* config/tc-arm.c (arm_it): Add immisfloat field.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
ebd1c875 3 2004, 2005, 2006
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
5287ad62 28#include <limits.h>
037e8744 29#include <stdarg.h>
c19d1205 30#define NO_RELOC 0
b99bd4ef 31#include "as.h"
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
720abc60 45#define WARN_DEPRECATED 1
03b1477f 46
7ed4c4c5
NC
47#ifdef OBJ_ELF
48/* Must be at least the size of the largest unwind opcode (currently two). */
49#define ARM_OPCODE_CHUNK_SIZE 8
50
51/* This structure holds the unwinding state. */
52
53static struct
54{
c19d1205
ZW
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
7ed4c4c5 59 /* The segment containing the function. */
c19d1205
ZW
60 segT saved_seg;
61 subsegT saved_subseg;
7ed4c4c5
NC
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
c19d1205
ZW
64 int opcode_count;
65 int opcode_alloc;
7ed4c4c5 66 /* The number of bytes pushed to the stack. */
c19d1205 67 offsetT frame_size;
7ed4c4c5
NC
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
c19d1205 71 offsetT pending_offset;
7ed4c4c5 72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
7ed4c4c5 76 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 77 unsigned fp_used:1;
7ed4c4c5 78 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 79 unsigned sp_restored:1;
7ed4c4c5
NC
80} unwind;
81
8b1ad454
NC
82/* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85static unsigned int marked_pr_dependency = 0;
86
87#endif /* OBJ_ELF */
88
4962c51a
MS
89/* Results from operand parsing worker functions. */
90
91typedef enum
92{
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96} parse_operand_result;
97
33a392fb
PB
98enum arm_float_abi
99{
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103};
104
c19d1205 105/* Types of processor to assemble for. */
b99bd4ef
NC
106#ifndef CPU_DEFAULT
107#if defined __XSCALE__
e74cfd16 108#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
109#else
110#if defined __thumb__
e74cfd16 111#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
112#endif
113#endif
114#endif
115
116#ifndef FPU_DEFAULT
c820d418
MM
117# ifdef TE_LINUX
118# define FPU_DEFAULT FPU_ARCH_FPA
119# elif defined (TE_NetBSD)
120# ifdef OBJ_ELF
121# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122# else
123 /* Legacy a.out format. */
124# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125# endif
4e7fd91e
PB
126# elif defined (TE_VXWORKS)
127# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
128# else
129 /* For backwards compatibility, default to FPA. */
130# define FPU_DEFAULT FPU_ARCH_FPA
131# endif
132#endif /* ifndef FPU_DEFAULT */
b99bd4ef 133
c19d1205 134#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 135
e74cfd16
PB
136static arm_feature_set cpu_variant;
137static arm_feature_set arm_arch_used;
138static arm_feature_set thumb_arch_used;
b99bd4ef 139
b99bd4ef 140/* Flags stored in private area of BFD structure. */
c19d1205
ZW
141static int uses_apcs_26 = FALSE;
142static int atpcs = FALSE;
b34976b6
AM
143static int support_interwork = FALSE;
144static int uses_apcs_float = FALSE;
c19d1205 145static int pic_code = FALSE;
03b1477f
RE
146
147/* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
e74cfd16
PB
150static const arm_feature_set *legacy_cpu = NULL;
151static const arm_feature_set *legacy_fpu = NULL;
152
153static const arm_feature_set *mcpu_cpu_opt = NULL;
154static const arm_feature_set *mcpu_fpu_opt = NULL;
155static const arm_feature_set *march_cpu_opt = NULL;
156static const arm_feature_set *march_fpu_opt = NULL;
157static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 158static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
159
160/* Constants for known architecture features. */
161static const arm_feature_set fpu_default = FPU_DEFAULT;
162static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
163static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
164static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
165static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
166static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
167static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
168static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
169static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171#ifdef CPU_DEFAULT
172static const arm_feature_set cpu_default = CPU_DEFAULT;
173#endif
174
175static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
176static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
177static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
178static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
179static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
180static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
181static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
182static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
183static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
185static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
186static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
187static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
188static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
189static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
190static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
191static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
192static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
194static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
e74cfd16
PB
199
200static const arm_feature_set arm_arch_any = ARM_ANY;
201static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
2d447fca
JM
205static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
207static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
5287ad62
JB
219static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
220static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
221static const arm_feature_set fpu_vfp_v3_or_neon_ext =
222 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
e74cfd16 223
33a392fb 224static int mfloat_abi_opt = -1;
e74cfd16
PB
225/* Record user cpu selection for object attributes. */
226static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
227/* Must be long enough to hold any of the names in arm_cpus. */
228static char selected_cpu_name[16];
7cc69913 229#ifdef OBJ_ELF
deeaaff8
DJ
230# ifdef EABI_DEFAULT
231static int meabi_flags = EABI_DEFAULT;
232# else
d507cf36 233static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 234# endif
e1da3f5b
PB
235
236bfd_boolean
237arm_is_eabi(void)
238{
239 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
240}
7cc69913 241#endif
b99bd4ef 242
b99bd4ef 243#ifdef OBJ_ELF
c19d1205 244/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
245symbolS * GOT_symbol;
246#endif
247
b99bd4ef
NC
248/* 0: assemble for ARM,
249 1: assemble for Thumb,
250 2: assemble for Thumb even though target CPU does not support thumb
251 instructions. */
252static int thumb_mode = 0;
253
c19d1205
ZW
254/* If unified_syntax is true, we are processing the new unified
255 ARM/Thumb syntax. Important differences from the old ARM mode:
256
257 - Immediate operands do not require a # prefix.
258 - Conditional affixes always appear at the end of the
259 instruction. (For backward compatibility, those instructions
260 that formerly had them in the middle, continue to accept them
261 there.)
262 - The IT instruction may appear, and if it does is validated
263 against subsequent conditional affixes. It does not generate
264 machine code.
265
266 Important differences from the old Thumb mode:
267
268 - Immediate operands do not require a # prefix.
269 - Most of the V6T2 instructions are only available in unified mode.
270 - The .N and .W suffixes are recognized and honored (it is an error
271 if they cannot be honored).
272 - All instructions set the flags if and only if they have an 's' affix.
273 - Conditional affixes may be used. They are validated against
274 preceding IT instructions. Unlike ARM mode, you cannot use a
275 conditional affix except in the scope of an IT instruction. */
276
277static bfd_boolean unified_syntax = FALSE;
b99bd4ef 278
5287ad62
JB
279enum neon_el_type
280{
dcbf9037 281 NT_invtype,
5287ad62
JB
282 NT_untyped,
283 NT_integer,
284 NT_float,
285 NT_poly,
286 NT_signed,
dcbf9037 287 NT_unsigned
5287ad62
JB
288};
289
290struct neon_type_el
291{
292 enum neon_el_type type;
293 unsigned size;
294};
295
296#define NEON_MAX_TYPE_ELS 4
297
298struct neon_type
299{
300 struct neon_type_el el[NEON_MAX_TYPE_ELS];
301 unsigned elems;
302};
303
b99bd4ef
NC
304struct arm_it
305{
c19d1205 306 const char * error;
b99bd4ef 307 unsigned long instruction;
c19d1205
ZW
308 int size;
309 int size_req;
310 int cond;
037e8744
JB
311 /* "uncond_value" is set to the value in place of the conditional field in
312 unconditional versions of the instruction, or -1 if nothing is
313 appropriate. */
314 int uncond_value;
5287ad62 315 struct neon_type vectype;
0110f2b8
PB
316 /* Set to the opcode if the instruction needs relaxation.
317 Zero if the instruction is not relaxed. */
318 unsigned long relax;
b99bd4ef
NC
319 struct
320 {
321 bfd_reloc_code_real_type type;
c19d1205
ZW
322 expressionS exp;
323 int pc_rel;
b99bd4ef 324 } reloc;
b99bd4ef 325
c19d1205
ZW
326 struct
327 {
328 unsigned reg;
ca3f61f7 329 signed int imm;
dcbf9037 330 struct neon_type_el vectype;
ca3f61f7
NC
331 unsigned present : 1; /* Operand present. */
332 unsigned isreg : 1; /* Operand was a register. */
333 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
334 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
335 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 336 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
337 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
338 instructions. This allows us to disambiguate ARM <-> vector insns. */
339 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 340 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 341 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 342 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
343 unsigned hasreloc : 1; /* Operand has relocation suffix. */
344 unsigned writeback : 1; /* Operand has trailing ! */
345 unsigned preind : 1; /* Preindexed address. */
346 unsigned postind : 1; /* Postindexed address. */
347 unsigned negative : 1; /* Index register was negated. */
348 unsigned shifted : 1; /* Shift applied to operation. */
349 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 350 } operands[6];
b99bd4ef
NC
351};
352
c19d1205 353static struct arm_it inst;
b99bd4ef
NC
354
355#define NUM_FLOAT_VALS 8
356
05d2d07e 357const char * fp_const[] =
b99bd4ef
NC
358{
359 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
360};
361
c19d1205 362/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
363#define MAX_LITTLENUMS 6
364
365LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
366
367#define FAIL (-1)
368#define SUCCESS (0)
369
370#define SUFF_S 1
371#define SUFF_D 2
372#define SUFF_E 3
373#define SUFF_P 4
374
c19d1205
ZW
375#define CP_T_X 0x00008000
376#define CP_T_Y 0x00400000
b99bd4ef 377
c19d1205
ZW
378#define CONDS_BIT 0x00100000
379#define LOAD_BIT 0x00100000
b99bd4ef
NC
380
381#define DOUBLE_LOAD_FLAG 0x00000001
382
383struct asm_cond
384{
c19d1205 385 const char * template;
b99bd4ef
NC
386 unsigned long value;
387};
388
c19d1205 389#define COND_ALWAYS 0xE
b99bd4ef 390
b99bd4ef
NC
391struct asm_psr
392{
b34976b6 393 const char *template;
b99bd4ef
NC
394 unsigned long field;
395};
396
62b3e311
PB
397struct asm_barrier_opt
398{
399 const char *template;
400 unsigned long value;
401};
402
2d2255b5 403/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
404#define SPSR_BIT (1 << 22)
405
c19d1205
ZW
406/* The individual PSR flag bits. */
407#define PSR_c (1 << 16)
408#define PSR_x (1 << 17)
409#define PSR_s (1 << 18)
410#define PSR_f (1 << 19)
b99bd4ef 411
c19d1205 412struct reloc_entry
bfae80f2 413{
c19d1205
ZW
414 char *name;
415 bfd_reloc_code_real_type reloc;
bfae80f2
RE
416};
417
5287ad62 418enum vfp_reg_pos
bfae80f2 419{
5287ad62
JB
420 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
421 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
422};
423
424enum vfp_ldstm_type
425{
426 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
427};
428
dcbf9037
JB
429/* Bits for DEFINED field in neon_typed_alias. */
430#define NTA_HASTYPE 1
431#define NTA_HASINDEX 2
432
433struct neon_typed_alias
434{
435 unsigned char defined;
436 unsigned char index;
437 struct neon_type_el eltype;
438};
439
c19d1205
ZW
440/* ARM register categories. This includes coprocessor numbers and various
441 architecture extensions' registers. */
442enum arm_reg_type
bfae80f2 443{
c19d1205
ZW
444 REG_TYPE_RN,
445 REG_TYPE_CP,
446 REG_TYPE_CN,
447 REG_TYPE_FN,
448 REG_TYPE_VFS,
449 REG_TYPE_VFD,
5287ad62 450 REG_TYPE_NQ,
037e8744 451 REG_TYPE_VFSD,
5287ad62 452 REG_TYPE_NDQ,
037e8744 453 REG_TYPE_NSDQ,
c19d1205
ZW
454 REG_TYPE_VFC,
455 REG_TYPE_MVF,
456 REG_TYPE_MVD,
457 REG_TYPE_MVFX,
458 REG_TYPE_MVDX,
459 REG_TYPE_MVAX,
460 REG_TYPE_DSPSC,
461 REG_TYPE_MMXWR,
462 REG_TYPE_MMXWC,
463 REG_TYPE_MMXWCG,
464 REG_TYPE_XSCALE,
bfae80f2
RE
465};
466
dcbf9037
JB
467/* Structure for a hash table entry for a register.
468 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
469 information which states whether a vector type or index is specified (for a
470 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
471struct reg_entry
472{
dcbf9037
JB
473 const char *name;
474 unsigned char number;
475 unsigned char type;
476 unsigned char builtin;
477 struct neon_typed_alias *neon;
6c43fab6
RE
478};
479
c19d1205
ZW
480/* Diagnostics used when we don't get a register of the expected type. */
481const char *const reg_expected_msgs[] =
482{
483 N_("ARM register expected"),
484 N_("bad or missing co-processor number"),
485 N_("co-processor register expected"),
486 N_("FPA register expected"),
487 N_("VFP single precision register expected"),
5287ad62
JB
488 N_("VFP/Neon double precision register expected"),
489 N_("Neon quad precision register expected"),
037e8744 490 N_("VFP single or double precision register expected"),
5287ad62 491 N_("Neon double or quad precision register expected"),
037e8744 492 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
493 N_("VFP system register expected"),
494 N_("Maverick MVF register expected"),
495 N_("Maverick MVD register expected"),
496 N_("Maverick MVFX register expected"),
497 N_("Maverick MVDX register expected"),
498 N_("Maverick MVAX register expected"),
499 N_("Maverick DSPSC register expected"),
500 N_("iWMMXt data register expected"),
501 N_("iWMMXt control register expected"),
502 N_("iWMMXt scalar register expected"),
503 N_("XScale accumulator register expected"),
6c43fab6
RE
504};
505
c19d1205
ZW
506/* Some well known registers that we refer to directly elsewhere. */
507#define REG_SP 13
508#define REG_LR 14
509#define REG_PC 15
404ff6b5 510
b99bd4ef
NC
511/* ARM instructions take 4bytes in the object file, Thumb instructions
512 take 2: */
c19d1205 513#define INSN_SIZE 4
b99bd4ef
NC
514
515struct asm_opcode
516{
517 /* Basic string to match. */
c19d1205
ZW
518 const char *template;
519
520 /* Parameters to instruction. */
521 unsigned char operands[8];
522
523 /* Conditional tag - see opcode_lookup. */
524 unsigned int tag : 4;
b99bd4ef
NC
525
526 /* Basic instruction code. */
c19d1205 527 unsigned int avalue : 28;
b99bd4ef 528
c19d1205
ZW
529 /* Thumb-format instruction code. */
530 unsigned int tvalue;
b99bd4ef 531
90e4755a 532 /* Which architecture variant provides this instruction. */
e74cfd16
PB
533 const arm_feature_set *avariant;
534 const arm_feature_set *tvariant;
c19d1205
ZW
535
536 /* Function to call to encode instruction in ARM format. */
537 void (* aencode) (void);
b99bd4ef 538
c19d1205
ZW
539 /* Function to call to encode instruction in Thumb format. */
540 void (* tencode) (void);
b99bd4ef
NC
541};
542
a737bd4d
NC
543/* Defines for various bits that we will want to toggle. */
544#define INST_IMMEDIATE 0x02000000
545#define OFFSET_REG 0x02000000
c19d1205 546#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
547#define SHIFT_BY_REG 0x00000010
548#define PRE_INDEX 0x01000000
549#define INDEX_UP 0x00800000
550#define WRITE_BACK 0x00200000
551#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 552#define CPSI_MMOD 0x00020000
90e4755a 553
a737bd4d
NC
554#define LITERAL_MASK 0xf000f000
555#define OPCODE_MASK 0xfe1fffff
556#define V4_STR_BIT 0x00000020
90e4755a 557
a737bd4d 558#define DATA_OP_SHIFT 21
90e4755a 559
ef8d22e6
PB
560#define T2_OPCODE_MASK 0xfe1fffff
561#define T2_DATA_OP_SHIFT 21
562
a737bd4d
NC
563/* Codes to distinguish the arithmetic instructions. */
564#define OPCODE_AND 0
565#define OPCODE_EOR 1
566#define OPCODE_SUB 2
567#define OPCODE_RSB 3
568#define OPCODE_ADD 4
569#define OPCODE_ADC 5
570#define OPCODE_SBC 6
571#define OPCODE_RSC 7
572#define OPCODE_TST 8
573#define OPCODE_TEQ 9
574#define OPCODE_CMP 10
575#define OPCODE_CMN 11
576#define OPCODE_ORR 12
577#define OPCODE_MOV 13
578#define OPCODE_BIC 14
579#define OPCODE_MVN 15
90e4755a 580
ef8d22e6
PB
581#define T2_OPCODE_AND 0
582#define T2_OPCODE_BIC 1
583#define T2_OPCODE_ORR 2
584#define T2_OPCODE_ORN 3
585#define T2_OPCODE_EOR 4
586#define T2_OPCODE_ADD 8
587#define T2_OPCODE_ADC 10
588#define T2_OPCODE_SBC 11
589#define T2_OPCODE_SUB 13
590#define T2_OPCODE_RSB 14
591
a737bd4d
NC
592#define T_OPCODE_MUL 0x4340
593#define T_OPCODE_TST 0x4200
594#define T_OPCODE_CMN 0x42c0
595#define T_OPCODE_NEG 0x4240
596#define T_OPCODE_MVN 0x43c0
90e4755a 597
a737bd4d
NC
598#define T_OPCODE_ADD_R3 0x1800
599#define T_OPCODE_SUB_R3 0x1a00
600#define T_OPCODE_ADD_HI 0x4400
601#define T_OPCODE_ADD_ST 0xb000
602#define T_OPCODE_SUB_ST 0xb080
603#define T_OPCODE_ADD_SP 0xa800
604#define T_OPCODE_ADD_PC 0xa000
605#define T_OPCODE_ADD_I8 0x3000
606#define T_OPCODE_SUB_I8 0x3800
607#define T_OPCODE_ADD_I3 0x1c00
608#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 609
a737bd4d
NC
610#define T_OPCODE_ASR_R 0x4100
611#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
612#define T_OPCODE_LSR_R 0x40c0
613#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
614#define T_OPCODE_ASR_I 0x1000
615#define T_OPCODE_LSL_I 0x0000
616#define T_OPCODE_LSR_I 0x0800
b99bd4ef 617
a737bd4d
NC
618#define T_OPCODE_MOV_I8 0x2000
619#define T_OPCODE_CMP_I8 0x2800
620#define T_OPCODE_CMP_LR 0x4280
621#define T_OPCODE_MOV_HR 0x4600
622#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 623
a737bd4d
NC
624#define T_OPCODE_LDR_PC 0x4800
625#define T_OPCODE_LDR_SP 0x9800
626#define T_OPCODE_STR_SP 0x9000
627#define T_OPCODE_LDR_IW 0x6800
628#define T_OPCODE_STR_IW 0x6000
629#define T_OPCODE_LDR_IH 0x8800
630#define T_OPCODE_STR_IH 0x8000
631#define T_OPCODE_LDR_IB 0x7800
632#define T_OPCODE_STR_IB 0x7000
633#define T_OPCODE_LDR_RW 0x5800
634#define T_OPCODE_STR_RW 0x5000
635#define T_OPCODE_LDR_RH 0x5a00
636#define T_OPCODE_STR_RH 0x5200
637#define T_OPCODE_LDR_RB 0x5c00
638#define T_OPCODE_STR_RB 0x5400
c9b604bd 639
a737bd4d
NC
640#define T_OPCODE_PUSH 0xb400
641#define T_OPCODE_POP 0xbc00
b99bd4ef 642
2fc8bdac 643#define T_OPCODE_BRANCH 0xe000
b99bd4ef 644
a737bd4d 645#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 646#define THUMB_PP_PC_LR 0x0100
c19d1205 647#define THUMB_LOAD_BIT 0x0800
53365c0d 648#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
649
650#define BAD_ARGS _("bad arguments to instruction")
651#define BAD_PC _("r15 not allowed here")
652#define BAD_COND _("instruction cannot be conditional")
653#define BAD_OVERLAP _("registers may not be the same")
654#define BAD_HIREG _("lo register required")
655#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 656#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
657#define BAD_BRANCH _("branch must be last instruction in IT block")
658#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 659#define BAD_FPU _("selected FPU does not support instruction")
c19d1205
ZW
660
661static struct hash_control *arm_ops_hsh;
662static struct hash_control *arm_cond_hsh;
663static struct hash_control *arm_shift_hsh;
664static struct hash_control *arm_psr_hsh;
62b3e311 665static struct hash_control *arm_v7m_psr_hsh;
c19d1205
ZW
666static struct hash_control *arm_reg_hsh;
667static struct hash_control *arm_reloc_hsh;
62b3e311 668static struct hash_control *arm_barrier_opt_hsh;
b99bd4ef 669
b99bd4ef
NC
670/* Stuff needed to resolve the label ambiguity
671 As:
672 ...
673 label: <insn>
674 may differ from:
675 ...
676 label:
c19d1205 677 <insn>
b99bd4ef
NC
678*/
679
680symbolS * last_label_seen;
b34976b6 681static int label_is_thumb_function_name = FALSE;
a737bd4d 682\f
3d0c9500
NC
683/* Literal pool structure. Held on a per-section
684 and per-sub-section basis. */
a737bd4d 685
c19d1205 686#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 687typedef struct literal_pool
b99bd4ef 688{
c19d1205
ZW
689 expressionS literals [MAX_LITERAL_POOL_SIZE];
690 unsigned int next_free_entry;
691 unsigned int id;
692 symbolS * symbol;
693 segT section;
694 subsegT sub_section;
61b5f74b 695 struct literal_pool * next;
3d0c9500 696} literal_pool;
b99bd4ef 697
3d0c9500
NC
698/* Pointer to a linked list of literal pools. */
699literal_pool * list_of_pools = NULL;
e27ec89e
PB
700
701/* State variables for IT block handling. */
702static bfd_boolean current_it_mask = 0;
703static int current_cc;
704
c19d1205
ZW
705\f
706/* Pure syntax. */
b99bd4ef 707
c19d1205
ZW
708/* This array holds the chars that always start a comment. If the
709 pre-processor is disabled, these aren't very useful. */
710const char comment_chars[] = "@";
3d0c9500 711
c19d1205
ZW
712/* This array holds the chars that only start a comment at the beginning of
713 a line. If the line seems to have the form '# 123 filename'
714 .line and .file directives will appear in the pre-processed output. */
715/* Note that input_file.c hand checks for '#' at the beginning of the
716 first line of the input file. This is because the compiler outputs
717 #NO_APP at the beginning of its output. */
718/* Also note that comments like this one will always work. */
719const char line_comment_chars[] = "#";
3d0c9500 720
c19d1205 721const char line_separator_chars[] = ";";
b99bd4ef 722
c19d1205
ZW
723/* Chars that can be used to separate mant
724 from exp in floating point numbers. */
725const char EXP_CHARS[] = "eE";
3d0c9500 726
c19d1205
ZW
727/* Chars that mean this number is a floating point constant. */
728/* As in 0f12.456 */
729/* or 0d1.2345e12 */
b99bd4ef 730
c19d1205 731const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 732
c19d1205
ZW
733/* Prefix characters that indicate the start of an immediate
734 value. */
735#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 736
c19d1205
ZW
737/* Separator character handling. */
738
739#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
740
741static inline int
742skip_past_char (char ** str, char c)
743{
744 if (**str == c)
745 {
746 (*str)++;
747 return SUCCESS;
3d0c9500 748 }
c19d1205
ZW
749 else
750 return FAIL;
751}
752#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 753
c19d1205
ZW
754/* Arithmetic expressions (possibly involving symbols). */
755
756/* Return TRUE if anything in the expression is a bignum. */
757
758static int
759walk_no_bignums (symbolS * sp)
760{
761 if (symbol_get_value_expression (sp)->X_op == O_big)
762 return 1;
763
764 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 765 {
c19d1205
ZW
766 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
767 || (symbol_get_value_expression (sp)->X_op_symbol
768 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
769 }
770
c19d1205 771 return 0;
3d0c9500
NC
772}
773
c19d1205
ZW
774static int in_my_get_expression = 0;
775
776/* Third argument to my_get_expression. */
777#define GE_NO_PREFIX 0
778#define GE_IMM_PREFIX 1
779#define GE_OPT_PREFIX 2
5287ad62
JB
780/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
781 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
782#define GE_OPT_PREFIX_BIG 3
a737bd4d 783
b99bd4ef 784static int
c19d1205 785my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 786{
c19d1205
ZW
787 char * save_in;
788 segT seg;
b99bd4ef 789
c19d1205
ZW
790 /* In unified syntax, all prefixes are optional. */
791 if (unified_syntax)
5287ad62
JB
792 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
793 : GE_OPT_PREFIX;
b99bd4ef 794
c19d1205 795 switch (prefix_mode)
b99bd4ef 796 {
c19d1205
ZW
797 case GE_NO_PREFIX: break;
798 case GE_IMM_PREFIX:
799 if (!is_immediate_prefix (**str))
800 {
801 inst.error = _("immediate expression requires a # prefix");
802 return FAIL;
803 }
804 (*str)++;
805 break;
806 case GE_OPT_PREFIX:
5287ad62 807 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
808 if (is_immediate_prefix (**str))
809 (*str)++;
810 break;
811 default: abort ();
812 }
b99bd4ef 813
c19d1205 814 memset (ep, 0, sizeof (expressionS));
b99bd4ef 815
c19d1205
ZW
816 save_in = input_line_pointer;
817 input_line_pointer = *str;
818 in_my_get_expression = 1;
819 seg = expression (ep);
820 in_my_get_expression = 0;
821
822 if (ep->X_op == O_illegal)
b99bd4ef 823 {
c19d1205
ZW
824 /* We found a bad expression in md_operand(). */
825 *str = input_line_pointer;
826 input_line_pointer = save_in;
827 if (inst.error == NULL)
828 inst.error = _("bad expression");
829 return 1;
830 }
b99bd4ef 831
c19d1205
ZW
832#ifdef OBJ_AOUT
833 if (seg != absolute_section
834 && seg != text_section
835 && seg != data_section
836 && seg != bss_section
837 && seg != undefined_section)
838 {
839 inst.error = _("bad segment");
840 *str = input_line_pointer;
841 input_line_pointer = save_in;
842 return 1;
b99bd4ef 843 }
c19d1205 844#endif
b99bd4ef 845
c19d1205
ZW
846 /* Get rid of any bignums now, so that we don't generate an error for which
847 we can't establish a line number later on. Big numbers are never valid
848 in instructions, which is where this routine is always called. */
5287ad62
JB
849 if (prefix_mode != GE_OPT_PREFIX_BIG
850 && (ep->X_op == O_big
851 || (ep->X_add_symbol
852 && (walk_no_bignums (ep->X_add_symbol)
853 || (ep->X_op_symbol
854 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
855 {
856 inst.error = _("invalid constant");
857 *str = input_line_pointer;
858 input_line_pointer = save_in;
859 return 1;
860 }
b99bd4ef 861
c19d1205
ZW
862 *str = input_line_pointer;
863 input_line_pointer = save_in;
864 return 0;
b99bd4ef
NC
865}
866
c19d1205
ZW
867/* Turn a string in input_line_pointer into a floating point constant
868 of type TYPE, and store the appropriate bytes in *LITP. The number
869 of LITTLENUMS emitted is stored in *SIZEP. An error message is
870 returned, or NULL on OK.
b99bd4ef 871
c19d1205
ZW
872 Note that fp constants aren't represent in the normal way on the ARM.
873 In big endian mode, things are as expected. However, in little endian
874 mode fp constants are big-endian word-wise, and little-endian byte-wise
875 within the words. For example, (double) 1.1 in big endian mode is
876 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
877 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 878
c19d1205 879 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 880
c19d1205
ZW
881char *
882md_atof (int type, char * litP, int * sizeP)
883{
884 int prec;
885 LITTLENUM_TYPE words[MAX_LITTLENUMS];
886 char *t;
887 int i;
b99bd4ef 888
c19d1205
ZW
889 switch (type)
890 {
891 case 'f':
892 case 'F':
893 case 's':
894 case 'S':
895 prec = 2;
896 break;
b99bd4ef 897
c19d1205
ZW
898 case 'd':
899 case 'D':
900 case 'r':
901 case 'R':
902 prec = 4;
903 break;
b99bd4ef 904
c19d1205
ZW
905 case 'x':
906 case 'X':
907 prec = 6;
908 break;
b99bd4ef 909
c19d1205
ZW
910 case 'p':
911 case 'P':
912 prec = 6;
913 break;
a737bd4d 914
c19d1205
ZW
915 default:
916 *sizeP = 0;
917 return _("bad call to MD_ATOF()");
918 }
b99bd4ef 919
c19d1205
ZW
920 t = atof_ieee (input_line_pointer, type, words);
921 if (t)
922 input_line_pointer = t;
923 *sizeP = prec * 2;
b99bd4ef 924
c19d1205
ZW
925 if (target_big_endian)
926 {
927 for (i = 0; i < prec; i++)
928 {
929 md_number_to_chars (litP, (valueT) words[i], 2);
930 litP += 2;
931 }
932 }
933 else
934 {
e74cfd16 935 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
936 for (i = prec - 1; i >= 0; i--)
937 {
938 md_number_to_chars (litP, (valueT) words[i], 2);
939 litP += 2;
940 }
941 else
942 /* For a 4 byte float the order of elements in `words' is 1 0.
943 For an 8 byte float the order is 1 0 3 2. */
944 for (i = 0; i < prec; i += 2)
945 {
946 md_number_to_chars (litP, (valueT) words[i + 1], 2);
947 md_number_to_chars (litP + 2, (valueT) words[i], 2);
948 litP += 4;
949 }
950 }
b99bd4ef 951
c19d1205
ZW
952 return 0;
953}
b99bd4ef 954
c19d1205
ZW
955/* We handle all bad expressions here, so that we can report the faulty
956 instruction in the error message. */
957void
958md_operand (expressionS * expr)
959{
960 if (in_my_get_expression)
961 expr->X_op = O_illegal;
b99bd4ef
NC
962}
963
c19d1205 964/* Immediate values. */
b99bd4ef 965
c19d1205
ZW
966/* Generic immediate-value read function for use in directives.
967 Accepts anything that 'expression' can fold to a constant.
968 *val receives the number. */
969#ifdef OBJ_ELF
970static int
971immediate_for_directive (int *val)
b99bd4ef 972{
c19d1205
ZW
973 expressionS exp;
974 exp.X_op = O_illegal;
b99bd4ef 975
c19d1205
ZW
976 if (is_immediate_prefix (*input_line_pointer))
977 {
978 input_line_pointer++;
979 expression (&exp);
980 }
b99bd4ef 981
c19d1205
ZW
982 if (exp.X_op != O_constant)
983 {
984 as_bad (_("expected #constant"));
985 ignore_rest_of_line ();
986 return FAIL;
987 }
988 *val = exp.X_add_number;
989 return SUCCESS;
b99bd4ef 990}
c19d1205 991#endif
b99bd4ef 992
c19d1205 993/* Register parsing. */
b99bd4ef 994
c19d1205
ZW
995/* Generic register parser. CCP points to what should be the
996 beginning of a register name. If it is indeed a valid register
997 name, advance CCP over it and return the reg_entry structure;
998 otherwise return NULL. Does not issue diagnostics. */
999
1000static struct reg_entry *
1001arm_reg_parse_multi (char **ccp)
b99bd4ef 1002{
c19d1205
ZW
1003 char *start = *ccp;
1004 char *p;
1005 struct reg_entry *reg;
b99bd4ef 1006
c19d1205
ZW
1007#ifdef REGISTER_PREFIX
1008 if (*start != REGISTER_PREFIX)
01cfc07f 1009 return NULL;
c19d1205
ZW
1010 start++;
1011#endif
1012#ifdef OPTIONAL_REGISTER_PREFIX
1013 if (*start == OPTIONAL_REGISTER_PREFIX)
1014 start++;
1015#endif
b99bd4ef 1016
c19d1205
ZW
1017 p = start;
1018 if (!ISALPHA (*p) || !is_name_beginner (*p))
1019 return NULL;
b99bd4ef 1020
c19d1205
ZW
1021 do
1022 p++;
1023 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1024
1025 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1026
1027 if (!reg)
1028 return NULL;
1029
1030 *ccp = p;
1031 return reg;
b99bd4ef
NC
1032}
1033
1034static int
dcbf9037
JB
1035arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1036 enum arm_reg_type type)
b99bd4ef 1037{
c19d1205
ZW
1038 /* Alternative syntaxes are accepted for a few register classes. */
1039 switch (type)
1040 {
1041 case REG_TYPE_MVF:
1042 case REG_TYPE_MVD:
1043 case REG_TYPE_MVFX:
1044 case REG_TYPE_MVDX:
1045 /* Generic coprocessor register names are allowed for these. */
79134647 1046 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1047 return reg->number;
1048 break;
69b97547 1049
c19d1205
ZW
1050 case REG_TYPE_CP:
1051 /* For backward compatibility, a bare number is valid here. */
1052 {
1053 unsigned long processor = strtoul (start, ccp, 10);
1054 if (*ccp != start && processor <= 15)
1055 return processor;
1056 }
6057a28f 1057
c19d1205
ZW
1058 case REG_TYPE_MMXWC:
1059 /* WC includes WCG. ??? I'm not sure this is true for all
1060 instructions that take WC registers. */
79134647 1061 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1062 return reg->number;
6057a28f 1063 break;
c19d1205 1064
6057a28f 1065 default:
c19d1205 1066 break;
6057a28f
NC
1067 }
1068
dcbf9037
JB
1069 return FAIL;
1070}
1071
1072/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1073 return value is the register number or FAIL. */
1074
1075static int
1076arm_reg_parse (char **ccp, enum arm_reg_type type)
1077{
1078 char *start = *ccp;
1079 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1080 int ret;
1081
1082 /* Do not allow a scalar (reg+index) to parse as a register. */
1083 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1084 return FAIL;
1085
1086 if (reg && reg->type == type)
1087 return reg->number;
1088
1089 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1090 return ret;
1091
c19d1205
ZW
1092 *ccp = start;
1093 return FAIL;
1094}
69b97547 1095
dcbf9037
JB
1096/* Parse a Neon type specifier. *STR should point at the leading '.'
1097 character. Does no verification at this stage that the type fits the opcode
1098 properly. E.g.,
1099
1100 .i32.i32.s16
1101 .s32.f32
1102 .u16
1103
1104 Can all be legally parsed by this function.
1105
1106 Fills in neon_type struct pointer with parsed information, and updates STR
1107 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1108 type, FAIL if not. */
1109
1110static int
1111parse_neon_type (struct neon_type *type, char **str)
1112{
1113 char *ptr = *str;
1114
1115 if (type)
1116 type->elems = 0;
1117
1118 while (type->elems < NEON_MAX_TYPE_ELS)
1119 {
1120 enum neon_el_type thistype = NT_untyped;
1121 unsigned thissize = -1u;
1122
1123 if (*ptr != '.')
1124 break;
1125
1126 ptr++;
1127
1128 /* Just a size without an explicit type. */
1129 if (ISDIGIT (*ptr))
1130 goto parsesize;
1131
1132 switch (TOLOWER (*ptr))
1133 {
1134 case 'i': thistype = NT_integer; break;
1135 case 'f': thistype = NT_float; break;
1136 case 'p': thistype = NT_poly; break;
1137 case 's': thistype = NT_signed; break;
1138 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1139 case 'd':
1140 thistype = NT_float;
1141 thissize = 64;
1142 ptr++;
1143 goto done;
dcbf9037
JB
1144 default:
1145 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1146 return FAIL;
1147 }
1148
1149 ptr++;
1150
1151 /* .f is an abbreviation for .f32. */
1152 if (thistype == NT_float && !ISDIGIT (*ptr))
1153 thissize = 32;
1154 else
1155 {
1156 parsesize:
1157 thissize = strtoul (ptr, &ptr, 10);
1158
1159 if (thissize != 8 && thissize != 16 && thissize != 32
1160 && thissize != 64)
1161 {
1162 as_bad (_("bad size %d in type specifier"), thissize);
1163 return FAIL;
1164 }
1165 }
1166
037e8744 1167 done:
dcbf9037
JB
1168 if (type)
1169 {
1170 type->el[type->elems].type = thistype;
1171 type->el[type->elems].size = thissize;
1172 type->elems++;
1173 }
1174 }
1175
1176 /* Empty/missing type is not a successful parse. */
1177 if (type->elems == 0)
1178 return FAIL;
1179
1180 *str = ptr;
1181
1182 return SUCCESS;
1183}
1184
1185/* Errors may be set multiple times during parsing or bit encoding
1186 (particularly in the Neon bits), but usually the earliest error which is set
1187 will be the most meaningful. Avoid overwriting it with later (cascading)
1188 errors by calling this function. */
1189
1190static void
1191first_error (const char *err)
1192{
1193 if (!inst.error)
1194 inst.error = err;
1195}
1196
1197/* Parse a single type, e.g. ".s32", leading period included. */
1198static int
1199parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1200{
1201 char *str = *ccp;
1202 struct neon_type optype;
1203
1204 if (*str == '.')
1205 {
1206 if (parse_neon_type (&optype, &str) == SUCCESS)
1207 {
1208 if (optype.elems == 1)
1209 *vectype = optype.el[0];
1210 else
1211 {
1212 first_error (_("only one type should be specified for operand"));
1213 return FAIL;
1214 }
1215 }
1216 else
1217 {
1218 first_error (_("vector type expected"));
1219 return FAIL;
1220 }
1221 }
1222 else
1223 return FAIL;
1224
1225 *ccp = str;
1226
1227 return SUCCESS;
1228}
1229
1230/* Special meanings for indices (which have a range of 0-7), which will fit into
1231 a 4-bit integer. */
1232
1233#define NEON_ALL_LANES 15
1234#define NEON_INTERLEAVE_LANES 14
1235
1236/* Parse either a register or a scalar, with an optional type. Return the
1237 register number, and optionally fill in the actual type of the register
1238 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1239 type/index information in *TYPEINFO. */
1240
1241static int
1242parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1243 enum arm_reg_type *rtype,
1244 struct neon_typed_alias *typeinfo)
1245{
1246 char *str = *ccp;
1247 struct reg_entry *reg = arm_reg_parse_multi (&str);
1248 struct neon_typed_alias atype;
1249 struct neon_type_el parsetype;
1250
1251 atype.defined = 0;
1252 atype.index = -1;
1253 atype.eltype.type = NT_invtype;
1254 atype.eltype.size = -1;
1255
1256 /* Try alternate syntax for some types of register. Note these are mutually
1257 exclusive with the Neon syntax extensions. */
1258 if (reg == NULL)
1259 {
1260 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1261 if (altreg != FAIL)
1262 *ccp = str;
1263 if (typeinfo)
1264 *typeinfo = atype;
1265 return altreg;
1266 }
1267
037e8744
JB
1268 /* Undo polymorphism when a set of register types may be accepted. */
1269 if ((type == REG_TYPE_NDQ
1270 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1271 || (type == REG_TYPE_VFSD
1272 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1273 || (type == REG_TYPE_NSDQ
1274 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1275 || reg->type == REG_TYPE_NQ))
1276 || (type == REG_TYPE_MMXWC
1277 && (reg->type == REG_TYPE_MMXWCG)))
dcbf9037
JB
1278 type = reg->type;
1279
1280 if (type != reg->type)
1281 return FAIL;
1282
1283 if (reg->neon)
1284 atype = *reg->neon;
1285
1286 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1287 {
1288 if ((atype.defined & NTA_HASTYPE) != 0)
1289 {
1290 first_error (_("can't redefine type for operand"));
1291 return FAIL;
1292 }
1293 atype.defined |= NTA_HASTYPE;
1294 atype.eltype = parsetype;
1295 }
1296
1297 if (skip_past_char (&str, '[') == SUCCESS)
1298 {
1299 if (type != REG_TYPE_VFD)
1300 {
1301 first_error (_("only D registers may be indexed"));
1302 return FAIL;
1303 }
1304
1305 if ((atype.defined & NTA_HASINDEX) != 0)
1306 {
1307 first_error (_("can't change index for operand"));
1308 return FAIL;
1309 }
1310
1311 atype.defined |= NTA_HASINDEX;
1312
1313 if (skip_past_char (&str, ']') == SUCCESS)
1314 atype.index = NEON_ALL_LANES;
1315 else
1316 {
1317 expressionS exp;
1318
1319 my_get_expression (&exp, &str, GE_NO_PREFIX);
1320
1321 if (exp.X_op != O_constant)
1322 {
1323 first_error (_("constant expression required"));
1324 return FAIL;
1325 }
1326
1327 if (skip_past_char (&str, ']') == FAIL)
1328 return FAIL;
1329
1330 atype.index = exp.X_add_number;
1331 }
1332 }
1333
1334 if (typeinfo)
1335 *typeinfo = atype;
1336
1337 if (rtype)
1338 *rtype = type;
1339
1340 *ccp = str;
1341
1342 return reg->number;
1343}
1344
1345/* Like arm_reg_parse, but allow allow the following extra features:
1346 - If RTYPE is non-zero, return the (possibly restricted) type of the
1347 register (e.g. Neon double or quad reg when either has been requested).
1348 - If this is a Neon vector type with additional type information, fill
1349 in the struct pointed to by VECTYPE (if non-NULL).
1350 This function will fault on encountering a scalar.
1351*/
1352
1353static int
1354arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1355 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1356{
1357 struct neon_typed_alias atype;
1358 char *str = *ccp;
1359 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1360
1361 if (reg == FAIL)
1362 return FAIL;
1363
1364 /* Do not allow a scalar (reg+index) to parse as a register. */
1365 if ((atype.defined & NTA_HASINDEX) != 0)
1366 {
1367 first_error (_("register operand expected, but got scalar"));
1368 return FAIL;
1369 }
1370
1371 if (vectype)
1372 *vectype = atype.eltype;
1373
1374 *ccp = str;
1375
1376 return reg;
1377}
1378
1379#define NEON_SCALAR_REG(X) ((X) >> 4)
1380#define NEON_SCALAR_INDEX(X) ((X) & 15)
1381
5287ad62
JB
1382/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1383 have enough information to be able to do a good job bounds-checking. So, we
1384 just do easy checks here, and do further checks later. */
1385
1386static int
dcbf9037 1387parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1388{
dcbf9037 1389 int reg;
5287ad62 1390 char *str = *ccp;
dcbf9037 1391 struct neon_typed_alias atype;
5287ad62 1392
dcbf9037 1393 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5287ad62 1394
dcbf9037 1395 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62
JB
1396 return FAIL;
1397
dcbf9037 1398 if (atype.index == NEON_ALL_LANES)
5287ad62 1399 {
dcbf9037 1400 first_error (_("scalar must have an index"));
5287ad62
JB
1401 return FAIL;
1402 }
dcbf9037 1403 else if (atype.index >= 64 / elsize)
5287ad62 1404 {
dcbf9037 1405 first_error (_("scalar index out of range"));
5287ad62
JB
1406 return FAIL;
1407 }
1408
dcbf9037
JB
1409 if (type)
1410 *type = atype.eltype;
5287ad62 1411
5287ad62
JB
1412 *ccp = str;
1413
dcbf9037 1414 return reg * 16 + atype.index;
5287ad62
JB
1415}
1416
c19d1205
ZW
1417/* Parse an ARM register list. Returns the bitmask, or FAIL. */
1418static long
1419parse_reg_list (char ** strp)
1420{
1421 char * str = * strp;
1422 long range = 0;
1423 int another_range;
a737bd4d 1424
c19d1205
ZW
1425 /* We come back here if we get ranges concatenated by '+' or '|'. */
1426 do
6057a28f 1427 {
c19d1205 1428 another_range = 0;
a737bd4d 1429
c19d1205
ZW
1430 if (*str == '{')
1431 {
1432 int in_range = 0;
1433 int cur_reg = -1;
a737bd4d 1434
c19d1205
ZW
1435 str++;
1436 do
1437 {
1438 int reg;
6057a28f 1439
dcbf9037 1440 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1441 {
dcbf9037 1442 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1443 return FAIL;
1444 }
a737bd4d 1445
c19d1205
ZW
1446 if (in_range)
1447 {
1448 int i;
a737bd4d 1449
c19d1205
ZW
1450 if (reg <= cur_reg)
1451 {
dcbf9037 1452 first_error (_("bad range in register list"));
c19d1205
ZW
1453 return FAIL;
1454 }
40a18ebd 1455
c19d1205
ZW
1456 for (i = cur_reg + 1; i < reg; i++)
1457 {
1458 if (range & (1 << i))
1459 as_tsktsk
1460 (_("Warning: duplicated register (r%d) in register list"),
1461 i);
1462 else
1463 range |= 1 << i;
1464 }
1465 in_range = 0;
1466 }
a737bd4d 1467
c19d1205
ZW
1468 if (range & (1 << reg))
1469 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1470 reg);
1471 else if (reg <= cur_reg)
1472 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1473
c19d1205
ZW
1474 range |= 1 << reg;
1475 cur_reg = reg;
1476 }
1477 while (skip_past_comma (&str) != FAIL
1478 || (in_range = 1, *str++ == '-'));
1479 str--;
a737bd4d 1480
c19d1205
ZW
1481 if (*str++ != '}')
1482 {
dcbf9037 1483 first_error (_("missing `}'"));
c19d1205
ZW
1484 return FAIL;
1485 }
1486 }
1487 else
1488 {
1489 expressionS expr;
40a18ebd 1490
c19d1205
ZW
1491 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1492 return FAIL;
40a18ebd 1493
c19d1205
ZW
1494 if (expr.X_op == O_constant)
1495 {
1496 if (expr.X_add_number
1497 != (expr.X_add_number & 0x0000ffff))
1498 {
1499 inst.error = _("invalid register mask");
1500 return FAIL;
1501 }
a737bd4d 1502
c19d1205
ZW
1503 if ((range & expr.X_add_number) != 0)
1504 {
1505 int regno = range & expr.X_add_number;
a737bd4d 1506
c19d1205
ZW
1507 regno &= -regno;
1508 regno = (1 << regno) - 1;
1509 as_tsktsk
1510 (_("Warning: duplicated register (r%d) in register list"),
1511 regno);
1512 }
a737bd4d 1513
c19d1205
ZW
1514 range |= expr.X_add_number;
1515 }
1516 else
1517 {
1518 if (inst.reloc.type != 0)
1519 {
1520 inst.error = _("expression too complex");
1521 return FAIL;
1522 }
a737bd4d 1523
c19d1205
ZW
1524 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1525 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1526 inst.reloc.pc_rel = 0;
1527 }
1528 }
a737bd4d 1529
c19d1205
ZW
1530 if (*str == '|' || *str == '+')
1531 {
1532 str++;
1533 another_range = 1;
1534 }
a737bd4d 1535 }
c19d1205 1536 while (another_range);
a737bd4d 1537
c19d1205
ZW
1538 *strp = str;
1539 return range;
a737bd4d
NC
1540}
1541
5287ad62
JB
1542/* Types of registers in a list. */
1543
1544enum reg_list_els
1545{
1546 REGLIST_VFP_S,
1547 REGLIST_VFP_D,
1548 REGLIST_NEON_D
1549};
1550
c19d1205
ZW
1551/* Parse a VFP register list. If the string is invalid return FAIL.
1552 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1553 register. Parses registers of type ETYPE.
1554 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1555 - Q registers can be used to specify pairs of D registers
1556 - { } can be omitted from around a singleton register list
1557 FIXME: This is not implemented, as it would require backtracking in
1558 some cases, e.g.:
1559 vtbl.8 d3,d4,d5
1560 This could be done (the meaning isn't really ambiguous), but doesn't
1561 fit in well with the current parsing framework.
dcbf9037
JB
1562 - 32 D registers may be used (also true for VFPv3).
1563 FIXME: Types are ignored in these register lists, which is probably a
1564 bug. */
6057a28f 1565
c19d1205 1566static int
037e8744 1567parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1568{
037e8744 1569 char *str = *ccp;
c19d1205
ZW
1570 int base_reg;
1571 int new_base;
5287ad62
JB
1572 enum arm_reg_type regtype = 0;
1573 int max_regs = 0;
c19d1205
ZW
1574 int count = 0;
1575 int warned = 0;
1576 unsigned long mask = 0;
a737bd4d 1577 int i;
6057a28f 1578
037e8744 1579 if (*str != '{')
5287ad62
JB
1580 {
1581 inst.error = _("expecting {");
1582 return FAIL;
1583 }
6057a28f 1584
037e8744 1585 str++;
6057a28f 1586
5287ad62 1587 switch (etype)
c19d1205 1588 {
5287ad62 1589 case REGLIST_VFP_S:
c19d1205
ZW
1590 regtype = REG_TYPE_VFS;
1591 max_regs = 32;
5287ad62
JB
1592 break;
1593
1594 case REGLIST_VFP_D:
1595 regtype = REG_TYPE_VFD;
b7fc2769
JB
1596 break;
1597
1598 case REGLIST_NEON_D:
1599 regtype = REG_TYPE_NDQ;
1600 break;
1601 }
1602
1603 if (etype != REGLIST_VFP_S)
1604 {
5287ad62
JB
1605 /* VFPv3 allows 32 D registers. */
1606 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1607 {
1608 max_regs = 32;
1609 if (thumb_mode)
1610 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1611 fpu_vfp_ext_v3);
1612 else
1613 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1614 fpu_vfp_ext_v3);
1615 }
1616 else
1617 max_regs = 16;
c19d1205 1618 }
6057a28f 1619
c19d1205 1620 base_reg = max_regs;
a737bd4d 1621
c19d1205
ZW
1622 do
1623 {
5287ad62 1624 int setmask = 1, addregs = 1;
dcbf9037 1625
037e8744 1626 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1627
c19d1205 1628 if (new_base == FAIL)
a737bd4d 1629 {
dcbf9037 1630 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1631 return FAIL;
1632 }
dcbf9037 1633
b7fc2769
JB
1634 if (new_base >= max_regs)
1635 {
1636 first_error (_("register out of range in list"));
1637 return FAIL;
1638 }
1639
5287ad62
JB
1640 /* Note: a value of 2 * n is returned for the register Q<n>. */
1641 if (regtype == REG_TYPE_NQ)
1642 {
1643 setmask = 3;
1644 addregs = 2;
1645 }
1646
c19d1205
ZW
1647 if (new_base < base_reg)
1648 base_reg = new_base;
a737bd4d 1649
5287ad62 1650 if (mask & (setmask << new_base))
c19d1205 1651 {
dcbf9037 1652 first_error (_("invalid register list"));
c19d1205 1653 return FAIL;
a737bd4d 1654 }
a737bd4d 1655
c19d1205
ZW
1656 if ((mask >> new_base) != 0 && ! warned)
1657 {
1658 as_tsktsk (_("register list not in ascending order"));
1659 warned = 1;
1660 }
0bbf2aa4 1661
5287ad62
JB
1662 mask |= setmask << new_base;
1663 count += addregs;
0bbf2aa4 1664
037e8744 1665 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1666 {
1667 int high_range;
0bbf2aa4 1668
037e8744 1669 str++;
0bbf2aa4 1670
037e8744 1671 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1672 == FAIL)
c19d1205
ZW
1673 {
1674 inst.error = gettext (reg_expected_msgs[regtype]);
1675 return FAIL;
1676 }
0bbf2aa4 1677
b7fc2769
JB
1678 if (high_range >= max_regs)
1679 {
1680 first_error (_("register out of range in list"));
1681 return FAIL;
1682 }
1683
5287ad62
JB
1684 if (regtype == REG_TYPE_NQ)
1685 high_range = high_range + 1;
1686
c19d1205
ZW
1687 if (high_range <= new_base)
1688 {
1689 inst.error = _("register range not in ascending order");
1690 return FAIL;
1691 }
0bbf2aa4 1692
5287ad62 1693 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1694 {
5287ad62 1695 if (mask & (setmask << new_base))
0bbf2aa4 1696 {
c19d1205
ZW
1697 inst.error = _("invalid register list");
1698 return FAIL;
0bbf2aa4 1699 }
c19d1205 1700
5287ad62
JB
1701 mask |= setmask << new_base;
1702 count += addregs;
0bbf2aa4 1703 }
0bbf2aa4 1704 }
0bbf2aa4 1705 }
037e8744 1706 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1707
037e8744 1708 str++;
0bbf2aa4 1709
c19d1205
ZW
1710 /* Sanity check -- should have raised a parse error above. */
1711 if (count == 0 || count > max_regs)
1712 abort ();
1713
1714 *pbase = base_reg;
1715
1716 /* Final test -- the registers must be consecutive. */
1717 mask >>= base_reg;
1718 for (i = 0; i < count; i++)
1719 {
1720 if ((mask & (1u << i)) == 0)
1721 {
1722 inst.error = _("non-contiguous register range");
1723 return FAIL;
1724 }
1725 }
1726
037e8744
JB
1727 *ccp = str;
1728
c19d1205 1729 return count;
b99bd4ef
NC
1730}
1731
dcbf9037
JB
1732/* True if two alias types are the same. */
1733
1734static int
1735neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1736{
1737 if (!a && !b)
1738 return 1;
1739
1740 if (!a || !b)
1741 return 0;
1742
1743 if (a->defined != b->defined)
1744 return 0;
1745
1746 if ((a->defined & NTA_HASTYPE) != 0
1747 && (a->eltype.type != b->eltype.type
1748 || a->eltype.size != b->eltype.size))
1749 return 0;
1750
1751 if ((a->defined & NTA_HASINDEX) != 0
1752 && (a->index != b->index))
1753 return 0;
1754
1755 return 1;
1756}
1757
5287ad62
JB
1758/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1759 The base register is put in *PBASE.
dcbf9037 1760 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1761 the return value.
1762 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1763 Bits [6:5] encode the list length (minus one).
1764 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1765
5287ad62 1766#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1767#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1768#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1769
1770static int
dcbf9037
JB
1771parse_neon_el_struct_list (char **str, unsigned *pbase,
1772 struct neon_type_el *eltype)
5287ad62
JB
1773{
1774 char *ptr = *str;
1775 int base_reg = -1;
1776 int reg_incr = -1;
1777 int count = 0;
1778 int lane = -1;
1779 int leading_brace = 0;
1780 enum arm_reg_type rtype = REG_TYPE_NDQ;
1781 int addregs = 1;
1782 const char *const incr_error = "register stride must be 1 or 2";
1783 const char *const type_error = "mismatched element/structure types in list";
dcbf9037 1784 struct neon_typed_alias firsttype;
5287ad62
JB
1785
1786 if (skip_past_char (&ptr, '{') == SUCCESS)
1787 leading_brace = 1;
1788
1789 do
1790 {
dcbf9037
JB
1791 struct neon_typed_alias atype;
1792 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1793
5287ad62
JB
1794 if (getreg == FAIL)
1795 {
dcbf9037 1796 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1797 return FAIL;
1798 }
1799
1800 if (base_reg == -1)
1801 {
1802 base_reg = getreg;
1803 if (rtype == REG_TYPE_NQ)
1804 {
1805 reg_incr = 1;
1806 addregs = 2;
1807 }
dcbf9037 1808 firsttype = atype;
5287ad62
JB
1809 }
1810 else if (reg_incr == -1)
1811 {
1812 reg_incr = getreg - base_reg;
1813 if (reg_incr < 1 || reg_incr > 2)
1814 {
dcbf9037 1815 first_error (_(incr_error));
5287ad62
JB
1816 return FAIL;
1817 }
1818 }
1819 else if (getreg != base_reg + reg_incr * count)
1820 {
dcbf9037
JB
1821 first_error (_(incr_error));
1822 return FAIL;
1823 }
1824
1825 if (!neon_alias_types_same (&atype, &firsttype))
1826 {
1827 first_error (_(type_error));
5287ad62
JB
1828 return FAIL;
1829 }
1830
1831 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1832 modes. */
1833 if (ptr[0] == '-')
1834 {
dcbf9037 1835 struct neon_typed_alias htype;
5287ad62
JB
1836 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1837 if (lane == -1)
1838 lane = NEON_INTERLEAVE_LANES;
1839 else if (lane != NEON_INTERLEAVE_LANES)
1840 {
dcbf9037 1841 first_error (_(type_error));
5287ad62
JB
1842 return FAIL;
1843 }
1844 if (reg_incr == -1)
1845 reg_incr = 1;
1846 else if (reg_incr != 1)
1847 {
dcbf9037 1848 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1849 return FAIL;
1850 }
1851 ptr++;
dcbf9037 1852 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1853 if (hireg == FAIL)
1854 {
dcbf9037
JB
1855 first_error (_(reg_expected_msgs[rtype]));
1856 return FAIL;
1857 }
1858 if (!neon_alias_types_same (&htype, &firsttype))
1859 {
1860 first_error (_(type_error));
5287ad62
JB
1861 return FAIL;
1862 }
1863 count += hireg + dregs - getreg;
1864 continue;
1865 }
1866
1867 /* If we're using Q registers, we can't use [] or [n] syntax. */
1868 if (rtype == REG_TYPE_NQ)
1869 {
1870 count += 2;
1871 continue;
1872 }
1873
dcbf9037 1874 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1875 {
dcbf9037
JB
1876 if (lane == -1)
1877 lane = atype.index;
1878 else if (lane != atype.index)
5287ad62 1879 {
dcbf9037
JB
1880 first_error (_(type_error));
1881 return FAIL;
5287ad62
JB
1882 }
1883 }
1884 else if (lane == -1)
1885 lane = NEON_INTERLEAVE_LANES;
1886 else if (lane != NEON_INTERLEAVE_LANES)
1887 {
dcbf9037 1888 first_error (_(type_error));
5287ad62
JB
1889 return FAIL;
1890 }
1891 count++;
1892 }
1893 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1894
1895 /* No lane set by [x]. We must be interleaving structures. */
1896 if (lane == -1)
1897 lane = NEON_INTERLEAVE_LANES;
1898
1899 /* Sanity check. */
1900 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1901 || (count > 1 && reg_incr == -1))
1902 {
dcbf9037 1903 first_error (_("error parsing element/structure list"));
5287ad62
JB
1904 return FAIL;
1905 }
1906
1907 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1908 {
dcbf9037 1909 first_error (_("expected }"));
5287ad62
JB
1910 return FAIL;
1911 }
1912
1913 if (reg_incr == -1)
1914 reg_incr = 1;
1915
dcbf9037
JB
1916 if (eltype)
1917 *eltype = firsttype.eltype;
1918
5287ad62
JB
1919 *pbase = base_reg;
1920 *str = ptr;
1921
1922 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1923}
1924
c19d1205
ZW
1925/* Parse an explicit relocation suffix on an expression. This is
1926 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1927 arm_reloc_hsh contains no entries, so this function can only
1928 succeed if there is no () after the word. Returns -1 on error,
1929 BFD_RELOC_UNUSED if there wasn't any suffix. */
1930static int
1931parse_reloc (char **str)
b99bd4ef 1932{
c19d1205
ZW
1933 struct reloc_entry *r;
1934 char *p, *q;
b99bd4ef 1935
c19d1205
ZW
1936 if (**str != '(')
1937 return BFD_RELOC_UNUSED;
b99bd4ef 1938
c19d1205
ZW
1939 p = *str + 1;
1940 q = p;
1941
1942 while (*q && *q != ')' && *q != ',')
1943 q++;
1944 if (*q != ')')
1945 return -1;
1946
1947 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1948 return -1;
1949
1950 *str = q + 1;
1951 return r->reloc;
b99bd4ef
NC
1952}
1953
c19d1205
ZW
1954/* Directives: register aliases. */
1955
dcbf9037 1956static struct reg_entry *
c19d1205 1957insert_reg_alias (char *str, int number, int type)
b99bd4ef 1958{
c19d1205
ZW
1959 struct reg_entry *new;
1960 const char *name;
b99bd4ef 1961
c19d1205
ZW
1962 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1963 {
1964 if (new->builtin)
1965 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 1966
c19d1205
ZW
1967 /* Only warn about a redefinition if it's not defined as the
1968 same register. */
1969 else if (new->number != number || new->type != type)
1970 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 1971
dcbf9037 1972 return 0;
c19d1205 1973 }
b99bd4ef 1974
c19d1205
ZW
1975 name = xstrdup (str);
1976 new = xmalloc (sizeof (struct reg_entry));
b99bd4ef 1977
c19d1205
ZW
1978 new->name = name;
1979 new->number = number;
1980 new->type = type;
1981 new->builtin = FALSE;
dcbf9037 1982 new->neon = NULL;
b99bd4ef 1983
c19d1205
ZW
1984 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1985 abort ();
dcbf9037
JB
1986
1987 return new;
1988}
1989
1990static void
1991insert_neon_reg_alias (char *str, int number, int type,
1992 struct neon_typed_alias *atype)
1993{
1994 struct reg_entry *reg = insert_reg_alias (str, number, type);
1995
1996 if (!reg)
1997 {
1998 first_error (_("attempt to redefine typed alias"));
1999 return;
2000 }
2001
2002 if (atype)
2003 {
2004 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2005 *reg->neon = *atype;
2006 }
c19d1205 2007}
b99bd4ef 2008
c19d1205 2009/* Look for the .req directive. This is of the form:
b99bd4ef 2010
c19d1205 2011 new_register_name .req existing_register_name
b99bd4ef 2012
c19d1205
ZW
2013 If we find one, or if it looks sufficiently like one that we want to
2014 handle any error here, return non-zero. Otherwise return zero. */
b99bd4ef 2015
c19d1205
ZW
2016static int
2017create_register_alias (char * newname, char *p)
2018{
2019 struct reg_entry *old;
2020 char *oldname, *nbuf;
2021 size_t nlen;
b99bd4ef 2022
c19d1205
ZW
2023 /* The input scrubber ensures that whitespace after the mnemonic is
2024 collapsed to single spaces. */
2025 oldname = p;
2026 if (strncmp (oldname, " .req ", 6) != 0)
2027 return 0;
b99bd4ef 2028
c19d1205
ZW
2029 oldname += 6;
2030 if (*oldname == '\0')
2031 return 0;
b99bd4ef 2032
c19d1205
ZW
2033 old = hash_find (arm_reg_hsh, oldname);
2034 if (!old)
b99bd4ef 2035 {
c19d1205
ZW
2036 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2037 return 1;
b99bd4ef
NC
2038 }
2039
c19d1205
ZW
2040 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2041 the desired alias name, and p points to its end. If not, then
2042 the desired alias name is in the global original_case_string. */
2043#ifdef TC_CASE_SENSITIVE
2044 nlen = p - newname;
2045#else
2046 newname = original_case_string;
2047 nlen = strlen (newname);
2048#endif
b99bd4ef 2049
c19d1205
ZW
2050 nbuf = alloca (nlen + 1);
2051 memcpy (nbuf, newname, nlen);
2052 nbuf[nlen] = '\0';
b99bd4ef 2053
c19d1205
ZW
2054 /* Create aliases under the new name as stated; an all-lowercase
2055 version of the new name; and an all-uppercase version of the new
2056 name. */
2057 insert_reg_alias (nbuf, old->number, old->type);
b99bd4ef 2058
c19d1205
ZW
2059 for (p = nbuf; *p; p++)
2060 *p = TOUPPER (*p);
2061
2062 if (strncmp (nbuf, newname, nlen))
2063 insert_reg_alias (nbuf, old->number, old->type);
2064
2065 for (p = nbuf; *p; p++)
2066 *p = TOLOWER (*p);
2067
2068 if (strncmp (nbuf, newname, nlen))
2069 insert_reg_alias (nbuf, old->number, old->type);
2070
2071 return 1;
b99bd4ef
NC
2072}
2073
dcbf9037
JB
2074/* Create a Neon typed/indexed register alias using directives, e.g.:
2075 X .dn d5.s32[1]
2076 Y .qn 6.s16
2077 Z .dn d7
2078 T .dn Z[0]
2079 These typed registers can be used instead of the types specified after the
2080 Neon mnemonic, so long as all operands given have types. Types can also be
2081 specified directly, e.g.:
2082 vadd d0.s32, d1.s32, d2.s32
2083*/
2084
2085static int
2086create_neon_reg_alias (char *newname, char *p)
2087{
2088 enum arm_reg_type basetype;
2089 struct reg_entry *basereg;
2090 struct reg_entry mybasereg;
2091 struct neon_type ntype;
2092 struct neon_typed_alias typeinfo;
2093 char *namebuf, *nameend;
2094 int namelen;
2095
2096 typeinfo.defined = 0;
2097 typeinfo.eltype.type = NT_invtype;
2098 typeinfo.eltype.size = -1;
2099 typeinfo.index = -1;
2100
2101 nameend = p;
2102
2103 if (strncmp (p, " .dn ", 5) == 0)
2104 basetype = REG_TYPE_VFD;
2105 else if (strncmp (p, " .qn ", 5) == 0)
2106 basetype = REG_TYPE_NQ;
2107 else
2108 return 0;
2109
2110 p += 5;
2111
2112 if (*p == '\0')
2113 return 0;
2114
2115 basereg = arm_reg_parse_multi (&p);
2116
2117 if (basereg && basereg->type != basetype)
2118 {
2119 as_bad (_("bad type for register"));
2120 return 0;
2121 }
2122
2123 if (basereg == NULL)
2124 {
2125 expressionS exp;
2126 /* Try parsing as an integer. */
2127 my_get_expression (&exp, &p, GE_NO_PREFIX);
2128 if (exp.X_op != O_constant)
2129 {
2130 as_bad (_("expression must be constant"));
2131 return 0;
2132 }
2133 basereg = &mybasereg;
2134 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2135 : exp.X_add_number;
2136 basereg->neon = 0;
2137 }
2138
2139 if (basereg->neon)
2140 typeinfo = *basereg->neon;
2141
2142 if (parse_neon_type (&ntype, &p) == SUCCESS)
2143 {
2144 /* We got a type. */
2145 if (typeinfo.defined & NTA_HASTYPE)
2146 {
2147 as_bad (_("can't redefine the type of a register alias"));
2148 return 0;
2149 }
2150
2151 typeinfo.defined |= NTA_HASTYPE;
2152 if (ntype.elems != 1)
2153 {
2154 as_bad (_("you must specify a single type only"));
2155 return 0;
2156 }
2157 typeinfo.eltype = ntype.el[0];
2158 }
2159
2160 if (skip_past_char (&p, '[') == SUCCESS)
2161 {
2162 expressionS exp;
2163 /* We got a scalar index. */
2164
2165 if (typeinfo.defined & NTA_HASINDEX)
2166 {
2167 as_bad (_("can't redefine the index of a scalar alias"));
2168 return 0;
2169 }
2170
2171 my_get_expression (&exp, &p, GE_NO_PREFIX);
2172
2173 if (exp.X_op != O_constant)
2174 {
2175 as_bad (_("scalar index must be constant"));
2176 return 0;
2177 }
2178
2179 typeinfo.defined |= NTA_HASINDEX;
2180 typeinfo.index = exp.X_add_number;
2181
2182 if (skip_past_char (&p, ']') == FAIL)
2183 {
2184 as_bad (_("expecting ]"));
2185 return 0;
2186 }
2187 }
2188
2189 namelen = nameend - newname;
2190 namebuf = alloca (namelen + 1);
2191 strncpy (namebuf, newname, namelen);
2192 namebuf[namelen] = '\0';
2193
2194 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2195 typeinfo.defined != 0 ? &typeinfo : NULL);
2196
2197 /* Insert name in all uppercase. */
2198 for (p = namebuf; *p; p++)
2199 *p = TOUPPER (*p);
2200
2201 if (strncmp (namebuf, newname, namelen))
2202 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2203 typeinfo.defined != 0 ? &typeinfo : NULL);
2204
2205 /* Insert name in all lowercase. */
2206 for (p = namebuf; *p; p++)
2207 *p = TOLOWER (*p);
2208
2209 if (strncmp (namebuf, newname, namelen))
2210 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2211 typeinfo.defined != 0 ? &typeinfo : NULL);
2212
2213 return 1;
2214}
2215
c19d1205
ZW
2216/* Should never be called, as .req goes between the alias and the
2217 register name, not at the beginning of the line. */
b99bd4ef 2218static void
c19d1205 2219s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2220{
c19d1205
ZW
2221 as_bad (_("invalid syntax for .req directive"));
2222}
b99bd4ef 2223
dcbf9037
JB
2224static void
2225s_dn (int a ATTRIBUTE_UNUSED)
2226{
2227 as_bad (_("invalid syntax for .dn directive"));
2228}
2229
2230static void
2231s_qn (int a ATTRIBUTE_UNUSED)
2232{
2233 as_bad (_("invalid syntax for .qn directive"));
2234}
2235
c19d1205
ZW
2236/* The .unreq directive deletes an alias which was previously defined
2237 by .req. For example:
b99bd4ef 2238
c19d1205
ZW
2239 my_alias .req r11
2240 .unreq my_alias */
b99bd4ef
NC
2241
2242static void
c19d1205 2243s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2244{
c19d1205
ZW
2245 char * name;
2246 char saved_char;
b99bd4ef 2247
c19d1205
ZW
2248 name = input_line_pointer;
2249
2250 while (*input_line_pointer != 0
2251 && *input_line_pointer != ' '
2252 && *input_line_pointer != '\n')
2253 ++input_line_pointer;
2254
2255 saved_char = *input_line_pointer;
2256 *input_line_pointer = 0;
2257
2258 if (!*name)
2259 as_bad (_("invalid syntax for .unreq directive"));
2260 else
2261 {
2262 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2263
2264 if (!reg)
2265 as_bad (_("unknown register alias '%s'"), name);
2266 else if (reg->builtin)
2267 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2268 name);
2269 else
2270 {
2271 hash_delete (arm_reg_hsh, name);
2272 free ((char *) reg->name);
dcbf9037
JB
2273 if (reg->neon)
2274 free (reg->neon);
c19d1205
ZW
2275 free (reg);
2276 }
2277 }
b99bd4ef 2278
c19d1205 2279 *input_line_pointer = saved_char;
b99bd4ef
NC
2280 demand_empty_rest_of_line ();
2281}
2282
c19d1205
ZW
2283/* Directives: Instruction set selection. */
2284
2285#ifdef OBJ_ELF
2286/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2287 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2288 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2289 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2290
2291static enum mstate mapstate = MAP_UNDEFINED;
b99bd4ef 2292
e821645d 2293void
c19d1205 2294mapping_state (enum mstate state)
b99bd4ef 2295{
a737bd4d 2296 symbolS * symbolP;
c19d1205
ZW
2297 const char * symname;
2298 int type;
b99bd4ef 2299
c19d1205
ZW
2300 if (mapstate == state)
2301 /* The mapping symbol has already been emitted.
2302 There is nothing else to do. */
2303 return;
b99bd4ef 2304
c19d1205 2305 mapstate = state;
b99bd4ef 2306
c19d1205 2307 switch (state)
b99bd4ef 2308 {
c19d1205
ZW
2309 case MAP_DATA:
2310 symname = "$d";
2311 type = BSF_NO_FLAGS;
2312 break;
2313 case MAP_ARM:
2314 symname = "$a";
2315 type = BSF_NO_FLAGS;
2316 break;
2317 case MAP_THUMB:
2318 symname = "$t";
2319 type = BSF_NO_FLAGS;
2320 break;
2321 case MAP_UNDEFINED:
2322 return;
2323 default:
2324 abort ();
2325 }
2326
2327 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2328
2329 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2330 symbol_table_insert (symbolP);
2331 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2332
2333 switch (state)
2334 {
2335 case MAP_ARM:
2336 THUMB_SET_FUNC (symbolP, 0);
2337 ARM_SET_THUMB (symbolP, 0);
2338 ARM_SET_INTERWORK (symbolP, support_interwork);
2339 break;
2340
2341 case MAP_THUMB:
2342 THUMB_SET_FUNC (symbolP, 1);
2343 ARM_SET_THUMB (symbolP, 1);
2344 ARM_SET_INTERWORK (symbolP, support_interwork);
2345 break;
2346
2347 case MAP_DATA:
2348 default:
2349 return;
2350 }
2351}
2352#else
2353#define mapping_state(x) /* nothing */
2354#endif
2355
2356/* Find the real, Thumb encoded start of a Thumb function. */
2357
2358static symbolS *
2359find_real_start (symbolS * symbolP)
2360{
2361 char * real_start;
2362 const char * name = S_GET_NAME (symbolP);
2363 symbolS * new_target;
2364
2365 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2366#define STUB_NAME ".real_start_of"
2367
2368 if (name == NULL)
2369 abort ();
2370
37f6032b
ZW
2371 /* The compiler may generate BL instructions to local labels because
2372 it needs to perform a branch to a far away location. These labels
2373 do not have a corresponding ".real_start_of" label. We check
2374 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2375 the ".real_start_of" convention for nonlocal branches. */
2376 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2377 return symbolP;
2378
37f6032b 2379 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2380 new_target = symbol_find (real_start);
2381
2382 if (new_target == NULL)
2383 {
2384 as_warn ("Failed to find real start of function: %s\n", name);
2385 new_target = symbolP;
2386 }
2387
c19d1205
ZW
2388 return new_target;
2389}
2390
2391static void
2392opcode_select (int width)
2393{
2394 switch (width)
2395 {
2396 case 16:
2397 if (! thumb_mode)
2398 {
e74cfd16 2399 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2400 as_bad (_("selected processor does not support THUMB opcodes"));
2401
2402 thumb_mode = 1;
2403 /* No need to force the alignment, since we will have been
2404 coming from ARM mode, which is word-aligned. */
2405 record_alignment (now_seg, 1);
2406 }
2407 mapping_state (MAP_THUMB);
2408 break;
2409
2410 case 32:
2411 if (thumb_mode)
2412 {
e74cfd16 2413 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2414 as_bad (_("selected processor does not support ARM opcodes"));
2415
2416 thumb_mode = 0;
2417
2418 if (!need_pass_2)
2419 frag_align (2, 0, 0);
2420
2421 record_alignment (now_seg, 1);
2422 }
2423 mapping_state (MAP_ARM);
2424 break;
2425
2426 default:
2427 as_bad (_("invalid instruction size selected (%d)"), width);
2428 }
2429}
2430
2431static void
2432s_arm (int ignore ATTRIBUTE_UNUSED)
2433{
2434 opcode_select (32);
2435 demand_empty_rest_of_line ();
2436}
2437
2438static void
2439s_thumb (int ignore ATTRIBUTE_UNUSED)
2440{
2441 opcode_select (16);
2442 demand_empty_rest_of_line ();
2443}
2444
2445static void
2446s_code (int unused ATTRIBUTE_UNUSED)
2447{
2448 int temp;
2449
2450 temp = get_absolute_expression ();
2451 switch (temp)
2452 {
2453 case 16:
2454 case 32:
2455 opcode_select (temp);
2456 break;
2457
2458 default:
2459 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2460 }
2461}
2462
2463static void
2464s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2465{
2466 /* If we are not already in thumb mode go into it, EVEN if
2467 the target processor does not support thumb instructions.
2468 This is used by gcc/config/arm/lib1funcs.asm for example
2469 to compile interworking support functions even if the
2470 target processor should not support interworking. */
2471 if (! thumb_mode)
2472 {
2473 thumb_mode = 2;
2474 record_alignment (now_seg, 1);
2475 }
2476
2477 demand_empty_rest_of_line ();
2478}
2479
2480static void
2481s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2482{
2483 s_thumb (0);
2484
2485 /* The following label is the name/address of the start of a Thumb function.
