */
20728 case T2_OPCODE_ADC:
20729 new_inst = T2_OPCODE_SBC;
20730 value = inverted;
20731 break;
20732
20733 case T2_OPCODE_SBC:
20734 new_inst = T2_OPCODE_ADC;
20735 value = inverted;
20736 break;
20737
20738 /* We cannot do anything. */
20739 default:
20740 return FAIL;
20741 }
20742
16dd5e42 20743 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20744 return FAIL;
20745
20746 *instruction &= T2_OPCODE_MASK;
20747 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20748 return value;
20749}
20750
8f06b2d8
PB
20751/* Read a 32-bit thumb instruction from buf. */
20752static unsigned long
20753get_thumb32_insn (char * buf)
20754{
20755 unsigned long insn;
20756 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20757 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20758
20759 return insn;
20760}
20761
a8bc6c78
PB
20762
20763/* We usually want to set the low bit on the address of thumb function
20764 symbols. In particular .word foo - . should have the low bit set.
20765 Generic code tries to fold the difference of two symbols to
20766 a constant. Prevent this and force a relocation when the first symbols
20767 is a thumb function. */
c921be7d
NC
20768
20769bfd_boolean
a8bc6c78
PB
20770arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20771{
20772 if (op == O_subtract
20773 && l->X_op == O_symbol
20774 && r->X_op == O_symbol
20775 && THUMB_IS_FUNC (l->X_add_symbol))
20776 {
20777 l->X_op = O_subtract;
20778 l->X_op_symbol = r->X_add_symbol;
20779 l->X_add_number -= r->X_add_number;
c921be7d 20780 return TRUE;
a8bc6c78 20781 }
c921be7d 20782
a8bc6c78 20783 /* Process as normal. */
c921be7d 20784 return FALSE;
a8bc6c78
PB
20785}
20786
4a42ebbc
RR
20787/* Encode Thumb2 unconditional branches and calls. The encoding
20788 for the 2 are identical for the immediate values. */
20789
20790static void
20791encode_thumb2_b_bl_offset (char * buf, offsetT value)
20792{
20793#define T2I1I2MASK ((1 << 13) | (1 << 11))
20794 offsetT newval;
20795 offsetT newval2;
20796 addressT S, I1, I2, lo, hi;
20797
20798 S = (value >> 24) & 0x01;
20799 I1 = (value >> 23) & 0x01;
20800 I2 = (value >> 22) & 0x01;
20801 hi = (value >> 12) & 0x3ff;
fa94de6b 20802 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
20803 newval = md_chars_to_number (buf, THUMB_SIZE);
20804 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20805 newval |= (S << 10) | hi;
20806 newval2 &= ~T2I1I2MASK;
20807 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20808 md_number_to_chars (buf, newval, THUMB_SIZE);
20809 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20810}
20811
c19d1205 20812void
55cf6793 20813md_apply_fix (fixS * fixP,
c19d1205
ZW
20814 valueT * valP,
20815 segT seg)
20816{
20817 offsetT value = * valP;
20818 offsetT newval;
20819 unsigned int newimm;
20820 unsigned long temp;
20821 int sign;
20822 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20823
9c2799c2 20824 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20825
c19d1205 20826 /* Note whether this will delete the relocation. */
4962c51a 20827
c19d1205
ZW
20828 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20829 fixP->fx_done = 1;
b99bd4ef 20830
adbaf948 20831 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20832 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20833 for emit_reloc. */
20834 value &= 0xffffffff;
20835 value ^= 0x80000000;
5f4273c7 20836 value -= 0x80000000;
adbaf948
ZW
20837
20838 *valP = value;
c19d1205 20839 fixP->fx_addnumber = value;
b99bd4ef 20840
adbaf948
ZW
20841 /* Same treatment for fixP->fx_offset. */
20842 fixP->fx_offset &= 0xffffffff;
20843 fixP->fx_offset ^= 0x80000000;
20844 fixP->fx_offset -= 0x80000000;
20845
c19d1205 20846 switch (fixP->fx_r_type)
b99bd4ef 20847 {
c19d1205
ZW
20848 case BFD_RELOC_NONE:
20849 /* This will need to go in the object file. */
20850 fixP->fx_done = 0;
20851 break;
b99bd4ef 20852
c19d1205
ZW
20853 case BFD_RELOC_ARM_IMMEDIATE:
20854 /* We claim that this fixup has been processed here,
20855 even if in fact we generate an error because we do
20856 not have a reloc for it, so tc_gen_reloc will reject it. */
20857 fixP->fx_done = 1;
b99bd4ef 20858
77db8e2e 20859 if (fixP->fx_addsy)
b99bd4ef 20860 {
77db8e2e 20861 const char *msg = 0;
b99bd4ef 20862
77db8e2e
NC
20863 if (! S_IS_DEFINED (fixP->fx_addsy))
20864 msg = _("undefined symbol %s used as an immediate value");
20865 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20866 msg = _("symbol %s is in a different section");
20867 else if (S_IS_WEAK (fixP->fx_addsy))
20868 msg = _("symbol %s is weak and may be overridden later");
20869
20870 if (msg)
20871 {
20872 as_bad_where (fixP->fx_file, fixP->fx_line,
20873 msg, S_GET_NAME (fixP->fx_addsy));
20874 break;
20875 }
42e5fcbf
AS
20876 }
20877
c19d1205
ZW
20878 temp = md_chars_to_number (buf, INSN_SIZE);
20879
5e73442d
SL
20880 /* If the offset is negative, we should use encoding A2 for ADR. */
20881 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
20882 newimm = negate_data_op (&temp, value);
20883 else
20884 {
20885 newimm = encode_arm_immediate (value);
20886
20887 /* If the instruction will fail, see if we can fix things up by
20888 changing the opcode. */
20889 if (newimm == (unsigned int) FAIL)
20890 newimm = negate_data_op (&temp, value);
20891 }
20892
20893 if (newimm == (unsigned int) FAIL)
b99bd4ef 20894 {
c19d1205
ZW
20895 as_bad_where (fixP->fx_file, fixP->fx_line,
20896 _("invalid constant (%lx) after fixup"),
20897 (unsigned long) value);
20898 break;
b99bd4ef 20899 }
b99bd4ef 20900
c19d1205
ZW
20901 newimm |= (temp & 0xfffff000);
20902 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20903 break;
b99bd4ef 20904
c19d1205
ZW
20905 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20906 {
20907 unsigned int highpart = 0;
20908 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 20909
77db8e2e 20910 if (fixP->fx_addsy)
42e5fcbf 20911 {
77db8e2e 20912 const char *msg = 0;
42e5fcbf 20913
77db8e2e
NC
20914 if (! S_IS_DEFINED (fixP->fx_addsy))
20915 msg = _("undefined symbol %s used as an immediate value");
20916 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20917 msg = _("symbol %s is in a different section");
20918 else if (S_IS_WEAK (fixP->fx_addsy))
20919 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 20920
77db8e2e
NC
20921 if (msg)
20922 {
20923 as_bad_where (fixP->fx_file, fixP->fx_line,
20924 msg, S_GET_NAME (fixP->fx_addsy));
20925 break;
20926 }
20927 }
fa94de6b 20928
c19d1205
ZW
20929 newimm = encode_arm_immediate (value);
20930 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 20931
c19d1205
ZW
20932 /* If the instruction will fail, see if we can fix things up by
20933 changing the opcode. */
20934 if (newimm == (unsigned int) FAIL
20935 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20936 {
20937 /* No ? OK - try using two ADD instructions to generate
20938 the value. */
20939 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 20940
c19d1205
ZW
20941 /* Yes - then make sure that the second instruction is
20942 also an add. */
20943 if (newimm != (unsigned int) FAIL)
20944 newinsn = temp;
20945 /* Still No ? Try using a negated value. */
20946 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20947 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20948 /* Otherwise - give up. */
20949 else
20950 {
20951 as_bad_where (fixP->fx_file, fixP->fx_line,
20952 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20953 (long) value);
20954 break;
20955 }
b99bd4ef 20956
c19d1205
ZW
20957 /* Replace the first operand in the 2nd instruction (which
20958 is the PC) with the destination register. We have
20959 already added in the PC in the first instruction and we
20960 do not want to do it again. */
20961 newinsn &= ~ 0xf0000;
20962 newinsn |= ((newinsn & 0x0f000) << 4);
20963 }
b99bd4ef 20964
c19d1205
ZW
20965 newimm |= (temp & 0xfffff000);
20966 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 20967
c19d1205
ZW
20968 highpart |= (newinsn & 0xfffff000);
20969 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20970 }
20971 break;
b99bd4ef 20972
c19d1205 20973 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20974 if (!fixP->fx_done && seg->use_rela_p)
20975 value = 0;
20976
c19d1205 20977 case BFD_RELOC_ARM_LITERAL:
26d97720 20978 sign = value > 0;
b99bd4ef 20979
c19d1205
ZW
20980 if (value < 0)
20981 value = - value;
b99bd4ef 20982
c19d1205 20983 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 20984 {
c19d1205
ZW
20985 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20986 as_bad_where (fixP->fx_file, fixP->fx_line,
20987 _("invalid literal constant: pool needs to be closer"));
20988 else
20989 as_bad_where (fixP->fx_file, fixP->fx_line,
20990 _("bad immediate value for offset (%ld)"),
20991 (long) value);
20992 break;
f03698e6
RE
20993 }
20994
c19d1205 20995 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
20996 if (value == 0)
20997 newval &= 0xfffff000;
20998 else
20999 {
21000 newval &= 0xff7ff000;
21001 newval |= value | (sign ? INDEX_UP : 0);
21002 }
c19d1205
ZW
21003 md_number_to_chars (buf, newval, INSN_SIZE);
21004 break;
b99bd4ef 21005
c19d1205
ZW
21006 case BFD_RELOC_ARM_OFFSET_IMM8:
21007 case BFD_RELOC_ARM_HWLITERAL:
26d97720 21008 sign = value > 0;
b99bd4ef 21009
c19d1205
ZW
21010 if (value < 0)
21011 value = - value;
b99bd4ef 21012
c19d1205 21013 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 21014 {
c19d1205
ZW
21015 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21016 as_bad_where (fixP->fx_file, fixP->fx_line,
21017 _("invalid literal constant: pool needs to be closer"));
21018 else
f9d4405b 21019 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
21020 (long) value);
21021 break;
b99bd4ef
NC
21022 }
21023
c19d1205 21024 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
21025 if (value == 0)
21026 newval &= 0xfffff0f0;
21027 else
21028 {
21029 newval &= 0xff7ff0f0;
21030 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21031 }
c19d1205
ZW
21032 md_number_to_chars (buf, newval, INSN_SIZE);
21033 break;
b99bd4ef 21034
c19d1205
ZW
21035 case BFD_RELOC_ARM_T32_OFFSET_U8:
21036 if (value < 0 || value > 1020 || value % 4 != 0)
21037 as_bad_where (fixP->fx_file, fixP->fx_line,
21038 _("bad immediate value for offset (%ld)"), (long) value);
21039 value /= 4;
b99bd4ef 21040
c19d1205 21041 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
21042 newval |= value;
21043 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21044 break;
b99bd4ef 21045
c19d1205
ZW
21046 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21047 /* This is a complicated relocation used for all varieties of Thumb32
21048 load/store instruction with immediate offset:
21049
21050 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21051 *4, optional writeback(W)
21052 (doubleword load/store)
21053
21054 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21055 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21056 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21057 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21058 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21059
21060 Uppercase letters indicate bits that are already encoded at
21061 this point. Lowercase letters are our problem. For the
21062 second block of instructions, the secondary opcode nybble
21063 (bits 8..11) is present, and bit 23 is zero, even if this is
21064 a PC-relative operation. */
21065 newval = md_chars_to_number (buf, THUMB_SIZE);
21066 newval <<= 16;
21067 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 21068
c19d1205 21069 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 21070 {
c19d1205
ZW
21071 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21072 if (value >= 0)
21073 newval |= (1 << 23);
21074 else
21075 value = -value;
21076 if (value % 4 != 0)
21077 {
21078 as_bad_where (fixP->fx_file, fixP->fx_line,
21079 _("offset not a multiple of 4"));
21080 break;
21081 }
21082 value /= 4;
216d22bc 21083 if (value > 0xff)
c19d1205
ZW
21084 {
21085 as_bad_where (fixP->fx_file, fixP->fx_line,
21086 _("offset out of range"));
21087 break;
21088 }
21089 newval &= ~0xff;
b99bd4ef 21090 }
c19d1205 21091 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 21092 {
c19d1205
ZW
21093 /* PC-relative, 12-bit offset. */
21094 if (value >= 0)
21095 newval |= (1 << 23);
21096 else
21097 value = -value;
216d22bc 21098 if (value > 0xfff)
c19d1205
ZW
21099 {
21100 as_bad_where (fixP->fx_file, fixP->fx_line,
21101 _("offset out of range"));
21102 break;
21103 }
21104 newval &= ~0xfff;
b99bd4ef 21105 }
c19d1205 21106 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 21107 {
c19d1205
ZW
21108 /* Writeback: 8-bit, +/- offset. */
21109 if (value >= 0)
21110 newval |= (1 << 9);
21111 else
21112 value = -value;
216d22bc 21113 if (value > 0xff)
c19d1205
ZW
21114 {
21115 as_bad_where (fixP->fx_file, fixP->fx_line,
21116 _("offset out of range"));
21117 break;
21118 }
21119 newval &= ~0xff;
b99bd4ef 21120 }
c19d1205 21121 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 21122 {
c19d1205 21123 /* T-instruction: positive 8-bit offset. */
216d22bc 21124 if (value < 0 || value > 0xff)
b99bd4ef 21125 {
c19d1205
ZW
21126 as_bad_where (fixP->fx_file, fixP->fx_line,
21127 _("offset out of range"));
21128 break;
b99bd4ef 21129 }
c19d1205
ZW
21130 newval &= ~0xff;
21131 newval |= value;
b99bd4ef
NC
21132 }
21133 else
b99bd4ef 21134 {
c19d1205
ZW
21135 /* Positive 12-bit or negative 8-bit offset. */
21136 int limit;
21137 if (value >= 0)
b99bd4ef 21138 {
c19d1205
ZW
21139 newval |= (1 << 23);
21140 limit = 0xfff;
21141 }
21142 else
21143 {
21144 value = -value;
21145 limit = 0xff;
21146 }
21147 if (value > limit)
21148 {
21149 as_bad_where (fixP->fx_file, fixP->fx_line,
21150 _("offset out of range"));
21151 break;
b99bd4ef 21152 }
c19d1205 21153 newval &= ~limit;
b99bd4ef 21154 }
b99bd4ef 21155
c19d1205
ZW
21156 newval |= value;
21157 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21158 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21159 break;
404ff6b5 21160
c19d1205
ZW
21161 case BFD_RELOC_ARM_SHIFT_IMM:
21162 newval = md_chars_to_number (buf, INSN_SIZE);
21163 if (((unsigned long) value) > 32
21164 || (value == 32
21165 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21166 {
21167 as_bad_where (fixP->fx_file, fixP->fx_line,
21168 _("shift expression is too large"));
21169 break;
21170 }
404ff6b5 21171
c19d1205
ZW
21172 if (value == 0)
21173 /* Shifts of zero must be done as lsl. */
21174 newval &= ~0x60;
21175 else if (value == 32)
21176 value = 0;
21177 newval &= 0xfffff07f;
21178 newval |= (value & 0x1f) << 7;
21179 md_number_to_chars (buf, newval, INSN_SIZE);
