[PATCH 34/57][Arm][GAS] Add support for MVE instructions: vshl and vqshl
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
82704155 2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
b99bd4ef
NC
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
ec2655a6 13 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
b99bd4ef 25
42a68e18 26#include "as.h"
5287ad62 27#include <limits.h>
037e8744 28#include <stdarg.h>
c19d1205 29#define NO_RELOC 0
3882b010 30#include "safe-ctype.h"
b99bd4ef
NC
31#include "subsegs.h"
32#include "obstack.h"
3da1d841 33#include "libiberty.h"
f263249b
RE
34#include "opcode/arm.h"
35
b99bd4ef
NC
36#ifdef OBJ_ELF
37#include "elf/arm.h"
a394c00f 38#include "dw2gencfi.h"
b99bd4ef
NC
39#endif
40
f0927246
NC
41#include "dwarf2dbg.h"
42
7ed4c4c5
NC
43#ifdef OBJ_ELF
44/* Must be at least the size of the largest unwind opcode (currently two). */
45#define ARM_OPCODE_CHUNK_SIZE 8
46
47/* This structure holds the unwinding state. */
48
49static struct
50{
c19d1205
ZW
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
7ed4c4c5 55 /* The segment containing the function. */
c19d1205
ZW
56 segT saved_seg;
57 subsegT saved_subseg;
7ed4c4c5
NC
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
c19d1205
ZW
60 int opcode_count;
61 int opcode_alloc;
7ed4c4c5 62 /* The number of bytes pushed to the stack. */
c19d1205 63 offsetT frame_size;
7ed4c4c5
NC
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
c19d1205 67 offsetT pending_offset;
7ed4c4c5 68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
7ed4c4c5 72 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 73 unsigned fp_used:1;
7ed4c4c5 74 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 75 unsigned sp_restored:1;
7ed4c4c5
NC
76} unwind;
77
18a20338
CL
78/* Whether --fdpic was given. */
79static int arm_fdpic;
80
8b1ad454
NC
81#endif /* OBJ_ELF */
82
4962c51a
MS
83/* Results from operand parsing worker functions. */
84
85typedef enum
86{
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90} parse_operand_result;
91
33a392fb
PB
92enum arm_float_abi
93{
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97};
98
c19d1205 99/* Types of processor to assemble for. */
b99bd4ef 100#ifndef CPU_DEFAULT
8a59fff3 101/* The code that was here used to select a default CPU depending on compiler
fa94de6b 102 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
b99bd4ef
NC
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
4d354d8b
TP
129/* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
e74cfd16 132static arm_feature_set cpu_variant;
4d354d8b
TP
133/* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
e74cfd16
PB
135static arm_feature_set arm_arch_used;
136static arm_feature_set thumb_arch_used;
b99bd4ef 137
b99bd4ef 138/* Flags stored in private area of BFD structure. */
c19d1205
ZW
139static int uses_apcs_26 = FALSE;
140static int atpcs = FALSE;
b34976b6
AM
141static int support_interwork = FALSE;
142static int uses_apcs_float = FALSE;
c19d1205 143static int pic_code = FALSE;
845b51d6 144static int fix_v4bx = FALSE;
278df34e
NS
145/* Warn on using deprecated features. */
146static int warn_on_deprecated = TRUE;
147
2e6976a8
DG
148/* Understand CodeComposer Studio assembly syntax. */
149bfd_boolean codecomposer_syntax = FALSE;
03b1477f
RE
150
151/* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
4d354d8b
TP
154
155/* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157static const arm_feature_set *legacy_cpu = NULL;
158static const arm_feature_set *legacy_fpu = NULL;
159
160/* CPU, extension and FPU feature bits selected by -mcpu. */
161static const arm_feature_set *mcpu_cpu_opt = NULL;
162static arm_feature_set *mcpu_ext_opt = NULL;
163static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165/* CPU, extension and FPU feature bits selected by -march. */
166static const arm_feature_set *march_cpu_opt = NULL;
167static arm_feature_set *march_ext_opt = NULL;
168static const arm_feature_set *march_fpu_opt = NULL;
169
170/* Feature bits selected by -mfpu. */
171static const arm_feature_set *mfpu_opt = NULL;
e74cfd16
PB
172
173/* Constants for known architecture features. */
174static const arm_feature_set fpu_default = FPU_DEFAULT;
f85d59c3 175static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
e74cfd16 176static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
f85d59c3
KT
177static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
e74cfd16
PB
179static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
69c9e028 181#ifdef OBJ_ELF
e74cfd16 182static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
69c9e028 183#endif
e74cfd16
PB
184static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186#ifdef CPU_DEFAULT
187static const arm_feature_set cpu_default = CPU_DEFAULT;
188#endif
189
823d2571 190static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
4070243b 191static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
823d2571
TG
192static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
e74cfd16 198static const arm_feature_set arm_ext_v4t_5 =
823d2571
TG
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
55e8aae7
SP
207/* Only for compatability of hint instructions. */
208static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
823d2571
TG
210static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
69c9e028 222#ifdef OBJ_ELF
e7d39ed3 223static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
69c9e028 224#endif
823d2571 225static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
7e806470 226static const arm_feature_set arm_ext_m =
173205ca 227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
16a1fa25 228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
823d2571
TG
229static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
ddfded2f 234static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
4ed7ed8d 235static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
16a1fa25
TP
236static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
e12437dc
AV
238static const arm_feature_set arm_ext_v8_1m_main =
239ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
16a1fa25
TP
240/* Instructions in ARMv8-M only found in M profile architectures. */
241static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
ff8646ee
TP
243static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
4ed7ed8d
TP
245/* Instructions shared between ARMv8-A and ARMv8-M. */
246static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
69c9e028 248#ifdef OBJ_ELF
15afaa63
TP
249/* DSP instructions Tag_DSP_extension refers to. */
250static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
69c9e028 252#endif
4d1464f2
MW
253static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
b8ec4e87
JW
255/* FP16 instructions. */
256static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
01f48020
TC
258static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
dec41383
JW
260static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
49e8a725
SN
262static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
7fadb25d
SD
264static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
dad0c3bf
SD
266static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
e74cfd16
PB
268
269static const arm_feature_set arm_arch_any = ARM_ANY;
49fa50ef 270#ifdef OBJ_ELF
2c6b98ea 271static const arm_feature_set fpu_any = FPU_ANY;
49fa50ef 272#endif
f85d59c3 273static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
e74cfd16
PB
274static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
2d447fca 277static const arm_feature_set arm_cext_iwmmxt2 =
823d2571 278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
e74cfd16 279static const arm_feature_set arm_cext_iwmmxt =
823d2571 280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
e74cfd16 281static const arm_feature_set arm_cext_xscale =
823d2571 282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
e74cfd16 283static const arm_feature_set arm_cext_maverick =
823d2571
TG
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
e74cfd16 289static const arm_feature_set fpu_vfp_ext_v1xd =
823d2571
TG
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
b1cc4aeb 299static const arm_feature_set fpu_vfp_ext_d32 =
823d2571
TG
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
5287ad62 303static const arm_feature_set fpu_vfp_v3_or_neon_ext =
823d2571 304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
a7ad558c
AV
305static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
69c9e028 309#ifdef OBJ_ELF
823d2571
TG
310static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
69c9e028 314#endif
823d2571
TG
315static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
bca38921 317static const arm_feature_set fpu_vfp_ext_armv8 =
823d2571 318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
a715796b 319static const arm_feature_set fpu_vfp_ext_armv8xd =
823d2571 320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
bca38921 321static const arm_feature_set fpu_neon_ext_armv8 =
823d2571 322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
bca38921 323static const arm_feature_set fpu_crypto_ext_armv8 =
823d2571 324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
dd5181d5 325static const arm_feature_set crc_ext_armv8 =
823d2571 326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
d6b4b13e 327static const arm_feature_set fpu_neon_ext_v8_1 =
643afb90 328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
c604a79a
JW
329static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
e74cfd16 331
33a392fb 332static int mfloat_abi_opt = -1;
4d354d8b
TP
333/* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335static arm_feature_set selected_arch = ARM_ARCH_NONE;
336/* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338static arm_feature_set selected_ext = ARM_ARCH_NONE;
339/* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
e74cfd16 342static arm_feature_set selected_cpu = ARM_ARCH_NONE;
4d354d8b
TP
343/* FPU feature bits selected by the last -mfpu or .fpu directive. */
344static arm_feature_set selected_fpu = FPU_NONE;
345/* Feature bits selected by the last .object_arch directive. */
346static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
ee065d83 347/* Must be long enough to hold any of the names in arm_cpus. */
ef8e6722 348static char selected_cpu_name[20];
8d67f500 349
aacf0b33
KT
350extern FLONUM_TYPE generic_floating_point_number;
351
8d67f500
NC
352/* Return if no cpu was selected on command-line. */
353static bfd_boolean
354no_cpu_selected (void)
355{
823d2571 356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
8d67f500
NC
357}
358
7cc69913 359#ifdef OBJ_ELF
deeaaff8
DJ
360# ifdef EABI_DEFAULT
361static int meabi_flags = EABI_DEFAULT;
362# else
d507cf36 363static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 364# endif
e1da3f5b 365
ee3c0378
AS
366static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
e1da3f5b 368bfd_boolean
5f4273c7 369arm_is_eabi (void)
e1da3f5b
PB
370{
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372}
7cc69913 373#endif
b99bd4ef 374
b99bd4ef 375#ifdef OBJ_ELF
c19d1205 376/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
377symbolS * GOT_symbol;
378#endif
379
b99bd4ef
NC
380/* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384static int thumb_mode = 0;
8dc2430f
NC
385/* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388#define MODE_RECORDED (1 << 4)
b99bd4ef 389
e07e6e58
NC
390/* Specifies the intrinsic IT insn behavior mode. */
391enum implicit_it_mode
392{
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397};
398static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
c19d1205
ZW
400/* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423static bfd_boolean unified_syntax = FALSE;
b99bd4ef 424
bacebabc
RM
425/* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
477330fc
RM
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429const char arm_symbol_chars[] = "#[]{}";
bacebabc 430
5287ad62
JB
431enum neon_el_type
432{
dcbf9037 433 NT_invtype,
5287ad62
JB
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
dcbf9037 439 NT_unsigned
5287ad62
JB
440};
441
442struct neon_type_el
443{
444 enum neon_el_type type;
445 unsigned size;
446};
447
448#define NEON_MAX_TYPE_ELS 4
449
450struct neon_type
451{
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454};
455
5ee91343 456enum pred_instruction_type
e07e6e58 457{
5ee91343
AV
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
e07e6e58
NC
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
477330fc 463 if inside, should be the last one. */
e07e6e58 464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
477330fc 465 i.e. BKPT and NOP. */
5ee91343
AV
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
35c228db 468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
5ee91343 469 a predication code. */
35c228db 470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
e07e6e58
NC
471};
472
ad6cec43
MGD
473/* The maximum number of operands we need. */
474#define ARM_IT_MAX_OPERANDS 6
e2b0ab59 475#define ARM_IT_MAX_RELOCS 3
ad6cec43 476
b99bd4ef
NC
477struct arm_it
478{
c19d1205 479 const char * error;
b99bd4ef 480 unsigned long instruction;
c19d1205
ZW
481 int size;
482 int size_req;
483 int cond;
037e8744
JB
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
5287ad62 488 struct neon_type vectype;
88714cb8
DG
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
0110f2b8
PB
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
b99bd4ef
NC
495 struct
496 {
497 bfd_reloc_code_real_type type;
c19d1205
ZW
498 expressionS exp;
499 int pc_rel;
e2b0ab59 500 } relocs[ARM_IT_MAX_RELOCS];
b99bd4ef 501
5ee91343 502 enum pred_instruction_type pred_insn_type;
e07e6e58 503
c19d1205
ZW
504 struct
505 {
506 unsigned reg;
ca3f61f7 507 signed int imm;
dcbf9037 508 struct neon_type_el vectype;
ca3f61f7
NC
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
f5f10c66
AV
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
57785aa2
AV
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
5287ad62 517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5ee91343 523 unsigned isquad : 1; /* Operand is SIMD quad register. */
037e8744 524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
1b883319 525 unsigned iszr : 1; /* Operand is ZR register. */
ca3f61f7
NC
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 533 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
534};
535
c19d1205 536static struct arm_it inst;
b99bd4ef
NC
537
538#define NUM_FLOAT_VALS 8
539
05d2d07e 540const char * fp_const[] =
b99bd4ef
NC
541{
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543};
544
b99bd4ef
NC
545LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547#define FAIL (-1)
548#define SUCCESS (0)
549
550#define SUFF_S 1
551#define SUFF_D 2
552#define SUFF_E 3
553#define SUFF_P 4
554
c19d1205
ZW
555#define CP_T_X 0x00008000
556#define CP_T_Y 0x00400000
b99bd4ef 557
c19d1205
ZW
558#define CONDS_BIT 0x00100000
559#define LOAD_BIT 0x00100000
b99bd4ef
NC
560
561#define DOUBLE_LOAD_FLAG 0x00000001
562
563struct asm_cond
564{
d3ce72d0 565 const char * template_name;
c921be7d 566 unsigned long value;
b99bd4ef
NC
567};
568
c19d1205 569#define COND_ALWAYS 0xE
b99bd4ef 570
b99bd4ef
NC
571struct asm_psr
572{
d3ce72d0 573 const char * template_name;
c921be7d 574 unsigned long field;
b99bd4ef
NC
575};
576
62b3e311
PB
577struct asm_barrier_opt
578{
e797f7e0
MGD
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
62b3e311
PB
582};
583
2d2255b5 584/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
585#define SPSR_BIT (1 << 22)
586
c19d1205
ZW
587/* The individual PSR flag bits. */
588#define PSR_c (1 << 16)
589#define PSR_x (1 << 17)
590#define PSR_s (1 << 18)
591#define PSR_f (1 << 19)
b99bd4ef 592
c19d1205 593struct reloc_entry
bfae80f2 594{
0198d5e6 595 const char * name;
c921be7d 596 bfd_reloc_code_real_type reloc;
bfae80f2
RE
597};
598
5287ad62 599enum vfp_reg_pos
bfae80f2 600{
5287ad62
JB
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
603};
604
605enum vfp_ldstm_type
606{
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608};
609
dcbf9037
JB
610/* Bits for DEFINED field in neon_typed_alias. */
611#define NTA_HASTYPE 1
612#define NTA_HASINDEX 2
613
614struct neon_typed_alias
615{
c921be7d
NC
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
dcbf9037
JB
619};
620
c19d1205 621/* ARM register categories. This includes coprocessor numbers and various
5aa75429
TP
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
c19d1205 624enum arm_reg_type
bfae80f2 625{
c19d1205
ZW
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
5287ad62 632 REG_TYPE_NQ,
037e8744 633 REG_TYPE_VFSD,
5287ad62 634 REG_TYPE_NDQ,
dec41383 635 REG_TYPE_NSD,
037e8744 636 REG_TYPE_NSDQ,
c19d1205
ZW
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
5ee91343 643 REG_TYPE_MQ,
c19d1205
ZW
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
5ee91343 649 REG_TYPE_RNB,
1b883319 650 REG_TYPE_ZR
bfae80f2
RE
651};
652
dcbf9037
JB
653/* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
657struct reg_entry
658{
c921be7d 659 const char * name;
90ec0d68 660 unsigned int number;
c921be7d
NC
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
6c43fab6
RE
664};
665
c19d1205 666/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 667const char * const reg_expected_msgs[] =
c19d1205 668{
5aa75429
TP
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
5ee91343 692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
5aa75429 693 [REG_TYPE_RNB] = N_("")
6c43fab6
RE
694};
695
c19d1205 696/* Some well known registers that we refer to directly elsewhere. */
bd340a04 697#define REG_R12 12
c19d1205
ZW
698#define REG_SP 13
699#define REG_LR 14
700#define REG_PC 15
404ff6b5 701
b99bd4ef
NC
702/* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
c19d1205 704#define INSN_SIZE 4
b99bd4ef
NC
705
706struct asm_opcode
707{
708 /* Basic string to match. */
d3ce72d0 709 const char * template_name;
c19d1205
ZW
710
711 /* Parameters to instruction. */
5be8be5d 712 unsigned int operands[8];
c19d1205
ZW
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
b99bd4ef
NC
716
717 /* Basic instruction code. */
a302e574 718 unsigned int avalue;
b99bd4ef 719
c19d1205
ZW
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
b99bd4ef 722
90e4755a 723 /* Which architecture variant provides this instruction. */
c921be7d
NC
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
c19d1205
ZW
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
b99bd4ef 729
c19d1205
ZW
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
5ee91343
AV
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
b99bd4ef
NC
735};
736
a737bd4d
NC
737/* Defines for various bits that we will want to toggle. */
738#define INST_IMMEDIATE 0x02000000
739#define OFFSET_REG 0x02000000
c19d1205 740#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
741#define SHIFT_BY_REG 0x00000010
742#define PRE_INDEX 0x01000000
743#define INDEX_UP 0x00800000
744#define WRITE_BACK 0x00200000
745#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 746#define CPSI_MMOD 0x00020000
90e4755a 747
a737bd4d
NC
748#define LITERAL_MASK 0xf000f000
749#define OPCODE_MASK 0xfe1fffff
750#define V4_STR_BIT 0x00000020
8335d6aa 751#define VLDR_VMOV_SAME 0x0040f000
90e4755a 752
efd81785
PB
753#define T2_SUBS_PC_LR 0xf3de8f00
754
a737bd4d 755#define DATA_OP_SHIFT 21
bada4342 756#define SBIT_SHIFT 20
90e4755a 757
ef8d22e6
PB
758#define T2_OPCODE_MASK 0xfe1fffff
759#define T2_DATA_OP_SHIFT 21
bada4342 760#define T2_SBIT_SHIFT 20
ef8d22e6 761
6530b175
NC
762#define A_COND_MASK 0xf0000000
763#define A_PUSH_POP_OP_MASK 0x0fff0000
764
765/* Opcodes for pushing/poping registers to/from the stack. */
766#define A1_OPCODE_PUSH 0x092d0000
767#define A2_OPCODE_PUSH 0x052d0004
768#define A2_OPCODE_POP 0x049d0004
769
a737bd4d
NC
770/* Codes to distinguish the arithmetic instructions. */
771#define OPCODE_AND 0
772#define OPCODE_EOR 1
773#define OPCODE_SUB 2
774#define OPCODE_RSB 3
775#define OPCODE_ADD 4
776#define OPCODE_ADC 5
777#define OPCODE_SBC 6
778#define OPCODE_RSC 7
779#define OPCODE_TST 8
780#define OPCODE_TEQ 9
781#define OPCODE_CMP 10
782#define OPCODE_CMN 11
783#define OPCODE_ORR 12
784#define OPCODE_MOV 13
785#define OPCODE_BIC 14
786#define OPCODE_MVN 15
90e4755a 787
ef8d22e6
PB
788#define T2_OPCODE_AND 0
789#define T2_OPCODE_BIC 1
790#define T2_OPCODE_ORR 2
791#define T2_OPCODE_ORN 3
792#define T2_OPCODE_EOR 4
793#define T2_OPCODE_ADD 8
794#define T2_OPCODE_ADC 10
795#define T2_OPCODE_SBC 11
796#define T2_OPCODE_SUB 13
797#define T2_OPCODE_RSB 14
798
a737bd4d
NC
799#define T_OPCODE_MUL 0x4340
800#define T_OPCODE_TST 0x4200
801#define T_OPCODE_CMN 0x42c0
802#define T_OPCODE_NEG 0x4240
803#define T_OPCODE_MVN 0x43c0
90e4755a 804
a737bd4d
NC
805#define T_OPCODE_ADD_R3 0x1800
806#define T_OPCODE_SUB_R3 0x1a00
807#define T_OPCODE_ADD_HI 0x4400
808#define T_OPCODE_ADD_ST 0xb000
809#define T_OPCODE_SUB_ST 0xb080
810#define T_OPCODE_ADD_SP 0xa800
811#define T_OPCODE_ADD_PC 0xa000
812#define T_OPCODE_ADD_I8 0x3000
813#define T_OPCODE_SUB_I8 0x3800
814#define T_OPCODE_ADD_I3 0x1c00
815#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 816
a737bd4d
NC
817#define T_OPCODE_ASR_R 0x4100
818#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
819#define T_OPCODE_LSR_R 0x40c0
820#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
821#define T_OPCODE_ASR_I 0x1000
822#define T_OPCODE_LSL_I 0x0000
823#define T_OPCODE_LSR_I 0x0800
b99bd4ef 824
a737bd4d
NC
825#define T_OPCODE_MOV_I8 0x2000
826#define T_OPCODE_CMP_I8 0x2800
827#define T_OPCODE_CMP_LR 0x4280
828#define T_OPCODE_MOV_HR 0x4600
829#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 830
a737bd4d
NC
831#define T_OPCODE_LDR_PC 0x4800
832#define T_OPCODE_LDR_SP 0x9800
833#define T_OPCODE_STR_SP 0x9000
834#define T_OPCODE_LDR_IW 0x6800
835#define T_OPCODE_STR_IW 0x6000
836#define T_OPCODE_LDR_IH 0x8800
837#define T_OPCODE_STR_IH 0x8000
838#define T_OPCODE_LDR_IB 0x7800
839#define T_OPCODE_STR_IB 0x7000
840#define T_OPCODE_LDR_RW 0x5800
841#define T_OPCODE_STR_RW 0x5000
842#define T_OPCODE_LDR_RH 0x5a00
843#define T_OPCODE_STR_RH 0x5200
844#define T_OPCODE_LDR_RB 0x5c00
845#define T_OPCODE_STR_RB 0x5400
c9b604bd 846
a737bd4d
NC
847#define T_OPCODE_PUSH 0xb400
848#define T_OPCODE_POP 0xbc00
b99bd4ef 849
2fc8bdac 850#define T_OPCODE_BRANCH 0xe000
b99bd4ef 851
a737bd4d 852#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 853#define THUMB_PP_PC_LR 0x0100
c19d1205 854#define THUMB_LOAD_BIT 0x0800
53365c0d 855#define THUMB2_LOAD_BIT 0x00100000
c19d1205 856
5ee91343 857#define BAD_SYNTAX _("syntax error")
c19d1205 858#define BAD_ARGS _("bad arguments to instruction")
fdfde340 859#define BAD_SP _("r13 not allowed here")
c19d1205 860#define BAD_PC _("r15 not allowed here")
a302e574
AV
861#define BAD_ODD _("Odd register not allowed here")
862#define BAD_EVEN _("Even register not allowed here")
c19d1205
ZW
863#define BAD_COND _("instruction cannot be conditional")
864#define BAD_OVERLAP _("registers may not be the same")
865#define BAD_HIREG _("lo register required")
866#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
35c228db 867#define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
dfa9f0d5 868#define BAD_BRANCH _("branch must be last instruction in IT block")
e12437dc 869#define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
dfa9f0d5 870#define BAD_NOT_IT _("instruction not allowed in IT block")
5ee91343 871#define BAD_NOT_VPT _("instruction missing MVE vector predication code")
037e8744 872#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58 873#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
5ee91343
AV
874#define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
e07e6e58 876#define BAD_IT_COND _("incorrect condition in IT block")
5ee91343 877#define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
e07e6e58 878#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 879#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
880#define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882#define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
9db2f6b4
RL
884#define BAD_RANGE _("branch out of range")
885#define BAD_FP16 _("selected processor does not support fp16 instruction")
dd5181d5 886#define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
a9f02af8 887#define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
5ee91343
AV
888#define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890#define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892#define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894#define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
a302e574 896#define BAD_SIMD_TYPE _("bad type in SIMD instruction")
886e1c73
AV
897#define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900#define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
35c228db 902#define BAD_EL_TYPE _("bad element type for instruction")
1b883319 903#define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
c19d1205 904
c921be7d
NC
905static struct hash_control * arm_ops_hsh;
906static struct hash_control * arm_cond_hsh;
5ee91343 907static struct hash_control * arm_vcond_hsh;
c921be7d
NC
908static struct hash_control * arm_shift_hsh;
909static struct hash_control * arm_psr_hsh;
910static struct hash_control * arm_v7m_psr_hsh;
911static struct hash_control * arm_reg_hsh;
912static struct hash_control * arm_reloc_hsh;
913static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 914
b99bd4ef
NC
915/* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
5f4273c7 922 <insn> */
b99bd4ef
NC
923
924symbolS * last_label_seen;
b34976b6 925static int label_is_thumb_function_name = FALSE;
e07e6e58 926
3d0c9500
NC
927/* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
a737bd4d 929
c19d1205 930#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 931typedef struct literal_pool
b99bd4ef 932{
c921be7d
NC
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
a8040cf2
NC
939#ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941#endif
c921be7d 942 struct literal_pool * next;
8335d6aa 943 unsigned int alignment;
3d0c9500 944} literal_pool;
b99bd4ef 945
3d0c9500
NC
946/* Pointer to a linked list of literal pools. */
947literal_pool * list_of_pools = NULL;
e27ec89e 948
2e6976a8
DG
949typedef enum asmfunc_states
950{
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954} asmfunc_states;
955
956static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
e07e6e58 958#ifdef OBJ_ELF
5ee91343 959# define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
e07e6e58 960#else
5ee91343 961static struct current_pred now_pred;
e07e6e58
NC
962#endif
963
964static inline int
5ee91343 965now_pred_compatible (int cond)
e07e6e58 966{
5ee91343 967 return (cond & ~1) == (now_pred.cc & ~1);
e07e6e58
NC
968}
969
970static inline int
971conditional_insn (void)
972{
973 return inst.cond != COND_ALWAYS;
974}
975
5ee91343 976static int in_pred_block (void);
e07e6e58 977
5ee91343 978static int handle_pred_state (void);
e07e6e58
NC
979
980static void force_automatic_it_block_close (void);
981
c921be7d
NC
982static void it_fsm_post_encode (void);
983
5ee91343 984#define set_pred_insn_type(type) \
e07e6e58
NC
985 do \
986 { \
5ee91343
AV
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
477330fc 989 return; \
e07e6e58
NC
990 } \
991 while (0)
992
5ee91343 993#define set_pred_insn_type_nonvoid(type, failret) \
c921be7d
NC
994 do \
995 { \
5ee91343
AV
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
477330fc 998 return failret; \
c921be7d
NC
999 } \
1000 while(0)
1001
5ee91343 1002#define set_pred_insn_type_last() \
e07e6e58
NC
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
5ee91343 1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
e07e6e58 1007 else \
5ee91343 1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
e07e6e58
NC
1009 } \
1010 while (0)
1011
c19d1205 1012/* Pure syntax. */
b99bd4ef 1013
c19d1205
ZW
1014/* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
2e6976a8 1016char arm_comment_chars[] = "@";
3d0c9500 1017
c19d1205
ZW
1018/* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021/* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024/* Also note that comments like this one will always work. */
1025const char line_comment_chars[] = "#";
3d0c9500 1026
2e6976a8 1027char arm_line_separator_chars[] = ";";
b99bd4ef 1028
c19d1205
ZW
1029/* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031const char EXP_CHARS[] = "eE";
3d0c9500 1032
c19d1205
ZW
1033/* Chars that mean this number is a floating point constant. */
1034/* As in 0f12.456 */
1035/* or 0d1.2345e12 */
b99bd4ef 1036
c19d1205 1037const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 1038
c19d1205
ZW
1039/* Prefix characters that indicate the start of an immediate
1040 value. */
1041#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 1042
c19d1205
ZW
1043/* Separator character handling. */
1044
1045#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047static inline int
1048skip_past_char (char ** str, char c)
1049{
8ab8155f
NC
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
427d0db6 1052
c19d1205
ZW
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
3d0c9500 1057 }
c19d1205
ZW
1058 else
1059 return FAIL;
1060}
c921be7d 1061
c19d1205 1062#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 1063
c19d1205
ZW
1064/* Arithmetic expressions (possibly involving symbols). */
1065
1066/* Return TRUE if anything in the expression is a bignum. */
1067
0198d5e6 1068static bfd_boolean
c19d1205
ZW
1069walk_no_bignums (symbolS * sp)
1070{
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
0198d5e6 1072 return TRUE;
c19d1205
ZW
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 1075 {
c19d1205
ZW
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
1079 }
1080
0198d5e6 1081 return FALSE;
3d0c9500
NC
1082}
1083
0198d5e6 1084static bfd_boolean in_my_get_expression = FALSE;
c19d1205
ZW
1085
1086/* Third argument to my_get_expression. */
1087#define GE_NO_PREFIX 0
1088#define GE_IMM_PREFIX 1
1089#define GE_OPT_PREFIX 2
5287ad62
JB
1090/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092#define GE_OPT_PREFIX_BIG 3
a737bd4d 1093
b99bd4ef 1094static int
c19d1205 1095my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 1096{
c19d1205 1097 char * save_in;
b99bd4ef 1098
c19d1205
ZW
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
5287ad62 1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
477330fc 1102 : GE_OPT_PREFIX;
b99bd4ef 1103
c19d1205 1104 switch (prefix_mode)
b99bd4ef 1105 {
c19d1205
ZW
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
5287ad62 1116 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
0198d5e6
TC
1120 default:
1121 abort ();
c19d1205 1122 }
b99bd4ef 1123
c19d1205 1124 memset (ep, 0, sizeof (expressionS));
b99bd4ef 1125
c19d1205
ZW
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
0198d5e6 1128 in_my_get_expression = TRUE;
2ac93be7 1129 expression (ep);
0198d5e6 1130 in_my_get_expression = FALSE;
c19d1205 1131
f86adc07 1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 1133 {
f86adc07 1134 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
f86adc07
NS
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
1140 return 1;
1141 }
b99bd4ef 1142
c19d1205
ZW
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
5287ad62
JB
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
477330fc 1148 || (ep->X_add_symbol
5287ad62 1149 && (walk_no_bignums (ep->X_add_symbol)
477330fc 1150 || (ep->X_op_symbol
5287ad62 1151 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
b99bd4ef 1158
c19d1205
ZW
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
0198d5e6 1161 return SUCCESS;
b99bd4ef
NC
1162}
1163
c19d1205
ZW
1164/* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
b99bd4ef 1168
c19d1205
ZW
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1175
c19d1205 1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1177
6d4af3c2 1178const char *
c19d1205
ZW
1179md_atof (int type, char * litP, int * sizeP)
1180{
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
b99bd4ef 1185
c19d1205
ZW
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
b99bd4ef 1194
c19d1205
ZW
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
b99bd4ef 1201
c19d1205
ZW
1202 case 'x':
1203 case 'X':
499ac353 1204 prec = 5;
c19d1205 1205 break;
b99bd4ef 1206
c19d1205
ZW
1207 case 'p':
1208 case 'P':
499ac353 1209 prec = 5;
c19d1205 1210 break;
a737bd4d 1211
c19d1205
ZW
1212 default:
1213 *sizeP = 0;
499ac353 1214 return _("Unrecognized or unsupported floating point constant");
c19d1205 1215 }
b99bd4ef 1216
c19d1205
ZW
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
499ac353 1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1221
c19d1205
ZW
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
499ac353
NC
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1228 }
1229 }
1230 else
1231 {
e74cfd16 1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1233 for (i = prec - 1; i >= 0; i--)
1234 {
499ac353
NC
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
499ac353
NC
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1248 }
1249 }
b99bd4ef 1250
499ac353 1251 return NULL;
c19d1205 1252}
b99bd4ef 1253
c19d1205
ZW
1254/* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
0198d5e6 1256
c19d1205 1257void
91d6fa6a 1258md_operand (expressionS * exp)
c19d1205
ZW
1259{
1260 if (in_my_get_expression)
91d6fa6a 1261 exp->X_op = O_illegal;
b99bd4ef
NC
1262}
1263
c19d1205 1264/* Immediate values. */
b99bd4ef 1265
0198d5e6 1266#ifdef OBJ_ELF
c19d1205
ZW
1267/* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
0198d5e6 1270
c19d1205
ZW
1271static int
1272immediate_for_directive (int *val)
b99bd4ef 1273{
c19d1205
ZW
1274 expressionS exp;
1275 exp.X_op = O_illegal;
b99bd4ef 1276
c19d1205
ZW
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
b99bd4ef 1282
c19d1205
ZW
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
b99bd4ef 1291}
c19d1205 1292#endif
b99bd4ef 1293
c19d1205 1294/* Register parsing. */
b99bd4ef 1295
c19d1205
ZW
1296/* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301static struct reg_entry *
1302arm_reg_parse_multi (char **ccp)
b99bd4ef 1303{
c19d1205
ZW
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
b99bd4ef 1307
477330fc
RM
1308 skip_whitespace (start);
1309
c19d1205
ZW
1310#ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
01cfc07f 1312 return NULL;
c19d1205
ZW
1313 start++;
1314#endif
1315#ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318#endif
b99bd4ef 1319
c19d1205
ZW
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
b99bd4ef 1323
c19d1205
ZW
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
b99bd4ef
NC
1335}
1336
1337static int
dcbf9037 1338arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
477330fc 1339 enum arm_reg_type type)
b99bd4ef 1340{
c19d1205
ZW
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
79134647 1349 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1350 return reg->number;
1351 break;
69b97547 1352
c19d1205
ZW
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1a0670f3 1360 /* Fall through. */
6057a28f 1361
c19d1205
ZW
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
79134647 1365 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1366 return reg->number;
6057a28f 1367 break;
c19d1205 1368
6057a28f 1369 default:
c19d1205 1370 break;
6057a28f
NC
1371 }
1372
dcbf9037
JB
1373 return FAIL;
1374}
1375
1376/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379static int
1380arm_reg_parse (char **ccp, enum arm_reg_type type)
1381{
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
c19d1205
ZW
1396 *ccp = start;
1397 return FAIL;
1398}
69b97547 1399
dcbf9037
JB
1400/* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414static int
1415parse_neon_type (struct neon_type *type, char **str)
1416{
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
477330fc
RM
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
dcbf9037
JB
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
477330fc
RM
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
dcbf9037
JB
1467 return FAIL;
1468 }
1469 }
1470
037e8744 1471 done:
dcbf9037 1472 if (type)
477330fc
RM
1473 {
1474 type->el[type->elems].type = thistype;
dcbf9037
JB
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487}
1488
1489/* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494static void
1495first_error (const char *err)
1496{
1497 if (!inst.error)
1498 inst.error = err;
1499}
1500
1501/* Parse a single type, e.g. ".s32", leading period included. */
1502static int
1503parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504{
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
477330fc
RM
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
dcbf9037 1520 else
477330fc
RM
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
dcbf9037
JB
1525 }
1526 else
1527 return FAIL;
5f4273c7 1528
dcbf9037 1529 *ccp = str;
5f4273c7 1530
dcbf9037
JB
1531 return SUCCESS;
1532}
1533
1534/* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537#define NEON_ALL_LANES 15
1538#define NEON_INTERLEAVE_LANES 14
1539
5ee91343
AV
1540/* Record a use of the given feature. */
1541static void
1542record_feature_use (const arm_feature_set *feature)
1543{
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548}
1549
1550/* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552static bfd_boolean
1553mark_feature_used (const arm_feature_set *feature)
1554{
886e1c73
AV
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
5ee91343
AV
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573}
1574
dcbf9037
JB
1575/* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580static int
1581parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
477330fc
RM
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
dcbf9037
JB
1584{
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
477330fc 1601 *ccp = str;
dcbf9037 1602 if (typeinfo)
477330fc 1603 *typeinfo = atype;
dcbf9037
JB
1604 return altreg;
1605 }
1606
037e8744
JB
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
477330fc 1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
037e8744 1612 || (type == REG_TYPE_NSDQ
477330fc
RM
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
dec41383
JW
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
f512f76f
NC
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1619 type = (enum arm_reg_type) reg->type;
dcbf9037 1620
5ee91343
AV
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
dcbf9037
JB
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
5f4273c7 1646
dcbf9037
JB
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
477330fc
RM
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
dcbf9037
JB
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
5f4273c7 1657
dcbf9037
JB
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
dec41383
JW
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
57785aa2
AV
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
477330fc 1665 {
57785aa2
AV
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
477330fc
RM
1670 return FAIL;
1671 }
5f4273c7 1672
dcbf9037 1673 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
dcbf9037
JB
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
477330fc 1682 atype.index = NEON_ALL_LANES;
dcbf9037 1683 else
477330fc
RM
1684 {
1685 expressionS exp;
dcbf9037 1686
477330fc 1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
dcbf9037 1688
477330fc
RM
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
dcbf9037 1694
477330fc
RM
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
dcbf9037 1697
477330fc
RM
1698 atype.index = exp.X_add_number;
1699 }
dcbf9037 1700 }
5f4273c7 1701
dcbf9037
JB
1702 if (typeinfo)
1703 *typeinfo = atype;
5f4273c7 1704
dcbf9037
JB
1705 if (rtype)
1706 *rtype = type;
5f4273c7 1707
dcbf9037 1708 *ccp = str;
5f4273c7 1709
dcbf9037
JB
1710 return reg->number;
1711}
1712
efd6b359 1713/* Like arm_reg_parse, but also allow the following extra features:
dcbf9037
JB
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1718 This function will fault on encountering a scalar. */
dcbf9037
JB
1719
1720static int
1721arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
477330fc 1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
dcbf9037
JB
1723{
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
0855e32b
NS
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
dcbf9037
JB
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748}
1749
1750#define NEON_SCALAR_REG(X) ((X) >> 4)
1751#define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
5287ad62
JB
1753/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757static int
57785aa2
AV
1758parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
5287ad62 1760{
dcbf9037 1761 int reg;
5287ad62 1762 char *str = *ccp;
dcbf9037 1763 struct neon_typed_alias atype;
57785aa2 1764 unsigned reg_size;
5f4273c7 1765
dec41383 1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
5f4273c7 1767
57785aa2
AV
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
dcbf9037 1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1785 return FAIL;
5f4273c7 1786
57785aa2 1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
5287ad62 1788 {
dcbf9037 1789 first_error (_("scalar must have an index"));
5287ad62
JB
1790 return FAIL;
1791 }
57785aa2 1792 else if (atype.index >= reg_size / elsize)
5287ad62 1793 {
dcbf9037 1794 first_error (_("scalar index out of range"));
5287ad62
JB
1795 return FAIL;
1796 }
5f4273c7 1797
dcbf9037
JB
1798 if (type)
1799 *type = atype.eltype;
5f4273c7 1800
5287ad62 1801 *ccp = str;
5f4273c7 1802
dcbf9037 1803 return reg * 16 + atype.index;
5287ad62
JB
1804}
1805
4b5a202f
AV
1806/* Types of registers in a list. */
1807
1808enum reg_list_els
1809{
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
efd6b359 1813 REGLIST_VFP_S_VPR,
4b5a202f 1814 REGLIST_VFP_D,
efd6b359 1815 REGLIST_VFP_D_VPR,
4b5a202f
AV
1816 REGLIST_NEON_D
1817};
1818
c19d1205 1819/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1820
c19d1205 1821static long
4b5a202f 1822parse_reg_list (char ** strp, enum reg_list_els etype)
c19d1205 1823{
4b5a202f
AV
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
a737bd4d 1829
c19d1205
ZW
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
6057a28f 1832 {
477330fc
RM
1833 skip_whitespace (str);
1834
c19d1205 1835 another_range = 0;
a737bd4d 1836
c19d1205
ZW
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
a737bd4d 1841
c19d1205
ZW
1842 str++;
1843 do
1844 {
1845 int reg;
4b5a202f
AV
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
6057a28f 1848
4b5a202f
AV
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
c19d1205 1851 {
4b5a202f
AV
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
c19d1205 1875 }
a737bd4d 1876
c19d1205
ZW
1877 if (in_range)
1878 {
1879 int i;
a737bd4d 1880
c19d1205
ZW
1881 if (reg <= cur_reg)
1882 {
dcbf9037 1883 first_error (_("bad range in register list"));
c19d1205
ZW
1884 return FAIL;
1885 }
40a18ebd 1886
c19d1205
ZW
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
a737bd4d 1898
c19d1205
ZW
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1904
c19d1205
ZW
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
a737bd4d 1911
d996d970 1912 if (skip_past_char (&str, '}') == FAIL)
c19d1205 1913 {
dcbf9037 1914 first_error (_("missing `}'"));
c19d1205
ZW
1915 return FAIL;
1916 }
1917 }
4b5a202f 1918 else if (etype == REGLIST_RN)
c19d1205 1919 {
91d6fa6a 1920 expressionS exp;
40a18ebd 1921
91d6fa6a 1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1923 return FAIL;
40a18ebd 1924
91d6fa6a 1925 if (exp.X_op == O_constant)
c19d1205 1926 {
91d6fa6a
NC
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
a737bd4d 1933
91d6fa6a 1934 if ((range & exp.X_add_number) != 0)
c19d1205 1935 {
91d6fa6a 1936 int regno = range & exp.X_add_number;
a737bd4d 1937
c19d1205
ZW
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
a737bd4d 1944
91d6fa6a 1945 range |= exp.X_add_number;
c19d1205
ZW
1946 }
1947 else
1948 {
e2b0ab59 1949 if (inst.relocs[0].type != 0)
c19d1205
ZW
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
a737bd4d 1954
e2b0ab59
AV
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
c19d1205
ZW
1958 }
1959 }
a737bd4d 1960
c19d1205
ZW
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
a737bd4d 1966 }
c19d1205 1967 while (another_range);
a737bd4d 1968
c19d1205
ZW
1969 *strp = str;
1970 return range;
a737bd4d
NC
1971}
1972
c19d1205
ZW
1973/* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
477330fc
RM
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
dcbf9037
JB
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
6057a28f 1987
c19d1205 1988static int
efd6b359
AV
1989parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
6057a28f 1991{
037e8744 1992 char *str = *ccp;
c19d1205
ZW
1993 int base_reg;
1994 int new_base;
21d799b5 1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1996 int max_regs = 0;
c19d1205
ZW
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
a737bd4d 2000 int i;
efd6b359
AV
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
6057a28f 2004
477330fc 2005 if (skip_past_char (&str, '{') == FAIL)
5287ad62
JB
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
6057a28f 2010
5287ad62 2011 switch (etype)
c19d1205 2012 {
5287ad62 2013 case REGLIST_VFP_S:
efd6b359 2014 case REGLIST_VFP_S_VPR:
c19d1205
ZW
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
5287ad62 2017 break;
5f4273c7 2018
5287ad62 2019 case REGLIST_VFP_D:
efd6b359 2020 case REGLIST_VFP_D_VPR:
5287ad62 2021 regtype = REG_TYPE_VFD;
b7fc2769 2022 break;
5f4273c7 2023
b7fc2769
JB
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
4b5a202f
AV
2027
2028 default:
2029 gas_assert (0);
b7fc2769
JB
2030 }
2031
efd6b359 2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
b7fc2769 2033 {
b1cc4aeb
PB
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
5287ad62 2045 else
477330fc 2046 max_regs = 16;
c19d1205 2047 }
6057a28f 2048
c19d1205 2049 base_reg = max_regs;
efd6b359 2050 *partial_match = FALSE;
a737bd4d 2051
c19d1205
ZW
2052 do
2053 {
5287ad62 2054 int setmask = 1, addregs = 1;
efd6b359
AV
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
dcbf9037 2057
037e8744 2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 2059
efd6b359
AV
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
a737bd4d 2089 {
dcbf9037 2090 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
2091 return FAIL;
2092 }
5f4273c7 2093
efd6b359
AV
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
b7fc2769 2098 if (new_base >= max_regs)
477330fc
RM
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
5f4273c7 2103
5287ad62
JB
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
477330fc
RM
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
5287ad62 2110
c19d1205
ZW
2111 if (new_base < base_reg)
2112 base_reg = new_base;
a737bd4d 2113
5287ad62 2114 if (mask & (setmask << new_base))
c19d1205 2115 {
dcbf9037 2116 first_error (_("invalid register list"));
c19d1205 2117 return FAIL;
a737bd4d 2118 }
a737bd4d 2119
efd6b359 2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
c19d1205
ZW
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
0bbf2aa4 2125
5287ad62
JB
2126 mask |= setmask << new_base;
2127 count += addregs;
0bbf2aa4 2128
037e8744 2129 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
2130 {
2131 int high_range;
0bbf2aa4 2132
037e8744 2133 str++;
0bbf2aa4 2134
037e8744 2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
477330fc 2136 == FAIL)
c19d1205
ZW
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
0bbf2aa4 2141
477330fc
RM
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
b7fc2769 2147
477330fc
RM
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
5287ad62 2150
c19d1205
ZW
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
0bbf2aa4 2156
5287ad62 2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 2158 {
5287ad62 2159 if (mask & (setmask << new_base))
0bbf2aa4 2160 {
c19d1205
ZW
2161 inst.error = _("invalid register list");
2162 return FAIL;
0bbf2aa4 2163 }
c19d1205 2164
5287ad62
JB
2165 mask |= setmask << new_base;
2166 count += addregs;
0bbf2aa4 2167 }
0bbf2aa4 2168 }
0bbf2aa4 2169 }
037e8744 2170 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 2171
037e8744 2172 str++;
0bbf2aa4 2173
c19d1205 2174 /* Sanity check -- should have raised a parse error above. */
efd6b359 2175 if ((!vpr_seen && count == 0) || count > max_regs)
c19d1205
ZW
2176 abort ();
2177
2178 *pbase = base_reg;
2179
efd6b359
AV
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
c19d1205
ZW
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
037e8744
JB
2197 *ccp = str;
2198
c19d1205 2199 return count;
b99bd4ef
NC
2200}
2201
dcbf9037
JB
2202/* True if two alias types are the same. */
2203
c921be7d 2204static bfd_boolean
dcbf9037
JB
2205neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206{
2207 if (!a && !b)
c921be7d 2208 return TRUE;
5f4273c7 2209
dcbf9037 2210 if (!a || !b)
c921be7d 2211 return FALSE;
dcbf9037
JB
2212
2213 if (a->defined != b->defined)
c921be7d 2214 return FALSE;
5f4273c7 2215
dcbf9037
JB
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
477330fc 2218 || a->eltype.size != b->eltype.size))
c921be7d 2219 return FALSE;
dcbf9037
JB
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
c921be7d 2223 return FALSE;
5f4273c7 2224
c921be7d 2225 return TRUE;
dcbf9037
JB
2226}
2227
5287ad62
JB
2228/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
dcbf9037 2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 2235
5287ad62 2236#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 2237#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
2238#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240static int
dcbf9037 2241parse_neon_el_struct_list (char **str, unsigned *pbase,
35c228db 2242 int mve,
477330fc 2243 struct neon_type_el *eltype)
5287ad62
JB
2244{
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
35c228db
AV
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
20203fb9 2254 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 2255 struct neon_typed_alias firsttype;
f85d59c3
KT
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
5f4273c7 2260
5287ad62
JB
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
5f4273c7 2263
5287ad62
JB
2264 do
2265 {
dcbf9037 2266 struct neon_typed_alias atype;
35c228db
AV
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
dcbf9037
JB
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
5287ad62 2271 if (getreg == FAIL)
477330fc
RM
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
5f4273c7 2276
5287ad62 2277 if (base_reg == -1)
477330fc
RM
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
5287ad62 2286 else if (reg_incr == -1)
477330fc
RM
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
5287ad62 2295 else if (getreg != base_reg + reg_incr * count)
477330fc
RM
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
dcbf9037 2300
c921be7d 2301 if (! neon_alias_types_same (&atype, &firsttype))
477330fc
RM
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
5f4273c7 2306
5287ad62 2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
477330fc 2308 modes. */
5287ad62 2309 if (ptr[0] == '-')
477330fc
RM
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
5f4273c7 2342
5287ad62
JB
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
477330fc
RM
2345 {
2346 count += 2;
2347 continue;
2348 }
5f4273c7 2349
dcbf9037 2350 if ((atype.defined & NTA_HASINDEX) != 0)
477330fc
RM
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
5287ad62 2360 else if (lane == -1)
477330fc 2361 lane = NEON_INTERLEAVE_LANES;
5287ad62 2362 else if (lane != NEON_INTERLEAVE_LANES)
477330fc
RM
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
5287ad62
JB
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2370
5287ad62
JB
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2374
5287ad62 2375 /* Sanity check. */
35c228db 2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
5287ad62
JB
2377 || (count > 1 && reg_incr == -1))
2378 {
dcbf9037 2379 first_error (_("error parsing element/structure list"));
5287ad62
JB
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
dcbf9037 2385 first_error (_("expected }"));
5287ad62
JB
2386 return FAIL;
2387 }
5f4273c7 2388
5287ad62
JB
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
dcbf9037
JB
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
5287ad62
JB
2395 *pbase = base_reg;
2396 *str = ptr;
5f4273c7 2397
5287ad62
JB
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399}
2400
c19d1205
ZW
2401/* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2406
c19d1205
ZW
2407static int
2408parse_reloc (char **str)
b99bd4ef 2409{
c19d1205
ZW
2410 struct reloc_entry *r;
2411 char *p, *q;
b99bd4ef 2412
c19d1205
ZW
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
b99bd4ef 2415
c19d1205
ZW
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
21d799b5
NC
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
b99bd4ef
NC
2430}
2431
c19d1205
ZW
2432/* Directives: register aliases. */
2433
dcbf9037 2434static struct reg_entry *
90ec0d68 2435insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2436{
d3ce72d0 2437 struct reg_entry *new_reg;
c19d1205 2438 const char *name;
b99bd4ef 2439
d3ce72d0 2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2441 {
d3ce72d0 2442 if (new_reg->builtin)
c19d1205 2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2444
c19d1205
ZW
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
d3ce72d0 2447 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2449
d929913e 2450 return NULL;
c19d1205 2451 }
b99bd4ef 2452
c19d1205 2453 name = xstrdup (str);
325801bd 2454 new_reg = XNEW (struct reg_entry);
b99bd4ef 2455
d3ce72d0
NC
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
b99bd4ef 2461
d3ce72d0 2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2463 abort ();
5f4273c7 2464
d3ce72d0 2465 return new_reg;
dcbf9037
JB
2466}
2467
2468static void
2469insert_neon_reg_alias (char *str, int number, int type,
477330fc 2470 struct neon_typed_alias *atype)
dcbf9037
JB
2471{
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2473
dcbf9037
JB
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
5f4273c7 2479
dcbf9037
JB
2480 if (atype)
2481 {
325801bd 2482 reg->neon = XNEW (struct neon_typed_alias);
dcbf9037
JB
2483 *reg->neon = *atype;
2484 }
c19d1205 2485}
b99bd4ef 2486
c19d1205 2487/* Look for the .req directive. This is of the form:
b99bd4ef 2488
c19d1205 2489 new_register_name .req existing_register_name
b99bd4ef 2490
c19d1205 2491 If we find one, or if it looks sufficiently like one that we want to
d929913e 2492 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2493
d929913e 2494static bfd_boolean
c19d1205
ZW
2495create_register_alias (char * newname, char *p)
2496{
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
b99bd4ef 2500
c19d1205
ZW
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2505 return FALSE;
b99bd4ef 2506
c19d1205
ZW
2507 oldname += 6;
2508 if (*oldname == '\0')
d929913e 2509 return FALSE;
b99bd4ef 2510
21d799b5 2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2512 if (!old)
b99bd4ef 2513 {
c19d1205 2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2515 return TRUE;
b99bd4ef
NC
2516 }
2517
c19d1205
ZW
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521#ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523#else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526#endif
b99bd4ef 2527
29a2809e 2528 nbuf = xmemdup0 (newname, nlen);
b99bd4ef 2529
c19d1205
ZW
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
d929913e
NC
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
c19d1205 2537
d929913e
NC
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2547 the artificial FOO alias because it has already been created by the
d929913e
NC
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
e1fa0163
NC
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
d929913e 2554 }
c19d1205 2555
d929913e
NC
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
c19d1205 2558
d929913e
NC
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
c19d1205 2562
e1fa0163 2563 free (nbuf);
d929913e 2564 return TRUE;
b99bd4ef
NC
2565}
2566
dcbf9037
JB
2567/* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
5f4273c7 2575 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2576
c921be7d 2577static bfd_boolean
dcbf9037
JB
2578create_neon_reg_alias (char *newname, char *p)
2579{
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
12d6b0b7 2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2586 int namelen;
5f4273c7 2587
dcbf9037
JB
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
5f4273c7 2592
dcbf9037 2593 nameend = p;
5f4273c7 2594
dcbf9037
JB
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
c921be7d 2600 return FALSE;
5f4273c7 2601
dcbf9037 2602 p += 5;
5f4273c7 2603
dcbf9037 2604 if (*p == '\0')
c921be7d 2605 return FALSE;
5f4273c7 2606
dcbf9037
JB
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
c921be7d 2612 return FALSE;
dcbf9037
JB
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
477330fc
RM
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
dcbf9037
JB
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
477330fc 2627 : exp.X_add_number;
dcbf9037
JB
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
477330fc
RM
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
5f4273c7 2642
dcbf9037
JB
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
477330fc
RM
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
dcbf9037
JB
2649 typeinfo.eltype = ntype.el[0];
2650 }
5f4273c7 2651
dcbf9037
JB
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
5f4273c7 2656
dcbf9037 2657 if (typeinfo.defined & NTA_HASINDEX)
477330fc
RM
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
5f4273c7 2662
dcbf9037 2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2664
dcbf9037 2665 if (exp.X_op != O_constant)
477330fc
RM
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
5f4273c7 2670
dcbf9037
JB
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
5f4273c7 2673
dcbf9037 2674 if (skip_past_char (&p, ']') == FAIL)
477330fc
RM
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
dcbf9037
JB
2679 }
2680
15735687
NS
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684#ifdef TC_CASE_SENSITIVE
dcbf9037 2685 namelen = nameend - newname;
15735687
NS
2686#else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689#endif
2690
29a2809e 2691 namebuf = xmemdup0 (newname, namelen);
5f4273c7 2692
dcbf9037 2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2694 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2695
dcbf9037
JB
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
5f4273c7 2699
dcbf9037
JB
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2702 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2703
dcbf9037
JB
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
5f4273c7 2707
dcbf9037
JB
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
477330fc 2710 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2711
e1fa0163 2712 free (namebuf);
c921be7d 2713 return TRUE;
dcbf9037
JB
2714}
2715
c19d1205
ZW
2716/* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
c921be7d 2718
b99bd4ef 2719static void
c19d1205 2720s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2721{
c19d1205
ZW
2722 as_bad (_("invalid syntax for .req directive"));
2723}
b99bd4ef 2724
dcbf9037
JB
2725static void
2726s_dn (int a ATTRIBUTE_UNUSED)
2727{
2728 as_bad (_("invalid syntax for .dn directive"));
2729}
2730
2731static void
2732s_qn (int a ATTRIBUTE_UNUSED)
2733{
2734 as_bad (_("invalid syntax for .qn directive"));
2735}
2736
c19d1205
ZW
2737/* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
b99bd4ef 2739
c19d1205
ZW
2740 my_alias .req r11
2741 .unreq my_alias */
b99bd4ef
NC
2742
2743static void
c19d1205 2744s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2745{
c19d1205
ZW
2746 char * name;
2747 char saved_char;
b99bd4ef 2748
c19d1205
ZW
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
21d799b5 2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
477330fc 2764 name);
c19d1205
ZW
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
a1727c1a 2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2770 name);
2771 else
2772 {
d929913e
NC
2773 char * p;
2774 char * nbuf;
2775
db0bc284 2776 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2777 free ((char *) reg->name);
477330fc
RM
2778 if (reg->neon)
2779 free (reg->neon);
c19d1205 2780 free (reg);
d929913e
NC
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
5f4273c7 2785
d929913e
NC
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
21d799b5 2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2790 if (reg)
2791 {
db0bc284 2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
21d799b5 2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2802 if (reg)
2803 {
db0bc284 2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
c19d1205
ZW
2812 }
2813 }
b99bd4ef 2814
c19d1205 2815 *input_line_pointer = saved_char;
b99bd4ef
NC
2816 demand_empty_rest_of_line ();
2817}
2818
c19d1205
ZW
2819/* Directives: Instruction set selection. */
2820
2821#ifdef OBJ_ELF
2822/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
cd000bff
DJ
2827/* Create a new mapping symbol for the transition to STATE. */
2828
2829static void
2830make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2831{
a737bd4d 2832 symbolS * symbolP;
c19d1205
ZW
2833 const char * symname;
2834 int type;
b99bd4ef 2835
c19d1205 2836 switch (state)
b99bd4ef 2837 {
c19d1205
ZW
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
c19d1205
ZW
2850 default:
2851 abort ();
2852 }
2853
cd000bff 2854 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
cd000bff
DJ
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2de7820f
JZ
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2885 if (value == 0)
2886 {
2de7820f
JZ
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
cd000bff
DJ
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
cd000bff
DJ
2900 frag->tc_frag_data.last_map = symbolP;
2901}
2902
2903/* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907static void
2908insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910{
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2924 }
cd000bff
DJ
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928}
2929
2930static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932/* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
4e9aaefb 2935#define TRANSITION(from, to) (mapstate == (from) && state == (to))
cd000bff
DJ
2936void
2937mapping_state (enum mstate state)
2938{
940b5ce0
DJ
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
cd000bff
DJ
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
49c62a33
NC
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
33eaf5de 2956 PC- relative forms. However, these cases will involve implicit
49c62a33
NC
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
4e9aaefb 2963 /* This case will be evaluated later. */
cd000bff 2964 return;
cd000bff
DJ
2965
2966 mapping_state_2 (state, 0);
cd000bff
DJ
2967}
2968
2969/* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972static void
2973mapping_state_2 (enum mstate state, int max_chars)
2974{
940b5ce0
DJ
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
cd000bff
DJ
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
4e9aaefb
SA
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
cd000bff
DJ
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205 2997}
4e9aaefb 2998#undef TRANSITION
c19d1205 2999#else
d3106081
NS
3000#define mapping_state(x) ((void)0)
3001#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
3002#endif
3003
3004/* Find the real, Thumb encoded start of a Thumb function. */
3005
4343666d 3006#ifdef OBJ_COFF
c19d1205
ZW
3007static symbolS *
3008find_real_start (symbolS * symbolP)
3009{
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015#define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
37f6032b
ZW
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
3026 return symbolP;
3027
e1fa0163 3028 real_start = concat (STUB_NAME, name, NULL);
c19d1205 3029 new_target = symbol_find (real_start);
e1fa0163 3030 free (real_start);
c19d1205
ZW
3031
3032 if (new_target == NULL)
3033 {
bd3ba5d1 3034 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
3035 new_target = symbolP;
3036 }
3037
c19d1205
ZW
3038 return new_target;
3039}
4343666d 3040#endif
c19d1205
ZW
3041
3042static void
3043opcode_select (int width)
3044{
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
e74cfd16 3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
c19d1205
ZW
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
e74cfd16 3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
c19d1205
ZW
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078}
3079
3080static void
3081s_arm (int ignore ATTRIBUTE_UNUSED)
3082{
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085}
3086
3087static void
3088s_thumb (int ignore ATTRIBUTE_UNUSED)
3089{
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092}
3093
3094static void
3095s_code (int unused ATTRIBUTE_UNUSED)
3096{
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110}
3111
3112static void
3113s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114{
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127}
3128
3129static void
3130s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131{
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137}
3138
3139/* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142static void
3143s_thumb_set (int equiv)
3144{
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
d02603dc 3156 delim = get_symbol_name (& name);
c19d1205 3157 end_name = input_line_pointer;
d02603dc 3158 (void) restore_line_pointer (delim);
c19d1205
ZW
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181#ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
c19d1205 3184 for this symbol. */
b99bd4ef
NC
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
21d799b5 3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197#endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200#ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203#endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
c19d1205 3219 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223#if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225#endif
3226}
3227
c19d1205 3228/* Directives: Mode selection. */
b99bd4ef 3229
c19d1205
ZW
3230/* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 3233static void
c19d1205 3234s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 3235{
c19d1205
ZW
3236 char *name, delim;
3237
d02603dc 3238 delim = get_symbol_name (& name);
c19d1205
ZW
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
d02603dc 3249 (void) restore_line_pointer (delim);
b99bd4ef
NC
3250 demand_empty_rest_of_line ();
3251}
3252
c19d1205
ZW
3253/* Directives: sectioning and alignment. */
3254
c19d1205
ZW
3255static void
3256s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 3257{
c19d1205
ZW
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
cd000bff
DJ
3262
3263#ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265#endif
c19d1205 3266}
b99bd4ef 3267
c19d1205
ZW
3268static void
3269s_even (int ignore ATTRIBUTE_UNUSED)
3270{
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
b99bd4ef 3274
c19d1205 3275 record_alignment (now_seg, 1);
b99bd4ef 3276
c19d1205 3277 demand_empty_rest_of_line ();
b99bd4ef
NC
3278}
3279
2e6976a8
DG
3280/* Directives: CodeComposer Studio. */
3281
3282/* .ref (for CodeComposer Studio syntax only). */
3283static void
3284s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285{
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290}
3291
3292/* If name is not NULL, then it is used for marking the beginning of a
2b0f3761 3293 function, whereas if it is NULL then it means the function end. */
2e6976a8
DG
3294static void
3295asmfunc_debug (const char * name)
3296{
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316}
3317
3318static void
3319s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320{
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341}
3342
3343static void
3344s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345{
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367}
3368
3369static void
3370s_ccs_def (int name)
3371{
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376}
3377
c19d1205 3378/* Directives: Literal pools. */
a737bd4d 3379
c19d1205
ZW
3380static literal_pool *
3381find_literal_pool (void)
a737bd4d 3382{
c19d1205 3383 literal_pool * pool;
a737bd4d 3384
c19d1205 3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3386 {
c19d1205
ZW
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
a737bd4d
NC
3390 }
3391
c19d1205 3392 return pool;
a737bd4d
NC
3393}
3394
c19d1205
ZW
3395static literal_pool *
3396find_or_make_literal_pool (void)
a737bd4d 3397{
c19d1205
ZW
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
a737bd4d 3401
c19d1205 3402 pool = find_literal_pool ();
a737bd4d 3403
c19d1205 3404 if (pool == NULL)
a737bd4d 3405 {
c19d1205 3406 /* Create a new pool. */
325801bd 3407 pool = XNEW (literal_pool);
c19d1205
ZW
3408 if (! pool)
3409 return NULL;
a737bd4d 3410
c19d1205
ZW
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
8335d6aa 3416 pool->alignment = 2;
c19d1205
ZW
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
a737bd4d 3420 }
a737bd4d 3421
c19d1205
ZW
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
a737bd4d 3424 {
c19d1205
ZW
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
a737bd4d
NC
3428 }
3429
c19d1205
ZW
3430 /* Done. */
3431 return pool;
a737bd4d
NC
3432}
3433
c19d1205 3434/* Add the literal in the global 'inst'
5f4273c7 3435 structure to the relevant literal pool. */
b99bd4ef
NC
3436
3437static int
8335d6aa 3438add_to_lit_pool (unsigned int nbytes)
b99bd4ef 3439{
8335d6aa
JW
3440#define PADDING_SLOT 0x1
3441#define LIT_ENTRY_SIZE_MASK 0xFF
c19d1205 3442 literal_pool * pool;
8335d6aa
JW
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
e56c722b 3445 unsigned imm1 = 0;
8335d6aa
JW
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
e2b0ab59 3452 : inst.relocs[0].exp.X_unsigned ? 0
2569ceb0 3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
8335d6aa
JW
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
b99bd4ef 3460
c19d1205
ZW
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3465 {
8335d6aa
JW
3466 if (nbytes == 4)
3467 {
e2b0ab59
AV
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
8335d6aa 3470 && (pool->literals[entry].X_add_number
e2b0ab59 3471 == inst.relocs[0].exp.X_add_number)
8335d6aa
JW
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
e2b0ab59 3474 == inst.relocs[0].exp.X_unsigned))
8335d6aa
JW
3475 break;
3476
e2b0ab59
AV
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
8335d6aa 3479 && (pool->literals[entry].X_add_number
e2b0ab59 3480 == inst.relocs[0].exp.X_add_number)
8335d6aa 3481 && (pool->literals[entry].X_add_symbol
e2b0ab59 3482 == inst.relocs[0].exp.X_add_symbol)
8335d6aa 3483 && (pool->literals[entry].X_op_symbol
e2b0ab59 3484 == inst.relocs[0].exp.X_op_symbol)
8335d6aa
JW
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
19f2f6a9 3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
8335d6aa 3493 && (pool->literals[entry].X_unsigned
e2b0ab59 3494 == inst.relocs[0].exp.X_unsigned)
8335d6aa 3495 && (pool->literals[entry + 1].X_op == O_constant)
19f2f6a9 3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
8335d6aa 3497 && (pool->literals[entry + 1].X_unsigned
e2b0ab59 3498 == inst.relocs[0].exp.X_unsigned))
c19d1205
ZW
3499 break;
3500
8335d6aa
JW
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
c19d1205 3503 break;
8335d6aa
JW
3504
3505 pool_size += 4;
b99bd4ef
NC
3506 }
3507
c19d1205
ZW
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
8335d6aa
JW
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
e2b0ab59
AV
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
8335d6aa
JW
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
e2b0ab59 3544 pool->literals[entry] = inst.relocs[0].exp;
a6684f0d 3545 pool->literals[entry].X_op = O_constant;
8335d6aa
JW
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
e2b0ab59 3557 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
e2b0ab59 3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa 3561 pool->literals[entry++].X_md = 4;
e2b0ab59 3562 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
e2b0ab59 3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
8335d6aa
JW
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
e2b0ab59 3572 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3573 pool->literals[entry].X_md = 4;
3574 }
3575
a8040cf2
NC
3576#ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583#endif
c19d1205
ZW
3584 pool->next_free_entry += 1;
3585 }
8335d6aa
JW
3586 else if (padding_slot_p)
3587 {
e2b0ab59 3588 pool->literals[entry] = inst.relocs[0].exp;
8335d6aa
JW
3589 pool->literals[entry].X_md = nbytes;
3590 }
b99bd4ef 3591
e2b0ab59
AV
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
b99bd4ef 3595
c19d1205 3596 return SUCCESS;
b99bd4ef
NC
3597}
3598
2e6976a8 3599bfd_boolean
2e57ce7b 3600tc_start_label_without_colon (void)
2e6976a8
DG
3601{
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
2e57ce7b 3606 const char *label = input_line_pointer;
2e6976a8
DG
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623}
3624
c19d1205 3625/* Can't use symbol_new here, so have to create a symbol and then at
33eaf5de 3626 a later date assign it a value. That's what these functions do. */
e16bb312 3627
c19d1205
ZW
3628static void
3629symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634{
e57e6ddc 3635 size_t name_length;
c19d1205 3636 char * preserved_copy_of_name;
e16bb312 3637
c19d1205
ZW
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
21d799b5 3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3641
c19d1205
ZW
3642#ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645#endif
b99bd4ef 3646
c19d1205 3647 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3648
c19d1205
ZW
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
b99bd4ef 3652
c19d1205 3653 symbol_set_frag (symbolP, frag);
b99bd4ef 3654
c19d1205
ZW
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
b99bd4ef 3658
c19d1205
ZW
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
b99bd4ef 3662
c19d1205 3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3664
c19d1205 3665 obj_symbol_new_hook (symbolP);
b99bd4ef 3666
c19d1205
ZW
3667#ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669#endif
3670
3671#ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673#endif /* DEBUG_SYMS */
b99bd4ef
NC
3674}
3675
c19d1205
ZW
3676static void
3677s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3678{
c19d1205
ZW
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
b99bd4ef 3682
c19d1205
ZW
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
b99bd4ef 3688
c19d1205
ZW
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
8335d6aa 3692 frag_align (pool->alignment, 0, 0);
b99bd4ef 3693
c19d1205 3694 record_alignment (now_seg, 2);
b99bd4ef 3695
aaca88ef 3696#ifdef OBJ_ELF
47fc6e36
WN
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
aaca88ef 3699#endif
c19d1205 3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3701
c19d1205
ZW
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
b99bd4ef 3705
c19d1205 3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3707
c19d1205
ZW
3708#if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710#endif
6c43fab6 3711
c19d1205 3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3713 {
3714#ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717#endif
3718 /* First output the expression in the instruction to the pool. */
8335d6aa
JW
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
a8040cf2 3721 }
b99bd4ef 3722
c19d1205
ZW
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
b99bd4ef
NC
3726}
3727
c19d1205
ZW
3728#ifdef OBJ_ELF
3729/* Forward declarations for functions below, in the MD interface
3730 section. */
3731static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732static valueT create_unwind_entry (int);
3733static void start_unwind_section (const segT, int);
3734static void add_unwind_opcode (valueT, int);
3735static void flush_pending_unwind (void);
b99bd4ef 3736
c19d1205 3737/* Directives: Data. */
b99bd4ef 3738
c19d1205
ZW
3739static void
3740s_arm_elf_cons (int nbytes)
3741{
3742 expressionS exp;
b99bd4ef 3743
c19d1205
ZW
3744#ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746#endif
b99bd4ef 3747
c19d1205 3748 if (is_it_end_of_statement ())
b99bd4ef 3749 {
c19d1205
ZW
3750 demand_empty_rest_of_line ();
3751 return;
b99bd4ef
NC
3752 }
3753
c19d1205
ZW
3754#ifdef md_cons_align
3755 md_cons_align (nbytes);
3756#endif
b99bd4ef 3757
c19d1205
ZW
3758 mapping_state (MAP_DATA);
3759 do
b99bd4ef 3760 {
c19d1205
ZW
3761 int reloc;
3762 char *base = input_line_pointer;
b99bd4ef 3763
c19d1205 3764 expression (& exp);
b99bd4ef 3765
c19d1205
ZW
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
21d799b5 3782 reloc_howto_type *howto = (reloc_howto_type *)
477330fc
RM
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
c19d1205 3785 int size = bfd_get_reloc_size (howto);
b99bd4ef 3786
2fc8bdac
ZW
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
c19d1205 3794 if (size > nbytes)
992a06ee
AM
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
c19d1205
ZW
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
325801bd 3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
e1fa0163 3808
c19d1205
ZW
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
4b1a927e
AM
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
c19d1205 3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
e1fa0163 3822 free (save_buf);
c19d1205
ZW
3823 }
3824 }
3825 }
b99bd4ef 3826 }
c19d1205 3827 while (*input_line_pointer++ == ',');
b99bd4ef 3828
c19d1205
ZW
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
b99bd4ef
NC
3832}
3833
c921be7d
NC
3834/* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837static void
3838emit_thumb32_expr (expressionS * exp)
3839{
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846}
3847
3848/* Guess the instruction size based on the opcode. */
3849
3850static int
3851thumb_insn_size (int opcode)
3852{
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859}
3860
3861static bfd_boolean
3862emit_insn (expressionS *exp, int nbytes)
3863{
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
5ee91343
AV
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
c921be7d 3885 else
5ee91343 3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
c921be7d
NC
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904}
3905
3906/* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909static void
3910s_arm_elf_inst (int nbytes)
3911{
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954}
b99bd4ef 3955
c19d1205 3956/* Parse a .rel31 directive. */
b99bd4ef 3957
c19d1205
ZW
3958static void
3959s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960{
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
b99bd4ef 3964
c19d1205
ZW
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
b99bd4ef 3970
c19d1205
ZW
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976#ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978#endif
b99bd4ef 3979
c19d1205
ZW
3980#ifdef md_cons_align
3981 md_cons_align (4);
3982#endif
b99bd4ef 3983
c19d1205 3984 mapping_state (MAP_DATA);
b99bd4ef 3985
c19d1205 3986 expression (&exp);
b99bd4ef 3987
c19d1205
ZW
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
b99bd4ef 3992
c19d1205 3993 demand_empty_rest_of_line ();
b99bd4ef
NC
3994}
3995
c19d1205 3996/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3997
c19d1205 3998/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3999
c19d1205
ZW
4000static void
4001s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002{
4003 demand_empty_rest_of_line ();
921e5f0a
PB
4004 if (unwind.proc_start)
4005 {
c921be7d 4006 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
4007 return;
4008 }
4009
c19d1205
ZW
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
b99bd4ef 4012
c19d1205
ZW
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
fdfde340 4020 unwind.fp_reg = REG_SP;
c19d1205
ZW
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023}
b99bd4ef 4024
b99bd4ef 4025
c19d1205
ZW
4026/* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
b99bd4ef 4028
c19d1205
ZW
4029static void
4030s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031{
4032 demand_empty_rest_of_line ();
921e5f0a 4033 if (!unwind.proc_start)
c921be7d 4034 as_bad (MISSING_FNSTART);
921e5f0a 4035
c19d1205 4036 if (unwind.table_entry)
6decc662 4037 as_bad (_("duplicate .handlerdata directive"));
f02232aa 4038
c19d1205
ZW
4039 create_unwind_entry (1);
4040}
a737bd4d 4041
c19d1205 4042/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 4043
c19d1205
ZW
4044static void
4045s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046{
4047 long where;
4048 char *ptr;
4049 valueT val;
940b5ce0 4050 unsigned int marked_pr_dependency;
f02232aa 4051
c19d1205 4052 demand_empty_rest_of_line ();
f02232aa 4053
921e5f0a
PB
4054 if (!unwind.proc_start)
4055 {
c921be7d 4056 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
4057 return;
4058 }
4059
c19d1205
ZW
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
f02232aa 4065
c19d1205
ZW
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
b99bd4ef 4070
c19d1205 4071 ptr = frag_more (8);
5011093d 4072 memset (ptr, 0, 8);
c19d1205 4073 where = frag_now_fix () - 8;
f02232aa 4074
c19d1205
ZW
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
f02232aa 4078
c19d1205
ZW
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
940b5ce0
DJ
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
5f4273c7
NC
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
c19d1205
ZW
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 4095 |= 1 << unwind.personality_index;
c19d1205 4096 }
f02232aa 4097
c19d1205
ZW
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
f02232aa 4105
c19d1205
ZW
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
4108
4109 unwind.proc_start = NULL;
c19d1205 4110}
f02232aa 4111
f02232aa 4112
c19d1205 4113/* Parse an unwind_cantunwind directive. */
b99bd4ef 4114
c19d1205
ZW
4115static void
4116s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117{
4118 demand_empty_rest_of_line ();
921e5f0a 4119 if (!unwind.proc_start)
c921be7d 4120 as_bad (MISSING_FNSTART);
921e5f0a 4121
c19d1205
ZW
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 4124
c19d1205
ZW
4125 unwind.personality_index = -2;
4126}
b99bd4ef 4127
b99bd4ef 4128
c19d1205 4129/* Parse a personalityindex directive. */
b99bd4ef 4130
c19d1205
ZW
4131static void
4132s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133{
4134 expressionS exp;
b99bd4ef 4135
921e5f0a 4136 if (!unwind.proc_start)
c921be7d 4137 as_bad (MISSING_FNSTART);
921e5f0a 4138
c19d1205
ZW
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 4141
c19d1205 4142 expression (&exp);
b99bd4ef 4143
c19d1205
ZW
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 4146 {
c19d1205
ZW
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
b99bd4ef
NC
4150 }
4151
c19d1205 4152 unwind.personality_index = exp.X_add_number;
b99bd4ef 4153
c19d1205
ZW
4154 demand_empty_rest_of_line ();
4155}
e16bb312 4156
e16bb312 4157
c19d1205 4158/* Parse a personality directive. */
e16bb312 4159
c19d1205
ZW
4160static void
4161s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162{
4163 char *name, *p, c;
a737bd4d 4164
921e5f0a 4165 if (!unwind.proc_start)
c921be7d 4166 as_bad (MISSING_FNSTART);
921e5f0a 4167
c19d1205
ZW
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
a737bd4d 4170
d02603dc 4171 c = get_symbol_name (& name);
c19d1205 4172 p = input_line_pointer;
d02603dc
NC
4173 if (c == '"')
4174 ++ input_line_pointer;
c19d1205
ZW
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178}
e16bb312 4179
e16bb312 4180
c19d1205 4181/* Parse a directive saving core registers. */
e16bb312 4182
c19d1205
ZW
4183static void
4184s_arm_unwind_save_core (void)
e16bb312 4185{
c19d1205
ZW
4186 valueT op;
4187 long range;
4188 int n;
e16bb312 4189
4b5a202f 4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
c19d1205 4191 if (range == FAIL)
e16bb312 4192 {
c19d1205
ZW
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
e16bb312 4197
c19d1205 4198 demand_empty_rest_of_line ();
e16bb312 4199
c19d1205
ZW
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
e16bb312 4211
01ae4198
DJ
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
c19d1205 4214 {
01ae4198
DJ
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
0dd132b6 4230 else
01ae4198
DJ
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
c19d1205 4240 }
0dd132b6 4241
c19d1205
ZW
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
0dd132b6
NC
4247 }
4248
c19d1205
ZW
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
0dd132b6
NC
4255}
4256
c19d1205
ZW
4257
4258/* Parse a directive saving FPA registers. */
b99bd4ef
NC
4259
4260static void
c19d1205 4261s_arm_unwind_save_fpa (int reg)
b99bd4ef 4262{
c19d1205
ZW
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
b99bd4ef 4266
c19d1205
ZW
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
b99bd4ef 4272
c19d1205 4273 if (exp.X_op != O_constant)
b99bd4ef 4274 {
c19d1205
ZW
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
b99bd4ef
NC
4277 return;
4278 }
4279
c19d1205
ZW
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
b99bd4ef 4283 {
c19d1205
ZW
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
b99bd4ef
NC
4286 return;
4287 }
4288
c19d1205 4289 demand_empty_rest_of_line ();
b99bd4ef 4290
c19d1205
ZW
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
b99bd4ef
NC
4297 else
4298 {
c19d1205
ZW
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
b99bd4ef 4302 }
c19d1205 4303 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
4304}
4305
c19d1205 4306
fa073d69
MS
4307/* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309static void
4310s_arm_unwind_save_vfp_armv6 (void)
4311{
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
efd6b359 4317 bfd_boolean partial_match;
fa073d69 4318
efd6b359
AV
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
fa073d69
MS
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356}
4357
4358
4359/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
4360
4361static void
c19d1205 4362s_arm_unwind_save_vfp (void)
b99bd4ef 4363{
c19d1205 4364 int count;
ca3f61f7 4365 unsigned int reg;
c19d1205 4366 valueT op;
efd6b359 4367 bfd_boolean partial_match;
b99bd4ef 4368
efd6b359
AV
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
c19d1205 4371 if (count == FAIL)
b99bd4ef 4372 {
c19d1205
ZW
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
b99bd4ef
NC
4375 return;
4376 }
4377
c19d1205 4378 demand_empty_rest_of_line ();
b99bd4ef 4379
c19d1205 4380 if (reg == 8)
b99bd4ef 4381 {
c19d1205
ZW
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
b99bd4ef 4385 }
c19d1205 4386 else
b99bd4ef 4387 {
c19d1205
ZW
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
b99bd4ef 4391 }
c19d1205
ZW
4392 unwind.frame_size += count * 8 + 4;
4393}
b99bd4ef 4394
b99bd4ef 4395
c19d1205
ZW
4396/* Parse a directive saving iWMMXt data registers. */
4397
4398static void
4399s_arm_unwind_save_mmxwr (void)
4400{
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
b99bd4ef 4406
c19d1205
ZW
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
b99bd4ef 4409
c19d1205 4410 do
b99bd4ef 4411 {
dcbf9037 4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 4413
c19d1205 4414 if (reg == FAIL)
b99bd4ef 4415 {
9b7132d3 4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 4417 goto error;
b99bd4ef
NC
4418 }
4419
c19d1205
ZW
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
b99bd4ef 4423
c19d1205
ZW
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
dcbf9037 4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
4428 if (hi_reg == FAIL)
4429 {
9b7132d3 4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4443
d996d970 4444 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4445
c19d1205 4446 demand_empty_rest_of_line ();
b99bd4ef 4447
708587a4 4448 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4449 the list. */
4450 flush_pending_unwind ();
b99bd4ef 4451
c19d1205 4452 for (i = 0; i < 16; i++)
b99bd4ef 4453 {
c19d1205
ZW
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
b99bd4ef
NC
4456 }
4457
c19d1205
ZW
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
b99bd4ef 4462 {
c19d1205
ZW
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
b99bd4ef 4481
c19d1205
ZW
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
87a1fd79 4484 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
b99bd4ef
NC
4493 }
4494
c19d1205
ZW
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
b99bd4ef 4499 {
c19d1205
ZW
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 4505 preceding block. */
c19d1205
ZW
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 return;
4526error:
4527 ignore_rest_of_line ();
b99bd4ef
NC
4528}
4529
4530static void
c19d1205 4531s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4532{
c19d1205
ZW
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
b99bd4ef 4537
c19d1205
ZW
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
b99bd4ef 4540
477330fc
RM
4541 skip_whitespace (input_line_pointer);
4542
c19d1205 4543 do
b99bd4ef 4544 {
dcbf9037 4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4546
c19d1205
ZW
4547 if (reg == FAIL)
4548 {
9b7132d3 4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4550 goto error;
4551 }
b99bd4ef 4552
c19d1205
ZW
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
b99bd4ef 4557
c19d1205
ZW
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
dcbf9037 4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4562 if (hi_reg == FAIL)
4563 {
9b7132d3 4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
b99bd4ef 4575 }
c19d1205 4576 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4577
d996d970 4578 skip_past_char (&input_line_pointer, '}');
b99bd4ef 4579
c19d1205
ZW
4580 demand_empty_rest_of_line ();
4581
708587a4 4582 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4583 the list. */
4584 flush_pending_unwind ();
b99bd4ef 4585
c19d1205 4586 for (reg = 0; reg < 16; reg++)
b99bd4ef 4587 {
c19d1205
ZW
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
b99bd4ef 4590 }
c19d1205
ZW
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594error:
4595 ignore_rest_of_line ();
b99bd4ef
NC
4596}
4597
c19d1205 4598
fa073d69
MS
4599/* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4601
b99bd4ef 4602static void
fa073d69 4603s_arm_unwind_save (int arch_v6)
b99bd4ef 4604{
c19d1205
ZW
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
b99bd4ef 4608
921e5f0a 4609 if (!unwind.proc_start)
c921be7d 4610 as_bad (MISSING_FNSTART);
921e5f0a 4611
c19d1205
ZW
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
b99bd4ef 4614
c19d1205 4615 if (*peek == '{')
b99bd4ef 4616 {
c19d1205
ZW
4617 had_brace = TRUE;
4618 peek++;
b99bd4ef
NC
4619 }
4620
c19d1205 4621 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4622
c19d1205 4623 if (!reg)
b99bd4ef 4624 {
c19d1205
ZW
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
b99bd4ef
NC
4627 return;
4628 }
4629
c19d1205 4630 switch (reg->type)
b99bd4ef 4631 {
c19d1205
ZW
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
93ac2687 4639 input_line_pointer = peek;
c19d1205 4640 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4641 return;
c19d1205 4642
1f5afe1c
NC
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
fa073d69
MS
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
477330fc 4649 s_arm_unwind_save_vfp_armv6 ();
fa073d69 4650 else
477330fc 4651 s_arm_unwind_save_vfp ();
fa073d69 4652 return;
1f5afe1c
NC
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
c19d1205
ZW
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
b99bd4ef 4665 }
c19d1205 4666}
b99bd4ef 4667
b99bd4ef 4668
c19d1205
ZW
4669/* Parse an unwind_movsp directive. */
4670
4671static void
4672s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673{
4674 int reg;
4675 valueT op;
4fa3602b 4676 int offset;
c19d1205 4677
921e5f0a 4678 if (!unwind.proc_start)
c921be7d 4679 as_bad (MISSING_FNSTART);
921e5f0a 4680
dcbf9037 4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4682 if (reg == FAIL)
b99bd4ef 4683 {
9b7132d3 4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4685 ignore_rest_of_line ();
b99bd4ef
NC
4686 return;
4687 }
4fa3602b
PB
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
c19d1205 4698 demand_empty_rest_of_line ();
b99bd4ef 4699
c19d1205 4700 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4701 {
c19d1205 4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4703 return;
4704 }
4705
c19d1205
ZW
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4708
c19d1205
ZW
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4fa3602b 4715 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4716 unwind.sp_restored = 1;
b05fe5cf
ZW
4717}
4718
c19d1205
ZW
4719/* Parse an unwind_pad directive. */
4720
b05fe5cf 4721static void
c19d1205 4722s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4723{
c19d1205 4724 int offset;
b05fe5cf 4725
921e5f0a 4726 if (!unwind.proc_start)
c921be7d 4727 as_bad (MISSING_FNSTART);
921e5f0a 4728
c19d1205
ZW
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
b99bd4ef 4731
c19d1205
ZW
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
b99bd4ef 4738
c19d1205
ZW
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744}
4745
4746/* Parse an unwind_setfp directive. */
4747
4748static void
4749s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4750{
c19d1205
ZW
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
921e5f0a 4755 if (!unwind.proc_start)
c921be7d 4756 as_bad (MISSING_FNSTART);
921e5f0a 4757
dcbf9037 4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
dcbf9037 4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4763
c19d1205
ZW
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
b99bd4ef 4770
c19d1205
ZW
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
a737bd4d 4779
c19d1205 4780 demand_empty_rest_of_line ();
a737bd4d 4781
fdfde340 4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4783 {
c19d1205
ZW
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
a737bd4d
NC
4787 }
4788
c19d1205
ZW
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
fdfde340 4792 if (sp_reg == REG_SP)
c19d1205
ZW
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
a737bd4d
NC
4796}
4797
c19d1205
ZW
4798/* Parse an unwind_raw directive. */
4799
4800static void
4801s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4802{
c19d1205 4803 expressionS exp;
708587a4 4804 /* This is an arbitrary limit. */
c19d1205
ZW
4805 unsigned char op[16];
4806 int count;
a737bd4d 4807
921e5f0a 4808 if (!unwind.proc_start)
c921be7d 4809 as_bad (MISSING_FNSTART);
921e5f0a 4810
c19d1205
ZW
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4814 {
c19d1205
ZW
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
a737bd4d 4820
c19d1205
ZW
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
a737bd4d 4827
c19d1205 4828 count = 0;
a737bd4d 4829
c19d1205
ZW
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
a737bd4d 4837 }
c19d1205 4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4839 {
c19d1205
ZW
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
a737bd4d 4843 }
c19d1205 4844 op[count++] = exp.X_add_number;
a737bd4d 4845
c19d1205
ZW
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
a737bd4d 4849
c19d1205
ZW
4850 expression (&exp);
4851 }
b99bd4ef 4852
c19d1205
ZW
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
b99bd4ef 4856
c19d1205 4857 demand_empty_rest_of_line ();
b99bd4ef 4858}
ee065d83
PB
4859
4860
4861/* Parse a .eabi_attribute directive. */
4862
4863static void
4864s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865{
0420f52b 4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
ee3c0378 4867
3076e594 4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
ee3c0378 4869 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4870}
4871
0855e32b
NS
4872/* Emit a tls fix for the symbol. */
4873
4874static void
4875s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876{
4877 char *p;
4878 expressionS exp;
4879#ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881#endif
4882
4883#ifdef md_cons_align
4884 md_cons_align (4);
4885#endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894}
cdf9ccec 4895#endif /* OBJ_ELF */
0855e32b 4896
ee065d83 4897static void s_arm_arch (int);
7a1d4c38 4898static void s_arm_object_arch (int);
ee065d83
PB
4899static void s_arm_cpu (int);
4900static void s_arm_fpu (int);
69133863 4901static void s_arm_arch_extension (int);
b99bd4ef 4902
f0927246
NC
4903#ifdef TE_PE
4904
4905static void
5f4273c7 4906pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4907{
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922}
4923#endif /* TE_PE */
4924
c19d1205
ZW
4925/* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
b99bd4ef 4930
c19d1205 4931const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4932{
c19d1205
ZW
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
dcbf9037
JB
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
c19d1205
ZW
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
db2ed2e0 4940 { "align", s_align_ptwo, 2 },
c19d1205
ZW
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
8463be01
PB
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
7a1d4c38 4953 { "object_arch", s_arm_object_arch, 0 },
8463be01 4954 { "fpu", s_arm_fpu, 0 },
69133863 4955 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4956#ifdef OBJ_ELF
c921be7d
NC
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
fa073d69 4970 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4977#else
4978 { "word", cons, 4},
f0927246
NC
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
68d20676 4985 { "file", dwarf2_directive_file, 0 },
f0927246
NC
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4988#endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
f0927246
NC
4992#ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994#endif
2e6976a8
DG
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
c19d1205
ZW
5002 { 0, 0, 0 }
5003};
5004\f
5005/* Parser functions used exclusively in instruction operands. */
b99bd4ef 5006
c19d1205
ZW
5007/* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
b99bd4ef 5012
c19d1205
ZW
5013static int
5014parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016{
5017 expressionS exp;
0198d5e6 5018
c19d1205
ZW
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
b99bd4ef 5021 {
c19d1205
ZW
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
b99bd4ef 5025
c19d1205
ZW
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
b99bd4ef 5031
c19d1205
ZW
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034}
b99bd4ef 5035
5287ad62 5036/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040static int
8335d6aa
JW
5041parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5287ad62
JB
5043{
5044 expressionS exp;
8335d6aa 5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5287ad62
JB
5046 char *ptr = *str;
5047
8335d6aa 5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5287ad62 5049
8335d6aa 5050 if (exp_p->X_op == O_constant)
036dc3f7 5051 {
8335d6aa 5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
036dc3f7
PB
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
8335d6aa 5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7 5057 {
8335d6aa
JW
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
036dc3f7
PB
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
8335d6aa
JW
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5287ad62
JB
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 5068
5287ad62 5069 /* Bignums have their least significant bits in
477330fc
RM
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 5072 gas_assert (parts != 0);
95b75c01
NC
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
8335d6aa 5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
95b75c01
NC
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
8335d6aa 5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
95b75c01
NC
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5287ad62
JB
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
477330fc
RM
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5287ad62
JB
5099 inst.operands[i].regisimm = 1;
5100 }
8335d6aa 5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5287ad62 5102 return FAIL;
5f4273c7 5103
5287ad62
JB
5104 *str = ptr;
5105
5106 return SUCCESS;
5107}
5108
c19d1205
ZW
5109/* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
b99bd4ef 5111
c19d1205
ZW
5112static int
5113parse_fpa_immediate (char ** str)
5114{
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
b99bd4ef 5120
c19d1205
ZW
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
b99bd4ef 5123
c19d1205
ZW
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 5127 {
c19d1205 5128 char *start = *str;
b99bd4ef 5129
c19d1205
ZW
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
b99bd4ef 5136
c19d1205
ZW
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
b99bd4ef 5141
c19d1205 5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 5143
c19d1205
ZW
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 5151 {
c19d1205
ZW
5152 if (words[j] != fp_values[i][j])
5153 break;
b99bd4ef
NC
5154 }
5155
c19d1205 5156 if (j == MAX_LITTLENUMS)
b99bd4ef 5157 {
c19d1205
ZW
5158 *str = save_in;
5159 return i + 8;
b99bd4ef
NC
5160 }
5161 }
5162 }
b99bd4ef 5163
c19d1205
ZW
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
ba592044
AM
5174#define X_PRECISION 5
5175#define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
c19d1205
ZW
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
b99bd4ef 5185
c19d1205
ZW
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
b99bd4ef
NC
5194 }
5195
c19d1205
ZW
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
b99bd4ef
NC
5200}
5201
136da414
JB
5202/* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205static int
5206is_quarter_float (unsigned imm)
5207{
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210}
5211
aacf0b33
KT
5212
5213/* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216static bfd_boolean
5217parse_ifimm_zero (char **in)
5218{
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
3c6452ae
TP
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
0900a05b
JW
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
aacf0b33
KT
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249}
5250
136da414
JB
5251/* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
136da414
JB
5256
5257static unsigned
5258parse_qfloat_immediate (char **ccp, int *immed)
5259{
5260 char *str = *ccp;
c96612cc 5261 char *fpnum;
136da414 5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 5263 int found_fpchar = 0;
5f4273c7 5264
136da414 5265 skip_past_char (&str, '#');
5f4273c7 5266
c96612cc
JB
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
477330fc
RM
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
c96612cc
JB
5285
5286 if (!found_fpchar)
477330fc 5287 return FAIL;
c96612cc 5288 }
5f4273c7 5289
136da414
JB
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5f4273c7 5294
136da414
JB
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
477330fc
RM
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5f4273c7 5301
c96612cc 5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
477330fc 5303 *immed = fpword;
136da414 5304 else
477330fc 5305 return FAIL;
136da414
JB
5306
5307 *ccp = str;
5f4273c7 5308
136da414
JB
5309 return SUCCESS;
5310 }
5f4273c7 5311
136da414
JB
5312 return FAIL;
5313}
5314
c19d1205
ZW
5315/* Shift operands. */
5316enum shift_kind
b99bd4ef 5317{
f5f10c66 5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
c19d1205 5319};
b99bd4ef 5320
c19d1205
ZW
5321struct asm_shift_name
5322{
5323 const char *name;
5324 enum shift_kind kind;
5325};
b99bd4ef 5326
c19d1205
ZW
5327/* Third argument to parse_shift. */
5328enum parse_shift_mode
5329{
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
f5f10c66 5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
c19d1205 5336};
b99bd4ef 5337
c19d1205
ZW
5338/* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
b99bd4ef 5340
c19d1205
ZW
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
b99bd4ef 5344
c19d1205
ZW
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 5347
c19d1205
ZW
5348static int
5349parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 5350{
c19d1205
ZW
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
b99bd4ef 5356
c19d1205
ZW
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
b99bd4ef 5359
c19d1205 5360 if (p == *str)
b99bd4ef 5361 {
c19d1205
ZW
5362 inst.error = _("shift expression expected");
5363 return FAIL;
b99bd4ef
NC
5364 }
5365
21d799b5 5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
477330fc 5367 p - *str);
c19d1205
ZW
5368
5369 if (shift_name == NULL)
b99bd4ef 5370 {
c19d1205
ZW
5371 inst.error = _("shift expression expected");
5372 return FAIL;
b99bd4ef
NC
5373 }
5374
c19d1205 5375 shift = shift_name->kind;
b99bd4ef 5376
c19d1205
ZW
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
f5f10c66
AV
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
b99bd4ef 5387
c19d1205
ZW
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
b99bd4ef 5395
c19d1205
ZW
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
b99bd4ef 5403
c19d1205
ZW
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
f5f10c66
AV
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
b99bd4ef 5418
c19d1205
ZW
5419 default: abort ();
5420 }
b99bd4ef 5421
c19d1205
ZW
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
b99bd4ef 5426
c19d1205 5427 if (mode == NO_SHIFT_RESTRICT
dcbf9037 5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
e2b0ab59 5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
c19d1205
ZW
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
b99bd4ef
NC
5440}
5441
c19d1205 5442/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 5443
c19d1205
ZW
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
b99bd4ef 5448
c19d1205
ZW
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 5451 is deferred to md_apply_fix. */
b99bd4ef 5452
c19d1205
ZW
5453static int
5454parse_shifter_operand (char **str, int i)
5455{
5456 int value;
91d6fa6a 5457 expressionS exp;
b99bd4ef 5458
dcbf9037 5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
b99bd4ef 5463
c19d1205 5464 /* parse_shift will override this if appropriate */
e2b0ab59
AV
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
b99bd4ef 5467
c19d1205
ZW
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
b99bd4ef 5470
c19d1205
ZW
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
5473 }
5474
e2b0ab59 5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
c19d1205 5476 return FAIL;
b99bd4ef 5477
c19d1205 5478 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 5479 {
c19d1205 5480 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 5482 return FAIL;
b99bd4ef 5483
e2b0ab59 5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
c19d1205
ZW
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
b99bd4ef 5489
91d6fa6a 5490 value = exp.X_add_number;
c19d1205
ZW
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
e2b0ab59
AV
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
c19d1205
ZW
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
09d92015 5502
a415b1cd 5503 /* Encode as specified. */
e2b0ab59 5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
a415b1cd 5505 return SUCCESS;
09d92015
MM
5506 }
5507
e2b0ab59
AV
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
c19d1205 5510 return SUCCESS;
09d92015
MM
5511}
5512
4962c51a
MS
5513/* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520struct group_reloc_table_entry
5521{
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527};
5528
5529typedef enum
5530{
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
35c228db
AV
5535 GROUP_LDC,
5536 GROUP_MVE
4962c51a
MS
5537} group_reloc_type;
5538
5539static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
72d98d16
MG
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
4962c51a
MS
5613
5614/* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621static int
5622find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623{
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5f4273c7
NC
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
477330fc
RM
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
4962c51a
MS
5636 }
5637
5638 return FAIL;
5639}
5640
5641/* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655static parse_operand_result
5656parse_shifter_operand_group_reloc (char **str, int i)
5657{
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
477330fc 5668 (*str) += 2;
4962c51a 5669 else
477330fc 5670 (*str)++;
4962c51a
MS
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
477330fc
RM
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
4962c51a
MS
5678
5679 /* We now have the group relocation table entry corresponding to
477330fc 5680 the name in the assembler source. Next, we parse the expression. */
e2b0ab59 5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
477330fc 5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4962c51a
MS
5683
5684 /* Record the relocation type (always the ALU variant here). */
e2b0ab59
AV
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
4962c51a
MS
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
477330fc 5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4962c51a
MS
5693
5694 /* Never reached. */
5695}
5696
8e560766
MGD
5697/* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5699
8e560766
MGD
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701static parse_operand_result
5702parse_neon_alignment (char **str, int i)
5703{
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722}
5723
c19d1205 5724/* Parse all forms of an ARM address expression. Information is written
e2b0ab59 5725 to inst.operands[i] and/or inst.relocs[0].