2486 We need to know this for the interworking support. */
2487 label_is_thumb_function_name = TRUE;
2488}
2489
2490/* Perform a .set directive, but also mark the alias as
2491 being a thumb function. */
2492
2493static void
2494s_thumb_set (int equiv)
2495{
2496 /* XXX the following is a duplicate of the code for s_set() in read.c
2497 We cannot just call that code as we need to get at the symbol that
2498 is created. */
2499 char * name;
2500 char delim;
2501 char * end_name;
2502 symbolS * symbolP;
2503
2504 /* Especial apologies for the random logic:
2505 This just grew, and could be parsed much more simply!
2506 Dean - in haste. */
2507 name = input_line_pointer;
2508 delim = get_symbol_end ();
2509 end_name = input_line_pointer;
2510 *end_name = delim;
2511
2512 if (*input_line_pointer != ',')
2513 {
2514 *end_name = 0;
2515 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2516 *end_name = delim;
2517 ignore_rest_of_line ();
2518 return;
2519 }
2520
2521 input_line_pointer++;
2522 *end_name = 0;
2523
2524 if (name[0] == '.' && name[1] == '\0')
2525 {
2526 /* XXX - this should not happen to .thumb_set. */
2527 abort ();
2528 }
2529
2530 if ((symbolP = symbol_find (name)) == NULL
2531 && (symbolP = md_undefined_symbol (name)) == NULL)
2532 {
2533#ifndef NO_LISTING
2534 /* When doing symbol listings, play games with dummy fragments living
2535 outside the normal fragment chain to record the file and line info
c19d1205 2536 for this symbol. */
b99bd4ef
NC
2537 if (listing & LISTING_SYMBOLS)
2538 {
2539 extern struct list_info_struct * listing_tail;
a737bd4d 2540 fragS * dummy_frag = xmalloc (sizeof (fragS));
b99bd4ef
NC
2541
2542 memset (dummy_frag, 0, sizeof (fragS));
2543 dummy_frag->fr_type = rs_fill;
2544 dummy_frag->line = listing_tail;
2545 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2546 dummy_frag->fr_symbol = symbolP;
2547 }
2548 else
2549#endif
2550 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2551
2552#ifdef OBJ_COFF
2553 /* "set" symbols are local unless otherwise specified. */
2554 SF_SET_LOCAL (symbolP);
2555#endif /* OBJ_COFF */
2556 } /* Make a new symbol. */
2557
2558 symbol_table_insert (symbolP);
2559
2560 * end_name = delim;
2561
2562 if (equiv
2563 && S_IS_DEFINED (symbolP)
2564 && S_GET_SEGMENT (symbolP) != reg_section)
2565 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2566
2567 pseudo_set (symbolP);
2568
2569 demand_empty_rest_of_line ();
2570
c19d1205 2571 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2572
2573 THUMB_SET_FUNC (symbolP, 1);
2574 ARM_SET_THUMB (symbolP, 1);
2575#if defined OBJ_ELF || defined OBJ_COFF
2576 ARM_SET_INTERWORK (symbolP, support_interwork);
2577#endif
2578}
2579
c19d1205 2580/* Directives: Mode selection. */
b99bd4ef 2581
c19d1205
ZW
2582/* .syntax [unified|divided] - choose the new unified syntax
2583 (same for Arm and Thumb encoding, modulo slight differences in what
2584 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2585static void
c19d1205 2586s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2587{
c19d1205
ZW
2588 char *name, delim;
2589
2590 name = input_line_pointer;
2591 delim = get_symbol_end ();
2592
2593 if (!strcasecmp (name, "unified"))
2594 unified_syntax = TRUE;
2595 else if (!strcasecmp (name, "divided"))
2596 unified_syntax = FALSE;
2597 else
2598 {
2599 as_bad (_("unrecognized syntax mode \"%s\""), name);
2600 return;
2601 }
2602 *input_line_pointer = delim;
b99bd4ef
NC
2603 demand_empty_rest_of_line ();
2604}
2605
c19d1205
ZW
2606/* Directives: sectioning and alignment. */
2607
2608/* Same as s_align_ptwo but align 0 => align 2. */
2609
b99bd4ef 2610static void
c19d1205 2611s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2612{
a737bd4d 2613 int temp;
c19d1205
ZW
2614 long temp_fill;
2615 long max_alignment = 15;
b99bd4ef
NC
2616
2617 temp = get_absolute_expression ();
c19d1205
ZW
2618 if (temp > max_alignment)
2619 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2620 else if (temp < 0)
b99bd4ef 2621 {
c19d1205
ZW
2622 as_bad (_("alignment negative. 0 assumed."));
2623 temp = 0;
2624 }
b99bd4ef 2625
c19d1205
ZW
2626 if (*input_line_pointer == ',')
2627 {
2628 input_line_pointer++;
2629 temp_fill = get_absolute_expression ();
b99bd4ef 2630 }
c19d1205
ZW
2631 else
2632 temp_fill = 0;
b99bd4ef 2633
c19d1205
ZW
2634 if (!temp)
2635 temp = 2;
b99bd4ef 2636
c19d1205
ZW
2637 /* Only make a frag if we HAVE to. */
2638 if (temp && !need_pass_2)
2639 frag_align (temp, (int) temp_fill, 0);
2640 demand_empty_rest_of_line ();
2641
2642 record_alignment (now_seg, temp);
b99bd4ef
NC
2643}
2644
c19d1205
ZW
2645static void
2646s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2647{
c19d1205
ZW
2648 /* We don't support putting frags in the BSS segment, we fake it by
2649 marking in_bss, then looking at s_skip for clues. */
2650 subseg_set (bss_section, 0);
2651 demand_empty_rest_of_line ();
2652 mapping_state (MAP_DATA);
2653}
b99bd4ef 2654
c19d1205
ZW
2655static void
2656s_even (int ignore ATTRIBUTE_UNUSED)
2657{
2658 /* Never make frag if expect extra pass. */
2659 if (!need_pass_2)
2660 frag_align (1, 0, 0);
b99bd4ef 2661
c19d1205 2662 record_alignment (now_seg, 1);
b99bd4ef 2663
c19d1205 2664 demand_empty_rest_of_line ();
b99bd4ef
NC
2665}
2666
c19d1205 2667/* Directives: Literal pools. */
a737bd4d 2668
c19d1205
ZW
2669static literal_pool *
2670find_literal_pool (void)
a737bd4d 2671{
c19d1205 2672 literal_pool * pool;
a737bd4d 2673
c19d1205 2674 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2675 {
c19d1205
ZW
2676 if (pool->section == now_seg
2677 && pool->sub_section == now_subseg)
2678 break;
a737bd4d
NC
2679 }
2680
c19d1205 2681 return pool;
a737bd4d
NC
2682}
2683
c19d1205
ZW
2684static literal_pool *
2685find_or_make_literal_pool (void)
a737bd4d 2686{
c19d1205
ZW
2687 /* Next literal pool ID number. */
2688 static unsigned int latest_pool_num = 1;
2689 literal_pool * pool;
a737bd4d 2690
c19d1205 2691 pool = find_literal_pool ();
a737bd4d 2692
c19d1205 2693 if (pool == NULL)
a737bd4d 2694 {
c19d1205
ZW
2695 /* Create a new pool. */
2696 pool = xmalloc (sizeof (* pool));
2697 if (! pool)
2698 return NULL;
a737bd4d 2699
c19d1205
ZW
2700 pool->next_free_entry = 0;
2701 pool->section = now_seg;
2702 pool->sub_section = now_subseg;
2703 pool->next = list_of_pools;
2704 pool->symbol = NULL;
2705
2706 /* Add it to the list. */
2707 list_of_pools = pool;
a737bd4d 2708 }
a737bd4d 2709
c19d1205
ZW
2710 /* New pools, and emptied pools, will have a NULL symbol. */
2711 if (pool->symbol == NULL)
a737bd4d 2712 {
c19d1205
ZW
2713 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2714 (valueT) 0, &zero_address_frag);
2715 pool->id = latest_pool_num ++;
a737bd4d
NC
2716 }
2717
c19d1205
ZW
2718 /* Done. */
2719 return pool;
a737bd4d
NC
2720}
2721
c19d1205
ZW
2722/* Add the literal in the global 'inst'
2723 structure to the relevent literal pool. */
b99bd4ef
NC
2724
2725static int
c19d1205 2726add_to_lit_pool (void)
b99bd4ef 2727{
c19d1205
ZW
2728 literal_pool * pool;
2729 unsigned int entry;
b99bd4ef 2730
c19d1205
ZW
2731 pool = find_or_make_literal_pool ();
2732
2733 /* Check if this literal value is already in the pool. */
2734 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2735 {
c19d1205
ZW
2736 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2737 && (inst.reloc.exp.X_op == O_constant)
2738 && (pool->literals[entry].X_add_number
2739 == inst.reloc.exp.X_add_number)
2740 && (pool->literals[entry].X_unsigned
2741 == inst.reloc.exp.X_unsigned))
2742 break;
2743
2744 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2745 && (inst.reloc.exp.X_op == O_symbol)
2746 && (pool->literals[entry].X_add_number
2747 == inst.reloc.exp.X_add_number)
2748 && (pool->literals[entry].X_add_symbol
2749 == inst.reloc.exp.X_add_symbol)
2750 && (pool->literals[entry].X_op_symbol
2751 == inst.reloc.exp.X_op_symbol))
2752 break;
b99bd4ef
NC
2753 }
2754
c19d1205
ZW
2755 /* Do we need to create a new entry? */
2756 if (entry == pool->next_free_entry)
2757 {
2758 if (entry >= MAX_LITERAL_POOL_SIZE)
2759 {
2760 inst.error = _("literal pool overflow");
2761 return FAIL;
2762 }
2763
2764 pool->literals[entry] = inst.reloc.exp;
2765 pool->next_free_entry += 1;
2766 }
b99bd4ef 2767
c19d1205
ZW
2768 inst.reloc.exp.X_op = O_symbol;
2769 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2770 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 2771
c19d1205 2772 return SUCCESS;
b99bd4ef
NC
2773}
2774
c19d1205
ZW
2775/* Can't use symbol_new here, so have to create a symbol and then at
2776 a later date assign it a value. Thats what these functions do. */
e16bb312 2777
c19d1205
ZW
2778static void
2779symbol_locate (symbolS * symbolP,
2780 const char * name, /* It is copied, the caller can modify. */
2781 segT segment, /* Segment identifier (SEG_<something>). */
2782 valueT valu, /* Symbol value. */
2783 fragS * frag) /* Associated fragment. */
2784{
2785 unsigned int name_length;
2786 char * preserved_copy_of_name;
e16bb312 2787
c19d1205
ZW
2788 name_length = strlen (name) + 1; /* +1 for \0. */
2789 obstack_grow (&notes, name, name_length);
2790 preserved_copy_of_name = obstack_finish (&notes);
e16bb312 2791
c19d1205
ZW
2792#ifdef tc_canonicalize_symbol_name
2793 preserved_copy_of_name =
2794 tc_canonicalize_symbol_name (preserved_copy_of_name);
2795#endif
b99bd4ef 2796
c19d1205 2797 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 2798
c19d1205
ZW
2799 S_SET_SEGMENT (symbolP, segment);
2800 S_SET_VALUE (symbolP, valu);
2801 symbol_clear_list_pointers (symbolP);
b99bd4ef 2802
c19d1205 2803 symbol_set_frag (symbolP, frag);
b99bd4ef 2804
c19d1205
ZW
2805 /* Link to end of symbol chain. */
2806 {
2807 extern int symbol_table_frozen;
b99bd4ef 2808
c19d1205
ZW
2809 if (symbol_table_frozen)
2810 abort ();
2811 }
b99bd4ef 2812
c19d1205 2813 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 2814
c19d1205 2815 obj_symbol_new_hook (symbolP);
b99bd4ef 2816
c19d1205
ZW
2817#ifdef tc_symbol_new_hook
2818 tc_symbol_new_hook (symbolP);
2819#endif
2820
2821#ifdef DEBUG_SYMS
2822 verify_symbol_chain (symbol_rootP, symbol_lastP);
2823#endif /* DEBUG_SYMS */
b99bd4ef
NC
2824}
2825
b99bd4ef 2826
c19d1205
ZW
2827static void
2828s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 2829{
c19d1205
ZW
2830 unsigned int entry;
2831 literal_pool * pool;
2832 char sym_name[20];
b99bd4ef 2833
c19d1205
ZW
2834 pool = find_literal_pool ();
2835 if (pool == NULL
2836 || pool->symbol == NULL
2837 || pool->next_free_entry == 0)
2838 return;
b99bd4ef 2839
c19d1205 2840 mapping_state (MAP_DATA);
b99bd4ef 2841
c19d1205
ZW
2842 /* Align pool as you have word accesses.
2843 Only make a frag if we have to. */
2844 if (!need_pass_2)
2845 frag_align (2, 0, 0);
b99bd4ef 2846
c19d1205 2847 record_alignment (now_seg, 2);
b99bd4ef 2848
c19d1205 2849 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 2850
c19d1205
ZW
2851 symbol_locate (pool->symbol, sym_name, now_seg,
2852 (valueT) frag_now_fix (), frag_now);
2853 symbol_table_insert (pool->symbol);
b99bd4ef 2854
c19d1205 2855 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 2856
c19d1205
ZW
2857#if defined OBJ_COFF || defined OBJ_ELF
2858 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2859#endif
6c43fab6 2860
c19d1205
ZW
2861 for (entry = 0; entry < pool->next_free_entry; entry ++)
2862 /* First output the expression in the instruction to the pool. */
2863 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 2864
c19d1205
ZW
2865 /* Mark the pool as empty. */
2866 pool->next_free_entry = 0;
2867 pool->symbol = NULL;
b99bd4ef
NC
2868}
2869
c19d1205
ZW
2870#ifdef OBJ_ELF
2871/* Forward declarations for functions below, in the MD interface
2872 section. */
2873static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2874static valueT create_unwind_entry (int);
2875static void start_unwind_section (const segT, int);
2876static void add_unwind_opcode (valueT, int);
2877static void flush_pending_unwind (void);
b99bd4ef 2878
c19d1205 2879/* Directives: Data. */
b99bd4ef 2880
c19d1205
ZW
2881static void
2882s_arm_elf_cons (int nbytes)
2883{
2884 expressionS exp;
b99bd4ef 2885
c19d1205
ZW
2886#ifdef md_flush_pending_output
2887 md_flush_pending_output ();
2888#endif
b99bd4ef 2889
c19d1205 2890 if (is_it_end_of_statement ())
b99bd4ef 2891 {
c19d1205
ZW
2892 demand_empty_rest_of_line ();
2893 return;
b99bd4ef
NC
2894 }
2895
c19d1205
ZW
2896#ifdef md_cons_align
2897 md_cons_align (nbytes);
2898#endif
b99bd4ef 2899
c19d1205
ZW
2900 mapping_state (MAP_DATA);
2901 do
b99bd4ef 2902 {
c19d1205
ZW
2903 int reloc;
2904 char *base = input_line_pointer;
b99bd4ef 2905
c19d1205 2906 expression (& exp);
b99bd4ef 2907
c19d1205
ZW
2908 if (exp.X_op != O_symbol)
2909 emit_expr (&exp, (unsigned int) nbytes);
2910 else
2911 {
2912 char *before_reloc = input_line_pointer;
2913 reloc = parse_reloc (&input_line_pointer);
2914 if (reloc == -1)
2915 {
2916 as_bad (_("unrecognized relocation suffix"));
2917 ignore_rest_of_line ();
2918 return;
2919 }
2920 else if (reloc == BFD_RELOC_UNUSED)
2921 emit_expr (&exp, (unsigned int) nbytes);
2922 else
2923 {
2924 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2925 int size = bfd_get_reloc_size (howto);
b99bd4ef 2926
2fc8bdac
ZW
2927 if (reloc == BFD_RELOC_ARM_PLT32)
2928 {
2929 as_bad (_("(plt) is only valid on branch targets"));
2930 reloc = BFD_RELOC_UNUSED;
2931 size = 0;
2932 }
2933
c19d1205 2934 if (size > nbytes)
2fc8bdac 2935 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
2936 howto->name, nbytes);
2937 else
2938 {
2939 /* We've parsed an expression stopping at O_symbol.
2940 But there may be more expression left now that we
2941 have parsed the relocation marker. Parse it again.
2942 XXX Surely there is a cleaner way to do this. */
2943 char *p = input_line_pointer;
2944 int offset;
2945 char *save_buf = alloca (input_line_pointer - base);
2946 memcpy (save_buf, base, input_line_pointer - base);
2947 memmove (base + (input_line_pointer - before_reloc),
2948 base, before_reloc - base);
2949
2950 input_line_pointer = base + (input_line_pointer-before_reloc);
2951 expression (&exp);
2952 memcpy (base, save_buf, p - base);
2953
2954 offset = nbytes - size;
2955 p = frag_more ((int) nbytes);
2956 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2957 size, &exp, 0, reloc);
2958 }
2959 }
2960 }
b99bd4ef 2961 }
c19d1205 2962 while (*input_line_pointer++ == ',');
b99bd4ef 2963
c19d1205
ZW
2964 /* Put terminator back into stream. */
2965 input_line_pointer --;
2966 demand_empty_rest_of_line ();
b99bd4ef
NC
2967}
2968
b99bd4ef 2969
c19d1205 2970/* Parse a .rel31 directive. */
b99bd4ef 2971
c19d1205
ZW
2972static void
2973s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2974{
2975 expressionS exp;
2976 char *p;
2977 valueT highbit;
b99bd4ef 2978
c19d1205
ZW
2979 highbit = 0;
2980 if (*input_line_pointer == '1')
2981 highbit = 0x80000000;
2982 else if (*input_line_pointer != '0')
2983 as_bad (_("expected 0 or 1"));
b99bd4ef 2984
c19d1205
ZW
2985 input_line_pointer++;
2986 if (*input_line_pointer != ',')
2987 as_bad (_("missing comma"));
2988 input_line_pointer++;
b99bd4ef 2989
c19d1205
ZW
2990#ifdef md_flush_pending_output
2991 md_flush_pending_output ();
2992#endif
b99bd4ef 2993
c19d1205
ZW
2994#ifdef md_cons_align
2995 md_cons_align (4);
2996#endif
b99bd4ef 2997
c19d1205 2998 mapping_state (MAP_DATA);
b99bd4ef 2999
c19d1205 3000 expression (&exp);
b99bd4ef 3001
c19d1205
ZW
3002 p = frag_more (4);
3003 md_number_to_chars (p, highbit, 4);
3004 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3005 BFD_RELOC_ARM_PREL31);
b99bd4ef 3006
c19d1205 3007 demand_empty_rest_of_line ();
b99bd4ef
NC
3008}
3009
c19d1205 3010/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3011
c19d1205 3012/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3013
c19d1205
ZW
3014static void
3015s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3016{
3017 demand_empty_rest_of_line ();
3018 /* Mark the start of the function. */
3019 unwind.proc_start = expr_build_dot ();
b99bd4ef 3020
c19d1205
ZW
3021 /* Reset the rest of the unwind info. */
3022 unwind.opcode_count = 0;
3023 unwind.table_entry = NULL;
3024 unwind.personality_routine = NULL;
3025 unwind.personality_index = -1;
3026 unwind.frame_size = 0;
3027 unwind.fp_offset = 0;
3028 unwind.fp_reg = 13;
3029 unwind.fp_used = 0;
3030 unwind.sp_restored = 0;
3031}
b99bd4ef 3032
b99bd4ef 3033
c19d1205
ZW
3034/* Parse a handlerdata directive. Creates the exception handling table entry
3035 for the function. */
b99bd4ef 3036
c19d1205
ZW
3037static void
3038s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3039{
3040 demand_empty_rest_of_line ();
3041 if (unwind.table_entry)
3042 as_bad (_("dupicate .handlerdata directive"));
f02232aa 3043
c19d1205
ZW
3044 create_unwind_entry (1);
3045}
a737bd4d 3046
c19d1205 3047/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3048
c19d1205
ZW
3049static void
3050s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3051{
3052 long where;
3053 char *ptr;
3054 valueT val;
f02232aa 3055
c19d1205 3056 demand_empty_rest_of_line ();
f02232aa 3057
c19d1205
ZW
3058 /* Add eh table entry. */
3059 if (unwind.table_entry == NULL)
3060 val = create_unwind_entry (0);
3061 else
3062 val = 0;
f02232aa 3063
c19d1205
ZW
3064 /* Add index table entry. This is two words. */
3065 start_unwind_section (unwind.saved_seg, 1);
3066 frag_align (2, 0, 0);
3067 record_alignment (now_seg, 2);
b99bd4ef 3068
c19d1205
ZW
3069 ptr = frag_more (8);
3070 where = frag_now_fix () - 8;
f02232aa 3071
c19d1205
ZW
3072 /* Self relative offset of the function start. */
3073 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3074 BFD_RELOC_ARM_PREL31);
f02232aa 3075
c19d1205
ZW
3076 /* Indicate dependency on EHABI-defined personality routines to the
3077 linker, if it hasn't been done already. */
3078 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3079 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3080 {
3081 static const char *const name[] = {
3082 "__aeabi_unwind_cpp_pr0",
3083 "__aeabi_unwind_cpp_pr1",
3084 "__aeabi_unwind_cpp_pr2"
3085 };
3086 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3087 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3088 marked_pr_dependency |= 1 << unwind.personality_index;
3089 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3090 = marked_pr_dependency;
3091 }
f02232aa 3092
c19d1205
ZW
3093 if (val)
3094 /* Inline exception table entry. */
3095 md_number_to_chars (ptr + 4, val, 4);
3096 else
3097 /* Self relative offset of the table entry. */
3098 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3099 BFD_RELOC_ARM_PREL31);
f02232aa 3100
c19d1205
ZW
3101 /* Restore the original section. */
3102 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3103}
f02232aa 3104
f02232aa 3105
c19d1205 3106/* Parse an unwind_cantunwind directive. */
b99bd4ef 3107
c19d1205
ZW
3108static void
3109s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3110{
3111 demand_empty_rest_of_line ();
3112 if (unwind.personality_routine || unwind.personality_index != -1)
3113 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3114
c19d1205
ZW
3115 unwind.personality_index = -2;
3116}
b99bd4ef 3117
b99bd4ef 3118
c19d1205 3119/* Parse a personalityindex directive. */
b99bd4ef 3120
c19d1205
ZW
3121static void
3122s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3123{
3124 expressionS exp;
b99bd4ef 3125
c19d1205
ZW
3126 if (unwind.personality_routine || unwind.personality_index != -1)
3127 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3128
c19d1205 3129 expression (&exp);
b99bd4ef 3130
c19d1205
ZW
3131 if (exp.X_op != O_constant
3132 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3133 {
c19d1205
ZW
3134 as_bad (_("bad personality routine number"));
3135 ignore_rest_of_line ();
3136 return;
b99bd4ef
NC
3137 }
3138
c19d1205 3139 unwind.personality_index = exp.X_add_number;
b99bd4ef 3140
c19d1205
ZW
3141 demand_empty_rest_of_line ();
3142}
e16bb312 3143
e16bb312 3144
c19d1205 3145/* Parse a personality directive. */
e16bb312 3146
c19d1205
ZW
3147static void
3148s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3149{
3150 char *name, *p, c;
a737bd4d 3151
c19d1205
ZW
3152 if (unwind.personality_routine || unwind.personality_index != -1)
3153 as_bad (_("duplicate .personality directive"));
a737bd4d 3154
c19d1205
ZW
3155 name = input_line_pointer;
3156 c = get_symbol_end ();
3157 p = input_line_pointer;
3158 unwind.personality_routine = symbol_find_or_make (name);
3159 *p = c;
3160 demand_empty_rest_of_line ();
3161}
e16bb312 3162
e16bb312 3163
c19d1205 3164/* Parse a directive saving core registers. */
e16bb312 3165
c19d1205
ZW
3166static void
3167s_arm_unwind_save_core (void)
e16bb312 3168{
c19d1205
ZW
3169 valueT op;
3170 long range;
3171 int n;
e16bb312 3172
c19d1205
ZW
3173 range = parse_reg_list (&input_line_pointer);
3174 if (range == FAIL)
e16bb312 3175 {
c19d1205
ZW
3176 as_bad (_("expected register list"));
3177 ignore_rest_of_line ();
3178 return;
3179 }
e16bb312 3180
c19d1205 3181 demand_empty_rest_of_line ();
e16bb312 3182
c19d1205
ZW
3183 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3184 into .unwind_save {..., sp...}. We aren't bothered about the value of
3185 ip because it is clobbered by calls. */
3186 if (unwind.sp_restored && unwind.fp_reg == 12
3187 && (range & 0x3000) == 0x1000)
3188 {
3189 unwind.opcode_count--;
3190 unwind.sp_restored = 0;
3191 range = (range | 0x2000) & ~0x1000;
3192 unwind.pending_offset = 0;
3193 }
e16bb312 3194
01ae4198
DJ
3195 /* Pop r4-r15. */
3196 if (range & 0xfff0)
c19d1205 3197 {
01ae4198
DJ
3198 /* See if we can use the short opcodes. These pop a block of up to 8
3199 registers starting with r4, plus maybe r14. */
3200 for (n = 0; n < 8; n++)
3201 {
3202 /* Break at the first non-saved register. */
3203 if ((range & (1 << (n + 4))) == 0)
3204 break;
3205 }
3206 /* See if there are any other bits set. */
3207 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3208 {
3209 /* Use the long form. */
3210 op = 0x8000 | ((range >> 4) & 0xfff);
3211 add_unwind_opcode (op, 2);
3212 }
0dd132b6 3213 else
01ae4198
DJ
3214 {
3215 /* Use the short form. */
3216 if (range & 0x4000)
3217 op = 0xa8; /* Pop r14. */
3218 else
3219 op = 0xa0; /* Do not pop r14. */
3220 op |= (n - 1);
3221 add_unwind_opcode (op, 1);
3222 }
c19d1205 3223 }
0dd132b6 3224
c19d1205
ZW
3225 /* Pop r0-r3. */
3226 if (range & 0xf)
3227 {
3228 op = 0xb100 | (range & 0xf);
3229 add_unwind_opcode (op, 2);
0dd132b6
NC
3230 }
3231
c19d1205
ZW
3232 /* Record the number of bytes pushed. */
3233 for (n = 0; n < 16; n++)
3234 {
3235 if (range & (1 << n))
3236 unwind.frame_size += 4;
3237 }
0dd132b6
NC
3238}
3239
c19d1205
ZW
3240
3241/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3242
3243static void
c19d1205 3244s_arm_unwind_save_fpa (int reg)
b99bd4ef 3245{
c19d1205
ZW
3246 expressionS exp;
3247 int num_regs;
3248 valueT op;
b99bd4ef 3249
c19d1205
ZW
3250 /* Get Number of registers to transfer. */
3251 if (skip_past_comma (&input_line_pointer) != FAIL)
3252 expression (&exp);
3253 else
3254 exp.X_op = O_illegal;
b99bd4ef 3255
c19d1205 3256 if (exp.X_op != O_constant)
b99bd4ef 3257 {
c19d1205
ZW
3258 as_bad (_("expected , <constant>"));
3259 ignore_rest_of_line ();
b99bd4ef
NC
3260 return;
3261 }
3262
c19d1205
ZW
3263 num_regs = exp.X_add_number;
3264
3265 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3266 {
c19d1205
ZW
3267 as_bad (_("number of registers must be in the range [1:4]"));
3268 ignore_rest_of_line ();
b99bd4ef
NC
3269 return;
3270 }
3271
c19d1205 3272 demand_empty_rest_of_line ();
b99bd4ef 3273
c19d1205
ZW
3274 if (reg == 4)
3275 {
3276 /* Short form. */
3277 op = 0xb4 | (num_regs - 1);
3278 add_unwind_opcode (op, 1);
3279 }
b99bd4ef
NC
3280 else
3281 {
c19d1205
ZW
3282 /* Long form. */
3283 op = 0xc800 | (reg << 4) | (num_regs - 1);
3284 add_unwind_opcode (op, 2);
b99bd4ef 3285 }
c19d1205 3286 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3287}
3288
c19d1205 3289
fa073d69
MS
3290/* Parse a directive saving VFP registers for ARMv6 and above. */
3291
3292static void
3293s_arm_unwind_save_vfp_armv6 (void)
3294{
3295 int count;
3296 unsigned int start;
3297 valueT op;
3298 int num_vfpv3_regs = 0;
3299 int num_regs_below_16;
3300
3301 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3302 if (count == FAIL)
3303 {
3304 as_bad (_("expected register list"));
3305 ignore_rest_of_line ();
3306 return;
3307 }
3308
3309 demand_empty_rest_of_line ();
3310
3311 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3312 than FSTMX/FLDMX-style ones). */
3313
3314 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3315 if (start >= 16)
3316 num_vfpv3_regs = count;
3317 else if (start + count > 16)
3318 num_vfpv3_regs = start + count - 16;
3319
3320 if (num_vfpv3_regs > 0)
3321 {
3322 int start_offset = start > 16 ? start - 16 : 0;
3323 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3324 add_unwind_opcode (op, 2);
3325 }
3326
3327 /* Generate opcode for registers numbered in the range 0 .. 15. */
3328 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3329 assert (num_regs_below_16 + num_vfpv3_regs == count);
3330 if (num_regs_below_16 > 0)
3331 {
3332 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3333 add_unwind_opcode (op, 2);
3334 }
3335
3336 unwind.frame_size += count * 8;
3337}
3338
3339
3340/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3341
3342static void
c19d1205 3343s_arm_unwind_save_vfp (void)
b99bd4ef 3344{
c19d1205 3345 int count;
ca3f61f7 3346 unsigned int reg;
c19d1205 3347 valueT op;
b99bd4ef 3348
5287ad62 3349 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3350 if (count == FAIL)
b99bd4ef 3351 {
c19d1205
ZW
3352 as_bad (_("expected register list"));
3353 ignore_rest_of_line ();
b99bd4ef
NC
3354 return;
3355 }
3356
c19d1205 3357 demand_empty_rest_of_line ();
b99bd4ef 3358
c19d1205 3359 if (reg == 8)
b99bd4ef 3360 {
c19d1205
ZW
3361 /* Short form. */
3362 op = 0xb8 | (count - 1);
3363 add_unwind_opcode (op, 1);
b99bd4ef 3364 }
c19d1205 3365 else
b99bd4ef 3366 {
c19d1205
ZW
3367 /* Long form. */
3368 op = 0xb300 | (reg << 4) | (count - 1);
3369 add_unwind_opcode (op, 2);
b99bd4ef 3370 }
c19d1205
ZW
3371 unwind.frame_size += count * 8 + 4;
3372}
b99bd4ef 3373
b99bd4ef 3374
c19d1205
ZW
3375/* Parse a directive saving iWMMXt data registers. */
3376
3377static void
3378s_arm_unwind_save_mmxwr (void)
3379{
3380 int reg;
3381 int hi_reg;
3382 int i;
3383 unsigned mask = 0;
3384 valueT op;
b99bd4ef 3385
c19d1205
ZW
3386 if (*input_line_pointer == '{')
3387 input_line_pointer++;
b99bd4ef 3388
c19d1205 3389 do
b99bd4ef 3390 {
dcbf9037 3391 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3392
c19d1205 3393 if (reg == FAIL)
b99bd4ef 3394 {
c19d1205
ZW
3395 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3396 goto error;
b99bd4ef
NC
3397 }
3398
c19d1205
ZW
3399 if (mask >> reg)
3400 as_tsktsk (_("register list not in ascending order"));
3401 mask |= 1 << reg;
b99bd4ef 3402
c19d1205
ZW
3403 if (*input_line_pointer == '-')
3404 {
3405 input_line_pointer++;
dcbf9037 3406 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3407 if (hi_reg == FAIL)
3408 {
3409 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3410 goto error;
3411 }
3412 else if (reg >= hi_reg)
3413 {
3414 as_bad (_("bad register range"));
3415 goto error;
3416 }
3417 for (; reg < hi_reg; reg++)
3418 mask |= 1 << reg;
3419 }
3420 }
3421 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3422
c19d1205
ZW
3423 if (*input_line_pointer == '}')
3424 input_line_pointer++;
b99bd4ef 3425
c19d1205 3426 demand_empty_rest_of_line ();
b99bd4ef 3427
708587a4 3428 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3429 the list. */
3430 flush_pending_unwind ();
b99bd4ef 3431
c19d1205 3432 for (i = 0; i < 16; i++)
b99bd4ef 3433 {
c19d1205
ZW
3434 if (mask & (1 << i))
3435 unwind.frame_size += 8;
b99bd4ef
NC
3436 }
3437
c19d1205
ZW
3438 /* Attempt to combine with a previous opcode. We do this because gcc
3439 likes to output separate unwind directives for a single block of
3440 registers. */
3441 if (unwind.opcode_count > 0)
b99bd4ef 3442 {
c19d1205
ZW
3443 i = unwind.opcodes[unwind.opcode_count - 1];
3444 if ((i & 0xf8) == 0xc0)
3445 {
3446 i &= 7;
3447 /* Only merge if the blocks are contiguous. */
3448 if (i < 6)
3449 {
3450 if ((mask & 0xfe00) == (1 << 9))
3451 {
3452 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3453 unwind.opcode_count--;
3454 }
3455 }
3456 else if (i == 6 && unwind.opcode_count >= 2)
3457 {
3458 i = unwind.opcodes[unwind.opcode_count - 2];
3459 reg = i >> 4;
3460 i &= 0xf;
b99bd4ef 3461
c19d1205
ZW
3462 op = 0xffff << (reg - 1);
3463 if (reg > 0
87a1fd79 3464 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3465 {
3466 op = (1 << (reg + i + 1)) - 1;
3467 op &= ~((1 << reg) - 1);
3468 mask |= op;
3469 unwind.opcode_count -= 2;
3470 }
3471 }
3472 }
b99bd4ef
NC
3473 }
3474
c19d1205
ZW
3475 hi_reg = 15;
3476 /* We want to generate opcodes in the order the registers have been
3477 saved, ie. descending order. */
3478 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3479 {
c19d1205
ZW
3480 /* Save registers in blocks. */
3481 if (reg < 0
3482 || !(mask & (1 << reg)))
3483 {
3484 /* We found an unsaved reg. Generate opcodes to save the
3485 preceeding block. */
3486 if (reg != hi_reg)
3487 {
3488 if (reg == 9)
3489 {
3490 /* Short form. */
3491 op = 0xc0 | (hi_reg - 10);
3492 add_unwind_opcode (op, 1);
3493 }
3494 else
3495 {
3496 /* Long form. */
3497 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3498 add_unwind_opcode (op, 2);
3499 }
3500 }
3501 hi_reg = reg - 1;
3502 }
b99bd4ef
NC
3503 }
3504
c19d1205
ZW
3505 return;
3506error:
3507 ignore_rest_of_line ();
b99bd4ef
NC
3508}
3509
3510static void
c19d1205 3511s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3512{
c19d1205
ZW
3513 int reg;
3514 int hi_reg;
3515 unsigned mask = 0;
3516 valueT op;
b99bd4ef 3517
c19d1205
ZW
3518 if (*input_line_pointer == '{')
3519 input_line_pointer++;
b99bd4ef 3520
c19d1205 3521 do
b99bd4ef 3522 {
dcbf9037 3523 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3524
c19d1205
ZW
3525 if (reg == FAIL)
3526 {
3527 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3528 goto error;
3529 }
b99bd4ef 3530
c19d1205
ZW
3531 reg -= 8;
3532 if (mask >> reg)
3533 as_tsktsk (_("register list not in ascending order"));
3534 mask |= 1 << reg;
b99bd4ef 3535
c19d1205
ZW
3536 if (*input_line_pointer == '-')
3537 {
3538 input_line_pointer++;
dcbf9037 3539 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3540 if (hi_reg == FAIL)
3541 {
3542 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3543 goto error;
3544 }
3545 else if (reg >= hi_reg)
3546 {
3547 as_bad (_("bad register range"));
3548 goto error;
3549 }
3550 for (; reg < hi_reg; reg++)
3551 mask |= 1 << reg;
3552 }
b99bd4ef 3553 }
c19d1205 3554 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3555
c19d1205
ZW
3556 if (*input_line_pointer == '}')
3557 input_line_pointer++;
b99bd4ef 3558
c19d1205
ZW
3559 demand_empty_rest_of_line ();
3560
708587a4 3561 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3562 the list. */
3563 flush_pending_unwind ();
b99bd4ef 3564
c19d1205 3565 for (reg = 0; reg < 16; reg++)
b99bd4ef 3566 {
c19d1205
ZW
3567 if (mask & (1 << reg))
3568 unwind.frame_size += 4;
b99bd4ef 3569 }
c19d1205
ZW
3570 op = 0xc700 | mask;
3571 add_unwind_opcode (op, 2);
3572 return;
3573error:
3574 ignore_rest_of_line ();
b99bd4ef
NC
3575}
3576
c19d1205 3577
fa073d69
MS
3578/* Parse an unwind_save directive.
3579 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3580
b99bd4ef 3581static void
fa073d69 3582s_arm_unwind_save (int arch_v6)
b99bd4ef 3583{
c19d1205
ZW
3584 char *peek;
3585 struct reg_entry *reg;
3586 bfd_boolean had_brace = FALSE;
b99bd4ef 3587
c19d1205
ZW
3588 /* Figure out what sort of save we have. */
3589 peek = input_line_pointer;
b99bd4ef 3590
c19d1205 3591 if (*peek == '{')
b99bd4ef 3592 {
c19d1205
ZW
3593 had_brace = TRUE;
3594 peek++;
b99bd4ef
NC
3595 }
3596
c19d1205 3597 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3598
c19d1205 3599 if (!reg)
b99bd4ef 3600 {
c19d1205
ZW
3601 as_bad (_("register expected"));
3602 ignore_rest_of_line ();
b99bd4ef
NC
3603 return;
3604 }
3605
c19d1205 3606 switch (reg->type)
b99bd4ef 3607 {
c19d1205
ZW
3608 case REG_TYPE_FN:
3609 if (had_brace)
3610 {
3611 as_bad (_("FPA .unwind_save does not take a register list"));
3612 ignore_rest_of_line ();
3613 return;
3614 }
3615 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 3616 return;
c19d1205
ZW
3617
3618 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
3619 case REG_TYPE_VFD:
3620 if (arch_v6)
3621 s_arm_unwind_save_vfp_armv6 ();
3622 else
3623 s_arm_unwind_save_vfp ();
3624 return;
c19d1205
ZW
3625 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3626 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3627
3628 default:
3629 as_bad (_(".unwind_save does not support this kind of register"));
3630 ignore_rest_of_line ();
b99bd4ef 3631 }
c19d1205 3632}
b99bd4ef 3633
b99bd4ef 3634
c19d1205
ZW
3635/* Parse an unwind_movsp directive. */
3636
3637static void
3638s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3639{
3640 int reg;
3641 valueT op;
4fa3602b 3642 int offset;
c19d1205 3643
dcbf9037 3644 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 3645 if (reg == FAIL)
b99bd4ef 3646 {
c19d1205
ZW
3647 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3648 ignore_rest_of_line ();
b99bd4ef
NC
3649 return;
3650 }
4fa3602b
PB
3651
3652 /* Optional constant. */
3653 if (skip_past_comma (&input_line_pointer) != FAIL)
3654 {
3655 if (immediate_for_directive (&offset) == FAIL)
3656 return;
3657 }
3658 else
3659 offset = 0;
3660
c19d1205 3661 demand_empty_rest_of_line ();
b99bd4ef 3662
c19d1205 3663 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 3664 {
c19d1205 3665 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
3666 return;
3667 }
3668
c19d1205
ZW
3669 if (unwind.fp_reg != REG_SP)
3670 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 3671
c19d1205
ZW
3672 /* Generate opcode to restore the value. */
3673 op = 0x90 | reg;
3674 add_unwind_opcode (op, 1);
3675
3676 /* Record the information for later. */
3677 unwind.fp_reg = reg;
4fa3602b 3678 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 3679 unwind.sp_restored = 1;
b05fe5cf
ZW
3680}
3681
c19d1205
ZW
3682/* Parse an unwind_pad directive. */
3683
b05fe5cf 3684static void
c19d1205 3685s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 3686{
c19d1205 3687 int offset;
b05fe5cf 3688
c19d1205
ZW
3689 if (immediate_for_directive (&offset) == FAIL)
3690 return;
b99bd4ef 3691
c19d1205
ZW
3692 if (offset & 3)
3693 {
3694 as_bad (_("stack increment must be multiple of 4"));
3695 ignore_rest_of_line ();
3696 return;
3697 }
b99bd4ef 3698
c19d1205
ZW
3699 /* Don't generate any opcodes, just record the details for later. */
3700 unwind.frame_size += offset;
3701 unwind.pending_offset += offset;
3702
3703 demand_empty_rest_of_line ();
3704}
3705
3706/* Parse an unwind_setfp directive. */
3707
3708static void
3709s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3710{
c19d1205
ZW
3711 int sp_reg;
3712 int fp_reg;
3713 int offset;
3714
dcbf9037 3715 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
3716 if (skip_past_comma (&input_line_pointer) == FAIL)
3717 sp_reg = FAIL;
3718 else
dcbf9037 3719 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 3720
c19d1205
ZW
3721 if (fp_reg == FAIL || sp_reg == FAIL)
3722 {
3723 as_bad (_("expected <reg>, <reg>"));
3724 ignore_rest_of_line ();
3725 return;
3726 }
b99bd4ef 3727
c19d1205
ZW
3728 /* Optional constant. */
3729 if (skip_past_comma (&input_line_pointer) != FAIL)
3730 {
3731 if (immediate_for_directive (&offset) == FAIL)
3732 return;
3733 }
3734 else
3735 offset = 0;
a737bd4d 3736
c19d1205 3737 demand_empty_rest_of_line ();
a737bd4d 3738
c19d1205 3739 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
a737bd4d 3740 {
c19d1205
ZW
3741 as_bad (_("register must be either sp or set by a previous"
3742 "unwind_movsp directive"));
3743 return;
a737bd4d
NC
3744 }
3745
c19d1205
ZW
3746 /* Don't generate any opcodes, just record the information for later. */
3747 unwind.fp_reg = fp_reg;
3748 unwind.fp_used = 1;
3749 if (sp_reg == 13)
3750 unwind.fp_offset = unwind.frame_size - offset;
3751 else
3752 unwind.fp_offset -= offset;
a737bd4d
NC
3753}
3754
c19d1205
ZW
3755/* Parse an unwind_raw directive. */
3756
3757static void
3758s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 3759{
c19d1205 3760 expressionS exp;
708587a4 3761 /* This is an arbitrary limit. */
c19d1205
ZW
3762 unsigned char op[16];
3763 int count;
a737bd4d 3764
c19d1205
ZW
3765 expression (&exp);
3766 if (exp.X_op == O_constant
3767 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 3768 {
c19d1205
ZW
3769 unwind.frame_size += exp.X_add_number;
3770 expression (&exp);
3771 }
3772 else
3773 exp.X_op = O_illegal;
a737bd4d 3774
c19d1205
ZW
3775 if (exp.X_op != O_constant)
3776 {
3777 as_bad (_("expected <offset>, <opcode>"));
3778 ignore_rest_of_line ();
3779 return;
3780 }
a737bd4d 3781
c19d1205 3782 count = 0;
a737bd4d 3783
c19d1205
ZW
3784 /* Parse the opcode. */
3785 for (;;)
3786 {
3787 if (count >= 16)
3788 {
3789 as_bad (_("unwind opcode too long"));
3790 ignore_rest_of_line ();
a737bd4d 3791 }
c19d1205 3792 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 3793 {
c19d1205
ZW
3794 as_bad (_("invalid unwind opcode"));
3795 ignore_rest_of_line ();
3796 return;
a737bd4d 3797 }
c19d1205 3798 op[count++] = exp.X_add_number;
a737bd4d 3799
c19d1205
ZW
3800 /* Parse the next byte. */
3801 if (skip_past_comma (&input_line_pointer) == FAIL)
3802 break;
a737bd4d 3803
c19d1205
ZW
3804 expression (&exp);
3805 }
b99bd4ef 3806
c19d1205
ZW
3807 /* Add the opcode bytes in reverse order. */
3808 while (count--)
3809 add_unwind_opcode (op[count], 1);
b99bd4ef 3810
c19d1205 3811 demand_empty_rest_of_line ();
b99bd4ef 3812}
ee065d83
PB
3813
3814
3815/* Parse a .eabi_attribute directive. */
3816
3817static void
3818s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3819{
3820 expressionS exp;
3821 bfd_boolean is_string;
3822 int tag;
3823 unsigned int i = 0;
3824 char *s = NULL;
3825 char saved_char;
3826
3827 expression (& exp);
3828 if (exp.X_op != O_constant)
3829 goto bad;
3830
3831 tag = exp.X_add_number;
3832 if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
3833 is_string = 1;
3834 else
3835 is_string = 0;
3836
3837 if (skip_past_comma (&input_line_pointer) == FAIL)
3838 goto bad;
3839 if (tag == 32 || !is_string)
3840 {
3841 expression (& exp);
3842 if (exp.X_op != O_constant)
3843 {
3844 as_bad (_("expected numeric constant"));
3845 ignore_rest_of_line ();
3846 return;
3847 }
3848 i = exp.X_add_number;
3849 }
3850 if (tag == Tag_compatibility
3851 && skip_past_comma (&input_line_pointer) == FAIL)
3852 {
3853 as_bad (_("expected comma"));
3854 ignore_rest_of_line ();
3855 return;
3856 }
3857 if (is_string)
3858 {
3859 skip_whitespace(input_line_pointer);
3860 if (*input_line_pointer != '"')
3861 goto bad_string;
3862 input_line_pointer++;
3863 s = input_line_pointer;
3864 while (*input_line_pointer && *input_line_pointer != '"')
3865 input_line_pointer++;
3866 if (*input_line_pointer != '"')
3867 goto bad_string;
3868 saved_char = *input_line_pointer;
3869 *input_line_pointer = 0;
3870 }
3871 else
3872 {
3873 s = NULL;
3874 saved_char = 0;
3875 }
3876
3877 if (tag == Tag_compatibility)
3878 elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
3879 else if (is_string)
3880 elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
3881 else
3882 elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
3883
3884 if (s)
3885 {
3886 *input_line_pointer = saved_char;
3887 input_line_pointer++;
3888 }
3889 demand_empty_rest_of_line ();
3890 return;
3891bad_string:
3892 as_bad (_("bad string constant"));
3893 ignore_rest_of_line ();
3894 return;
3895bad:
3896 as_bad (_("expected <tag> , <value>"));
3897 ignore_rest_of_line ();
3898}
8463be01 3899#endif /* OBJ_ELF */
ee065d83
PB
3900
3901static void s_arm_arch (int);
7a1d4c38 3902static void s_arm_object_arch (int);
ee065d83
PB
3903static void s_arm_cpu (int);
3904static void s_arm_fpu (int);
b99bd4ef 3905
f0927246
NC
3906#ifdef TE_PE
3907
3908static void
3909pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3910{
3911 expressionS exp;
3912
3913 do
3914 {
3915 expression (&exp);
3916 if (exp.X_op == O_symbol)
3917 exp.X_op = O_secrel;
3918
3919 emit_expr (&exp, 4);
3920 }
3921 while (*input_line_pointer++ == ',');
3922
3923 input_line_pointer--;
3924 demand_empty_rest_of_line ();
3925}
3926#endif /* TE_PE */
3927
c19d1205
ZW
3928/* This table describes all the machine specific pseudo-ops the assembler
3929 has to support. The fields are:
3930 pseudo-op name without dot
3931 function to call to execute this pseudo-op
3932 Integer arg to pass to the function. */
b99bd4ef 3933
c19d1205 3934const pseudo_typeS md_pseudo_table[] =
b99bd4ef 3935{
c19d1205
ZW
3936 /* Never called because '.req' does not start a line. */
3937 { "req", s_req, 0 },
dcbf9037
JB
3938 /* Following two are likewise never called. */
3939 { "dn", s_dn, 0 },
3940 { "qn", s_qn, 0 },
c19d1205
ZW
3941 { "unreq", s_unreq, 0 },
3942 { "bss", s_bss, 0 },
3943 { "align", s_align, 0 },
3944 { "arm", s_arm, 0 },
3945 { "thumb", s_thumb, 0 },
3946 { "code", s_code, 0 },
3947 { "force_thumb", s_force_thumb, 0 },
3948 { "thumb_func", s_thumb_func, 0 },
3949 { "thumb_set", s_thumb_set, 0 },
3950 { "even", s_even, 0 },
3951 { "ltorg", s_ltorg, 0 },
3952 { "pool", s_ltorg, 0 },
3953 { "syntax", s_syntax, 0 },
8463be01
PB
3954 { "cpu", s_arm_cpu, 0 },
3955 { "arch", s_arm_arch, 0 },
7a1d4c38 3956 { "object_arch", s_arm_object_arch, 0 },
8463be01 3957 { "fpu", s_arm_fpu, 0 },
c19d1205
ZW
3958#ifdef OBJ_ELF
3959 { "word", s_arm_elf_cons, 4 },
3960 { "long", s_arm_elf_cons, 4 },
3961 { "rel31", s_arm_rel31, 0 },
3962 { "fnstart", s_arm_unwind_fnstart, 0 },
3963 { "fnend", s_arm_unwind_fnend, 0 },
3964 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3965 { "personality", s_arm_unwind_personality, 0 },
3966 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3967 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3968 { "save", s_arm_unwind_save, 0 },
fa073d69 3969 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
3970 { "movsp", s_arm_unwind_movsp, 0 },
3971 { "pad", s_arm_unwind_pad, 0 },
3972 { "setfp", s_arm_unwind_setfp, 0 },
3973 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 3974 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
3975#else
3976 { "word", cons, 4},
f0927246
NC
3977
3978 /* These are used for dwarf. */
3979 {"2byte", cons, 2},
3980 {"4byte", cons, 4},
3981 {"8byte", cons, 8},
3982 /* These are used for dwarf2. */
3983 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3984 { "loc", dwarf2_directive_loc, 0 },
3985 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
3986#endif
3987 { "extend", float_cons, 'x' },
3988 { "ldouble", float_cons, 'x' },
3989 { "packed", float_cons, 'p' },
f0927246
NC
3990#ifdef TE_PE
3991 {"secrel32", pe_directive_secrel, 0},
3992#endif
c19d1205
ZW
3993 { 0, 0, 0 }
3994};
3995\f
3996/* Parser functions used exclusively in instruction operands. */
b99bd4ef 3997
c19d1205
ZW
3998/* Generic immediate-value read function for use in insn parsing.
3999 STR points to the beginning of the immediate (the leading #);
4000 VAL receives the value; if the value is outside [MIN, MAX]
4001 issue an error. PREFIX_OPT is true if the immediate prefix is
4002 optional. */
b99bd4ef 4003
c19d1205
ZW
4004static int
4005parse_immediate (char **str, int *val, int min, int max,
4006 bfd_boolean prefix_opt)
4007{
4008 expressionS exp;
4009 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4010 if (exp.X_op != O_constant)
b99bd4ef 4011 {
c19d1205
ZW
4012 inst.error = _("constant expression required");
4013 return FAIL;
4014 }
b99bd4ef 4015
c19d1205
ZW
4016 if (exp.X_add_number < min || exp.X_add_number > max)
4017 {
4018 inst.error = _("immediate value out of range");
4019 return FAIL;
4020 }
b99bd4ef 4021
c19d1205
ZW
4022 *val = exp.X_add_number;
4023 return SUCCESS;
4024}
b99bd4ef 4025
5287ad62 4026/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4027 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4028 instructions. Puts the result directly in inst.operands[i]. */
4029
4030static int
4031parse_big_immediate (char **str, int i)
4032{
4033 expressionS exp;
4034 char *ptr = *str;
4035
4036 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4037
4038 if (exp.X_op == O_constant)
036dc3f7
PB
4039 {
4040 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4041 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4042 O_constant. We have to be careful not to break compilation for
4043 32-bit X_add_number, though. */
4044 if ((exp.X_add_number & ~0xffffffffl) != 0)
4045 {
4046 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4047 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4048 inst.operands[i].regisimm = 1;
4049 }
4050 }
5287ad62
JB
4051 else if (exp.X_op == O_big
4052 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4053 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4054 {
4055 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4056 /* Bignums have their least significant bits in
4057 generic_bignum[0]. Make sure we put 32 bits in imm and
4058 32 bits in reg, in a (hopefully) portable way. */
4059 assert (parts != 0);
4060 inst.operands[i].imm = 0;
4061 for (j = 0; j < parts; j++, idx++)
4062 inst.operands[i].imm |= generic_bignum[idx]
4063 << (LITTLENUM_NUMBER_OF_BITS * j);
4064 inst.operands[i].reg = 0;
4065 for (j = 0; j < parts; j++, idx++)
4066 inst.operands[i].reg |= generic_bignum[idx]
4067 << (LITTLENUM_NUMBER_OF_BITS * j);
4068 inst.operands[i].regisimm = 1;
4069 }
4070 else
4071 return FAIL;
4072
4073 *str = ptr;
4074
4075 return SUCCESS;
4076}
4077
c19d1205
ZW
4078/* Returns the pseudo-register number of an FPA immediate constant,
4079 or FAIL if there isn't a valid constant here. */
b99bd4ef 4080
c19d1205
ZW
4081static int
4082parse_fpa_immediate (char ** str)
4083{
4084 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4085 char * save_in;
4086 expressionS exp;
4087 int i;
4088 int j;
b99bd4ef 4089
c19d1205
ZW
4090 /* First try and match exact strings, this is to guarantee
4091 that some formats will work even for cross assembly. */
b99bd4ef 4092
c19d1205
ZW
4093 for (i = 0; fp_const[i]; i++)
4094 {
4095 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4096 {
c19d1205 4097 char *start = *str;
b99bd4ef 4098
c19d1205
ZW
4099 *str += strlen (fp_const[i]);
4100 if (is_end_of_line[(unsigned char) **str])
4101 return i + 8;
4102 *str = start;
4103 }
4104 }
b99bd4ef 4105
c19d1205
ZW
4106 /* Just because we didn't get a match doesn't mean that the constant
4107 isn't valid, just that it is in a format that we don't
4108 automatically recognize. Try parsing it with the standard
4109 expression routines. */
b99bd4ef 4110
c19d1205 4111 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4112
c19d1205
ZW
4113 /* Look for a raw floating point number. */
4114 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4115 && is_end_of_line[(unsigned char) *save_in])
4116 {
4117 for (i = 0; i < NUM_FLOAT_VALS; i++)
4118 {
4119 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4120 {
c19d1205
ZW
4121 if (words[j] != fp_values[i][j])
4122 break;
b99bd4ef
NC
4123 }
4124
c19d1205 4125 if (j == MAX_LITTLENUMS)
b99bd4ef 4126 {
c19d1205
ZW
4127 *str = save_in;
4128 return i + 8;
b99bd4ef
NC
4129 }
4130 }
4131 }
b99bd4ef 4132
c19d1205
ZW
4133 /* Try and parse a more complex expression, this will probably fail
4134 unless the code uses a floating point prefix (eg "0f"). */
4135 save_in = input_line_pointer;
4136 input_line_pointer = *str;
4137 if (expression (&exp) == absolute_section
4138 && exp.X_op == O_big
4139 && exp.X_add_number < 0)
4140 {
4141 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4142 Ditto for 15. */
4143 if (gen_to_words (words, 5, (long) 15) == 0)
4144 {
4145 for (i = 0; i < NUM_FLOAT_VALS; i++)
4146 {
4147 for (j = 0; j < MAX_LITTLENUMS; j++)
4148 {
4149 if (words[j] != fp_values[i][j])
4150 break;
4151 }
b99bd4ef 4152
c19d1205
ZW
4153 if (j == MAX_LITTLENUMS)
4154 {
4155 *str = input_line_pointer;
4156 input_line_pointer = save_in;
4157 return i + 8;
4158 }
4159 }
4160 }
b99bd4ef
NC
4161 }
4162
c19d1205
ZW
4163 *str = input_line_pointer;
4164 input_line_pointer = save_in;
4165 inst.error = _("invalid FPA immediate expression");
4166 return FAIL;
b99bd4ef
NC
4167}
4168
136da414
JB
4169/* Returns 1 if a number has "quarter-precision" float format
4170 0baBbbbbbc defgh000 00000000 00000000. */
4171
4172static int
4173is_quarter_float (unsigned imm)
4174{
4175 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4176 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4177}
4178
4179/* Parse an 8-bit "quarter-precision" floating point number of the form:
4180 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4181 The zero and minus-zero cases need special handling, since they can't be
4182 encoded in the "quarter-precision" float format, but can nonetheless be
4183 loaded as integer constants. */
136da414
JB
4184
4185static unsigned
4186parse_qfloat_immediate (char **ccp, int *immed)
4187{
4188 char *str = *ccp;
c96612cc 4189 char *fpnum;
136da414 4190 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4191 int found_fpchar = 0;
136da414
JB
4192
4193 skip_past_char (&str, '#');
4194
c96612cc
JB
4195 /* We must not accidentally parse an integer as a floating-point number. Make
4196 sure that the value we parse is not an integer by checking for special
4197 characters '.' or 'e'.
4198 FIXME: This is a horrible hack, but doing better is tricky because type
4199 information isn't in a very usable state at parse time. */
4200 fpnum = str;
4201 skip_whitespace (fpnum);
4202
4203 if (strncmp (fpnum, "0x", 2) == 0)
4204 return FAIL;
4205 else
4206 {
4207 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4208 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4209 {
4210 found_fpchar = 1;
4211 break;
4212 }
4213
4214 if (!found_fpchar)
4215 return FAIL;
4216 }
4217
136da414
JB
4218 if ((str = atof_ieee (str, 's', words)) != NULL)
4219 {
4220 unsigned fpword = 0;
4221 int i;
4222
4223 /* Our FP word must be 32 bits (single-precision FP). */
4224 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4225 {
4226 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4227 fpword |= words[i];
4228 }
4229
c96612cc 4230 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4231 *immed = fpword;
4232 else
4233 return FAIL;
4234
4235 *ccp = str;
4236
4237 return SUCCESS;
4238 }
4239
4240 return FAIL;
4241}
4242
c19d1205
ZW
4243/* Shift operands. */
4244enum shift_kind
b99bd4ef 4245{
c19d1205
ZW
4246 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4247};
b99bd4ef 4248
c19d1205
ZW
4249struct asm_shift_name
4250{
4251 const char *name;
4252 enum shift_kind kind;
4253};
b99bd4ef 4254
c19d1205
ZW
4255/* Third argument to parse_shift. */
4256enum parse_shift_mode
4257{
4258 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4259 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4260 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4261 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4262 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4263};
b99bd4ef 4264
c19d1205
ZW
4265/* Parse a <shift> specifier on an ARM data processing instruction.
4266 This has three forms:
b99bd4ef 4267
c19d1205
ZW
4268 (LSL|LSR|ASL|ASR|ROR) Rs
4269 (LSL|LSR|ASL|ASR|ROR) #imm
4270 RRX
b99bd4ef 4271
c19d1205
ZW
4272 Note that ASL is assimilated to LSL in the instruction encoding, and
4273 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4274
c19d1205
ZW
4275static int
4276parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4277{
c19d1205
ZW
4278 const struct asm_shift_name *shift_name;
4279 enum shift_kind shift;
4280 char *s = *str;
4281 char *p = s;
4282 int reg;
b99bd4ef 4283
c19d1205
ZW
4284 for (p = *str; ISALPHA (*p); p++)
4285 ;
b99bd4ef 4286
c19d1205 4287 if (p == *str)
b99bd4ef 4288 {
c19d1205
ZW
4289 inst.error = _("shift expression expected");
4290 return FAIL;
b99bd4ef
NC
4291 }
4292
c19d1205
ZW
4293 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4294
4295 if (shift_name == NULL)
b99bd4ef 4296 {
c19d1205
ZW
4297 inst.error = _("shift expression expected");
4298 return FAIL;
b99bd4ef
NC
4299 }
4300
c19d1205 4301 shift = shift_name->kind;
b99bd4ef 4302
c19d1205
ZW
4303 switch (mode)
4304 {
4305 case NO_SHIFT_RESTRICT:
4306 case SHIFT_IMMEDIATE: break;
b99bd4ef 4307
c19d1205
ZW
4308 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4309 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4310 {
4311 inst.error = _("'LSL' or 'ASR' required");
4312 return FAIL;
4313 }
4314 break;
b99bd4ef 4315
c19d1205
ZW
4316 case SHIFT_LSL_IMMEDIATE:
4317 if (shift != SHIFT_LSL)
4318 {
4319 inst.error = _("'LSL' required");
4320 return FAIL;
4321 }
4322 break;
b99bd4ef 4323
c19d1205
ZW
4324 case SHIFT_ASR_IMMEDIATE:
4325 if (shift != SHIFT_ASR)
4326 {
4327 inst.error = _("'ASR' required");
4328 return FAIL;
4329 }
4330 break;
b99bd4ef 4331
c19d1205
ZW
4332 default: abort ();
4333 }
b99bd4ef 4334
c19d1205
ZW
4335 if (shift != SHIFT_RRX)
4336 {
4337 /* Whitespace can appear here if the next thing is a bare digit. */
4338 skip_whitespace (p);
b99bd4ef 4339
c19d1205 4340 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4341 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4342 {
4343 inst.operands[i].imm = reg;
4344 inst.operands[i].immisreg = 1;
4345 }
4346 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4347 return FAIL;
4348 }
4349 inst.operands[i].shift_kind = shift;
4350 inst.operands[i].shifted = 1;
4351 *str = p;
4352 return SUCCESS;
b99bd4ef
NC
4353}
4354
c19d1205 4355/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4356
c19d1205
ZW
4357 #<immediate>
4358 #<immediate>, <rotate>
4359 <Rm>
4360 <Rm>, <shift>
b99bd4ef 4361
c19d1205
ZW
4362 where <shift> is defined by parse_shift above, and <rotate> is a
4363 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4364 is deferred to md_apply_fix. */
b99bd4ef 4365
c19d1205
ZW
4366static int
4367parse_shifter_operand (char **str, int i)
4368{
4369 int value;
4370 expressionS expr;
b99bd4ef 4371
dcbf9037 4372 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4373 {
4374 inst.operands[i].reg = value;
4375 inst.operands[i].isreg = 1;
b99bd4ef 4376
c19d1205
ZW
4377 /* parse_shift will override this if appropriate */
4378 inst.reloc.exp.X_op = O_constant;
4379 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4380
c19d1205
ZW
4381 if (skip_past_comma (str) == FAIL)
4382 return SUCCESS;
b99bd4ef 4383
c19d1205
ZW
4384 /* Shift operation on register. */
4385 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4386 }
4387
c19d1205
ZW
4388 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4389 return FAIL;
b99bd4ef 4390
c19d1205 4391 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4392 {
c19d1205
ZW
4393 /* #x, y -- ie explicit rotation by Y. */
4394 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4395 return FAIL;
b99bd4ef 4396
c19d1205
ZW
4397 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4398 {
4399 inst.error = _("constant expression expected");
4400 return FAIL;
4401 }
b99bd4ef 4402
c19d1205
ZW
4403 value = expr.X_add_number;
4404 if (value < 0 || value > 30 || value % 2 != 0)
4405 {
4406 inst.error = _("invalid rotation");
4407 return FAIL;
4408 }
4409 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4410 {
4411 inst.error = _("invalid constant");
4412 return FAIL;
4413 }
09d92015 4414
55cf6793 4415 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4416 inst.reloc.exp.X_add_number
4417 = (((inst.reloc.exp.X_add_number << (32 - value))
4418 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4419 }
4420
c19d1205
ZW
4421 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4422 inst.reloc.pc_rel = 0;
4423 return SUCCESS;
09d92015
MM
4424}
4425
4962c51a
MS
4426/* Group relocation information. Each entry in the table contains the
4427 textual name of the relocation as may appear in assembler source
4428 and must end with a colon.
4429 Along with this textual name are the relocation codes to be used if
4430 the corresponding instruction is an ALU instruction (ADD or SUB only),
4431 an LDR, an LDRS, or an LDC. */
4432
4433struct group_reloc_table_entry
4434{
4435 const char *name;
4436 int alu_code;
4437 int ldr_code;
4438 int ldrs_code;
4439 int ldc_code;
4440};
4441
4442typedef enum
4443{
4444 /* Varieties of non-ALU group relocation. */
4445
4446 GROUP_LDR,
4447 GROUP_LDRS,
4448 GROUP_LDC
4449} group_reloc_type;
4450
4451static struct group_reloc_table_entry group_reloc_table[] =
4452 { /* Program counter relative: */
4453 { "pc_g0_nc",
4454 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4455 0, /* LDR */
4456 0, /* LDRS */
4457 0 }, /* LDC */
4458 { "pc_g0",
4459 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4460 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4461 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4462 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4463 { "pc_g1_nc",
4464 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4465 0, /* LDR */
4466 0, /* LDRS */
4467 0 }, /* LDC */
4468 { "pc_g1",
4469 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4470 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4471 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4472 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4473 { "pc_g2",
4474 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4475 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4476 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4477 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4478 /* Section base relative */
4479 { "sb_g0_nc",
4480 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4481 0, /* LDR */
4482 0, /* LDRS */
4483 0 }, /* LDC */
4484 { "sb_g0",
4485 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4486 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4487 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4488 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4489 { "sb_g1_nc",
4490 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4491 0, /* LDR */
4492 0, /* LDRS */
4493 0 }, /* LDC */
4494 { "sb_g1",
4495 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4496 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4497 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4498 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4499 { "sb_g2",
4500 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4501 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4502 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4503 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4504
4505/* Given the address of a pointer pointing to the textual name of a group
4506 relocation as may appear in assembler source, attempt to find its details
4507 in group_reloc_table. The pointer will be updated to the character after
4508 the trailing colon. On failure, FAIL will be returned; SUCCESS
4509 otherwise. On success, *entry will be updated to point at the relevant
4510 group_reloc_table entry. */
4511
4512static int
4513find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4514{
4515 unsigned int i;
4516 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4517 {
4518 int length = strlen (group_reloc_table[i].name);
4519
4520 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 &&
4521 (*str)[length] == ':')
4522 {
4523 *out = &group_reloc_table[i];
4524 *str += (length + 1);
4525 return SUCCESS;
4526 }
4527 }
4528
4529 return FAIL;
4530}
4531
4532/* Parse a <shifter_operand> for an ARM data processing instruction
4533 (as for parse_shifter_operand) where group relocations are allowed:
4534
4535 #<immediate>
4536 #<immediate>, <rotate>
4537 #:<group_reloc>:<expression>
4538 <Rm>
4539 <Rm>, <shift>
4540
4541 where <group_reloc> is one of the strings defined in group_reloc_table.
4542 The hashes are optional.
4543
4544 Everything else is as for parse_shifter_operand. */
4545
4546static parse_operand_result
4547parse_shifter_operand_group_reloc (char **str, int i)
4548{
4549 /* Determine if we have the sequence of characters #: or just :
4550 coming next. If we do, then we check for a group relocation.
4551 If we don't, punt the whole lot to parse_shifter_operand. */
4552
4553 if (((*str)[0] == '#' && (*str)[1] == ':')
4554 || (*str)[0] == ':')
4555 {
4556 struct group_reloc_table_entry *entry;
4557
4558 if ((*str)[0] == '#')
4559 (*str) += 2;
4560 else
4561 (*str)++;
4562
4563 /* Try to parse a group relocation. Anything else is an error. */
4564 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4565 {
4566 inst.error = _("unknown group relocation");
4567 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4568 }
4569
4570 /* We now have the group relocation table entry corresponding to
4571 the name in the assembler source. Next, we parse the expression. */
4572 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4573 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4574
4575 /* Record the relocation type (always the ALU variant here). */
4576 inst.reloc.type = entry->alu_code;
4577 assert (inst.reloc.type != 0);
4578
4579 return PARSE_OPERAND_SUCCESS;
4580 }
4581 else
4582 return parse_shifter_operand (str, i) == SUCCESS
4583 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4584
4585 /* Never reached. */
4586}
4587
c19d1205
ZW
4588/* Parse all forms of an ARM address expression. Information is written
4589 to inst.operands[i] and/or inst.reloc.
09d92015 4590
c19d1205 4591 Preindexed addressing (.preind=1):
09d92015 4592
c19d1205
ZW
4593 [Rn, #offset] .reg=Rn .reloc.exp=offset
4594 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4595 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4596 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4597
c19d1205 4598 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4599
c19d1205 4600 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4601
c19d1205
ZW
4602 [Rn], #offset .reg=Rn .reloc.exp=offset
4603 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4604 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4605 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4606
c19d1205 4607 Unindexed addressing (.preind=0, .postind=0):
09d92015 4608
c19d1205 4609 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4610
c19d1205 4611 Other:
09d92015 4612
c19d1205
ZW
4613 [Rn]{!} shorthand for [Rn,#0]{!}
4614 =immediate .isreg=0 .reloc.exp=immediate
4615 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4616
c19d1205
ZW
4617 It is the caller's responsibility to check for addressing modes not
4618 supported by the instruction, and to set inst.reloc.type. */
4619
4962c51a
MS
4620static parse_operand_result
4621parse_address_main (char **str, int i, int group_relocations,
4622 group_reloc_type group_type)
09d92015 4623{
c19d1205
ZW
4624 char *p = *str;
4625 int reg;
09d92015 4626
c19d1205 4627 if (skip_past_char (&p, '[') == FAIL)
09d92015 4628 {
c19d1205
ZW
4629 if (skip_past_char (&p, '=') == FAIL)
4630 {
4631 /* bare address - translate to PC-relative offset */
4632 inst.reloc.pc_rel = 1;
4633 inst.operands[i].reg = REG_PC;
4634 inst.operands[i].isreg = 1;
4635 inst.operands[i].preind = 1;
4636 }
4637 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4638
c19d1205 4639 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4640 return PARSE_OPERAND_FAIL;
09d92015 4641
c19d1205 4642 *str = p;
4962c51a 4643 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4644 }
4645
dcbf9037 4646 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4647 {
c19d1205 4648 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4649 return PARSE_OPERAND_FAIL;
09d92015 4650 }
c19d1205
ZW
4651 inst.operands[i].reg = reg;
4652 inst.operands[i].isreg = 1;
09d92015 4653
c19d1205 4654 if (skip_past_comma (&p) == SUCCESS)
09d92015 4655 {
c19d1205 4656 inst.operands[i].preind = 1;
09d92015 4657
c19d1205
ZW
4658 if (*p == '+') p++;
4659 else if (*p == '-') p++, inst.operands[i].negative = 1;
4660
dcbf9037 4661 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 4662 {
c19d1205
ZW
4663 inst.operands[i].imm = reg;
4664 inst.operands[i].immisreg = 1;
4665
4666 if (skip_past_comma (&p) == SUCCESS)
4667 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4668 return PARSE_OPERAND_FAIL;
c19d1205 4669 }
5287ad62
JB
4670 else if (skip_past_char (&p, ':') == SUCCESS)
4671 {
4672 /* FIXME: '@' should be used here, but it's filtered out by generic
4673 code before we get to see it here. This may be subject to
4674 change. */
4675 expressionS exp;
4676 my_get_expression (&exp, &p, GE_NO_PREFIX);
4677 if (exp.X_op != O_constant)
4678 {
4679 inst.error = _("alignment must be constant");
4962c51a 4680 return PARSE_OPERAND_FAIL;
5287ad62
JB
4681 }
4682 inst.operands[i].imm = exp.X_add_number << 8;
4683 inst.operands[i].immisalign = 1;
4684 /* Alignments are not pre-indexes. */
4685 inst.operands[i].preind = 0;
4686 }
c19d1205
ZW
4687 else
4688 {
4689 if (inst.operands[i].negative)
4690 {
4691 inst.operands[i].negative = 0;
4692 p--;
4693 }
4962c51a
MS
4694
4695 if (group_relocations &&
4696 ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4697
4698 {
4699 struct group_reloc_table_entry *entry;
4700
4701 /* Skip over the #: or : sequence. */
4702 if (*p == '#')
4703 p += 2;
4704 else
4705 p++;
4706
4707 /* Try to parse a group relocation. Anything else is an
4708 error. */
4709 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4710 {
4711 inst.error = _("unknown group relocation");
4712 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4713 }
4714
4715 /* We now have the group relocation table entry corresponding to
4716 the name in the assembler source. Next, we parse the
4717 expression. */
4718 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4719 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4720
4721 /* Record the relocation type. */
4722 switch (group_type)
4723 {
4724 case GROUP_LDR:
4725 inst.reloc.type = entry->ldr_code;
4726 break;
4727
4728 case GROUP_LDRS:
4729 inst.reloc.type = entry->ldrs_code;
4730 break;
4731
4732 case GROUP_LDC:
4733 inst.reloc.type = entry->ldc_code;
4734 break;
4735
4736 default:
4737 assert (0);
4738 }
4739
4740 if (inst.reloc.type == 0)
4741 {
4742 inst.error = _("this group relocation is not allowed on this instruction");
4743 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4744 }
4745 }
4746 else
4747 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4748 return PARSE_OPERAND_FAIL;
09d92015
MM
4749 }
4750 }
4751
c19d1205 4752 if (skip_past_char (&p, ']') == FAIL)
09d92015 4753 {
c19d1205 4754 inst.error = _("']' expected");
4962c51a 4755 return PARSE_OPERAND_FAIL;
09d92015
MM
4756 }
4757
c19d1205
ZW
4758 if (skip_past_char (&p, '!') == SUCCESS)
4759 inst.operands[i].writeback = 1;
09d92015 4760
c19d1205 4761 else if (skip_past_comma (&p) == SUCCESS)
09d92015 4762 {
c19d1205
ZW
4763 if (skip_past_char (&p, '{') == SUCCESS)
4764 {
4765 /* [Rn], {expr} - unindexed, with option */
4766 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 4767 0, 255, TRUE) == FAIL)
4962c51a 4768 return PARSE_OPERAND_FAIL;
09d92015 4769
c19d1205
ZW
4770 if (skip_past_char (&p, '}') == FAIL)
4771 {
4772 inst.error = _("'}' expected at end of 'option' field");
4962c51a 4773 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4774 }
4775 if (inst.operands[i].preind)
4776 {
4777 inst.error = _("cannot combine index with option");
4962c51a 4778 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4779 }
4780 *str = p;
4962c51a 4781 return PARSE_OPERAND_SUCCESS;
09d92015 4782 }
c19d1205
ZW
4783 else
4784 {
4785 inst.operands[i].postind = 1;
4786 inst.operands[i].writeback = 1;
09d92015 4787
c19d1205
ZW
4788 if (inst.operands[i].preind)
4789 {
4790 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 4791 return PARSE_OPERAND_FAIL;
c19d1205 4792 }
09d92015 4793
c19d1205
ZW
4794 if (*p == '+') p++;
4795 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 4796
dcbf9037 4797 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 4798 {
5287ad62
JB
4799 /* We might be using the immediate for alignment already. If we
4800 are, OR the register number into the low-order bits. */
4801 if (inst.operands[i].immisalign)
4802 inst.operands[i].imm |= reg;
4803 else
4804 inst.operands[i].imm = reg;
c19d1205 4805 inst.operands[i].immisreg = 1;
a737bd4d 4806
c19d1205
ZW
4807 if (skip_past_comma (&p) == SUCCESS)
4808 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 4809 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4810 }
4811 else
4812 {
4813 if (inst.operands[i].negative)
4814 {
4815 inst.operands[i].negative = 0;
4816 p--;
4817 }
4818 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 4819 return PARSE_OPERAND_FAIL;
c19d1205
ZW
4820 }
4821 }
a737bd4d
NC
4822 }
4823
c19d1205
ZW
4824 /* If at this point neither .preind nor .postind is set, we have a
4825 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4826 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4827 {
4828 inst.operands[i].preind = 1;
4829 inst.reloc.exp.X_op = O_constant;
4830 inst.reloc.exp.X_add_number = 0;
4831 }
4832 *str = p;
4962c51a
MS
4833 return PARSE_OPERAND_SUCCESS;
4834}
4835
4836static int
4837parse_address (char **str, int i)
4838{
4839 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4840 ? SUCCESS : FAIL;
4841}
4842
4843static parse_operand_result
4844parse_address_group_reloc (char **str, int i, group_reloc_type type)
4845{
4846 return parse_address_main (str, i, 1, type);
a737bd4d
NC
4847}
4848
b6895b4f
PB
4849/* Parse an operand for a MOVW or MOVT instruction. */
4850static int
4851parse_half (char **str)
4852{
4853 char * p;
4854
4855 p = *str;
4856 skip_past_char (&p, '#');
4857 if (strncasecmp (p, ":lower16:", 9) == 0)
4858 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4859 else if (strncasecmp (p, ":upper16:", 9) == 0)
4860 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4861
4862 if (inst.reloc.type != BFD_RELOC_UNUSED)
4863 {
4864 p += 9;
4865 skip_whitespace(p);
4866 }
4867
4868 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4869 return FAIL;
4870
4871 if (inst.reloc.type == BFD_RELOC_UNUSED)
4872 {
4873 if (inst.reloc.exp.X_op != O_constant)
4874 {
4875 inst.error = _("constant expression expected");
4876 return FAIL;
4877 }
4878 if (inst.reloc.exp.X_add_number < 0
4879 || inst.reloc.exp.X_add_number > 0xffff)
4880 {
4881 inst.error = _("immediate value out of range");
4882 return FAIL;
4883 }
4884 }
4885 *str = p;
4886 return SUCCESS;
4887}
4888
c19d1205 4889/* Miscellaneous. */
a737bd4d 4890
c19d1205
ZW
4891/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4892 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4893static int
4894parse_psr (char **str)
09d92015 4895{
c19d1205
ZW
4896 char *p;
4897 unsigned long psr_field;
62b3e311
PB
4898 const struct asm_psr *psr;
4899 char *start;
09d92015 4900
c19d1205
ZW
4901 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4902 feature for ease of use and backwards compatibility. */
4903 p = *str;
62b3e311 4904 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 4905 psr_field = SPSR_BIT;
62b3e311 4906 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
4907 psr_field = 0;
4908 else
62b3e311
PB
4909 {
4910 start = p;
4911 do
4912 p++;
4913 while (ISALNUM (*p) || *p == '_');
4914
4915 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4916 if (!psr)
4917 return FAIL;
09d92015 4918
62b3e311
PB
4919 *str = p;
4920 return psr->field;
4921 }
09d92015 4922
62b3e311 4923 p += 4;
c19d1205
ZW
4924 if (*p == '_')
4925 {
4926 /* A suffix follows. */
c19d1205
ZW
4927 p++;
4928 start = p;
a737bd4d 4929
c19d1205
ZW
4930 do
4931 p++;
4932 while (ISALNUM (*p) || *p == '_');
a737bd4d 4933
c19d1205
ZW
4934 psr = hash_find_n (arm_psr_hsh, start, p - start);
4935 if (!psr)
4936 goto error;
a737bd4d 4937
c19d1205 4938 psr_field |= psr->field;
a737bd4d 4939 }
c19d1205 4940 else
a737bd4d 4941 {
c19d1205
ZW
4942 if (ISALNUM (*p))
4943 goto error; /* Garbage after "[CS]PSR". */
4944
4945 psr_field |= (PSR_c | PSR_f);
a737bd4d 4946 }
c19d1205
ZW
4947 *str = p;
4948 return psr_field;
a737bd4d 4949
c19d1205
ZW
4950 error:
4951 inst.error = _("flag for {c}psr instruction expected");
4952 return FAIL;
a737bd4d
NC
4953}
4954
c19d1205
ZW
4955/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4956 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 4957
c19d1205
ZW
4958static int
4959parse_cps_flags (char **str)
a737bd4d 4960{
c19d1205
ZW
4961 int val = 0;
4962 int saw_a_flag = 0;
4963 char *s = *str;
a737bd4d 4964
c19d1205
ZW
4965 for (;;)
4966 switch (*s++)
4967 {
4968 case '\0': case ',':
4969 goto done;
a737bd4d 4970
c19d1205
ZW
4971 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4972 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4973 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 4974
c19d1205
ZW
4975 default:
4976 inst.error = _("unrecognized CPS flag");
4977 return FAIL;
4978 }
a737bd4d 4979
c19d1205
ZW
4980 done:
4981 if (saw_a_flag == 0)
a737bd4d 4982 {
c19d1205
ZW
4983 inst.error = _("missing CPS flags");
4984 return FAIL;
a737bd4d 4985 }
a737bd4d 4986
c19d1205
ZW
4987 *str = s - 1;
4988 return val;
a737bd4d
NC
4989}
4990
c19d1205
ZW
4991/* Parse an endian specifier ("BE" or "LE", case insensitive);
4992 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
4993
4994static int
c19d1205 4995parse_endian_specifier (char **str)
a737bd4d 4996{
c19d1205
ZW
4997 int little_endian;
4998 char *s = *str;
a737bd4d 4999
c19d1205
ZW
5000 if (strncasecmp (s, "BE", 2))
5001 little_endian = 0;
5002 else if (strncasecmp (s, "LE", 2))
5003 little_endian = 1;
5004 else
a737bd4d 5005 {
c19d1205 5006 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5007 return FAIL;
5008 }
5009
c19d1205 5010 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5011 {
c19d1205 5012 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5013 return FAIL;
5014 }
5015
c19d1205
ZW
5016 *str = s + 2;
5017 return little_endian;
5018}
a737bd4d 5019
c19d1205
ZW
5020/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5021 value suitable for poking into the rotate field of an sxt or sxta
5022 instruction, or FAIL on error. */
5023
5024static int
5025parse_ror (char **str)
5026{
5027 int rot;
5028 char *s = *str;
5029
5030 if (strncasecmp (s, "ROR", 3) == 0)
5031 s += 3;
5032 else
a737bd4d 5033 {
c19d1205 5034 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5035 return FAIL;
5036 }
c19d1205
ZW
5037
5038 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5039 return FAIL;
5040
5041 switch (rot)
a737bd4d 5042 {
c19d1205
ZW
5043 case 0: *str = s; return 0x0;
5044 case 8: *str = s; return 0x1;
5045 case 16: *str = s; return 0x2;
5046 case 24: *str = s; return 0x3;
5047
5048 default:
5049 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5050 return FAIL;
5051 }
c19d1205 5052}
a737bd4d 5053
c19d1205
ZW
5054/* Parse a conditional code (from conds[] below). The value returned is in the
5055 range 0 .. 14, or FAIL. */
5056static int
5057parse_cond (char **str)
5058{
5059 char *p, *q;
5060 const struct asm_cond *c;
a737bd4d 5061
c19d1205
ZW
5062 p = q = *str;
5063 while (ISALPHA (*q))
5064 q++;
a737bd4d 5065
c19d1205
ZW
5066 c = hash_find_n (arm_cond_hsh, p, q - p);
5067 if (!c)
a737bd4d 5068 {
c19d1205 5069 inst.error = _("condition required");
a737bd4d
NC
5070 return FAIL;
5071 }
5072
c19d1205
ZW
5073 *str = q;
5074 return c->value;
5075}
5076
62b3e311
PB
5077/* Parse an option for a barrier instruction. Returns the encoding for the
5078 option, or FAIL. */
5079static int
5080parse_barrier (char **str)
5081{
5082 char *p, *q;
5083 const struct asm_barrier_opt *o;
5084
5085 p = q = *str;
5086 while (ISALPHA (*q))
5087 q++;
5088
5089 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5090 if (!o)
5091 return FAIL;
5092
5093 *str = q;
5094 return o->value;
5095}
5096
92e90b6e
PB
5097/* Parse the operands of a table branch instruction. Similar to a memory
5098 operand. */
5099static int
5100parse_tb (char **str)
5101{
5102 char * p = *str;
5103 int reg;
5104
5105 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5106 {
5107 inst.error = _("'[' expected");
5108 return FAIL;
5109 }
92e90b6e 5110
dcbf9037 5111 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5112 {
5113 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5114 return FAIL;
5115 }
5116 inst.operands[0].reg = reg;
5117
5118 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5119 {
5120 inst.error = _("',' expected");
5121 return FAIL;
5122 }
92e90b6e 5123
dcbf9037 5124 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5125 {
5126 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5127 return FAIL;
5128 }
5129 inst.operands[0].imm = reg;
5130
5131 if (skip_past_comma (&p) == SUCCESS)
5132 {
5133 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5134 return FAIL;
5135 if (inst.reloc.exp.X_add_number != 1)
5136 {
5137 inst.error = _("invalid shift");
5138 return FAIL;
5139 }
5140 inst.operands[0].shifted = 1;
5141 }
5142
5143 if (skip_past_char (&p, ']') == FAIL)
5144 {
5145 inst.error = _("']' expected");
5146 return FAIL;
5147 }
5148 *str = p;
5149 return SUCCESS;
5150}
5151
5287ad62
JB
5152/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5153 information on the types the operands can take and how they are encoded.