21180 break;
404ff6b5 21181
c19d1205 21182 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 21183 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 21184 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 21185 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
21186 /* We claim that this fixup has been processed here,
21187 even if in fact we generate an error because we do
21188 not have a reloc for it, so tc_gen_reloc will reject it. */
21189 fixP->fx_done = 1;
404ff6b5 21190
c19d1205
ZW
21191 if (fixP->fx_addsy
21192 && ! S_IS_DEFINED (fixP->fx_addsy))
21193 {
21194 as_bad_where (fixP->fx_file, fixP->fx_line,
21195 _("undefined symbol %s used as an immediate value"),
21196 S_GET_NAME (fixP->fx_addsy));
21197 break;
21198 }
404ff6b5 21199
c19d1205
ZW
21200 newval = md_chars_to_number (buf, THUMB_SIZE);
21201 newval <<= 16;
21202 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 21203
16805f35
PB
21204 newimm = FAIL;
21205 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21206 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
21207 {
21208 newimm = encode_thumb32_immediate (value);
21209 if (newimm == (unsigned int) FAIL)
21210 newimm = thumb32_negate_data_op (&newval, value);
21211 }
16805f35
PB
21212 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21213 && newimm == (unsigned int) FAIL)
92e90b6e 21214 {
16805f35
PB
21215 /* Turn add/sum into addw/subw. */
21216 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21217 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
21218 /* No flat 12-bit imm encoding for addsw/subsw. */
21219 if ((newval & 0x00100000) == 0)
e9f89963 21220 {
40f246e3
NC
21221 /* 12 bit immediate for addw/subw. */
21222 if (value < 0)
21223 {
21224 value = -value;
21225 newval ^= 0x00a00000;
21226 }
21227 if (value > 0xfff)
21228 newimm = (unsigned int) FAIL;
21229 else
21230 newimm = value;
e9f89963 21231 }
92e90b6e 21232 }
cc8a6dd0 21233
c19d1205 21234 if (newimm == (unsigned int)FAIL)
3631a3c8 21235 {
c19d1205
ZW
21236 as_bad_where (fixP->fx_file, fixP->fx_line,
21237 _("invalid constant (%lx) after fixup"),
21238 (unsigned long) value);
21239 break;
3631a3c8
NC
21240 }
21241
c19d1205
ZW
21242 newval |= (newimm & 0x800) << 15;
21243 newval |= (newimm & 0x700) << 4;
21244 newval |= (newimm & 0x0ff);
cc8a6dd0 21245
c19d1205
ZW
21246 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21247 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21248 break;
a737bd4d 21249
3eb17e6b 21250 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
21251 if (((unsigned long) value) > 0xffff)
21252 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 21253 _("invalid smc expression"));
2fc8bdac 21254 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21255 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21256 md_number_to_chars (buf, newval, INSN_SIZE);
21257 break;
a737bd4d 21258
90ec0d68
MGD
21259 case BFD_RELOC_ARM_HVC:
21260 if (((unsigned long) value) > 0xffff)
21261 as_bad_where (fixP->fx_file, fixP->fx_line,
21262 _("invalid hvc expression"));
21263 newval = md_chars_to_number (buf, INSN_SIZE);
21264 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21265 md_number_to_chars (buf, newval, INSN_SIZE);
21266 break;
21267
c19d1205 21268 case BFD_RELOC_ARM_SWI:
adbaf948 21269 if (fixP->tc_fix_data != 0)
c19d1205
ZW
21270 {
21271 if (((unsigned long) value) > 0xff)
21272 as_bad_where (fixP->fx_file, fixP->fx_line,
21273 _("invalid swi expression"));
2fc8bdac 21274 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
21275 newval |= value;
21276 md_number_to_chars (buf, newval, THUMB_SIZE);
21277 }
21278 else
21279 {
21280 if (((unsigned long) value) > 0x00ffffff)
21281 as_bad_where (fixP->fx_file, fixP->fx_line,
21282 _("invalid swi expression"));
2fc8bdac 21283 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21284 newval |= value;
21285 md_number_to_chars (buf, newval, INSN_SIZE);
21286 }
21287 break;
a737bd4d 21288
c19d1205
ZW
21289 case BFD_RELOC_ARM_MULTI:
21290 if (((unsigned long) value) > 0xffff)
21291 as_bad_where (fixP->fx_file, fixP->fx_line,
21292 _("invalid expression in load/store multiple"));
21293 newval = value | md_chars_to_number (buf, INSN_SIZE);
21294 md_number_to_chars (buf, newval, INSN_SIZE);
21295 break;
a737bd4d 21296
c19d1205 21297#ifdef OBJ_ELF
39b41c9c 21298 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
21299
21300 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21301 && fixP->fx_addsy
34e77a92 21302 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21303 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21304 && THUMB_IS_FUNC (fixP->fx_addsy))
21305 /* Flip the bl to blx. This is a simple flip
21306 bit here because we generate PCREL_CALL for
21307 unconditional bls. */
21308 {
21309 newval = md_chars_to_number (buf, INSN_SIZE);
21310 newval = newval | 0x10000000;
21311 md_number_to_chars (buf, newval, INSN_SIZE);
21312 temp = 1;
21313 fixP->fx_done = 1;
21314 }
39b41c9c
PB
21315 else
21316 temp = 3;
21317 goto arm_branch_common;
21318
21319 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
21320 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21321 && fixP->fx_addsy
34e77a92 21322 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21323 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21324 && THUMB_IS_FUNC (fixP->fx_addsy))
21325 {
21326 /* This would map to a bl<cond>, b<cond>,
21327 b<always> to a Thumb function. We
21328 need to force a relocation for this particular
21329 case. */
21330 newval = md_chars_to_number (buf, INSN_SIZE);
21331 fixP->fx_done = 0;
21332 }
21333
2fc8bdac 21334 case BFD_RELOC_ARM_PLT32:
c19d1205 21335#endif
39b41c9c
PB
21336 case BFD_RELOC_ARM_PCREL_BRANCH:
21337 temp = 3;
21338 goto arm_branch_common;
a737bd4d 21339
39b41c9c 21340 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 21341
39b41c9c 21342 temp = 1;
267bf995
RR
21343 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21344 && fixP->fx_addsy
34e77a92 21345 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21346 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21347 && ARM_IS_FUNC (fixP->fx_addsy))
21348 {
21349 /* Flip the blx to a bl and warn. */
21350 const char *name = S_GET_NAME (fixP->fx_addsy);
21351 newval = 0xeb000000;
21352 as_warn_where (fixP->fx_file, fixP->fx_line,
21353 _("blx to '%s' an ARM ISA state function changed to bl"),
21354 name);
21355 md_number_to_chars (buf, newval, INSN_SIZE);
21356 temp = 3;
21357 fixP->fx_done = 1;
21358 }
21359
21360#ifdef OBJ_ELF
21361 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21362 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21363#endif
21364
39b41c9c 21365 arm_branch_common:
c19d1205 21366 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
21367 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21368 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21369 also be be clear. */
21370 if (value & temp)
c19d1205 21371 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
21372 _("misaligned branch destination"));
21373 if ((value & (offsetT)0xfe000000) != (offsetT)0
21374 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 21375 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21376
2fc8bdac 21377 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21378 {
2fc8bdac
ZW
21379 newval = md_chars_to_number (buf, INSN_SIZE);
21380 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
21381 /* Set the H bit on BLX instructions. */
21382 if (temp == 1)
21383 {
21384 if (value & 2)
21385 newval |= 0x01000000;
21386 else
21387 newval &= ~0x01000000;
21388 }
2fc8bdac 21389 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 21390 }
c19d1205 21391 break;
a737bd4d 21392
25fe350b
MS
21393 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21394 /* CBZ can only branch forward. */
a737bd4d 21395
738755b0
MS
21396 /* Attempts to use CBZ to branch to the next instruction
21397 (which, strictly speaking, are prohibited) will be turned into
21398 no-ops.
21399
21400 FIXME: It may be better to remove the instruction completely and
21401 perform relaxation. */
21402 if (value == -2)
2fc8bdac
ZW
21403 {
21404 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 21405 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
21406 md_number_to_chars (buf, newval, THUMB_SIZE);
21407 }
738755b0
MS
21408 else
21409 {
21410 if (value & ~0x7e)
08f10d51 21411 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0
MS
21412
21413 if (fixP->fx_done || !seg->use_rela_p)
21414 {
21415 newval = md_chars_to_number (buf, THUMB_SIZE);
21416 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21417 md_number_to_chars (buf, newval, THUMB_SIZE);
21418 }
21419 }
c19d1205 21420 break;
a737bd4d 21421
c19d1205 21422 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 21423 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 21424 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21425
2fc8bdac
ZW
21426 if (fixP->fx_done || !seg->use_rela_p)
21427 {
21428 newval = md_chars_to_number (buf, THUMB_SIZE);
21429 newval |= (value & 0x1ff) >> 1;
21430 md_number_to_chars (buf, newval, THUMB_SIZE);
21431 }
c19d1205 21432 break;
a737bd4d 21433
c19d1205 21434 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 21435 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 21436 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21437
2fc8bdac
ZW
21438 if (fixP->fx_done || !seg->use_rela_p)
21439 {
21440 newval = md_chars_to_number (buf, THUMB_SIZE);
21441 newval |= (value & 0xfff) >> 1;
21442 md_number_to_chars (buf, newval, THUMB_SIZE);
21443 }
c19d1205 21444 break;
a737bd4d 21445
c19d1205 21446 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
21447 if (fixP->fx_addsy
21448 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21449 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21450 && ARM_IS_FUNC (fixP->fx_addsy)
21451 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21452 {
21453 /* Force a relocation for a branch 20 bits wide. */
21454 fixP->fx_done = 0;
21455 }
08f10d51 21456 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
21457 as_bad_where (fixP->fx_file, fixP->fx_line,
21458 _("conditional branch out of range"));
404ff6b5 21459
2fc8bdac
ZW
21460 if (fixP->fx_done || !seg->use_rela_p)
21461 {
21462 offsetT newval2;
21463 addressT S, J1, J2, lo, hi;
404ff6b5 21464
2fc8bdac
ZW
21465 S = (value & 0x00100000) >> 20;
21466 J2 = (value & 0x00080000) >> 19;
21467 J1 = (value & 0x00040000) >> 18;
21468 hi = (value & 0x0003f000) >> 12;
21469 lo = (value & 0x00000ffe) >> 1;
6c43fab6 21470
2fc8bdac
ZW
21471 newval = md_chars_to_number (buf, THUMB_SIZE);
21472 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21473 newval |= (S << 10) | hi;
21474 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21475 md_number_to_chars (buf, newval, THUMB_SIZE);
21476 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21477 }
c19d1205 21478 break;
6c43fab6 21479
c19d1205 21480 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
21481 /* If there is a blx from a thumb state function to
21482 another thumb function flip this to a bl and warn
21483 about it. */
21484
21485 if (fixP->fx_addsy
34e77a92 21486 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21487 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21488 && THUMB_IS_FUNC (fixP->fx_addsy))
21489 {
21490 const char *name = S_GET_NAME (fixP->fx_addsy);
21491 as_warn_where (fixP->fx_file, fixP->fx_line,
21492 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21493 name);
21494 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21495 newval = newval | 0x1000;
21496 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21497 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21498 fixP->fx_done = 1;
21499 }
21500
21501
21502 goto thumb_bl_common;
21503
c19d1205 21504 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
21505 /* A bl from Thumb state ISA to an internal ARM state function
21506 is converted to a blx. */
21507 if (fixP->fx_addsy
21508 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21509 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21510 && ARM_IS_FUNC (fixP->fx_addsy)
21511 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21512 {
21513 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21514 newval = newval & ~0x1000;
21515 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21516 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21517 fixP->fx_done = 1;
21518 }
21519
21520 thumb_bl_common:
21521
21522#ifdef OBJ_ELF
2b2f5df9
NC
21523 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21524 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
267bf995
RR
21525 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21526#endif
21527
2fc8bdac
ZW
21528 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21529 /* For a BLX instruction, make sure that the relocation is rounded up
21530 to a word boundary. This follows the semantics of the instruction
21531 which specifies that bit 1 of the target address will come from bit
21532 1 of the base address. */
21533 value = (value + 1) & ~ 1;
404ff6b5 21534
2b2f5df9
NC
21535 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21536 {
21537 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21538 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21539 else if ((value & ~0x1ffffff)
21540 && ((value & ~0x1ffffff) != ~0x1ffffff))
21541 as_bad_where (fixP->fx_file, fixP->fx_line,
21542 _("Thumb2 branch out of range"));
21543 }
4a42ebbc
RR
21544
21545 if (fixP->fx_done || !seg->use_rela_p)
21546 encode_thumb2_b_bl_offset (buf, value);
21547
c19d1205 21548 break;
404ff6b5 21549
c19d1205 21550 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
21551 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21552 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 21553
2fc8bdac 21554 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 21555 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 21556
2fc8bdac 21557 break;
a737bd4d 21558
2fc8bdac
ZW
21559 case BFD_RELOC_8:
21560 if (fixP->fx_done || !seg->use_rela_p)
21561 md_number_to_chars (buf, value, 1);
c19d1205 21562 break;
a737bd4d 21563
c19d1205 21564 case BFD_RELOC_16:
2fc8bdac 21565 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21566 md_number_to_chars (buf, value, 2);
c19d1205 21567 break;
a737bd4d 21568
c19d1205 21569#ifdef OBJ_ELF
0855e32b
NS
21570 case BFD_RELOC_ARM_TLS_CALL:
21571 case BFD_RELOC_ARM_THM_TLS_CALL:
21572 case BFD_RELOC_ARM_TLS_DESCSEQ:
21573 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21574 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21575 break;