09d92015 5726
c19d1205 5727 Preindexed addressing (.preind=1):
09d92015 5728
e2b0ab59 5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5732 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5733
c19d1205 5734 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5735
c19d1205 5736 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5737
e2b0ab59 5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
c19d1205
ZW
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
e2b0ab59 5741 .shift_kind=shift .relocs[0].exp=shift_imm
09d92015 5742
c19d1205 5743 Unindexed addressing (.preind=0, .postind=0):
09d92015 5744
c19d1205 5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5746
c19d1205 5747 Other:
09d92015 5748
c19d1205 5749 [Rn]{!} shorthand for [Rn,#0]{!}
e2b0ab59
AV
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
09d92015 5752
c19d1205 5753 It is the caller's responsibility to check for addressing modes not
e2b0ab59 5754 supported by the instruction, and to set inst.relocs[0].type. */
c19d1205 5755
4962c51a
MS
5756static parse_operand_result
5757parse_address_main (char **str, int i, int group_relocations,
477330fc 5758 group_reloc_type group_type)
09d92015 5759{
c19d1205
ZW
5760 char *p = *str;
5761 int reg;
09d92015 5762
c19d1205 5763 if (skip_past_char (&p, '[') == FAIL)
09d92015 5764 {
c19d1205
ZW
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
974da60d 5767 /* Bare address - translate to PC-relative offset. */
e2b0ab59 5768 inst.relocs[0].pc_rel = 1;
c19d1205
ZW
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
09d92015 5772
e2b0ab59 5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
8335d6aa
JW
5774 return PARSE_OPERAND_FAIL;
5775 }
e2b0ab59 5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
8335d6aa 5777 /*allow_symbol_p=*/TRUE))
4962c51a 5778 return PARSE_OPERAND_FAIL;
09d92015 5779
c19d1205 5780 *str = p;
4962c51a 5781 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5782 }
5783
8ab8155f
NC
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
f5f10c66
AV
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5802 {
35c228db
AV
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5807 return PARSE_OPERAND_FAIL;
09d92015 5808 }
c19d1205
ZW
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
09d92015 5811
c19d1205 5812 if (skip_past_comma (&p) == SUCCESS)
09d92015 5813 {
c19d1205 5814 inst.operands[i].preind = 1;
09d92015 5815
c19d1205
ZW
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
f5f10c66
AV
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5839 {
c19d1205
ZW
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5845 return PARSE_OPERAND_FAIL;
c19d1205 5846 }
5287ad62 5847 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5853
8e560766
MGD
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
c19d1205
ZW
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
4962c51a 5864
5f4273c7
NC
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5867 {
5868 struct group_reloc_table_entry *entry;
5869
477330fc
RM
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
4962c51a
MS
5875
5876 /* Try to parse a group relocation. Anything else is an
477330fc 5877 error. */
4962c51a
MS
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
477330fc 5886 expression. */
e2b0ab59 5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
4962c51a
MS
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
477330fc
RM
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
e2b0ab59
AV
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
477330fc 5896 break;
4962c51a 5897
477330fc 5898 case GROUP_LDRS:
e2b0ab59
AV
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
477330fc 5901 break;
4962c51a 5902
477330fc 5903 case GROUP_LDC:
e2b0ab59
AV
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
477330fc 5906 break;
4962c51a 5907
477330fc
RM
5908 default:
5909 gas_assert (0);
5910 }
4962c51a 5911
e2b0ab59 5912 if (inst.relocs[0].type == 0)
4962c51a
MS
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
477330fc
RM
5917 }
5918 else
26d97720
NS
5919 {
5920 char *q = p;
0198d5e6 5921
e2b0ab59 5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
26d97720
NS
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
09d92015
MM
5938 }
5939 }
8e560766
MGD
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5945
8e560766
MGD
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
09d92015 5949
c19d1205 5950 if (skip_past_char (&p, ']') == FAIL)
09d92015 5951 {
c19d1205 5952 inst.error = _("']' expected");
4962c51a 5953 return PARSE_OPERAND_FAIL;
09d92015
MM
5954 }
5955
c19d1205
ZW
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
09d92015 5958
c19d1205 5959 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5960 {
c19d1205
ZW
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5965 0, 255, TRUE) == FAIL)
4962c51a 5966 return PARSE_OPERAND_FAIL;
09d92015 5967
c19d1205
ZW
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5971 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
4962c51a 5976 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5977 }
5978 *str = p;
4962c51a 5979 return PARSE_OPERAND_SUCCESS;
09d92015 5980 }
c19d1205
ZW
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
09d92015 5985
c19d1205
ZW
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5989 return PARSE_OPERAND_FAIL;
c19d1205 5990 }
09d92015 5991
c19d1205
ZW
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5994
f5f10c66
AV
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 6004 {
477330fc
RM
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
c19d1205 6011 inst.operands[i].immisreg = 1;
a737bd4d 6012
c19d1205
ZW
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 6015 return PARSE_OPERAND_FAIL;
c19d1205
ZW
6016 }
6017 else
6018 {
26d97720 6019 char *q = p;
0198d5e6 6020
c19d1205
ZW
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
e2b0ab59 6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
4962c51a 6027 return PARSE_OPERAND_FAIL;
26d97720 6028 /* If the offset is 0, find out if it's a +0 or -0. */
e2b0ab59
AV
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
26d97720
NS
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
c19d1205
ZW
6041 }
6042 }
a737bd4d
NC
6043 }
6044
c19d1205
ZW
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
e2b0ab59
AV
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
c19d1205
ZW
6052 }
6053 *str = p;
4962c51a
MS
6054 return PARSE_OPERAND_SUCCESS;
6055}
6056
6057static int
6058parse_address (char **str, int i)
6059{
21d799b5 6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
477330fc 6061 ? SUCCESS : FAIL;
4962c51a
MS
6062}
6063
6064static parse_operand_result
6065parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066{
6067 return parse_address_main (str, i, 1, type);
a737bd4d
NC
6068}
6069
b6895b4f
PB
6070/* Parse an operand for a MOVW or MOVT instruction. */
6071static int
6072parse_half (char **str)
6073{
6074 char * p;
5f4273c7 6075
b6895b4f
PB
6076 p = *str;
6077 skip_past_char (&p, '#');
5f4273c7 6078 if (strncasecmp (p, ":lower16:", 9) == 0)
e2b0ab59 6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
b6895b4f 6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
e2b0ab59 6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
b6895b4f 6082
e2b0ab59 6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
b6895b4f
PB
6084 {
6085 p += 9;
5f4273c7 6086 skip_whitespace (p);
b6895b4f
PB
6087 }
6088
e2b0ab59 6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
b6895b4f
PB
6090 return FAIL;
6091
e2b0ab59 6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 6093 {
e2b0ab59 6094 if (inst.relocs[0].exp.X_op != O_constant)
b6895b4f
PB
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
e2b0ab59
AV
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
b6895b4f
PB
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108}
6109
c19d1205 6110/* Miscellaneous. */
a737bd4d 6111
c19d1205
ZW
6112/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114static int
d2cd1205 6115parse_psr (char **str, bfd_boolean lhs)
09d92015 6116{
c19d1205
ZW
6117 char *p;
6118 unsigned long psr_field;
62b3e311
PB
6119 const struct asm_psr *psr;
6120 char *start;
d2cd1205 6121 bfd_boolean is_apsr = FALSE;
ac7f631b 6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 6123
a4482bb6
NC
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
823d2571 6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
a4482bb6
NC
6128 m_profile = FALSE;
6129
c19d1205
ZW
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
62b3e311 6133 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
fa94de6b 6137
d2cd1205
JB
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
62b3e311
PB
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
d2cd1205
JB
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
21d799b5 6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
477330fc 6168 p - start);
d2cd1205 6169
62b3e311
PB
6170 if (!psr)
6171 return FAIL;
09d92015 6172
d2cd1205
JB
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
62b3e311 6182 *str = p;
d2cd1205
JB
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
62b3e311 6188 }
d2cd1205
JB
6189 else
6190 goto unsupported_psr;
09d92015 6191
62b3e311 6192 p += 4;
d2cd1205 6193check_suffix:
c19d1205
ZW
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
c19d1205
ZW
6197 p++;
6198 start = p;
a737bd4d 6199
c19d1205
ZW
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
a737bd4d 6203
d2cd1205
JB
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
fa94de6b 6210
d2cd1205
JB
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
477330fc 6214 {
d2cd1205
JB
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
fa94de6b 6230
d2cd1205
JB
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
fa94de6b 6234
d2cd1205
JB
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
fa94de6b 6238
d2cd1205
JB
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
fa94de6b 6244
d2cd1205
JB
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
fa94de6b 6247
d2cd1205
JB
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
477330fc 6251 {
d2cd1205
JB
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
fa94de6b 6259
d2cd1205
JB
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
477330fc 6269 {
d2cd1205 6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
477330fc 6271 p - start);
d2cd1205 6272 if (!psr)
477330fc 6273 goto error;
a737bd4d 6274
d2cd1205
JB
6275 psr_field |= psr->field;
6276 }
a737bd4d 6277 }
c19d1205 6278 else
a737bd4d 6279 {
c19d1205
ZW
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
d2cd1205 6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
477330fc 6284 is deprecated, but allow it anyway. */
d2cd1205
JB
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
a737bd4d 6295 }
c19d1205
ZW
6296 *str = p;
6297 return psr_field;
a737bd4d 6298
d2cd1205
JB
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
c19d1205
ZW
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
a737bd4d
NC
6307}
6308
32c36c3c
AV
6309static int
6310parse_sys_vldr_vstr (char **str)
6311{
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340}
6341
c19d1205
ZW
6342/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 6344
c19d1205
ZW
6345static int
6346parse_cps_flags (char **str)
a737bd4d 6347{
c19d1205
ZW
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
a737bd4d 6351
c19d1205
ZW
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
a737bd4d 6357
c19d1205
ZW
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 6361
c19d1205
ZW
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
a737bd4d 6366
c19d1205
ZW
6367 done:
6368 if (saw_a_flag == 0)
a737bd4d 6369 {
c19d1205
ZW
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
a737bd4d 6372 }
a737bd4d 6373
c19d1205
ZW
6374 *str = s - 1;
6375 return val;
a737bd4d
NC
6376}
6377
c19d1205
ZW
6378/* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
6380
6381static int
c19d1205 6382parse_endian_specifier (char **str)
a737bd4d 6383{
c19d1205
ZW
6384 int little_endian;
6385 char *s = *str;
a737bd4d 6386
c19d1205
ZW
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
a737bd4d 6392 {
c19d1205 6393 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6394 return FAIL;
6395 }
6396
c19d1205 6397 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 6398 {
c19d1205 6399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
6400 return FAIL;
6401 }
6402
c19d1205
ZW
6403 *str = s + 2;
6404 return little_endian;
6405}
a737bd4d 6406
c19d1205
ZW
6407/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411static int
6412parse_ror (char **str)
6413{
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
a737bd4d 6420 {
c19d1205 6421 inst.error = _("missing rotation field after comma");
a737bd4d
NC
6422 return FAIL;
6423 }
c19d1205
ZW
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
a737bd4d 6429 {
c19d1205
ZW
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
6437 return FAIL;
6438 }
c19d1205 6439}
a737bd4d 6440
c19d1205
ZW
6441/* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443static int
6444parse_cond (char **str)
6445{
c462b453 6446 char *q;
c19d1205 6447 const struct asm_cond *c;
c462b453
PB
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
a737bd4d 6452
c462b453
PB
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
e07e6e58 6457 cond[n] = TOLOWER (*q);
c462b453
PB
6458 q++;
6459 n++;
6460 }
a737bd4d 6461
21d799b5 6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 6463 if (!c)
a737bd4d 6464 {
c19d1205 6465 inst.error = _("condition required");
a737bd4d
NC
6466 return FAIL;
6467 }
6468
c19d1205
ZW
6469 *str = q;
6470 return c->value;
6471}
6472
62b3e311
PB
6473/* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475static int
6476parse_barrier (char **str)
6477{
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
21d799b5 6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
477330fc 6486 q - p);
62b3e311
PB
6487 if (!o)
6488 return FAIL;
6489
e797f7e0
MGD
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
62b3e311
PB
6493 *str = q;
6494 return o->value;
6495}
6496
92e90b6e
PB
6497/* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499static int
6500parse_tb (char **str)
6501{
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
92e90b6e 6510
dcbf9037 6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
5f4273c7 6523
dcbf9037 6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
e2b0ab59 6535 if (inst.relocs[0].exp.X_add_number != 1)
92e90b6e
PB
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550}
6551
5287ad62
JB
6552/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
037e8744
JB
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
5287ad62
JB
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559static int
6560parse_neon_mov (char **str, int *which_operand)
6561{
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
dcbf9037 6565 struct neon_type_el optype;
5f4273c7 6566
57785aa2
AV
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
5287ad62
JB
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
dcbf9037 6626 inst.operands[i].vectype = optype;
5287ad62
JB
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
477330fc 6630 goto wanted_comma;
5f4273c7 6631
dcbf9037 6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
477330fc 6633 goto wanted_arm;
5f4273c7 6634
5287ad62
JB
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
57785aa2
AV
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
5287ad62
JB
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
477330fc 6646 goto wanted_comma;
5f4273c7 6647
5287ad62
JB
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
dcbf9037 6653 inst.operands[i].vectype = optype;
5287ad62
JB
6654 inst.operands[i++].present = 1;
6655
dcbf9037 6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc
RM
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
037e8744 6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
477330fc
RM
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
4641781c 6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
477330fc
RM
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
8335d6aa
JW
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
477330fc
RM
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
5287ad62 6731 else
477330fc
RM
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
5287ad62 6736 }
dcbf9037 6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 6738 {
57785aa2 6739 /* Cases 6, 7, 16, 18. */
5287ad62
JB
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
5f4273c7 6743
5287ad62 6744 if (skip_past_comma (&ptr) == FAIL)
477330fc 6745 goto wanted_comma;
5f4273c7 6746
57785aa2
AV
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
477330fc
RM
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
dcbf9037 6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
477330fc 6764 {
477330fc
RM
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
57785aa2 6773 != FAIL)
477330fc 6774 {
57785aa2 6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
477330fc 6776
477330fc
RM
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
57785aa2 6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
477330fc
RM
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
57785aa2
AV
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
477330fc
RM
6837 }
6838 }
037e8744 6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
477330fc
RM
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
5287ad62
JB
6850 }
6851 else
6852 {
dcbf9037 6853 first_error (_("parse error"));
5287ad62
JB
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
5f4273c7 6862 wanted_comma:
dcbf9037 6863 first_error (_("expected comma"));
5287ad62 6864 return FAIL;
5f4273c7
NC
6865
6866 wanted_arm:
dcbf9037 6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6868 return FAIL;
5287ad62
JB
6869}
6870
5be8be5d
DG
6871/* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
c19d1205
ZW
6876/* Matcher codes for parse_operands. */
6877enum operand_parse_code
6878{
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6886 optional trailing ! */
c19d1205
ZW
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
5287ad62
JB
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
5ee91343
AV
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
5287ad62 6897 OP_RNQ, /* Neon quad precision register */
5ee91343 6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
037e8744 6899 OP_RVSD, /* VFP single or double precision register */
1b883319 6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
dd9634d9 6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
dec41383 6902 OP_RNSD, /* Neon single or double precision register */
5287ad62 6903 OP_RNDQ, /* Neon double or quad precision register */
5ee91343 6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
7df54120 6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
037e8744 6906 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6907 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
5ee91343
AV
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
a302e574 6924 OP_RMQ, /* MVE vector register. */
1b883319 6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
35d1cfc2 6926 OP_RMQRR, /* MVE vector or ARM register. */
a302e574 6927
60f993ce
AV
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
a302e574
AV
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
60f993ce
AV
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6933
c19d1205 6934 OP_REGLST, /* ARM register list */
4b5a202f 6935 OP_CLRMLST, /* CLRM register list */
c19d1205
ZW
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
037e8744 6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
efd6b359 6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
35c228db
AV
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
5287ad62 6944
5287ad62 6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
aacf0b33 6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
1b883319
AV
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6949 zero. */
5287ad62 6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
dec41383 6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
037e8744 6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
886e1c73
AV
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 */
a8465a06
AV
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
5287ad62 6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
42b16635
AV
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 register. */
5d281bf0 6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
5287ad62
JB
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
f601a00c
AV
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQMQ_Ibig,
5287ad62 6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5150f0d8
AV
6968 OP_RNDQMQ_I63b_RR, /* Neon D or Q reg, immediate for shift, MVE vector or
6969 ARM register. */
2d447fca 6970 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
32c36c3c 6971 OP_VLDR, /* VLDR operand. */
5287ad62
JB
6972
6973 OP_I0, /* immediate zero */
c19d1205
ZW
6974 OP_I7, /* immediate value 0 .. 7 */
6975 OP_I15, /* 0 .. 15 */
6976 OP_I16, /* 1 .. 16 */
5287ad62 6977 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6978 OP_I31, /* 0 .. 31 */
6979 OP_I31w, /* 0 .. 31, optional trailing ! */
6980 OP_I32, /* 1 .. 32 */
5287ad62
JB
6981 OP_I32z, /* 0 .. 32 */
6982 OP_I63, /* 0 .. 63 */
c19d1205 6983 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6984 OP_I64, /* 1 .. 64 */
6985 OP_I64z, /* 0 .. 64 */
c19d1205 6986 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6987
6988 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6989 OP_I7b, /* 0 .. 7 */
6990 OP_I15b, /* 0 .. 15 */
6991 OP_I31b, /* 0 .. 31 */
6992
6993 OP_SH, /* shifter operand */
4962c51a 6994 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6995 OP_ADDR, /* Memory address expression (any mode) */
35c228db 6996 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
4962c51a
MS
6997 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6998 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6999 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
7000 OP_EXP, /* arbitrary expression */
7001 OP_EXPi, /* same, with optional immediate prefix */
7002 OP_EXPr, /* same, with optional relocation suffix */
e2b0ab59 7003 OP_EXPs, /* same, with optional non-first operand relocation suffix */
b6895b4f 7004 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c28eeff2
SN
7005 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7006 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
c19d1205
ZW
7007
7008 OP_CPSF, /* CPS flags */
7009 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
7010 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7011 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 7012 OP_COND, /* conditional code */
92e90b6e 7013 OP_TB, /* Table branch. */
c19d1205 7014
037e8744
JB
7015 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7016
c19d1205 7017 OP_RRnpc_I0, /* ARM register or literal 0 */
33eaf5de 7018 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
c19d1205
ZW
7019 OP_RR_EXi, /* ARM register or expression with imm prefix */
7020 OP_RF_IF, /* FPA register or immediate */
7021 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 7022 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
7023
7024 /* Optional operands. */
7025 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7026 OP_oI31b, /* 0 .. 31 */
5287ad62 7027 OP_oI32b, /* 1 .. 32 */
5f1af56b 7028 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
7029 OP_oIffffb, /* 0 .. 65535 */
7030 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7031
7032 OP_oRR, /* ARM register */
60f993ce 7033 OP_oLR, /* ARM LR register */
c19d1205 7034 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 7035 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 7036 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
7037 OP_oRND, /* Optional Neon double precision register */
7038 OP_oRNQ, /* Optional Neon quad precision register */
5ee91343 7039 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
5287ad62 7040 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 7041 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5ee91343
AV
7042 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7043 register. */
c19d1205
ZW
7044 OP_oSHll, /* LSL immediate */
7045 OP_oSHar, /* ASR immediate */
7046 OP_oSHllar, /* LSL or ASR immediate */
7047 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 7048 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 7049
1b883319
AV
7050 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7051
5be8be5d
DG
7052 /* Some pre-defined mixed (ARM/THUMB) operands. */
7053 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7054 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7055 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7056
c19d1205
ZW
7057 OP_FIRST_OPTIONAL = OP_oI7b
7058};
a737bd4d 7059
c19d1205
ZW
7060/* Generic instruction operand parser. This does no encoding and no
7061 semantic validation; it merely squirrels values away in the inst
7062 structure. Returns SUCCESS or FAIL depending on whether the
7063 specified grammar matched. */
7064static int
5be8be5d 7065parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 7066{
5be8be5d 7067 unsigned const int *upat = pattern;
c19d1205
ZW
7068 char *backtrack_pos = 0;
7069 const char *backtrack_error = 0;
99aad254 7070 int i, val = 0, backtrack_index = 0;
5287ad62 7071 enum arm_reg_type rtype;
4962c51a 7072 parse_operand_result result;
5be8be5d 7073 unsigned int op_parse_code;
efd6b359 7074 bfd_boolean partial_match;
c19d1205 7075
e07e6e58
NC
7076#define po_char_or_fail(chr) \
7077 do \
7078 { \
7079 if (skip_past_char (&str, chr) == FAIL) \
477330fc 7080 goto bad_args; \
e07e6e58
NC
7081 } \
7082 while (0)
c19d1205 7083
e07e6e58
NC
7084#define po_reg_or_fail(regtype) \
7085 do \
dcbf9037 7086 { \
e07e6e58 7087 val = arm_typed_reg_parse (& str, regtype, & rtype, \
477330fc 7088 & inst.operands[i].vectype); \
e07e6e58 7089 if (val == FAIL) \
477330fc
RM
7090 { \
7091 first_error (_(reg_expected_msgs[regtype])); \
7092 goto failure; \
7093 } \
e07e6e58
NC
7094 inst.operands[i].reg = val; \
7095 inst.operands[i].isreg = 1; \
7096 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7097 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7098 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc
RM
7099 || rtype == REG_TYPE_VFD \
7100 || rtype == REG_TYPE_NQ); \
1b883319 7101 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
dcbf9037 7102 } \
e07e6e58
NC
7103 while (0)
7104
7105#define po_reg_or_goto(regtype, label) \
7106 do \
7107 { \
7108 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7109 & inst.operands[i].vectype); \
7110 if (val == FAIL) \
7111 goto label; \
dcbf9037 7112 \
e07e6e58
NC
7113 inst.operands[i].reg = val; \
7114 inst.operands[i].isreg = 1; \
7115 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7116 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7117 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
477330fc 7118 || rtype == REG_TYPE_VFD \
e07e6e58 7119 || rtype == REG_TYPE_NQ); \
1b883319 7120 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
e07e6e58
NC
7121 } \
7122 while (0)
7123
7124#define po_imm_or_fail(min, max, popt) \
7125 do \
7126 { \
7127 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7128 goto failure; \
7129 inst.operands[i].imm = val; \
7130 } \
7131 while (0)
7132
57785aa2 7133#define po_scalar_or_goto(elsz, label, reg_type) \
e07e6e58
NC
7134 do \
7135 { \
57785aa2
AV
7136 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7137 reg_type); \
e07e6e58
NC
7138 if (val == FAIL) \
7139 goto label; \
7140 inst.operands[i].reg = val; \
7141 inst.operands[i].isscalar = 1; \
7142 } \
7143 while (0)
7144
7145#define po_misc_or_fail(expr) \
7146 do \
7147 { \
7148 if (expr) \
7149 goto failure; \
7150 } \
7151 while (0)
7152
7153#define po_misc_or_fail_no_backtrack(expr) \
7154 do \
7155 { \
7156 result = expr; \
7157 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7158 backtrack_pos = 0; \
7159 if (result != PARSE_OPERAND_SUCCESS) \
7160 goto failure; \
7161 } \
7162 while (0)
4962c51a 7163
52e7f43d
RE
7164#define po_barrier_or_imm(str) \
7165 do \
7166 { \
7167 val = parse_barrier (&str); \
ccb84d65
JB
7168 if (val == FAIL && ! ISALPHA (*str)) \
7169 goto immediate; \
7170 if (val == FAIL \
7171 /* ISB can only take SY as an option. */ \
7172 || ((inst.instruction & 0xf0) == 0x60 \
7173 && val != 0xf)) \
52e7f43d 7174 { \
ccb84d65
JB
7175 inst.error = _("invalid barrier type"); \
7176 backtrack_pos = 0; \
7177 goto failure; \
52e7f43d
RE
7178 } \
7179 } \
7180 while (0)
7181
c19d1205
ZW
7182 skip_whitespace (str);
7183
7184 for (i = 0; upat[i] != OP_stop; i++)
7185 {
5be8be5d
DG
7186 op_parse_code = upat[i];
7187 if (op_parse_code >= 1<<16)
7188 op_parse_code = thumb ? (op_parse_code >> 16)
7189 : (op_parse_code & ((1<<16)-1));
7190
7191 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
7192 {
7193 /* Remember where we are in case we need to backtrack. */
c19d1205
ZW
7194 backtrack_pos = str;
7195 backtrack_error = inst.error;
7196 backtrack_index = i;
7197 }
7198
b6702015 7199 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
7200 po_char_or_fail (',');
7201
5be8be5d 7202 switch (op_parse_code)
c19d1205
ZW
7203 {
7204 /* Registers */
7205 case OP_oRRnpc:
5be8be5d 7206 case OP_oRRnpcsp:
c19d1205 7207 case OP_RRnpc:
5be8be5d 7208 case OP_RRnpcsp:
c19d1205 7209 case OP_oRR:
a302e574
AV
7210 case OP_RRe:
7211 case OP_RRo:
60f993ce
AV
7212 case OP_LR:
7213 case OP_oLR:
c19d1205
ZW
7214 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7215 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7216 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7217 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7218 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7219 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
477330fc 7220 case OP_oRND:
5ee91343
AV
7221 case OP_RNDMQR:
7222 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7223 break;
7224 try_rndmq:
7225 case OP_RNDMQ:
7226 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7227 break;
7228 try_rnd:
5287ad62 7229 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
7230 case OP_RVC:
7231 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7232 break;
7233 /* Also accept generic coprocessor regs for unknown registers. */
7234 coproc_reg:
7235 po_reg_or_fail (REG_TYPE_CN);
7236 break;
c19d1205
ZW
7237 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7238 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7239 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7240 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7241 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7242 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7243 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7244 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7245 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7246 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
477330fc 7247 case OP_oRNQ:
5ee91343
AV
7248 case OP_RNQMQ:
7249 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7250 break;
7251 try_nq:
5287ad62 7252 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
dec41383 7253 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7df54120
AV
7254 case OP_RNDQMQR:
7255 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7256 break;
7257 try_rndqmq:
5ee91343
AV
7258 case OP_oRNDQMQ:
7259 case OP_RNDQMQ:
7260 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7261 break;
7262 try_rndq:
477330fc 7263 case OP_oRNDQ:
5287ad62 7264 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
dd9634d9
AV
7265 case OP_RVSDMQ:
7266 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7267 break;
7268 try_rvsd:
477330fc 7269 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
1b883319
AV
7270 case OP_RVSD_COND:
7271 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7272 break;
477330fc
RM
7273 case OP_oRNSDQ:
7274 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5ee91343
AV
7275 case OP_RNSDQMQR:
7276 po_reg_or_goto (REG_TYPE_RN, try_mq);
7277 break;
7278 try_mq:
7279 case OP_oRNSDQMQ:
7280 case OP_RNSDQMQ:
7281 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7282 break;
7283 try_nsdq2:
7284 po_reg_or_fail (REG_TYPE_NSDQ);
7285 inst.error = 0;
7286 break;
35d1cfc2
AV
7287 case OP_RMQRR:
7288 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7289 break;
7290 try_rmq:
a302e574
AV
7291 case OP_RMQ:
7292 po_reg_or_fail (REG_TYPE_MQ);
7293 break;
477330fc
RM
7294 /* Neon scalar. Using an element size of 8 means that some invalid
7295 scalars are accepted here, so deal with those in later code. */
57785aa2 7296 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
477330fc
RM
7297
7298 case OP_RNDQ_I0:
7299 {
7300 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7301 break;
7302 try_imm0:
7303 po_imm_or_fail (0, 0, TRUE);
7304 }
7305 break;
7306
7307 case OP_RVSD_I0:
7308 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7309 break;
7310
1b883319
AV
7311 case OP_RSVDMQ_FI0:
7312 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7313 break;
7314 try_rsvd_fi0:
aacf0b33
KT
7315 case OP_RSVD_FI0:
7316 {
7317 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7318 break;
7319 try_ifimm0:
7320 if (parse_ifimm_zero (&str))
7321 inst.operands[i].imm = 0;
7322 else
7323 {
7324 inst.error
7325 = _("only floating point zero is allowed as immediate value");
7326 goto failure;
7327 }
7328 }
7329 break;
7330
477330fc
RM
7331 case OP_RR_RNSC:
7332 {
57785aa2 7333 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
477330fc
RM
7334 break;
7335 try_rr:
7336 po_reg_or_fail (REG_TYPE_RN);
7337 }
7338 break;
7339
a8465a06
AV
7340 case OP_RNSDQ_RNSC_MQ_RR:
7341 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7342 break;
7343 try_rnsdq_rnsc_mq:
886e1c73
AV
7344 case OP_RNSDQ_RNSC_MQ:
7345 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7346 break;
7347 try_rnsdq_rnsc:
477330fc
RM
7348 case OP_RNSDQ_RNSC:
7349 {
57785aa2
AV
7350 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7351 inst.error = 0;
477330fc
RM
7352 break;
7353 try_nsdq:
7354 po_reg_or_fail (REG_TYPE_NSDQ);
57785aa2 7355 inst.error = 0;
477330fc
RM
7356 }
7357 break;
7358
dec41383
JW
7359 case OP_RNSD_RNSC:
7360 {
57785aa2 7361 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
dec41383
JW
7362 break;
7363 try_s_scalar:
57785aa2 7364 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
dec41383
JW
7365 break;
7366 try_nsd:
7367 po_reg_or_fail (REG_TYPE_NSD);
7368 }
7369 break;
7370
42b16635
AV
7371 case OP_RNDQMQ_RNSC_RR:
7372 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7373 break;
7374 try_rndq_rnsc_rr:
7375 case OP_RNDQ_RNSC_RR:
7376 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7377 break;
5d281bf0
AV
7378 case OP_RNDQMQ_RNSC:
7379 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7380 break;
7381 try_rndq_rnsc:
477330fc
RM
7382 case OP_RNDQ_RNSC:
7383 {
57785aa2 7384 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
477330fc
RM
7385 break;
7386 try_ndq:
7387 po_reg_or_fail (REG_TYPE_NDQ);
7388 }
7389 break;
7390
7391 case OP_RND_RNSC:
7392 {
57785aa2 7393 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
477330fc
RM
7394 break;
7395 try_vfd:
7396 po_reg_or_fail (REG_TYPE_VFD);
7397 }
7398 break;
7399
7400 case OP_VMOV:
7401 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7402 not careful then bad things might happen. */
7403 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7404 break;
7405
f601a00c
AV
7406 case OP_RNDQMQ_Ibig:
7407 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7408 break;
7409 try_rndq_ibig:
477330fc
RM
7410 case OP_RNDQ_Ibig:
7411 {
7412 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7413 break;
7414 try_immbig:
7415 /* There's a possibility of getting a 64-bit immediate here, so
7416 we need special handling. */
8335d6aa
JW
7417 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7418 == FAIL)
477330fc
RM
7419 {
7420 inst.error = _("immediate value is out of range");
7421 goto failure;
7422 }
7423 }
7424 break;
7425
5150f0d8
AV
7426 case OP_RNDQMQ_I63b_RR:
7427 po_reg_or_goto (REG_TYPE_MQ, try_rndq_i63b_rr);
7428 break;
7429 try_rndq_i63b_rr:
7430 po_reg_or_goto (REG_TYPE_RN, try_rndq_i63b);
7431 break;
7432 try_rndq_i63b:
477330fc
RM
7433 case OP_RNDQ_I63b:
7434 {
7435 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7436 break;
7437 try_shimm:
7438 po_imm_or_fail (0, 63, TRUE);
7439 }
7440 break;
c19d1205
ZW
7441
7442 case OP_RRnpcb:
7443 po_char_or_fail ('[');
7444 po_reg_or_fail (REG_TYPE_RN);
7445 po_char_or_fail (']');
7446 break;
a737bd4d 7447
55881a11 7448 case OP_RRnpctw:
c19d1205 7449 case OP_RRw:
b6702015 7450 case OP_oRRw:
c19d1205
ZW
7451 po_reg_or_fail (REG_TYPE_RN);
7452 if (skip_past_char (&str, '!') == SUCCESS)
7453 inst.operands[i].writeback = 1;
7454 break;
7455
7456 /* Immediates */
7457 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7458 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7459 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
477330fc 7460 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
7461 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7462 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
477330fc 7463 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 7464 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
477330fc
RM
7465 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7466 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7467 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 7468 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
7469
7470 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7471 case OP_oI7b:
7472 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7473 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7474 case OP_oI31b:
7475 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
477330fc
RM
7476 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7477 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
7478 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7479
7480 /* Immediate variants */
7481 case OP_oI255c:
7482 po_char_or_fail ('{');
7483 po_imm_or_fail (0, 255, TRUE);
7484 po_char_or_fail ('}');
7485 break;
7486
7487 case OP_I31w:
7488 /* The expression parser chokes on a trailing !, so we have
7489 to find it first and zap it. */
7490 {
7491 char *s = str;
7492 while (*s && *s != ',')
7493 s++;
7494 if (s[-1] == '!')
7495 {
7496 s[-1] = '\0';
7497 inst.operands[i].writeback = 1;
7498 }
7499 po_imm_or_fail (0, 31, TRUE);
7500 if (str == s - 1)
7501 str = s;
7502 }
7503 break;
7504
7505 /* Expressions */
7506 case OP_EXPi: EXPi:
e2b0ab59 7507 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7508 GE_OPT_PREFIX));
7509 break;
7510
7511 case OP_EXP:
e2b0ab59 7512 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205
ZW
7513 GE_NO_PREFIX));
7514 break;
7515
7516 case OP_EXPr: EXPr:
e2b0ab59 7517 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
c19d1205 7518 GE_NO_PREFIX));
e2b0ab59 7519 if (inst.relocs[0].exp.X_op == O_symbol)
a737bd4d 7520 {
c19d1205
ZW
7521 val = parse_reloc (&str);
7522 if (val == -1)
7523 {
7524 inst.error = _("unrecognized relocation suffix");
7525 goto failure;
7526 }
7527 else if (val != BFD_RELOC_UNUSED)
7528 {
7529 inst.operands[i].imm = val;
7530 inst.operands[i].hasreloc = 1;
7531 }
a737bd4d 7532 }
c19d1205 7533 break;
a737bd4d 7534
e2b0ab59
AV
7535 case OP_EXPs:
7536 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7537 GE_NO_PREFIX));
7538 if (inst.relocs[i].exp.X_op == O_symbol)
7539 {
7540 inst.operands[i].hasreloc = 1;
7541 }
7542 else if (inst.relocs[i].exp.X_op == O_constant)
7543 {
7544 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7545 inst.operands[i].hasreloc = 0;
7546 }
7547 break;
7548
b6895b4f
PB
7549 /* Operand for MOVW or MOVT. */
7550 case OP_HALF:
7551 po_misc_or_fail (parse_half (&str));
7552 break;
7553
e07e6e58 7554 /* Register or expression. */
c19d1205
ZW
7555 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7556 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 7557
e07e6e58 7558 /* Register or immediate. */
c19d1205
ZW
7559 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7560 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 7561
c19d1205
ZW
7562 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7563 IF:
7564 if (!is_immediate_prefix (*str))
7565 goto bad_args;
7566 str++;
7567 val = parse_fpa_immediate (&str);
7568 if (val == FAIL)
7569 goto failure;
7570 /* FPA immediates are encoded as registers 8-15.
7571 parse_fpa_immediate has already applied the offset. */
7572 inst.operands[i].reg = val;
7573 inst.operands[i].isreg = 1;
7574 break;
09d92015 7575
2d447fca
JM
7576 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7577 I32z: po_imm_or_fail (0, 32, FALSE); break;
7578
e07e6e58 7579 /* Two kinds of register. */
c19d1205
ZW
7580 case OP_RIWR_RIWC:
7581 {
7582 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
7583 if (!rege
7584 || (rege->type != REG_TYPE_MMXWR
7585 && rege->type != REG_TYPE_MMXWC
7586 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
7587 {
7588 inst.error = _("iWMMXt data or control register expected");
7589 goto failure;
7590 }
7591 inst.operands[i].reg = rege->number;
7592 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7593 }
7594 break;
09d92015 7595
41adaa5c
JM
7596 case OP_RIWC_RIWG:
7597 {
7598 struct reg_entry *rege = arm_reg_parse_multi (&str);
7599 if (!rege
7600 || (rege->type != REG_TYPE_MMXWC
7601 && rege->type != REG_TYPE_MMXWCG))
7602 {
7603 inst.error = _("iWMMXt control register expected");
7604 goto failure;
7605 }
7606 inst.operands[i].reg = rege->number;
7607 inst.operands[i].isreg = 1;
7608 }
7609 break;
7610
c19d1205
ZW
7611 /* Misc */
7612 case OP_CPSF: val = parse_cps_flags (&str); break;
7613 case OP_ENDI: val = parse_endian_specifier (&str); break;
7614 case OP_oROR: val = parse_ror (&str); break;
1b883319 7615 try_cond:
c19d1205 7616 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
7617 case OP_oBARRIER_I15:
7618 po_barrier_or_imm (str); break;
7619 immediate:
7620 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
477330fc 7621 goto failure;
52e7f43d 7622 break;
c19d1205 7623
fa94de6b 7624 case OP_wPSR:
d2cd1205 7625 case OP_rPSR:
90ec0d68
MGD
7626 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7627 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7628 {
7629 inst.error = _("Banked registers are not available with this "
7630 "architecture.");
7631 goto failure;
7632 }
7633 break;
d2cd1205
JB
7634 try_psr:
7635 val = parse_psr (&str, op_parse_code == OP_wPSR);
7636 break;
037e8744 7637
32c36c3c
AV
7638 case OP_VLDR:
7639 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7640 break;
7641 try_sysreg:
7642 val = parse_sys_vldr_vstr (&str);
7643 break;
7644
477330fc
RM
7645 case OP_APSR_RR:
7646 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7647 break;
7648 try_apsr:
7649 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7650 instruction). */
7651 if (strncasecmp (str, "APSR_", 5) == 0)
7652 {
7653 unsigned found = 0;
7654 str += 5;
7655 while (found < 15)
7656 switch (*str++)
7657 {
7658 case 'c': found = (found & 1) ? 16 : found | 1; break;
7659 case 'n': found = (found & 2) ? 16 : found | 2; break;
7660 case 'z': found = (found & 4) ? 16 : found | 4; break;
7661 case 'v': found = (found & 8) ? 16 : found | 8; break;
7662 default: found = 16;
7663 }
7664 if (found != 15)
7665 goto failure;
7666 inst.operands[i].isvec = 1;
f7c21dc7
NC
7667 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7668 inst.operands[i].reg = REG_PC;
477330fc
RM
7669 }
7670 else
7671 goto failure;
7672 break;
037e8744 7673
92e90b6e
PB
7674 case OP_TB:
7675 po_misc_or_fail (parse_tb (&str));
7676 break;
7677
e07e6e58 7678 /* Register lists. */
c19d1205 7679 case OP_REGLST:
4b5a202f 7680 val = parse_reg_list (&str, REGLIST_RN);
c19d1205
ZW
7681 if (*str == '^')
7682 {
5e0d7f77 7683 inst.operands[i].writeback = 1;
c19d1205
ZW
7684 str++;
7685 }
7686 break;
09d92015 7687
4b5a202f
AV
7688 case OP_CLRMLST:
7689 val = parse_reg_list (&str, REGLIST_CLRM);
7690 break;
7691
c19d1205 7692 case OP_VRSLST:
efd6b359
AV
7693 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7694 &partial_match);
c19d1205 7695 break;
09d92015 7696
c19d1205 7697 case OP_VRDLST:
efd6b359
AV
7698 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7699 &partial_match);
c19d1205 7700 break;
a737bd4d 7701
477330fc
RM
7702 case OP_VRSDLST:
7703 /* Allow Q registers too. */
7704 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7705 REGLIST_NEON_D, &partial_match);
477330fc
RM
7706 if (val == FAIL)
7707 {
7708 inst.error = NULL;
7709 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359
AV
7710 REGLIST_VFP_S, &partial_match);
7711 inst.operands[i].issingle = 1;
7712 }
7713 break;
7714
7715 case OP_VRSDVLST:
7716 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7717 REGLIST_VFP_D_VPR, &partial_match);
7718 if (val == FAIL && !partial_match)
7719 {
7720 inst.error = NULL;
7721 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7722 REGLIST_VFP_S_VPR, &partial_match);
477330fc
RM
7723 inst.operands[i].issingle = 1;
7724 }
7725 break;
7726
7727 case OP_NRDLST:
7728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
efd6b359 7729 REGLIST_NEON_D, &partial_match);
477330fc 7730 break;
5287ad62 7731
35c228db
AV
7732 case OP_MSTRLST4:
7733 case OP_MSTRLST2:
7734 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7735 1, &inst.operands[i].vectype);
7736 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7737 goto failure;
7738 break;
5287ad62 7739 case OP_NSTRLST:
477330fc 7740 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
35c228db 7741 0, &inst.operands[i].vectype);
477330fc 7742 break;
5287ad62 7743
c19d1205 7744 /* Addressing modes */
35c228db
AV
7745 case OP_ADDRMVE:
7746 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7747 break;
7748
c19d1205
ZW
7749 case OP_ADDR:
7750 po_misc_or_fail (parse_address (&str, i));
7751 break;
09d92015 7752
4962c51a
MS
7753 case OP_ADDRGLDR:
7754 po_misc_or_fail_no_backtrack (
477330fc 7755 parse_address_group_reloc (&str, i, GROUP_LDR));
4962c51a
MS
7756 break;
7757
7758 case OP_ADDRGLDRS:
7759 po_misc_or_fail_no_backtrack (
477330fc 7760 parse_address_group_reloc (&str, i, GROUP_LDRS));
4962c51a
MS
7761 break;
7762
7763 case OP_ADDRGLDC:
7764 po_misc_or_fail_no_backtrack (
477330fc 7765 parse_address_group_reloc (&str, i, GROUP_LDC));
4962c51a
MS
7766 break;
7767
c19d1205
ZW
7768 case OP_SH:
7769 po_misc_or_fail (parse_shifter_operand (&str, i));
7770 break;
09d92015 7771
4962c51a
MS
7772 case OP_SHG:
7773 po_misc_or_fail_no_backtrack (
477330fc 7774 parse_shifter_operand_group_reloc (&str, i));
4962c51a
MS
7775 break;
7776
c19d1205
ZW
7777 case OP_oSHll:
7778 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7779 break;
09d92015 7780
c19d1205
ZW
7781 case OP_oSHar:
7782 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7783 break;
09d92015 7784
c19d1205
ZW
7785 case OP_oSHllar:
7786 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7787 break;
09d92015 7788
1b883319
AV
7789 case OP_RMQRZ:
7790 case OP_oRMQRZ:
7791 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7792 break;
7793 try_rr_zr:
7794 po_reg_or_goto (REG_TYPE_RN, ZR);
7795 break;
7796 ZR:
7797 po_reg_or_fail (REG_TYPE_ZR);
7798 break;
7799
c19d1205 7800 default:
5be8be5d 7801 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 7802 }
09d92015 7803
c19d1205
ZW
7804 /* Various value-based sanity checks and shared operations. We
7805 do not signal immediate failures for the register constraints;
7806 this allows a syntax error to take precedence. */
5be8be5d 7807 switch (op_parse_code)
c19d1205
ZW
7808 {
7809 case OP_oRRnpc:
7810 case OP_RRnpc:
7811 case OP_RRnpcb:
7812 case OP_RRw:
b6702015 7813 case OP_oRRw:
c19d1205
ZW
7814 case OP_RRnpc_I0:
7815 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7816 inst.error = BAD_PC;
7817 break;
09d92015 7818
5be8be5d
DG
7819 case OP_oRRnpcsp:
7820 case OP_RRnpcsp:
7821 if (inst.operands[i].isreg)
7822 {
7823 if (inst.operands[i].reg == REG_PC)
7824 inst.error = BAD_PC;
5c8ed6a4
JW
7825 else if (inst.operands[i].reg == REG_SP
7826 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7827 relaxed since ARMv8-A. */
7828 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7829 {
7830 gas_assert (thumb);
7831 inst.error = BAD_SP;
7832 }
5be8be5d
DG
7833 }
7834 break;
7835
55881a11 7836 case OP_RRnpctw:
fa94de6b
RM
7837 if (inst.operands[i].isreg
7838 && inst.operands[i].reg == REG_PC
55881a11
MGD
7839 && (inst.operands[i].writeback || thumb))
7840 inst.error = BAD_PC;
7841 break;
7842
1b883319 7843 case OP_RVSD_COND:
32c36c3c
AV
7844 case OP_VLDR:
7845 if (inst.operands[i].isreg)
7846 break;
7847 /* fall through. */
1b883319 7848
c19d1205
ZW
7849 case OP_CPSF:
7850 case OP_ENDI:
7851 case OP_oROR:
d2cd1205
JB
7852 case OP_wPSR:
7853 case OP_rPSR:
c19d1205 7854 case OP_COND:
52e7f43d 7855 case OP_oBARRIER_I15:
c19d1205 7856 case OP_REGLST:
4b5a202f 7857 case OP_CLRMLST:
c19d1205
ZW
7858 case OP_VRSLST:
7859 case OP_VRDLST:
477330fc 7860 case OP_VRSDLST:
efd6b359 7861 case OP_VRSDVLST:
477330fc
RM
7862 case OP_NRDLST:
7863 case OP_NSTRLST:
35c228db
AV
7864 case OP_MSTRLST2:
7865 case OP_MSTRLST4:
c19d1205
ZW
7866 if (val == FAIL)
7867 goto failure;
7868 inst.operands[i].imm = val;
7869 break;
a737bd4d 7870
60f993ce
AV
7871 case OP_LR:
7872 case OP_oLR:
7873 if (inst.operands[i].reg != REG_LR)
7874 inst.error = _("operand must be LR register");
7875 break;
7876
1b883319
AV
7877 case OP_RMQRZ:
7878 case OP_oRMQRZ:
7879 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7880 inst.error = BAD_PC;
7881 break;
7882
a302e574
AV
7883 case OP_RRe:
7884 if (inst.operands[i].isreg
7885 && (inst.operands[i].reg & 0x00000001) != 0)
7886 inst.error = BAD_ODD;
7887 break;
7888
7889 case OP_RRo:
7890 if (inst.operands[i].isreg)
7891 {
7892 if ((inst.operands[i].reg & 0x00000001) != 1)
7893 inst.error = BAD_EVEN;
7894 else if (inst.operands[i].reg == REG_SP)
7895 as_tsktsk (MVE_BAD_SP);
7896 else if (inst.operands[i].reg == REG_PC)
7897 inst.error = BAD_PC;
7898 }
7899 break;
7900
c19d1205
ZW
7901 default:
7902 break;
7903 }
09d92015 7904
c19d1205
ZW
7905 /* If we get here, this operand was successfully parsed. */
7906 inst.operands[i].present = 1;
7907 continue;
09d92015 7908
c19d1205 7909 bad_args:
09d92015 7910 inst.error = BAD_ARGS;
c19d1205
ZW
7911
7912 failure:
7913 if (!backtrack_pos)
d252fdde
PB
7914 {
7915 /* The parse routine should already have set inst.error, but set a
5f4273c7 7916 default here just in case. */
d252fdde 7917 if (!inst.error)
5ee91343 7918 inst.error = BAD_SYNTAX;
d252fdde
PB
7919 return FAIL;
7920 }
c19d1205
ZW
7921
7922 /* Do not backtrack over a trailing optional argument that
7923 absorbed some text. We will only fail again, with the
7924 'garbage following instruction' error message, which is
7925 probably less helpful than the current one. */
7926 if (backtrack_index == i && backtrack_pos != str
7927 && upat[i+1] == OP_stop)
d252fdde
PB
7928 {
7929 if (!inst.error)
5ee91343 7930 inst.error = BAD_SYNTAX;
d252fdde
PB
7931 return FAIL;
7932 }
c19d1205
ZW
7933
7934 /* Try again, skipping the optional argument at backtrack_pos. */
7935 str = backtrack_pos;
7936 inst.error = backtrack_error;
7937 inst.operands[backtrack_index].present = 0;
7938 i = backtrack_index;
7939 backtrack_pos = 0;
09d92015 7940 }
09d92015 7941
c19d1205
ZW
7942 /* Check that we have parsed all the arguments. */
7943 if (*str != '\0' && !inst.error)
7944 inst.error = _("garbage following instruction");
09d92015 7945
c19d1205 7946 return inst.error ? FAIL : SUCCESS;
09d92015
MM
7947}
7948
c19d1205
ZW
7949#undef po_char_or_fail
7950#undef po_reg_or_fail
7951#undef po_reg_or_goto
7952#undef po_imm_or_fail
5287ad62 7953#undef po_scalar_or_fail
52e7f43d 7954#undef po_barrier_or_imm
e07e6e58 7955
c19d1205 7956/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
7957#define constraint(expr, err) \
7958 do \
c19d1205 7959 { \
e07e6e58
NC
7960 if (expr) \
7961 { \
7962 inst.error = err; \
7963 return; \
7964 } \
c19d1205 7965 } \
e07e6e58 7966 while (0)
c19d1205 7967
fdfde340
JM
7968/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7969 instructions are unpredictable if these registers are used. This
5c8ed6a4
JW
7970 is the BadReg predicate in ARM's Thumb-2 documentation.
7971
7972 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7973 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7974#define reject_bad_reg(reg) \
7975 do \
7976 if (reg == REG_PC) \
7977 { \
7978 inst.error = BAD_PC; \
7979 return; \
7980 } \
7981 else if (reg == REG_SP \
7982 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7983 { \
7984 inst.error = BAD_SP; \
7985 return; \
7986 } \
fdfde340
JM
7987 while (0)
7988
94206790
MM
7989/* If REG is R13 (the stack pointer), warn that its use is
7990 deprecated. */
7991#define warn_deprecated_sp(reg) \
7992 do \
7993 if (warn_on_deprecated && reg == REG_SP) \
5c3696f8 7994 as_tsktsk (_("use of r13 is deprecated")); \
94206790
MM
7995 while (0)
7996
c19d1205
ZW
7997/* Functions for operand encoding. ARM, then Thumb. */
7998
d840c081 7999#define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
c19d1205 8000
9db2f6b4
RL
8001/* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
8002
8003 The only binary encoding difference is the Coprocessor number. Coprocessor
8004 9 is used for half-precision calculations or conversions. The format of the
2b0f3761 8005 instruction is the same as the equivalent Coprocessor 10 instruction that
9db2f6b4
RL
8006 exists for Single-Precision operation. */
8007
8008static void
8009do_scalar_fp16_v82_encode (void)
8010{
5ee91343 8011 if (inst.cond < COND_ALWAYS)
9db2f6b4
RL
8012 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8013 " the behaviour is UNPREDICTABLE"));
8014 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8015 _(BAD_FP16));
8016
8017 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8018 mark_feature_used (&arm_ext_fp16);
8019}
8020
c19d1205
ZW
8021/* If VAL can be encoded in the immediate field of an ARM instruction,
8022 return the encoded form. Otherwise, return FAIL. */
8023
8024static unsigned int
8025encode_arm_immediate (unsigned int val)
09d92015 8026{
c19d1205
ZW
8027 unsigned int a, i;
8028
4f1d6205
L
8029 if (val <= 0xff)
8030 return val;
8031
8032 for (i = 2; i < 32; i += 2)
c19d1205
ZW
8033 if ((a = rotate_left (val, i)) <= 0xff)
8034 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8035
8036 return FAIL;
09d92015
MM
8037}
8038
c19d1205
ZW
8039/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8040 return the encoded form. Otherwise, return FAIL. */
8041static unsigned int
8042encode_thumb32_immediate (unsigned int val)
09d92015 8043{
c19d1205 8044 unsigned int a, i;
09d92015 8045
9c3c69f2 8046 if (val <= 0xff)
c19d1205 8047 return val;
a737bd4d 8048
9c3c69f2 8049 for (i = 1; i <= 24; i++)
09d92015 8050 {
9c3c69f2
PB
8051 a = val >> i;
8052 if ((val & ~(0xff << i)) == 0)
8053 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 8054 }
a737bd4d 8055
c19d1205
ZW
8056 a = val & 0xff;
8057 if (val == ((a << 16) | a))
8058 return 0x100 | a;
8059 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8060 return 0x300 | a;
09d92015 8061
c19d1205
ZW
8062 a = val & 0xff00;
8063 if (val == ((a << 16) | a))
8064 return 0x200 | (a >> 8);
a737bd4d 8065
c19d1205 8066 return FAIL;
09d92015 8067}
5287ad62 8068/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
8069
8070static void
5287ad62
JB
8071encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8072{
8073 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8074 && reg > 15)
8075 {
b1cc4aeb 8076 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
477330fc
RM
8077 {
8078 if (thumb_mode)
8079 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8080 fpu_vfp_ext_d32);
8081 else
8082 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8083 fpu_vfp_ext_d32);
8084 }
5287ad62 8085 else
477330fc
RM
8086 {
8087 first_error (_("D register out of range for selected VFP version"));
8088 return;
8089 }
5287ad62
JB
8090 }
8091
c19d1205 8092 switch (pos)
09d92015 8093 {
c19d1205
ZW
8094 case VFP_REG_Sd:
8095 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8096 break;
8097
8098 case VFP_REG_Sn:
8099 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8100 break;
8101
8102 case VFP_REG_Sm:
8103 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8104 break;
8105
5287ad62
JB
8106 case VFP_REG_Dd:
8107 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8108 break;
5f4273c7 8109
5287ad62
JB
8110 case VFP_REG_Dn:
8111 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8112 break;
5f4273c7 8113
5287ad62
JB
8114 case VFP_REG_Dm:
8115 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8116 break;
8117
c19d1205
ZW
8118 default:
8119 abort ();
09d92015 8120 }
09d92015
MM
8121}
8122
c19d1205 8123/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 8124 if any, is handled by md_apply_fix. */
09d92015 8125static void
c19d1205 8126encode_arm_shift (int i)
09d92015 8127{
008a97ef
RL
8128 /* register-shifted register. */
8129 if (inst.operands[i].immisreg)
8130 {
bf355b69
MR
8131 int op_index;
8132 for (op_index = 0; op_index <= i; ++op_index)
008a97ef 8133 {
5689c942
RL
8134 /* Check the operand only when it's presented. In pre-UAL syntax,
8135 if the destination register is the same as the first operand, two
8136 register form of the instruction can be used. */
bf355b69
MR
8137 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8138 && inst.operands[op_index].reg == REG_PC)
008a97ef
RL
8139 as_warn (UNPRED_REG ("r15"));
8140 }
8141
8142 if (inst.operands[i].imm == REG_PC)
8143 as_warn (UNPRED_REG ("r15"));
8144 }
8145
c19d1205
ZW
8146 if (inst.operands[i].shift_kind == SHIFT_RRX)
8147 inst.instruction |= SHIFT_ROR << 5;
8148 else
09d92015 8149 {
c19d1205
ZW
8150 inst.instruction |= inst.operands[i].shift_kind << 5;
8151 if (inst.operands[i].immisreg)
8152 {
8153 inst.instruction |= SHIFT_BY_REG;
8154 inst.instruction |= inst.operands[i].imm << 8;
8155 }
8156 else
e2b0ab59 8157 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 8158 }
c19d1205 8159}
09d92015 8160
c19d1205
ZW
8161static void
8162encode_arm_shifter_operand (int i)
8163{
8164 if (inst.operands[i].isreg)
09d92015 8165 {
c19d1205
ZW
8166 inst.instruction |= inst.operands[i].reg;
8167 encode_arm_shift (i);
09d92015 8168 }
c19d1205 8169 else
a415b1cd
JB
8170 {
8171 inst.instruction |= INST_IMMEDIATE;
e2b0ab59 8172 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
a415b1cd
JB
8173 inst.instruction |= inst.operands[i].imm;
8174 }
09d92015
MM
8175}
8176
c19d1205 8177/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 8178static void
c19d1205 8179encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 8180{
2b2f5df9
NC
8181 /* PR 14260:
8182 Generate an error if the operand is not a register. */
8183 constraint (!inst.operands[i].isreg,
8184 _("Instruction does not support =N addresses"));
8185
c19d1205 8186 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 8187
c19d1205 8188 if (inst.operands[i].preind)
09d92015 8189 {
c19d1205
ZW
8190 if (is_t)
8191 {
8192 inst.error = _("instruction does not accept preindexed addressing");
8193 return;
8194 }
8195 inst.instruction |= PRE_INDEX;
8196 if (inst.operands[i].writeback)
8197 inst.instruction |= WRITE_BACK;
09d92015 8198
c19d1205
ZW
8199 }
8200 else if (inst.operands[i].postind)
8201 {
9c2799c2 8202 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8203 if (is_t)
8204 inst.instruction |= WRITE_BACK;
8205 }
8206 else /* unindexed - only for coprocessor */
09d92015 8207 {
c19d1205 8208 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
8209 return;
8210 }
8211
c19d1205
ZW
8212 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8213 && (((inst.instruction & 0x000f0000) >> 16)
8214 == ((inst.instruction & 0x0000f000) >> 12)))
8215 as_warn ((inst.instruction & LOAD_BIT)
8216 ? _("destination register same as write-back base")
8217 : _("source register same as write-back base"));
09d92015
MM
8218}
8219
c19d1205
ZW
8220/* inst.operands[i] was set up by parse_address. Encode it into an
8221 ARM-format mode 2 load or store instruction. If is_t is true,
8222 reject forms that cannot be used with a T instruction (i.e. not
8223 post-indexed). */
a737bd4d 8224static void
c19d1205 8225encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 8226{
5be8be5d
DG
8227 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8228
c19d1205 8229 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8230
c19d1205 8231 if (inst.operands[i].immisreg)
09d92015 8232 {
5be8be5d
DG
8233 constraint ((inst.operands[i].imm == REG_PC
8234 || (is_pc && inst.operands[i].writeback)),
8235 BAD_PC_ADDRESSING);
c19d1205
ZW
8236 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8237 inst.instruction |= inst.operands[i].imm;
8238 if (!inst.operands[i].negative)
8239 inst.instruction |= INDEX_UP;
8240 if (inst.operands[i].shifted)
8241 {
8242 if (inst.operands[i].shift_kind == SHIFT_RRX)
8243 inst.instruction |= SHIFT_ROR << 5;
8244 else
8245 {
8246 inst.instruction |= inst.operands[i].shift_kind << 5;
e2b0ab59 8247 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
c19d1205
ZW
8248 }
8249 }
09d92015 8250 }
e2b0ab59 8251 else /* immediate offset in inst.relocs[0] */
09d92015 8252 {
e2b0ab59 8253 if (is_pc && !inst.relocs[0].pc_rel)
5be8be5d
DG
8254 {
8255 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
8256
8257 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8258 cannot use PC in addressing.