037e8744
JB
5154 Up to four operands may be read; this function handles setting the
5155 ".present" field for each read operand itself.
5287ad62
JB
5156 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5157 else returns FAIL. */
5158
5159static int
5160parse_neon_mov (char **str, int *which_operand)
5161{
5162 int i = *which_operand, val;
5163 enum arm_reg_type rtype;
5164 char *ptr = *str;
dcbf9037 5165 struct neon_type_el optype;
5287ad62 5166
dcbf9037 5167 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5168 {
5169 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5170 inst.operands[i].reg = val;
5171 inst.operands[i].isscalar = 1;
dcbf9037 5172 inst.operands[i].vectype = optype;
5287ad62
JB
5173 inst.operands[i++].present = 1;
5174
5175 if (skip_past_comma (&ptr) == FAIL)
5176 goto wanted_comma;
5177
dcbf9037 5178 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62
JB
5179 goto wanted_arm;
5180
5181 inst.operands[i].reg = val;
5182 inst.operands[i].isreg = 1;
5183 inst.operands[i].present = 1;
5184 }
037e8744 5185 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5186 != FAIL)
5287ad62
JB
5187 {
5188 /* Cases 0, 1, 2, 3, 5 (D only). */
5189 if (skip_past_comma (&ptr) == FAIL)
5190 goto wanted_comma;
5191
5192 inst.operands[i].reg = val;
5193 inst.operands[i].isreg = 1;
5194 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5195 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5196 inst.operands[i].isvec = 1;
dcbf9037 5197 inst.operands[i].vectype = optype;
5287ad62
JB
5198 inst.operands[i++].present = 1;
5199
dcbf9037 5200 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5201 {
037e8744
JB
5202 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5203 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5204 inst.operands[i].reg = val;
5205 inst.operands[i].isreg = 1;
037e8744 5206 inst.operands[i].present = 1;
5287ad62
JB
5207
5208 if (rtype == REG_TYPE_NQ)
5209 {
dcbf9037 5210 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5211 return FAIL;
5212 }
037e8744
JB
5213 else if (rtype != REG_TYPE_VFS)
5214 {
5215 i++;
5216 if (skip_past_comma (&ptr) == FAIL)
5217 goto wanted_comma;
5218 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5219 goto wanted_arm;
5220 inst.operands[i].reg = val;
5221 inst.operands[i].isreg = 1;
5222 inst.operands[i].present = 1;
5223 }
5287ad62 5224 }
136da414 5225 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
136da414 5226 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
037e8744
JB
5227 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5228 Case 10: VMOV.F32 <Sd>, #<imm>
5229 Case 11: VMOV.F64 <Dd>, #<imm> */
c96612cc 5230 inst.operands[i].immisfloat = 1;
5287ad62 5231 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5287ad62
JB
5232 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5233 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
037e8744
JB
5234 ;
5235 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5236 &optype)) != FAIL)
5287ad62
JB
5237 {
5238 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5239 Case 1: VMOV<c><q> <Dd>, <Dm>
5240 Case 8: VMOV.F32 <Sd>, <Sm>
5241 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5242
5243 inst.operands[i].reg = val;
5244 inst.operands[i].isreg = 1;
5245 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5246 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5247 inst.operands[i].isvec = 1;
dcbf9037 5248 inst.operands[i].vectype = optype;
5287ad62 5249 inst.operands[i].present = 1;
037e8744
JB
5250
5251 if (skip_past_comma (&ptr) == SUCCESS)
5252 {
5253 /* Case 15. */
5254 i++;
5255
5256 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5257 goto wanted_arm;
5258
5259 inst.operands[i].reg = val;
5260 inst.operands[i].isreg = 1;
5261 inst.operands[i++].present = 1;
5262
5263 if (skip_past_comma (&ptr) == FAIL)
5264 goto wanted_comma;
5265
5266 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5267 goto wanted_arm;
5268
5269 inst.operands[i].reg = val;
5270 inst.operands[i].isreg = 1;
5271 inst.operands[i++].present = 1;
5272 }
5287ad62
JB
5273 }
5274 else
5275 {
dcbf9037 5276 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5277 return FAIL;
5278 }
5279 }
dcbf9037 5280 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5281 {
5282 /* Cases 6, 7. */
5283 inst.operands[i].reg = val;
5284 inst.operands[i].isreg = 1;
5285 inst.operands[i++].present = 1;
5286
5287 if (skip_past_comma (&ptr) == FAIL)
5288 goto wanted_comma;
5289
dcbf9037 5290 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5291 {
5292 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5293 inst.operands[i].reg = val;
5294 inst.operands[i].isscalar = 1;
5295 inst.operands[i].present = 1;
dcbf9037 5296 inst.operands[i].vectype = optype;
5287ad62 5297 }
dcbf9037 5298 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5299 {
5300 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5301 inst.operands[i].reg = val;
5302 inst.operands[i].isreg = 1;
5303 inst.operands[i++].present = 1;
5304
5305 if (skip_past_comma (&ptr) == FAIL)
5306 goto wanted_comma;
5307
037e8744 5308 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5309 == FAIL)
5287ad62 5310 {
037e8744 5311 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5312 return FAIL;
5313 }
5314
5315 inst.operands[i].reg = val;
5316 inst.operands[i].isreg = 1;
037e8744
JB
5317 inst.operands[i].isvec = 1;
5318 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5319 inst.operands[i].vectype = optype;
5287ad62 5320 inst.operands[i].present = 1;
037e8744
JB
5321
5322 if (rtype == REG_TYPE_VFS)
5323 {
5324 /* Case 14. */
5325 i++;
5326 if (skip_past_comma (&ptr) == FAIL)
5327 goto wanted_comma;
5328 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5329 &optype)) == FAIL)
5330 {
5331 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5332 return FAIL;
5333 }
5334 inst.operands[i].reg = val;
5335 inst.operands[i].isreg = 1;
5336 inst.operands[i].isvec = 1;
5337 inst.operands[i].issingle = 1;
5338 inst.operands[i].vectype = optype;
5339 inst.operands[i].present = 1;
5340 }
5341 }
5342 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5343 != FAIL)
5344 {
5345 /* Case 13. */
5346 inst.operands[i].reg = val;
5347 inst.operands[i].isreg = 1;
5348 inst.operands[i].isvec = 1;
5349 inst.operands[i].issingle = 1;
5350 inst.operands[i].vectype = optype;
5351 inst.operands[i++].present = 1;
5287ad62
JB
5352 }
5353 }
5354 else
5355 {
dcbf9037 5356 first_error (_("parse error"));
5287ad62
JB
5357 return FAIL;
5358 }
5359
5360 /* Successfully parsed the operands. Update args. */
5361 *which_operand = i;
5362 *str = ptr;
5363 return SUCCESS;
5364
5365 wanted_comma:
dcbf9037 5366 first_error (_("expected comma"));
5287ad62
JB
5367 return FAIL;
5368
5369 wanted_arm:
dcbf9037 5370 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5371 return FAIL;
5287ad62
JB
5372}
5373
c19d1205
ZW
5374/* Matcher codes for parse_operands. */
5375enum operand_parse_code
5376{
5377 OP_stop, /* end of line */
5378
5379 OP_RR, /* ARM register */
5380 OP_RRnpc, /* ARM register, not r15 */
5381 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5382 OP_RRw, /* ARM register, not r15, optional trailing ! */
5383 OP_RCP, /* Coprocessor number */
5384 OP_RCN, /* Coprocessor register */
5385 OP_RF, /* FPA register */
5386 OP_RVS, /* VFP single precision register */
5287ad62
JB
5387 OP_RVD, /* VFP double precision register (0..15) */
5388 OP_RND, /* Neon double precision register (0..31) */
5389 OP_RNQ, /* Neon quad precision register */
037e8744 5390 OP_RVSD, /* VFP single or double precision register */
5287ad62 5391 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5392 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5393 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5394 OP_RVC, /* VFP control register */
5395 OP_RMF, /* Maverick F register */
5396 OP_RMD, /* Maverick D register */
5397 OP_RMFX, /* Maverick FX register */
5398 OP_RMDX, /* Maverick DX register */
5399 OP_RMAX, /* Maverick AX register */
5400 OP_RMDS, /* Maverick DSPSC register */
5401 OP_RIWR, /* iWMMXt wR register */
5402 OP_RIWC, /* iWMMXt wC register */
5403 OP_RIWG, /* iWMMXt wCG register */
5404 OP_RXA, /* XScale accumulator register */
5405
5406 OP_REGLST, /* ARM register list */
5407 OP_VRSLST, /* VFP single-precision register list */
5408 OP_VRDLST, /* VFP double-precision register list */
037e8744 5409 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5410 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5411 OP_NSTRLST, /* Neon element/structure list */
5412
5413 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5414 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5415 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5416 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5417 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5418 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5419 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5420 OP_VMOV, /* Neon VMOV operands. */
5421 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5422 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5423 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5424
5425 OP_I0, /* immediate zero */
c19d1205
ZW
5426 OP_I7, /* immediate value 0 .. 7 */
5427 OP_I15, /* 0 .. 15 */
5428 OP_I16, /* 1 .. 16 */
5287ad62 5429 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5430 OP_I31, /* 0 .. 31 */
5431 OP_I31w, /* 0 .. 31, optional trailing ! */
5432 OP_I32, /* 1 .. 32 */
5287ad62
JB
5433 OP_I32z, /* 0 .. 32 */
5434 OP_I63, /* 0 .. 63 */
c19d1205 5435 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5436 OP_I64, /* 1 .. 64 */
5437 OP_I64z, /* 0 .. 64 */
c19d1205 5438 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5439
5440 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5441 OP_I7b, /* 0 .. 7 */
5442 OP_I15b, /* 0 .. 15 */
5443 OP_I31b, /* 0 .. 31 */
5444
5445 OP_SH, /* shifter operand */
4962c51a 5446 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5447 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5448 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5449 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5450 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5451 OP_EXP, /* arbitrary expression */
5452 OP_EXPi, /* same, with optional immediate prefix */
5453 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5454 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5455
5456 OP_CPSF, /* CPS flags */
5457 OP_ENDI, /* Endianness specifier */
5458 OP_PSR, /* CPSR/SPSR mask for msr */
5459 OP_COND, /* conditional code */
92e90b6e 5460 OP_TB, /* Table branch. */
c19d1205 5461
037e8744
JB
5462 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5463 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5464
c19d1205
ZW
5465 OP_RRnpc_I0, /* ARM register or literal 0 */
5466 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5467 OP_RR_EXi, /* ARM register or expression with imm prefix */
5468 OP_RF_IF, /* FPA register or immediate */
5469 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5470 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5471
5472 /* Optional operands. */
5473 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5474 OP_oI31b, /* 0 .. 31 */
5287ad62 5475 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5476 OP_oIffffb, /* 0 .. 65535 */
5477 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5478
5479 OP_oRR, /* ARM register */
5480 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5481 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5482 OP_oRND, /* Optional Neon double precision register */
5483 OP_oRNQ, /* Optional Neon quad precision register */
5484 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5485 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5486 OP_oSHll, /* LSL immediate */
5487 OP_oSHar, /* ASR immediate */
5488 OP_oSHllar, /* LSL or ASR immediate */
5489 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5490 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5491
5492 OP_FIRST_OPTIONAL = OP_oI7b
5493};
a737bd4d 5494
c19d1205
ZW
5495/* Generic instruction operand parser. This does no encoding and no
5496 semantic validation; it merely squirrels values away in the inst
5497 structure. Returns SUCCESS or FAIL depending on whether the
5498 specified grammar matched. */
5499static int
ca3f61f7 5500parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5501{
5502 unsigned const char *upat = pattern;
5503 char *backtrack_pos = 0;
5504 const char *backtrack_error = 0;
5505 int i, val, backtrack_index = 0;
5287ad62 5506 enum arm_reg_type rtype;
4962c51a 5507 parse_operand_result result;
c19d1205
ZW
5508
5509#define po_char_or_fail(chr) do { \
5510 if (skip_past_char (&str, chr) == FAIL) \
5511 goto bad_args; \
5512} while (0)
5513
dcbf9037
JB
5514#define po_reg_or_fail(regtype) do { \
5515 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5516 &inst.operands[i].vectype); \
5517 if (val == FAIL) \
5518 { \
5519 first_error (_(reg_expected_msgs[regtype])); \
5520 goto failure; \
5521 } \
5522 inst.operands[i].reg = val; \
5523 inst.operands[i].isreg = 1; \
5524 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5525 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5526 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5527 || rtype == REG_TYPE_VFD \
5528 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5529} while (0)
5530
dcbf9037
JB
5531#define po_reg_or_goto(regtype, label) do { \
5532 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5533 &inst.operands[i].vectype); \
5534 if (val == FAIL) \
5535 goto label; \
5536 \
5537 inst.operands[i].reg = val; \
5538 inst.operands[i].isreg = 1; \
5539 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
037e8744
JB
5540 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5541 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5542 || rtype == REG_TYPE_VFD \
5543 || rtype == REG_TYPE_NQ); \
c19d1205
ZW
5544} while (0)
5545
5546#define po_imm_or_fail(min, max, popt) do { \
5547 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5548 goto failure; \
5549 inst.operands[i].imm = val; \
5550} while (0)
5551
dcbf9037
JB
5552#define po_scalar_or_goto(elsz, label) do { \
5553 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5554 if (val == FAIL) \
5555 goto label; \
5556 inst.operands[i].reg = val; \
5557 inst.operands[i].isscalar = 1; \
5287ad62
JB
5558} while (0)
5559
c19d1205
ZW
5560#define po_misc_or_fail(expr) do { \
5561 if (expr) \
5562 goto failure; \
5563} while (0)
5564
4962c51a
MS
5565#define po_misc_or_fail_no_backtrack(expr) do { \
5566 result = expr; \
5567 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5568 backtrack_pos = 0; \
5569 if (result != PARSE_OPERAND_SUCCESS) \
5570 goto failure; \
5571} while (0)
5572
c19d1205
ZW
5573 skip_whitespace (str);
5574
5575 for (i = 0; upat[i] != OP_stop; i++)
5576 {
5577 if (upat[i] >= OP_FIRST_OPTIONAL)
5578 {
5579 /* Remember where we are in case we need to backtrack. */
5580 assert (!backtrack_pos);
5581 backtrack_pos = str;
5582 backtrack_error = inst.error;
5583 backtrack_index = i;
5584 }
5585
b6702015 5586 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5587 po_char_or_fail (',');
5588
5589 switch (upat[i])
5590 {
5591 /* Registers */
5592 case OP_oRRnpc:
5593 case OP_RRnpc:
5594 case OP_oRR:
5595 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5596 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5597 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5598 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5599 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5600 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5601 case OP_oRND:
5602 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
c19d1205
ZW
5603 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
5604 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5605 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5606 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5607 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5608 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5609 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5610 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5611 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5612 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5613 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5614 case OP_oRNQ:
5615 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5616 case OP_oRNDQ:
5617 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5618 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5619 case OP_oRNSDQ:
5620 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
5621
5622 /* Neon scalar. Using an element size of 8 means that some invalid
5623 scalars are accepted here, so deal with those in later code. */
5624 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5625
5626 /* WARNING: We can expand to two operands here. This has the potential
5627 to totally confuse the backtracking mechanism! It will be OK at
5628 least as long as we don't try to use optional args as well,
5629 though. */
5630 case OP_NILO:
5631 {
5632 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 5633 inst.operands[i].present = 1;
5287ad62
JB
5634 i++;
5635 skip_past_comma (&str);
5636 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5637 break;
5638 one_reg_only:
5639 /* Optional register operand was omitted. Unfortunately, it's in
5640 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5641 here (this is a bit grotty). */
5642 inst.operands[i] = inst.operands[i-1];
5643 inst.operands[i-1].present = 0;
5644 break;
5645 try_imm:
036dc3f7
PB
5646 /* There's a possibility of getting a 64-bit immediate here, so
5647 we need special handling. */
5648 if (parse_big_immediate (&str, i) == FAIL)
5649 {
5650 inst.error = _("immediate value is out of range");
5651 goto failure;
5652 }
5287ad62
JB
5653 }
5654 break;
5655
5656 case OP_RNDQ_I0:
5657 {
5658 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5659 break;
5660 try_imm0:
5661 po_imm_or_fail (0, 0, TRUE);
5662 }
5663 break;
5664
037e8744
JB
5665 case OP_RVSD_I0:
5666 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5667 break;
5668
5287ad62
JB
5669 case OP_RR_RNSC:
5670 {
5671 po_scalar_or_goto (8, try_rr);
5672 break;
5673 try_rr:
5674 po_reg_or_fail (REG_TYPE_RN);
5675 }
5676 break;
5677
037e8744
JB
5678 case OP_RNSDQ_RNSC:
5679 {
5680 po_scalar_or_goto (8, try_nsdq);
5681 break;
5682 try_nsdq:
5683 po_reg_or_fail (REG_TYPE_NSDQ);
5684 }
5685 break;
5686
5287ad62
JB
5687 case OP_RNDQ_RNSC:
5688 {
5689 po_scalar_or_goto (8, try_ndq);
5690 break;
5691 try_ndq:
5692 po_reg_or_fail (REG_TYPE_NDQ);
5693 }
5694 break;
5695
5696 case OP_RND_RNSC:
5697 {
5698 po_scalar_or_goto (8, try_vfd);
5699 break;
5700 try_vfd:
5701 po_reg_or_fail (REG_TYPE_VFD);
5702 }
5703 break;
5704
5705 case OP_VMOV:
5706 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5707 not careful then bad things might happen. */
5708 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5709 break;
5710
5711 case OP_RNDQ_IMVNb:
5712 {
5713 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5714 break;
5715 try_mvnimm:
5716 /* There's a possibility of getting a 64-bit immediate here, so
5717 we need special handling. */
5718 if (parse_big_immediate (&str, i) == FAIL)
5719 {
5720 inst.error = _("immediate value is out of range");
5721 goto failure;
5722 }
5723 }
5724 break;
5725
5726 case OP_RNDQ_I63b:
5727 {
5728 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5729 break;
5730 try_shimm:
5731 po_imm_or_fail (0, 63, TRUE);
5732 }
5733 break;
c19d1205
ZW
5734
5735 case OP_RRnpcb:
5736 po_char_or_fail ('[');
5737 po_reg_or_fail (REG_TYPE_RN);
5738 po_char_or_fail (']');
5739 break;
a737bd4d 5740
c19d1205 5741 case OP_RRw:
b6702015 5742 case OP_oRRw:
c19d1205
ZW
5743 po_reg_or_fail (REG_TYPE_RN);
5744 if (skip_past_char (&str, '!') == SUCCESS)
5745 inst.operands[i].writeback = 1;
5746 break;
5747
5748 /* Immediates */
5749 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5750 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5751 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 5752 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
5753 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5754 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 5755 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 5756 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
5757 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5758 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5759 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 5760 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
5761
5762 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5763 case OP_oI7b:
5764 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5765 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5766 case OP_oI31b:
5767 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 5768 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
5769 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5770
5771 /* Immediate variants */
5772 case OP_oI255c:
5773 po_char_or_fail ('{');
5774 po_imm_or_fail (0, 255, TRUE);
5775 po_char_or_fail ('}');
5776 break;
5777
5778 case OP_I31w:
5779 /* The expression parser chokes on a trailing !, so we have
5780 to find it first and zap it. */
5781 {
5782 char *s = str;
5783 while (*s && *s != ',')
5784 s++;
5785 if (s[-1] == '!')
5786 {
5787 s[-1] = '\0';
5788 inst.operands[i].writeback = 1;
5789 }
5790 po_imm_or_fail (0, 31, TRUE);
5791 if (str == s - 1)
5792 str = s;
5793 }
5794 break;
5795
5796 /* Expressions */
5797 case OP_EXPi: EXPi:
5798 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5799 GE_OPT_PREFIX));
5800 break;
5801
5802 case OP_EXP:
5803 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5804 GE_NO_PREFIX));
5805 break;
5806
5807 case OP_EXPr: EXPr:
5808 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5809 GE_NO_PREFIX));
5810 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 5811 {
c19d1205
ZW
5812 val = parse_reloc (&str);
5813 if (val == -1)
5814 {
5815 inst.error = _("unrecognized relocation suffix");
5816 goto failure;
5817 }
5818 else if (val != BFD_RELOC_UNUSED)
5819 {
5820 inst.operands[i].imm = val;
5821 inst.operands[i].hasreloc = 1;
5822 }
a737bd4d 5823 }
c19d1205 5824 break;
a737bd4d 5825
b6895b4f
PB
5826 /* Operand for MOVW or MOVT. */
5827 case OP_HALF:
5828 po_misc_or_fail (parse_half (&str));
5829 break;
5830
c19d1205
ZW
5831 /* Register or expression */
5832 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5833 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 5834
c19d1205
ZW
5835 /* Register or immediate */
5836 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5837 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 5838
c19d1205
ZW
5839 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5840 IF:
5841 if (!is_immediate_prefix (*str))
5842 goto bad_args;
5843 str++;
5844 val = parse_fpa_immediate (&str);
5845 if (val == FAIL)
5846 goto failure;
5847 /* FPA immediates are encoded as registers 8-15.
5848 parse_fpa_immediate has already applied the offset. */
5849 inst.operands[i].reg = val;
5850 inst.operands[i].isreg = 1;
5851 break;
09d92015 5852
2d447fca
JM
5853 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5854 I32z: po_imm_or_fail (0, 32, FALSE); break;
5855
c19d1205
ZW
5856 /* Two kinds of register */
5857 case OP_RIWR_RIWC:
5858 {
5859 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
5860 if (!rege
5861 || (rege->type != REG_TYPE_MMXWR
5862 && rege->type != REG_TYPE_MMXWC
5863 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
5864 {
5865 inst.error = _("iWMMXt data or control register expected");
5866 goto failure;
5867 }
5868 inst.operands[i].reg = rege->number;
5869 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5870 }
5871 break;
09d92015 5872
41adaa5c
JM
5873 case OP_RIWC_RIWG:
5874 {
5875 struct reg_entry *rege = arm_reg_parse_multi (&str);
5876 if (!rege
5877 || (rege->type != REG_TYPE_MMXWC
5878 && rege->type != REG_TYPE_MMXWCG))
5879 {
5880 inst.error = _("iWMMXt control register expected");
5881 goto failure;
5882 }
5883 inst.operands[i].reg = rege->number;
5884 inst.operands[i].isreg = 1;
5885 }
5886 break;
5887
c19d1205
ZW
5888 /* Misc */
5889 case OP_CPSF: val = parse_cps_flags (&str); break;
5890 case OP_ENDI: val = parse_endian_specifier (&str); break;
5891 case OP_oROR: val = parse_ror (&str); break;
5892 case OP_PSR: val = parse_psr (&str); break;
5893 case OP_COND: val = parse_cond (&str); break;
62b3e311 5894 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 5895
037e8744
JB
5896 case OP_RVC_PSR:
5897 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5898 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5899 break;
5900 try_psr:
5901 val = parse_psr (&str);
5902 break;
5903
5904 case OP_APSR_RR:
5905 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5906 break;
5907 try_apsr:
5908 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5909 instruction). */
5910 if (strncasecmp (str, "APSR_", 5) == 0)
5911 {
5912 unsigned found = 0;
5913 str += 5;
5914 while (found < 15)
5915 switch (*str++)
5916 {
5917 case 'c': found = (found & 1) ? 16 : found | 1; break;
5918 case 'n': found = (found & 2) ? 16 : found | 2; break;
5919 case 'z': found = (found & 4) ? 16 : found | 4; break;
5920 case 'v': found = (found & 8) ? 16 : found | 8; break;
5921 default: found = 16;
5922 }
5923 if (found != 15)
5924 goto failure;
5925 inst.operands[i].isvec = 1;
5926 }
5927 else
5928 goto failure;
5929 break;
5930
92e90b6e
PB
5931 case OP_TB:
5932 po_misc_or_fail (parse_tb (&str));
5933 break;
5934
c19d1205
ZW
5935 /* Register lists */
5936 case OP_REGLST:
5937 val = parse_reg_list (&str);
5938 if (*str == '^')
5939 {
5940 inst.operands[1].writeback = 1;
5941 str++;
5942 }
5943 break;
09d92015 5944
c19d1205 5945 case OP_VRSLST:
5287ad62 5946 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 5947 break;
09d92015 5948
c19d1205 5949 case OP_VRDLST:
5287ad62 5950 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 5951 break;
a737bd4d 5952
037e8744
JB
5953 case OP_VRSDLST:
5954 /* Allow Q registers too. */
5955 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5956 REGLIST_NEON_D);
5957 if (val == FAIL)
5958 {
5959 inst.error = NULL;
5960 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5961 REGLIST_VFP_S);
5962 inst.operands[i].issingle = 1;
5963 }
5964 break;
5965
5287ad62
JB
5966 case OP_NRDLST:
5967 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5968 REGLIST_NEON_D);
5969 break;
5970
5971 case OP_NSTRLST:
dcbf9037
JB
5972 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5973 &inst.operands[i].vectype);
5287ad62
JB
5974 break;
5975
c19d1205
ZW
5976 /* Addressing modes */
5977 case OP_ADDR:
5978 po_misc_or_fail (parse_address (&str, i));
5979 break;
09d92015 5980
4962c51a
MS
5981 case OP_ADDRGLDR:
5982 po_misc_or_fail_no_backtrack (
5983 parse_address_group_reloc (&str, i, GROUP_LDR));
5984 break;
5985
5986 case OP_ADDRGLDRS:
5987 po_misc_or_fail_no_backtrack (
5988 parse_address_group_reloc (&str, i, GROUP_LDRS));
5989 break;
5990
5991 case OP_ADDRGLDC:
5992 po_misc_or_fail_no_backtrack (
5993 parse_address_group_reloc (&str, i, GROUP_LDC));
5994 break;
5995
c19d1205
ZW
5996 case OP_SH:
5997 po_misc_or_fail (parse_shifter_operand (&str, i));
5998 break;
09d92015 5999
4962c51a
MS
6000 case OP_SHG:
6001 po_misc_or_fail_no_backtrack (
6002 parse_shifter_operand_group_reloc (&str, i));
6003 break;
6004
c19d1205
ZW
6005 case OP_oSHll:
6006 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6007 break;
09d92015 6008
c19d1205
ZW
6009 case OP_oSHar:
6010 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6011 break;
09d92015 6012
c19d1205
ZW
6013 case OP_oSHllar:
6014 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6015 break;
09d92015 6016
c19d1205
ZW
6017 default:
6018 as_fatal ("unhandled operand code %d", upat[i]);
6019 }
09d92015 6020
c19d1205
ZW
6021 /* Various value-based sanity checks and shared operations. We
6022 do not signal immediate failures for the register constraints;
6023 this allows a syntax error to take precedence. */
6024 switch (upat[i])
6025 {
6026 case OP_oRRnpc:
6027 case OP_RRnpc:
6028 case OP_RRnpcb:
6029 case OP_RRw:
b6702015 6030 case OP_oRRw:
c19d1205
ZW
6031 case OP_RRnpc_I0:
6032 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6033 inst.error = BAD_PC;
6034 break;
09d92015 6035
c19d1205
ZW
6036 case OP_CPSF:
6037 case OP_ENDI:
6038 case OP_oROR:
6039 case OP_PSR:
037e8744 6040 case OP_RVC_PSR:
c19d1205 6041 case OP_COND:
62b3e311 6042 case OP_oBARRIER:
c19d1205
ZW
6043 case OP_REGLST:
6044 case OP_VRSLST:
6045 case OP_VRDLST:
037e8744 6046 case OP_VRSDLST:
5287ad62
JB
6047 case OP_NRDLST:
6048 case OP_NSTRLST:
c19d1205
ZW
6049 if (val == FAIL)
6050 goto failure;
6051 inst.operands[i].imm = val;
6052 break;
a737bd4d 6053
c19d1205
ZW
6054 default:
6055 break;
6056 }
09d92015 6057
c19d1205
ZW
6058 /* If we get here, this operand was successfully parsed. */
6059 inst.operands[i].present = 1;
6060 continue;
09d92015 6061
c19d1205 6062 bad_args:
09d92015 6063 inst.error = BAD_ARGS;
c19d1205
ZW
6064
6065 failure:
6066 if (!backtrack_pos)
d252fdde
PB
6067 {
6068 /* The parse routine should already have set inst.error, but set a
6069 defaut here just in case. */
6070 if (!inst.error)
6071 inst.error = _("syntax error");
6072 return FAIL;
6073 }
c19d1205
ZW
6074
6075 /* Do not backtrack over a trailing optional argument that
6076 absorbed some text. We will only fail again, with the
6077 'garbage following instruction' error message, which is
6078 probably less helpful than the current one. */
6079 if (backtrack_index == i && backtrack_pos != str
6080 && upat[i+1] == OP_stop)
d252fdde
PB
6081 {
6082 if (!inst.error)
6083 inst.error = _("syntax error");
6084 return FAIL;
6085 }
c19d1205
ZW
6086
6087 /* Try again, skipping the optional argument at backtrack_pos. */
6088 str = backtrack_pos;
6089 inst.error = backtrack_error;
6090 inst.operands[backtrack_index].present = 0;
6091 i = backtrack_index;
6092 backtrack_pos = 0;
09d92015 6093 }
09d92015 6094
c19d1205
ZW
6095 /* Check that we have parsed all the arguments. */
6096 if (*str != '\0' && !inst.error)
6097 inst.error = _("garbage following instruction");
09d92015 6098
c19d1205 6099 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6100}
6101
c19d1205
ZW
6102#undef po_char_or_fail
6103#undef po_reg_or_fail
6104#undef po_reg_or_goto
6105#undef po_imm_or_fail
5287ad62 6106#undef po_scalar_or_fail
c19d1205
ZW
6107\f
6108/* Shorthand macro for instruction encoding functions issuing errors. */
6109#define constraint(expr, err) do { \
6110 if (expr) \
6111 { \
6112 inst.error = err; \
6113 return; \
6114 } \
6115} while (0)
6116
6117/* Functions for operand encoding. ARM, then Thumb. */
6118
6119#define rotate_left(v, n) (v << n | v >> (32 - n))
6120
6121/* If VAL can be encoded in the immediate field of an ARM instruction,
6122 return the encoded form. Otherwise, return FAIL. */
6123
6124static unsigned int
6125encode_arm_immediate (unsigned int val)
09d92015 6126{
c19d1205
ZW
6127 unsigned int a, i;
6128
6129 for (i = 0; i < 32; i += 2)
6130 if ((a = rotate_left (val, i)) <= 0xff)
6131 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6132
6133 return FAIL;
09d92015
MM
6134}
6135
c19d1205
ZW
6136/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6137 return the encoded form. Otherwise, return FAIL. */
6138static unsigned int
6139encode_thumb32_immediate (unsigned int val)
09d92015 6140{
c19d1205 6141 unsigned int a, i;
09d92015 6142
9c3c69f2 6143 if (val <= 0xff)
c19d1205 6144 return val;
a737bd4d 6145
9c3c69f2 6146 for (i = 1; i <= 24; i++)
09d92015 6147 {
9c3c69f2
PB
6148 a = val >> i;
6149 if ((val & ~(0xff << i)) == 0)
6150 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6151 }
a737bd4d 6152
c19d1205
ZW
6153 a = val & 0xff;
6154 if (val == ((a << 16) | a))
6155 return 0x100 | a;
6156 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6157 return 0x300 | a;
09d92015 6158
c19d1205
ZW
6159 a = val & 0xff00;
6160 if (val == ((a << 16) | a))
6161 return 0x200 | (a >> 8);
a737bd4d 6162
c19d1205 6163 return FAIL;
09d92015 6164}
5287ad62 6165/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6166
6167static void
5287ad62
JB
6168encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6169{
6170 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6171 && reg > 15)
6172 {
6173 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6174 {
6175 if (thumb_mode)
6176 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6177 fpu_vfp_ext_v3);
6178 else
6179 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6180 fpu_vfp_ext_v3);
6181 }
6182 else
6183 {
dcbf9037 6184 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6185 return;
6186 }
6187 }
6188
c19d1205 6189 switch (pos)
09d92015 6190 {
c19d1205
ZW
6191 case VFP_REG_Sd:
6192 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6193 break;
6194
6195 case VFP_REG_Sn:
6196 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6197 break;
6198
6199 case VFP_REG_Sm:
6200 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6201 break;
6202
5287ad62
JB
6203 case VFP_REG_Dd:
6204 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6205 break;
6206
6207 case VFP_REG_Dn:
6208 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6209 break;
6210
6211 case VFP_REG_Dm:
6212 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6213 break;
6214
c19d1205
ZW
6215 default:
6216 abort ();
09d92015 6217 }
09d92015
MM
6218}
6219
c19d1205 6220/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6221 if any, is handled by md_apply_fix. */
09d92015 6222static void
c19d1205 6223encode_arm_shift (int i)
09d92015 6224{
c19d1205
ZW
6225 if (inst.operands[i].shift_kind == SHIFT_RRX)
6226 inst.instruction |= SHIFT_ROR << 5;
6227 else
09d92015 6228 {
c19d1205
ZW
6229 inst.instruction |= inst.operands[i].shift_kind << 5;
6230 if (inst.operands[i].immisreg)
6231 {
6232 inst.instruction |= SHIFT_BY_REG;
6233 inst.instruction |= inst.operands[i].imm << 8;
6234 }
6235 else
6236 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6237 }
c19d1205 6238}
09d92015 6239
c19d1205
ZW
6240static void
6241encode_arm_shifter_operand (int i)
6242{
6243 if (inst.operands[i].isreg)
09d92015 6244 {
c19d1205
ZW
6245 inst.instruction |= inst.operands[i].reg;
6246 encode_arm_shift (i);
09d92015 6247 }
c19d1205
ZW
6248 else
6249 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6250}
6251
c19d1205 6252/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6253static void
c19d1205 6254encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6255{
c19d1205
ZW
6256 assert (inst.operands[i].isreg);
6257 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6258
c19d1205 6259 if (inst.operands[i].preind)
09d92015 6260 {
c19d1205
ZW
6261 if (is_t)
6262 {
6263 inst.error = _("instruction does not accept preindexed addressing");
6264 return;
6265 }
6266 inst.instruction |= PRE_INDEX;
6267 if (inst.operands[i].writeback)
6268 inst.instruction |= WRITE_BACK;
09d92015 6269
c19d1205
ZW
6270 }
6271 else if (inst.operands[i].postind)
6272 {
6273 assert (inst.operands[i].writeback);
6274 if (is_t)
6275 inst.instruction |= WRITE_BACK;
6276 }
6277 else /* unindexed - only for coprocessor */
09d92015 6278 {
c19d1205 6279 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6280 return;
6281 }
6282
c19d1205
ZW
6283 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6284 && (((inst.instruction & 0x000f0000) >> 16)
6285 == ((inst.instruction & 0x0000f000) >> 12)))
6286 as_warn ((inst.instruction & LOAD_BIT)
6287 ? _("destination register same as write-back base")
6288 : _("source register same as write-back base"));
09d92015
MM
6289}
6290
c19d1205
ZW
6291/* inst.operands[i] was set up by parse_address. Encode it into an
6292 ARM-format mode 2 load or store instruction. If is_t is true,
6293 reject forms that cannot be used with a T instruction (i.e. not
6294 post-indexed). */
a737bd4d 6295static void
c19d1205 6296encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6297{
c19d1205 6298 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6299
c19d1205 6300 if (inst.operands[i].immisreg)
09d92015 6301 {
c19d1205
ZW
6302 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6303 inst.instruction |= inst.operands[i].imm;
6304 if (!inst.operands[i].negative)
6305 inst.instruction |= INDEX_UP;
6306 if (inst.operands[i].shifted)
6307 {
6308 if (inst.operands[i].shift_kind == SHIFT_RRX)
6309 inst.instruction |= SHIFT_ROR << 5;
6310 else
6311 {
6312 inst.instruction |= inst.operands[i].shift_kind << 5;
6313 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6314 }
6315 }
09d92015 6316 }
c19d1205 6317 else /* immediate offset in inst.reloc */
09d92015 6318 {
c19d1205
ZW
6319 if (inst.reloc.type == BFD_RELOC_UNUSED)
6320 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6321 }
09d92015
MM
6322}
6323
c19d1205
ZW
6324/* inst.operands[i] was set up by parse_address. Encode it into an
6325 ARM-format mode 3 load or store instruction. Reject forms that
6326 cannot be used with such instructions. If is_t is true, reject
6327 forms that cannot be used with a T instruction (i.e. not
6328 post-indexed). */
6329static void
6330encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6331{
c19d1205 6332 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6333 {
c19d1205
ZW
6334 inst.error = _("instruction does not accept scaled register index");
6335 return;
09d92015 6336 }
a737bd4d 6337
c19d1205 6338 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6339
c19d1205
ZW
6340 if (inst.operands[i].immisreg)
6341 {
6342 inst.instruction |= inst.operands[i].imm;
6343 if (!inst.operands[i].negative)
6344 inst.instruction |= INDEX_UP;
6345 }
6346 else /* immediate offset in inst.reloc */
6347 {
6348 inst.instruction |= HWOFFSET_IMM;
6349 if (inst.reloc.type == BFD_RELOC_UNUSED)
6350 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6351 }
a737bd4d
NC
6352}
6353
c19d1205
ZW
6354/* inst.operands[i] was set up by parse_address. Encode it into an
6355 ARM-format instruction. Reject all forms which cannot be encoded
6356 into a coprocessor load/store instruction. If wb_ok is false,
6357 reject use of writeback; if unind_ok is false, reject use of
6358 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6359 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6360 (in which case it is preserved). */
09d92015 6361
c19d1205
ZW
6362static int
6363encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6364{
c19d1205 6365 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6366
c19d1205 6367 assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6368
c19d1205 6369 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6370 {
c19d1205
ZW
6371 assert (!inst.operands[i].writeback);
6372 if (!unind_ok)
6373 {
6374 inst.error = _("instruction does not support unindexed addressing");
6375 return FAIL;
6376 }
6377 inst.instruction |= inst.operands[i].imm;
6378 inst.instruction |= INDEX_UP;
6379 return SUCCESS;
09d92015 6380 }
a737bd4d 6381
c19d1205
ZW
6382 if (inst.operands[i].preind)
6383 inst.instruction |= PRE_INDEX;
a737bd4d 6384
c19d1205 6385 if (inst.operands[i].writeback)
09d92015 6386 {
c19d1205
ZW
6387 if (inst.operands[i].reg == REG_PC)
6388 {
6389 inst.error = _("pc may not be used with write-back");
6390 return FAIL;
6391 }
6392 if (!wb_ok)
6393 {
6394 inst.error = _("instruction does not support writeback");
6395 return FAIL;
6396 }
6397 inst.instruction |= WRITE_BACK;
09d92015 6398 }
a737bd4d 6399
c19d1205
ZW
6400 if (reloc_override)
6401 inst.reloc.type = reloc_override;
4962c51a
MS
6402 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6403 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6404 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6405 {
6406 if (thumb_mode)
6407 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6408 else
6409 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6410 }
6411
c19d1205
ZW
6412 return SUCCESS;
6413}
a737bd4d 6414
c19d1205
ZW
6415/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6416 Determine whether it can be performed with a move instruction; if
6417 it can, convert inst.instruction to that move instruction and
6418 return 1; if it can't, convert inst.instruction to a literal-pool
6419 load and return 0. If this is not a valid thing to do in the
6420 current context, set inst.error and return 1.
a737bd4d 6421
c19d1205
ZW
6422 inst.operands[i] describes the destination register. */
6423
6424static int
6425move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6426{
53365c0d
PB
6427 unsigned long tbit;
6428
6429 if (thumb_p)
6430 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6431 else
6432 tbit = LOAD_BIT;
6433
6434 if ((inst.instruction & tbit) == 0)
09d92015 6435 {
c19d1205
ZW
6436 inst.error = _("invalid pseudo operation");
6437 return 1;
09d92015 6438 }
c19d1205 6439 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6440 {
6441 inst.error = _("constant expression expected");
c19d1205 6442 return 1;
09d92015 6443 }
c19d1205 6444 if (inst.reloc.exp.X_op == O_constant)
09d92015 6445 {
c19d1205
ZW
6446 if (thumb_p)
6447 {
53365c0d 6448 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6449 {
6450 /* This can be done with a mov(1) instruction. */
6451 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6452 inst.instruction |= inst.reloc.exp.X_add_number;
6453 return 1;
6454 }
6455 }
6456 else
6457 {
6458 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6459 if (value != FAIL)
6460 {
6461 /* This can be done with a mov instruction. */
6462 inst.instruction &= LITERAL_MASK;
6463 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6464 inst.instruction |= value & 0xfff;
6465 return 1;
6466 }
09d92015 6467
c19d1205
ZW
6468 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6469 if (value != FAIL)
6470 {
6471 /* This can be done with a mvn instruction. */
6472 inst.instruction &= LITERAL_MASK;
6473 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6474 inst.instruction |= value & 0xfff;
6475 return 1;
6476 }
6477 }
09d92015
MM
6478 }
6479
c19d1205
ZW
6480 if (add_to_lit_pool () == FAIL)
6481 {
6482 inst.error = _("literal pool insertion failed");
6483 return 1;
6484 }
6485 inst.operands[1].reg = REG_PC;
6486 inst.operands[1].isreg = 1;
6487 inst.operands[1].preind = 1;
6488 inst.reloc.pc_rel = 1;
6489 inst.reloc.type = (thumb_p
6490 ? BFD_RELOC_ARM_THUMB_OFFSET
6491 : (mode_3
6492 ? BFD_RELOC_ARM_HWLITERAL
6493 : BFD_RELOC_ARM_LITERAL));
6494 return 0;
09d92015
MM
6495}
6496
c19d1205
ZW
6497/* Functions for instruction encoding, sorted by subarchitecture.
6498 First some generics; their names are taken from the conventional
6499 bit positions for register arguments in ARM format instructions. */
09d92015 6500
a737bd4d 6501static void
c19d1205 6502do_noargs (void)
09d92015 6503{
c19d1205 6504}
a737bd4d 6505
c19d1205
ZW
6506static void
6507do_rd (void)
6508{
6509 inst.instruction |= inst.operands[0].reg << 12;
6510}
a737bd4d 6511
c19d1205
ZW
6512static void
6513do_rd_rm (void)
6514{
6515 inst.instruction |= inst.operands[0].reg << 12;
6516 inst.instruction |= inst.operands[1].reg;
6517}
09d92015 6518
c19d1205
ZW
6519static void
6520do_rd_rn (void)
6521{
6522 inst.instruction |= inst.operands[0].reg << 12;
6523 inst.instruction |= inst.operands[1].reg << 16;
6524}
a737bd4d 6525
c19d1205
ZW
6526static void
6527do_rn_rd (void)
6528{
6529 inst.instruction |= inst.operands[0].reg << 16;
6530 inst.instruction |= inst.operands[1].reg << 12;
6531}
09d92015 6532
c19d1205
ZW
6533static void
6534do_rd_rm_rn (void)
6535{
9a64e435 6536 unsigned Rn = inst.operands[2].reg;
708587a4 6537 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6538 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6539 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6540 _("Rn must not overlap other operands"));
c19d1205
ZW
6541 inst.instruction |= inst.operands[0].reg << 12;
6542 inst.instruction |= inst.operands[1].reg;
9a64e435 6543 inst.instruction |= Rn << 16;
c19d1205 6544}
09d92015 6545
c19d1205
ZW
6546static void
6547do_rd_rn_rm (void)
6548{
6549 inst.instruction |= inst.operands[0].reg << 12;
6550 inst.instruction |= inst.operands[1].reg << 16;
6551 inst.instruction |= inst.operands[2].reg;
6552}
a737bd4d 6553
c19d1205
ZW
6554static void
6555do_rm_rd_rn (void)
6556{
6557 inst.instruction |= inst.operands[0].reg;
6558 inst.instruction |= inst.operands[1].reg << 12;
6559 inst.instruction |= inst.operands[2].reg << 16;
6560}
09d92015 6561
c19d1205
ZW
6562static void
6563do_imm0 (void)
6564{
6565 inst.instruction |= inst.operands[0].imm;
6566}
09d92015 6567
c19d1205
ZW
6568static void
6569do_rd_cpaddr (void)
6570{
6571 inst.instruction |= inst.operands[0].reg << 12;
6572 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6573}
a737bd4d 6574
c19d1205
ZW
6575/* ARM instructions, in alphabetical order by function name (except
6576 that wrapper functions appear immediately after the function they
6577 wrap). */
09d92015 6578
c19d1205
ZW
6579/* This is a pseudo-op of the form "adr rd, label" to be converted
6580 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6581
6582static void
c19d1205 6583do_adr (void)
09d92015 6584{
c19d1205 6585 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6586
c19d1205
ZW
6587 /* Frag hacking will turn this into a sub instruction if the offset turns
6588 out to be negative. */
6589 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6590 inst.reloc.pc_rel = 1;
2fc8bdac 6591 inst.reloc.exp.X_add_number -= 8;
c19d1205 6592}
b99bd4ef 6593
c19d1205
ZW
6594/* This is a pseudo-op of the form "adrl rd, label" to be converted
6595 into a relative address of the form:
6596 add rd, pc, #low(label-.-8)"
6597 add rd, rd, #high(label-.-8)" */
b99bd4ef 6598
c19d1205
ZW
6599static void
6600do_adrl (void)
6601{
6602 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6603
c19d1205
ZW
6604 /* Frag hacking will turn this into a sub instruction if the offset turns
6605 out to be negative. */
6606 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
6607 inst.reloc.pc_rel = 1;
6608 inst.size = INSN_SIZE * 2;
2fc8bdac 6609 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
6610}
6611
b99bd4ef 6612static void
c19d1205 6613do_arit (void)
b99bd4ef 6614{
c19d1205
ZW
6615 if (!inst.operands[1].present)
6616 inst.operands[1].reg = inst.operands[0].reg;
6617 inst.instruction |= inst.operands[0].reg << 12;
6618 inst.instruction |= inst.operands[1].reg << 16;
6619 encode_arm_shifter_operand (2);
6620}
b99bd4ef 6621
62b3e311
PB
6622static void
6623do_barrier (void)
6624{
6625 if (inst.operands[0].present)
6626 {
6627 constraint ((inst.instruction & 0xf0) != 0x40
6628 && inst.operands[0].imm != 0xf,
6629 "bad barrier type");
6630 inst.instruction |= inst.operands[0].imm;
6631 }
6632 else
6633 inst.instruction |= 0xf;
6634}
6635
c19d1205
ZW
6636static void
6637do_bfc (void)
6638{
6639 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6640 constraint (msb > 32, _("bit-field extends past end of register"));
6641 /* The instruction encoding stores the LSB and MSB,
6642 not the LSB and width. */
6643 inst.instruction |= inst.operands[0].reg << 12;
6644 inst.instruction |= inst.operands[1].imm << 7;
6645 inst.instruction |= (msb - 1) << 16;
6646}
b99bd4ef 6647
c19d1205
ZW
6648static void
6649do_bfi (void)
6650{
6651 unsigned int msb;
b99bd4ef 6652
c19d1205
ZW
6653 /* #0 in second position is alternative syntax for bfc, which is
6654 the same instruction but with REG_PC in the Rm field. */
6655 if (!inst.operands[1].isreg)
6656 inst.operands[1].reg = REG_PC;
b99bd4ef 6657
c19d1205
ZW
6658 msb = inst.operands[2].imm + inst.operands[3].imm;
6659 constraint (msb > 32, _("bit-field extends past end of register"));
6660 /* The instruction encoding stores the LSB and MSB,
6661 not the LSB and width. */
6662 inst.instruction |= inst.operands[0].reg << 12;
6663 inst.instruction |= inst.operands[1].reg;
6664 inst.instruction |= inst.operands[2].imm << 7;
6665 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
6666}
6667
b99bd4ef 6668static void
c19d1205 6669do_bfx (void)
b99bd4ef 6670{
c19d1205
ZW
6671 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6672 _("bit-field extends past end of register"));
6673 inst.instruction |= inst.operands[0].reg << 12;
6674 inst.instruction |= inst.operands[1].reg;
6675 inst.instruction |= inst.operands[2].imm << 7;
6676 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6677}
09d92015 6678
c19d1205
ZW
6679/* ARM V5 breakpoint instruction (argument parse)
6680 BKPT <16 bit unsigned immediate>
6681 Instruction is not conditional.
6682 The bit pattern given in insns[] has the COND_ALWAYS condition,
6683 and it is an error if the caller tried to override that. */
b99bd4ef 6684
c19d1205
ZW
6685static void
6686do_bkpt (void)
6687{
6688 /* Top 12 of 16 bits to bits 19:8. */
6689 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 6690
c19d1205
ZW
6691 /* Bottom 4 of 16 bits to bits 3:0. */
6692 inst.instruction |= inst.operands[0].imm & 0xf;
6693}
09d92015 6694
c19d1205
ZW
6695static void
6696encode_branch (int default_reloc)
6697{
6698 if (inst.operands[0].hasreloc)
6699 {
6700 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6701 _("the only suffix valid here is '(plt)'"));
6702 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 6703 }
b99bd4ef 6704 else
c19d1205
ZW
6705 {
6706 inst.reloc.type = default_reloc;
c19d1205 6707 }
2fc8bdac 6708 inst.reloc.pc_rel = 1;
b99bd4ef
NC
6709}
6710
b99bd4ef 6711static void
c19d1205 6712do_branch (void)
b99bd4ef 6713{
39b41c9c
PB
6714#ifdef OBJ_ELF
6715 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6716 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6717 else
6718#endif
6719 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6720}
6721
6722static void
6723do_bl (void)
6724{
6725#ifdef OBJ_ELF
6726 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6727 {
6728 if (inst.cond == COND_ALWAYS)
6729 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6730 else
6731 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6732 }
6733 else
6734#endif
6735 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 6736}
b99bd4ef 6737
c19d1205
ZW
6738/* ARM V5 branch-link-exchange instruction (argument parse)
6739 BLX <target_addr> ie BLX(1)
6740 BLX{<condition>} <Rm> ie BLX(2)
6741 Unfortunately, there are two different opcodes for this mnemonic.
6742 So, the insns[].value is not used, and the code here zaps values
6743 into inst.instruction.
6744 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 6745
c19d1205
ZW
6746static void
6747do_blx (void)
6748{
6749 if (inst.operands[0].isreg)
b99bd4ef 6750 {
c19d1205
ZW
6751 /* Arg is a register; the opcode provided by insns[] is correct.
6752 It is not illegal to do "blx pc", just useless. */
6753 if (inst.operands[0].reg == REG_PC)
6754 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 6755
c19d1205
ZW
6756 inst.instruction |= inst.operands[0].reg;
6757 }
6758 else
b99bd4ef 6759 {
c19d1205
ZW
6760 /* Arg is an address; this instruction cannot be executed
6761 conditionally, and the opcode must be adjusted. */
6762 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 6763 inst.instruction = 0xfa000000;
39b41c9c
PB
6764#ifdef OBJ_ELF
6765 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6766 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6767 else
6768#endif
6769 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 6770 }
c19d1205
ZW
6771}
6772
6773static void
6774do_bx (void)
6775{
6776 if (inst.operands[0].reg == REG_PC)
6777 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 6778
c19d1205 6779 inst.instruction |= inst.operands[0].reg;
09d92015
MM
6780}
6781
c19d1205
ZW
6782
6783/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
6784
6785static void
c19d1205 6786do_bxj (void)
a737bd4d 6787{
c19d1205
ZW
6788 if (inst.operands[0].reg == REG_PC)
6789 as_tsktsk (_("use of r15 in bxj is not really useful"));
6790
6791 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
6792}
6793
c19d1205
ZW
6794/* Co-processor data operation:
6795 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6796 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6797static void
6798do_cdp (void)
6799{
6800 inst.instruction |= inst.operands[0].reg << 8;
6801 inst.instruction |= inst.operands[1].imm << 20;
6802 inst.instruction |= inst.operands[2].reg << 12;
6803 inst.instruction |= inst.operands[3].reg << 16;
6804 inst.instruction |= inst.operands[4].reg;
6805 inst.instruction |= inst.operands[5].imm << 5;
6806}
a737bd4d
NC
6807
6808static void
c19d1205 6809do_cmp (void)
a737bd4d 6810{
c19d1205
ZW
6811 inst.instruction |= inst.operands[0].reg << 16;
6812 encode_arm_shifter_operand (1);
a737bd4d
NC
6813}
6814
c19d1205
ZW
6815/* Transfer between coprocessor and ARM registers.
6816 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6817 MRC2
6818 MCR{cond}
6819 MCR2
6820
6821 No special properties. */
09d92015
MM
6822
6823static void
c19d1205 6824do_co_reg (void)
09d92015 6825{
c19d1205
ZW
6826 inst.instruction |= inst.operands[0].reg << 8;
6827 inst.instruction |= inst.operands[1].imm << 21;
6828 inst.instruction |= inst.operands[2].reg << 12;
6829 inst.instruction |= inst.operands[3].reg << 16;
6830 inst.instruction |= inst.operands[4].reg;
6831 inst.instruction |= inst.operands[5].imm << 5;
6832}
09d92015 6833
c19d1205
ZW
6834/* Transfer between coprocessor register and pair of ARM registers.
6835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6836 MCRR2
6837 MRRC{cond}
6838 MRRC2
b99bd4ef 6839
c19d1205 6840 Two XScale instructions are special cases of these:
09d92015 6841
c19d1205
ZW
6842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 6844
c19d1205 6845 Result unpredicatable if Rd or Rn is R15. */
a737bd4d 6846
c19d1205
ZW
6847static void
6848do_co_reg2c (void)
6849{
6850 inst.instruction |= inst.operands[0].reg << 8;
6851 inst.instruction |= inst.operands[1].imm << 4;
6852 inst.instruction |= inst.operands[2].reg << 12;
6853 inst.instruction |= inst.operands[3].reg << 16;
6854 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
6855}
6856
c19d1205
ZW
6857static void
6858do_cpsi (void)
6859{
6860 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
6861 if (inst.operands[1].present)
6862 {
6863 inst.instruction |= CPSI_MMOD;
6864 inst.instruction |= inst.operands[1].imm;
6865 }
c19d1205 6866}
b99bd4ef 6867
62b3e311
PB
6868static void
6869do_dbg (void)
6870{
6871 inst.instruction |= inst.operands[0].imm;
6872}
6873
b99bd4ef 6874static void
c19d1205 6875do_it (void)
b99bd4ef 6876{
c19d1205
ZW
6877 /* There is no IT instruction in ARM mode. We
6878 process it but do not generate code for it. */
6879 inst.size = 0;
09d92015 6880}
b99bd4ef 6881
09d92015 6882static void
c19d1205 6883do_ldmstm (void)
ea6ef066 6884{
c19d1205
ZW
6885 int base_reg = inst.operands[0].reg;
6886 int range = inst.operands[1].imm;
ea6ef066 6887
c19d1205
ZW
6888 inst.instruction |= base_reg << 16;
6889 inst.instruction |= range;
ea6ef066 6890
c19d1205
ZW
6891 if (inst.operands[1].writeback)
6892 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 6893
c19d1205 6894 if (inst.operands[0].writeback)
ea6ef066 6895 {
c19d1205
ZW
6896 inst.instruction |= WRITE_BACK;
6897 /* Check for unpredictable uses of writeback. */
6898 if (inst.instruction & LOAD_BIT)
09d92015 6899 {
c19d1205
ZW
6900 /* Not allowed in LDM type 2. */
6901 if ((inst.instruction & LDM_TYPE_2_OR_3)
6902 && ((range & (1 << REG_PC)) == 0))
6903 as_warn (_("writeback of base register is UNPREDICTABLE"));
6904 /* Only allowed if base reg not in list for other types. */
6905 else if (range & (1 << base_reg))
6906 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6907 }
6908 else /* STM. */
6909 {
6910 /* Not allowed for type 2. */
6911 if (inst.instruction & LDM_TYPE_2_OR_3)
6912 as_warn (_("writeback of base register is UNPREDICTABLE"));
6913 /* Only allowed if base reg not in list, or first in list. */
6914 else if ((range & (1 << base_reg))
6915 && (range & ((1 << base_reg) - 1)))
6916 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 6917 }
ea6ef066 6918 }
a737bd4d
NC
6919}
6920
c19d1205
ZW
6921/* ARMv5TE load-consecutive (argument parse)
6922 Mode is like LDRH.
6923
6924 LDRccD R, mode
6925 STRccD R, mode. */
6926
a737bd4d 6927static void
c19d1205 6928do_ldrd (void)
a737bd4d 6929{
c19d1205
ZW
6930 constraint (inst.operands[0].reg % 2 != 0,
6931 _("first destination register must be even"));
6932 constraint (inst.operands[1].present
6933 && inst.operands[1].reg != inst.operands[0].reg + 1,
6934 _("can only load two consecutive registers"));
6935 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6936 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 6937
c19d1205
ZW
6938 if (!inst.operands[1].present)
6939 inst.operands[1].reg = inst.operands[0].reg + 1;
6940
6941 if (inst.instruction & LOAD_BIT)
a737bd4d 6942 {
c19d1205
ZW
6943 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6944 register and the first register written; we have to diagnose
6945 overlap between the base and the second register written here. */
ea6ef066 6946
c19d1205
ZW
6947 if (inst.operands[2].reg == inst.operands[1].reg
6948 && (inst.operands[2].writeback || inst.operands[2].postind))
6949 as_warn (_("base register written back, and overlaps "
6950 "second destination register"));
b05fe5cf 6951
c19d1205
ZW
6952 /* For an index-register load, the index register must not overlap the
6953 destination (even if not write-back). */
6954 else if (inst.operands[2].immisreg
ca3f61f7
NC
6955 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6956 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 6957 as_warn (_("index register overlaps destination register"));
b05fe5cf 6958 }
c19d1205
ZW
6959
6960 inst.instruction |= inst.operands[0].reg << 12;
6961 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
6962}
6963
6964static void
c19d1205 6965do_ldrex (void)
b05fe5cf 6966{
c19d1205
ZW
6967 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6968 || inst.operands[1].postind || inst.operands[1].writeback
6969 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
6970 || inst.operands[1].negative
6971 /* This can arise if the programmer has written
6972 strex rN, rM, foo
6973 or if they have mistakenly used a register name as the last
6974 operand, eg:
6975 strex rN, rM, rX
6976 It is very difficult to distinguish between these two cases
6977 because "rX" might actually be a label. ie the register
6978 name has been occluded by a symbol of the same name. So we
6979 just generate a general 'bad addressing mode' type error
6980 message and leave it up to the programmer to discover the
6981 true cause and fix their mistake. */
6982 || (inst.operands[1].reg == REG_PC),
6983 BAD_ADDR_MODE);
b05fe5cf 6984
c19d1205
ZW
6985 constraint (inst.reloc.exp.X_op != O_constant
6986 || inst.reloc.exp.X_add_number != 0,
6987 _("offset must be zero in ARM encoding"));
b05fe5cf 6988
c19d1205
ZW
6989 inst.instruction |= inst.operands[0].reg << 12;
6990 inst.instruction |= inst.operands[1].reg << 16;
6991 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
6992}
6993
6994static void
c19d1205 6995do_ldrexd (void)
b05fe5cf 6996{
c19d1205
ZW
6997 constraint (inst.operands[0].reg % 2 != 0,
6998 _("even register required"));
6999 constraint (inst.operands[1].present
7000 && inst.operands[1].reg != inst.operands[0].reg + 1,
7001 _("can only load two consecutive registers"));
7002 /* If op 1 were present and equal to PC, this function wouldn't
7003 have been called in the first place. */
7004 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7005
c19d1205
ZW
7006 inst.instruction |= inst.operands[0].reg << 12;
7007 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7008}
7009
7010static void
c19d1205 7011do_ldst (void)
b05fe5cf 7012{
c19d1205
ZW
7013 inst.instruction |= inst.operands[0].reg << 12;
7014 if (!inst.operands[1].isreg)
7015 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7016 return;
c19d1205 7017 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7018}
7019
7020static void
c19d1205 7021do_ldstt (void)
b05fe5cf 7022{
c19d1205
ZW
7023 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7024 reject [Rn,...]. */
7025 if (inst.operands[1].preind)
b05fe5cf 7026 {
c19d1205
ZW
7027 constraint (inst.reloc.exp.X_op != O_constant ||
7028 inst.reloc.exp.X_add_number != 0,
7029 _("this instruction requires a post-indexed address"));
b05fe5cf 7030
c19d1205
ZW
7031 inst.operands[1].preind = 0;
7032 inst.operands[1].postind = 1;
7033 inst.operands[1].writeback = 1;
b05fe5cf 7034 }
c19d1205
ZW
7035 inst.instruction |= inst.operands[0].reg << 12;
7036 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7037}
b05fe5cf 7038
c19d1205 7039/* Halfword and signed-byte load/store operations. */
b05fe5cf 7040
c19d1205
ZW
7041static void
7042do_ldstv4 (void)
7043{
7044 inst.instruction |= inst.operands[0].reg << 12;
7045 if (!inst.operands[1].isreg)
7046 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7047 return;
c19d1205 7048 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7049}
7050
7051static void
c19d1205 7052do_ldsttv4 (void)
b05fe5cf 7053{
c19d1205
ZW
7054 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7055 reject [Rn,...]. */
7056 if (inst.operands[1].preind)
b05fe5cf 7057 {
c19d1205
ZW
7058 constraint (inst.reloc.exp.X_op != O_constant ||
7059 inst.reloc.exp.X_add_number != 0,
7060 _("this instruction requires a post-indexed address"));
b05fe5cf 7061
c19d1205
ZW
7062 inst.operands[1].preind = 0;
7063 inst.operands[1].postind = 1;
7064 inst.operands[1].writeback = 1;
b05fe5cf 7065 }
c19d1205
ZW
7066 inst.instruction |= inst.operands[0].reg << 12;
7067 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7068}
b05fe5cf 7069
c19d1205
ZW
7070/* Co-processor register load/store.
7071 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7072static void
7073do_lstc (void)
7074{
7075 inst.instruction |= inst.operands[0].reg << 8;
7076 inst.instruction |= inst.operands[1].reg << 12;
7077 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7078}
7079
b05fe5cf 7080static void
c19d1205 7081do_mlas (void)
b05fe5cf 7082{
8fb9d7b9 7083 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7084 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7085 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7086 && !(inst.instruction & 0x00400000))
8fb9d7b9 7087 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7088
c19d1205
ZW
7089 inst.instruction |= inst.operands[0].reg << 16;
7090 inst.instruction |= inst.operands[1].reg;
7091 inst.instruction |= inst.operands[2].reg << 8;
7092 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7093}
b05fe5cf 7094
c19d1205
ZW
7095static void
7096do_mov (void)
7097{
7098 inst.instruction |= inst.operands[0].reg << 12;
7099 encode_arm_shifter_operand (1);
7100}
b05fe5cf 7101
c19d1205
ZW
7102/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7103static void
7104do_mov16 (void)
7105{
b6895b4f
PB
7106 bfd_vma imm;
7107 bfd_boolean top;
7108
7109 top = (inst.instruction & 0x00400000) != 0;
7110 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7111 _(":lower16: not allowed this instruction"));
7112 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7113 _(":upper16: not allowed instruction"));
c19d1205 7114 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7115 if (inst.reloc.type == BFD_RELOC_UNUSED)
7116 {
7117 imm = inst.reloc.exp.X_add_number;
7118 /* The value is in two pieces: 0:11, 16:19. */
7119 inst.instruction |= (imm & 0x00000fff);
7120 inst.instruction |= (imm & 0x0000f000) << 4;
7121 }
b05fe5cf 7122}
b99bd4ef 7123
037e8744
JB
7124static void do_vfp_nsyn_opcode (const char *);
7125
7126static int
7127do_vfp_nsyn_mrs (void)
7128{
7129 if (inst.operands[0].isvec)
7130 {
7131 if (inst.operands[1].reg != 1)
7132 first_error (_("operand 1 must be FPSCR"));
7133 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7134 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7135 do_vfp_nsyn_opcode ("fmstat");
7136 }
7137 else if (inst.operands[1].isvec)
7138 do_vfp_nsyn_opcode ("fmrx");
7139 else
7140 return FAIL;
7141
7142 return SUCCESS;
7143}
7144
7145static int
7146do_vfp_nsyn_msr (void)
7147{
7148 if (inst.operands[0].isvec)
7149 do_vfp_nsyn_opcode ("fmxr");
7150 else
7151 return FAIL;
7152
7153 return SUCCESS;
7154}
7155
b99bd4ef 7156static void
c19d1205 7157do_mrs (void)
b99bd4ef 7158{
037e8744
JB
7159 if (do_vfp_nsyn_mrs () == SUCCESS)
7160 return;
7161
c19d1205
ZW
7162 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7163 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7164 != (PSR_c|PSR_f),
7165 _("'CPSR' or 'SPSR' expected"));
7166 inst.instruction |= inst.operands[0].reg << 12;
7167 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7168}
b99bd4ef 7169
c19d1205
ZW
7170/* Two possible forms:
7171 "{C|S}PSR_<field>, Rm",
7172 "{C|S}PSR_f, #expression". */
b99bd4ef 7173
c19d1205
ZW
7174static void
7175do_msr (void)
7176{
037e8744
JB
7177 if (do_vfp_nsyn_msr () == SUCCESS)
7178 return;
7179
c19d1205
ZW
7180 inst.instruction |= inst.operands[0].imm;
7181 if (inst.operands[1].isreg)
7182 inst.instruction |= inst.operands[1].reg;
7183 else
b99bd4ef 7184 {
c19d1205
ZW
7185 inst.instruction |= INST_IMMEDIATE;
7186 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7187 inst.reloc.pc_rel = 0;
b99bd4ef 7188 }
b99bd4ef
NC
7189}
7190
c19d1205
ZW
7191static void
7192do_mul (void)
a737bd4d 7193{
c19d1205
ZW
7194 if (!inst.operands[2].present)
7195 inst.operands[2].reg = inst.operands[0].reg;
7196 inst.instruction |= inst.operands[0].reg << 16;
7197 inst.instruction |= inst.operands[1].reg;
7198 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7199
8fb9d7b9
MS
7200 if (inst.operands[0].reg == inst.operands[1].reg
7201 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7202 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7203}
7204
c19d1205
ZW
7205/* Long Multiply Parser
7206 UMULL RdLo, RdHi, Rm, Rs
7207 SMULL RdLo, RdHi, Rm, Rs
7208 UMLAL RdLo, RdHi, Rm, Rs
7209 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7210
7211static void
c19d1205 7212do_mull (void)
b99bd4ef 7213{
c19d1205
ZW
7214 inst.instruction |= inst.operands[0].reg << 12;
7215 inst.instruction |= inst.operands[1].reg << 16;
7216 inst.instruction |= inst.operands[2].reg;
7217 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7218
c19d1205
ZW
7219 /* rdhi, rdlo and rm must all be different. */
7220 if (inst.operands[0].reg == inst.operands[1].reg
7221 || inst.operands[0].reg == inst.operands[2].reg
7222 || inst.operands[1].reg == inst.operands[2].reg)
7223 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7224}
b99bd4ef 7225
c19d1205
ZW
7226static void
7227do_nop (void)
7228{
7229 if (inst.operands[0].present)
7230 {
7231 /* Architectural NOP hints are CPSR sets with no bits selected. */
7232 inst.instruction &= 0xf0000000;
7233 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7234 }
b99bd4ef
NC
7235}
7236
c19d1205
ZW
7237/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7238 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7239 Condition defaults to COND_ALWAYS.
7240 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7241
7242static void
c19d1205 7243do_pkhbt (void)
b99bd4ef 7244{
c19d1205
ZW
7245 inst.instruction |= inst.operands[0].reg << 12;
7246 inst.instruction |= inst.operands[1].reg << 16;
7247 inst.instruction |= inst.operands[2].reg;
7248 if (inst.operands[3].present)
7249 encode_arm_shift (3);
7250}
b99bd4ef 7251
c19d1205 7252/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7253
c19d1205
ZW
7254static void
7255do_pkhtb (void)
7256{
7257 if (!inst.operands[3].present)
b99bd4ef 7258 {
c19d1205
ZW
7259 /* If the shift specifier is omitted, turn the instruction
7260 into pkhbt rd, rm, rn. */
7261 inst.instruction &= 0xfff00010;
7262 inst.instruction |= inst.operands[0].reg << 12;
7263 inst.instruction |= inst.operands[1].reg;
7264 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7265 }
7266 else
7267 {
c19d1205
ZW
7268 inst.instruction |= inst.operands[0].reg << 12;
7269 inst.instruction |= inst.operands[1].reg << 16;
7270 inst.instruction |= inst.operands[2].reg;
7271 encode_arm_shift (3);
b99bd4ef
NC
7272 }
7273}
7274
c19d1205
ZW
7275/* ARMv5TE: Preload-Cache
7276
7277 PLD <addr_mode>
7278
7279 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7280
7281static void
c19d1205 7282do_pld (void)
b99bd4ef 7283{
c19d1205
ZW
7284 constraint (!inst.operands[0].isreg,
7285 _("'[' expected after PLD mnemonic"));
7286 constraint (inst.operands[0].postind,
7287 _("post-indexed expression used in preload instruction"));
7288 constraint (inst.operands[0].writeback,
7289 _("writeback used in preload instruction"));
7290 constraint (!inst.operands[0].preind,
7291 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7292 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7293}
b99bd4ef 7294
62b3e311
PB
7295/* ARMv7: PLI <addr_mode> */
7296static void
7297do_pli (void)
7298{
7299 constraint (!inst.operands[0].isreg,
7300 _("'[' expected after PLI mnemonic"));
7301 constraint (inst.operands[0].postind,
7302 _("post-indexed expression used in preload instruction"));
7303 constraint (inst.operands[0].writeback,
7304 _("writeback used in preload instruction"));
7305 constraint (!inst.operands[0].preind,
7306 _("unindexed addressing used in preload instruction"));
7307 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7308 inst.instruction &= ~PRE_INDEX;
7309}
7310
c19d1205
ZW
7311static void
7312do_push_pop (void)
7313{
7314 inst.operands[1] = inst.operands[0];
7315 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7316 inst.operands[0].isreg = 1;
7317 inst.operands[0].writeback = 1;
7318 inst.operands[0].reg = REG_SP;
7319 do_ldmstm ();
7320}
b99bd4ef 7321
c19d1205
ZW
7322/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7323 word at the specified address and the following word
7324 respectively.
7325 Unconditionally executed.
7326 Error if Rn is R15. */
b99bd4ef 7327
c19d1205
ZW
7328static void
7329do_rfe (void)
7330{
7331 inst.instruction |= inst.operands[0].reg << 16;
7332 if (inst.operands[0].writeback)
7333 inst.instruction |= WRITE_BACK;
7334}
b99bd4ef 7335
c19d1205 7336/* ARM V6 ssat (argument parse). */
b99bd4ef 7337
c19d1205
ZW
7338static void
7339do_ssat (void)
7340{
7341 inst.instruction |= inst.operands[0].reg << 12;
7342 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7343 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7344
c19d1205
ZW
7345 if (inst.operands[3].present)
7346 encode_arm_shift (3);
b99bd4ef
NC
7347}
7348
c19d1205 7349/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7350
7351static void
c19d1205 7352do_usat (void)
b99bd4ef 7353{
c19d1205
ZW
7354 inst.instruction |= inst.operands[0].reg << 12;
7355 inst.instruction |= inst.operands[1].imm << 16;
7356 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7357
c19d1205
ZW
7358 if (inst.operands[3].present)
7359 encode_arm_shift (3);
b99bd4ef
NC
7360}
7361
c19d1205 7362/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7363
7364static void
c19d1205 7365do_ssat16 (void)
09d92015 7366{
c19d1205
ZW
7367 inst.instruction |= inst.operands[0].reg << 12;
7368 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7369 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7370}
7371
c19d1205
ZW
7372static void
7373do_usat16 (void)
a737bd4d 7374{
c19d1205
ZW
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 inst.instruction |= inst.operands[1].imm << 16;
7377 inst.instruction |= inst.operands[2].reg;
7378}
a737bd4d 7379
c19d1205
ZW
7380/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7381 preserving the other bits.
a737bd4d 7382
c19d1205
ZW
7383 setend <endian_specifier>, where <endian_specifier> is either
7384 BE or LE. */
a737bd4d 7385
c19d1205
ZW
7386static void
7387do_setend (void)
7388{
7389 if (inst.operands[0].imm)
7390 inst.instruction |= 0x200;
a737bd4d
NC
7391}
7392
7393static void
c19d1205 7394do_shift (void)
a737bd4d 7395{
c19d1205
ZW
7396 unsigned int Rm = (inst.operands[1].present
7397 ? inst.operands[1].reg
7398 : inst.operands[0].reg);
a737bd4d 7399
c19d1205
ZW
7400 inst.instruction |= inst.operands[0].reg << 12;
7401 inst.instruction |= Rm;
7402 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7403 {
c19d1205
ZW
7404 inst.instruction |= inst.operands[2].reg << 8;
7405 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7406 }
7407 else
c19d1205 7408 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7409}
7410
09d92015 7411static void
3eb17e6b 7412do_smc (void)
09d92015 7413{
3eb17e6b 7414 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7415 inst.reloc.pc_rel = 0;
09d92015
MM
7416}
7417
09d92015 7418static void
c19d1205 7419do_swi (void)
09d92015 7420{
c19d1205
ZW
7421 inst.reloc.type = BFD_RELOC_ARM_SWI;
7422 inst.reloc.pc_rel = 0;
09d92015
MM
7423}
7424
c19d1205
ZW
7425/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7426 SMLAxy{cond} Rd,Rm,Rs,Rn
7427 SMLAWy{cond} Rd,Rm,Rs,Rn
7428 Error if any register is R15. */
e16bb312 7429
c19d1205
ZW
7430static void
7431do_smla (void)
e16bb312 7432{
c19d1205
ZW
7433 inst.instruction |= inst.operands[0].reg << 16;
7434 inst.instruction |= inst.operands[1].reg;
7435 inst.instruction |= inst.operands[2].reg << 8;
7436 inst.instruction |= inst.operands[3].reg << 12;
7437}
a737bd4d 7438
c19d1205
ZW
7439/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7440 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7441 Error if any register is R15.
7442 Warning if Rdlo == Rdhi. */
a737bd4d 7443
c19d1205
ZW
7444static void
7445do_smlal (void)
7446{
7447 inst.instruction |= inst.operands[0].reg << 12;
7448 inst.instruction |= inst.operands[1].reg << 16;
7449 inst.instruction |= inst.operands[2].reg;
7450 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7451
c19d1205
ZW
7452 if (inst.operands[0].reg == inst.operands[1].reg)
7453 as_tsktsk (_("rdhi and rdlo must be different"));
7454}
a737bd4d 7455
c19d1205
ZW
7456/* ARM V5E (El Segundo) signed-multiply (argument parse)
7457 SMULxy{cond} Rd,Rm,Rs
7458 Error if any register is R15. */
a737bd4d 7459
c19d1205
ZW
7460static void
7461do_smul (void)
7462{
7463 inst.instruction |= inst.operands[0].reg << 16;
7464 inst.instruction |= inst.operands[1].reg;
7465 inst.instruction |= inst.operands[2].reg << 8;
7466}
a737bd4d 7467
b6702015
PB
7468/* ARM V6 srs (argument parse). The variable fields in the encoding are
7469 the same for both ARM and Thumb-2. */
a737bd4d 7470
c19d1205
ZW
7471static void
7472do_srs (void)
7473{
b6702015
PB
7474 int reg;
7475
7476 if (inst.operands[0].present)
7477 {
7478 reg = inst.operands[0].reg;
7479 constraint (reg != 13, _("SRS base register must be r13"));
7480 }
7481 else
7482 reg = 13;
7483
7484 inst.instruction |= reg << 16;
7485 inst.instruction |= inst.operands[1].imm;
7486 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
7487 inst.instruction |= WRITE_BACK;
7488}
a737bd4d 7489
c19d1205 7490/* ARM V6 strex (argument parse). */
a737bd4d 7491
c19d1205
ZW
7492static void
7493do_strex (void)
7494{
7495 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7496 || inst.operands[2].postind || inst.operands[2].writeback
7497 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7498 || inst.operands[2].negative
7499 /* See comment in do_ldrex(). */
7500 || (inst.operands[2].reg == REG_PC),
7501 BAD_ADDR_MODE);
a737bd4d 7502
c19d1205
ZW
7503 constraint (inst.operands[0].reg == inst.operands[1].reg
7504 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7505
c19d1205
ZW
7506 constraint (inst.reloc.exp.X_op != O_constant
7507 || inst.reloc.exp.X_add_number != 0,
7508 _("offset must be zero in ARM encoding"));
a737bd4d 7509
c19d1205
ZW
7510 inst.instruction |= inst.operands[0].reg << 12;
7511 inst.instruction |= inst.operands[1].reg;
7512 inst.instruction |= inst.operands[2].reg << 16;
7513 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7514}
7515
7516static void
c19d1205 7517do_strexd (void)
e16bb312 7518{
c19d1205
ZW
7519 constraint (inst.operands[1].reg % 2 != 0,
7520 _("even register required"));
7521 constraint (inst.operands[2].present
7522 && inst.operands[2].reg != inst.operands[1].reg + 1,
7523 _("can only store two consecutive registers"));
7524 /* If op 2 were present and equal to PC, this function wouldn't
7525 have been called in the first place. */
7526 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7527
c19d1205
ZW
7528 constraint (inst.operands[0].reg == inst.operands[1].reg
7529 || inst.operands[0].reg == inst.operands[1].reg + 1
7530 || inst.operands[0].reg == inst.operands[3].reg,
7531 BAD_OVERLAP);
e16bb312 7532
c19d1205
ZW
7533 inst.instruction |= inst.operands[0].reg << 12;
7534 inst.instruction |= inst.operands[1].reg;
7535 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
7536}
7537
c19d1205
ZW
7538/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7539 extends it to 32-bits, and adds the result to a value in another
7540 register. You can specify a rotation by 0, 8, 16, or 24 bits
7541 before extracting the 16-bit value.