21576
21577 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21578 case BFD_RELOC_ARM_TLS_GD32:
21579 case BFD_RELOC_ARM_TLS_LE32:
21580 case BFD_RELOC_ARM_TLS_IE32:
21581 case BFD_RELOC_ARM_TLS_LDM32:
21582 case BFD_RELOC_ARM_TLS_LDO32:
21583 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21584 /* fall through */
6c43fab6 21585
c19d1205
ZW
21586 case BFD_RELOC_ARM_GOT32:
21587 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21588 if (fixP->fx_done || !seg->use_rela_p)
21589 md_number_to_chars (buf, 0, 4);
c19d1205 21590 break;
b43420e6
NC
21591
21592 case BFD_RELOC_ARM_GOT_PREL:
21593 if (fixP->fx_done || !seg->use_rela_p)
21594 md_number_to_chars (buf, value, 4);
21595 break;
21596
9a6f4e97
NS
21597 case BFD_RELOC_ARM_TARGET2:
21598 /* TARGET2 is not partial-inplace, so we need to write the
21599 addend here for REL targets, because it won't be written out
21600 during reloc processing later. */
21601 if (fixP->fx_done || !seg->use_rela_p)
21602 md_number_to_chars (buf, fixP->fx_offset, 4);
21603 break;
c19d1205 21604#endif
6c43fab6 21605
c19d1205
ZW
21606 case BFD_RELOC_RVA:
21607 case BFD_RELOC_32:
21608 case BFD_RELOC_ARM_TARGET1:
21609 case BFD_RELOC_ARM_ROSEGREL32:
21610 case BFD_RELOC_ARM_SBREL32:
21611 case BFD_RELOC_32_PCREL:
f0927246
NC
21612#ifdef TE_PE
21613 case BFD_RELOC_32_SECREL:
21614#endif
2fc8bdac 21615 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21616#ifdef TE_WINCE
21617 /* For WinCE we only do this for pcrel fixups. */
21618 if (fixP->fx_done || fixP->fx_pcrel)
21619#endif
21620 md_number_to_chars (buf, value, 4);
c19d1205 21621 break;
6c43fab6 21622
c19d1205
ZW
21623#ifdef OBJ_ELF
21624 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21625 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21626 {
21627 newval = md_chars_to_number (buf, 4) & 0x80000000;
21628 if ((value ^ (value >> 1)) & 0x40000000)
21629 {
21630 as_bad_where (fixP->fx_file, fixP->fx_line,
21631 _("rel31 relocation overflow"));
21632 }
21633 newval |= value & 0x7fffffff;
21634 md_number_to_chars (buf, newval, 4);
21635 }
21636 break;
c19d1205 21637#endif
a737bd4d 21638
c19d1205 21639 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21640 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21641 if (value < -1023 || value > 1023 || (value & 3))
21642 as_bad_where (fixP->fx_file, fixP->fx_line,
21643 _("co-processor offset out of range"));
21644 cp_off_common:
26d97720 21645 sign = value > 0;
c19d1205
ZW
21646 if (value < 0)
21647 value = -value;
8f06b2d8
PB
21648 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21649 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21650 newval = md_chars_to_number (buf, INSN_SIZE);
21651 else
21652 newval = get_thumb32_insn (buf);
26d97720
NS
21653 if (value == 0)
21654 newval &= 0xffffff00;
21655 else
21656 {
21657 newval &= 0xff7fff00;
21658 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21659 }
8f06b2d8
PB
21660 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21661 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21662 md_number_to_chars (buf, newval, INSN_SIZE);
21663 else
21664 put_thumb32_insn (buf, newval);
c19d1205 21665 break;
a737bd4d 21666
c19d1205 21667 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21668 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21669 if (value < -255 || value > 255)
21670 as_bad_where (fixP->fx_file, fixP->fx_line,
21671 _("co-processor offset out of range"));
df7849c5 21672 value *= 4;
c19d1205 21673 goto cp_off_common;
6c43fab6 21674
c19d1205
ZW
21675 case BFD_RELOC_ARM_THUMB_OFFSET:
21676 newval = md_chars_to_number (buf, THUMB_SIZE);
21677 /* Exactly what ranges, and where the offset is inserted depends
21678 on the type of instruction, we can establish this from the
21679 top 4 bits. */
21680 switch (newval >> 12)
21681 {
21682 case 4: /* PC load. */
21683 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21684 forced to zero for these loads; md_pcrel_from has already
21685 compensated for this. */
21686 if (value & 3)
21687 as_bad_where (fixP->fx_file, fixP->fx_line,
21688 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21689 (((unsigned long) fixP->fx_frag->fr_address
21690 + (unsigned long) fixP->fx_where) & ~3)
21691 + (unsigned long) value);
a737bd4d 21692
c19d1205
ZW
21693 if (value & ~0x3fc)
21694 as_bad_where (fixP->fx_file, fixP->fx_line,
21695 _("invalid offset, value too big (0x%08lX)"),
21696 (long) value);
a737bd4d 21697
c19d1205
ZW
21698 newval |= value >> 2;
21699 break;
a737bd4d 21700
c19d1205
ZW
21701 case 9: /* SP load/store. */
21702 if (value & ~0x3fc)
21703 as_bad_where (fixP->fx_file, fixP->fx_line,
21704 _("invalid offset, value too big (0x%08lX)"),
21705 (long) value);
21706 newval |= value >> 2;
21707 break;
6c43fab6 21708
c19d1205
ZW
21709 case 6: /* Word load/store. */
21710 if (value & ~0x7c)
21711 as_bad_where (fixP->fx_file, fixP->fx_line,
21712 _("invalid offset, value too big (0x%08lX)"),
21713 (long) value);
21714 newval |= value << 4; /* 6 - 2. */
21715 break;
a737bd4d 21716
c19d1205
ZW
21717 case 7: /* Byte load/store. */
21718 if (value & ~0x1f)
21719 as_bad_where (fixP->fx_file, fixP->fx_line,
21720 _("invalid offset, value too big (0x%08lX)"),
21721 (long) value);
21722 newval |= value << 6;
21723 break;
a737bd4d 21724
c19d1205
ZW
21725 case 8: /* Halfword load/store. */
21726 if (value & ~0x3e)
21727 as_bad_where (fixP->fx_file, fixP->fx_line,
21728 _("invalid offset, value too big (0x%08lX)"),
21729 (long) value);
21730 newval |= value << 5; /* 6 - 1. */
21731 break;
a737bd4d 21732
c19d1205
ZW
21733 default:
21734 as_bad_where (fixP->fx_file, fixP->fx_line,
21735 "Unable to process relocation for thumb opcode: %lx",
21736 (unsigned long) newval);
21737 break;
21738 }
21739 md_number_to_chars (buf, newval, THUMB_SIZE);
21740 break;
a737bd4d 21741
c19d1205
ZW
21742 case BFD_RELOC_ARM_THUMB_ADD:
21743 /* This is a complicated relocation, since we use it for all of
21744 the following immediate relocations:
a737bd4d 21745
c19d1205
ZW
21746 3bit ADD/SUB
21747 8bit ADD/SUB
21748 9bit ADD/SUB SP word-aligned
21749 10bit ADD PC/SP word-aligned
a737bd4d 21750
c19d1205
ZW
21751 The type of instruction being processed is encoded in the
21752 instruction field:
a737bd4d 21753
c19d1205
ZW
21754 0x8000 SUB
21755 0x00F0 Rd
21756 0x000F Rs
21757 */
21758 newval = md_chars_to_number (buf, THUMB_SIZE);
21759 {
21760 int rd = (newval >> 4) & 0xf;
21761 int rs = newval & 0xf;
21762 int subtract = !!(newval & 0x8000);
a737bd4d 21763
c19d1205
ZW
21764 /* Check for HI regs, only very restricted cases allowed:
21765 Adjusting SP, and using PC or SP to get an address. */
21766 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21767 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21768 as_bad_where (fixP->fx_file, fixP->fx_line,
21769 _("invalid Hi register with immediate"));
a737bd4d 21770
c19d1205
ZW
21771 /* If value is negative, choose the opposite instruction. */
21772 if (value < 0)
21773 {
21774 value = -value;
21775 subtract = !subtract;
21776 if (value < 0)
21777 as_bad_where (fixP->fx_file, fixP->fx_line,
21778 _("immediate value out of range"));
21779 }
a737bd4d 21780
c19d1205
ZW
21781 if (rd == REG_SP)
21782 {
21783 if (value & ~0x1fc)
21784 as_bad_where (fixP->fx_file, fixP->fx_line,
21785 _("invalid immediate for stack address calculation"));
21786 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21787 newval |= value >> 2;
21788 }
21789 else if (rs == REG_PC || rs == REG_SP)
21790 {
21791 if (subtract || value & ~0x3fc)
21792 as_bad_where (fixP->fx_file, fixP->fx_line,
21793 _("invalid immediate for address calculation (value = 0x%08lX)"),
21794 (unsigned long) value);
21795 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21796 newval |= rd << 8;
21797 newval |= value >> 2;
21798 }
21799 else if (rs == rd)
21800 {
21801 if (value & ~0xff)
21802 as_bad_where (fixP->fx_file, fixP->fx_line,
21803 _("immediate value out of range"));
21804 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21805 newval |= (rd << 8) | value;
21806 }
21807 else
21808 {
21809 if (value & ~0x7)
21810 as_bad_where (fixP->fx_file, fixP->fx_line,
21811 _("immediate value out of range"));
21812 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21813 newval |= rd | (rs << 3) | (value << 6);
21814 }
21815 }
21816 md_number_to_chars (buf, newval, THUMB_SIZE);
21817 break;
a737bd4d 21818
c19d1205
ZW
21819 case BFD_RELOC_ARM_THUMB_IMM:
21820 newval = md_chars_to_number (buf, THUMB_SIZE);
21821 if (value < 0 || value > 255)
21822 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21823 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21824 (long) value);
21825 newval |= value;
21826 md_number_to_chars (buf, newval, THUMB_SIZE);
21827 break;
a737bd4d 21828
c19d1205
ZW
21829 case BFD_RELOC_ARM_THUMB_SHIFT:
21830 /* 5bit shift value (0..32). LSL cannot take 32. */
21831 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21832 temp = newval & 0xf800;
21833 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21834 as_bad_where (fixP->fx_file, fixP->fx_line,
21835 _("invalid shift value: %ld"), (long) value);
21836 /* Shifts of zero must be encoded as LSL. */
21837 if (value == 0)
21838 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21839 /* Shifts of 32 are encoded as zero. */
21840 else if (value == 32)
21841 value = 0;
21842 newval |= value << 6;
21843 md_number_to_chars (buf, newval, THUMB_SIZE);
21844 break;
a737bd4d 21845
c19d1205
ZW
21846 case BFD_RELOC_VTABLE_INHERIT:
21847 case BFD_RELOC_VTABLE_ENTRY:
21848 fixP->fx_done = 0;
21849 return;
6c43fab6 21850
b6895b4f
PB
21851 case BFD_RELOC_ARM_MOVW:
21852 case BFD_RELOC_ARM_MOVT:
21853 case BFD_RELOC_ARM_THUMB_MOVW:
21854 case BFD_RELOC_ARM_THUMB_MOVT:
21855 if (fixP->fx_done || !seg->use_rela_p)
21856 {
21857 /* REL format relocations are limited to a 16-bit addend. */
21858 if (!fixP->fx_done)
21859 {
39623e12 21860 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21861 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21862 _("offset out of range"));
b6895b4f
PB
21863 }
21864 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21865 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21866 {
21867 value >>= 16;
21868 }
21869
21870 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21871 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21872 {
21873 newval = get_thumb32_insn (buf);
21874 newval &= 0xfbf08f00;
21875 newval |= (value & 0xf000) << 4;
21876 newval |= (value & 0x0800) << 15;
21877 newval |= (value & 0x0700) << 4;
21878 newval |= (value & 0x00ff);
21879 put_thumb32_insn (buf, newval);
21880 }
21881 else
21882 {
21883 newval = md_chars_to_number (buf, 4);
21884 newval &= 0xfff0f000;
21885 newval |= value & 0x0fff;
21886 newval |= (value & 0xf000) << 4;
21887 md_number_to_chars (buf, newval, 4);
21888 }
21889 }
21890 return;
21891
4962c51a
MS
21892 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21893 case BFD_RELOC_ARM_ALU_PC_G0:
21894 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21895 case BFD_RELOC_ARM_ALU_PC_G1:
21896 case BFD_RELOC_ARM_ALU_PC_G2:
21897 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21898 case BFD_RELOC_ARM_ALU_SB_G0:
21899 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21900 case BFD_RELOC_ARM_ALU_SB_G1:
21901 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 21902 gas_assert (!fixP->fx_done);
4962c51a
MS
21903 if (!seg->use_rela_p)
21904 {
21905 bfd_vma insn;
21906 bfd_vma encoded_addend;
21907 bfd_vma addend_abs = abs (value);
21908
21909 /* Check that the absolute value of the addend can be
21910 expressed as an 8-bit constant plus a rotation. */
21911 encoded_addend = encode_arm_immediate (addend_abs);
21912 if (encoded_addend == (unsigned int) FAIL)
21913 as_bad_where (fixP->fx_file, fixP->fx_line,
21914 _("the offset 0x%08lX is not representable"),
495bde8e 21915 (unsigned long) addend_abs);
4962c51a
MS
21916
21917 /* Extract the instruction. */
21918 insn = md_chars_to_number (buf, INSN_SIZE);
21919
21920 /* If the addend is positive, use an ADD instruction.
21921 Otherwise use a SUB. Take care not to destroy the S bit. */
21922 insn &= 0xff1fffff;
21923 if (value < 0)
21924 insn |= 1 << 22;
21925 else
21926 insn |= 1 << 23;
21927
21928 /* Place the encoded addend into the first 12 bits of the
21929 instruction. */
21930 insn &= 0xfffff000;
21931 insn |= encoded_addend;
5f4273c7
NC
21932
21933 /* Update the instruction. */
4962c51a
MS
21934 md_number_to_chars (buf, insn, INSN_SIZE);
21935 }
21936 break;
21937
21938 case BFD_RELOC_ARM_LDR_PC_G0:
21939 case BFD_RELOC_ARM_LDR_PC_G1:
21940 case BFD_RELOC_ARM_LDR_PC_G2:
21941 case BFD_RELOC_ARM_LDR_SB_G0:
21942 case BFD_RELOC_ARM_LDR_SB_G1:
21943 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 21944 gas_assert (!fixP->fx_done);
4962c51a
MS
21945 if (!seg->use_rela_p)
21946 {
21947 bfd_vma insn;
21948 bfd_vma addend_abs = abs (value);
21949
21950 /* Check that the absolute value of the addend can be
21951 encoded in 12 bits. */
21952 if (addend_abs >= 0x1000)
21953 as_bad_where (fixP->fx_file, fixP->fx_line,
21954 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 21955 (unsigned long) addend_abs);
4962c51a
MS
21956
21957 /* Extract the instruction. */
21958 insn = md_chars_to_number (buf, INSN_SIZE);
21959
21960 /* If the addend is negative, clear bit 23 of the instruction.
21961 Otherwise set it. */
21962 if (value < 0)
21963 insn &= ~(1 << 23);
21964 else
21965 insn |= 1 << 23;
21966
21967 /* Place the absolute value of the addend into the first 12 bits
21968 of the instruction. */
21969 insn &= 0xfffff000;
21970 insn |= addend_abs;
5f4273c7
NC
21971
21972 /* Update the instruction. */
4962c51a
MS
21973 md_number_to_chars (buf, insn, INSN_SIZE);
21974 }
21975 break;
21976
21977 case BFD_RELOC_ARM_LDRS_PC_G0:
21978 case BFD_RELOC_ARM_LDRS_PC_G1:
21979 case BFD_RELOC_ARM_LDRS_PC_G2:
21980 case BFD_RELOC_ARM_LDRS_SB_G0:
21981 case BFD_RELOC_ARM_LDRS_SB_G1:
21982 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 21983 gas_assert (!fixP->fx_done);
4962c51a
MS
21984 if (!seg->use_rela_p)
21985 {
21986 bfd_vma insn;
21987 bfd_vma addend_abs = abs (value);
21988
21989 /* Check that the absolute value of the addend can be
21990 encoded in 8 bits. */
21991 if (addend_abs >= 0x100)
21992 as_bad_where (fixP->fx_file, fixP->fx_line,
21993 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 21994 (unsigned long) addend_abs);
4962c51a
MS
21995
21996 /* Extract the instruction. */
21997 insn = md_chars_to_number (buf, INSN_SIZE);
21998
21999 /* If the addend is negative, clear bit 23 of the instruction.