8259 PC cannot be used in writeback addressing, either. */
8260 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 8261 BAD_PC_ADDRESSING);
23a10334 8262
dc5ec521 8263 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
8264 if (warn_on_deprecated
8265 && !is_load
8266 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
5c3696f8 8267 as_tsktsk (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
8268 }
8269
e2b0ab59 8270 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8271 {
8272 /* Prefer + for zero encoded value. */
8273 if (!inst.operands[i].negative)
8274 inst.instruction |= INDEX_UP;
e2b0ab59 8275 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
26d97720 8276 }
09d92015 8277 }
09d92015
MM
8278}
8279
c19d1205
ZW
8280/* inst.operands[i] was set up by parse_address. Encode it into an
8281 ARM-format mode 3 load or store instruction. Reject forms that
8282 cannot be used with such instructions. If is_t is true, reject
8283 forms that cannot be used with a T instruction (i.e. not
8284 post-indexed). */
8285static void
8286encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 8287{
c19d1205 8288 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 8289 {
c19d1205
ZW
8290 inst.error = _("instruction does not accept scaled register index");
8291 return;
09d92015 8292 }
a737bd4d 8293
c19d1205 8294 encode_arm_addr_mode_common (i, is_t);
a737bd4d 8295
c19d1205
ZW
8296 if (inst.operands[i].immisreg)
8297 {
5be8be5d 8298 constraint ((inst.operands[i].imm == REG_PC
eb9f3f00 8299 || (is_t && inst.operands[i].reg == REG_PC)),
5be8be5d 8300 BAD_PC_ADDRESSING);
eb9f3f00
JB
8301 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8302 BAD_PC_WRITEBACK);
c19d1205
ZW
8303 inst.instruction |= inst.operands[i].imm;
8304 if (!inst.operands[i].negative)
8305 inst.instruction |= INDEX_UP;
8306 }
e2b0ab59 8307 else /* immediate offset in inst.relocs[0] */
c19d1205 8308 {
e2b0ab59 8309 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
5be8be5d
DG
8310 && inst.operands[i].writeback),
8311 BAD_PC_WRITEBACK);
c19d1205 8312 inst.instruction |= HWOFFSET_IMM;
e2b0ab59 8313 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
26d97720
NS
8314 {
8315 /* Prefer + for zero encoded value. */
8316 if (!inst.operands[i].negative)
8317 inst.instruction |= INDEX_UP;
8318
e2b0ab59 8319 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
26d97720 8320 }
c19d1205 8321 }
a737bd4d
NC
8322}
8323
8335d6aa
JW
8324/* Write immediate bits [7:0] to the following locations:
8325
8326 |28/24|23 19|18 16|15 4|3 0|
8327 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8328
8329 This function is used by VMOV/VMVN/VORR/VBIC. */
8330
8331static void
8332neon_write_immbits (unsigned immbits)
8333{
8334 inst.instruction |= immbits & 0xf;
8335 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8336 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8337}
8338
8339/* Invert low-order SIZE bits of XHI:XLO. */
8340
8341static void
8342neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8343{
8344 unsigned immlo = xlo ? *xlo : 0;
8345 unsigned immhi = xhi ? *xhi : 0;
8346
8347 switch (size)
8348 {
8349 case 8:
8350 immlo = (~immlo) & 0xff;
8351 break;
8352
8353 case 16:
8354 immlo = (~immlo) & 0xffff;
8355 break;
8356
8357 case 64:
8358 immhi = (~immhi) & 0xffffffff;
8359 /* fall through. */
8360
8361 case 32:
8362 immlo = (~immlo) & 0xffffffff;
8363 break;
8364
8365 default:
8366 abort ();
8367 }
8368
8369 if (xlo)
8370 *xlo = immlo;
8371
8372 if (xhi)
8373 *xhi = immhi;
8374}
8375
8376/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8377 A, B, C, D. */
09d92015 8378
c19d1205 8379static int
8335d6aa 8380neon_bits_same_in_bytes (unsigned imm)
09d92015 8381{
8335d6aa
JW
8382 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8383 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8384 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8385 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8386}
a737bd4d 8387
8335d6aa 8388/* For immediate of above form, return 0bABCD. */
09d92015 8389
8335d6aa
JW
8390static unsigned
8391neon_squash_bits (unsigned imm)
8392{
8393 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8394 | ((imm & 0x01000000) >> 21);
8395}
8396
8397/* Compress quarter-float representation to 0b...000 abcdefgh. */
8398
8399static unsigned
8400neon_qfloat_bits (unsigned imm)
8401{
8402 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8403}
8404
8405/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8406 the instruction. *OP is passed as the initial value of the op field, and
8407 may be set to a different value depending on the constant (i.e.
8408 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8409 MVN). If the immediate looks like a repeated pattern then also
8410 try smaller element sizes. */
8411
8412static int
8413neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8414 unsigned *immbits, int *op, int size,
8415 enum neon_el_type type)
8416{
8417 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8418 float. */
8419 if (type == NT_float && !float_p)
8420 return FAIL;
8421
8422 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
09d92015 8423 {
8335d6aa
JW
8424 if (size != 32 || *op == 1)
8425 return FAIL;
8426 *immbits = neon_qfloat_bits (immlo);
8427 return 0xf;
8428 }
8429
8430 if (size == 64)
8431 {
8432 if (neon_bits_same_in_bytes (immhi)
8433 && neon_bits_same_in_bytes (immlo))
c19d1205 8434 {
8335d6aa
JW
8435 if (*op == 1)
8436 return FAIL;
8437 *immbits = (neon_squash_bits (immhi) << 4)
8438 | neon_squash_bits (immlo);
8439 *op = 1;
8440 return 0xe;
c19d1205 8441 }
a737bd4d 8442
8335d6aa
JW
8443 if (immhi != immlo)
8444 return FAIL;
8445 }
a737bd4d 8446
8335d6aa 8447 if (size >= 32)
09d92015 8448 {
8335d6aa 8449 if (immlo == (immlo & 0x000000ff))
c19d1205 8450 {
8335d6aa
JW
8451 *immbits = immlo;
8452 return 0x0;
c19d1205 8453 }
8335d6aa 8454 else if (immlo == (immlo & 0x0000ff00))
c19d1205 8455 {
8335d6aa
JW
8456 *immbits = immlo >> 8;
8457 return 0x2;
c19d1205 8458 }
8335d6aa
JW
8459 else if (immlo == (immlo & 0x00ff0000))
8460 {
8461 *immbits = immlo >> 16;
8462 return 0x4;
8463 }
8464 else if (immlo == (immlo & 0xff000000))
8465 {
8466 *immbits = immlo >> 24;
8467 return 0x6;
8468 }
8469 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8470 {
8471 *immbits = (immlo >> 8) & 0xff;
8472 return 0xc;
8473 }
8474 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8475 {
8476 *immbits = (immlo >> 16) & 0xff;
8477 return 0xd;
8478 }
8479
8480 if ((immlo & 0xffff) != (immlo >> 16))
8481 return FAIL;
8482 immlo &= 0xffff;
09d92015 8483 }
a737bd4d 8484
8335d6aa 8485 if (size >= 16)
4962c51a 8486 {
8335d6aa
JW
8487 if (immlo == (immlo & 0x000000ff))
8488 {
8489 *immbits = immlo;
8490 return 0x8;
8491 }
8492 else if (immlo == (immlo & 0x0000ff00))
8493 {
8494 *immbits = immlo >> 8;
8495 return 0xa;
8496 }
8497
8498 if ((immlo & 0xff) != (immlo >> 8))
8499 return FAIL;
8500 immlo &= 0xff;
4962c51a
MS
8501 }
8502
8335d6aa
JW
8503 if (immlo == (immlo & 0x000000ff))
8504 {
8505 /* Don't allow MVN with 8-bit immediate. */
8506 if (*op == 1)
8507 return FAIL;
8508 *immbits = immlo;
8509 return 0xe;
8510 }
26d97720 8511
8335d6aa 8512 return FAIL;
c19d1205 8513}
a737bd4d 8514
5fc177c8 8515#if defined BFD_HOST_64_BIT
ba592044
AM
8516/* Returns TRUE if double precision value V may be cast
8517 to single precision without loss of accuracy. */
8518
8519static bfd_boolean
5fc177c8 8520is_double_a_single (bfd_int64_t v)
ba592044 8521{
5fc177c8 8522 int exp = (int)((v >> 52) & 0x7FF);
8fe3f3d6 8523 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8524
8525 return (exp == 0 || exp == 0x7FF
8526 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8527 && (mantissa & 0x1FFFFFFFl) == 0;
8528}
8529
3739860c 8530/* Returns a double precision value casted to single precision
ba592044
AM
8531 (ignoring the least significant bits in exponent and mantissa). */
8532
8533static int
5fc177c8 8534double_to_single (bfd_int64_t v)
ba592044
AM
8535{
8536 int sign = (int) ((v >> 63) & 1l);
5fc177c8 8537 int exp = (int) ((v >> 52) & 0x7FF);
8fe3f3d6 8538 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
ba592044
AM
8539
8540 if (exp == 0x7FF)
8541 exp = 0xFF;
8542 else
8543 {
8544 exp = exp - 1023 + 127;
8545 if (exp >= 0xFF)
8546 {
8547 /* Infinity. */
8548 exp = 0x7F;
8549 mantissa = 0;
8550 }
8551 else if (exp < 0)
8552 {
8553 /* No denormalized numbers. */
8554 exp = 0;
8555 mantissa = 0;
8556 }
8557 }
8558 mantissa >>= 29;
8559 return (sign << 31) | (exp << 23) | mantissa;
8560}
5fc177c8 8561#endif /* BFD_HOST_64_BIT */
ba592044 8562
8335d6aa
JW
8563enum lit_type
8564{
8565 CONST_THUMB,
8566 CONST_ARM,
8567 CONST_VEC
8568};
8569
ba592044
AM
8570static void do_vfp_nsyn_opcode (const char *);
8571
e2b0ab59 8572/* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
c19d1205
ZW
8573 Determine whether it can be performed with a move instruction; if
8574 it can, convert inst.instruction to that move instruction and
c921be7d
NC
8575 return TRUE; if it can't, convert inst.instruction to a literal-pool
8576 load and return FALSE. If this is not a valid thing to do in the
8577 current context, set inst.error and return TRUE.
a737bd4d 8578
c19d1205
ZW
8579 inst.operands[i] describes the destination register. */
8580
c921be7d 8581static bfd_boolean
8335d6aa 8582move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
c19d1205 8583{
53365c0d 8584 unsigned long tbit;
8335d6aa
JW
8585 bfd_boolean thumb_p = (t == CONST_THUMB);
8586 bfd_boolean arm_p = (t == CONST_ARM);
53365c0d
PB
8587
8588 if (thumb_p)
8589 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8590 else
8591 tbit = LOAD_BIT;
8592
8593 if ((inst.instruction & tbit) == 0)
09d92015 8594 {
c19d1205 8595 inst.error = _("invalid pseudo operation");
c921be7d 8596 return TRUE;
09d92015 8597 }
ba592044 8598
e2b0ab59
AV
8599 if (inst.relocs[0].exp.X_op != O_constant
8600 && inst.relocs[0].exp.X_op != O_symbol
8601 && inst.relocs[0].exp.X_op != O_big)
09d92015
MM
8602 {
8603 inst.error = _("constant expression expected");
c921be7d 8604 return TRUE;
09d92015 8605 }
ba592044 8606
e2b0ab59
AV
8607 if (inst.relocs[0].exp.X_op == O_constant
8608 || inst.relocs[0].exp.X_op == O_big)
8335d6aa 8609 {
5fc177c8
NC
8610#if defined BFD_HOST_64_BIT
8611 bfd_int64_t v;
8612#else
ba592044 8613 offsetT v;
5fc177c8 8614#endif
e2b0ab59 8615 if (inst.relocs[0].exp.X_op == O_big)
8335d6aa 8616 {
ba592044
AM
8617 LITTLENUM_TYPE w[X_PRECISION];
8618 LITTLENUM_TYPE * l;
8619
e2b0ab59 8620 if (inst.relocs[0].exp.X_add_number == -1)
8335d6aa 8621 {
ba592044
AM
8622 gen_to_words (w, X_PRECISION, E_PRECISION);
8623 l = w;
8624 /* FIXME: Should we check words w[2..5] ? */
8335d6aa 8625 }
ba592044
AM
8626 else
8627 l = generic_bignum;
3739860c 8628
5fc177c8
NC
8629#if defined BFD_HOST_64_BIT
8630 v =
8631 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8632 << LITTLENUM_NUMBER_OF_BITS)
8633 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8634 << LITTLENUM_NUMBER_OF_BITS)
8635 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8636 << LITTLENUM_NUMBER_OF_BITS)
8637 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8638#else
ba592044
AM
8639 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8640 | (l[0] & LITTLENUM_MASK);
5fc177c8 8641#endif
8335d6aa 8642 }
ba592044 8643 else
e2b0ab59 8644 v = inst.relocs[0].exp.X_add_number;
ba592044
AM
8645
8646 if (!inst.operands[i].issingle)
8335d6aa 8647 {
12569877 8648 if (thumb_p)
8335d6aa 8649 {
53445554
TP
8650 /* LDR should not use lead in a flag-setting instruction being
8651 chosen so we do not check whether movs can be used. */
12569877 8652
53445554 8653 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
ff8646ee 8654 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
53445554
TP
8655 && inst.operands[i].reg != 13
8656 && inst.operands[i].reg != 15)
12569877 8657 {
fc289b0a
TP
8658 /* Check if on thumb2 it can be done with a mov.w, mvn or
8659 movw instruction. */
12569877
AM
8660 unsigned int newimm;
8661 bfd_boolean isNegated;
8662
8663 newimm = encode_thumb32_immediate (v);
8664 if (newimm != (unsigned int) FAIL)
8665 isNegated = FALSE;
8666 else
8667 {
582cfe03 8668 newimm = encode_thumb32_immediate (~v);
12569877
AM
8669 if (newimm != (unsigned int) FAIL)
8670 isNegated = TRUE;
8671 }
8672
fc289b0a
TP
8673 /* The number can be loaded with a mov.w or mvn
8674 instruction. */
ff8646ee
TP
8675 if (newimm != (unsigned int) FAIL
8676 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
12569877 8677 {
fc289b0a 8678 inst.instruction = (0xf04f0000 /* MOV.W. */
582cfe03 8679 | (inst.operands[i].reg << 8));
fc289b0a 8680 /* Change to MOVN. */
582cfe03 8681 inst.instruction |= (isNegated ? 0x200000 : 0);
12569877
AM
8682 inst.instruction |= (newimm & 0x800) << 15;
8683 inst.instruction |= (newimm & 0x700) << 4;
8684 inst.instruction |= (newimm & 0x0ff);
8685 return TRUE;
8686 }
fc289b0a 8687 /* The number can be loaded with a movw instruction. */
ff8646ee
TP
8688 else if ((v & ~0xFFFF) == 0
8689 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
3739860c 8690 {
582cfe03 8691 int imm = v & 0xFFFF;
12569877 8692
582cfe03 8693 inst.instruction = 0xf2400000; /* MOVW. */
12569877
AM
8694 inst.instruction |= (inst.operands[i].reg << 8);
8695 inst.instruction |= (imm & 0xf000) << 4;
8696 inst.instruction |= (imm & 0x0800) << 15;
8697 inst.instruction |= (imm & 0x0700) << 4;
8698 inst.instruction |= (imm & 0x00ff);
8699 return TRUE;
8700 }
8701 }
8335d6aa 8702 }
12569877 8703 else if (arm_p)
ba592044
AM
8704 {
8705 int value = encode_arm_immediate (v);
12569877 8706
ba592044
AM
8707 if (value != FAIL)
8708 {
8709 /* This can be done with a mov instruction. */
8710 inst.instruction &= LITERAL_MASK;
8711 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8712 inst.instruction |= value & 0xfff;
8713 return TRUE;
8714 }
8335d6aa 8715
ba592044
AM
8716 value = encode_arm_immediate (~ v);
8717 if (value != FAIL)
8718 {
8719 /* This can be done with a mvn instruction. */
8720 inst.instruction &= LITERAL_MASK;
8721 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8722 inst.instruction |= value & 0xfff;
8723 return TRUE;
8724 }
8725 }
934c2632 8726 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8335d6aa 8727 {
ba592044
AM
8728 int op = 0;
8729 unsigned immbits = 0;
8730 unsigned immlo = inst.operands[1].imm;
8731 unsigned immhi = inst.operands[1].regisimm
8732 ? inst.operands[1].reg
e2b0ab59 8733 : inst.relocs[0].exp.X_unsigned
ba592044
AM
8734 ? 0
8735 : ((bfd_int64_t)((int) immlo)) >> 32;
8736 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8737 &op, 64, NT_invtype);
8738
8739 if (cmode == FAIL)
8740 {
8741 neon_invert_size (&immlo, &immhi, 64);
8742 op = !op;
8743 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8744 &op, 64, NT_invtype);
8745 }
8746
8747 if (cmode != FAIL)
8748 {
8749 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8750 | (1 << 23)
8751 | (cmode << 8)
8752 | (op << 5)
8753 | (1 << 4);
8754
8755 /* Fill other bits in vmov encoding for both thumb and arm. */
8756 if (thumb_mode)
eff0bc54 8757 inst.instruction |= (0x7U << 29) | (0xF << 24);
ba592044 8758 else
eff0bc54 8759 inst.instruction |= (0xFU << 28) | (0x1 << 25);
ba592044
AM
8760 neon_write_immbits (immbits);
8761 return TRUE;
8762 }
8335d6aa
JW
8763 }
8764 }
8335d6aa 8765
ba592044
AM
8766 if (t == CONST_VEC)
8767 {
8768 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8769 if (inst.operands[i].issingle
8770 && is_quarter_float (inst.operands[1].imm)
8771 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8335d6aa 8772 {
ba592044
AM
8773 inst.operands[1].imm =
8774 neon_qfloat_bits (v);
8775 do_vfp_nsyn_opcode ("fconsts");
8776 return TRUE;
8335d6aa 8777 }
5fc177c8
NC
8778
8779 /* If our host does not support a 64-bit type then we cannot perform
8780 the following optimization. This mean that there will be a
8781 discrepancy between the output produced by an assembler built for
8782 a 32-bit-only host and the output produced from a 64-bit host, but
8783 this cannot be helped. */
8784#if defined BFD_HOST_64_BIT
ba592044
AM
8785 else if (!inst.operands[1].issingle
8786 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8335d6aa 8787 {
ba592044
AM
8788 if (is_double_a_single (v)
8789 && is_quarter_float (double_to_single (v)))
8790 {
8791 inst.operands[1].imm =
8792 neon_qfloat_bits (double_to_single (v));
8793 do_vfp_nsyn_opcode ("fconstd");
8794 return TRUE;
8795 }
8335d6aa 8796 }
5fc177c8 8797#endif
8335d6aa
JW
8798 }
8799 }
8800
8801 if (add_to_lit_pool ((!inst.operands[i].isvec
8802 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8803 return TRUE;
8804
8805 inst.operands[1].reg = REG_PC;
8806 inst.operands[1].isreg = 1;
8807 inst.operands[1].preind = 1;
e2b0ab59
AV
8808 inst.relocs[0].pc_rel = 1;
8809 inst.relocs[0].type = (thumb_p
8335d6aa
JW
8810 ? BFD_RELOC_ARM_THUMB_OFFSET
8811 : (mode_3
8812 ? BFD_RELOC_ARM_HWLITERAL
8813 : BFD_RELOC_ARM_LITERAL));
8814 return FALSE;
8815}
8816
8817/* inst.operands[i] was set up by parse_address. Encode it into an
8818 ARM-format instruction. Reject all forms which cannot be encoded
8819 into a coprocessor load/store instruction. If wb_ok is false,
8820 reject use of writeback; if unind_ok is false, reject use of
8821 unindexed addressing. If reloc_override is not 0, use it instead
8822 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8823 (in which case it is preserved). */
8824
8825static int
8826encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8827{
8828 if (!inst.operands[i].isreg)
8829 {
99b2a2dd
NC
8830 /* PR 18256 */
8831 if (! inst.operands[0].isvec)
8832 {
8833 inst.error = _("invalid co-processor operand");
8834 return FAIL;
8835 }
8335d6aa
JW
8836 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8837 return SUCCESS;
8838 }
8839
8840 inst.instruction |= inst.operands[i].reg << 16;
8841
8842 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8843
8844 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8845 {
8846 gas_assert (!inst.operands[i].writeback);
8847 if (!unind_ok)
8848 {
8849 inst.error = _("instruction does not support unindexed addressing");
8850 return FAIL;
8851 }
8852 inst.instruction |= inst.operands[i].imm;
8853 inst.instruction |= INDEX_UP;
8854 return SUCCESS;
8855 }
8856
8857 if (inst.operands[i].preind)
8858 inst.instruction |= PRE_INDEX;
8859
8860 if (inst.operands[i].writeback)
09d92015 8861 {
8335d6aa 8862 if (inst.operands[i].reg == REG_PC)
c19d1205 8863 {
8335d6aa
JW
8864 inst.error = _("pc may not be used with write-back");
8865 return FAIL;
c19d1205 8866 }
8335d6aa 8867 if (!wb_ok)
c19d1205 8868 {
8335d6aa
JW
8869 inst.error = _("instruction does not support writeback");
8870 return FAIL;
c19d1205 8871 }
8335d6aa 8872 inst.instruction |= WRITE_BACK;
09d92015
MM
8873 }
8874
8335d6aa 8875 if (reloc_override)
e2b0ab59
AV
8876 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8877 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8878 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8879 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
c19d1205 8880 {
8335d6aa 8881 if (thumb_mode)
e2b0ab59 8882 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8335d6aa 8883 else
e2b0ab59 8884 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
c19d1205 8885 }
8335d6aa
JW
8886
8887 /* Prefer + for zero encoded value. */
8888 if (!inst.operands[i].negative)
8889 inst.instruction |= INDEX_UP;
8890
8891 return SUCCESS;
09d92015
MM
8892}
8893
5f4273c7 8894/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
8895 First some generics; their names are taken from the conventional
8896 bit positions for register arguments in ARM format instructions. */
09d92015 8897
a737bd4d 8898static void
c19d1205 8899do_noargs (void)
09d92015 8900{
c19d1205 8901}
a737bd4d 8902
c19d1205
ZW
8903static void
8904do_rd (void)
8905{
8906 inst.instruction |= inst.operands[0].reg << 12;
8907}
a737bd4d 8908
16a1fa25
TP
8909static void
8910do_rn (void)
8911{
8912 inst.instruction |= inst.operands[0].reg << 16;
8913}
8914
c19d1205
ZW
8915static void
8916do_rd_rm (void)
8917{
8918 inst.instruction |= inst.operands[0].reg << 12;
8919 inst.instruction |= inst.operands[1].reg;
8920}
09d92015 8921
9eb6c0f1
MGD
8922static void
8923do_rm_rn (void)
8924{
8925 inst.instruction |= inst.operands[0].reg;
8926 inst.instruction |= inst.operands[1].reg << 16;
8927}
8928
c19d1205
ZW
8929static void
8930do_rd_rn (void)
8931{
8932 inst.instruction |= inst.operands[0].reg << 12;
8933 inst.instruction |= inst.operands[1].reg << 16;
8934}
a737bd4d 8935
c19d1205
ZW
8936static void
8937do_rn_rd (void)
8938{
8939 inst.instruction |= inst.operands[0].reg << 16;
8940 inst.instruction |= inst.operands[1].reg << 12;
8941}
09d92015 8942
4ed7ed8d
TP
8943static void
8944do_tt (void)
8945{
8946 inst.instruction |= inst.operands[0].reg << 8;
8947 inst.instruction |= inst.operands[1].reg << 16;
8948}
8949
59d09be6
MGD
8950static bfd_boolean
8951check_obsolete (const arm_feature_set *feature, const char *msg)
8952{
8953 if (ARM_CPU_IS_ANY (cpu_variant))
8954 {
5c3696f8 8955 as_tsktsk ("%s", msg);
59d09be6
MGD
8956 return TRUE;
8957 }
8958 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8959 {
8960 as_bad ("%s", msg);
8961 return TRUE;
8962 }
8963
8964 return FALSE;
8965}
8966
c19d1205
ZW
8967static void
8968do_rd_rm_rn (void)
8969{
9a64e435 8970 unsigned Rn = inst.operands[2].reg;
708587a4 8971 /* Enforce restrictions on SWP instruction. */
9a64e435 8972 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
8973 {
8974 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8975 _("Rn must not overlap other operands"));
8976
59d09be6
MGD
8977 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8978 */
8979 if (!check_obsolete (&arm_ext_v8,
8980 _("swp{b} use is obsoleted for ARMv8 and later"))
8981 && warn_on_deprecated
8982 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
5c3696f8 8983 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 8984 }
59d09be6 8985
c19d1205
ZW
8986 inst.instruction |= inst.operands[0].reg << 12;
8987 inst.instruction |= inst.operands[1].reg;
9a64e435 8988 inst.instruction |= Rn << 16;
c19d1205 8989}
09d92015 8990
c19d1205
ZW
8991static void
8992do_rd_rn_rm (void)
8993{
8994 inst.instruction |= inst.operands[0].reg << 12;
8995 inst.instruction |= inst.operands[1].reg << 16;
8996 inst.instruction |= inst.operands[2].reg;
8997}
a737bd4d 8998
c19d1205
ZW
8999static void
9000do_rm_rd_rn (void)
9001{
5be8be5d 9002 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
e2b0ab59
AV
9003 constraint (((inst.relocs[0].exp.X_op != O_constant
9004 && inst.relocs[0].exp.X_op != O_illegal)
9005 || inst.relocs[0].exp.X_add_number != 0),
5be8be5d 9006 BAD_ADDR_MODE);
c19d1205
ZW
9007 inst.instruction |= inst.operands[0].reg;
9008 inst.instruction |= inst.operands[1].reg << 12;
9009 inst.instruction |= inst.operands[2].reg << 16;
9010}
09d92015 9011
c19d1205
ZW
9012static void
9013do_imm0 (void)
9014{
9015 inst.instruction |= inst.operands[0].imm;
9016}
09d92015 9017
c19d1205
ZW
9018static void
9019do_rd_cpaddr (void)
9020{
9021 inst.instruction |= inst.operands[0].reg << 12;
9022 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 9023}
a737bd4d 9024
c19d1205
ZW
9025/* ARM instructions, in alphabetical order by function name (except
9026 that wrapper functions appear immediately after the function they
9027 wrap). */
09d92015 9028
c19d1205
ZW
9029/* This is a pseudo-op of the form "adr rd, label" to be converted
9030 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
9031
9032static void
c19d1205 9033do_adr (void)
09d92015 9034{
c19d1205 9035 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9036
c19d1205
ZW
9037 /* Frag hacking will turn this into a sub instruction if the offset turns
9038 out to be negative. */
e2b0ab59
AV
9039 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9040 inst.relocs[0].pc_rel = 1;
9041 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9042
fc6141f0 9043 if (support_interwork
e2b0ab59
AV
9044 && inst.relocs[0].exp.X_op == O_symbol
9045 && inst.relocs[0].exp.X_add_symbol != NULL
9046 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9047 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9048 inst.relocs[0].exp.X_add_number |= 1;
c19d1205 9049}
b99bd4ef 9050
c19d1205
ZW
9051/* This is a pseudo-op of the form "adrl rd, label" to be converted
9052 into a relative address of the form:
9053 add rd, pc, #low(label-.-8)"
9054 add rd, rd, #high(label-.-8)" */
b99bd4ef 9055
c19d1205
ZW
9056static void
9057do_adrl (void)
9058{
9059 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 9060
c19d1205
ZW
9061 /* Frag hacking will turn this into a sub instruction if the offset turns
9062 out to be negative. */
e2b0ab59
AV
9063 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9064 inst.relocs[0].pc_rel = 1;
c19d1205 9065 inst.size = INSN_SIZE * 2;
e2b0ab59 9066 inst.relocs[0].exp.X_add_number -= 8;
52a86f84 9067
fc6141f0 9068 if (support_interwork
e2b0ab59
AV
9069 && inst.relocs[0].exp.X_op == O_symbol
9070 && inst.relocs[0].exp.X_add_symbol != NULL
9071 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9072 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9073 inst.relocs[0].exp.X_add_number |= 1;
b99bd4ef
NC
9074}
9075
b99bd4ef 9076static void
c19d1205 9077do_arit (void)
b99bd4ef 9078{
e2b0ab59
AV
9079 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9080 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9081 THUMB1_RELOC_ONLY);
c19d1205
ZW
9082 if (!inst.operands[1].present)
9083 inst.operands[1].reg = inst.operands[0].reg;
9084 inst.instruction |= inst.operands[0].reg << 12;
9085 inst.instruction |= inst.operands[1].reg << 16;
9086 encode_arm_shifter_operand (2);
9087}
b99bd4ef 9088
62b3e311
PB
9089static void
9090do_barrier (void)
9091{
9092 if (inst.operands[0].present)
ccb84d65 9093 inst.instruction |= inst.operands[0].imm;
62b3e311
PB
9094 else
9095 inst.instruction |= 0xf;
9096}
9097
c19d1205
ZW
9098static void
9099do_bfc (void)
9100{
9101 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9102 constraint (msb > 32, _("bit-field extends past end of register"));
9103 /* The instruction encoding stores the LSB and MSB,
9104 not the LSB and width. */
9105 inst.instruction |= inst.operands[0].reg << 12;
9106 inst.instruction |= inst.operands[1].imm << 7;
9107 inst.instruction |= (msb - 1) << 16;
9108}
b99bd4ef 9109
c19d1205
ZW
9110static void
9111do_bfi (void)
9112{
9113 unsigned int msb;
b99bd4ef 9114
c19d1205
ZW
9115 /* #0 in second position is alternative syntax for bfc, which is
9116 the same instruction but with REG_PC in the Rm field. */
9117 if (!inst.operands[1].isreg)
9118 inst.operands[1].reg = REG_PC;
b99bd4ef 9119
c19d1205
ZW
9120 msb = inst.operands[2].imm + inst.operands[3].imm;
9121 constraint (msb > 32, _("bit-field extends past end of register"));
9122 /* The instruction encoding stores the LSB and MSB,
9123 not the LSB and width. */
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg;
9126 inst.instruction |= inst.operands[2].imm << 7;
9127 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
9128}
9129
b99bd4ef 9130static void
c19d1205 9131do_bfx (void)
b99bd4ef 9132{
c19d1205
ZW
9133 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9134 _("bit-field extends past end of register"));
9135 inst.instruction |= inst.operands[0].reg << 12;
9136 inst.instruction |= inst.operands[1].reg;
9137 inst.instruction |= inst.operands[2].imm << 7;
9138 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9139}
09d92015 9140
c19d1205
ZW
9141/* ARM V5 breakpoint instruction (argument parse)
9142 BKPT <16 bit unsigned immediate>
9143 Instruction is not conditional.
9144 The bit pattern given in insns[] has the COND_ALWAYS condition,
9145 and it is an error if the caller tried to override that. */
b99bd4ef 9146
c19d1205
ZW
9147static void
9148do_bkpt (void)
9149{
9150 /* Top 12 of 16 bits to bits 19:8. */
9151 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 9152
c19d1205
ZW
9153 /* Bottom 4 of 16 bits to bits 3:0. */
9154 inst.instruction |= inst.operands[0].imm & 0xf;
9155}
09d92015 9156
c19d1205
ZW
9157static void
9158encode_branch (int default_reloc)
9159{
9160 if (inst.operands[0].hasreloc)
9161 {
0855e32b
NS
9162 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9163 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9164 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
e2b0ab59 9165 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
0855e32b
NS
9166 ? BFD_RELOC_ARM_PLT32
9167 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 9168 }
b99bd4ef 9169 else
e2b0ab59
AV
9170 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9171 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
9172}
9173
b99bd4ef 9174static void
c19d1205 9175do_branch (void)
b99bd4ef 9176{
39b41c9c
PB
9177#ifdef OBJ_ELF
9178 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9179 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9180 else
9181#endif
9182 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9183}
9184
9185static void
9186do_bl (void)
9187{
9188#ifdef OBJ_ELF
9189 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9190 {
9191 if (inst.cond == COND_ALWAYS)
9192 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9193 else
9194 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9195 }
9196 else
9197#endif
9198 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 9199}
b99bd4ef 9200
c19d1205
ZW
9201/* ARM V5 branch-link-exchange instruction (argument parse)
9202 BLX <target_addr> ie BLX(1)
9203 BLX{<condition>} <Rm> ie BLX(2)
9204 Unfortunately, there are two different opcodes for this mnemonic.
9205 So, the insns[].value is not used, and the code here zaps values
9206 into inst.instruction.
9207 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 9208
c19d1205
ZW
9209static void
9210do_blx (void)
9211{
9212 if (inst.operands[0].isreg)
b99bd4ef 9213 {
c19d1205
ZW
9214 /* Arg is a register; the opcode provided by insns[] is correct.
9215 It is not illegal to do "blx pc", just useless. */
9216 if (inst.operands[0].reg == REG_PC)
9217 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 9218
c19d1205
ZW
9219 inst.instruction |= inst.operands[0].reg;
9220 }
9221 else
b99bd4ef 9222 {
c19d1205 9223 /* Arg is an address; this instruction cannot be executed
267bf995
RR
9224 conditionally, and the opcode must be adjusted.
9225 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9226 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 9227 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 9228 inst.instruction = 0xfa000000;
267bf995 9229 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 9230 }
c19d1205
ZW
9231}
9232
9233static void
9234do_bx (void)
9235{
845b51d6
PB
9236 bfd_boolean want_reloc;
9237
c19d1205
ZW
9238 if (inst.operands[0].reg == REG_PC)
9239 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 9240
c19d1205 9241 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
9242 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9243 it is for ARMv4t or earlier. */
9244 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
4d354d8b
TP
9245 if (!ARM_FEATURE_ZERO (selected_object_arch)
9246 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
845b51d6
PB
9247 want_reloc = TRUE;
9248
5ad34203 9249#ifdef OBJ_ELF
845b51d6 9250 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 9251#endif
584206db 9252 want_reloc = FALSE;
845b51d6
PB
9253
9254 if (want_reloc)
e2b0ab59 9255 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
09d92015
MM
9256}
9257
c19d1205
ZW
9258
9259/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
9260
9261static void
c19d1205 9262do_bxj (void)
a737bd4d 9263{
c19d1205
ZW
9264 if (inst.operands[0].reg == REG_PC)
9265 as_tsktsk (_("use of r15 in bxj is not really useful"));
9266
9267 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
9268}
9269
c19d1205
ZW
9270/* Co-processor data operation:
9271 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9272 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9273static void
9274do_cdp (void)
9275{
9276 inst.instruction |= inst.operands[0].reg << 8;
9277 inst.instruction |= inst.operands[1].imm << 20;
9278 inst.instruction |= inst.operands[2].reg << 12;
9279 inst.instruction |= inst.operands[3].reg << 16;
9280 inst.instruction |= inst.operands[4].reg;
9281 inst.instruction |= inst.operands[5].imm << 5;
9282}
a737bd4d
NC
9283
9284static void
c19d1205 9285do_cmp (void)
a737bd4d 9286{
c19d1205
ZW
9287 inst.instruction |= inst.operands[0].reg << 16;
9288 encode_arm_shifter_operand (1);
a737bd4d
NC
9289}
9290
c19d1205
ZW
9291/* Transfer between coprocessor and ARM registers.
9292 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9293 MRC2
9294 MCR{cond}
9295 MCR2
9296
9297 No special properties. */
09d92015 9298
dcbd0d71
MGD
9299struct deprecated_coproc_regs_s
9300{
9301 unsigned cp;
9302 int opc1;
9303 unsigned crn;
9304 unsigned crm;
9305 int opc2;
9306 arm_feature_set deprecated;
9307 arm_feature_set obsoleted;
9308 const char *dep_msg;
9309 const char *obs_msg;
9310};
9311
9312#define DEPR_ACCESS_V8 \
9313 N_("This coprocessor register access is deprecated in ARMv8")
9314
9315/* Table of all deprecated coprocessor registers. */
9316static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9317{
9318 {15, 0, 7, 10, 5, /* CP15DMB. */
823d2571 9319 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9320 DEPR_ACCESS_V8, NULL},
9321 {15, 0, 7, 10, 4, /* CP15DSB. */
823d2571 9322 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9323 DEPR_ACCESS_V8, NULL},
9324 {15, 0, 7, 5, 4, /* CP15ISB. */
823d2571 9325 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9326 DEPR_ACCESS_V8, NULL},
9327 {14, 6, 1, 0, 0, /* TEEHBR. */
823d2571 9328 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9329 DEPR_ACCESS_V8, NULL},
9330 {14, 6, 0, 0, 0, /* TEECR. */
823d2571 9331 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
dcbd0d71
MGD
9332 DEPR_ACCESS_V8, NULL},
9333};
9334
9335#undef DEPR_ACCESS_V8
9336
9337static const size_t deprecated_coproc_reg_count =
9338 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9339
09d92015 9340static void
c19d1205 9341do_co_reg (void)
09d92015 9342{
fdfde340 9343 unsigned Rd;
dcbd0d71 9344 size_t i;
fdfde340
JM
9345
9346 Rd = inst.operands[2].reg;
9347 if (thumb_mode)
9348 {
9349 if (inst.instruction == 0xee000010
9350 || inst.instruction == 0xfe000010)
9351 /* MCR, MCR2 */
9352 reject_bad_reg (Rd);
5c8ed6a4 9353 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
fdfde340
JM
9354 /* MRC, MRC2 */
9355 constraint (Rd == REG_SP, BAD_SP);
9356 }
9357 else
9358 {
9359 /* MCR */
9360 if (inst.instruction == 0xe000010)
9361 constraint (Rd == REG_PC, BAD_PC);
9362 }
9363
dcbd0d71
MGD
9364 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9365 {
9366 const struct deprecated_coproc_regs_s *r =
9367 deprecated_coproc_regs + i;
9368
9369 if (inst.operands[0].reg == r->cp
9370 && inst.operands[1].imm == r->opc1
9371 && inst.operands[3].reg == r->crn
9372 && inst.operands[4].reg == r->crm
9373 && inst.operands[5].imm == r->opc2)
9374 {
b10bf8c5 9375 if (! ARM_CPU_IS_ANY (cpu_variant)
477330fc 9376 && warn_on_deprecated
dcbd0d71 9377 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
5c3696f8 9378 as_tsktsk ("%s", r->dep_msg);
dcbd0d71
MGD
9379 }
9380 }
fdfde340 9381
c19d1205
ZW
9382 inst.instruction |= inst.operands[0].reg << 8;
9383 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 9384 inst.instruction |= Rd << 12;
c19d1205
ZW
9385 inst.instruction |= inst.operands[3].reg << 16;
9386 inst.instruction |= inst.operands[4].reg;
9387 inst.instruction |= inst.operands[5].imm << 5;
9388}
09d92015 9389
c19d1205
ZW
9390/* Transfer between coprocessor register and pair of ARM registers.
9391 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9392 MCRR2
9393 MRRC{cond}
9394 MRRC2
b99bd4ef 9395
c19d1205 9396 Two XScale instructions are special cases of these:
09d92015 9397
c19d1205
ZW
9398 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9399 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 9400
5f4273c7 9401 Result unpredictable if Rd or Rn is R15. */
a737bd4d 9402
c19d1205
ZW
9403static void
9404do_co_reg2c (void)
9405{
fdfde340
JM
9406 unsigned Rd, Rn;
9407
9408 Rd = inst.operands[2].reg;
9409 Rn = inst.operands[3].reg;
9410
9411 if (thumb_mode)
9412 {
9413 reject_bad_reg (Rd);
9414 reject_bad_reg (Rn);
9415 }
9416 else
9417 {
9418 constraint (Rd == REG_PC, BAD_PC);
9419 constraint (Rn == REG_PC, BAD_PC);
9420 }
9421
873f10f0
TC
9422 /* Only check the MRRC{2} variants. */
9423 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9424 {
9425 /* If Rd == Rn, error that the operation is
9426 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9427 constraint (Rd == Rn, BAD_OVERLAP);
9428 }
9429
c19d1205
ZW
9430 inst.instruction |= inst.operands[0].reg << 8;
9431 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
9432 inst.instruction |= Rd << 12;
9433 inst.instruction |= Rn << 16;
c19d1205 9434 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
9435}
9436
c19d1205
ZW
9437static void
9438do_cpsi (void)
9439{
9440 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
9441 if (inst.operands[1].present)
9442 {
9443 inst.instruction |= CPSI_MMOD;
9444 inst.instruction |= inst.operands[1].imm;
9445 }
c19d1205 9446}
b99bd4ef 9447
62b3e311
PB
9448static void
9449do_dbg (void)
9450{
9451 inst.instruction |= inst.operands[0].imm;
9452}
9453
eea54501
MGD
9454static void
9455do_div (void)
9456{
9457 unsigned Rd, Rn, Rm;
9458
9459 Rd = inst.operands[0].reg;
9460 Rn = (inst.operands[1].present
9461 ? inst.operands[1].reg : Rd);
9462 Rm = inst.operands[2].reg;
9463
9464 constraint ((Rd == REG_PC), BAD_PC);
9465 constraint ((Rn == REG_PC), BAD_PC);
9466 constraint ((Rm == REG_PC), BAD_PC);
9467
9468 inst.instruction |= Rd << 16;
9469 inst.instruction |= Rn << 0;
9470 inst.instruction |= Rm << 8;
9471}
9472
b99bd4ef 9473static void
c19d1205 9474do_it (void)
b99bd4ef 9475{
c19d1205 9476 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
9477 process it to do the validation as if in
9478 thumb mode, just in case the code gets
9479 assembled for thumb using the unified syntax. */
9480
c19d1205 9481 inst.size = 0;
e07e6e58
NC
9482 if (unified_syntax)
9483 {
5ee91343
AV
9484 set_pred_insn_type (IT_INSN);
9485 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9486 now_pred.cc = inst.operands[0].imm;
e07e6e58 9487 }
09d92015 9488}
b99bd4ef 9489
6530b175
NC
9490/* If there is only one register in the register list,
9491 then return its register number. Otherwise return -1. */
9492static int
9493only_one_reg_in_list (int range)
9494{
9495 int i = ffs (range) - 1;
9496 return (i > 15 || range != (1 << i)) ? -1 : i;
9497}
9498
09d92015 9499static void
6530b175 9500encode_ldmstm(int from_push_pop_mnem)
ea6ef066 9501{
c19d1205
ZW
9502 int base_reg = inst.operands[0].reg;
9503 int range = inst.operands[1].imm;
6530b175 9504 int one_reg;
ea6ef066 9505
c19d1205
ZW
9506 inst.instruction |= base_reg << 16;
9507 inst.instruction |= range;
ea6ef066 9508
c19d1205
ZW
9509 if (inst.operands[1].writeback)
9510 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 9511
c19d1205 9512 if (inst.operands[0].writeback)
ea6ef066 9513 {
c19d1205
ZW
9514 inst.instruction |= WRITE_BACK;
9515 /* Check for unpredictable uses of writeback. */
9516 if (inst.instruction & LOAD_BIT)
09d92015 9517 {
c19d1205
ZW
9518 /* Not allowed in LDM type 2. */
9519 if ((inst.instruction & LDM_TYPE_2_OR_3)
9520 && ((range & (1 << REG_PC)) == 0))
9521 as_warn (_("writeback of base register is UNPREDICTABLE"));
9522 /* Only allowed if base reg not in list for other types. */
9523 else if (range & (1 << base_reg))
9524 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9525 }
9526 else /* STM. */
9527 {
9528 /* Not allowed for type 2. */
9529 if (inst.instruction & LDM_TYPE_2_OR_3)
9530 as_warn (_("writeback of base register is UNPREDICTABLE"));
9531 /* Only allowed if base reg not in list, or first in list. */
9532 else if ((range & (1 << base_reg))
9533 && (range & ((1 << base_reg) - 1)))
9534 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 9535 }
ea6ef066 9536 }
6530b175
NC
9537
9538 /* If PUSH/POP has only one register, then use the A2 encoding. */
9539 one_reg = only_one_reg_in_list (range);
9540 if (from_push_pop_mnem && one_reg >= 0)
9541 {
9542 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9543
4f588891
NC
9544 if (is_push && one_reg == 13 /* SP */)
9545 /* PR 22483: The A2 encoding cannot be used when
9546 pushing the stack pointer as this is UNPREDICTABLE. */
9547 return;
9548
6530b175
NC
9549 inst.instruction &= A_COND_MASK;
9550 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9551 inst.instruction |= one_reg << 12;
9552 }
9553}
9554
9555static void
9556do_ldmstm (void)
9557{
9558 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
9559}
9560
c19d1205
ZW
9561/* ARMv5TE load-consecutive (argument parse)
9562 Mode is like LDRH.
9563
9564 LDRccD R, mode
9565 STRccD R, mode. */
9566
a737bd4d 9567static void
c19d1205 9568do_ldrd (void)
a737bd4d 9569{
c19d1205 9570 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 9571 _("first transfer register must be even"));
c19d1205
ZW
9572 constraint (inst.operands[1].present
9573 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 9574 _("can only transfer two consecutive registers"));
c19d1205
ZW
9575 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9576 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 9577
c19d1205
ZW
9578 if (!inst.operands[1].present)
9579 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 9580
c56791bb
RE
9581 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9582 register and the first register written; we have to diagnose
9583 overlap between the base and the second register written here. */
ea6ef066 9584
c56791bb
RE
9585 if (inst.operands[2].reg == inst.operands[1].reg
9586 && (inst.operands[2].writeback || inst.operands[2].postind))
9587 as_warn (_("base register written back, and overlaps "
9588 "second transfer register"));
b05fe5cf 9589
c56791bb
RE
9590 if (!(inst.instruction & V4_STR_BIT))
9591 {
c19d1205 9592 /* For an index-register load, the index register must not overlap the
c56791bb
RE
9593 destination (even if not write-back). */
9594 if (inst.operands[2].immisreg
9595 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9596 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9597 as_warn (_("index register overlaps transfer register"));
b05fe5cf 9598 }
c19d1205
ZW
9599 inst.instruction |= inst.operands[0].reg << 12;
9600 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
9601}
9602
9603static void
c19d1205 9604do_ldrex (void)
b05fe5cf 9605{
c19d1205
ZW
9606 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9607 || inst.operands[1].postind || inst.operands[1].writeback
9608 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
9609 || inst.operands[1].negative
9610 /* This can arise if the programmer has written
9611 strex rN, rM, foo
9612 or if they have mistakenly used a register name as the last
9613 operand, eg:
9614 strex rN, rM, rX
9615 It is very difficult to distinguish between these two cases
9616 because "rX" might actually be a label. ie the register
9617 name has been occluded by a symbol of the same name. So we
9618 just generate a general 'bad addressing mode' type error
9619 message and leave it up to the programmer to discover the
9620 true cause and fix their mistake. */
9621 || (inst.operands[1].reg == REG_PC),
9622 BAD_ADDR_MODE);
b05fe5cf 9623
e2b0ab59
AV
9624 constraint (inst.relocs[0].exp.X_op != O_constant
9625 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9626 _("offset must be zero in ARM encoding"));
b05fe5cf 9627
5be8be5d
DG
9628 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9629
c19d1205
ZW
9630 inst.instruction |= inst.operands[0].reg << 12;
9631 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 9632 inst.relocs[0].type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
9633}
9634
9635static void
c19d1205 9636do_ldrexd (void)
b05fe5cf 9637{
c19d1205
ZW
9638 constraint (inst.operands[0].reg % 2 != 0,
9639 _("even register required"));
9640 constraint (inst.operands[1].present
9641 && inst.operands[1].reg != inst.operands[0].reg + 1,
9642 _("can only load two consecutive registers"));
9643 /* If op 1 were present and equal to PC, this function wouldn't
9644 have been called in the first place. */
9645 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 9646
c19d1205
ZW
9647 inst.instruction |= inst.operands[0].reg << 12;
9648 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
9649}
9650
1be5fd2e
NC
9651/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9652 which is not a multiple of four is UNPREDICTABLE. */
9653static void
9654check_ldr_r15_aligned (void)
9655{
9656 constraint (!(inst.operands[1].immisreg)
9657 && (inst.operands[0].reg == REG_PC
9658 && inst.operands[1].reg == REG_PC
e2b0ab59 9659 && (inst.relocs[0].exp.X_add_number & 0x3)),
de194d85 9660 _("ldr to register 15 must be 4-byte aligned"));
1be5fd2e
NC
9661}
9662
b05fe5cf 9663static void
c19d1205 9664do_ldst (void)
b05fe5cf 9665{
c19d1205
ZW
9666 inst.instruction |= inst.operands[0].reg << 12;
9667 if (!inst.operands[1].isreg)
8335d6aa 9668 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
b05fe5cf 9669 return;
c19d1205 9670 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 9671 check_ldr_r15_aligned ();
b05fe5cf
ZW
9672}
9673
9674static void
c19d1205 9675do_ldstt (void)
b05fe5cf 9676{
c19d1205
ZW
9677 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9678 reject [Rn,...]. */
9679 if (inst.operands[1].preind)
b05fe5cf 9680 {
e2b0ab59
AV
9681 constraint (inst.relocs[0].exp.X_op != O_constant
9682 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9683 _("this instruction requires a post-indexed address"));
b05fe5cf 9684
c19d1205
ZW
9685 inst.operands[1].preind = 0;
9686 inst.operands[1].postind = 1;
9687 inst.operands[1].writeback = 1;
b05fe5cf 9688 }
c19d1205
ZW
9689 inst.instruction |= inst.operands[0].reg << 12;
9690 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9691}
b05fe5cf 9692
c19d1205 9693/* Halfword and signed-byte load/store operations. */
b05fe5cf 9694
c19d1205
ZW
9695static void
9696do_ldstv4 (void)
9697{
ff4a8d2b 9698 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
9699 inst.instruction |= inst.operands[0].reg << 12;
9700 if (!inst.operands[1].isreg)
8335d6aa 9701 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
b05fe5cf 9702 return;
c19d1205 9703 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
9704}
9705
9706static void
c19d1205 9707do_ldsttv4 (void)
b05fe5cf 9708{
c19d1205
ZW
9709 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9710 reject [Rn,...]. */
9711 if (inst.operands[1].preind)
b05fe5cf 9712 {
e2b0ab59
AV
9713 constraint (inst.relocs[0].exp.X_op != O_constant
9714 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 9715 _("this instruction requires a post-indexed address"));
b05fe5cf 9716
c19d1205
ZW
9717 inst.operands[1].preind = 0;
9718 inst.operands[1].postind = 1;
9719 inst.operands[1].writeback = 1;
b05fe5cf 9720 }
c19d1205
ZW
9721 inst.instruction |= inst.operands[0].reg << 12;
9722 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9723}
b05fe5cf 9724
c19d1205
ZW
9725/* Co-processor register load/store.
9726 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9727static void
9728do_lstc (void)
9729{
9730 inst.instruction |= inst.operands[0].reg << 8;
9731 inst.instruction |= inst.operands[1].reg << 12;
9732 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
9733}
9734
b05fe5cf 9735static void
c19d1205 9736do_mlas (void)
b05fe5cf 9737{
8fb9d7b9 9738 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 9739 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 9740 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 9741 && !(inst.instruction & 0x00400000))
8fb9d7b9 9742 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 9743
c19d1205
ZW
9744 inst.instruction |= inst.operands[0].reg << 16;
9745 inst.instruction |= inst.operands[1].reg;
9746 inst.instruction |= inst.operands[2].reg << 8;
9747 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 9748}
b05fe5cf 9749
c19d1205
ZW
9750static void
9751do_mov (void)
9752{
e2b0ab59
AV
9753 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9754 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
a9f02af8 9755 THUMB1_RELOC_ONLY);
c19d1205
ZW
9756 inst.instruction |= inst.operands[0].reg << 12;
9757 encode_arm_shifter_operand (1);
9758}
b05fe5cf 9759
c19d1205
ZW
9760/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9761static void
9762do_mov16 (void)
9763{
b6895b4f
PB
9764 bfd_vma imm;
9765 bfd_boolean top;
9766
9767 top = (inst.instruction & 0x00400000) != 0;
e2b0ab59 9768 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
33eaf5de 9769 _(":lower16: not allowed in this instruction"));
e2b0ab59 9770 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
33eaf5de 9771 _(":upper16: not allowed in this instruction"));
c19d1205 9772 inst.instruction |= inst.operands[0].reg << 12;
e2b0ab59 9773 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 9774 {
e2b0ab59 9775 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
9776 /* The value is in two pieces: 0:11, 16:19. */
9777 inst.instruction |= (imm & 0x00000fff);
9778 inst.instruction |= (imm & 0x0000f000) << 4;
9779 }
b05fe5cf 9780}
b99bd4ef 9781
037e8744
JB
9782static int
9783do_vfp_nsyn_mrs (void)
9784{
9785 if (inst.operands[0].isvec)
9786 {
9787 if (inst.operands[1].reg != 1)
477330fc 9788 first_error (_("operand 1 must be FPSCR"));
037e8744
JB
9789 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9790 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9791 do_vfp_nsyn_opcode ("fmstat");
9792 }
9793 else if (inst.operands[1].isvec)
9794 do_vfp_nsyn_opcode ("fmrx");
9795 else
9796 return FAIL;
5f4273c7 9797
037e8744
JB
9798 return SUCCESS;
9799}
9800
9801static int
9802do_vfp_nsyn_msr (void)
9803{
9804 if (inst.operands[0].isvec)
9805 do_vfp_nsyn_opcode ("fmxr");
9806 else
9807 return FAIL;
9808
9809 return SUCCESS;
9810}
9811
f7c21dc7
NC
9812static void
9813do_vmrs (void)
9814{
9815 unsigned Rt = inst.operands[0].reg;
fa94de6b 9816
16d02dc9 9817 if (thumb_mode && Rt == REG_SP)
f7c21dc7
NC
9818 {
9819 inst.error = BAD_SP;
9820 return;
9821 }
9822
40c7d507
RR
9823 /* MVFR2 is only valid at ARMv8-A. */
9824 if (inst.operands[1].reg == 5)
9825 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9826 _(BAD_FPU));
9827
f7c21dc7 9828 /* APSR_ sets isvec. All other refs to PC are illegal. */
16d02dc9 9829 if (!inst.operands[0].isvec && Rt == REG_PC)
f7c21dc7
NC
9830 {
9831 inst.error = BAD_PC;
9832 return;
9833 }
9834
16d02dc9
JB
9835 /* If we get through parsing the register name, we just insert the number
9836 generated into the instruction without further validation. */
9837 inst.instruction |= (inst.operands[1].reg << 16);
f7c21dc7
NC
9838 inst.instruction |= (Rt << 12);
9839}
9840
9841static void
9842do_vmsr (void)
9843{
9844 unsigned Rt = inst.operands[1].reg;
fa94de6b 9845
f7c21dc7
NC
9846 if (thumb_mode)
9847 reject_bad_reg (Rt);
9848 else if (Rt == REG_PC)
9849 {
9850 inst.error = BAD_PC;
9851 return;
9852 }
9853
40c7d507
RR
9854 /* MVFR2 is only valid for ARMv8-A. */
9855 if (inst.operands[0].reg == 5)
9856 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9857 _(BAD_FPU));
9858
16d02dc9
JB
9859 /* If we get through parsing the register name, we just insert the number
9860 generated into the instruction without further validation. */
9861 inst.instruction |= (inst.operands[0].reg << 16);
f7c21dc7
NC
9862 inst.instruction |= (Rt << 12);
9863}
9864
b99bd4ef 9865static void
c19d1205 9866do_mrs (void)
b99bd4ef 9867{
90ec0d68
MGD
9868 unsigned br;
9869
037e8744
JB
9870 if (do_vfp_nsyn_mrs () == SUCCESS)
9871 return;
9872
ff4a8d2b 9873 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 9874 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
9875
9876 if (inst.operands[1].isreg)
9877 {
9878 br = inst.operands[1].reg;
806ab1c0 9879 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
90ec0d68
MGD
9880 as_bad (_("bad register for mrs"));
9881 }
9882 else
9883 {
9884 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9885 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9886 != (PSR_c|PSR_f),
d2cd1205 9887 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
9888 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9889 }
9890
9891 inst.instruction |= br;
c19d1205 9892}
b99bd4ef 9893
c19d1205
ZW
9894/* Two possible forms:
9895 "{C|S}PSR_<field>, Rm",
9896 "{C|S}PSR_f, #expression". */
b99bd4ef 9897
c19d1205
ZW
9898static void
9899do_msr (void)
9900{
037e8744
JB
9901 if (do_vfp_nsyn_msr () == SUCCESS)
9902 return;
9903
c19d1205
ZW
9904 inst.instruction |= inst.operands[0].imm;
9905 if (inst.operands[1].isreg)
9906 inst.instruction |= inst.operands[1].reg;
9907 else
b99bd4ef 9908 {
c19d1205 9909 inst.instruction |= INST_IMMEDIATE;
e2b0ab59
AV
9910 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9911 inst.relocs[0].pc_rel = 0;
b99bd4ef 9912 }
b99bd4ef
NC
9913}
9914
c19d1205
ZW
9915static void
9916do_mul (void)
a737bd4d 9917{
ff4a8d2b
NC
9918 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9919
c19d1205
ZW
9920 if (!inst.operands[2].present)
9921 inst.operands[2].reg = inst.operands[0].reg;
9922 inst.instruction |= inst.operands[0].reg << 16;
9923 inst.instruction |= inst.operands[1].reg;
9924 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 9925
8fb9d7b9
MS
9926 if (inst.operands[0].reg == inst.operands[1].reg
9927 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9928 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
9929}
9930
c19d1205
ZW
9931/* Long Multiply Parser
9932 UMULL RdLo, RdHi, Rm, Rs
9933 SMULL RdLo, RdHi, Rm, Rs
9934 UMLAL RdLo, RdHi, Rm, Rs
9935 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
9936
9937static void
c19d1205 9938do_mull (void)
b99bd4ef 9939{
c19d1205
ZW
9940 inst.instruction |= inst.operands[0].reg << 12;
9941 inst.instruction |= inst.operands[1].reg << 16;
9942 inst.instruction |= inst.operands[2].reg;
9943 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 9944
682b27ad
PB
9945 /* rdhi and rdlo must be different. */
9946 if (inst.operands[0].reg == inst.operands[1].reg)
9947 as_tsktsk (_("rdhi and rdlo must be different"));
9948
9949 /* rdhi, rdlo and rm must all be different before armv6. */
9950 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 9951 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 9952 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
9953 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9954}
b99bd4ef 9955
c19d1205
ZW
9956static void
9957do_nop (void)
9958{
e7495e45
NS
9959 if (inst.operands[0].present
9960 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
9961 {
9962 /* Architectural NOP hints are CPSR sets with no bits selected. */
9963 inst.instruction &= 0xf0000000;
e7495e45
NS
9964 inst.instruction |= 0x0320f000;
9965 if (inst.operands[0].present)
9966 inst.instruction |= inst.operands[0].imm;
c19d1205 9967 }
b99bd4ef
NC
9968}
9969
c19d1205
ZW
9970/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9971 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9972 Condition defaults to COND_ALWAYS.
9973 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
9974
9975static void
c19d1205 9976do_pkhbt (void)
b99bd4ef 9977{
c19d1205
ZW
9978 inst.instruction |= inst.operands[0].reg << 12;
9979 inst.instruction |= inst.operands[1].reg << 16;
9980 inst.instruction |= inst.operands[2].reg;
9981 if (inst.operands[3].present)
9982 encode_arm_shift (3);
9983}
b99bd4ef 9984
c19d1205 9985/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 9986
c19d1205
ZW
9987static void
9988do_pkhtb (void)
9989{
9990 if (!inst.operands[3].present)
b99bd4ef 9991 {
c19d1205
ZW
9992 /* If the shift specifier is omitted, turn the instruction
9993 into pkhbt rd, rm, rn. */
9994 inst.instruction &= 0xfff00010;
9995 inst.instruction |= inst.operands[0].reg << 12;
9996 inst.instruction |= inst.operands[1].reg;
9997 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9998 }
9999 else
10000 {
c19d1205
ZW
10001 inst.instruction |= inst.operands[0].reg << 12;
10002 inst.instruction |= inst.operands[1].reg << 16;
10003 inst.instruction |= inst.operands[2].reg;
10004 encode_arm_shift (3);
b99bd4ef
NC
10005 }
10006}
10007
c19d1205 10008/* ARMv5TE: Preload-Cache
60e5ef9f 10009 MP Extensions: Preload for write
c19d1205 10010
60e5ef9f 10011 PLD(W) <addr_mode>
c19d1205
ZW
10012
10013 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
10014
10015static void
c19d1205 10016do_pld (void)
b99bd4ef 10017{
c19d1205
ZW
10018 constraint (!inst.operands[0].isreg,
10019 _("'[' expected after PLD mnemonic"));
10020 constraint (inst.operands[0].postind,
10021 _("post-indexed expression used in preload instruction"));
10022 constraint (inst.operands[0].writeback,
10023 _("writeback used in preload instruction"));
10024 constraint (!inst.operands[0].preind,
10025 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
10026 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10027}
b99bd4ef 10028
62b3e311
PB
10029/* ARMv7: PLI <addr_mode> */
10030static void
10031do_pli (void)
10032{
10033 constraint (!inst.operands[0].isreg,
10034 _("'[' expected after PLI mnemonic"));
10035 constraint (inst.operands[0].postind,
10036 _("post-indexed expression used in preload instruction"));
10037 constraint (inst.operands[0].writeback,
10038 _("writeback used in preload instruction"));
10039 constraint (!inst.operands[0].preind,
10040 _("unindexed addressing used in preload instruction"));
10041 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10042 inst.instruction &= ~PRE_INDEX;
10043}
10044
c19d1205
ZW
10045static void
10046do_push_pop (void)
10047{
5e0d7f77
MP
10048 constraint (inst.operands[0].writeback,
10049 _("push/pop do not support {reglist}^"));
c19d1205
ZW
10050 inst.operands[1] = inst.operands[0];
10051 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10052 inst.operands[0].isreg = 1;
10053 inst.operands[0].writeback = 1;
10054 inst.operands[0].reg = REG_SP;
6530b175 10055 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 10056}
b99bd4ef 10057
c19d1205
ZW
10058/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10059 word at the specified address and the following word
10060 respectively.
10061 Unconditionally executed.
10062 Error if Rn is R15. */
b99bd4ef 10063
c19d1205
ZW
10064static void
10065do_rfe (void)
10066{
10067 inst.instruction |= inst.operands[0].reg << 16;
10068 if (inst.operands[0].writeback)
10069 inst.instruction |= WRITE_BACK;
10070}
b99bd4ef 10071
c19d1205 10072/* ARM V6 ssat (argument parse). */
b99bd4ef 10073
c19d1205
ZW
10074static void
10075do_ssat (void)
10076{
10077 inst.instruction |= inst.operands[0].reg << 12;
10078 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10079 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10080
c19d1205
ZW
10081 if (inst.operands[3].present)
10082 encode_arm_shift (3);
b99bd4ef
NC
10083}
10084
c19d1205 10085/* ARM V6 usat (argument parse). */
b99bd4ef
NC
10086
10087static void
c19d1205 10088do_usat (void)
b99bd4ef 10089{
c19d1205
ZW
10090 inst.instruction |= inst.operands[0].reg << 12;
10091 inst.instruction |= inst.operands[1].imm << 16;
10092 inst.instruction |= inst.operands[2].reg;
b99bd4ef 10093
c19d1205
ZW
10094 if (inst.operands[3].present)
10095 encode_arm_shift (3);
b99bd4ef
NC
10096}
10097
c19d1205 10098/* ARM V6 ssat16 (argument parse). */
09d92015
MM
10099
10100static void
c19d1205 10101do_ssat16 (void)
09d92015 10102{
c19d1205
ZW
10103 inst.instruction |= inst.operands[0].reg << 12;
10104 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10105 inst.instruction |= inst.operands[2].reg;
09d92015
MM
10106}
10107
c19d1205
ZW
10108static void
10109do_usat16 (void)
a737bd4d 10110{
c19d1205
ZW
10111 inst.instruction |= inst.operands[0].reg << 12;
10112 inst.instruction |= inst.operands[1].imm << 16;
10113 inst.instruction |= inst.operands[2].reg;
10114}
a737bd4d 10115
c19d1205
ZW
10116/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10117 preserving the other bits.
a737bd4d 10118
c19d1205
ZW
10119 setend <endian_specifier>, where <endian_specifier> is either
10120 BE or LE. */
a737bd4d 10121
c19d1205
ZW
10122static void
10123do_setend (void)
10124{
12e37cbc
MGD
10125 if (warn_on_deprecated
10126 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 10127 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 10128
c19d1205
ZW
10129 if (inst.operands[0].imm)
10130 inst.instruction |= 0x200;
a737bd4d
NC
10131}
10132
10133static void
c19d1205 10134do_shift (void)
a737bd4d 10135{
c19d1205
ZW
10136 unsigned int Rm = (inst.operands[1].present
10137 ? inst.operands[1].reg
10138 : inst.operands[0].reg);
a737bd4d 10139
c19d1205
ZW
10140 inst.instruction |= inst.operands[0].reg << 12;
10141 inst.instruction |= Rm;
10142 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 10143 {
c19d1205
ZW
10144 inst.instruction |= inst.operands[2].reg << 8;
10145 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
10146 /* PR 12854: Error on extraneous shifts. */
10147 constraint (inst.operands[2].shifted,
10148 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
10149 }
10150 else
e2b0ab59 10151 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
10152}
10153
09d92015 10154static void
3eb17e6b 10155do_smc (void)
09d92015 10156{
e2b0ab59
AV
10157 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10158 inst.relocs[0].pc_rel = 0;
09d92015
MM
10159}
10160
90ec0d68
MGD
10161static void
10162do_hvc (void)
10163{
e2b0ab59
AV
10164 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10165 inst.relocs[0].pc_rel = 0;
90ec0d68
MGD
10166}
10167
09d92015 10168static void
c19d1205 10169do_swi (void)
09d92015 10170{
e2b0ab59
AV
10171 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10172 inst.relocs[0].pc_rel = 0;
09d92015
MM
10173}
10174
ddfded2f
MW
10175static void
10176do_setpan (void)
10177{
10178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10179 _("selected processor does not support SETPAN instruction"));
10180
10181 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10182}
10183
10184static void
10185do_t_setpan (void)
10186{
10187 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10188 _("selected processor does not support SETPAN instruction"));
10189
10190 inst.instruction |= (inst.operands[0].imm << 3);
10191}
10192
c19d1205
ZW
10193/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10194 SMLAxy{cond} Rd,Rm,Rs,Rn
10195 SMLAWy{cond} Rd,Rm,Rs,Rn
10196 Error if any register is R15. */
e16bb312 10197
c19d1205
ZW
10198static void
10199do_smla (void)
e16bb312 10200{
c19d1205
ZW
10201 inst.instruction |= inst.operands[0].reg << 16;
10202 inst.instruction |= inst.operands[1].reg;
10203 inst.instruction |= inst.operands[2].reg << 8;
10204 inst.instruction |= inst.operands[3].reg << 12;
10205}
a737bd4d 10206
c19d1205
ZW
10207/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10208 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10209 Error if any register is R15.
10210 Warning if Rdlo == Rdhi. */
a737bd4d 10211
c19d1205
ZW
10212static void
10213do_smlal (void)
10214{
10215 inst.instruction |= inst.operands[0].reg << 12;
10216 inst.instruction |= inst.operands[1].reg << 16;
10217 inst.instruction |= inst.operands[2].reg;
10218 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 10219
c19d1205
ZW
10220 if (inst.operands[0].reg == inst.operands[1].reg)
10221 as_tsktsk (_("rdhi and rdlo must be different"));
10222}
a737bd4d 10223
c19d1205
ZW
10224/* ARM V5E (El Segundo) signed-multiply (argument parse)
10225 SMULxy{cond} Rd,Rm,Rs
10226 Error if any register is R15. */
a737bd4d 10227
c19d1205
ZW
10228static void
10229do_smul (void)
10230{
10231 inst.instruction |= inst.operands[0].reg << 16;
10232 inst.instruction |= inst.operands[1].reg;
10233 inst.instruction |= inst.operands[2].reg << 8;
10234}
a737bd4d 10235
b6702015
PB
10236/* ARM V6 srs (argument parse). The variable fields in the encoding are
10237 the same for both ARM and Thumb-2. */
a737bd4d 10238
c19d1205
ZW
10239static void
10240do_srs (void)
10241{
b6702015
PB
10242 int reg;
10243
10244 if (inst.operands[0].present)
10245 {
10246 reg = inst.operands[0].reg;
fdfde340 10247 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
10248 }
10249 else
fdfde340 10250 reg = REG_SP;
b6702015
PB
10251
10252 inst.instruction |= reg << 16;
10253 inst.instruction |= inst.operands[1].imm;
10254 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
10255 inst.instruction |= WRITE_BACK;
10256}
a737bd4d 10257
c19d1205 10258/* ARM V6 strex (argument parse). */
a737bd4d 10259
c19d1205
ZW
10260static void
10261do_strex (void)
10262{
10263 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10264 || inst.operands[2].postind || inst.operands[2].writeback
10265 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
10266 || inst.operands[2].negative
10267 /* See comment in do_ldrex(). */
10268 || (inst.operands[2].reg == REG_PC),
10269 BAD_ADDR_MODE);
a737bd4d 10270
c19d1205
ZW
10271 constraint (inst.operands[0].reg == inst.operands[1].reg
10272 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 10273
e2b0ab59
AV
10274 constraint (inst.relocs[0].exp.X_op != O_constant
10275 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10276 _("offset must be zero in ARM encoding"));
a737bd4d 10277
c19d1205
ZW
10278 inst.instruction |= inst.operands[0].reg << 12;
10279 inst.instruction |= inst.operands[1].reg;
10280 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 10281 inst.relocs[0].type = BFD_RELOC_UNUSED;
e16bb312
NC
10282}
10283
877807f8
NC
10284static void
10285do_t_strexbh (void)
10286{
10287 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10288 || inst.operands[2].postind || inst.operands[2].writeback
10289 || inst.operands[2].immisreg || inst.operands[2].shifted
10290 || inst.operands[2].negative,
10291 BAD_ADDR_MODE);
10292
10293 constraint (inst.operands[0].reg == inst.operands[1].reg
10294 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10295
10296 do_rm_rd_rn ();
10297}
10298
e16bb312 10299static void
c19d1205 10300do_strexd (void)
e16bb312 10301{
c19d1205
ZW
10302 constraint (inst.operands[1].reg % 2 != 0,
10303 _("even register required"));
10304 constraint (inst.operands[2].present
10305 && inst.operands[2].reg != inst.operands[1].reg + 1,
10306 _("can only store two consecutive registers"));
10307 /* If op 2 were present and equal to PC, this function wouldn't
10308 have been called in the first place. */
10309 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 10310
c19d1205
ZW
10311 constraint (inst.operands[0].reg == inst.operands[1].reg
10312 || inst.operands[0].reg == inst.operands[1].reg + 1
10313 || inst.operands[0].reg == inst.operands[3].reg,
10314 BAD_OVERLAP);
e16bb312 10315
c19d1205
ZW
10316 inst.instruction |= inst.operands[0].reg << 12;
10317 inst.instruction |= inst.operands[1].reg;
10318 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
10319}
10320
9eb6c0f1
MGD
10321/* ARM V8 STRL. */
10322static void
4b8c8c02 10323do_stlex (void)
9eb6c0f1
MGD
10324{
10325 constraint (inst.operands[0].reg == inst.operands[1].reg
10326 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10327
10328 do_rd_rm_rn ();
10329}
10330
10331static void
4b8c8c02 10332do_t_stlex (void)
9eb6c0f1
MGD
10333{
10334 constraint (inst.operands[0].reg == inst.operands[1].reg
10335 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10336
10337 do_rm_rd_rn ();
10338}
10339
c19d1205
ZW
10340/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10341 extends it to 32-bits, and adds the result to a value in another
10342 register. You can specify a rotation by 0, 8, 16, or 24 bits
10343 before extracting the 16-bit value.
10344 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10345 Condition defaults to COND_ALWAYS.
10346 Error if any register uses R15. */
10347
e16bb312 10348static void
c19d1205 10349do_sxtah (void)
e16bb312 10350{
c19d1205
ZW
10351 inst.instruction |= inst.operands[0].reg << 12;
10352 inst.instruction |= inst.operands[1].reg << 16;
10353 inst.instruction |= inst.operands[2].reg;
10354 inst.instruction |= inst.operands[3].imm << 10;
10355}
e16bb312 10356
c19d1205 10357/* ARM V6 SXTH.
e16bb312 10358
c19d1205
ZW
10359 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10360 Condition defaults to COND_ALWAYS.