7542 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7543 Condition defaults to COND_ALWAYS.
7544 Error if any register uses R15. */
7545
e16bb312 7546static void
c19d1205 7547do_sxtah (void)
e16bb312 7548{
c19d1205
ZW
7549 inst.instruction |= inst.operands[0].reg << 12;
7550 inst.instruction |= inst.operands[1].reg << 16;
7551 inst.instruction |= inst.operands[2].reg;
7552 inst.instruction |= inst.operands[3].imm << 10;
7553}
e16bb312 7554
c19d1205 7555/* ARM V6 SXTH.
e16bb312 7556
c19d1205
ZW
7557 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7558 Condition defaults to COND_ALWAYS.
7559 Error if any register uses R15. */
e16bb312
NC
7560
7561static void
c19d1205 7562do_sxth (void)
e16bb312 7563{
c19d1205
ZW
7564 inst.instruction |= inst.operands[0].reg << 12;
7565 inst.instruction |= inst.operands[1].reg;
7566 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 7567}
c19d1205
ZW
7568\f
7569/* VFP instructions. In a logical order: SP variant first, monad
7570 before dyad, arithmetic then move then load/store. */
e16bb312
NC
7571
7572static void
c19d1205 7573do_vfp_sp_monadic (void)
e16bb312 7574{
5287ad62
JB
7575 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7576 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7577}
7578
7579static void
c19d1205 7580do_vfp_sp_dyadic (void)
e16bb312 7581{
5287ad62
JB
7582 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7583 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7584 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7585}
7586
7587static void
c19d1205 7588do_vfp_sp_compare_z (void)
e16bb312 7589{
5287ad62 7590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
7591}
7592
7593static void
c19d1205 7594do_vfp_dp_sp_cvt (void)
e16bb312 7595{
5287ad62
JB
7596 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7597 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
7598}
7599
7600static void
c19d1205 7601do_vfp_sp_dp_cvt (void)
e16bb312 7602{
5287ad62
JB
7603 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7604 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
7605}
7606
7607static void
c19d1205 7608do_vfp_reg_from_sp (void)
e16bb312 7609{
c19d1205 7610 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 7611 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
7612}
7613
7614static void
c19d1205 7615do_vfp_reg2_from_sp2 (void)
e16bb312 7616{
c19d1205
ZW
7617 constraint (inst.operands[2].imm != 2,
7618 _("only two consecutive VFP SP registers allowed here"));
7619 inst.instruction |= inst.operands[0].reg << 12;
7620 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 7621 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
7622}
7623
7624static void
c19d1205 7625do_vfp_sp_from_reg (void)
e16bb312 7626{
5287ad62 7627 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 7628 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
7629}
7630
7631static void
c19d1205 7632do_vfp_sp2_from_reg2 (void)
e16bb312 7633{
c19d1205
ZW
7634 constraint (inst.operands[0].imm != 2,
7635 _("only two consecutive VFP SP registers allowed here"));
5287ad62 7636 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
7637 inst.instruction |= inst.operands[1].reg << 12;
7638 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
7639}
7640
7641static void
c19d1205 7642do_vfp_sp_ldst (void)
e16bb312 7643{
5287ad62 7644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 7645 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7646}
7647
7648static void
c19d1205 7649do_vfp_dp_ldst (void)
e16bb312 7650{
5287ad62 7651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 7652 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
7653}
7654
c19d1205 7655
e16bb312 7656static void
c19d1205 7657vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7658{
c19d1205
ZW
7659 if (inst.operands[0].writeback)
7660 inst.instruction |= WRITE_BACK;
7661 else
7662 constraint (ldstm_type != VFP_LDSTMIA,
7663 _("this addressing mode requires base-register writeback"));
7664 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7665 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 7666 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
7667}
7668
7669static void
c19d1205 7670vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 7671{
c19d1205 7672 int count;
e16bb312 7673
c19d1205
ZW
7674 if (inst.operands[0].writeback)
7675 inst.instruction |= WRITE_BACK;
7676 else
7677 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7678 _("this addressing mode requires base-register writeback"));
e16bb312 7679
c19d1205 7680 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 7681 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 7682
c19d1205
ZW
7683 count = inst.operands[1].imm << 1;
7684 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7685 count += 1;
e16bb312 7686
c19d1205 7687 inst.instruction |= count;
e16bb312
NC
7688}
7689
7690static void
c19d1205 7691do_vfp_sp_ldstmia (void)
e16bb312 7692{
c19d1205 7693 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7694}
7695
7696static void
c19d1205 7697do_vfp_sp_ldstmdb (void)
e16bb312 7698{
c19d1205 7699 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7700}
7701
7702static void
c19d1205 7703do_vfp_dp_ldstmia (void)
e16bb312 7704{
c19d1205 7705 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
7706}
7707
7708static void
c19d1205 7709do_vfp_dp_ldstmdb (void)
e16bb312 7710{
c19d1205 7711 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
7712}
7713
7714static void
c19d1205 7715do_vfp_xp_ldstmia (void)
e16bb312 7716{
c19d1205
ZW
7717 vfp_dp_ldstm (VFP_LDSTMIAX);
7718}
e16bb312 7719
c19d1205
ZW
7720static void
7721do_vfp_xp_ldstmdb (void)
7722{
7723 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 7724}
5287ad62
JB
7725
7726static void
7727do_vfp_dp_rd_rm (void)
7728{
7729 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7730 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7731}
7732
7733static void
7734do_vfp_dp_rn_rd (void)
7735{
7736 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7737 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7738}
7739
7740static void
7741do_vfp_dp_rd_rn (void)
7742{
7743 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7744 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7745}
7746
7747static void
7748do_vfp_dp_rd_rn_rm (void)
7749{
7750 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7751 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7752 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7753}
7754
7755static void
7756do_vfp_dp_rd (void)
7757{
7758 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7759}
7760
7761static void
7762do_vfp_dp_rm_rd_rn (void)
7763{
7764 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7765 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7766 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7767}
7768
7769/* VFPv3 instructions. */
7770static void
7771do_vfp_sp_const (void)
7772{
7773 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
7774 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7775 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7776}
7777
7778static void
7779do_vfp_dp_const (void)
7780{
7781 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
7782 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7783 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
7784}
7785
7786static void
7787vfp_conv (int srcsize)
7788{
7789 unsigned immbits = srcsize - inst.operands[1].imm;
7790 inst.instruction |= (immbits & 1) << 5;
7791 inst.instruction |= (immbits >> 1);
7792}
7793
7794static void
7795do_vfp_sp_conv_16 (void)
7796{
7797 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7798 vfp_conv (16);
7799}
7800
7801static void
7802do_vfp_dp_conv_16 (void)
7803{
7804 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7805 vfp_conv (16);
7806}
7807
7808static void
7809do_vfp_sp_conv_32 (void)
7810{
7811 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7812 vfp_conv (32);
7813}
7814
7815static void
7816do_vfp_dp_conv_32 (void)
7817{
7818 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7819 vfp_conv (32);
7820}
7821
c19d1205
ZW
7822\f
7823/* FPA instructions. Also in a logical order. */
e16bb312 7824
c19d1205
ZW
7825static void
7826do_fpa_cmp (void)
7827{
7828 inst.instruction |= inst.operands[0].reg << 16;
7829 inst.instruction |= inst.operands[1].reg;
7830}
b99bd4ef
NC
7831
7832static void
c19d1205 7833do_fpa_ldmstm (void)
b99bd4ef 7834{
c19d1205
ZW
7835 inst.instruction |= inst.operands[0].reg << 12;
7836 switch (inst.operands[1].imm)
7837 {
7838 case 1: inst.instruction |= CP_T_X; break;
7839 case 2: inst.instruction |= CP_T_Y; break;
7840 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7841 case 4: break;
7842 default: abort ();
7843 }
b99bd4ef 7844
c19d1205
ZW
7845 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7846 {
7847 /* The instruction specified "ea" or "fd", so we can only accept
7848 [Rn]{!}. The instruction does not really support stacking or
7849 unstacking, so we have to emulate these by setting appropriate
7850 bits and offsets. */
7851 constraint (inst.reloc.exp.X_op != O_constant
7852 || inst.reloc.exp.X_add_number != 0,
7853 _("this instruction does not support indexing"));
b99bd4ef 7854
c19d1205
ZW
7855 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7856 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 7857
c19d1205
ZW
7858 if (!(inst.instruction & INDEX_UP))
7859 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 7860
c19d1205
ZW
7861 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7862 {
7863 inst.operands[2].preind = 0;
7864 inst.operands[2].postind = 1;
7865 }
7866 }
b99bd4ef 7867
c19d1205 7868 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 7869}
037e8744 7870
c19d1205
ZW
7871\f
7872/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 7873
c19d1205
ZW
7874static void
7875do_iwmmxt_tandorc (void)
7876{
7877 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7878}
b99bd4ef 7879
c19d1205
ZW
7880static void
7881do_iwmmxt_textrc (void)
7882{
7883 inst.instruction |= inst.operands[0].reg << 12;
7884 inst.instruction |= inst.operands[1].imm;
7885}
b99bd4ef
NC
7886
7887static void
c19d1205 7888do_iwmmxt_textrm (void)
b99bd4ef 7889{
c19d1205
ZW
7890 inst.instruction |= inst.operands[0].reg << 12;
7891 inst.instruction |= inst.operands[1].reg << 16;
7892 inst.instruction |= inst.operands[2].imm;
7893}
b99bd4ef 7894
c19d1205
ZW
7895static void
7896do_iwmmxt_tinsr (void)
7897{
7898 inst.instruction |= inst.operands[0].reg << 16;
7899 inst.instruction |= inst.operands[1].reg << 12;
7900 inst.instruction |= inst.operands[2].imm;
7901}
b99bd4ef 7902
c19d1205
ZW
7903static void
7904do_iwmmxt_tmia (void)
7905{
7906 inst.instruction |= inst.operands[0].reg << 5;
7907 inst.instruction |= inst.operands[1].reg;
7908 inst.instruction |= inst.operands[2].reg << 12;
7909}
b99bd4ef 7910
c19d1205
ZW
7911static void
7912do_iwmmxt_waligni (void)
7913{
7914 inst.instruction |= inst.operands[0].reg << 12;
7915 inst.instruction |= inst.operands[1].reg << 16;
7916 inst.instruction |= inst.operands[2].reg;
7917 inst.instruction |= inst.operands[3].imm << 20;
7918}
b99bd4ef 7919
2d447fca
JM
7920static void
7921do_iwmmxt_wmerge (void)
7922{
7923 inst.instruction |= inst.operands[0].reg << 12;
7924 inst.instruction |= inst.operands[1].reg << 16;
7925 inst.instruction |= inst.operands[2].reg;
7926 inst.instruction |= inst.operands[3].imm << 21;
7927}
7928
c19d1205
ZW
7929static void
7930do_iwmmxt_wmov (void)
7931{
7932 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7933 inst.instruction |= inst.operands[0].reg << 12;
7934 inst.instruction |= inst.operands[1].reg << 16;
7935 inst.instruction |= inst.operands[1].reg;
7936}
b99bd4ef 7937
c19d1205
ZW
7938static void
7939do_iwmmxt_wldstbh (void)
7940{
8f06b2d8 7941 int reloc;
c19d1205 7942 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
7943 if (thumb_mode)
7944 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7945 else
7946 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7947 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
7948}
7949
c19d1205
ZW
7950static void
7951do_iwmmxt_wldstw (void)
7952{
7953 /* RIWR_RIWC clears .isreg for a control register. */
7954 if (!inst.operands[0].isreg)
7955 {
7956 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7957 inst.instruction |= 0xf0000000;
7958 }
b99bd4ef 7959
c19d1205
ZW
7960 inst.instruction |= inst.operands[0].reg << 12;
7961 encode_arm_cp_address (1, TRUE, TRUE, 0);
7962}
b99bd4ef
NC
7963
7964static void
c19d1205 7965do_iwmmxt_wldstd (void)
b99bd4ef 7966{
c19d1205 7967 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
7968 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7969 && inst.operands[1].immisreg)
7970 {
7971 inst.instruction &= ~0x1a000ff;
7972 inst.instruction |= (0xf << 28);
7973 if (inst.operands[1].preind)
7974 inst.instruction |= PRE_INDEX;
7975 if (!inst.operands[1].negative)
7976 inst.instruction |= INDEX_UP;
7977 if (inst.operands[1].writeback)
7978 inst.instruction |= WRITE_BACK;
7979 inst.instruction |= inst.operands[1].reg << 16;
7980 inst.instruction |= inst.reloc.exp.X_add_number << 4;
7981 inst.instruction |= inst.operands[1].imm;
7982 }
7983 else
7984 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 7985}
b99bd4ef 7986
c19d1205
ZW
7987static void
7988do_iwmmxt_wshufh (void)
7989{
7990 inst.instruction |= inst.operands[0].reg << 12;
7991 inst.instruction |= inst.operands[1].reg << 16;
7992 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7993 inst.instruction |= (inst.operands[2].imm & 0x0f);
7994}
b99bd4ef 7995
c19d1205
ZW
7996static void
7997do_iwmmxt_wzero (void)
7998{
7999 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8000 inst.instruction |= inst.operands[0].reg;
8001 inst.instruction |= inst.operands[0].reg << 12;
8002 inst.instruction |= inst.operands[0].reg << 16;
8003}
2d447fca
JM
8004
8005static void
8006do_iwmmxt_wrwrwr_or_imm5 (void)
8007{
8008 if (inst.operands[2].isreg)
8009 do_rd_rn_rm ();
8010 else {
8011 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8012 _("immediate operand requires iWMMXt2"));
8013 do_rd_rn ();
8014 if (inst.operands[2].imm == 0)
8015 {
8016 switch ((inst.instruction >> 20) & 0xf)
8017 {
8018 case 4:
8019 case 5:
8020 case 6:
8021 case 7:
8022 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8023 inst.operands[2].imm = 16;
8024 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8025 break;
8026 case 8:
8027 case 9:
8028 case 10:
8029 case 11:
8030 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8031 inst.operands[2].imm = 32;
8032 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8033 break;
8034 case 12:
8035 case 13:
8036 case 14:
8037 case 15:
8038 {
8039 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8040 unsigned long wrn;
8041 wrn = (inst.instruction >> 16) & 0xf;
8042 inst.instruction &= 0xff0fff0f;
8043 inst.instruction |= wrn;
8044 /* Bail out here; the instruction is now assembled. */
8045 return;
8046 }
8047 }
8048 }
8049 /* Map 32 -> 0, etc. */
8050 inst.operands[2].imm &= 0x1f;
8051 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8052 }
8053}
c19d1205
ZW
8054\f
8055/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8056 operations first, then control, shift, and load/store. */
b99bd4ef 8057
c19d1205 8058/* Insns like "foo X,Y,Z". */
b99bd4ef 8059
c19d1205
ZW
8060static void
8061do_mav_triple (void)
8062{
8063 inst.instruction |= inst.operands[0].reg << 16;
8064 inst.instruction |= inst.operands[1].reg;
8065 inst.instruction |= inst.operands[2].reg << 12;
8066}
b99bd4ef 8067
c19d1205
ZW
8068/* Insns like "foo W,X,Y,Z".
8069 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8070
c19d1205
ZW
8071static void
8072do_mav_quad (void)
8073{
8074 inst.instruction |= inst.operands[0].reg << 5;
8075 inst.instruction |= inst.operands[1].reg << 12;
8076 inst.instruction |= inst.operands[2].reg << 16;
8077 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8078}
8079
c19d1205
ZW
8080/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8081static void
8082do_mav_dspsc (void)
a737bd4d 8083{
c19d1205
ZW
8084 inst.instruction |= inst.operands[1].reg << 12;
8085}
a737bd4d 8086
c19d1205
ZW
8087/* Maverick shift immediate instructions.
8088 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8089 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8090
c19d1205
ZW
8091static void
8092do_mav_shift (void)
8093{
8094 int imm = inst.operands[2].imm;
a737bd4d 8095
c19d1205
ZW
8096 inst.instruction |= inst.operands[0].reg << 12;
8097 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8098
c19d1205
ZW
8099 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8100 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8101 Bit 4 should be 0. */
8102 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8103
c19d1205
ZW
8104 inst.instruction |= imm;
8105}
8106\f
8107/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8108
c19d1205
ZW
8109/* Xscale multiply-accumulate (argument parse)
8110 MIAcc acc0,Rm,Rs
8111 MIAPHcc acc0,Rm,Rs
8112 MIAxycc acc0,Rm,Rs. */
a737bd4d 8113
c19d1205
ZW
8114static void
8115do_xsc_mia (void)
8116{
8117 inst.instruction |= inst.operands[1].reg;
8118 inst.instruction |= inst.operands[2].reg << 12;
8119}
a737bd4d 8120
c19d1205 8121/* Xscale move-accumulator-register (argument parse)
a737bd4d 8122
c19d1205 8123 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8124
c19d1205
ZW
8125static void
8126do_xsc_mar (void)
8127{
8128 inst.instruction |= inst.operands[1].reg << 12;
8129 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8130}
8131
c19d1205 8132/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8133
c19d1205 8134 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8135
8136static void
c19d1205 8137do_xsc_mra (void)
b99bd4ef 8138{
c19d1205
ZW
8139 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8140 inst.instruction |= inst.operands[0].reg << 12;
8141 inst.instruction |= inst.operands[1].reg << 16;
8142}
8143\f
8144/* Encoding functions relevant only to Thumb. */
b99bd4ef 8145
c19d1205
ZW
8146/* inst.operands[i] is a shifted-register operand; encode
8147 it into inst.instruction in the format used by Thumb32. */
8148
8149static void
8150encode_thumb32_shifted_operand (int i)
8151{
8152 unsigned int value = inst.reloc.exp.X_add_number;
8153 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8154
9c3c69f2
PB
8155 constraint (inst.operands[i].immisreg,
8156 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8157 inst.instruction |= inst.operands[i].reg;
8158 if (shift == SHIFT_RRX)
8159 inst.instruction |= SHIFT_ROR << 4;
8160 else
b99bd4ef 8161 {
c19d1205
ZW
8162 constraint (inst.reloc.exp.X_op != O_constant,
8163 _("expression too complex"));
8164
8165 constraint (value > 32
8166 || (value == 32 && (shift == SHIFT_LSL
8167 || shift == SHIFT_ROR)),
8168 _("shift expression is too large"));
8169
8170 if (value == 0)
8171 shift = SHIFT_LSL;
8172 else if (value == 32)
8173 value = 0;
8174
8175 inst.instruction |= shift << 4;
8176 inst.instruction |= (value & 0x1c) << 10;
8177 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8178 }
c19d1205 8179}
b99bd4ef 8180
b99bd4ef 8181
c19d1205
ZW
8182/* inst.operands[i] was set up by parse_address. Encode it into a
8183 Thumb32 format load or store instruction. Reject forms that cannot
8184 be used with such instructions. If is_t is true, reject forms that
8185 cannot be used with a T instruction; if is_d is true, reject forms
8186 that cannot be used with a D instruction. */
b99bd4ef 8187
c19d1205
ZW
8188static void
8189encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8190{
8191 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8192
8193 constraint (!inst.operands[i].isreg,
53365c0d 8194 _("Instruction does not support =N addresses"));
b99bd4ef 8195
c19d1205
ZW
8196 inst.instruction |= inst.operands[i].reg << 16;
8197 if (inst.operands[i].immisreg)
b99bd4ef 8198 {
c19d1205
ZW
8199 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8200 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8201 constraint (inst.operands[i].negative,
8202 _("Thumb does not support negative register indexing"));
8203 constraint (inst.operands[i].postind,
8204 _("Thumb does not support register post-indexing"));
8205 constraint (inst.operands[i].writeback,
8206 _("Thumb does not support register indexing with writeback"));
8207 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8208 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8209
f40d1643 8210 inst.instruction |= inst.operands[i].imm;
c19d1205 8211 if (inst.operands[i].shifted)
b99bd4ef 8212 {
c19d1205
ZW
8213 constraint (inst.reloc.exp.X_op != O_constant,
8214 _("expression too complex"));
9c3c69f2
PB
8215 constraint (inst.reloc.exp.X_add_number < 0
8216 || inst.reloc.exp.X_add_number > 3,
c19d1205 8217 _("shift out of range"));
9c3c69f2 8218 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8219 }
8220 inst.reloc.type = BFD_RELOC_UNUSED;
8221 }
8222 else if (inst.operands[i].preind)
8223 {
8224 constraint (is_pc && inst.operands[i].writeback,
8225 _("cannot use writeback with PC-relative addressing"));
f40d1643 8226 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8227 _("cannot use writeback with this instruction"));
8228
8229 if (is_d)
8230 {
8231 inst.instruction |= 0x01000000;
8232 if (inst.operands[i].writeback)
8233 inst.instruction |= 0x00200000;
b99bd4ef 8234 }
c19d1205 8235 else
b99bd4ef 8236 {
c19d1205
ZW
8237 inst.instruction |= 0x00000c00;
8238 if (inst.operands[i].writeback)
8239 inst.instruction |= 0x00000100;
b99bd4ef 8240 }
c19d1205 8241 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8242 }
c19d1205 8243 else if (inst.operands[i].postind)
b99bd4ef 8244 {
c19d1205
ZW
8245 assert (inst.operands[i].writeback);
8246 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8247 constraint (is_t, _("cannot use post-indexing with this instruction"));
8248
8249 if (is_d)
8250 inst.instruction |= 0x00200000;
8251 else
8252 inst.instruction |= 0x00000900;
8253 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8254 }
8255 else /* unindexed - only for coprocessor */
8256 inst.error = _("instruction does not accept unindexed addressing");
8257}
8258
8259/* Table of Thumb instructions which exist in both 16- and 32-bit
8260 encodings (the latter only in post-V6T2 cores). The index is the
8261 value used in the insns table below. When there is more than one
8262 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8263 holds variant (1).
8264 Also contains several pseudo-instructions used during relaxation. */
c19d1205
ZW
8265#define T16_32_TAB \
8266 X(adc, 4140, eb400000), \
8267 X(adcs, 4140, eb500000), \
8268 X(add, 1c00, eb000000), \
8269 X(adds, 1c00, eb100000), \
0110f2b8
PB
8270 X(addi, 0000, f1000000), \
8271 X(addis, 0000, f1100000), \
8272 X(add_pc,000f, f20f0000), \
8273 X(add_sp,000d, f10d0000), \
e9f89963 8274 X(adr, 000f, f20f0000), \
c19d1205
ZW
8275 X(and, 4000, ea000000), \
8276 X(ands, 4000, ea100000), \
8277 X(asr, 1000, fa40f000), \
8278 X(asrs, 1000, fa50f000), \
0110f2b8
PB
8279 X(b, e000, f000b000), \
8280 X(bcond, d000, f0008000), \
c19d1205
ZW
8281 X(bic, 4380, ea200000), \
8282 X(bics, 4380, ea300000), \
8283 X(cmn, 42c0, eb100f00), \
8284 X(cmp, 2800, ebb00f00), \
8285 X(cpsie, b660, f3af8400), \
8286 X(cpsid, b670, f3af8600), \
8287 X(cpy, 4600, ea4f0000), \
155257ea 8288 X(dec_sp,80dd, f1ad0d00), \
c19d1205
ZW
8289 X(eor, 4040, ea800000), \
8290 X(eors, 4040, ea900000), \
0110f2b8 8291 X(inc_sp,00dd, f10d0d00), \
c19d1205
ZW
8292 X(ldmia, c800, e8900000), \
8293 X(ldr, 6800, f8500000), \
8294 X(ldrb, 7800, f8100000), \
8295 X(ldrh, 8800, f8300000), \
8296 X(ldrsb, 5600, f9100000), \
8297 X(ldrsh, 5e00, f9300000), \
0110f2b8
PB
8298 X(ldr_pc,4800, f85f0000), \
8299 X(ldr_pc2,4800, f85f0000), \
8300 X(ldr_sp,9800, f85d0000), \
c19d1205
ZW
8301 X(lsl, 0000, fa00f000), \
8302 X(lsls, 0000, fa10f000), \
8303 X(lsr, 0800, fa20f000), \
8304 X(lsrs, 0800, fa30f000), \
8305 X(mov, 2000, ea4f0000), \
8306 X(movs, 2000, ea5f0000), \
8307 X(mul, 4340, fb00f000), \
8308 X(muls, 4340, ffffffff), /* no 32b muls */ \
8309 X(mvn, 43c0, ea6f0000), \
8310 X(mvns, 43c0, ea7f0000), \
8311 X(neg, 4240, f1c00000), /* rsb #0 */ \
8312 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8313 X(orr, 4300, ea400000), \
8314 X(orrs, 4300, ea500000), \
e9f89963
PB
8315 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8316 X(push, b400, e92d0000), /* stmdb sp!,... */ \
c19d1205
ZW
8317 X(rev, ba00, fa90f080), \
8318 X(rev16, ba40, fa90f090), \
8319 X(revsh, bac0, fa90f0b0), \
8320 X(ror, 41c0, fa60f000), \
8321 X(rors, 41c0, fa70f000), \
8322 X(sbc, 4180, eb600000), \
8323 X(sbcs, 4180, eb700000), \
8324 X(stmia, c000, e8800000), \
8325 X(str, 6000, f8400000), \
8326 X(strb, 7000, f8000000), \
8327 X(strh, 8000, f8200000), \
0110f2b8 8328 X(str_sp,9000, f84d0000), \
c19d1205
ZW
8329 X(sub, 1e00, eba00000), \
8330 X(subs, 1e00, ebb00000), \
0110f2b8
PB
8331 X(subi, 8000, f1a00000), \
8332 X(subis, 8000, f1b00000), \
c19d1205
ZW
8333 X(sxtb, b240, fa4ff080), \
8334 X(sxth, b200, fa0ff080), \
8335 X(tst, 4200, ea100f00), \
8336 X(uxtb, b2c0, fa5ff080), \
8337 X(uxth, b280, fa1ff080), \
8338 X(nop, bf00, f3af8000), \
8339 X(yield, bf10, f3af8001), \
8340 X(wfe, bf20, f3af8002), \
8341 X(wfi, bf30, f3af8003), \
8342 X(sev, bf40, f3af9004), /* typo, 8004? */
8343
8344/* To catch errors in encoding functions, the codes are all offset by
8345 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8346 as 16-bit instructions. */
8347#define X(a,b,c) T_MNEM_##a
8348enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8349#undef X
8350
8351#define X(a,b,c) 0x##b
8352static const unsigned short thumb_op16[] = { T16_32_TAB };
8353#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8354#undef X
8355
8356#define X(a,b,c) 0x##c
8357static const unsigned int thumb_op32[] = { T16_32_TAB };
8358#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8359#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8360#undef X
8361#undef T16_32_TAB
8362
8363/* Thumb instruction encoders, in alphabetical order. */
8364
92e90b6e
PB
8365/* ADDW or SUBW. */
8366static void
8367do_t_add_sub_w (void)
8368{
8369 int Rd, Rn;
8370
8371 Rd = inst.operands[0].reg;
8372 Rn = inst.operands[1].reg;
8373
8374 constraint (Rd == 15, _("PC not allowed as destination"));
8375 inst.instruction |= (Rn << 16) | (Rd << 8);
8376 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8377}
8378
c19d1205
ZW
8379/* Parse an add or subtract instruction. We get here with inst.instruction
8380 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8381
8382static void
8383do_t_add_sub (void)
8384{
8385 int Rd, Rs, Rn;
8386
8387 Rd = inst.operands[0].reg;
8388 Rs = (inst.operands[1].present
8389 ? inst.operands[1].reg /* Rd, Rs, foo */
8390 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8391
8392 if (unified_syntax)
8393 {
0110f2b8
PB
8394 bfd_boolean flags;
8395 bfd_boolean narrow;
8396 int opcode;
8397
8398 flags = (inst.instruction == T_MNEM_adds
8399 || inst.instruction == T_MNEM_subs);
8400 if (flags)
8401 narrow = (current_it_mask == 0);
8402 else
8403 narrow = (current_it_mask != 0);
c19d1205 8404 if (!inst.operands[2].isreg)
b99bd4ef 8405 {
16805f35
PB
8406 int add;
8407
8408 add = (inst.instruction == T_MNEM_add
8409 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8410 opcode = 0;
8411 if (inst.size_req != 4)
8412 {
0110f2b8
PB
8413 /* Attempt to use a narrow opcode, with relaxation if
8414 appropriate. */
8415 if (Rd == REG_SP && Rs == REG_SP && !flags)
8416 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8417 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8418 opcode = T_MNEM_add_sp;
8419 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8420 opcode = T_MNEM_add_pc;
8421 else if (Rd <= 7 && Rs <= 7 && narrow)
8422 {
8423 if (flags)
8424 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8425 else
8426 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8427 }
8428 if (opcode)
8429 {
8430 inst.instruction = THUMB_OP16(opcode);
8431 inst.instruction |= (Rd << 4) | Rs;
8432 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8433 if (inst.size_req != 2)
8434 inst.relax = opcode;
8435 }
8436 else
8437 constraint (inst.size_req == 2, BAD_HIREG);
8438 }
8439 if (inst.size_req == 4
8440 || (inst.size_req != 2 && !opcode))
8441 {
16805f35
PB
8442 if (Rs == REG_PC)
8443 {
8444 /* Always use addw/subw. */
8445 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8446 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8447 }
8448 else
8449 {
8450 inst.instruction = THUMB_OP32 (inst.instruction);
8451 inst.instruction = (inst.instruction & 0xe1ffffff)
8452 | 0x10000000;
8453 if (flags)
8454 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8455 else
8456 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8457 }
dc4503c6
PB
8458 inst.instruction |= Rd << 8;
8459 inst.instruction |= Rs << 16;
0110f2b8 8460 }
b99bd4ef 8461 }
c19d1205
ZW
8462 else
8463 {
8464 Rn = inst.operands[2].reg;
8465 /* See if we can do this with a 16-bit instruction. */
8466 if (!inst.operands[2].shifted && inst.size_req != 4)
8467 {
e27ec89e
PB
8468 if (Rd > 7 || Rs > 7 || Rn > 7)
8469 narrow = FALSE;
8470
8471 if (narrow)
c19d1205 8472 {
e27ec89e
PB
8473 inst.instruction = ((inst.instruction == T_MNEM_adds
8474 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8475 ? T_OPCODE_ADD_R3
8476 : T_OPCODE_SUB_R3);
8477 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8478 return;
8479 }
b99bd4ef 8480
c19d1205
ZW
8481 if (inst.instruction == T_MNEM_add)
8482 {
8483 if (Rd == Rs)
8484 {
8485 inst.instruction = T_OPCODE_ADD_HI;
8486 inst.instruction |= (Rd & 8) << 4;
8487 inst.instruction |= (Rd & 7);
8488 inst.instruction |= Rn << 3;
8489 return;
8490 }
8491 /* ... because addition is commutative! */
8492 else if (Rd == Rn)
8493 {
8494 inst.instruction = T_OPCODE_ADD_HI;
8495 inst.instruction |= (Rd & 8) << 4;
8496 inst.instruction |= (Rd & 7);
8497 inst.instruction |= Rs << 3;
8498 return;
8499 }
8500 }
8501 }
8502 /* If we get here, it can't be done in 16 bits. */
8503 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8504 _("shift must be constant"));
8505 inst.instruction = THUMB_OP32 (inst.instruction);
8506 inst.instruction |= Rd << 8;
8507 inst.instruction |= Rs << 16;
8508 encode_thumb32_shifted_operand (2);
8509 }
8510 }
8511 else
8512 {
8513 constraint (inst.instruction == T_MNEM_adds
8514 || inst.instruction == T_MNEM_subs,
8515 BAD_THUMB32);
b99bd4ef 8516
c19d1205 8517 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 8518 {
c19d1205
ZW
8519 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8520 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8521 BAD_HIREG);
8522
8523 inst.instruction = (inst.instruction == T_MNEM_add
8524 ? 0x0000 : 0x8000);
8525 inst.instruction |= (Rd << 4) | Rs;
8526 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
8527 return;
8528 }
8529
c19d1205
ZW
8530 Rn = inst.operands[2].reg;
8531 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 8532
c19d1205
ZW
8533 /* We now have Rd, Rs, and Rn set to registers. */
8534 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 8535 {
c19d1205
ZW
8536 /* Can't do this for SUB. */
8537 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8538 inst.instruction = T_OPCODE_ADD_HI;
8539 inst.instruction |= (Rd & 8) << 4;
8540 inst.instruction |= (Rd & 7);
8541 if (Rs == Rd)
8542 inst.instruction |= Rn << 3;
8543 else if (Rn == Rd)
8544 inst.instruction |= Rs << 3;
8545 else
8546 constraint (1, _("dest must overlap one source register"));
8547 }
8548 else
8549 {
8550 inst.instruction = (inst.instruction == T_MNEM_add
8551 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8552 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 8553 }
b99bd4ef 8554 }
b99bd4ef
NC
8555}
8556
c19d1205
ZW
8557static void
8558do_t_adr (void)
8559{
0110f2b8
PB
8560 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8561 {
8562 /* Defer to section relaxation. */
8563 inst.relax = inst.instruction;
8564 inst.instruction = THUMB_OP16 (inst.instruction);
8565 inst.instruction |= inst.operands[0].reg << 4;
8566 }
8567 else if (unified_syntax && inst.size_req != 2)
e9f89963 8568 {
0110f2b8 8569 /* Generate a 32-bit opcode. */
e9f89963
PB
8570 inst.instruction = THUMB_OP32 (inst.instruction);
8571 inst.instruction |= inst.operands[0].reg << 8;
8572 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8573 inst.reloc.pc_rel = 1;
8574 }
8575 else
8576 {
0110f2b8 8577 /* Generate a 16-bit opcode. */
e9f89963
PB
8578 inst.instruction = THUMB_OP16 (inst.instruction);
8579 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8580 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8581 inst.reloc.pc_rel = 1;
b99bd4ef 8582
e9f89963
PB
8583 inst.instruction |= inst.operands[0].reg << 4;
8584 }
c19d1205 8585}
b99bd4ef 8586
c19d1205
ZW
8587/* Arithmetic instructions for which there is just one 16-bit
8588 instruction encoding, and it allows only two low registers.
8589 For maximal compatibility with ARM syntax, we allow three register
8590 operands even when Thumb-32 instructions are not available, as long
8591 as the first two are identical. For instance, both "sbc r0,r1" and
8592 "sbc r0,r0,r1" are allowed. */
b99bd4ef 8593static void
c19d1205 8594do_t_arit3 (void)
b99bd4ef 8595{
c19d1205 8596 int Rd, Rs, Rn;
b99bd4ef 8597
c19d1205
ZW
8598 Rd = inst.operands[0].reg;
8599 Rs = (inst.operands[1].present
8600 ? inst.operands[1].reg /* Rd, Rs, foo */
8601 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8602 Rn = inst.operands[2].reg;
b99bd4ef 8603
c19d1205 8604 if (unified_syntax)
b99bd4ef 8605 {
c19d1205
ZW
8606 if (!inst.operands[2].isreg)
8607 {
8608 /* For an immediate, we always generate a 32-bit opcode;
8609 section relaxation will shrink it later if possible. */
8610 inst.instruction = THUMB_OP32 (inst.instruction);
8611 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8612 inst.instruction |= Rd << 8;
8613 inst.instruction |= Rs << 16;
8614 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8615 }
8616 else
8617 {
e27ec89e
PB
8618 bfd_boolean narrow;
8619
c19d1205 8620 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8621 if (THUMB_SETS_FLAGS (inst.instruction))
8622 narrow = current_it_mask == 0;
8623 else
8624 narrow = current_it_mask != 0;
8625
8626 if (Rd > 7 || Rn > 7 || Rs > 7)
8627 narrow = FALSE;
8628 if (inst.operands[2].shifted)
8629 narrow = FALSE;
8630 if (inst.size_req == 4)
8631 narrow = FALSE;
8632
8633 if (narrow
c19d1205
ZW
8634 && Rd == Rs)
8635 {
8636 inst.instruction = THUMB_OP16 (inst.instruction);
8637 inst.instruction |= Rd;
8638 inst.instruction |= Rn << 3;
8639 return;
8640 }
b99bd4ef 8641
c19d1205
ZW
8642 /* If we get here, it can't be done in 16 bits. */
8643 constraint (inst.operands[2].shifted
8644 && inst.operands[2].immisreg,
8645 _("shift must be constant"));
8646 inst.instruction = THUMB_OP32 (inst.instruction);
8647 inst.instruction |= Rd << 8;
8648 inst.instruction |= Rs << 16;
8649 encode_thumb32_shifted_operand (2);
8650 }
a737bd4d 8651 }
c19d1205 8652 else
b99bd4ef 8653 {
c19d1205
ZW
8654 /* On its face this is a lie - the instruction does set the
8655 flags. However, the only supported mnemonic in this mode
8656 says it doesn't. */
8657 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8658
c19d1205
ZW
8659 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8660 _("unshifted register required"));
8661 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8662 constraint (Rd != Rs,
8663 _("dest and source1 must be the same register"));
a737bd4d 8664
c19d1205
ZW
8665 inst.instruction = THUMB_OP16 (inst.instruction);
8666 inst.instruction |= Rd;
8667 inst.instruction |= Rn << 3;
b99bd4ef 8668 }
a737bd4d 8669}
b99bd4ef 8670
c19d1205
ZW
8671/* Similarly, but for instructions where the arithmetic operation is
8672 commutative, so we can allow either of them to be different from
8673 the destination operand in a 16-bit instruction. For instance, all
8674 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8675 accepted. */
8676static void
8677do_t_arit3c (void)
a737bd4d 8678{
c19d1205 8679 int Rd, Rs, Rn;
b99bd4ef 8680
c19d1205
ZW
8681 Rd = inst.operands[0].reg;
8682 Rs = (inst.operands[1].present
8683 ? inst.operands[1].reg /* Rd, Rs, foo */
8684 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8685 Rn = inst.operands[2].reg;
a737bd4d 8686
c19d1205 8687 if (unified_syntax)
a737bd4d 8688 {
c19d1205 8689 if (!inst.operands[2].isreg)
b99bd4ef 8690 {
c19d1205
ZW
8691 /* For an immediate, we always generate a 32-bit opcode;
8692 section relaxation will shrink it later if possible. */
8693 inst.instruction = THUMB_OP32 (inst.instruction);
8694 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8695 inst.instruction |= Rd << 8;
8696 inst.instruction |= Rs << 16;
8697 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 8698 }
c19d1205 8699 else
a737bd4d 8700 {
e27ec89e
PB
8701 bfd_boolean narrow;
8702
c19d1205 8703 /* See if we can do this with a 16-bit instruction. */
e27ec89e
PB
8704 if (THUMB_SETS_FLAGS (inst.instruction))
8705 narrow = current_it_mask == 0;
8706 else
8707 narrow = current_it_mask != 0;
8708
8709 if (Rd > 7 || Rn > 7 || Rs > 7)
8710 narrow = FALSE;
8711 if (inst.operands[2].shifted)
8712 narrow = FALSE;
8713 if (inst.size_req == 4)
8714 narrow = FALSE;
8715
8716 if (narrow)
a737bd4d 8717 {
c19d1205 8718 if (Rd == Rs)
a737bd4d 8719 {
c19d1205
ZW
8720 inst.instruction = THUMB_OP16 (inst.instruction);
8721 inst.instruction |= Rd;
8722 inst.instruction |= Rn << 3;
8723 return;
a737bd4d 8724 }
c19d1205 8725 if (Rd == Rn)
a737bd4d 8726 {
c19d1205
ZW
8727 inst.instruction = THUMB_OP16 (inst.instruction);
8728 inst.instruction |= Rd;
8729 inst.instruction |= Rs << 3;
8730 return;
a737bd4d
NC
8731 }
8732 }
c19d1205
ZW
8733
8734 /* If we get here, it can't be done in 16 bits. */
8735 constraint (inst.operands[2].shifted
8736 && inst.operands[2].immisreg,
8737 _("shift must be constant"));
8738 inst.instruction = THUMB_OP32 (inst.instruction);
8739 inst.instruction |= Rd << 8;
8740 inst.instruction |= Rs << 16;
8741 encode_thumb32_shifted_operand (2);
a737bd4d 8742 }
b99bd4ef 8743 }
c19d1205
ZW
8744 else
8745 {
8746 /* On its face this is a lie - the instruction does set the
8747 flags. However, the only supported mnemonic in this mode
8748 says it doesn't. */
8749 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 8750
c19d1205
ZW
8751 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8752 _("unshifted register required"));
8753 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8754
8755 inst.instruction = THUMB_OP16 (inst.instruction);
8756 inst.instruction |= Rd;
8757
8758 if (Rd == Rs)
8759 inst.instruction |= Rn << 3;
8760 else if (Rd == Rn)
8761 inst.instruction |= Rs << 3;
8762 else
8763 constraint (1, _("dest must overlap one source register"));
8764 }
a737bd4d
NC
8765}
8766
62b3e311
PB
8767static void
8768do_t_barrier (void)
8769{
8770 if (inst.operands[0].present)
8771 {
8772 constraint ((inst.instruction & 0xf0) != 0x40
8773 && inst.operands[0].imm != 0xf,
8774 "bad barrier type");
8775 inst.instruction |= inst.operands[0].imm;
8776 }
8777 else
8778 inst.instruction |= 0xf;
8779}
8780
c19d1205
ZW
8781static void
8782do_t_bfc (void)
a737bd4d 8783{
c19d1205
ZW
8784 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8785 constraint (msb > 32, _("bit-field extends past end of register"));
8786 /* The instruction encoding stores the LSB and MSB,
8787 not the LSB and width. */
8788 inst.instruction |= inst.operands[0].reg << 8;
8789 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8790 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8791 inst.instruction |= msb - 1;
b99bd4ef
NC
8792}
8793
c19d1205
ZW
8794static void
8795do_t_bfi (void)
b99bd4ef 8796{
c19d1205 8797 unsigned int msb;
b99bd4ef 8798
c19d1205
ZW
8799 /* #0 in second position is alternative syntax for bfc, which is
8800 the same instruction but with REG_PC in the Rm field. */
8801 if (!inst.operands[1].isreg)
8802 inst.operands[1].reg = REG_PC;
b99bd4ef 8803
c19d1205
ZW
8804 msb = inst.operands[2].imm + inst.operands[3].imm;
8805 constraint (msb > 32, _("bit-field extends past end of register"));
8806 /* The instruction encoding stores the LSB and MSB,
8807 not the LSB and width. */
8808 inst.instruction |= inst.operands[0].reg << 8;
8809 inst.instruction |= inst.operands[1].reg << 16;
8810 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8811 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8812 inst.instruction |= msb - 1;
b99bd4ef
NC
8813}
8814
c19d1205
ZW
8815static void
8816do_t_bfx (void)
b99bd4ef 8817{
c19d1205
ZW
8818 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8819 _("bit-field extends past end of register"));
8820 inst.instruction |= inst.operands[0].reg << 8;
8821 inst.instruction |= inst.operands[1].reg << 16;
8822 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8823 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8824 inst.instruction |= inst.operands[3].imm - 1;
8825}
b99bd4ef 8826
c19d1205
ZW
8827/* ARM V5 Thumb BLX (argument parse)
8828 BLX <target_addr> which is BLX(1)
8829 BLX <Rm> which is BLX(2)
8830 Unfortunately, there are two different opcodes for this mnemonic.
8831 So, the insns[].value is not used, and the code here zaps values
8832 into inst.instruction.
b99bd4ef 8833
c19d1205
ZW
8834 ??? How to take advantage of the additional two bits of displacement
8835 available in Thumb32 mode? Need new relocation? */
b99bd4ef 8836
c19d1205
ZW
8837static void
8838do_t_blx (void)
8839{
dfa9f0d5 8840 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8841 if (inst.operands[0].isreg)
8842 /* We have a register, so this is BLX(2). */
8843 inst.instruction |= inst.operands[0].reg << 3;
b99bd4ef
NC
8844 else
8845 {
c19d1205 8846 /* No register. This must be BLX(1). */
2fc8bdac 8847 inst.instruction = 0xf000e800;
39b41c9c
PB
8848#ifdef OBJ_ELF
8849 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8850 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8851 else
8852#endif
8853 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 8854 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8855 }
8856}
8857
c19d1205
ZW
8858static void
8859do_t_branch (void)
b99bd4ef 8860{
0110f2b8 8861 int opcode;
dfa9f0d5
PB
8862 int cond;
8863
8864 if (current_it_mask)
8865 {
8866 /* Conditional branches inside IT blocks are encoded as unconditional
8867 branches. */
8868 cond = COND_ALWAYS;
8869 /* A branch must be the last instruction in an IT block. */
8870 constraint (current_it_mask != 0x10, BAD_BRANCH);
8871 }
8872 else
8873 cond = inst.cond;
8874
8875 if (cond != COND_ALWAYS)
0110f2b8
PB
8876 opcode = T_MNEM_bcond;
8877 else
8878 opcode = inst.instruction;
8879
8880 if (unified_syntax && inst.size_req == 4)
c19d1205 8881 {
0110f2b8 8882 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 8883 if (cond == COND_ALWAYS)
0110f2b8 8884 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
8885 else
8886 {
dfa9f0d5
PB
8887 assert (cond != 0xF);
8888 inst.instruction |= cond << 22;
c19d1205
ZW
8889 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8890 }
8891 }
b99bd4ef
NC
8892 else
8893 {
0110f2b8 8894 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 8895 if (cond == COND_ALWAYS)
c19d1205
ZW
8896 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8897 else
b99bd4ef 8898 {
dfa9f0d5 8899 inst.instruction |= cond << 8;
c19d1205 8900 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 8901 }
0110f2b8
PB
8902 /* Allow section relaxation. */
8903 if (unified_syntax && inst.size_req != 2)
8904 inst.relax = opcode;
b99bd4ef 8905 }
c19d1205
ZW
8906
8907 inst.reloc.pc_rel = 1;
b99bd4ef
NC
8908}
8909
8910static void
c19d1205 8911do_t_bkpt (void)
b99bd4ef 8912{
dfa9f0d5
PB
8913 constraint (inst.cond != COND_ALWAYS,
8914 _("instruction is always unconditional"));
c19d1205 8915 if (inst.operands[0].present)
b99bd4ef 8916 {
c19d1205
ZW
8917 constraint (inst.operands[0].imm > 255,
8918 _("immediate value out of range"));
8919 inst.instruction |= inst.operands[0].imm;
b99bd4ef 8920 }
b99bd4ef
NC
8921}
8922
8923static void
c19d1205 8924do_t_branch23 (void)
b99bd4ef 8925{
dfa9f0d5 8926 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205 8927 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
8928 inst.reloc.pc_rel = 1;
8929
c19d1205
ZW
8930 /* If the destination of the branch is a defined symbol which does not have
8931 the THUMB_FUNC attribute, then we must be calling a function which has
8932 the (interfacearm) attribute. We look for the Thumb entry point to that
8933 function and change the branch to refer to that function instead. */
8934 if ( inst.reloc.exp.X_op == O_symbol
8935 && inst.reloc.exp.X_add_symbol != NULL
8936 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8937 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8938 inst.reloc.exp.X_add_symbol =
8939 find_real_start (inst.reloc.exp.X_add_symbol);
90e4755a
RE
8940}
8941
8942static void
c19d1205 8943do_t_bx (void)
90e4755a 8944{
dfa9f0d5 8945 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8946 inst.instruction |= inst.operands[0].reg << 3;
8947 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8948 should cause the alignment to be checked once it is known. This is
8949 because BX PC only works if the instruction is word aligned. */
8950}
90e4755a 8951
c19d1205
ZW
8952static void
8953do_t_bxj (void)
8954{
dfa9f0d5 8955 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
c19d1205
ZW
8956 if (inst.operands[0].reg == REG_PC)
8957 as_tsktsk (_("use of r15 in bxj is not really useful"));
90e4755a 8958
c19d1205 8959 inst.instruction |= inst.operands[0].reg << 16;
90e4755a
RE
8960}
8961
8962static void
c19d1205 8963do_t_clz (void)
90e4755a 8964{
c19d1205
ZW
8965 inst.instruction |= inst.operands[0].reg << 8;
8966 inst.instruction |= inst.operands[1].reg << 16;
8967 inst.instruction |= inst.operands[1].reg;
8968}
90e4755a 8969
dfa9f0d5
PB
8970static void
8971do_t_cps (void)
8972{
8973 constraint (current_it_mask, BAD_NOT_IT);
8974 inst.instruction |= inst.operands[0].imm;
8975}
8976
c19d1205
ZW
8977static void
8978do_t_cpsi (void)
8979{
dfa9f0d5 8980 constraint (current_it_mask, BAD_NOT_IT);
c19d1205 8981 if (unified_syntax
62b3e311
PB
8982 && (inst.operands[1].present || inst.size_req == 4)
8983 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 8984 {
c19d1205
ZW
8985 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8986 inst.instruction = 0xf3af8000;
8987 inst.instruction |= imod << 9;
8988 inst.instruction |= inst.operands[0].imm << 5;
8989 if (inst.operands[1].present)
8990 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 8991 }
c19d1205 8992 else
90e4755a 8993 {
62b3e311
PB
8994 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8995 && (inst.operands[0].imm & 4),
8996 _("selected processor does not support 'A' form "
8997 "of this instruction"));
8998 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
8999 _("Thumb does not support the 2-argument "
9000 "form of this instruction"));
9001 inst.instruction |= inst.operands[0].imm;
90e4755a 9002 }
90e4755a
RE
9003}
9004
c19d1205
ZW
9005/* THUMB CPY instruction (argument parse). */
9006
90e4755a 9007static void
c19d1205 9008do_t_cpy (void)
90e4755a 9009{
c19d1205 9010 if (inst.size_req == 4)
90e4755a 9011 {
c19d1205
ZW
9012 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9013 inst.instruction |= inst.operands[0].reg << 8;
9014 inst.instruction |= inst.operands[1].reg;
90e4755a 9015 }
c19d1205 9016 else
90e4755a 9017 {
c19d1205
ZW
9018 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9019 inst.instruction |= (inst.operands[0].reg & 0x7);
9020 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9021 }
90e4755a
RE
9022}
9023
90e4755a 9024static void
25fe350b 9025do_t_cbz (void)
90e4755a 9026{
dfa9f0d5 9027 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9028 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9029 inst.instruction |= inst.operands[0].reg;
9030 inst.reloc.pc_rel = 1;
9031 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9032}
90e4755a 9033
62b3e311
PB
9034static void
9035do_t_dbg (void)
9036{
9037 inst.instruction |= inst.operands[0].imm;
9038}
9039
9040static void
9041do_t_div (void)
9042{
9043 if (!inst.operands[1].present)
9044 inst.operands[1].reg = inst.operands[0].reg;
9045 inst.instruction |= inst.operands[0].reg << 8;
9046 inst.instruction |= inst.operands[1].reg << 16;
9047 inst.instruction |= inst.operands[2].reg;
9048}
9049
c19d1205
ZW
9050static void
9051do_t_hint (void)
9052{
9053 if (unified_syntax && inst.size_req == 4)
9054 inst.instruction = THUMB_OP32 (inst.instruction);
9055 else
9056 inst.instruction = THUMB_OP16 (inst.instruction);
9057}
90e4755a 9058
c19d1205
ZW
9059static void
9060do_t_it (void)
9061{
9062 unsigned int cond = inst.operands[0].imm;
e27ec89e 9063
dfa9f0d5 9064 constraint (current_it_mask, BAD_NOT_IT);
e27ec89e
PB
9065 current_it_mask = (inst.instruction & 0xf) | 0x10;
9066 current_cc = cond;
9067
9068 /* If the condition is a negative condition, invert the mask. */
c19d1205 9069 if ((cond & 0x1) == 0x0)
90e4755a 9070 {
c19d1205 9071 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9072
c19d1205
ZW
9073 if ((mask & 0x7) == 0)
9074 /* no conversion needed */;
9075 else if ((mask & 0x3) == 0)
e27ec89e
PB
9076 mask ^= 0x8;
9077 else if ((mask & 0x1) == 0)
9078 mask ^= 0xC;
c19d1205 9079 else
e27ec89e 9080 mask ^= 0xE;
90e4755a 9081
e27ec89e
PB
9082 inst.instruction &= 0xfff0;
9083 inst.instruction |= mask;
c19d1205 9084 }
90e4755a 9085
c19d1205
ZW
9086 inst.instruction |= cond << 4;
9087}
90e4755a 9088
c19d1205
ZW
9089static void
9090do_t_ldmstm (void)
9091{
9092 /* This really doesn't seem worth it. */
9093 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9094 _("expression too complex"));
9095 constraint (inst.operands[1].writeback,
9096 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9097
c19d1205
ZW
9098 if (unified_syntax)
9099 {
9100 /* See if we can use a 16-bit instruction. */
9101 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9102 && inst.size_req != 4
9103 && inst.operands[0].reg <= 7
9104 && !(inst.operands[1].imm & ~0xff)
9105 && (inst.instruction == T_MNEM_stmia
9106 ? inst.operands[0].writeback
9107 : (inst.operands[0].writeback
9108 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
90e4755a 9109 {
c19d1205
ZW
9110 if (inst.instruction == T_MNEM_stmia
9111 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
9112 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9113 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9114 inst.operands[0].reg);
90e4755a 9115
c19d1205
ZW
9116 inst.instruction = THUMB_OP16 (inst.instruction);
9117 inst.instruction |= inst.operands[0].reg << 8;
9118 inst.instruction |= inst.operands[1].imm;
9119 }
9120 else
9121 {
9122 if (inst.operands[1].imm & (1 << 13))
9123 as_warn (_("SP should not be in register list"));
9124 if (inst.instruction == T_MNEM_stmia)
90e4755a 9125 {
c19d1205
ZW
9126 if (inst.operands[1].imm & (1 << 15))
9127 as_warn (_("PC should not be in register list"));
9128 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
9129 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9130 inst.operands[0].reg);
90e4755a
RE
9131 }
9132 else
9133 {
c19d1205
ZW
9134 if (inst.operands[1].imm & (1 << 14)
9135 && inst.operands[1].imm & (1 << 15))
9136 as_warn (_("LR and PC should not both be in register list"));
9137 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9138 && inst.operands[0].writeback)
9139 as_warn (_("base register should not be in register list "
9140 "when written back"));
90e4755a 9141 }
c19d1205
ZW
9142 if (inst.instruction < 0xffff)
9143 inst.instruction = THUMB_OP32 (inst.instruction);
9144 inst.instruction |= inst.operands[0].reg << 16;
9145 inst.instruction |= inst.operands[1].imm;
9146 if (inst.operands[0].writeback)
9147 inst.instruction |= WRITE_BACK;
90e4755a
RE
9148 }
9149 }
c19d1205 9150 else
90e4755a 9151 {
c19d1205
ZW
9152 constraint (inst.operands[0].reg > 7
9153 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9154 constraint (inst.instruction != T_MNEM_ldmia
9155 && inst.instruction != T_MNEM_stmia,
9156 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9157 if (inst.instruction == T_MNEM_stmia)
f03698e6 9158 {
c19d1205
ZW
9159 if (!inst.operands[0].writeback)
9160 as_warn (_("this instruction will write back the base register"));
9161 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9162 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9163 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9164 inst.operands[0].reg);
f03698e6 9165 }
c19d1205 9166 else
90e4755a 9167 {
c19d1205
ZW
9168 if (!inst.operands[0].writeback
9169 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9170 as_warn (_("this instruction will write back the base register"));
9171 else if (inst.operands[0].writeback
9172 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9173 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9174 }
9175
c19d1205
ZW
9176 inst.instruction = THUMB_OP16 (inst.instruction);
9177 inst.instruction |= inst.operands[0].reg << 8;
9178 inst.instruction |= inst.operands[1].imm;
9179 }
9180}
e28cd48c 9181
c19d1205
ZW
9182static void
9183do_t_ldrex (void)
9184{
9185 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9186 || inst.operands[1].postind || inst.operands[1].writeback
9187 || inst.operands[1].immisreg || inst.operands[1].shifted
9188 || inst.operands[1].negative,
01cfc07f 9189 BAD_ADDR_MODE);
e28cd48c 9190
c19d1205
ZW
9191 inst.instruction |= inst.operands[0].reg << 12;
9192 inst.instruction |= inst.operands[1].reg << 16;
9193 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9194}
e28cd48c 9195
c19d1205
ZW
9196static void
9197do_t_ldrexd (void)
9198{
9199 if (!inst.operands[1].present)
1cac9012 9200 {
c19d1205
ZW
9201 constraint (inst.operands[0].reg == REG_LR,
9202 _("r14 not allowed as first register "
9203 "when second register is omitted"));
9204 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9205 }
c19d1205
ZW
9206 constraint (inst.operands[0].reg == inst.operands[1].reg,
9207 BAD_OVERLAP);
b99bd4ef 9208
c19d1205
ZW
9209 inst.instruction |= inst.operands[0].reg << 12;
9210 inst.instruction |= inst.operands[1].reg << 8;
9211 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9212}
9213
9214static void
c19d1205 9215do_t_ldst (void)
b99bd4ef 9216{
0110f2b8
PB
9217 unsigned long opcode;
9218 int Rn;
9219
9220 opcode = inst.instruction;
c19d1205 9221 if (unified_syntax)
b99bd4ef 9222 {
53365c0d
PB
9223 if (!inst.operands[1].isreg)
9224 {
9225 if (opcode <= 0xffff)
9226 inst.instruction = THUMB_OP32 (opcode);
9227 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9228 return;
9229 }
0110f2b8
PB
9230 if (inst.operands[1].isreg
9231 && !inst.operands[1].writeback
c19d1205
ZW
9232 && !inst.operands[1].shifted && !inst.operands[1].postind
9233 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9234 && opcode <= 0xffff
9235 && inst.size_req != 4)
c19d1205 9236 {
0110f2b8
PB
9237 /* Insn may have a 16-bit form. */
9238 Rn = inst.operands[1].reg;
9239 if (inst.operands[1].immisreg)
9240 {
9241 inst.instruction = THUMB_OP16 (opcode);
9242 /* [Rn, Ri] */
9243 if (Rn <= 7 && inst.operands[1].imm <= 7)
9244 goto op16;
9245 }
9246 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9247 && opcode != T_MNEM_ldrsb)
9248 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9249 || (Rn == REG_SP && opcode == T_MNEM_str))
9250 {
9251 /* [Rn, #const] */
9252 if (Rn > 7)
9253 {
9254 if (Rn == REG_PC)
9255 {
9256 if (inst.reloc.pc_rel)
9257 opcode = T_MNEM_ldr_pc2;
9258 else
9259 opcode = T_MNEM_ldr_pc;
9260 }
9261 else
9262 {
9263 if (opcode == T_MNEM_ldr)
9264 opcode = T_MNEM_ldr_sp;
9265 else
9266 opcode = T_MNEM_str_sp;
9267 }
9268 inst.instruction = inst.operands[0].reg << 8;
9269 }
9270 else
9271 {
9272 inst.instruction = inst.operands[0].reg;
9273 inst.instruction |= inst.operands[1].reg << 3;
9274 }
9275 inst.instruction |= THUMB_OP16 (opcode);
9276 if (inst.size_req == 2)
9277 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9278 else
9279 inst.relax = opcode;
9280 return;
9281 }
c19d1205 9282 }
0110f2b8
PB
9283 /* Definitely a 32-bit variant. */
9284 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9285 inst.instruction |= inst.operands[0].reg << 12;
9286 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9287 return;
9288 }
9289
c19d1205
ZW
9290 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9291
9292 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9293 {
c19d1205
ZW
9294 /* Only [Rn,Rm] is acceptable. */
9295 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9296 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9297 || inst.operands[1].postind || inst.operands[1].shifted
9298 || inst.operands[1].negative,
9299 _("Thumb does not support this addressing mode"));
9300 inst.instruction = THUMB_OP16 (inst.instruction);
9301 goto op16;
b99bd4ef 9302 }
c19d1205
ZW
9303
9304 inst.instruction = THUMB_OP16 (inst.instruction);
9305 if (!inst.operands[1].isreg)
9306 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9307 return;
b99bd4ef 9308
c19d1205
ZW
9309 constraint (!inst.operands[1].preind
9310 || inst.operands[1].shifted
9311 || inst.operands[1].writeback,
9312 _("Thumb does not support this addressing mode"));
9313 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9314 {
c19d1205
ZW
9315 constraint (inst.instruction & 0x0600,
9316 _("byte or halfword not valid for base register"));
9317 constraint (inst.operands[1].reg == REG_PC
9318 && !(inst.instruction & THUMB_LOAD_BIT),
9319 _("r15 based store not allowed"));
9320 constraint (inst.operands[1].immisreg,
9321 _("invalid base register for register offset"));
b99bd4ef 9322
c19d1205
ZW
9323 if (inst.operands[1].reg == REG_PC)
9324 inst.instruction = T_OPCODE_LDR_PC;
9325 else if (inst.instruction & THUMB_LOAD_BIT)
9326 inst.instruction = T_OPCODE_LDR_SP;
9327 else
9328 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9329
c19d1205
ZW
9330 inst.instruction |= inst.operands[0].reg << 8;
9331 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9332 return;
9333 }
90e4755a 9334
c19d1205
ZW
9335 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9336 if (!inst.operands[1].immisreg)
9337 {
9338 /* Immediate offset. */
9339 inst.instruction |= inst.operands[0].reg;
9340 inst.instruction |= inst.operands[1].reg << 3;
9341 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9342 return;
9343 }
90e4755a 9344
c19d1205
ZW
9345 /* Register offset. */
9346 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9347 constraint (inst.operands[1].negative,
9348 _("Thumb does not support this addressing mode"));
90e4755a 9349
c19d1205
ZW
9350 op16:
9351 switch (inst.instruction)
9352 {
9353 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9354 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9355 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9356 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9357 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9358 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9359 case 0x5600 /* ldrsb */:
9360 case 0x5e00 /* ldrsh */: break;
9361 default: abort ();
9362 }
90e4755a 9363
c19d1205
ZW
9364 inst.instruction |= inst.operands[0].reg;
9365 inst.instruction |= inst.operands[1].reg << 3;
9366 inst.instruction |= inst.operands[1].imm << 6;
9367}
90e4755a 9368
c19d1205
ZW
9369static void
9370do_t_ldstd (void)
9371{
9372 if (!inst.operands[1].present)
b99bd4ef 9373 {
c19d1205
ZW
9374 inst.operands[1].reg = inst.operands[0].reg + 1;
9375 constraint (inst.operands[0].reg == REG_LR,
9376 _("r14 not allowed here"));
b99bd4ef 9377 }
c19d1205
ZW
9378 inst.instruction |= inst.operands[0].reg << 12;
9379 inst.instruction |= inst.operands[1].reg << 8;
9380 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9381
b99bd4ef
NC
9382}
9383
c19d1205
ZW
9384static void
9385do_t_ldstt (void)
9386{
9387 inst.instruction |= inst.operands[0].reg << 12;
9388 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9389}
a737bd4d 9390
b99bd4ef 9391static void
c19d1205 9392do_t_mla (void)
b99bd4ef 9393{
c19d1205
ZW
9394 inst.instruction |= inst.operands[0].reg << 8;
9395 inst.instruction |= inst.operands[1].reg << 16;
9396 inst.instruction |= inst.operands[2].reg;
9397 inst.instruction |= inst.operands[3].reg << 12;
9398}
b99bd4ef 9399
c19d1205
ZW
9400static void
9401do_t_mlal (void)
9402{
9403 inst.instruction |= inst.operands[0].reg << 12;
9404 inst.instruction |= inst.operands[1].reg << 8;
9405 inst.instruction |= inst.operands[2].reg << 16;
9406 inst.instruction |= inst.operands[3].reg;
9407}
b99bd4ef 9408
c19d1205
ZW
9409static void
9410do_t_mov_cmp (void)
9411{
9412 if (unified_syntax)
b99bd4ef 9413 {
c19d1205
ZW
9414 int r0off = (inst.instruction == T_MNEM_mov
9415 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 9416 unsigned long opcode;
3d388997
PB
9417 bfd_boolean narrow;
9418 bfd_boolean low_regs;
9419
9420 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
0110f2b8 9421 opcode = inst.instruction;
3d388997 9422 if (current_it_mask)
0110f2b8 9423 narrow = opcode != T_MNEM_movs;
3d388997 9424 else
0110f2b8 9425 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
9426 if (inst.size_req == 4
9427 || inst.operands[1].shifted)
9428 narrow = FALSE;
9429
c19d1205
ZW
9430 if (!inst.operands[1].isreg)
9431 {
0110f2b8
PB
9432 /* Immediate operand. */
9433 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9434 narrow = 0;
9435 if (low_regs && narrow)
9436 {
9437 inst.instruction = THUMB_OP16 (opcode);
9438 inst.instruction |= inst.operands[0].reg << 8;
9439 if (inst.size_req == 2)
9440 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9441 else
9442 inst.relax = opcode;
9443 }
9444 else
9445 {
9446 inst.instruction = THUMB_OP32 (inst.instruction);
9447 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9448 inst.instruction |= inst.operands[0].reg << r0off;
9449 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9450 }
c19d1205 9451 }
3d388997 9452 else if (!narrow)
c19d1205
ZW
9453 {
9454 inst.instruction = THUMB_OP32 (inst.instruction);
9455 inst.instruction |= inst.operands[0].reg << r0off;
9456 encode_thumb32_shifted_operand (1);
9457 }
9458 else
9459 switch (inst.instruction)
9460 {
9461 case T_MNEM_mov:
9462 inst.instruction = T_OPCODE_MOV_HR;
9463 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9464 inst.instruction |= (inst.operands[0].reg & 0x7);
9465 inst.instruction |= inst.operands[1].reg << 3;
9466 break;
b99bd4ef 9467
c19d1205
ZW
9468 case T_MNEM_movs:
9469 /* We know we have low registers at this point.