22000 Otherwise set it. */
22001 if (value < 0)
22002 insn &= ~(1 << 23);
22003 else
22004 insn |= 1 << 23;
22005
22006 /* Place the first four bits of the absolute value of the addend
22007 into the first 4 bits of the instruction, and the remaining
22008 four into bits 8 .. 11. */
22009 insn &= 0xfffff0f0;
22010 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
22011
22012 /* Update the instruction. */
4962c51a
MS
22013 md_number_to_chars (buf, insn, INSN_SIZE);
22014 }
22015 break;
22016
22017 case BFD_RELOC_ARM_LDC_PC_G0:
22018 case BFD_RELOC_ARM_LDC_PC_G1:
22019 case BFD_RELOC_ARM_LDC_PC_G2:
22020 case BFD_RELOC_ARM_LDC_SB_G0:
22021 case BFD_RELOC_ARM_LDC_SB_G1:
22022 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 22023 gas_assert (!fixP->fx_done);
4962c51a
MS
22024 if (!seg->use_rela_p)
22025 {
22026 bfd_vma insn;
22027 bfd_vma addend_abs = abs (value);
22028
22029 /* Check that the absolute value of the addend is a multiple of
22030 four and, when divided by four, fits in 8 bits. */
22031 if (addend_abs & 0x3)
22032 as_bad_where (fixP->fx_file, fixP->fx_line,
22033 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 22034 (unsigned long) addend_abs);
4962c51a
MS
22035
22036 if ((addend_abs >> 2) > 0xff)
22037 as_bad_where (fixP->fx_file, fixP->fx_line,
22038 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 22039 (unsigned long) addend_abs);
4962c51a
MS
22040
22041 /* Extract the instruction. */
22042 insn = md_chars_to_number (buf, INSN_SIZE);
22043
22044 /* If the addend is negative, clear bit 23 of the instruction.
22045 Otherwise set it. */
22046 if (value < 0)
22047 insn &= ~(1 << 23);
22048 else
22049 insn |= 1 << 23;
22050
22051 /* Place the addend (divided by four) into the first eight
22052 bits of the instruction. */
22053 insn &= 0xfffffff0;
22054 insn |= addend_abs >> 2;
5f4273c7
NC
22055
22056 /* Update the instruction. */
4962c51a
MS
22057 md_number_to_chars (buf, insn, INSN_SIZE);
22058 }
22059 break;
22060
845b51d6
PB
22061 case BFD_RELOC_ARM_V4BX:
22062 /* This will need to go in the object file. */
22063 fixP->fx_done = 0;
22064 break;
22065
c19d1205
ZW
22066 case BFD_RELOC_UNUSED:
22067 default:
22068 as_bad_where (fixP->fx_file, fixP->fx_line,
22069 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22070 }
6c43fab6
RE
22071}
22072
c19d1205
ZW
22073/* Translate internal representation of relocation info to BFD target
22074 format. */
a737bd4d 22075
c19d1205 22076arelent *
00a97672 22077tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 22078{
c19d1205
ZW
22079 arelent * reloc;
22080 bfd_reloc_code_real_type code;
a737bd4d 22081
21d799b5 22082 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 22083
21d799b5 22084 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
22085 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22086 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 22087
2fc8bdac 22088 if (fixp->fx_pcrel)
00a97672
RS
22089 {
22090 if (section->use_rela_p)
22091 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22092 else
22093 fixp->fx_offset = reloc->address;
22094 }
c19d1205 22095 reloc->addend = fixp->fx_offset;
a737bd4d 22096
c19d1205 22097 switch (fixp->fx_r_type)
a737bd4d 22098 {
c19d1205
ZW
22099 case BFD_RELOC_8:
22100 if (fixp->fx_pcrel)
22101 {
22102 code = BFD_RELOC_8_PCREL;
22103 break;
22104 }
a737bd4d 22105
c19d1205
ZW
22106 case BFD_RELOC_16:
22107 if (fixp->fx_pcrel)
22108 {
22109 code = BFD_RELOC_16_PCREL;
22110 break;
22111 }
6c43fab6 22112
c19d1205
ZW
22113 case BFD_RELOC_32:
22114 if (fixp->fx_pcrel)
22115 {
22116 code = BFD_RELOC_32_PCREL;
22117 break;
22118 }
a737bd4d 22119
b6895b4f
PB
22120 case BFD_RELOC_ARM_MOVW:
22121 if (fixp->fx_pcrel)
22122 {
22123 code = BFD_RELOC_ARM_MOVW_PCREL;
22124 break;
22125 }
22126
22127 case BFD_RELOC_ARM_MOVT:
22128 if (fixp->fx_pcrel)
22129 {
22130 code = BFD_RELOC_ARM_MOVT_PCREL;
22131 break;
22132 }
22133
22134 case BFD_RELOC_ARM_THUMB_MOVW:
22135 if (fixp->fx_pcrel)
22136 {
22137 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22138 break;
22139 }
22140
22141 case BFD_RELOC_ARM_THUMB_MOVT:
22142 if (fixp->fx_pcrel)
22143 {
22144 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22145 break;
22146 }
22147
c19d1205
ZW
22148 case BFD_RELOC_NONE:
22149 case BFD_RELOC_ARM_PCREL_BRANCH:
22150 case BFD_RELOC_ARM_PCREL_BLX:
22151 case BFD_RELOC_RVA:
22152 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22153 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22154 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22155 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22156 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22157 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
22158 case BFD_RELOC_VTABLE_ENTRY:
22159 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
22160#ifdef TE_PE
22161 case BFD_RELOC_32_SECREL:
22162#endif
c19d1205
ZW
22163 code = fixp->fx_r_type;
22164 break;
a737bd4d 22165
00adf2d4
JB
22166 case BFD_RELOC_THUMB_PCREL_BLX:
22167#ifdef OBJ_ELF
22168 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22169 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22170 else
22171#endif
22172 code = BFD_RELOC_THUMB_PCREL_BLX;
22173 break;
22174
c19d1205
ZW
22175 case BFD_RELOC_ARM_LITERAL:
22176 case BFD_RELOC_ARM_HWLITERAL:
22177 /* If this is called then the a literal has
22178 been referenced across a section boundary. */
22179 as_bad_where (fixp->fx_file, fixp->fx_line,
22180 _("literal referenced across section boundary"));
22181 return NULL;
a737bd4d 22182
c19d1205 22183#ifdef OBJ_ELF
0855e32b
NS
22184 case BFD_RELOC_ARM_TLS_CALL:
22185 case BFD_RELOC_ARM_THM_TLS_CALL:
22186 case BFD_RELOC_ARM_TLS_DESCSEQ:
22187 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
22188 case BFD_RELOC_ARM_GOT32:
22189 case BFD_RELOC_ARM_GOTOFF:
b43420e6 22190 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
22191 case BFD_RELOC_ARM_PLT32:
22192 case BFD_RELOC_ARM_TARGET1:
22193 case BFD_RELOC_ARM_ROSEGREL32:
22194 case BFD_RELOC_ARM_SBREL32:
22195 case BFD_RELOC_ARM_PREL31:
22196 case BFD_RELOC_ARM_TARGET2:
22197 case BFD_RELOC_ARM_TLS_LE32:
22198 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
22199 case BFD_RELOC_ARM_PCREL_CALL:
22200 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
22201 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22202 case BFD_RELOC_ARM_ALU_PC_G0:
22203 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22204 case BFD_RELOC_ARM_ALU_PC_G1:
22205 case BFD_RELOC_ARM_ALU_PC_G2:
22206 case BFD_RELOC_ARM_LDR_PC_G0:
22207 case BFD_RELOC_ARM_LDR_PC_G1:
22208 case BFD_RELOC_ARM_LDR_PC_G2:
22209 case BFD_RELOC_ARM_LDRS_PC_G0:
22210 case BFD_RELOC_ARM_LDRS_PC_G1:
22211 case BFD_RELOC_ARM_LDRS_PC_G2:
22212 case BFD_RELOC_ARM_LDC_PC_G0:
22213 case BFD_RELOC_ARM_LDC_PC_G1:
22214 case BFD_RELOC_ARM_LDC_PC_G2:
22215 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22216 case BFD_RELOC_ARM_ALU_SB_G0:
22217 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22218 case BFD_RELOC_ARM_ALU_SB_G1:
22219 case BFD_RELOC_ARM_ALU_SB_G2:
22220 case BFD_RELOC_ARM_LDR_SB_G0:
22221 case BFD_RELOC_ARM_LDR_SB_G1:
22222 case BFD_RELOC_ARM_LDR_SB_G2:
22223 case BFD_RELOC_ARM_LDRS_SB_G0:
22224 case BFD_RELOC_ARM_LDRS_SB_G1:
22225 case BFD_RELOC_ARM_LDRS_SB_G2:
22226 case BFD_RELOC_ARM_LDC_SB_G0:
22227 case BFD_RELOC_ARM_LDC_SB_G1:
22228 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 22229 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
22230 code = fixp->fx_r_type;
22231 break;
a737bd4d 22232
0855e32b 22233 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
22234 case BFD_RELOC_ARM_TLS_GD32:
22235 case BFD_RELOC_ARM_TLS_IE32:
22236 case BFD_RELOC_ARM_TLS_LDM32:
22237 /* BFD will include the symbol's address in the addend.
22238 But we don't want that, so subtract it out again here. */
22239 if (!S_IS_COMMON (fixp->fx_addsy))
22240 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22241 code = fixp->fx_r_type;
22242 break;
22243#endif
a737bd4d 22244
c19d1205
ZW
22245 case BFD_RELOC_ARM_IMMEDIATE:
22246 as_bad_where (fixp->fx_file, fixp->fx_line,
22247 _("internal relocation (type: IMMEDIATE) not fixed up"));
22248 return NULL;
a737bd4d 22249
c19d1205
ZW
22250 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22251 as_bad_where (fixp->fx_file, fixp->fx_line,
22252 _("ADRL used for a symbol not defined in the same file"));
22253 return NULL;
a737bd4d 22254
c19d1205 22255 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
22256 if (section->use_rela_p)
22257 {
22258 code = fixp->fx_r_type;
22259 break;
22260 }
22261
c19d1205
ZW
22262 if (fixp->fx_addsy != NULL
22263 && !S_IS_DEFINED (fixp->fx_addsy)
22264 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 22265 {
c19d1205
ZW
22266 as_bad_where (fixp->fx_file, fixp->fx_line,
22267 _("undefined local label `%s'"),
22268 S_GET_NAME (fixp->fx_addsy));
22269 return NULL;
a737bd4d
NC
22270 }
22271
c19d1205
ZW
22272 as_bad_where (fixp->fx_file, fixp->fx_line,
22273 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22274 return NULL;
a737bd4d 22275
c19d1205
ZW
22276 default:
22277 {
22278 char * type;
6c43fab6 22279
c19d1205
ZW
22280 switch (fixp->fx_r_type)
22281 {
22282 case BFD_RELOC_NONE: type = "NONE"; break;
22283 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22284 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 22285 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
22286 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22287 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22288 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 22289 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 22290 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
22291 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22292 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22293 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22294 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22295 default: type = _("<unknown>"); break;
22296 }
22297 as_bad_where (fixp->fx_file, fixp->fx_line,
22298 _("cannot represent %s relocation in this object file format"),
22299 type);
22300 return NULL;
22301 }
a737bd4d 22302 }
6c43fab6 22303
c19d1205
ZW
22304#ifdef OBJ_ELF
22305 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22306 && GOT_symbol
22307 && fixp->fx_addsy == GOT_symbol)
22308 {
22309 code = BFD_RELOC_ARM_GOTPC;
22310 reloc->addend = fixp->fx_offset = reloc->address;
22311 }
22312#endif
6c43fab6 22313
c19d1205 22314 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 22315
c19d1205
ZW
22316 if (reloc->howto == NULL)
22317 {
22318 as_bad_where (fixp->fx_file, fixp->fx_line,
22319 _("cannot represent %s relocation in this object file format"),
22320 bfd_get_reloc_code_name (code));
22321 return NULL;
22322 }
6c43fab6 22323
c19d1205
ZW
22324 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22325 vtable entry to be used in the relocation's section offset. */
22326 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22327 reloc->address = fixp->fx_offset;
6c43fab6 22328
c19d1205 22329 return reloc;
6c43fab6
RE
22330}
22331
c19d1205 22332/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 22333
c19d1205
ZW
22334void
22335cons_fix_new_arm (fragS * frag,
22336 int where,
22337 int size,
22338 expressionS * exp)
6c43fab6 22339{
c19d1205
ZW
22340 bfd_reloc_code_real_type type;
22341 int pcrel = 0;
6c43fab6 22342
c19d1205
ZW
22343 /* Pick a reloc.
22344 FIXME: @@ Should look at CPU word size. */
22345 switch (size)
22346 {
22347 case 1:
22348 type = BFD_RELOC_8;
22349 break;
22350 case 2:
22351 type = BFD_RELOC_16;
22352 break;
22353 case 4:
22354 default:
22355 type = BFD_RELOC_32;
22356 break;
22357 case 8:
22358 type = BFD_RELOC_64;
22359 break;
22360 }
6c43fab6 22361
f0927246
NC
22362#ifdef TE_PE
22363 if (exp->X_op == O_secrel)
22364 {
22365 exp->X_op = O_symbol;
22366 type = BFD_RELOC_32_SECREL;
22367 }
22368#endif
22369
c19d1205
ZW
22370 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22371}
6c43fab6 22372
4343666d 22373#if defined (OBJ_COFF)
c19d1205
ZW
22374void
22375arm_validate_fix (fixS * fixP)
6c43fab6 22376{
c19d1205
ZW
22377 /* If the destination of the branch is a defined symbol which does not have
22378 the THUMB_FUNC attribute, then we must be calling a function which has
22379 the (interfacearm) attribute. We look for the Thumb entry point to that
22380 function and change the branch to refer to that function instead. */
22381 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22382 && fixP->fx_addsy != NULL
22383 && S_IS_DEFINED (fixP->fx_addsy)
22384 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 22385 {
c19d1205 22386 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 22387 }
c19d1205
ZW
22388}
22389#endif
6c43fab6 22390
267bf995 22391
c19d1205
ZW
22392int
22393arm_force_relocation (struct fix * fixp)
22394{
22395#if defined (OBJ_COFF) && defined (TE_PE)
22396 if (fixp->fx_r_type == BFD_RELOC_RVA)
22397 return 1;
22398#endif
6c43fab6 22399
267bf995
RR
22400 /* In case we have a call or a branch to a function in ARM ISA mode from
22401 a thumb function or vice-versa force the relocation. These relocations
22402 are cleared off for some cores that might have blx and simple transformations
22403 are possible. */
22404
22405#ifdef OBJ_ELF
22406 switch (fixp->fx_r_type)
22407 {
22408 case BFD_RELOC_ARM_PCREL_JUMP:
22409 case BFD_RELOC_ARM_PCREL_CALL:
22410 case BFD_RELOC_THUMB_PCREL_BLX:
22411 if (THUMB_IS_FUNC (fixp->fx_addsy))
22412 return 1;
22413 break;
22414
22415 case BFD_RELOC_ARM_PCREL_BLX:
22416 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22417 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22418 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22419 if (ARM_IS_FUNC (fixp->fx_addsy))
22420 return 1;
22421 break;
22422
22423 default:
22424 break;
22425 }
22426#endif
22427
b5884301
PB
22428 /* Resolve these relocations even if the symbol is extern or weak.