10361 Error if any register uses R15. */
e16bb312
NC
10362
10363static void
c19d1205 10364do_sxth (void)
e16bb312 10365{
c19d1205
ZW
10366 inst.instruction |= inst.operands[0].reg << 12;
10367 inst.instruction |= inst.operands[1].reg;
10368 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 10369}
c19d1205
ZW
10370\f
10371/* VFP instructions. In a logical order: SP variant first, monad
10372 before dyad, arithmetic then move then load/store. */
e16bb312
NC
10373
10374static void
c19d1205 10375do_vfp_sp_monadic (void)
e16bb312 10376{
57785aa2
AV
10377 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10378 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10379 _(BAD_FPU));
10380
5287ad62
JB
10381 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10382 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10383}
10384
10385static void
c19d1205 10386do_vfp_sp_dyadic (void)
e16bb312 10387{
5287ad62
JB
10388 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10389 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10390 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10391}
10392
10393static void
c19d1205 10394do_vfp_sp_compare_z (void)
e16bb312 10395{
5287ad62 10396 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
10397}
10398
10399static void
c19d1205 10400do_vfp_dp_sp_cvt (void)
e16bb312 10401{
5287ad62
JB
10402 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10403 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
10404}
10405
10406static void
c19d1205 10407do_vfp_sp_dp_cvt (void)
e16bb312 10408{
5287ad62
JB
10409 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10410 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
10411}
10412
10413static void
c19d1205 10414do_vfp_reg_from_sp (void)
e16bb312 10415{
57785aa2
AV
10416 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10417 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10418 _(BAD_FPU));
10419
c19d1205 10420 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 10421 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
10422}
10423
10424static void
c19d1205 10425do_vfp_reg2_from_sp2 (void)
e16bb312 10426{
c19d1205
ZW
10427 constraint (inst.operands[2].imm != 2,
10428 _("only two consecutive VFP SP registers allowed here"));
10429 inst.instruction |= inst.operands[0].reg << 12;
10430 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 10431 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
10432}
10433
10434static void
c19d1205 10435do_vfp_sp_from_reg (void)
e16bb312 10436{
57785aa2
AV
10437 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10438 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10439 _(BAD_FPU));
10440
5287ad62 10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 10442 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
10443}
10444
10445static void
c19d1205 10446do_vfp_sp2_from_reg2 (void)
e16bb312 10447{
c19d1205
ZW
10448 constraint (inst.operands[0].imm != 2,
10449 _("only two consecutive VFP SP registers allowed here"));
5287ad62 10450 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
10451 inst.instruction |= inst.operands[1].reg << 12;
10452 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
10453}
10454
10455static void
c19d1205 10456do_vfp_sp_ldst (void)
e16bb312 10457{
5287ad62 10458 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 10459 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10460}
10461
10462static void
c19d1205 10463do_vfp_dp_ldst (void)
e16bb312 10464{
5287ad62 10465 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 10466 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
10467}
10468
c19d1205 10469
e16bb312 10470static void
c19d1205 10471vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10472{
c19d1205
ZW
10473 if (inst.operands[0].writeback)
10474 inst.instruction |= WRITE_BACK;
10475 else
10476 constraint (ldstm_type != VFP_LDSTMIA,
10477 _("this addressing mode requires base-register writeback"));
10478 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10479 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 10480 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
10481}
10482
10483static void
c19d1205 10484vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 10485{
c19d1205 10486 int count;
e16bb312 10487
c19d1205
ZW
10488 if (inst.operands[0].writeback)
10489 inst.instruction |= WRITE_BACK;
10490 else
10491 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10492 _("this addressing mode requires base-register writeback"));
e16bb312 10493
c19d1205 10494 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 10495 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 10496
c19d1205
ZW
10497 count = inst.operands[1].imm << 1;
10498 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10499 count += 1;
e16bb312 10500
c19d1205 10501 inst.instruction |= count;
e16bb312
NC
10502}
10503
10504static void
c19d1205 10505do_vfp_sp_ldstmia (void)
e16bb312 10506{
c19d1205 10507 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10508}
10509
10510static void
c19d1205 10511do_vfp_sp_ldstmdb (void)
e16bb312 10512{
c19d1205 10513 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10514}
10515
10516static void
c19d1205 10517do_vfp_dp_ldstmia (void)
e16bb312 10518{
c19d1205 10519 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
10520}
10521
10522static void
c19d1205 10523do_vfp_dp_ldstmdb (void)
e16bb312 10524{
c19d1205 10525 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
10526}
10527
10528static void
c19d1205 10529do_vfp_xp_ldstmia (void)
e16bb312 10530{
c19d1205
ZW
10531 vfp_dp_ldstm (VFP_LDSTMIAX);
10532}
e16bb312 10533
c19d1205
ZW
10534static void
10535do_vfp_xp_ldstmdb (void)
10536{
10537 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 10538}
5287ad62
JB
10539
10540static void
10541do_vfp_dp_rd_rm (void)
10542{
57785aa2
AV
10543 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10544 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10545 _(BAD_FPU));
10546
5287ad62
JB
10547 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10548 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10549}
10550
10551static void
10552do_vfp_dp_rn_rd (void)
10553{
10554 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10555 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10556}
10557
10558static void
10559do_vfp_dp_rd_rn (void)
10560{
10561 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10562 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10563}
10564
10565static void
10566do_vfp_dp_rd_rn_rm (void)
10567{
57785aa2
AV
10568 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10569 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10570 _(BAD_FPU));
10571
5287ad62
JB
10572 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10573 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10574 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10575}
10576
10577static void
10578do_vfp_dp_rd (void)
10579{
10580 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10581}
10582
10583static void
10584do_vfp_dp_rm_rd_rn (void)
10585{
57785aa2
AV
10586 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10587 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10588 _(BAD_FPU));
10589
5287ad62
JB
10590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10591 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10592 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10593}
10594
10595/* VFPv3 instructions. */
10596static void
10597do_vfp_sp_const (void)
10598{
10599 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
10600 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10601 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10602}
10603
10604static void
10605do_vfp_dp_const (void)
10606{
10607 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
10608 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10609 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
10610}
10611
10612static void
10613vfp_conv (int srcsize)
10614{
5f1af56b
MGD
10615 int immbits = srcsize - inst.operands[1].imm;
10616
fa94de6b
RM
10617 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10618 {
5f1af56b 10619 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
477330fc 10620 i.e. immbits must be in range 0 - 16. */
5f1af56b
MGD
10621 inst.error = _("immediate value out of range, expected range [0, 16]");
10622 return;
10623 }
fa94de6b 10624 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
10625 {
10626 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
477330fc 10627 i.e. immbits must be in range 0 - 31. */
5f1af56b
MGD
10628 inst.error = _("immediate value out of range, expected range [1, 32]");
10629 return;
10630 }
10631
5287ad62
JB
10632 inst.instruction |= (immbits & 1) << 5;
10633 inst.instruction |= (immbits >> 1);
10634}
10635
10636static void
10637do_vfp_sp_conv_16 (void)
10638{
10639 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10640 vfp_conv (16);
10641}
10642
10643static void
10644do_vfp_dp_conv_16 (void)
10645{
10646 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10647 vfp_conv (16);
10648}
10649
10650static void
10651do_vfp_sp_conv_32 (void)
10652{
10653 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10654 vfp_conv (32);
10655}
10656
10657static void
10658do_vfp_dp_conv_32 (void)
10659{
10660 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10661 vfp_conv (32);
10662}
c19d1205
ZW
10663\f
10664/* FPA instructions. Also in a logical order. */
e16bb312 10665
c19d1205
ZW
10666static void
10667do_fpa_cmp (void)
10668{
10669 inst.instruction |= inst.operands[0].reg << 16;
10670 inst.instruction |= inst.operands[1].reg;
10671}
b99bd4ef
NC
10672
10673static void
c19d1205 10674do_fpa_ldmstm (void)
b99bd4ef 10675{
c19d1205
ZW
10676 inst.instruction |= inst.operands[0].reg << 12;
10677 switch (inst.operands[1].imm)
10678 {
10679 case 1: inst.instruction |= CP_T_X; break;
10680 case 2: inst.instruction |= CP_T_Y; break;
10681 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10682 case 4: break;
10683 default: abort ();
10684 }
b99bd4ef 10685
c19d1205
ZW
10686 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10687 {
10688 /* The instruction specified "ea" or "fd", so we can only accept
10689 [Rn]{!}. The instruction does not really support stacking or
10690 unstacking, so we have to emulate these by setting appropriate
10691 bits and offsets. */
e2b0ab59
AV
10692 constraint (inst.relocs[0].exp.X_op != O_constant
10693 || inst.relocs[0].exp.X_add_number != 0,
c19d1205 10694 _("this instruction does not support indexing"));
b99bd4ef 10695
c19d1205 10696 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
e2b0ab59 10697 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 10698
c19d1205 10699 if (!(inst.instruction & INDEX_UP))
e2b0ab59 10700 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
b99bd4ef 10701
c19d1205
ZW
10702 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10703 {
10704 inst.operands[2].preind = 0;
10705 inst.operands[2].postind = 1;
10706 }
10707 }
b99bd4ef 10708
c19d1205 10709 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 10710}
c19d1205
ZW
10711\f
10712/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 10713
c19d1205
ZW
10714static void
10715do_iwmmxt_tandorc (void)
10716{
10717 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10718}
b99bd4ef 10719
c19d1205
ZW
10720static void
10721do_iwmmxt_textrc (void)
10722{
10723 inst.instruction |= inst.operands[0].reg << 12;
10724 inst.instruction |= inst.operands[1].imm;
10725}
b99bd4ef
NC
10726
10727static void
c19d1205 10728do_iwmmxt_textrm (void)
b99bd4ef 10729{
c19d1205
ZW
10730 inst.instruction |= inst.operands[0].reg << 12;
10731 inst.instruction |= inst.operands[1].reg << 16;
10732 inst.instruction |= inst.operands[2].imm;
10733}
b99bd4ef 10734
c19d1205
ZW
10735static void
10736do_iwmmxt_tinsr (void)
10737{
10738 inst.instruction |= inst.operands[0].reg << 16;
10739 inst.instruction |= inst.operands[1].reg << 12;
10740 inst.instruction |= inst.operands[2].imm;
10741}
b99bd4ef 10742
c19d1205
ZW
10743static void
10744do_iwmmxt_tmia (void)
10745{
10746 inst.instruction |= inst.operands[0].reg << 5;
10747 inst.instruction |= inst.operands[1].reg;
10748 inst.instruction |= inst.operands[2].reg << 12;
10749}
b99bd4ef 10750
c19d1205
ZW
10751static void
10752do_iwmmxt_waligni (void)
10753{
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 inst.instruction |= inst.operands[1].reg << 16;
10756 inst.instruction |= inst.operands[2].reg;
10757 inst.instruction |= inst.operands[3].imm << 20;
10758}
b99bd4ef 10759
2d447fca
JM
10760static void
10761do_iwmmxt_wmerge (void)
10762{
10763 inst.instruction |= inst.operands[0].reg << 12;
10764 inst.instruction |= inst.operands[1].reg << 16;
10765 inst.instruction |= inst.operands[2].reg;
10766 inst.instruction |= inst.operands[3].imm << 21;
10767}
10768
c19d1205
ZW
10769static void
10770do_iwmmxt_wmov (void)
10771{
10772 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10773 inst.instruction |= inst.operands[0].reg << 12;
10774 inst.instruction |= inst.operands[1].reg << 16;
10775 inst.instruction |= inst.operands[1].reg;
10776}
b99bd4ef 10777
c19d1205
ZW
10778static void
10779do_iwmmxt_wldstbh (void)
10780{
8f06b2d8 10781 int reloc;
c19d1205 10782 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
10783 if (thumb_mode)
10784 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10785 else
10786 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10787 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
10788}
10789
c19d1205
ZW
10790static void
10791do_iwmmxt_wldstw (void)
10792{
10793 /* RIWR_RIWC clears .isreg for a control register. */
10794 if (!inst.operands[0].isreg)
10795 {
10796 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10797 inst.instruction |= 0xf0000000;
10798 }
b99bd4ef 10799
c19d1205
ZW
10800 inst.instruction |= inst.operands[0].reg << 12;
10801 encode_arm_cp_address (1, TRUE, TRUE, 0);
10802}
b99bd4ef
NC
10803
10804static void
c19d1205 10805do_iwmmxt_wldstd (void)
b99bd4ef 10806{
c19d1205 10807 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
10808 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10809 && inst.operands[1].immisreg)
10810 {
10811 inst.instruction &= ~0x1a000ff;
eff0bc54 10812 inst.instruction |= (0xfU << 28);
2d447fca
JM
10813 if (inst.operands[1].preind)
10814 inst.instruction |= PRE_INDEX;
10815 if (!inst.operands[1].negative)
10816 inst.instruction |= INDEX_UP;
10817 if (inst.operands[1].writeback)
10818 inst.instruction |= WRITE_BACK;
10819 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 10820 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
2d447fca
JM
10821 inst.instruction |= inst.operands[1].imm;
10822 }
10823 else
10824 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 10825}
b99bd4ef 10826
c19d1205
ZW
10827static void
10828do_iwmmxt_wshufh (void)
10829{
10830 inst.instruction |= inst.operands[0].reg << 12;
10831 inst.instruction |= inst.operands[1].reg << 16;
10832 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10833 inst.instruction |= (inst.operands[2].imm & 0x0f);
10834}
b99bd4ef 10835
c19d1205
ZW
10836static void
10837do_iwmmxt_wzero (void)
10838{
10839 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10840 inst.instruction |= inst.operands[0].reg;
10841 inst.instruction |= inst.operands[0].reg << 12;
10842 inst.instruction |= inst.operands[0].reg << 16;
10843}
2d447fca
JM
10844
10845static void
10846do_iwmmxt_wrwrwr_or_imm5 (void)
10847{
10848 if (inst.operands[2].isreg)
10849 do_rd_rn_rm ();
10850 else {
10851 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10852 _("immediate operand requires iWMMXt2"));
10853 do_rd_rn ();
10854 if (inst.operands[2].imm == 0)
10855 {
10856 switch ((inst.instruction >> 20) & 0xf)
10857 {
10858 case 4:
10859 case 5:
10860 case 6:
5f4273c7 10861 case 7:
2d447fca
JM
10862 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10863 inst.operands[2].imm = 16;
10864 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10865 break;
10866 case 8:
10867 case 9:
10868 case 10:
10869 case 11:
10870 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10871 inst.operands[2].imm = 32;
10872 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10873 break;
10874 case 12:
10875 case 13:
10876 case 14:
10877 case 15:
10878 {
10879 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10880 unsigned long wrn;
10881 wrn = (inst.instruction >> 16) & 0xf;
10882 inst.instruction &= 0xff0fff0f;
10883 inst.instruction |= wrn;
10884 /* Bail out here; the instruction is now assembled. */
10885 return;
10886 }
10887 }
10888 }
10889 /* Map 32 -> 0, etc. */
10890 inst.operands[2].imm &= 0x1f;
eff0bc54 10891 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
2d447fca
JM
10892 }
10893}
c19d1205
ZW
10894\f
10895/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10896 operations first, then control, shift, and load/store. */
b99bd4ef 10897
c19d1205 10898/* Insns like "foo X,Y,Z". */
b99bd4ef 10899
c19d1205
ZW
10900static void
10901do_mav_triple (void)
10902{
10903 inst.instruction |= inst.operands[0].reg << 16;
10904 inst.instruction |= inst.operands[1].reg;
10905 inst.instruction |= inst.operands[2].reg << 12;
10906}
b99bd4ef 10907
c19d1205
ZW
10908/* Insns like "foo W,X,Y,Z".
10909 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 10910
c19d1205
ZW
10911static void
10912do_mav_quad (void)
10913{
10914 inst.instruction |= inst.operands[0].reg << 5;
10915 inst.instruction |= inst.operands[1].reg << 12;
10916 inst.instruction |= inst.operands[2].reg << 16;
10917 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
10918}
10919
c19d1205
ZW
10920/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10921static void
10922do_mav_dspsc (void)
a737bd4d 10923{
c19d1205
ZW
10924 inst.instruction |= inst.operands[1].reg << 12;
10925}
a737bd4d 10926
c19d1205
ZW
10927/* Maverick shift immediate instructions.
10928 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10929 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 10930
c19d1205
ZW
10931static void
10932do_mav_shift (void)
10933{
10934 int imm = inst.operands[2].imm;
a737bd4d 10935
c19d1205
ZW
10936 inst.instruction |= inst.operands[0].reg << 12;
10937 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 10938
c19d1205
ZW
10939 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10940 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10941 Bit 4 should be 0. */
10942 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 10943
c19d1205
ZW
10944 inst.instruction |= imm;
10945}
10946\f
10947/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 10948
c19d1205
ZW
10949/* Xscale multiply-accumulate (argument parse)
10950 MIAcc acc0,Rm,Rs
10951 MIAPHcc acc0,Rm,Rs
10952 MIAxycc acc0,Rm,Rs. */
a737bd4d 10953
c19d1205
ZW
10954static void
10955do_xsc_mia (void)
10956{
10957 inst.instruction |= inst.operands[1].reg;
10958 inst.instruction |= inst.operands[2].reg << 12;
10959}
a737bd4d 10960
c19d1205 10961/* Xscale move-accumulator-register (argument parse)
a737bd4d 10962
c19d1205 10963 MARcc acc0,RdLo,RdHi. */
b99bd4ef 10964
c19d1205
ZW
10965static void
10966do_xsc_mar (void)
10967{
10968 inst.instruction |= inst.operands[1].reg << 12;
10969 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10970}
10971
c19d1205 10972/* Xscale move-register-accumulator (argument parse)
b99bd4ef 10973
c19d1205 10974 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
10975
10976static void
c19d1205 10977do_xsc_mra (void)
b99bd4ef 10978{
c19d1205
ZW
10979 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10980 inst.instruction |= inst.operands[0].reg << 12;
10981 inst.instruction |= inst.operands[1].reg << 16;
10982}
10983\f
10984/* Encoding functions relevant only to Thumb. */
b99bd4ef 10985
c19d1205
ZW
10986/* inst.operands[i] is a shifted-register operand; encode
10987 it into inst.instruction in the format used by Thumb32. */
10988
10989static void
10990encode_thumb32_shifted_operand (int i)
10991{
e2b0ab59 10992 unsigned int value = inst.relocs[0].exp.X_add_number;
c19d1205 10993 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 10994
9c3c69f2
PB
10995 constraint (inst.operands[i].immisreg,
10996 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
10997 inst.instruction |= inst.operands[i].reg;
10998 if (shift == SHIFT_RRX)
10999 inst.instruction |= SHIFT_ROR << 4;
11000 else
b99bd4ef 11001 {
e2b0ab59 11002 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
11003 _("expression too complex"));
11004
11005 constraint (value > 32
11006 || (value == 32 && (shift == SHIFT_LSL
11007 || shift == SHIFT_ROR)),
11008 _("shift expression is too large"));
11009
11010 if (value == 0)
11011 shift = SHIFT_LSL;
11012 else if (value == 32)
11013 value = 0;
11014
11015 inst.instruction |= shift << 4;
11016 inst.instruction |= (value & 0x1c) << 10;
11017 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 11018 }
c19d1205 11019}
b99bd4ef 11020
b99bd4ef 11021
c19d1205
ZW
11022/* inst.operands[i] was set up by parse_address. Encode it into a
11023 Thumb32 format load or store instruction. Reject forms that cannot
11024 be used with such instructions. If is_t is true, reject forms that
11025 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
11026 that cannot be used with a D instruction. If it is a store insn,
11027 reject PC in Rn. */
b99bd4ef 11028
c19d1205
ZW
11029static void
11030encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11031{
5be8be5d 11032 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
11033
11034 constraint (!inst.operands[i].isreg,
53365c0d 11035 _("Instruction does not support =N addresses"));
b99bd4ef 11036
c19d1205
ZW
11037 inst.instruction |= inst.operands[i].reg << 16;
11038 if (inst.operands[i].immisreg)
b99bd4ef 11039 {
5be8be5d 11040 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
11041 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11042 constraint (inst.operands[i].negative,
11043 _("Thumb does not support negative register indexing"));
11044 constraint (inst.operands[i].postind,
11045 _("Thumb does not support register post-indexing"));
11046 constraint (inst.operands[i].writeback,
11047 _("Thumb does not support register indexing with writeback"));
11048 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11049 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 11050
f40d1643 11051 inst.instruction |= inst.operands[i].imm;
c19d1205 11052 if (inst.operands[i].shifted)
b99bd4ef 11053 {
e2b0ab59 11054 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 11055 _("expression too complex"));
e2b0ab59
AV
11056 constraint (inst.relocs[0].exp.X_add_number < 0
11057 || inst.relocs[0].exp.X_add_number > 3,
c19d1205 11058 _("shift out of range"));
e2b0ab59 11059 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
c19d1205 11060 }
e2b0ab59 11061 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
11062 }
11063 else if (inst.operands[i].preind)
11064 {
5be8be5d 11065 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 11066 constraint (is_t && inst.operands[i].writeback,
c19d1205 11067 _("cannot use writeback with this instruction"));
4755303e
WN
11068 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11069 BAD_PC_ADDRESSING);
c19d1205
ZW
11070
11071 if (is_d)
11072 {
11073 inst.instruction |= 0x01000000;
11074 if (inst.operands[i].writeback)
11075 inst.instruction |= 0x00200000;
b99bd4ef 11076 }
c19d1205 11077 else
b99bd4ef 11078 {
c19d1205
ZW
11079 inst.instruction |= 0x00000c00;
11080 if (inst.operands[i].writeback)
11081 inst.instruction |= 0x00000100;
b99bd4ef 11082 }
e2b0ab59 11083 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 11084 }
c19d1205 11085 else if (inst.operands[i].postind)
b99bd4ef 11086 {
9c2799c2 11087 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
11088 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11089 constraint (is_t, _("cannot use post-indexing with this instruction"));
11090
11091 if (is_d)
11092 inst.instruction |= 0x00200000;
11093 else
11094 inst.instruction |= 0x00000900;
e2b0ab59 11095 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
c19d1205
ZW
11096 }
11097 else /* unindexed - only for coprocessor */
11098 inst.error = _("instruction does not accept unindexed addressing");
11099}
11100
11101/* Table of Thumb instructions which exist in both 16- and 32-bit
11102 encodings (the latter only in post-V6T2 cores). The index is the
11103 value used in the insns table below. When there is more than one
11104 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
11105 holds variant (1).
11106 Also contains several pseudo-instructions used during relaxation. */
c19d1205 11107#define T16_32_TAB \
21d799b5
NC
11108 X(_adc, 4140, eb400000), \
11109 X(_adcs, 4140, eb500000), \
11110 X(_add, 1c00, eb000000), \
11111 X(_adds, 1c00, eb100000), \
11112 X(_addi, 0000, f1000000), \
11113 X(_addis, 0000, f1100000), \
11114 X(_add_pc,000f, f20f0000), \
11115 X(_add_sp,000d, f10d0000), \
11116 X(_adr, 000f, f20f0000), \
11117 X(_and, 4000, ea000000), \
11118 X(_ands, 4000, ea100000), \
11119 X(_asr, 1000, fa40f000), \
11120 X(_asrs, 1000, fa50f000), \
11121 X(_b, e000, f000b000), \
11122 X(_bcond, d000, f0008000), \
4389b29a 11123 X(_bf, 0000, f040e001), \
f6b2b12d 11124 X(_bfcsel,0000, f000e001), \
f1c7f421 11125 X(_bfx, 0000, f060e001), \
65d1bc05 11126 X(_bfl, 0000, f000c001), \
f1c7f421 11127 X(_bflx, 0000, f070e001), \
21d799b5
NC
11128 X(_bic, 4380, ea200000), \
11129 X(_bics, 4380, ea300000), \
11130 X(_cmn, 42c0, eb100f00), \
11131 X(_cmp, 2800, ebb00f00), \
11132 X(_cpsie, b660, f3af8400), \
11133 X(_cpsid, b670, f3af8600), \
11134 X(_cpy, 4600, ea4f0000), \
11135 X(_dec_sp,80dd, f1ad0d00), \
60f993ce 11136 X(_dls, 0000, f040e001), \
21d799b5
NC
11137 X(_eor, 4040, ea800000), \
11138 X(_eors, 4040, ea900000), \
11139 X(_inc_sp,00dd, f10d0d00), \
11140 X(_ldmia, c800, e8900000), \
11141 X(_ldr, 6800, f8500000), \
11142 X(_ldrb, 7800, f8100000), \
11143 X(_ldrh, 8800, f8300000), \
11144 X(_ldrsb, 5600, f9100000), \
11145 X(_ldrsh, 5e00, f9300000), \
11146 X(_ldr_pc,4800, f85f0000), \
11147 X(_ldr_pc2,4800, f85f0000), \
11148 X(_ldr_sp,9800, f85d0000), \
60f993ce 11149 X(_le, 0000, f00fc001), \
21d799b5
NC
11150 X(_lsl, 0000, fa00f000), \
11151 X(_lsls, 0000, fa10f000), \
11152 X(_lsr, 0800, fa20f000), \
11153 X(_lsrs, 0800, fa30f000), \
11154 X(_mov, 2000, ea4f0000), \
11155 X(_movs, 2000, ea5f0000), \
11156 X(_mul, 4340, fb00f000), \
11157 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11158 X(_mvn, 43c0, ea6f0000), \
11159 X(_mvns, 43c0, ea7f0000), \
11160 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11161 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11162 X(_orr, 4300, ea400000), \
11163 X(_orrs, 4300, ea500000), \
11164 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11165 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11166 X(_rev, ba00, fa90f080), \
11167 X(_rev16, ba40, fa90f090), \
11168 X(_revsh, bac0, fa90f0b0), \
11169 X(_ror, 41c0, fa60f000), \
11170 X(_rors, 41c0, fa70f000), \
11171 X(_sbc, 4180, eb600000), \
11172 X(_sbcs, 4180, eb700000), \
11173 X(_stmia, c000, e8800000), \
11174 X(_str, 6000, f8400000), \
11175 X(_strb, 7000, f8000000), \
11176 X(_strh, 8000, f8200000), \
11177 X(_str_sp,9000, f84d0000), \
11178 X(_sub, 1e00, eba00000), \
11179 X(_subs, 1e00, ebb00000), \
11180 X(_subi, 8000, f1a00000), \
11181 X(_subis, 8000, f1b00000), \
11182 X(_sxtb, b240, fa4ff080), \
11183 X(_sxth, b200, fa0ff080), \
11184 X(_tst, 4200, ea100f00), \
11185 X(_uxtb, b2c0, fa5ff080), \
11186 X(_uxth, b280, fa1ff080), \
11187 X(_nop, bf00, f3af8000), \
11188 X(_yield, bf10, f3af8001), \
11189 X(_wfe, bf20, f3af8002), \
11190 X(_wfi, bf30, f3af8003), \
60f993ce 11191 X(_wls, 0000, f040c001), \
53c4b28b 11192 X(_sev, bf40, f3af8004), \
74db7efb
NC
11193 X(_sevl, bf50, f3af8005), \
11194 X(_udf, de00, f7f0a000)
c19d1205
ZW
11195
11196/* To catch errors in encoding functions, the codes are all offset by
11197 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11198 as 16-bit instructions. */
21d799b5 11199#define X(a,b,c) T_MNEM##a
c19d1205
ZW
11200enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11201#undef X
11202
11203#define X(a,b,c) 0x##b
11204static const unsigned short thumb_op16[] = { T16_32_TAB };
11205#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11206#undef X
11207
11208#define X(a,b,c) 0x##c
11209static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
11210#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11211#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
11212#undef X
11213#undef T16_32_TAB
11214
11215/* Thumb instruction encoders, in alphabetical order. */
11216
92e90b6e 11217/* ADDW or SUBW. */
c921be7d 11218
92e90b6e
PB
11219static void
11220do_t_add_sub_w (void)
11221{
11222 int Rd, Rn;
11223
11224 Rd = inst.operands[0].reg;
11225 Rn = inst.operands[1].reg;
11226
539d4391
NC
11227 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11228 is the SP-{plus,minus}-immediate form of the instruction. */
11229 if (Rn == REG_SP)
11230 constraint (Rd == REG_PC, BAD_PC);
11231 else
11232 reject_bad_reg (Rd);
fdfde340 11233
92e90b6e 11234 inst.instruction |= (Rn << 16) | (Rd << 8);
e2b0ab59 11235 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
92e90b6e
PB
11236}
11237
c19d1205 11238/* Parse an add or subtract instruction. We get here with inst.instruction
33eaf5de 11239 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
c19d1205
ZW
11240
11241static void
11242do_t_add_sub (void)
11243{
11244 int Rd, Rs, Rn;
11245
11246 Rd = inst.operands[0].reg;
11247 Rs = (inst.operands[1].present
11248 ? inst.operands[1].reg /* Rd, Rs, foo */
11249 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11250
e07e6e58 11251 if (Rd == REG_PC)
5ee91343 11252 set_pred_insn_type_last ();
e07e6e58 11253
c19d1205
ZW
11254 if (unified_syntax)
11255 {
0110f2b8
PB
11256 bfd_boolean flags;
11257 bfd_boolean narrow;
11258 int opcode;
11259
11260 flags = (inst.instruction == T_MNEM_adds
11261 || inst.instruction == T_MNEM_subs);
11262 if (flags)
5ee91343 11263 narrow = !in_pred_block ();
0110f2b8 11264 else
5ee91343 11265 narrow = in_pred_block ();
c19d1205 11266 if (!inst.operands[2].isreg)
b99bd4ef 11267 {
16805f35
PB
11268 int add;
11269
5c8ed6a4
JW
11270 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11271 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340 11272
16805f35
PB
11273 add = (inst.instruction == T_MNEM_add
11274 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
11275 opcode = 0;
11276 if (inst.size_req != 4)
11277 {
0110f2b8 11278 /* Attempt to use a narrow opcode, with relaxation if
477330fc 11279 appropriate. */
0110f2b8
PB
11280 if (Rd == REG_SP && Rs == REG_SP && !flags)
11281 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11282 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11283 opcode = T_MNEM_add_sp;
11284 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11285 opcode = T_MNEM_add_pc;
11286 else if (Rd <= 7 && Rs <= 7 && narrow)
11287 {
11288 if (flags)
11289 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11290 else
11291 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11292 }
11293 if (opcode)
11294 {
11295 inst.instruction = THUMB_OP16(opcode);
11296 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59
AV
11297 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11298 || (inst.relocs[0].type
11299 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
a9f02af8
MG
11300 {
11301 if (inst.size_req == 2)
e2b0ab59 11302 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
a9f02af8
MG
11303 else
11304 inst.relax = opcode;
11305 }
0110f2b8
PB
11306 }
11307 else
11308 constraint (inst.size_req == 2, BAD_HIREG);
11309 }
11310 if (inst.size_req == 4
11311 || (inst.size_req != 2 && !opcode))
11312 {
e2b0ab59
AV
11313 constraint ((inst.relocs[0].type
11314 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11315 && (inst.relocs[0].type
11316 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8 11317 THUMB1_RELOC_ONLY);
efd81785
PB
11318 if (Rd == REG_PC)
11319 {
fdfde340 11320 constraint (add, BAD_PC);
efd81785
PB
11321 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11322 _("only SUBS PC, LR, #const allowed"));
e2b0ab59 11323 constraint (inst.relocs[0].exp.X_op != O_constant,
efd81785 11324 _("expression too complex"));
e2b0ab59
AV
11325 constraint (inst.relocs[0].exp.X_add_number < 0
11326 || inst.relocs[0].exp.X_add_number > 0xff,
efd81785
PB
11327 _("immediate value out of range"));
11328 inst.instruction = T2_SUBS_PC_LR
e2b0ab59
AV
11329 | inst.relocs[0].exp.X_add_number;
11330 inst.relocs[0].type = BFD_RELOC_UNUSED;
efd81785
PB
11331 return;
11332 }
11333 else if (Rs == REG_PC)
16805f35
PB
11334 {
11335 /* Always use addw/subw. */
11336 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
e2b0ab59 11337 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
16805f35
PB
11338 }
11339 else
11340 {
11341 inst.instruction = THUMB_OP32 (inst.instruction);
11342 inst.instruction = (inst.instruction & 0xe1ffffff)
11343 | 0x10000000;
11344 if (flags)
e2b0ab59 11345 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
16805f35 11346 else
e2b0ab59 11347 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
16805f35 11348 }
dc4503c6
PB
11349 inst.instruction |= Rd << 8;
11350 inst.instruction |= Rs << 16;
0110f2b8 11351 }
b99bd4ef 11352 }
c19d1205
ZW
11353 else
11354 {
e2b0ab59 11355 unsigned int value = inst.relocs[0].exp.X_add_number;
5f4cb198
NC
11356 unsigned int shift = inst.operands[2].shift_kind;
11357
c19d1205
ZW
11358 Rn = inst.operands[2].reg;
11359 /* See if we can do this with a 16-bit instruction. */
11360 if (!inst.operands[2].shifted && inst.size_req != 4)
11361 {
e27ec89e
PB
11362 if (Rd > 7 || Rs > 7 || Rn > 7)
11363 narrow = FALSE;
11364
11365 if (narrow)
c19d1205 11366 {
e27ec89e
PB
11367 inst.instruction = ((inst.instruction == T_MNEM_adds
11368 || inst.instruction == T_MNEM_add)
c19d1205
ZW
11369 ? T_OPCODE_ADD_R3
11370 : T_OPCODE_SUB_R3);
11371 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11372 return;
11373 }
b99bd4ef 11374
7e806470 11375 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 11376 {
7e806470
PB
11377 /* Thumb-1 cores (except v6-M) require at least one high
11378 register in a narrow non flag setting add. */
11379 if (Rd > 7 || Rn > 7
11380 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11381 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 11382 {
7e806470
PB
11383 if (Rd == Rn)
11384 {
11385 Rn = Rs;
11386 Rs = Rd;
11387 }
c19d1205
ZW
11388 inst.instruction = T_OPCODE_ADD_HI;
11389 inst.instruction |= (Rd & 8) << 4;
11390 inst.instruction |= (Rd & 7);
11391 inst.instruction |= Rn << 3;
11392 return;
11393 }
c19d1205
ZW
11394 }
11395 }
c921be7d 11396
fdfde340 11397 constraint (Rd == REG_PC, BAD_PC);
5c8ed6a4
JW
11398 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11399 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
fdfde340
JM
11400 constraint (Rs == REG_PC, BAD_PC);
11401 reject_bad_reg (Rn);
11402
c19d1205
ZW
11403 /* If we get here, it can't be done in 16 bits. */
11404 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11405 _("shift must be constant"));
11406 inst.instruction = THUMB_OP32 (inst.instruction);
11407 inst.instruction |= Rd << 8;
11408 inst.instruction |= Rs << 16;
5f4cb198
NC
11409 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11410 _("shift value over 3 not allowed in thumb mode"));
11411 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11412 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
11413 encode_thumb32_shifted_operand (2);
11414 }
11415 }
11416 else
11417 {
11418 constraint (inst.instruction == T_MNEM_adds
11419 || inst.instruction == T_MNEM_subs,
11420 BAD_THUMB32);
b99bd4ef 11421
c19d1205 11422 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 11423 {
c19d1205
ZW
11424 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11425 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11426 BAD_HIREG);
11427
11428 inst.instruction = (inst.instruction == T_MNEM_add
11429 ? 0x0000 : 0x8000);
11430 inst.instruction |= (Rd << 4) | Rs;
e2b0ab59 11431 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
11432 return;
11433 }
11434
c19d1205
ZW
11435 Rn = inst.operands[2].reg;
11436 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 11437
c19d1205
ZW
11438 /* We now have Rd, Rs, and Rn set to registers. */
11439 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 11440 {
c19d1205
ZW
11441 /* Can't do this for SUB. */
11442 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11443 inst.instruction = T_OPCODE_ADD_HI;
11444 inst.instruction |= (Rd & 8) << 4;
11445 inst.instruction |= (Rd & 7);
11446 if (Rs == Rd)
11447 inst.instruction |= Rn << 3;
11448 else if (Rn == Rd)
11449 inst.instruction |= Rs << 3;
11450 else
11451 constraint (1, _("dest must overlap one source register"));
11452 }
11453 else
11454 {
11455 inst.instruction = (inst.instruction == T_MNEM_add
11456 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11457 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 11458 }
b99bd4ef 11459 }
b99bd4ef
NC
11460}
11461
c19d1205
ZW
11462static void
11463do_t_adr (void)
11464{
fdfde340
JM
11465 unsigned Rd;
11466
11467 Rd = inst.operands[0].reg;
11468 reject_bad_reg (Rd);
11469
11470 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
11471 {
11472 /* Defer to section relaxation. */
11473 inst.relax = inst.instruction;
11474 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11475 inst.instruction |= Rd << 4;
0110f2b8
PB
11476 }
11477 else if (unified_syntax && inst.size_req != 2)
e9f89963 11478 {
0110f2b8 11479 /* Generate a 32-bit opcode. */
e9f89963 11480 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11481 inst.instruction |= Rd << 8;
e2b0ab59
AV
11482 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11483 inst.relocs[0].pc_rel = 1;
e9f89963
PB
11484 }
11485 else
11486 {
0110f2b8 11487 /* Generate a 16-bit opcode. */
e9f89963 11488 inst.instruction = THUMB_OP16 (inst.instruction);
e2b0ab59
AV
11489 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11490 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11491 inst.relocs[0].pc_rel = 1;
fdfde340 11492 inst.instruction |= Rd << 4;
e9f89963 11493 }
52a86f84 11494
e2b0ab59
AV
11495 if (inst.relocs[0].exp.X_op == O_symbol
11496 && inst.relocs[0].exp.X_add_symbol != NULL
11497 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11498 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11499 inst.relocs[0].exp.X_add_number += 1;
c19d1205 11500}
b99bd4ef 11501
c19d1205
ZW
11502/* Arithmetic instructions for which there is just one 16-bit
11503 instruction encoding, and it allows only two low registers.
11504 For maximal compatibility with ARM syntax, we allow three register
11505 operands even when Thumb-32 instructions are not available, as long
11506 as the first two are identical. For instance, both "sbc r0,r1" and
11507 "sbc r0,r0,r1" are allowed. */
b99bd4ef 11508static void
c19d1205 11509do_t_arit3 (void)
b99bd4ef 11510{
c19d1205 11511 int Rd, Rs, Rn;
b99bd4ef 11512
c19d1205
ZW
11513 Rd = inst.operands[0].reg;
11514 Rs = (inst.operands[1].present
11515 ? inst.operands[1].reg /* Rd, Rs, foo */
11516 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11517 Rn = inst.operands[2].reg;
b99bd4ef 11518
fdfde340
JM
11519 reject_bad_reg (Rd);
11520 reject_bad_reg (Rs);
11521 if (inst.operands[2].isreg)
11522 reject_bad_reg (Rn);
11523
c19d1205 11524 if (unified_syntax)
b99bd4ef 11525 {
c19d1205
ZW
11526 if (!inst.operands[2].isreg)
11527 {
11528 /* For an immediate, we always generate a 32-bit opcode;
11529 section relaxation will shrink it later if possible. */
11530 inst.instruction = THUMB_OP32 (inst.instruction);
11531 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11532 inst.instruction |= Rd << 8;
11533 inst.instruction |= Rs << 16;
e2b0ab59 11534 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
c19d1205
ZW
11535 }
11536 else
11537 {
e27ec89e
PB
11538 bfd_boolean narrow;
11539
c19d1205 11540 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11541 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11542 narrow = !in_pred_block ();
e27ec89e 11543 else
5ee91343 11544 narrow = in_pred_block ();
e27ec89e
PB
11545
11546 if (Rd > 7 || Rn > 7 || Rs > 7)
11547 narrow = FALSE;
11548 if (inst.operands[2].shifted)
11549 narrow = FALSE;
11550 if (inst.size_req == 4)
11551 narrow = FALSE;
11552
11553 if (narrow
c19d1205
ZW
11554 && Rd == Rs)
11555 {
11556 inst.instruction = THUMB_OP16 (inst.instruction);
11557 inst.instruction |= Rd;
11558 inst.instruction |= Rn << 3;
11559 return;
11560 }
b99bd4ef 11561
c19d1205
ZW
11562 /* If we get here, it can't be done in 16 bits. */
11563 constraint (inst.operands[2].shifted
11564 && inst.operands[2].immisreg,
11565 _("shift must be constant"));
11566 inst.instruction = THUMB_OP32 (inst.instruction);
11567 inst.instruction |= Rd << 8;
11568 inst.instruction |= Rs << 16;
11569 encode_thumb32_shifted_operand (2);
11570 }
a737bd4d 11571 }
c19d1205 11572 else
b99bd4ef 11573 {
c19d1205
ZW
11574 /* On its face this is a lie - the instruction does set the
11575 flags. However, the only supported mnemonic in this mode
11576 says it doesn't. */
11577 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11578
c19d1205
ZW
11579 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11580 _("unshifted register required"));
11581 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11582 constraint (Rd != Rs,
11583 _("dest and source1 must be the same register"));
a737bd4d 11584
c19d1205
ZW
11585 inst.instruction = THUMB_OP16 (inst.instruction);
11586 inst.instruction |= Rd;
11587 inst.instruction |= Rn << 3;
b99bd4ef 11588 }
a737bd4d 11589}
b99bd4ef 11590
c19d1205
ZW
11591/* Similarly, but for instructions where the arithmetic operation is
11592 commutative, so we can allow either of them to be different from
11593 the destination operand in a 16-bit instruction. For instance, all
11594 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11595 accepted. */
11596static void
11597do_t_arit3c (void)
a737bd4d 11598{
c19d1205 11599 int Rd, Rs, Rn;
b99bd4ef 11600
c19d1205
ZW
11601 Rd = inst.operands[0].reg;
11602 Rs = (inst.operands[1].present
11603 ? inst.operands[1].reg /* Rd, Rs, foo */
11604 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11605 Rn = inst.operands[2].reg;
c921be7d 11606
fdfde340
JM
11607 reject_bad_reg (Rd);
11608 reject_bad_reg (Rs);
11609 if (inst.operands[2].isreg)
11610 reject_bad_reg (Rn);
a737bd4d 11611
c19d1205 11612 if (unified_syntax)
a737bd4d 11613 {
c19d1205 11614 if (!inst.operands[2].isreg)
b99bd4ef 11615 {
c19d1205
ZW
11616 /* For an immediate, we always generate a 32-bit opcode;
11617 section relaxation will shrink it later if possible. */
11618 inst.instruction = THUMB_OP32 (inst.instruction);
11619 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11620 inst.instruction |= Rd << 8;
11621 inst.instruction |= Rs << 16;
e2b0ab59 11622 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11623 }
c19d1205 11624 else
a737bd4d 11625 {
e27ec89e
PB
11626 bfd_boolean narrow;
11627
c19d1205 11628 /* See if we can do this with a 16-bit instruction. */
e27ec89e 11629 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 11630 narrow = !in_pred_block ();
e27ec89e 11631 else
5ee91343 11632 narrow = in_pred_block ();
e27ec89e
PB
11633
11634 if (Rd > 7 || Rn > 7 || Rs > 7)
11635 narrow = FALSE;
11636 if (inst.operands[2].shifted)
11637 narrow = FALSE;
11638 if (inst.size_req == 4)
11639 narrow = FALSE;
11640
11641 if (narrow)
a737bd4d 11642 {
c19d1205 11643 if (Rd == Rs)
a737bd4d 11644 {
c19d1205
ZW
11645 inst.instruction = THUMB_OP16 (inst.instruction);
11646 inst.instruction |= Rd;
11647 inst.instruction |= Rn << 3;
11648 return;
a737bd4d 11649 }
c19d1205 11650 if (Rd == Rn)
a737bd4d 11651 {
c19d1205
ZW
11652 inst.instruction = THUMB_OP16 (inst.instruction);
11653 inst.instruction |= Rd;
11654 inst.instruction |= Rs << 3;
11655 return;
a737bd4d
NC
11656 }
11657 }
c19d1205
ZW
11658
11659 /* If we get here, it can't be done in 16 bits. */
11660 constraint (inst.operands[2].shifted
11661 && inst.operands[2].immisreg,
11662 _("shift must be constant"));
11663 inst.instruction = THUMB_OP32 (inst.instruction);
11664 inst.instruction |= Rd << 8;
11665 inst.instruction |= Rs << 16;
11666 encode_thumb32_shifted_operand (2);
a737bd4d 11667 }
b99bd4ef 11668 }
c19d1205
ZW
11669 else
11670 {
11671 /* On its face this is a lie - the instruction does set the
11672 flags. However, the only supported mnemonic in this mode
11673 says it doesn't. */
11674 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 11675
c19d1205
ZW
11676 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11677 _("unshifted register required"));
11678 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11679
11680 inst.instruction = THUMB_OP16 (inst.instruction);
11681 inst.instruction |= Rd;
11682
11683 if (Rd == Rs)
11684 inst.instruction |= Rn << 3;
11685 else if (Rd == Rn)
11686 inst.instruction |= Rs << 3;
11687 else
11688 constraint (1, _("dest must overlap one source register"));
11689 }
a737bd4d
NC
11690}
11691
c19d1205
ZW
11692static void
11693do_t_bfc (void)
a737bd4d 11694{
fdfde340 11695 unsigned Rd;
c19d1205
ZW
11696 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11697 constraint (msb > 32, _("bit-field extends past end of register"));
11698 /* The instruction encoding stores the LSB and MSB,
11699 not the LSB and width. */
fdfde340
JM
11700 Rd = inst.operands[0].reg;
11701 reject_bad_reg (Rd);
11702 inst.instruction |= Rd << 8;
c19d1205
ZW
11703 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11704 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11705 inst.instruction |= msb - 1;
b99bd4ef
NC
11706}
11707
c19d1205
ZW
11708static void
11709do_t_bfi (void)
b99bd4ef 11710{
fdfde340 11711 int Rd, Rn;
c19d1205 11712 unsigned int msb;
b99bd4ef 11713
fdfde340
JM
11714 Rd = inst.operands[0].reg;
11715 reject_bad_reg (Rd);
11716
c19d1205
ZW
11717 /* #0 in second position is alternative syntax for bfc, which is
11718 the same instruction but with REG_PC in the Rm field. */
11719 if (!inst.operands[1].isreg)
fdfde340
JM
11720 Rn = REG_PC;
11721 else
11722 {
11723 Rn = inst.operands[1].reg;
11724 reject_bad_reg (Rn);
11725 }
b99bd4ef 11726
c19d1205
ZW
11727 msb = inst.operands[2].imm + inst.operands[3].imm;
11728 constraint (msb > 32, _("bit-field extends past end of register"));
11729 /* The instruction encoding stores the LSB and MSB,
11730 not the LSB and width. */
fdfde340
JM
11731 inst.instruction |= Rd << 8;
11732 inst.instruction |= Rn << 16;
c19d1205
ZW
11733 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11734 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11735 inst.instruction |= msb - 1;
b99bd4ef
NC
11736}
11737
c19d1205
ZW
11738static void
11739do_t_bfx (void)
b99bd4ef 11740{
fdfde340
JM
11741 unsigned Rd, Rn;
11742
11743 Rd = inst.operands[0].reg;
11744 Rn = inst.operands[1].reg;
11745
11746 reject_bad_reg (Rd);
11747 reject_bad_reg (Rn);
11748
c19d1205
ZW
11749 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11750 _("bit-field extends past end of register"));
fdfde340
JM
11751 inst.instruction |= Rd << 8;
11752 inst.instruction |= Rn << 16;
c19d1205
ZW
11753 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11754 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11755 inst.instruction |= inst.operands[3].imm - 1;
11756}
b99bd4ef 11757
c19d1205
ZW
11758/* ARM V5 Thumb BLX (argument parse)
11759 BLX <target_addr> which is BLX(1)
11760 BLX <Rm> which is BLX(2)
11761 Unfortunately, there are two different opcodes for this mnemonic.
11762 So, the insns[].value is not used, and the code here zaps values
11763 into inst.instruction.
b99bd4ef 11764
c19d1205
ZW
11765 ??? How to take advantage of the additional two bits of displacement
11766 available in Thumb32 mode? Need new relocation? */
b99bd4ef 11767
c19d1205
ZW
11768static void
11769do_t_blx (void)
11770{
5ee91343 11771 set_pred_insn_type_last ();
e07e6e58 11772
c19d1205 11773 if (inst.operands[0].isreg)
fdfde340
JM
11774 {
11775 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11776 /* We have a register, so this is BLX(2). */
11777 inst.instruction |= inst.operands[0].reg << 3;
11778 }
b99bd4ef
NC
11779 else
11780 {
c19d1205 11781 /* No register. This must be BLX(1). */
2fc8bdac 11782 inst.instruction = 0xf000e800;
0855e32b 11783 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
11784 }
11785}
11786
c19d1205
ZW
11787static void
11788do_t_branch (void)
b99bd4ef 11789{
0110f2b8 11790 int opcode;
dfa9f0d5 11791 int cond;
2fe88214 11792 bfd_reloc_code_real_type reloc;
dfa9f0d5 11793
e07e6e58 11794 cond = inst.cond;
5ee91343 11795 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
e07e6e58 11796
5ee91343 11797 if (in_pred_block ())
dfa9f0d5
PB
11798 {
11799 /* Conditional branches inside IT blocks are encoded as unconditional
477330fc 11800 branches. */
dfa9f0d5 11801 cond = COND_ALWAYS;
dfa9f0d5
PB
11802 }
11803 else
11804 cond = inst.cond;
11805
11806 if (cond != COND_ALWAYS)
0110f2b8
PB
11807 opcode = T_MNEM_bcond;
11808 else
11809 opcode = inst.instruction;
11810
12d6b0b7
RS
11811 if (unified_syntax
11812 && (inst.size_req == 4
10960bfb
PB
11813 || (inst.size_req != 2
11814 && (inst.operands[0].hasreloc
e2b0ab59 11815 || inst.relocs[0].exp.X_op == O_constant))))
c19d1205 11816 {
0110f2b8 11817 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 11818 if (cond == COND_ALWAYS)
9ae92b05 11819 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
11820 else
11821 {
ff8646ee
TP
11822 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11823 _("selected architecture does not support "
11824 "wide conditional branch instruction"));
11825
9c2799c2 11826 gas_assert (cond != 0xF);
dfa9f0d5 11827 inst.instruction |= cond << 22;
9ae92b05 11828 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
11829 }
11830 }
b99bd4ef
NC
11831 else
11832 {
0110f2b8 11833 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 11834 if (cond == COND_ALWAYS)
9ae92b05 11835 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 11836 else
b99bd4ef 11837 {
dfa9f0d5 11838 inst.instruction |= cond << 8;
9ae92b05 11839 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 11840 }
0110f2b8
PB
11841 /* Allow section relaxation. */
11842 if (unified_syntax && inst.size_req != 2)
11843 inst.relax = opcode;
b99bd4ef 11844 }
e2b0ab59
AV
11845 inst.relocs[0].type = reloc;
11846 inst.relocs[0].pc_rel = 1;
b99bd4ef
NC
11847}
11848
8884b720 11849/* Actually do the work for Thumb state bkpt and hlt. The only difference
bacebabc 11850 between the two is the maximum immediate allowed - which is passed in
8884b720 11851 RANGE. */
b99bd4ef 11852static void
8884b720 11853do_t_bkpt_hlt1 (int range)
b99bd4ef 11854{
dfa9f0d5
PB
11855 constraint (inst.cond != COND_ALWAYS,
11856 _("instruction is always unconditional"));
c19d1205 11857 if (inst.operands[0].present)
b99bd4ef 11858 {
8884b720 11859 constraint (inst.operands[0].imm > range,
c19d1205
ZW
11860 _("immediate value out of range"));
11861 inst.instruction |= inst.operands[0].imm;
b99bd4ef 11862 }
8884b720 11863
5ee91343 11864 set_pred_insn_type (NEUTRAL_IT_INSN);
8884b720
MGD
11865}
11866
11867static void
11868do_t_hlt (void)
11869{
11870 do_t_bkpt_hlt1 (63);
11871}
11872
11873static void
11874do_t_bkpt (void)
11875{
11876 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
11877}
11878
11879static void
c19d1205 11880do_t_branch23 (void)
b99bd4ef 11881{
5ee91343 11882 set_pred_insn_type_last ();
0855e32b 11883 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 11884
0855e32b
NS
11885 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11886 this file. We used to simply ignore the PLT reloc type here --
11887 the branch encoding is now needed to deal with TLSCALL relocs.
11888 So if we see a PLT reloc now, put it back to how it used to be to
11889 keep the preexisting behaviour. */
e2b0ab59
AV
11890 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11891 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 11892
4343666d 11893#if defined(OBJ_COFF)
c19d1205
ZW
11894 /* If the destination of the branch is a defined symbol which does not have
11895 the THUMB_FUNC attribute, then we must be calling a function which has
11896 the (interfacearm) attribute. We look for the Thumb entry point to that
11897 function and change the branch to refer to that function instead. */
e2b0ab59
AV
11898 if ( inst.relocs[0].exp.X_op == O_symbol
11899 && inst.relocs[0].exp.X_add_symbol != NULL
11900 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11901 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11902 inst.relocs[0].exp.X_add_symbol
11903 = find_real_start (inst.relocs[0].exp.X_add_symbol);
4343666d 11904#endif
90e4755a
RE
11905}
11906
11907static void
c19d1205 11908do_t_bx (void)
90e4755a 11909{
5ee91343 11910 set_pred_insn_type_last ();
c19d1205
ZW
11911 inst.instruction |= inst.operands[0].reg << 3;
11912 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11913 should cause the alignment to be checked once it is known. This is
11914 because BX PC only works if the instruction is word aligned. */
11915}
90e4755a 11916
c19d1205
ZW
11917static void
11918do_t_bxj (void)
11919{
fdfde340 11920 int Rm;
90e4755a 11921
5ee91343 11922 set_pred_insn_type_last ();
fdfde340
JM
11923 Rm = inst.operands[0].reg;
11924 reject_bad_reg (Rm);
11925 inst.instruction |= Rm << 16;
90e4755a
RE
11926}
11927
11928static void
c19d1205 11929do_t_clz (void)
90e4755a 11930{
fdfde340
JM
11931 unsigned Rd;
11932 unsigned Rm;
11933
11934 Rd = inst.operands[0].reg;
11935 Rm = inst.operands[1].reg;
11936
11937 reject_bad_reg (Rd);
11938 reject_bad_reg (Rm);
11939
11940 inst.instruction |= Rd << 8;
11941 inst.instruction |= Rm << 16;
11942 inst.instruction |= Rm;
c19d1205 11943}
90e4755a 11944
91d8b670
JG
11945static void
11946do_t_csdb (void)
11947{
5ee91343 11948 set_pred_insn_type (OUTSIDE_PRED_INSN);
91d8b670
JG
11949}
11950
dfa9f0d5
PB
11951static void
11952do_t_cps (void)
11953{
5ee91343 11954 set_pred_insn_type (OUTSIDE_PRED_INSN);
dfa9f0d5
PB
11955 inst.instruction |= inst.operands[0].imm;
11956}
11957
c19d1205
ZW
11958static void
11959do_t_cpsi (void)
11960{
5ee91343 11961 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205 11962 if (unified_syntax
62b3e311
PB
11963 && (inst.operands[1].present || inst.size_req == 4)
11964 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 11965 {
c19d1205
ZW
11966 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11967 inst.instruction = 0xf3af8000;
11968 inst.instruction |= imod << 9;
11969 inst.instruction |= inst.operands[0].imm << 5;
11970 if (inst.operands[1].present)
11971 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 11972 }
c19d1205 11973 else
90e4755a 11974 {
62b3e311
PB
11975 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11976 && (inst.operands[0].imm & 4),
11977 _("selected processor does not support 'A' form "
11978 "of this instruction"));
11979 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
11980 _("Thumb does not support the 2-argument "
11981 "form of this instruction"));
11982 inst.instruction |= inst.operands[0].imm;
90e4755a 11983 }
90e4755a
RE
11984}
11985
c19d1205
ZW
11986/* THUMB CPY instruction (argument parse). */
11987
90e4755a 11988static void
c19d1205 11989do_t_cpy (void)
90e4755a 11990{
c19d1205 11991 if (inst.size_req == 4)
90e4755a 11992 {
c19d1205
ZW
11993 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11994 inst.instruction |= inst.operands[0].reg << 8;
11995 inst.instruction |= inst.operands[1].reg;
90e4755a 11996 }
c19d1205 11997 else
90e4755a 11998 {
c19d1205
ZW
11999 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
12000 inst.instruction |= (inst.operands[0].reg & 0x7);
12001 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 12002 }
90e4755a
RE
12003}
12004
90e4755a 12005static void
25fe350b 12006do_t_cbz (void)
90e4755a 12007{
5ee91343 12008 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
12009 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12010 inst.instruction |= inst.operands[0].reg;
e2b0ab59
AV
12011 inst.relocs[0].pc_rel = 1;
12012 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
c19d1205 12013}
90e4755a 12014
62b3e311
PB
12015static void
12016do_t_dbg (void)
12017{
12018 inst.instruction |= inst.operands[0].imm;
12019}
12020
12021static void
12022do_t_div (void)
12023{
fdfde340
JM
12024 unsigned Rd, Rn, Rm;
12025
12026 Rd = inst.operands[0].reg;
12027 Rn = (inst.operands[1].present
12028 ? inst.operands[1].reg : Rd);
12029 Rm = inst.operands[2].reg;
12030
12031 reject_bad_reg (Rd);
12032 reject_bad_reg (Rn);
12033 reject_bad_reg (Rm);
12034
12035 inst.instruction |= Rd << 8;
12036 inst.instruction |= Rn << 16;
12037 inst.instruction |= Rm;
62b3e311
PB
12038}
12039
c19d1205
ZW
12040static void
12041do_t_hint (void)
12042{
12043 if (unified_syntax && inst.size_req == 4)
12044 inst.instruction = THUMB_OP32 (inst.instruction);
12045 else
12046 inst.instruction = THUMB_OP16 (inst.instruction);
12047}
90e4755a 12048
c19d1205
ZW
12049static void
12050do_t_it (void)
12051{
12052 unsigned int cond = inst.operands[0].imm;
e27ec89e 12053
5ee91343
AV
12054 set_pred_insn_type (IT_INSN);
12055 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12056 now_pred.cc = cond;
12057 now_pred.warn_deprecated = FALSE;
12058 now_pred.type = SCALAR_PRED;
e27ec89e
PB
12059
12060 /* If the condition is a negative condition, invert the mask. */
c19d1205 12061 if ((cond & 0x1) == 0x0)
90e4755a 12062 {
c19d1205 12063 unsigned int mask = inst.instruction & 0x000f;
90e4755a 12064
c19d1205 12065 if ((mask & 0x7) == 0)
5a01bb1d
MGD
12066 {
12067 /* No conversion needed. */
5ee91343 12068 now_pred.block_length = 1;
5a01bb1d 12069 }
c19d1205 12070 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
12071 {
12072 mask ^= 0x8;
5ee91343 12073 now_pred.block_length = 2;
5a01bb1d 12074 }
e27ec89e 12075 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
12076 {
12077 mask ^= 0xC;
5ee91343 12078 now_pred.block_length = 3;
5a01bb1d 12079 }
c19d1205 12080 else
5a01bb1d
MGD
12081 {
12082 mask ^= 0xE;
5ee91343 12083 now_pred.block_length = 4;
5a01bb1d 12084 }
90e4755a 12085
e27ec89e
PB
12086 inst.instruction &= 0xfff0;
12087 inst.instruction |= mask;
c19d1205 12088 }
90e4755a 12089
c19d1205
ZW
12090 inst.instruction |= cond << 4;
12091}
90e4755a 12092
3c707909
PB
12093/* Helper function used for both push/pop and ldm/stm. */
12094static void
4b5a202f
AV
12095encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12096 bfd_boolean writeback)
3c707909 12097{
4b5a202f 12098 bfd_boolean load, store;
3c707909 12099
4b5a202f
AV
12100 gas_assert (base != -1 || !do_io);
12101 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12102 store = do_io && !load;
3c707909
PB
12103
12104 if (mask & (1 << 13))
12105 inst.error = _("SP not allowed in register list");
1e5b0379 12106
4b5a202f 12107 if (do_io && (mask & (1 << base)) != 0
1e5b0379
NC
12108 && writeback)
12109 inst.error = _("having the base register in the register list when "
12110 "using write back is UNPREDICTABLE");
12111
3c707909
PB
12112 if (load)
12113 {
e07e6e58 12114 if (mask & (1 << 15))
477330fc
RM
12115 {
12116 if (mask & (1 << 14))
12117 inst.error = _("LR and PC should not both be in register list");
12118 else
5ee91343 12119 set_pred_insn_type_last ();
477330fc 12120 }
3c707909 12121 }
4b5a202f 12122 else if (store)
3c707909
PB
12123 {
12124 if (mask & (1 << 15))
12125 inst.error = _("PC not allowed in register list");
3c707909
PB
12126 }
12127
4b5a202f 12128 if (do_io && ((mask & (mask - 1)) == 0))
3c707909
PB
12129 {
12130 /* Single register transfers implemented as str/ldr. */
12131 if (writeback)
12132 {
12133 if (inst.instruction & (1 << 23))
12134 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12135 else
12136 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12137 }
12138 else
12139 {
12140 if (inst.instruction & (1 << 23))
12141 inst.instruction = 0x00800000; /* ia -> [base] */
12142 else
12143 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12144 }
12145
12146 inst.instruction |= 0xf8400000;
12147 if (load)
12148 inst.instruction |= 0x00100000;
12149
5f4273c7 12150 mask = ffs (mask) - 1;
3c707909
PB
12151 mask <<= 12;
12152 }
12153 else if (writeback)
12154 inst.instruction |= WRITE_BACK;
12155
12156 inst.instruction |= mask;
4b5a202f
AV
12157 if (do_io)
12158 inst.instruction |= base << 16;
3c707909
PB
12159}
12160
c19d1205
ZW
12161static void
12162do_t_ldmstm (void)
12163{
12164 /* This really doesn't seem worth it. */
e2b0ab59 12165 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205
ZW
12166 _("expression too complex"));
12167 constraint (inst.operands[1].writeback,
12168 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 12169
c19d1205
ZW
12170 if (unified_syntax)
12171 {
3c707909
PB
12172 bfd_boolean narrow;
12173 unsigned mask;
12174
12175 narrow = FALSE;
c19d1205
ZW
12176 /* See if we can use a 16-bit instruction. */
12177 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12178 && inst.size_req != 4
3c707909 12179 && !(inst.operands[1].imm & ~0xff))
90e4755a 12180 {
3c707909 12181 mask = 1 << inst.operands[0].reg;
90e4755a 12182
eab4f823 12183 if (inst.operands[0].reg <= 7)
90e4755a 12184 {
3c707909 12185 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
12186 ? inst.operands[0].writeback
12187 : (inst.operands[0].writeback
12188 == !(inst.operands[1].imm & mask)))
477330fc 12189 {
eab4f823
MGD
12190 if (inst.instruction == T_MNEM_stmia
12191 && (inst.operands[1].imm & mask)
12192 && (inst.operands[1].imm & (mask - 1)))
12193 as_warn (_("value stored for r%d is UNKNOWN"),
12194 inst.operands[0].reg);
3c707909 12195
eab4f823
MGD
12196 inst.instruction = THUMB_OP16 (inst.instruction);
12197 inst.instruction |= inst.operands[0].reg << 8;
12198 inst.instruction |= inst.operands[1].imm;
12199 narrow = TRUE;
12200 }
12201 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12202 {
12203 /* This means 1 register in reg list one of 3 situations:
12204 1. Instruction is stmia, but without writeback.
12205 2. lmdia without writeback, but with Rn not in
477330fc 12206 reglist.
eab4f823
MGD
12207 3. ldmia with writeback, but with Rn in reglist.
12208 Case 3 is UNPREDICTABLE behaviour, so we handle
12209 case 1 and 2 which can be converted into a 16-bit
12210 str or ldr. The SP cases are handled below. */
12211 unsigned long opcode;
12212 /* First, record an error for Case 3. */
12213 if (inst.operands[1].imm & mask
12214 && inst.operands[0].writeback)
fa94de6b 12215 inst.error =
eab4f823
MGD
12216 _("having the base register in the register list when "
12217 "using write back is UNPREDICTABLE");
fa94de6b
RM
12218
12219 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
12220 : T_MNEM_ldr);
12221 inst.instruction = THUMB_OP16 (opcode);
12222 inst.instruction |= inst.operands[0].reg << 3;
12223 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12224 narrow = TRUE;
12225 }
90e4755a 12226 }
eab4f823 12227 else if (inst.operands[0] .reg == REG_SP)
90e4755a 12228 {
eab4f823
MGD
12229 if (inst.operands[0].writeback)
12230 {
fa94de6b 12231 inst.instruction =
eab4f823 12232 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12233 ? T_MNEM_push : T_MNEM_pop);
eab4f823 12234 inst.instruction |= inst.operands[1].imm;
477330fc 12235 narrow = TRUE;
eab4f823
MGD
12236 }
12237 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12238 {
fa94de6b 12239 inst.instruction =
eab4f823 12240 THUMB_OP16 (inst.instruction == T_MNEM_stmia
477330fc 12241 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
eab4f823 12242 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
477330fc 12243 narrow = TRUE;
eab4f823 12244 }
90e4755a 12245 }
3c707909
PB
12246 }
12247
12248 if (!narrow)
12249 {
c19d1205
ZW
12250 if (inst.instruction < 0xffff)
12251 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 12252
4b5a202f
AV
12253 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12254 inst.operands[1].imm,
12255 inst.operands[0].writeback);
90e4755a
RE
12256 }
12257 }
c19d1205 12258 else
90e4755a 12259 {
c19d1205
ZW
12260 constraint (inst.operands[0].reg > 7
12261 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
12262 constraint (inst.instruction != T_MNEM_ldmia
12263 && inst.instruction != T_MNEM_stmia,
12264 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 12265 if (inst.instruction == T_MNEM_stmia)
f03698e6 12266 {
c19d1205
ZW
12267 if (!inst.operands[0].writeback)
12268 as_warn (_("this instruction will write back the base register"));
12269 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12270 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 12271 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 12272 inst.operands[0].reg);
f03698e6 12273 }
c19d1205 12274 else
90e4755a 12275 {
c19d1205
ZW
12276 if (!inst.operands[0].writeback
12277 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12278 as_warn (_("this instruction will write back the base register"));
12279 else if (inst.operands[0].writeback
12280 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12281 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
12282 }
12283
c19d1205
ZW
12284 inst.instruction = THUMB_OP16 (inst.instruction);
12285 inst.instruction |= inst.operands[0].reg << 8;
12286 inst.instruction |= inst.operands[1].imm;
12287 }
12288}
e28cd48c 12289
c19d1205
ZW
12290static void
12291do_t_ldrex (void)
12292{
12293 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12294 || inst.operands[1].postind || inst.operands[1].writeback
12295 || inst.operands[1].immisreg || inst.operands[1].shifted
12296 || inst.operands[1].negative,
01cfc07f 12297 BAD_ADDR_MODE);
e28cd48c 12298
5be8be5d
DG
12299 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12300
c19d1205
ZW
12301 inst.instruction |= inst.operands[0].reg << 12;
12302 inst.instruction |= inst.operands[1].reg << 16;
e2b0ab59 12303 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
c19d1205 12304}
e28cd48c 12305
c19d1205
ZW
12306static void
12307do_t_ldrexd (void)
12308{
12309 if (!inst.operands[1].present)
1cac9012 12310 {
c19d1205
ZW
12311 constraint (inst.operands[0].reg == REG_LR,
12312 _("r14 not allowed as first register "
12313 "when second register is omitted"));
12314 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 12315 }
c19d1205
ZW
12316 constraint (inst.operands[0].reg == inst.operands[1].reg,
12317 BAD_OVERLAP);
b99bd4ef 12318
c19d1205
ZW
12319 inst.instruction |= inst.operands[0].reg << 12;
12320 inst.instruction |= inst.operands[1].reg << 8;
12321 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
12322}
12323
12324static void
c19d1205 12325do_t_ldst (void)
b99bd4ef 12326{
0110f2b8
PB
12327 unsigned long opcode;
12328 int Rn;
12329
e07e6e58
NC
12330 if (inst.operands[0].isreg
12331 && !inst.operands[0].preind
12332 && inst.operands[0].reg == REG_PC)
5ee91343 12333 set_pred_insn_type_last ();
e07e6e58 12334
0110f2b8 12335 opcode = inst.instruction;
c19d1205 12336 if (unified_syntax)
b99bd4ef 12337 {
53365c0d
PB
12338 if (!inst.operands[1].isreg)
12339 {
12340 if (opcode <= 0xffff)
12341 inst.instruction = THUMB_OP32 (opcode);
8335d6aa 12342 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
53365c0d
PB
12343 return;
12344 }
0110f2b8
PB
12345 if (inst.operands[1].isreg
12346 && !inst.operands[1].writeback
c19d1205
ZW
12347 && !inst.operands[1].shifted && !inst.operands[1].postind
12348 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
12349 && opcode <= 0xffff
12350 && inst.size_req != 4)
c19d1205 12351 {
0110f2b8
PB
12352 /* Insn may have a 16-bit form. */
12353 Rn = inst.operands[1].reg;
12354 if (inst.operands[1].immisreg)
12355 {
12356 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 12357 /* [Rn, Rik] */
0110f2b8
PB
12358 if (Rn <= 7 && inst.operands[1].imm <= 7)
12359 goto op16;
5be8be5d
DG
12360 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12361 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
12362 }
12363 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12364 && opcode != T_MNEM_ldrsb)
12365 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12366 || (Rn == REG_SP && opcode == T_MNEM_str))
12367 {
12368 /* [Rn, #const] */
12369 if (Rn > 7)
12370 {
12371 if (Rn == REG_PC)
12372 {
e2b0ab59 12373 if (inst.relocs[0].pc_rel)
0110f2b8
PB
12374 opcode = T_MNEM_ldr_pc2;
12375 else
12376 opcode = T_MNEM_ldr_pc;
12377 }
12378 else
12379 {
12380 if (opcode == T_MNEM_ldr)
12381 opcode = T_MNEM_ldr_sp;
12382 else
12383 opcode = T_MNEM_str_sp;
12384 }
12385 inst.instruction = inst.operands[0].reg << 8;
12386 }
12387 else
12388 {
12389 inst.instruction = inst.operands[0].reg;
12390 inst.instruction |= inst.operands[1].reg << 3;
12391 }
12392 inst.instruction |= THUMB_OP16 (opcode);
12393 if (inst.size_req == 2)
e2b0ab59 12394 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
0110f2b8
PB
12395 else
12396 inst.relax = opcode;
12397 return;
12398 }
c19d1205 12399 }
0110f2b8 12400 /* Definitely a 32-bit variant. */
5be8be5d 12401
8d67f500
NC
12402 /* Warning for Erratum 752419. */
12403 if (opcode == T_MNEM_ldr
12404 && inst.operands[0].reg == REG_SP
12405 && inst.operands[1].writeback == 1
12406 && !inst.operands[1].immisreg)
12407 {
12408 if (no_cpu_selected ()
12409 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
477330fc
RM
12410 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12411 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
8d67f500
NC
12412 as_warn (_("This instruction may be unpredictable "
12413 "if executed on M-profile cores "
12414 "with interrupts enabled."));
12415 }
12416
5be8be5d 12417 /* Do some validations regarding addressing modes. */
1be5fd2e 12418 if (inst.operands[1].immisreg)
5be8be5d
DG
12419 reject_bad_reg (inst.operands[1].imm);
12420
1be5fd2e
NC
12421 constraint (inst.operands[1].writeback == 1
12422 && inst.operands[0].reg == inst.operands[1].reg,
12423 BAD_OVERLAP);
12424
0110f2b8 12425 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
12426 inst.instruction |= inst.operands[0].reg << 12;
12427 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 12428 check_ldr_r15_aligned ();
b99bd4ef
NC
12429 return;
12430 }
12431
c19d1205
ZW
12432 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12433
12434 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 12435 {
c19d1205
ZW
12436 /* Only [Rn,Rm] is acceptable. */
12437 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12438 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12439 || inst.operands[1].postind || inst.operands[1].shifted
12440 || inst.operands[1].negative,
12441 _("Thumb does not support this addressing mode"));
12442 inst.instruction = THUMB_OP16 (inst.instruction);
12443 goto op16;
b99bd4ef 12444 }
5f4273c7 12445
c19d1205
ZW
12446 inst.instruction = THUMB_OP16 (inst.instruction);
12447 if (!inst.operands[1].isreg)
8335d6aa 12448 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
c19d1205 12449 return;
b99bd4ef 12450
c19d1205
ZW
12451 constraint (!inst.operands[1].preind
12452 || inst.operands[1].shifted
12453 || inst.operands[1].writeback,
12454 _("Thumb does not support this addressing mode"));
12455 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 12456 {
c19d1205
ZW
12457 constraint (inst.instruction & 0x0600,
12458 _("byte or halfword not valid for base register"));
12459 constraint (inst.operands[1].reg == REG_PC
12460 && !(inst.instruction & THUMB_LOAD_BIT),
12461 _("r15 based store not allowed"));
12462 constraint (inst.operands[1].immisreg,
12463 _("invalid base register for register offset"));
b99bd4ef 12464
c19d1205
ZW
12465 if (inst.operands[1].reg == REG_PC)
12466 inst.instruction = T_OPCODE_LDR_PC;
12467 else if (inst.instruction & THUMB_LOAD_BIT)
12468 inst.instruction = T_OPCODE_LDR_SP;
12469 else
12470 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 12471
c19d1205 12472 inst.instruction |= inst.operands[0].reg << 8;
e2b0ab59 12473 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12474 return;
12475 }
90e4755a 12476
c19d1205
ZW
12477 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12478 if (!inst.operands[1].immisreg)
12479 {
12480 /* Immediate offset. */
12481 inst.instruction |= inst.operands[0].reg;
12482 inst.instruction |= inst.operands[1].reg << 3;
e2b0ab59 12483 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
c19d1205
ZW
12484 return;
12485 }
90e4755a 12486
c19d1205
ZW
12487 /* Register offset. */
12488 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12489 constraint (inst.operands[1].negative,
12490 _("Thumb does not support this addressing mode"));
90e4755a 12491
c19d1205
ZW
12492 op16:
12493 switch (inst.instruction)
12494 {
12495 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12496 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12497 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12498 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12499 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12500 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12501 case 0x5600 /* ldrsb */:
12502 case 0x5e00 /* ldrsh */: break;
12503 default: abort ();
12504 }
90e4755a 12505
c19d1205
ZW
12506 inst.instruction |= inst.operands[0].reg;
12507 inst.instruction |= inst.operands[1].reg << 3;
12508 inst.instruction |= inst.operands[1].imm << 6;
12509}
90e4755a 12510
c19d1205
ZW
12511static void
12512do_t_ldstd (void)
12513{
12514 if (!inst.operands[1].present)
b99bd4ef 12515 {
c19d1205
ZW
12516 inst.operands[1].reg = inst.operands[0].reg + 1;
12517 constraint (inst.operands[0].reg == REG_LR,
12518 _("r14 not allowed here"));
bd340a04 12519 constraint (inst.operands[0].reg == REG_R12,
477330fc 12520 _("r12 not allowed here"));
b99bd4ef 12521 }
bd340a04
MGD
12522
12523 if (inst.operands[2].writeback
12524 && (inst.operands[0].reg == inst.operands[2].reg
12525 || inst.operands[1].reg == inst.operands[2].reg))
12526 as_warn (_("base register written back, and overlaps "
477330fc 12527 "one of transfer registers"));
bd340a04 12528
c19d1205
ZW
12529 inst.instruction |= inst.operands[0].reg << 12;
12530 inst.instruction |= inst.operands[1].reg << 8;
12531 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
12532}
12533
c19d1205
ZW
12534static void
12535do_t_ldstt (void)
12536{
12537 inst.instruction |= inst.operands[0].reg << 12;
12538 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12539}
a737bd4d 12540
b99bd4ef 12541static void
c19d1205 12542do_t_mla (void)
b99bd4ef 12543{
fdfde340 12544 unsigned Rd, Rn, Rm, Ra;
c921be7d 12545
fdfde340
JM
12546 Rd = inst.operands[0].reg;
12547 Rn = inst.operands[1].reg;
12548 Rm = inst.operands[2].reg;
12549 Ra = inst.operands[3].reg;
12550
12551 reject_bad_reg (Rd);
12552 reject_bad_reg (Rn);
12553 reject_bad_reg (Rm);
12554 reject_bad_reg (Ra);
12555
12556 inst.instruction |= Rd << 8;
12557 inst.instruction |= Rn << 16;
12558 inst.instruction |= Rm;
12559 inst.instruction |= Ra << 12;
c19d1205 12560}
b99bd4ef 12561
c19d1205
ZW
12562static void
12563do_t_mlal (void)
12564{
fdfde340
JM
12565 unsigned RdLo, RdHi, Rn, Rm;
12566
12567 RdLo = inst.operands[0].reg;
12568 RdHi = inst.operands[1].reg;
12569 Rn = inst.operands[2].reg;
12570 Rm = inst.operands[3].reg;
12571
12572 reject_bad_reg (RdLo);
12573 reject_bad_reg (RdHi);
12574 reject_bad_reg (Rn);
12575 reject_bad_reg (Rm);
12576
12577 inst.instruction |= RdLo << 12;
12578 inst.instruction |= RdHi << 8;
12579 inst.instruction |= Rn << 16;
12580 inst.instruction |= Rm;
c19d1205 12581}
b99bd4ef 12582
c19d1205
ZW
12583static void
12584do_t_mov_cmp (void)
12585{
fdfde340
JM
12586 unsigned Rn, Rm;
12587
12588 Rn = inst.operands[0].reg;
12589 Rm = inst.operands[1].reg;
12590
e07e6e58 12591 if (Rn == REG_PC)
5ee91343 12592 set_pred_insn_type_last ();
e07e6e58 12593
c19d1205 12594 if (unified_syntax)
b99bd4ef 12595 {
c19d1205
ZW
12596 int r0off = (inst.instruction == T_MNEM_mov
12597 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 12598 unsigned long opcode;
3d388997
PB
12599 bfd_boolean narrow;
12600 bfd_boolean low_regs;
12601
fdfde340 12602 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 12603 opcode = inst.instruction;
5ee91343 12604 if (in_pred_block ())
0110f2b8 12605 narrow = opcode != T_MNEM_movs;
3d388997 12606 else
0110f2b8 12607 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
12608 if (inst.size_req == 4
12609 || inst.operands[1].shifted)
12610 narrow = FALSE;
12611
efd81785
PB
12612 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12613 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12614 && !inst.operands[1].shifted
fdfde340
JM
12615 && Rn == REG_PC
12616 && Rm == REG_LR)
efd81785
PB
12617 {
12618 inst.instruction = T2_SUBS_PC_LR;
12619 return;
12620 }
12621
fdfde340
JM
12622 if (opcode == T_MNEM_cmp)
12623 {
12624 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
12625 if (narrow)
12626 {
12627 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12628 but valid. */
12629 warn_deprecated_sp (Rm);
12630 /* R15 was documented as a valid choice for Rm in ARMv6,
12631 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12632 tools reject R15, so we do too. */
12633 constraint (Rm == REG_PC, BAD_PC);
12634 }
12635 else
12636 reject_bad_reg (Rm);
fdfde340
JM
12637 }
12638 else if (opcode == T_MNEM_mov
12639 || opcode == T_MNEM_movs)
12640 {
12641 if (inst.operands[1].isreg)
12642 {
12643 if (opcode == T_MNEM_movs)
12644 {
12645 reject_bad_reg (Rn);
12646 reject_bad_reg (Rm);
12647 }
76fa04a4
MGD
12648 else if (narrow)
12649 {
12650 /* This is mov.n. */
12651 if ((Rn == REG_SP || Rn == REG_PC)
12652 && (Rm == REG_SP || Rm == REG_PC))
12653 {
5c3696f8 12654 as_tsktsk (_("Use of r%u as a source register is "
76fa04a4
MGD
12655 "deprecated when r%u is the destination "
12656 "register."), Rm, Rn);
12657 }
12658 }
12659 else
12660 {
12661 /* This is mov.w. */
12662 constraint (Rn == REG_PC, BAD_PC);
12663 constraint (Rm == REG_PC, BAD_PC);
5c8ed6a4
JW
12664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12665 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
76fa04a4 12666 }
fdfde340
JM
12667 }
12668 else
12669 reject_bad_reg (Rn);
12670 }
12671
c19d1205
ZW
12672 if (!inst.operands[1].isreg)
12673 {
0110f2b8 12674 /* Immediate operand. */
5ee91343 12675 if (!in_pred_block () && opcode == T_MNEM_mov)
0110f2b8
PB
12676 narrow = 0;
12677 if (low_regs && narrow)
12678 {
12679 inst.instruction = THUMB_OP16 (opcode);
fdfde340 12680 inst.instruction |= Rn << 8;
e2b0ab59
AV
12681 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12682 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
72d98d16 12683 {
a9f02af8 12684 if (inst.size_req == 2)
e2b0ab59 12685 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
a9f02af8
MG
12686 else
12687 inst.relax = opcode;
72d98d16 12688 }
0110f2b8
PB
12689 }
12690 else
12691 {
e2b0ab59
AV
12692 constraint ((inst.relocs[0].type
12693 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12694 && (inst.relocs[0].type
12695 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
a9f02af8
MG
12696 THUMB1_RELOC_ONLY);
12697
0110f2b8
PB
12698 inst.instruction = THUMB_OP32 (inst.instruction);
12699 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12700 inst.instruction |= Rn << r0off;
e2b0ab59 12701 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8 12702 }
c19d1205 12703 }
728ca7c9
PB
12704 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12705 && (inst.instruction == T_MNEM_mov
12706 || inst.instruction == T_MNEM_movs))
12707 {
12708 /* Register shifts are encoded as separate shift instructions. */
12709 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12710
5ee91343 12711 if (in_pred_block ())
728ca7c9
PB
12712 narrow = !flags;
12713 else
12714 narrow = flags;
12715
12716 if (inst.size_req == 4)
12717 narrow = FALSE;
12718
12719 if (!low_regs || inst.operands[1].imm > 7)
12720 narrow = FALSE;
12721
fdfde340 12722 if (Rn != Rm)
728ca7c9
PB
12723 narrow = FALSE;
12724
12725 switch (inst.operands[1].shift_kind)
12726 {
12727 case SHIFT_LSL:
12728 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12729 break;
12730 case SHIFT_ASR:
12731 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12732 break;
12733 case SHIFT_LSR:
12734 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12735 break;
12736 case SHIFT_ROR:
12737 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12738 break;
12739 default:
5f4273c7 12740 abort ();
728ca7c9
PB
12741 }
12742
12743 inst.instruction = opcode;
12744 if (narrow)
12745 {
fdfde340 12746 inst.instruction |= Rn;
728ca7c9
PB
12747 inst.instruction |= inst.operands[1].imm << 3;
12748 }
12749 else
12750 {
12751 if (flags)
12752 inst.instruction |= CONDS_BIT;
12753
fdfde340
JM
12754 inst.instruction |= Rn << 8;
12755 inst.instruction |= Rm << 16;
728ca7c9
PB
12756 inst.instruction |= inst.operands[1].imm;
12757 }
12758 }
3d388997 12759 else if (!narrow)
c19d1205 12760 {
728ca7c9
PB
12761 /* Some mov with immediate shift have narrow variants.
12762 Register shifts are handled above. */
12763 if (low_regs && inst.operands[1].shifted
12764 && (inst.instruction == T_MNEM_mov
12765 || inst.instruction == T_MNEM_movs))
12766 {
5ee91343 12767 if (in_pred_block ())
728ca7c9
PB
12768 narrow = (inst.instruction == T_MNEM_mov);
12769 else
12770 narrow = (inst.instruction == T_MNEM_movs);
12771 }
12772
12773 if (narrow)
12774 {
12775 switch (inst.operands[1].shift_kind)
12776 {
12777 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12778 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12779 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12780 default: narrow = FALSE; break;
12781 }
12782 }
12783
12784 if (narrow)
12785 {
fdfde340
JM
12786 inst.instruction |= Rn;
12787 inst.instruction |= Rm << 3;
e2b0ab59 12788 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
728ca7c9
PB
12789 }
12790 else
12791 {
12792 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12793 inst.instruction |= Rn << r0off;
728ca7c9
PB
12794 encode_thumb32_shifted_operand (1);
12795 }
c19d1205
ZW
12796 }
12797 else
12798 switch (inst.instruction)
12799 {
12800 case T_MNEM_mov:
837b3435 12801 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
12802 results. Don't allow this. */
12803 if (low_regs)
12804 {
12805 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12806 "MOV Rd, Rs with two low registers is not "
12807 "permitted on this architecture");
fa94de6b 12808 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
12809 arm_ext_v6);
12810 }
12811
c19d1205 12812 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
12813 inst.instruction |= (Rn & 0x8) << 4;
12814 inst.instruction |= (Rn & 0x7);
12815 inst.instruction |= Rm << 3;
c19d1205 12816 break;
b99bd4ef 12817
c19d1205
ZW
12818 case T_MNEM_movs:
12819 /* We know we have low registers at this point.