9470 Generate ADD Rd, Rs, #0. */
9471 inst.instruction = T_OPCODE_ADD_I3;
9472 inst.instruction |= inst.operands[0].reg;
9473 inst.instruction |= inst.operands[1].reg << 3;
9474 break;
9475
9476 case T_MNEM_cmp:
3d388997 9477 if (low_regs)
c19d1205
ZW
9478 {
9479 inst.instruction = T_OPCODE_CMP_LR;
9480 inst.instruction |= inst.operands[0].reg;
9481 inst.instruction |= inst.operands[1].reg << 3;
9482 }
9483 else
9484 {
9485 inst.instruction = T_OPCODE_CMP_HR;
9486 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9487 inst.instruction |= (inst.operands[0].reg & 0x7);
9488 inst.instruction |= inst.operands[1].reg << 3;
9489 }
9490 break;
9491 }
b99bd4ef
NC
9492 return;
9493 }
9494
c19d1205
ZW
9495 inst.instruction = THUMB_OP16 (inst.instruction);
9496 if (inst.operands[1].isreg)
b99bd4ef 9497 {
c19d1205 9498 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
b99bd4ef 9499 {
c19d1205
ZW
9500 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9501 since a MOV instruction produces unpredictable results. */
9502 if (inst.instruction == T_OPCODE_MOV_I8)
9503 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 9504 else
c19d1205 9505 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 9506
c19d1205
ZW
9507 inst.instruction |= inst.operands[0].reg;
9508 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
9509 }
9510 else
9511 {
c19d1205
ZW
9512 if (inst.instruction == T_OPCODE_MOV_I8)
9513 inst.instruction = T_OPCODE_MOV_HR;
9514 else
9515 inst.instruction = T_OPCODE_CMP_HR;
9516 do_t_cpy ();
b99bd4ef
NC
9517 }
9518 }
c19d1205 9519 else
b99bd4ef 9520 {
c19d1205
ZW
9521 constraint (inst.operands[0].reg > 7,
9522 _("only lo regs allowed with immediate"));
9523 inst.instruction |= inst.operands[0].reg << 8;
9524 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9525 }
9526}
b99bd4ef 9527
c19d1205
ZW
9528static void
9529do_t_mov16 (void)
9530{
b6895b4f
PB
9531 bfd_vma imm;
9532 bfd_boolean top;
9533
9534 top = (inst.instruction & 0x00800000) != 0;
9535 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9536 {
9537 constraint (top, _(":lower16: not allowed this instruction"));
9538 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9539 }
9540 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9541 {
9542 constraint (!top, _(":upper16: not allowed this instruction"));
9543 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9544 }
9545
c19d1205 9546 inst.instruction |= inst.operands[0].reg << 8;
b6895b4f
PB
9547 if (inst.reloc.type == BFD_RELOC_UNUSED)
9548 {
9549 imm = inst.reloc.exp.X_add_number;
9550 inst.instruction |= (imm & 0xf000) << 4;
9551 inst.instruction |= (imm & 0x0800) << 15;
9552 inst.instruction |= (imm & 0x0700) << 4;
9553 inst.instruction |= (imm & 0x00ff);
9554 }
c19d1205 9555}
b99bd4ef 9556
c19d1205
ZW
9557static void
9558do_t_mvn_tst (void)
9559{
9560 if (unified_syntax)
9561 {
9562 int r0off = (inst.instruction == T_MNEM_mvn
9563 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
9564 bfd_boolean narrow;
9565
9566 if (inst.size_req == 4
9567 || inst.instruction > 0xffff
9568 || inst.operands[1].shifted
9569 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9570 narrow = FALSE;
9571 else if (inst.instruction == T_MNEM_cmn)
9572 narrow = TRUE;
9573 else if (THUMB_SETS_FLAGS (inst.instruction))
9574 narrow = (current_it_mask == 0);
9575 else
9576 narrow = (current_it_mask != 0);
9577
c19d1205 9578 if (!inst.operands[1].isreg)
b99bd4ef 9579 {
c19d1205
ZW
9580 /* For an immediate, we always generate a 32-bit opcode;
9581 section relaxation will shrink it later if possible. */
9582 if (inst.instruction < 0xffff)
9583 inst.instruction = THUMB_OP32 (inst.instruction);
9584 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9585 inst.instruction |= inst.operands[0].reg << r0off;
9586 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9587 }
c19d1205 9588 else
b99bd4ef 9589 {
c19d1205 9590 /* See if we can do this with a 16-bit instruction. */
3d388997 9591 if (narrow)
b99bd4ef 9592 {
c19d1205
ZW
9593 inst.instruction = THUMB_OP16 (inst.instruction);
9594 inst.instruction |= inst.operands[0].reg;
9595 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9596 }
c19d1205 9597 else
b99bd4ef 9598 {
c19d1205
ZW
9599 constraint (inst.operands[1].shifted
9600 && inst.operands[1].immisreg,
9601 _("shift must be constant"));
9602 if (inst.instruction < 0xffff)
9603 inst.instruction = THUMB_OP32 (inst.instruction);
9604 inst.instruction |= inst.operands[0].reg << r0off;
9605 encode_thumb32_shifted_operand (1);
b99bd4ef 9606 }
b99bd4ef
NC
9607 }
9608 }
9609 else
9610 {
c19d1205
ZW
9611 constraint (inst.instruction > 0xffff
9612 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9613 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9614 _("unshifted register required"));
9615 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9616 BAD_HIREG);
b99bd4ef 9617
c19d1205
ZW
9618 inst.instruction = THUMB_OP16 (inst.instruction);
9619 inst.instruction |= inst.operands[0].reg;
9620 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 9621 }
b99bd4ef
NC
9622}
9623
b05fe5cf 9624static void
c19d1205 9625do_t_mrs (void)
b05fe5cf 9626{
62b3e311 9627 int flags;
037e8744
JB
9628
9629 if (do_vfp_nsyn_mrs () == SUCCESS)
9630 return;
9631
62b3e311
PB
9632 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9633 if (flags == 0)
9634 {
9635 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9636 _("selected processor does not support "
9637 "requested special purpose register"));
9638 }
9639 else
9640 {
9641 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9642 _("selected processor does not support "
9643 "requested special purpose register %x"));
9644 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9645 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9646 _("'CPSR' or 'SPSR' expected"));
9647 }
9648
c19d1205 9649 inst.instruction |= inst.operands[0].reg << 8;
62b3e311
PB
9650 inst.instruction |= (flags & SPSR_BIT) >> 2;
9651 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 9652}
b05fe5cf 9653
c19d1205
ZW
9654static void
9655do_t_msr (void)
9656{
62b3e311
PB
9657 int flags;
9658
037e8744
JB
9659 if (do_vfp_nsyn_msr () == SUCCESS)
9660 return;
9661
c19d1205
ZW
9662 constraint (!inst.operands[1].isreg,
9663 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
9664 flags = inst.operands[0].imm;
9665 if (flags & ~0xff)
9666 {
9667 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9668 _("selected processor does not support "
9669 "requested special purpose register"));
9670 }
9671 else
9672 {
9673 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9674 _("selected processor does not support "
9675 "requested special purpose register"));
9676 flags |= PSR_f;
9677 }
9678 inst.instruction |= (flags & SPSR_BIT) >> 2;
9679 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9680 inst.instruction |= (flags & 0xff);
c19d1205
ZW
9681 inst.instruction |= inst.operands[1].reg << 16;
9682}
b05fe5cf 9683
c19d1205
ZW
9684static void
9685do_t_mul (void)
9686{
9687 if (!inst.operands[2].present)
9688 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 9689
c19d1205
ZW
9690 /* There is no 32-bit MULS and no 16-bit MUL. */
9691 if (unified_syntax && inst.instruction == T_MNEM_mul)
b05fe5cf 9692 {
c19d1205
ZW
9693 inst.instruction = THUMB_OP32 (inst.instruction);
9694 inst.instruction |= inst.operands[0].reg << 8;
9695 inst.instruction |= inst.operands[1].reg << 16;
9696 inst.instruction |= inst.operands[2].reg << 0;
b05fe5cf 9697 }
c19d1205 9698 else
b05fe5cf 9699 {
c19d1205
ZW
9700 constraint (!unified_syntax
9701 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9702 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9703 BAD_HIREG);
b05fe5cf 9704
c19d1205
ZW
9705 inst.instruction = THUMB_OP16 (inst.instruction);
9706 inst.instruction |= inst.operands[0].reg;
b05fe5cf 9707
c19d1205
ZW
9708 if (inst.operands[0].reg == inst.operands[1].reg)
9709 inst.instruction |= inst.operands[2].reg << 3;
9710 else if (inst.operands[0].reg == inst.operands[2].reg)
9711 inst.instruction |= inst.operands[1].reg << 3;
9712 else
9713 constraint (1, _("dest must overlap one source register"));
9714 }
9715}
b05fe5cf 9716
c19d1205
ZW
9717static void
9718do_t_mull (void)
9719{
9720 inst.instruction |= inst.operands[0].reg << 12;
9721 inst.instruction |= inst.operands[1].reg << 8;
9722 inst.instruction |= inst.operands[2].reg << 16;
9723 inst.instruction |= inst.operands[3].reg;
b05fe5cf 9724
c19d1205
ZW
9725 if (inst.operands[0].reg == inst.operands[1].reg)
9726 as_tsktsk (_("rdhi and rdlo must be different"));
9727}
b05fe5cf 9728
c19d1205
ZW
9729static void
9730do_t_nop (void)
9731{
9732 if (unified_syntax)
9733 {
9734 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 9735 {
c19d1205
ZW
9736 inst.instruction = THUMB_OP32 (inst.instruction);
9737 inst.instruction |= inst.operands[0].imm;
9738 }
9739 else
9740 {
9741 inst.instruction = THUMB_OP16 (inst.instruction);
9742 inst.instruction |= inst.operands[0].imm << 4;
9743 }
9744 }
9745 else
9746 {
9747 constraint (inst.operands[0].present,
9748 _("Thumb does not support NOP with hints"));
9749 inst.instruction = 0x46c0;
9750 }
9751}
b05fe5cf 9752
c19d1205
ZW
9753static void
9754do_t_neg (void)
9755{
9756 if (unified_syntax)
9757 {
3d388997
PB
9758 bfd_boolean narrow;
9759
9760 if (THUMB_SETS_FLAGS (inst.instruction))
9761 narrow = (current_it_mask == 0);
9762 else
9763 narrow = (current_it_mask != 0);
9764 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9765 narrow = FALSE;
9766 if (inst.size_req == 4)
9767 narrow = FALSE;
9768
9769 if (!narrow)
c19d1205
ZW
9770 {
9771 inst.instruction = THUMB_OP32 (inst.instruction);
9772 inst.instruction |= inst.operands[0].reg << 8;
9773 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
9774 }
9775 else
9776 {
c19d1205
ZW
9777 inst.instruction = THUMB_OP16 (inst.instruction);
9778 inst.instruction |= inst.operands[0].reg;
9779 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
9780 }
9781 }
9782 else
9783 {
c19d1205
ZW
9784 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9785 BAD_HIREG);
9786 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9787
9788 inst.instruction = THUMB_OP16 (inst.instruction);
9789 inst.instruction |= inst.operands[0].reg;
9790 inst.instruction |= inst.operands[1].reg << 3;
9791 }
9792}
9793
9794static void
9795do_t_pkhbt (void)
9796{
9797 inst.instruction |= inst.operands[0].reg << 8;
9798 inst.instruction |= inst.operands[1].reg << 16;
9799 inst.instruction |= inst.operands[2].reg;
9800 if (inst.operands[3].present)
9801 {
9802 unsigned int val = inst.reloc.exp.X_add_number;
9803 constraint (inst.reloc.exp.X_op != O_constant,
9804 _("expression too complex"));
9805 inst.instruction |= (val & 0x1c) << 10;
9806 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 9807 }
c19d1205 9808}
b05fe5cf 9809
c19d1205
ZW
9810static void
9811do_t_pkhtb (void)
9812{
9813 if (!inst.operands[3].present)
9814 inst.instruction &= ~0x00000020;
9815 do_t_pkhbt ();
b05fe5cf
ZW
9816}
9817
c19d1205
ZW
9818static void
9819do_t_pld (void)
9820{
9821 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9822}
b05fe5cf 9823
c19d1205
ZW
9824static void
9825do_t_push_pop (void)
b99bd4ef 9826{
e9f89963
PB
9827 unsigned mask;
9828
c19d1205
ZW
9829 constraint (inst.operands[0].writeback,
9830 _("push/pop do not support {reglist}^"));
9831 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9832 _("expression too complex"));
b99bd4ef 9833
e9f89963
PB
9834 mask = inst.operands[0].imm;
9835 if ((mask & ~0xff) == 0)
c19d1205
ZW
9836 inst.instruction = THUMB_OP16 (inst.instruction);
9837 else if ((inst.instruction == T_MNEM_push
e9f89963 9838 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 9839 || (inst.instruction == T_MNEM_pop
e9f89963 9840 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 9841 {
c19d1205
ZW
9842 inst.instruction = THUMB_OP16 (inst.instruction);
9843 inst.instruction |= THUMB_PP_PC_LR;
e9f89963 9844 mask &= 0xff;
c19d1205
ZW
9845 }
9846 else if (unified_syntax)
9847 {
e9f89963
PB
9848 if (mask & (1 << 13))
9849 inst.error = _("SP not allowed in register list");
c19d1205 9850 if (inst.instruction == T_MNEM_push)
b99bd4ef 9851 {
e9f89963
PB
9852 if (mask & (1 << 15))
9853 inst.error = _("PC not allowed in register list");
c19d1205
ZW
9854 }
9855 else
9856 {
e9f89963
PB
9857 if (mask & (1 << 14)
9858 && mask & (1 << 15))
9859 inst.error = _("LR and PC should not both be in register list");
c19d1205 9860 }
e9f89963
PB
9861 if ((mask & (mask - 1)) == 0)
9862 {
9863 /* Single register push/pop implemented as str/ldr. */
9864 if (inst.instruction == T_MNEM_push)
9865 inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
9866 else
9867 inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
9868 mask = ffs(mask) - 1;
9869 mask <<= 12;
9870 }
9871 else
9872 inst.instruction = THUMB_OP32 (inst.instruction);
c19d1205
ZW
9873 }
9874 else
9875 {
9876 inst.error = _("invalid register list to push/pop instruction");
9877 return;
9878 }
b99bd4ef 9879
e9f89963 9880 inst.instruction |= mask;
c19d1205 9881}
b99bd4ef 9882
c19d1205
ZW
9883static void
9884do_t_rbit (void)
9885{
9886 inst.instruction |= inst.operands[0].reg << 8;
9887 inst.instruction |= inst.operands[1].reg << 16;
9888}
b99bd4ef 9889
c19d1205
ZW
9890static void
9891do_t_rev (void)
9892{
9893 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9894 && inst.size_req != 4)
9895 {
9896 inst.instruction = THUMB_OP16 (inst.instruction);
9897 inst.instruction |= inst.operands[0].reg;
9898 inst.instruction |= inst.operands[1].reg << 3;
9899 }
9900 else if (unified_syntax)
9901 {
9902 inst.instruction = THUMB_OP32 (inst.instruction);
9903 inst.instruction |= inst.operands[0].reg << 8;
9904 inst.instruction |= inst.operands[1].reg << 16;
9905 inst.instruction |= inst.operands[1].reg;
9906 }
9907 else
9908 inst.error = BAD_HIREG;
9909}
b99bd4ef 9910
c19d1205
ZW
9911static void
9912do_t_rsb (void)
9913{
9914 int Rd, Rs;
b99bd4ef 9915
c19d1205
ZW
9916 Rd = inst.operands[0].reg;
9917 Rs = (inst.operands[1].present
9918 ? inst.operands[1].reg /* Rd, Rs, foo */
9919 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 9920
c19d1205
ZW
9921 inst.instruction |= Rd << 8;
9922 inst.instruction |= Rs << 16;
9923 if (!inst.operands[2].isreg)
9924 {
9925 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9926 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9927 }
9928 else
9929 encode_thumb32_shifted_operand (2);
9930}
b99bd4ef 9931
c19d1205
ZW
9932static void
9933do_t_setend (void)
9934{
dfa9f0d5 9935 constraint (current_it_mask, BAD_NOT_IT);
c19d1205
ZW
9936 if (inst.operands[0].imm)
9937 inst.instruction |= 0x8;
9938}
b99bd4ef 9939
c19d1205
ZW
9940static void
9941do_t_shift (void)
9942{
9943 if (!inst.operands[1].present)
9944 inst.operands[1].reg = inst.operands[0].reg;
9945
9946 if (unified_syntax)
9947 {
3d388997
PB
9948 bfd_boolean narrow;
9949 int shift_kind;
9950
9951 switch (inst.instruction)
9952 {
9953 case T_MNEM_asr:
9954 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
9955 case T_MNEM_lsl:
9956 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
9957 case T_MNEM_lsr:
9958 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
9959 case T_MNEM_ror:
9960 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
9961 default: abort ();
9962 }
9963
9964 if (THUMB_SETS_FLAGS (inst.instruction))
9965 narrow = (current_it_mask == 0);
9966 else
9967 narrow = (current_it_mask != 0);
9968 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9969 narrow = FALSE;
9970 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
9971 narrow = FALSE;
9972 if (inst.operands[2].isreg
9973 && (inst.operands[1].reg != inst.operands[0].reg
9974 || inst.operands[2].reg > 7))
9975 narrow = FALSE;
9976 if (inst.size_req == 4)
9977 narrow = FALSE;
9978
9979 if (!narrow)
c19d1205
ZW
9980 {
9981 if (inst.operands[2].isreg)
b99bd4ef 9982 {
c19d1205
ZW
9983 inst.instruction = THUMB_OP32 (inst.instruction);
9984 inst.instruction |= inst.operands[0].reg << 8;
9985 inst.instruction |= inst.operands[1].reg << 16;
9986 inst.instruction |= inst.operands[2].reg;
9987 }
9988 else
9989 {
9990 inst.operands[1].shifted = 1;
3d388997 9991 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
9992 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
9993 ? T_MNEM_movs : T_MNEM_mov);
9994 inst.instruction |= inst.operands[0].reg << 8;
9995 encode_thumb32_shifted_operand (1);
9996 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
9997 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
9998 }
9999 }
10000 else
10001 {
c19d1205 10002 if (inst.operands[2].isreg)
b99bd4ef 10003 {
3d388997 10004 switch (shift_kind)
b99bd4ef 10005 {
3d388997
PB
10006 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10007 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10008 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10009 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 10010 default: abort ();
b99bd4ef 10011 }
c19d1205
ZW
10012
10013 inst.instruction |= inst.operands[0].reg;
10014 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
10015 }
10016 else
10017 {
3d388997 10018 switch (shift_kind)
b99bd4ef 10019 {
3d388997
PB
10020 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10021 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10022 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 10023 default: abort ();
b99bd4ef 10024 }
c19d1205
ZW
10025 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10026 inst.instruction |= inst.operands[0].reg;
10027 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10028 }
10029 }
c19d1205
ZW
10030 }
10031 else
10032 {
10033 constraint (inst.operands[0].reg > 7
10034 || inst.operands[1].reg > 7, BAD_HIREG);
10035 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 10036
c19d1205
ZW
10037 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10038 {
10039 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10040 constraint (inst.operands[0].reg != inst.operands[1].reg,
10041 _("source1 and dest must be same register"));
b99bd4ef 10042
c19d1205
ZW
10043 switch (inst.instruction)
10044 {
10045 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10046 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10047 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10048 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10049 default: abort ();
10050 }
10051
10052 inst.instruction |= inst.operands[0].reg;
10053 inst.instruction |= inst.operands[2].reg << 3;
10054 }
10055 else
b99bd4ef 10056 {
c19d1205
ZW
10057 switch (inst.instruction)
10058 {
10059 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10060 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10061 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10062 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10063 default: abort ();
10064 }
10065 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10066 inst.instruction |= inst.operands[0].reg;
10067 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10068 }
10069 }
b99bd4ef
NC
10070}
10071
10072static void
c19d1205 10073do_t_simd (void)
b99bd4ef 10074{
c19d1205
ZW
10075 inst.instruction |= inst.operands[0].reg << 8;
10076 inst.instruction |= inst.operands[1].reg << 16;
10077 inst.instruction |= inst.operands[2].reg;
10078}
b99bd4ef 10079
c19d1205 10080static void
3eb17e6b 10081do_t_smc (void)
c19d1205
ZW
10082{
10083 unsigned int value = inst.reloc.exp.X_add_number;
10084 constraint (inst.reloc.exp.X_op != O_constant,
10085 _("expression too complex"));
10086 inst.reloc.type = BFD_RELOC_UNUSED;
10087 inst.instruction |= (value & 0xf000) >> 12;
10088 inst.instruction |= (value & 0x0ff0);
10089 inst.instruction |= (value & 0x000f) << 16;
10090}
b99bd4ef 10091
c19d1205
ZW
10092static void
10093do_t_ssat (void)
10094{
10095 inst.instruction |= inst.operands[0].reg << 8;
10096 inst.instruction |= inst.operands[1].imm - 1;
10097 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10098
c19d1205 10099 if (inst.operands[3].present)
b99bd4ef 10100 {
c19d1205
ZW
10101 constraint (inst.reloc.exp.X_op != O_constant,
10102 _("expression too complex"));
b99bd4ef 10103
c19d1205 10104 if (inst.reloc.exp.X_add_number != 0)
6189168b 10105 {
c19d1205
ZW
10106 if (inst.operands[3].shift_kind == SHIFT_ASR)
10107 inst.instruction |= 0x00200000; /* sh bit */
10108 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10109 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
6189168b 10110 }
c19d1205 10111 inst.reloc.type = BFD_RELOC_UNUSED;
6189168b 10112 }
b99bd4ef
NC
10113}
10114
0dd132b6 10115static void
c19d1205 10116do_t_ssat16 (void)
0dd132b6 10117{
c19d1205
ZW
10118 inst.instruction |= inst.operands[0].reg << 8;
10119 inst.instruction |= inst.operands[1].imm - 1;
10120 inst.instruction |= inst.operands[2].reg << 16;
10121}
0dd132b6 10122
c19d1205
ZW
10123static void
10124do_t_strex (void)
10125{
10126 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10127 || inst.operands[2].postind || inst.operands[2].writeback
10128 || inst.operands[2].immisreg || inst.operands[2].shifted
10129 || inst.operands[2].negative,
01cfc07f 10130 BAD_ADDR_MODE);
0dd132b6 10131
c19d1205
ZW
10132 inst.instruction |= inst.operands[0].reg << 8;
10133 inst.instruction |= inst.operands[1].reg << 12;
10134 inst.instruction |= inst.operands[2].reg << 16;
10135 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
10136}
10137
b99bd4ef 10138static void
c19d1205 10139do_t_strexd (void)
b99bd4ef 10140{
c19d1205
ZW
10141 if (!inst.operands[2].present)
10142 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 10143
c19d1205
ZW
10144 constraint (inst.operands[0].reg == inst.operands[1].reg
10145 || inst.operands[0].reg == inst.operands[2].reg
10146 || inst.operands[0].reg == inst.operands[3].reg
10147 || inst.operands[1].reg == inst.operands[2].reg,
10148 BAD_OVERLAP);
b99bd4ef 10149
c19d1205
ZW
10150 inst.instruction |= inst.operands[0].reg;
10151 inst.instruction |= inst.operands[1].reg << 12;
10152 inst.instruction |= inst.operands[2].reg << 8;
10153 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
10154}
10155
10156static void
c19d1205 10157do_t_sxtah (void)
b99bd4ef 10158{
c19d1205
ZW
10159 inst.instruction |= inst.operands[0].reg << 8;
10160 inst.instruction |= inst.operands[1].reg << 16;
10161 inst.instruction |= inst.operands[2].reg;
10162 inst.instruction |= inst.operands[3].imm << 4;
10163}
b99bd4ef 10164
c19d1205
ZW
10165static void
10166do_t_sxth (void)
10167{
10168 if (inst.instruction <= 0xffff && inst.size_req != 4
10169 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10170 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 10171 {
c19d1205
ZW
10172 inst.instruction = THUMB_OP16 (inst.instruction);
10173 inst.instruction |= inst.operands[0].reg;
10174 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef 10175 }
c19d1205 10176 else if (unified_syntax)
b99bd4ef 10177 {
c19d1205
ZW
10178 if (inst.instruction <= 0xffff)
10179 inst.instruction = THUMB_OP32 (inst.instruction);
10180 inst.instruction |= inst.operands[0].reg << 8;
10181 inst.instruction |= inst.operands[1].reg;
10182 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 10183 }
c19d1205 10184 else
b99bd4ef 10185 {
c19d1205
ZW
10186 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10187 _("Thumb encoding does not support rotation"));
10188 constraint (1, BAD_HIREG);
b99bd4ef 10189 }
c19d1205 10190}
b99bd4ef 10191
c19d1205
ZW
10192static void
10193do_t_swi (void)
10194{
10195 inst.reloc.type = BFD_RELOC_ARM_SWI;
10196}
b99bd4ef 10197
92e90b6e
PB
10198static void
10199do_t_tb (void)
10200{
10201 int half;
10202
10203 half = (inst.instruction & 0x10) != 0;
dfa9f0d5
PB
10204 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10205 constraint (inst.operands[0].immisreg,
10206 _("instruction requires register index"));
92e90b6e
PB
10207 constraint (inst.operands[0].imm == 15,
10208 _("PC is not a valid index register"));
10209 constraint (!half && inst.operands[0].shifted,
10210 _("instruction does not allow shifted index"));
92e90b6e
PB
10211 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10212}
10213
c19d1205
ZW
10214static void
10215do_t_usat (void)
10216{
10217 inst.instruction |= inst.operands[0].reg << 8;
10218 inst.instruction |= inst.operands[1].imm;
10219 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10220
c19d1205 10221 if (inst.operands[3].present)
b99bd4ef 10222 {
c19d1205
ZW
10223 constraint (inst.reloc.exp.X_op != O_constant,
10224 _("expression too complex"));
10225 if (inst.reloc.exp.X_add_number != 0)
10226 {
10227 if (inst.operands[3].shift_kind == SHIFT_ASR)
10228 inst.instruction |= 0x00200000; /* sh bit */
b99bd4ef 10229
c19d1205
ZW
10230 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10231 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10232 }
10233 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 10234 }
b99bd4ef
NC
10235}
10236
10237static void
c19d1205 10238do_t_usat16 (void)
b99bd4ef 10239{
c19d1205
ZW
10240 inst.instruction |= inst.operands[0].reg << 8;
10241 inst.instruction |= inst.operands[1].imm;
10242 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef 10243}
c19d1205 10244
5287ad62
JB
10245/* Neon instruction encoder helpers. */
10246
10247/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 10248
5287ad62
JB
10249/* An "invalid" code for the following tables. */
10250#define N_INV -1u
10251
10252struct neon_tab_entry
b99bd4ef 10253{
5287ad62
JB
10254 unsigned integer;
10255 unsigned float_or_poly;
10256 unsigned scalar_or_imm;
10257};
10258
10259/* Map overloaded Neon opcodes to their respective encodings. */
10260#define NEON_ENC_TAB \
10261 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10262 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10263 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10264 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10265 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10266 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10267 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10268 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10269 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10270 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10271 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10272 /* Register variants of the following two instructions are encoded as
10273 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
10274 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10275 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
5287ad62
JB
10276 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10277 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10278 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10279 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10280 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10281 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10282 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10283 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10284 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10285 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10286 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10287 X(vshl, 0x0000400, N_INV, 0x0800510), \
10288 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10289 X(vand, 0x0000110, N_INV, 0x0800030), \
10290 X(vbic, 0x0100110, N_INV, 0x0800030), \
10291 X(veor, 0x1000110, N_INV, N_INV), \
10292 X(vorn, 0x0300110, N_INV, 0x0800010), \
10293 X(vorr, 0x0200110, N_INV, 0x0800010), \
10294 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10295 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10296 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10297 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10298 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10299 X(vst1, 0x0000000, 0x0800000, N_INV), \
10300 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10301 X(vst2, 0x0000100, 0x0800100, N_INV), \
10302 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10303 X(vst3, 0x0000200, 0x0800200, N_INV), \
10304 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10305 X(vst4, 0x0000300, 0x0800300, N_INV), \
10306 X(vmovn, 0x1b20200, N_INV, N_INV), \
10307 X(vtrn, 0x1b20080, N_INV, N_INV), \
10308 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
10309 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10310 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10311 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10312 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10313 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10314 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10315 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10316 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
10317
10318enum neon_opc
10319{
10320#define X(OPC,I,F,S) N_MNEM_##OPC
10321NEON_ENC_TAB
10322#undef X
10323};
b99bd4ef 10324
5287ad62
JB
10325static const struct neon_tab_entry neon_enc_tab[] =
10326{
10327#define X(OPC,I,F,S) { (I), (F), (S) }
10328NEON_ENC_TAB
10329#undef X
10330};
b99bd4ef 10331
5287ad62
JB
10332#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10333#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10334#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10335#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10336#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10337#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10338#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10339#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10340#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
10341#define NEON_ENC_SINGLE(X) \
10342 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10343#define NEON_ENC_DOUBLE(X) \
10344 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 10345
037e8744
JB
10346/* Define shapes for instruction operands. The following mnemonic characters
10347 are used in this table:
5287ad62 10348
037e8744 10349 F - VFP S<n> register
5287ad62
JB
10350 D - Neon D<n> register
10351 Q - Neon Q<n> register
10352 I - Immediate
10353 S - Scalar
10354 R - ARM register
10355 L - D<n> register list
037e8744
JB
10356
10357 This table is used to generate various data:
10358 - enumerations of the form NS_DDR to be used as arguments to
10359 neon_select_shape.
10360 - a table classifying shapes into single, double, quad, mixed.
10361 - a table used to drive neon_select_shape.
5287ad62 10362*/
b99bd4ef 10363
037e8744
JB
10364#define NEON_SHAPE_DEF \
10365 X(3, (D, D, D), DOUBLE), \
10366 X(3, (Q, Q, Q), QUAD), \
10367 X(3, (D, D, I), DOUBLE), \
10368 X(3, (Q, Q, I), QUAD), \
10369 X(3, (D, D, S), DOUBLE), \
10370 X(3, (Q, Q, S), QUAD), \
10371 X(2, (D, D), DOUBLE), \
10372 X(2, (Q, Q), QUAD), \
10373 X(2, (D, S), DOUBLE), \
10374 X(2, (Q, S), QUAD), \
10375 X(2, (D, R), DOUBLE), \
10376 X(2, (Q, R), QUAD), \
10377 X(2, (D, I), DOUBLE), \
10378 X(2, (Q, I), QUAD), \
10379 X(3, (D, L, D), DOUBLE), \
10380 X(2, (D, Q), MIXED), \
10381 X(2, (Q, D), MIXED), \
10382 X(3, (D, Q, I), MIXED), \
10383 X(3, (Q, D, I), MIXED), \
10384 X(3, (Q, D, D), MIXED), \
10385 X(3, (D, Q, Q), MIXED), \
10386 X(3, (Q, Q, D), MIXED), \
10387 X(3, (Q, D, S), MIXED), \
10388 X(3, (D, Q, S), MIXED), \
10389 X(4, (D, D, D, I), DOUBLE), \
10390 X(4, (Q, Q, Q, I), QUAD), \
10391 X(2, (F, F), SINGLE), \
10392 X(3, (F, F, F), SINGLE), \
10393 X(2, (F, I), SINGLE), \
10394 X(2, (F, D), MIXED), \
10395 X(2, (D, F), MIXED), \
10396 X(3, (F, F, I), MIXED), \
10397 X(4, (R, R, F, F), SINGLE), \
10398 X(4, (F, F, R, R), SINGLE), \
10399 X(3, (D, R, R), DOUBLE), \
10400 X(3, (R, R, D), DOUBLE), \
10401 X(2, (S, R), SINGLE), \
10402 X(2, (R, S), SINGLE), \
10403 X(2, (F, R), SINGLE), \
10404 X(2, (R, F), SINGLE)
10405
10406#define S2(A,B) NS_##A##B
10407#define S3(A,B,C) NS_##A##B##C
10408#define S4(A,B,C,D) NS_##A##B##C##D
10409
10410#define X(N, L, C) S##N L
10411
5287ad62
JB
10412enum neon_shape
10413{
037e8744
JB
10414 NEON_SHAPE_DEF,
10415 NS_NULL
5287ad62 10416};
b99bd4ef 10417
037e8744
JB
10418#undef X
10419#undef S2
10420#undef S3
10421#undef S4
10422
10423enum neon_shape_class
10424{
10425 SC_SINGLE,
10426 SC_DOUBLE,
10427 SC_QUAD,
10428 SC_MIXED
10429};
10430
10431#define X(N, L, C) SC_##C
10432
10433static enum neon_shape_class neon_shape_class[] =
10434{
10435 NEON_SHAPE_DEF
10436};
10437
10438#undef X
10439
10440enum neon_shape_el
10441{
10442 SE_F,
10443 SE_D,
10444 SE_Q,
10445 SE_I,
10446 SE_S,
10447 SE_R,
10448 SE_L
10449};
10450
10451/* Register widths of above. */
10452static unsigned neon_shape_el_size[] =
10453{
10454 32,
10455 64,
10456 128,
10457 0,
10458 32,
10459 32,
10460 0
10461};
10462
10463struct neon_shape_info
10464{
10465 unsigned els;
10466 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10467};
10468
10469#define S2(A,B) { SE_##A, SE_##B }
10470#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10471#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10472
10473#define X(N, L, C) { N, S##N L }
10474
10475static struct neon_shape_info neon_shape_tab[] =
10476{
10477 NEON_SHAPE_DEF
10478};
10479
10480#undef X
10481#undef S2
10482#undef S3
10483#undef S4
10484
5287ad62
JB
10485/* Bit masks used in type checking given instructions.
10486 'N_EQK' means the type must be the same as (or based on in some way) the key
10487 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10488 set, various other bits can be set as well in order to modify the meaning of
10489 the type constraint. */
10490
10491enum neon_type_mask
10492{
10493 N_S8 = 0x000001,
10494 N_S16 = 0x000002,
10495 N_S32 = 0x000004,
10496 N_S64 = 0x000008,
10497 N_U8 = 0x000010,
10498 N_U16 = 0x000020,
10499 N_U32 = 0x000040,
10500 N_U64 = 0x000080,
10501 N_I8 = 0x000100,
10502 N_I16 = 0x000200,
10503 N_I32 = 0x000400,
10504 N_I64 = 0x000800,
10505 N_8 = 0x001000,
10506 N_16 = 0x002000,
10507 N_32 = 0x004000,
10508 N_64 = 0x008000,
10509 N_P8 = 0x010000,
10510 N_P16 = 0x020000,
10511 N_F32 = 0x040000,
037e8744
JB
10512 N_F64 = 0x080000,
10513 N_KEY = 0x100000, /* key element (main type specifier). */
10514 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10515 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
5287ad62
JB
10516 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10517 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10518 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10519 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10520 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10521 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
dcbf9037 10522 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
5287ad62 10523 N_UTYP = 0,
037e8744 10524 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
10525};
10526
dcbf9037
JB
10527#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10528
5287ad62
JB
10529#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10530#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10531#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10532#define N_SUF_32 (N_SU_32 | N_F32)
10533#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10534#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10535
10536/* Pass this as the first type argument to neon_check_type to ignore types
10537 altogether. */
10538#define N_IGNORE_TYPE (N_KEY | N_EQK)
10539
037e8744
JB
10540/* Select a "shape" for the current instruction (describing register types or
10541 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10542 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10543 function of operand parsing, so this function doesn't need to be called.
10544 Shapes should be listed in order of decreasing length. */
5287ad62
JB
10545
10546static enum neon_shape
037e8744 10547neon_select_shape (enum neon_shape shape, ...)
5287ad62 10548{
037e8744
JB
10549 va_list ap;
10550 enum neon_shape first_shape = shape;
5287ad62
JB
10551
10552 /* Fix missing optional operands. FIXME: we don't know at this point how
10553 many arguments we should have, so this makes the assumption that we have
10554 > 1. This is true of all current Neon opcodes, I think, but may not be
10555 true in the future. */
10556 if (!inst.operands[1].present)
10557 inst.operands[1] = inst.operands[0];
10558
037e8744 10559 va_start (ap, shape);
5287ad62 10560
037e8744
JB
10561 for (; shape != NS_NULL; shape = va_arg (ap, int))
10562 {
10563 unsigned j;
10564 int matches = 1;
10565
10566 for (j = 0; j < neon_shape_tab[shape].els; j++)
10567 {
10568 if (!inst.operands[j].present)
10569 {
10570 matches = 0;
10571 break;
10572 }
10573
10574 switch (neon_shape_tab[shape].el[j])
10575 {
10576 case SE_F:
10577 if (!(inst.operands[j].isreg
10578 && inst.operands[j].isvec
10579 && inst.operands[j].issingle
10580 && !inst.operands[j].isquad))
10581 matches = 0;
10582 break;
10583
10584 case SE_D:
10585 if (!(inst.operands[j].isreg
10586 && inst.operands[j].isvec
10587 && !inst.operands[j].isquad
10588 && !inst.operands[j].issingle))
10589 matches = 0;
10590 break;
10591
10592 case SE_R:
10593 if (!(inst.operands[j].isreg
10594 && !inst.operands[j].isvec))
10595 matches = 0;
10596 break;
10597
10598 case SE_Q:
10599 if (!(inst.operands[j].isreg
10600 && inst.operands[j].isvec
10601 && inst.operands[j].isquad
10602 && !inst.operands[j].issingle))
10603 matches = 0;
10604 break;
10605
10606 case SE_I:
10607 if (!(!inst.operands[j].isreg
10608 && !inst.operands[j].isscalar))
10609 matches = 0;
10610 break;
10611
10612 case SE_S:
10613 if (!(!inst.operands[j].isreg
10614 && inst.operands[j].isscalar))
10615 matches = 0;
10616 break;
10617
10618 case SE_L:
10619 break;
10620 }
10621 }
10622 if (matches)
5287ad62 10623 break;
037e8744 10624 }
5287ad62 10625
037e8744 10626 va_end (ap);
5287ad62 10627
037e8744
JB
10628 if (shape == NS_NULL && first_shape != NS_NULL)
10629 first_error (_("invalid instruction shape"));
5287ad62 10630
037e8744
JB
10631 return shape;
10632}
5287ad62 10633
037e8744
JB
10634/* True if SHAPE is predominantly a quadword operation (most of the time, this
10635 means the Q bit should be set). */
10636
10637static int
10638neon_quad (enum neon_shape shape)
10639{
10640 return neon_shape_class[shape] == SC_QUAD;
5287ad62 10641}
037e8744 10642
5287ad62
JB
10643static void
10644neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10645 unsigned *g_size)
10646{
10647 /* Allow modification to be made to types which are constrained to be
10648 based on the key element, based on bits set alongside N_EQK. */
10649 if ((typebits & N_EQK) != 0)
10650 {
10651 if ((typebits & N_HLF) != 0)
10652 *g_size /= 2;
10653 else if ((typebits & N_DBL) != 0)
10654 *g_size *= 2;
10655 if ((typebits & N_SGN) != 0)
10656 *g_type = NT_signed;
10657 else if ((typebits & N_UNS) != 0)
10658 *g_type = NT_unsigned;
10659 else if ((typebits & N_INT) != 0)
10660 *g_type = NT_integer;
10661 else if ((typebits & N_FLT) != 0)
10662 *g_type = NT_float;
dcbf9037
JB
10663 else if ((typebits & N_SIZ) != 0)
10664 *g_type = NT_untyped;
5287ad62
JB
10665 }
10666}
10667
10668/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10669 operand type, i.e. the single type specified in a Neon instruction when it
10670 is the only one given. */
10671
10672static struct neon_type_el
10673neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10674{
10675 struct neon_type_el dest = *key;
10676
10677 assert ((thisarg & N_EQK) != 0);
10678
10679 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10680
10681 return dest;
10682}
10683
10684/* Convert Neon type and size into compact bitmask representation. */
10685
10686static enum neon_type_mask
10687type_chk_of_el_type (enum neon_el_type type, unsigned size)
10688{
10689 switch (type)
10690 {
10691 case NT_untyped:
10692 switch (size)
10693 {
10694 case 8: return N_8;
10695 case 16: return N_16;
10696 case 32: return N_32;
10697 case 64: return N_64;
10698 default: ;
10699 }
10700 break;
10701
10702 case NT_integer:
10703 switch (size)
10704 {
10705 case 8: return N_I8;
10706 case 16: return N_I16;
10707 case 32: return N_I32;
10708 case 64: return N_I64;
10709 default: ;
10710 }
10711 break;
10712
10713 case NT_float:
037e8744
JB
10714 switch (size)
10715 {
10716 case 32: return N_F32;
10717 case 64: return N_F64;
10718 default: ;
10719 }
5287ad62
JB
10720 break;
10721
10722 case NT_poly:
10723 switch (size)
10724 {
10725 case 8: return N_P8;
10726 case 16: return N_P16;
10727 default: ;
10728 }
10729 break;
10730
10731 case NT_signed:
10732 switch (size)
10733 {
10734 case 8: return N_S8;
10735 case 16: return N_S16;
10736 case 32: return N_S32;
10737 case 64: return N_S64;
10738 default: ;
10739 }
10740 break;
10741
10742 case NT_unsigned:
10743 switch (size)
10744 {
10745 case 8: return N_U8;
10746 case 16: return N_U16;
10747 case 32: return N_U32;
10748 case 64: return N_U64;
10749 default: ;
10750 }
10751 break;
10752
10753 default: ;
10754 }
10755
10756 return N_UTYP;
10757}
10758
10759/* Convert compact Neon bitmask type representation to a type and size. Only
10760 handles the case where a single bit is set in the mask. */
10761
dcbf9037 10762static int
5287ad62
JB
10763el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10764 enum neon_type_mask mask)
10765{
dcbf9037
JB
10766 if ((mask & N_EQK) != 0)
10767 return FAIL;
10768
5287ad62
JB
10769 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10770 *size = 8;
dcbf9037 10771 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 10772 *size = 16;
dcbf9037 10773 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 10774 *size = 32;
037e8744 10775 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 10776 *size = 64;
dcbf9037
JB
10777 else
10778 return FAIL;
10779
5287ad62
JB
10780 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10781 *type = NT_signed;
dcbf9037 10782 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 10783 *type = NT_unsigned;
dcbf9037 10784 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 10785 *type = NT_integer;
dcbf9037 10786 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 10787 *type = NT_untyped;
dcbf9037 10788 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 10789 *type = NT_poly;
037e8744 10790 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 10791 *type = NT_float;
dcbf9037
JB
10792 else
10793 return FAIL;
10794
10795 return SUCCESS;
5287ad62
JB
10796}
10797
10798/* Modify a bitmask of allowed types. This is only needed for type
10799 relaxation. */
10800
10801static unsigned
10802modify_types_allowed (unsigned allowed, unsigned mods)
10803{
10804 unsigned size;
10805 enum neon_el_type type;
10806 unsigned destmask;
10807 int i;
10808
10809 destmask = 0;
10810
10811 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10812 {
dcbf9037
JB
10813 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10814 {
10815 neon_modify_type_size (mods, &type, &size);
10816 destmask |= type_chk_of_el_type (type, size);
10817 }
5287ad62
JB
10818 }
10819
10820 return destmask;
10821}
10822
10823/* Check type and return type classification.
10824 The manual states (paraphrase): If one datatype is given, it indicates the
10825 type given in:
10826 - the second operand, if there is one
10827 - the operand, if there is no second operand
10828 - the result, if there are no operands.
10829 This isn't quite good enough though, so we use a concept of a "key" datatype
10830 which is set on a per-instruction basis, which is the one which matters when
10831 only one data type is written.
10832 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 10833 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
10834
10835static struct neon_type_el
10836neon_check_type (unsigned els, enum neon_shape ns, ...)
10837{
10838 va_list ap;
10839 unsigned i, pass, key_el = 0;
10840 unsigned types[NEON_MAX_TYPE_ELS];
10841 enum neon_el_type k_type = NT_invtype;
10842 unsigned k_size = -1u;
10843 struct neon_type_el badtype = {NT_invtype, -1};
10844 unsigned key_allowed = 0;
10845
10846 /* Optional registers in Neon instructions are always (not) in operand 1.
10847 Fill in the missing operand here, if it was omitted. */
10848 if (els > 1 && !inst.operands[1].present)
10849 inst.operands[1] = inst.operands[0];
10850
10851 /* Suck up all the varargs. */
10852 va_start (ap, ns);
10853 for (i = 0; i < els; i++)
10854 {
10855 unsigned thisarg = va_arg (ap, unsigned);
10856 if (thisarg == N_IGNORE_TYPE)
10857 {
10858 va_end (ap);
10859 return badtype;
10860 }
10861 types[i] = thisarg;
10862 if ((thisarg & N_KEY) != 0)
10863 key_el = i;
10864 }
10865 va_end (ap);
10866
dcbf9037
JB
10867 if (inst.vectype.elems > 0)
10868 for (i = 0; i < els; i++)
10869 if (inst.operands[i].vectype.type != NT_invtype)
10870 {
10871 first_error (_("types specified in both the mnemonic and operands"));
10872 return badtype;
10873 }
10874
5287ad62
JB
10875 /* Duplicate inst.vectype elements here as necessary.
10876 FIXME: No idea if this is exactly the same as the ARM assembler,
10877 particularly when an insn takes one register and one non-register
10878 operand. */
10879 if (inst.vectype.elems == 1 && els > 1)
10880 {
10881 unsigned j;
10882 inst.vectype.elems = els;
10883 inst.vectype.el[key_el] = inst.vectype.el[0];
10884 for (j = 0; j < els; j++)
dcbf9037
JB
10885 if (j != key_el)
10886 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10887 types[j]);
10888 }
10889 else if (inst.vectype.elems == 0 && els > 0)
10890 {
10891 unsigned j;
10892 /* No types were given after the mnemonic, so look for types specified
10893 after each operand. We allow some flexibility here; as long as the
10894 "key" operand has a type, we can infer the others. */
10895 for (j = 0; j < els; j++)
10896 if (inst.operands[j].vectype.type != NT_invtype)
10897 inst.vectype.el[j] = inst.operands[j].vectype;
10898
10899 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 10900 {
dcbf9037
JB
10901 for (j = 0; j < els; j++)
10902 if (inst.operands[j].vectype.type == NT_invtype)
10903 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10904 types[j]);
10905 }
10906 else
10907 {
10908 first_error (_("operand types can't be inferred"));
10909 return badtype;
5287ad62
JB
10910 }
10911 }
10912 else if (inst.vectype.elems != els)
10913 {
dcbf9037 10914 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
10915 return badtype;
10916 }
10917
10918 for (pass = 0; pass < 2; pass++)
10919 {
10920 for (i = 0; i < els; i++)
10921 {
10922 unsigned thisarg = types[i];
10923 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
10924 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
10925 enum neon_el_type g_type = inst.vectype.el[i].type;
10926 unsigned g_size = inst.vectype.el[i].size;
10927
10928 /* Decay more-specific signed & unsigned types to sign-insensitive
10929 integer types if sign-specific variants are unavailable. */
10930 if ((g_type == NT_signed || g_type == NT_unsigned)
10931 && (types_allowed & N_SU_ALL) == 0)
10932 g_type = NT_integer;
10933
10934 /* If only untyped args are allowed, decay any more specific types to
10935 them. Some instructions only care about signs for some element
10936 sizes, so handle that properly. */
10937 if ((g_size == 8 && (types_allowed & N_8) != 0)
10938 || (g_size == 16 && (types_allowed & N_16) != 0)
10939 || (g_size == 32 && (types_allowed & N_32) != 0)
10940 || (g_size == 64 && (types_allowed & N_64) != 0))
10941 g_type = NT_untyped;
10942
10943 if (pass == 0)
10944 {
10945 if ((thisarg & N_KEY) != 0)
10946 {
10947 k_type = g_type;
10948 k_size = g_size;
10949 key_allowed = thisarg & ~N_KEY;
10950 }
10951 }
10952 else
10953 {
037e8744
JB
10954 if ((thisarg & N_VFP) != 0)
10955 {
10956 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
10957 unsigned regwidth = neon_shape_el_size[regshape], match;
10958
10959 /* In VFP mode, operands must match register widths. If we
10960 have a key operand, use its width, else use the width of
10961 the current operand. */
10962 if (k_size != -1u)
10963 match = k_size;
10964 else
10965 match = g_size;
10966
10967 if (regwidth != match)
10968 {
10969 first_error (_("operand size must match register width"));
10970 return badtype;
10971 }
10972 }
10973
5287ad62
JB
10974 if ((thisarg & N_EQK) == 0)
10975 {
10976 unsigned given_type = type_chk_of_el_type (g_type, g_size);
10977
10978 if ((given_type & types_allowed) == 0)
10979 {
dcbf9037 10980 first_error (_("bad type in Neon instruction"));
5287ad62
JB
10981 return badtype;
10982 }
10983 }
10984 else
10985 {
10986 enum neon_el_type mod_k_type = k_type;
10987 unsigned mod_k_size = k_size;
10988 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
10989 if (g_type != mod_k_type || g_size != mod_k_size)
10990 {
dcbf9037 10991 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
10992 return badtype;
10993 }
10994 }
10995 }
10996 }
10997 }
10998
10999 return inst.vectype.el[key_el];
11000}
11001
037e8744 11002/* Neon-style VFP instruction forwarding. */
5287ad62 11003
037e8744
JB
11004/* Thumb VFP instructions have 0xE in the condition field. */
11005
11006static void
11007do_vfp_cond_or_thumb (void)
5287ad62
JB
11008{
11009 if (thumb_mode)
037e8744 11010 inst.instruction |= 0xe0000000;
5287ad62 11011 else
037e8744 11012 inst.instruction |= inst.cond << 28;
5287ad62
JB
11013}
11014
037e8744
JB
11015/* Look up and encode a simple mnemonic, for use as a helper function for the
11016 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11017 etc. It is assumed that operand parsing has already been done, and that the
11018 operands are in the form expected by the given opcode (this isn't necessarily
11019 the same as the form in which they were parsed, hence some massaging must
11020 take place before this function is called).
11021 Checks current arch version against that in the looked-up opcode. */
5287ad62 11022
037e8744
JB
11023static void
11024do_vfp_nsyn_opcode (const char *opname)
5287ad62 11025{
037e8744
JB
11026 const struct asm_opcode *opcode;
11027
11028 opcode = hash_find (arm_ops_hsh, opname);
5287ad62 11029
037e8744
JB
11030 if (!opcode)
11031 abort ();
5287ad62 11032
037e8744
JB
11033 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11034 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11035 _(BAD_FPU));
5287ad62 11036
037e8744
JB
11037 if (thumb_mode)
11038 {
11039 inst.instruction = opcode->tvalue;
11040 opcode->tencode ();
11041 }
11042 else
11043 {
11044 inst.instruction = (inst.cond << 28) | opcode->avalue;
11045 opcode->aencode ();
11046 }
11047}
5287ad62
JB
11048
11049static void
037e8744 11050do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 11051{
037e8744
JB
11052 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11053
11054 if (rs == NS_FFF)
11055 {
11056 if (is_add)
11057 do_vfp_nsyn_opcode ("fadds");
11058 else
11059 do_vfp_nsyn_opcode ("fsubs");
11060 }
11061 else
11062 {
11063 if (is_add)
11064 do_vfp_nsyn_opcode ("faddd");
11065 else
11066 do_vfp_nsyn_opcode ("fsubd");
11067 }
11068}
11069
11070/* Check operand types to see if this is a VFP instruction, and if so call
11071 PFN (). */
11072
11073static int
11074try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11075{
11076 enum neon_shape rs;
11077 struct neon_type_el et;
11078
11079 switch (args)
11080 {
11081 case 2:
11082 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11083 et = neon_check_type (2, rs,
11084 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11085 break;
11086
11087 case 3:
11088 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11089 et = neon_check_type (3, rs,
11090 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11091 break;
11092
11093 default:
11094 abort ();
11095 }
11096
11097 if (et.type != NT_invtype)
11098 {
11099 pfn (rs);
11100 return SUCCESS;
11101 }
11102 else
11103 inst.error = NULL;
11104
11105 return FAIL;
11106}
11107
11108static void
11109do_vfp_nsyn_mla_mls (enum neon_shape rs)
11110{
11111 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11112
11113 if (rs == NS_FFF)
11114 {
11115 if (is_mla)
11116 do_vfp_nsyn_opcode ("fmacs");
11117 else
11118 do_vfp_nsyn_opcode ("fmscs");
11119 }
11120 else
11121 {
11122 if (is_mla)
11123 do_vfp_nsyn_opcode ("fmacd");
11124 else
11125 do_vfp_nsyn_opcode ("fmscd");
11126 }
11127}
11128
11129static void
11130do_vfp_nsyn_mul (enum neon_shape rs)
11131{
11132 if (rs == NS_FFF)
11133 do_vfp_nsyn_opcode ("fmuls");
11134 else
11135 do_vfp_nsyn_opcode ("fmuld");
11136}
11137
11138static void
11139do_vfp_nsyn_abs_neg (enum neon_shape rs)
11140{
11141 int is_neg = (inst.instruction & 0x80) != 0;
11142 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11143
11144 if (rs == NS_FF)
11145 {
11146 if (is_neg)
11147 do_vfp_nsyn_opcode ("fnegs");
11148 else
11149 do_vfp_nsyn_opcode ("fabss");
11150 }
11151 else
11152 {
11153 if (is_neg)
11154 do_vfp_nsyn_opcode ("fnegd");
11155 else
11156 do_vfp_nsyn_opcode ("fabsd");
11157 }
11158}
11159
11160/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11161 insns belong to Neon, and are handled elsewhere. */
11162
11163static void
11164do_vfp_nsyn_ldm_stm (int is_dbmode)
11165{
11166 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11167 if (is_ldm)
11168 {
11169 if (is_dbmode)
11170 do_vfp_nsyn_opcode ("fldmdbs");
11171 else
11172 do_vfp_nsyn_opcode ("fldmias");
11173 }
11174 else
11175 {
11176 if (is_dbmode)
11177 do_vfp_nsyn_opcode ("fstmdbs");
11178 else
11179 do_vfp_nsyn_opcode ("fstmias");
11180 }
11181}
11182
037e8744
JB
11183static void
11184do_vfp_nsyn_sqrt (void)
11185{
11186 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11187 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11188
11189 if (rs == NS_FF)
11190 do_vfp_nsyn_opcode ("fsqrts");
11191 else
11192 do_vfp_nsyn_opcode ("fsqrtd");
11193}
11194
11195static void
11196do_vfp_nsyn_div (void)
11197{
11198 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11199 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11200 N_F32 | N_F64 | N_KEY | N_VFP);
11201
11202 if (rs == NS_FFF)
11203 do_vfp_nsyn_opcode ("fdivs");
11204 else
11205 do_vfp_nsyn_opcode ("fdivd");
11206}
11207
11208static void
11209do_vfp_nsyn_nmul (void)
11210{
11211 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11212 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11213 N_F32 | N_F64 | N_KEY | N_VFP);
11214
11215 if (rs == NS_FFF)
11216 {
11217 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11218 do_vfp_sp_dyadic ();
11219 }
11220 else
11221 {
11222 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11223 do_vfp_dp_rd_rn_rm ();
11224 }
11225 do_vfp_cond_or_thumb ();
11226}
11227
11228static void
11229do_vfp_nsyn_cmp (void)
11230{
11231 if (inst.operands[1].isreg)
11232 {
11233 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11234 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11235
11236 if (rs == NS_FF)
11237 {
11238 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11239 do_vfp_sp_monadic ();
11240 }
11241 else
11242 {
11243 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11244 do_vfp_dp_rd_rm ();
11245 }
11246 }
11247 else
11248 {
11249 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11250 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11251
11252 switch (inst.instruction & 0x0fffffff)
11253 {
11254 case N_MNEM_vcmp:
11255 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11256 break;
11257 case N_MNEM_vcmpe:
11258 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11259 break;
11260 default:
11261 abort ();
11262 }
11263
11264 if (rs == NS_FI)
11265 {
11266 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11267 do_vfp_sp_compare_z ();
11268 }
11269 else
11270 {
11271 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11272 do_vfp_dp_rd ();
11273 }
11274 }
11275 do_vfp_cond_or_thumb ();
11276}
11277
11278static void
11279nsyn_insert_sp (void)
11280{
11281 inst.operands[1] = inst.operands[0];
11282 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11283 inst.operands[0].reg = 13;
11284 inst.operands[0].isreg = 1;
11285 inst.operands[0].writeback = 1;
11286 inst.operands[0].present = 1;
11287}
11288
11289static void
11290do_vfp_nsyn_push (void)
11291{
11292 nsyn_insert_sp ();
11293 if (inst.operands[1].issingle)
11294 do_vfp_nsyn_opcode ("fstmdbs");
11295 else
11296 do_vfp_nsyn_opcode ("fstmdbd");
11297}
11298
11299static void
11300do_vfp_nsyn_pop (void)
11301{
11302 nsyn_insert_sp ();
11303 if (inst.operands[1].issingle)
22b5b651 11304 do_vfp_nsyn_opcode ("fldmias");
037e8744 11305 else
22b5b651 11306 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
11307}
11308
11309/* Fix up Neon data-processing instructions, ORing in the correct bits for
11310 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11311
11312static unsigned
11313neon_dp_fixup (unsigned i)
11314{
11315 if (thumb_mode)
11316 {
11317 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11318 if (i & (1 << 24))
11319 i |= 1 << 28;
11320
11321 i &= ~(1 << 24);
11322
11323 i |= 0xef000000;
11324 }
11325 else
11326 i |= 0xf2000000;
11327
11328 return i;
11329}
11330
11331/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11332 (0, 1, 2, 3). */
11333
11334static unsigned
11335neon_logbits (unsigned x)
11336{
11337 return ffs (x) - 4;
11338}
11339
11340#define LOW4(R) ((R) & 0xf)
11341#define HI1(R) (((R) >> 4) & 1)
11342
11343/* Encode insns with bit pattern:
11344
11345 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11346 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11347
11348 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11349 different meaning for some instruction. */
11350
11351static void
11352neon_three_same (int isquad, int ubit, int size)
11353{
11354 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11355 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11356 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11357 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11358 inst.instruction |= LOW4 (inst.operands[2].reg);
11359 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11360 inst.instruction |= (isquad != 0) << 6;
11361 inst.instruction |= (ubit != 0) << 24;
11362 if (size != -1)
11363 inst.instruction |= neon_logbits (size) << 20;
11364
11365 inst.instruction = neon_dp_fixup (inst.instruction);
11366}
11367
11368/* Encode instructions of the form:
11369
11370 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11371 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
11372
11373 Don't write size if SIZE == -1. */
11374
11375static void
11376neon_two_same (int qbit, int ubit, int size)
11377{
11378 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11379 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11380 inst.instruction |= LOW4 (inst.operands[1].reg);
11381 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11382 inst.instruction |= (qbit != 0) << 6;
11383 inst.instruction |= (ubit != 0) << 24;
11384
11385 if (size != -1)
11386 inst.instruction |= neon_logbits (size) << 18;
11387
11388 inst.instruction = neon_dp_fixup (inst.instruction);
11389}
11390
11391/* Neon instruction encoders, in approximate order of appearance. */
11392
11393static void
11394do_neon_dyadic_i_su (void)
11395{
037e8744 11396 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11397 struct neon_type_el et = neon_check_type (3, rs,
11398 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 11399 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11400}
11401
11402static void
11403do_neon_dyadic_i64_su (void)
11404{
037e8744 11405 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11406 struct neon_type_el et = neon_check_type (3, rs,
11407 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 11408 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11409}
11410
11411static void
11412neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11413 unsigned immbits)
11414{
11415 unsigned size = et.size >> 3;
11416 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11417 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11418 inst.instruction |= LOW4 (inst.operands[1].reg);
11419 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11420 inst.instruction |= (isquad != 0) << 6;
11421 inst.instruction |= immbits << 16;
11422 inst.instruction |= (size >> 3) << 7;
11423 inst.instruction |= (size & 0x7) << 19;
11424 if (write_ubit)
11425 inst.instruction |= (uval != 0) << 24;
11426
11427 inst.instruction = neon_dp_fixup (inst.instruction);
11428}
11429
11430static void
11431do_neon_shl_imm (void)
11432{
11433 if (!inst.operands[2].isreg)
11434 {
037e8744 11435 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
11436 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11437 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11438 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
11439 }
11440 else
11441 {
037e8744 11442 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11443 struct neon_type_el et = neon_check_type (3, rs,
11444 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11445 unsigned int tmp;
11446
11447 /* VSHL/VQSHL 3-register variants have syntax such as:
11448 vshl.xx Dd, Dm, Dn
11449 whereas other 3-register operations encoded by neon_three_same have
11450 syntax like:
11451 vadd.xx Dd, Dn, Dm
11452 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11453 here. */
11454 tmp = inst.operands[2].reg;
11455 inst.operands[2].reg = inst.operands[1].reg;
11456 inst.operands[1].reg = tmp;
5287ad62 11457 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11458 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11459 }
11460}
11461
11462static void
11463do_neon_qshl_imm (void)
11464{
11465 if (!inst.operands[2].isreg)
11466 {
037e8744 11467 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 11468 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 11469
5287ad62 11470 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 11471 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
11472 inst.operands[2].imm);
11473 }
11474 else
11475 {
037e8744 11476 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11477 struct neon_type_el et = neon_check_type (3, rs,
11478 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
11479 unsigned int tmp;
11480
11481 /* See note in do_neon_shl_imm. */
11482 tmp = inst.operands[2].reg;
11483 inst.operands[2].reg = inst.operands[1].reg;
11484 inst.operands[1].reg = tmp;
5287ad62 11485 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11486 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
11487 }
11488}
11489
627907b7
JB
11490static void
11491do_neon_rshl (void)
11492{
11493 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11494 struct neon_type_el et = neon_check_type (3, rs,
11495 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11496 unsigned int tmp;
11497
11498 tmp = inst.operands[2].reg;
11499 inst.operands[2].reg = inst.operands[1].reg;
11500 inst.operands[1].reg = tmp;
11501 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11502}
11503
5287ad62
JB
11504static int
11505neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11506{
036dc3f7
PB
11507 /* Handle .I8 pseudo-instructions. */
11508 if (size == 8)
5287ad62 11509 {
5287ad62
JB
11510 /* Unfortunately, this will make everything apart from zero out-of-range.
11511 FIXME is this the intended semantics? There doesn't seem much point in
11512 accepting .I8 if so. */
11513 immediate |= immediate << 8;
11514 size = 16;
036dc3f7
PB
11515 }
11516
11517 if (size >= 32)
11518 {
11519 if (immediate == (immediate & 0x000000ff))
11520 {
11521 *immbits = immediate;
11522 return 0x1;
11523 }
11524 else if (immediate == (immediate & 0x0000ff00))
11525 {
11526 *immbits = immediate >> 8;
11527 return 0x3;
11528 }
11529 else if (immediate == (immediate & 0x00ff0000))
11530 {
11531 *immbits = immediate >> 16;
11532 return 0x5;
11533 }
11534 else if (immediate == (immediate & 0xff000000))
11535 {
11536 *immbits = immediate >> 24;
11537 return 0x7;
11538 }
11539 if ((immediate & 0xffff) != (immediate >> 16))
11540 goto bad_immediate;
11541 immediate &= 0xffff;
5287ad62
JB
11542 }
11543
11544 if (immediate == (immediate & 0x000000ff))
11545 {
11546 *immbits = immediate;
036dc3f7 11547 return 0x9;
5287ad62
JB
11548 }
11549 else if (immediate == (immediate & 0x0000ff00))
11550 {
11551 *immbits = immediate >> 8;
036dc3f7 11552 return 0xb;
5287ad62
JB
11553 }
11554
11555 bad_immediate:
dcbf9037 11556 first_error (_("immediate value out of range"));
5287ad62
JB
11557 return FAIL;
11558}
11559
11560/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11561 A, B, C, D. */
11562
11563static int
11564neon_bits_same_in_bytes (unsigned imm)
11565{
11566 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11567 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11568 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11569 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11570}
11571
11572/* For immediate of above form, return 0bABCD. */
11573
11574static unsigned
11575neon_squash_bits (unsigned imm)
11576{
11577 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11578 | ((imm & 0x01000000) >> 21);
11579}
11580
136da414 11581/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
11582
11583static unsigned
11584neon_qfloat_bits (unsigned imm)
11585{
136da414 11586 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
11587}
11588
11589/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11590 the instruction. *OP is passed as the initial value of the op field, and
11591 may be set to a different value depending on the constant (i.e.
11592 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
036dc3f7
PB
11593 MVN). If the immediate looks like a repeated parttern then also
11594 try smaller element sizes. */
5287ad62
JB
11595
11596static int
c96612cc
JB
11597neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11598 unsigned *immbits, int *op, int size,
11599 enum neon_el_type type)
5287ad62 11600{
c96612cc
JB
11601 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11602 float. */
11603 if (type == NT_float && !float_p)
11604 return FAIL;
11605
136da414
JB
11606 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11607 {
11608 if (size != 32 || *op == 1)
11609 return FAIL;
11610 *immbits = neon_qfloat_bits (immlo);
11611 return 0xf;
11612 }
036dc3f7
PB
11613
11614 if (size == 64)
5287ad62 11615 {
036dc3f7
PB
11616 if (neon_bits_same_in_bytes (immhi)
11617 && neon_bits_same_in_bytes (immlo))
11618 {
11619 if (*op == 1)
11620 return FAIL;
11621 *immbits = (neon_squash_bits (immhi) << 4)
11622 | neon_squash_bits (immlo);
11623 *op = 1;
11624 return 0xe;
11625 }
11626
11627 if (immhi != immlo)
11628 return FAIL;
5287ad62 11629 }
036dc3f7
PB
11630
11631 if (size >= 32)
5287ad62 11632 {
036dc3f7
PB
11633 if (immlo == (immlo & 0x000000ff))
11634 {
11635 *immbits = immlo;
11636 return 0x0;
11637 }
11638 else if (immlo == (immlo & 0x0000ff00))
11639 {
11640 *immbits = immlo >> 8;
11641 return 0x2;
11642 }
11643 else if (immlo == (immlo & 0x00ff0000))
11644 {
11645 *immbits = immlo >> 16;
11646 return 0x4;
11647 }
11648 else if (immlo == (immlo & 0xff000000))
11649 {
11650 *immbits = immlo >> 24;
11651 return 0x6;
11652 }
11653 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11654 {
11655 *immbits = (immlo >> 8) & 0xff;
11656 return 0xc;
11657 }
11658 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11659 {
11660 *immbits = (immlo >> 16) & 0xff;
11661 return 0xd;
11662 }
11663
11664 if ((immlo & 0xffff) != (immlo >> 16))
11665 return FAIL;
11666 immlo &= 0xffff;
5287ad62 11667 }
036dc3f7
PB
11668
11669 if (size >= 16)
5287ad62 11670 {
036dc3f7
PB
11671 if (immlo == (immlo & 0x000000ff))
11672 {
11673 *immbits = immlo;
11674 return 0x8;
11675 }
11676 else if (immlo == (immlo & 0x0000ff00))
11677 {
11678 *immbits = immlo >> 8;
11679 return 0xa;
11680 }
11681
11682 if ((immlo & 0xff) != (immlo >> 8))
11683 return FAIL;
11684 immlo &= 0xff;
5287ad62 11685 }
036dc3f7
PB
11686
11687 if (immlo == (immlo & 0x000000ff))
5287ad62 11688 {
036dc3f7
PB
11689 /* Don't allow MVN with 8-bit immediate. */
11690 if (*op == 1)
11691 return FAIL;
11692 *immbits = immlo;
11693 return 0xe;
5287ad62 11694 }
5287ad62
JB
11695
11696 return FAIL;
11697}
11698
11699/* Write immediate bits [7:0] to the following locations:
11700
11701 |28/24|23 19|18 16|15 4|3 0|
11702 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11703
11704 This function is used by VMOV/VMVN/VORR/VBIC. */
11705
11706static void
11707neon_write_immbits (unsigned immbits)
11708{
11709 inst.instruction |= immbits & 0xf;
11710 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11711 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11712}
11713
11714/* Invert low-order SIZE bits of XHI:XLO. */
11715
11716static void
11717neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11718{
11719 unsigned immlo = xlo ? *xlo : 0;
11720 unsigned immhi = xhi ? *xhi : 0;
11721
11722 switch (size)
11723 {
11724 case 8:
11725 immlo = (~immlo) & 0xff;
11726 break;
11727
11728 case 16:
11729 immlo = (~immlo) & 0xffff;
11730 break;
11731
11732 case 64:
11733 immhi = (~immhi) & 0xffffffff;
11734 /* fall through. */
11735
11736 case 32:
11737 immlo = (~immlo) & 0xffffffff;
11738 break;
11739
11740 default:
11741 abort ();
11742 }
11743
11744 if (xlo)
11745 *xlo = immlo;
11746
11747 if (xhi)
11748 *xhi = immhi;
11749}
11750
11751static void
11752do_neon_logic (void)
11753{
11754 if (inst.operands[2].present && inst.operands[2].isreg)
11755 {
037e8744 11756 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
11757 neon_check_type (3, rs, N_IGNORE_TYPE);
11758 /* U bit and size field were set as part of the bitmask. */
11759 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11760 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11761 }
11762 else
11763 {
037e8744
JB
11764 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11765 struct neon_type_el et = neon_check_type (2, rs,
11766 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62
JB
11767 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11768 unsigned immbits;
11769 int cmode;
11770
11771 if (et.type == NT_invtype)
11772 return;
11773
11774 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11775
036dc3f7
PB
11776 immbits = inst.operands[1].imm;
11777 if (et.size == 64)
11778 {
11779 /* .i64 is a pseudo-op, so the immediate must be a repeating
11780 pattern. */
11781 if (immbits != (inst.operands[1].regisimm ?
11782 inst.operands[1].reg : 0))
11783 {
11784 /* Set immbits to an invalid constant. */
11785 immbits = 0xdeadbeef;
11786 }
11787 }
11788
5287ad62
JB
11789 switch (opcode)
11790 {
11791 case N_MNEM_vbic:
036dc3f7 11792 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62
JB
11793 break;
11794
11795 case N_MNEM_vorr:
036dc3f7 11796 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62
JB
11797 break;
11798
11799 case N_MNEM_vand:
11800 /* Pseudo-instruction for VBIC. */
5287ad62
JB
11801 neon_invert_size (&immbits, 0, et.size);
11802 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11803 break;
11804
11805 case N_MNEM_vorn:
11806 /* Pseudo-instruction for VORR. */
5287ad62
JB
11807 neon_invert_size (&immbits, 0, et.size);
11808 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11809 break;
11810
11811 default:
11812 abort ();
11813 }
11814
11815 if (cmode == FAIL)
11816 return;
11817
037e8744 11818 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
11819 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11820 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11821 inst.instruction |= cmode << 8;
11822 neon_write_immbits (immbits);
11823
11824 inst.instruction = neon_dp_fixup (inst.instruction);
11825 }
11826}
11827
11828static void
11829do_neon_bitfield (void)
11830{
037e8744 11831 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 11832 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 11833 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11834}
11835
11836static void
dcbf9037
JB
11837neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11838 unsigned destbits)
5287ad62 11839{
037e8744 11840 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
11841 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
11842 types | N_KEY);
5287ad62
JB
11843 if (et.type == NT_float)
11844 {
11845 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 11846 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
11847 }
11848 else
11849 {
11850 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 11851 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
11852 }
11853}
11854
11855static void
11856do_neon_dyadic_if_su (void)
11857{
dcbf9037 11858 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
11859}
11860
11861static void
11862do_neon_dyadic_if_su_d (void)
11863{
11864 /* This version only allow D registers, but that constraint is enforced during
11865 operand parsing so we don't need to do anything extra here. */
dcbf9037 11866 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
11867}
11868
5287ad62
JB
11869static void
11870do_neon_dyadic_if_i_d (void)
11871{
428e3f1f
PB
11872 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11873 affected if we specify unsigned args. */
11874 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
11875}
11876
037e8744
JB
11877enum vfp_or_neon_is_neon_bits
11878{
11879 NEON_CHECK_CC = 1,
11880 NEON_CHECK_ARCH = 2
11881};
11882
11883/* Call this function if an instruction which may have belonged to the VFP or
11884 Neon instruction sets, but turned out to be a Neon instruction (due to the
11885 operand types involved, etc.). We have to check and/or fix-up a couple of
11886 things:
11887
11888 - Make sure the user hasn't attempted to make a Neon instruction
11889 conditional.
11890 - Alter the value in the condition code field if necessary.
11891 - Make sure that the arch supports Neon instructions.
11892
11893 Which of these operations take place depends on bits from enum
11894 vfp_or_neon_is_neon_bits.
11895
11896 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
11897 current instruction's condition is COND_ALWAYS, the condition field is
11898 changed to inst.uncond_value. This is necessary because instructions shared
11899 between VFP and Neon may be conditional for the VFP variants only, and the
11900 unconditional Neon version must have, e.g., 0xF in the condition field. */
11901
11902static int
11903vfp_or_neon_is_neon (unsigned check)
11904{
11905 /* Conditions are always legal in Thumb mode (IT blocks). */
11906 if (!thumb_mode && (check & NEON_CHECK_CC))
11907 {
11908 if (inst.cond != COND_ALWAYS)
11909 {
11910 first_error (_(BAD_COND));
11911 return FAIL;
11912 }
11913 if (inst.uncond_value != -1)
11914 inst.instruction |= inst.uncond_value << 28;
11915 }
11916
11917 if ((check & NEON_CHECK_ARCH)
11918 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
11919 {
11920 first_error (_(BAD_FPU));
11921 return FAIL;
11922 }
11923
11924 return SUCCESS;
11925}
11926
5287ad62
JB
11927static void
11928do_neon_addsub_if_i (void)
11929{
037e8744
JB
11930 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
11931 return;
11932
11933 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11934 return;
11935
5287ad62
JB
11936 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11937 affected if we specify unsigned args. */
dcbf9037 11938 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
11939}
11940
11941/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
11942 result to be:
11943 V<op> A,B (A is operand 0, B is operand 2)
11944 to mean:
11945 V<op> A,B,A
11946 not:
11947 V<op> A,B,B
11948 so handle that case specially. */
11949
11950static void
11951neon_exchange_operands (void)
11952{
11953 void *scratch = alloca (sizeof (inst.operands[0]));
11954 if (inst.operands[1].present)
11955 {
11956 /* Swap operands[1] and operands[2]. */
11957 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
11958 inst.operands[1] = inst.operands[2];
11959 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
11960 }
11961 else
11962 {
11963 inst.operands[1] = inst.operands[2];
11964 inst.operands[2] = inst.operands[0];
11965 }
11966}
11967
11968static void
11969neon_compare (unsigned regtypes, unsigned immtypes, int invert)
11970{
11971 if (inst.operands[2].isreg)
11972 {
11973 if (invert)
11974 neon_exchange_operands ();
dcbf9037 11975 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
11976 }
11977 else
11978 {
037e8744 11979 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
11980 struct neon_type_el et = neon_check_type (2, rs,
11981 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
11982
11983 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11984 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11985 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11986 inst.instruction |= LOW4 (inst.operands[1].reg);
11987 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 11988 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
11989 inst.instruction |= (et.type == NT_float) << 10;
11990 inst.instruction |= neon_logbits (et.size) << 18;
11991
11992 inst.instruction = neon_dp_fixup (inst.instruction);
11993 }
11994}
11995
11996static void
11997do_neon_cmp (void)
11998{
11999 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12000}
12001
12002static void
12003do_neon_cmp_inv (void)
12004{
12005 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12006}
12007
12008static void
12009do_neon_ceq (void)
12010{
12011 neon_compare (N_IF_32, N_IF_32, FALSE);
12012}
12013
12014/* For multiply instructions, we have the possibility of 16-bit or 32-bit
12015 scalars, which are encoded in 5 bits, M : Rm.
12016 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12017 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12018 index in M. */
12019
12020static unsigned
12021neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12022{
dcbf9037
JB
12023 unsigned regno = NEON_SCALAR_REG (scalar);
12024 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
12025
12026 switch (elsize)
12027 {
12028 case 16:
12029 if (regno > 7 || elno > 3)
12030 goto bad_scalar;
12031 return regno | (elno << 3);
12032
12033 case 32:
12034 if (regno > 15 || elno > 1)
12035 goto bad_scalar;
12036 return regno | (elno << 4);
12037
12038 default:
12039 bad_scalar:
dcbf9037 12040 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
12041 }
12042
12043 return 0;
12044}
12045
12046/* Encode multiply / multiply-accumulate scalar instructions. */
12047
12048static void
12049neon_mul_mac (struct neon_type_el et, int ubit)
12050{
dcbf9037
JB
12051 unsigned scalar;
12052
12053 /* Give a more helpful error message if we have an invalid type. */
12054 if (et.type == NT_invtype)
12055 return;
12056
12057 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
12058 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12059 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12060 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12061 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12062 inst.instruction |= LOW4 (scalar);
12063 inst.instruction |= HI1 (scalar) << 5;
12064 inst.instruction |= (et.type == NT_float) << 8;
12065 inst.instruction |= neon_logbits (et.size) << 20;
12066 inst.instruction |= (ubit != 0) << 24;
12067
12068 inst.instruction = neon_dp_fixup (inst.instruction);
12069}
12070
12071static void
12072do_neon_mac_maybe_scalar (void)
12073{
037e8744
JB
12074 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12075 return;
12076
12077 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12078 return;
12079
5287ad62
JB
12080 if (inst.operands[2].isscalar)
12081 {
037e8744 12082 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12083 struct neon_type_el et = neon_check_type (3, rs,
12084 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12085 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12086 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12087 }
12088 else
428e3f1f
PB
12089 {
12090 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12091 affected if we specify unsigned args. */
12092 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12093 }
5287ad62
JB
12094}
12095
12096static void
12097do_neon_tst (void)
12098{
037e8744 12099 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12100 struct neon_type_el et = neon_check_type (3, rs,
12101 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 12102 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12103}
12104
12105/* VMUL with 3 registers allows the P8 type. The scalar version supports the
12106 same types as the MAC equivalents. The polynomial type for this instruction
12107 is encoded the same as the integer type. */
12108
12109static void
12110do_neon_mul (void)
12111{
037e8744
JB
12112 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12113 return;
12114
12115 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12116 return;
12117
5287ad62
JB
12118 if (inst.operands[2].isscalar)
12119 do_neon_mac_maybe_scalar ();
12120 else
dcbf9037 12121 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
12122}
12123
12124static void
12125do_neon_qdmulh (void)
12126{
12127 if (inst.operands[2].isscalar)
12128 {
037e8744 12129 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
12130 struct neon_type_el et = neon_check_type (3, rs,
12131 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12132 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 12133 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
12134 }
12135 else
12136 {
037e8744 12137 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12138 struct neon_type_el et = neon_check_type (3, rs,
12139 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12140 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12141 /* The U bit (rounding) comes from bit mask. */
037e8744 12142 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
12143 }
12144}
12145
12146static void
12147do_neon_fcmp_absolute (void)
12148{
037e8744 12149 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12150 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12151 /* Size field comes from bit mask. */
037e8744 12152 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
12153}
12154
12155static void
12156do_neon_fcmp_absolute_inv (void)
12157{
12158 neon_exchange_operands ();
12159 do_neon_fcmp_absolute ();
12160}
12161
12162static void
12163do_neon_step (void)
12164{
037e8744 12165 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 12166 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 12167 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12168}
12169
12170static void
12171do_neon_abs_neg (void)
12172{
037e8744
JB
12173 enum neon_shape rs;
12174 struct neon_type_el et;
12175
12176 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12177 return;
12178
12179 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12180 return;
12181
12182 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12183 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12184
5287ad62
JB
12185 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12186 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12187 inst.instruction |= LOW4 (inst.operands[1].reg);
12188 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12189 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12190 inst.instruction |= (et.type == NT_float) << 10;
12191 inst.instruction |= neon_logbits (et.size) << 18;
12192
12193 inst.instruction = neon_dp_fixup (inst.instruction);
12194}
12195
12196static void
12197do_neon_sli (void)
12198{
037e8744 12199 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12200 struct neon_type_el et = neon_check_type (2, rs,
12201 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12202 int imm = inst.operands[2].imm;
12203 constraint (imm < 0 || (unsigned)imm >= et.size,
12204 _("immediate out of range for insert"));
037e8744 12205 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12206}
12207
12208static void
12209do_neon_sri (void)
12210{
037e8744 12211 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12212 struct neon_type_el et = neon_check_type (2, rs,
12213 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12214 int imm = inst.operands[2].imm;
12215 constraint (imm < 1 || (unsigned)imm > et.size,
12216 _("immediate out of range for insert"));
037e8744 12217 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
12218}
12219
12220static void
12221do_neon_qshlu_imm (void)
12222{
037e8744 12223 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12224 struct neon_type_el et = neon_check_type (2, rs,
12225 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12226 int imm = inst.operands[2].imm;
12227 constraint (imm < 0 || (unsigned)imm >= et.size,
12228 _("immediate out of range for shift"));
12229 /* Only encodes the 'U present' variant of the instruction.
12230 In this case, signed types have OP (bit 8) set to 0.
12231 Unsigned types have OP set to 1. */
12232 inst.instruction |= (et.type == NT_unsigned) << 8;
12233 /* The rest of the bits are the same as other immediate shifts. */
037e8744 12234 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
12235}
12236
12237static void
12238do_neon_qmovn (void)
12239{
12240 struct neon_type_el et = neon_check_type (2, NS_DQ,
12241 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12242 /* Saturating move where operands can be signed or unsigned, and the
12243 destination has the same signedness. */
12244 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12245 if (et.type == NT_unsigned)
12246 inst.instruction |= 0xc0;
12247 else
12248 inst.instruction |= 0x80;
12249 neon_two_same (0, 1, et.size / 2);
12250}
12251
12252static void
12253do_neon_qmovun (void)
12254{
12255 struct neon_type_el et = neon_check_type (2, NS_DQ,
12256 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12257 /* Saturating move with unsigned results. Operands must be signed. */
12258 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12259 neon_two_same (0, 1, et.size / 2);
12260}
12261
12262static void
12263do_neon_rshift_sat_narrow (void)
12264{
12265 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12266 or unsigned. If operands are unsigned, results must also be unsigned. */
12267 struct neon_type_el et = neon_check_type (2, NS_DQI,
12268 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12269 int imm = inst.operands[2].imm;
12270 /* This gets the bounds check, size encoding and immediate bits calculation
12271 right. */
12272 et.size /= 2;
12273
12274 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12275 VQMOVN.I<size> <Dd>, <Qm>. */
12276 if (imm == 0)
12277 {
12278 inst.operands[2].present = 0;
12279 inst.instruction = N_MNEM_vqmovn;
12280 do_neon_qmovn ();
12281 return;
12282 }
12283
12284 constraint (imm < 1 || (unsigned)imm > et.size,
12285 _("immediate out of range"));
12286 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12287}
12288
12289static void
12290do_neon_rshift_sat_narrow_u (void)
12291{
12292 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12293 or unsigned. If operands are unsigned, results must also be unsigned. */
12294 struct neon_type_el et = neon_check_type (2, NS_DQI,
12295 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12296 int imm = inst.operands[2].imm;
12297 /* This gets the bounds check, size encoding and immediate bits calculation
12298 right. */
12299 et.size /= 2;
12300
12301 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12302 VQMOVUN.I<size> <Dd>, <Qm>. */
12303 if (imm == 0)
12304 {
12305 inst.operands[2].present = 0;
12306 inst.instruction = N_MNEM_vqmovun;
12307 do_neon_qmovun ();
12308 return;
12309 }
12310
12311 constraint (imm < 1 || (unsigned)imm > et.size,
12312 _("immediate out of range"));
12313 /* FIXME: The manual is kind of unclear about what value U should have in
12314 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12315 must be 1. */
12316 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12317}
12318
12319static void
12320do_neon_movn (void)
12321{
12322 struct neon_type_el et = neon_check_type (2, NS_DQ,
12323 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12324 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12325 neon_two_same (0, 1, et.size / 2);
12326}
12327
12328static void
12329do_neon_rshift_narrow (void)
12330{
12331 struct neon_type_el et = neon_check_type (2, NS_DQI,
12332 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12333 int imm = inst.operands[2].imm;
12334 /* This gets the bounds check, size encoding and immediate bits calculation
12335 right. */
12336 et.size /= 2;
12337
12338 /* If immediate is zero then we are a pseudo-instruction for
12339 VMOVN.I<size> <Dd>, <Qm> */
12340 if (imm == 0)
12341 {
12342 inst.operands[2].present = 0;
12343 inst.instruction = N_MNEM_vmovn;
12344 do_neon_movn ();
12345 return;
12346 }
12347
12348 constraint (imm < 1 || (unsigned)imm > et.size,
12349 _("immediate out of range for narrowing operation"));
12350 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12351}
12352
12353static void
12354do_neon_shll (void)
12355{
12356 /* FIXME: Type checking when lengthening. */
12357 struct neon_type_el et = neon_check_type (2, NS_QDI,
12358 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12359 unsigned imm = inst.operands[2].imm;
12360
12361 if (imm == et.size)
12362 {
12363 /* Maximum shift variant. */
12364 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12365 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12366 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12367 inst.instruction |= LOW4 (inst.operands[1].reg);
12368 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12369 inst.instruction |= neon_logbits (et.size) << 18;
12370
12371 inst.instruction = neon_dp_fixup (inst.instruction);
12372 }
12373 else
12374 {
12375 /* A more-specific type check for non-max versions. */
12376 et = neon_check_type (2, NS_QDI,
12377 N_EQK | N_DBL, N_SU_32 | N_KEY);
12378 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12379 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12380 }
12381}
12382
037e8744 12383/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
12384 the current instruction is. */
12385
12386static int
12387neon_cvt_flavour (enum neon_shape rs)
12388{
037e8744
JB
12389#define CVT_VAR(C,X,Y) \
12390 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12391 if (et.type != NT_invtype) \
12392 { \
12393 inst.error = NULL; \
12394 return (C); \
5287ad62
JB
12395 }
12396 struct neon_type_el et;
037e8744
JB
12397 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12398 || rs == NS_FF) ? N_VFP : 0;
12399 /* The instruction versions which take an immediate take one register
12400 argument, which is extended to the width of the full register. Thus the
12401 "source" and "destination" registers must have the same width. Hack that
12402 here by making the size equal to the key (wider, in this case) operand. */
12403 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5287ad62
JB
12404
12405 CVT_VAR (0, N_S32, N_F32);
12406 CVT_VAR (1, N_U32, N_F32);
12407 CVT_VAR (2, N_F32, N_S32);
12408 CVT_VAR (3, N_F32, N_U32);
12409
037e8744
JB
12410 whole_reg = N_VFP;
12411
12412 /* VFP instructions. */
12413 CVT_VAR (4, N_F32, N_F64);
12414 CVT_VAR (5, N_F64, N_F32);
12415 CVT_VAR (6, N_S32, N_F64 | key);
12416 CVT_VAR (7, N_U32, N_F64 | key);
12417 CVT_VAR (8, N_F64 | key, N_S32);
12418 CVT_VAR (9, N_F64 | key, N_U32);
12419 /* VFP instructions with bitshift. */
12420 CVT_VAR (10, N_F32 | key, N_S16);
12421 CVT_VAR (11, N_F32 | key, N_U16);
12422 CVT_VAR (12, N_F64 | key, N_S16);
12423 CVT_VAR (13, N_F64 | key, N_U16);
12424 CVT_VAR (14, N_S16, N_F32 | key);
12425 CVT_VAR (15, N_U16, N_F32 | key);
12426 CVT_VAR (16, N_S16, N_F64 | key);
12427 CVT_VAR (17, N_U16, N_F64 | key);
12428
5287ad62
JB
12429 return -1;
12430#undef CVT_VAR
12431}
12432
037e8744
JB
12433/* Neon-syntax VFP conversions. */
12434
5287ad62 12435static void
037e8744 12436do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 12437{
037e8744
JB
12438 const char *opname = 0;
12439
12440 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 12441 {
037e8744
JB
12442 /* Conversions with immediate bitshift. */
12443 const char *enc[] =
12444 {
12445 "ftosls",
12446 "ftouls",
12447 "fsltos",
12448 "fultos",
12449 NULL,
12450 NULL,
12451 "ftosld",
12452 "ftould",
12453 "fsltod",
12454 "fultod",
12455 "fshtos",
12456 "fuhtos",
12457 "fshtod",
12458 "fuhtod",
12459 "ftoshs",
12460 "ftouhs",
12461 "ftoshd",
12462 "ftouhd"
12463 };
12464
12465 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12466 {
12467 opname = enc[flavour];
12468 constraint (inst.operands[0].reg != inst.operands[1].reg,
12469 _("operands 0 and 1 must be the same register"));
12470 inst.operands[1] = inst.operands[2];
12471 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12472 }
5287ad62
JB
12473 }
12474 else
12475 {
037e8744
JB
12476 /* Conversions without bitshift. */
12477 const char *enc[] =
12478 {
12479 "ftosis",
12480 "ftouis",
12481 "fsitos",
12482 "fuitos",
12483 "fcvtsd",
12484 "fcvtds",
12485 "ftosid",
12486 "ftouid",
12487 "fsitod",
12488 "fuitod"
12489 };
12490
12491 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12492 opname = enc[flavour];
12493 }
12494
12495 if (opname)
12496 do_vfp_nsyn_opcode (opname);
12497}
12498
12499static void
12500do_vfp_nsyn_cvtz (void)
12501{
12502 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12503 int flavour = neon_cvt_flavour (rs);
12504 const char *enc[] =
12505 {
12506 "ftosizs",
12507 "ftouizs",
12508 NULL,
12509 NULL,
12510 NULL,
12511 NULL,
12512 "ftosizd",
12513 "ftouizd"
12514 };
12515
12516 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12517 do_vfp_nsyn_opcode (enc[flavour]);
12518}
12519
12520static void
12521do_neon_cvt (void)
12522{
12523 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12524 NS_FD, NS_DF, NS_FF, NS_NULL);
12525 int flavour = neon_cvt_flavour (rs);
12526
12527 /* VFP rather than Neon conversions. */
12528 if (flavour >= 4)
12529 {
12530 do_vfp_nsyn_cvt (rs, flavour);
12531 return;
12532 }
12533
12534 switch (rs)
12535 {
12536 case NS_DDI:
12537 case NS_QQI:
12538 {
12539 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12540 return;
12541
12542 /* Fixed-point conversion with #0 immediate is encoded as an
12543 integer conversion. */
12544 if (inst.operands[2].present && inst.operands[2].imm == 0)
12545 goto int_encode;
12546 unsigned immbits = 32 - inst.operands[2].imm;
12547 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12548 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12549 if (flavour != -1)
12550 inst.instruction |= enctab[flavour];
12551 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12552 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12553 inst.instruction |= LOW4 (inst.operands[1].reg);
12554 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12555 inst.instruction |= neon_quad (rs) << 6;
12556 inst.instruction |= 1 << 21;
12557 inst.instruction |= immbits << 16;
12558
12559 inst.instruction = neon_dp_fixup (inst.instruction);
12560 }
12561 break;
12562
12563 case NS_DD:
12564 case NS_QQ:
12565 int_encode:
12566 {
12567 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12568
12569 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12570
12571 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12572 return;
12573
12574 if (flavour != -1)
12575 inst.instruction |= enctab[flavour];
12576
12577 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12578 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12579 inst.instruction |= LOW4 (inst.operands[1].reg);
12580 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12581 inst.instruction |= neon_quad (rs) << 6;
12582 inst.instruction |= 2 << 18;
12583
12584 inst.instruction = neon_dp_fixup (inst.instruction);
12585 }
12586 break;
12587
12588 default:
12589 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12590 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 12591 }
5287ad62
JB
12592}
12593
12594static void
12595neon_move_immediate (void)
12596{
037e8744
JB
12597 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12598 struct neon_type_el et = neon_check_type (2, rs,
12599 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 12600 unsigned immlo, immhi = 0, immbits;
c96612cc 12601 int op, cmode, float_p;
5287ad62 12602
037e8744
JB
12603 constraint (et.type == NT_invtype,
12604 _("operand size must be specified for immediate VMOV"));
12605
5287ad62
JB
12606 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12607 op = (inst.instruction & (1 << 5)) != 0;
12608
12609 immlo = inst.operands[1].imm;
12610 if (inst.operands[1].regisimm)
12611 immhi = inst.operands[1].reg;
12612
12613 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12614 _("immediate has bits set outside the operand size"));
12615
c96612cc
JB
12616 float_p = inst.operands[1].immisfloat;
12617
12618 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 12619 et.size, et.type)) == FAIL)
5287ad62
JB
12620 {
12621 /* Invert relevant bits only. */
12622 neon_invert_size (&immlo, &immhi, et.size);
12623 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12624 with one or the other; those cases are caught by
12625 neon_cmode_for_move_imm. */
12626 op = !op;
c96612cc
JB
12627 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12628 &op, et.size, et.type)) == FAIL)
5287ad62 12629 {
dcbf9037 12630 first_error (_("immediate out of range"));
5287ad62
JB
12631 return;
12632 }
12633 }
12634
12635 inst.instruction &= ~(1 << 5);
12636 inst.instruction |= op << 5;
12637
12638 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12639 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 12640 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12641 inst.instruction |= cmode << 8;
12642
12643 neon_write_immbits (immbits);
12644}
12645
12646static void
12647do_neon_mvn (void)
12648{
12649 if (inst.operands[1].isreg)
12650 {
037e8744 12651 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12652
12653 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12654 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12655 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12656 inst.instruction |= LOW4 (inst.operands[1].reg);
12657 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 12658 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12659 }
12660 else
12661 {
12662 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12663 neon_move_immediate ();
12664 }
12665
12666 inst.instruction = neon_dp_fixup (inst.instruction);
12667}
12668
12669/* Encode instructions of form:
12670
12671 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12672 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12673
12674*/
12675
12676static void
12677neon_mixed_length (struct neon_type_el et, unsigned size)
12678{
12679 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12680 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12681 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12682 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12683 inst.instruction |= LOW4 (inst.operands[2].reg);
12684 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12685 inst.instruction |= (et.type == NT_unsigned) << 24;
12686 inst.instruction |= neon_logbits (size) << 20;
12687
12688 inst.instruction = neon_dp_fixup (inst.instruction);
12689}
12690
12691static void
12692do_neon_dyadic_long (void)
12693{
12694 /* FIXME: Type checking for lengthening op. */
12695 struct neon_type_el et = neon_check_type (3, NS_QDD,
12696 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12697 neon_mixed_length (et, et.size);
12698}
12699
12700static void
12701do_neon_abal (void)
12702{
12703 struct neon_type_el et = neon_check_type (3, NS_QDD,
12704 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12705 neon_mixed_length (et, et.size);
12706}
12707
12708static void
12709neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12710{
12711 if (inst.operands[2].isscalar)
12712 {
dcbf9037
JB
12713 struct neon_type_el et = neon_check_type (3, NS_QDS,
12714 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
12715 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12716 neon_mul_mac (et, et.type == NT_unsigned);
12717 }
12718 else
12719 {
12720 struct neon_type_el et = neon_check_type (3, NS_QDD,
12721 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12722 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12723 neon_mixed_length (et, et.size);
12724 }
12725}
12726
12727static void
12728do_neon_mac_maybe_scalar_long (void)
12729{
12730 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12731}
12732
12733static void
12734do_neon_dyadic_wide (void)
12735{
12736 struct neon_type_el et = neon_check_type (3, NS_QQD,
12737 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12738 neon_mixed_length (et, et.size);
12739}
12740
12741static void
12742do_neon_dyadic_narrow (void)
12743{
12744 struct neon_type_el et = neon_check_type (3, NS_QDD,
12745 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
12746 /* Operand sign is unimportant, and the U bit is part of the opcode,
12747 so force the operand type to integer. */
12748 et.type = NT_integer;
5287ad62
JB
12749 neon_mixed_length (et, et.size / 2);
12750}
12751
12752static void
12753do_neon_mul_sat_scalar_long (void)
12754{
12755 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12756}
12757
12758static void
12759do_neon_vmull (void)
12760{
12761 if (inst.operands[2].isscalar)
12762 do_neon_mac_maybe_scalar_long ();
12763 else
12764 {
12765 struct neon_type_el et = neon_check_type (3, NS_QDD,
12766 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12767 if (et.type == NT_poly)
12768 inst.instruction = NEON_ENC_POLY (inst.instruction);
12769 else
12770 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12771 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12772 zero. Should be OK as-is. */
12773 neon_mixed_length (et, et.size);
12774 }
12775}
12776
12777static void
12778do_neon_ext (void)
12779{
037e8744 12780 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
12781 struct neon_type_el et = neon_check_type (3, rs,
12782 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12783 unsigned imm = (inst.operands[3].imm * et.size) / 8;
12784 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12785 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12786 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12787 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12788 inst.instruction |= LOW4 (inst.operands[2].reg);
12789 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 12790 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12791 inst.instruction |= imm << 8;
12792
12793 inst.instruction = neon_dp_fixup (inst.instruction);
12794}
12795
12796static void
12797do_neon_rev (void)
12798{
037e8744 12799 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
12800 struct neon_type_el et = neon_check_type (2, rs,
12801 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12802 unsigned op = (inst.instruction >> 7) & 3;
12803 /* N (width of reversed regions) is encoded as part of the bitmask. We
12804 extract it here to check the elements to be reversed are smaller.