22429 Technically this is probably wrong due to symbol preemption.
22430 In practice these relocations do not have enough range to be useful
22431 at dynamic link time, and some code (e.g. in the Linux kernel)
22432 expects these references to be resolved. */
c19d1205
ZW
22433 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22434 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 22435 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 22436 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
22437 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22438 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22439 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 22440 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
22441 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22442 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
22443 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22444 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22445 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22446 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 22447 return 0;
a737bd4d 22448
4962c51a
MS
22449 /* Always leave these relocations for the linker. */
22450 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22451 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22452 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22453 return 1;
22454
f0291e4c
PB
22455 /* Always generate relocations against function symbols. */
22456 if (fixp->fx_r_type == BFD_RELOC_32
22457 && fixp->fx_addsy
22458 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22459 return 1;
22460
c19d1205 22461 return generic_force_reloc (fixp);
404ff6b5
AH
22462}
22463
0ffdc86c 22464#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
22465/* Relocations against function names must be left unadjusted,
22466 so that the linker can use this information to generate interworking
22467 stubs. The MIPS version of this function
c19d1205
ZW
22468 also prevents relocations that are mips-16 specific, but I do not
22469 know why it does this.
404ff6b5 22470
c19d1205
ZW
22471 FIXME:
22472 There is one other problem that ought to be addressed here, but
22473 which currently is not: Taking the address of a label (rather
22474 than a function) and then later jumping to that address. Such
22475 addresses also ought to have their bottom bit set (assuming that
22476 they reside in Thumb code), but at the moment they will not. */
404ff6b5 22477
c19d1205
ZW
22478bfd_boolean
22479arm_fix_adjustable (fixS * fixP)
404ff6b5 22480{
c19d1205
ZW
22481 if (fixP->fx_addsy == NULL)
22482 return 1;
404ff6b5 22483
e28387c3
PB
22484 /* Preserve relocations against symbols with function type. */
22485 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 22486 return FALSE;
e28387c3 22487
c19d1205
ZW
22488 if (THUMB_IS_FUNC (fixP->fx_addsy)
22489 && fixP->fx_subsy == NULL)
c921be7d 22490 return FALSE;
a737bd4d 22491
c19d1205
ZW
22492 /* We need the symbol name for the VTABLE entries. */
22493 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22494 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 22495 return FALSE;
404ff6b5 22496
c19d1205
ZW
22497 /* Don't allow symbols to be discarded on GOT related relocs. */
22498 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22499 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22500 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22501 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22502 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22503 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22504 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22505 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
22506 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22507 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22508 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22509 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22510 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 22511 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 22512 return FALSE;
a737bd4d 22513
4962c51a
MS
22514 /* Similarly for group relocations. */
22515 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22516 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22517 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 22518 return FALSE;
4962c51a 22519
79947c54
CD
22520 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22521 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22522 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22523 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22524 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22525 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22526 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22527 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22528 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 22529 return FALSE;
79947c54 22530
c921be7d 22531 return TRUE;
a737bd4d 22532}
0ffdc86c
NC
22533#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22534
22535#ifdef OBJ_ELF
404ff6b5 22536
c19d1205
ZW
22537const char *
22538elf32_arm_target_format (void)
404ff6b5 22539{
c19d1205
ZW
22540#ifdef TE_SYMBIAN
22541 return (target_big_endian
22542 ? "elf32-bigarm-symbian"
22543 : "elf32-littlearm-symbian");
22544#elif defined (TE_VXWORKS)
22545 return (target_big_endian
22546 ? "elf32-bigarm-vxworks"
22547 : "elf32-littlearm-vxworks");
b38cadfb
NC
22548#elif defined (TE_NACL)
22549 return (target_big_endian
22550 ? "elf32-bigarm-nacl"
22551 : "elf32-littlearm-nacl");
c19d1205
ZW
22552#else
22553 if (target_big_endian)
22554 return "elf32-bigarm";
22555 else
22556 return "elf32-littlearm";
22557#endif
404ff6b5
AH
22558}
22559
c19d1205
ZW
22560void
22561armelf_frob_symbol (symbolS * symp,
22562 int * puntp)
404ff6b5 22563{
c19d1205
ZW
22564 elf_frob_symbol (symp, puntp);
22565}
22566#endif
404ff6b5 22567
c19d1205 22568/* MD interface: Finalization. */
a737bd4d 22569
c19d1205
ZW
22570void
22571arm_cleanup (void)
22572{
22573 literal_pool * pool;
a737bd4d 22574
e07e6e58
NC
22575 /* Ensure that all the IT blocks are properly closed. */
22576 check_it_blocks_finished ();
22577
c19d1205
ZW
22578 for (pool = list_of_pools; pool; pool = pool->next)
22579 {
5f4273c7 22580 /* Put it at the end of the relevant section. */
c19d1205
ZW
22581 subseg_set (pool->section, pool->sub_section);
22582#ifdef OBJ_ELF
22583 arm_elf_change_section ();
22584#endif
22585 s_ltorg (0);
22586 }
404ff6b5
AH
22587}
22588
cd000bff
DJ
22589#ifdef OBJ_ELF
22590/* Remove any excess mapping symbols generated for alignment frags in
22591 SEC. We may have created a mapping symbol before a zero byte
22592 alignment; remove it if there's a mapping symbol after the
22593 alignment. */
22594static void
22595check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22596 void *dummy ATTRIBUTE_UNUSED)
22597{
22598 segment_info_type *seginfo = seg_info (sec);
22599 fragS *fragp;
22600
22601 if (seginfo == NULL || seginfo->frchainP == NULL)
22602 return;
22603
22604 for (fragp = seginfo->frchainP->frch_root;
22605 fragp != NULL;
22606 fragp = fragp->fr_next)
22607 {
22608 symbolS *sym = fragp->tc_frag_data.last_map;
22609 fragS *next = fragp->fr_next;
22610
22611 /* Variable-sized frags have been converted to fixed size by
22612 this point. But if this was variable-sized to start with,
22613 there will be a fixed-size frag after it. So don't handle
22614 next == NULL. */
22615 if (sym == NULL || next == NULL)
22616 continue;
22617
22618 if (S_GET_VALUE (sym) < next->fr_address)
22619 /* Not at the end of this frag. */
22620 continue;
22621 know (S_GET_VALUE (sym) == next->fr_address);
22622
22623 do
22624 {
22625 if (next->tc_frag_data.first_map != NULL)
22626 {
22627 /* Next frag starts with a mapping symbol. Discard this
22628 one. */
22629 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22630 break;
22631 }
22632
22633 if (next->fr_next == NULL)
22634 {
22635 /* This mapping symbol is at the end of the section. Discard
22636 it. */
22637 know (next->fr_fix == 0 && next->fr_var == 0);
22638 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22639 break;
22640 }
22641
22642 /* As long as we have empty frags without any mapping symbols,
22643 keep looking. */
22644 /* If the next frag is non-empty and does not start with a
22645 mapping symbol, then this mapping symbol is required. */
22646 if (next->fr_address != next->fr_next->fr_address)
22647 break;
22648
22649 next = next->fr_next;
22650 }
22651 while (next != NULL);
22652 }
22653}
22654#endif
22655
c19d1205
ZW
22656/* Adjust the symbol table. This marks Thumb symbols as distinct from
22657 ARM ones. */
404ff6b5 22658
c19d1205
ZW
22659void
22660arm_adjust_symtab (void)
404ff6b5 22661{
c19d1205
ZW
22662#ifdef OBJ_COFF
22663 symbolS * sym;
404ff6b5 22664
c19d1205
ZW
22665 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22666 {
22667 if (ARM_IS_THUMB (sym))
22668 {
22669 if (THUMB_IS_FUNC (sym))
22670 {
22671 /* Mark the symbol as a Thumb function. */
22672 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22673 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22674 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22675
c19d1205
ZW
22676 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22677 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22678 else
22679 as_bad (_("%s: unexpected function type: %d"),
22680 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22681 }
22682 else switch (S_GET_STORAGE_CLASS (sym))
22683 {
22684 case C_EXT:
22685 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22686 break;
22687 case C_STAT:
22688 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22689 break;
22690 case C_LABEL:
22691 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22692 break;
22693 default:
22694 /* Do nothing. */
22695 break;
22696 }
22697 }
a737bd4d 22698
c19d1205
ZW
22699 if (ARM_IS_INTERWORK (sym))
22700 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22701 }
c19d1205
ZW
22702#endif
22703#ifdef OBJ_ELF
22704 symbolS * sym;
22705 char bind;
404ff6b5 22706
c19d1205 22707 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22708 {
c19d1205
ZW
22709 if (ARM_IS_THUMB (sym))
22710 {
22711 elf_symbol_type * elf_sym;
404ff6b5 22712
c19d1205
ZW
22713 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22714 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22715
b0796911
PB
22716 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22717 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22718 {
22719 /* If it's a .thumb_func, declare it as so,
22720 otherwise tag label as .code 16. */
22721 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22722 elf_sym->internal_elf_sym.st_target_internal
22723 = ST_BRANCH_TO_THUMB;
3ba67470 22724 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22725 elf_sym->internal_elf_sym.st_info =
22726 ELF_ST_INFO (bind, STT_ARM_16BIT);
22727 }
22728 }
22729 }
cd000bff
DJ
22730
22731 /* Remove any overlapping mapping symbols generated by alignment frags. */
22732 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22733 /* Now do generic ELF adjustments. */
22734 elf_adjust_symtab ();
c19d1205 22735#endif
404ff6b5
AH
22736}
22737
c19d1205 22738/* MD interface: Initialization. */
404ff6b5 22739
a737bd4d 22740static void
c19d1205 22741set_constant_flonums (void)
a737bd4d 22742{
c19d1205 22743 int i;
404ff6b5 22744
c19d1205
ZW
22745 for (i = 0; i < NUM_FLOAT_VALS; i++)
22746 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22747 abort ();
a737bd4d 22748}
404ff6b5 22749
3e9e4fcf
JB
22750/* Auto-select Thumb mode if it's the only available instruction set for the
22751 given architecture. */
22752
22753static void
22754autoselect_thumb_from_cpu_variant (void)
22755{
22756 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22757 opcode_select (16);
22758}
22759
c19d1205
ZW
22760void
22761md_begin (void)
a737bd4d 22762{
c19d1205
ZW
22763 unsigned mach;
22764 unsigned int i;
404ff6b5 22765
c19d1205
ZW
22766 if ( (arm_ops_hsh = hash_new ()) == NULL
22767 || (arm_cond_hsh = hash_new ()) == NULL
22768 || (arm_shift_hsh = hash_new ()) == NULL
22769 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22770 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22771 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22772 || (arm_reloc_hsh = hash_new ()) == NULL
22773 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22774 as_fatal (_("virtual memory exhausted"));
22775
22776 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22777 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22778 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22779 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22780 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22781 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22782 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22783 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22784 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22785 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22786 (void *) (v7m_psrs + i));
c19d1205 22787 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22788 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22789 for (i = 0;
22790 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22791 i++)
d3ce72d0 22792 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22793 (void *) (barrier_opt_names + i));
c19d1205 22794#ifdef OBJ_ELF
3da1d841
NC
22795 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22796 {
22797 struct reloc_entry * entry = reloc_names + i;
22798
22799 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22800 /* This makes encode_branch() use the EABI versions of this relocation. */
22801 entry->reloc = BFD_RELOC_UNUSED;
22802
22803 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22804 }
c19d1205
ZW
22805#endif
22806
22807 set_constant_flonums ();
404ff6b5 22808
c19d1205
ZW
22809 /* Set the cpu variant based on the command-line options. We prefer
22810 -mcpu= over -march= if both are set (as for GCC); and we prefer
22811 -mfpu= over any other way of setting the floating point unit.
22812 Use of legacy options with new options are faulted. */
e74cfd16 22813 if (legacy_cpu)
404ff6b5 22814 {
e74cfd16 22815 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22816 as_bad (_("use of old and new-style options to set CPU type"));
22817
22818 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22819 }
e74cfd16 22820 else if (!mcpu_cpu_opt)
c19d1205 22821 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22822
e74cfd16 22823 if (legacy_fpu)
c19d1205 22824 {
e74cfd16 22825 if (mfpu_opt)
c19d1205 22826 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22827
22828 mfpu_opt = legacy_fpu;
22829 }
e74cfd16 22830 else if (!mfpu_opt)
03b1477f 22831 {
45eb4c1b
NS
22832#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22833 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22834 /* Some environments specify a default FPU. If they don't, infer it
22835 from the processor. */
e74cfd16 22836 if (mcpu_fpu_opt)
03b1477f
RE
22837 mfpu_opt = mcpu_fpu_opt;
22838 else
22839 mfpu_opt = march_fpu_opt;
39c2da32 22840#else
e74cfd16 22841 mfpu_opt = &fpu_default;
39c2da32 22842#endif
03b1477f
RE
22843 }
22844
e74cfd16 22845 if (!mfpu_opt)
03b1477f 22846 {
493cb6ef 22847 if (mcpu_cpu_opt != NULL)
e74cfd16 22848 mfpu_opt = &fpu_default;
493cb6ef 22849 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22850 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22851 else
e74cfd16 22852 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22853 }
22854
ee065d83 22855#ifdef CPU_DEFAULT
e74cfd16 22856 if (!mcpu_cpu_opt)
ee065d83 22857 {
e74cfd16
PB
22858 mcpu_cpu_opt = &cpu_default;
22859 selected_cpu = cpu_default;
ee065d83 22860 }
e74cfd16
PB
22861#else
22862 if (mcpu_cpu_opt)
22863 selected_cpu = *mcpu_cpu_opt;
ee065d83 22864 else
e74cfd16 22865 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22866#endif
03b1477f 22867
e74cfd16 22868 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22869
3e9e4fcf
JB
22870 autoselect_thumb_from_cpu_variant ();
22871
e74cfd16 22872 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22873
f17c130b 22874#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22875 {
7cc69913
NC
22876 unsigned int flags = 0;
22877
22878#if defined OBJ_ELF
22879 flags = meabi_flags;
d507cf36
PB
22880
22881 switch (meabi_flags)
33a392fb 22882 {
d507cf36 22883 case EF_ARM_EABI_UNKNOWN:
7cc69913 22884#endif
d507cf36
PB
22885 /* Set the flags in the private structure. */
22886 if (uses_apcs_26) flags |= F_APCS26;
22887 if (support_interwork) flags |= F_INTERWORK;
22888 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22889 if (pic_code) flags |= F_PIC;
e74cfd16 22890 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22891 flags |= F_SOFT_FLOAT;
22892
d507cf36
PB
22893 switch (mfloat_abi_opt)
22894 {
22895 case ARM_FLOAT_ABI_SOFT:
22896 case ARM_FLOAT_ABI_SOFTFP:
22897 flags |= F_SOFT_FLOAT;
22898 break;
33a392fb 22899
d507cf36
PB
22900 case ARM_FLOAT_ABI_HARD:
22901 if (flags & F_SOFT_FLOAT)
22902 as_bad (_("hard-float conflicts with specified fpu"));
22903 break;
22904 }
03b1477f 22905
e74cfd16
PB
22906 /* Using pure-endian doubles (even if soft-float). */
22907 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 22908 flags |= F_VFP_FLOAT;
f17c130b 22909
fde78edd 22910#if defined OBJ_ELF
e74cfd16 22911 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 22912 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
22913 break;
22914
8cb51566 22915 case EF_ARM_EABI_VER4:
3a4a14e9 22916 case EF_ARM_EABI_VER5:
c19d1205 22917 /* No additional flags to set. */
d507cf36
PB
22918 break;
22919
22920 default:
22921 abort ();
22922 }
7cc69913 22923#endif
b99bd4ef
NC
22924 bfd_set_private_flags (stdoutput, flags);
22925
22926 /* We have run out flags in the COFF header to encode the
22927 status of ATPCS support, so instead we create a dummy,
c19d1205 22928 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
22929 if (atpcs)
22930 {
22931 asection * sec;
22932
22933 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22934
22935 if (sec != NULL)
22936 {
22937 bfd_set_section_flags
22938 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22939 bfd_set_section_size (stdoutput, sec, 0);
22940 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22941 }
22942 }
7cc69913 22943 }
f17c130b 22944#endif
b99bd4ef
NC
22945
22946 /* Record the CPU type as well. */
2d447fca
JM
22947 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22948 mach = bfd_mach_arm_iWMMXt2;
22949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 22950 mach = bfd_mach_arm_iWMMXt;
e74cfd16 22951 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 22952 mach = bfd_mach_arm_XScale;
e74cfd16 22953 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 22954 mach = bfd_mach_arm_ep9312;
e74cfd16 22955 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 22956 mach = bfd_mach_arm_5TE;
e74cfd16 22957 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 22958 {
e74cfd16 22959 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22960 mach = bfd_mach_arm_5T;
22961 else
22962 mach = bfd_mach_arm_5;
22963 }
e74cfd16 22964 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 22965 {
e74cfd16 22966 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
22967 mach = bfd_mach_arm_4T;
22968 else
22969 mach = bfd_mach_arm_4;
22970 }
e74cfd16 22971 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 22972 mach = bfd_mach_arm_3M;
e74cfd16
PB
22973 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22974 mach = bfd_mach_arm_3;
22975 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22976 mach = bfd_mach_arm_2a;
22977 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22978 mach = bfd_mach_arm_2;
22979 else
22980 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
22981
22982 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22983}
22984
c19d1205 22985/* Command line processing. */
b99bd4ef 22986
c19d1205
ZW
22987/* md_parse_option
22988 Invocation line includes a switch not recognized by the base assembler.
22989 See if it's a processor-specific option.
b99bd4ef 22990
c19d1205
ZW
22991 This routine is somewhat complicated by the need for backwards
22992 compatibility (since older releases of gcc can't be changed).