941a8a52
MGD
12820 Generate LSLS Rd, Rs, #0. */
12821 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
12822 inst.instruction |= Rn;
12823 inst.instruction |= Rm << 3;
c19d1205
ZW
12824 break;
12825
12826 case T_MNEM_cmp:
3d388997 12827 if (low_regs)
c19d1205
ZW
12828 {
12829 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
12830 inst.instruction |= Rn;
12831 inst.instruction |= Rm << 3;
c19d1205
ZW
12832 }
12833 else
12834 {
12835 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
12836 inst.instruction |= (Rn & 0x8) << 4;
12837 inst.instruction |= (Rn & 0x7);
12838 inst.instruction |= Rm << 3;
c19d1205
ZW
12839 }
12840 break;
12841 }
b99bd4ef
NC
12842 return;
12843 }
12844
c19d1205 12845 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
12846
12847 /* PR 10443: Do not silently ignore shifted operands. */
12848 constraint (inst.operands[1].shifted,
12849 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12850
c19d1205 12851 if (inst.operands[1].isreg)
b99bd4ef 12852 {
fdfde340 12853 if (Rn < 8 && Rm < 8)
b99bd4ef 12854 {
c19d1205
ZW
12855 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12856 since a MOV instruction produces unpredictable results. */
12857 if (inst.instruction == T_OPCODE_MOV_I8)
12858 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 12859 else
c19d1205 12860 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 12861
fdfde340
JM
12862 inst.instruction |= Rn;
12863 inst.instruction |= Rm << 3;
b99bd4ef
NC
12864 }
12865 else
12866 {
c19d1205
ZW
12867 if (inst.instruction == T_OPCODE_MOV_I8)
12868 inst.instruction = T_OPCODE_MOV_HR;
12869 else
12870 inst.instruction = T_OPCODE_CMP_HR;
12871 do_t_cpy ();
b99bd4ef
NC
12872 }
12873 }
c19d1205 12874 else
b99bd4ef 12875 {
fdfde340 12876 constraint (Rn > 7,
c19d1205 12877 _("only lo regs allowed with immediate"));
fdfde340 12878 inst.instruction |= Rn << 8;
e2b0ab59 12879 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
c19d1205
ZW
12880 }
12881}
b99bd4ef 12882
c19d1205
ZW
12883static void
12884do_t_mov16 (void)
12885{
fdfde340 12886 unsigned Rd;
b6895b4f
PB
12887 bfd_vma imm;
12888 bfd_boolean top;
12889
12890 top = (inst.instruction & 0x00800000) != 0;
e2b0ab59 12891 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
b6895b4f 12892 {
33eaf5de 12893 constraint (top, _(":lower16: not allowed in this instruction"));
e2b0ab59 12894 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
b6895b4f 12895 }
e2b0ab59 12896 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
b6895b4f 12897 {
33eaf5de 12898 constraint (!top, _(":upper16: not allowed in this instruction"));
e2b0ab59 12899 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
b6895b4f
PB
12900 }
12901
fdfde340
JM
12902 Rd = inst.operands[0].reg;
12903 reject_bad_reg (Rd);
12904
12905 inst.instruction |= Rd << 8;
e2b0ab59 12906 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
b6895b4f 12907 {
e2b0ab59 12908 imm = inst.relocs[0].exp.X_add_number;
b6895b4f
PB
12909 inst.instruction |= (imm & 0xf000) << 4;
12910 inst.instruction |= (imm & 0x0800) << 15;
12911 inst.instruction |= (imm & 0x0700) << 4;
12912 inst.instruction |= (imm & 0x00ff);
12913 }
c19d1205 12914}
b99bd4ef 12915
c19d1205
ZW
12916static void
12917do_t_mvn_tst (void)
12918{
fdfde340 12919 unsigned Rn, Rm;
c921be7d 12920
fdfde340
JM
12921 Rn = inst.operands[0].reg;
12922 Rm = inst.operands[1].reg;
12923
12924 if (inst.instruction == T_MNEM_cmp
12925 || inst.instruction == T_MNEM_cmn)
12926 constraint (Rn == REG_PC, BAD_PC);
12927 else
12928 reject_bad_reg (Rn);
12929 reject_bad_reg (Rm);
12930
c19d1205
ZW
12931 if (unified_syntax)
12932 {
12933 int r0off = (inst.instruction == T_MNEM_mvn
12934 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
12935 bfd_boolean narrow;
12936
12937 if (inst.size_req == 4
12938 || inst.instruction > 0xffff
12939 || inst.operands[1].shifted
fdfde340 12940 || Rn > 7 || Rm > 7)
3d388997 12941 narrow = FALSE;
fe8b4cc3
KT
12942 else if (inst.instruction == T_MNEM_cmn
12943 || inst.instruction == T_MNEM_tst)
3d388997
PB
12944 narrow = TRUE;
12945 else if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 12946 narrow = !in_pred_block ();
3d388997 12947 else
5ee91343 12948 narrow = in_pred_block ();
3d388997 12949
c19d1205 12950 if (!inst.operands[1].isreg)
b99bd4ef 12951 {
c19d1205
ZW
12952 /* For an immediate, we always generate a 32-bit opcode;
12953 section relaxation will shrink it later if possible. */
12954 if (inst.instruction < 0xffff)
12955 inst.instruction = THUMB_OP32 (inst.instruction);
12956 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 12957 inst.instruction |= Rn << r0off;
e2b0ab59 12958 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 12959 }
c19d1205 12960 else
b99bd4ef 12961 {
c19d1205 12962 /* See if we can do this with a 16-bit instruction. */
3d388997 12963 if (narrow)
b99bd4ef 12964 {
c19d1205 12965 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12966 inst.instruction |= Rn;
12967 inst.instruction |= Rm << 3;
b99bd4ef 12968 }
c19d1205 12969 else
b99bd4ef 12970 {
c19d1205
ZW
12971 constraint (inst.operands[1].shifted
12972 && inst.operands[1].immisreg,
12973 _("shift must be constant"));
12974 if (inst.instruction < 0xffff)
12975 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 12976 inst.instruction |= Rn << r0off;
c19d1205 12977 encode_thumb32_shifted_operand (1);
b99bd4ef 12978 }
b99bd4ef
NC
12979 }
12980 }
12981 else
12982 {
c19d1205
ZW
12983 constraint (inst.instruction > 0xffff
12984 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12985 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12986 _("unshifted register required"));
fdfde340 12987 constraint (Rn > 7 || Rm > 7,
c19d1205 12988 BAD_HIREG);
b99bd4ef 12989
c19d1205 12990 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12991 inst.instruction |= Rn;
12992 inst.instruction |= Rm << 3;
b99bd4ef 12993 }
b99bd4ef
NC
12994}
12995
b05fe5cf 12996static void
c19d1205 12997do_t_mrs (void)
b05fe5cf 12998{
fdfde340 12999 unsigned Rd;
037e8744
JB
13000
13001 if (do_vfp_nsyn_mrs () == SUCCESS)
13002 return;
13003
90ec0d68
MGD
13004 Rd = inst.operands[0].reg;
13005 reject_bad_reg (Rd);
13006 inst.instruction |= Rd << 8;
13007
13008 if (inst.operands[1].isreg)
62b3e311 13009 {
90ec0d68
MGD
13010 unsigned br = inst.operands[1].reg;
13011 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13012 as_bad (_("bad register for mrs"));
13013
13014 inst.instruction |= br & (0xf << 16);
13015 inst.instruction |= (br & 0x300) >> 4;
13016 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
13017 }
13018 else
13019 {
90ec0d68 13020 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 13021
d2cd1205 13022 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
13023 {
13024 /* PR gas/12698: The constraint is only applied for m_profile.
13025 If the user has specified -march=all, we want to ignore it as
13026 we are building for any CPU type, including non-m variants. */
823d2571
TG
13027 bfd_boolean m_profile =
13028 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf
NC
13029 constraint ((flags != 0) && m_profile, _("selected processor does "
13030 "not support requested special purpose register"));
13031 }
90ec0d68 13032 else
d2cd1205
JB
13033 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13034 devices). */
13035 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13036 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 13037
90ec0d68
MGD
13038 inst.instruction |= (flags & SPSR_BIT) >> 2;
13039 inst.instruction |= inst.operands[1].imm & 0xff;
13040 inst.instruction |= 0xf0000;
13041 }
c19d1205 13042}
b05fe5cf 13043
c19d1205
ZW
13044static void
13045do_t_msr (void)
13046{
62b3e311 13047 int flags;
fdfde340 13048 unsigned Rn;
62b3e311 13049
037e8744
JB
13050 if (do_vfp_nsyn_msr () == SUCCESS)
13051 return;
13052
c19d1205
ZW
13053 constraint (!inst.operands[1].isreg,
13054 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
13055
13056 if (inst.operands[0].isreg)
13057 flags = (int)(inst.operands[0].reg);
13058 else
13059 flags = inst.operands[0].imm;
13060
d2cd1205 13061 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 13062 {
d2cd1205
JB
13063 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13064
1a43faaf 13065 /* PR gas/12698: The constraint is only applied for m_profile.
477330fc
RM
13066 If the user has specified -march=all, we want to ignore it as
13067 we are building for any CPU type, including non-m variants. */
823d2571
TG
13068 bfd_boolean m_profile =
13069 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
1a43faaf 13070 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
477330fc
RM
13071 && (bits & ~(PSR_s | PSR_f)) != 0)
13072 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13073 && bits != PSR_f)) && m_profile,
13074 _("selected processor does not support requested special "
13075 "purpose register"));
62b3e311
PB
13076 }
13077 else
d2cd1205
JB
13078 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13079 "requested special purpose register"));
c921be7d 13080
fdfde340
JM
13081 Rn = inst.operands[1].reg;
13082 reject_bad_reg (Rn);
13083
62b3e311 13084 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
13085 inst.instruction |= (flags & 0xf0000) >> 8;
13086 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 13087 inst.instruction |= (flags & 0xff);
fdfde340 13088 inst.instruction |= Rn << 16;
c19d1205 13089}
b05fe5cf 13090
c19d1205
ZW
13091static void
13092do_t_mul (void)
13093{
17828f45 13094 bfd_boolean narrow;
fdfde340 13095 unsigned Rd, Rn, Rm;
17828f45 13096
c19d1205
ZW
13097 if (!inst.operands[2].present)
13098 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 13099
fdfde340
JM
13100 Rd = inst.operands[0].reg;
13101 Rn = inst.operands[1].reg;
13102 Rm = inst.operands[2].reg;
13103
17828f45 13104 if (unified_syntax)
b05fe5cf 13105 {
17828f45 13106 if (inst.size_req == 4
fdfde340
JM
13107 || (Rd != Rn
13108 && Rd != Rm)
13109 || Rn > 7
13110 || Rm > 7)
17828f45
JM
13111 narrow = FALSE;
13112 else if (inst.instruction == T_MNEM_muls)
5ee91343 13113 narrow = !in_pred_block ();
17828f45 13114 else
5ee91343 13115 narrow = in_pred_block ();
b05fe5cf 13116 }
c19d1205 13117 else
b05fe5cf 13118 {
17828f45 13119 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 13120 constraint (Rn > 7 || Rm > 7,
c19d1205 13121 BAD_HIREG);
17828f45
JM
13122 narrow = TRUE;
13123 }
b05fe5cf 13124
17828f45
JM
13125 if (narrow)
13126 {
13127 /* 16-bit MULS/Conditional MUL. */
c19d1205 13128 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 13129 inst.instruction |= Rd;
b05fe5cf 13130
fdfde340
JM
13131 if (Rd == Rn)
13132 inst.instruction |= Rm << 3;
13133 else if (Rd == Rm)
13134 inst.instruction |= Rn << 3;
c19d1205
ZW
13135 else
13136 constraint (1, _("dest must overlap one source register"));
13137 }
17828f45
JM
13138 else
13139 {
e07e6e58
NC
13140 constraint (inst.instruction != T_MNEM_mul,
13141 _("Thumb-2 MUL must not set flags"));
17828f45
JM
13142 /* 32-bit MUL. */
13143 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13144 inst.instruction |= Rd << 8;
13145 inst.instruction |= Rn << 16;
13146 inst.instruction |= Rm << 0;
13147
13148 reject_bad_reg (Rd);
13149 reject_bad_reg (Rn);
13150 reject_bad_reg (Rm);
17828f45 13151 }
c19d1205 13152}
b05fe5cf 13153
c19d1205
ZW
13154static void
13155do_t_mull (void)
13156{
fdfde340 13157 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 13158
fdfde340
JM
13159 RdLo = inst.operands[0].reg;
13160 RdHi = inst.operands[1].reg;
13161 Rn = inst.operands[2].reg;
13162 Rm = inst.operands[3].reg;
13163
13164 reject_bad_reg (RdLo);
13165 reject_bad_reg (RdHi);
13166 reject_bad_reg (Rn);
13167 reject_bad_reg (Rm);
13168
13169 inst.instruction |= RdLo << 12;
13170 inst.instruction |= RdHi << 8;
13171 inst.instruction |= Rn << 16;
13172 inst.instruction |= Rm;
13173
13174 if (RdLo == RdHi)
c19d1205
ZW
13175 as_tsktsk (_("rdhi and rdlo must be different"));
13176}
b05fe5cf 13177
c19d1205
ZW
13178static void
13179do_t_nop (void)
13180{
5ee91343 13181 set_pred_insn_type (NEUTRAL_IT_INSN);
e07e6e58 13182
c19d1205
ZW
13183 if (unified_syntax)
13184 {
13185 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 13186 {
c19d1205
ZW
13187 inst.instruction = THUMB_OP32 (inst.instruction);
13188 inst.instruction |= inst.operands[0].imm;
13189 }
13190 else
13191 {
bc2d1808
NC
13192 /* PR9722: Check for Thumb2 availability before
13193 generating a thumb2 nop instruction. */
afa62d5e 13194 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
13195 {
13196 inst.instruction = THUMB_OP16 (inst.instruction);
13197 inst.instruction |= inst.operands[0].imm << 4;
13198 }
13199 else
13200 inst.instruction = 0x46c0;
c19d1205
ZW
13201 }
13202 }
13203 else
13204 {
13205 constraint (inst.operands[0].present,
13206 _("Thumb does not support NOP with hints"));
13207 inst.instruction = 0x46c0;
13208 }
13209}
b05fe5cf 13210
c19d1205
ZW
13211static void
13212do_t_neg (void)
13213{
13214 if (unified_syntax)
13215 {
3d388997
PB
13216 bfd_boolean narrow;
13217
13218 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13219 narrow = !in_pred_block ();
3d388997 13220 else
5ee91343 13221 narrow = in_pred_block ();
3d388997
PB
13222 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13223 narrow = FALSE;
13224 if (inst.size_req == 4)
13225 narrow = FALSE;
13226
13227 if (!narrow)
c19d1205
ZW
13228 {
13229 inst.instruction = THUMB_OP32 (inst.instruction);
13230 inst.instruction |= inst.operands[0].reg << 8;
13231 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
13232 }
13233 else
13234 {
c19d1205
ZW
13235 inst.instruction = THUMB_OP16 (inst.instruction);
13236 inst.instruction |= inst.operands[0].reg;
13237 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
13238 }
13239 }
13240 else
13241 {
c19d1205
ZW
13242 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13243 BAD_HIREG);
13244 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13245
13246 inst.instruction = THUMB_OP16 (inst.instruction);
13247 inst.instruction |= inst.operands[0].reg;
13248 inst.instruction |= inst.operands[1].reg << 3;
13249 }
13250}
13251
1c444d06
JM
13252static void
13253do_t_orn (void)
13254{
13255 unsigned Rd, Rn;
13256
13257 Rd = inst.operands[0].reg;
13258 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13259
fdfde340
JM
13260 reject_bad_reg (Rd);
13261 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13262 reject_bad_reg (Rn);
13263
1c444d06
JM
13264 inst.instruction |= Rd << 8;
13265 inst.instruction |= Rn << 16;
13266
13267 if (!inst.operands[2].isreg)
13268 {
13269 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13270 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
1c444d06
JM
13271 }
13272 else
13273 {
13274 unsigned Rm;
13275
13276 Rm = inst.operands[2].reg;
fdfde340 13277 reject_bad_reg (Rm);
1c444d06
JM
13278
13279 constraint (inst.operands[2].shifted
13280 && inst.operands[2].immisreg,
13281 _("shift must be constant"));
13282 encode_thumb32_shifted_operand (2);
13283 }
13284}
13285
c19d1205
ZW
13286static void
13287do_t_pkhbt (void)
13288{
fdfde340
JM
13289 unsigned Rd, Rn, Rm;
13290
13291 Rd = inst.operands[0].reg;
13292 Rn = inst.operands[1].reg;
13293 Rm = inst.operands[2].reg;
13294
13295 reject_bad_reg (Rd);
13296 reject_bad_reg (Rn);
13297 reject_bad_reg (Rm);
13298
13299 inst.instruction |= Rd << 8;
13300 inst.instruction |= Rn << 16;
13301 inst.instruction |= Rm;
c19d1205
ZW
13302 if (inst.operands[3].present)
13303 {
e2b0ab59
AV
13304 unsigned int val = inst.relocs[0].exp.X_add_number;
13305 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205
ZW
13306 _("expression too complex"));
13307 inst.instruction |= (val & 0x1c) << 10;
13308 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 13309 }
c19d1205 13310}
b05fe5cf 13311
c19d1205
ZW
13312static void
13313do_t_pkhtb (void)
13314{
13315 if (!inst.operands[3].present)
1ef52f49
NC
13316 {
13317 unsigned Rtmp;
13318
13319 inst.instruction &= ~0x00000020;
13320
13321 /* PR 10168. Swap the Rm and Rn registers. */
13322 Rtmp = inst.operands[1].reg;
13323 inst.operands[1].reg = inst.operands[2].reg;
13324 inst.operands[2].reg = Rtmp;
13325 }
c19d1205 13326 do_t_pkhbt ();
b05fe5cf
ZW
13327}
13328
c19d1205
ZW
13329static void
13330do_t_pld (void)
13331{
fdfde340
JM
13332 if (inst.operands[0].immisreg)
13333 reject_bad_reg (inst.operands[0].imm);
13334
c19d1205
ZW
13335 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13336}
b05fe5cf 13337
c19d1205
ZW
13338static void
13339do_t_push_pop (void)
b99bd4ef 13340{
e9f89963 13341 unsigned mask;
5f4273c7 13342
c19d1205
ZW
13343 constraint (inst.operands[0].writeback,
13344 _("push/pop do not support {reglist}^"));
e2b0ab59 13345 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
c19d1205 13346 _("expression too complex"));
b99bd4ef 13347
e9f89963 13348 mask = inst.operands[0].imm;
d3bfe16e 13349 if (inst.size_req != 4 && (mask & ~0xff) == 0)
3c707909 13350 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
d3bfe16e 13351 else if (inst.size_req != 4
c6025a80 13352 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
d3bfe16e 13353 ? REG_LR : REG_PC)))
b99bd4ef 13354 {
c19d1205
ZW
13355 inst.instruction = THUMB_OP16 (inst.instruction);
13356 inst.instruction |= THUMB_PP_PC_LR;
3c707909 13357 inst.instruction |= mask & 0xff;
c19d1205
ZW
13358 }
13359 else if (unified_syntax)
13360 {
3c707909 13361 inst.instruction = THUMB_OP32 (inst.instruction);
4b5a202f
AV
13362 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13363 }
13364 else
13365 {
13366 inst.error = _("invalid register list to push/pop instruction");
13367 return;
c19d1205 13368 }
4b5a202f
AV
13369}
13370
13371static void
13372do_t_clrm (void)
13373{
13374 if (unified_syntax)
13375 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
c19d1205
ZW
13376 else
13377 {
13378 inst.error = _("invalid register list to push/pop instruction");
13379 return;
13380 }
c19d1205 13381}
b99bd4ef 13382
efd6b359
AV
13383static void
13384do_t_vscclrm (void)
13385{
13386 if (inst.operands[0].issingle)
13387 {
13388 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13389 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13390 inst.instruction |= inst.operands[0].imm;
13391 }
13392 else
13393 {
13394 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13395 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13396 inst.instruction |= 1 << 8;
13397 inst.instruction |= inst.operands[0].imm << 1;
13398 }
13399}
13400
c19d1205
ZW
13401static void
13402do_t_rbit (void)
13403{
fdfde340
JM
13404 unsigned Rd, Rm;
13405
13406 Rd = inst.operands[0].reg;
13407 Rm = inst.operands[1].reg;
13408
13409 reject_bad_reg (Rd);
13410 reject_bad_reg (Rm);
13411
13412 inst.instruction |= Rd << 8;
13413 inst.instruction |= Rm << 16;
13414 inst.instruction |= Rm;
c19d1205 13415}
b99bd4ef 13416
c19d1205
ZW
13417static void
13418do_t_rev (void)
13419{
fdfde340
JM
13420 unsigned Rd, Rm;
13421
13422 Rd = inst.operands[0].reg;
13423 Rm = inst.operands[1].reg;
13424
13425 reject_bad_reg (Rd);
13426 reject_bad_reg (Rm);
13427
13428 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
13429 && inst.size_req != 4)
13430 {
13431 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13432 inst.instruction |= Rd;
13433 inst.instruction |= Rm << 3;
c19d1205
ZW
13434 }
13435 else if (unified_syntax)
13436 {
13437 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13438 inst.instruction |= Rd << 8;
13439 inst.instruction |= Rm << 16;
13440 inst.instruction |= Rm;
c19d1205
ZW
13441 }
13442 else
13443 inst.error = BAD_HIREG;
13444}
b99bd4ef 13445
1c444d06
JM
13446static void
13447do_t_rrx (void)
13448{
13449 unsigned Rd, Rm;
13450
13451 Rd = inst.operands[0].reg;
13452 Rm = inst.operands[1].reg;
13453
fdfde340
JM
13454 reject_bad_reg (Rd);
13455 reject_bad_reg (Rm);
c921be7d 13456
1c444d06
JM
13457 inst.instruction |= Rd << 8;
13458 inst.instruction |= Rm;
13459}
13460
c19d1205
ZW
13461static void
13462do_t_rsb (void)
13463{
fdfde340 13464 unsigned Rd, Rs;
b99bd4ef 13465
c19d1205
ZW
13466 Rd = inst.operands[0].reg;
13467 Rs = (inst.operands[1].present
13468 ? inst.operands[1].reg /* Rd, Rs, foo */
13469 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 13470
fdfde340
JM
13471 reject_bad_reg (Rd);
13472 reject_bad_reg (Rs);
13473 if (inst.operands[2].isreg)
13474 reject_bad_reg (inst.operands[2].reg);
13475
c19d1205
ZW
13476 inst.instruction |= Rd << 8;
13477 inst.instruction |= Rs << 16;
13478 if (!inst.operands[2].isreg)
13479 {
026d3abb
PB
13480 bfd_boolean narrow;
13481
13482 if ((inst.instruction & 0x00100000) != 0)
5ee91343 13483 narrow = !in_pred_block ();
026d3abb 13484 else
5ee91343 13485 narrow = in_pred_block ();
026d3abb
PB
13486
13487 if (Rd > 7 || Rs > 7)
13488 narrow = FALSE;
13489
13490 if (inst.size_req == 4 || !unified_syntax)
13491 narrow = FALSE;
13492
e2b0ab59
AV
13493 if (inst.relocs[0].exp.X_op != O_constant
13494 || inst.relocs[0].exp.X_add_number != 0)
026d3abb
PB
13495 narrow = FALSE;
13496
13497 /* Turn rsb #0 into 16-bit neg. We should probably do this via
477330fc 13498 relaxation, but it doesn't seem worth the hassle. */
026d3abb
PB
13499 if (narrow)
13500 {
e2b0ab59 13501 inst.relocs[0].type = BFD_RELOC_UNUSED;
026d3abb
PB
13502 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13503 inst.instruction |= Rs << 3;
13504 inst.instruction |= Rd;
13505 }
13506 else
13507 {
13508 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
e2b0ab59 13509 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
026d3abb 13510 }
c19d1205
ZW
13511 }
13512 else
13513 encode_thumb32_shifted_operand (2);
13514}
b99bd4ef 13515
c19d1205
ZW
13516static void
13517do_t_setend (void)
13518{
12e37cbc
MGD
13519 if (warn_on_deprecated
13520 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
5c3696f8 13521 as_tsktsk (_("setend use is deprecated for ARMv8"));
12e37cbc 13522
5ee91343 13523 set_pred_insn_type (OUTSIDE_PRED_INSN);
c19d1205
ZW
13524 if (inst.operands[0].imm)
13525 inst.instruction |= 0x8;
13526}
b99bd4ef 13527
c19d1205
ZW
13528static void
13529do_t_shift (void)
13530{
13531 if (!inst.operands[1].present)
13532 inst.operands[1].reg = inst.operands[0].reg;
13533
13534 if (unified_syntax)
13535 {
3d388997
PB
13536 bfd_boolean narrow;
13537 int shift_kind;
13538
13539 switch (inst.instruction)
13540 {
13541 case T_MNEM_asr:
13542 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13543 case T_MNEM_lsl:
13544 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13545 case T_MNEM_lsr:
13546 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13547 case T_MNEM_ror:
13548 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13549 default: abort ();
13550 }
13551
13552 if (THUMB_SETS_FLAGS (inst.instruction))
5ee91343 13553 narrow = !in_pred_block ();
3d388997 13554 else
5ee91343 13555 narrow = in_pred_block ();
3d388997
PB
13556 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13557 narrow = FALSE;
13558 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13559 narrow = FALSE;
13560 if (inst.operands[2].isreg
13561 && (inst.operands[1].reg != inst.operands[0].reg
13562 || inst.operands[2].reg > 7))
13563 narrow = FALSE;
13564 if (inst.size_req == 4)
13565 narrow = FALSE;
13566
fdfde340
JM
13567 reject_bad_reg (inst.operands[0].reg);
13568 reject_bad_reg (inst.operands[1].reg);
c921be7d 13569
3d388997 13570 if (!narrow)
c19d1205
ZW
13571 {
13572 if (inst.operands[2].isreg)
b99bd4ef 13573 {
fdfde340 13574 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
13575 inst.instruction = THUMB_OP32 (inst.instruction);
13576 inst.instruction |= inst.operands[0].reg << 8;
13577 inst.instruction |= inst.operands[1].reg << 16;
13578 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
13579
13580 /* PR 12854: Error on extraneous shifts. */
13581 constraint (inst.operands[2].shifted,
13582 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13583 }
13584 else
13585 {
13586 inst.operands[1].shifted = 1;
3d388997 13587 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
13588 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13589 ? T_MNEM_movs : T_MNEM_mov);
13590 inst.instruction |= inst.operands[0].reg << 8;
13591 encode_thumb32_shifted_operand (1);
13592 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
e2b0ab59 13593 inst.relocs[0].type = BFD_RELOC_UNUSED;
b99bd4ef
NC
13594 }
13595 }
13596 else
13597 {
c19d1205 13598 if (inst.operands[2].isreg)
b99bd4ef 13599 {
3d388997 13600 switch (shift_kind)
b99bd4ef 13601 {
3d388997
PB
13602 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13603 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13604 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13605 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 13606 default: abort ();
b99bd4ef 13607 }
5f4273c7 13608
c19d1205
ZW
13609 inst.instruction |= inst.operands[0].reg;
13610 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13611
13612 /* PR 12854: Error on extraneous shifts. */
13613 constraint (inst.operands[2].shifted,
13614 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
13615 }
13616 else
13617 {
3d388997 13618 switch (shift_kind)
b99bd4ef 13619 {
3d388997
PB
13620 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13621 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13622 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 13623 default: abort ();
b99bd4ef 13624 }
e2b0ab59 13625 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13626 inst.instruction |= inst.operands[0].reg;
13627 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13628 }
13629 }
c19d1205
ZW
13630 }
13631 else
13632 {
13633 constraint (inst.operands[0].reg > 7
13634 || inst.operands[1].reg > 7, BAD_HIREG);
13635 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 13636
c19d1205
ZW
13637 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13638 {
13639 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13640 constraint (inst.operands[0].reg != inst.operands[1].reg,
13641 _("source1 and dest must be same register"));
b99bd4ef 13642
c19d1205
ZW
13643 switch (inst.instruction)
13644 {
13645 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13646 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13647 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13648 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13649 default: abort ();
13650 }
5f4273c7 13651
c19d1205
ZW
13652 inst.instruction |= inst.operands[0].reg;
13653 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
13654
13655 /* PR 12854: Error on extraneous shifts. */
13656 constraint (inst.operands[2].shifted,
13657 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
13658 }
13659 else
b99bd4ef 13660 {
c19d1205
ZW
13661 switch (inst.instruction)
13662 {
13663 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13664 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13665 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13666 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13667 default: abort ();
13668 }
e2b0ab59 13669 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
c19d1205
ZW
13670 inst.instruction |= inst.operands[0].reg;
13671 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
13672 }
13673 }
b99bd4ef
NC
13674}
13675
13676static void
c19d1205 13677do_t_simd (void)
b99bd4ef 13678{
fdfde340
JM
13679 unsigned Rd, Rn, Rm;
13680
13681 Rd = inst.operands[0].reg;
13682 Rn = inst.operands[1].reg;
13683 Rm = inst.operands[2].reg;
13684
13685 reject_bad_reg (Rd);
13686 reject_bad_reg (Rn);
13687 reject_bad_reg (Rm);
13688
13689 inst.instruction |= Rd << 8;
13690 inst.instruction |= Rn << 16;
13691 inst.instruction |= Rm;
c19d1205 13692}
b99bd4ef 13693
03ee1b7f
NC
13694static void
13695do_t_simd2 (void)
13696{
13697 unsigned Rd, Rn, Rm;
13698
13699 Rd = inst.operands[0].reg;
13700 Rm = inst.operands[1].reg;
13701 Rn = inst.operands[2].reg;
13702
13703 reject_bad_reg (Rd);
13704 reject_bad_reg (Rn);
13705 reject_bad_reg (Rm);
13706
13707 inst.instruction |= Rd << 8;
13708 inst.instruction |= Rn << 16;
13709 inst.instruction |= Rm;
13710}
13711
c19d1205 13712static void
3eb17e6b 13713do_t_smc (void)
c19d1205 13714{
e2b0ab59 13715 unsigned int value = inst.relocs[0].exp.X_add_number;
f4c65163
MGD
13716 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13717 _("SMC is not permitted on this architecture"));
e2b0ab59 13718 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13719 _("expression too complex"));
e2b0ab59 13720 inst.relocs[0].type = BFD_RELOC_UNUSED;
c19d1205
ZW
13721 inst.instruction |= (value & 0xf000) >> 12;
13722 inst.instruction |= (value & 0x0ff0);
13723 inst.instruction |= (value & 0x000f) << 16;
24382199 13724 /* PR gas/15623: SMC instructions must be last in an IT block. */
5ee91343 13725 set_pred_insn_type_last ();
c19d1205 13726}
b99bd4ef 13727
90ec0d68
MGD
13728static void
13729do_t_hvc (void)
13730{
e2b0ab59 13731 unsigned int value = inst.relocs[0].exp.X_add_number;
90ec0d68 13732
e2b0ab59 13733 inst.relocs[0].type = BFD_RELOC_UNUSED;
90ec0d68
MGD
13734 inst.instruction |= (value & 0x0fff);
13735 inst.instruction |= (value & 0xf000) << 4;
13736}
13737
c19d1205 13738static void
3a21c15a 13739do_t_ssat_usat (int bias)
c19d1205 13740{
fdfde340
JM
13741 unsigned Rd, Rn;
13742
13743 Rd = inst.operands[0].reg;
13744 Rn = inst.operands[2].reg;
13745
13746 reject_bad_reg (Rd);
13747 reject_bad_reg (Rn);
13748
13749 inst.instruction |= Rd << 8;
3a21c15a 13750 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 13751 inst.instruction |= Rn << 16;
b99bd4ef 13752
c19d1205 13753 if (inst.operands[3].present)
b99bd4ef 13754 {
e2b0ab59 13755 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
3a21c15a 13756
e2b0ab59 13757 inst.relocs[0].type = BFD_RELOC_UNUSED;
3a21c15a 13758
e2b0ab59 13759 constraint (inst.relocs[0].exp.X_op != O_constant,
c19d1205 13760 _("expression too complex"));
b99bd4ef 13761
3a21c15a 13762 if (shift_amount != 0)
6189168b 13763 {
3a21c15a
NC
13764 constraint (shift_amount > 31,
13765 _("shift expression is too large"));
13766
c19d1205 13767 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
13768 inst.instruction |= 0x00200000; /* sh bit. */
13769
13770 inst.instruction |= (shift_amount & 0x1c) << 10;
13771 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
13772 }
13773 }
b99bd4ef 13774}
c921be7d 13775
3a21c15a
NC
13776static void
13777do_t_ssat (void)
13778{
13779 do_t_ssat_usat (1);
13780}
b99bd4ef 13781
0dd132b6 13782static void
c19d1205 13783do_t_ssat16 (void)
0dd132b6 13784{
fdfde340
JM
13785 unsigned Rd, Rn;
13786
13787 Rd = inst.operands[0].reg;
13788 Rn = inst.operands[2].reg;
13789
13790 reject_bad_reg (Rd);
13791 reject_bad_reg (Rn);
13792
13793 inst.instruction |= Rd << 8;
c19d1205 13794 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 13795 inst.instruction |= Rn << 16;
c19d1205 13796}
0dd132b6 13797
c19d1205
ZW
13798static void
13799do_t_strex (void)
13800{
13801 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13802 || inst.operands[2].postind || inst.operands[2].writeback
13803 || inst.operands[2].immisreg || inst.operands[2].shifted
13804 || inst.operands[2].negative,
01cfc07f 13805 BAD_ADDR_MODE);
0dd132b6 13806
5be8be5d
DG
13807 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13808
c19d1205
ZW
13809 inst.instruction |= inst.operands[0].reg << 8;
13810 inst.instruction |= inst.operands[1].reg << 12;
13811 inst.instruction |= inst.operands[2].reg << 16;
e2b0ab59 13812 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
13813}
13814
b99bd4ef 13815static void
c19d1205 13816do_t_strexd (void)
b99bd4ef 13817{
c19d1205
ZW
13818 if (!inst.operands[2].present)
13819 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 13820
c19d1205
ZW
13821 constraint (inst.operands[0].reg == inst.operands[1].reg
13822 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 13823 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 13824 BAD_OVERLAP);
b99bd4ef 13825
c19d1205
ZW
13826 inst.instruction |= inst.operands[0].reg;
13827 inst.instruction |= inst.operands[1].reg << 12;
13828 inst.instruction |= inst.operands[2].reg << 8;
13829 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
13830}
13831
13832static void
c19d1205 13833do_t_sxtah (void)
b99bd4ef 13834{
fdfde340
JM
13835 unsigned Rd, Rn, Rm;
13836
13837 Rd = inst.operands[0].reg;
13838 Rn = inst.operands[1].reg;
13839 Rm = inst.operands[2].reg;
13840
13841 reject_bad_reg (Rd);
13842 reject_bad_reg (Rn);
13843 reject_bad_reg (Rm);
13844
13845 inst.instruction |= Rd << 8;
13846 inst.instruction |= Rn << 16;
13847 inst.instruction |= Rm;
c19d1205
ZW
13848 inst.instruction |= inst.operands[3].imm << 4;
13849}
b99bd4ef 13850
c19d1205
ZW
13851static void
13852do_t_sxth (void)
13853{
fdfde340
JM
13854 unsigned Rd, Rm;
13855
13856 Rd = inst.operands[0].reg;
13857 Rm = inst.operands[1].reg;
13858
13859 reject_bad_reg (Rd);
13860 reject_bad_reg (Rm);
c921be7d
NC
13861
13862 if (inst.instruction <= 0xffff
13863 && inst.size_req != 4
fdfde340 13864 && Rd <= 7 && Rm <= 7
c19d1205 13865 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 13866 {
c19d1205 13867 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
13868 inst.instruction |= Rd;
13869 inst.instruction |= Rm << 3;
b99bd4ef 13870 }
c19d1205 13871 else if (unified_syntax)
b99bd4ef 13872 {
c19d1205
ZW
13873 if (inst.instruction <= 0xffff)
13874 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
13875 inst.instruction |= Rd << 8;
13876 inst.instruction |= Rm;
c19d1205 13877 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 13878 }
c19d1205 13879 else
b99bd4ef 13880 {
c19d1205
ZW
13881 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13882 _("Thumb encoding does not support rotation"));
13883 constraint (1, BAD_HIREG);
b99bd4ef 13884 }
c19d1205 13885}
b99bd4ef 13886
c19d1205
ZW
13887static void
13888do_t_swi (void)
13889{
e2b0ab59 13890 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
c19d1205 13891}
b99bd4ef 13892
92e90b6e
PB
13893static void
13894do_t_tb (void)
13895{
fdfde340 13896 unsigned Rn, Rm;
92e90b6e
PB
13897 int half;
13898
13899 half = (inst.instruction & 0x10) != 0;
5ee91343 13900 set_pred_insn_type_last ();
dfa9f0d5
PB
13901 constraint (inst.operands[0].immisreg,
13902 _("instruction requires register index"));
fdfde340
JM
13903
13904 Rn = inst.operands[0].reg;
13905 Rm = inst.operands[0].imm;
c921be7d 13906
5c8ed6a4
JW
13907 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13908 constraint (Rn == REG_SP, BAD_SP);
fdfde340
JM
13909 reject_bad_reg (Rm);
13910
92e90b6e
PB
13911 constraint (!half && inst.operands[0].shifted,
13912 _("instruction does not allow shifted index"));
fdfde340 13913 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
13914}
13915
74db7efb
NC
13916static void
13917do_t_udf (void)
13918{
13919 if (!inst.operands[0].present)
13920 inst.operands[0].imm = 0;
13921
13922 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13923 {
13924 constraint (inst.size_req == 2,
13925 _("immediate value out of range"));
13926 inst.instruction = THUMB_OP32 (inst.instruction);
13927 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13928 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13929 }
13930 else
13931 {
13932 inst.instruction = THUMB_OP16 (inst.instruction);
13933 inst.instruction |= inst.operands[0].imm;
13934 }
13935
5ee91343 13936 set_pred_insn_type (NEUTRAL_IT_INSN);
74db7efb
NC
13937}
13938
13939
c19d1205
ZW
13940static void
13941do_t_usat (void)
13942{
3a21c15a 13943 do_t_ssat_usat (0);
b99bd4ef
NC
13944}
13945
13946static void
c19d1205 13947do_t_usat16 (void)
b99bd4ef 13948{
fdfde340
JM
13949 unsigned Rd, Rn;
13950
13951 Rd = inst.operands[0].reg;
13952 Rn = inst.operands[2].reg;
13953
13954 reject_bad_reg (Rd);
13955 reject_bad_reg (Rn);
13956
13957 inst.instruction |= Rd << 8;
c19d1205 13958 inst.instruction |= inst.operands[1].imm;
fdfde340 13959 inst.instruction |= Rn << 16;
b99bd4ef 13960}
c19d1205 13961
e12437dc
AV
13962/* Checking the range of the branch offset (VAL) with NBITS bits
13963 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13964static int
13965v8_1_branch_value_check (int val, int nbits, int is_signed)
13966{
13967 gas_assert (nbits > 0 && nbits <= 32);
13968 if (is_signed)
13969 {
13970 int cmp = (1 << (nbits - 1));
13971 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13972 return FAIL;
13973 }
13974 else
13975 {
13976 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13977 return FAIL;
13978 }
13979 return SUCCESS;
13980}
13981
4389b29a
AV
13982/* For branches in Armv8.1-M Mainline. */
13983static void
13984do_t_branch_future (void)
13985{
13986 unsigned long insn = inst.instruction;
13987
13988 inst.instruction = THUMB_OP32 (inst.instruction);
13989 if (inst.operands[0].hasreloc == 0)
13990 {
13991 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13992 as_bad (BAD_BRANCH_OFF);
13993
13994 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13995 }
13996 else
13997 {
13998 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13999 inst.relocs[0].pc_rel = 1;
14000 }
14001
14002 switch (insn)
14003 {
14004 case T_MNEM_bf:
14005 if (inst.operands[1].hasreloc == 0)
14006 {
14007 int val = inst.operands[1].imm;
14008 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14009 as_bad (BAD_BRANCH_OFF);
14010
14011 int immA = (val & 0x0001f000) >> 12;
14012 int immB = (val & 0x00000ffc) >> 2;
14013 int immC = (val & 0x00000002) >> 1;
14014 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14015 }
14016 else
14017 {
14018 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14019 inst.relocs[1].pc_rel = 1;
14020 }
14021 break;
14022
65d1bc05
AV
14023 case T_MNEM_bfl:
14024 if (inst.operands[1].hasreloc == 0)
14025 {
14026 int val = inst.operands[1].imm;
14027 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14028 as_bad (BAD_BRANCH_OFF);
14029
14030 int immA = (val & 0x0007f000) >> 12;
14031 int immB = (val & 0x00000ffc) >> 2;
14032 int immC = (val & 0x00000002) >> 1;
14033 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14034 }
14035 else
14036 {
14037 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14038 inst.relocs[1].pc_rel = 1;
14039 }
14040 break;
14041
f6b2b12d
AV
14042 case T_MNEM_bfcsel:
14043 /* Operand 1. */
14044 if (inst.operands[1].hasreloc == 0)
14045 {
14046 int val = inst.operands[1].imm;
14047 int immA = (val & 0x00001000) >> 12;
14048 int immB = (val & 0x00000ffc) >> 2;
14049 int immC = (val & 0x00000002) >> 1;
14050 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14051 }
14052 else
14053 {
14054 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14055 inst.relocs[1].pc_rel = 1;
14056 }
14057
14058 /* Operand 2. */
14059 if (inst.operands[2].hasreloc == 0)
14060 {
14061 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14062 int val2 = inst.operands[2].imm;
14063 int val0 = inst.operands[0].imm & 0x1f;
14064 int diff = val2 - val0;
14065 if (diff == 4)
14066 inst.instruction |= 1 << 17; /* T bit. */
14067 else if (diff != 2)
14068 as_bad (_("out of range label-relative fixup value"));
14069 }
14070 else
14071 {
14072 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14073 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14074 inst.relocs[2].pc_rel = 1;
14075 }
14076
14077 /* Operand 3. */
14078 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14079 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14080 break;
14081
f1c7f421
AV
14082 case T_MNEM_bfx:
14083 case T_MNEM_bflx:
14084 inst.instruction |= inst.operands[1].reg << 16;
14085 break;
14086
4389b29a
AV
14087 default: abort ();
14088 }
14089}
14090
60f993ce
AV
14091/* Helper function for do_t_loloop to handle relocations. */
14092static void
14093v8_1_loop_reloc (int is_le)
14094{
14095 if (inst.relocs[0].exp.X_op == O_constant)
14096 {
14097 int value = inst.relocs[0].exp.X_add_number;
14098 value = (is_le) ? -value : value;
14099
14100 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14101 as_bad (BAD_BRANCH_OFF);
14102
14103 int imml, immh;
14104
14105 immh = (value & 0x00000ffc) >> 2;
14106 imml = (value & 0x00000002) >> 1;
14107
14108 inst.instruction |= (imml << 11) | (immh << 1);
14109 }
14110 else
14111 {
14112 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14113 inst.relocs[0].pc_rel = 1;
14114 }
14115}
14116
14117/* To handle the Scalar Low Overhead Loop instructions
14118 in Armv8.1-M Mainline. */
14119static void
14120do_t_loloop (void)
14121{
14122 unsigned long insn = inst.instruction;
14123
5ee91343 14124 set_pred_insn_type (OUTSIDE_PRED_INSN);
60f993ce
AV
14125 inst.instruction = THUMB_OP32 (inst.instruction);
14126
14127 switch (insn)
14128 {
14129 case T_MNEM_le:
14130 /* le <label>. */
14131 if (!inst.operands[0].present)
14132 inst.instruction |= 1 << 21;
14133
14134 v8_1_loop_reloc (TRUE);
14135 break;
14136
14137 case T_MNEM_wls:
14138 v8_1_loop_reloc (FALSE);
14139 /* Fall through. */
14140 case T_MNEM_dls:
14141 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14142 inst.instruction |= (inst.operands[1].reg << 16);
14143 break;
14144
14145 default: abort();
14146 }
14147}
14148
a302e574
AV
14149/* MVE instruction encoder helpers. */
14150#define M_MNEM_vabav 0xee800f01
14151#define M_MNEM_vmladav 0xeef00e00
14152#define M_MNEM_vmladava 0xeef00e20
14153#define M_MNEM_vmladavx 0xeef01e00
14154#define M_MNEM_vmladavax 0xeef01e20
14155#define M_MNEM_vmlsdav 0xeef00e01
14156#define M_MNEM_vmlsdava 0xeef00e21
14157#define M_MNEM_vmlsdavx 0xeef01e01
14158#define M_MNEM_vmlsdavax 0xeef01e21
886e1c73
AV
14159#define M_MNEM_vmullt 0xee011e00
14160#define M_MNEM_vmullb 0xee010e00
35c228db
AV
14161#define M_MNEM_vst20 0xfc801e00
14162#define M_MNEM_vst21 0xfc801e20
14163#define M_MNEM_vst40 0xfc801e01
14164#define M_MNEM_vst41 0xfc801e21
14165#define M_MNEM_vst42 0xfc801e41
14166#define M_MNEM_vst43 0xfc801e61
14167#define M_MNEM_vld20 0xfc901e00
14168#define M_MNEM_vld21 0xfc901e20
14169#define M_MNEM_vld40 0xfc901e01
14170#define M_MNEM_vld41 0xfc901e21
14171#define M_MNEM_vld42 0xfc901e41
14172#define M_MNEM_vld43 0xfc901e61
f5f10c66
AV
14173#define M_MNEM_vstrb 0xec000e00
14174#define M_MNEM_vstrh 0xec000e10
14175#define M_MNEM_vstrw 0xec000e40
14176#define M_MNEM_vstrd 0xec000e50
14177#define M_MNEM_vldrb 0xec100e00
14178#define M_MNEM_vldrh 0xec100e10
14179#define M_MNEM_vldrw 0xec100e40
14180#define M_MNEM_vldrd 0xec100e50
57785aa2
AV
14181#define M_MNEM_vmovlt 0xeea01f40
14182#define M_MNEM_vmovlb 0xeea00f40
14183#define M_MNEM_vmovnt 0xfe311e81
14184#define M_MNEM_vmovnb 0xfe310e81
c2dafc2a
AV
14185#define M_MNEM_vadc 0xee300f00
14186#define M_MNEM_vadci 0xee301f00
14187#define M_MNEM_vbrsr 0xfe011e60
26c1e780
AV
14188#define M_MNEM_vaddlv 0xee890f00
14189#define M_MNEM_vaddlva 0xee890f20
14190#define M_MNEM_vaddv 0xeef10f00
14191#define M_MNEM_vaddva 0xeef10f20
b409bdb6
AV
14192#define M_MNEM_vddup 0xee011f6e
14193#define M_MNEM_vdwdup 0xee011f60
14194#define M_MNEM_vidup 0xee010f6e
14195#define M_MNEM_viwdup 0xee010f60
13ccd4c0
AV
14196#define M_MNEM_vmaxv 0xeee20f00
14197#define M_MNEM_vmaxav 0xeee00f00
14198#define M_MNEM_vminv 0xeee20f80
14199#define M_MNEM_vminav 0xeee00f80
93925576
AV
14200#define M_MNEM_vmlaldav 0xee800e00
14201#define M_MNEM_vmlaldava 0xee800e20
14202#define M_MNEM_vmlaldavx 0xee801e00
14203#define M_MNEM_vmlaldavax 0xee801e20
14204#define M_MNEM_vmlsldav 0xee800e01
14205#define M_MNEM_vmlsldava 0xee800e21
14206#define M_MNEM_vmlsldavx 0xee801e01
14207#define M_MNEM_vmlsldavax 0xee801e21
14208#define M_MNEM_vrmlaldavhx 0xee801f00
14209#define M_MNEM_vrmlaldavhax 0xee801f20
14210#define M_MNEM_vrmlsldavh 0xfe800e01
14211#define M_MNEM_vrmlsldavha 0xfe800e21
14212#define M_MNEM_vrmlsldavhx 0xfe801e01
14213#define M_MNEM_vrmlsldavhax 0xfe801e21
1be7aba3
AV
14214#define M_MNEM_vqmovnt 0xee331e01
14215#define M_MNEM_vqmovnb 0xee330e01
14216#define M_MNEM_vqmovunt 0xee311e81
14217#define M_MNEM_vqmovunb 0xee310e81
4aa88b50
AV
14218#define M_MNEM_vshrnt 0xee801fc1
14219#define M_MNEM_vshrnb 0xee800fc1
14220#define M_MNEM_vrshrnt 0xfe801fc1
14221#define M_MNEM_vqshrnt 0xee801f40
14222#define M_MNEM_vqshrnb 0xee800f40
14223#define M_MNEM_vqshrunt 0xee801fc0
14224#define M_MNEM_vqshrunb 0xee800fc0
14225#define M_MNEM_vrshrnb 0xfe800fc1
14226#define M_MNEM_vqrshrnt 0xee801f41
14227#define M_MNEM_vqrshrnb 0xee800f41
14228#define M_MNEM_vqrshrunt 0xfe801fc0
14229#define M_MNEM_vqrshrunb 0xfe800fc0
a302e574 14230
5287ad62 14231/* Neon instruction encoder helpers. */
5f4273c7 14232
5287ad62 14233/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 14234
5287ad62
JB
14235/* An "invalid" code for the following tables. */
14236#define N_INV -1u
14237
14238struct neon_tab_entry
b99bd4ef 14239{
5287ad62
JB
14240 unsigned integer;
14241 unsigned float_or_poly;
14242 unsigned scalar_or_imm;
14243};
5f4273c7 14244
5287ad62
JB
14245/* Map overloaded Neon opcodes to their respective encodings. */
14246#define NEON_ENC_TAB \
14247 X(vabd, 0x0000700, 0x1200d00, N_INV), \
5ee91343 14248 X(vabdl, 0x0800700, N_INV, N_INV), \
5287ad62
JB
14249 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14250 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14251 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14252 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14253 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14254 X(vadd, 0x0000800, 0x0000d00, N_INV), \
5ee91343 14255 X(vaddl, 0x0800000, N_INV, N_INV), \
5287ad62 14256 X(vsub, 0x1000800, 0x0200d00, N_INV), \
5ee91343 14257 X(vsubl, 0x0800200, N_INV, N_INV), \
5287ad62
JB
14258 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14259 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14260 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14261 /* Register variants of the following two instructions are encoded as
e07e6e58 14262 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
14263 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14264 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
14265 X(vfma, N_INV, 0x0000c10, N_INV), \
14266 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
14267 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14268 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14269 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14270 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14271 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14272 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14273 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14274 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14275 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14276 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14277 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
d6b4b13e
MW
14278 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14279 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
5287ad62
JB
14280 X(vshl, 0x0000400, N_INV, 0x0800510), \
14281 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14282 X(vand, 0x0000110, N_INV, 0x0800030), \
14283 X(vbic, 0x0100110, N_INV, 0x0800030), \
14284 X(veor, 0x1000110, N_INV, N_INV), \
14285 X(vorn, 0x0300110, N_INV, 0x0800010), \
14286 X(vorr, 0x0200110, N_INV, 0x0800010), \
14287 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14288 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14289 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14290 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14291 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14292 X(vst1, 0x0000000, 0x0800000, N_INV), \
14293 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14294 X(vst2, 0x0000100, 0x0800100, N_INV), \
14295 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14296 X(vst3, 0x0000200, 0x0800200, N_INV), \
14297 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14298 X(vst4, 0x0000300, 0x0800300, N_INV), \
14299 X(vmovn, 0x1b20200, N_INV, N_INV), \
14300 X(vtrn, 0x1b20080, N_INV, N_INV), \
14301 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
14302 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14303 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
14304 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14305 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
14306 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14307 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
14308 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14309 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14310 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
14311 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14312 X(vseleq, 0xe000a00, N_INV, N_INV), \
14313 X(vselvs, 0xe100a00, N_INV, N_INV), \
14314 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
14315 X(vselgt, 0xe300a00, N_INV, N_INV), \
14316 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
7e8e6784 14317 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
30bdf752
MGD
14318 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14319 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
91ff7894 14320 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
48adcd8e 14321 X(aes, 0x3b00300, N_INV, N_INV), \
3c9017d2
MGD
14322 X(sha3op, 0x2000c00, N_INV, N_INV), \
14323 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14324 X(sha2op, 0x3ba0380, N_INV, N_INV)
5287ad62
JB
14325
14326enum neon_opc
14327{
14328#define X(OPC,I,F,S) N_MNEM_##OPC
14329NEON_ENC_TAB
14330#undef X
14331};
b99bd4ef 14332
5287ad62
JB
14333static const struct neon_tab_entry neon_enc_tab[] =
14334{
14335#define X(OPC,I,F,S) { (I), (F), (S) }
14336NEON_ENC_TAB
14337#undef X
14338};
b99bd4ef 14339
88714cb8
DG
14340/* Do not use these macros; instead, use NEON_ENCODE defined below. */
14341#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14342#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14343#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14344#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14345#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14346#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14347#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14348#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14349#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14350#define NEON_ENC_SINGLE_(X) \
037e8744 14351 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 14352#define NEON_ENC_DOUBLE_(X) \
037e8744 14353 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
14354#define NEON_ENC_FPV8_(X) \
14355 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 14356
88714cb8
DG
14357#define NEON_ENCODE(type, inst) \
14358 do \
14359 { \
14360 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14361 inst.is_neon = 1; \
14362 } \
14363 while (0)
14364
14365#define check_neon_suffixes \
14366 do \
14367 { \
14368 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14369 { \
14370 as_bad (_("invalid neon suffix for non neon instruction")); \
14371 return; \
14372 } \
14373 } \
14374 while (0)
14375
037e8744
JB
14376/* Define shapes for instruction operands. The following mnemonic characters
14377 are used in this table:
5287ad62 14378
037e8744 14379 F - VFP S<n> register
5287ad62
JB
14380 D - Neon D<n> register
14381 Q - Neon Q<n> register
14382 I - Immediate
14383 S - Scalar
14384 R - ARM register
14385 L - D<n> register list
5f4273c7 14386
037e8744
JB
14387 This table is used to generate various data:
14388 - enumerations of the form NS_DDR to be used as arguments to
14389 neon_select_shape.
14390 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 14391 - a table used to drive neon_select_shape. */
b99bd4ef 14392
037e8744 14393#define NEON_SHAPE_DEF \
93925576 14394 X(4, (R, R, Q, Q), QUAD), \
b409bdb6 14395 X(4, (Q, R, R, I), QUAD), \
57785aa2
AV
14396 X(4, (R, R, S, S), QUAD), \
14397 X(4, (S, S, R, R), QUAD), \
b409bdb6 14398 X(3, (Q, R, I), QUAD), \
1b883319
AV
14399 X(3, (I, Q, Q), QUAD), \
14400 X(3, (I, Q, R), QUAD), \
a302e574 14401 X(3, (R, Q, Q), QUAD), \
037e8744
JB
14402 X(3, (D, D, D), DOUBLE), \
14403 X(3, (Q, Q, Q), QUAD), \
14404 X(3, (D, D, I), DOUBLE), \
14405 X(3, (Q, Q, I), QUAD), \
14406 X(3, (D, D, S), DOUBLE), \
14407 X(3, (Q, Q, S), QUAD), \
5ee91343 14408 X(3, (Q, Q, R), QUAD), \
26c1e780
AV
14409 X(3, (R, R, Q), QUAD), \
14410 X(2, (R, Q), QUAD), \
037e8744
JB
14411 X(2, (D, D), DOUBLE), \
14412 X(2, (Q, Q), QUAD), \
14413 X(2, (D, S), DOUBLE), \
14414 X(2, (Q, S), QUAD), \
14415 X(2, (D, R), DOUBLE), \
14416 X(2, (Q, R), QUAD), \
14417 X(2, (D, I), DOUBLE), \
14418 X(2, (Q, I), QUAD), \
14419 X(3, (D, L, D), DOUBLE), \
14420 X(2, (D, Q), MIXED), \
14421 X(2, (Q, D), MIXED), \
14422 X(3, (D, Q, I), MIXED), \
14423 X(3, (Q, D, I), MIXED), \
14424 X(3, (Q, D, D), MIXED), \
14425 X(3, (D, Q, Q), MIXED), \
14426 X(3, (Q, Q, D), MIXED), \
14427 X(3, (Q, D, S), MIXED), \
14428 X(3, (D, Q, S), MIXED), \
14429 X(4, (D, D, D, I), DOUBLE), \
14430 X(4, (Q, Q, Q, I), QUAD), \
c28eeff2
SN
14431 X(4, (D, D, S, I), DOUBLE), \
14432 X(4, (Q, Q, S, I), QUAD), \
037e8744
JB
14433 X(2, (F, F), SINGLE), \
14434 X(3, (F, F, F), SINGLE), \
14435 X(2, (F, I), SINGLE), \
14436 X(2, (F, D), MIXED), \
14437 X(2, (D, F), MIXED), \
14438 X(3, (F, F, I), MIXED), \
14439 X(4, (R, R, F, F), SINGLE), \
14440 X(4, (F, F, R, R), SINGLE), \
14441 X(3, (D, R, R), DOUBLE), \
14442 X(3, (R, R, D), DOUBLE), \
14443 X(2, (S, R), SINGLE), \
14444 X(2, (R, S), SINGLE), \
14445 X(2, (F, R), SINGLE), \
d54af2d0
RL
14446 X(2, (R, F), SINGLE), \
14447/* Half float shape supported so far. */\
14448 X (2, (H, D), MIXED), \
14449 X (2, (D, H), MIXED), \
14450 X (2, (H, F), MIXED), \
14451 X (2, (F, H), MIXED), \
14452 X (2, (H, H), HALF), \
14453 X (2, (H, R), HALF), \
14454 X (2, (R, H), HALF), \
14455 X (2, (H, I), HALF), \
14456 X (3, (H, H, H), HALF), \
14457 X (3, (H, F, I), MIXED), \
dec41383
JW
14458 X (3, (F, H, I), MIXED), \
14459 X (3, (D, H, H), MIXED), \
14460 X (3, (D, H, S), MIXED)
037e8744
JB
14461
14462#define S2(A,B) NS_##A##B
14463#define S3(A,B,C) NS_##A##B##C
14464#define S4(A,B,C,D) NS_##A##B##C##D
14465
14466#define X(N, L, C) S##N L
14467
5287ad62
JB
14468enum neon_shape
14469{
037e8744
JB
14470 NEON_SHAPE_DEF,
14471 NS_NULL
5287ad62 14472};
b99bd4ef 14473
037e8744
JB
14474#undef X
14475#undef S2
14476#undef S3
14477#undef S4
14478
14479enum neon_shape_class
14480{
d54af2d0 14481 SC_HALF,
037e8744
JB
14482 SC_SINGLE,
14483 SC_DOUBLE,
14484 SC_QUAD,
14485 SC_MIXED
14486};
14487
14488#define X(N, L, C) SC_##C
14489
14490static enum neon_shape_class neon_shape_class[] =
14491{
14492 NEON_SHAPE_DEF
14493};
14494
14495#undef X
14496
14497enum neon_shape_el
14498{
d54af2d0 14499 SE_H,
037e8744
JB
14500 SE_F,
14501 SE_D,
14502 SE_Q,
14503 SE_I,
14504 SE_S,
14505 SE_R,
14506 SE_L
14507};
14508
14509/* Register widths of above. */
14510static unsigned neon_shape_el_size[] =
14511{
d54af2d0 14512 16,
037e8744
JB
14513 32,
14514 64,
14515 128,
14516 0,
14517 32,
14518 32,
14519 0
14520};
14521
14522struct neon_shape_info
14523{
14524 unsigned els;
14525 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14526};
14527
14528#define S2(A,B) { SE_##A, SE_##B }
14529#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14530#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14531
14532#define X(N, L, C) { N, S##N L }
14533
14534static struct neon_shape_info neon_shape_tab[] =
14535{
14536 NEON_SHAPE_DEF
14537};
14538
14539#undef X
14540#undef S2
14541#undef S3
14542#undef S4
14543
5287ad62
JB
14544/* Bit masks used in type checking given instructions.
14545 'N_EQK' means the type must be the same as (or based on in some way) the key
14546 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14547 set, various other bits can be set as well in order to modify the meaning of
14548 the type constraint. */
14549
14550enum neon_type_mask
14551{
8e79c3df
CM
14552 N_S8 = 0x0000001,
14553 N_S16 = 0x0000002,
14554 N_S32 = 0x0000004,
14555 N_S64 = 0x0000008,
14556 N_U8 = 0x0000010,
14557 N_U16 = 0x0000020,
14558 N_U32 = 0x0000040,
14559 N_U64 = 0x0000080,
14560 N_I8 = 0x0000100,
14561 N_I16 = 0x0000200,
14562 N_I32 = 0x0000400,
14563 N_I64 = 0x0000800,
14564 N_8 = 0x0001000,
14565 N_16 = 0x0002000,
14566 N_32 = 0x0004000,
14567 N_64 = 0x0008000,
14568 N_P8 = 0x0010000,
14569 N_P16 = 0x0020000,
14570 N_F16 = 0x0040000,
14571 N_F32 = 0x0080000,
14572 N_F64 = 0x0100000,
4f51b4bd 14573 N_P64 = 0x0200000,
c921be7d
NC
14574 N_KEY = 0x1000000, /* Key element (main type specifier). */
14575 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 14576 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
91ff7894 14577 N_UNT = 0x8000000, /* Must be explicitly untyped. */
c921be7d
NC
14578 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14579 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14580 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14581 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14582 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14583 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14584 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 14585 N_UTYP = 0,
4f51b4bd 14586 N_MAX_NONSPECIAL = N_P64
5287ad62
JB
14587};
14588
dcbf9037
JB
14589#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14590
5287ad62
JB
14591#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14592#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14593#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
cc933301
JW
14594#define N_S_32 (N_S8 | N_S16 | N_S32)
14595#define N_F_16_32 (N_F16 | N_F32)
14596#define N_SUF_32 (N_SU_32 | N_F_16_32)
5287ad62 14597#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
cc933301 14598#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
d54af2d0 14599#define N_F_ALL (N_F16 | N_F32 | N_F64)
5ee91343
AV
14600#define N_I_MVE (N_I8 | N_I16 | N_I32)
14601#define N_F_MVE (N_F16 | N_F32)
14602#define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
5287ad62
JB
14603
14604/* Pass this as the first type argument to neon_check_type to ignore types
14605 altogether. */
14606#define N_IGNORE_TYPE (N_KEY | N_EQK)
14607
037e8744
JB
14608/* Select a "shape" for the current instruction (describing register types or
14609 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14610 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14611 function of operand parsing, so this function doesn't need to be called.
14612 Shapes should be listed in order of decreasing length. */
5287ad62
JB
14613
14614static enum neon_shape
037e8744 14615neon_select_shape (enum neon_shape shape, ...)
5287ad62 14616{
037e8744
JB
14617 va_list ap;
14618 enum neon_shape first_shape = shape;
5287ad62
JB
14619
14620 /* Fix missing optional operands. FIXME: we don't know at this point how
14621 many arguments we should have, so this makes the assumption that we have
14622 > 1. This is true of all current Neon opcodes, I think, but may not be
14623 true in the future. */
14624 if (!inst.operands[1].present)
14625 inst.operands[1] = inst.operands[0];
14626
037e8744 14627 va_start (ap, shape);
5f4273c7 14628
21d799b5 14629 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
14630 {
14631 unsigned j;
14632 int matches = 1;
14633
14634 for (j = 0; j < neon_shape_tab[shape].els; j++)
477330fc
RM
14635 {
14636 if (!inst.operands[j].present)
14637 {
14638 matches = 0;
14639 break;
14640 }
14641
14642 switch (neon_shape_tab[shape].el[j])
14643 {
d54af2d0
RL
14644 /* If a .f16, .16, .u16, .s16 type specifier is given over
14645 a VFP single precision register operand, it's essentially
14646 means only half of the register is used.
14647
14648 If the type specifier is given after the mnemonics, the
14649 information is stored in inst.vectype. If the type specifier
14650 is given after register operand, the information is stored
14651 in inst.operands[].vectype.
14652
14653 When there is only one type specifier, and all the register
14654 operands are the same type of hardware register, the type
14655 specifier applies to all register operands.
14656
14657 If no type specifier is given, the shape is inferred from
14658 operand information.
14659
14660 for example:
14661 vadd.f16 s0, s1, s2: NS_HHH
14662 vabs.f16 s0, s1: NS_HH
14663 vmov.f16 s0, r1: NS_HR
14664 vmov.f16 r0, s1: NS_RH
14665 vcvt.f16 r0, s1: NS_RH
14666 vcvt.f16.s32 s2, s2, #29: NS_HFI
14667 vcvt.f16.s32 s2, s2: NS_HF
14668 */
14669 case SE_H:
14670 if (!(inst.operands[j].isreg
14671 && inst.operands[j].isvec
14672 && inst.operands[j].issingle
14673 && !inst.operands[j].isquad
14674 && ((inst.vectype.elems == 1
14675 && inst.vectype.el[0].size == 16)
14676 || (inst.vectype.elems > 1
14677 && inst.vectype.el[j].size == 16)
14678 || (inst.vectype.elems == 0
14679 && inst.operands[j].vectype.type != NT_invtype
14680 && inst.operands[j].vectype.size == 16))))
14681 matches = 0;
14682 break;
14683
477330fc
RM
14684 case SE_F:
14685 if (!(inst.operands[j].isreg
14686 && inst.operands[j].isvec
14687 && inst.operands[j].issingle
d54af2d0
RL
14688 && !inst.operands[j].isquad
14689 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14690 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14691 || (inst.vectype.elems == 0
14692 && (inst.operands[j].vectype.size == 32
14693 || inst.operands[j].vectype.type == NT_invtype)))))
477330fc
RM
14694 matches = 0;
14695 break;
14696
14697 case SE_D:
14698 if (!(inst.operands[j].isreg
14699 && inst.operands[j].isvec
14700 && !inst.operands[j].isquad
14701 && !inst.operands[j].issingle))
14702 matches = 0;
14703 break;
14704
14705 case SE_R:
14706 if (!(inst.operands[j].isreg
14707 && !inst.operands[j].isvec))
14708 matches = 0;
14709 break;
14710
14711 case SE_Q:
14712 if (!(inst.operands[j].isreg
14713 && inst.operands[j].isvec
14714 && inst.operands[j].isquad
14715 && !inst.operands[j].issingle))
14716 matches = 0;
14717 break;
14718
14719 case SE_I:
14720 if (!(!inst.operands[j].isreg
14721 && !inst.operands[j].isscalar))
14722 matches = 0;
14723 break;
14724
14725 case SE_S:
14726 if (!(!inst.operands[j].isreg
14727 && inst.operands[j].isscalar))
14728 matches = 0;
14729 break;
14730
14731 case SE_L:
14732 break;
14733 }
3fde54a2
JZ
14734 if (!matches)
14735 break;
477330fc 14736 }
ad6cec43
MGD
14737 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14738 /* We've matched all the entries in the shape table, and we don't
14739 have any left over operands which have not been matched. */
477330fc 14740 break;
037e8744 14741 }
5f4273c7 14742
037e8744 14743 va_end (ap);
5287ad62 14744
037e8744
JB
14745 if (shape == NS_NULL && first_shape != NS_NULL)
14746 first_error (_("invalid instruction shape"));
5287ad62 14747
037e8744
JB
14748 return shape;
14749}
5287ad62 14750
037e8744
JB
14751/* True if SHAPE is predominantly a quadword operation (most of the time, this
14752 means the Q bit should be set). */
14753
14754static int
14755neon_quad (enum neon_shape shape)
14756{
14757 return neon_shape_class[shape] == SC_QUAD;
5287ad62 14758}
037e8744 14759
5287ad62
JB
14760static void
14761neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
477330fc 14762 unsigned *g_size)
5287ad62
JB
14763{
14764 /* Allow modification to be made to types which are constrained to be
14765 based on the key element, based on bits set alongside N_EQK. */
14766 if ((typebits & N_EQK) != 0)
14767 {
14768 if ((typebits & N_HLF) != 0)
14769 *g_size /= 2;
14770 else if ((typebits & N_DBL) != 0)
14771 *g_size *= 2;
14772 if ((typebits & N_SGN) != 0)
14773 *g_type = NT_signed;
14774 else if ((typebits & N_UNS) != 0)
477330fc 14775 *g_type = NT_unsigned;
5287ad62 14776 else if ((typebits & N_INT) != 0)
477330fc 14777 *g_type = NT_integer;
5287ad62 14778 else if ((typebits & N_FLT) != 0)
477330fc 14779 *g_type = NT_float;
dcbf9037 14780 else if ((typebits & N_SIZ) != 0)
477330fc 14781 *g_type = NT_untyped;
5287ad62
JB
14782 }
14783}
5f4273c7 14784
5287ad62
JB
14785/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14786 operand type, i.e. the single type specified in a Neon instruction when it
14787 is the only one given. */
14788
14789static struct neon_type_el
14790neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14791{
14792 struct neon_type_el dest = *key;
5f4273c7 14793
9c2799c2 14794 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 14795
5287ad62
JB
14796 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14797
14798 return dest;
14799}
14800
14801/* Convert Neon type and size into compact bitmask representation. */
14802
14803static enum neon_type_mask
14804type_chk_of_el_type (enum neon_el_type type, unsigned size)
14805{
14806 switch (type)
14807 {
14808 case NT_untyped:
14809 switch (size)
477330fc
RM
14810 {
14811 case 8: return N_8;
14812 case 16: return N_16;
14813 case 32: return N_32;
14814 case 64: return N_64;
14815 default: ;
14816 }
5287ad62
JB
14817 break;
14818
14819 case NT_integer:
14820 switch (size)
477330fc
RM
14821 {
14822 case 8: return N_I8;
14823 case 16: return N_I16;
14824 case 32: return N_I32;
14825 case 64: return N_I64;
14826 default: ;
14827 }
5287ad62
JB
14828 break;
14829
14830 case NT_float:
037e8744 14831 switch (size)
477330fc 14832 {
8e79c3df 14833 case 16: return N_F16;
477330fc
RM
14834 case 32: return N_F32;
14835 case 64: return N_F64;
14836 default: ;
14837 }
5287ad62
JB
14838 break;
14839
14840 case NT_poly:
14841 switch (size)
477330fc
RM
14842 {
14843 case 8: return N_P8;
14844 case 16: return N_P16;
4f51b4bd 14845 case 64: return N_P64;
477330fc
RM
14846 default: ;
14847 }
5287ad62
JB
14848 break;
14849
14850 case NT_signed:
14851 switch (size)
477330fc
RM
14852 {
14853 case 8: return N_S8;
14854 case 16: return N_S16;
14855 case 32: return N_S32;
14856 case 64: return N_S64;
14857 default: ;
14858 }
5287ad62
JB
14859 break;
14860
14861 case NT_unsigned:
14862 switch (size)
477330fc
RM
14863 {
14864 case 8: return N_U8;
14865 case 16: return N_U16;
14866 case 32: return N_U32;
14867 case 64: return N_U64;
14868 default: ;
14869 }
5287ad62
JB
14870 break;
14871
14872 default: ;
14873 }
5f4273c7 14874
5287ad62
JB
14875 return N_UTYP;
14876}
14877
14878/* Convert compact Neon bitmask type representation to a type and size. Only
14879 handles the case where a single bit is set in the mask. */
14880
dcbf9037 14881static int
5287ad62 14882el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
477330fc 14883 enum neon_type_mask mask)
5287ad62 14884{
dcbf9037
JB
14885 if ((mask & N_EQK) != 0)
14886 return FAIL;
14887
5287ad62
JB
14888 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14889 *size = 8;
c70a8987 14890 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
5287ad62 14891 *size = 16;
dcbf9037 14892 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 14893 *size = 32;
4f51b4bd 14894 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
5287ad62 14895 *size = 64;
dcbf9037
JB
14896 else
14897 return FAIL;
14898
5287ad62
JB
14899 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14900 *type = NT_signed;
dcbf9037 14901 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 14902 *type = NT_unsigned;
dcbf9037 14903 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 14904 *type = NT_integer;
dcbf9037 14905 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 14906 *type = NT_untyped;
4f51b4bd 14907 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
5287ad62 14908 *type = NT_poly;
d54af2d0 14909 else if ((mask & (N_F_ALL)) != 0)
5287ad62 14910 *type = NT_float;
dcbf9037
JB
14911 else
14912 return FAIL;
5f4273c7 14913
dcbf9037 14914 return SUCCESS;
5287ad62
JB
14915}
14916
14917/* Modify a bitmask of allowed types. This is only needed for type
14918 relaxation. */
14919
14920static unsigned
14921modify_types_allowed (unsigned allowed, unsigned mods)
14922{
14923 unsigned size;
14924 enum neon_el_type type;
14925 unsigned destmask;
14926 int i;
5f4273c7 14927
5287ad62 14928 destmask = 0;
5f4273c7 14929
5287ad62
JB
14930 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14931 {
21d799b5 14932 if (el_type_of_type_chk (&type, &size,
477330fc
RM
14933 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14934 {
14935 neon_modify_type_size (mods, &type, &size);
14936 destmask |= type_chk_of_el_type (type, size);
14937 }
5287ad62 14938 }
5f4273c7 14939
5287ad62
JB
14940 return destmask;
14941}
14942
14943/* Check type and return type classification.
14944 The manual states (paraphrase): If one datatype is given, it indicates the
14945 type given in:
14946 - the second operand, if there is one
14947 - the operand, if there is no second operand
14948 - the result, if there are no operands.
14949 This isn't quite good enough though, so we use a concept of a "key" datatype
14950 which is set on a per-instruction basis, which is the one which matters when
14951 only one data type is written.
14952 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 14953 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
14954
14955static struct neon_type_el
14956neon_check_type (unsigned els, enum neon_shape ns, ...)
14957{
14958 va_list ap;
14959 unsigned i, pass, key_el = 0;
14960 unsigned types[NEON_MAX_TYPE_ELS];
14961 enum neon_el_type k_type = NT_invtype;
14962 unsigned k_size = -1u;
14963 struct neon_type_el badtype = {NT_invtype, -1};
14964 unsigned key_allowed = 0;
14965
14966 /* Optional registers in Neon instructions are always (not) in operand 1.
14967 Fill in the missing operand here, if it was omitted. */
14968 if (els > 1 && !inst.operands[1].present)
14969 inst.operands[1] = inst.operands[0];
14970
14971 /* Suck up all the varargs. */
14972 va_start (ap, ns);
14973 for (i = 0; i < els; i++)
14974 {
14975 unsigned thisarg = va_arg (ap, unsigned);
14976 if (thisarg == N_IGNORE_TYPE)
477330fc
RM
14977 {
14978 va_end (ap);
14979 return badtype;
14980 }
5287ad62
JB
14981 types[i] = thisarg;
14982 if ((thisarg & N_KEY) != 0)
477330fc 14983 key_el = i;
5287ad62
JB
14984 }
14985 va_end (ap);
14986
dcbf9037
JB
14987 if (inst.vectype.elems > 0)
14988 for (i = 0; i < els; i++)
14989 if (inst.operands[i].vectype.type != NT_invtype)
477330fc
RM
14990 {
14991 first_error (_("types specified in both the mnemonic and operands"));
14992 return badtype;
14993 }
dcbf9037 14994
5287ad62
JB
14995 /* Duplicate inst.vectype elements here as necessary.
14996 FIXME: No idea if this is exactly the same as the ARM assembler,
14997 particularly when an insn takes one register and one non-register
14998 operand. */
14999 if (inst.vectype.elems == 1 && els > 1)
15000 {
15001 unsigned j;
15002 inst.vectype.elems = els;
15003 inst.vectype.el[key_el] = inst.vectype.el[0];
15004 for (j = 0; j < els; j++)
477330fc
RM
15005 if (j != key_el)
15006 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15007 types[j]);
dcbf9037
JB
15008 }
15009 else if (inst.vectype.elems == 0 && els > 0)
15010 {
15011 unsigned j;
15012 /* No types were given after the mnemonic, so look for types specified
477330fc
RM
15013 after each operand. We allow some flexibility here; as long as the
15014 "key" operand has a type, we can infer the others. */
dcbf9037 15015 for (j = 0; j < els; j++)
477330fc
RM
15016 if (inst.operands[j].vectype.type != NT_invtype)
15017 inst.vectype.el[j] = inst.operands[j].vectype;
dcbf9037
JB
15018
15019 if (inst.operands[key_el].vectype.type != NT_invtype)
477330fc
RM
15020 {
15021 for (j = 0; j < els; j++)
15022 if (inst.operands[j].vectype.type == NT_invtype)
15023 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15024 types[j]);
15025 }
dcbf9037 15026 else
477330fc
RM
15027 {
15028 first_error (_("operand types can't be inferred"));
15029 return badtype;
15030 }
5287ad62
JB
15031 }
15032 else if (inst.vectype.elems != els)
15033 {
dcbf9037 15034 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
15035 return badtype;
15036 }
15037
15038 for (pass = 0; pass < 2; pass++)
15039 {
15040 for (i = 0; i < els; i++)
477330fc
RM
15041 {
15042 unsigned thisarg = types[i];
15043 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15044 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15045 enum neon_el_type g_type = inst.vectype.el[i].type;
15046 unsigned g_size = inst.vectype.el[i].size;
15047
15048 /* Decay more-specific signed & unsigned types to sign-insensitive
5287ad62 15049 integer types if sign-specific variants are unavailable. */
477330fc 15050 if ((g_type == NT_signed || g_type == NT_unsigned)
5287ad62
JB
15051 && (types_allowed & N_SU_ALL) == 0)
15052 g_type = NT_integer;
15053
477330fc 15054 /* If only untyped args are allowed, decay any more specific types to
5287ad62
JB
15055 them. Some instructions only care about signs for some element
15056 sizes, so handle that properly. */
477330fc 15057 if (((types_allowed & N_UNT) == 0)
91ff7894
MGD
15058 && ((g_size == 8 && (types_allowed & N_8) != 0)
15059 || (g_size == 16 && (types_allowed & N_16) != 0)
15060 || (g_size == 32 && (types_allowed & N_32) != 0)
15061 || (g_size == 64 && (types_allowed & N_64) != 0)))
5287ad62
JB
15062 g_type = NT_untyped;
15063
477330fc
RM
15064 if (pass == 0)
15065 {
15066 if ((thisarg & N_KEY) != 0)
15067 {
15068 k_type = g_type;
15069 k_size = g_size;
15070 key_allowed = thisarg & ~N_KEY;
cc933301
JW
15071
15072 /* Check architecture constraint on FP16 extension. */
15073 if (k_size == 16
15074 && k_type == NT_float
15075 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15076 {
15077 inst.error = _(BAD_FP16);
15078 return badtype;
15079 }
477330fc
RM
15080 }
15081 }
15082 else
15083 {
15084 if ((thisarg & N_VFP) != 0)
15085 {
15086 enum neon_shape_el regshape;
15087 unsigned regwidth, match;
99b253c5
NC
15088
15089 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15090 if (ns == NS_NULL)
15091 {
15092 first_error (_("invalid instruction shape"));
15093 return badtype;
15094 }
477330fc
RM
15095 regshape = neon_shape_tab[ns].el[i];
15096 regwidth = neon_shape_el_size[regshape];
15097
15098 /* In VFP mode, operands must match register widths. If we
15099 have a key operand, use its width, else use the width of
15100 the current operand. */
15101 if (k_size != -1u)
15102 match = k_size;
15103 else
15104 match = g_size;
15105
9db2f6b4
RL
15106 /* FP16 will use a single precision register. */
15107 if (regwidth == 32 && match == 16)
15108 {
15109 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15110 match = regwidth;
15111 else
15112 {
15113 inst.error = _(BAD_FP16);
15114 return badtype;
15115 }
15116 }
15117
477330fc
RM
15118 if (regwidth != match)
15119 {
15120 first_error (_("operand size must match register width"));
15121 return badtype;
15122 }
15123 }
15124
15125 if ((thisarg & N_EQK) == 0)
15126 {
15127 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15128
15129 if ((given_type & types_allowed) == 0)
15130 {
a302e574 15131 first_error (BAD_SIMD_TYPE);
477330fc
RM
15132 return badtype;
15133 }
15134 }
15135 else
15136 {
15137 enum neon_el_type mod_k_type = k_type;
15138 unsigned mod_k_size = k_size;
15139 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15140 if (g_type != mod_k_type || g_size != mod_k_size)
15141 {
15142 first_error (_("inconsistent types in Neon instruction"));
15143 return badtype;
15144 }
15145 }
15146 }
15147 }
5287ad62
JB
15148 }
15149
15150 return inst.vectype.el[key_el];
15151}
15152
037e8744 15153/* Neon-style VFP instruction forwarding. */
5287ad62 15154
037e8744
JB
15155/* Thumb VFP instructions have 0xE in the condition field. */
15156
15157static void
15158do_vfp_cond_or_thumb (void)
5287ad62 15159{
88714cb8
DG
15160 inst.is_neon = 1;
15161
5287ad62 15162 if (thumb_mode)
037e8744 15163 inst.instruction |= 0xe0000000;
5287ad62 15164 else
037e8744 15165 inst.instruction |= inst.cond << 28;
5287ad62
JB
15166}
15167
037e8744
JB
15168/* Look up and encode a simple mnemonic, for use as a helper function for the
15169 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15170 etc. It is assumed that operand parsing has already been done, and that the
15171 operands are in the form expected by the given opcode (this isn't necessarily
15172 the same as the form in which they were parsed, hence some massaging must
15173 take place before this function is called).