12805 Otherwise we'd get a reserved instruction. */
12806 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12807 assert (elsize != 0);
12808 constraint (et.size >= elsize,
12809 _("elements must be smaller than reversal region"));
037e8744 12810 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
12811}
12812
12813static void
12814do_neon_dup (void)
12815{
12816 if (inst.operands[1].isscalar)
12817 {
037e8744 12818 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
12819 struct neon_type_el et = neon_check_type (2, rs,
12820 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 12821 unsigned sizebits = et.size >> 3;
dcbf9037 12822 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 12823 int logsize = neon_logbits (et.size);
dcbf9037 12824 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
12825
12826 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12827 return;
12828
5287ad62
JB
12829 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12830 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12831 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12832 inst.instruction |= LOW4 (dm);
12833 inst.instruction |= HI1 (dm) << 5;
037e8744 12834 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12835 inst.instruction |= x << 17;
12836 inst.instruction |= sizebits << 16;
12837
12838 inst.instruction = neon_dp_fixup (inst.instruction);
12839 }
12840 else
12841 {
037e8744
JB
12842 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
12843 struct neon_type_el et = neon_check_type (2, rs,
12844 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
12845 /* Duplicate ARM register to lanes of vector. */
12846 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
12847 switch (et.size)
12848 {
12849 case 8: inst.instruction |= 0x400000; break;
12850 case 16: inst.instruction |= 0x000020; break;
12851 case 32: inst.instruction |= 0x000000; break;
12852 default: break;
12853 }
12854 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
12855 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
12856 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 12857 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
12858 /* The encoding for this instruction is identical for the ARM and Thumb
12859 variants, except for the condition field. */
037e8744 12860 do_vfp_cond_or_thumb ();
5287ad62
JB
12861 }
12862}
12863
12864/* VMOV has particularly many variations. It can be one of:
12865 0. VMOV<c><q> <Qd>, <Qm>
12866 1. VMOV<c><q> <Dd>, <Dm>
12867 (Register operations, which are VORR with Rm = Rn.)
12868 2. VMOV<c><q>.<dt> <Qd>, #<imm>
12869 3. VMOV<c><q>.<dt> <Dd>, #<imm>
12870 (Immediate loads.)
12871 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
12872 (ARM register to scalar.)
12873 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
12874 (Two ARM registers to vector.)
12875 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
12876 (Scalar to ARM register.)
12877 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
12878 (Vector to two ARM registers.)
037e8744
JB
12879 8. VMOV.F32 <Sd>, <Sm>
12880 9. VMOV.F64 <Dd>, <Dm>
12881 (VFP register moves.)
12882 10. VMOV.F32 <Sd>, #imm
12883 11. VMOV.F64 <Dd>, #imm
12884 (VFP float immediate load.)
12885 12. VMOV <Rd>, <Sm>
12886 (VFP single to ARM reg.)
12887 13. VMOV <Sd>, <Rm>
12888 (ARM reg to VFP single.)
12889 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
12890 (Two ARM regs to two VFP singles.)
12891 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
12892 (Two VFP singles to two ARM regs.)
5287ad62 12893
037e8744
JB
12894 These cases can be disambiguated using neon_select_shape, except cases 1/9
12895 and 3/11 which depend on the operand type too.
5287ad62
JB
12896
12897 All the encoded bits are hardcoded by this function.
12898
b7fc2769
JB
12899 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
12900 Cases 5, 7 may be used with VFPv2 and above.
12901
5287ad62
JB
12902 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
12903 can specify a type where it doesn't make sense to, and is ignored).
12904*/
12905
12906static void
12907do_neon_mov (void)
12908{
037e8744
JB
12909 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
12910 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
12911 NS_NULL);
12912 struct neon_type_el et;
12913 const char *ldconst = 0;
5287ad62 12914
037e8744 12915 switch (rs)
5287ad62 12916 {
037e8744
JB
12917 case NS_DD: /* case 1/9. */
12918 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12919 /* It is not an error here if no type is given. */
12920 inst.error = NULL;
12921 if (et.type == NT_float && et.size == 64)
5287ad62 12922 {
037e8744
JB
12923 do_vfp_nsyn_opcode ("fcpyd");
12924 break;
5287ad62 12925 }
037e8744 12926 /* fall through. */
5287ad62 12927
037e8744
JB
12928 case NS_QQ: /* case 0/1. */
12929 {
12930 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12931 return;
12932 /* The architecture manual I have doesn't explicitly state which
12933 value the U bit should have for register->register moves, but
12934 the equivalent VORR instruction has U = 0, so do that. */
12935 inst.instruction = 0x0200110;
12936 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12937 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12938 inst.instruction |= LOW4 (inst.operands[1].reg);
12939 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12940 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12941 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12942 inst.instruction |= neon_quad (rs) << 6;
12943
12944 inst.instruction = neon_dp_fixup (inst.instruction);
12945 }
12946 break;
12947
12948 case NS_DI: /* case 3/11. */
12949 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12950 inst.error = NULL;
12951 if (et.type == NT_float && et.size == 64)
5287ad62 12952 {
037e8744
JB
12953 /* case 11 (fconstd). */
12954 ldconst = "fconstd";
12955 goto encode_fconstd;
5287ad62 12956 }
037e8744
JB
12957 /* fall through. */
12958
12959 case NS_QI: /* case 2/3. */
12960 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12961 return;
12962 inst.instruction = 0x0800010;
12963 neon_move_immediate ();
12964 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62
JB
12965 break;
12966
037e8744
JB
12967 case NS_SR: /* case 4. */
12968 {
12969 unsigned bcdebits = 0;
12970 struct neon_type_el et = neon_check_type (2, NS_NULL,
12971 N_8 | N_16 | N_32 | N_KEY, N_EQK);
12972 int logsize = neon_logbits (et.size);
12973 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
12974 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
12975
12976 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
12977 _(BAD_FPU));
12978 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
12979 && et.size != 32, _(BAD_FPU));
12980 constraint (et.type == NT_invtype, _("bad type for scalar"));
12981 constraint (x >= 64 / et.size, _("scalar index out of range"));
12982
12983 switch (et.size)
12984 {
12985 case 8: bcdebits = 0x8; break;
12986 case 16: bcdebits = 0x1; break;
12987 case 32: bcdebits = 0x0; break;
12988 default: ;
12989 }
12990
12991 bcdebits |= x << logsize;
12992
12993 inst.instruction = 0xe000b10;
12994 do_vfp_cond_or_thumb ();
12995 inst.instruction |= LOW4 (dn) << 16;
12996 inst.instruction |= HI1 (dn) << 7;
12997 inst.instruction |= inst.operands[1].reg << 12;
12998 inst.instruction |= (bcdebits & 3) << 5;
12999 inst.instruction |= (bcdebits >> 2) << 21;
13000 }
13001 break;
13002
13003 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 13004 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 13005 _(BAD_FPU));
b7fc2769 13006
037e8744
JB
13007 inst.instruction = 0xc400b10;
13008 do_vfp_cond_or_thumb ();
13009 inst.instruction |= LOW4 (inst.operands[0].reg);
13010 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13011 inst.instruction |= inst.operands[1].reg << 12;
13012 inst.instruction |= inst.operands[2].reg << 16;
13013 break;
13014
13015 case NS_RS: /* case 6. */
13016 {
13017 struct neon_type_el et = neon_check_type (2, NS_NULL,
13018 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13019 unsigned logsize = neon_logbits (et.size);
13020 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13021 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13022 unsigned abcdebits = 0;
13023
13024 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13025 _(BAD_FPU));
13026 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13027 && et.size != 32, _(BAD_FPU));
13028 constraint (et.type == NT_invtype, _("bad type for scalar"));
13029 constraint (x >= 64 / et.size, _("scalar index out of range"));
13030
13031 switch (et.size)
13032 {
13033 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13034 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13035 case 32: abcdebits = 0x00; break;
13036 default: ;
13037 }
13038
13039 abcdebits |= x << logsize;
13040 inst.instruction = 0xe100b10;
13041 do_vfp_cond_or_thumb ();
13042 inst.instruction |= LOW4 (dn) << 16;
13043 inst.instruction |= HI1 (dn) << 7;
13044 inst.instruction |= inst.operands[0].reg << 12;
13045 inst.instruction |= (abcdebits & 3) << 5;
13046 inst.instruction |= (abcdebits >> 2) << 21;
13047 }
13048 break;
13049
13050 case NS_RRD: /* case 7 (fmrrd). */
13051 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13052 _(BAD_FPU));
13053
13054 inst.instruction = 0xc500b10;
13055 do_vfp_cond_or_thumb ();
13056 inst.instruction |= inst.operands[0].reg << 12;
13057 inst.instruction |= inst.operands[1].reg << 16;
13058 inst.instruction |= LOW4 (inst.operands[2].reg);
13059 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13060 break;
13061
13062 case NS_FF: /* case 8 (fcpys). */
13063 do_vfp_nsyn_opcode ("fcpys");
13064 break;
13065
13066 case NS_FI: /* case 10 (fconsts). */
13067 ldconst = "fconsts";
13068 encode_fconstd:
13069 if (is_quarter_float (inst.operands[1].imm))
5287ad62 13070 {
037e8744
JB
13071 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13072 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
13073 }
13074 else
037e8744
JB
13075 first_error (_("immediate out of range"));
13076 break;
13077
13078 case NS_RF: /* case 12 (fmrs). */
13079 do_vfp_nsyn_opcode ("fmrs");
13080 break;
13081
13082 case NS_FR: /* case 13 (fmsr). */
13083 do_vfp_nsyn_opcode ("fmsr");
13084 break;
13085
13086 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13087 (one of which is a list), but we have parsed four. Do some fiddling to
13088 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13089 expect. */
13090 case NS_RRFF: /* case 14 (fmrrs). */
13091 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13092 _("VFP registers must be adjacent"));
13093 inst.operands[2].imm = 2;
13094 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13095 do_vfp_nsyn_opcode ("fmrrs");
13096 break;
13097
13098 case NS_FFRR: /* case 15 (fmsrr). */
13099 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13100 _("VFP registers must be adjacent"));
13101 inst.operands[1] = inst.operands[2];
13102 inst.operands[2] = inst.operands[3];
13103 inst.operands[0].imm = 2;
13104 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13105 do_vfp_nsyn_opcode ("fmsrr");
5287ad62
JB
13106 break;
13107
13108 default:
13109 abort ();
13110 }
13111}
13112
13113static void
13114do_neon_rshift_round_imm (void)
13115{
037e8744 13116 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13117 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13118 int imm = inst.operands[2].imm;
13119
13120 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13121 if (imm == 0)
13122 {
13123 inst.operands[2].present = 0;
13124 do_neon_mov ();
13125 return;
13126 }
13127
13128 constraint (imm < 1 || (unsigned)imm > et.size,
13129 _("immediate out of range for shift"));
037e8744 13130 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13131 et.size - imm);
13132}
13133
13134static void
13135do_neon_movl (void)
13136{
13137 struct neon_type_el et = neon_check_type (2, NS_QD,
13138 N_EQK | N_DBL, N_SU_32 | N_KEY);
13139 unsigned sizebits = et.size >> 3;
13140 inst.instruction |= sizebits << 19;
13141 neon_two_same (0, et.type == NT_unsigned, -1);
13142}
13143
13144static void
13145do_neon_trn (void)
13146{
037e8744 13147 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13148 struct neon_type_el et = neon_check_type (2, rs,
13149 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13150 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 13151 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13152}
13153
13154static void
13155do_neon_zip_uzp (void)
13156{
037e8744 13157 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13158 struct neon_type_el et = neon_check_type (2, rs,
13159 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13160 if (rs == NS_DD && et.size == 32)
13161 {
13162 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13163 inst.instruction = N_MNEM_vtrn;
13164 do_neon_trn ();
13165 return;
13166 }
037e8744 13167 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13168}
13169
13170static void
13171do_neon_sat_abs_neg (void)
13172{
037e8744 13173 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13174 struct neon_type_el et = neon_check_type (2, rs,
13175 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13176 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13177}
13178
13179static void
13180do_neon_pair_long (void)
13181{
037e8744 13182 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13183 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13184 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13185 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 13186 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13187}
13188
13189static void
13190do_neon_recip_est (void)
13191{
037e8744 13192 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13193 struct neon_type_el et = neon_check_type (2, rs,
13194 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13195 inst.instruction |= (et.type == NT_float) << 8;
037e8744 13196 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13197}
13198
13199static void
13200do_neon_cls (void)
13201{
037e8744 13202 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13203 struct neon_type_el et = neon_check_type (2, rs,
13204 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 13205 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13206}
13207
13208static void
13209do_neon_clz (void)
13210{
037e8744 13211 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13212 struct neon_type_el et = neon_check_type (2, rs,
13213 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 13214 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13215}
13216
13217static void
13218do_neon_cnt (void)
13219{
037e8744 13220 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13221 struct neon_type_el et = neon_check_type (2, rs,
13222 N_EQK | N_INT, N_8 | N_KEY);
037e8744 13223 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13224}
13225
13226static void
13227do_neon_swp (void)
13228{
037e8744
JB
13229 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13230 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
13231}
13232
13233static void
13234do_neon_tbl_tbx (void)
13235{
13236 unsigned listlenbits;
dcbf9037 13237 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5287ad62
JB
13238
13239 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13240 {
dcbf9037 13241 first_error (_("bad list length for table lookup"));
5287ad62
JB
13242 return;
13243 }
13244
13245 listlenbits = inst.operands[1].imm - 1;
13246 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13247 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13248 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13249 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13250 inst.instruction |= LOW4 (inst.operands[2].reg);
13251 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13252 inst.instruction |= listlenbits << 8;
13253
13254 inst.instruction = neon_dp_fixup (inst.instruction);
13255}
13256
13257static void
13258do_neon_ldm_stm (void)
13259{
13260 /* P, U and L bits are part of bitmask. */
13261 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13262 unsigned offsetbits = inst.operands[1].imm * 2;
13263
037e8744
JB
13264 if (inst.operands[1].issingle)
13265 {
13266 do_vfp_nsyn_ldm_stm (is_dbmode);
13267 return;
13268 }
13269
5287ad62
JB
13270 constraint (is_dbmode && !inst.operands[0].writeback,
13271 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13272
13273 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13274 _("register list must contain at least 1 and at most 16 "
13275 "registers"));
13276
13277 inst.instruction |= inst.operands[0].reg << 16;
13278 inst.instruction |= inst.operands[0].writeback << 21;
13279 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13280 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13281
13282 inst.instruction |= offsetbits;
13283
037e8744 13284 do_vfp_cond_or_thumb ();
5287ad62
JB
13285}
13286
13287static void
13288do_neon_ldr_str (void)
13289{
5287ad62
JB
13290 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13291
037e8744
JB
13292 if (inst.operands[0].issingle)
13293 {
cd2f129f
JB
13294 if (is_ldr)
13295 do_vfp_nsyn_opcode ("flds");
13296 else
13297 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
13298 }
13299 else
5287ad62 13300 {
cd2f129f
JB
13301 if (is_ldr)
13302 do_vfp_nsyn_opcode ("fldd");
5287ad62 13303 else
cd2f129f 13304 do_vfp_nsyn_opcode ("fstd");
5287ad62 13305 }
5287ad62
JB
13306}
13307
13308/* "interleave" version also handles non-interleaving register VLD1/VST1
13309 instructions. */
13310
13311static void
13312do_neon_ld_st_interleave (void)
13313{
037e8744 13314 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
13315 N_8 | N_16 | N_32 | N_64);
13316 unsigned alignbits = 0;
13317 unsigned idx;
13318 /* The bits in this table go:
13319 0: register stride of one (0) or two (1)
13320 1,2: register list length, minus one (1, 2, 3, 4).
13321 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13322 We use -1 for invalid entries. */
13323 const int typetable[] =
13324 {
13325 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13326 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13327 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13328 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13329 };
13330 int typebits;
13331
dcbf9037
JB
13332 if (et.type == NT_invtype)
13333 return;
13334
5287ad62
JB
13335 if (inst.operands[1].immisalign)
13336 switch (inst.operands[1].imm >> 8)
13337 {
13338 case 64: alignbits = 1; break;
13339 case 128:
13340 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13341 goto bad_alignment;
13342 alignbits = 2;
13343 break;
13344 case 256:
13345 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13346 goto bad_alignment;
13347 alignbits = 3;
13348 break;
13349 default:
13350 bad_alignment:
dcbf9037 13351 first_error (_("bad alignment"));
5287ad62
JB
13352 return;
13353 }
13354
13355 inst.instruction |= alignbits << 4;
13356 inst.instruction |= neon_logbits (et.size) << 6;
13357
13358 /* Bits [4:6] of the immediate in a list specifier encode register stride
13359 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13360 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13361 up the right value for "type" in a table based on this value and the given
13362 list style, then stick it back. */
13363 idx = ((inst.operands[0].imm >> 4) & 7)
13364 | (((inst.instruction >> 8) & 3) << 3);
13365
13366 typebits = typetable[idx];
13367
13368 constraint (typebits == -1, _("bad list type for instruction"));
13369
13370 inst.instruction &= ~0xf00;
13371 inst.instruction |= typebits << 8;
13372}
13373
13374/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13375 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13376 otherwise. The variable arguments are a list of pairs of legal (size, align)
13377 values, terminated with -1. */
13378
13379static int
13380neon_alignment_bit (int size, int align, int *do_align, ...)
13381{
13382 va_list ap;
13383 int result = FAIL, thissize, thisalign;
13384
13385 if (!inst.operands[1].immisalign)
13386 {
13387 *do_align = 0;
13388 return SUCCESS;
13389 }
13390
13391 va_start (ap, do_align);
13392
13393 do
13394 {
13395 thissize = va_arg (ap, int);
13396 if (thissize == -1)
13397 break;
13398 thisalign = va_arg (ap, int);
13399
13400 if (size == thissize && align == thisalign)
13401 result = SUCCESS;
13402 }
13403 while (result != SUCCESS);
13404
13405 va_end (ap);
13406
13407 if (result == SUCCESS)
13408 *do_align = 1;
13409 else
dcbf9037 13410 first_error (_("unsupported alignment for instruction"));
5287ad62
JB
13411
13412 return result;
13413}
13414
13415static void
13416do_neon_ld_st_lane (void)
13417{
037e8744 13418 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13419 int align_good, do_align = 0;
13420 int logsize = neon_logbits (et.size);
13421 int align = inst.operands[1].imm >> 8;
13422 int n = (inst.instruction >> 8) & 3;
13423 int max_el = 64 / et.size;
13424
dcbf9037
JB
13425 if (et.type == NT_invtype)
13426 return;
13427
5287ad62
JB
13428 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13429 _("bad list length"));
13430 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13431 _("scalar index out of range"));
13432 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13433 && et.size == 8,
13434 _("stride of 2 unavailable when element size is 8"));
13435
13436 switch (n)
13437 {
13438 case 0: /* VLD1 / VST1. */
13439 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13440 32, 32, -1);
13441 if (align_good == FAIL)
13442 return;
13443 if (do_align)
13444 {
13445 unsigned alignbits = 0;
13446 switch (et.size)
13447 {
13448 case 16: alignbits = 0x1; break;
13449 case 32: alignbits = 0x3; break;
13450 default: ;
13451 }
13452 inst.instruction |= alignbits << 4;
13453 }
13454 break;
13455
13456 case 1: /* VLD2 / VST2. */
13457 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13458 32, 64, -1);
13459 if (align_good == FAIL)
13460 return;
13461 if (do_align)
13462 inst.instruction |= 1 << 4;
13463 break;
13464
13465 case 2: /* VLD3 / VST3. */
13466 constraint (inst.operands[1].immisalign,
13467 _("can't use alignment with this instruction"));
13468 break;
13469
13470 case 3: /* VLD4 / VST4. */
13471 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13472 16, 64, 32, 64, 32, 128, -1);
13473 if (align_good == FAIL)
13474 return;
13475 if (do_align)
13476 {
13477 unsigned alignbits = 0;
13478 switch (et.size)
13479 {
13480 case 8: alignbits = 0x1; break;
13481 case 16: alignbits = 0x1; break;
13482 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13483 default: ;
13484 }
13485 inst.instruction |= alignbits << 4;
13486 }
13487 break;
13488
13489 default: ;
13490 }
13491
13492 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13493 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13494 inst.instruction |= 1 << (4 + logsize);
13495
13496 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13497 inst.instruction |= logsize << 10;
13498}
13499
13500/* Encode single n-element structure to all lanes VLD<n> instructions. */
13501
13502static void
13503do_neon_ld_dup (void)
13504{
037e8744 13505 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
13506 int align_good, do_align = 0;
13507
dcbf9037
JB
13508 if (et.type == NT_invtype)
13509 return;
13510
5287ad62
JB
13511 switch ((inst.instruction >> 8) & 3)
13512 {
13513 case 0: /* VLD1. */
13514 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13515 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13516 &do_align, 16, 16, 32, 32, -1);
13517 if (align_good == FAIL)
13518 return;
13519 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13520 {
13521 case 1: break;
13522 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 13523 default: first_error (_("bad list length")); return;
5287ad62
JB
13524 }
13525 inst.instruction |= neon_logbits (et.size) << 6;
13526 break;
13527
13528 case 1: /* VLD2. */
13529 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13530 &do_align, 8, 16, 16, 32, 32, 64, -1);
13531 if (align_good == FAIL)
13532 return;
13533 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13534 _("bad list length"));
13535 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13536 inst.instruction |= 1 << 5;
13537 inst.instruction |= neon_logbits (et.size) << 6;
13538 break;
13539
13540 case 2: /* VLD3. */
13541 constraint (inst.operands[1].immisalign,
13542 _("can't use alignment with this instruction"));
13543 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13544 _("bad list length"));
13545 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13546 inst.instruction |= 1 << 5;
13547 inst.instruction |= neon_logbits (et.size) << 6;
13548 break;
13549
13550 case 3: /* VLD4. */
13551 {
13552 int align = inst.operands[1].imm >> 8;
13553 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13554 16, 64, 32, 64, 32, 128, -1);
13555 if (align_good == FAIL)
13556 return;
13557 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13558 _("bad list length"));
13559 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13560 inst.instruction |= 1 << 5;
13561 if (et.size == 32 && align == 128)
13562 inst.instruction |= 0x3 << 6;
13563 else
13564 inst.instruction |= neon_logbits (et.size) << 6;
13565 }
13566 break;
13567
13568 default: ;
13569 }
13570
13571 inst.instruction |= do_align << 4;
13572}
13573
13574/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13575 apart from bits [11:4]. */
13576
13577static void
13578do_neon_ldx_stx (void)
13579{
13580 switch (NEON_LANE (inst.operands[0].imm))
13581 {
13582 case NEON_INTERLEAVE_LANES:
13583 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13584 do_neon_ld_st_interleave ();
13585 break;
13586
13587 case NEON_ALL_LANES:
13588 inst.instruction = NEON_ENC_DUP (inst.instruction);
13589 do_neon_ld_dup ();
13590 break;
13591
13592 default:
13593 inst.instruction = NEON_ENC_LANE (inst.instruction);
13594 do_neon_ld_st_lane ();
13595 }
13596
13597 /* L bit comes from bit mask. */
13598 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13599 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13600 inst.instruction |= inst.operands[1].reg << 16;
13601
13602 if (inst.operands[1].postind)
13603 {
13604 int postreg = inst.operands[1].imm & 0xf;
13605 constraint (!inst.operands[1].immisreg,
13606 _("post-index must be a register"));
13607 constraint (postreg == 0xd || postreg == 0xf,
13608 _("bad register for post-index"));
13609 inst.instruction |= postreg;
13610 }
13611 else if (inst.operands[1].writeback)
13612 {
13613 inst.instruction |= 0xd;
13614 }
13615 else
13616 inst.instruction |= 0xf;
13617
13618 if (thumb_mode)
13619 inst.instruction |= 0xf9000000;
13620 else
13621 inst.instruction |= 0xf4000000;
13622}
13623
13624\f
13625/* Overall per-instruction processing. */
13626
13627/* We need to be able to fix up arbitrary expressions in some statements.
13628 This is so that we can handle symbols that are an arbitrary distance from
13629 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13630 which returns part of an address in a form which will be valid for
13631 a data instruction. We do this by pushing the expression into a symbol
13632 in the expr_section, and creating a fix for that. */
13633
13634static void
13635fix_new_arm (fragS * frag,
13636 int where,
13637 short int size,
13638 expressionS * exp,
13639 int pc_rel,
13640 int reloc)
13641{
13642 fixS * new_fix;
13643
13644 switch (exp->X_op)
13645 {
13646 case O_constant:
13647 case O_symbol:
13648 case O_add:
13649 case O_subtract:
13650 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13651 break;
13652
13653 default:
13654 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13655 pc_rel, reloc);
13656 break;
13657 }
13658
13659 /* Mark whether the fix is to a THUMB instruction, or an ARM
13660 instruction. */
13661 new_fix->tc_fix_data = thumb_mode;
13662}
13663
13664/* Create a frg for an instruction requiring relaxation. */
13665static void
13666output_relax_insn (void)
13667{
13668 char * to;
13669 symbolS *sym;
0110f2b8
PB
13670 int offset;
13671
6e1cb1a6
PB
13672 /* The size of the instruction is unknown, so tie the debug info to the
13673 start of the instruction. */
13674 dwarf2_emit_insn (0);
6e1cb1a6 13675
0110f2b8
PB
13676 switch (inst.reloc.exp.X_op)
13677 {
13678 case O_symbol:
13679 sym = inst.reloc.exp.X_add_symbol;
13680 offset = inst.reloc.exp.X_add_number;
13681 break;
13682 case O_constant:
13683 sym = NULL;
13684 offset = inst.reloc.exp.X_add_number;
13685 break;
13686 default:
13687 sym = make_expr_symbol (&inst.reloc.exp);
13688 offset = 0;
13689 break;
13690 }
13691 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13692 inst.relax, sym, offset, NULL/*offset, opcode*/);
13693 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
13694}
13695
13696/* Write a 32-bit thumb instruction to buf. */
13697static void
13698put_thumb32_insn (char * buf, unsigned long insn)
13699{
13700 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13701 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13702}
13703
b99bd4ef 13704static void
c19d1205 13705output_inst (const char * str)
b99bd4ef 13706{
c19d1205 13707 char * to = NULL;
b99bd4ef 13708
c19d1205 13709 if (inst.error)
b99bd4ef 13710 {
c19d1205 13711 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
13712 return;
13713 }
0110f2b8
PB
13714 if (inst.relax) {
13715 output_relax_insn();
13716 return;
13717 }
c19d1205
ZW
13718 if (inst.size == 0)
13719 return;
b99bd4ef 13720
c19d1205
ZW
13721 to = frag_more (inst.size);
13722
13723 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 13724 {
c19d1205 13725 assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 13726 put_thumb32_insn (to, inst.instruction);
b99bd4ef 13727 }
c19d1205 13728 else if (inst.size > INSN_SIZE)
b99bd4ef 13729 {
c19d1205
ZW
13730 assert (inst.size == (2 * INSN_SIZE));
13731 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13732 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 13733 }
c19d1205
ZW
13734 else
13735 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 13736
c19d1205
ZW
13737 if (inst.reloc.type != BFD_RELOC_UNUSED)
13738 fix_new_arm (frag_now, to - frag_now->fr_literal,
13739 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13740 inst.reloc.type);
b99bd4ef 13741
c19d1205 13742 dwarf2_emit_insn (inst.size);
c19d1205 13743}
b99bd4ef 13744
c19d1205
ZW
13745/* Tag values used in struct asm_opcode's tag field. */
13746enum opcode_tag
13747{
13748 OT_unconditional, /* Instruction cannot be conditionalized.
13749 The ARM condition field is still 0xE. */
13750 OT_unconditionalF, /* Instruction cannot be conditionalized
13751 and carries 0xF in its ARM condition field. */
13752 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
13753 OT_csuffixF, /* Some forms of the instruction take a conditional
13754 suffix, others place 0xF where the condition field
13755 would be. */
c19d1205
ZW
13756 OT_cinfix3, /* Instruction takes a conditional infix,
13757 beginning at character index 3. (In
13758 unified mode, it becomes a suffix.) */
088fa78e
KH
13759 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13760 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
13761 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13762 character index 3, even in unified mode. Used for
13763 legacy instructions where suffix and infix forms
13764 may be ambiguous. */
c19d1205 13765 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 13766 suffix or an infix at character index 3. */
c19d1205
ZW
13767 OT_odd_infix_unc, /* This is the unconditional variant of an
13768 instruction that takes a conditional infix
13769 at an unusual position. In unified mode,
13770 this variant will accept a suffix. */
13771 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13772 are the conditional variants of instructions that
13773 take conditional infixes in unusual positions.
13774 The infix appears at character index
13775 (tag - OT_odd_infix_0). These are not accepted
13776 in unified mode. */
13777};
b99bd4ef 13778
c19d1205
ZW
13779/* Subroutine of md_assemble, responsible for looking up the primary
13780 opcode from the mnemonic the user wrote. STR points to the
13781 beginning of the mnemonic.
13782
13783 This is not simply a hash table lookup, because of conditional
13784 variants. Most instructions have conditional variants, which are
13785 expressed with a _conditional affix_ to the mnemonic. If we were
13786 to encode each conditional variant as a literal string in the opcode
13787 table, it would have approximately 20,000 entries.
13788
13789 Most mnemonics take this affix as a suffix, and in unified syntax,
13790 'most' is upgraded to 'all'. However, in the divided syntax, some
13791 instructions take the affix as an infix, notably the s-variants of
13792 the arithmetic instructions. Of those instructions, all but six
13793 have the infix appear after the third character of the mnemonic.
13794
13795 Accordingly, the algorithm for looking up primary opcodes given
13796 an identifier is:
13797
13798 1. Look up the identifier in the opcode table.
13799 If we find a match, go to step U.
13800
13801 2. Look up the last two characters of the identifier in the
13802 conditions table. If we find a match, look up the first N-2
13803 characters of the identifier in the opcode table. If we
13804 find a match, go to step CE.
13805
13806 3. Look up the fourth and fifth characters of the identifier in
13807 the conditions table. If we find a match, extract those
13808 characters from the identifier, and look up the remaining
13809 characters in the opcode table. If we find a match, go
13810 to step CM.
13811
13812 4. Fail.
13813
13814 U. Examine the tag field of the opcode structure, in case this is
13815 one of the six instructions with its conditional infix in an
13816 unusual place. If it is, the tag tells us where to find the
13817 infix; look it up in the conditions table and set inst.cond
13818 accordingly. Otherwise, this is an unconditional instruction.
13819 Again set inst.cond accordingly. Return the opcode structure.
13820
13821 CE. Examine the tag field to make sure this is an instruction that
13822 should receive a conditional suffix. If it is not, fail.
13823 Otherwise, set inst.cond from the suffix we already looked up,
13824 and return the opcode structure.
13825
13826 CM. Examine the tag field to make sure this is an instruction that
13827 should receive a conditional infix after the third character.
13828 If it is not, fail. Otherwise, undo the edits to the current
13829 line of input and proceed as for case CE. */
13830
13831static const struct asm_opcode *
13832opcode_lookup (char **str)
13833{
13834 char *end, *base;
13835 char *affix;
13836 const struct asm_opcode *opcode;
13837 const struct asm_cond *cond;
e3cb604e 13838 char save[2];
267d2029
JB
13839 bfd_boolean neon_supported;
13840
13841 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
c19d1205
ZW
13842
13843 /* Scan up to the end of the mnemonic, which must end in white space,
267d2029 13844 '.' (in unified mode, or for Neon instructions), or end of string. */
c19d1205 13845 for (base = end = *str; *end != '\0'; end++)
267d2029 13846 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
c19d1205 13847 break;
b99bd4ef 13848
c19d1205
ZW
13849 if (end == base)
13850 return 0;
b99bd4ef 13851
5287ad62 13852 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 13853 if (end[0] == '.')
b99bd4ef 13854 {
5287ad62
JB
13855 int offset = 2;
13856
267d2029
JB
13857 /* The .w and .n suffixes are only valid if the unified syntax is in
13858 use. */
13859 if (unified_syntax && end[1] == 'w')
c19d1205 13860 inst.size_req = 4;
267d2029 13861 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
13862 inst.size_req = 2;
13863 else
5287ad62
JB
13864 offset = 0;
13865
13866 inst.vectype.elems = 0;
13867
13868 *str = end + offset;
b99bd4ef 13869
5287ad62
JB
13870 if (end[offset] == '.')
13871 {
267d2029
JB
13872 /* See if we have a Neon type suffix (possible in either unified or
13873 non-unified ARM syntax mode). */
dcbf9037 13874 if (parse_neon_type (&inst.vectype, str) == FAIL)
5287ad62
JB
13875 return 0;
13876 }
13877 else if (end[offset] != '\0' && end[offset] != ' ')
13878 return 0;
b99bd4ef 13879 }
c19d1205
ZW
13880 else
13881 *str = end;
b99bd4ef 13882
c19d1205
ZW
13883 /* Look for unaffixed or special-case affixed mnemonic. */
13884 opcode = hash_find_n (arm_ops_hsh, base, end - base);
13885 if (opcode)
b99bd4ef 13886 {
c19d1205
ZW
13887 /* step U */
13888 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 13889 {
c19d1205
ZW
13890 inst.cond = COND_ALWAYS;
13891 return opcode;
b99bd4ef 13892 }
b99bd4ef 13893
c19d1205
ZW
13894 if (unified_syntax)
13895 as_warn (_("conditional infixes are deprecated in unified syntax"));
13896 affix = base + (opcode->tag - OT_odd_infix_0);
13897 cond = hash_find_n (arm_cond_hsh, affix, 2);
13898 assert (cond);
b99bd4ef 13899
c19d1205
ZW
13900 inst.cond = cond->value;
13901 return opcode;
13902 }
b99bd4ef 13903
c19d1205
ZW
13904 /* Cannot have a conditional suffix on a mnemonic of less than two
13905 characters. */
13906 if (end - base < 3)
13907 return 0;
b99bd4ef 13908
c19d1205
ZW
13909 /* Look for suffixed mnemonic. */
13910 affix = end - 2;
13911 cond = hash_find_n (arm_cond_hsh, affix, 2);
13912 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
13913 if (opcode && cond)
13914 {
13915 /* step CE */
13916 switch (opcode->tag)
13917 {
e3cb604e
PB
13918 case OT_cinfix3_legacy:
13919 /* Ignore conditional suffixes matched on infix only mnemonics. */
13920 break;
13921
c19d1205 13922 case OT_cinfix3:
088fa78e 13923 case OT_cinfix3_deprecated:
c19d1205
ZW
13924 case OT_odd_infix_unc:
13925 if (!unified_syntax)
e3cb604e 13926 return 0;
c19d1205
ZW
13927 /* else fall through */
13928
13929 case OT_csuffix:
037e8744 13930 case OT_csuffixF:
c19d1205
ZW
13931 case OT_csuf_or_in3:
13932 inst.cond = cond->value;
13933 return opcode;
13934
13935 case OT_unconditional:
13936 case OT_unconditionalF:
dfa9f0d5
PB
13937 if (thumb_mode)
13938 {
13939 inst.cond = cond->value;
13940 }
13941 else
13942 {
13943 /* delayed diagnostic */
13944 inst.error = BAD_COND;
13945 inst.cond = COND_ALWAYS;
13946 }
c19d1205 13947 return opcode;
b99bd4ef 13948
c19d1205
ZW
13949 default:
13950 return 0;
13951 }
13952 }
b99bd4ef 13953
c19d1205
ZW
13954 /* Cannot have a usual-position infix on a mnemonic of less than
13955 six characters (five would be a suffix). */
13956 if (end - base < 6)
13957 return 0;
b99bd4ef 13958
c19d1205
ZW
13959 /* Look for infixed mnemonic in the usual position. */
13960 affix = base + 3;
13961 cond = hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e
PB
13962 if (!cond)
13963 return 0;
13964
13965 memcpy (save, affix, 2);
13966 memmove (affix, affix + 2, (end - affix) - 2);
13967 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
13968 memmove (affix + 2, affix, (end - affix) - 2);
13969 memcpy (affix, save, 2);
13970
088fa78e
KH
13971 if (opcode
13972 && (opcode->tag == OT_cinfix3
13973 || opcode->tag == OT_cinfix3_deprecated
13974 || opcode->tag == OT_csuf_or_in3
13975 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 13976 {
c19d1205 13977 /* step CM */
088fa78e
KH
13978 if (unified_syntax
13979 && (opcode->tag == OT_cinfix3
13980 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
13981 as_warn (_("conditional infixes are deprecated in unified syntax"));
13982
13983 inst.cond = cond->value;
13984 return opcode;
b99bd4ef
NC
13985 }
13986
c19d1205 13987 return 0;
b99bd4ef
NC
13988}
13989
c19d1205
ZW
13990void
13991md_assemble (char *str)
b99bd4ef 13992{
c19d1205
ZW
13993 char *p = str;
13994 const struct asm_opcode * opcode;
b99bd4ef 13995
c19d1205
ZW
13996 /* Align the previous label if needed. */
13997 if (last_label_seen != NULL)
b99bd4ef 13998 {
c19d1205
ZW
13999 symbol_set_frag (last_label_seen, frag_now);
14000 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14001 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
14002 }
14003
c19d1205
ZW
14004 memset (&inst, '\0', sizeof (inst));
14005 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 14006
c19d1205
ZW
14007 opcode = opcode_lookup (&p);
14008 if (!opcode)
b99bd4ef 14009 {
c19d1205 14010 /* It wasn't an instruction, but it might be a register alias of
dcbf9037
JB
14011 the form alias .req reg, or a Neon .dn/.qn directive. */
14012 if (!create_register_alias (str, p)
14013 && !create_neon_reg_alias (str, p))
c19d1205 14014 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 14015
b99bd4ef
NC
14016 return;
14017 }
14018
088fa78e
KH
14019 if (opcode->tag == OT_cinfix3_deprecated)
14020 as_warn (_("s suffix on comparison instruction is deprecated"));
14021
037e8744
JB
14022 /* The value which unconditional instructions should have in place of the
14023 condition field. */
14024 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14025
c19d1205 14026 if (thumb_mode)
b99bd4ef 14027 {
e74cfd16 14028 arm_feature_set variant;
8f06b2d8
PB
14029
14030 variant = cpu_variant;
14031 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
14032 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14033 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 14034 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14035 if (!opcode->tvariant
14036 || (thumb_mode == 1
14037 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 14038 {
c19d1205 14039 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
14040 return;
14041 }
c19d1205
ZW
14042 if (inst.cond != COND_ALWAYS && !unified_syntax
14043 && opcode->tencode != do_t_branch)
b99bd4ef 14044 {
c19d1205 14045 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
14046 return;
14047 }
14048
e27ec89e
PB
14049 /* Check conditional suffixes. */
14050 if (current_it_mask)
14051 {
14052 int cond;
14053 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
dfa9f0d5
PB
14054 current_it_mask <<= 1;
14055 current_it_mask &= 0x1f;
14056 /* The BKPT instruction is unconditional even in an IT block. */
14057 if (!inst.error
14058 && cond != inst.cond && opcode->tencode != do_t_bkpt)
e27ec89e
PB
14059 {
14060 as_bad (_("incorrect condition in IT block"));
14061 return;
14062 }
e27ec89e
PB
14063 }
14064 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14065 {
14066 as_bad (_("thumb conditional instrunction not in IT block"));
14067 return;
14068 }
14069
c19d1205
ZW
14070 mapping_state (MAP_THUMB);
14071 inst.instruction = opcode->tvalue;
14072
14073 if (!parse_operands (p, opcode->operands))
14074 opcode->tencode ();
14075
e27ec89e
PB
14076 /* Clear current_it_mask at the end of an IT block. */
14077 if (current_it_mask == 0x10)
14078 current_it_mask = 0;
14079
0110f2b8 14080 if (!(inst.error || inst.relax))
b99bd4ef 14081 {
c19d1205
ZW
14082 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14083 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14084 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 14085 {
c19d1205 14086 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
14087 return;
14088 }
14089 }
e74cfd16
PB
14090 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14091 *opcode->tvariant);
ee065d83 14092 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 14093 set those bits when Thumb-2 32-bit instructions are seen. ie.
ee065d83
PB
14094 anything other than bl/blx.
14095 This is overly pessimistic for relaxable instructions. */
14096 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14097 || inst.relax)
e74cfd16
PB
14098 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14099 arm_ext_v6t2);
c19d1205 14100 }
3e9e4fcf 14101 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
14102 {
14103 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
14104 if (!opcode->avariant ||
14105 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
b99bd4ef 14106 {
c19d1205
ZW
14107 as_bad (_("selected processor does not support `%s'"), str);
14108 return;
b99bd4ef 14109 }
c19d1205 14110 if (inst.size_req)
b99bd4ef 14111 {
c19d1205
ZW
14112 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14113 return;
b99bd4ef
NC
14114 }
14115
c19d1205
ZW
14116 mapping_state (MAP_ARM);
14117 inst.instruction = opcode->avalue;
14118 if (opcode->tag == OT_unconditionalF)
14119 inst.instruction |= 0xF << 28;
14120 else
14121 inst.instruction |= inst.cond << 28;
14122 inst.size = INSN_SIZE;
14123 if (!parse_operands (p, opcode->operands))
14124 opcode->aencode ();
ee065d83
PB
14125 /* Arm mode bx is marked as both v4T and v5 because it's still required
14126 on a hypothetical non-thumb v5 core. */
e74cfd16
PB
14127 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
14128 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
14129 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 14130 else
e74cfd16
PB
14131 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14132 *opcode->avariant);
b99bd4ef 14133 }
3e9e4fcf
JB
14134 else
14135 {
14136 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14137 "-- `%s'"), str);
14138 return;
14139 }
c19d1205
ZW
14140 output_inst (str);
14141}
b99bd4ef 14142
c19d1205
ZW
14143/* Various frobbings of labels and their addresses. */
14144
14145void
14146arm_start_line_hook (void)
14147{
14148 last_label_seen = NULL;
b99bd4ef
NC
14149}
14150
c19d1205
ZW
14151void
14152arm_frob_label (symbolS * sym)
b99bd4ef 14153{
c19d1205 14154 last_label_seen = sym;
b99bd4ef 14155
c19d1205 14156 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 14157
c19d1205
ZW
14158#if defined OBJ_COFF || defined OBJ_ELF
14159 ARM_SET_INTERWORK (sym, support_interwork);
14160#endif
b99bd4ef 14161
c19d1205
ZW
14162 /* Note - do not allow local symbols (.Lxxx) to be labeled
14163 as Thumb functions. This is because these labels, whilst
14164 they exist inside Thumb code, are not the entry points for
14165 possible ARM->Thumb calls. Also, these labels can be used
14166 as part of a computed goto or switch statement. eg gcc
14167 can generate code that looks like this:
b99bd4ef 14168
c19d1205
ZW
14169 ldr r2, [pc, .Laaa]
14170 lsl r3, r3, #2
14171 ldr r2, [r3, r2]
14172 mov pc, r2
b99bd4ef 14173
c19d1205
ZW
14174 .Lbbb: .word .Lxxx
14175 .Lccc: .word .Lyyy
14176 ..etc...
14177 .Laaa: .word Lbbb
b99bd4ef 14178
c19d1205
ZW
14179 The first instruction loads the address of the jump table.
14180 The second instruction converts a table index into a byte offset.
14181 The third instruction gets the jump address out of the table.
14182 The fourth instruction performs the jump.
b99bd4ef 14183
c19d1205
ZW
14184 If the address stored at .Laaa is that of a symbol which has the
14185 Thumb_Func bit set, then the linker will arrange for this address
14186 to have the bottom bit set, which in turn would mean that the
14187 address computation performed by the third instruction would end
14188 up with the bottom bit set. Since the ARM is capable of unaligned
14189 word loads, the instruction would then load the incorrect address
14190 out of the jump table, and chaos would ensue. */
14191 if (label_is_thumb_function_name
14192 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14193 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 14194 {
c19d1205
ZW
14195 /* When the address of a Thumb function is taken the bottom
14196 bit of that address should be set. This will allow
14197 interworking between Arm and Thumb functions to work
14198 correctly. */
b99bd4ef 14199
c19d1205 14200 THUMB_SET_FUNC (sym, 1);
b99bd4ef 14201
c19d1205 14202 label_is_thumb_function_name = FALSE;
b99bd4ef 14203 }
07a53e5c 14204
07a53e5c 14205 dwarf2_emit_label (sym);
b99bd4ef
NC
14206}
14207
c19d1205
ZW
14208int
14209arm_data_in_code (void)
b99bd4ef 14210{
c19d1205 14211 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 14212 {
c19d1205
ZW
14213 *input_line_pointer = '/';
14214 input_line_pointer += 5;
14215 *input_line_pointer = 0;
14216 return 1;
b99bd4ef
NC
14217 }
14218
c19d1205 14219 return 0;
b99bd4ef
NC
14220}
14221
c19d1205
ZW
14222char *
14223arm_canonicalize_symbol_name (char * name)
b99bd4ef 14224{
c19d1205 14225 int len;
b99bd4ef 14226
c19d1205
ZW
14227 if (thumb_mode && (len = strlen (name)) > 5
14228 && streq (name + len - 5, "/data"))
14229 *(name + len - 5) = 0;
b99bd4ef 14230
c19d1205 14231 return name;
b99bd4ef 14232}
c19d1205
ZW
14233\f
14234/* Table of all register names defined by default. The user can
14235 define additional names with .req. Note that all register names
14236 should appear in both upper and lowercase variants. Some registers
14237 also have mixed-case names. */
b99bd4ef 14238
dcbf9037 14239#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 14240#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 14241#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
14242#define REGSET(p,t) \
14243 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14244 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14245 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14246 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
14247#define REGSETH(p,t) \
14248 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14249 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14250 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14251 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14252#define REGSET2(p,t) \
14253 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14254 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14255 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14256 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 14257
c19d1205 14258static const struct reg_entry reg_names[] =
7ed4c4c5 14259{
c19d1205
ZW
14260 /* ARM integer registers. */
14261 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 14262
c19d1205
ZW
14263 /* ATPCS synonyms. */
14264 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14265 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14266 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 14267
c19d1205
ZW
14268 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14269 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14270 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 14271
c19d1205
ZW
14272 /* Well-known aliases. */
14273 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14274 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14275
14276 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14277 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14278
14279 /* Coprocessor numbers. */
14280 REGSET(p, CP), REGSET(P, CP),
14281
14282 /* Coprocessor register numbers. The "cr" variants are for backward
14283 compatibility. */
14284 REGSET(c, CN), REGSET(C, CN),
14285 REGSET(cr, CN), REGSET(CR, CN),
14286
14287 /* FPA registers. */
14288 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14289 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14290
14291 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14292 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14293
14294 /* VFP SP registers. */
5287ad62
JB
14295 REGSET(s,VFS), REGSET(S,VFS),
14296 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
14297
14298 /* VFP DP Registers. */
5287ad62
JB
14299 REGSET(d,VFD), REGSET(D,VFD),
14300 /* Extra Neon DP registers. */
14301 REGSETH(d,VFD), REGSETH(D,VFD),
14302
14303 /* Neon QP registers. */
14304 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
14305
14306 /* VFP control registers. */
14307 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14308 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14309
14310 /* Maverick DSP coprocessor registers. */
14311 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14312 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14313
14314 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14315 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14316 REGDEF(dspsc,0,DSPSC),
14317
14318 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14319 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14320 REGDEF(DSPSC,0,DSPSC),
14321
14322 /* iWMMXt data registers - p0, c0-15. */
14323 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14324
14325 /* iWMMXt control registers - p1, c0-3. */
14326 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14327 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14328 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14329 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14330
14331 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14332 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14333 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14334 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14335 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14336
14337 /* XScale accumulator registers. */
14338 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14339};
14340#undef REGDEF
14341#undef REGNUM
14342#undef REGSET
7ed4c4c5 14343
c19d1205
ZW
14344/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14345 within psr_required_here. */
14346static const struct asm_psr psrs[] =
14347{
14348 /* Backward compatibility notation. Note that "all" is no longer
14349 truly all possible PSR bits. */
14350 {"all", PSR_c | PSR_f},
14351 {"flg", PSR_f},
14352 {"ctl", PSR_c},
14353
14354 /* Individual flags. */
14355 {"f", PSR_f},
14356 {"c", PSR_c},
14357 {"x", PSR_x},
14358 {"s", PSR_s},
14359 /* Combinations of flags. */
14360 {"fs", PSR_f | PSR_s},
14361 {"fx", PSR_f | PSR_x},
14362 {"fc", PSR_f | PSR_c},
14363 {"sf", PSR_s | PSR_f},
14364 {"sx", PSR_s | PSR_x},
14365 {"sc", PSR_s | PSR_c},
14366 {"xf", PSR_x | PSR_f},
14367 {"xs", PSR_x | PSR_s},
14368 {"xc", PSR_x | PSR_c},
14369 {"cf", PSR_c | PSR_f},
14370 {"cs", PSR_c | PSR_s},
14371 {"cx", PSR_c | PSR_x},
14372 {"fsx", PSR_f | PSR_s | PSR_x},
14373 {"fsc", PSR_f | PSR_s | PSR_c},
14374 {"fxs", PSR_f | PSR_x | PSR_s},
14375 {"fxc", PSR_f | PSR_x | PSR_c},
14376 {"fcs", PSR_f | PSR_c | PSR_s},
14377 {"fcx", PSR_f | PSR_c | PSR_x},
14378 {"sfx", PSR_s | PSR_f | PSR_x},
14379 {"sfc", PSR_s | PSR_f | PSR_c},
14380 {"sxf", PSR_s | PSR_x | PSR_f},
14381 {"sxc", PSR_s | PSR_x | PSR_c},
14382 {"scf", PSR_s | PSR_c | PSR_f},
14383 {"scx", PSR_s | PSR_c | PSR_x},
14384 {"xfs", PSR_x | PSR_f | PSR_s},
14385 {"xfc", PSR_x | PSR_f | PSR_c},
14386 {"xsf", PSR_x | PSR_s | PSR_f},
14387 {"xsc", PSR_x | PSR_s | PSR_c},
14388 {"xcf", PSR_x | PSR_c | PSR_f},
14389 {"xcs", PSR_x | PSR_c | PSR_s},
14390 {"cfs", PSR_c | PSR_f | PSR_s},
14391 {"cfx", PSR_c | PSR_f | PSR_x},
14392 {"csf", PSR_c | PSR_s | PSR_f},
14393 {"csx", PSR_c | PSR_s | PSR_x},
14394 {"cxf", PSR_c | PSR_x | PSR_f},
14395 {"cxs", PSR_c | PSR_x | PSR_s},
14396 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14397 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14398 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14399 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14400 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14401 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14402 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14403 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14404 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14405 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14406 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14407 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14408 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14409 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14410 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14411 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14412 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14413 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14414 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14415 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14416 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14417 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14418 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14419 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14420};
14421
62b3e311
PB
14422/* Table of V7M psr names. */
14423static const struct asm_psr v7m_psrs[] =
14424{
14425 {"apsr", 0 },
14426 {"iapsr", 1 },
14427 {"eapsr", 2 },
14428 {"psr", 3 },
14429 {"ipsr", 5 },
14430 {"epsr", 6 },
14431 {"iepsr", 7 },
14432 {"msp", 8 },
14433 {"psp", 9 },
14434 {"primask", 16},
14435 {"basepri", 17},
14436 {"basepri_max", 18},
14437 {"faultmask", 19},
14438 {"control", 20}
14439};
14440
c19d1205
ZW
14441/* Table of all shift-in-operand names. */
14442static const struct asm_shift_name shift_names [] =
b99bd4ef 14443{
c19d1205
ZW
14444 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14445 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14446 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14447 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14448 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14449 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14450};
b99bd4ef 14451
c19d1205
ZW
14452/* Table of all explicit relocation names. */
14453#ifdef OBJ_ELF
14454static struct reloc_entry reloc_names[] =
14455{
14456 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14457 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14458 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14459 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14460 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14461 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14462 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14463 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14464 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14465 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14466 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14467};
14468#endif
b99bd4ef 14469
c19d1205
ZW
14470/* Table of all conditional affixes. 0xF is not defined as a condition code. */
14471static const struct asm_cond conds[] =
14472{
14473 {"eq", 0x0},
14474 {"ne", 0x1},
14475 {"cs", 0x2}, {"hs", 0x2},
14476 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14477 {"mi", 0x4},
14478 {"pl", 0x5},
14479 {"vs", 0x6},
14480 {"vc", 0x7},
14481 {"hi", 0x8},
14482 {"ls", 0x9},
14483 {"ge", 0xa},
14484 {"lt", 0xb},
14485 {"gt", 0xc},
14486 {"le", 0xd},
14487 {"al", 0xe}
14488};
bfae80f2 14489
62b3e311
PB
14490static struct asm_barrier_opt barrier_opt_names[] =
14491{
14492 { "sy", 0xf },
14493 { "un", 0x7 },
14494 { "st", 0xe },
14495 { "unst", 0x6 }
14496};
14497
c19d1205
ZW
14498/* Table of ARM-format instructions. */
14499
14500/* Macros for gluing together operand strings. N.B. In all cases
14501 other than OPS0, the trailing OP_stop comes from default
14502 zero-initialization of the unspecified elements of the array. */
14503#define OPS0() { OP_stop, }
14504#define OPS1(a) { OP_##a, }
14505#define OPS2(a,b) { OP_##a,OP_##b, }
14506#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14507#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14508#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14509#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14510
14511/* These macros abstract out the exact format of the mnemonic table and
14512 save some repeated characters. */
14513
14514/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14515#define TxCE(mnem, op, top, nops, ops, ae, te) \
14516 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 14517 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14518
14519/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14520 a T_MNEM_xyz enumerator. */
14521#define TCE(mnem, aop, top, nops, ops, ae, te) \
14522 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14523#define tCE(mnem, aop, top, nops, ops, ae, te) \
14524 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14525
14526/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14527 infix after the third character. */
14528#define TxC3(mnem, op, top, nops, ops, ae, te) \
14529 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 14530 THUMB_VARIANT, do_##ae, do_##te }
088fa78e
KH
14531#define TxC3w(mnem, op, top, nops, ops, ae, te) \
14532 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14533 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14534#define TC3(mnem, aop, top, nops, ops, ae, te) \
14535 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e
KH
14536#define TC3w(mnem, aop, top, nops, ops, ae, te) \
14537 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205
ZW
14538#define tC3(mnem, aop, top, nops, ops, ae, te) \
14539 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
088fa78e
KH
14540#define tC3w(mnem, aop, top, nops, ops, ae, te) \
14541 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
c19d1205
ZW
14542
14543/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14544 appear in the condition table. */
14545#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14546 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
1887dd22 14547 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14548
14549#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14550 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14551 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14552 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14553 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14554 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14555 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14556 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14557 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14558 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14559 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14560 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14561 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14562 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14563 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14564 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14565 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14566 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14567 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14568 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14569
14570#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14571 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14572#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14573 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14574
14575/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
14576 field is still 0xE. Many of the Thumb variants can be executed
14577 conditionally, so this is checked separately. */
c19d1205
ZW
14578#define TUE(mnem, op, top, nops, ops, ae, te) \
14579 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14580 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14581
14582/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14583 condition code field. */
14584#define TUF(mnem, op, top, nops, ops, ae, te) \
14585 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 14586 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
14587
14588/* ARM-only variants of all the above. */
6a86118a
NC
14589#define CE(mnem, op, nops, ops, ae) \
14590 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14591
14592#define C3(mnem, op, nops, ops, ae) \
14593 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14594
e3cb604e
PB
14595/* Legacy mnemonics that always have conditional infix after the third
14596 character. */
14597#define CL(mnem, op, nops, ops, ae) \
14598 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14599 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14600
8f06b2d8
PB
14601/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14602#define cCE(mnem, op, nops, ops, ae) \
14603 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14604
e3cb604e
PB
14605/* Legacy coprocessor instructions where conditional infix and conditional
14606 suffix are ambiguous. For consistency this includes all FPA instructions,
14607 not just the potentially ambiguous ones. */
14608#define cCL(mnem, op, nops, ops, ae) \
14609 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14610 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14611
14612/* Coprocessor, takes either a suffix or a position-3 infix
14613 (for an FPA corner case). */
14614#define C3E(mnem, op, nops, ops, ae) \
14615 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14616 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 14617
6a86118a
NC
14618#define xCM_(m1, m2, m3, op, nops, ops, ae) \
14619 { #m1 #m2 #m3, OPS##nops ops, \
14620 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14621 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14622
14623#define CM(m1, m2, op, nops, ops, ae) \
14624 xCM_(m1, , m2, op, nops, ops, ae), \
14625 xCM_(m1, eq, m2, op, nops, ops, ae), \
14626 xCM_(m1, ne, m2, op, nops, ops, ae), \
14627 xCM_(m1, cs, m2, op, nops, ops, ae), \
14628 xCM_(m1, hs, m2, op, nops, ops, ae), \
14629 xCM_(m1, cc, m2, op, nops, ops, ae), \
14630 xCM_(m1, ul, m2, op, nops, ops, ae), \
14631 xCM_(m1, lo, m2, op, nops, ops, ae), \
14632 xCM_(m1, mi, m2, op, nops, ops, ae), \
14633 xCM_(m1, pl, m2, op, nops, ops, ae), \
14634 xCM_(m1, vs, m2, op, nops, ops, ae), \
14635 xCM_(m1, vc, m2, op, nops, ops, ae), \
14636 xCM_(m1, hi, m2, op, nops, ops, ae), \
14637 xCM_(m1, ls, m2, op, nops, ops, ae), \
14638 xCM_(m1, ge, m2, op, nops, ops, ae), \
14639 xCM_(m1, lt, m2, op, nops, ops, ae), \
14640 xCM_(m1, gt, m2, op, nops, ops, ae), \
14641 xCM_(m1, le, m2, op, nops, ops, ae), \
14642 xCM_(m1, al, m2, op, nops, ops, ae)
14643
14644#define UE(mnem, op, nops, ops, ae) \
14645 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14646
14647#define UF(mnem, op, nops, ops, ae) \
14648 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14649
5287ad62
JB
14650/* Neon data-processing. ARM versions are unconditional with cond=0xf.
14651 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14652 use the same encoding function for each. */
14653#define NUF(mnem, op, nops, ops, enc) \
14654 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14655 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14656
14657/* Neon data processing, version which indirects through neon_enc_tab for
14658 the various overloaded versions of opcodes. */
14659#define nUF(mnem, op, nops, ops, enc) \
14660 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14661 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14662
14663/* Neon insn with conditional suffix for the ARM version, non-overloaded
14664 version. */
037e8744
JB
14665#define NCE_tag(mnem, op, nops, ops, enc, tag) \
14666 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
14667 THUMB_VARIANT, do_##enc, do_##enc }
14668
037e8744
JB
14669#define NCE(mnem, op, nops, ops, enc) \
14670 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14671
14672#define NCEF(mnem, op, nops, ops, enc) \
14673 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14674
5287ad62 14675/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744
JB
14676#define nCE_tag(mnem, op, nops, ops, enc, tag) \
14677 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
5287ad62
JB
14678 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14679
037e8744
JB
14680#define nCE(mnem, op, nops, ops, enc) \
14681 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14682
14683#define nCEF(mnem, op, nops, ops, enc) \
14684 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14685
c19d1205
ZW
14686#define do_0 0
14687
14688/* Thumb-only, unconditional. */
14689#define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14690
c19d1205 14691static const struct asm_opcode insns[] =
bfae80f2 14692{
e74cfd16
PB
14693#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14694#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14695 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14696 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14697 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14698 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14699 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14700 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
4962c51a
MS
14701 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14702 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
c19d1205
ZW
14703 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14704 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14705 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14706 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14707 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14708 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14709 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14710 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14711
14712 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14713 for setting PSR flag bits. They are obsolete in V6 and do not
14714 have Thumb equivalents. */
14715 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14716 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14717 CL(tstp, 110f000, 2, (RR, SH), cmp),
c19d1205 14718 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
088fa78e 14719 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
e3cb604e 14720 CL(cmpp, 150f000, 2, (RR, SH), cmp),
c19d1205 14721 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14722 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14723 CL(cmnp, 170f000, 2, (RR, SH), cmp),
c19d1205
ZW
14724
14725 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14726 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14727 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14728 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14729
4962c51a
MS
14730 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14731 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14732 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14733 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
c19d1205 14734
f5208ef2 14735 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14736 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14737 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
f5208ef2 14738 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14739 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14740 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14741
14742 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
c16d2bf0 14743 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
0110f2b8 14744 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
39b41c9c 14745 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 14746
c19d1205 14747 /* Pseudo ops. */
e9f89963 14748 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac
ZW
14749 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14750 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
14751
14752 /* Thumb-compatibility pseudo ops. */
14753 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14754 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14755 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14756 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14757 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
2fc8bdac 14758 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
c19d1205
ZW
14759 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14760 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14761 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14762 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14763 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14764 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14765
14766#undef THUMB_VARIANT
e74cfd16 14767#define THUMB_VARIANT &arm_ext_v6
2fc8bdac 14768 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
14769
14770 /* V1 instructions with no Thumb analogue prior to V6T2. */
14771#undef THUMB_VARIANT
e74cfd16 14772#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14773 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14774 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14775 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
088fa78e 14776 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
e3cb604e 14777 CL(teqp, 130f000, 2, (RR, SH), cmp),
c19d1205
ZW
14778
14779 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14780 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14781 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
3e94bf1a 14782 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 14783
9c3c69f2
PB
14784 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14785 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 14786
9c3c69f2
PB
14787 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14788 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
14789
14790 /* V1 instructions with no Thumb analogue at all. */
14791 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14792 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14793
14794 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14795 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14796 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14797 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14798 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14799 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14800 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14801 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14802
14803#undef ARM_VARIANT
e74cfd16 14804#define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
c19d1205 14805#undef THUMB_VARIANT
e74cfd16 14806#define THUMB_VARIANT &arm_ext_v4t
c19d1205
ZW
14807 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14808 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14809
14810#undef THUMB_VARIANT
e74cfd16 14811#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14812 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14813 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14814
14815 /* Generic coprocessor instructions. */
14816 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
4962c51a
MS
14817 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14818 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14819 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14820 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
14821 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14822 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14823
14824#undef ARM_VARIANT
e74cfd16 14825#define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
c19d1205
ZW
14826 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14827 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14828
14829#undef ARM_VARIANT
e74cfd16 14830#define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
037e8744
JB
14831 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
14832 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205
ZW
14833
14834#undef ARM_VARIANT
e74cfd16 14835#define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
c19d1205
ZW
14836 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14837 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14838 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14839 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14840 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14841 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14842 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14843 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14844
14845#undef ARM_VARIANT
e74cfd16 14846#define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
c19d1205 14847#undef THUMB_VARIANT
e74cfd16 14848#define THUMB_VARIANT &arm_ext_v4t
4962c51a
MS
14849 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14850 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14851 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14852 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14853 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14854 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205
ZW
14855
14856#undef ARM_VARIANT
e74cfd16 14857#define ARM_VARIANT &arm_ext_v4t_5
c19d1205
ZW
14858 /* ARM Architecture 4T. */
14859 /* Note: bx (and blx) are required on V5, even if the processor does
14860 not support Thumb. */
14861 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
14862
14863#undef ARM_VARIANT
e74cfd16 14864#define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
c19d1205 14865#undef THUMB_VARIANT
e74cfd16 14866#define THUMB_VARIANT &arm_ext_v5t
c19d1205
ZW
14867 /* Note: blx has 2 variants; the .value coded here is for
14868 BLX(2). Only this variant has conditional execution. */
14869 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
14870 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
14871
14872#undef THUMB_VARIANT
e74cfd16 14873#define THUMB_VARIANT &arm_ext_v6t2
c19d1205 14874 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
4962c51a
MS
14875 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14876 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14877 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14878 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
c19d1205
ZW
14879 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14880 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14881 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14882
14883#undef ARM_VARIANT
e74cfd16 14884#define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
c19d1205
ZW
14885 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14886 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14887 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14888 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14889
14890 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14891 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14892
14893 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14894 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14895 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14896 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14897
14898 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14899 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14900 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14901 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14902
14903 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14904 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14905
14906 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14907 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14908 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14909 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14910
14911#undef ARM_VARIANT
e74cfd16 14912#define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
c19d1205 14913 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
4962c51a
MS
14914 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
14915 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205
ZW
14916
14917 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14918 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14919
14920#undef ARM_VARIANT
e74cfd16 14921#define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
c19d1205
ZW
14922 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
14923
14924#undef ARM_VARIANT
e74cfd16 14925#define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
c19d1205 14926#undef THUMB_VARIANT
e74cfd16 14927#define THUMB_VARIANT &arm_ext_v6
c19d1205
ZW
14928 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
14929 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
14930 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14931 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14932 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14933 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14934 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14935 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14936 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14937 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
14938
14939#undef THUMB_VARIANT
e74cfd16 14940#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
14941 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
14942 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14943 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311
PB
14944
14945 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
14946 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
14947
14948/* ARM V6 not included in V7M (eg. integer SIMD). */
14949#undef THUMB_VARIANT
14950#define THUMB_VARIANT &arm_ext_v6_notm
dfa9f0d5 14951 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c19d1205
ZW
14952 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
14953 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
14954 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14955 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14956 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14957 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14958 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14959 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14960 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14961 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14962 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14963 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14964 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14965 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14966 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14967 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14968 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14969 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14970 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14971 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14972 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14973 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14974 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14975 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14976 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14977 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14978 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14979 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14980 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14981 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14982 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14983 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14984 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14985 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14986 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14987 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14988 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14989 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14990 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14991 UF(rfeib, 9900a00, 1, (RRw), rfe),
14992 UF(rfeda, 8100a00, 1, (RRw), rfe),
14993 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14994 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14995 UF(rfefa, 9900a00, 1, (RRw), rfe),
14996 UF(rfeea, 8100a00, 1, (RRw), rfe),
14997 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14998 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14999 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15000 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15001 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15002 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15003 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15004 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15005 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
f1022c90 15006 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
c19d1205
ZW
15007 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15008 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15009 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15010 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15011 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15012 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15013 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15014 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15015 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15016 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15017 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15018 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15019 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15020 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15021 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15022 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15023 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15024 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
b6702015
PB
15025 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15026 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15027 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15028 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c19d1205
ZW
15029 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
15030 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
15031 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15032 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15033 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
c19d1205
ZW
15034 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15035
15036#undef ARM_VARIANT
e74cfd16 15037#define ARM_VARIANT &arm_ext_v6k
c19d1205 15038#undef THUMB_VARIANT
e74cfd16 15039#define THUMB_VARIANT &arm_ext_v6k
c19d1205
ZW
15040 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15041 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15042 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15043 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15044
ebdca51a
PB
15045#undef THUMB_VARIANT
15046#define THUMB_VARIANT &arm_ext_v6_notm
15047 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15048 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15049
c19d1205 15050#undef THUMB_VARIANT
e74cfd16 15051#define THUMB_VARIANT &arm_ext_v6t2
c19d1205
ZW
15052 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15053 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
c19d1205
ZW
15054 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15055 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
c19d1205
ZW
15056 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15057
15058#undef ARM_VARIANT
e74cfd16 15059#define ARM_VARIANT &arm_ext_v6z
3eb17e6b 15060 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205
ZW
15061
15062#undef ARM_VARIANT
e74cfd16 15063#define ARM_VARIANT &arm_ext_v6t2
c19d1205
ZW
15064 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15065 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15066 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15067 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15068
15069 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
b6895b4f
PB
15070 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15071 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
401a54cf 15072 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205
ZW
15073
15074 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15075 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15076 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15077 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15078
25fe350b
MS
15079 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15080 UT(cbz, b100, 2, (RR, EXP), t_cbz),
f91e006c
PB
15081 /* ARM does not really have an IT instruction, so always allow it. */
15082#undef ARM_VARIANT
15083#define ARM_VARIANT &arm_ext_v1
c19d1205
ZW
15084 TUE(it, 0, bf08, 1, (COND), it, t_it),
15085 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15086 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15087 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15088 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15089 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15090 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15091 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15092 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15093 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15094 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15095 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15096 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15097 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15098 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15099
92e90b6e
PB
15100 /* Thumb2 only instructions. */
15101#undef ARM_VARIANT
e74cfd16 15102#define ARM_VARIANT NULL
92e90b6e
PB
15103
15104 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15105 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15106 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15107 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15108
62b3e311
PB
15109 /* Thumb-2 hardware division instructions (R and M profiles only). */
15110#undef THUMB_VARIANT
15111#define THUMB_VARIANT &arm_ext_div
15112 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15113 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15114
15115 /* ARM V7 instructions. */
15116#undef ARM_VARIANT
15117#define ARM_VARIANT &arm_ext_v7
15118#undef THUMB_VARIANT
15119#define THUMB_VARIANT &arm_ext_v7
15120 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15121 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15122 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15123 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15124 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15125
c19d1205 15126#undef ARM_VARIANT
e74cfd16 15127#define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
8f06b2d8
PB
15128 cCE(wfs, e200110, 1, (RR), rd),
15129 cCE(rfs, e300110, 1, (RR), rd),
15130 cCE(wfc, e400110, 1, (RR), rd),
15131 cCE(rfc, e500110, 1, (RR), rd),
15132
4962c51a
MS
15133 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15134 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15135 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15136 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e 15137
4962c51a
MS
15138 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15139 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15140 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15141 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
e3cb604e
PB
15142
15143 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15144 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15145 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15146 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15147 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15148 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15149 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15150 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15151 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15152 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15153 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15154 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15155
15156 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15157 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15158 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15159 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15160 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15161 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15162 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15163 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15164 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15165 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15166 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15167 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15168
15169 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15170 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15171 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15172 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15173 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15174 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15175 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15176 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15177 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15178 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15179 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15180 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15181
15182 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15183 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15184 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15185 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15186 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15187 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15188 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15189 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15190 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15191 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15192 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15193 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15194
15195 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15196 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15197 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15198 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15199 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15200 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15201 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15202 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15203 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15204 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15205 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15206 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15207
15208 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15209 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15210 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15211 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15212 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15213 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15214 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15215 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15216 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15217 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15218 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15219 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15220
15221 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15222 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15223 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15224 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15225 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15226 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15227 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15228 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15229 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15230 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15231 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15232 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15233
15234 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15235 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15236 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15237 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15238 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15239 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15240 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15241 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15242 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15243 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15244 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15245 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15246
15247 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15248 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15249 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15250 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15251 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15252 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15253 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15254 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15255 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15256 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15257 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15258 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15259
15260 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15261 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15262 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15263 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15264 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15265 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15266 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15267 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15268 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15269 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15270 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15271 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15272
15273 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15274 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15275 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15276 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15277 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15278 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15279 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15280 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15281 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15282 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15283 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15284 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15285
15286 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15287 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15288 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15289 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15290 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15291 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15292 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15293 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15294 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15295 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15296 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15297 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15298
15299 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15300 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15301 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15302 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15303 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15304 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15305 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15306 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15307 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15308 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15309 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15310 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15311
15312 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15313 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15314 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15315 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15316 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15317 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15318 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15319 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15320 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15321 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15322 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15323 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15324
15325 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15326 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15327 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15328 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15329 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15330 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15331 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15332 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15333 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15334 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15335 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15336 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15337
15338 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15339 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15340 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15341 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15342 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15343 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15344 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15345 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15346 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15347 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15348 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15349 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15350
15351 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15352 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15353 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15354 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15355 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15356 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15357 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15358 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15359 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15360 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15361 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15362 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15363
15364 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15365 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15366 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15367 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15368 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15369 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15370 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15371 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15372 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15373 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15374 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15375 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15376
15377 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15378 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15379 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15380 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15381 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15382 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15383 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15384 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15385 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15386 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15387 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15388 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15389
15390 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15391 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15392 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15393 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15394 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15395 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15396 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15397 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15398 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15399 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15400 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15401 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15402
15403 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15404 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15405 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15406 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15407 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15408 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15409 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15410 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15411 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15412 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15413 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15414 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15415
15416 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15417 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15418 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15419 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15420 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15421 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15422 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15423 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15424 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15425 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15426 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15427 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15428
15429 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15430 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15431 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15432 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15433 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15434 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15435 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15436 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15437 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15438 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15439 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15440 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15441
15442 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15443 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15444 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15445 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15446 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15447 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15448 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15449 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15450 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15451 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15452 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15453 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15454
15455 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15456 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15457 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15458 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15459 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15460 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15461 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15462 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15463 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15464 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15465 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15466 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15467
15468 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15469 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15470 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15471 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15472 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15473 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15474 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15475 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15476 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15477 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15478 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15479 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15480
15481 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15482 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15483 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15484 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15485 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15486 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15487 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15488 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15489 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15490 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15491 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15492 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15493
15494 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15495 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15496 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15497 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15498 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15499 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15500 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15501 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15502 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15503 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15504 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15505 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15506
15507 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15508 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15509 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15510 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15511 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15512 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15513 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15514 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15515 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15516 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15517 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15518 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
8f06b2d8
PB
15519
15520 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205 15521 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
8f06b2d8 15522 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
c19d1205
ZW
15523 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15524
e3cb604e
PB
15525 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15526 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15527 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15528 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15529 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15530 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15531 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15532 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15533 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15534 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15535 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15536 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
b99bd4ef 15537
c19d1205
ZW
15538 /* The implementation of the FIX instruction is broken on some
15539 assemblers, in that it accepts a precision specifier as well as a
15540 rounding specifier, despite the fact that this is meaningless.