22993 The new options try to make the interface as compatible as
22994 possible with GCC.
b99bd4ef 22995
c19d1205 22996 New options (supported) are:
b99bd4ef 22997
c19d1205
ZW
22998 -mcpu=<cpu name> Assemble for selected processor
22999 -march=<architecture name> Assemble for selected architecture
23000 -mfpu=<fpu architecture> Assemble for selected FPU.
23001 -EB/-mbig-endian Big-endian
23002 -EL/-mlittle-endian Little-endian
23003 -k Generate PIC code
23004 -mthumb Start in Thumb mode
23005 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 23006
278df34e 23007 -m[no-]warn-deprecated Warn about deprecated features
267bf995 23008
c19d1205 23009 For now we will also provide support for:
b99bd4ef 23010
c19d1205
ZW
23011 -mapcs-32 32-bit Program counter
23012 -mapcs-26 26-bit Program counter
23013 -macps-float Floats passed in FP registers
23014 -mapcs-reentrant Reentrant code
23015 -matpcs
23016 (sometime these will probably be replaced with -mapcs=<list of options>
23017 and -matpcs=<list of options>)
b99bd4ef 23018
c19d1205
ZW
23019 The remaining options are only supported for back-wards compatibility.
23020 Cpu variants, the arm part is optional:
23021 -m[arm]1 Currently not supported.
23022 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23023 -m[arm]3 Arm 3 processor
23024 -m[arm]6[xx], Arm 6 processors
23025 -m[arm]7[xx][t][[d]m] Arm 7 processors
23026 -m[arm]8[10] Arm 8 processors
23027 -m[arm]9[20][tdmi] Arm 9 processors
23028 -mstrongarm[110[0]] StrongARM processors
23029 -mxscale XScale processors
23030 -m[arm]v[2345[t[e]]] Arm architectures
23031 -mall All (except the ARM1)
23032 FP variants:
23033 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23034 -mfpe-old (No float load/store multiples)
23035 -mvfpxd VFP Single precision
23036 -mvfp All VFP
23037 -mno-fpu Disable all floating point instructions
b99bd4ef 23038
c19d1205
ZW
23039 The following CPU names are recognized:
23040 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23041 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23042 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23043 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23044 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23045 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23046 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 23047
c19d1205 23048 */
b99bd4ef 23049
c19d1205 23050const char * md_shortopts = "m:k";
b99bd4ef 23051
c19d1205
ZW
23052#ifdef ARM_BI_ENDIAN
23053#define OPTION_EB (OPTION_MD_BASE + 0)
23054#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 23055#else
c19d1205
ZW
23056#if TARGET_BYTES_BIG_ENDIAN
23057#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 23058#else
c19d1205
ZW
23059#define OPTION_EL (OPTION_MD_BASE + 1)
23060#endif
b99bd4ef 23061#endif
845b51d6 23062#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 23063
c19d1205 23064struct option md_longopts[] =
b99bd4ef 23065{
c19d1205
ZW
23066#ifdef OPTION_EB
23067 {"EB", no_argument, NULL, OPTION_EB},
23068#endif
23069#ifdef OPTION_EL
23070 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 23071#endif
845b51d6 23072 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
23073 {NULL, no_argument, NULL, 0}
23074};
b99bd4ef 23075
c19d1205 23076size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 23077
c19d1205 23078struct arm_option_table
b99bd4ef 23079{
c19d1205
ZW
23080 char *option; /* Option name to match. */
23081 char *help; /* Help information. */
23082 int *var; /* Variable to change. */
23083 int value; /* What to change it to. */
23084 char *deprecated; /* If non-null, print this message. */
23085};
b99bd4ef 23086
c19d1205
ZW
23087struct arm_option_table arm_opts[] =
23088{
23089 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23090 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23091 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23092 &support_interwork, 1, NULL},
23093 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23094 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23095 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23096 1, NULL},
23097 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23098 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23099 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23100 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23101 NULL},
b99bd4ef 23102
c19d1205
ZW
23103 /* These are recognized by the assembler, but have no affect on code. */
23104 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23105 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
23106
23107 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23108 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23109 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
23110 {NULL, NULL, NULL, 0, NULL}
23111};
23112
23113struct arm_legacy_option_table
23114{
23115 char *option; /* Option name to match. */
23116 const arm_feature_set **var; /* Variable to change. */
23117 const arm_feature_set value; /* What to change it to. */
23118 char *deprecated; /* If non-null, print this message. */
23119};
b99bd4ef 23120
e74cfd16
PB
23121const struct arm_legacy_option_table arm_legacy_opts[] =
23122{
c19d1205
ZW
23123 /* DON'T add any new processors to this list -- we want the whole list
23124 to go away... Add them to the processors table instead. */
e74cfd16
PB
23125 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23126 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23127 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23128 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23129 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23130 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23131 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23132 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23133 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23134 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23135 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23136 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23137 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23138 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23139 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23140 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23141 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23142 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23143 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23144 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23145 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23146 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23147 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23148 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23149 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23150 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23151 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23152 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23153 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23154 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23155 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23156 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23157 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23158 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23159 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23160 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23161 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23162 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23163 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23164 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23165 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23166 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23167 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23168 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23169 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23170 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23171 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23172 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23173 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23174 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23175 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23176 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23177 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23178 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23179 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23180 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23181 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23182 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23183 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23184 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23185 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23186 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23187 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23188 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23189 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23190 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23191 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23192 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23193 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23194 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23195 N_("use -mcpu=strongarm110")},
e74cfd16 23196 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23197 N_("use -mcpu=strongarm1100")},
e74cfd16 23198 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23199 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
23200 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23201 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23202 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 23203
c19d1205 23204 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
23205 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23206 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23207 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23208 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23209 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23210 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23211 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23212 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23213 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23214 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23215 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23216 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23217 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23218 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23219 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23220 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23221 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23222 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 23223
c19d1205 23224 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
23225 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23226 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23227 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23228 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 23229 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 23230
e74cfd16 23231 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 23232};
7ed4c4c5 23233
c19d1205 23234struct arm_cpu_option_table
7ed4c4c5 23235{
c19d1205 23236 char *name;
f3bad469 23237 size_t name_len;
e74cfd16 23238 const arm_feature_set value;
c19d1205
ZW
23239 /* For some CPUs we assume an FPU unless the user explicitly sets
23240 -mfpu=... */
e74cfd16 23241 const arm_feature_set default_fpu;
ee065d83
PB
23242 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23243 case. */
23244 const char *canonical_name;
c19d1205 23245};
7ed4c4c5 23246
c19d1205
ZW
23247/* This list should, at a minimum, contain all the cpu names
23248 recognized by GCC. */
f3bad469 23249#define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
e74cfd16 23250static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 23251{
f3bad469
MGD
23252 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23253 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23254 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23255 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23256 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23257 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23258 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23259 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23260 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23261 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23262 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23263 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23264 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23265 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23266 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23267 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23268 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23269 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23270 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23271 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23272 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23273 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23274 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23275 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23276 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23277 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23278 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23279 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23280 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23281 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23282 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23283 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23284 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23285 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23286 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23287 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23288 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23289 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23290 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23291 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23292 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23293 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23294 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23295 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23296 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23297 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
c19d1205
ZW
23298 /* For V5 or later processors we default to using VFP; but the user
23299 should really set the FPU type explicitly. */
f3bad469
MGD
23300 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23301 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23302 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23303 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23304 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23305 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23306 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23307 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23308 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23309 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23310 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23311 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23312 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23313 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23314 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23315 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23316 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23317 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23318 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23319 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23320 "ARM1026EJ-S"),
23321 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23322 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23323 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23324 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23325 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23326 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23327 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23328 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23329 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23330 "ARM1136JF-S"),
23331 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23332 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23333 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23334 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23335 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23336 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23337 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23338 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23339 FPU_NONE, "Cortex-A5"),
23340 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23341 FPU_ARCH_NEON_VFP_V4,
23342 "Cortex-A7"),
23343 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23344 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 23345 | FPU_NEON_EXT_V1),
f3bad469
MGD
23346 "Cortex-A8"),
23347 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23348 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 23349 | FPU_NEON_EXT_V1),
f3bad469
MGD
23350 "Cortex-A9"),
23351 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23352 FPU_ARCH_NEON_VFP_V4,
23353 "Cortex-A15"),
23354 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23355 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23356 "Cortex-R4F"),
23357 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23358 FPU_NONE, "Cortex-R5"),
23359 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23360 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23361 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23362 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
ce32bd10 23363 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
c19d1205 23364 /* ??? XSCALE is really an architecture. */
f3bad469 23365 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23366 /* ??? iwmmxt is not a processor. */
f3bad469
MGD
23367 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23368 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23369 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23370 /* Maverick */
f3bad469
MGD
23371 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23372 FPU_ARCH_MAVERICK,
23373 "ARM920T"),
23374 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 23375};
f3bad469 23376#undef ARM_CPU_OPT
7ed4c4c5 23377
c19d1205 23378struct arm_arch_option_table
7ed4c4c5 23379{
c19d1205 23380 char *name;
f3bad469 23381 size_t name_len;
e74cfd16
PB
23382 const arm_feature_set value;
23383 const arm_feature_set default_fpu;
c19d1205 23384};
7ed4c4c5 23385
c19d1205
ZW
23386/* This list should, at a minimum, contain all the architecture names
23387 recognized by GCC. */
f3bad469 23388#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
e74cfd16 23389static const struct arm_arch_option_table arm_archs[] =
c19d1205 23390{
f3bad469
MGD
23391 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23392 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23393 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23394 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23395 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23396 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23397 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23398 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23399 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23400 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23401 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23402 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23403 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23404 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23405 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23406 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23407 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23408 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23409 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23410 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23411 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23412 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23413 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23414 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23415 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23416 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23417 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23418 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23419 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
c450d570
PB
23420 /* The official spelling of the ARMv7 profile variants is the dashed form.
23421 Accept the non-dashed form for compatibility with old toolchains. */
f3bad469
MGD
23422 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23423 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23424 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23425 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23426 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23427 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23428 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
bca38921 23429 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
f3bad469
MGD
23430 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23431 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23432 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23433 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 23434};
f3bad469 23435#undef ARM_ARCH_OPT
7ed4c4c5 23436
69133863
MGD
23437/* ISA extensions in the co-processor and main instruction set space. */
23438struct arm_option_extension_value_table
c19d1205
ZW
23439{
23440 char *name;
f3bad469 23441 size_t name_len;
e74cfd16 23442 const arm_feature_set value;
69133863 23443 const arm_feature_set allowed_archs;
c19d1205 23444};
7ed4c4c5 23445
69133863
MGD
23446/* The following table must be in alphabetical order with a NULL last entry.