15174 Checks current arch version against that in the looked-up opcode. */
5287ad62 15175
037e8744
JB
15176static void
15177do_vfp_nsyn_opcode (const char *opname)
5287ad62 15178{
037e8744 15179 const struct asm_opcode *opcode;
5f4273c7 15180
21d799b5 15181 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 15182
037e8744
JB
15183 if (!opcode)
15184 abort ();
5287ad62 15185
037e8744 15186 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
477330fc
RM
15187 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15188 _(BAD_FPU));
5287ad62 15189
88714cb8
DG
15190 inst.is_neon = 1;
15191
037e8744
JB
15192 if (thumb_mode)
15193 {
15194 inst.instruction = opcode->tvalue;
15195 opcode->tencode ();
15196 }
15197 else
15198 {
15199 inst.instruction = (inst.cond << 28) | opcode->avalue;
15200 opcode->aencode ();
15201 }
15202}
5287ad62
JB
15203
15204static void
037e8744 15205do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 15206{
037e8744
JB
15207 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15208
9db2f6b4 15209 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15210 {
15211 if (is_add)
477330fc 15212 do_vfp_nsyn_opcode ("fadds");
037e8744 15213 else
477330fc 15214 do_vfp_nsyn_opcode ("fsubs");
9db2f6b4
RL
15215
15216 /* ARMv8.2 fp16 instruction. */
15217 if (rs == NS_HHH)
15218 do_scalar_fp16_v82_encode ();
037e8744
JB
15219 }
15220 else
15221 {
15222 if (is_add)
477330fc 15223 do_vfp_nsyn_opcode ("faddd");
037e8744 15224 else
477330fc 15225 do_vfp_nsyn_opcode ("fsubd");
037e8744
JB
15226 }
15227}
15228
15229/* Check operand types to see if this is a VFP instruction, and if so call
15230 PFN (). */
15231
15232static int
15233try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15234{
15235 enum neon_shape rs;
15236 struct neon_type_el et;
15237
15238 switch (args)
15239 {
15240 case 2:
9db2f6b4
RL
15241 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15242 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
037e8744 15243 break;
5f4273c7 15244
037e8744 15245 case 3:
9db2f6b4
RL
15246 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15247 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15248 N_F_ALL | N_KEY | N_VFP);
037e8744
JB
15249 break;
15250
15251 default:
15252 abort ();
15253 }
15254
15255 if (et.type != NT_invtype)
15256 {
15257 pfn (rs);
15258 return SUCCESS;
15259 }
037e8744 15260
99b253c5 15261 inst.error = NULL;
037e8744
JB
15262 return FAIL;
15263}
15264
15265static void
15266do_vfp_nsyn_mla_mls (enum neon_shape rs)
15267{
15268 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 15269
9db2f6b4 15270 if (rs == NS_FFF || rs == NS_HHH)
037e8744
JB
15271 {
15272 if (is_mla)
477330fc 15273 do_vfp_nsyn_opcode ("fmacs");
037e8744 15274 else
477330fc 15275 do_vfp_nsyn_opcode ("fnmacs");
9db2f6b4
RL
15276
15277 /* ARMv8.2 fp16 instruction. */
15278 if (rs == NS_HHH)
15279 do_scalar_fp16_v82_encode ();
037e8744
JB
15280 }
15281 else
15282 {
15283 if (is_mla)
477330fc 15284 do_vfp_nsyn_opcode ("fmacd");
037e8744 15285 else
477330fc 15286 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
15287 }
15288}
15289
62f3b8c8
PB
15290static void
15291do_vfp_nsyn_fma_fms (enum neon_shape rs)
15292{
15293 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15294
9db2f6b4 15295 if (rs == NS_FFF || rs == NS_HHH)
62f3b8c8
PB
15296 {
15297 if (is_fma)
477330fc 15298 do_vfp_nsyn_opcode ("ffmas");
62f3b8c8 15299 else
477330fc 15300 do_vfp_nsyn_opcode ("ffnmas");
9db2f6b4
RL
15301
15302 /* ARMv8.2 fp16 instruction. */
15303 if (rs == NS_HHH)
15304 do_scalar_fp16_v82_encode ();
62f3b8c8
PB
15305 }
15306 else
15307 {
15308 if (is_fma)
477330fc 15309 do_vfp_nsyn_opcode ("ffmad");
62f3b8c8 15310 else
477330fc 15311 do_vfp_nsyn_opcode ("ffnmad");
62f3b8c8
PB
15312 }
15313}
15314
037e8744
JB
15315static void
15316do_vfp_nsyn_mul (enum neon_shape rs)
15317{
9db2f6b4
RL
15318 if (rs == NS_FFF || rs == NS_HHH)
15319 {
15320 do_vfp_nsyn_opcode ("fmuls");
15321
15322 /* ARMv8.2 fp16 instruction. */
15323 if (rs == NS_HHH)
15324 do_scalar_fp16_v82_encode ();
15325 }
037e8744
JB
15326 else
15327 do_vfp_nsyn_opcode ("fmuld");
15328}
15329
15330static void
15331do_vfp_nsyn_abs_neg (enum neon_shape rs)
15332{
15333 int is_neg = (inst.instruction & 0x80) != 0;
9db2f6b4 15334 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
037e8744 15335
9db2f6b4 15336 if (rs == NS_FF || rs == NS_HH)
037e8744
JB
15337 {
15338 if (is_neg)
477330fc 15339 do_vfp_nsyn_opcode ("fnegs");
037e8744 15340 else
477330fc 15341 do_vfp_nsyn_opcode ("fabss");
9db2f6b4
RL
15342
15343 /* ARMv8.2 fp16 instruction. */
15344 if (rs == NS_HH)
15345 do_scalar_fp16_v82_encode ();
037e8744
JB
15346 }
15347 else
15348 {
15349 if (is_neg)
477330fc 15350 do_vfp_nsyn_opcode ("fnegd");
037e8744 15351 else
477330fc 15352 do_vfp_nsyn_opcode ("fabsd");
037e8744
JB
15353 }
15354}
15355
15356/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15357 insns belong to Neon, and are handled elsewhere. */
15358
15359static void
15360do_vfp_nsyn_ldm_stm (int is_dbmode)
15361{
15362 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15363 if (is_ldm)
15364 {
15365 if (is_dbmode)
477330fc 15366 do_vfp_nsyn_opcode ("fldmdbs");
037e8744 15367 else
477330fc 15368 do_vfp_nsyn_opcode ("fldmias");
037e8744
JB
15369 }
15370 else
15371 {
15372 if (is_dbmode)
477330fc 15373 do_vfp_nsyn_opcode ("fstmdbs");
037e8744 15374 else
477330fc 15375 do_vfp_nsyn_opcode ("fstmias");
037e8744
JB
15376 }
15377}
15378
037e8744
JB
15379static void
15380do_vfp_nsyn_sqrt (void)
15381{
9db2f6b4
RL
15382 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15383 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15384
9db2f6b4
RL
15385 if (rs == NS_FF || rs == NS_HH)
15386 {
15387 do_vfp_nsyn_opcode ("fsqrts");
15388
15389 /* ARMv8.2 fp16 instruction. */
15390 if (rs == NS_HH)
15391 do_scalar_fp16_v82_encode ();
15392 }
037e8744
JB
15393 else
15394 do_vfp_nsyn_opcode ("fsqrtd");
15395}
15396
15397static void
15398do_vfp_nsyn_div (void)
15399{
9db2f6b4 15400 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15401 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15402 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15403
9db2f6b4
RL
15404 if (rs == NS_FFF || rs == NS_HHH)
15405 {
15406 do_vfp_nsyn_opcode ("fdivs");
15407
15408 /* ARMv8.2 fp16 instruction. */
15409 if (rs == NS_HHH)
15410 do_scalar_fp16_v82_encode ();
15411 }
037e8744
JB
15412 else
15413 do_vfp_nsyn_opcode ("fdivd");
15414}
15415
15416static void
15417do_vfp_nsyn_nmul (void)
15418{
9db2f6b4 15419 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
037e8744 15420 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
9db2f6b4 15421 N_F_ALL | N_KEY | N_VFP);
5f4273c7 15422
9db2f6b4 15423 if (rs == NS_FFF || rs == NS_HHH)
037e8744 15424 {
88714cb8 15425 NEON_ENCODE (SINGLE, inst);
037e8744 15426 do_vfp_sp_dyadic ();
9db2f6b4
RL
15427
15428 /* ARMv8.2 fp16 instruction. */
15429 if (rs == NS_HHH)
15430 do_scalar_fp16_v82_encode ();
037e8744
JB
15431 }
15432 else
15433 {
88714cb8 15434 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
15435 do_vfp_dp_rd_rn_rm ();
15436 }
15437 do_vfp_cond_or_thumb ();
9db2f6b4 15438
037e8744
JB
15439}
15440
1b883319
AV
15441/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15442 (0, 1, 2, 3). */
15443
15444static unsigned
15445neon_logbits (unsigned x)
15446{
15447 return ffs (x) - 4;
15448}
15449
15450#define LOW4(R) ((R) & 0xf)
15451#define HI1(R) (((R) >> 4) & 1)
15452
15453static unsigned
15454mve_get_vcmp_vpt_cond (struct neon_type_el et)
15455{
15456 switch (et.type)
15457 {
15458 default:
15459 first_error (BAD_EL_TYPE);
15460 return 0;
15461 case NT_float:
15462 switch (inst.operands[0].imm)
15463 {
15464 default:
15465 first_error (_("invalid condition"));
15466 return 0;
15467 case 0x0:
15468 /* eq. */
15469 return 0;
15470 case 0x1:
15471 /* ne. */
15472 return 1;
15473 case 0xa:
15474 /* ge/ */
15475 return 4;
15476 case 0xb:
15477 /* lt. */
15478 return 5;
15479 case 0xc:
15480 /* gt. */
15481 return 6;
15482 case 0xd:
15483 /* le. */
15484 return 7;
15485 }
15486 case NT_integer:
15487 /* only accept eq and ne. */
15488 if (inst.operands[0].imm > 1)
15489 {
15490 first_error (_("invalid condition"));
15491 return 0;
15492 }
15493 return inst.operands[0].imm;
15494 case NT_unsigned:
15495 if (inst.operands[0].imm == 0x2)
15496 return 2;
15497 else if (inst.operands[0].imm == 0x8)
15498 return 3;
15499 else
15500 {
15501 first_error (_("invalid condition"));
15502 return 0;
15503 }
15504 case NT_signed:
15505 switch (inst.operands[0].imm)
15506 {
15507 default:
15508 first_error (_("invalid condition"));
15509 return 0;
15510 case 0xa:
15511 /* ge. */
15512 return 4;
15513 case 0xb:
15514 /* lt. */
15515 return 5;
15516 case 0xc:
15517 /* gt. */
15518 return 6;
15519 case 0xd:
15520 /* le. */
15521 return 7;
15522 }
15523 }
15524 /* Should be unreachable. */
15525 abort ();
15526}
15527
15528static void
15529do_mve_vpt (void)
15530{
15531 /* We are dealing with a vector predicated block. */
15532 if (inst.operands[0].present)
15533 {
15534 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15535 struct neon_type_el et
15536 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15537 N_EQK);
15538
15539 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15540
15541 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15542
15543 if (et.type == NT_invtype)
15544 return;
15545
15546 if (et.type == NT_float)
15547 {
15548 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15549 BAD_FPU);
15550 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15551 inst.instruction |= (et.size == 16) << 28;
15552 inst.instruction |= 0x3 << 20;
15553 }
15554 else
15555 {
15556 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15557 BAD_EL_TYPE);
15558 inst.instruction |= 1 << 28;
15559 inst.instruction |= neon_logbits (et.size) << 20;
15560 }
15561
15562 if (inst.operands[2].isquad)
15563 {
15564 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15565 inst.instruction |= LOW4 (inst.operands[2].reg);
15566 inst.instruction |= (fcond & 0x2) >> 1;
15567 }
15568 else
15569 {
15570 if (inst.operands[2].reg == REG_SP)
15571 as_tsktsk (MVE_BAD_SP);
15572 inst.instruction |= 1 << 6;
15573 inst.instruction |= (fcond & 0x2) << 4;
15574 inst.instruction |= inst.operands[2].reg;
15575 }
15576 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15577 inst.instruction |= (fcond & 0x4) << 10;
15578 inst.instruction |= (fcond & 0x1) << 7;
15579
15580 }
15581 set_pred_insn_type (VPT_INSN);
15582 now_pred.cc = 0;
15583 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15584 | ((inst.instruction & 0xe000) >> 13);
15585 now_pred.warn_deprecated = FALSE;
15586 now_pred.type = VECTOR_PRED;
15587 inst.is_neon = 1;
15588}
15589
15590static void
15591do_mve_vcmp (void)
15592{
15593 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15594 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15595 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15596 if (!inst.operands[2].present)
15597 first_error (_("MVE vector or ARM register expected"));
15598 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15599
15600 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15601 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15602 && inst.operands[1].isquad)
15603 {
15604 inst.instruction = N_MNEM_vcmp;
15605 inst.cond = 0x10;
15606 }
15607
15608 if (inst.cond > COND_ALWAYS)
15609 inst.pred_insn_type = INSIDE_VPT_INSN;
15610 else
15611 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15612
15613 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15614 struct neon_type_el et
15615 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15616 N_EQK);
15617
15618 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15619 && !inst.operands[2].iszr, BAD_PC);
15620
15621 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15622
15623 inst.instruction = 0xee010f00;
15624 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15625 inst.instruction |= (fcond & 0x4) << 10;
15626 inst.instruction |= (fcond & 0x1) << 7;
15627 if (et.type == NT_float)
15628 {
15629 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15630 BAD_FPU);
15631 inst.instruction |= (et.size == 16) << 28;
15632 inst.instruction |= 0x3 << 20;
15633 }
15634 else
15635 {
15636 inst.instruction |= 1 << 28;
15637 inst.instruction |= neon_logbits (et.size) << 20;
15638 }
15639 if (inst.operands[2].isquad)
15640 {
15641 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15642 inst.instruction |= (fcond & 0x2) >> 1;
15643 inst.instruction |= LOW4 (inst.operands[2].reg);
15644 }
15645 else
15646 {
15647 if (inst.operands[2].reg == REG_SP)
15648 as_tsktsk (MVE_BAD_SP);
15649 inst.instruction |= 1 << 6;
15650 inst.instruction |= (fcond & 0x2) << 4;
15651 inst.instruction |= inst.operands[2].reg;
15652 }
15653
15654 inst.is_neon = 1;
15655 return;
15656}
15657
935295b5
AV
15658static void
15659do_mve_vmaxa_vmina (void)
15660{
15661 if (inst.cond > COND_ALWAYS)
15662 inst.pred_insn_type = INSIDE_VPT_INSN;
15663 else
15664 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15665
15666 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15667 struct neon_type_el et
15668 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15669
15670 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15671 inst.instruction |= neon_logbits (et.size) << 18;
15672 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15673 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15674 inst.instruction |= LOW4 (inst.operands[1].reg);
15675 inst.is_neon = 1;
15676}
15677
f30ee27c
AV
15678static void
15679do_mve_vfmas (void)
15680{
15681 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15682 struct neon_type_el et
15683 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15684
15685 if (inst.cond > COND_ALWAYS)
15686 inst.pred_insn_type = INSIDE_VPT_INSN;
15687 else
15688 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15689
15690 if (inst.operands[2].reg == REG_SP)
15691 as_tsktsk (MVE_BAD_SP);
15692 else if (inst.operands[2].reg == REG_PC)
15693 as_tsktsk (MVE_BAD_PC);
15694
15695 inst.instruction |= (et.size == 16) << 28;
15696 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15697 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15698 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15699 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15700 inst.instruction |= inst.operands[2].reg;
15701 inst.is_neon = 1;
15702}
15703
b409bdb6
AV
15704static void
15705do_mve_viddup (void)
15706{
15707 if (inst.cond > COND_ALWAYS)
15708 inst.pred_insn_type = INSIDE_VPT_INSN;
15709 else
15710 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15711
15712 unsigned imm = inst.relocs[0].exp.X_add_number;
15713 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15714 _("immediate must be either 1, 2, 4 or 8"));
15715
15716 enum neon_shape rs;
15717 struct neon_type_el et;
15718 unsigned Rm;
15719 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15720 {
15721 rs = neon_select_shape (NS_QRI, NS_NULL);
15722 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15723 Rm = 7;
15724 }
15725 else
15726 {
15727 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15728 if (inst.operands[2].reg == REG_SP)
15729 as_tsktsk (MVE_BAD_SP);
15730 else if (inst.operands[2].reg == REG_PC)
15731 first_error (BAD_PC);
15732
15733 rs = neon_select_shape (NS_QRRI, NS_NULL);
15734 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15735 Rm = inst.operands[2].reg >> 1;
15736 }
15737 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15738 inst.instruction |= neon_logbits (et.size) << 20;
15739 inst.instruction |= inst.operands[1].reg << 16;
15740 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15741 inst.instruction |= (imm > 2) << 7;
15742 inst.instruction |= Rm << 1;
15743 inst.instruction |= (imm == 2 || imm == 8);
15744 inst.is_neon = 1;
15745}
15746
2d78f95b
AV
15747static void
15748do_mve_vmlas (void)
15749{
15750 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15751 struct neon_type_el et
15752 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15753
15754 if (inst.operands[2].reg == REG_PC)
15755 as_tsktsk (MVE_BAD_PC);
15756 else if (inst.operands[2].reg == REG_SP)
15757 as_tsktsk (MVE_BAD_SP);
15758
15759 if (inst.cond > COND_ALWAYS)
15760 inst.pred_insn_type = INSIDE_VPT_INSN;
15761 else
15762 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15763
15764 inst.instruction |= (et.type == NT_unsigned) << 28;
15765 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15766 inst.instruction |= neon_logbits (et.size) << 20;
15767 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15768 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15769 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15770 inst.instruction |= inst.operands[2].reg;
15771 inst.is_neon = 1;
15772}
15773
4aa88b50
AV
15774static void
15775do_mve_vshrn (void)
15776{
15777 unsigned types;
15778 switch (inst.instruction)
15779 {
15780 case M_MNEM_vshrnt:
15781 case M_MNEM_vshrnb:
15782 case M_MNEM_vrshrnt:
15783 case M_MNEM_vrshrnb:
15784 types = N_I16 | N_I32;
15785 break;
15786 case M_MNEM_vqshrnt:
15787 case M_MNEM_vqshrnb:
15788 case M_MNEM_vqrshrnt:
15789 case M_MNEM_vqrshrnb:
15790 types = N_U16 | N_U32 | N_S16 | N_S32;
15791 break;
15792 case M_MNEM_vqshrunt:
15793 case M_MNEM_vqshrunb:
15794 case M_MNEM_vqrshrunt:
15795 case M_MNEM_vqrshrunb:
15796 types = N_S16 | N_S32;
15797 break;
15798 default:
15799 abort ();
15800 }
15801
15802 struct neon_type_el et = neon_check_type (2, NS_QQI, N_EQK, types | N_KEY);
15803
15804 if (inst.cond > COND_ALWAYS)
15805 inst.pred_insn_type = INSIDE_VPT_INSN;
15806 else
15807 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15808
15809 unsigned Qd = inst.operands[0].reg;
15810 unsigned Qm = inst.operands[1].reg;
15811 unsigned imm = inst.operands[2].imm;
15812 constraint (imm < 1 || ((unsigned) imm) > (et.size / 2),
15813 et.size == 16
15814 ? _("immediate operand expected in the range [1,8]")
15815 : _("immediate operand expected in the range [1,16]"));
15816
15817 inst.instruction |= (et.type == NT_unsigned) << 28;
15818 inst.instruction |= HI1 (Qd) << 22;
15819 inst.instruction |= (et.size - imm) << 16;
15820 inst.instruction |= LOW4 (Qd) << 12;
15821 inst.instruction |= HI1 (Qm) << 5;
15822 inst.instruction |= LOW4 (Qm);
15823 inst.is_neon = 1;
15824}
15825
1be7aba3
AV
15826static void
15827do_mve_vqmovn (void)
15828{
15829 struct neon_type_el et;
15830 if (inst.instruction == M_MNEM_vqmovnt
15831 || inst.instruction == M_MNEM_vqmovnb)
15832 et = neon_check_type (2, NS_QQ, N_EQK,
15833 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
15834 else
15835 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
15836
15837 if (inst.cond > COND_ALWAYS)
15838 inst.pred_insn_type = INSIDE_VPT_INSN;
15839 else
15840 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15841
15842 inst.instruction |= (et.type == NT_unsigned) << 28;
15843 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15844 inst.instruction |= (et.size == 32) << 18;
15845 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15846 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15847 inst.instruction |= LOW4 (inst.operands[1].reg);
15848 inst.is_neon = 1;
15849}
15850
3063888e
AV
15851static void
15852do_mve_vpsel (void)
15853{
15854 neon_select_shape (NS_QQQ, NS_NULL);
15855
15856 if (inst.cond > COND_ALWAYS)
15857 inst.pred_insn_type = INSIDE_VPT_INSN;
15858 else
15859 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15860
15861 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15862 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15863 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15864 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15865 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15866 inst.instruction |= LOW4 (inst.operands[2].reg);
15867 inst.is_neon = 1;
15868}
15869
15870static void
15871do_mve_vpnot (void)
15872{
15873 if (inst.cond > COND_ALWAYS)
15874 inst.pred_insn_type = INSIDE_VPT_INSN;
15875 else
15876 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15877}
15878
935295b5
AV
15879static void
15880do_mve_vmaxnma_vminnma (void)
15881{
15882 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15883 struct neon_type_el et
15884 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15885
15886 if (inst.cond > COND_ALWAYS)
15887 inst.pred_insn_type = INSIDE_VPT_INSN;
15888 else
15889 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15890
15891 inst.instruction |= (et.size == 16) << 28;
15892 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15893 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15894 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15895 inst.instruction |= LOW4 (inst.operands[1].reg);
15896 inst.is_neon = 1;
15897}
15898
5d281bf0
AV
15899static void
15900do_mve_vcmul (void)
15901{
15902 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15903 struct neon_type_el et
15904 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15905
15906 if (inst.cond > COND_ALWAYS)
15907 inst.pred_insn_type = INSIDE_VPT_INSN;
15908 else
15909 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15910
15911 unsigned rot = inst.relocs[0].exp.X_add_number;
15912 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15913 _("immediate out of range"));
15914
15915 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15916 || inst.operands[0].reg == inst.operands[2].reg))
15917 as_tsktsk (BAD_MVE_SRCDEST);
15918
15919 inst.instruction |= (et.size == 32) << 28;
15920 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15921 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15922 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15923 inst.instruction |= (rot > 90) << 12;
15924 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15925 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15926 inst.instruction |= LOW4 (inst.operands[2].reg);
15927 inst.instruction |= (rot == 90 || rot == 270);
15928 inst.is_neon = 1;
15929}
15930
037e8744
JB
15931static void
15932do_vfp_nsyn_cmp (void)
15933{
9db2f6b4 15934 enum neon_shape rs;
1b883319
AV
15935 if (!inst.operands[0].isreg)
15936 {
15937 do_mve_vcmp ();
15938 return;
15939 }
15940 else
15941 {
15942 constraint (inst.operands[2].present, BAD_SYNTAX);
15943 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15944 BAD_FPU);
15945 }
15946
037e8744
JB
15947 if (inst.operands[1].isreg)
15948 {
9db2f6b4
RL
15949 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15950 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
5f4273c7 15951
9db2f6b4 15952 if (rs == NS_FF || rs == NS_HH)
477330fc
RM
15953 {
15954 NEON_ENCODE (SINGLE, inst);
15955 do_vfp_sp_monadic ();
15956 }
037e8744 15957 else
477330fc
RM
15958 {
15959 NEON_ENCODE (DOUBLE, inst);
15960 do_vfp_dp_rd_rm ();
15961 }
037e8744
JB
15962 }
15963 else
15964 {
9db2f6b4
RL
15965 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15966 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
037e8744
JB
15967
15968 switch (inst.instruction & 0x0fffffff)
477330fc
RM
15969 {
15970 case N_MNEM_vcmp:
15971 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15972 break;
15973 case N_MNEM_vcmpe:
15974 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15975 break;
15976 default:
15977 abort ();
15978 }
5f4273c7 15979
9db2f6b4 15980 if (rs == NS_FI || rs == NS_HI)
477330fc
RM
15981 {
15982 NEON_ENCODE (SINGLE, inst);
15983 do_vfp_sp_compare_z ();
15984 }
037e8744 15985 else
477330fc
RM
15986 {
15987 NEON_ENCODE (DOUBLE, inst);
15988 do_vfp_dp_rd ();
15989 }
037e8744
JB
15990 }
15991 do_vfp_cond_or_thumb ();
9db2f6b4
RL
15992
15993 /* ARMv8.2 fp16 instruction. */
15994 if (rs == NS_HI || rs == NS_HH)
15995 do_scalar_fp16_v82_encode ();
037e8744
JB
15996}
15997
15998static void
15999nsyn_insert_sp (void)
16000{
16001 inst.operands[1] = inst.operands[0];
16002 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 16003 inst.operands[0].reg = REG_SP;
037e8744
JB
16004 inst.operands[0].isreg = 1;
16005 inst.operands[0].writeback = 1;
16006 inst.operands[0].present = 1;
16007}
16008
16009static void
16010do_vfp_nsyn_push (void)
16011{
16012 nsyn_insert_sp ();
b126985e
NC
16013
16014 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16015 _("register list must contain at least 1 and at most 16 "
16016 "registers"));
16017
037e8744
JB
16018 if (inst.operands[1].issingle)
16019 do_vfp_nsyn_opcode ("fstmdbs");
16020 else
16021 do_vfp_nsyn_opcode ("fstmdbd");
16022}
16023
16024static void
16025do_vfp_nsyn_pop (void)
16026{
16027 nsyn_insert_sp ();
b126985e
NC
16028
16029 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
16030 _("register list must contain at least 1 and at most 16 "
16031 "registers"));
16032
037e8744 16033 if (inst.operands[1].issingle)
22b5b651 16034 do_vfp_nsyn_opcode ("fldmias");
037e8744 16035 else
22b5b651 16036 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
16037}
16038
16039/* Fix up Neon data-processing instructions, ORing in the correct bits for
16040 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
16041
88714cb8
DG
16042static void
16043neon_dp_fixup (struct arm_it* insn)
037e8744 16044{
88714cb8
DG
16045 unsigned int i = insn->instruction;
16046 insn->is_neon = 1;
16047
037e8744
JB
16048 if (thumb_mode)
16049 {
16050 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
16051 if (i & (1 << 24))
477330fc 16052 i |= 1 << 28;
5f4273c7 16053
037e8744 16054 i &= ~(1 << 24);
5f4273c7 16055
037e8744
JB
16056 i |= 0xef000000;
16057 }
16058 else
16059 i |= 0xf2000000;
5f4273c7 16060
88714cb8 16061 insn->instruction = i;
037e8744
JB
16062}
16063
5ee91343 16064static void
7df54120 16065mve_encode_qqr (int size, int U, int fp)
5ee91343
AV
16066{
16067 if (inst.operands[2].reg == REG_SP)
16068 as_tsktsk (MVE_BAD_SP);
16069 else if (inst.operands[2].reg == REG_PC)
16070 as_tsktsk (MVE_BAD_PC);
16071
16072 if (fp)
16073 {
16074 /* vadd. */
16075 if (((unsigned)inst.instruction) == 0xd00)
16076 inst.instruction = 0xee300f40;
16077 /* vsub. */
16078 else if (((unsigned)inst.instruction) == 0x200d00)
16079 inst.instruction = 0xee301f40;
a8465a06
AV
16080 /* vmul. */
16081 else if (((unsigned)inst.instruction) == 0x1000d10)
16082 inst.instruction = 0xee310e60;
5ee91343
AV
16083
16084 /* Setting size which is 1 for F16 and 0 for F32. */
16085 inst.instruction |= (size == 16) << 28;
16086 }
16087 else
16088 {
16089 /* vadd. */
16090 if (((unsigned)inst.instruction) == 0x800)
16091 inst.instruction = 0xee010f40;
16092 /* vsub. */
16093 else if (((unsigned)inst.instruction) == 0x1000800)
16094 inst.instruction = 0xee011f40;
7df54120
AV
16095 /* vhadd. */
16096 else if (((unsigned)inst.instruction) == 0)
16097 inst.instruction = 0xee000f40;
16098 /* vhsub. */
16099 else if (((unsigned)inst.instruction) == 0x200)
16100 inst.instruction = 0xee001f40;
a8465a06
AV
16101 /* vmla. */
16102 else if (((unsigned)inst.instruction) == 0x900)
16103 inst.instruction = 0xee010e40;
16104 /* vmul. */
16105 else if (((unsigned)inst.instruction) == 0x910)
16106 inst.instruction = 0xee011e60;
16107 /* vqadd. */
16108 else if (((unsigned)inst.instruction) == 0x10)
16109 inst.instruction = 0xee000f60;
16110 /* vqsub. */
16111 else if (((unsigned)inst.instruction) == 0x210)
16112 inst.instruction = 0xee001f60;
42b16635
AV
16113 /* vqrdmlah. */
16114 else if (((unsigned)inst.instruction) == 0x3000b10)
16115 inst.instruction = 0xee000e40;
16116 /* vqdmulh. */
16117 else if (((unsigned)inst.instruction) == 0x0000b00)
16118 inst.instruction = 0xee010e60;
16119 /* vqrdmulh. */
16120 else if (((unsigned)inst.instruction) == 0x1000b00)
16121 inst.instruction = 0xfe010e60;
7df54120
AV
16122
16123 /* Set U-bit. */
16124 inst.instruction |= U << 28;
16125
5ee91343
AV
16126 /* Setting bits for size. */
16127 inst.instruction |= neon_logbits (size) << 20;
16128 }
16129 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16130 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16131 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16132 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16133 inst.instruction |= inst.operands[2].reg;
16134 inst.is_neon = 1;
16135}
16136
a302e574
AV
16137static void
16138mve_encode_rqq (unsigned bit28, unsigned size)
16139{
16140 inst.instruction |= bit28 << 28;
16141 inst.instruction |= neon_logbits (size) << 20;
16142 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16143 inst.instruction |= inst.operands[0].reg << 12;
16144 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16145 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16146 inst.instruction |= LOW4 (inst.operands[2].reg);
16147 inst.is_neon = 1;
16148}
16149
886e1c73
AV
16150static void
16151mve_encode_qqq (int ubit, int size)
16152{
16153
16154 inst.instruction |= (ubit != 0) << 28;
16155 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16156 inst.instruction |= neon_logbits (size) << 20;
16157 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16158 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16159 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16160 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16161 inst.instruction |= LOW4 (inst.operands[2].reg);
16162
16163 inst.is_neon = 1;
16164}
16165
26c1e780
AV
16166static void
16167mve_encode_rq (unsigned bit28, unsigned size)
16168{
16169 inst.instruction |= bit28 << 28;
16170 inst.instruction |= neon_logbits (size) << 18;
16171 inst.instruction |= inst.operands[0].reg << 12;
16172 inst.instruction |= LOW4 (inst.operands[1].reg);
16173 inst.is_neon = 1;
16174}
886e1c73 16175
93925576
AV
16176static void
16177mve_encode_rrqq (unsigned U, unsigned size)
16178{
16179 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16180
16181 inst.instruction |= U << 28;
16182 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16183 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16184 inst.instruction |= (size == 32) << 16;
16185 inst.instruction |= inst.operands[0].reg << 12;
16186 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16187 inst.instruction |= inst.operands[3].reg;
16188 inst.is_neon = 1;
16189}
16190
037e8744
JB
16191/* Encode insns with bit pattern:
16192
16193 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16194 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 16195
037e8744
JB
16196 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16197 different meaning for some instruction. */
16198
16199static void
16200neon_three_same (int isquad, int ubit, int size)
16201{
16202 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16203 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16204 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16205 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16206 inst.instruction |= LOW4 (inst.operands[2].reg);
16207 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16208 inst.instruction |= (isquad != 0) << 6;
16209 inst.instruction |= (ubit != 0) << 24;
16210 if (size != -1)
16211 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 16212
88714cb8 16213 neon_dp_fixup (&inst);
037e8744
JB
16214}
16215
16216/* Encode instructions of the form:
16217
16218 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16219 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
16220
16221 Don't write size if SIZE == -1. */
16222
16223static void
16224neon_two_same (int qbit, int ubit, int size)
16225{
16226 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16227 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16228 inst.instruction |= LOW4 (inst.operands[1].reg);
16229 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16230 inst.instruction |= (qbit != 0) << 6;
16231 inst.instruction |= (ubit != 0) << 24;
16232
16233 if (size != -1)
16234 inst.instruction |= neon_logbits (size) << 18;
16235
88714cb8 16236 neon_dp_fixup (&inst);
5287ad62
JB
16237}
16238
7df54120
AV
16239enum vfp_or_neon_is_neon_bits
16240{
16241NEON_CHECK_CC = 1,
16242NEON_CHECK_ARCH = 2,
16243NEON_CHECK_ARCH8 = 4
16244};
16245
16246/* Call this function if an instruction which may have belonged to the VFP or
16247 Neon instruction sets, but turned out to be a Neon instruction (due to the
16248 operand types involved, etc.). We have to check and/or fix-up a couple of
16249 things:
16250
16251 - Make sure the user hasn't attempted to make a Neon instruction
16252 conditional.
16253 - Alter the value in the condition code field if necessary.
16254 - Make sure that the arch supports Neon instructions.
16255
16256 Which of these operations take place depends on bits from enum
16257 vfp_or_neon_is_neon_bits.
16258
16259 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16260 current instruction's condition is COND_ALWAYS, the condition field is
16261 changed to inst.uncond_value. This is necessary because instructions shared
16262 between VFP and Neon may be conditional for the VFP variants only, and the
16263 unconditional Neon version must have, e.g., 0xF in the condition field. */
16264
16265static int
16266vfp_or_neon_is_neon (unsigned check)
16267{
16268/* Conditions are always legal in Thumb mode (IT blocks). */
16269if (!thumb_mode && (check & NEON_CHECK_CC))
16270 {
16271 if (inst.cond != COND_ALWAYS)
16272 {
16273 first_error (_(BAD_COND));
16274 return FAIL;
16275 }
16276 if (inst.uncond_value != -1)
16277 inst.instruction |= inst.uncond_value << 28;
16278 }
16279
16280
16281 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16282 || ((check & NEON_CHECK_ARCH8)
16283 && !mark_feature_used (&fpu_neon_ext_armv8)))
16284 {
16285 first_error (_(BAD_FPU));
16286 return FAIL;
16287 }
16288
16289return SUCCESS;
16290}
16291
16292static int
16293check_simd_pred_availability (int fp, unsigned check)
16294{
16295if (inst.cond > COND_ALWAYS)
16296 {
16297 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16298 {
16299 inst.error = BAD_FPU;
16300 return 1;
16301 }
16302 inst.pred_insn_type = INSIDE_VPT_INSN;
16303 }
16304else if (inst.cond < COND_ALWAYS)
16305 {
16306 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16307 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16308 else if (vfp_or_neon_is_neon (check) == FAIL)
16309 return 2;
16310 }
16311else
16312 {
16313 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16314 && vfp_or_neon_is_neon (check) == FAIL)
16315 return 3;
16316
16317 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16318 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16319 }
16320return 0;
16321}
16322
5287ad62
JB
16323/* Neon instruction encoders, in approximate order of appearance. */
16324
16325static void
16326do_neon_dyadic_i_su (void)
16327{
7df54120
AV
16328 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16329 return;
16330
16331 enum neon_shape rs;
16332 struct neon_type_el et;
16333 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16334 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16335 else
16336 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16337
16338 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16339
16340
16341 if (rs != NS_QQR)
16342 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16343 else
16344 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
5287ad62
JB
16345}
16346
16347static void
16348do_neon_dyadic_i64_su (void)
16349{
a8465a06
AV
16350 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16351 return;
16352 enum neon_shape rs;
16353 struct neon_type_el et;
16354 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16355 {
16356 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16357 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16358 }
16359 else
16360 {
16361 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16362 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16363 }
16364 if (rs == NS_QQR)
16365 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16366 else
16367 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
16368}
16369
16370static void
16371neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
477330fc 16372 unsigned immbits)
5287ad62
JB
16373{
16374 unsigned size = et.size >> 3;
16375 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16376 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16377 inst.instruction |= LOW4 (inst.operands[1].reg);
16378 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16379 inst.instruction |= (isquad != 0) << 6;
16380 inst.instruction |= immbits << 16;
16381 inst.instruction |= (size >> 3) << 7;
16382 inst.instruction |= (size & 0x7) << 19;
16383 if (write_ubit)
16384 inst.instruction |= (uval != 0) << 24;
16385
88714cb8 16386 neon_dp_fixup (&inst);
5287ad62
JB
16387}
16388
16389static void
5150f0d8 16390do_neon_shl (void)
5287ad62 16391{
5150f0d8
AV
16392 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16393 return;
16394
5287ad62
JB
16395 if (!inst.operands[2].isreg)
16396 {
5150f0d8
AV
16397 enum neon_shape rs;
16398 struct neon_type_el et;
16399 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16400 {
16401 rs = neon_select_shape (NS_QQI, NS_NULL);
16402 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_MVE);
16403 }
16404 else
16405 {
16406 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16407 et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16408 }
cb3b1e65
JB
16409 int imm = inst.operands[2].imm;
16410
16411 constraint (imm < 0 || (unsigned)imm >= et.size,
16412 _("immediate out of range for shift"));
88714cb8 16413 NEON_ENCODE (IMMED, inst);
cb3b1e65 16414 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
16415 }
16416 else
16417 {
5150f0d8
AV
16418 enum neon_shape rs;
16419 struct neon_type_el et;
16420 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16421 {
16422 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16423 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16424 }
16425 else
16426 {
16427 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16428 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16429 }
16430
16431
16432 if (rs == NS_QQR)
16433 {
16434 constraint (inst.operands[0].reg != inst.operands[1].reg,
16435 _("invalid instruction shape"));
16436 if (inst.operands[2].reg == REG_SP)
16437 as_tsktsk (MVE_BAD_SP);
16438 else if (inst.operands[2].reg == REG_PC)
16439 as_tsktsk (MVE_BAD_PC);
16440
16441 inst.instruction = 0xee311e60;
16442 inst.instruction |= (et.type == NT_unsigned) << 28;
16443 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16444 inst.instruction |= neon_logbits (et.size) << 18;
16445 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16446 inst.instruction |= inst.operands[2].reg;
16447 inst.is_neon = 1;
16448 }
16449 else
16450 {
16451 unsigned int tmp;
16452
16453 /* VSHL/VQSHL 3-register variants have syntax such as:
16454 vshl.xx Dd, Dm, Dn
16455 whereas other 3-register operations encoded by neon_three_same have
16456 syntax like:
16457 vadd.xx Dd, Dn, Dm
16458 (i.e. with Dn & Dm reversed). Swap operands[1].reg and
16459 operands[2].reg here. */
16460 tmp = inst.operands[2].reg;
16461 inst.operands[2].reg = inst.operands[1].reg;
16462 inst.operands[1].reg = tmp;
16463 NEON_ENCODE (INTEGER, inst);
16464 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16465 }
5287ad62
JB
16466 }
16467}
16468
16469static void
5150f0d8 16470do_neon_qshl (void)
5287ad62 16471{
5150f0d8
AV
16472 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16473 return;
16474
5287ad62
JB
16475 if (!inst.operands[2].isreg)
16476 {
5150f0d8
AV
16477 enum neon_shape rs;
16478 struct neon_type_el et;
16479 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16480 {
16481 rs = neon_select_shape (NS_QQI, NS_NULL);
16482 et = neon_check_type (2, rs, N_EQK, N_KEY | N_SU_MVE);
16483 }
16484 else
16485 {
16486 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16487 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16488 }
cb3b1e65 16489 int imm = inst.operands[2].imm;
627907b7 16490
cb3b1e65
JB
16491 constraint (imm < 0 || (unsigned)imm >= et.size,
16492 _("immediate out of range for shift"));
88714cb8 16493 NEON_ENCODE (IMMED, inst);
cb3b1e65 16494 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
5287ad62
JB
16495 }
16496 else
16497 {
5150f0d8
AV
16498 enum neon_shape rs;
16499 struct neon_type_el et;
627907b7 16500
5150f0d8
AV
16501 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16502 {
16503 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16504 et = neon_check_type (3, rs, N_EQK, N_SU_MVE | N_KEY, N_EQK | N_EQK);
16505 }
16506 else
16507 {
16508 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16509 et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16510 }
16511
16512 if (rs == NS_QQR)
16513 {
16514 constraint (inst.operands[0].reg != inst.operands[1].reg,
16515 _("invalid instruction shape"));
16516 if (inst.operands[2].reg == REG_SP)
16517 as_tsktsk (MVE_BAD_SP);
16518 else if (inst.operands[2].reg == REG_PC)
16519 as_tsktsk (MVE_BAD_PC);
16520
16521 inst.instruction = 0xee311ee0;
16522 inst.instruction |= (et.type == NT_unsigned) << 28;
16523 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16524 inst.instruction |= neon_logbits (et.size) << 18;
16525 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16526 inst.instruction |= inst.operands[2].reg;
16527 inst.is_neon = 1;
16528 }
16529 else
16530 {
16531 unsigned int tmp;
16532
16533 /* See note in do_neon_shl. */
16534 tmp = inst.operands[2].reg;
16535 inst.operands[2].reg = inst.operands[1].reg;
16536 inst.operands[1].reg = tmp;
16537 NEON_ENCODE (INTEGER, inst);
16538 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16539 }
5287ad62
JB
16540 }
16541}
16542
627907b7
JB
16543static void
16544do_neon_rshl (void)
16545{
1be7aba3
AV
16546 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16547 return;
16548
16549 enum neon_shape rs;
16550 struct neon_type_el et;
16551 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16552 {
16553 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16554 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16555 }
16556 else
16557 {
16558 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16559 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16560 }
16561
627907b7
JB
16562 unsigned int tmp;
16563
1be7aba3
AV
16564 if (rs == NS_QQR)
16565 {
16566 if (inst.operands[2].reg == REG_PC)
16567 as_tsktsk (MVE_BAD_PC);
16568 else if (inst.operands[2].reg == REG_SP)
16569 as_tsktsk (MVE_BAD_SP);
16570
16571 constraint (inst.operands[0].reg != inst.operands[1].reg,
16572 _("invalid instruction shape"));
16573
16574 if (inst.instruction == 0x0000510)
16575 /* We are dealing with vqrshl. */
16576 inst.instruction = 0xee331ee0;
16577 else
16578 /* We are dealing with vrshl. */
16579 inst.instruction = 0xee331e60;
16580
16581 inst.instruction |= (et.type == NT_unsigned) << 28;
16582 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16583 inst.instruction |= neon_logbits (et.size) << 18;
16584 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16585 inst.instruction |= inst.operands[2].reg;
16586 inst.is_neon = 1;
16587 }
16588 else
16589 {
16590 tmp = inst.operands[2].reg;
16591 inst.operands[2].reg = inst.operands[1].reg;
16592 inst.operands[1].reg = tmp;
16593 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16594 }
627907b7
JB
16595}
16596
5287ad62
JB
16597static int
16598neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16599{
036dc3f7
PB
16600 /* Handle .I8 pseudo-instructions. */
16601 if (size == 8)
5287ad62 16602 {
5287ad62 16603 /* Unfortunately, this will make everything apart from zero out-of-range.
477330fc
RM
16604 FIXME is this the intended semantics? There doesn't seem much point in
16605 accepting .I8 if so. */
5287ad62
JB
16606 immediate |= immediate << 8;
16607 size = 16;
036dc3f7
PB
16608 }
16609
16610 if (size >= 32)
16611 {
16612 if (immediate == (immediate & 0x000000ff))
16613 {
16614 *immbits = immediate;
16615 return 0x1;
16616 }
16617 else if (immediate == (immediate & 0x0000ff00))
16618 {
16619 *immbits = immediate >> 8;
16620 return 0x3;
16621 }
16622 else if (immediate == (immediate & 0x00ff0000))
16623 {
16624 *immbits = immediate >> 16;
16625 return 0x5;
16626 }
16627 else if (immediate == (immediate & 0xff000000))
16628 {
16629 *immbits = immediate >> 24;
16630 return 0x7;
16631 }
16632 if ((immediate & 0xffff) != (immediate >> 16))
16633 goto bad_immediate;
16634 immediate &= 0xffff;
5287ad62
JB
16635 }
16636
16637 if (immediate == (immediate & 0x000000ff))
16638 {
16639 *immbits = immediate;
036dc3f7 16640 return 0x9;
5287ad62
JB
16641 }
16642 else if (immediate == (immediate & 0x0000ff00))
16643 {
16644 *immbits = immediate >> 8;
036dc3f7 16645 return 0xb;
5287ad62
JB
16646 }
16647
16648 bad_immediate:
dcbf9037 16649 first_error (_("immediate value out of range"));
5287ad62
JB
16650 return FAIL;
16651}
16652
5287ad62
JB
16653static void
16654do_neon_logic (void)
16655{
16656 if (inst.operands[2].present && inst.operands[2].isreg)
16657 {
037e8744 16658 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
f601a00c
AV
16659 if (rs == NS_QQQ
16660 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16661 == FAIL)
16662 return;
16663 else if (rs != NS_QQQ
16664 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16665 first_error (BAD_FPU);
16666
5287ad62
JB
16667 neon_check_type (3, rs, N_IGNORE_TYPE);
16668 /* U bit and size field were set as part of the bitmask. */
88714cb8 16669 NEON_ENCODE (INTEGER, inst);
037e8744 16670 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16671 }
16672 else
16673 {
4316f0d2
DG
16674 const int three_ops_form = (inst.operands[2].present
16675 && !inst.operands[2].isreg);
16676 const int immoperand = (three_ops_form ? 2 : 1);
16677 enum neon_shape rs = (three_ops_form
16678 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16679 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
f601a00c
AV
16680 /* Because neon_select_shape makes the second operand a copy of the first
16681 if the second operand is not present. */
16682 if (rs == NS_QQI
16683 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16684 == FAIL)
16685 return;
16686 else if (rs != NS_QQI
16687 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16688 first_error (BAD_FPU);
16689
16690 struct neon_type_el et;
16691 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16692 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16693 else
16694 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16695 | N_KEY, N_EQK);
16696
16697 if (et.type == NT_invtype)
16698 return;
21d799b5 16699 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
16700 unsigned immbits;
16701 int cmode;
5f4273c7 16702
5f4273c7 16703
4316f0d2
DG
16704 if (three_ops_form)
16705 constraint (inst.operands[0].reg != inst.operands[1].reg,
16706 _("first and second operands shall be the same register"));
16707
88714cb8 16708 NEON_ENCODE (IMMED, inst);
5287ad62 16709
4316f0d2 16710 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
16711 if (et.size == 64)
16712 {
16713 /* .i64 is a pseudo-op, so the immediate must be a repeating
16714 pattern. */
4316f0d2
DG
16715 if (immbits != (inst.operands[immoperand].regisimm ?
16716 inst.operands[immoperand].reg : 0))
036dc3f7
PB
16717 {
16718 /* Set immbits to an invalid constant. */
16719 immbits = 0xdeadbeef;
16720 }
16721 }
16722
5287ad62 16723 switch (opcode)
477330fc
RM
16724 {
16725 case N_MNEM_vbic:
16726 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16727 break;
16728
16729 case N_MNEM_vorr:
16730 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16731 break;
16732
16733 case N_MNEM_vand:
16734 /* Pseudo-instruction for VBIC. */
16735 neon_invert_size (&immbits, 0, et.size);
16736 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16737 break;
16738
16739 case N_MNEM_vorn:
16740 /* Pseudo-instruction for VORR. */
16741 neon_invert_size (&immbits, 0, et.size);
16742 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16743 break;
16744
16745 default:
16746 abort ();
16747 }
5287ad62
JB
16748
16749 if (cmode == FAIL)
477330fc 16750 return;
5287ad62 16751
037e8744 16752 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
16753 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16754 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16755 inst.instruction |= cmode << 8;
16756 neon_write_immbits (immbits);
5f4273c7 16757
88714cb8 16758 neon_dp_fixup (&inst);
5287ad62
JB
16759 }
16760}
16761
16762static void
16763do_neon_bitfield (void)
16764{
037e8744 16765 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 16766 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 16767 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
16768}
16769
16770static void
dcbf9037 16771neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
477330fc 16772 unsigned destbits)
5287ad62 16773{
5ee91343 16774 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
dcbf9037 16775 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
477330fc 16776 types | N_KEY);
5287ad62
JB
16777 if (et.type == NT_float)
16778 {
88714cb8 16779 NEON_ENCODE (FLOAT, inst);
5ee91343 16780 if (rs == NS_QQR)
7df54120 16781 mve_encode_qqr (et.size, 0, 1);
5ee91343
AV
16782 else
16783 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
16784 }
16785 else
16786 {
88714cb8 16787 NEON_ENCODE (INTEGER, inst);
5ee91343 16788 if (rs == NS_QQR)
a8465a06 16789 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
5ee91343
AV
16790 else
16791 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
16792 }
16793}
16794
5287ad62
JB
16795
16796static void
16797do_neon_dyadic_if_su_d (void)
16798{
16799 /* This version only allow D registers, but that constraint is enforced during
16800 operand parsing so we don't need to do anything extra here. */
dcbf9037 16801 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
16802}
16803
5287ad62
JB
16804static void
16805do_neon_dyadic_if_i_d (void)
16806{
428e3f1f
PB
16807 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16808 affected if we specify unsigned args. */
16809 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
16810}
16811
f5f10c66
AV
16812static void
16813do_mve_vstr_vldr_QI (int size, int elsize, int load)
16814{
16815 constraint (size < 32, BAD_ADDR_MODE);
16816 constraint (size != elsize, BAD_EL_TYPE);
16817 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16818 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16819 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16820 _("destination register and offset register may not be the"
16821 " same"));
16822
16823 int imm = inst.relocs[0].exp.X_add_number;
16824 int add = 1;
16825 if (imm < 0)
16826 {
16827 add = 0;
16828 imm = -imm;
16829 }
16830 constraint ((imm % (size / 8) != 0)
16831 || imm > (0x7f << neon_logbits (size)),
16832 (size == 32) ? _("immediate must be a multiple of 4 in the"
16833 " range of +/-[0,508]")
16834 : _("immediate must be a multiple of 8 in the"
16835 " range of +/-[0,1016]"));
16836 inst.instruction |= 0x11 << 24;
16837 inst.instruction |= add << 23;
16838 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16839 inst.instruction |= inst.operands[1].writeback << 21;
16840 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16841 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16842 inst.instruction |= 1 << 12;
16843 inst.instruction |= (size == 64) << 8;
16844 inst.instruction &= 0xffffff00;
16845 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16846 inst.instruction |= imm >> neon_logbits (size);
16847}
16848
16849static void
16850do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16851{
16852 unsigned os = inst.operands[1].imm >> 5;
16853 constraint (os != 0 && size == 8,
16854 _("can not shift offsets when accessing less than half-word"));
16855 constraint (os && os != neon_logbits (size),
16856 _("shift immediate must be 1, 2 or 3 for half-word, word"
16857 " or double-word accesses respectively"));
16858 if (inst.operands[1].reg == REG_PC)
16859 as_tsktsk (MVE_BAD_PC);
16860
16861 switch (size)
16862 {
16863 case 8:
16864 constraint (elsize >= 64, BAD_EL_TYPE);
16865 break;
16866 case 16:
16867 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16868 break;
16869 case 32:
16870 case 64:
16871 constraint (elsize != size, BAD_EL_TYPE);
16872 break;
16873 default:
16874 break;
16875 }
16876 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16877 BAD_ADDR_MODE);
16878 if (load)
16879 {
16880 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16881 _("destination register and offset register may not be"
16882 " the same"));
16883 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16884 BAD_EL_TYPE);
16885 constraint (inst.vectype.el[0].type != NT_unsigned
16886 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16887 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16888 }
16889 else
16890 {
16891 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16892 }
16893
16894 inst.instruction |= 1 << 23;
16895 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16896 inst.instruction |= inst.operands[1].reg << 16;
16897 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16898 inst.instruction |= neon_logbits (elsize) << 7;
16899 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16900 inst.instruction |= LOW4 (inst.operands[1].imm);
16901 inst.instruction |= !!os;
16902}
16903
16904static void
16905do_mve_vstr_vldr_RI (int size, int elsize, int load)
16906{
16907 enum neon_el_type type = inst.vectype.el[0].type;
16908
16909 constraint (size >= 64, BAD_ADDR_MODE);
16910 switch (size)
16911 {
16912 case 16:
16913 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16914 break;
16915 case 32:
16916 constraint (elsize != size, BAD_EL_TYPE);
16917 break;
16918 default:
16919 break;
16920 }
16921 if (load)
16922 {
16923 constraint (elsize != size && type != NT_unsigned
16924 && type != NT_signed, BAD_EL_TYPE);
16925 }
16926 else
16927 {
16928 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16929 }
16930
16931 int imm = inst.relocs[0].exp.X_add_number;
16932 int add = 1;
16933 if (imm < 0)
16934 {
16935 add = 0;
16936 imm = -imm;
16937 }
16938
16939 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16940 {
16941 switch (size)
16942 {
16943 case 8:
16944 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16945 break;
16946 case 16:
16947 constraint (1, _("immediate must be a multiple of 2 in the"
16948 " range of +/-[0,254]"));
16949 break;
16950 case 32:
16951 constraint (1, _("immediate must be a multiple of 4 in the"
16952 " range of +/-[0,508]"));
16953 break;
16954 }
16955 }
16956
16957 if (size != elsize)
16958 {
16959 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16960 constraint (inst.operands[0].reg > 14,
16961 _("MVE vector register in the range [Q0..Q7] expected"));
16962 inst.instruction |= (load && type == NT_unsigned) << 28;
16963 inst.instruction |= (size == 16) << 19;
16964 inst.instruction |= neon_logbits (elsize) << 7;
16965 }
16966 else
16967 {
16968 if (inst.operands[1].reg == REG_PC)
16969 as_tsktsk (MVE_BAD_PC);
16970 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16971 as_tsktsk (MVE_BAD_SP);
16972 inst.instruction |= 1 << 12;
16973 inst.instruction |= neon_logbits (size) << 7;
16974 }
16975 inst.instruction |= inst.operands[1].preind << 24;
16976 inst.instruction |= add << 23;
16977 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16978 inst.instruction |= inst.operands[1].writeback << 21;
16979 inst.instruction |= inst.operands[1].reg << 16;
16980 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16981 inst.instruction &= 0xffffff80;
16982 inst.instruction |= imm >> neon_logbits (size);
16983
16984}
16985
16986static void
16987do_mve_vstr_vldr (void)
16988{
16989 unsigned size;
16990 int load = 0;
16991
16992 if (inst.cond > COND_ALWAYS)
16993 inst.pred_insn_type = INSIDE_VPT_INSN;
16994 else
16995 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16996
16997 switch (inst.instruction)
16998 {
16999 default:
17000 gas_assert (0);
17001 break;
17002 case M_MNEM_vldrb:
17003 load = 1;
17004 /* fall through. */
17005 case M_MNEM_vstrb:
17006 size = 8;
17007 break;
17008 case M_MNEM_vldrh:
17009 load = 1;
17010 /* fall through. */
17011 case M_MNEM_vstrh:
17012 size = 16;
17013 break;
17014 case M_MNEM_vldrw:
17015 load = 1;
17016 /* fall through. */
17017 case M_MNEM_vstrw:
17018 size = 32;
17019 break;
17020 case M_MNEM_vldrd:
17021 load = 1;
17022 /* fall through. */
17023 case M_MNEM_vstrd:
17024 size = 64;
17025 break;
17026 }
17027 unsigned elsize = inst.vectype.el[0].size;
17028
17029 if (inst.operands[1].isquad)
17030 {
17031 /* We are dealing with [Q, imm]{!} cases. */
17032 do_mve_vstr_vldr_QI (size, elsize, load);
17033 }
17034 else
17035 {
17036 if (inst.operands[1].immisreg == 2)
17037 {
17038 /* We are dealing with [R, Q, {UXTW #os}] cases. */
17039 do_mve_vstr_vldr_RQ (size, elsize, load);
17040 }
17041 else if (!inst.operands[1].immisreg)
17042 {
17043 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
17044 do_mve_vstr_vldr_RI (size, elsize, load);
17045 }
17046 else
17047 constraint (1, BAD_ADDR_MODE);
17048 }
17049
17050 inst.is_neon = 1;
17051}
17052
35c228db
AV
17053static void
17054do_mve_vst_vld (void)
17055{
17056 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17057 return;
17058
17059 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
17060 || inst.relocs[0].exp.X_add_number != 0
17061 || inst.operands[1].immisreg != 0,
17062 BAD_ADDR_MODE);
17063 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
17064 if (inst.operands[1].reg == REG_PC)
17065 as_tsktsk (MVE_BAD_PC);
17066 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
17067 as_tsktsk (MVE_BAD_SP);
17068
17069
17070 /* These instructions are one of the "exceptions" mentioned in
17071 handle_pred_state. They are MVE instructions that are not VPT compatible
17072 and do not accept a VPT code, thus appending such a code is a syntax
17073 error. */
17074 if (inst.cond > COND_ALWAYS)
17075 first_error (BAD_SYNTAX);
17076 /* If we append a scalar condition code we can set this to
17077 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
17078 else if (inst.cond < COND_ALWAYS)
17079 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17080 else
17081 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
17082
17083 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17084 inst.instruction |= inst.operands[1].writeback << 21;
17085 inst.instruction |= inst.operands[1].reg << 16;
17086 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17087 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
17088 inst.is_neon = 1;
17089}
17090
26c1e780
AV
17091static void
17092do_mve_vaddlv (void)
17093{
17094 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
17095 struct neon_type_el et
17096 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
17097
17098 if (et.type == NT_invtype)
17099 first_error (BAD_EL_TYPE);
17100
17101 if (inst.cond > COND_ALWAYS)
17102 inst.pred_insn_type = INSIDE_VPT_INSN;
17103 else
17104 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17105
17106 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17107
17108 inst.instruction |= (et.type == NT_unsigned) << 28;
17109 inst.instruction |= inst.operands[1].reg << 19;
17110 inst.instruction |= inst.operands[0].reg << 12;
17111 inst.instruction |= inst.operands[2].reg;
17112 inst.is_neon = 1;
17113}
17114
5287ad62 17115static void
5ee91343 17116do_neon_dyadic_if_su (void)
5287ad62 17117{
5ee91343
AV
17118 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17119 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17120 N_SUF_32 | N_KEY);
17121
935295b5
AV
17122 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
17123 || inst.instruction == ((unsigned) N_MNEM_vmin))
17124 && et.type == NT_float
17125 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
17126
5ee91343
AV
17127 if (check_simd_pred_availability (et.type == NT_float,
17128 NEON_CHECK_ARCH | NEON_CHECK_CC))
037e8744
JB
17129 return;
17130
5ee91343
AV
17131 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
17132}
17133
17134static void
17135do_neon_addsub_if_i (void)
17136{
17137 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
17138 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
037e8744
JB
17139 return;
17140
5ee91343
AV
17141 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
17142 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
17143 N_EQK, N_IF_32 | N_I64 | N_KEY);
17144
17145 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
17146 /* If we are parsing Q registers and the element types match MVE, which NEON
17147 also supports, then we must check whether this is an instruction that can
17148 be used by both MVE/NEON. This distinction can be made based on whether
17149 they are predicated or not. */
17150 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
17151 {
17152 if (check_simd_pred_availability (et.type == NT_float,
17153 NEON_CHECK_ARCH | NEON_CHECK_CC))
17154 return;
17155 }
17156 else
17157 {
17158 /* If they are either in a D register or are using an unsupported. */
17159 if (rs != NS_QQR
17160 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17161 return;
17162 }
17163
5287ad62
JB
17164 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17165 affected if we specify unsigned args. */
dcbf9037 17166 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
17167}
17168
17169/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17170 result to be:
17171 V<op> A,B (A is operand 0, B is operand 2)
17172 to mean:
17173 V<op> A,B,A
17174 not:
17175 V<op> A,B,B
17176 so handle that case specially. */
17177
17178static void
17179neon_exchange_operands (void)
17180{
5287ad62
JB
17181 if (inst.operands[1].present)
17182 {
e1fa0163
NC
17183 void *scratch = xmalloc (sizeof (inst.operands[0]));
17184
5287ad62
JB
17185 /* Swap operands[1] and operands[2]. */
17186 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17187 inst.operands[1] = inst.operands[2];
17188 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
e1fa0163 17189 free (scratch);
5287ad62
JB
17190 }
17191 else
17192 {
17193 inst.operands[1] = inst.operands[2];
17194 inst.operands[2] = inst.operands[0];
17195 }
17196}
17197
17198static void
17199neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17200{
17201 if (inst.operands[2].isreg)
17202 {
17203 if (invert)
477330fc 17204 neon_exchange_operands ();
dcbf9037 17205 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
17206 }
17207 else
17208 {
037e8744 17209 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037 17210 struct neon_type_el et = neon_check_type (2, rs,
477330fc 17211 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 17212
88714cb8 17213 NEON_ENCODE (IMMED, inst);
5287ad62
JB
17214 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17215 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17216 inst.instruction |= LOW4 (inst.operands[1].reg);
17217 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17218 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17219 inst.instruction |= (et.type == NT_float) << 10;
17220 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17221
88714cb8 17222 neon_dp_fixup (&inst);
5287ad62
JB
17223 }
17224}
17225
17226static void
17227do_neon_cmp (void)
17228{
cc933301 17229 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
5287ad62
JB
17230}
17231
17232static void
17233do_neon_cmp_inv (void)
17234{
cc933301 17235 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
5287ad62
JB
17236}
17237
17238static void
17239do_neon_ceq (void)
17240{
17241 neon_compare (N_IF_32, N_IF_32, FALSE);
17242}
17243
17244/* For multiply instructions, we have the possibility of 16-bit or 32-bit
17245 scalars, which are encoded in 5 bits, M : Rm.
17246 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17247 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
c604a79a
JW
17248 index in M.
17249
17250 Dot Product instructions are similar to multiply instructions except elsize
17251 should always be 32.
17252
17253 This function translates SCALAR, which is GAS's internal encoding of indexed
17254 scalar register, to raw encoding. There is also register and index range
17255 check based on ELSIZE. */
5287ad62
JB
17256
17257static unsigned
17258neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17259{
dcbf9037
JB
17260 unsigned regno = NEON_SCALAR_REG (scalar);
17261 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
17262
17263 switch (elsize)
17264 {
17265 case 16:
17266 if (regno > 7 || elno > 3)
477330fc 17267 goto bad_scalar;
5287ad62 17268 return regno | (elno << 3);
5f4273c7 17269
5287ad62
JB
17270 case 32:
17271 if (regno > 15 || elno > 1)
477330fc 17272 goto bad_scalar;
5287ad62
JB
17273 return regno | (elno << 4);
17274
17275 default:
17276 bad_scalar:
dcbf9037 17277 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
17278 }
17279
17280 return 0;
17281}
17282
17283/* Encode multiply / multiply-accumulate scalar instructions. */
17284
17285static void
17286neon_mul_mac (struct neon_type_el et, int ubit)
17287{
dcbf9037
JB
17288 unsigned scalar;
17289
17290 /* Give a more helpful error message if we have an invalid type. */
17291 if (et.type == NT_invtype)
17292 return;
5f4273c7 17293
dcbf9037 17294 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
17295 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17296 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17297 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17298 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17299 inst.instruction |= LOW4 (scalar);
17300 inst.instruction |= HI1 (scalar) << 5;
17301 inst.instruction |= (et.type == NT_float) << 8;
17302 inst.instruction |= neon_logbits (et.size) << 20;
17303 inst.instruction |= (ubit != 0) << 24;
17304
88714cb8 17305 neon_dp_fixup (&inst);
5287ad62
JB
17306}
17307
17308static void
17309do_neon_mac_maybe_scalar (void)
17310{
037e8744
JB
17311 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17312 return;
17313
a8465a06 17314 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17315 return;
17316
5287ad62
JB
17317 if (inst.operands[2].isscalar)
17318 {
a8465a06 17319 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17320 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17321 struct neon_type_el et = neon_check_type (3, rs,
589a7d88 17322 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
88714cb8 17323 NEON_ENCODE (SCALAR, inst);
037e8744 17324 neon_mul_mac (et, neon_quad (rs));
5287ad62 17325 }
a8465a06
AV
17326 else if (!inst.operands[2].isvec)
17327 {
17328 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17329
17330 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17331 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17332
17333 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17334 }
5287ad62 17335 else
428e3f1f 17336 {
a8465a06 17337 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
428e3f1f
PB
17338 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17339 affected if we specify unsigned args. */
17340 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17341 }
5287ad62
JB
17342}
17343
62f3b8c8
PB
17344static void
17345do_neon_fmac (void)
17346{
d58196e0
AV
17347 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17348 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
62f3b8c8
PB
17349 return;
17350
d58196e0 17351 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
62f3b8c8
PB
17352 return;
17353
d58196e0
AV
17354 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17355 {
17356 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17357 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17358 N_EQK);
17359
17360 if (rs == NS_QQR)
17361 {
17362 if (inst.operands[2].reg == REG_SP)
17363 as_tsktsk (MVE_BAD_SP);
17364 else if (inst.operands[2].reg == REG_PC)
17365 as_tsktsk (MVE_BAD_PC);
17366
17367 inst.instruction = 0xee310e40;
17368 inst.instruction |= (et.size == 16) << 28;
17369 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17370 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17371 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17372 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17373 inst.instruction |= inst.operands[2].reg;
17374 inst.is_neon = 1;
17375 return;
17376 }
17377 }
17378 else
17379 {
17380 constraint (!inst.operands[2].isvec, BAD_FPU);
17381 }
17382
62f3b8c8
PB
17383 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17384}
17385
5287ad62
JB
17386static void
17387do_neon_tst (void)
17388{
037e8744 17389 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
17390 struct neon_type_el et = neon_check_type (3, rs,
17391 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 17392 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17393}
17394
17395/* VMUL with 3 registers allows the P8 type. The scalar version supports the
17396 same types as the MAC equivalents. The polynomial type for this instruction
17397 is encoded the same as the integer type. */
17398
17399static void
17400do_neon_mul (void)
17401{
037e8744
JB
17402 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17403 return;
17404
a8465a06 17405 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
037e8744
JB
17406 return;
17407
5287ad62 17408 if (inst.operands[2].isscalar)
a8465a06
AV
17409 {
17410 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17411 do_neon_mac_maybe_scalar ();
17412 }
5287ad62 17413 else
a8465a06
AV
17414 {
17415 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17416 {
17417 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17418 struct neon_type_el et
17419 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17420 if (et.type == NT_float)
17421 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17422 BAD_FPU);
17423
17424 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17425 }
17426 else
17427 {
17428 constraint (!inst.operands[2].isvec, BAD_FPU);
17429 neon_dyadic_misc (NT_poly,
17430 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17431 }
17432 }
5287ad62
JB
17433}
17434
17435static void
17436do_neon_qdmulh (void)
17437{
42b16635
AV
17438 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17439 return;
17440
5287ad62
JB
17441 if (inst.operands[2].isscalar)
17442 {
42b16635 17443 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
037e8744 17444 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62 17445 struct neon_type_el et = neon_check_type (3, rs,
477330fc 17446 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 17447 NEON_ENCODE (SCALAR, inst);
037e8744 17448 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
17449 }
17450 else
17451 {
42b16635
AV
17452 enum neon_shape rs;
17453 struct neon_type_el et;
17454 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17455 {
17456 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17457 et = neon_check_type (3, rs,
17458 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17459 }
17460 else
17461 {
17462 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17463 et = neon_check_type (3, rs,
17464 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17465 }
17466
88714cb8 17467 NEON_ENCODE (INTEGER, inst);
42b16635
AV
17468 if (rs == NS_QQR)
17469 mve_encode_qqr (et.size, 0, 0);
17470 else
17471 /* The U bit (rounding) comes from bit mask. */
17472 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
17473 }
17474}
17475
26c1e780
AV
17476static void
17477do_mve_vaddv (void)
17478{
17479 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17480 struct neon_type_el et
17481 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17482
17483 if (et.type == NT_invtype)
17484 first_error (BAD_EL_TYPE);
17485
17486 if (inst.cond > COND_ALWAYS)
17487 inst.pred_insn_type = INSIDE_VPT_INSN;
17488 else
17489 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17490
17491 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17492
17493 mve_encode_rq (et.type == NT_unsigned, et.size);
17494}
17495
7df54120
AV
17496static void
17497do_mve_vhcadd (void)
17498{
17499 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17500 struct neon_type_el et
17501 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17502
17503 if (inst.cond > COND_ALWAYS)
17504 inst.pred_insn_type = INSIDE_VPT_INSN;
17505 else
17506 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17507
17508 unsigned rot = inst.relocs[0].exp.X_add_number;
17509 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17510
17511 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17512 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17513 "operand makes instruction UNPREDICTABLE"));
17514
17515 mve_encode_qqq (0, et.size);
17516 inst.instruction |= (rot == 270) << 12;
17517 inst.is_neon = 1;
17518}
17519
35d1cfc2
AV
17520static void
17521do_mve_vqdmull (void)
17522{
17523 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17524 struct neon_type_el et
17525 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17526
17527 if (et.size == 32
17528 && (inst.operands[0].reg == inst.operands[1].reg
17529 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17530 as_tsktsk (BAD_MVE_SRCDEST);
17531
17532 if (inst.cond > COND_ALWAYS)
17533 inst.pred_insn_type = INSIDE_VPT_INSN;
17534 else
17535 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17536
17537 if (rs == NS_QQQ)
17538 {
17539 mve_encode_qqq (et.size == 32, 64);
17540 inst.instruction |= 1;
17541 }
17542 else
17543 {
17544 mve_encode_qqr (64, et.size == 32, 0);
17545 inst.instruction |= 0x3 << 5;
17546 }
17547}
17548
c2dafc2a
AV
17549static void
17550do_mve_vadc (void)
17551{
17552 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17553 struct neon_type_el et
17554 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17555
17556 if (et.type == NT_invtype)
17557 first_error (BAD_EL_TYPE);
17558
17559 if (inst.cond > COND_ALWAYS)
17560 inst.pred_insn_type = INSIDE_VPT_INSN;
17561 else
17562 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17563
17564 mve_encode_qqq (0, 64);
17565}
17566
17567static void
17568do_mve_vbrsr (void)
17569{
17570 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17571 struct neon_type_el et
17572 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17573
17574 if (inst.cond > COND_ALWAYS)
17575 inst.pred_insn_type = INSIDE_VPT_INSN;
17576 else
17577 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17578
7df54120 17579 mve_encode_qqr (et.size, 0, 0);
c2dafc2a
AV
17580}
17581
17582static void
17583do_mve_vsbc (void)
17584{
17585 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17586
17587 if (inst.cond > COND_ALWAYS)
17588 inst.pred_insn_type = INSIDE_VPT_INSN;
17589 else
17590 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17591
17592 mve_encode_qqq (1, 64);
17593}
17594
2d78f95b
AV
17595static void
17596do_mve_vmulh (void)
17597{
17598 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17599 struct neon_type_el et
17600 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17601
17602 if (inst.cond > COND_ALWAYS)
17603 inst.pred_insn_type = INSIDE_VPT_INSN;
17604 else
17605 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17606
17607 mve_encode_qqq (et.type == NT_unsigned, et.size);
17608}
17609
42b16635
AV
17610static void
17611do_mve_vqdmlah (void)
17612{
17613 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17614 struct neon_type_el et
17615 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17616
17617 if (inst.cond > COND_ALWAYS)
17618 inst.pred_insn_type = INSIDE_VPT_INSN;
17619 else
17620 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17621
17622 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17623}
8b8b22a4
AV
17624
17625static void
17626do_mve_vqdmladh (void)
17627{
17628 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17629 struct neon_type_el et
17630 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17631
17632 if (inst.cond > COND_ALWAYS)
17633 inst.pred_insn_type = INSIDE_VPT_INSN;
17634 else
17635 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17636
17637 if (et.size == 32
17638 && (inst.operands[0].reg == inst.operands[1].reg
17639 || inst.operands[0].reg == inst.operands[2].reg))
17640 as_tsktsk (BAD_MVE_SRCDEST);
17641
17642 mve_encode_qqq (0, et.size);
17643}
17644
17645
886e1c73
AV
17646static void
17647do_mve_vmull (void)
17648{
17649
17650 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17651 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17652 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17653 && inst.cond == COND_ALWAYS
17654 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17655 {
17656 if (rs == NS_QQQ)
17657 {
17658
17659 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17660 N_SUF_32 | N_F64 | N_P8
17661 | N_P16 | N_I_MVE | N_KEY);
17662 if (((et.type == NT_poly) && et.size == 8
17663 && ARM_CPU_IS_ANY (cpu_variant))
17664 || (et.type == NT_integer) || (et.type == NT_float))
17665 goto neon_vmul;
17666 }
17667 else
17668 goto neon_vmul;
17669 }
17670
17671 constraint (rs != NS_QQQ, BAD_FPU);
17672 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17673 N_SU_32 | N_P8 | N_P16 | N_KEY);
17674
17675 /* We are dealing with MVE's vmullt. */
17676 if (et.size == 32
17677 && (inst.operands[0].reg == inst.operands[1].reg
17678 || inst.operands[0].reg == inst.operands[2].reg))
17679 as_tsktsk (BAD_MVE_SRCDEST);
17680
17681 if (inst.cond > COND_ALWAYS)
17682 inst.pred_insn_type = INSIDE_VPT_INSN;
17683 else
17684 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17685
17686 if (et.type == NT_poly)
17687 mve_encode_qqq (neon_logbits (et.size), 64);
17688 else
17689 mve_encode_qqq (et.type == NT_unsigned, et.size);
17690
17691 return;
17692
17693neon_vmul:
17694 inst.instruction = N_MNEM_vmul;
17695 inst.cond = 0xb;
17696 if (thumb_mode)
17697 inst.pred_insn_type = INSIDE_IT_INSN;
17698 do_neon_mul ();
17699}
17700
a302e574
AV
17701static void
17702do_mve_vabav (void)
17703{
17704 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17705
17706 if (rs == NS_NULL)
17707 return;
17708
17709 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17710 return;
17711
17712 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17713 | N_S16 | N_S32 | N_U8 | N_U16
17714 | N_U32);
17715
17716 if (inst.cond > COND_ALWAYS)
17717 inst.pred_insn_type = INSIDE_VPT_INSN;
17718 else
17719 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17720
17721 mve_encode_rqq (et.type == NT_unsigned, et.size);
17722}
17723
17724static void
17725do_mve_vmladav (void)
17726{
17727 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17728 struct neon_type_el et = neon_check_type (3, rs,
17729 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17730
17731 if (et.type == NT_unsigned
17732 && (inst.instruction == M_MNEM_vmladavx
17733 || inst.instruction == M_MNEM_vmladavax
17734 || inst.instruction == M_MNEM_vmlsdav
17735 || inst.instruction == M_MNEM_vmlsdava
17736 || inst.instruction == M_MNEM_vmlsdavx
17737 || inst.instruction == M_MNEM_vmlsdavax))
17738 first_error (BAD_SIMD_TYPE);
17739
17740 constraint (inst.operands[2].reg > 14,
17741 _("MVE vector register in the range [Q0..Q7] expected"));
17742
17743 if (inst.cond > COND_ALWAYS)
17744 inst.pred_insn_type = INSIDE_VPT_INSN;
17745 else
17746 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17747
17748 if (inst.instruction == M_MNEM_vmlsdav
17749 || inst.instruction == M_MNEM_vmlsdava
17750 || inst.instruction == M_MNEM_vmlsdavx
17751 || inst.instruction == M_MNEM_vmlsdavax)
17752 inst.instruction |= (et.size == 8) << 28;
17753 else
17754 inst.instruction |= (et.size == 8) << 8;
17755
17756 mve_encode_rqq (et.type == NT_unsigned, 64);
17757 inst.instruction |= (et.size == 32) << 16;
17758}
17759
93925576
AV
17760static void
17761do_mve_vmlaldav (void)
17762{
17763 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17764 struct neon_type_el et
17765 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17766 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17767
17768 if (et.type == NT_unsigned
17769 && (inst.instruction == M_MNEM_vmlsldav
17770 || inst.instruction == M_MNEM_vmlsldava
17771 || inst.instruction == M_MNEM_vmlsldavx
17772 || inst.instruction == M_MNEM_vmlsldavax))
17773 first_error (BAD_SIMD_TYPE);
17774
17775 if (inst.cond > COND_ALWAYS)
17776 inst.pred_insn_type = INSIDE_VPT_INSN;
17777 else
17778 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17779
17780 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17781}
17782
17783static void
17784do_mve_vrmlaldavh (void)
17785{
17786 struct neon_type_el et;
17787 if (inst.instruction == M_MNEM_vrmlsldavh
17788 || inst.instruction == M_MNEM_vrmlsldavha
17789 || inst.instruction == M_MNEM_vrmlsldavhx
17790 || inst.instruction == M_MNEM_vrmlsldavhax)
17791 {
17792 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17793 if (inst.operands[1].reg == REG_SP)
17794 as_tsktsk (MVE_BAD_SP);
17795 }
17796 else
17797 {
17798 if (inst.instruction == M_MNEM_vrmlaldavhx
17799 || inst.instruction == M_MNEM_vrmlaldavhax)
17800 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17801 else
17802 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17803 N_U32 | N_S32 | N_KEY);
17804 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17805 with vmax/min instructions, making the use of SP in assembly really
17806 nonsensical, so instead of issuing a warning like we do for other uses
17807 of SP for the odd register operand we error out. */
17808 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17809 }
17810
17811 /* Make sure we still check the second operand is an odd one and that PC is
17812 disallowed. This because we are parsing for any GPR operand, to be able
17813 to distinguish between giving a warning or an error for SP as described
17814 above. */
17815 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17816 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17817
17818 if (inst.cond > COND_ALWAYS)
17819 inst.pred_insn_type = INSIDE_VPT_INSN;
17820 else
17821 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17822
17823 mve_encode_rrqq (et.type == NT_unsigned, 0);
17824}
17825
17826
8cd78170
AV
17827static void
17828do_mve_vmaxnmv (void)
17829{
17830 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17831 struct neon_type_el et
17832 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17833
17834 if (inst.cond > COND_ALWAYS)
17835 inst.pred_insn_type = INSIDE_VPT_INSN;
17836 else
17837 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17838
17839 if (inst.operands[0].reg == REG_SP)
17840 as_tsktsk (MVE_BAD_SP);
17841 else if (inst.operands[0].reg == REG_PC)
17842 as_tsktsk (MVE_BAD_PC);
17843
17844 mve_encode_rq (et.size == 16, 64);
17845}
17846
13ccd4c0
AV
17847static void
17848do_mve_vmaxv (void)
17849{
17850 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17851 struct neon_type_el et;
17852
17853 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17854 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17855 else
17856 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17857
17858 if (inst.cond > COND_ALWAYS)
17859 inst.pred_insn_type = INSIDE_VPT_INSN;
17860 else
17861 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17862
17863 if (inst.operands[0].reg == REG_SP)
17864 as_tsktsk (MVE_BAD_SP);
17865 else if (inst.operands[0].reg == REG_PC)
17866 as_tsktsk (MVE_BAD_PC);
17867
17868 mve_encode_rq (et.type == NT_unsigned, et.size);
17869}
17870
17871
643afb90
MW
17872static void
17873do_neon_qrdmlah (void)
17874{
42b16635
AV
17875 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17876 return;
17877 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
643afb90 17878 {
42b16635
AV
17879 /* Check we're on the correct architecture. */
17880 if (!mark_feature_used (&fpu_neon_ext_armv8))
17881 inst.error
17882 = _("instruction form not available on this architecture.");
17883 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17884 {
17885 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17886 record_feature_use (&fpu_neon_ext_v8_1);
17887 }
17888 if (inst.operands[2].isscalar)
17889 {
17890 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17891 struct neon_type_el et = neon_check_type (3, rs,
17892 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17893 NEON_ENCODE (SCALAR, inst);
17894 neon_mul_mac (et, neon_quad (rs));
17895 }
17896 else
17897 {
17898 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17899 struct neon_type_el et = neon_check_type (3, rs,
17900 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17901 NEON_ENCODE (INTEGER, inst);
17902 /* The U bit (rounding) comes from bit mask. */
17903 neon_three_same (neon_quad (rs), 0, et.size);
17904 }
643afb90
MW
17905 }
17906 else
17907 {
42b16635
AV
17908 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17909 struct neon_type_el et
17910 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17911
643afb90 17912 NEON_ENCODE (INTEGER, inst);
42b16635 17913 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
643afb90
MW
17914 }
17915}
17916
5287ad62
JB
17917static void
17918do_neon_fcmp_absolute (void)
17919{
037e8744 17920 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17921 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17922 N_F_16_32 | N_KEY);
5287ad62 17923 /* Size field comes from bit mask. */
cc933301 17924 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17925}
17926
17927static void
17928do_neon_fcmp_absolute_inv (void)
17929{
17930 neon_exchange_operands ();
17931 do_neon_fcmp_absolute ();
17932}
17933
17934static void
17935do_neon_step (void)
17936{
037e8744 17937 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
cc933301
JW
17938 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17939 N_F_16_32 | N_KEY);
17940 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
5287ad62
JB
17941}
17942
17943static void
17944do_neon_abs_neg (void)
17945{
037e8744
JB
17946 enum neon_shape rs;
17947 struct neon_type_el et;
5f4273c7 17948
037e8744
JB
17949 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17950 return;
17951
037e8744 17952 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
cc933301 17953 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
5f4273c7 17954
485dee97
AV
17955 if (check_simd_pred_availability (et.type == NT_float,
17956 NEON_CHECK_ARCH | NEON_CHECK_CC))
17957 return;
17958
5287ad62
JB
17959 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17960 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17961 inst.instruction |= LOW4 (inst.operands[1].reg);
17962 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 17963 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
17964 inst.instruction |= (et.type == NT_float) << 10;
17965 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 17966
88714cb8 17967 neon_dp_fixup (&inst);
5287ad62
JB
17968}
17969
17970static void
17971do_neon_sli (void)
17972{
4401c241
AV
17973 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17974 return;
17975
17976 enum neon_shape rs;
17977 struct neon_type_el et;
17978 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17979 {
17980 rs = neon_select_shape (NS_QQI, NS_NULL);
17981 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17982 }
17983 else
17984 {
17985 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17986 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17987 }
17988
17989
5287ad62
JB
17990 int imm = inst.operands[2].imm;
17991 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 17992 _("immediate out of range for insert"));
037e8744 17993 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
17994}
17995
17996static void
17997do_neon_sri (void)
17998{
4401c241
AV
17999 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
18000 return;
18001
18002 enum neon_shape rs;
18003 struct neon_type_el et;
18004 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18005 {
18006 rs = neon_select_shape (NS_QQI, NS_NULL);
18007 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY);
18008 }
18009 else
18010 {
18011 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18012 et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18013 }
18014
5287ad62
JB
18015 int imm = inst.operands[2].imm;
18016 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18017 _("immediate out of range for insert"));
037e8744 18018 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
18019}
18020
18021static void
18022do_neon_qshlu_imm (void)
18023{
5150f0d8
AV
18024 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
18025 return;
18026
18027 enum neon_shape rs;
18028 struct neon_type_el et;
18029 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18030 {
18031 rs = neon_select_shape (NS_QQI, NS_NULL);
18032 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18033 }
18034 else
18035 {
18036 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18037 et = neon_check_type (2, rs, N_EQK | N_UNS,
18038 N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
18039 }
18040
5287ad62
JB
18041 int imm = inst.operands[2].imm;
18042 constraint (imm < 0 || (unsigned)imm >= et.size,
477330fc 18043 _("immediate out of range for shift"));
5287ad62
JB
18044 /* Only encodes the 'U present' variant of the instruction.