15541 To be more compatible, we accept it as well, though of course it
15542 does not set any bits. */
8f06b2d8 15543 cCE(fix, e100110, 2, (RR, RF), rd_rm),
e3cb604e
PB
15544 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15545 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15546 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15547 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15548 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15549 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15550 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15551 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15552 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15553 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15554 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15555 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
bfae80f2 15556
c19d1205
ZW
15557 /* Instructions that were new with the real FPA, call them V2. */
15558#undef ARM_VARIANT
e74cfd16 15559#define ARM_VARIANT &fpu_fpa_ext_v2
8f06b2d8 15560 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15561 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15562 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
8f06b2d8 15563 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
e3cb604e
PB
15564 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15565 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205
ZW
15566
15567#undef ARM_VARIANT
e74cfd16 15568#define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
c19d1205 15569 /* Moves and type conversions. */
8f06b2d8
PB
15570 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15571 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15572 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15573 cCE(fmstat, ef1fa10, 0, (), noargs),
15574 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15575 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15576 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15577 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15578 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15579 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15580 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15581 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
15582
15583 /* Memory operations. */
4962c51a
MS
15584 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15585 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
8f06b2d8
PB
15586 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15587 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15588 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15589 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15590 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15591 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15592 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15593 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15594 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15595 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15596 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15597 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15598 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15599 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15600 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15601 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 15602
c19d1205 15603 /* Monadic operations. */
8f06b2d8
PB
15604 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15605 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15606 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
15607
15608 /* Dyadic operations. */
8f06b2d8
PB
15609 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15610 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15611 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15612 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15613 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15614 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15615 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15616 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15617 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 15618
c19d1205 15619 /* Comparisons. */
8f06b2d8
PB
15620 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15621 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15622 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15623 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 15624
c19d1205 15625#undef ARM_VARIANT
e74cfd16 15626#define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
c19d1205 15627 /* Moves and type conversions. */
5287ad62 15628 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
8f06b2d8
PB
15629 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15630 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
5287ad62
JB
15631 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15632 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15633 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15634 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
8f06b2d8
PB
15635 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15636 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15637 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15638 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15639 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15640 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205
ZW
15641
15642 /* Memory operations. */
4962c51a
MS
15643 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15644 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
8f06b2d8
PB
15645 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15646 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15647 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15648 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15649 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15650 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15651 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15652 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
b99bd4ef 15653
c19d1205 15654 /* Monadic operations. */
5287ad62
JB
15655 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15656 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15657 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
15658
15659 /* Dyadic operations. */
5287ad62
JB
15660 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15661 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15662 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15663 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15664 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15665 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15666 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15667 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15668 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 15669
c19d1205 15670 /* Comparisons. */
5287ad62
JB
15671 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15672 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15673 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15674 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205
ZW
15675
15676#undef ARM_VARIANT
e74cfd16 15677#define ARM_VARIANT &fpu_vfp_ext_v2
8f06b2d8
PB
15678 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15679 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
5287ad62
JB
15680 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15681 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15682
037e8744
JB
15683/* Instructions which may belong to either the Neon or VFP instruction sets.
15684 Individual encoder functions perform additional architecture checks. */
15685#undef ARM_VARIANT
15686#define ARM_VARIANT &fpu_vfp_ext_v1xd
15687#undef THUMB_VARIANT
15688#define THUMB_VARIANT &fpu_vfp_ext_v1xd
15689 /* These mnemonics are unique to VFP. */
15690 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15691 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15692 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15693 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15694 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15695 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15696 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15697 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15698 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15699 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15700
15701 /* Mnemonics shared by Neon and VFP. */
15702 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15703 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15704 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15705
15706 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15707 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15708
15709 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15710 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15711
15712 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15713 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15714 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15715 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15716 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15717 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
15718 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15719 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744
JB
15720
15721 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15722
15723 /* NOTE: All VMOV encoding is special-cased! */
15724 NCE(vmov, 0, 1, (VMOV), neon_mov),
15725 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15726
5287ad62
JB
15727#undef THUMB_VARIANT
15728#define THUMB_VARIANT &fpu_neon_ext_v1
15729#undef ARM_VARIANT
15730#define ARM_VARIANT &fpu_neon_ext_v1
15731 /* Data processing with three registers of the same length. */
15732 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15733 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15734 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15735 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15736 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15737 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15738 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15739 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15740 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15741 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15742 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15743 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15744 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15745 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
15746 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15747 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15748 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15749 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
15750 /* If not immediate, fall back to neon_dyadic_i64_su.
15751 shl_imm should accept I8 I16 I32 I64,
15752 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15753 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15754 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15755 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15756 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15757 /* Logic ops, types optional & ignored. */
15758 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15759 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15760 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15761 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15762 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15763 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15764 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15765 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15766 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15767 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15768 /* Bitfield ops, untyped. */
15769 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15770 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15771 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15772 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15773 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15774 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15775 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15776 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15777 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15778 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15779 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15780 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15781 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15782 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15783 back to neon_dyadic_if_su. */
15784 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15785 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15786 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15787 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15788 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15789 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15790 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15791 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 15792 /* Comparison. Type I8 I16 I32 F32. */
5287ad62
JB
15793 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15794 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15795 /* As above, D registers only. */
15796 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15797 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15798 /* Int and float variants, signedness unimportant. */
5287ad62 15799 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
5287ad62
JB
15800 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15801 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15802 /* Add/sub take types I8 I16 I32 I64 F32. */
5287ad62 15803 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
15804 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15805 /* vtst takes sizes 8, 16, 32. */
15806 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15807 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15808 /* VMUL takes I8 I16 I32 F32 P8. */
037e8744 15809 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62
JB
15810 /* VQD{R}MULH takes S16 S32. */
15811 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15812 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15813 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15814 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15815 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15816 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15817 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15818 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
15819 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15820 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15821 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15822 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
15823 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15824 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15825 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15826 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15827
15828 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 15829 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
15830 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
15831
15832 /* Data processing with two registers and a shift amount. */
15833 /* Right shifts, and variants with rounding.
15834 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
15835 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15836 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15837 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15838 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15839 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15840 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15841 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15842 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15843 /* Shift and insert. Sizes accepted 8 16 32 64. */
15844 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
15845 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
15846 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
15847 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
15848 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
15849 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
15850 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
15851 /* Right shift immediate, saturating & narrowing, with rounding variants.
15852 Types accepted S16 S32 S64 U16 U32 U64. */
15853 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15854 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15855 /* As above, unsigned. Types accepted S16 S32 S64. */
15856 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15857 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15858 /* Right shift narrowing. Types accepted I16 I32 I64. */
15859 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15860 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15861 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
15862 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
15863 /* CVT with optional immediate for fixed-point variant. */
037e8744 15864 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 15865
5287ad62
JB
15866 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
15867 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
15868
15869 /* Data processing, three registers of different lengths. */
15870 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
15871 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
15872 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
15873 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
15874 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
15875 /* If not scalar, fall back to neon_dyadic_long.
15876 Vector types as above, scalar types S16 S32 U16 U32. */
15877 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15878 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15879 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
15880 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15881 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15882 /* Dyadic, narrowing insns. Types I16 I32 I64. */
15883 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15884 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15885 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15886 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15887 /* Saturating doubling multiplies. Types S16 S32. */
15888 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15889 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15890 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15891 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
15892 S16 S32 U16 U32. */
15893 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
15894
15895 /* Extract. Size 8. */
15896 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I7), neon_ext),
15897 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I7), neon_ext),
15898
15899 /* Two registers, miscellaneous. */
15900 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
15901 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
15902 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
15903 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
15904 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
15905 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
15906 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
15907 /* Vector replicate. Sizes 8 16 32. */
15908 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
15909 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
15910 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
15911 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
15912 /* VMOVN. Types I16 I32 I64. */
15913 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
15914 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
15915 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
15916 /* VQMOVUN. Types S16 S32 S64. */
15917 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
15918 /* VZIP / VUZP. Sizes 8 16 32. */
15919 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
15920 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
15921 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
15922 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
15923 /* VQABS / VQNEG. Types S8 S16 S32. */
15924 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15925 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
15926 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15927 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
15928 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
15929 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
15930 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
15931 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
15932 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
15933 /* Reciprocal estimates. Types U32 F32. */
15934 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
15935 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
15936 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
15937 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
15938 /* VCLS. Types S8 S16 S32. */
15939 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
15940 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
15941 /* VCLZ. Types I8 I16 I32. */
15942 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
15943 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
15944 /* VCNT. Size 8. */
15945 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
15946 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
15947 /* Two address, untyped. */
15948 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
15949 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
15950 /* VTRN. Sizes 8 16 32. */
15951 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
15952 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
15953
15954 /* Table lookup. Size 8. */
15955 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15956 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15957
b7fc2769
JB
15958#undef THUMB_VARIANT
15959#define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
15960#undef ARM_VARIANT
15961#define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
5287ad62
JB
15962 /* Neon element/structure load/store. */
15963 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15964 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15965 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15966 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15967 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15968 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15969 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15970 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15971
15972#undef THUMB_VARIANT
15973#define THUMB_VARIANT &fpu_vfp_ext_v3
15974#undef ARM_VARIANT
15975#define ARM_VARIANT &fpu_vfp_ext_v3
5287ad62
JB
15976 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
15977 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
15978 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15979 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15980 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15981 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15982 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15983 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15984 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15985 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15986 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15987 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15988 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15989 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15990 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15991 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15992 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15993 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 15994
5287ad62 15995#undef THUMB_VARIANT
c19d1205 15996#undef ARM_VARIANT
e74cfd16 15997#define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
8f06b2d8
PB
15998 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15999 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16000 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16001 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16002 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16003 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16004 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16005 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205
ZW
16006
16007#undef ARM_VARIANT
e74cfd16 16008#define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
8f06b2d8
PB
16009 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16010 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16011 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16012 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16013 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16014 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16015 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16016 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16017 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16018 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16019 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16020 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16021 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16022 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16023 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16024 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16025 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16026 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
41adaa5c 16027 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
8f06b2d8
PB
16028 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16029 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16030 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16031 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16032 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16033 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16034 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16035 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16036 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16037 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
41adaa5c 16038 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
8f06b2d8
PB
16039 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16040 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16041 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16042 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16043 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16044 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16045 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16046 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16047 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16048 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16049 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16050 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16051 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16052 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16053 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16054 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16055 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16056 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16057 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16058 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16059 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16060 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16061 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16062 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16063 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16064 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16065 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16066 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16067 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16068 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16069 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16070 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16071 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16072 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16073 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16074 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16075 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16076 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16077 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16078 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16079 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16080 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16081 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16082 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16083 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16084 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16085 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16086 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16087 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16088 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16089 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16090 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16091 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16092 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16093 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16094 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16095 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16096 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16097 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16098 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16099 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16100 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16101 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16102 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16103 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16104 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16105 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16106 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16107 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16108 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 16109 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16110 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16111 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16112 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16113 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16114 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16115 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16116 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16117 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16118 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16119 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
2d447fca 16120 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16121 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16122 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16123 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16124 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16125 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16126 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16127 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16128 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16129 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16130 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16131 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16132 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16133 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16134 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8 16135 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
2d447fca 16136 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
8f06b2d8
PB
16137 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16138 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16139 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16140 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16141 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16142 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16143 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16144 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16145 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16146 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16147 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16148 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16149 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16150 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16151 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16152 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16153 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16154 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16155 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16156 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16157 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16158 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16159 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16160 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16161 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16162 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16163 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16164 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16165 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16166 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16167 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16168 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16169 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16170 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 16171
2d447fca
JM
16172#undef ARM_VARIANT
16173#define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16174 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16175 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16176 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16177 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16178 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16179 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16180 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16181 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16182 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16183 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16184 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16185 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16186 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16187 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16188 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16189 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16190 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16191 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16192 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16193 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16194 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16195 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16196 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16197 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16198 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16199 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16200 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16201 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16202 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16203 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16204 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16205 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16206 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16207 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16208 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16209 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16210 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16211 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16212 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16213 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16214 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16215 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16216 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16217 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16218 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16219 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16220 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16221 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16222 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16223 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16224 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16225 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16226 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16227 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16228 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16229 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16230 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16231
c19d1205 16232#undef ARM_VARIANT
e74cfd16 16233#define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
4962c51a
MS
16234 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16235 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16236 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16237 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16238 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16239 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16240 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16241 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
8f06b2d8
PB
16242 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16243 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16244 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16245 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16246 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16247 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16248 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16249 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16250 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16251 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16252 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16253 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16254 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16255 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16256 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16257 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16258 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16259 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16260 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16261 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16262 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16263 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16264 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16265 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16266 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16267 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16268 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16269 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16270 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16271 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16272 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16273 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16274 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16275 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16276 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16277 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16278 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16279 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16280 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16281 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16282 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16283 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16284 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16285 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16286 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16287 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16288 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16289 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16290 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16291 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16292 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16293 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16294 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16295 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16296 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16297 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16298 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16299 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16300 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16301 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16302 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16303 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16304 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16305 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16306 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16307 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16308 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16309 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
16310};
16311#undef ARM_VARIANT
16312#undef THUMB_VARIANT
16313#undef TCE
16314#undef TCM
16315#undef TUE
16316#undef TUF
16317#undef TCC
8f06b2d8 16318#undef cCE
e3cb604e
PB
16319#undef cCL
16320#undef C3E
c19d1205
ZW
16321#undef CE
16322#undef CM
16323#undef UE
16324#undef UF
16325#undef UT
5287ad62
JB
16326#undef NUF
16327#undef nUF
16328#undef NCE
16329#undef nCE
c19d1205
ZW
16330#undef OPS0
16331#undef OPS1
16332#undef OPS2
16333#undef OPS3
16334#undef OPS4
16335#undef OPS5
16336#undef OPS6
16337#undef do_0
16338\f
16339/* MD interface: bits in the object file. */
bfae80f2 16340
c19d1205
ZW
16341/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16342 for use in the a.out file, and stores them in the array pointed to by buf.
16343 This knows about the endian-ness of the target machine and does
16344 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16345 2 (short) and 4 (long) Floating numbers are put out as a series of
16346 LITTLENUMS (shorts, here at least). */
b99bd4ef 16347
c19d1205
ZW
16348void
16349md_number_to_chars (char * buf, valueT val, int n)
16350{
16351 if (target_big_endian)
16352 number_to_chars_bigendian (buf, val, n);
16353 else
16354 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
16355}
16356
c19d1205
ZW
16357static valueT
16358md_chars_to_number (char * buf, int n)
bfae80f2 16359{
c19d1205
ZW
16360 valueT result = 0;
16361 unsigned char * where = (unsigned char *) buf;
bfae80f2 16362
c19d1205 16363 if (target_big_endian)
b99bd4ef 16364 {
c19d1205
ZW
16365 while (n--)
16366 {
16367 result <<= 8;
16368 result |= (*where++ & 255);
16369 }
b99bd4ef 16370 }
c19d1205 16371 else
b99bd4ef 16372 {
c19d1205
ZW
16373 while (n--)
16374 {
16375 result <<= 8;
16376 result |= (where[n] & 255);
16377 }
bfae80f2 16378 }
b99bd4ef 16379
c19d1205 16380 return result;
bfae80f2 16381}
b99bd4ef 16382
c19d1205 16383/* MD interface: Sections. */
b99bd4ef 16384
0110f2b8
PB
16385/* Estimate the size of a frag before relaxing. Assume everything fits in
16386 2 bytes. */
16387
c19d1205 16388int
0110f2b8 16389md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
16390 segT segtype ATTRIBUTE_UNUSED)
16391{
0110f2b8
PB
16392 fragp->fr_var = 2;
16393 return 2;
16394}
16395
16396/* Convert a machine dependent frag. */
16397
16398void
16399md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16400{
16401 unsigned long insn;
16402 unsigned long old_op;
16403 char *buf;
16404 expressionS exp;
16405 fixS *fixp;
16406 int reloc_type;
16407 int pc_rel;
16408 int opcode;
16409
16410 buf = fragp->fr_literal + fragp->fr_fix;
16411
16412 old_op = bfd_get_16(abfd, buf);
16413 if (fragp->fr_symbol) {
16414 exp.X_op = O_symbol;
16415 exp.X_add_symbol = fragp->fr_symbol;
16416 } else {
16417 exp.X_op = O_constant;
16418 }
16419 exp.X_add_number = fragp->fr_offset;
16420 opcode = fragp->fr_subtype;
16421 switch (opcode)
16422 {
16423 case T_MNEM_ldr_pc:
16424 case T_MNEM_ldr_pc2:
16425 case T_MNEM_ldr_sp:
16426 case T_MNEM_str_sp:
16427 case T_MNEM_ldr:
16428 case T_MNEM_ldrb:
16429 case T_MNEM_ldrh:
16430 case T_MNEM_str:
16431 case T_MNEM_strb:
16432 case T_MNEM_strh:
16433 if (fragp->fr_var == 4)
16434 {
16435 insn = THUMB_OP32(opcode);
16436 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16437 {
16438 insn |= (old_op & 0x700) << 4;
16439 }
16440 else
16441 {
16442 insn |= (old_op & 7) << 12;
16443 insn |= (old_op & 0x38) << 13;
16444 }
16445 insn |= 0x00000c00;
16446 put_thumb32_insn (buf, insn);
16447 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16448 }
16449 else
16450 {
16451 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16452 }
16453 pc_rel = (opcode == T_MNEM_ldr_pc2);
16454 break;
16455 case T_MNEM_adr:
16456 if (fragp->fr_var == 4)
16457 {
16458 insn = THUMB_OP32 (opcode);
16459 insn |= (old_op & 0xf0) << 4;
16460 put_thumb32_insn (buf, insn);
16461 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16462 }
16463 else
16464 {
16465 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16466 exp.X_add_number -= 4;
16467 }
16468 pc_rel = 1;
16469 break;
16470 case T_MNEM_mov:
16471 case T_MNEM_movs:
16472 case T_MNEM_cmp:
16473 case T_MNEM_cmn:
16474 if (fragp->fr_var == 4)
16475 {
16476 int r0off = (opcode == T_MNEM_mov
16477 || opcode == T_MNEM_movs) ? 0 : 8;
16478 insn = THUMB_OP32 (opcode);
16479 insn = (insn & 0xe1ffffff) | 0x10000000;
16480 insn |= (old_op & 0x700) << r0off;
16481 put_thumb32_insn (buf, insn);
16482 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16483 }
16484 else
16485 {
16486 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16487 }
16488 pc_rel = 0;
16489 break;
16490 case T_MNEM_b:
16491 if (fragp->fr_var == 4)
16492 {
16493 insn = THUMB_OP32(opcode);
16494 put_thumb32_insn (buf, insn);
16495 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16496 }
16497 else
16498 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16499 pc_rel = 1;
16500 break;
16501 case T_MNEM_bcond:
16502 if (fragp->fr_var == 4)
16503 {
16504 insn = THUMB_OP32(opcode);
16505 insn |= (old_op & 0xf00) << 14;
16506 put_thumb32_insn (buf, insn);
16507 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16508 }
16509 else
16510 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16511 pc_rel = 1;
16512 break;
16513 case T_MNEM_add_sp:
16514 case T_MNEM_add_pc:
16515 case T_MNEM_inc_sp:
16516 case T_MNEM_dec_sp:
16517 if (fragp->fr_var == 4)
16518 {
16519 /* ??? Choose between add and addw. */
16520 insn = THUMB_OP32 (opcode);
16521 insn |= (old_op & 0xf0) << 4;
16522 put_thumb32_insn (buf, insn);
16805f35
PB
16523 if (opcode == T_MNEM_add_pc)
16524 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16525 else
16526 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
16527 }
16528 else
16529 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16530 pc_rel = 0;
16531 break;
16532
16533 case T_MNEM_addi:
16534 case T_MNEM_addis:
16535 case T_MNEM_subi:
16536 case T_MNEM_subis:
16537 if (fragp->fr_var == 4)
16538 {
16539 insn = THUMB_OP32 (opcode);
16540 insn |= (old_op & 0xf0) << 4;
16541 insn |= (old_op & 0xf) << 16;
16542 put_thumb32_insn (buf, insn);
16805f35
PB
16543 if (insn & (1 << 20))
16544 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16545 else
16546 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
16547 }
16548 else
16549 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16550 pc_rel = 0;
16551 break;
16552 default:
16553 abort();
16554 }
16555 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16556 reloc_type);
16557 fixp->fx_file = fragp->fr_file;
16558 fixp->fx_line = fragp->fr_line;
16559 fragp->fr_fix += fragp->fr_var;
16560}
16561
16562/* Return the size of a relaxable immediate operand instruction.
16563 SHIFT and SIZE specify the form of the allowable immediate. */
16564static int
16565relax_immediate (fragS *fragp, int size, int shift)
16566{
16567 offsetT offset;
16568 offsetT mask;
16569 offsetT low;
16570
16571 /* ??? Should be able to do better than this. */
16572 if (fragp->fr_symbol)
16573 return 4;
16574
16575 low = (1 << shift) - 1;
16576 mask = (1 << (shift + size)) - (1 << shift);
16577 offset = fragp->fr_offset;
16578 /* Force misaligned offsets to 32-bit variant. */
16579 if (offset & low)
5e77afaa 16580 return 4;
0110f2b8
PB
16581 if (offset & ~mask)
16582 return 4;
16583 return 2;
16584}
16585
5e77afaa
PB
16586/* Get the address of a symbol during relaxation. */
16587static addressT
16588relaxed_symbol_addr(fragS *fragp, long stretch)
16589{
16590 fragS *sym_frag;
16591 addressT addr;
16592 symbolS *sym;
16593
16594 sym = fragp->fr_symbol;
16595 sym_frag = symbol_get_frag (sym);
16596 know (S_GET_SEGMENT (sym) != absolute_section
16597 || sym_frag == &zero_address_frag);
16598 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16599
16600 /* If frag has yet to be reached on this pass, assume it will
16601 move by STRETCH just as we did. If this is not so, it will
16602 be because some frag between grows, and that will force
16603 another pass. */
16604
16605 if (stretch != 0
16606 && sym_frag->relax_marker != fragp->relax_marker)
16607 addr += stretch;
16608
16609 return addr;
16610}
16611
0110f2b8
PB
16612/* Return the size of a relaxable adr pseudo-instruction or PC-relative
16613 load. */
16614static int
5e77afaa 16615relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
16616{
16617 addressT addr;
16618 offsetT val;
16619
16620 /* Assume worst case for symbols not known to be in the same section. */
16621 if (!S_IS_DEFINED(fragp->fr_symbol)
16622 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16623 return 4;
16624
5e77afaa 16625 val = relaxed_symbol_addr(fragp, stretch);
0110f2b8
PB
16626 addr = fragp->fr_address + fragp->fr_fix;
16627 addr = (addr + 4) & ~3;
5e77afaa 16628 /* Force misaligned targets to 32-bit variant. */
0110f2b8 16629 if (val & 3)
5e77afaa 16630 return 4;
0110f2b8
PB
16631 val -= addr;
16632 if (val < 0 || val > 1020)
16633 return 4;
16634 return 2;
16635}
16636
16637/* Return the size of a relaxable add/sub immediate instruction. */
16638static int
16639relax_addsub (fragS *fragp, asection *sec)
16640{
16641 char *buf;
16642 int op;
16643
16644 buf = fragp->fr_literal + fragp->fr_fix;
16645 op = bfd_get_16(sec->owner, buf);
16646 if ((op & 0xf) == ((op >> 4) & 0xf))
16647 return relax_immediate (fragp, 8, 0);
16648 else
16649 return relax_immediate (fragp, 3, 0);
16650}
16651
16652
16653/* Return the size of a relaxable branch instruction. BITS is the
16654 size of the offset field in the narrow instruction. */
16655
16656static int
5e77afaa 16657relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
16658{
16659 addressT addr;
16660 offsetT val;
16661 offsetT limit;
16662
16663 /* Assume worst case for symbols not known to be in the same section. */
16664 if (!S_IS_DEFINED(fragp->fr_symbol)
16665 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16666 return 4;
16667
5e77afaa 16668 val = relaxed_symbol_addr(fragp, stretch);
0110f2b8
PB
16669 addr = fragp->fr_address + fragp->fr_fix + 4;
16670 val -= addr;
16671
16672 /* Offset is a signed value *2 */
16673 limit = 1 << bits;
16674 if (val >= limit || val < -limit)
16675 return 4;
16676 return 2;
16677}
16678
16679
16680/* Relax a machine dependent frag. This returns the amount by which
16681 the current size of the frag should change. */
16682
16683int
5e77afaa 16684arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
16685{
16686 int oldsize;
16687 int newsize;
16688
16689 oldsize = fragp->fr_var;
16690 switch (fragp->fr_subtype)
16691 {
16692 case T_MNEM_ldr_pc2:
5e77afaa 16693 newsize = relax_adr(fragp, sec, stretch);
0110f2b8
PB
16694 break;
16695 case T_MNEM_ldr_pc:
16696 case T_MNEM_ldr_sp:
16697 case T_MNEM_str_sp:
16698 newsize = relax_immediate(fragp, 8, 2);
16699 break;
16700 case T_MNEM_ldr:
16701 case T_MNEM_str:
16702 newsize = relax_immediate(fragp, 5, 2);
16703 break;
16704 case T_MNEM_ldrh:
16705 case T_MNEM_strh:
16706 newsize = relax_immediate(fragp, 5, 1);
16707 break;
16708 case T_MNEM_ldrb:
16709 case T_MNEM_strb:
16710 newsize = relax_immediate(fragp, 5, 0);
16711 break;
16712 case T_MNEM_adr:
5e77afaa 16713 newsize = relax_adr(fragp, sec, stretch);
0110f2b8
PB
16714 break;
16715 case T_MNEM_mov:
16716 case T_MNEM_movs:
16717 case T_MNEM_cmp:
16718 case T_MNEM_cmn:
16719 newsize = relax_immediate(fragp, 8, 0);
16720 break;
16721 case T_MNEM_b:
5e77afaa 16722 newsize = relax_branch(fragp, sec, 11, stretch);
0110f2b8
PB
16723 break;
16724 case T_MNEM_bcond:
5e77afaa 16725 newsize = relax_branch(fragp, sec, 8, stretch);
0110f2b8
PB
16726 break;
16727 case T_MNEM_add_sp:
16728 case T_MNEM_add_pc:
16729 newsize = relax_immediate (fragp, 8, 2);
16730 break;
16731 case T_MNEM_inc_sp:
16732 case T_MNEM_dec_sp:
16733 newsize = relax_immediate (fragp, 7, 2);
16734 break;
16735 case T_MNEM_addi:
16736 case T_MNEM_addis:
16737 case T_MNEM_subi:
16738 case T_MNEM_subis:
16739 newsize = relax_addsub (fragp, sec);
16740 break;
16741 default:
16742 abort();
16743 }
5e77afaa
PB
16744
16745 fragp->fr_var = newsize;
16746 /* Freeze wide instructions that are at or before the same location as
16747 in the previous pass. This avoids infinite loops.
16748 Don't freeze them unconditionally because targets may be artificialy
16749 misaligned by the expansion of preceeding frags. */
16750 if (stretch <= 0 && newsize > 2)
0110f2b8 16751 {
0110f2b8
PB
16752 md_convert_frag (sec->owner, sec, fragp);
16753 frag_wane(fragp);
0110f2b8 16754 }
5e77afaa 16755
0110f2b8 16756 return newsize - oldsize;
c19d1205 16757}
b99bd4ef 16758
c19d1205 16759/* Round up a section size to the appropriate boundary. */
b99bd4ef 16760
c19d1205
ZW
16761valueT
16762md_section_align (segT segment ATTRIBUTE_UNUSED,
16763 valueT size)
16764{
f0927246
NC
16765#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16766 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16767 {
16768 /* For a.out, force the section size to be aligned. If we don't do
16769 this, BFD will align it for us, but it will not write out the
16770 final bytes of the section. This may be a bug in BFD, but it is
16771 easier to fix it here since that is how the other a.out targets
16772 work. */
16773 int align;
16774
16775 align = bfd_get_section_alignment (stdoutput, segment);
16776 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16777 }
c19d1205 16778#endif
f0927246
NC
16779
16780 return size;
bfae80f2 16781}
b99bd4ef 16782
c19d1205
ZW
16783/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16784 of an rs_align_code fragment. */
16785
16786void
16787arm_handle_align (fragS * fragP)
bfae80f2 16788{
c19d1205
ZW
16789 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16790 static char const thumb_noop[2] = { 0xc0, 0x46 };
16791 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16792 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16793
16794 int bytes, fix, noop_size;
16795 char * p;
16796 const char * noop;
bfae80f2 16797
c19d1205 16798 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
16799 return;
16800
c19d1205
ZW
16801 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
16802 p = fragP->fr_literal + fragP->fr_fix;
16803 fix = 0;
bfae80f2 16804
c19d1205
ZW
16805 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
16806 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 16807
c19d1205 16808 if (fragP->tc_frag_data)
a737bd4d 16809 {
c19d1205
ZW
16810 if (target_big_endian)
16811 noop = thumb_bigend_noop;
16812 else
16813 noop = thumb_noop;
16814 noop_size = sizeof (thumb_noop);
7ed4c4c5
NC
16815 }
16816 else
16817 {
c19d1205
ZW
16818 if (target_big_endian)
16819 noop = arm_bigend_noop;
16820 else
16821 noop = arm_noop;
16822 noop_size = sizeof (arm_noop);
7ed4c4c5 16823 }
a737bd4d 16824
c19d1205 16825 if (bytes & (noop_size - 1))
7ed4c4c5 16826 {
c19d1205
ZW
16827 fix = bytes & (noop_size - 1);
16828 memset (p, 0, fix);
16829 p += fix;
16830 bytes -= fix;
a737bd4d 16831 }
a737bd4d 16832
c19d1205 16833 while (bytes >= noop_size)
a737bd4d 16834 {
c19d1205
ZW
16835 memcpy (p, noop, noop_size);
16836 p += noop_size;
16837 bytes -= noop_size;
16838 fix += noop_size;
a737bd4d
NC
16839 }
16840
c19d1205
ZW
16841 fragP->fr_fix += fix;
16842 fragP->fr_var = noop_size;
a737bd4d
NC
16843}
16844
c19d1205
ZW
16845/* Called from md_do_align. Used to create an alignment
16846 frag in a code section. */
16847
16848void
16849arm_frag_align_code (int n, int max)
bfae80f2 16850{
c19d1205 16851 char * p;
7ed4c4c5 16852
c19d1205
ZW
16853 /* We assume that there will never be a requirement
16854 to support alignments greater than 32 bytes. */
16855 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
16856 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
bfae80f2 16857
c19d1205
ZW
16858 p = frag_var (rs_align_code,
16859 MAX_MEM_FOR_RS_ALIGN_CODE,
16860 1,
16861 (relax_substateT) max,
16862 (symbolS *) NULL,
16863 (offsetT) n,
16864 (char *) NULL);
16865 *p = 0;
16866}
bfae80f2 16867
c19d1205 16868/* Perform target specific initialisation of a frag. */
bfae80f2 16869
c19d1205
ZW
16870void
16871arm_init_frag (fragS * fragP)
16872{
16873 /* Record whether this frag is in an ARM or a THUMB area. */
16874 fragP->tc_frag_data = thumb_mode;
bfae80f2
RE
16875}
16876
c19d1205
ZW
16877#ifdef OBJ_ELF
16878/* When we change sections we need to issue a new mapping symbol. */
16879
16880void
16881arm_elf_change_section (void)
bfae80f2 16882{
c19d1205
ZW
16883 flagword flags;
16884 segment_info_type *seginfo;
bfae80f2 16885
c19d1205
ZW
16886 /* Link an unlinked unwind index table section to the .text section. */
16887 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
16888 && elf_linked_to_section (now_seg) == NULL)
16889 elf_linked_to_section (now_seg) = text_section;
16890
16891 if (!SEG_NORMAL (now_seg))
bfae80f2
RE
16892 return;
16893
c19d1205
ZW
16894 flags = bfd_get_section_flags (stdoutput, now_seg);
16895
16896 /* We can ignore sections that only contain debug info. */
16897 if ((flags & SEC_ALLOC) == 0)
16898 return;
bfae80f2 16899
c19d1205
ZW
16900 seginfo = seg_info (now_seg);
16901 mapstate = seginfo->tc_segment_info_data.mapstate;
16902 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
bfae80f2
RE
16903}
16904
c19d1205
ZW
16905int
16906arm_elf_section_type (const char * str, size_t len)
e45d0630 16907{
c19d1205
ZW
16908 if (len == 5 && strncmp (str, "exidx", 5) == 0)
16909 return SHT_ARM_EXIDX;
e45d0630 16910
c19d1205
ZW
16911 return -1;
16912}
16913\f
16914/* Code to deal with unwinding tables. */
e45d0630 16915
c19d1205 16916static void add_unwind_adjustsp (offsetT);
e45d0630 16917
c19d1205 16918/* Cenerate and deferred unwind frame offset. */
e45d0630 16919
bfae80f2 16920static void
c19d1205 16921flush_pending_unwind (void)
bfae80f2 16922{
c19d1205 16923 offsetT offset;
bfae80f2 16924
c19d1205
ZW
16925 offset = unwind.pending_offset;
16926 unwind.pending_offset = 0;
16927 if (offset != 0)
16928 add_unwind_adjustsp (offset);
bfae80f2
RE
16929}
16930
c19d1205
ZW
16931/* Add an opcode to this list for this function. Two-byte opcodes should
16932 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
16933 order. */
16934
bfae80f2 16935static void
c19d1205 16936add_unwind_opcode (valueT op, int length)
bfae80f2 16937{
c19d1205
ZW
16938 /* Add any deferred stack adjustment. */
16939 if (unwind.pending_offset)
16940 flush_pending_unwind ();
bfae80f2 16941
c19d1205 16942 unwind.sp_restored = 0;
bfae80f2 16943
c19d1205 16944 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 16945 {
c19d1205
ZW
16946 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
16947 if (unwind.opcodes)
16948 unwind.opcodes = xrealloc (unwind.opcodes,
16949 unwind.opcode_alloc);
16950 else
16951 unwind.opcodes = xmalloc (unwind.opcode_alloc);
bfae80f2 16952 }
c19d1205 16953 while (length > 0)
bfae80f2 16954 {
c19d1205
ZW
16955 length--;
16956 unwind.opcodes[unwind.opcode_count] = op & 0xff;
16957 op >>= 8;
16958 unwind.opcode_count++;
bfae80f2 16959 }
bfae80f2
RE
16960}
16961
c19d1205
ZW
16962/* Add unwind opcodes to adjust the stack pointer. */
16963
bfae80f2 16964static void
c19d1205 16965add_unwind_adjustsp (offsetT offset)
bfae80f2 16966{
c19d1205 16967 valueT op;
bfae80f2 16968
c19d1205 16969 if (offset > 0x200)
bfae80f2 16970 {
c19d1205
ZW
16971 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
16972 char bytes[5];
16973 int n;
16974 valueT o;
bfae80f2 16975
c19d1205
ZW
16976 /* Long form: 0xb2, uleb128. */
16977 /* This might not fit in a word so add the individual bytes,
16978 remembering the list is built in reverse order. */
16979 o = (valueT) ((offset - 0x204) >> 2);
16980 if (o == 0)
16981 add_unwind_opcode (0, 1);
bfae80f2 16982
c19d1205
ZW
16983 /* Calculate the uleb128 encoding of the offset. */
16984 n = 0;
16985 while (o)
16986 {
16987 bytes[n] = o & 0x7f;
16988 o >>= 7;
16989 if (o)
16990 bytes[n] |= 0x80;
16991 n++;
16992 }
16993 /* Add the insn. */
16994 for (; n; n--)
16995 add_unwind_opcode (bytes[n - 1], 1);
16996 add_unwind_opcode (0xb2, 1);
16997 }
16998 else if (offset > 0x100)
bfae80f2 16999 {
c19d1205
ZW
17000 /* Two short opcodes. */
17001 add_unwind_opcode (0x3f, 1);
17002 op = (offset - 0x104) >> 2;
17003 add_unwind_opcode (op, 1);
bfae80f2 17004 }
c19d1205
ZW
17005 else if (offset > 0)
17006 {
17007 /* Short opcode. */
17008 op = (offset - 4) >> 2;
17009 add_unwind_opcode (op, 1);
17010 }
17011 else if (offset < 0)
bfae80f2 17012 {
c19d1205
ZW
17013 offset = -offset;
17014 while (offset > 0x100)
bfae80f2 17015 {
c19d1205
ZW
17016 add_unwind_opcode (0x7f, 1);
17017 offset -= 0x100;
bfae80f2 17018 }
c19d1205
ZW
17019 op = ((offset - 4) >> 2) | 0x40;
17020 add_unwind_opcode (op, 1);
bfae80f2 17021 }
bfae80f2
RE
17022}
17023
c19d1205
ZW
17024/* Finish the list of unwind opcodes for this function. */
17025static void
17026finish_unwind_opcodes (void)
bfae80f2 17027{
c19d1205 17028 valueT op;
bfae80f2 17029
c19d1205 17030 if (unwind.fp_used)
bfae80f2 17031 {
708587a4 17032 /* Adjust sp as necessary. */
c19d1205
ZW
17033 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17034 flush_pending_unwind ();
bfae80f2 17035
c19d1205
ZW
17036 /* After restoring sp from the frame pointer. */
17037 op = 0x90 | unwind.fp_reg;
17038 add_unwind_opcode (op, 1);
17039 }
17040 else
17041 flush_pending_unwind ();
bfae80f2
RE
17042}
17043
bfae80f2 17044
c19d1205
ZW
17045/* Start an exception table entry. If idx is nonzero this is an index table
17046 entry. */
bfae80f2
RE
17047
17048static void
c19d1205 17049start_unwind_section (const segT text_seg, int idx)
bfae80f2 17050{
c19d1205
ZW
17051 const char * text_name;
17052 const char * prefix;
17053 const char * prefix_once;
17054 const char * group_name;
17055 size_t prefix_len;
17056 size_t text_len;
17057 char * sec_name;
17058 size_t sec_name_len;
17059 int type;
17060 int flags;
17061 int linkonce;
bfae80f2 17062
c19d1205 17063 if (idx)
bfae80f2 17064 {
c19d1205
ZW
17065 prefix = ELF_STRING_ARM_unwind;
17066 prefix_once = ELF_STRING_ARM_unwind_once;
17067 type = SHT_ARM_EXIDX;
bfae80f2 17068 }
c19d1205 17069 else
bfae80f2 17070 {
c19d1205
ZW
17071 prefix = ELF_STRING_ARM_unwind_info;
17072 prefix_once = ELF_STRING_ARM_unwind_info_once;
17073 type = SHT_PROGBITS;
bfae80f2
RE
17074 }
17075
c19d1205
ZW
17076 text_name = segment_name (text_seg);
17077 if (streq (text_name, ".text"))
17078 text_name = "";
17079
17080 if (strncmp (text_name, ".gnu.linkonce.t.",
17081 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 17082 {
c19d1205
ZW
17083 prefix = prefix_once;
17084 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
17085 }
17086
c19d1205
ZW
17087 prefix_len = strlen (prefix);
17088 text_len = strlen (text_name);
17089 sec_name_len = prefix_len + text_len;
17090 sec_name = xmalloc (sec_name_len + 1);
17091 memcpy (sec_name, prefix, prefix_len);
17092 memcpy (sec_name + prefix_len, text_name, text_len);
17093 sec_name[prefix_len + text_len] = '\0';
bfae80f2 17094
c19d1205
ZW
17095 flags = SHF_ALLOC;
17096 linkonce = 0;
17097 group_name = 0;
bfae80f2 17098
c19d1205
ZW
17099 /* Handle COMDAT group. */
17100 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 17101 {
c19d1205
ZW
17102 group_name = elf_group_name (text_seg);
17103 if (group_name == NULL)
17104 {
17105 as_bad ("Group section `%s' has no group signature",
17106 segment_name (text_seg));
17107 ignore_rest_of_line ();
17108 return;
17109 }
17110 flags |= SHF_GROUP;
17111 linkonce = 1;
bfae80f2
RE
17112 }
17113
c19d1205 17114 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 17115
c19d1205
ZW
17116 /* Set the setion link for index tables. */
17117 if (idx)
17118 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
17119}
17120
bfae80f2 17121
c19d1205
ZW
17122/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17123 personality routine data. Returns zero, or the index table value for
17124 and inline entry. */
17125
17126static valueT
17127create_unwind_entry (int have_data)
bfae80f2 17128{
c19d1205
ZW
17129 int size;
17130 addressT where;
17131 char *ptr;
17132 /* The current word of data. */
17133 valueT data;
17134 /* The number of bytes left in this word. */
17135 int n;
bfae80f2 17136
c19d1205 17137 finish_unwind_opcodes ();
bfae80f2 17138
c19d1205
ZW
17139 /* Remember the current text section. */
17140 unwind.saved_seg = now_seg;
17141 unwind.saved_subseg = now_subseg;
bfae80f2 17142
c19d1205 17143 start_unwind_section (now_seg, 0);
bfae80f2 17144
c19d1205 17145 if (unwind.personality_routine == NULL)
bfae80f2 17146 {
c19d1205
ZW
17147 if (unwind.personality_index == -2)
17148 {
17149 if (have_data)
17150 as_bad (_("handerdata in cantunwind frame"));
17151 return 1; /* EXIDX_CANTUNWIND. */
17152 }
bfae80f2 17153
c19d1205
ZW
17154 /* Use a default personality routine if none is specified. */
17155 if (unwind.personality_index == -1)
17156 {
17157 if (unwind.opcode_count > 3)
17158 unwind.personality_index = 1;
17159 else
17160 unwind.personality_index = 0;
17161 }
bfae80f2 17162
c19d1205
ZW
17163 /* Space for the personality routine entry. */
17164 if (unwind.personality_index == 0)
17165 {
17166 if (unwind.opcode_count > 3)
17167 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 17168
c19d1205
ZW
17169 if (!have_data)
17170 {
17171 /* All the data is inline in the index table. */
17172 data = 0x80;
17173 n = 3;
17174 while (unwind.opcode_count > 0)
17175 {
17176 unwind.opcode_count--;
17177 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17178 n--;
17179 }
bfae80f2 17180
c19d1205
ZW
17181 /* Pad with "finish" opcodes. */
17182 while (n--)
17183 data = (data << 8) | 0xb0;
bfae80f2 17184
c19d1205
ZW
17185 return data;
17186 }
17187 size = 0;
17188 }
17189 else
17190 /* We get two opcodes "free" in the first word. */
17191 size = unwind.opcode_count - 2;
17192 }
17193 else
17194 /* An extra byte is required for the opcode count. */
17195 size = unwind.opcode_count + 1;
bfae80f2 17196
c19d1205
ZW
17197 size = (size + 3) >> 2;
17198 if (size > 0xff)
17199 as_bad (_("too many unwind opcodes"));
bfae80f2 17200
c19d1205
ZW
17201 frag_align (2, 0, 0);
17202 record_alignment (now_seg, 2);
17203 unwind.table_entry = expr_build_dot ();
17204
17205 /* Allocate the table entry. */
17206 ptr = frag_more ((size << 2) + 4);
17207 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 17208
c19d1205 17209 switch (unwind.personality_index)
bfae80f2 17210 {
c19d1205
ZW
17211 case -1:
17212 /* ??? Should this be a PLT generating relocation? */
17213 /* Custom personality routine. */
17214 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17215 BFD_RELOC_ARM_PREL31);
bfae80f2 17216
c19d1205
ZW
17217 where += 4;
17218 ptr += 4;
bfae80f2 17219
c19d1205
ZW
17220 /* Set the first byte to the number of additional words. */
17221 data = size - 1;
17222 n = 3;
17223 break;
bfae80f2 17224
c19d1205
ZW
17225 /* ABI defined personality routines. */
17226 case 0:
17227 /* Three opcodes bytes are packed into the first word. */
17228 data = 0x80;
17229 n = 3;
17230 break;
bfae80f2 17231
c19d1205
ZW
17232 case 1:
17233 case 2:
17234 /* The size and first two opcode bytes go in the first word. */
17235 data = ((0x80 + unwind.personality_index) << 8) | size;
17236 n = 2;
17237 break;
bfae80f2 17238
c19d1205
ZW
17239 default:
17240 /* Should never happen. */
17241 abort ();
17242 }
bfae80f2 17243
c19d1205
ZW
17244 /* Pack the opcodes into words (MSB first), reversing the list at the same
17245 time. */
17246 while (unwind.opcode_count > 0)
17247 {
17248 if (n == 0)
17249 {
17250 md_number_to_chars (ptr, data, 4);
17251 ptr += 4;
17252 n = 4;
17253 data = 0;
17254 }
17255 unwind.opcode_count--;
17256 n--;
17257 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17258 }
17259
17260 /* Finish off the last word. */
17261 if (n < 4)
17262 {
17263 /* Pad with "finish" opcodes. */
17264 while (n--)
17265 data = (data << 8) | 0xb0;
17266
17267 md_number_to_chars (ptr, data, 4);
17268 }
17269
17270 if (!have_data)
17271 {
17272 /* Add an empty descriptor if there is no user-specified data. */
17273 ptr = frag_more (4);
17274 md_number_to_chars (ptr, 0, 4);
17275 }
17276
17277 return 0;
bfae80f2
RE
17278}
17279
f0927246
NC
17280
17281/* Initialize the DWARF-2 unwind information for this procedure. */
17282
17283void
17284tc_arm_frame_initial_instructions (void)
17285{
17286 cfi_add_CFA_def_cfa (REG_SP, 0);
17287}
17288#endif /* OBJ_ELF */
17289
c19d1205
ZW
17290/* Convert REGNAME to a DWARF-2 register number. */
17291
17292int
1df69f4f 17293tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 17294{
1df69f4f 17295 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
17296
17297 if (reg == FAIL)
17298 return -1;
17299
17300 return reg;
bfae80f2
RE
17301}
17302
f0927246 17303#ifdef TE_PE
c19d1205 17304void
f0927246 17305tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 17306{
f0927246 17307 expressionS expr;
bfae80f2 17308
f0927246
NC
17309 expr.X_op = O_secrel;
17310 expr.X_add_symbol = symbol;
17311 expr.X_add_number = 0;
17312 emit_expr (&expr, size);
17313}
17314#endif
bfae80f2 17315
c19d1205 17316/* MD interface: Symbol and relocation handling. */
bfae80f2 17317
2fc8bdac
ZW
17318/* Return the address within the segment that a PC-relative fixup is
17319 relative to. For ARM, PC-relative fixups applied to instructions
17320 are generally relative to the location of the fixup plus 8 bytes.
17321 Thumb branches are offset by 4, and Thumb loads relative to PC
17322 require special handling. */
bfae80f2 17323
c19d1205 17324long
2fc8bdac 17325md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 17326{
2fc8bdac
ZW
17327 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17328
17329 /* If this is pc-relative and we are going to emit a relocation
17330 then we just want to put out any pipeline compensation that the linker
53baae48
NC
17331 will need. Otherwise we want to use the calculated base.
17332 For WinCE we skip the bias for externals as well, since this
17333 is how the MS ARM-CE assembler behaves and we want to be compatible. */
2fc8bdac
ZW
17334 if (fixP->fx_pcrel
17335 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
17336 || (arm_force_relocation (fixP)
17337#ifdef TE_WINCE
17338 && !S_IS_EXTERNAL (fixP->fx_addsy)
17339#endif
17340 )))
2fc8bdac 17341 base = 0;
bfae80f2 17342
c19d1205 17343 switch (fixP->fx_r_type)
bfae80f2 17344 {
2fc8bdac
ZW
17345 /* PC relative addressing on the Thumb is slightly odd as the
17346 bottom two bits of the PC are forced to zero for the
17347 calculation. This happens *after* application of the
17348 pipeline offset. However, Thumb adrl already adjusts for
17349 this, so we need not do it again. */
c19d1205 17350 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 17351 return base & ~3;
c19d1205
ZW
17352
17353 case BFD_RELOC_ARM_THUMB_OFFSET:
17354 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 17355 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 17356 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 17357 return (base + 4) & ~3;
c19d1205 17358
2fc8bdac
ZW
17359 /* Thumb branches are simply offset by +4. */
17360 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17361 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17362 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17363 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17364 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17365 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17366 case BFD_RELOC_THUMB_PCREL_BLX:
17367 return base + 4;
bfae80f2 17368
2fc8bdac
ZW
17369 /* ARM mode branches are offset by +8. However, the Windows CE
17370 loader expects the relocation not to take this into account. */
17371 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c
PB
17372 case BFD_RELOC_ARM_PCREL_CALL:
17373 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac
ZW
17374 case BFD_RELOC_ARM_PCREL_BLX:
17375 case BFD_RELOC_ARM_PLT32:
c19d1205 17376#ifdef TE_WINCE
53baae48
NC
17377 /* When handling fixups immediately, because we have already
17378 discovered the value of a symbol, or the address of the frag involved
17379 we must account for the offset by +8, as the OS loader will never see the reloc.
17380 see fixup_segment() in write.c
17381 The S_IS_EXTERNAL test handles the case of global symbols.
17382 Those need the calculated base, not just the pipe compensation the linker will need. */
17383 if (fixP->fx_pcrel
17384 && fixP->fx_addsy != NULL
17385 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17386 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17387 return base + 8;
2fc8bdac 17388 return base;
c19d1205 17389#else
2fc8bdac 17390 return base + 8;
c19d1205 17391#endif
2fc8bdac
ZW
17392
17393 /* ARM mode loads relative to PC are also offset by +8. Unlike
17394 branches, the Windows CE loader *does* expect the relocation
17395 to take this into account. */
17396 case BFD_RELOC_ARM_OFFSET_IMM:
17397 case BFD_RELOC_ARM_OFFSET_IMM8:
17398 case BFD_RELOC_ARM_HWLITERAL:
17399 case BFD_RELOC_ARM_LITERAL:
17400 case BFD_RELOC_ARM_CP_OFF_IMM:
17401 return base + 8;
17402
17403
17404 /* Other PC-relative relocations are un-offset. */
17405 default:
17406 return base;
17407 }
bfae80f2
RE
17408}
17409
c19d1205
ZW
17410/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17411 Otherwise we have no need to default values of symbols. */
17412
17413symbolS *
17414md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 17415{
c19d1205
ZW
17416#ifdef OBJ_ELF
17417 if (name[0] == '_' && name[1] == 'G'
17418 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17419 {
17420 if (!GOT_symbol)
17421 {
17422 if (symbol_find (name))
17423 as_bad ("GOT already in the symbol table");
bfae80f2 17424
c19d1205
ZW
17425 GOT_symbol = symbol_new (name, undefined_section,
17426 (valueT) 0, & zero_address_frag);
17427 }
bfae80f2 17428
c19d1205 17429 return GOT_symbol;
bfae80f2 17430 }
c19d1205 17431#endif
bfae80f2 17432
c19d1205 17433 return 0;
bfae80f2
RE
17434}
17435
55cf6793 17436/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
17437 computed as two separate immediate values, added together. We
17438 already know that this value cannot be computed by just one ARM
17439 instruction. */
17440
17441static unsigned int
17442validate_immediate_twopart (unsigned int val,
17443 unsigned int * highpart)
bfae80f2 17444{
c19d1205
ZW
17445 unsigned int a;
17446 unsigned int i;
bfae80f2 17447
c19d1205
ZW
17448 for (i = 0; i < 32; i += 2)
17449 if (((a = rotate_left (val, i)) & 0xff) != 0)
17450 {
17451 if (a & 0xff00)
17452 {
17453 if (a & ~ 0xffff)
17454 continue;
17455 * highpart = (a >> 8) | ((i + 24) << 7);
17456 }
17457 else if (a & 0xff0000)
17458 {
17459 if (a & 0xff000000)
17460 continue;
17461 * highpart = (a >> 16) | ((i + 16) << 7);
17462 }
17463 else
17464 {
17465 assert (a & 0xff000000);
17466 * highpart = (a >> 24) | ((i + 8) << 7);
17467 }
bfae80f2 17468
c19d1205
ZW
17469 return (a & 0xff) | (i << 7);
17470 }
bfae80f2 17471
c19d1205 17472 return FAIL;
bfae80f2
RE
17473}
17474
c19d1205
ZW
17475static int
17476validate_offset_imm (unsigned int val, int hwse)
17477{
17478 if ((hwse && val > 255) || val > 4095)
17479 return FAIL;
17480 return val;
17481}
bfae80f2 17482
55cf6793 17483/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
17484 negative immediate constant by altering the instruction. A bit of
17485 a hack really.
17486 MOV <-> MVN
17487 AND <-> BIC
17488 ADC <-> SBC
17489 by inverting the second operand, and
17490 ADD <-> SUB
17491 CMP <-> CMN
17492 by negating the second operand. */
bfae80f2 17493
c19d1205
ZW
17494static int
17495negate_data_op (unsigned long * instruction,
17496 unsigned long value)
bfae80f2 17497{
c19d1205
ZW
17498 int op, new_inst;
17499 unsigned long negated, inverted;
bfae80f2 17500
c19d1205
ZW
17501 negated = encode_arm_immediate (-value);
17502 inverted = encode_arm_immediate (~value);
bfae80f2 17503
c19d1205
ZW
17504 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17505 switch (op)
bfae80f2 17506 {
c19d1205
ZW
17507 /* First negates. */
17508 case OPCODE_SUB: /* ADD <-> SUB */
17509 new_inst = OPCODE_ADD;
17510 value = negated;
17511 break;
bfae80f2 17512
c19d1205
ZW
17513 case OPCODE_ADD:
17514 new_inst = OPCODE_SUB;
17515 value = negated;
17516 break;
bfae80f2 17517
c19d1205
ZW
17518 case OPCODE_CMP: /* CMP <-> CMN */
17519 new_inst = OPCODE_CMN;
17520 value = negated;
17521 break;
bfae80f2 17522
c19d1205
ZW
17523 case OPCODE_CMN:
17524 new_inst = OPCODE_CMP;
17525 value = negated;
17526 break;
bfae80f2 17527
c19d1205
ZW
17528 /* Now Inverted ops. */
17529 case OPCODE_MOV: /* MOV <-> MVN */
17530 new_inst = OPCODE_MVN;
17531 value = inverted;
17532 break;
bfae80f2 17533
c19d1205
ZW
17534 case OPCODE_MVN:
17535 new_inst = OPCODE_MOV;
17536 value = inverted;
17537 break;
bfae80f2 17538
c19d1205
ZW
17539 case OPCODE_AND: /* AND <-> BIC */
17540 new_inst = OPCODE_BIC;
17541 value = inverted;
17542 break;
bfae80f2 17543
c19d1205
ZW
17544 case OPCODE_BIC:
17545 new_inst = OPCODE_AND;
17546 value = inverted;
17547 break;
bfae80f2 17548
c19d1205
ZW
17549 case OPCODE_ADC: /* ADC <-> SBC */
17550 new_inst = OPCODE_SBC;
17551 value = inverted;
17552 break;
bfae80f2 17553
c19d1205
ZW
17554 case OPCODE_SBC:
17555 new_inst = OPCODE_ADC;
17556 value = inverted;
17557 break;
bfae80f2 17558
c19d1205
ZW
17559 /* We cannot do anything. */
17560 default:
17561 return FAIL;
b99bd4ef
NC
17562 }
17563
c19d1205
ZW
17564 if (value == (unsigned) FAIL)
17565 return FAIL;
17566
17567 *instruction &= OPCODE_MASK;
17568 *instruction |= new_inst << DATA_OP_SHIFT;
17569 return value;
b99bd4ef
NC
17570}
17571
ef8d22e6
PB
17572/* Like negate_data_op, but for Thumb-2. */
17573
17574static unsigned int
16dd5e42 17575thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
17576{
17577 int op, new_inst;
17578 int rd;
16dd5e42 17579 unsigned int negated, inverted;
ef8d22e6
PB
17580
17581 negated = encode_thumb32_immediate (-value);
17582 inverted = encode_thumb32_immediate (~value);
17583
17584 rd = (*instruction >> 8) & 0xf;
17585 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17586 switch (op)
17587 {
17588 /* ADD <-> SUB. Includes CMP <-> CMN. */
17589 case T2_OPCODE_SUB:
17590 new_inst = T2_OPCODE_ADD;
17591 value = negated;
17592 break;
17593
17594 case T2_OPCODE_ADD:
17595 new_inst = T2_OPCODE_SUB;
17596 value = negated;
17597 break;
17598
17599 /* ORR <-> ORN. Includes MOV <-> MVN. */
17600 case T2_OPCODE_ORR:
17601 new_inst = T2_OPCODE_ORN;
17602 value = inverted;
17603 break;
17604
17605 case T2_OPCODE_ORN:
17606 new_inst = T2_OPCODE_ORR;
17607 value = inverted;
17608 break;
17609
17610 /* AND <-> BIC. TST has no inverted equivalent. */
17611 case T2_OPCODE_AND:
17612 new_inst = T2_OPCODE_BIC;
17613 if (rd == 15)
17614 value = FAIL;
17615 else
17616 value = inverted;
17617 break;
17618
17619 case T2_OPCODE_BIC:
17620 new_inst = T2_OPCODE_AND;
17621 value = inverted;
17622 break;
17623
17624 /* ADC <-> SBC */
17625 case T2_OPCODE_ADC:
17626 new_inst = T2_OPCODE_SBC;
17627 value = inverted;
17628 break;
17629
17630 case T2_OPCODE_SBC:
17631 new_inst = T2_OPCODE_ADC;
17632 value = inverted;
17633 break;
17634
17635 /* We cannot do anything. */
17636 default:
17637 return FAIL;
17638 }
17639
16dd5e42 17640 if (value == (unsigned int)FAIL)
ef8d22e6
PB
17641 return FAIL;
17642
17643 *instruction &= T2_OPCODE_MASK;
17644 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17645 return value;
17646}
17647
8f06b2d8
PB
17648/* Read a 32-bit thumb instruction from buf. */
17649static unsigned long
17650get_thumb32_insn (char * buf)
17651{
17652 unsigned long insn;
17653 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17654 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17655
17656 return insn;
17657}
17658
a8bc6c78
PB
17659
17660/* We usually want to set the low bit on the address of thumb function
17661 symbols. In particular .word foo - . should have the low bit set.
17662 Generic code tries to fold the difference of two symbols to
17663 a constant. Prevent this and force a relocation when the first symbols
17664 is a thumb function. */
17665int
17666arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17667{
17668 if (op == O_subtract
17669 && l->X_op == O_symbol
17670 && r->X_op == O_symbol
17671 && THUMB_IS_FUNC (l->X_add_symbol))
17672 {
17673 l->X_op = O_subtract;
17674 l->X_op_symbol = r->X_add_symbol;
17675 l->X_add_number -= r->X_add_number;
17676 return 1;
17677 }
17678 /* Process as normal. */
17679 return 0;
17680}
17681
c19d1205 17682void
55cf6793 17683md_apply_fix (fixS * fixP,
c19d1205
ZW
17684 valueT * valP,
17685 segT seg)
17686{
17687 offsetT value = * valP;
17688 offsetT newval;
17689 unsigned int newimm;
17690 unsigned long temp;
17691 int sign;
17692 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 17693
c19d1205 17694 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 17695
c19d1205 17696 /* Note whether this will delete the relocation. */
4962c51a 17697
c19d1205
ZW
17698 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17699 fixP->fx_done = 1;
b99bd4ef 17700
adbaf948
ZW
17701 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17702 consistency with the behavior on 32-bit hosts. Remember value
17703 for emit_reloc. */
17704 value &= 0xffffffff;
17705 value ^= 0x80000000;
17706 value -= 0x80000000;
17707
17708 *valP = value;
c19d1205 17709 fixP->fx_addnumber = value;
b99bd4ef 17710
adbaf948
ZW
17711 /* Same treatment for fixP->fx_offset. */
17712 fixP->fx_offset &= 0xffffffff;
17713 fixP->fx_offset ^= 0x80000000;
17714 fixP->fx_offset -= 0x80000000;
17715
c19d1205 17716 switch (fixP->fx_r_type)
b99bd4ef 17717 {
c19d1205
ZW
17718 case BFD_RELOC_NONE:
17719 /* This will need to go in the object file. */
17720 fixP->fx_done = 0;
17721 break;
b99bd4ef 17722
c19d1205
ZW
17723 case BFD_RELOC_ARM_IMMEDIATE:
17724 /* We claim that this fixup has been processed here,
17725 even if in fact we generate an error because we do
17726 not have a reloc for it, so tc_gen_reloc will reject it. */
17727 fixP->fx_done = 1;
b99bd4ef 17728
c19d1205
ZW
17729 if (fixP->fx_addsy
17730 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 17731 {
c19d1205
ZW
17732 as_bad_where (fixP->fx_file, fixP->fx_line,
17733 _("undefined symbol %s used as an immediate value"),
17734 S_GET_NAME (fixP->fx_addsy));
17735 break;
b99bd4ef
NC
17736 }
17737
c19d1205
ZW
17738 newimm = encode_arm_immediate (value);
17739 temp = md_chars_to_number (buf, INSN_SIZE);
17740
17741 /* If the instruction will fail, see if we can fix things up by
17742 changing the opcode. */
17743 if (newimm == (unsigned int) FAIL
17744 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 17745 {
c19d1205
ZW
17746 as_bad_where (fixP->fx_file, fixP->fx_line,
17747 _("invalid constant (%lx) after fixup"),
17748 (unsigned long) value);
17749 break;
b99bd4ef 17750 }
b99bd4ef 17751
c19d1205
ZW
17752 newimm |= (temp & 0xfffff000);
17753 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17754 break;
b99bd4ef 17755
c19d1205
ZW
17756 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17757 {
17758 unsigned int highpart = 0;
17759 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 17760
c19d1205
ZW
17761 newimm = encode_arm_immediate (value);
17762 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 17763
c19d1205
ZW
17764 /* If the instruction will fail, see if we can fix things up by
17765 changing the opcode. */
17766 if (newimm == (unsigned int) FAIL
17767 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17768 {
17769 /* No ? OK - try using two ADD instructions to generate
17770 the value. */
17771 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 17772
c19d1205
ZW
17773 /* Yes - then make sure that the second instruction is
17774 also an add. */
17775 if (newimm != (unsigned int) FAIL)
17776 newinsn = temp;
17777 /* Still No ? Try using a negated value. */
17778 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17779 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17780 /* Otherwise - give up. */
17781 else
17782 {
17783 as_bad_where (fixP->fx_file, fixP->fx_line,
17784 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17785 (long) value);
17786 break;
17787 }
b99bd4ef 17788
c19d1205
ZW
17789 /* Replace the first operand in the 2nd instruction (which
17790 is the PC) with the destination register. We have
17791 already added in the PC in the first instruction and we
17792 do not want to do it again. */
17793 newinsn &= ~ 0xf0000;
17794 newinsn |= ((newinsn & 0x0f000) << 4);
17795 }
b99bd4ef 17796
c19d1205
ZW
17797 newimm |= (temp & 0xfffff000);
17798 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 17799
c19d1205
ZW
17800 highpart |= (newinsn & 0xfffff000);
17801 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
17802 }
17803 break;
b99bd4ef 17804
c19d1205 17805 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
17806 if (!fixP->fx_done && seg->use_rela_p)
17807 value = 0;
17808
c19d1205
ZW
17809 case BFD_RELOC_ARM_LITERAL:
17810 sign = value >= 0;
b99bd4ef 17811
c19d1205
ZW
17812 if (value < 0)
17813 value = - value;
b99bd4ef 17814
c19d1205 17815 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 17816 {
c19d1205
ZW
17817 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
17818 as_bad_where (fixP->fx_file, fixP->fx_line,
17819 _("invalid literal constant: pool needs to be closer"));
17820 else
17821 as_bad_where (fixP->fx_file, fixP->fx_line,
17822 _("bad immediate value for offset (%ld)"),
17823 (long) value);
17824 break;
f03698e6
RE
17825 }
17826
c19d1205
ZW
17827 newval = md_chars_to_number (buf, INSN_SIZE);
17828 newval &= 0xff7ff000;
17829 newval |= value | (sign ? INDEX_UP : 0);
17830 md_number_to_chars (buf, newval, INSN_SIZE);
17831 break;
b99bd4ef 17832
c19d1205
ZW
17833 case BFD_RELOC_ARM_OFFSET_IMM8:
17834 case BFD_RELOC_ARM_HWLITERAL:
17835 sign = value >= 0;
b99bd4ef 17836
c19d1205
ZW
17837 if (value < 0)
17838 value = - value;
b99bd4ef 17839
c19d1205 17840 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 17841 {
c19d1205
ZW
17842 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
17843 as_bad_where (fixP->fx_file, fixP->fx_line,
17844 _("invalid literal constant: pool needs to be closer"));
17845 else
17846 as_bad (_("bad immediate value for half-word offset (%ld)"),
17847 (long) value);
17848 break;
b99bd4ef
NC
17849 }
17850
c19d1205
ZW
17851 newval = md_chars_to_number (buf, INSN_SIZE);
17852 newval &= 0xff7ff0f0;
17853 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
17854 md_number_to_chars (buf, newval, INSN_SIZE);
17855 break;
b99bd4ef 17856
c19d1205
ZW
17857 case BFD_RELOC_ARM_T32_OFFSET_U8:
17858 if (value < 0 || value > 1020 || value % 4 != 0)
17859 as_bad_where (fixP->fx_file, fixP->fx_line,
17860 _("bad immediate value for offset (%ld)"), (long) value);
17861 value /= 4;
b99bd4ef 17862
c19d1205 17863 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
17864 newval |= value;
17865 md_number_to_chars (buf+2, newval, THUMB_SIZE);
17866 break;
b99bd4ef 17867
c19d1205
ZW
17868 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17869 /* This is a complicated relocation used for all varieties of Thumb32
17870 load/store instruction with immediate offset:
17871
17872 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
17873 *4, optional writeback(W)
17874 (doubleword load/store)
17875
17876 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
17877 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
17878 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
17879 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
17880 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
17881
17882 Uppercase letters indicate bits that are already encoded at
17883 this point. Lowercase letters are our problem. For the
17884 second block of instructions, the secondary opcode nybble
17885 (bits 8..11) is present, and bit 23 is zero, even if this is
17886 a PC-relative operation. */
17887 newval = md_chars_to_number (buf, THUMB_SIZE);
17888 newval <<= 16;
17889 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 17890
c19d1205 17891 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 17892 {
c19d1205
ZW
17893 /* Doubleword load/store: 8-bit offset, scaled by 4. */
17894 if (value >= 0)
17895 newval |= (1 << 23);
17896 else
17897 value = -value;
17898 if (value % 4 != 0)
17899 {
17900 as_bad_where (fixP->fx_file, fixP->fx_line,
17901 _("offset not a multiple of 4"));
17902 break;
17903 }
17904 value /= 4;
216d22bc 17905 if (value > 0xff)
c19d1205
ZW
17906 {
17907 as_bad_where (fixP->fx_file, fixP->fx_line,
17908 _("offset out of range"));
17909 break;
17910 }
17911 newval &= ~0xff;
b99bd4ef 17912 }
c19d1205 17913 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 17914 {
c19d1205
ZW
17915 /* PC-relative, 12-bit offset. */
17916 if (value >= 0)
17917 newval |= (1 << 23);
17918 else
17919 value = -value;
216d22bc 17920 if (value > 0xfff)
c19d1205
ZW
17921 {
17922 as_bad_where (fixP->fx_file, fixP->fx_line,
17923 _("offset out of range"));
17924 break;
17925 }
17926 newval &= ~0xfff;
b99bd4ef 17927 }
c19d1205 17928 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 17929 {
c19d1205
ZW
17930 /* Writeback: 8-bit, +/- offset. */
17931 if (value >= 0)
17932 newval |= (1 << 9);
17933 else
17934 value = -value;
216d22bc 17935 if (value > 0xff)
c19d1205
ZW
17936 {
17937 as_bad_where (fixP->fx_file, fixP->fx_line,
17938 _("offset out of range"));
17939 break;
17940 }
17941 newval &= ~0xff;
b99bd4ef 17942 }
c19d1205 17943 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 17944 {
c19d1205 17945 /* T-instruction: positive 8-bit offset. */
216d22bc 17946 if (value < 0 || value > 0xff)
b99bd4ef 17947 {
c19d1205
ZW
17948 as_bad_where (fixP->fx_file, fixP->fx_line,
17949 _("offset out of range"));
17950 break;
b99bd4ef 17951 }
c19d1205
ZW
17952 newval &= ~0xff;
17953 newval |= value;
b99bd4ef
NC
17954 }
17955 else
b99bd4ef 17956 {
c19d1205
ZW
17957 /* Positive 12-bit or negative 8-bit offset. */
17958 int limit;
17959 if (value >= 0)
b99bd4ef 17960 {
c19d1205
ZW
17961 newval |= (1 << 23);
17962 limit = 0xfff;
17963 }
17964 else
17965 {
17966 value = -value;
17967 limit = 0xff;
17968 }
17969 if (value > limit)
17970 {
17971 as_bad_where (fixP->fx_file, fixP->fx_line,
17972 _("offset out of range"));
17973 break;
b99bd4ef 17974 }
c19d1205 17975 newval &= ~limit;
b99bd4ef 17976 }
b99bd4ef 17977
c19d1205
ZW
17978 newval |= value;
17979 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
17980 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
17981 break;
404ff6b5 17982
c19d1205
ZW
17983 case BFD_RELOC_ARM_SHIFT_IMM:
17984 newval = md_chars_to_number (buf, INSN_SIZE);
17985 if (((unsigned long) value) > 32
17986 || (value == 32
17987 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
17988 {
17989 as_bad_where (fixP->fx_file, fixP->fx_line,
17990 _("shift expression is too large"));
17991 break;
17992 }
404ff6b5 17993
c19d1205
ZW
17994 if (value == 0)
17995 /* Shifts of zero must be done as lsl. */
17996 newval &= ~0x60;
17997 else if (value == 32)
17998 value = 0;
17999 newval &= 0xfffff07f;
18000 newval |= (value & 0x1f) << 7;
18001 md_number_to_chars (buf, newval, INSN_SIZE);
18002 break;
404ff6b5 18003
c19d1205 18004 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 18005 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 18006 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 18007 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
18008 /* We claim that this fixup has been processed here,
18009 even if in fact we generate an error because we do
18010 not have a reloc for it, so tc_gen_reloc will reject it. */
18011 fixP->fx_done = 1;
404ff6b5 18012
c19d1205
ZW
18013 if (fixP->fx_addsy
18014 && ! S_IS_DEFINED (fixP->fx_addsy))
18015 {
18016 as_bad_where (fixP->fx_file, fixP->fx_line,
18017 _("undefined symbol %s used as an immediate value"),
18018 S_GET_NAME (fixP->fx_addsy));
18019 break;
18020 }
404ff6b5 18021
c19d1205
ZW
18022 newval = md_chars_to_number (buf, THUMB_SIZE);
18023 newval <<= 16;
18024 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 18025
16805f35
PB
18026 newimm = FAIL;
18027 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18028 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
18029 {
18030 newimm = encode_thumb32_immediate (value);
18031 if (newimm == (unsigned int) FAIL)
18032 newimm = thumb32_negate_data_op (&newval, value);
18033 }
16805f35
PB
18034 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18035 && newimm == (unsigned int) FAIL)
92e90b6e 18036 {
16805f35
PB
18037 /* Turn add/sum into addw/subw. */
18038 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18039 newval = (newval & 0xfeffffff) | 0x02000000;
18040
e9f89963
PB
18041 /* 12 bit immediate for addw/subw. */
18042 if (value < 0)
18043 {
18044 value = -value;
18045 newval ^= 0x00a00000;
18046 }
92e90b6e
PB
18047 if (value > 0xfff)
18048 newimm = (unsigned int) FAIL;
18049 else
18050 newimm = value;
18051 }
cc8a6dd0 18052
c19d1205 18053 if (newimm == (unsigned int)FAIL)
3631a3c8 18054 {
c19d1205
ZW
18055 as_bad_where (fixP->fx_file, fixP->fx_line,
18056 _("invalid constant (%lx) after fixup"),
18057 (unsigned long) value);
18058 break;
3631a3c8
NC
18059 }
18060
c19d1205
ZW
18061 newval |= (newimm & 0x800) << 15;
18062 newval |= (newimm & 0x700) << 4;
18063 newval |= (newimm & 0x0ff);
cc8a6dd0 18064
c19d1205
ZW
18065 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18066 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18067 break;
a737bd4d 18068
3eb17e6b 18069 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
18070 if (((unsigned long) value) > 0xffff)
18071 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 18072 _("invalid smc expression"));
2fc8bdac 18073 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18074 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18075 md_number_to_chars (buf, newval, INSN_SIZE);
18076 break;
a737bd4d 18077
c19d1205 18078 case BFD_RELOC_ARM_SWI:
adbaf948 18079 if (fixP->tc_fix_data != 0)
c19d1205
ZW
18080 {
18081 if (((unsigned long) value) > 0xff)
18082 as_bad_where (fixP->fx_file, fixP->fx_line,
18083 _("invalid swi expression"));
2fc8bdac 18084 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
18085 newval |= value;
18086 md_number_to_chars (buf, newval, THUMB_SIZE);
18087 }
18088 else
18089 {
18090 if (((unsigned long) value) > 0x00ffffff)
18091 as_bad_where (fixP->fx_file, fixP->fx_line,
18092 _("invalid swi expression"));
2fc8bdac 18093 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
18094 newval |= value;
18095 md_number_to_chars (buf, newval, INSN_SIZE);
18096 }
18097 break;
a737bd4d 18098
c19d1205
ZW
18099 case BFD_RELOC_ARM_MULTI:
18100 if (((unsigned long) value) > 0xffff)
18101 as_bad_where (fixP->fx_file, fixP->fx_line,
18102 _("invalid expression in load/store multiple"));
18103 newval = value | md_chars_to_number (buf, INSN_SIZE);
18104 md_number_to_chars (buf, newval, INSN_SIZE);
18105 break;
a737bd4d 18106
c19d1205 18107#ifdef OBJ_ELF
39b41c9c
PB
18108 case BFD_RELOC_ARM_PCREL_CALL:
18109 newval = md_chars_to_number (buf, INSN_SIZE);
18110 if ((newval & 0xf0000000) == 0xf0000000)
18111 temp = 1;
18112 else
18113 temp = 3;
18114 goto arm_branch_common;
18115
18116 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 18117 case BFD_RELOC_ARM_PLT32:
c19d1205 18118#endif
39b41c9c
PB
18119 case BFD_RELOC_ARM_PCREL_BRANCH:
18120 temp = 3;
18121 goto arm_branch_common;
a737bd4d 18122
39b41c9c
PB
18123 case BFD_RELOC_ARM_PCREL_BLX:
18124 temp = 1;
18125 arm_branch_common:
c19d1205 18126 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
18127 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18128 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18129 also be be clear. */
18130 if (value & temp)
c19d1205 18131 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
18132 _("misaligned branch destination"));
18133 if ((value & (offsetT)0xfe000000) != (offsetT)0
18134 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18135 as_bad_where (fixP->fx_file, fixP->fx_line,
18136 _("branch out of range"));
a737bd4d 18137
2fc8bdac 18138 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18139 {
2fc8bdac
ZW
18140 newval = md_chars_to_number (buf, INSN_SIZE);
18141 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
18142 /* Set the H bit on BLX instructions. */
18143 if (temp == 1)
18144 {
18145 if (value & 2)
18146 newval |= 0x01000000;
18147 else
18148 newval &= ~0x01000000;
18149 }
2fc8bdac 18150 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 18151 }
c19d1205 18152 break;
a737bd4d 18153
25fe350b
MS
18154 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18155 /* CBZ can only branch forward. */
a737bd4d 18156
738755b0
MS
18157 /* Attempts to use CBZ to branch to the next instruction
18158 (which, strictly speaking, are prohibited) will be turned into
18159 no-ops.