23447 */
f3bad469 23448#define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
69133863 23449static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 23450{
bca38921
MGD
23451 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23452 ARM_FEATURE (ARM_EXT_V8, 0)),
23453 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23454 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
23455 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23456 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23457 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23458 ARM_EXT_OPT ("iwmmxt2",
23459 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23460 ARM_EXT_OPT ("maverick",
23461 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23462 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23463 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
bca38921
MGD
23464 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23465 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
23466 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23467 ARM_FEATURE (ARM_EXT_V6M, 0)),
23468 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23469 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23470 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23471 | ARM_EXT_DIV, 0),
23472 ARM_FEATURE (ARM_EXT_V7A, 0)),
23473 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23474 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
69133863 23475};
f3bad469 23476#undef ARM_EXT_OPT
69133863
MGD
23477
23478/* ISA floating-point and Advanced SIMD extensions. */
23479struct arm_option_fpu_value_table
23480{
23481 char *name;
23482 const arm_feature_set value;
c19d1205 23483};
7ed4c4c5 23484
c19d1205
ZW
23485/* This list should, at a minimum, contain all the fpu names
23486 recognized by GCC. */
69133863 23487static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
23488{
23489 {"softfpa", FPU_NONE},
23490 {"fpe", FPU_ARCH_FPE},
23491 {"fpe2", FPU_ARCH_FPE},
23492 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23493 {"fpa", FPU_ARCH_FPA},
23494 {"fpa10", FPU_ARCH_FPA},
23495 {"fpa11", FPU_ARCH_FPA},
23496 {"arm7500fe", FPU_ARCH_FPA},
23497 {"softvfp", FPU_ARCH_VFP},
23498 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23499 {"vfp", FPU_ARCH_VFP_V2},
23500 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 23501 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
23502 {"vfp10", FPU_ARCH_VFP_V2},
23503 {"vfp10-r0", FPU_ARCH_VFP_V1},
23504 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
23505 {"vfpv2", FPU_ARCH_VFP_V2},
23506 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 23507 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 23508 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
23509 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23510 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23511 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
23512 {"arm1020t", FPU_ARCH_VFP_V1},
23513 {"arm1020e", FPU_ARCH_VFP_V2},
23514 {"arm1136jfs", FPU_ARCH_VFP_V2},
23515 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23516 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 23517 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 23518 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
23519 {"vfpv4", FPU_ARCH_VFP_V4},
23520 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 23521 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 23522 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
23523 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23524 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23525 {"crypto-neon-fp-armv8",
23526 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
e74cfd16
PB
23527 {NULL, ARM_ARCH_NONE}
23528};
23529
23530struct arm_option_value_table
23531{
23532 char *name;
23533 long value;
c19d1205 23534};
7ed4c4c5 23535
e74cfd16 23536static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
23537{
23538 {"hard", ARM_FLOAT_ABI_HARD},
23539 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23540 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 23541 {NULL, 0}
c19d1205 23542};
7ed4c4c5 23543
c19d1205 23544#ifdef OBJ_ELF
3a4a14e9 23545/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 23546static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
23547{
23548 {"gnu", EF_ARM_EABI_UNKNOWN},
23549 {"4", EF_ARM_EABI_VER4},
3a4a14e9 23550 {"5", EF_ARM_EABI_VER5},
e74cfd16 23551 {NULL, 0}
c19d1205
ZW
23552};
23553#endif
7ed4c4c5 23554
c19d1205
ZW
23555struct arm_long_option_table
23556{
23557 char * option; /* Substring to match. */
23558 char * help; /* Help information. */
23559 int (* func) (char * subopt); /* Function to decode sub-option. */
23560 char * deprecated; /* If non-null, print this message. */
23561};
7ed4c4c5 23562
c921be7d 23563static bfd_boolean
f3bad469 23564arm_parse_extension (char *str, const arm_feature_set **opt_p)
7ed4c4c5 23565{
21d799b5
NC
23566 arm_feature_set *ext_set = (arm_feature_set *)
23567 xmalloc (sizeof (arm_feature_set));
e74cfd16 23568
69133863 23569 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
23570 extensions being added before being removed. We achieve this by having
23571 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 23572 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 23573 or removing it (0) and only allowing it to change in the order
69133863
MGD
23574 -1 -> 1 -> 0. */
23575 const struct arm_option_extension_value_table * opt = NULL;
23576 int adding_value = -1;
23577
e74cfd16
PB
23578 /* Copy the feature set, so that we can modify it. */
23579 *ext_set = **opt_p;
23580 *opt_p = ext_set;
23581
c19d1205 23582 while (str != NULL && *str != 0)
7ed4c4c5 23583 {
f3bad469
MGD
23584 char *ext;
23585 size_t len;
7ed4c4c5 23586
c19d1205
ZW
23587 if (*str != '+')
23588 {
23589 as_bad (_("invalid architectural extension"));
c921be7d 23590 return FALSE;
c19d1205 23591 }
7ed4c4c5 23592
c19d1205
ZW
23593 str++;
23594 ext = strchr (str, '+');
7ed4c4c5 23595
c19d1205 23596 if (ext != NULL)
f3bad469 23597 len = ext - str;
c19d1205 23598 else
f3bad469 23599 len = strlen (str);
7ed4c4c5 23600
f3bad469 23601 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
23602 {
23603 if (adding_value != 0)
23604 {
23605 adding_value = 0;
23606 opt = arm_extensions;
23607 }
23608
f3bad469 23609 len -= 2;
69133863
MGD
23610 str += 2;
23611 }
f3bad469 23612 else if (len > 0)
69133863
MGD
23613 {
23614 if (adding_value == -1)
23615 {
23616 adding_value = 1;
23617 opt = arm_extensions;
23618 }
23619 else if (adding_value != 1)
23620 {
23621 as_bad (_("must specify extensions to add before specifying "
23622 "those to remove"));
23623 return FALSE;
23624 }
23625 }
23626
f3bad469 23627 if (len == 0)
c19d1205
ZW
23628 {
23629 as_bad (_("missing architectural extension"));
c921be7d 23630 return FALSE;
c19d1205 23631 }
7ed4c4c5 23632
69133863
MGD
23633 gas_assert (adding_value != -1);
23634 gas_assert (opt != NULL);
23635
23636 /* Scan over the options table trying to find an exact match. */
23637 for (; opt->name != NULL; opt++)
f3bad469 23638 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23639 {
69133863
MGD
23640 /* Check we can apply the extension to this architecture. */
23641 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23642 {
23643 as_bad (_("extension does not apply to the base architecture"));
23644 return FALSE;
23645 }
23646
23647 /* Add or remove the extension. */
23648 if (adding_value)
23649 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23650 else
23651 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23652
c19d1205
ZW
23653 break;
23654 }
7ed4c4c5 23655
c19d1205
ZW
23656 if (opt->name == NULL)
23657 {
69133863
MGD
23658 /* Did we fail to find an extension because it wasn't specified in
23659 alphabetical order, or because it does not exist? */
23660
23661 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 23662 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
23663 break;
23664
23665 if (opt->name == NULL)
23666 as_bad (_("unknown architectural extension `%s'"), str);
23667 else
23668 as_bad (_("architectural extensions must be specified in "
23669 "alphabetical order"));
23670
c921be7d 23671 return FALSE;
c19d1205 23672 }
69133863
MGD
23673 else
23674 {
23675 /* We should skip the extension we've just matched the next time
23676 round. */
23677 opt++;
23678 }
7ed4c4c5 23679
c19d1205
ZW
23680 str = ext;
23681 };
7ed4c4c5 23682
c921be7d 23683 return TRUE;
c19d1205 23684}
7ed4c4c5 23685
c921be7d 23686static bfd_boolean
f3bad469 23687arm_parse_cpu (char *str)
7ed4c4c5 23688{
f3bad469
MGD
23689 const struct arm_cpu_option_table *opt;
23690 char *ext = strchr (str, '+');
23691 size_t len;
7ed4c4c5 23692
c19d1205 23693 if (ext != NULL)
f3bad469 23694 len = ext - str;
7ed4c4c5 23695 else
f3bad469 23696 len = strlen (str);
7ed4c4c5 23697
f3bad469 23698 if (len == 0)
7ed4c4c5 23699 {
c19d1205 23700 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23701 return FALSE;
7ed4c4c5
NC
23702 }
23703
c19d1205 23704 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 23705 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23706 {
e74cfd16
PB
23707 mcpu_cpu_opt = &opt->value;
23708 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23709 if (opt->canonical_name)
5f4273c7 23710 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23711 else
23712 {
f3bad469 23713 size_t i;
c921be7d 23714
f3bad469 23715 for (i = 0; i < len; i++)
ee065d83
PB
23716 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23717 selected_cpu_name[i] = 0;
23718 }
7ed4c4c5 23719
c19d1205
ZW
23720 if (ext != NULL)
23721 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23722
c921be7d 23723 return TRUE;
c19d1205 23724 }
7ed4c4c5 23725
c19d1205 23726 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23727 return FALSE;
7ed4c4c5
NC
23728}
23729
c921be7d 23730static bfd_boolean
f3bad469 23731arm_parse_arch (char *str)
7ed4c4c5 23732{
e74cfd16 23733 const struct arm_arch_option_table *opt;
c19d1205 23734 char *ext = strchr (str, '+');
f3bad469 23735 size_t len;
7ed4c4c5 23736
c19d1205 23737 if (ext != NULL)
f3bad469 23738 len = ext - str;
7ed4c4c5 23739 else
f3bad469 23740 len = strlen (str);
7ed4c4c5 23741
f3bad469 23742 if (len == 0)
7ed4c4c5 23743 {
c19d1205 23744 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23745 return FALSE;
7ed4c4c5
NC
23746 }
23747
c19d1205 23748 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 23749 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23750 {
e74cfd16
PB
23751 march_cpu_opt = &opt->value;
23752 march_fpu_opt = &opt->default_fpu;
5f4273c7 23753 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23754
c19d1205
ZW
23755 if (ext != NULL)
23756 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23757
c921be7d 23758 return TRUE;
c19d1205
ZW
23759 }
23760
23761 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23762 return FALSE;
7ed4c4c5 23763}
eb043451 23764
c921be7d 23765static bfd_boolean
c19d1205
ZW
23766arm_parse_fpu (char * str)
23767{
69133863 23768 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23769
c19d1205
ZW
23770 for (opt = arm_fpus; opt->name != NULL; opt++)
23771 if (streq (opt->name, str))
23772 {
e74cfd16 23773 mfpu_opt = &opt->value;
c921be7d 23774 return TRUE;
c19d1205 23775 }
b99bd4ef 23776
c19d1205 23777 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23778 return FALSE;
c19d1205
ZW
23779}
23780
c921be7d 23781static bfd_boolean
c19d1205 23782arm_parse_float_abi (char * str)
b99bd4ef 23783{
e74cfd16 23784 const struct arm_option_value_table * opt;
b99bd4ef 23785
c19d1205
ZW
23786 for (opt = arm_float_abis; opt->name != NULL; opt++)
23787 if (streq (opt->name, str))
23788 {
23789 mfloat_abi_opt = opt->value;
c921be7d 23790 return TRUE;
c19d1205 23791 }
cc8a6dd0 23792
c19d1205 23793 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23794 return FALSE;
c19d1205 23795}
b99bd4ef 23796
c19d1205 23797#ifdef OBJ_ELF
c921be7d 23798static bfd_boolean
c19d1205
ZW
23799arm_parse_eabi (char * str)
23800{
e74cfd16 23801 const struct arm_option_value_table *opt;
cc8a6dd0 23802
c19d1205
ZW
23803 for (opt = arm_eabis; opt->name != NULL; opt++)
23804 if (streq (opt->name, str))
23805 {
23806 meabi_flags = opt->value;
c921be7d 23807 return TRUE;
c19d1205
ZW
23808 }
23809 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23810 return FALSE;
c19d1205
ZW
23811}
23812#endif
cc8a6dd0 23813
c921be7d 23814static bfd_boolean
e07e6e58
NC
23815arm_parse_it_mode (char * str)
23816{
c921be7d 23817 bfd_boolean ret = TRUE;
e07e6e58
NC
23818
23819 if (streq ("arm", str))
23820 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23821 else if (streq ("thumb", str))
23822 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23823 else if (streq ("always", str))
23824 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23825 else if (streq ("never", str))
23826 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23827 else
23828 {
23829 as_bad (_("unknown implicit IT mode `%s', should be "\
23830 "arm, thumb, always, or never."), str);
c921be7d 23831 ret = FALSE;
e07e6e58
NC
23832 }
23833
23834 return ret;
23835}
23836
c19d1205
ZW
23837struct arm_long_option_table arm_long_opts[] =
23838{
23839 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23840 arm_parse_cpu, NULL},
23841 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23842 arm_parse_arch, NULL},
23843 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23844 arm_parse_fpu, NULL},
23845 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23846 arm_parse_float_abi, NULL},
23847#ifdef OBJ_ELF
7fac0536 23848 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23849 arm_parse_eabi, NULL},
23850#endif
e07e6e58
NC
23851 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23852 arm_parse_it_mode, NULL},
c19d1205
ZW
23853 {NULL, NULL, 0, NULL}
23854};
cc8a6dd0 23855
c19d1205
ZW
23856int
23857md_parse_option (int c, char * arg)
23858{
23859 struct arm_option_table *opt;
e74cfd16 23860 const struct arm_legacy_option_table *fopt;
c19d1205 23861 struct arm_long_option_table *lopt;
b99bd4ef 23862
c19d1205 23863 switch (c)
b99bd4ef 23864 {
c19d1205
ZW
23865#ifdef OPTION_EB
23866 case OPTION_EB:
23867 target_big_endian = 1;
23868 break;
23869#endif
cc8a6dd0 23870
c19d1205
ZW
23871#ifdef OPTION_EL
23872 case OPTION_EL:
23873 target_big_endian = 0;
23874 break;
23875#endif
b99bd4ef 23876
845b51d6
PB
23877 case OPTION_FIX_V4BX:
23878 fix_v4bx = TRUE;
23879 break;
23880
c19d1205
ZW
23881 case 'a':
23882 /* Listing option. Just ignore these, we don't support additional
23883 ones. */
23884 return 0;
b99bd4ef 23885
c19d1205
ZW
23886 default:
23887 for (opt = arm_opts; opt->option != NULL; opt++)
23888 {
23889 if (c == opt->option[0]
23890 && ((arg == NULL && opt->option[1] == 0)
23891 || streq (arg, opt->option + 1)))
23892 {
c19d1205 23893 /* If the option is deprecated, tell the user. */
278df34e 23894 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23895 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23896 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23897
c19d1205
ZW
23898 if (opt->var != NULL)
23899 *opt->var = opt->value;
cc8a6dd0 23900
c19d1205
ZW
23901 return 1;
23902 }
23903 }
b99bd4ef 23904
e74cfd16
PB
23905 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23906 {
23907 if (c == fopt->option[0]
23908 && ((arg == NULL && fopt->option[1] == 0)
23909 || streq (arg, fopt->option + 1)))
23910 {
e74cfd16 23911 /* If the option is deprecated, tell the user. */
278df34e 23912 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
23913 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23914 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
23915
23916 if (fopt->var != NULL)
23917 *fopt->var = &fopt->value;
23918
23919 return 1;
23920 }
23921 }
23922
c19d1205
ZW
23923 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23924 {
23925 /* These options are expected to have an argument. */
23926 if (c == lopt->option[0]
23927 && arg != NULL
23928 && strncmp (arg, lopt->option + 1,
23929 strlen (lopt->option + 1)) == 0)
23930 {
c19d1205 23931 /* If the option is deprecated, tell the user. */
278df34e 23932 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
23933 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23934 _(lopt->deprecated));
b99bd4ef 23935
c19d1205
ZW
23936 /* Call the sup-option parser. */
23937 return lopt->func (arg + strlen (lopt->option) - 1);
23938 }
23939 }
a737bd4d 23940
c19d1205
ZW
23941 return 0;
23942 }
a394c00f 23943
c19d1205
ZW
23944 return 1;
23945}
a394c00f 23946
c19d1205
ZW
23947void
23948md_show_usage (FILE * fp)
a394c00f 23949{
c19d1205
ZW
23950 struct arm_option_table *opt;
23951 struct arm_long_option_table *lopt;
a394c00f 23952
c19d1205 23953 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 23954
c19d1205
ZW
23955 for (opt = arm_opts; opt->option != NULL; opt++)
23956 if (opt->help != NULL)
23957 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 23958
c19d1205
ZW
23959 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23960 if (lopt->help != NULL)
23961 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 23962
c19d1205
ZW
23963#ifdef OPTION_EB
23964 fprintf (fp, _("\
23965 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
23966#endif
23967
c19d1205
ZW
23968#ifdef OPTION_EL
23969 fprintf (fp, _("\
23970 -EL assemble code for a little-endian cpu\n"));
a737bd4d 23971#endif
845b51d6
PB
23972
23973 fprintf (fp, _("\
23974 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 23975}
ee065d83
PB
23976
23977
23978#ifdef OBJ_ELF
62b3e311
PB
23979typedef struct
23980{
23981 int val;
23982 arm_feature_set flags;
23983} cpu_arch_ver_table;
23984
23985/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23986 least features first. */
23987static const cpu_arch_ver_table cpu_arch_ver[] =
23988{
23989 {1, ARM_ARCH_V4},
23990 {2, ARM_ARCH_V4T},
23991 {3, ARM_ARCH_V5},
ee3c0378 23992 {3, ARM_ARCH_V5T},
62b3e311
PB
23993 {4, ARM_ARCH_V5TE},
23994 {5, ARM_ARCH_V5TEJ},
23995 {6, ARM_ARCH_V6},
7e806470 23996 {9, ARM_ARCH_V6K},
f4c65163 23997 {7, ARM_ARCH_V6Z},
91e22acd 23998 {11, ARM_ARCH_V6M},
b2a5fbdc 23999 {12, ARM_ARCH_V6SM},
7e806470 24000 {8, ARM_ARCH_V6T2},
bca38921 24001 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
62b3e311
PB
24002 {10, ARM_ARCH_V7R},
24003 {10, ARM_ARCH_V7M},
bca38921 24004 {14, ARM_ARCH_V8A},
62b3e311
PB
24005 {0, ARM_ARCH_NONE}
24006};
24007
ee3c0378
AS
24008/* Set an attribute if it has not already been set by the user. */
24009static void
24010aeabi_set_attribute_int (int tag, int value)
24011{
24012 if (tag < 1
24013 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24014 || !attributes_set_explicitly[tag])
24015 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24016}
24017
24018static void
24019aeabi_set_attribute_string (int tag, const char *value)
24020{
24021 if (tag < 1
24022 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24023 || !attributes_set_explicitly[tag])
24024 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24025}
24026
ee065d83
PB
24027/* Set the public EABI object attributes. */
24028static void
24029aeabi_set_public_attributes (void)
24030{
24031 int arch;
69239280 24032 char profile;
90ec0d68 24033 int virt_sec = 0;
bca38921 24034 int fp16_optional = 0;
e74cfd16 24035 arm_feature_set flags;
62b3e311
PB
24036 arm_feature_set tmp;
24037 const cpu_arch_ver_table *p;
ee065d83
PB
24038
24039 /* Choose the architecture based on the capabilities of the requested cpu
24040 (if any) and/or the instructions actually used. */
e74cfd16
PB
24041 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24042 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24043 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
ddd7f988
RE
24044
24045 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24046 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24047
24048 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24049 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24050
24051 /* Allow the user to override the reported architecture. */
7a1d4c38
PB
24052 if (object_arch)
24053 {
24054 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24055 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24056 }
24057
251665fc
MGD
24058 /* We need to make sure that the attributes do not identify us as v6S-M
24059 when the only v6S-M feature in use is the Operating System Extensions. */
24060 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24061 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24062 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24063
62b3e311
PB
24064 tmp = flags;
24065 arch = 0;
24066 for (p = cpu_arch_ver; p->val; p++)
24067 {
24068 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24069 {
24070 arch = p->val;
24071 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24072 }
24073 }
ee065d83 24074
9e3c6df6
PB
24075 /* The table lookup above finds the last architecture to contribute
24076 a new feature. Unfortunately, Tag13 is a subset of the union of
24077 v6T2 and v7-M, so it is never seen as contributing a new feature.