18045 In this case, signed types have OP (bit 8) set to 0.
18046 Unsigned types have OP set to 1. */
18047 inst.instruction |= (et.type == NT_unsigned) << 8;
18048 /* The rest of the bits are the same as other immediate shifts. */
037e8744 18049 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
18050}
18051
18052static void
18053do_neon_qmovn (void)
18054{
18055 struct neon_type_el et = neon_check_type (2, NS_DQ,
18056 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18057 /* Saturating move where operands can be signed or unsigned, and the
18058 destination has the same signedness. */
88714cb8 18059 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18060 if (et.type == NT_unsigned)
18061 inst.instruction |= 0xc0;
18062 else
18063 inst.instruction |= 0x80;
18064 neon_two_same (0, 1, et.size / 2);
18065}
18066
18067static void
18068do_neon_qmovun (void)
18069{
18070 struct neon_type_el et = neon_check_type (2, NS_DQ,
18071 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18072 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 18073 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18074 neon_two_same (0, 1, et.size / 2);
18075}
18076
18077static void
18078do_neon_rshift_sat_narrow (void)
18079{
18080 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18081 or unsigned. If operands are unsigned, results must also be unsigned. */
18082 struct neon_type_el et = neon_check_type (2, NS_DQI,
18083 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
18084 int imm = inst.operands[2].imm;
18085 /* This gets the bounds check, size encoding and immediate bits calculation
18086 right. */
18087 et.size /= 2;
5f4273c7 18088
5287ad62
JB
18089 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
18090 VQMOVN.I<size> <Dd>, <Qm>. */
18091 if (imm == 0)
18092 {
18093 inst.operands[2].present = 0;
18094 inst.instruction = N_MNEM_vqmovn;
18095 do_neon_qmovn ();
18096 return;
18097 }
5f4273c7 18098
5287ad62 18099 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18100 _("immediate out of range"));
5287ad62
JB
18101 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
18102}
18103
18104static void
18105do_neon_rshift_sat_narrow_u (void)
18106{
18107 /* FIXME: Types for narrowing. If operands are signed, results can be signed
18108 or unsigned. If operands are unsigned, results must also be unsigned. */
18109 struct neon_type_el et = neon_check_type (2, NS_DQI,
18110 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
18111 int imm = inst.operands[2].imm;
18112 /* This gets the bounds check, size encoding and immediate bits calculation
18113 right. */
18114 et.size /= 2;
18115
18116 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
18117 VQMOVUN.I<size> <Dd>, <Qm>. */
18118 if (imm == 0)
18119 {
18120 inst.operands[2].present = 0;
18121 inst.instruction = N_MNEM_vqmovun;
18122 do_neon_qmovun ();
18123 return;
18124 }
18125
18126 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18127 _("immediate out of range"));
5287ad62
JB
18128 /* FIXME: The manual is kind of unclear about what value U should have in
18129 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
18130 must be 1. */
18131 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
18132}
18133
18134static void
18135do_neon_movn (void)
18136{
18137 struct neon_type_el et = neon_check_type (2, NS_DQ,
18138 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 18139 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18140 neon_two_same (0, 1, et.size / 2);
18141}
18142
18143static void
18144do_neon_rshift_narrow (void)
18145{
18146 struct neon_type_el et = neon_check_type (2, NS_DQI,
18147 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
18148 int imm = inst.operands[2].imm;
18149 /* This gets the bounds check, size encoding and immediate bits calculation
18150 right. */
18151 et.size /= 2;
5f4273c7 18152
5287ad62
JB
18153 /* If immediate is zero then we are a pseudo-instruction for
18154 VMOVN.I<size> <Dd>, <Qm> */
18155 if (imm == 0)
18156 {
18157 inst.operands[2].present = 0;
18158 inst.instruction = N_MNEM_vmovn;
18159 do_neon_movn ();
18160 return;
18161 }
5f4273c7 18162
5287ad62 18163 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 18164 _("immediate out of range for narrowing operation"));
5287ad62
JB
18165 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
18166}
18167
18168static void
18169do_neon_shll (void)
18170{
18171 /* FIXME: Type checking when lengthening. */
18172 struct neon_type_el et = neon_check_type (2, NS_QDI,
18173 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
18174 unsigned imm = inst.operands[2].imm;
18175
18176 if (imm == et.size)
18177 {
18178 /* Maximum shift variant. */
88714cb8 18179 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18180 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18181 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18182 inst.instruction |= LOW4 (inst.operands[1].reg);
18183 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18184 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 18185
88714cb8 18186 neon_dp_fixup (&inst);
5287ad62
JB
18187 }
18188 else
18189 {
18190 /* A more-specific type check for non-max versions. */
18191 et = neon_check_type (2, NS_QDI,
477330fc 18192 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 18193 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18194 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
18195 }
18196}
18197
037e8744 18198/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
18199 the current instruction is. */
18200
6b9a8b67
MGD
18201#define CVT_FLAVOUR_VAR \
18202 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18203 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18204 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18205 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18206 /* Half-precision conversions. */ \
cc933301
JW
18207 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18208 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18209 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18210 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
6b9a8b67
MGD
18211 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18212 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
9db2f6b4
RL
18213 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18214 Compared with single/double precision variants, only the co-processor \
18215 field is different, so the encoding flow is reused here. */ \
18216 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18217 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18218 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18219 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
6b9a8b67
MGD
18220 /* VFP instructions. */ \
18221 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18222 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18223 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18224 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18225 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18226 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18227 /* VFP instructions with bitshift. */ \
18228 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18229 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18230 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18231 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18232 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18233 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18234 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18235 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18236
18237#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18238 neon_cvt_flavour_##C,
18239
18240/* The different types of conversions we can do. */
18241enum neon_cvt_flavour
18242{
18243 CVT_FLAVOUR_VAR
18244 neon_cvt_flavour_invalid,
18245 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18246};
18247
18248#undef CVT_VAR
18249
18250static enum neon_cvt_flavour
18251get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 18252{
6b9a8b67
MGD
18253#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18254 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18255 if (et.type != NT_invtype) \
18256 { \
18257 inst.error = NULL; \
18258 return (neon_cvt_flavour_##C); \
5287ad62 18259 }
6b9a8b67 18260
5287ad62 18261 struct neon_type_el et;
037e8744 18262 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
477330fc 18263 || rs == NS_FF) ? N_VFP : 0;
037e8744
JB
18264 /* The instruction versions which take an immediate take one register
18265 argument, which is extended to the width of the full register. Thus the
18266 "source" and "destination" registers must have the same width. Hack that
18267 here by making the size equal to the key (wider, in this case) operand. */
18268 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 18269
6b9a8b67
MGD
18270 CVT_FLAVOUR_VAR;
18271
18272 return neon_cvt_flavour_invalid;
5287ad62
JB
18273#undef CVT_VAR
18274}
18275
7e8e6784
MGD
18276enum neon_cvt_mode
18277{
18278 neon_cvt_mode_a,
18279 neon_cvt_mode_n,
18280 neon_cvt_mode_p,
18281 neon_cvt_mode_m,
18282 neon_cvt_mode_z,
30bdf752
MGD
18283 neon_cvt_mode_x,
18284 neon_cvt_mode_r
7e8e6784
MGD
18285};
18286
037e8744
JB
18287/* Neon-syntax VFP conversions. */
18288
5287ad62 18289static void
6b9a8b67 18290do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 18291{
037e8744 18292 const char *opname = 0;
5f4273c7 18293
d54af2d0
RL
18294 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18295 || rs == NS_FHI || rs == NS_HFI)
5287ad62 18296 {
037e8744
JB
18297 /* Conversions with immediate bitshift. */
18298 const char *enc[] =
477330fc 18299 {
6b9a8b67
MGD
18300#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18301 CVT_FLAVOUR_VAR
18302 NULL
18303#undef CVT_VAR
477330fc 18304 };
037e8744 18305
6b9a8b67 18306 if (flavour < (int) ARRAY_SIZE (enc))
477330fc
RM
18307 {
18308 opname = enc[flavour];
18309 constraint (inst.operands[0].reg != inst.operands[1].reg,
18310 _("operands 0 and 1 must be the same register"));
18311 inst.operands[1] = inst.operands[2];
18312 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18313 }
5287ad62
JB
18314 }
18315 else
18316 {
037e8744
JB
18317 /* Conversions without bitshift. */
18318 const char *enc[] =
477330fc 18319 {
6b9a8b67
MGD
18320#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18321 CVT_FLAVOUR_VAR
18322 NULL
18323#undef CVT_VAR
477330fc 18324 };
037e8744 18325
6b9a8b67 18326 if (flavour < (int) ARRAY_SIZE (enc))
477330fc 18327 opname = enc[flavour];
037e8744
JB
18328 }
18329
18330 if (opname)
18331 do_vfp_nsyn_opcode (opname);
9db2f6b4
RL
18332
18333 /* ARMv8.2 fp16 VCVT instruction. */
18334 if (flavour == neon_cvt_flavour_s32_f16
18335 || flavour == neon_cvt_flavour_u32_f16
18336 || flavour == neon_cvt_flavour_f16_u32
18337 || flavour == neon_cvt_flavour_f16_s32)
18338 do_scalar_fp16_v82_encode ();
037e8744
JB
18339}
18340
18341static void
18342do_vfp_nsyn_cvtz (void)
18343{
d54af2d0 18344 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
6b9a8b67 18345 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
18346 const char *enc[] =
18347 {
6b9a8b67
MGD
18348#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18349 CVT_FLAVOUR_VAR
18350 NULL
18351#undef CVT_VAR
037e8744
JB
18352 };
18353
6b9a8b67 18354 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
18355 do_vfp_nsyn_opcode (enc[flavour]);
18356}
f31fef98 18357
037e8744 18358static void
bacebabc 18359do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
7e8e6784
MGD
18360 enum neon_cvt_mode mode)
18361{
18362 int sz, op;
18363 int rm;
18364
a715796b
TG
18365 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18366 D register operands. */
18367 if (flavour == neon_cvt_flavour_s32_f64
18368 || flavour == neon_cvt_flavour_u32_f64)
18369 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18370 _(BAD_FPU));
18371
9db2f6b4
RL
18372 if (flavour == neon_cvt_flavour_s32_f16
18373 || flavour == neon_cvt_flavour_u32_f16)
18374 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18375 _(BAD_FP16));
18376
5ee91343 18377 set_pred_insn_type (OUTSIDE_PRED_INSN);
7e8e6784
MGD
18378
18379 switch (flavour)
18380 {
18381 case neon_cvt_flavour_s32_f64:
18382 sz = 1;
827f64ff 18383 op = 1;
7e8e6784
MGD
18384 break;
18385 case neon_cvt_flavour_s32_f32:
18386 sz = 0;
18387 op = 1;
18388 break;
9db2f6b4
RL
18389 case neon_cvt_flavour_s32_f16:
18390 sz = 0;
18391 op = 1;
18392 break;
7e8e6784
MGD
18393 case neon_cvt_flavour_u32_f64:
18394 sz = 1;
18395 op = 0;
18396 break;
18397 case neon_cvt_flavour_u32_f32:
18398 sz = 0;
18399 op = 0;
18400 break;
9db2f6b4
RL
18401 case neon_cvt_flavour_u32_f16:
18402 sz = 0;
18403 op = 0;
18404 break;
7e8e6784
MGD
18405 default:
18406 first_error (_("invalid instruction shape"));
18407 return;
18408 }
18409
18410 switch (mode)
18411 {
18412 case neon_cvt_mode_a: rm = 0; break;
18413 case neon_cvt_mode_n: rm = 1; break;
18414 case neon_cvt_mode_p: rm = 2; break;
18415 case neon_cvt_mode_m: rm = 3; break;
18416 default: first_error (_("invalid rounding mode")); return;
18417 }
18418
18419 NEON_ENCODE (FPV8, inst);
18420 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18421 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18422 inst.instruction |= sz << 8;
9db2f6b4
RL
18423
18424 /* ARMv8.2 fp16 VCVT instruction. */
18425 if (flavour == neon_cvt_flavour_s32_f16
18426 ||flavour == neon_cvt_flavour_u32_f16)
18427 do_scalar_fp16_v82_encode ();
7e8e6784
MGD
18428 inst.instruction |= op << 7;
18429 inst.instruction |= rm << 16;
18430 inst.instruction |= 0xf0000000;
18431 inst.is_neon = TRUE;
18432}
18433
18434static void
18435do_neon_cvt_1 (enum neon_cvt_mode mode)
037e8744
JB
18436{
18437 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
d54af2d0
RL
18438 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18439 NS_FH, NS_HF, NS_FHI, NS_HFI,
18440 NS_NULL);
6b9a8b67 18441 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 18442
cc933301
JW
18443 if (flavour == neon_cvt_flavour_invalid)
18444 return;
18445
e3e535bc 18446 /* PR11109: Handle round-to-zero for VCVT conversions. */
7e8e6784 18447 if (mode == neon_cvt_mode_z
e3e535bc 18448 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
cc933301
JW
18449 && (flavour == neon_cvt_flavour_s16_f16
18450 || flavour == neon_cvt_flavour_u16_f16
18451 || flavour == neon_cvt_flavour_s32_f32
bacebabc
RM
18452 || flavour == neon_cvt_flavour_u32_f32
18453 || flavour == neon_cvt_flavour_s32_f64
6b9a8b67 18454 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
18455 && (rs == NS_FD || rs == NS_FF))
18456 {
18457 do_vfp_nsyn_cvtz ();
18458 return;
18459 }
18460
9db2f6b4
RL
18461 /* ARMv8.2 fp16 VCVT conversions. */
18462 if (mode == neon_cvt_mode_z
18463 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18464 && (flavour == neon_cvt_flavour_s32_f16
18465 || flavour == neon_cvt_flavour_u32_f16)
18466 && (rs == NS_FH))
18467 {
18468 do_vfp_nsyn_cvtz ();
18469 do_scalar_fp16_v82_encode ();
18470 return;
18471 }
18472
037e8744 18473 /* VFP rather than Neon conversions. */
6b9a8b67 18474 if (flavour >= neon_cvt_flavour_first_fp)
037e8744 18475 {
7e8e6784
MGD
18476 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18477 do_vfp_nsyn_cvt (rs, flavour);
18478 else
18479 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18480
037e8744
JB
18481 return;
18482 }
18483
18484 switch (rs)
18485 {
037e8744 18486 case NS_QQI:
dd9634d9
AV
18487 if (mode == neon_cvt_mode_z
18488 && (flavour == neon_cvt_flavour_f16_s16
18489 || flavour == neon_cvt_flavour_f16_u16
18490 || flavour == neon_cvt_flavour_s16_f16
18491 || flavour == neon_cvt_flavour_u16_f16
18492 || flavour == neon_cvt_flavour_f32_u32
18493 || flavour == neon_cvt_flavour_f32_s32
18494 || flavour == neon_cvt_flavour_s32_f32
18495 || flavour == neon_cvt_flavour_u32_f32))
18496 {
18497 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18498 return;
18499 }
18500 else if (mode == neon_cvt_mode_n)
18501 {
18502 /* We are dealing with vcvt with the 'ne' condition. */
18503 inst.cond = 0x1;
18504 inst.instruction = N_MNEM_vcvt;
18505 do_neon_cvt_1 (neon_cvt_mode_z);
18506 return;
18507 }
18508 /* fall through. */
18509 case NS_DDI:
037e8744 18510 {
477330fc 18511 unsigned immbits;
cc933301
JW
18512 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18513 0x0000100, 0x1000100, 0x0, 0x1000000};
35997600 18514
dd9634d9
AV
18515 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18516 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18517 return;
18518
18519 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18520 {
18521 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18522 _("immediate value out of range"));
18523 switch (flavour)
18524 {
18525 case neon_cvt_flavour_f16_s16:
18526 case neon_cvt_flavour_f16_u16:
18527 case neon_cvt_flavour_s16_f16:
18528 case neon_cvt_flavour_u16_f16:
18529 constraint (inst.operands[2].imm > 16,
18530 _("immediate value out of range"));
18531 break;
18532 case neon_cvt_flavour_f32_u32:
18533 case neon_cvt_flavour_f32_s32:
18534 case neon_cvt_flavour_s32_f32:
18535 case neon_cvt_flavour_u32_f32:
18536 constraint (inst.operands[2].imm > 32,
18537 _("immediate value out of range"));
18538 break;
18539 default:
18540 inst.error = BAD_FPU;
18541 return;
18542 }
18543 }
037e8744 18544
477330fc
RM
18545 /* Fixed-point conversion with #0 immediate is encoded as an
18546 integer conversion. */
18547 if (inst.operands[2].present && inst.operands[2].imm == 0)
18548 goto int_encode;
477330fc
RM
18549 NEON_ENCODE (IMMED, inst);
18550 if (flavour != neon_cvt_flavour_invalid)
18551 inst.instruction |= enctab[flavour];
18552 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18553 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18554 inst.instruction |= LOW4 (inst.operands[1].reg);
18555 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18556 inst.instruction |= neon_quad (rs) << 6;
18557 inst.instruction |= 1 << 21;
cc933301
JW
18558 if (flavour < neon_cvt_flavour_s16_f16)
18559 {
18560 inst.instruction |= 1 << 21;
18561 immbits = 32 - inst.operands[2].imm;
18562 inst.instruction |= immbits << 16;
18563 }
18564 else
18565 {
18566 inst.instruction |= 3 << 20;
18567 immbits = 16 - inst.operands[2].imm;
18568 inst.instruction |= immbits << 16;
18569 inst.instruction &= ~(1 << 9);
18570 }
477330fc
RM
18571
18572 neon_dp_fixup (&inst);
037e8744
JB
18573 }
18574 break;
18575
037e8744 18576 case NS_QQ:
dd9634d9
AV
18577 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18578 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18579 && (flavour == neon_cvt_flavour_s16_f16
18580 || flavour == neon_cvt_flavour_u16_f16
18581 || flavour == neon_cvt_flavour_s32_f32
18582 || flavour == neon_cvt_flavour_u32_f32))
18583 {
18584 if (check_simd_pred_availability (1,
18585 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18586 return;
18587 }
18588 else if (mode == neon_cvt_mode_z
18589 && (flavour == neon_cvt_flavour_f16_s16
18590 || flavour == neon_cvt_flavour_f16_u16
18591 || flavour == neon_cvt_flavour_s16_f16
18592 || flavour == neon_cvt_flavour_u16_f16
18593 || flavour == neon_cvt_flavour_f32_u32
18594 || flavour == neon_cvt_flavour_f32_s32
18595 || flavour == neon_cvt_flavour_s32_f32
18596 || flavour == neon_cvt_flavour_u32_f32))
18597 {
18598 if (check_simd_pred_availability (1,
18599 NEON_CHECK_CC | NEON_CHECK_ARCH))
18600 return;
18601 }
18602 /* fall through. */
18603 case NS_DD:
7e8e6784
MGD
18604 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18605 {
7e8e6784 18606
dd9634d9
AV
18607 NEON_ENCODE (FLOAT, inst);
18608 if (check_simd_pred_availability (1,
18609 NEON_CHECK_CC | NEON_CHECK_ARCH8))
7e8e6784
MGD
18610 return;
18611
18612 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18613 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18614 inst.instruction |= LOW4 (inst.operands[1].reg);
18615 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18616 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18617 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18618 || flavour == neon_cvt_flavour_u32_f32) << 7;
7e8e6784 18619 inst.instruction |= mode << 8;
cc933301
JW
18620 if (flavour == neon_cvt_flavour_u16_f16
18621 || flavour == neon_cvt_flavour_s16_f16)
18622 /* Mask off the original size bits and reencode them. */
18623 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18624
7e8e6784
MGD
18625 if (thumb_mode)
18626 inst.instruction |= 0xfc000000;
18627 else
18628 inst.instruction |= 0xf0000000;
18629 }
18630 else
18631 {
037e8744 18632 int_encode:
7e8e6784 18633 {
cc933301
JW
18634 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18635 0x100, 0x180, 0x0, 0x080};
037e8744 18636
7e8e6784 18637 NEON_ENCODE (INTEGER, inst);
037e8744 18638
dd9634d9
AV
18639 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18640 {
18641 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18642 return;
18643 }
037e8744 18644
7e8e6784
MGD
18645 if (flavour != neon_cvt_flavour_invalid)
18646 inst.instruction |= enctab[flavour];
037e8744 18647
7e8e6784
MGD
18648 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18649 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18650 inst.instruction |= LOW4 (inst.operands[1].reg);
18651 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18652 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
18653 if (flavour >= neon_cvt_flavour_s16_f16
18654 && flavour <= neon_cvt_flavour_f16_u16)
18655 /* Half precision. */
18656 inst.instruction |= 1 << 18;
18657 else
18658 inst.instruction |= 2 << 18;
037e8744 18659
7e8e6784
MGD
18660 neon_dp_fixup (&inst);
18661 }
18662 }
18663 break;
037e8744 18664
8e79c3df
CM
18665 /* Half-precision conversions for Advanced SIMD -- neon. */
18666 case NS_QD:
18667 case NS_DQ:
bc52d49c
MM
18668 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18669 return;
8e79c3df
CM
18670
18671 if ((rs == NS_DQ)
18672 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18673 {
18674 as_bad (_("operand size must match register width"));
18675 break;
18676 }
18677
18678 if ((rs == NS_QD)
18679 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18680 {
18681 as_bad (_("operand size must match register width"));
18682 break;
18683 }
18684
18685 if (rs == NS_DQ)
477330fc 18686 inst.instruction = 0x3b60600;
8e79c3df
CM
18687 else
18688 inst.instruction = 0x3b60700;
18689
18690 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18691 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18692 inst.instruction |= LOW4 (inst.operands[1].reg);
18693 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 18694 neon_dp_fixup (&inst);
8e79c3df
CM
18695 break;
18696
037e8744
JB
18697 default:
18698 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
7e8e6784
MGD
18699 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18700 do_vfp_nsyn_cvt (rs, flavour);
18701 else
18702 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
5287ad62 18703 }
5287ad62
JB
18704}
18705
e3e535bc
NC
18706static void
18707do_neon_cvtr (void)
18708{
7e8e6784 18709 do_neon_cvt_1 (neon_cvt_mode_x);
e3e535bc
NC
18710}
18711
18712static void
18713do_neon_cvt (void)
18714{
7e8e6784
MGD
18715 do_neon_cvt_1 (neon_cvt_mode_z);
18716}
18717
18718static void
18719do_neon_cvta (void)
18720{
18721 do_neon_cvt_1 (neon_cvt_mode_a);
18722}
18723
18724static void
18725do_neon_cvtn (void)
18726{
18727 do_neon_cvt_1 (neon_cvt_mode_n);
18728}
18729
18730static void
18731do_neon_cvtp (void)
18732{
18733 do_neon_cvt_1 (neon_cvt_mode_p);
18734}
18735
18736static void
18737do_neon_cvtm (void)
18738{
18739 do_neon_cvt_1 (neon_cvt_mode_m);
e3e535bc
NC
18740}
18741
8e79c3df 18742static void
c70a8987 18743do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
8e79c3df 18744{
c70a8987
MGD
18745 if (is_double)
18746 mark_feature_used (&fpu_vfp_ext_armv8);
8e79c3df 18747
c70a8987
MGD
18748 encode_arm_vfp_reg (inst.operands[0].reg,
18749 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18750 encode_arm_vfp_reg (inst.operands[1].reg,
18751 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18752 inst.instruction |= to ? 0x10000 : 0;
18753 inst.instruction |= t ? 0x80 : 0;
18754 inst.instruction |= is_double ? 0x100 : 0;
18755 do_vfp_cond_or_thumb ();
18756}
8e79c3df 18757
c70a8987
MGD
18758static void
18759do_neon_cvttb_1 (bfd_boolean t)
18760{
d54af2d0 18761 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
dd9634d9 18762 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
8e79c3df 18763
c70a8987
MGD
18764 if (rs == NS_NULL)
18765 return;
dd9634d9
AV
18766 else if (rs == NS_QQ || rs == NS_QQI)
18767 {
18768 int single_to_half = 0;
18769 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18770 return;
18771
18772 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18773
18774 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18775 && (flavour == neon_cvt_flavour_u16_f16
18776 || flavour == neon_cvt_flavour_s16_f16
18777 || flavour == neon_cvt_flavour_f16_s16
18778 || flavour == neon_cvt_flavour_f16_u16
18779 || flavour == neon_cvt_flavour_u32_f32
18780 || flavour == neon_cvt_flavour_s32_f32
18781 || flavour == neon_cvt_flavour_f32_s32
18782 || flavour == neon_cvt_flavour_f32_u32))
18783 {
18784 inst.cond = 0xf;
18785 inst.instruction = N_MNEM_vcvt;
18786 set_pred_insn_type (INSIDE_VPT_INSN);
18787 do_neon_cvt_1 (neon_cvt_mode_z);
18788 return;
18789 }
18790 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18791 single_to_half = 1;
18792 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18793 {
18794 first_error (BAD_FPU);
18795 return;
18796 }
18797
18798 inst.instruction = 0xee3f0e01;
18799 inst.instruction |= single_to_half << 28;
18800 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18801 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18802 inst.instruction |= t << 12;
18803 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18804 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18805 inst.is_neon = 1;
18806 }
c70a8987
MGD
18807 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18808 {
18809 inst.error = NULL;
18810 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18811 }
18812 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18813 {
18814 inst.error = NULL;
18815 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18816 }
18817 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18818 {
a715796b
TG
18819 /* The VCVTB and VCVTT instructions with D-register operands
18820 don't work for SP only targets. */
18821 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18822 _(BAD_FPU));
18823
c70a8987
MGD
18824 inst.error = NULL;
18825 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18826 }
18827 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18828 {
a715796b
TG
18829 /* The VCVTB and VCVTT instructions with D-register operands
18830 don't work for SP only targets. */
18831 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18832 _(BAD_FPU));
18833
c70a8987
MGD
18834 inst.error = NULL;
18835 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18836 }
18837 else
18838 return;
18839}
18840
18841static void
18842do_neon_cvtb (void)
18843{
18844 do_neon_cvttb_1 (FALSE);
8e79c3df
CM
18845}
18846
18847
18848static void
18849do_neon_cvtt (void)
18850{
c70a8987 18851 do_neon_cvttb_1 (TRUE);
8e79c3df
CM
18852}
18853
5287ad62
JB
18854static void
18855neon_move_immediate (void)
18856{
037e8744
JB
18857 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18858 struct neon_type_el et = neon_check_type (2, rs,
18859 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 18860 unsigned immlo, immhi = 0, immbits;
c96612cc 18861 int op, cmode, float_p;
5287ad62 18862
037e8744 18863 constraint (et.type == NT_invtype,
477330fc 18864 _("operand size must be specified for immediate VMOV"));
037e8744 18865
5287ad62
JB
18866 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18867 op = (inst.instruction & (1 << 5)) != 0;
18868
18869 immlo = inst.operands[1].imm;
18870 if (inst.operands[1].regisimm)
18871 immhi = inst.operands[1].reg;
18872
18873 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
477330fc 18874 _("immediate has bits set outside the operand size"));
5287ad62 18875
c96612cc
JB
18876 float_p = inst.operands[1].immisfloat;
18877
18878 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
477330fc 18879 et.size, et.type)) == FAIL)
5287ad62
JB
18880 {
18881 /* Invert relevant bits only. */
18882 neon_invert_size (&immlo, &immhi, et.size);
18883 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
477330fc
RM
18884 with one or the other; those cases are caught by
18885 neon_cmode_for_move_imm. */
5287ad62 18886 op = !op;
c96612cc
JB
18887 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18888 &op, et.size, et.type)) == FAIL)
477330fc
RM
18889 {
18890 first_error (_("immediate out of range"));
18891 return;
18892 }
5287ad62
JB
18893 }
18894
18895 inst.instruction &= ~(1 << 5);
18896 inst.instruction |= op << 5;
18897
18898 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18899 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 18900 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18901 inst.instruction |= cmode << 8;
18902
18903 neon_write_immbits (immbits);
18904}
18905
18906static void
18907do_neon_mvn (void)
18908{
1a186d29
AV
18909 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18910 return;
18911
5287ad62
JB
18912 if (inst.operands[1].isreg)
18913 {
1a186d29
AV
18914 enum neon_shape rs;
18915 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18916 rs = neon_select_shape (NS_QQ, NS_NULL);
18917 else
18918 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 18919
88714cb8 18920 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
18921 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18922 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18923 inst.instruction |= LOW4 (inst.operands[1].reg);
18924 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 18925 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
18926 }
18927 else
18928 {
88714cb8 18929 NEON_ENCODE (IMMED, inst);
5287ad62
JB
18930 neon_move_immediate ();
18931 }
18932
88714cb8 18933 neon_dp_fixup (&inst);
1a186d29
AV
18934
18935 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18936 {
18937 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18938 constraint ((inst.instruction & 0xd00) == 0xd00,
18939 _("immediate value out of range"));
18940 }
5287ad62
JB
18941}
18942
18943/* Encode instructions of form:
18944
18945 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 18946 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
18947
18948static void
18949neon_mixed_length (struct neon_type_el et, unsigned size)
18950{
18951 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18952 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18953 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18954 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18955 inst.instruction |= LOW4 (inst.operands[2].reg);
18956 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18957 inst.instruction |= (et.type == NT_unsigned) << 24;
18958 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 18959
88714cb8 18960 neon_dp_fixup (&inst);
5287ad62
JB
18961}
18962
18963static void
18964do_neon_dyadic_long (void)
18965{
5ee91343
AV
18966 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18967 if (rs == NS_QDD)
18968 {
18969 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18970 return;
18971
18972 NEON_ENCODE (INTEGER, inst);
18973 /* FIXME: Type checking for lengthening op. */
18974 struct neon_type_el et = neon_check_type (3, NS_QDD,
18975 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18976 neon_mixed_length (et, et.size);
18977 }
18978 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18979 && (inst.cond == 0xf || inst.cond == 0x10))
18980 {
18981 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18982 in an IT block with le/lt conditions. */
18983
18984 if (inst.cond == 0xf)
18985 inst.cond = 0xb;
18986 else if (inst.cond == 0x10)
18987 inst.cond = 0xd;
18988
18989 inst.pred_insn_type = INSIDE_IT_INSN;
18990
18991 if (inst.instruction == N_MNEM_vaddl)
18992 {
18993 inst.instruction = N_MNEM_vadd;
18994 do_neon_addsub_if_i ();
18995 }
18996 else if (inst.instruction == N_MNEM_vsubl)
18997 {
18998 inst.instruction = N_MNEM_vsub;
18999 do_neon_addsub_if_i ();
19000 }
19001 else if (inst.instruction == N_MNEM_vabdl)
19002 {
19003 inst.instruction = N_MNEM_vabd;
19004 do_neon_dyadic_if_su ();
19005 }
19006 }
19007 else
19008 first_error (BAD_FPU);
5287ad62
JB
19009}
19010
19011static void
19012do_neon_abal (void)
19013{
19014 struct neon_type_el et = neon_check_type (3, NS_QDD,
19015 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
19016 neon_mixed_length (et, et.size);
19017}
19018
19019static void
19020neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
19021{
19022 if (inst.operands[2].isscalar)
19023 {
dcbf9037 19024 struct neon_type_el et = neon_check_type (3, NS_QDS,
477330fc 19025 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 19026 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
19027 neon_mul_mac (et, et.type == NT_unsigned);
19028 }
19029 else
19030 {
19031 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 19032 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 19033 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
19034 neon_mixed_length (et, et.size);
19035 }
19036}
19037
19038static void
19039do_neon_mac_maybe_scalar_long (void)
19040{
19041 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
19042}
19043
dec41383
JW
19044/* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
19045 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
19046
19047static unsigned
19048neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
19049{
19050 unsigned regno = NEON_SCALAR_REG (scalar);
19051 unsigned elno = NEON_SCALAR_INDEX (scalar);
19052
19053 if (quad_p)
19054 {
19055 if (regno > 7 || elno > 3)
19056 goto bad_scalar;
19057
19058 return ((regno & 0x7)
19059 | ((elno & 0x1) << 3)
19060 | (((elno >> 1) & 0x1) << 5));
19061 }
19062 else
19063 {
19064 if (regno > 15 || elno > 1)
19065 goto bad_scalar;
19066
19067 return (((regno & 0x1) << 5)
19068 | ((regno >> 1) & 0x7)
19069 | ((elno & 0x1) << 3));
19070 }
19071
19072bad_scalar:
19073 first_error (_("scalar out of range for multiply instruction"));
19074 return 0;
19075}
19076
19077static void
19078do_neon_fmac_maybe_scalar_long (int subtype)
19079{
19080 enum neon_shape rs;
19081 int high8;
19082 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
19083 field (bits[21:20]) has different meaning. For scalar index variant, it's
19084 used to differentiate add and subtract, otherwise it's with fixed value
19085 0x2. */
19086 int size = -1;
19087
19088 if (inst.cond != COND_ALWAYS)
19089 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
19090 "behaviour is UNPREDICTABLE"));
19091
01f48020 19092 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
dec41383
JW
19093 _(BAD_FP16));
19094
19095 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19096 _(BAD_FPU));
19097
19098 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
19099 be a scalar index register. */
19100 if (inst.operands[2].isscalar)
19101 {
19102 high8 = 0xfe000000;
19103 if (subtype)
19104 size = 16;
19105 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
19106 }
19107 else
19108 {
19109 high8 = 0xfc000000;
19110 size = 32;
19111 if (subtype)
19112 inst.instruction |= (0x1 << 23);
19113 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
19114 }
19115
19116 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
19117
19118 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
19119 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
19120 so we simply pass -1 as size. */
19121 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
19122 neon_three_same (quad_p, 0, size);
19123
19124 /* Undo neon_dp_fixup. Redo the high eight bits. */
19125 inst.instruction &= 0x00ffffff;
19126 inst.instruction |= high8;
19127
19128#define LOW1(R) ((R) & 0x1)
19129#define HI4(R) (((R) >> 1) & 0xf)
19130 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
19131 whether the instruction is in Q form and whether Vm is a scalar indexed
19132 operand. */
19133 if (inst.operands[2].isscalar)
19134 {
19135 unsigned rm
19136 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
19137 inst.instruction &= 0xffffffd0;
19138 inst.instruction |= rm;
19139
19140 if (!quad_p)
19141 {
19142 /* Redo Rn as well. */
19143 inst.instruction &= 0xfff0ff7f;
19144 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19145 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19146 }
19147 }
19148 else if (!quad_p)
19149 {
19150 /* Redo Rn and Rm. */
19151 inst.instruction &= 0xfff0ff50;
19152 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
19153 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
19154 inst.instruction |= HI4 (inst.operands[2].reg);
19155 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
19156 }
19157}
19158
19159static void
19160do_neon_vfmal (void)
19161{
19162 return do_neon_fmac_maybe_scalar_long (0);
19163}
19164
19165static void
19166do_neon_vfmsl (void)
19167{
19168 return do_neon_fmac_maybe_scalar_long (1);
19169}
19170
5287ad62
JB
19171static void
19172do_neon_dyadic_wide (void)
19173{
19174 struct neon_type_el et = neon_check_type (3, NS_QQD,
19175 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
19176 neon_mixed_length (et, et.size);
19177}
19178
19179static void
19180do_neon_dyadic_narrow (void)
19181{
19182 struct neon_type_el et = neon_check_type (3, NS_QDD,
19183 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
19184 /* Operand sign is unimportant, and the U bit is part of the opcode,
19185 so force the operand type to integer. */
19186 et.type = NT_integer;
5287ad62
JB
19187 neon_mixed_length (et, et.size / 2);
19188}
19189
19190static void
19191do_neon_mul_sat_scalar_long (void)
19192{
19193 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
19194}
19195
19196static void
19197do_neon_vmull (void)
19198{
19199 if (inst.operands[2].isscalar)
19200 do_neon_mac_maybe_scalar_long ();
19201 else
19202 {
19203 struct neon_type_el et = neon_check_type (3, NS_QDD,
477330fc 19204 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
4f51b4bd 19205
5287ad62 19206 if (et.type == NT_poly)
477330fc 19207 NEON_ENCODE (POLY, inst);
5287ad62 19208 else
477330fc 19209 NEON_ENCODE (INTEGER, inst);
4f51b4bd
MGD
19210
19211 /* For polynomial encoding the U bit must be zero, and the size must
19212 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19213 obviously, as 0b10). */
19214 if (et.size == 64)
19215 {
19216 /* Check we're on the correct architecture. */
19217 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19218 inst.error =
19219 _("Instruction form not available on this architecture.");
19220
19221 et.size = 32;
19222 }
19223
5287ad62
JB
19224 neon_mixed_length (et, et.size);
19225 }
19226}
19227
19228static void
19229do_neon_ext (void)
19230{
037e8744 19231 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
19232 struct neon_type_el et = neon_check_type (3, rs,
19233 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19234 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
19235
19236 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19237 _("shift out of range"));
5287ad62
JB
19238 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19239 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19240 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19241 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19242 inst.instruction |= LOW4 (inst.operands[2].reg);
19243 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 19244 inst.instruction |= neon_quad (rs) << 6;
5287ad62 19245 inst.instruction |= imm << 8;
5f4273c7 19246
88714cb8 19247 neon_dp_fixup (&inst);
5287ad62
JB
19248}
19249
19250static void
19251do_neon_rev (void)
19252{
4401c241
AV
19253 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19254 return;
19255
19256 enum neon_shape rs;
19257 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19258 rs = neon_select_shape (NS_QQ, NS_NULL);
19259 else
19260 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19261
5287ad62
JB
19262 struct neon_type_el et = neon_check_type (2, rs,
19263 N_EQK, N_8 | N_16 | N_32 | N_KEY);
4401c241 19264
5287ad62
JB
19265 unsigned op = (inst.instruction >> 7) & 3;
19266 /* N (width of reversed regions) is encoded as part of the bitmask. We
19267 extract it here to check the elements to be reversed are smaller.
19268 Otherwise we'd get a reserved instruction. */
19269 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
4401c241
AV
19270
19271 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext) && elsize == 64
19272 && inst.operands[0].reg == inst.operands[1].reg)
19273 as_tsktsk (_("Warning: 64-bit element size and same destination and source"
19274 " operands makes instruction UNPREDICTABLE"));
19275
9c2799c2 19276 gas_assert (elsize != 0);
5287ad62 19277 constraint (et.size >= elsize,
477330fc 19278 _("elements must be smaller than reversal region"));
037e8744 19279 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19280}
19281
19282static void
19283do_neon_dup (void)
19284{
19285 if (inst.operands[1].isscalar)
19286 {
b409bdb6
AV
19287 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19288 BAD_FPU);
037e8744 19289 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037 19290 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19291 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 19292 unsigned sizebits = et.size >> 3;
dcbf9037 19293 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 19294 int logsize = neon_logbits (et.size);
dcbf9037 19295 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
19296
19297 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
477330fc 19298 return;
037e8744 19299
88714cb8 19300 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
19301 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19302 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19303 inst.instruction |= LOW4 (dm);
19304 inst.instruction |= HI1 (dm) << 5;
037e8744 19305 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
19306 inst.instruction |= x << 17;
19307 inst.instruction |= sizebits << 16;
5f4273c7 19308
88714cb8 19309 neon_dp_fixup (&inst);
5287ad62
JB
19310 }
19311 else
19312 {
037e8744
JB
19313 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19314 struct neon_type_el et = neon_check_type (2, rs,
477330fc 19315 N_8 | N_16 | N_32 | N_KEY, N_EQK);
b409bdb6
AV
19316 if (rs == NS_QR)
19317 {
19318 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
19319 return;
19320 }
19321 else
19322 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19323 BAD_FPU);
19324
19325 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19326 {
19327 if (inst.operands[1].reg == REG_SP)
19328 as_tsktsk (MVE_BAD_SP);
19329 else if (inst.operands[1].reg == REG_PC)
19330 as_tsktsk (MVE_BAD_PC);
19331 }
19332
5287ad62 19333 /* Duplicate ARM register to lanes of vector. */
88714cb8 19334 NEON_ENCODE (ARMREG, inst);
5287ad62 19335 switch (et.size)
477330fc
RM
19336 {
19337 case 8: inst.instruction |= 0x400000; break;
19338 case 16: inst.instruction |= 0x000020; break;
19339 case 32: inst.instruction |= 0x000000; break;
19340 default: break;
19341 }
5287ad62
JB
19342 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19343 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19344 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 19345 inst.instruction |= neon_quad (rs) << 21;
5287ad62 19346 /* The encoding for this instruction is identical for the ARM and Thumb
477330fc 19347 variants, except for the condition field. */
037e8744 19348 do_vfp_cond_or_thumb ();
5287ad62
JB
19349 }
19350}
19351
57785aa2
AV
19352static void
19353do_mve_mov (int toQ)
19354{
19355 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19356 return;
19357 if (inst.cond > COND_ALWAYS)
19358 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19359
19360 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19361 if (toQ)
19362 {
19363 Q0 = 0;
19364 Q1 = 1;
19365 Rt = 2;
19366 Rt2 = 3;
19367 }
19368
19369 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19370 _("Index one must be [2,3] and index two must be two less than"
19371 " index one."));
19372 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19373 _("General purpose registers may not be the same"));
19374 constraint (inst.operands[Rt].reg == REG_SP
19375 || inst.operands[Rt2].reg == REG_SP,
19376 BAD_SP);
19377 constraint (inst.operands[Rt].reg == REG_PC
19378 || inst.operands[Rt2].reg == REG_PC,
19379 BAD_PC);
19380
19381 inst.instruction = 0xec000f00;
19382 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19383 inst.instruction |= !!toQ << 20;
19384 inst.instruction |= inst.operands[Rt2].reg << 16;
19385 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19386 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19387 inst.instruction |= inst.operands[Rt].reg;
19388}
19389
19390static void
19391do_mve_movn (void)
19392{
19393 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19394 return;
19395
19396 if (inst.cond > COND_ALWAYS)
19397 inst.pred_insn_type = INSIDE_VPT_INSN;
19398 else
19399 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19400
19401 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19402 | N_KEY);
19403
19404 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19405 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19406 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19407 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19408 inst.instruction |= LOW4 (inst.operands[1].reg);
19409 inst.is_neon = 1;
19410
19411}
19412
5287ad62
JB
19413/* VMOV has particularly many variations. It can be one of:
19414 0. VMOV<c><q> <Qd>, <Qm>
19415 1. VMOV<c><q> <Dd>, <Dm>
19416 (Register operations, which are VORR with Rm = Rn.)
19417 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19418 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19419 (Immediate loads.)
19420 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19421 (ARM register to scalar.)
19422 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19423 (Two ARM registers to vector.)
19424 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19425 (Scalar to ARM register.)
19426 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19427 (Vector to two ARM registers.)
037e8744
JB
19428 8. VMOV.F32 <Sd>, <Sm>
19429 9. VMOV.F64 <Dd>, <Dm>
19430 (VFP register moves.)
19431 10. VMOV.F32 <Sd>, #imm
19432 11. VMOV.F64 <Dd>, #imm
19433 (VFP float immediate load.)
19434 12. VMOV <Rd>, <Sm>
19435 (VFP single to ARM reg.)
19436 13. VMOV <Sd>, <Rm>
19437 (ARM reg to VFP single.)
19438 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19439 (Two ARM regs to two VFP singles.)
19440 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19441 (Two VFP singles to two ARM regs.)
57785aa2
AV
19442 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19443 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19444 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19445 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
5f4273c7 19446
037e8744
JB
19447 These cases can be disambiguated using neon_select_shape, except cases 1/9
19448 and 3/11 which depend on the operand type too.
5f4273c7 19449
5287ad62 19450 All the encoded bits are hardcoded by this function.
5f4273c7 19451
b7fc2769
JB
19452 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19453 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 19454
5287ad62 19455 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 19456 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
19457
19458static void
19459do_neon_mov (void)
19460{
57785aa2
AV
19461 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19462 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19463 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19464 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19465 NS_NULL);
037e8744
JB
19466 struct neon_type_el et;
19467 const char *ldconst = 0;
5287ad62 19468
037e8744 19469 switch (rs)
5287ad62 19470 {
037e8744
JB
19471 case NS_DD: /* case 1/9. */
19472 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19473 /* It is not an error here if no type is given. */
19474 inst.error = NULL;
19475 if (et.type == NT_float && et.size == 64)
477330fc
RM
19476 {
19477 do_vfp_nsyn_opcode ("fcpyd");
19478 break;
19479 }
037e8744 19480 /* fall through. */
5287ad62 19481
037e8744
JB
19482 case NS_QQ: /* case 0/1. */
19483 {
57785aa2 19484 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc
RM
19485 return;
19486 /* The architecture manual I have doesn't explicitly state which
19487 value the U bit should have for register->register moves, but
19488 the equivalent VORR instruction has U = 0, so do that. */
19489 inst.instruction = 0x0200110;
19490 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19491 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19492 inst.instruction |= LOW4 (inst.operands[1].reg);
19493 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19494 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19495 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19496 inst.instruction |= neon_quad (rs) << 6;
19497
19498 neon_dp_fixup (&inst);
037e8744
JB
19499 }
19500 break;
5f4273c7 19501
037e8744
JB
19502 case NS_DI: /* case 3/11. */
19503 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19504 inst.error = NULL;
19505 if (et.type == NT_float && et.size == 64)
477330fc
RM
19506 {
19507 /* case 11 (fconstd). */
19508 ldconst = "fconstd";
19509 goto encode_fconstd;
19510 }
037e8744
JB
19511 /* fall through. */
19512
19513 case NS_QI: /* case 2/3. */
57785aa2 19514 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
477330fc 19515 return;
037e8744
JB
19516 inst.instruction = 0x0800010;
19517 neon_move_immediate ();
88714cb8 19518 neon_dp_fixup (&inst);
5287ad62 19519 break;
5f4273c7 19520
037e8744
JB
19521 case NS_SR: /* case 4. */
19522 {
477330fc
RM
19523 unsigned bcdebits = 0;
19524 int logsize;
19525 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19526 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
037e8744 19527
05ac0ffb
JB
19528 /* .<size> is optional here, defaulting to .32. */
19529 if (inst.vectype.elems == 0
19530 && inst.operands[0].vectype.type == NT_invtype
19531 && inst.operands[1].vectype.type == NT_invtype)
19532 {
19533 inst.vectype.el[0].type = NT_untyped;
19534 inst.vectype.el[0].size = 32;
19535 inst.vectype.elems = 1;
19536 }
19537
477330fc
RM
19538 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19539 logsize = neon_logbits (et.size);
19540
57785aa2
AV
19541 if (et.size != 32)
19542 {
19543 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19544 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19545 return;
19546 }
19547 else
19548 {
19549 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19550 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19551 _(BAD_FPU));
19552 }
19553
19554 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19555 {
19556 if (inst.operands[1].reg == REG_SP)
19557 as_tsktsk (MVE_BAD_SP);
19558 else if (inst.operands[1].reg == REG_PC)
19559 as_tsktsk (MVE_BAD_PC);
19560 }
19561 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19562
477330fc 19563 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2
AV
19564 constraint (x >= size / et.size, _("scalar index out of range"));
19565
477330fc
RM
19566
19567 switch (et.size)
19568 {
19569 case 8: bcdebits = 0x8; break;
19570 case 16: bcdebits = 0x1; break;
19571 case 32: bcdebits = 0x0; break;
19572 default: ;
19573 }
19574
57785aa2 19575 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19576
19577 inst.instruction = 0xe000b10;
19578 do_vfp_cond_or_thumb ();
19579 inst.instruction |= LOW4 (dn) << 16;
19580 inst.instruction |= HI1 (dn) << 7;
19581 inst.instruction |= inst.operands[1].reg << 12;
19582 inst.instruction |= (bcdebits & 3) << 5;
57785aa2
AV
19583 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19584 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19585 }
19586 break;
5f4273c7 19587
037e8744 19588 case NS_DRR: /* case 5 (fmdrr). */
57785aa2
AV
19589 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19590 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19591 _(BAD_FPU));
b7fc2769 19592
037e8744
JB
19593 inst.instruction = 0xc400b10;
19594 do_vfp_cond_or_thumb ();
19595 inst.instruction |= LOW4 (inst.operands[0].reg);
19596 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19597 inst.instruction |= inst.operands[1].reg << 12;
19598 inst.instruction |= inst.operands[2].reg << 16;
19599 break;
5f4273c7 19600
037e8744
JB
19601 case NS_RS: /* case 6. */
19602 {
477330fc
RM
19603 unsigned logsize;
19604 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19605 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19606 unsigned abcdebits = 0;
037e8744 19607
05ac0ffb
JB
19608 /* .<dt> is optional here, defaulting to .32. */
19609 if (inst.vectype.elems == 0
19610 && inst.operands[0].vectype.type == NT_invtype
19611 && inst.operands[1].vectype.type == NT_invtype)
19612 {
19613 inst.vectype.el[0].type = NT_untyped;
19614 inst.vectype.el[0].size = 32;
19615 inst.vectype.elems = 1;
19616 }
19617
91d6fa6a
NC
19618 et = neon_check_type (2, NS_NULL,
19619 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
477330fc
RM
19620 logsize = neon_logbits (et.size);
19621
57785aa2
AV
19622 if (et.size != 32)
19623 {
19624 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19625 && vfp_or_neon_is_neon (NEON_CHECK_CC
19626 | NEON_CHECK_ARCH) == FAIL)
19627 return;
19628 }
19629 else
19630 {
19631 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19632 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19633 _(BAD_FPU));
19634 }
19635
19636 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19637 {
19638 if (inst.operands[0].reg == REG_SP)
19639 as_tsktsk (MVE_BAD_SP);
19640 else if (inst.operands[0].reg == REG_PC)
19641 as_tsktsk (MVE_BAD_PC);
19642 }
19643
19644 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19645
477330fc 19646 constraint (et.type == NT_invtype, _("bad type for scalar"));
57785aa2 19647 constraint (x >= size / et.size, _("scalar index out of range"));
477330fc
RM
19648
19649 switch (et.size)
19650 {
19651 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19652 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19653 case 32: abcdebits = 0x00; break;
19654 default: ;
19655 }
19656
57785aa2 19657 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
477330fc
RM
19658 inst.instruction = 0xe100b10;
19659 do_vfp_cond_or_thumb ();
19660 inst.instruction |= LOW4 (dn) << 16;
19661 inst.instruction |= HI1 (dn) << 7;
19662 inst.instruction |= inst.operands[0].reg << 12;
19663 inst.instruction |= (abcdebits & 3) << 5;
19664 inst.instruction |= (abcdebits >> 2) << 21;
57785aa2 19665 inst.instruction |= (x >> (3-logsize)) << 16;
037e8744
JB
19666 }
19667 break;
5f4273c7 19668
037e8744 19669 case NS_RRD: /* case 7 (fmrrd). */
57785aa2
AV
19670 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19671 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
477330fc 19672 _(BAD_FPU));
037e8744
JB
19673
19674 inst.instruction = 0xc500b10;
19675 do_vfp_cond_or_thumb ();
19676 inst.instruction |= inst.operands[0].reg << 12;
19677 inst.instruction |= inst.operands[1].reg << 16;
19678 inst.instruction |= LOW4 (inst.operands[2].reg);
19679 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19680 break;
5f4273c7 19681
037e8744
JB
19682 case NS_FF: /* case 8 (fcpys). */
19683 do_vfp_nsyn_opcode ("fcpys");
19684 break;
5f4273c7 19685
9db2f6b4 19686 case NS_HI:
037e8744
JB
19687 case NS_FI: /* case 10 (fconsts). */
19688 ldconst = "fconsts";
4ef4710f 19689 encode_fconstd:
58ed5c38
TC
19690 if (!inst.operands[1].immisfloat)
19691 {
4ef4710f 19692 unsigned new_imm;
58ed5c38 19693 /* Immediate has to fit in 8 bits so float is enough. */
4ef4710f
NC
19694 float imm = (float) inst.operands[1].imm;
19695 memcpy (&new_imm, &imm, sizeof (float));
19696 /* But the assembly may have been written to provide an integer
19697 bit pattern that equates to a float, so check that the
19698 conversion has worked. */
19699 if (is_quarter_float (new_imm))
19700 {
19701 if (is_quarter_float (inst.operands[1].imm))
19702 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19703
19704 inst.operands[1].imm = new_imm;
19705 inst.operands[1].immisfloat = 1;
19706 }
58ed5c38
TC
19707 }
19708
037e8744 19709 if (is_quarter_float (inst.operands[1].imm))
477330fc
RM
19710 {
19711 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19712 do_vfp_nsyn_opcode (ldconst);
9db2f6b4
RL
19713
19714 /* ARMv8.2 fp16 vmov.f16 instruction. */
19715 if (rs == NS_HI)
19716 do_scalar_fp16_v82_encode ();
477330fc 19717 }
5287ad62 19718 else
477330fc 19719 first_error (_("immediate out of range"));
037e8744 19720 break;
5f4273c7 19721
9db2f6b4 19722 case NS_RH:
037e8744
JB
19723 case NS_RF: /* case 12 (fmrs). */
19724 do_vfp_nsyn_opcode ("fmrs");
9db2f6b4
RL
19725 /* ARMv8.2 fp16 vmov.f16 instruction. */
19726 if (rs == NS_RH)
19727 do_scalar_fp16_v82_encode ();
037e8744 19728 break;
5f4273c7 19729
9db2f6b4 19730 case NS_HR:
037e8744
JB
19731 case NS_FR: /* case 13 (fmsr). */
19732 do_vfp_nsyn_opcode ("fmsr");
9db2f6b4
RL
19733 /* ARMv8.2 fp16 vmov.f16 instruction. */
19734 if (rs == NS_HR)
19735 do_scalar_fp16_v82_encode ();
037e8744 19736 break;
5f4273c7 19737
57785aa2
AV
19738 case NS_RRSS:
19739 do_mve_mov (0);
19740 break;
19741 case NS_SSRR:
19742 do_mve_mov (1);
19743 break;
19744
037e8744
JB
19745 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19746 (one of which is a list), but we have parsed four. Do some fiddling to
19747 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19748 expect. */
19749 case NS_RRFF: /* case 14 (fmrrs). */
57785aa2
AV
19750 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19751 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19752 _(BAD_FPU));
037e8744 19753 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
477330fc 19754 _("VFP registers must be adjacent"));
037e8744
JB
19755 inst.operands[2].imm = 2;
19756 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19757 do_vfp_nsyn_opcode ("fmrrs");
19758 break;
5f4273c7 19759
037e8744 19760 case NS_FFRR: /* case 15 (fmsrr). */
57785aa2
AV
19761 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19762 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19763 _(BAD_FPU));
037e8744 19764 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
477330fc 19765 _("VFP registers must be adjacent"));
037e8744
JB
19766 inst.operands[1] = inst.operands[2];
19767 inst.operands[2] = inst.operands[3];
19768 inst.operands[0].imm = 2;
19769 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19770 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 19771 break;
5f4273c7 19772
4c261dff
NC
19773 case NS_NULL:
19774 /* neon_select_shape has determined that the instruction
19775 shape is wrong and has already set the error message. */
19776 break;
19777
5287ad62
JB
19778 default:
19779 abort ();
19780 }
19781}
19782
57785aa2
AV
19783static void
19784do_mve_movl (void)
19785{
19786 if (!(inst.operands[0].present && inst.operands[0].isquad
19787 && inst.operands[1].present && inst.operands[1].isquad
19788 && !inst.operands[2].present))
19789 {
19790 inst.instruction = 0;
19791 inst.cond = 0xb;
19792 if (thumb_mode)
19793 set_pred_insn_type (INSIDE_IT_INSN);
19794 do_neon_mov ();
19795 return;
19796 }
19797
19798 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19799 return;
19800
19801 if (inst.cond != COND_ALWAYS)
19802 inst.pred_insn_type = INSIDE_VPT_INSN;
19803
19804 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19805 | N_S16 | N_U16 | N_KEY);
19806
19807 inst.instruction |= (et.type == NT_unsigned) << 28;
19808 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19809 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19810 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19811 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19812 inst.instruction |= LOW4 (inst.operands[1].reg);
19813 inst.is_neon = 1;
19814}
19815
5287ad62
JB
19816static void
19817do_neon_rshift_round_imm (void)
19818{
4401c241
AV
19819 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19820 return;
19821
19822 enum neon_shape rs;
19823 struct neon_type_el et;
19824
19825 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19826 {
19827 rs = neon_select_shape (NS_QQI, NS_NULL);
19828 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
19829 }
19830 else
19831 {
19832 rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19833 et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19834 }
5287ad62
JB
19835 int imm = inst.operands[2].imm;
19836
19837 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19838 if (imm == 0)
19839 {
19840 inst.operands[2].present = 0;
19841 do_neon_mov ();
19842 return;
19843 }
19844
19845 constraint (imm < 1 || (unsigned)imm > et.size,
477330fc 19846 _("immediate out of range for shift"));
037e8744 19847 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
477330fc 19848 et.size - imm);
5287ad62
JB
19849}
19850
9db2f6b4
RL
19851static void
19852do_neon_movhf (void)
19853{
19854 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19855 constraint (rs != NS_HH, _("invalid suffix"));
19856
7bdf778b
ASDV
19857 if (inst.cond != COND_ALWAYS)
19858 {
19859 if (thumb_mode)
19860 {
19861 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19862 " the behaviour is UNPREDICTABLE"));
19863 }
19864 else
19865 {
19866 inst.error = BAD_COND;
19867 return;
19868 }
19869 }
19870
9db2f6b4
RL
19871 do_vfp_sp_monadic ();
19872
19873 inst.is_neon = 1;
19874 inst.instruction |= 0xf0000000;
19875}
19876
5287ad62
JB
19877static void
19878do_neon_movl (void)
19879{
19880 struct neon_type_el et = neon_check_type (2, NS_QD,
19881 N_EQK | N_DBL, N_SU_32 | N_KEY);
19882 unsigned sizebits = et.size >> 3;
19883 inst.instruction |= sizebits << 19;
19884 neon_two_same (0, et.type == NT_unsigned, -1);
19885}
19886
19887static void
19888do_neon_trn (void)
19889{
037e8744 19890 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19891 struct neon_type_el et = neon_check_type (2, rs,
19892 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 19893 NEON_ENCODE (INTEGER, inst);
037e8744 19894 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19895}
19896
19897static void
19898do_neon_zip_uzp (void)
19899{
037e8744 19900 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19901 struct neon_type_el et = neon_check_type (2, rs,
19902 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19903 if (rs == NS_DD && et.size == 32)
19904 {
19905 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19906 inst.instruction = N_MNEM_vtrn;
19907 do_neon_trn ();
19908 return;
19909 }
037e8744 19910 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19911}
19912
19913static void
19914do_neon_sat_abs_neg (void)
19915{
1a186d29
AV
19916 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19917 return;
19918
19919 enum neon_shape rs;
19920 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19921 rs = neon_select_shape (NS_QQ, NS_NULL);
19922 else
19923 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19924 struct neon_type_el et = neon_check_type (2, rs,
19925 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19926 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19927}
19928
19929static void
19930do_neon_pair_long (void)
19931{
037e8744 19932 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19933 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19934 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19935 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 19936 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19937}
19938
19939static void
19940do_neon_recip_est (void)
19941{
037e8744 19942 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62 19943 struct neon_type_el et = neon_check_type (2, rs,
cc933301 19944 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
5287ad62 19945 inst.instruction |= (et.type == NT_float) << 8;
037e8744 19946 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19947}
19948
19949static void
19950do_neon_cls (void)
19951{
f30ee27c
AV
19952 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19953 return;
19954
19955 enum neon_shape rs;
19956 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19957 rs = neon_select_shape (NS_QQ, NS_NULL);
19958 else
19959 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19960
5287ad62
JB
19961 struct neon_type_el et = neon_check_type (2, rs,
19962 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 19963 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19964}
19965
19966static void
19967do_neon_clz (void)
19968{
f30ee27c
AV
19969 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19970 return;
19971
19972 enum neon_shape rs;
19973 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19974 rs = neon_select_shape (NS_QQ, NS_NULL);
19975 else
19976 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19977
5287ad62
JB
19978 struct neon_type_el et = neon_check_type (2, rs,
19979 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 19980 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19981}
19982
19983static void
19984do_neon_cnt (void)
19985{
037e8744 19986 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
19987 struct neon_type_el et = neon_check_type (2, rs,
19988 N_EQK | N_INT, N_8 | N_KEY);
037e8744 19989 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
19990}
19991
19992static void
19993do_neon_swp (void)
19994{
037e8744
JB
19995 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19996 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
19997}
19998
19999static void
20000do_neon_tbl_tbx (void)
20001{
20002 unsigned listlenbits;
dcbf9037 20003 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 20004
5287ad62
JB
20005 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
20006 {
dcbf9037 20007 first_error (_("bad list length for table lookup"));
5287ad62
JB
20008 return;
20009 }
5f4273c7 20010
5287ad62
JB
20011 listlenbits = inst.operands[1].imm - 1;
20012 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20013 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20014 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20015 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20016 inst.instruction |= LOW4 (inst.operands[2].reg);
20017 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20018 inst.instruction |= listlenbits << 8;
5f4273c7 20019
88714cb8 20020 neon_dp_fixup (&inst);
5287ad62
JB
20021}
20022
20023static void
20024do_neon_ldm_stm (void)
20025{
20026 /* P, U and L bits are part of bitmask. */
20027 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
20028 unsigned offsetbits = inst.operands[1].imm * 2;
20029
037e8744
JB
20030 if (inst.operands[1].issingle)
20031 {
20032 do_vfp_nsyn_ldm_stm (is_dbmode);
20033 return;
20034 }
20035
5287ad62 20036 constraint (is_dbmode && !inst.operands[0].writeback,
477330fc 20037 _("writeback (!) must be used for VLDMDB and VSTMDB"));
5287ad62
JB
20038
20039 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
477330fc
RM
20040 _("register list must contain at least 1 and at most 16 "
20041 "registers"));
5287ad62
JB
20042
20043 inst.instruction |= inst.operands[0].reg << 16;
20044 inst.instruction |= inst.operands[0].writeback << 21;
20045 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
20046 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
20047
20048 inst.instruction |= offsetbits;
5f4273c7 20049
037e8744 20050 do_vfp_cond_or_thumb ();
5287ad62
JB
20051}
20052
20053static void
20054do_neon_ldr_str (void)
20055{
5287ad62 20056 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 20057
6844b2c2
MGD
20058 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
20059 And is UNPREDICTABLE in thumb mode. */
fa94de6b 20060 if (!is_ldr
6844b2c2 20061 && inst.operands[1].reg == REG_PC
ba86b375 20062 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
6844b2c2 20063 {
94dcf8bf 20064 if (thumb_mode)
6844b2c2 20065 inst.error = _("Use of PC here is UNPREDICTABLE");
94dcf8bf 20066 else if (warn_on_deprecated)
5c3696f8 20067 as_tsktsk (_("Use of PC here is deprecated"));
6844b2c2
MGD
20068 }
20069
037e8744
JB
20070 if (inst.operands[0].issingle)
20071 {
cd2f129f 20072 if (is_ldr)
477330fc 20073 do_vfp_nsyn_opcode ("flds");
cd2f129f 20074 else
477330fc 20075 do_vfp_nsyn_opcode ("fsts");
9db2f6b4
RL
20076
20077 /* ARMv8.2 vldr.16/vstr.16 instruction. */
20078 if (inst.vectype.el[0].size == 16)
20079 do_scalar_fp16_v82_encode ();
5287ad62
JB
20080 }
20081 else
5287ad62 20082 {
cd2f129f 20083 if (is_ldr)
477330fc 20084 do_vfp_nsyn_opcode ("fldd");
5287ad62 20085 else
477330fc 20086 do_vfp_nsyn_opcode ("fstd");
5287ad62 20087 }
5287ad62
JB
20088}
20089
32c36c3c
AV
20090static void
20091do_t_vldr_vstr_sysreg (void)
20092{
20093 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
20094 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
20095
20096 /* Use of PC is UNPREDICTABLE. */
20097 if (inst.operands[1].reg == REG_PC)
20098 inst.error = _("Use of PC here is UNPREDICTABLE");
20099
20100 if (inst.operands[1].immisreg)
20101 inst.error = _("instruction does not accept register index");
20102
20103 if (!inst.operands[1].isreg)
20104 inst.error = _("instruction does not accept PC-relative addressing");
20105
20106 if (abs (inst.operands[1].imm) >= (1 << 7))
20107 inst.error = _("immediate value out of range");
20108
20109 inst.instruction = 0xec000f80;
20110 if (is_vldr)
20111 inst.instruction |= 1 << sysreg_vldr_bitno;
20112 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
20113 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
20114 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
20115}
20116
20117static void
20118do_vldr_vstr (void)
20119{
20120 bfd_boolean sysreg_op = !inst.operands[0].isreg;
20121
20122 /* VLDR/VSTR (System Register). */
20123 if (sysreg_op)
20124 {
20125 if (!mark_feature_used (&arm_ext_v8_1m_main))
20126 as_bad (_("Instruction not permitted on this architecture"));
20127
20128 do_t_vldr_vstr_sysreg ();
20129 }
20130 /* VLDR/VSTR. */
20131 else
20132 {
20133 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
20134 as_bad (_("Instruction not permitted on this architecture"));
20135 do_neon_ldr_str ();
20136 }
20137}
20138
5287ad62
JB
20139/* "interleave" version also handles non-interleaving register VLD1/VST1
20140 instructions. */
20141
20142static void
20143do_neon_ld_st_interleave (void)
20144{
037e8744 20145 struct neon_type_el et = neon_check_type (1, NS_NULL,
477330fc 20146 N_8 | N_16 | N_32 | N_64);
5287ad62
JB
20147 unsigned alignbits = 0;
20148 unsigned idx;
20149 /* The bits in this table go:
20150 0: register stride of one (0) or two (1)
20151 1,2: register list length, minus one (1, 2, 3, 4).
20152 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
20153 We use -1 for invalid entries. */
20154 const int typetable[] =
20155 {
20156 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
20157 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
20158 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
20159 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
20160 };
20161 int typebits;
20162
dcbf9037
JB
20163 if (et.type == NT_invtype)
20164 return;
20165
5287ad62
JB
20166 if (inst.operands[1].immisalign)
20167 switch (inst.operands[1].imm >> 8)
20168 {
20169 case 64: alignbits = 1; break;
20170 case 128:
477330fc 20171 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
e23c0ad8 20172 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
477330fc
RM
20173 goto bad_alignment;
20174 alignbits = 2;
20175 break;
5287ad62 20176 case 256:
477330fc
RM
20177 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
20178 goto bad_alignment;
20179 alignbits = 3;
20180 break;
5287ad62
JB
20181 default:
20182 bad_alignment:
477330fc
RM
20183 first_error (_("bad alignment"));
20184 return;
5287ad62
JB
20185 }
20186
20187 inst.instruction |= alignbits << 4;
20188 inst.instruction |= neon_logbits (et.size) << 6;
20189
20190 /* Bits [4:6] of the immediate in a list specifier encode register stride
20191 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
20192 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
20193 up the right value for "type" in a table based on this value and the given
20194 list style, then stick it back. */
20195 idx = ((inst.operands[0].imm >> 4) & 7)
477330fc 20196 | (((inst.instruction >> 8) & 3) << 3);
5287ad62
JB
20197
20198 typebits = typetable[idx];
5f4273c7 20199
5287ad62 20200 constraint (typebits == -1, _("bad list type for instruction"));
1d50d57c 20201 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
35c228db 20202 BAD_EL_TYPE);
5287ad62
JB
20203
20204 inst.instruction &= ~0xf00;
20205 inst.instruction |= typebits << 8;
20206}
20207
20208/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
20209 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
20210 otherwise. The variable arguments are a list of pairs of legal (size, align)
20211 values, terminated with -1. */
20212
20213static int
aa8a0863 20214neon_alignment_bit (int size, int align, int *do_alignment, ...)