18160
18161 FIXME: It may be better to remove the instruction completely and
18162 perform relaxation. */
18163 if (value == -2)
2fc8bdac
ZW
18164 {
18165 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 18166 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
18167 md_number_to_chars (buf, newval, THUMB_SIZE);
18168 }
738755b0
MS
18169 else
18170 {
18171 if (value & ~0x7e)
18172 as_bad_where (fixP->fx_file, fixP->fx_line,
18173 _("branch out of range"));
18174
18175 if (fixP->fx_done || !seg->use_rela_p)
18176 {
18177 newval = md_chars_to_number (buf, THUMB_SIZE);
18178 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18179 md_number_to_chars (buf, newval, THUMB_SIZE);
18180 }
18181 }
c19d1205 18182 break;
a737bd4d 18183
c19d1205 18184 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
18185 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18186 as_bad_where (fixP->fx_file, fixP->fx_line,
18187 _("branch out of range"));
a737bd4d 18188
2fc8bdac
ZW
18189 if (fixP->fx_done || !seg->use_rela_p)
18190 {
18191 newval = md_chars_to_number (buf, THUMB_SIZE);
18192 newval |= (value & 0x1ff) >> 1;
18193 md_number_to_chars (buf, newval, THUMB_SIZE);
18194 }
c19d1205 18195 break;
a737bd4d 18196
c19d1205 18197 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
18198 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18199 as_bad_where (fixP->fx_file, fixP->fx_line,
18200 _("branch out of range"));
a737bd4d 18201
2fc8bdac
ZW
18202 if (fixP->fx_done || !seg->use_rela_p)
18203 {
18204 newval = md_chars_to_number (buf, THUMB_SIZE);
18205 newval |= (value & 0xfff) >> 1;
18206 md_number_to_chars (buf, newval, THUMB_SIZE);
18207 }
c19d1205 18208 break;
a737bd4d 18209
c19d1205 18210 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac
ZW
18211 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18212 as_bad_where (fixP->fx_file, fixP->fx_line,
18213 _("conditional branch out of range"));
404ff6b5 18214
2fc8bdac
ZW
18215 if (fixP->fx_done || !seg->use_rela_p)
18216 {
18217 offsetT newval2;
18218 addressT S, J1, J2, lo, hi;
404ff6b5 18219
2fc8bdac
ZW
18220 S = (value & 0x00100000) >> 20;
18221 J2 = (value & 0x00080000) >> 19;
18222 J1 = (value & 0x00040000) >> 18;
18223 hi = (value & 0x0003f000) >> 12;
18224 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18225
2fc8bdac
ZW
18226 newval = md_chars_to_number (buf, THUMB_SIZE);
18227 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18228 newval |= (S << 10) | hi;
18229 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18230 md_number_to_chars (buf, newval, THUMB_SIZE);
18231 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18232 }
c19d1205 18233 break;
6c43fab6 18234
c19d1205
ZW
18235 case BFD_RELOC_THUMB_PCREL_BLX:
18236 case BFD_RELOC_THUMB_PCREL_BRANCH23:
2fc8bdac
ZW
18237 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18238 as_bad_where (fixP->fx_file, fixP->fx_line,
18239 _("branch out of range"));
404ff6b5 18240
2fc8bdac
ZW
18241 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18242 /* For a BLX instruction, make sure that the relocation is rounded up
18243 to a word boundary. This follows the semantics of the instruction
18244 which specifies that bit 1 of the target address will come from bit
18245 1 of the base address. */
18246 value = (value + 1) & ~ 1;
404ff6b5 18247
2fc8bdac 18248 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18249 {
2fc8bdac
ZW
18250 offsetT newval2;
18251
18252 newval = md_chars_to_number (buf, THUMB_SIZE);
18253 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18254 newval |= (value & 0x7fffff) >> 12;
18255 newval2 |= (value & 0xfff) >> 1;
18256 md_number_to_chars (buf, newval, THUMB_SIZE);
18257 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 18258 }
c19d1205 18259 break;
404ff6b5 18260
c19d1205 18261 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
18262 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18263 as_bad_where (fixP->fx_file, fixP->fx_line,
18264 _("branch out of range"));
6c43fab6 18265
2fc8bdac
ZW
18266 if (fixP->fx_done || !seg->use_rela_p)
18267 {
18268 offsetT newval2;
18269 addressT S, I1, I2, lo, hi;
6c43fab6 18270
2fc8bdac
ZW
18271 S = (value & 0x01000000) >> 24;
18272 I1 = (value & 0x00800000) >> 23;
18273 I2 = (value & 0x00400000) >> 22;
18274 hi = (value & 0x003ff000) >> 12;
18275 lo = (value & 0x00000ffe) >> 1;
6c43fab6 18276
2fc8bdac
ZW
18277 I1 = !(I1 ^ S);
18278 I2 = !(I2 ^ S);
a737bd4d 18279
2fc8bdac
ZW
18280 newval = md_chars_to_number (buf, THUMB_SIZE);
18281 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18282 newval |= (S << 10) | hi;
18283 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18284 md_number_to_chars (buf, newval, THUMB_SIZE);
18285 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18286 }
18287 break;
a737bd4d 18288
2fc8bdac
ZW
18289 case BFD_RELOC_8:
18290 if (fixP->fx_done || !seg->use_rela_p)
18291 md_number_to_chars (buf, value, 1);
c19d1205 18292 break;
a737bd4d 18293
c19d1205 18294 case BFD_RELOC_16:
2fc8bdac 18295 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 18296 md_number_to_chars (buf, value, 2);
c19d1205 18297 break;
a737bd4d 18298
c19d1205
ZW
18299#ifdef OBJ_ELF
18300 case BFD_RELOC_ARM_TLS_GD32:
18301 case BFD_RELOC_ARM_TLS_LE32:
18302 case BFD_RELOC_ARM_TLS_IE32:
18303 case BFD_RELOC_ARM_TLS_LDM32:
18304 case BFD_RELOC_ARM_TLS_LDO32:
18305 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18306 /* fall through */
6c43fab6 18307
c19d1205
ZW
18308 case BFD_RELOC_ARM_GOT32:
18309 case BFD_RELOC_ARM_GOTOFF:
18310 case BFD_RELOC_ARM_TARGET2:
2fc8bdac
ZW
18311 if (fixP->fx_done || !seg->use_rela_p)
18312 md_number_to_chars (buf, 0, 4);
c19d1205
ZW
18313 break;
18314#endif
6c43fab6 18315
c19d1205
ZW
18316 case BFD_RELOC_RVA:
18317 case BFD_RELOC_32:
18318 case BFD_RELOC_ARM_TARGET1:
18319 case BFD_RELOC_ARM_ROSEGREL32:
18320 case BFD_RELOC_ARM_SBREL32:
18321 case BFD_RELOC_32_PCREL:
f0927246
NC
18322#ifdef TE_PE
18323 case BFD_RELOC_32_SECREL:
18324#endif
2fc8bdac 18325 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
18326#ifdef TE_WINCE
18327 /* For WinCE we only do this for pcrel fixups. */
18328 if (fixP->fx_done || fixP->fx_pcrel)
18329#endif
18330 md_number_to_chars (buf, value, 4);
c19d1205 18331 break;
6c43fab6 18332
c19d1205
ZW
18333#ifdef OBJ_ELF
18334 case BFD_RELOC_ARM_PREL31:
2fc8bdac 18335 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
18336 {
18337 newval = md_chars_to_number (buf, 4) & 0x80000000;
18338 if ((value ^ (value >> 1)) & 0x40000000)
18339 {
18340 as_bad_where (fixP->fx_file, fixP->fx_line,
18341 _("rel31 relocation overflow"));
18342 }
18343 newval |= value & 0x7fffffff;
18344 md_number_to_chars (buf, newval, 4);
18345 }
18346 break;
c19d1205 18347#endif
a737bd4d 18348
c19d1205 18349 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 18350 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
18351 if (value < -1023 || value > 1023 || (value & 3))
18352 as_bad_where (fixP->fx_file, fixP->fx_line,
18353 _("co-processor offset out of range"));
18354 cp_off_common:
18355 sign = value >= 0;
18356 if (value < 0)
18357 value = -value;
8f06b2d8
PB
18358 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18359 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18360 newval = md_chars_to_number (buf, INSN_SIZE);
18361 else
18362 newval = get_thumb32_insn (buf);
18363 newval &= 0xff7fff00;
c19d1205 18364 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
18365 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18366 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18367 md_number_to_chars (buf, newval, INSN_SIZE);
18368 else
18369 put_thumb32_insn (buf, newval);
c19d1205 18370 break;
a737bd4d 18371
c19d1205 18372 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 18373 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
18374 if (value < -255 || value > 255)
18375 as_bad_where (fixP->fx_file, fixP->fx_line,
18376 _("co-processor offset out of range"));
df7849c5 18377 value *= 4;
c19d1205 18378 goto cp_off_common;
6c43fab6 18379
c19d1205
ZW
18380 case BFD_RELOC_ARM_THUMB_OFFSET:
18381 newval = md_chars_to_number (buf, THUMB_SIZE);
18382 /* Exactly what ranges, and where the offset is inserted depends
18383 on the type of instruction, we can establish this from the
18384 top 4 bits. */
18385 switch (newval >> 12)
18386 {
18387 case 4: /* PC load. */
18388 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18389 forced to zero for these loads; md_pcrel_from has already
18390 compensated for this. */
18391 if (value & 3)
18392 as_bad_where (fixP->fx_file, fixP->fx_line,
18393 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
18394 (((unsigned long) fixP->fx_frag->fr_address
18395 + (unsigned long) fixP->fx_where) & ~3)
18396 + (unsigned long) value);
a737bd4d 18397
c19d1205
ZW
18398 if (value & ~0x3fc)
18399 as_bad_where (fixP->fx_file, fixP->fx_line,
18400 _("invalid offset, value too big (0x%08lX)"),
18401 (long) value);
a737bd4d 18402
c19d1205
ZW
18403 newval |= value >> 2;
18404 break;
a737bd4d 18405
c19d1205
ZW
18406 case 9: /* SP load/store. */
18407 if (value & ~0x3fc)
18408 as_bad_where (fixP->fx_file, fixP->fx_line,
18409 _("invalid offset, value too big (0x%08lX)"),
18410 (long) value);
18411 newval |= value >> 2;
18412 break;
6c43fab6 18413
c19d1205
ZW
18414 case 6: /* Word load/store. */
18415 if (value & ~0x7c)
18416 as_bad_where (fixP->fx_file, fixP->fx_line,
18417 _("invalid offset, value too big (0x%08lX)"),
18418 (long) value);
18419 newval |= value << 4; /* 6 - 2. */
18420 break;
a737bd4d 18421
c19d1205
ZW
18422 case 7: /* Byte load/store. */
18423 if (value & ~0x1f)
18424 as_bad_where (fixP->fx_file, fixP->fx_line,
18425 _("invalid offset, value too big (0x%08lX)"),
18426 (long) value);
18427 newval |= value << 6;
18428 break;
a737bd4d 18429
c19d1205
ZW
18430 case 8: /* Halfword load/store. */
18431 if (value & ~0x3e)
18432 as_bad_where (fixP->fx_file, fixP->fx_line,
18433 _("invalid offset, value too big (0x%08lX)"),
18434 (long) value);
18435 newval |= value << 5; /* 6 - 1. */
18436 break;
a737bd4d 18437
c19d1205
ZW
18438 default:
18439 as_bad_where (fixP->fx_file, fixP->fx_line,
18440 "Unable to process relocation for thumb opcode: %lx",
18441 (unsigned long) newval);
18442 break;
18443 }
18444 md_number_to_chars (buf, newval, THUMB_SIZE);
18445 break;
a737bd4d 18446
c19d1205
ZW
18447 case BFD_RELOC_ARM_THUMB_ADD:
18448 /* This is a complicated relocation, since we use it for all of
18449 the following immediate relocations:
a737bd4d 18450
c19d1205
ZW
18451 3bit ADD/SUB
18452 8bit ADD/SUB
18453 9bit ADD/SUB SP word-aligned
18454 10bit ADD PC/SP word-aligned
a737bd4d 18455
c19d1205
ZW
18456 The type of instruction being processed is encoded in the
18457 instruction field:
a737bd4d 18458
c19d1205
ZW
18459 0x8000 SUB
18460 0x00F0 Rd
18461 0x000F Rs
18462 */
18463 newval = md_chars_to_number (buf, THUMB_SIZE);
18464 {
18465 int rd = (newval >> 4) & 0xf;
18466 int rs = newval & 0xf;
18467 int subtract = !!(newval & 0x8000);
a737bd4d 18468
c19d1205
ZW
18469 /* Check for HI regs, only very restricted cases allowed:
18470 Adjusting SP, and using PC or SP to get an address. */
18471 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18472 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18473 as_bad_where (fixP->fx_file, fixP->fx_line,
18474 _("invalid Hi register with immediate"));
a737bd4d 18475
c19d1205
ZW
18476 /* If value is negative, choose the opposite instruction. */
18477 if (value < 0)
18478 {
18479 value = -value;
18480 subtract = !subtract;
18481 if (value < 0)
18482 as_bad_where (fixP->fx_file, fixP->fx_line,
18483 _("immediate value out of range"));
18484 }
a737bd4d 18485
c19d1205
ZW
18486 if (rd == REG_SP)
18487 {
18488 if (value & ~0x1fc)
18489 as_bad_where (fixP->fx_file, fixP->fx_line,
18490 _("invalid immediate for stack address calculation"));
18491 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18492 newval |= value >> 2;
18493 }
18494 else if (rs == REG_PC || rs == REG_SP)
18495 {
18496 if (subtract || value & ~0x3fc)
18497 as_bad_where (fixP->fx_file, fixP->fx_line,
18498 _("invalid immediate for address calculation (value = 0x%08lX)"),
18499 (unsigned long) value);
18500 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18501 newval |= rd << 8;
18502 newval |= value >> 2;
18503 }
18504 else if (rs == rd)
18505 {
18506 if (value & ~0xff)
18507 as_bad_where (fixP->fx_file, fixP->fx_line,
18508 _("immediate value out of range"));
18509 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18510 newval |= (rd << 8) | value;
18511 }
18512 else
18513 {
18514 if (value & ~0x7)
18515 as_bad_where (fixP->fx_file, fixP->fx_line,
18516 _("immediate value out of range"));
18517 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18518 newval |= rd | (rs << 3) | (value << 6);
18519 }
18520 }
18521 md_number_to_chars (buf, newval, THUMB_SIZE);
18522 break;
a737bd4d 18523
c19d1205
ZW
18524 case BFD_RELOC_ARM_THUMB_IMM:
18525 newval = md_chars_to_number (buf, THUMB_SIZE);
18526 if (value < 0 || value > 255)
18527 as_bad_where (fixP->fx_file, fixP->fx_line,
18528 _("invalid immediate: %ld is too large"),
18529 (long) value);
18530 newval |= value;
18531 md_number_to_chars (buf, newval, THUMB_SIZE);
18532 break;
a737bd4d 18533
c19d1205
ZW
18534 case BFD_RELOC_ARM_THUMB_SHIFT:
18535 /* 5bit shift value (0..32). LSL cannot take 32. */
18536 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18537 temp = newval & 0xf800;
18538 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18539 as_bad_where (fixP->fx_file, fixP->fx_line,
18540 _("invalid shift value: %ld"), (long) value);
18541 /* Shifts of zero must be encoded as LSL. */
18542 if (value == 0)
18543 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18544 /* Shifts of 32 are encoded as zero. */
18545 else if (value == 32)
18546 value = 0;
18547 newval |= value << 6;
18548 md_number_to_chars (buf, newval, THUMB_SIZE);
18549 break;
a737bd4d 18550
c19d1205
ZW
18551 case BFD_RELOC_VTABLE_INHERIT:
18552 case BFD_RELOC_VTABLE_ENTRY:
18553 fixP->fx_done = 0;
18554 return;
6c43fab6 18555
b6895b4f
PB
18556 case BFD_RELOC_ARM_MOVW:
18557 case BFD_RELOC_ARM_MOVT:
18558 case BFD_RELOC_ARM_THUMB_MOVW:
18559 case BFD_RELOC_ARM_THUMB_MOVT:
18560 if (fixP->fx_done || !seg->use_rela_p)
18561 {
18562 /* REL format relocations are limited to a 16-bit addend. */
18563 if (!fixP->fx_done)
18564 {
18565 if (value < -0x1000 || value > 0xffff)
18566 as_bad_where (fixP->fx_file, fixP->fx_line,
18567 _("offset too big"));
18568 }
18569 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18570 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18571 {
18572 value >>= 16;
18573 }
18574
18575 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18576 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18577 {
18578 newval = get_thumb32_insn (buf);
18579 newval &= 0xfbf08f00;
18580 newval |= (value & 0xf000) << 4;
18581 newval |= (value & 0x0800) << 15;
18582 newval |= (value & 0x0700) << 4;
18583 newval |= (value & 0x00ff);
18584 put_thumb32_insn (buf, newval);
18585 }
18586 else
18587 {
18588 newval = md_chars_to_number (buf, 4);
18589 newval &= 0xfff0f000;
18590 newval |= value & 0x0fff;
18591 newval |= (value & 0xf000) << 4;
18592 md_number_to_chars (buf, newval, 4);
18593 }
18594 }
18595 return;
18596
4962c51a
MS
18597 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18598 case BFD_RELOC_ARM_ALU_PC_G0:
18599 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18600 case BFD_RELOC_ARM_ALU_PC_G1:
18601 case BFD_RELOC_ARM_ALU_PC_G2:
18602 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18603 case BFD_RELOC_ARM_ALU_SB_G0:
18604 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18605 case BFD_RELOC_ARM_ALU_SB_G1:
18606 case BFD_RELOC_ARM_ALU_SB_G2:
18607 assert (!fixP->fx_done);
18608 if (!seg->use_rela_p)
18609 {
18610 bfd_vma insn;
18611 bfd_vma encoded_addend;
18612 bfd_vma addend_abs = abs (value);
18613
18614 /* Check that the absolute value of the addend can be
18615 expressed as an 8-bit constant plus a rotation. */
18616 encoded_addend = encode_arm_immediate (addend_abs);
18617 if (encoded_addend == (unsigned int) FAIL)
18618 as_bad_where (fixP->fx_file, fixP->fx_line,
18619 _("the offset 0x%08lX is not representable"),
18620 addend_abs);
18621
18622 /* Extract the instruction. */
18623 insn = md_chars_to_number (buf, INSN_SIZE);
18624
18625 /* If the addend is positive, use an ADD instruction.
18626 Otherwise use a SUB. Take care not to destroy the S bit. */
18627 insn &= 0xff1fffff;
18628 if (value < 0)
18629 insn |= 1 << 22;
18630 else
18631 insn |= 1 << 23;
18632
18633 /* Place the encoded addend into the first 12 bits of the
18634 instruction. */
18635 insn &= 0xfffff000;
18636 insn |= encoded_addend;
18637
18638 /* Update the instruction. */
18639 md_number_to_chars (buf, insn, INSN_SIZE);
18640 }
18641 break;
18642
18643 case BFD_RELOC_ARM_LDR_PC_G0:
18644 case BFD_RELOC_ARM_LDR_PC_G1:
18645 case BFD_RELOC_ARM_LDR_PC_G2:
18646 case BFD_RELOC_ARM_LDR_SB_G0:
18647 case BFD_RELOC_ARM_LDR_SB_G1:
18648 case BFD_RELOC_ARM_LDR_SB_G2:
18649 assert (!fixP->fx_done);
18650 if (!seg->use_rela_p)
18651 {
18652 bfd_vma insn;
18653 bfd_vma addend_abs = abs (value);
18654
18655 /* Check that the absolute value of the addend can be
18656 encoded in 12 bits. */
18657 if (addend_abs >= 0x1000)
18658 as_bad_where (fixP->fx_file, fixP->fx_line,
18659 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18660 addend_abs);
18661
18662 /* Extract the instruction. */
18663 insn = md_chars_to_number (buf, INSN_SIZE);
18664
18665 /* If the addend is negative, clear bit 23 of the instruction.
18666 Otherwise set it. */
18667 if (value < 0)
18668 insn &= ~(1 << 23);
18669 else
18670 insn |= 1 << 23;
18671
18672 /* Place the absolute value of the addend into the first 12 bits
18673 of the instruction. */
18674 insn &= 0xfffff000;
18675 insn |= addend_abs;
18676
18677 /* Update the instruction. */
18678 md_number_to_chars (buf, insn, INSN_SIZE);
18679 }
18680 break;
18681
18682 case BFD_RELOC_ARM_LDRS_PC_G0:
18683 case BFD_RELOC_ARM_LDRS_PC_G1:
18684 case BFD_RELOC_ARM_LDRS_PC_G2:
18685 case BFD_RELOC_ARM_LDRS_SB_G0:
18686 case BFD_RELOC_ARM_LDRS_SB_G1:
18687 case BFD_RELOC_ARM_LDRS_SB_G2:
18688 assert (!fixP->fx_done);
18689 if (!seg->use_rela_p)
18690 {
18691 bfd_vma insn;
18692 bfd_vma addend_abs = abs (value);
18693
18694 /* Check that the absolute value of the addend can be
18695 encoded in 8 bits. */
18696 if (addend_abs >= 0x100)
18697 as_bad_where (fixP->fx_file, fixP->fx_line,
18698 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18699 addend_abs);
18700
18701 /* Extract the instruction. */
18702 insn = md_chars_to_number (buf, INSN_SIZE);
18703
18704 /* If the addend is negative, clear bit 23 of the instruction.
18705 Otherwise set it. */
18706 if (value < 0)
18707 insn &= ~(1 << 23);
18708 else
18709 insn |= 1 << 23;
18710
18711 /* Place the first four bits of the absolute value of the addend
18712 into the first 4 bits of the instruction, and the remaining
18713 four into bits 8 .. 11. */
18714 insn &= 0xfffff0f0;
18715 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18716
18717 /* Update the instruction. */
18718 md_number_to_chars (buf, insn, INSN_SIZE);
18719 }
18720 break;
18721
18722 case BFD_RELOC_ARM_LDC_PC_G0:
18723 case BFD_RELOC_ARM_LDC_PC_G1:
18724 case BFD_RELOC_ARM_LDC_PC_G2:
18725 case BFD_RELOC_ARM_LDC_SB_G0:
18726 case BFD_RELOC_ARM_LDC_SB_G1:
18727 case BFD_RELOC_ARM_LDC_SB_G2:
18728 assert (!fixP->fx_done);
18729 if (!seg->use_rela_p)
18730 {
18731 bfd_vma insn;
18732 bfd_vma addend_abs = abs (value);
18733
18734 /* Check that the absolute value of the addend is a multiple of
18735 four and, when divided by four, fits in 8 bits. */
18736 if (addend_abs & 0x3)
18737 as_bad_where (fixP->fx_file, fixP->fx_line,
18738 _("bad offset 0x%08lX (must be word-aligned)"),
18739 addend_abs);
18740
18741 if ((addend_abs >> 2) > 0xff)
18742 as_bad_where (fixP->fx_file, fixP->fx_line,
18743 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18744 addend_abs);
18745
18746 /* Extract the instruction. */
18747 insn = md_chars_to_number (buf, INSN_SIZE);
18748
18749 /* If the addend is negative, clear bit 23 of the instruction.
18750 Otherwise set it. */
18751 if (value < 0)
18752 insn &= ~(1 << 23);
18753 else
18754 insn |= 1 << 23;
18755
18756 /* Place the addend (divided by four) into the first eight
18757 bits of the instruction. */
18758 insn &= 0xfffffff0;
18759 insn |= addend_abs >> 2;
18760
18761 /* Update the instruction. */
18762 md_number_to_chars (buf, insn, INSN_SIZE);
18763 }
18764 break;
18765
c19d1205
ZW
18766 case BFD_RELOC_UNUSED:
18767 default:
18768 as_bad_where (fixP->fx_file, fixP->fx_line,
18769 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18770 }
6c43fab6
RE
18771}
18772
c19d1205
ZW
18773/* Translate internal representation of relocation info to BFD target
18774 format. */
a737bd4d 18775
c19d1205 18776arelent *
00a97672 18777tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 18778{
c19d1205
ZW
18779 arelent * reloc;
18780 bfd_reloc_code_real_type code;
a737bd4d 18781
c19d1205 18782 reloc = xmalloc (sizeof (arelent));
a737bd4d 18783
c19d1205
ZW
18784 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18785 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18786 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 18787
2fc8bdac 18788 if (fixp->fx_pcrel)
00a97672
RS
18789 {
18790 if (section->use_rela_p)
18791 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18792 else
18793 fixp->fx_offset = reloc->address;
18794 }
c19d1205 18795 reloc->addend = fixp->fx_offset;
a737bd4d 18796
c19d1205 18797 switch (fixp->fx_r_type)
a737bd4d 18798 {
c19d1205
ZW
18799 case BFD_RELOC_8:
18800 if (fixp->fx_pcrel)
18801 {
18802 code = BFD_RELOC_8_PCREL;
18803 break;
18804 }
a737bd4d 18805
c19d1205
ZW
18806 case BFD_RELOC_16:
18807 if (fixp->fx_pcrel)
18808 {
18809 code = BFD_RELOC_16_PCREL;
18810 break;
18811 }
6c43fab6 18812
c19d1205
ZW
18813 case BFD_RELOC_32:
18814 if (fixp->fx_pcrel)
18815 {
18816 code = BFD_RELOC_32_PCREL;
18817 break;
18818 }
a737bd4d 18819
b6895b4f
PB
18820 case BFD_RELOC_ARM_MOVW:
18821 if (fixp->fx_pcrel)
18822 {
18823 code = BFD_RELOC_ARM_MOVW_PCREL;
18824 break;
18825 }
18826
18827 case BFD_RELOC_ARM_MOVT:
18828 if (fixp->fx_pcrel)
18829 {
18830 code = BFD_RELOC_ARM_MOVT_PCREL;
18831 break;
18832 }
18833
18834 case BFD_RELOC_ARM_THUMB_MOVW:
18835 if (fixp->fx_pcrel)
18836 {
18837 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
18838 break;
18839 }
18840
18841 case BFD_RELOC_ARM_THUMB_MOVT:
18842 if (fixp->fx_pcrel)
18843 {
18844 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
18845 break;
18846 }
18847
c19d1205
ZW
18848 case BFD_RELOC_NONE:
18849 case BFD_RELOC_ARM_PCREL_BRANCH:
18850 case BFD_RELOC_ARM_PCREL_BLX:
18851 case BFD_RELOC_RVA:
18852 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18853 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18854 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18855 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18856 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18857 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18858 case BFD_RELOC_THUMB_PCREL_BLX:
18859 case BFD_RELOC_VTABLE_ENTRY:
18860 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
18861#ifdef TE_PE
18862 case BFD_RELOC_32_SECREL:
18863#endif
c19d1205
ZW
18864 code = fixp->fx_r_type;
18865 break;
a737bd4d 18866
c19d1205
ZW
18867 case BFD_RELOC_ARM_LITERAL:
18868 case BFD_RELOC_ARM_HWLITERAL:
18869 /* If this is called then the a literal has
18870 been referenced across a section boundary. */
18871 as_bad_where (fixp->fx_file, fixp->fx_line,
18872 _("literal referenced across section boundary"));
18873 return NULL;
a737bd4d 18874
c19d1205
ZW
18875#ifdef OBJ_ELF
18876 case BFD_RELOC_ARM_GOT32:
18877 case BFD_RELOC_ARM_GOTOFF:
18878 case BFD_RELOC_ARM_PLT32:
18879 case BFD_RELOC_ARM_TARGET1:
18880 case BFD_RELOC_ARM_ROSEGREL32:
18881 case BFD_RELOC_ARM_SBREL32:
18882 case BFD_RELOC_ARM_PREL31:
18883 case BFD_RELOC_ARM_TARGET2:
18884 case BFD_RELOC_ARM_TLS_LE32:
18885 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
18886 case BFD_RELOC_ARM_PCREL_CALL:
18887 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
18888 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18889 case BFD_RELOC_ARM_ALU_PC_G0:
18890 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18891 case BFD_RELOC_ARM_ALU_PC_G1:
18892 case BFD_RELOC_ARM_ALU_PC_G2:
18893 case BFD_RELOC_ARM_LDR_PC_G0:
18894 case BFD_RELOC_ARM_LDR_PC_G1:
18895 case BFD_RELOC_ARM_LDR_PC_G2:
18896 case BFD_RELOC_ARM_LDRS_PC_G0:
18897 case BFD_RELOC_ARM_LDRS_PC_G1:
18898 case BFD_RELOC_ARM_LDRS_PC_G2:
18899 case BFD_RELOC_ARM_LDC_PC_G0:
18900 case BFD_RELOC_ARM_LDC_PC_G1:
18901 case BFD_RELOC_ARM_LDC_PC_G2:
18902 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18903 case BFD_RELOC_ARM_ALU_SB_G0:
18904 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18905 case BFD_RELOC_ARM_ALU_SB_G1:
18906 case BFD_RELOC_ARM_ALU_SB_G2:
18907 case BFD_RELOC_ARM_LDR_SB_G0:
18908 case BFD_RELOC_ARM_LDR_SB_G1:
18909 case BFD_RELOC_ARM_LDR_SB_G2:
18910 case BFD_RELOC_ARM_LDRS_SB_G0:
18911 case BFD_RELOC_ARM_LDRS_SB_G1:
18912 case BFD_RELOC_ARM_LDRS_SB_G2:
18913 case BFD_RELOC_ARM_LDC_SB_G0:
18914 case BFD_RELOC_ARM_LDC_SB_G1:
18915 case BFD_RELOC_ARM_LDC_SB_G2:
c19d1205
ZW
18916 code = fixp->fx_r_type;
18917 break;
a737bd4d 18918
c19d1205
ZW
18919 case BFD_RELOC_ARM_TLS_GD32:
18920 case BFD_RELOC_ARM_TLS_IE32:
18921 case BFD_RELOC_ARM_TLS_LDM32:
18922 /* BFD will include the symbol's address in the addend.
18923 But we don't want that, so subtract it out again here. */
18924 if (!S_IS_COMMON (fixp->fx_addsy))
18925 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
18926 code = fixp->fx_r_type;
18927 break;
18928#endif
a737bd4d 18929
c19d1205
ZW
18930 case BFD_RELOC_ARM_IMMEDIATE:
18931 as_bad_where (fixp->fx_file, fixp->fx_line,
18932 _("internal relocation (type: IMMEDIATE) not fixed up"));
18933 return NULL;
a737bd4d 18934
c19d1205
ZW
18935 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18936 as_bad_where (fixp->fx_file, fixp->fx_line,
18937 _("ADRL used for a symbol not defined in the same file"));
18938 return NULL;
a737bd4d 18939
c19d1205 18940 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
18941 if (section->use_rela_p)
18942 {
18943 code = fixp->fx_r_type;
18944 break;
18945 }
18946
c19d1205
ZW
18947 if (fixp->fx_addsy != NULL
18948 && !S_IS_DEFINED (fixp->fx_addsy)
18949 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 18950 {
c19d1205
ZW
18951 as_bad_where (fixp->fx_file, fixp->fx_line,
18952 _("undefined local label `%s'"),
18953 S_GET_NAME (fixp->fx_addsy));
18954 return NULL;
a737bd4d
NC
18955 }
18956
c19d1205
ZW
18957 as_bad_where (fixp->fx_file, fixp->fx_line,
18958 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
18959 return NULL;
a737bd4d 18960
c19d1205
ZW
18961 default:
18962 {
18963 char * type;
6c43fab6 18964
c19d1205
ZW
18965 switch (fixp->fx_r_type)
18966 {
18967 case BFD_RELOC_NONE: type = "NONE"; break;
18968 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
18969 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 18970 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
18971 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
18972 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
18973 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 18974 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
18975 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
18976 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
18977 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
18978 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
18979 default: type = _("<unknown>"); break;
18980 }
18981 as_bad_where (fixp->fx_file, fixp->fx_line,
18982 _("cannot represent %s relocation in this object file format"),
18983 type);
18984 return NULL;
18985 }
a737bd4d 18986 }
6c43fab6 18987
c19d1205
ZW
18988#ifdef OBJ_ELF
18989 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
18990 && GOT_symbol
18991 && fixp->fx_addsy == GOT_symbol)
18992 {
18993 code = BFD_RELOC_ARM_GOTPC;
18994 reloc->addend = fixp->fx_offset = reloc->address;
18995 }
18996#endif
6c43fab6 18997
c19d1205 18998 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 18999
c19d1205
ZW
19000 if (reloc->howto == NULL)
19001 {
19002 as_bad_where (fixp->fx_file, fixp->fx_line,
19003 _("cannot represent %s relocation in this object file format"),
19004 bfd_get_reloc_code_name (code));
19005 return NULL;
19006 }
6c43fab6 19007
c19d1205
ZW
19008 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19009 vtable entry to be used in the relocation's section offset. */
19010 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19011 reloc->address = fixp->fx_offset;
6c43fab6 19012
c19d1205 19013 return reloc;
6c43fab6
RE
19014}
19015
c19d1205 19016/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 19017
c19d1205
ZW
19018void
19019cons_fix_new_arm (fragS * frag,
19020 int where,
19021 int size,
19022 expressionS * exp)
6c43fab6 19023{
c19d1205
ZW
19024 bfd_reloc_code_real_type type;
19025 int pcrel = 0;
6c43fab6 19026
c19d1205
ZW
19027 /* Pick a reloc.
19028 FIXME: @@ Should look at CPU word size. */
19029 switch (size)
19030 {
19031 case 1:
19032 type = BFD_RELOC_8;
19033 break;
19034 case 2:
19035 type = BFD_RELOC_16;
19036 break;
19037 case 4:
19038 default:
19039 type = BFD_RELOC_32;
19040 break;
19041 case 8:
19042 type = BFD_RELOC_64;
19043 break;
19044 }
6c43fab6 19045
f0927246
NC
19046#ifdef TE_PE
19047 if (exp->X_op == O_secrel)
19048 {
19049 exp->X_op = O_symbol;
19050 type = BFD_RELOC_32_SECREL;
19051 }
19052#endif
19053
c19d1205
ZW
19054 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19055}
6c43fab6 19056
c19d1205
ZW
19057#if defined OBJ_COFF || defined OBJ_ELF
19058void
19059arm_validate_fix (fixS * fixP)
6c43fab6 19060{
c19d1205
ZW
19061 /* If the destination of the branch is a defined symbol which does not have
19062 the THUMB_FUNC attribute, then we must be calling a function which has
19063 the (interfacearm) attribute. We look for the Thumb entry point to that
19064 function and change the branch to refer to that function instead. */
19065 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19066 && fixP->fx_addsy != NULL
19067 && S_IS_DEFINED (fixP->fx_addsy)
19068 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 19069 {
c19d1205 19070 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 19071 }
c19d1205
ZW
19072}
19073#endif
6c43fab6 19074
c19d1205
ZW
19075int
19076arm_force_relocation (struct fix * fixp)
19077{
19078#if defined (OBJ_COFF) && defined (TE_PE)
19079 if (fixp->fx_r_type == BFD_RELOC_RVA)
19080 return 1;
19081#endif
6c43fab6 19082
c19d1205
ZW
19083 /* Resolve these relocations even if the symbol is extern or weak. */
19084 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19085 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 19086 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 19087 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
19088 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19089 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19090 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 19091 return 0;
a737bd4d 19092
4962c51a
MS
19093 /* Always leave these relocations for the linker. */
19094 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19095 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19096 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19097 return 1;
19098
f0291e4c
PB
19099 /* Always generate relocations against function symbols. */
19100 if (fixp->fx_r_type == BFD_RELOC_32
19101 && fixp->fx_addsy
19102 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19103 return 1;
19104
c19d1205 19105 return generic_force_reloc (fixp);
404ff6b5
AH
19106}
19107
0ffdc86c 19108#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
19109/* Relocations against function names must be left unadjusted,
19110 so that the linker can use this information to generate interworking
19111 stubs. The MIPS version of this function
c19d1205
ZW
19112 also prevents relocations that are mips-16 specific, but I do not
19113 know why it does this.
404ff6b5 19114
c19d1205
ZW
19115 FIXME:
19116 There is one other problem that ought to be addressed here, but
19117 which currently is not: Taking the address of a label (rather
19118 than a function) and then later jumping to that address. Such
19119 addresses also ought to have their bottom bit set (assuming that
19120 they reside in Thumb code), but at the moment they will not. */
404ff6b5 19121
c19d1205
ZW
19122bfd_boolean
19123arm_fix_adjustable (fixS * fixP)
404ff6b5 19124{
c19d1205
ZW
19125 if (fixP->fx_addsy == NULL)
19126 return 1;
404ff6b5 19127
e28387c3
PB
19128 /* Preserve relocations against symbols with function type. */
19129 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19130 return 0;
19131
c19d1205
ZW
19132 if (THUMB_IS_FUNC (fixP->fx_addsy)
19133 && fixP->fx_subsy == NULL)
19134 return 0;
a737bd4d 19135
c19d1205
ZW
19136 /* We need the symbol name for the VTABLE entries. */
19137 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19138 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19139 return 0;
404ff6b5 19140
c19d1205
ZW
19141 /* Don't allow symbols to be discarded on GOT related relocs. */
19142 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19143 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19144 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19145 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19146 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19147 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19148 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19149 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19150 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19151 return 0;
a737bd4d 19152
4962c51a
MS
19153 /* Similarly for group relocations. */
19154 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19155 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19156 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19157 return 0;
19158
c19d1205 19159 return 1;
a737bd4d 19160}
0ffdc86c
NC
19161#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19162
19163#ifdef OBJ_ELF
404ff6b5 19164
c19d1205
ZW
19165const char *
19166elf32_arm_target_format (void)
404ff6b5 19167{
c19d1205
ZW
19168#ifdef TE_SYMBIAN
19169 return (target_big_endian
19170 ? "elf32-bigarm-symbian"
19171 : "elf32-littlearm-symbian");
19172#elif defined (TE_VXWORKS)
19173 return (target_big_endian
19174 ? "elf32-bigarm-vxworks"
19175 : "elf32-littlearm-vxworks");
19176#else
19177 if (target_big_endian)
19178 return "elf32-bigarm";
19179 else
19180 return "elf32-littlearm";
19181#endif
404ff6b5
AH
19182}
19183
c19d1205
ZW
19184void
19185armelf_frob_symbol (symbolS * symp,
19186 int * puntp)
404ff6b5 19187{
c19d1205
ZW
19188 elf_frob_symbol (symp, puntp);
19189}
19190#endif
404ff6b5 19191
c19d1205 19192/* MD interface: Finalization. */
a737bd4d 19193
c19d1205
ZW
19194/* A good place to do this, although this was probably not intended
19195 for this kind of use. We need to dump the literal pool before
19196 references are made to a null symbol pointer. */
a737bd4d 19197
c19d1205
ZW
19198void
19199arm_cleanup (void)
19200{
19201 literal_pool * pool;
a737bd4d 19202
c19d1205
ZW
19203 for (pool = list_of_pools; pool; pool = pool->next)
19204 {
19205 /* Put it at the end of the relevent section. */
19206 subseg_set (pool->section, pool->sub_section);
19207#ifdef OBJ_ELF
19208 arm_elf_change_section ();
19209#endif
19210 s_ltorg (0);
19211 }
404ff6b5
AH
19212}
19213
c19d1205
ZW
19214/* Adjust the symbol table. This marks Thumb symbols as distinct from
19215 ARM ones. */
404ff6b5 19216
c19d1205
ZW
19217void
19218arm_adjust_symtab (void)
404ff6b5 19219{
c19d1205
ZW
19220#ifdef OBJ_COFF
19221 symbolS * sym;
404ff6b5 19222
c19d1205
ZW
19223 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19224 {
19225 if (ARM_IS_THUMB (sym))
19226 {
19227 if (THUMB_IS_FUNC (sym))
19228 {
19229 /* Mark the symbol as a Thumb function. */
19230 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19231 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19232 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 19233
c19d1205
ZW
19234 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19235 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19236 else
19237 as_bad (_("%s: unexpected function type: %d"),
19238 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19239 }
19240 else switch (S_GET_STORAGE_CLASS (sym))
19241 {
19242 case C_EXT:
19243 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19244 break;
19245 case C_STAT:
19246 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19247 break;
19248 case C_LABEL:
19249 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19250 break;
19251 default:
19252 /* Do nothing. */
19253 break;
19254 }
19255 }
a737bd4d 19256
c19d1205
ZW
19257 if (ARM_IS_INTERWORK (sym))
19258 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 19259 }
c19d1205
ZW
19260#endif
19261#ifdef OBJ_ELF
19262 symbolS * sym;
19263 char bind;
404ff6b5 19264
c19d1205 19265 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 19266 {
c19d1205
ZW
19267 if (ARM_IS_THUMB (sym))
19268 {
19269 elf_symbol_type * elf_sym;
404ff6b5 19270
c19d1205
ZW
19271 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19272 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 19273
b0796911
PB
19274 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19275 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
19276 {
19277 /* If it's a .thumb_func, declare it as so,
19278 otherwise tag label as .code 16. */
19279 if (THUMB_IS_FUNC (sym))
19280 elf_sym->internal_elf_sym.st_info =
19281 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 19282 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
19283 elf_sym->internal_elf_sym.st_info =
19284 ELF_ST_INFO (bind, STT_ARM_16BIT);
19285 }
19286 }
19287 }
19288#endif
404ff6b5
AH
19289}
19290
c19d1205 19291/* MD interface: Initialization. */
404ff6b5 19292
a737bd4d 19293static void
c19d1205 19294set_constant_flonums (void)
a737bd4d 19295{
c19d1205 19296 int i;
404ff6b5 19297
c19d1205
ZW
19298 for (i = 0; i < NUM_FLOAT_VALS; i++)
19299 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19300 abort ();
a737bd4d 19301}
404ff6b5 19302
3e9e4fcf
JB
19303/* Auto-select Thumb mode if it's the only available instruction set for the
19304 given architecture. */
19305
19306static void
19307autoselect_thumb_from_cpu_variant (void)
19308{
19309 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19310 opcode_select (16);
19311}
19312
c19d1205
ZW
19313void
19314md_begin (void)
a737bd4d 19315{
c19d1205
ZW
19316 unsigned mach;
19317 unsigned int i;
404ff6b5 19318
c19d1205
ZW
19319 if ( (arm_ops_hsh = hash_new ()) == NULL
19320 || (arm_cond_hsh = hash_new ()) == NULL
19321 || (arm_shift_hsh = hash_new ()) == NULL
19322 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 19323 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 19324 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
19325 || (arm_reloc_hsh = hash_new ()) == NULL
19326 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
19327 as_fatal (_("virtual memory exhausted"));
19328
19329 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19330 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19331 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19332 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19333 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19334 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19335 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19336 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
62b3e311
PB
19337 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19338 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
c19d1205
ZW
19339 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19340 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
62b3e311
PB
19341 for (i = 0;
19342 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19343 i++)
19344 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19345 (PTR) (barrier_opt_names + i));
c19d1205
ZW
19346#ifdef OBJ_ELF
19347 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19348 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19349#endif
19350
19351 set_constant_flonums ();
404ff6b5 19352
c19d1205
ZW
19353 /* Set the cpu variant based on the command-line options. We prefer
19354 -mcpu= over -march= if both are set (as for GCC); and we prefer
19355 -mfpu= over any other way of setting the floating point unit.
19356 Use of legacy options with new options are faulted. */
e74cfd16 19357 if (legacy_cpu)
404ff6b5 19358 {
e74cfd16 19359 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
19360 as_bad (_("use of old and new-style options to set CPU type"));
19361
19362 mcpu_cpu_opt = legacy_cpu;
404ff6b5 19363 }
e74cfd16 19364 else if (!mcpu_cpu_opt)
c19d1205 19365 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 19366
e74cfd16 19367 if (legacy_fpu)
c19d1205 19368 {
e74cfd16 19369 if (mfpu_opt)
c19d1205 19370 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
19371
19372 mfpu_opt = legacy_fpu;
19373 }
e74cfd16 19374 else if (!mfpu_opt)
03b1477f 19375 {
c19d1205 19376#if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
19377 /* Some environments specify a default FPU. If they don't, infer it
19378 from the processor. */
e74cfd16 19379 if (mcpu_fpu_opt)
03b1477f
RE
19380 mfpu_opt = mcpu_fpu_opt;
19381 else
19382 mfpu_opt = march_fpu_opt;
39c2da32 19383#else
e74cfd16 19384 mfpu_opt = &fpu_default;
39c2da32 19385#endif
03b1477f
RE
19386 }
19387
e74cfd16 19388 if (!mfpu_opt)
03b1477f 19389 {
493cb6ef 19390 if (mcpu_cpu_opt != NULL)
e74cfd16 19391 mfpu_opt = &fpu_default;
493cb6ef 19392 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 19393 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 19394 else
e74cfd16 19395 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
19396 }
19397
ee065d83 19398#ifdef CPU_DEFAULT
e74cfd16 19399 if (!mcpu_cpu_opt)
ee065d83 19400 {
e74cfd16
PB
19401 mcpu_cpu_opt = &cpu_default;
19402 selected_cpu = cpu_default;
ee065d83 19403 }
e74cfd16
PB
19404#else
19405 if (mcpu_cpu_opt)
19406 selected_cpu = *mcpu_cpu_opt;
ee065d83 19407 else
e74cfd16 19408 mcpu_cpu_opt = &arm_arch_any;
ee065d83 19409#endif
03b1477f 19410
e74cfd16 19411 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 19412
3e9e4fcf
JB
19413 autoselect_thumb_from_cpu_variant ();
19414
e74cfd16 19415 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 19416
f17c130b 19417#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 19418 {
7cc69913
NC
19419 unsigned int flags = 0;
19420
19421#if defined OBJ_ELF
19422 flags = meabi_flags;
d507cf36
PB
19423
19424 switch (meabi_flags)
33a392fb 19425 {
d507cf36 19426 case EF_ARM_EABI_UNKNOWN:
7cc69913 19427#endif
d507cf36
PB
19428 /* Set the flags in the private structure. */
19429 if (uses_apcs_26) flags |= F_APCS26;
19430 if (support_interwork) flags |= F_INTERWORK;
19431 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 19432 if (pic_code) flags |= F_PIC;
e74cfd16 19433 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
19434 flags |= F_SOFT_FLOAT;
19435
d507cf36
PB
19436 switch (mfloat_abi_opt)
19437 {
19438 case ARM_FLOAT_ABI_SOFT:
19439 case ARM_FLOAT_ABI_SOFTFP:
19440 flags |= F_SOFT_FLOAT;
19441 break;
33a392fb 19442
d507cf36
PB
19443 case ARM_FLOAT_ABI_HARD:
19444 if (flags & F_SOFT_FLOAT)
19445 as_bad (_("hard-float conflicts with specified fpu"));
19446 break;
19447 }
03b1477f 19448
e74cfd16
PB
19449 /* Using pure-endian doubles (even if soft-float). */
19450 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 19451 flags |= F_VFP_FLOAT;
f17c130b 19452
fde78edd 19453#if defined OBJ_ELF
e74cfd16 19454 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 19455 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
19456 break;
19457
8cb51566 19458 case EF_ARM_EABI_VER4:
3a4a14e9 19459 case EF_ARM_EABI_VER5:
c19d1205 19460 /* No additional flags to set. */
d507cf36
PB
19461 break;
19462
19463 default:
19464 abort ();
19465 }
7cc69913 19466#endif
b99bd4ef
NC
19467 bfd_set_private_flags (stdoutput, flags);
19468
19469 /* We have run out flags in the COFF header to encode the
19470 status of ATPCS support, so instead we create a dummy,
c19d1205 19471 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
19472 if (atpcs)
19473 {
19474 asection * sec;
19475
19476 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19477
19478 if (sec != NULL)
19479 {
19480 bfd_set_section_flags
19481 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19482 bfd_set_section_size (stdoutput, sec, 0);
19483 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19484 }
19485 }
7cc69913 19486 }
f17c130b 19487#endif
b99bd4ef
NC
19488
19489 /* Record the CPU type as well. */
2d447fca
JM
19490 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19491 mach = bfd_mach_arm_iWMMXt2;
19492 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 19493 mach = bfd_mach_arm_iWMMXt;
e74cfd16 19494 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 19495 mach = bfd_mach_arm_XScale;
e74cfd16 19496 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 19497 mach = bfd_mach_arm_ep9312;
e74cfd16 19498 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 19499 mach = bfd_mach_arm_5TE;
e74cfd16 19500 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 19501 {
e74cfd16 19502 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19503 mach = bfd_mach_arm_5T;
19504 else
19505 mach = bfd_mach_arm_5;
19506 }
e74cfd16 19507 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 19508 {
e74cfd16 19509 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
19510 mach = bfd_mach_arm_4T;
19511 else
19512 mach = bfd_mach_arm_4;
19513 }
e74cfd16 19514 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 19515 mach = bfd_mach_arm_3M;
e74cfd16
PB
19516 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19517 mach = bfd_mach_arm_3;
19518 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19519 mach = bfd_mach_arm_2a;
19520 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19521 mach = bfd_mach_arm_2;
19522 else
19523 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
19524
19525 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19526}
19527
c19d1205 19528/* Command line processing. */
b99bd4ef 19529
c19d1205
ZW
19530/* md_parse_option
19531 Invocation line includes a switch not recognized by the base assembler.
19532 See if it's a processor-specific option.
b99bd4ef 19533
c19d1205
ZW
19534 This routine is somewhat complicated by the need for backwards
19535 compatibility (since older releases of gcc can't be changed).
19536 The new options try to make the interface as compatible as
19537 possible with GCC.
b99bd4ef 19538
c19d1205 19539 New options (supported) are:
b99bd4ef 19540
c19d1205
ZW
19541 -mcpu=<cpu name> Assemble for selected processor
19542 -march=<architecture name> Assemble for selected architecture
19543 -mfpu=<fpu architecture> Assemble for selected FPU.
19544 -EB/-mbig-endian Big-endian
19545 -EL/-mlittle-endian Little-endian
19546 -k Generate PIC code
19547 -mthumb Start in Thumb mode
19548 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 19549
c19d1205 19550 For now we will also provide support for:
b99bd4ef 19551
c19d1205
ZW
19552 -mapcs-32 32-bit Program counter
19553 -mapcs-26 26-bit Program counter
19554 -macps-float Floats passed in FP registers
19555 -mapcs-reentrant Reentrant code
19556 -matpcs
19557 (sometime these will probably be replaced with -mapcs=<list of options>
19558 and -matpcs=<list of options>)
b99bd4ef 19559
c19d1205
ZW
19560 The remaining options are only supported for back-wards compatibility.
19561 Cpu variants, the arm part is optional:
19562 -m[arm]1 Currently not supported.
19563 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19564 -m[arm]3 Arm 3 processor
19565 -m[arm]6[xx], Arm 6 processors
19566 -m[arm]7[xx][t][[d]m] Arm 7 processors
19567 -m[arm]8[10] Arm 8 processors
19568 -m[arm]9[20][tdmi] Arm 9 processors
19569 -mstrongarm[110[0]] StrongARM processors
19570 -mxscale XScale processors
19571 -m[arm]v[2345[t[e]]] Arm architectures
19572 -mall All (except the ARM1)
19573 FP variants:
19574 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19575 -mfpe-old (No float load/store multiples)
19576 -mvfpxd VFP Single precision
19577 -mvfp All VFP
19578 -mno-fpu Disable all floating point instructions
b99bd4ef 19579
c19d1205
ZW
19580 The following CPU names are recognized:
19581 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19582 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19583 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19584 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19585 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19586 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19587 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 19588
c19d1205 19589 */
b99bd4ef 19590
c19d1205 19591const char * md_shortopts = "m:k";
b99bd4ef 19592
c19d1205
ZW
19593#ifdef ARM_BI_ENDIAN
19594#define OPTION_EB (OPTION_MD_BASE + 0)
19595#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 19596#else
c19d1205
ZW
19597#if TARGET_BYTES_BIG_ENDIAN
19598#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 19599#else
c19d1205
ZW
19600#define OPTION_EL (OPTION_MD_BASE + 1)
19601#endif
b99bd4ef 19602#endif
b99bd4ef 19603
c19d1205 19604struct option md_longopts[] =
b99bd4ef 19605{
c19d1205
ZW
19606#ifdef OPTION_EB
19607 {"EB", no_argument, NULL, OPTION_EB},
19608#endif
19609#ifdef OPTION_EL
19610 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 19611#endif
c19d1205
ZW
19612 {NULL, no_argument, NULL, 0}
19613};
b99bd4ef 19614
c19d1205 19615size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 19616
c19d1205 19617struct arm_option_table
b99bd4ef 19618{
c19d1205
ZW
19619 char *option; /* Option name to match. */
19620 char *help; /* Help information. */
19621 int *var; /* Variable to change. */
19622 int value; /* What to change it to. */
19623 char *deprecated; /* If non-null, print this message. */
19624};
b99bd4ef 19625
c19d1205
ZW
19626struct arm_option_table arm_opts[] =
19627{
19628 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19629 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19630 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19631 &support_interwork, 1, NULL},
19632 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19633 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19634 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19635 1, NULL},
19636 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19637 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19638 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19639 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19640 NULL},
b99bd4ef 19641
c19d1205
ZW
19642 /* These are recognized by the assembler, but have no affect on code. */
19643 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19644 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
e74cfd16
PB
19645 {NULL, NULL, NULL, 0, NULL}
19646};
19647
19648struct arm_legacy_option_table
19649{
19650 char *option; /* Option name to match. */
19651 const arm_feature_set **var; /* Variable to change. */
19652 const arm_feature_set value; /* What to change it to. */
19653 char *deprecated; /* If non-null, print this message. */
19654};
b99bd4ef 19655
e74cfd16
PB
19656const struct arm_legacy_option_table arm_legacy_opts[] =
19657{
c19d1205
ZW
19658 /* DON'T add any new processors to this list -- we want the whole list
19659 to go away... Add them to the processors table instead. */
e74cfd16
PB
19660 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19661 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19662 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19663 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19664 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19665 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19666 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19667 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19668 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19669 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19670 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19671 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19672 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19673 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19674 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19675 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19676 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19677 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19678 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19679 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19680 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19681 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19682 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19683 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19684 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19685 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19686 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19687 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19688 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19689 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19690 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19691 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19692 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19693 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19694 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19695 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19696 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19697 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19698 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19699 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19700 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19701 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19702 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19703 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19704 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19705 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19706 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19707 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19708 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19709 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19710 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19711 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19712 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19713 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19714 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19715 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19716 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19717 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19718 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19719 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19720 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19721 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19722 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19723 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19724 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19725 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19726 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19727 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19728 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19729 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19730 N_("use -mcpu=strongarm110")},
e74cfd16 19731 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19732 N_("use -mcpu=strongarm1100")},
e74cfd16 19733 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 19734 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
19735 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19736 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19737 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 19738
c19d1205 19739 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
19740 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19741 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19742 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19743 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19744 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19745 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19746 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19747 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19748 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19749 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19750 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19751 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19752 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19753 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19754 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19755 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19756 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19757 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 19758
c19d1205 19759 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
19760 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19761 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19762 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19763 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 19764 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 19765
e74cfd16 19766 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 19767};
7ed4c4c5 19768
c19d1205 19769struct arm_cpu_option_table
7ed4c4c5 19770{
c19d1205 19771 char *name;
e74cfd16 19772 const arm_feature_set value;
c19d1205
ZW
19773 /* For some CPUs we assume an FPU unless the user explicitly sets
19774 -mfpu=... */
e74cfd16 19775 const arm_feature_set default_fpu;
ee065d83
PB
19776 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19777 case. */
19778 const char *canonical_name;
c19d1205 19779};
7ed4c4c5 19780
c19d1205
ZW
19781/* This list should, at a minimum, contain all the cpu names
19782 recognized by GCC. */
e74cfd16 19783static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 19784{
ee065d83
PB
19785 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19786 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19787 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19788 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19789 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19790 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19791 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19792 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19793 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19794 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19795 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19796 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19797 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19798 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19799 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19800 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19801 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19802 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19803 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19804 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19805 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19806 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19807 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19808 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19809 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19810 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19811 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19812 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19813 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19814 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19815 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19816 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19817 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19818 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19819 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19820 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19821 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19822 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19823 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19824 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
19825 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19826 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19827 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19828 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
c19d1205
ZW
19829 /* For V5 or later processors we default to using VFP; but the user
19830 should really set the FPU type explicitly. */
ee065d83
PB
19831 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19832 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19833 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19834 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19835 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19836 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19837 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
19838 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19839 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19840 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
19841 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19842 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19843 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19844 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19845 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19846 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
19847 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19848 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19849 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19850 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
19851 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19852 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
19853 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
19854 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
19855 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
19856 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
19857 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
19858 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
19859 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
19860 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
19861 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
5287ad62
JB
19862 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
19863 | FPU_NEON_EXT_V1),
19864 NULL},
62b3e311
PB
19865 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
19866 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
c19d1205 19867 /* ??? XSCALE is really an architecture. */
ee065d83 19868 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 19869 /* ??? iwmmxt is not a processor. */
ee065d83 19870 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 19871 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 19872 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 19873 /* Maverick */
e74cfd16
PB
19874 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
19875 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 19876};
7ed4c4c5 19877
c19d1205 19878struct arm_arch_option_table
7ed4c4c5 19879{
c19d1205 19880 char *name;
e74cfd16
PB
19881 const arm_feature_set value;
19882 const arm_feature_set default_fpu;
c19d1205 19883};
7ed4c4c5 19884
c19d1205
ZW
19885/* This list should, at a minimum, contain all the architecture names
19886 recognized by GCC. */
e74cfd16 19887static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
19888{
19889 {"all", ARM_ANY, FPU_ARCH_FPA},
19890 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
19891 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
19892 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
19893 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
19894 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
19895 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
19896 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
19897 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
19898 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
19899 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
19900 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
19901 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
19902 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
19903 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
19904 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
19905 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
19906 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
19907 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
19908 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
19909 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
19910 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
19911 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
19912 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
19913 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
19914 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
62b3e311 19915 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
19916 /* The official spelling of the ARMv7 profile variants is the dashed form.
19917 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
19918 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
19919 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
19920 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
19921 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
19922 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
19923 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
19924 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
19925 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 19926 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 19927 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 19928};
7ed4c4c5 19929
c19d1205 19930/* ISA extensions in the co-processor space. */
e74cfd16 19931struct arm_option_cpu_value_table
c19d1205
ZW
19932{
19933 char *name;
e74cfd16 19934 const arm_feature_set value;
c19d1205 19935};
7ed4c4c5 19936
e74cfd16 19937static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 19938{
e74cfd16
PB
19939 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
19940 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
19941 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 19942 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 19943 {NULL, ARM_ARCH_NONE}
c19d1205 19944};
7ed4c4c5 19945
c19d1205
ZW
19946/* This list should, at a minimum, contain all the fpu names
19947 recognized by GCC. */
e74cfd16 19948static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
19949{
19950 {"softfpa", FPU_NONE},
19951 {"fpe", FPU_ARCH_FPE},
19952 {"fpe2", FPU_ARCH_FPE},
19953 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
19954 {"fpa", FPU_ARCH_FPA},
19955 {"fpa10", FPU_ARCH_FPA},
19956 {"fpa11", FPU_ARCH_FPA},
19957 {"arm7500fe", FPU_ARCH_FPA},
19958 {"softvfp", FPU_ARCH_VFP},
19959 {"softvfp+vfp", FPU_ARCH_VFP_V2},
19960 {"vfp", FPU_ARCH_VFP_V2},
19961 {"vfp9", FPU_ARCH_VFP_V2},
5287ad62 19962 {"vfp3", FPU_ARCH_VFP_V3},
c19d1205
ZW
19963 {"vfp10", FPU_ARCH_VFP_V2},
19964 {"vfp10-r0", FPU_ARCH_VFP_V1},
19965 {"vfpxd", FPU_ARCH_VFP_V1xD},
19966 {"arm1020t", FPU_ARCH_VFP_V1},
19967 {"arm1020e", FPU_ARCH_VFP_V2},
19968 {"arm1136jfs", FPU_ARCH_VFP_V2},
19969 {"arm1136jf-s", FPU_ARCH_VFP_V2},
19970 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 19971 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
e74cfd16
PB
19972 {NULL, ARM_ARCH_NONE}
19973};
19974
19975struct arm_option_value_table
19976{
19977 char *name;
19978 long value;
c19d1205 19979};
7ed4c4c5 19980
e74cfd16 19981static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
19982{
19983 {"hard", ARM_FLOAT_ABI_HARD},
19984 {"softfp", ARM_FLOAT_ABI_SOFTFP},
19985 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 19986 {NULL, 0}
c19d1205 19987};
7ed4c4c5 19988
c19d1205 19989#ifdef OBJ_ELF
3a4a14e9 19990/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 19991static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
19992{
19993 {"gnu", EF_ARM_EABI_UNKNOWN},
19994 {"4", EF_ARM_EABI_VER4},
3a4a14e9 19995 {"5", EF_ARM_EABI_VER5},
e74cfd16 19996 {NULL, 0}
c19d1205
ZW
19997};
19998#endif
7ed4c4c5 19999
c19d1205
ZW
20000struct arm_long_option_table
20001{
20002 char * option; /* Substring to match. */
20003 char * help; /* Help information. */
20004 int (* func) (char * subopt); /* Function to decode sub-option. */
20005 char * deprecated; /* If non-null, print this message. */
20006};
7ed4c4c5
NC
20007
20008static int
e74cfd16 20009arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 20010{
e74cfd16
PB
20011 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20012
20013 /* Copy the feature set, so that we can modify it. */
20014 *ext_set = **opt_p;
20015 *opt_p = ext_set;
20016
c19d1205 20017 while (str != NULL && *str != 0)
7ed4c4c5 20018 {
e74cfd16 20019 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
20020 char * ext;
20021 int optlen;
7ed4c4c5 20022
c19d1205
ZW
20023 if (*str != '+')
20024 {
20025 as_bad (_("invalid architectural extension"));
20026 return 0;
20027 }
7ed4c4c5 20028
c19d1205
ZW
20029 str++;
20030 ext = strchr (str, '+');
7ed4c4c5 20031
c19d1205
ZW
20032 if (ext != NULL)
20033 optlen = ext - str;
20034 else
20035 optlen = strlen (str);
7ed4c4c5 20036
c19d1205
ZW
20037 if (optlen == 0)
20038 {
20039 as_bad (_("missing architectural extension"));
20040 return 0;
20041 }
7ed4c4c5 20042
c19d1205
ZW
20043 for (opt = arm_extensions; opt->name != NULL; opt++)
20044 if (strncmp (opt->name, str, optlen) == 0)
20045 {
e74cfd16 20046 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
20047 break;
20048 }
7ed4c4c5 20049
c19d1205
ZW
20050 if (opt->name == NULL)
20051 {
20052 as_bad (_("unknown architectural extnsion `%s'"), str);
20053 return 0;
20054 }
7ed4c4c5 20055
c19d1205
ZW
20056 str = ext;
20057 };
7ed4c4c5 20058
c19d1205
ZW
20059 return 1;
20060}
7ed4c4c5 20061
c19d1205
ZW
20062static int
20063arm_parse_cpu (char * str)
7ed4c4c5 20064{
e74cfd16 20065 const struct arm_cpu_option_table * opt;
c19d1205
ZW
20066 char * ext = strchr (str, '+');
20067 int optlen;
7ed4c4c5 20068
c19d1205
ZW
20069 if (ext != NULL)
20070 optlen = ext - str;
7ed4c4c5 20071 else
c19d1205 20072 optlen = strlen (str);
7ed4c4c5 20073
c19d1205 20074 if (optlen == 0)
7ed4c4c5 20075 {
c19d1205
ZW
20076 as_bad (_("missing cpu name `%s'"), str);
20077 return 0;
7ed4c4c5
NC
20078 }
20079
c19d1205
ZW
20080 for (opt = arm_cpus; opt->name != NULL; opt++)
20081 if (strncmp (opt->name, str, optlen) == 0)
20082 {
e74cfd16
PB
20083 mcpu_cpu_opt = &opt->value;
20084 mcpu_fpu_opt = &opt->default_fpu;
ee065d83
PB
20085 if (opt->canonical_name)
20086 strcpy(selected_cpu_name, opt->canonical_name);
20087 else
20088 {
20089 int i;
20090 for (i = 0; i < optlen; i++)
20091 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20092 selected_cpu_name[i] = 0;
20093 }
7ed4c4c5 20094
c19d1205
ZW
20095 if (ext != NULL)
20096 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 20097
c19d1205
ZW
20098 return 1;
20099 }
7ed4c4c5 20100
c19d1205
ZW
20101 as_bad (_("unknown cpu `%s'"), str);
20102 return 0;
7ed4c4c5
NC
20103}
20104
c19d1205
ZW
20105static int
20106arm_parse_arch (char * str)
7ed4c4c5 20107{
e74cfd16 20108 const struct arm_arch_option_table *opt;
c19d1205
ZW
20109 char *ext = strchr (str, '+');
20110 int optlen;
7ed4c4c5 20111
c19d1205
ZW
20112 if (ext != NULL)
20113 optlen = ext - str;
7ed4c4c5 20114 else
c19d1205 20115 optlen = strlen (str);
7ed4c4c5 20116
c19d1205 20117 if (optlen == 0)
7ed4c4c5 20118 {
c19d1205
ZW
20119 as_bad (_("missing architecture name `%s'"), str);
20120 return 0;
7ed4c4c5
NC
20121 }
20122
c19d1205
ZW
20123 for (opt = arm_archs; opt->name != NULL; opt++)
20124 if (streq (opt->name, str))
20125 {
e74cfd16
PB
20126 march_cpu_opt = &opt->value;
20127 march_fpu_opt = &opt->default_fpu;
ee065d83 20128 strcpy(selected_cpu_name, opt->name);
7ed4c4c5 20129
c19d1205
ZW
20130 if (ext != NULL)
20131 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 20132
c19d1205
ZW
20133 return 1;
20134 }
20135
20136 as_bad (_("unknown architecture `%s'\n"), str);
20137 return 0;
7ed4c4c5 20138}
eb043451 20139
c19d1205
ZW
20140static int
20141arm_parse_fpu (char * str)
20142{
e74cfd16 20143 const struct arm_option_cpu_value_table * opt;
b99bd4ef 20144
c19d1205
ZW
20145 for (opt = arm_fpus; opt->name != NULL; opt++)
20146 if (streq (opt->name, str))
20147 {
e74cfd16 20148 mfpu_opt = &opt->value;
c19d1205
ZW
20149 return 1;
20150 }
b99bd4ef 20151
c19d1205
ZW
20152 as_bad (_("unknown floating point format `%s'\n"), str);
20153 return 0;
20154}
20155
20156static int
20157arm_parse_float_abi (char * str)
b99bd4ef 20158{
e74cfd16 20159 const struct arm_option_value_table * opt;
b99bd4ef 20160
c19d1205
ZW
20161 for (opt = arm_float_abis; opt->name != NULL; opt++)
20162 if (streq (opt->name, str))
20163 {
20164 mfloat_abi_opt = opt->value;
20165 return 1;
20166 }
cc8a6dd0 20167
c19d1205
ZW
20168 as_bad (_("unknown floating point abi `%s'\n"), str);
20169 return 0;
20170}
b99bd4ef 20171
c19d1205
ZW
20172#ifdef OBJ_ELF
20173static int
20174arm_parse_eabi (char * str)
20175{
e74cfd16 20176 const struct arm_option_value_table *opt;
cc8a6dd0 20177
c19d1205
ZW
20178 for (opt = arm_eabis; opt->name != NULL; opt++)
20179 if (streq (opt->name, str))
20180 {
20181 meabi_flags = opt->value;
20182 return 1;
20183 }
20184 as_bad (_("unknown EABI `%s'\n"), str);
20185 return 0;
20186}
20187#endif
cc8a6dd0 20188
c19d1205
ZW
20189struct arm_long_option_table arm_long_opts[] =
20190{
20191 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20192 arm_parse_cpu, NULL},
20193 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20194 arm_parse_arch, NULL},
20195 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20196 arm_parse_fpu, NULL},
20197 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20198 arm_parse_float_abi, NULL},
20199#ifdef OBJ_ELF
20200 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
20201 arm_parse_eabi, NULL},
20202#endif
20203 {NULL, NULL, 0, NULL}
20204};
cc8a6dd0 20205
c19d1205
ZW
20206int
20207md_parse_option (int c, char * arg)
20208{
20209 struct arm_option_table *opt;
e74cfd16 20210 const struct arm_legacy_option_table *fopt;
c19d1205 20211 struct arm_long_option_table *lopt;
b99bd4ef 20212
c19d1205 20213 switch (c)
b99bd4ef 20214 {
c19d1205
ZW
20215#ifdef OPTION_EB
20216 case OPTION_EB:
20217 target_big_endian = 1;
20218 break;
20219#endif
cc8a6dd0 20220
c19d1205
ZW
20221#ifdef OPTION_EL
20222 case OPTION_EL:
20223 target_big_endian = 0;
20224 break;
20225#endif
b99bd4ef 20226
c19d1205
ZW
20227 case 'a':
20228 /* Listing option. Just ignore these, we don't support additional
20229 ones. */
20230 return 0;
b99bd4ef 20231
c19d1205
ZW
20232 default:
20233 for (opt = arm_opts; opt->option != NULL; opt++)
20234 {
20235 if (c == opt->option[0]
20236 && ((arg == NULL && opt->option[1] == 0)
20237 || streq (arg, opt->option + 1)))
20238 {
20239#if WARN_DEPRECATED
20240 /* If the option is deprecated, tell the user. */
20241 if (opt->deprecated != NULL)
20242 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20243 arg ? arg : "", _(opt->deprecated));
20244#endif
b99bd4ef 20245
c19d1205
ZW
20246 if (opt->var != NULL)
20247 *opt->var = opt->value;
cc8a6dd0 20248
c19d1205
ZW
20249 return 1;
20250 }
20251 }
b99bd4ef 20252
e74cfd16
PB
20253 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20254 {
20255 if (c == fopt->option[0]
20256 && ((arg == NULL && fopt->option[1] == 0)
20257 || streq (arg, fopt->option + 1)))
20258 {
20259#if WARN_DEPRECATED
20260 /* If the option is deprecated, tell the user. */
20261 if (fopt->deprecated != NULL)
20262 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20263 arg ? arg : "", _(fopt->deprecated));
20264#endif
20265
20266 if (fopt->var != NULL)
20267 *fopt->var = &fopt->value;
20268
20269 return 1;
20270 }
20271 }
20272
c19d1205
ZW
20273 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20274 {
20275 /* These options are expected to have an argument. */
20276 if (c == lopt->option[0]
20277 && arg != NULL
20278 && strncmp (arg, lopt->option + 1,
20279 strlen (lopt->option + 1)) == 0)
20280 {
20281#if WARN_DEPRECATED
20282 /* If the option is deprecated, tell the user. */
20283 if (lopt->deprecated != NULL)
20284 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20285 _(lopt->deprecated));
20286#endif
b99bd4ef 20287
c19d1205
ZW
20288 /* Call the sup-option parser. */
20289 return lopt->func (arg + strlen (lopt->option) - 1);
20290 }
20291 }
a737bd4d 20292
c19d1205
ZW
20293 return 0;
20294 }
a394c00f 20295
c19d1205
ZW
20296 return 1;
20297}
a394c00f 20298
c19d1205
ZW
20299void
20300md_show_usage (FILE * fp)
a394c00f 20301{
c19d1205
ZW
20302 struct arm_option_table *opt;
20303 struct arm_long_option_table *lopt;
a394c00f 20304
c19d1205 20305 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 20306
c19d1205
ZW
20307 for (opt = arm_opts; opt->option != NULL; opt++)
20308 if (opt->help != NULL)
20309 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 20310
c19d1205
ZW
20311 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20312 if (lopt->help != NULL)
20313 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 20314
c19d1205
ZW
20315#ifdef OPTION_EB
20316 fprintf (fp, _("\
20317 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
20318#endif
20319
c19d1205
ZW
20320#ifdef OPTION_EL
20321 fprintf (fp, _("\
20322 -EL assemble code for a little-endian cpu\n"));
a737bd4d 20323#endif
c19d1205 20324}
ee065d83
PB
20325
20326
20327#ifdef OBJ_ELF
62b3e311
PB
20328typedef struct
20329{
20330 int val;
20331 arm_feature_set flags;
20332} cpu_arch_ver_table;
20333
20334/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20335 least features first. */
20336static const cpu_arch_ver_table cpu_arch_ver[] =
20337{
20338 {1, ARM_ARCH_V4},
20339 {2, ARM_ARCH_V4T},
20340 {3, ARM_ARCH_V5},
20341 {4, ARM_ARCH_V5TE},
20342 {5, ARM_ARCH_V5TEJ},
20343 {6, ARM_ARCH_V6},
20344 {7, ARM_ARCH_V6Z},
20345 {8, ARM_ARCH_V6K},
20346 {9, ARM_ARCH_V6T2},
20347 {10, ARM_ARCH_V7A},
20348 {10, ARM_ARCH_V7R},
20349 {10, ARM_ARCH_V7M},
20350 {0, ARM_ARCH_NONE}
20351};
20352
ee065d83
PB
20353/* Set the public EABI object attributes. */
20354static void
20355aeabi_set_public_attributes (void)
20356{
20357 int arch;
e74cfd16 20358 arm_feature_set flags;
62b3e311
PB
20359 arm_feature_set tmp;
20360 const cpu_arch_ver_table *p;
ee065d83
PB
20361
20362 /* Choose the architecture based on the capabilities of the requested cpu
20363 (if any) and/or the instructions actually used. */
e74cfd16
PB
20364 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20365 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20366 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
20367 /*Allow the user to override the reported architecture. */
20368 if (object_arch)
20369 {
20370 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20371 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20372 }
20373
62b3e311
PB
20374 tmp = flags;
20375 arch = 0;
20376 for (p = cpu_arch_ver; p->val; p++)
20377 {
20378 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20379 {
20380 arch = p->val;
20381 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20382 }
20383 }
ee065d83
PB
20384
20385 /* Tag_CPU_name. */
20386 if (selected_cpu_name[0])
20387 {
20388 char *p;
20389
20390 p = selected_cpu_name;
20391 if (strncmp(p, "armv", 4) == 0)
20392 {
20393 int i;
20394
20395 p += 4;
20396 for (i = 0; p[i]; i++)
20397 p[i] = TOUPPER (p[i]);
20398 }
20399 elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
20400 }
20401 /* Tag_CPU_arch. */
20402 elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
62b3e311
PB
20403 /* Tag_CPU_arch_profile. */
20404 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20405 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
20406 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20407 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
20408 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
20409 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
ee065d83 20410 /* Tag_ARM_ISA_use. */
e74cfd16 20411 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
ee065d83
PB
20412 elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
20413 /* Tag_THUMB_ISA_use. */
e74cfd16 20414 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
ee065d83 20415 elf32_arm_add_eabi_attr_int (stdoutput, 9,
e74cfd16 20416 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
ee065d83 20417 /* Tag_VFP_arch. */
5287ad62
JB
20418 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20419 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
20420 elf32_arm_add_eabi_attr_int (stdoutput, 10, 3);
20421 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20422 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
ee065d83 20423 elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
5287ad62
JB
20424 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20425 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20426 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20427 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
ee065d83
PB
20428 elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
20429 /* Tag_WMMX_arch. */
e74cfd16
PB
20430 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20431 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
ee065d83 20432 elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
5287ad62
JB
20433 /* Tag_NEON_arch. */
20434 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20435 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
20436 elf32_arm_add_eabi_attr_int (stdoutput, 12, 1);
ee065d83
PB
20437}
20438
20439/* Add the .ARM.attributes section. */
20440void
20441arm_md_end (void)
20442{
20443 segT s;
20444 char *p;
20445 addressT addr;
20446 offsetT size;
20447
20448 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20449 return;
20450
20451 aeabi_set_public_attributes ();
20452 size = elf32_arm_eabi_attr_size (stdoutput);
20453 s = subseg_new (".ARM.attributes", 0);
20454 bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
20455 addr = frag_now_fix ();
20456 p = frag_more (size);
20457 elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
20458}
8463be01 20459#endif /* OBJ_ELF */
ee065d83
PB
20460
20461
20462/* Parse a .cpu directive. */
20463
20464static void
20465s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20466{
e74cfd16 20467 const struct arm_cpu_option_table *opt;
ee065d83
PB
20468 char *name;
20469 char saved_char;
20470
20471 name = input_line_pointer;
20472 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20473 input_line_pointer++;
20474 saved_char = *input_line_pointer;
20475 *input_line_pointer = 0;
20476
20477 /* Skip the first "all" entry. */
20478 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20479 if (streq (opt->name, name))
20480 {
e74cfd16
PB
20481 mcpu_cpu_opt = &opt->value;
20482 selected_cpu = opt->value;
ee065d83
PB
20483 if (opt->canonical_name)
20484 strcpy(selected_cpu_name, opt->canonical_name);
20485 else
20486 {
20487 int i;
20488 for (i = 0; opt->name[i]; i++)
20489 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20490 selected_cpu_name[i] = 0;
20491 }
e74cfd16 20492 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20493 *input_line_pointer = saved_char;
20494 demand_empty_rest_of_line ();
20495 return;
20496 }
20497 as_bad (_("unknown cpu `%s'"), name);
20498 *input_line_pointer = saved_char;
20499 ignore_rest_of_line ();
20500}
20501
20502
20503/* Parse a .arch directive. */
20504
20505static void
20506s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20507{
e74cfd16 20508 const struct arm_arch_option_table *opt;
ee065d83
PB
20509 char saved_char;
20510 char *name;
20511
20512 name = input_line_pointer;
20513 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20514 input_line_pointer++;
20515 saved_char = *input_line_pointer;
20516 *input_line_pointer = 0;
20517
20518 /* Skip the first "all" entry. */
20519 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20520 if (streq (opt->name, name))
20521 {
e74cfd16
PB
20522 mcpu_cpu_opt = &opt->value;
20523 selected_cpu = opt->value;
ee065d83 20524 strcpy(selected_cpu_name, opt->name);
e74cfd16 20525 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20526 *input_line_pointer = saved_char;
20527 demand_empty_rest_of_line ();
20528 return;
20529 }
20530
20531 as_bad (_("unknown architecture `%s'\n"), name);
20532 *input_line_pointer = saved_char;
20533 ignore_rest_of_line ();
20534}
20535
20536
7a1d4c38
PB
20537/* Parse a .object_arch directive. */
20538
20539static void
20540s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20541{
20542 const struct arm_arch_option_table *opt;
20543 char saved_char;
20544 char *name;
20545
20546 name = input_line_pointer;
20547 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20548 input_line_pointer++;
20549 saved_char = *input_line_pointer;
20550 *input_line_pointer = 0;
20551
20552 /* Skip the first "all" entry. */
20553 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20554 if (streq (opt->name, name))
20555 {
20556 object_arch = &opt->value;
20557 *input_line_pointer = saved_char;
20558 demand_empty_rest_of_line ();
20559 return;
20560 }
20561
20562 as_bad (_("unknown architecture `%s'\n"), name);
20563 *input_line_pointer = saved_char;
20564 ignore_rest_of_line ();
20565}
20566
20567
ee065d83
PB
20568/* Parse a .fpu directive. */
20569
20570static void
20571s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20572{
e74cfd16 20573 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
20574 char saved_char;
20575 char *name;
20576
20577 name = input_line_pointer;
20578 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20579 input_line_pointer++;
20580 saved_char = *input_line_pointer;
20581 *input_line_pointer = 0;
20582
20583 for (opt = arm_fpus; opt->name != NULL; opt++)
20584 if (streq (opt->name, name))
20585 {
e74cfd16
PB
20586 mfpu_opt = &opt->value;
20587 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
20588 *input_line_pointer = saved_char;
20589 demand_empty_rest_of_line ();
20590 return;
20591 }
20592
20593 as_bad (_("unknown floating point format `%s'\n"), name);
20594 *input_line_pointer = saved_char;
20595 ignore_rest_of_line ();
20596}
ee065d83 20597
794ba86a
DJ
20598/* Copy symbol information. */
20599void
20600arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20601{
20602 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20603}
This page took 1.62382 seconds and 4 git commands to generate.