24078 We can not search for the last entry which is entirely used,
24079 because if no CPU is specified we build up only those flags
24080 actually used. Perhaps we should separate out the specified
24081 and implicit cases. Avoid taking this path for -march=all by
24082 checking for contradictory v7-A / v7-M features. */
24083 if (arch == 10
24084 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24085 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24086 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24087 arch = 13;
24088
ee065d83
PB
24089 /* Tag_CPU_name. */
24090 if (selected_cpu_name[0])
24091 {
91d6fa6a 24092 char *q;
ee065d83 24093
91d6fa6a
NC
24094 q = selected_cpu_name;
24095 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
24096 {
24097 int i;
5f4273c7 24098
91d6fa6a
NC
24099 q += 4;
24100 for (i = 0; q[i]; i++)
24101 q[i] = TOUPPER (q[i]);
ee065d83 24102 }
91d6fa6a 24103 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 24104 }
62f3b8c8 24105
ee065d83 24106 /* Tag_CPU_arch. */
ee3c0378 24107 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 24108
62b3e311
PB
24109 /* Tag_CPU_arch_profile. */
24110 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
69239280 24111 profile = 'A';
62b3e311 24112 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
69239280 24113 profile = 'R';
7e806470 24114 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
69239280
MGD
24115 profile = 'M';
24116 else
24117 profile = '\0';
24118
24119 if (profile != '\0')
24120 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 24121
ee065d83 24122 /* Tag_ARM_ISA_use. */
ee3c0378
AS
24123 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24124 || arch == 0)
24125 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 24126
ee065d83 24127 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
24128 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24129 || arch == 0)
24130 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24131 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 24132
ee065d83 24133 /* Tag_VFP_arch. */
bca38921
MGD
24134 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24135 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24136 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
24137 aeabi_set_attribute_int (Tag_VFP_arch,
24138 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24139 ? 5 : 6);
24140 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
24141 {
24142 fp16_optional = 1;
24143 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24144 }
ada65aa3 24145 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
24146 {
24147 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24148 fp16_optional = 1;
24149 }
ee3c0378
AS
24150 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24151 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24152 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24153 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24154 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 24155
4547cb56
NC
24156 /* Tag_ABI_HardFP_use. */
24157 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24158 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24159 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24160
ee065d83 24161 /* Tag_WMMX_arch. */
ee3c0378
AS
24162 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24163 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24164 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24165 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 24166
ee3c0378 24167 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
bca38921
MGD
24168 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24169 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24170 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24171 {
24172 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24173 {
24174 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24175 }
24176 else
24177 {
24178 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24179 fp16_optional = 1;
24180 }
24181 }
fa94de6b 24182
ee3c0378 24183 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 24184 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 24185 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 24186
69239280
MGD
24187 /* Tag_DIV_use.
24188
24189 We set Tag_DIV_use to two when integer divide instructions have been used
24190 in ARM state, or when Thumb integer divide instructions have been used,
24191 but we have no architecture profile set, nor have we any ARM instructions.
24192
bca38921
MGD
24193 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24194 architecture.
24195
69239280 24196 For new architectures we will have to check these tests. */
bca38921
MGD
24197 gas_assert (arch <= TAG_CPU_ARCH_V8);
24198 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24199 aeabi_set_attribute_int (Tag_DIV_use, 0);
24200 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24201 || (profile == '\0'
24202 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24203 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 24204 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
24205
24206 /* Tag_MP_extension_use. */
24207 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24208 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
24209
24210 /* Tag Virtualization_use. */
24211 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
24212 virt_sec |= 1;
24213 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24214 virt_sec |= 2;
24215 if (virt_sec != 0)
24216 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
24217}
24218
104d59d1 24219/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
24220void
24221arm_md_end (void)
24222{
ee065d83
PB
24223 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24224 return;
24225
24226 aeabi_set_public_attributes ();
ee065d83 24227}
8463be01 24228#endif /* OBJ_ELF */
ee065d83
PB
24229
24230
24231/* Parse a .cpu directive. */
24232
24233static void
24234s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24235{
e74cfd16 24236 const struct arm_cpu_option_table *opt;
ee065d83
PB
24237 char *name;
24238 char saved_char;
24239
24240 name = input_line_pointer;
5f4273c7 24241 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24242 input_line_pointer++;
24243 saved_char = *input_line_pointer;
24244 *input_line_pointer = 0;
24245
24246 /* Skip the first "all" entry. */
24247 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24248 if (streq (opt->name, name))
24249 {
e74cfd16
PB
24250 mcpu_cpu_opt = &opt->value;
24251 selected_cpu = opt->value;
ee065d83 24252 if (opt->canonical_name)
5f4273c7 24253 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
24254 else
24255 {
24256 int i;
24257 for (i = 0; opt->name[i]; i++)
24258 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 24259
ee065d83
PB
24260 selected_cpu_name[i] = 0;
24261 }
e74cfd16 24262 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24263 *input_line_pointer = saved_char;
24264 demand_empty_rest_of_line ();
24265 return;
24266 }
24267 as_bad (_("unknown cpu `%s'"), name);
24268 *input_line_pointer = saved_char;
24269 ignore_rest_of_line ();
24270}
24271
24272
24273/* Parse a .arch directive. */
24274
24275static void
24276s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24277{
e74cfd16 24278 const struct arm_arch_option_table *opt;
ee065d83
PB
24279 char saved_char;
24280 char *name;
24281
24282 name = input_line_pointer;
5f4273c7 24283 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24284 input_line_pointer++;
24285 saved_char = *input_line_pointer;
24286 *input_line_pointer = 0;
24287
24288 /* Skip the first "all" entry. */
24289 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24290 if (streq (opt->name, name))
24291 {
e74cfd16
PB
24292 mcpu_cpu_opt = &opt->value;
24293 selected_cpu = opt->value;
5f4273c7 24294 strcpy (selected_cpu_name, opt->name);
e74cfd16 24295 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24296 *input_line_pointer = saved_char;
24297 demand_empty_rest_of_line ();
24298 return;
24299 }
24300
24301 as_bad (_("unknown architecture `%s'\n"), name);
24302 *input_line_pointer = saved_char;
24303 ignore_rest_of_line ();
24304}
24305
24306
7a1d4c38
PB
24307/* Parse a .object_arch directive. */
24308
24309static void
24310s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24311{
24312 const struct arm_arch_option_table *opt;
24313 char saved_char;
24314 char *name;
24315
24316 name = input_line_pointer;
5f4273c7 24317 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
24318 input_line_pointer++;
24319 saved_char = *input_line_pointer;
24320 *input_line_pointer = 0;
24321
24322 /* Skip the first "all" entry. */
24323 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24324 if (streq (opt->name, name))
24325 {
24326 object_arch = &opt->value;
24327 *input_line_pointer = saved_char;
24328 demand_empty_rest_of_line ();
24329 return;
24330 }
24331
24332 as_bad (_("unknown architecture `%s'\n"), name);
24333 *input_line_pointer = saved_char;
24334 ignore_rest_of_line ();
24335}
24336
69133863
MGD
24337/* Parse a .arch_extension directive. */
24338
24339static void
24340s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24341{
24342 const struct arm_option_extension_value_table *opt;
24343 char saved_char;
24344 char *name;
24345 int adding_value = 1;
24346
24347 name = input_line_pointer;
24348 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24349 input_line_pointer++;
24350 saved_char = *input_line_pointer;
24351 *input_line_pointer = 0;
24352
24353 if (strlen (name) >= 2
24354 && strncmp (name, "no", 2) == 0)
24355 {
24356 adding_value = 0;
24357 name += 2;
24358 }
24359
24360 for (opt = arm_extensions; opt->name != NULL; opt++)
24361 if (streq (opt->name, name))
24362 {
24363 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24364 {
24365 as_bad (_("architectural extension `%s' is not allowed for the "
24366 "current base architecture"), name);
24367 break;
24368 }
24369
24370 if (adding_value)
24371 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24372 else
24373 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24374
24375 mcpu_cpu_opt = &selected_cpu;
24376 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24377 *input_line_pointer = saved_char;
24378 demand_empty_rest_of_line ();
24379 return;
24380 }
24381
24382 if (opt->name == NULL)
24383 as_bad (_("unknown architecture `%s'\n"), name);
24384
24385 *input_line_pointer = saved_char;
24386 ignore_rest_of_line ();
24387}
24388
ee065d83
PB
24389/* Parse a .fpu directive. */
24390
24391static void
24392s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24393{
69133863 24394 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
24395 char saved_char;
24396 char *name;
24397
24398 name = input_line_pointer;
5f4273c7 24399 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24400 input_line_pointer++;
24401 saved_char = *input_line_pointer;
24402 *input_line_pointer = 0;
5f4273c7 24403
ee065d83
PB
24404 for (opt = arm_fpus; opt->name != NULL; opt++)
24405 if (streq (opt->name, name))
24406 {
e74cfd16
PB
24407 mfpu_opt = &opt->value;
24408 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24409 *input_line_pointer = saved_char;
24410 demand_empty_rest_of_line ();
24411 return;
24412 }
24413
24414 as_bad (_("unknown floating point format `%s'\n"), name);
24415 *input_line_pointer = saved_char;
24416 ignore_rest_of_line ();
24417}
ee065d83 24418
794ba86a 24419/* Copy symbol information. */
f31fef98 24420
794ba86a
DJ
24421void
24422arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24423{
24424 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24425}
e04befd0 24426
f31fef98 24427#ifdef OBJ_ELF
e04befd0
AS
24428/* Given a symbolic attribute NAME, return the proper integer value.
24429 Returns -1 if the attribute is not known. */
f31fef98 24430
e04befd0
AS
24431int
24432arm_convert_symbolic_attribute (const char *name)
24433{
f31fef98
NC
24434 static const struct
24435 {
24436 const char * name;
24437 const int tag;
24438 }
24439 attribute_table[] =
24440 {
24441 /* When you modify this table you should
24442 also modify the list in doc/c-arm.texi. */
e04befd0 24443#define T(tag) {#tag, tag}
f31fef98
NC
24444 T (Tag_CPU_raw_name),
24445 T (Tag_CPU_name),
24446 T (Tag_CPU_arch),
24447 T (Tag_CPU_arch_profile),
24448 T (Tag_ARM_ISA_use),
24449 T (Tag_THUMB_ISA_use),
75375b3e 24450 T (Tag_FP_arch),
f31fef98
NC
24451 T (Tag_VFP_arch),
24452 T (Tag_WMMX_arch),
24453 T (Tag_Advanced_SIMD_arch),
24454 T (Tag_PCS_config),
24455 T (Tag_ABI_PCS_R9_use),
24456 T (Tag_ABI_PCS_RW_data),
24457 T (Tag_ABI_PCS_RO_data),
24458 T (Tag_ABI_PCS_GOT_use),
24459 T (Tag_ABI_PCS_wchar_t),
24460 T (Tag_ABI_FP_rounding),
24461 T (Tag_ABI_FP_denormal),
24462 T (Tag_ABI_FP_exceptions),
24463 T (Tag_ABI_FP_user_exceptions),
24464 T (Tag_ABI_FP_number_model),
75375b3e 24465 T (Tag_ABI_align_needed),
f31fef98 24466 T (Tag_ABI_align8_needed),
75375b3e 24467 T (Tag_ABI_align_preserved),
f31fef98
NC
24468 T (Tag_ABI_align8_preserved),
24469 T (Tag_ABI_enum_size),
24470 T (Tag_ABI_HardFP_use),
24471 T (Tag_ABI_VFP_args),
24472 T (Tag_ABI_WMMX_args),
24473 T (Tag_ABI_optimization_goals),
24474 T (Tag_ABI_FP_optimization_goals),
24475 T (Tag_compatibility),
24476 T (Tag_CPU_unaligned_access),
75375b3e 24477 T (Tag_FP_HP_extension),
f31fef98
NC
24478 T (Tag_VFP_HP_extension),
24479 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
24480 T (Tag_MPextension_use),
24481 T (Tag_DIV_use),
f31fef98
NC
24482 T (Tag_nodefaults),
24483 T (Tag_also_compatible_with),
24484 T (Tag_conformance),
24485 T (Tag_T2EE_use),
24486 T (Tag_Virtualization_use),
cd21e546 24487 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 24488#undef T
f31fef98 24489 };
e04befd0
AS
24490 unsigned int i;
24491
24492 if (name == NULL)
24493 return -1;
24494
f31fef98 24495 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 24496 if (streq (name, attribute_table[i].name))
e04befd0
AS
24497 return attribute_table[i].tag;
24498
24499 return -1;
24500}
267bf995
RR
24501
24502
24503/* Apply sym value for relocations only in the case that
24504 they are for local symbols and you have the respective
24505 architectural feature for blx and simple switches. */
24506int
24507arm_apply_sym_value (struct fix * fixP)
24508{
24509 if (fixP->fx_addsy
24510 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 24511 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
24512 {
24513 switch (fixP->fx_r_type)
24514 {
24515 case BFD_RELOC_ARM_PCREL_BLX:
24516 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24517 if (ARM_IS_FUNC (fixP->fx_addsy))
24518 return 1;
24519 break;
24520
24521 case BFD_RELOC_ARM_PCREL_CALL:
24522 case BFD_RELOC_THUMB_PCREL_BLX:
24523 if (THUMB_IS_FUNC (fixP->fx_addsy))
24524 return 1;
24525 break;
24526
24527 default:
24528 break;
24529 }
24530
24531 }
24532 return 0;
24533}
f31fef98 24534#endif /* OBJ_ELF */
This page took 2.511045 seconds and 4 git commands to generate.