5287ad62
JB
20215{
20216 va_list ap;
20217 int result = FAIL, thissize, thisalign;
5f4273c7 20218
5287ad62
JB
20219 if (!inst.operands[1].immisalign)
20220 {
aa8a0863 20221 *do_alignment = 0;
5287ad62
JB
20222 return SUCCESS;
20223 }
5f4273c7 20224
aa8a0863 20225 va_start (ap, do_alignment);
5287ad62
JB
20226
20227 do
20228 {
20229 thissize = va_arg (ap, int);
20230 if (thissize == -1)
477330fc 20231 break;
5287ad62
JB
20232 thisalign = va_arg (ap, int);
20233
20234 if (size == thissize && align == thisalign)
477330fc 20235 result = SUCCESS;
5287ad62
JB
20236 }
20237 while (result != SUCCESS);
20238
20239 va_end (ap);
20240
20241 if (result == SUCCESS)
aa8a0863 20242 *do_alignment = 1;
5287ad62 20243 else
dcbf9037 20244 first_error (_("unsupported alignment for instruction"));
5f4273c7 20245
5287ad62
JB
20246 return result;
20247}
20248
20249static void
20250do_neon_ld_st_lane (void)
20251{
037e8744 20252 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20253 int align_good, do_alignment = 0;
5287ad62
JB
20254 int logsize = neon_logbits (et.size);
20255 int align = inst.operands[1].imm >> 8;
20256 int n = (inst.instruction >> 8) & 3;
20257 int max_el = 64 / et.size;
5f4273c7 20258
dcbf9037
JB
20259 if (et.type == NT_invtype)
20260 return;
5f4273c7 20261
5287ad62 20262 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
477330fc 20263 _("bad list length"));
5287ad62 20264 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
477330fc 20265 _("scalar index out of range"));
5287ad62 20266 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
477330fc
RM
20267 && et.size == 8,
20268 _("stride of 2 unavailable when element size is 8"));
5f4273c7 20269
5287ad62
JB
20270 switch (n)
20271 {
20272 case 0: /* VLD1 / VST1. */
aa8a0863 20273 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
477330fc 20274 32, 32, -1);
5287ad62 20275 if (align_good == FAIL)
477330fc 20276 return;
aa8a0863 20277 if (do_alignment)
477330fc
RM
20278 {
20279 unsigned alignbits = 0;
20280 switch (et.size)
20281 {
20282 case 16: alignbits = 0x1; break;
20283 case 32: alignbits = 0x3; break;
20284 default: ;
20285 }
20286 inst.instruction |= alignbits << 4;
20287 }
5287ad62
JB
20288 break;
20289
20290 case 1: /* VLD2 / VST2. */
aa8a0863
TS
20291 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20292 16, 32, 32, 64, -1);
5287ad62 20293 if (align_good == FAIL)
477330fc 20294 return;
aa8a0863 20295 if (do_alignment)
477330fc 20296 inst.instruction |= 1 << 4;
5287ad62
JB
20297 break;
20298
20299 case 2: /* VLD3 / VST3. */
20300 constraint (inst.operands[1].immisalign,
477330fc 20301 _("can't use alignment with this instruction"));
5287ad62
JB
20302 break;
20303
20304 case 3: /* VLD4 / VST4. */
aa8a0863 20305 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc 20306 16, 64, 32, 64, 32, 128, -1);
5287ad62 20307 if (align_good == FAIL)
477330fc 20308 return;
aa8a0863 20309 if (do_alignment)
477330fc
RM
20310 {
20311 unsigned alignbits = 0;
20312 switch (et.size)
20313 {
20314 case 8: alignbits = 0x1; break;
20315 case 16: alignbits = 0x1; break;
20316 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20317 default: ;
20318 }
20319 inst.instruction |= alignbits << 4;
20320 }
5287ad62
JB
20321 break;
20322
20323 default: ;
20324 }
20325
20326 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20327 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20328 inst.instruction |= 1 << (4 + logsize);
5f4273c7 20329
5287ad62
JB
20330 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20331 inst.instruction |= logsize << 10;
20332}
20333
20334/* Encode single n-element structure to all lanes VLD<n> instructions. */
20335
20336static void
20337do_neon_ld_dup (void)
20338{
037e8744 20339 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
aa8a0863 20340 int align_good, do_alignment = 0;
5287ad62 20341
dcbf9037
JB
20342 if (et.type == NT_invtype)
20343 return;
20344
5287ad62
JB
20345 switch ((inst.instruction >> 8) & 3)
20346 {
20347 case 0: /* VLD1. */
9c2799c2 20348 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62 20349 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863 20350 &do_alignment, 16, 16, 32, 32, -1);
5287ad62 20351 if (align_good == FAIL)
477330fc 20352 return;
5287ad62 20353 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
477330fc
RM
20354 {
20355 case 1: break;
20356 case 2: inst.instruction |= 1 << 5; break;
20357 default: first_error (_("bad list length")); return;
20358 }
5287ad62
JB
20359 inst.instruction |= neon_logbits (et.size) << 6;
20360 break;
20361
20362 case 1: /* VLD2. */
20363 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
aa8a0863
TS
20364 &do_alignment, 8, 16, 16, 32, 32, 64,
20365 -1);
5287ad62 20366 if (align_good == FAIL)
477330fc 20367 return;
5287ad62 20368 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
477330fc 20369 _("bad list length"));
5287ad62 20370 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20371 inst.instruction |= 1 << 5;
5287ad62
JB
20372 inst.instruction |= neon_logbits (et.size) << 6;
20373 break;
20374
20375 case 2: /* VLD3. */
20376 constraint (inst.operands[1].immisalign,
477330fc 20377 _("can't use alignment with this instruction"));
5287ad62 20378 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
477330fc 20379 _("bad list length"));
5287ad62 20380 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
477330fc 20381 inst.instruction |= 1 << 5;
5287ad62
JB
20382 inst.instruction |= neon_logbits (et.size) << 6;
20383 break;
20384
20385 case 3: /* VLD4. */
20386 {
477330fc 20387 int align = inst.operands[1].imm >> 8;
aa8a0863 20388 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
477330fc
RM
20389 16, 64, 32, 64, 32, 128, -1);
20390 if (align_good == FAIL)
20391 return;
20392 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20393 _("bad list length"));
20394 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20395 inst.instruction |= 1 << 5;
20396 if (et.size == 32 && align == 128)
20397 inst.instruction |= 0x3 << 6;
20398 else
20399 inst.instruction |= neon_logbits (et.size) << 6;
5287ad62
JB
20400 }
20401 break;
20402
20403 default: ;
20404 }
20405
aa8a0863 20406 inst.instruction |= do_alignment << 4;
5287ad62
JB
20407}
20408
20409/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20410 apart from bits [11:4]. */
20411
20412static void
20413do_neon_ldx_stx (void)
20414{
b1a769ed
DG
20415 if (inst.operands[1].isreg)
20416 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20417
5287ad62
JB
20418 switch (NEON_LANE (inst.operands[0].imm))
20419 {
20420 case NEON_INTERLEAVE_LANES:
88714cb8 20421 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
20422 do_neon_ld_st_interleave ();
20423 break;
5f4273c7 20424
5287ad62 20425 case NEON_ALL_LANES:
88714cb8 20426 NEON_ENCODE (DUP, inst);
2d51fb74
JB
20427 if (inst.instruction == N_INV)
20428 {
20429 first_error ("only loads support such operands");
20430 break;
20431 }
5287ad62
JB
20432 do_neon_ld_dup ();
20433 break;
5f4273c7 20434
5287ad62 20435 default:
88714cb8 20436 NEON_ENCODE (LANE, inst);
5287ad62
JB
20437 do_neon_ld_st_lane ();
20438 }
20439
20440 /* L bit comes from bit mask. */
20441 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20442 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20443 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 20444
5287ad62
JB
20445 if (inst.operands[1].postind)
20446 {
20447 int postreg = inst.operands[1].imm & 0xf;
20448 constraint (!inst.operands[1].immisreg,
477330fc 20449 _("post-index must be a register"));
5287ad62 20450 constraint (postreg == 0xd || postreg == 0xf,
477330fc 20451 _("bad register for post-index"));
5287ad62
JB
20452 inst.instruction |= postreg;
20453 }
4f2374c7 20454 else
5287ad62 20455 {
4f2374c7 20456 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
e2b0ab59
AV
20457 constraint (inst.relocs[0].exp.X_op != O_constant
20458 || inst.relocs[0].exp.X_add_number != 0,
4f2374c7
WN
20459 BAD_ADDR_MODE);
20460
20461 if (inst.operands[1].writeback)
20462 {
20463 inst.instruction |= 0xd;
20464 }
20465 else
20466 inst.instruction |= 0xf;
5287ad62 20467 }
5f4273c7 20468
5287ad62
JB
20469 if (thumb_mode)
20470 inst.instruction |= 0xf9000000;
20471 else
20472 inst.instruction |= 0xf4000000;
20473}
33399f07
MGD
20474
20475/* FP v8. */
20476static void
20477do_vfp_nsyn_fpv8 (enum neon_shape rs)
20478{
a715796b
TG
20479 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20480 D register operands. */
20481 if (neon_shape_class[rs] == SC_DOUBLE)
20482 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20483 _(BAD_FPU));
20484
33399f07
MGD
20485 NEON_ENCODE (FPV8, inst);
20486
9db2f6b4
RL
20487 if (rs == NS_FFF || rs == NS_HHH)
20488 {
20489 do_vfp_sp_dyadic ();
20490
20491 /* ARMv8.2 fp16 instruction. */
20492 if (rs == NS_HHH)
20493 do_scalar_fp16_v82_encode ();
20494 }
33399f07
MGD
20495 else
20496 do_vfp_dp_rd_rn_rm ();
20497
20498 if (rs == NS_DDD)
20499 inst.instruction |= 0x100;
20500
20501 inst.instruction |= 0xf0000000;
20502}
20503
20504static void
20505do_vsel (void)
20506{
5ee91343 20507 set_pred_insn_type (OUTSIDE_PRED_INSN);
33399f07
MGD
20508
20509 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20510 first_error (_("invalid instruction shape"));
20511}
20512
73924fbc
MGD
20513static void
20514do_vmaxnm (void)
20515{
935295b5
AV
20516 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20517 set_pred_insn_type (OUTSIDE_PRED_INSN);
73924fbc
MGD
20518
20519 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20520 return;
20521
935295b5 20522 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
73924fbc
MGD
20523 return;
20524
cc933301 20525 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
73924fbc
MGD
20526}
20527
30bdf752
MGD
20528static void
20529do_vrint_1 (enum neon_cvt_mode mode)
20530{
9db2f6b4 20531 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
30bdf752
MGD
20532 struct neon_type_el et;
20533
20534 if (rs == NS_NULL)
20535 return;
20536
a715796b
TG
20537 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20538 D register operands. */
20539 if (neon_shape_class[rs] == SC_DOUBLE)
20540 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20541 _(BAD_FPU));
20542
9db2f6b4
RL
20543 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20544 | N_VFP);
30bdf752
MGD
20545 if (et.type != NT_invtype)
20546 {
20547 /* VFP encodings. */
20548 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20549 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
5ee91343 20550 set_pred_insn_type (OUTSIDE_PRED_INSN);
30bdf752
MGD
20551
20552 NEON_ENCODE (FPV8, inst);
9db2f6b4 20553 if (rs == NS_FF || rs == NS_HH)
30bdf752
MGD
20554 do_vfp_sp_monadic ();
20555 else
20556 do_vfp_dp_rd_rm ();
20557
20558 switch (mode)
20559 {
20560 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20561 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20562 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20563 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20564 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20565 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20566 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20567 default: abort ();
20568 }
20569
20570 inst.instruction |= (rs == NS_DD) << 8;
20571 do_vfp_cond_or_thumb ();
9db2f6b4
RL
20572
20573 /* ARMv8.2 fp16 vrint instruction. */
20574 if (rs == NS_HH)
20575 do_scalar_fp16_v82_encode ();
30bdf752
MGD
20576 }
20577 else
20578 {
20579 /* Neon encodings (or something broken...). */
20580 inst.error = NULL;
cc933301 20581 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
30bdf752
MGD
20582
20583 if (et.type == NT_invtype)
20584 return;
20585
a710b305 20586 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
30bdf752
MGD
20587 return;
20588
a710b305
AV
20589 NEON_ENCODE (FLOAT, inst);
20590
30bdf752
MGD
20591 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20592 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20593 inst.instruction |= LOW4 (inst.operands[1].reg);
20594 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20595 inst.instruction |= neon_quad (rs) << 6;
cc933301
JW
20596 /* Mask off the original size bits and reencode them. */
20597 inst.instruction = ((inst.instruction & 0xfff3ffff)
20598 | neon_logbits (et.size) << 18);
20599
30bdf752
MGD
20600 switch (mode)
20601 {
20602 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20603 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20604 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20605 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20606 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20607 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20608 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20609 default: abort ();
20610 }
20611
20612 if (thumb_mode)
20613 inst.instruction |= 0xfc000000;
20614 else
20615 inst.instruction |= 0xf0000000;
20616 }
20617}
20618
20619static void
20620do_vrintx (void)
20621{
20622 do_vrint_1 (neon_cvt_mode_x);
20623}
20624
20625static void
20626do_vrintz (void)
20627{
20628 do_vrint_1 (neon_cvt_mode_z);
20629}
20630
20631static void
20632do_vrintr (void)
20633{
20634 do_vrint_1 (neon_cvt_mode_r);
20635}
20636
20637static void
20638do_vrinta (void)
20639{
20640 do_vrint_1 (neon_cvt_mode_a);
20641}
20642
20643static void
20644do_vrintn (void)
20645{
20646 do_vrint_1 (neon_cvt_mode_n);
20647}
20648
20649static void
20650do_vrintp (void)
20651{
20652 do_vrint_1 (neon_cvt_mode_p);
20653}
20654
20655static void
20656do_vrintm (void)
20657{
20658 do_vrint_1 (neon_cvt_mode_m);
20659}
20660
c28eeff2
SN
20661static unsigned
20662neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20663{
20664 unsigned regno = NEON_SCALAR_REG (opnd);
20665 unsigned elno = NEON_SCALAR_INDEX (opnd);
20666
20667 if (elsize == 16 && elno < 2 && regno < 16)
20668 return regno | (elno << 4);
20669 else if (elsize == 32 && elno == 0)
20670 return regno;
20671
20672 first_error (_("scalar out of range"));
20673 return 0;
20674}
20675
20676static void
20677do_vcmla (void)
20678{
5d281bf0
AV
20679 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20680 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20681 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20682 constraint (inst.relocs[0].exp.X_op != O_constant,
20683 _("expression too complex"));
20684 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2
SN
20685 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20686 _("immediate out of range"));
20687 rot /= 90;
5d281bf0
AV
20688
20689 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20690 return;
20691
c28eeff2
SN
20692 if (inst.operands[2].isscalar)
20693 {
5d281bf0
AV
20694 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20695 first_error (_("invalid instruction shape"));
c28eeff2
SN
20696 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20697 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20698 N_KEY | N_F16 | N_F32).size;
20699 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20700 inst.is_neon = 1;
20701 inst.instruction = 0xfe000800;
20702 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20703 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20704 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20705 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20706 inst.instruction |= LOW4 (m);
20707 inst.instruction |= HI1 (m) << 5;
20708 inst.instruction |= neon_quad (rs) << 6;
20709 inst.instruction |= rot << 20;
20710 inst.instruction |= (size == 32) << 23;
20711 }
20712 else
20713 {
5d281bf0
AV
20714 enum neon_shape rs;
20715 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20716 rs = neon_select_shape (NS_QQQI, NS_NULL);
20717 else
20718 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20719
c28eeff2
SN
20720 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20721 N_KEY | N_F16 | N_F32).size;
5d281bf0
AV
20722 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20723 && (inst.operands[0].reg == inst.operands[1].reg
20724 || inst.operands[0].reg == inst.operands[2].reg))
20725 as_tsktsk (BAD_MVE_SRCDEST);
20726
c28eeff2
SN
20727 neon_three_same (neon_quad (rs), 0, -1);
20728 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20729 inst.instruction |= 0xfc200800;
20730 inst.instruction |= rot << 23;
20731 inst.instruction |= (size == 32) << 20;
20732 }
20733}
20734
20735static void
20736do_vcadd (void)
20737{
5d281bf0
AV
20738 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20739 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20740 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
e2b0ab59
AV
20741 constraint (inst.relocs[0].exp.X_op != O_constant,
20742 _("expression too complex"));
5d281bf0 20743
e2b0ab59 20744 unsigned rot = inst.relocs[0].exp.X_add_number;
c28eeff2 20745 constraint (rot != 90 && rot != 270, _("immediate out of range"));
5d281bf0
AV
20746 enum neon_shape rs;
20747 struct neon_type_el et;
20748 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20749 {
20750 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20751 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20752 }
20753 else
20754 {
20755 rs = neon_select_shape (NS_QQQI, NS_NULL);
20756 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20757 | N_I16 | N_I32);
20758 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20759 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20760 "operand makes instruction UNPREDICTABLE"));
20761 }
20762
20763 if (et.type == NT_invtype)
20764 return;
20765
20766 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20767 | NEON_CHECK_CC))
20768 return;
20769
20770 if (et.type == NT_float)
20771 {
20772 neon_three_same (neon_quad (rs), 0, -1);
20773 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20774 inst.instruction |= 0xfc800800;
20775 inst.instruction |= (rot == 270) << 24;
20776 inst.instruction |= (et.size == 32) << 20;
20777 }
20778 else
20779 {
20780 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20781 inst.instruction = 0xfe000f00;
20782 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20783 inst.instruction |= neon_logbits (et.size) << 20;
20784 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20785 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20786 inst.instruction |= (rot == 270) << 12;
20787 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20788 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20789 inst.instruction |= LOW4 (inst.operands[2].reg);
20790 inst.is_neon = 1;
20791 }
c28eeff2
SN
20792}
20793
c604a79a
JW
20794/* Dot Product instructions encoding support. */
20795
20796static void
20797do_neon_dotproduct (int unsigned_p)
20798{
20799 enum neon_shape rs;
20800 unsigned scalar_oprd2 = 0;
20801 int high8;
20802
20803 if (inst.cond != COND_ALWAYS)
20804 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20805 "is UNPREDICTABLE"));
20806
20807 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20808 _(BAD_FPU));
20809
20810 /* Dot Product instructions are in three-same D/Q register format or the third
20811 operand can be a scalar index register. */
20812 if (inst.operands[2].isscalar)
20813 {
20814 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20815 high8 = 0xfe000000;
20816 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20817 }
20818 else
20819 {
20820 high8 = 0xfc000000;
20821 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20822 }
20823
20824 if (unsigned_p)
20825 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20826 else
20827 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20828
20829 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20830 Product instruction, so we pass 0 as the "ubit" parameter. And the
20831 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20832 neon_three_same (neon_quad (rs), 0, 32);
20833
20834 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20835 different NEON three-same encoding. */
20836 inst.instruction &= 0x00ffffff;
20837 inst.instruction |= high8;
20838 /* Encode 'U' bit which indicates signedness. */
20839 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20840 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20841 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20842 the instruction encoding. */
20843 if (inst.operands[2].isscalar)
20844 {
20845 inst.instruction &= 0xffffffd0;
20846 inst.instruction |= LOW4 (scalar_oprd2);
20847 inst.instruction |= HI1 (scalar_oprd2) << 5;
20848 }
20849}
20850
20851/* Dot Product instructions for signed integer. */
20852
20853static void
20854do_neon_dotproduct_s (void)
20855{
20856 return do_neon_dotproduct (0);
20857}
20858
20859/* Dot Product instructions for unsigned integer. */
20860
20861static void
20862do_neon_dotproduct_u (void)
20863{
20864 return do_neon_dotproduct (1);
20865}
20866
91ff7894
MGD
20867/* Crypto v1 instructions. */
20868static void
20869do_crypto_2op_1 (unsigned elttype, int op)
20870{
5ee91343 20871 set_pred_insn_type (OUTSIDE_PRED_INSN);
91ff7894
MGD
20872
20873 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20874 == NT_invtype)
20875 return;
20876
20877 inst.error = NULL;
20878
20879 NEON_ENCODE (INTEGER, inst);
20880 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20881 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20882 inst.instruction |= LOW4 (inst.operands[1].reg);
20883 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20884 if (op != -1)
20885 inst.instruction |= op << 6;
20886
20887 if (thumb_mode)
20888 inst.instruction |= 0xfc000000;
20889 else
20890 inst.instruction |= 0xf0000000;
20891}
20892
48adcd8e
MGD
20893static void
20894do_crypto_3op_1 (int u, int op)
20895{
5ee91343 20896 set_pred_insn_type (OUTSIDE_PRED_INSN);
48adcd8e
MGD
20897
20898 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20899 N_32 | N_UNT | N_KEY).type == NT_invtype)
20900 return;
20901
20902 inst.error = NULL;
20903
20904 NEON_ENCODE (INTEGER, inst);
20905 neon_three_same (1, u, 8 << op);
20906}
20907
91ff7894
MGD
20908static void
20909do_aese (void)
20910{
20911 do_crypto_2op_1 (N_8, 0);
20912}
20913
20914static void
20915do_aesd (void)
20916{
20917 do_crypto_2op_1 (N_8, 1);
20918}
20919
20920static void
20921do_aesmc (void)
20922{
20923 do_crypto_2op_1 (N_8, 2);
20924}
20925
20926static void
20927do_aesimc (void)
20928{
20929 do_crypto_2op_1 (N_8, 3);
20930}
20931
48adcd8e
MGD
20932static void
20933do_sha1c (void)
20934{
20935 do_crypto_3op_1 (0, 0);
20936}
20937
20938static void
20939do_sha1p (void)
20940{
20941 do_crypto_3op_1 (0, 1);
20942}
20943
20944static void
20945do_sha1m (void)
20946{
20947 do_crypto_3op_1 (0, 2);
20948}
20949
20950static void
20951do_sha1su0 (void)
20952{
20953 do_crypto_3op_1 (0, 3);
20954}
91ff7894 20955
48adcd8e
MGD
20956static void
20957do_sha256h (void)
20958{
20959 do_crypto_3op_1 (1, 0);
20960}
20961
20962static void
20963do_sha256h2 (void)
20964{
20965 do_crypto_3op_1 (1, 1);
20966}
20967
20968static void
20969do_sha256su1 (void)
20970{
20971 do_crypto_3op_1 (1, 2);
20972}
3c9017d2
MGD
20973
20974static void
20975do_sha1h (void)
20976{
20977 do_crypto_2op_1 (N_32, -1);
20978}
20979
20980static void
20981do_sha1su1 (void)
20982{
20983 do_crypto_2op_1 (N_32, 0);
20984}
20985
20986static void
20987do_sha256su0 (void)
20988{
20989 do_crypto_2op_1 (N_32, 1);
20990}
dd5181d5
KT
20991
20992static void
20993do_crc32_1 (unsigned int poly, unsigned int sz)
20994{
20995 unsigned int Rd = inst.operands[0].reg;
20996 unsigned int Rn = inst.operands[1].reg;
20997 unsigned int Rm = inst.operands[2].reg;
20998
5ee91343 20999 set_pred_insn_type (OUTSIDE_PRED_INSN);
dd5181d5
KT
21000 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
21001 inst.instruction |= LOW4 (Rn) << 16;
21002 inst.instruction |= LOW4 (Rm);
21003 inst.instruction |= sz << (thumb_mode ? 4 : 21);
21004 inst.instruction |= poly << (thumb_mode ? 20 : 9);
21005
21006 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
21007 as_warn (UNPRED_REG ("r15"));
dd5181d5
KT
21008}
21009
21010static void
21011do_crc32b (void)
21012{
21013 do_crc32_1 (0, 0);
21014}
21015
21016static void
21017do_crc32h (void)
21018{
21019 do_crc32_1 (0, 1);
21020}
21021
21022static void
21023do_crc32w (void)
21024{
21025 do_crc32_1 (0, 2);
21026}
21027
21028static void
21029do_crc32cb (void)
21030{
21031 do_crc32_1 (1, 0);
21032}
21033
21034static void
21035do_crc32ch (void)
21036{
21037 do_crc32_1 (1, 1);
21038}
21039
21040static void
21041do_crc32cw (void)
21042{
21043 do_crc32_1 (1, 2);
21044}
21045
49e8a725
SN
21046static void
21047do_vjcvt (void)
21048{
21049 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
21050 _(BAD_FPU));
21051 neon_check_type (2, NS_FD, N_S32, N_F64);
21052 do_vfp_sp_dp_cvt ();
21053 do_vfp_cond_or_thumb ();
21054}
21055
5287ad62
JB
21056\f
21057/* Overall per-instruction processing. */
21058
21059/* We need to be able to fix up arbitrary expressions in some statements.
21060 This is so that we can handle symbols that are an arbitrary distance from
21061 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
21062 which returns part of an address in a form which will be valid for
21063 a data instruction. We do this by pushing the expression into a symbol
21064 in the expr_section, and creating a fix for that. */
21065
21066static void
21067fix_new_arm (fragS * frag,
21068 int where,
21069 short int size,
21070 expressionS * exp,
21071 int pc_rel,
21072 int reloc)
21073{
21074 fixS * new_fix;
21075
21076 switch (exp->X_op)
21077 {
21078 case O_constant:
6e7ce2cd
PB
21079 if (pc_rel)
21080 {
21081 /* Create an absolute valued symbol, so we have something to
477330fc
RM
21082 refer to in the object file. Unfortunately for us, gas's
21083 generic expression parsing will already have folded out
21084 any use of .set foo/.type foo %function that may have
21085 been used to set type information of the target location,
21086 that's being specified symbolically. We have to presume
21087 the user knows what they are doing. */
6e7ce2cd
PB
21088 char name[16 + 8];
21089 symbolS *symbol;
21090
21091 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
21092
21093 symbol = symbol_find_or_make (name);
21094 S_SET_SEGMENT (symbol, absolute_section);
21095 symbol_set_frag (symbol, &zero_address_frag);
21096 S_SET_VALUE (symbol, exp->X_add_number);
21097 exp->X_op = O_symbol;
21098 exp->X_add_symbol = symbol;
21099 exp->X_add_number = 0;
21100 }
21101 /* FALLTHROUGH */
5287ad62
JB
21102 case O_symbol:
21103 case O_add:
21104 case O_subtract:
21d799b5 21105 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
477330fc 21106 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
21107 break;
21108
21109 default:
21d799b5 21110 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
477330fc 21111 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
21112 break;
21113 }
21114
21115 /* Mark whether the fix is to a THUMB instruction, or an ARM
21116 instruction. */
21117 new_fix->tc_fix_data = thumb_mode;
21118}
21119
21120/* Create a frg for an instruction requiring relaxation. */
21121static void
21122output_relax_insn (void)
21123{
21124 char * to;
21125 symbolS *sym;
0110f2b8
PB
21126 int offset;
21127
6e1cb1a6
PB
21128 /* The size of the instruction is unknown, so tie the debug info to the
21129 start of the instruction. */
21130 dwarf2_emit_insn (0);
6e1cb1a6 21131
e2b0ab59 21132 switch (inst.relocs[0].exp.X_op)
0110f2b8
PB
21133 {
21134 case O_symbol:
e2b0ab59
AV
21135 sym = inst.relocs[0].exp.X_add_symbol;
21136 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
21137 break;
21138 case O_constant:
21139 sym = NULL;
e2b0ab59 21140 offset = inst.relocs[0].exp.X_add_number;
0110f2b8
PB
21141 break;
21142 default:
e2b0ab59 21143 sym = make_expr_symbol (&inst.relocs[0].exp);
0110f2b8
PB
21144 offset = 0;
21145 break;
21146 }
21147 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
21148 inst.relax, sym, offset, NULL/*offset, opcode*/);
21149 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
21150}
21151
21152/* Write a 32-bit thumb instruction to buf. */
21153static void
21154put_thumb32_insn (char * buf, unsigned long insn)
21155{
21156 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
21157 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
21158}
21159
b99bd4ef 21160static void
c19d1205 21161output_inst (const char * str)
b99bd4ef 21162{
c19d1205 21163 char * to = NULL;
b99bd4ef 21164
c19d1205 21165 if (inst.error)
b99bd4ef 21166 {
c19d1205 21167 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
21168 return;
21169 }
5f4273c7
NC
21170 if (inst.relax)
21171 {
21172 output_relax_insn ();
0110f2b8 21173 return;
5f4273c7 21174 }
c19d1205
ZW
21175 if (inst.size == 0)
21176 return;
b99bd4ef 21177
c19d1205 21178 to = frag_more (inst.size);
8dc2430f
NC
21179 /* PR 9814: Record the thumb mode into the current frag so that we know
21180 what type of NOP padding to use, if necessary. We override any previous
21181 setting so that if the mode has changed then the NOPS that we use will
21182 match the encoding of the last instruction in the frag. */
cd000bff 21183 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
21184
21185 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 21186 {
9c2799c2 21187 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 21188 put_thumb32_insn (to, inst.instruction);
b99bd4ef 21189 }
c19d1205 21190 else if (inst.size > INSN_SIZE)
b99bd4ef 21191 {
9c2799c2 21192 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
21193 md_number_to_chars (to, inst.instruction, INSN_SIZE);
21194 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 21195 }
c19d1205
ZW
21196 else
21197 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 21198
e2b0ab59
AV
21199 int r;
21200 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21201 {
21202 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
21203 fix_new_arm (frag_now, to - frag_now->fr_literal,
21204 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
21205 inst.relocs[r].type);
21206 }
b99bd4ef 21207
c19d1205 21208 dwarf2_emit_insn (inst.size);
c19d1205 21209}
b99bd4ef 21210
e07e6e58
NC
21211static char *
21212output_it_inst (int cond, int mask, char * to)
21213{
21214 unsigned long instruction = 0xbf00;
21215
21216 mask &= 0xf;
21217 instruction |= mask;
21218 instruction |= cond << 4;
21219
21220 if (to == NULL)
21221 {
21222 to = frag_more (2);
21223#ifdef OBJ_ELF
21224 dwarf2_emit_insn (2);
21225#endif
21226 }
21227
21228 md_number_to_chars (to, instruction, 2);
21229
21230 return to;
21231}
21232
c19d1205
ZW
21233/* Tag values used in struct asm_opcode's tag field. */
21234enum opcode_tag
21235{
21236 OT_unconditional, /* Instruction cannot be conditionalized.
21237 The ARM condition field is still 0xE. */
21238 OT_unconditionalF, /* Instruction cannot be conditionalized
21239 and carries 0xF in its ARM condition field. */
21240 OT_csuffix, /* Instruction takes a conditional suffix. */
5ee91343
AV
21241 OT_csuffixF, /* Some forms of the instruction take a scalar
21242 conditional suffix, others place 0xF where the
21243 condition field would be, others take a vector
21244 conditional suffix. */
c19d1205
ZW
21245 OT_cinfix3, /* Instruction takes a conditional infix,
21246 beginning at character index 3. (In
21247 unified mode, it becomes a suffix.) */
088fa78e
KH
21248 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21249 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
21250 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21251 character index 3, even in unified mode. Used for
21252 legacy instructions where suffix and infix forms
21253 may be ambiguous. */
c19d1205 21254 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 21255 suffix or an infix at character index 3. */
c19d1205
ZW
21256 OT_odd_infix_unc, /* This is the unconditional variant of an
21257 instruction that takes a conditional infix
21258 at an unusual position. In unified mode,
21259 this variant will accept a suffix. */
21260 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21261 are the conditional variants of instructions that
21262 take conditional infixes in unusual positions.
21263 The infix appears at character index
21264 (tag - OT_odd_infix_0). These are not accepted
21265 in unified mode. */
21266};
b99bd4ef 21267
c19d1205
ZW
21268/* Subroutine of md_assemble, responsible for looking up the primary
21269 opcode from the mnemonic the user wrote. STR points to the
21270 beginning of the mnemonic.
21271
21272 This is not simply a hash table lookup, because of conditional
21273 variants. Most instructions have conditional variants, which are
21274 expressed with a _conditional affix_ to the mnemonic. If we were
21275 to encode each conditional variant as a literal string in the opcode
21276 table, it would have approximately 20,000 entries.
21277
21278 Most mnemonics take this affix as a suffix, and in unified syntax,
21279 'most' is upgraded to 'all'. However, in the divided syntax, some
21280 instructions take the affix as an infix, notably the s-variants of
21281 the arithmetic instructions. Of those instructions, all but six
21282 have the infix appear after the third character of the mnemonic.
21283
21284 Accordingly, the algorithm for looking up primary opcodes given
21285 an identifier is:
21286
21287 1. Look up the identifier in the opcode table.
21288 If we find a match, go to step U.
21289
21290 2. Look up the last two characters of the identifier in the
21291 conditions table. If we find a match, look up the first N-2
21292 characters of the identifier in the opcode table. If we
21293 find a match, go to step CE.
21294
21295 3. Look up the fourth and fifth characters of the identifier in
21296 the conditions table. If we find a match, extract those
21297 characters from the identifier, and look up the remaining
21298 characters in the opcode table. If we find a match, go
21299 to step CM.
21300
21301 4. Fail.
21302
21303 U. Examine the tag field of the opcode structure, in case this is
21304 one of the six instructions with its conditional infix in an
21305 unusual place. If it is, the tag tells us where to find the
21306 infix; look it up in the conditions table and set inst.cond
21307 accordingly. Otherwise, this is an unconditional instruction.
21308 Again set inst.cond accordingly. Return the opcode structure.
21309
21310 CE. Examine the tag field to make sure this is an instruction that
21311 should receive a conditional suffix. If it is not, fail.
21312 Otherwise, set inst.cond from the suffix we already looked up,
21313 and return the opcode structure.
21314
21315 CM. Examine the tag field to make sure this is an instruction that
21316 should receive a conditional infix after the third character.
21317 If it is not, fail. Otherwise, undo the edits to the current
21318 line of input and proceed as for case CE. */
21319
21320static const struct asm_opcode *
21321opcode_lookup (char **str)
21322{
21323 char *end, *base;
21324 char *affix;
21325 const struct asm_opcode *opcode;
21326 const struct asm_cond *cond;
e3cb604e 21327 char save[2];
c19d1205
ZW
21328
21329 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 21330 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 21331 for (base = end = *str; *end != '\0'; end++)
721a8186 21332 if (*end == ' ' || *end == '.')
c19d1205 21333 break;
b99bd4ef 21334
c19d1205 21335 if (end == base)
c921be7d 21336 return NULL;
b99bd4ef 21337
5287ad62 21338 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 21339 if (end[0] == '.')
b99bd4ef 21340 {
5287ad62 21341 int offset = 2;
5f4273c7 21342
267d2029 21343 /* The .w and .n suffixes are only valid if the unified syntax is in
477330fc 21344 use. */
267d2029 21345 if (unified_syntax && end[1] == 'w')
c19d1205 21346 inst.size_req = 4;
267d2029 21347 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
21348 inst.size_req = 2;
21349 else
477330fc 21350 offset = 0;
5287ad62
JB
21351
21352 inst.vectype.elems = 0;
21353
21354 *str = end + offset;
b99bd4ef 21355
5f4273c7 21356 if (end[offset] == '.')
5287ad62 21357 {
267d2029 21358 /* See if we have a Neon type suffix (possible in either unified or
477330fc
RM
21359 non-unified ARM syntax mode). */
21360 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 21361 return NULL;
477330fc 21362 }
5287ad62 21363 else if (end[offset] != '\0' && end[offset] != ' ')
477330fc 21364 return NULL;
b99bd4ef 21365 }
c19d1205
ZW
21366 else
21367 *str = end;
b99bd4ef 21368
c19d1205 21369 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5 21370 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21371 end - base);
c19d1205 21372 if (opcode)
b99bd4ef 21373 {
c19d1205
ZW
21374 /* step U */
21375 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 21376 {
c19d1205
ZW
21377 inst.cond = COND_ALWAYS;
21378 return opcode;
b99bd4ef 21379 }
b99bd4ef 21380
278df34e 21381 if (warn_on_deprecated && unified_syntax)
5c3696f8 21382 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205 21383 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 21384 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 21385 gas_assert (cond);
b99bd4ef 21386
c19d1205
ZW
21387 inst.cond = cond->value;
21388 return opcode;
21389 }
5ee91343
AV
21390 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21391 {
21392 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21393 */
21394 if (end - base < 2)
21395 return NULL;
21396 affix = end - 1;
21397 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21398 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21399 affix - base);
21400 /* If this opcode can not be vector predicated then don't accept it with a
21401 vector predication code. */
21402 if (opcode && !opcode->mayBeVecPred)
21403 opcode = NULL;
21404 }
21405 if (!opcode || !cond)
21406 {
21407 /* Cannot have a conditional suffix on a mnemonic of less than two
21408 characters. */
21409 if (end - base < 3)
21410 return NULL;
b99bd4ef 21411
5ee91343
AV
21412 /* Look for suffixed mnemonic. */
21413 affix = end - 2;
21414 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21415 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21416 affix - base);
21417 }
b99bd4ef 21418
c19d1205
ZW
21419 if (opcode && cond)
21420 {
21421 /* step CE */
21422 switch (opcode->tag)
21423 {
e3cb604e
PB
21424 case OT_cinfix3_legacy:
21425 /* Ignore conditional suffixes matched on infix only mnemonics. */
21426 break;
21427
c19d1205 21428 case OT_cinfix3:
088fa78e 21429 case OT_cinfix3_deprecated:
c19d1205
ZW
21430 case OT_odd_infix_unc:
21431 if (!unified_syntax)
0198d5e6 21432 return NULL;
1a0670f3 21433 /* Fall through. */
c19d1205
ZW
21434
21435 case OT_csuffix:
477330fc 21436 case OT_csuffixF:
c19d1205
ZW
21437 case OT_csuf_or_in3:
21438 inst.cond = cond->value;
21439 return opcode;
21440
21441 case OT_unconditional:
21442 case OT_unconditionalF:
dfa9f0d5 21443 if (thumb_mode)
c921be7d 21444 inst.cond = cond->value;
dfa9f0d5
PB
21445 else
21446 {
c921be7d 21447 /* Delayed diagnostic. */
dfa9f0d5
PB
21448 inst.error = BAD_COND;
21449 inst.cond = COND_ALWAYS;
21450 }
c19d1205 21451 return opcode;
b99bd4ef 21452
c19d1205 21453 default:
c921be7d 21454 return NULL;
c19d1205
ZW
21455 }
21456 }
b99bd4ef 21457
c19d1205
ZW
21458 /* Cannot have a usual-position infix on a mnemonic of less than
21459 six characters (five would be a suffix). */
21460 if (end - base < 6)
c921be7d 21461 return NULL;
b99bd4ef 21462
c19d1205
ZW
21463 /* Look for infixed mnemonic in the usual position. */
21464 affix = base + 3;
21d799b5 21465 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 21466 if (!cond)
c921be7d 21467 return NULL;
e3cb604e
PB
21468
21469 memcpy (save, affix, 2);
21470 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5 21471 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
477330fc 21472 (end - base) - 2);
e3cb604e
PB
21473 memmove (affix + 2, affix, (end - affix) - 2);
21474 memcpy (affix, save, 2);
21475
088fa78e
KH
21476 if (opcode
21477 && (opcode->tag == OT_cinfix3
21478 || opcode->tag == OT_cinfix3_deprecated
21479 || opcode->tag == OT_csuf_or_in3
21480 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 21481 {
c921be7d 21482 /* Step CM. */
278df34e 21483 if (warn_on_deprecated && unified_syntax
088fa78e
KH
21484 && (opcode->tag == OT_cinfix3
21485 || opcode->tag == OT_cinfix3_deprecated))
5c3696f8 21486 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
c19d1205
ZW
21487
21488 inst.cond = cond->value;
21489 return opcode;
b99bd4ef
NC
21490 }
21491
c921be7d 21492 return NULL;
b99bd4ef
NC
21493}
21494
e07e6e58
NC
21495/* This function generates an initial IT instruction, leaving its block
21496 virtually open for the new instructions. Eventually,
5ee91343 21497 the mask will be updated by now_pred_add_mask () each time
e07e6e58
NC
21498 a new instruction needs to be included in the IT block.
21499 Finally, the block is closed with close_automatic_it_block ().
21500 The block closure can be requested either from md_assemble (),
21501 a tencode (), or due to a label hook. */
21502
21503static void
21504new_automatic_it_block (int cond)
21505{
5ee91343
AV
21506 now_pred.state = AUTOMATIC_PRED_BLOCK;
21507 now_pred.mask = 0x18;
21508 now_pred.cc = cond;
21509 now_pred.block_length = 1;
cd000bff 21510 mapping_state (MAP_THUMB);
5ee91343
AV
21511 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21512 now_pred.warn_deprecated = FALSE;
21513 now_pred.insn_cond = TRUE;
e07e6e58
NC
21514}
21515
21516/* Close an automatic IT block.
21517 See comments in new_automatic_it_block (). */
21518
21519static void
21520close_automatic_it_block (void)
21521{
5ee91343
AV
21522 now_pred.mask = 0x10;
21523 now_pred.block_length = 0;
e07e6e58
NC
21524}
21525
21526/* Update the mask of the current automatically-generated IT
21527 instruction. See comments in new_automatic_it_block (). */
21528
21529static void
5ee91343 21530now_pred_add_mask (int cond)
e07e6e58
NC
21531{
21532#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21533#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
477330fc 21534 | ((bitvalue) << (nbit)))
e07e6e58 21535 const int resulting_bit = (cond & 1);
c921be7d 21536
5ee91343
AV
21537 now_pred.mask &= 0xf;
21538 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21539 resulting_bit,
5ee91343
AV
21540 (5 - now_pred.block_length));
21541 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
477330fc 21542 1,
5ee91343
AV
21543 ((5 - now_pred.block_length) - 1));
21544 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
e07e6e58
NC
21545
21546#undef CLEAR_BIT
21547#undef SET_BIT_VALUE
e07e6e58
NC
21548}
21549
21550/* The IT blocks handling machinery is accessed through the these functions:
21551 it_fsm_pre_encode () from md_assemble ()
5ee91343
AV
21552 set_pred_insn_type () optional, from the tencode functions
21553 set_pred_insn_type_last () ditto
21554 in_pred_block () ditto
e07e6e58 21555 it_fsm_post_encode () from md_assemble ()
33eaf5de 21556 force_automatic_it_block_close () from label handling functions
e07e6e58
NC
21557
21558 Rationale:
21559 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
477330fc
RM
21560 initializing the IT insn type with a generic initial value depending
21561 on the inst.condition.
e07e6e58 21562 2) During the tencode function, two things may happen:
477330fc 21563 a) The tencode function overrides the IT insn type by
5ee91343
AV
21564 calling either set_pred_insn_type (type) or
21565 set_pred_insn_type_last ().
477330fc 21566 b) The tencode function queries the IT block state by
5ee91343 21567 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
477330fc 21568
5ee91343
AV
21569 Both set_pred_insn_type and in_pred_block run the internal FSM state
21570 handling function (handle_pred_state), because: a) setting the IT insn
477330fc
RM
21571 type may incur in an invalid state (exiting the function),
21572 and b) querying the state requires the FSM to be updated.
21573 Specifically we want to avoid creating an IT block for conditional
21574 branches, so it_fsm_pre_encode is actually a guess and we can't
21575 determine whether an IT block is required until the tencode () routine
21576 has decided what type of instruction this actually it.
5ee91343
AV
21577 Because of this, if set_pred_insn_type and in_pred_block have to be
21578 used, set_pred_insn_type has to be called first.
477330fc 21579
5ee91343
AV
21580 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21581 that determines the insn IT type depending on the inst.cond code.
477330fc
RM
21582 When a tencode () routine encodes an instruction that can be
21583 either outside an IT block, or, in the case of being inside, has to be
5ee91343 21584 the last one, set_pred_insn_type_last () will determine the proper
477330fc 21585 IT instruction type based on the inst.cond code. Otherwise,
5ee91343 21586 set_pred_insn_type can be called for overriding that logic or
477330fc
RM
21587 for covering other cases.
21588
5ee91343
AV
21589 Calling handle_pred_state () may not transition the IT block state to
21590 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
477330fc 21591 still queried. Instead, if the FSM determines that the state should
5ee91343 21592 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
477330fc
RM
21593 after the tencode () function: that's what it_fsm_post_encode () does.
21594
5ee91343 21595 Since in_pred_block () calls the state handling function to get an
477330fc
RM
21596 updated state, an error may occur (due to invalid insns combination).
21597 In that case, inst.error is set.
21598 Therefore, inst.error has to be checked after the execution of
21599 the tencode () routine.
e07e6e58
NC
21600
21601 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
477330fc 21602 any pending state change (if any) that didn't take place in
5ee91343 21603 handle_pred_state () as explained above. */
e07e6e58
NC
21604
21605static void
21606it_fsm_pre_encode (void)
21607{
21608 if (inst.cond != COND_ALWAYS)
5ee91343 21609 inst.pred_insn_type = INSIDE_IT_INSN;
e07e6e58 21610 else
5ee91343 21611 inst.pred_insn_type = OUTSIDE_PRED_INSN;
e07e6e58 21612
5ee91343 21613 now_pred.state_handled = 0;
e07e6e58
NC
21614}
21615
21616/* IT state FSM handling function. */
5ee91343
AV
21617/* MVE instructions and non-MVE instructions are handled differently because of
21618 the introduction of VPT blocks.
21619 Specifications say that any non-MVE instruction inside a VPT block is
21620 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21621 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
35c228db 21622 few exceptions we have MVE_UNPREDICABLE_INSN.
5ee91343
AV
21623 The error messages provided depending on the different combinations possible
21624 are described in the cases below:
21625 For 'most' MVE instructions:
21626 1) In an IT block, with an IT code: syntax error
21627 2) In an IT block, with a VPT code: error: must be in a VPT block
21628 3) In an IT block, with no code: warning: UNPREDICTABLE
21629 4) In a VPT block, with an IT code: syntax error
21630 5) In a VPT block, with a VPT code: OK!
21631 6) In a VPT block, with no code: error: missing code
21632 7) Outside a pred block, with an IT code: error: syntax error
21633 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21634 9) Outside a pred block, with no code: OK!
21635 For non-MVE instructions:
21636 10) In an IT block, with an IT code: OK!
21637 11) In an IT block, with a VPT code: syntax error
21638 12) In an IT block, with no code: error: missing code
21639 13) In a VPT block, with an IT code: error: should be in an IT block
21640 14) In a VPT block, with a VPT code: syntax error
21641 15) In a VPT block, with no code: UNPREDICTABLE
21642 16) Outside a pred block, with an IT code: error: should be in an IT block
21643 17) Outside a pred block, with a VPT code: syntax error
21644 18) Outside a pred block, with no code: OK!
21645 */
21646
e07e6e58
NC
21647
21648static int
5ee91343 21649handle_pred_state (void)
e07e6e58 21650{
5ee91343
AV
21651 now_pred.state_handled = 1;
21652 now_pred.insn_cond = FALSE;
e07e6e58 21653
5ee91343 21654 switch (now_pred.state)
e07e6e58 21655 {
5ee91343
AV
21656 case OUTSIDE_PRED_BLOCK:
21657 switch (inst.pred_insn_type)
e07e6e58 21658 {
35c228db 21659 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21660 case MVE_OUTSIDE_PRED_INSN:
21661 if (inst.cond < COND_ALWAYS)
21662 {
21663 /* Case 7: Outside a pred block, with an IT code: error: syntax
21664 error. */
21665 inst.error = BAD_SYNTAX;
21666 return FAIL;
21667 }
21668 /* Case 9: Outside a pred block, with no code: OK! */
21669 break;
21670 case OUTSIDE_PRED_INSN:
21671 if (inst.cond > COND_ALWAYS)
21672 {
21673 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21674 */
21675 inst.error = BAD_SYNTAX;
21676 return FAIL;
21677 }
21678 /* Case 18: Outside a pred block, with no code: OK! */
e07e6e58
NC
21679 break;
21680
5ee91343
AV
21681 case INSIDE_VPT_INSN:
21682 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21683 a VPT block. */
21684 inst.error = BAD_OUT_VPT;
21685 return FAIL;
21686
e07e6e58
NC
21687 case INSIDE_IT_INSN:
21688 case INSIDE_IT_LAST_INSN:
5ee91343 21689 if (inst.cond < COND_ALWAYS)
e07e6e58 21690 {
5ee91343
AV
21691 /* Case 16: Outside a pred block, with an IT code: error: should
21692 be in an IT block. */
21693 if (thumb_mode == 0)
e07e6e58 21694 {
5ee91343
AV
21695 if (unified_syntax
21696 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21697 as_tsktsk (_("Warning: conditional outside an IT block"\
21698 " for Thumb."));
e07e6e58
NC
21699 }
21700 else
21701 {
5ee91343
AV
21702 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21703 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21704 {
21705 /* Automatically generate the IT instruction. */
21706 new_automatic_it_block (inst.cond);
21707 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21708 close_automatic_it_block ();
21709 }
21710 else
21711 {
21712 inst.error = BAD_OUT_IT;
21713 return FAIL;
21714 }
e07e6e58 21715 }
5ee91343 21716 break;
e07e6e58 21717 }
5ee91343
AV
21718 else if (inst.cond > COND_ALWAYS)
21719 {
21720 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21721 */
21722 inst.error = BAD_SYNTAX;
21723 return FAIL;
21724 }
21725 else
21726 gas_assert (0);
e07e6e58
NC
21727 case IF_INSIDE_IT_LAST_INSN:
21728 case NEUTRAL_IT_INSN:
21729 break;
21730
5ee91343
AV
21731 case VPT_INSN:
21732 if (inst.cond != COND_ALWAYS)
21733 first_error (BAD_SYNTAX);
21734 now_pred.state = MANUAL_PRED_BLOCK;
21735 now_pred.block_length = 0;
21736 now_pred.type = VECTOR_PRED;
21737 now_pred.cc = 0;
21738 break;
e07e6e58 21739 case IT_INSN:
5ee91343
AV
21740 now_pred.state = MANUAL_PRED_BLOCK;
21741 now_pred.block_length = 0;
21742 now_pred.type = SCALAR_PRED;
e07e6e58
NC
21743 break;
21744 }
21745 break;
21746
5ee91343 21747 case AUTOMATIC_PRED_BLOCK:
e07e6e58
NC
21748 /* Three things may happen now:
21749 a) We should increment current it block size;
21750 b) We should close current it block (closing insn or 4 insns);
21751 c) We should close current it block and start a new one (due
21752 to incompatible conditions or
21753 4 insns-length block reached). */
21754
5ee91343 21755 switch (inst.pred_insn_type)
e07e6e58 21756 {
5ee91343
AV
21757 case INSIDE_VPT_INSN:
21758 case VPT_INSN:
35c228db 21759 case MVE_UNPREDICABLE_INSN:
5ee91343
AV
21760 case MVE_OUTSIDE_PRED_INSN:
21761 gas_assert (0);
21762 case OUTSIDE_PRED_INSN:
2b0f3761 21763 /* The closure of the block shall happen immediately,
5ee91343 21764 so any in_pred_block () call reports the block as closed. */
e07e6e58
NC
21765 force_automatic_it_block_close ();
21766 break;
21767
21768 case INSIDE_IT_INSN:
21769 case INSIDE_IT_LAST_INSN:
21770 case IF_INSIDE_IT_LAST_INSN:
5ee91343 21771 now_pred.block_length++;
e07e6e58 21772
5ee91343
AV
21773 if (now_pred.block_length > 4
21774 || !now_pred_compatible (inst.cond))
e07e6e58
NC
21775 {
21776 force_automatic_it_block_close ();
5ee91343 21777 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
e07e6e58
NC
21778 new_automatic_it_block (inst.cond);
21779 }
21780 else
21781 {
5ee91343
AV
21782 now_pred.insn_cond = TRUE;
21783 now_pred_add_mask (inst.cond);
e07e6e58
NC
21784 }
21785
5ee91343
AV
21786 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21787 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21788 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
e07e6e58
NC
21789 close_automatic_it_block ();
21790 break;
21791
21792 case NEUTRAL_IT_INSN:
5ee91343
AV
21793 now_pred.block_length++;
21794 now_pred.insn_cond = TRUE;
e07e6e58 21795
5ee91343 21796 if (now_pred.block_length > 4)
e07e6e58
NC
21797 force_automatic_it_block_close ();
21798 else
5ee91343 21799 now_pred_add_mask (now_pred.cc & 1);
e07e6e58
NC
21800 break;
21801
21802 case IT_INSN:
21803 close_automatic_it_block ();
5ee91343 21804 now_pred.state = MANUAL_PRED_BLOCK;
e07e6e58
NC
21805 break;
21806 }
21807 break;
21808
5ee91343 21809 case MANUAL_PRED_BLOCK:
e07e6e58 21810 {
5ee91343
AV
21811 int cond, is_last;
21812 if (now_pred.type == SCALAR_PRED)
e07e6e58 21813 {
5ee91343
AV
21814 /* Check conditional suffixes. */
21815 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21816 now_pred.mask <<= 1;
21817 now_pred.mask &= 0x1f;
21818 is_last = (now_pred.mask == 0x10);
21819 }
21820 else
21821 {
21822 now_pred.cc ^= (now_pred.mask >> 4);
21823 cond = now_pred.cc + 0xf;
21824 now_pred.mask <<= 1;
21825 now_pred.mask &= 0x1f;
21826 is_last = now_pred.mask == 0x10;
21827 }
21828 now_pred.insn_cond = TRUE;
e07e6e58 21829
5ee91343
AV
21830 switch (inst.pred_insn_type)
21831 {
21832 case OUTSIDE_PRED_INSN:
21833 if (now_pred.type == SCALAR_PRED)
21834 {
21835 if (inst.cond == COND_ALWAYS)
21836 {
21837 /* Case 12: In an IT block, with no code: error: missing
21838 code. */
21839 inst.error = BAD_NOT_IT;
21840 return FAIL;
21841 }
21842 else if (inst.cond > COND_ALWAYS)
21843 {
21844 /* Case 11: In an IT block, with a VPT code: syntax error.
21845 */
21846 inst.error = BAD_SYNTAX;
21847 return FAIL;
21848 }
21849 else if (thumb_mode)
21850 {
21851 /* This is for some special cases where a non-MVE
21852 instruction is not allowed in an IT block, such as cbz,
21853 but are put into one with a condition code.
21854 You could argue this should be a syntax error, but we
21855 gave the 'not allowed in IT block' diagnostic in the
21856 past so we will keep doing so. */
21857 inst.error = BAD_NOT_IT;
21858 return FAIL;
21859 }
21860 break;
21861 }
21862 else
21863 {
21864 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21865 as_tsktsk (MVE_NOT_VPT);
21866 return SUCCESS;
21867 }
21868 case MVE_OUTSIDE_PRED_INSN:
21869 if (now_pred.type == SCALAR_PRED)
21870 {
21871 if (inst.cond == COND_ALWAYS)
21872 {
21873 /* Case 3: In an IT block, with no code: warning:
21874 UNPREDICTABLE. */
21875 as_tsktsk (MVE_NOT_IT);
21876 return SUCCESS;
21877 }
21878 else if (inst.cond < COND_ALWAYS)
21879 {
21880 /* Case 1: In an IT block, with an IT code: syntax error.
21881 */
21882 inst.error = BAD_SYNTAX;
21883 return FAIL;
21884 }
21885 else
21886 gas_assert (0);
21887 }
21888 else
21889 {
21890 if (inst.cond < COND_ALWAYS)
21891 {
21892 /* Case 4: In a VPT block, with an IT code: syntax error.
21893 */
21894 inst.error = BAD_SYNTAX;
21895 return FAIL;
21896 }
21897 else if (inst.cond == COND_ALWAYS)
21898 {
21899 /* Case 6: In a VPT block, with no code: error: missing
21900 code. */
21901 inst.error = BAD_NOT_VPT;
21902 return FAIL;
21903 }
21904 else
21905 {
21906 gas_assert (0);
21907 }
21908 }
35c228db
AV
21909 case MVE_UNPREDICABLE_INSN:
21910 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21911 return SUCCESS;
e07e6e58 21912 case INSIDE_IT_INSN:
5ee91343 21913 if (inst.cond > COND_ALWAYS)
e07e6e58 21914 {
5ee91343
AV
21915 /* Case 11: In an IT block, with a VPT code: syntax error. */
21916 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21917 inst.error = BAD_SYNTAX;
21918 return FAIL;
21919 }
21920 else if (now_pred.type == SCALAR_PRED)
21921 {
21922 /* Case 10: In an IT block, with an IT code: OK! */
21923 if (cond != inst.cond)
21924 {
21925 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21926 BAD_VPT_COND;
21927 return FAIL;
21928 }
21929 }
21930 else
21931 {
21932 /* Case 13: In a VPT block, with an IT code: error: should be
21933 in an IT block. */
21934 inst.error = BAD_OUT_IT;
e07e6e58
NC
21935 return FAIL;
21936 }
21937 break;
21938
5ee91343
AV
21939 case INSIDE_VPT_INSN:
21940 if (now_pred.type == SCALAR_PRED)
21941 {
21942 /* Case 2: In an IT block, with a VPT code: error: must be in a
21943 VPT block. */
21944 inst.error = BAD_OUT_VPT;
21945 return FAIL;
21946 }
21947 /* Case 5: In a VPT block, with a VPT code: OK! */
21948 else if (cond != inst.cond)
21949 {
21950 inst.error = BAD_VPT_COND;
21951 return FAIL;
21952 }
21953 break;
e07e6e58
NC
21954 case INSIDE_IT_LAST_INSN:
21955 case IF_INSIDE_IT_LAST_INSN:
5ee91343
AV
21956 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21957 {
21958 /* Case 4: In a VPT block, with an IT code: syntax error. */
21959 /* Case 11: In an IT block, with a VPT code: syntax error. */
21960 inst.error = BAD_SYNTAX;
21961 return FAIL;
21962 }
21963 else if (cond != inst.cond)
e07e6e58
NC
21964 {
21965 inst.error = BAD_IT_COND;
21966 return FAIL;
21967 }
21968 if (!is_last)
21969 {
21970 inst.error = BAD_BRANCH;
21971 return FAIL;
21972 }
21973 break;
21974
21975 case NEUTRAL_IT_INSN:
5ee91343
AV
21976 /* The BKPT instruction is unconditional even in a IT or VPT
21977 block. */
e07e6e58
NC
21978 break;
21979
21980 case IT_INSN:
5ee91343
AV
21981 if (now_pred.type == SCALAR_PRED)
21982 {
21983 inst.error = BAD_IT_IT;
21984 return FAIL;
21985 }
21986 /* fall through. */
21987 case VPT_INSN:
21988 if (inst.cond == COND_ALWAYS)
21989 {
21990 /* Executing a VPT/VPST instruction inside an IT block or a
21991 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21992 */
21993 if (now_pred.type == SCALAR_PRED)
21994 as_tsktsk (MVE_NOT_IT);
21995 else
21996 as_tsktsk (MVE_NOT_VPT);
21997 return SUCCESS;
21998 }
21999 else
22000 {
22001 /* VPT/VPST do not accept condition codes. */
22002 inst.error = BAD_SYNTAX;
22003 return FAIL;
22004 }
e07e6e58 22005 }
5ee91343 22006 }
e07e6e58
NC
22007 break;
22008 }
22009
22010 return SUCCESS;
22011}
22012
5a01bb1d
MGD
22013struct depr_insn_mask
22014{
22015 unsigned long pattern;
22016 unsigned long mask;
22017 const char* description;
22018};
22019
22020/* List of 16-bit instruction patterns deprecated in an IT block in
22021 ARMv8. */
22022static const struct depr_insn_mask depr_it_insns[] = {
22023 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
22024 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
22025 { 0xa000, 0xb800, N_("ADR") },
22026 { 0x4800, 0xf800, N_("Literal loads") },
22027 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
22028 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
c8de034b
JW
22029 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
22030 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
22031 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
5a01bb1d
MGD
22032 { 0, 0, NULL }
22033};
22034
e07e6e58
NC
22035static void
22036it_fsm_post_encode (void)
22037{
22038 int is_last;
22039
5ee91343
AV
22040 if (!now_pred.state_handled)
22041 handle_pred_state ();
e07e6e58 22042
5ee91343
AV
22043 if (now_pred.insn_cond
22044 && !now_pred.warn_deprecated
5a01bb1d 22045 && warn_on_deprecated
df9909b8
TP
22046 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
22047 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
5a01bb1d
MGD
22048 {
22049 if (inst.instruction >= 0x10000)
22050 {
5c3696f8 22051 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
df9909b8 22052 "performance deprecated in ARMv8-A and ARMv8-R"));
5ee91343 22053 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
22054 }
22055 else
22056 {
22057 const struct depr_insn_mask *p = depr_it_insns;
22058
22059 while (p->mask != 0)
22060 {
22061 if ((inst.instruction & p->mask) == p->pattern)
22062 {
df9909b8
TP
22063 as_tsktsk (_("IT blocks containing 16-bit Thumb "
22064 "instructions of the following class are "
22065 "performance deprecated in ARMv8-A and "
22066 "ARMv8-R: %s"), p->description);
5ee91343 22067 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
22068 break;
22069 }
22070
22071 ++p;
22072 }
22073 }
22074
5ee91343 22075 if (now_pred.block_length > 1)
5a01bb1d 22076 {
5c3696f8 22077 as_tsktsk (_("IT blocks containing more than one conditional "
df9909b8
TP
22078 "instruction are performance deprecated in ARMv8-A and "
22079 "ARMv8-R"));
5ee91343 22080 now_pred.warn_deprecated = TRUE;
5a01bb1d
MGD
22081 }
22082 }
22083
5ee91343
AV
22084 is_last = (now_pred.mask == 0x10);
22085 if (is_last)
22086 {
22087 now_pred.state = OUTSIDE_PRED_BLOCK;
22088 now_pred.mask = 0;
22089 }
e07e6e58
NC
22090}
22091
22092static void
22093force_automatic_it_block_close (void)
22094{
5ee91343 22095 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
e07e6e58
NC
22096 {
22097 close_automatic_it_block ();
5ee91343
AV
22098 now_pred.state = OUTSIDE_PRED_BLOCK;
22099 now_pred.mask = 0;
e07e6e58
NC
22100 }
22101}
22102
22103static int
5ee91343 22104in_pred_block (void)
e07e6e58 22105{
5ee91343
AV
22106 if (!now_pred.state_handled)
22107 handle_pred_state ();
e07e6e58 22108
5ee91343 22109 return now_pred.state != OUTSIDE_PRED_BLOCK;
e07e6e58
NC
22110}
22111
ff8646ee
TP
22112/* Whether OPCODE only has T32 encoding. Since this function is only used by
22113 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
22114 here, hence the "known" in the function name. */
fc289b0a
TP
22115
22116static bfd_boolean
ff8646ee 22117known_t32_only_insn (const struct asm_opcode *opcode)
fc289b0a
TP
22118{
22119 /* Original Thumb-1 wide instruction. */
22120 if (opcode->tencode == do_t_blx
22121 || opcode->tencode == do_t_branch23
22122 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
22123 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
22124 return TRUE;
22125
16a1fa25
TP
22126 /* Wide-only instruction added to ARMv8-M Baseline. */
22127 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
ff8646ee
TP
22128 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
22129 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
22130 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
22131 return TRUE;
22132
22133 return FALSE;
22134}
22135
22136/* Whether wide instruction variant can be used if available for a valid OPCODE
22137 in ARCH. */
22138
22139static bfd_boolean
22140t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
22141{
22142 if (known_t32_only_insn (opcode))
22143 return TRUE;
22144
22145 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
22146 of variant T3 of B.W is checked in do_t_branch. */
22147 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22148 && opcode->tencode == do_t_branch)
22149 return TRUE;
22150
bada4342
JW
22151 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
22152 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
22153 && opcode->tencode == do_t_mov_cmp
22154 /* Make sure CMP instruction is not affected. */
22155 && opcode->aencode == do_mov)
22156 return TRUE;
22157
ff8646ee
TP
22158 /* Wide instruction variants of all instructions with narrow *and* wide
22159 variants become available with ARMv6t2. Other opcodes are either
22160 narrow-only or wide-only and are thus available if OPCODE is valid. */
22161 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
22162 return TRUE;
22163
22164 /* OPCODE with narrow only instruction variant or wide variant not
22165 available. */
fc289b0a
TP
22166 return FALSE;
22167}
22168
c19d1205
ZW
22169void
22170md_assemble (char *str)
b99bd4ef 22171{
c19d1205
ZW
22172 char *p = str;
22173 const struct asm_opcode * opcode;
b99bd4ef 22174
c19d1205
ZW
22175 /* Align the previous label if needed. */
22176 if (last_label_seen != NULL)
b99bd4ef 22177 {
c19d1205
ZW
22178 symbol_set_frag (last_label_seen, frag_now);
22179 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
22180 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
22181 }
22182
c19d1205 22183 memset (&inst, '\0', sizeof (inst));
e2b0ab59
AV
22184 int r;
22185 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
22186 inst.relocs[r].type = BFD_RELOC_UNUSED;
b99bd4ef 22187
c19d1205
ZW
22188 opcode = opcode_lookup (&p);
22189 if (!opcode)
b99bd4ef 22190 {
c19d1205 22191 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 22192 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d 22193 if (! create_register_alias (str, p)
477330fc 22194 && ! create_neon_reg_alias (str, p))
c19d1205 22195 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 22196
b99bd4ef
NC
22197 return;
22198 }
22199
278df34e 22200 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
5c3696f8 22201 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
088fa78e 22202
037e8744
JB
22203 /* The value which unconditional instructions should have in place of the
22204 condition field. */
22205 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
22206
c19d1205 22207 if (thumb_mode)
b99bd4ef 22208 {
e74cfd16 22209 arm_feature_set variant;
8f06b2d8
PB
22210
22211 variant = cpu_variant;
22212 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
22213 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
22214 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 22215 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
22216 if (!opcode->tvariant
22217 || (thumb_mode == 1
22218 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 22219 {
173205ca
TP
22220 if (opcode->tencode == do_t_swi)
22221 as_bad (_("SVC is not permitted on this architecture"));
22222 else
22223 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
b99bd4ef
NC
22224 return;
22225 }
c19d1205
ZW
22226 if (inst.cond != COND_ALWAYS && !unified_syntax
22227 && opcode->tencode != do_t_branch)
b99bd4ef 22228 {
c19d1205 22229 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
22230 return;
22231 }
22232
fc289b0a
TP
22233 /* Two things are addressed here:
22234 1) Implicit require narrow instructions on Thumb-1.
22235 This avoids relaxation accidentally introducing Thumb-2
22236 instructions.
22237 2) Reject wide instructions in non Thumb-2 cores.
22238
22239 Only instructions with narrow and wide variants need to be handled
22240 but selecting all non wide-only instructions is easier. */
22241 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
ff8646ee 22242 && !t32_insn_ok (variant, opcode))
076d447c 22243 {
fc289b0a
TP
22244 if (inst.size_req == 0)
22245 inst.size_req = 2;
22246 else if (inst.size_req == 4)
752d5da4 22247 {
ff8646ee
TP
22248 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22249 as_bad (_("selected processor does not support 32bit wide "
22250 "variant of instruction `%s'"), str);
22251 else
22252 as_bad (_("selected processor does not support `%s' in "
22253 "Thumb-2 mode"), str);
fc289b0a 22254 return;
752d5da4 22255 }
076d447c
PB
22256 }
22257
c19d1205
ZW
22258 inst.instruction = opcode->tvalue;
22259
5be8be5d 22260 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
477330fc 22261 {
5ee91343 22262 /* Prepare the pred_insn_type for those encodings that don't set
477330fc
RM
22263 it. */
22264 it_fsm_pre_encode ();
c19d1205 22265
477330fc 22266 opcode->tencode ();
e07e6e58 22267
477330fc
RM
22268 it_fsm_post_encode ();
22269 }
e27ec89e 22270
0110f2b8 22271 if (!(inst.error || inst.relax))
b99bd4ef 22272 {
9c2799c2 22273 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
22274 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22275 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 22276 {
c19d1205 22277 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
22278 return;
22279 }
22280 }
076d447c
PB
22281
22282 /* Something has gone badly wrong if we try to relax a fixed size
477330fc 22283 instruction. */
9c2799c2 22284 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 22285
e74cfd16
PB
22286 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22287 *opcode->tvariant);
ee065d83 22288 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
fc289b0a
TP
22289 set those bits when Thumb-2 32-bit instructions are seen. The impact
22290 of relaxable instructions will be considered later after we finish all
22291 relaxation. */
ff8646ee
TP
22292 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22293 variant = arm_arch_none;
22294 else
22295 variant = cpu_variant;
22296 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
e74cfd16
PB
22297 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22298 arm_ext_v6t2);
cd000bff 22299
88714cb8
DG
22300 check_neon_suffixes;
22301
cd000bff 22302 if (!inst.error)
c877a2f2
NC
22303 {
22304 mapping_state (MAP_THUMB);
22305 }
c19d1205 22306 }
3e9e4fcf 22307 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 22308 {
845b51d6
PB
22309 bfd_boolean is_bx;
22310
22311 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22312 is_bx = (opcode->aencode == do_bx);
22313
c19d1205 22314 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
22315 if (!(is_bx && fix_v4bx)
22316 && !(opcode->avariant &&
22317 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 22318 {
84b52b66 22319 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
c19d1205 22320 return;
b99bd4ef 22321 }
c19d1205 22322 if (inst.size_req)
b99bd4ef 22323 {
c19d1205
ZW
22324 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22325 return;
b99bd4ef
NC
22326 }
22327
c19d1205
ZW
22328 inst.instruction = opcode->avalue;
22329 if (opcode->tag == OT_unconditionalF)
eff0bc54 22330 inst.instruction |= 0xFU << 28;
c19d1205
ZW
22331 else
22332 inst.instruction |= inst.cond << 28;
22333 inst.size = INSN_SIZE;
5be8be5d 22334 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
477330fc
RM
22335 {
22336 it_fsm_pre_encode ();
22337 opcode->aencode ();
22338 it_fsm_post_encode ();
22339 }
ee065d83 22340 /* Arm mode bx is marked as both v4T and v5 because it's still required
477330fc 22341 on a hypothetical non-thumb v5 core. */
845b51d6 22342 if (is_bx)
e74cfd16 22343 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 22344 else
e74cfd16
PB
22345 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22346 *opcode->avariant);
88714cb8
DG
22347
22348 check_neon_suffixes;
22349
cd000bff 22350 if (!inst.error)
c877a2f2
NC
22351 {
22352 mapping_state (MAP_ARM);
22353 }
b99bd4ef 22354 }
3e9e4fcf
JB
22355 else
22356 {
22357 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22358 "-- `%s'"), str);
22359 return;
22360 }
c19d1205
ZW
22361 output_inst (str);
22362}
b99bd4ef 22363
e07e6e58 22364static void
5ee91343 22365check_pred_blocks_finished (void)
e07e6e58
NC
22366{
22367#ifdef OBJ_ELF
22368 asection *sect;
22369
22370 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
5ee91343
AV
22371 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22372 == MANUAL_PRED_BLOCK)
e07e6e58 22373 {
5ee91343
AV
22374 if (now_pred.type == SCALAR_PRED)
22375 as_warn (_("section '%s' finished with an open IT block."),
22376 sect->name);
22377 else
22378 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22379 sect->name);
e07e6e58
NC
22380 }
22381#else
5ee91343
AV
22382 if (now_pred.state == MANUAL_PRED_BLOCK)
22383 {
22384 if (now_pred.type == SCALAR_PRED)
22385 as_warn (_("file finished with an open IT block."));
22386 else
22387 as_warn (_("file finished with an open VPT/VPST block."));
22388 }
e07e6e58
NC
22389#endif
22390}
22391
c19d1205
ZW
22392/* Various frobbings of labels and their addresses. */
22393
22394void
22395arm_start_line_hook (void)
22396{
22397 last_label_seen = NULL;
b99bd4ef
NC
22398}
22399
c19d1205
ZW
22400void
22401arm_frob_label (symbolS * sym)
b99bd4ef 22402{
c19d1205 22403 last_label_seen = sym;
b99bd4ef 22404
c19d1205 22405 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 22406
c19d1205
ZW
22407#if defined OBJ_COFF || defined OBJ_ELF
22408 ARM_SET_INTERWORK (sym, support_interwork);
22409#endif
b99bd4ef 22410
e07e6e58
NC
22411 force_automatic_it_block_close ();
22412
5f4273c7 22413 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
22414 as Thumb functions. This is because these labels, whilst
22415 they exist inside Thumb code, are not the entry points for
22416 possible ARM->Thumb calls. Also, these labels can be used
22417 as part of a computed goto or switch statement. eg gcc
22418 can generate code that looks like this:
b99bd4ef 22419
c19d1205
ZW
22420 ldr r2, [pc, .Laaa]
22421 lsl r3, r3, #2
22422 ldr r2, [r3, r2]
22423 mov pc, r2
b99bd4ef 22424
c19d1205
ZW
22425 .Lbbb: .word .Lxxx
22426 .Lccc: .word .Lyyy
22427 ..etc...
22428 .Laaa: .word Lbbb
b99bd4ef 22429
c19d1205
ZW
22430 The first instruction loads the address of the jump table.
22431 The second instruction converts a table index into a byte offset.
22432 The third instruction gets the jump address out of the table.
22433 The fourth instruction performs the jump.
b99bd4ef 22434
c19d1205
ZW
22435 If the address stored at .Laaa is that of a symbol which has the
22436 Thumb_Func bit set, then the linker will arrange for this address
22437 to have the bottom bit set, which in turn would mean that the
22438 address computation performed by the third instruction would end
22439 up with the bottom bit set. Since the ARM is capable of unaligned
22440 word loads, the instruction would then load the incorrect address
22441 out of the jump table, and chaos would ensue. */
22442 if (label_is_thumb_function_name
22443 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22444 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 22445 {
c19d1205
ZW
22446 /* When the address of a Thumb function is taken the bottom
22447 bit of that address should be set. This will allow
22448 interworking between Arm and Thumb functions to work
22449 correctly. */
b99bd4ef 22450
c19d1205 22451 THUMB_SET_FUNC (sym, 1);
b99bd4ef 22452
c19d1205 22453 label_is_thumb_function_name = FALSE;
b99bd4ef 22454 }
07a53e5c 22455
07a53e5c 22456 dwarf2_emit_label (sym);
b99bd4ef
NC
22457}
22458
c921be7d 22459bfd_boolean
c19d1205 22460arm_data_in_code (void)
b99bd4ef 22461{
c19d1205 22462 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 22463 {
c19d1205
ZW
22464 *input_line_pointer = '/';
22465 input_line_pointer += 5;
22466 *input_line_pointer = 0;
c921be7d 22467 return TRUE;
b99bd4ef
NC
22468 }
22469
c921be7d 22470 return FALSE;
b99bd4ef
NC
22471}
22472
c19d1205
ZW
22473char *
22474arm_canonicalize_symbol_name (char * name)
b99bd4ef 22475{
c19d1205 22476 int len;
b99bd4ef 22477
c19d1205
ZW
22478 if (thumb_mode && (len = strlen (name)) > 5
22479 && streq (name + len - 5, "/data"))
22480 *(name + len - 5) = 0;
b99bd4ef 22481
c19d1205 22482 return name;
b99bd4ef 22483}
c19d1205
ZW
22484\f
22485/* Table of all register names defined by default. The user can
22486 define additional names with .req. Note that all register names
22487 should appear in both upper and lowercase variants. Some registers
22488 also have mixed-case names. */
b99bd4ef 22489
dcbf9037 22490#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 22491#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 22492#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
22493#define REGSET(p,t) \
22494 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22495 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22496 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22497 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
22498#define REGSETH(p,t) \
22499 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22500 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22501 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22502 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22503#define REGSET2(p,t) \
22504 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22505 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22506 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22507 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
22508#define SPLRBANK(base,bank,t) \
22509 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22510 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22511 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22512 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22513 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22514 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 22515
c19d1205 22516static const struct reg_entry reg_names[] =
7ed4c4c5 22517{
c19d1205
ZW
22518 /* ARM integer registers. */
22519 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 22520
c19d1205
ZW
22521 /* ATPCS synonyms. */
22522 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22523 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22524 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 22525
c19d1205
ZW
22526 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22527 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22528 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 22529
c19d1205
ZW
22530 /* Well-known aliases. */
22531 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22532 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22533
22534 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22535 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22536
1b883319
AV
22537 /* Defining the new Zero register from ARMv8.1-M. */
22538 REGDEF(zr,15,ZR),
22539 REGDEF(ZR,15,ZR),
22540
c19d1205
ZW
22541 /* Coprocessor numbers. */
22542 REGSET(p, CP), REGSET(P, CP),
22543
22544 /* Coprocessor register numbers. The "cr" variants are for backward
22545 compatibility. */
22546 REGSET(c, CN), REGSET(C, CN),
22547 REGSET(cr, CN), REGSET(CR, CN),
22548
90ec0d68
MGD
22549 /* ARM banked registers. */
22550 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22551 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22552 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22553 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22554 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22555 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22556 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22557
22558 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22559 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22560 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22561 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22562 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
1472d06f 22563 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
90ec0d68
MGD
22564 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22565 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22566
22567 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22568 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22569 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22570 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22571 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22572 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22573 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 22574 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
22575 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22576
c19d1205
ZW
22577 /* FPA registers. */
22578 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22579 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22580
22581 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22582 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22583
22584 /* VFP SP registers. */
5287ad62
JB
22585 REGSET(s,VFS), REGSET(S,VFS),
22586 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
22587
22588 /* VFP DP Registers. */
5287ad62
JB
22589 REGSET(d,VFD), REGSET(D,VFD),
22590 /* Extra Neon DP registers. */
22591 REGSETH(d,VFD), REGSETH(D,VFD),
22592
22593 /* Neon QP registers. */
22594 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
22595
22596 /* VFP control registers. */
22597 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22598 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
22599 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22600 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22601 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22602 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
40c7d507 22603 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
c19d1205
ZW
22604
22605 /* Maverick DSP coprocessor registers. */
22606 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22607 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22608
22609 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22610 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22611 REGDEF(dspsc,0,DSPSC),
22612
22613 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22614 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22615 REGDEF(DSPSC,0,DSPSC),
22616
22617 /* iWMMXt data registers - p0, c0-15. */
22618 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22619
22620 /* iWMMXt control registers - p1, c0-3. */
22621 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22622 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22623 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22624 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22625
22626 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22627 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22628 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22629 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22630 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22631
22632 /* XScale accumulator registers. */
22633 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22634};
22635#undef REGDEF
22636#undef REGNUM
22637#undef REGSET
7ed4c4c5 22638
c19d1205
ZW
22639/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22640 within psr_required_here. */
22641static const struct asm_psr psrs[] =
22642{
22643 /* Backward compatibility notation. Note that "all" is no longer
22644 truly all possible PSR bits. */
22645 {"all", PSR_c | PSR_f},
22646 {"flg", PSR_f},
22647 {"ctl", PSR_c},
22648
22649 /* Individual flags. */
22650 {"f", PSR_f},
22651 {"c", PSR_c},
22652 {"x", PSR_x},
22653 {"s", PSR_s},
59b42a0d 22654
c19d1205
ZW
22655 /* Combinations of flags. */
22656 {"fs", PSR_f | PSR_s},
22657 {"fx", PSR_f | PSR_x},
22658 {"fc", PSR_f | PSR_c},
22659 {"sf", PSR_s | PSR_f},
22660 {"sx", PSR_s | PSR_x},
22661 {"sc", PSR_s | PSR_c},
22662 {"xf", PSR_x | PSR_f},
22663 {"xs", PSR_x | PSR_s},
22664 {"xc", PSR_x | PSR_c},
22665 {"cf", PSR_c | PSR_f},
22666 {"cs", PSR_c | PSR_s},
22667 {"cx", PSR_c | PSR_x},
22668 {"fsx", PSR_f | PSR_s | PSR_x},
22669 {"fsc", PSR_f | PSR_s | PSR_c},
22670 {"fxs", PSR_f | PSR_x | PSR_s},
22671 {"fxc", PSR_f | PSR_x | PSR_c},
22672 {"fcs", PSR_f | PSR_c | PSR_s},
22673 {"fcx", PSR_f | PSR_c | PSR_x},
22674 {"sfx", PSR_s | PSR_f | PSR_x},
22675 {"sfc", PSR_s | PSR_f | PSR_c},
22676 {"sxf", PSR_s | PSR_x | PSR_f},
22677 {"sxc", PSR_s | PSR_x | PSR_c},
22678 {"scf", PSR_s | PSR_c | PSR_f},
22679 {"scx", PSR_s | PSR_c | PSR_x},
22680 {"xfs", PSR_x | PSR_f | PSR_s},
22681 {"xfc", PSR_x | PSR_f | PSR_c},
22682 {"xsf", PSR_x | PSR_s | PSR_f},
22683 {"xsc", PSR_x | PSR_s | PSR_c},
22684 {"xcf", PSR_x | PSR_c | PSR_f},
22685 {"xcs", PSR_x | PSR_c | PSR_s},
22686 {"cfs", PSR_c | PSR_f | PSR_s},
22687 {"cfx", PSR_c | PSR_f | PSR_x},
22688 {"csf", PSR_c | PSR_s | PSR_f},
22689 {"csx", PSR_c | PSR_s | PSR_x},
22690 {"cxf", PSR_c | PSR_x | PSR_f},
22691 {"cxs", PSR_c | PSR_x | PSR_s},
22692 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22693 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22694 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22695 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22696 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22697 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22698 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22699 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22700 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22701 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22702 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22703 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22704 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22705 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22706 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22707 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22708 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22709 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22710 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22711 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22712 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22713 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22714 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22715 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22716};
22717
62b3e311
PB
22718/* Table of V7M psr names. */
22719static const struct asm_psr v7m_psrs[] =
22720{
1a336194
TP
22721 {"apsr", 0x0 }, {"APSR", 0x0 },
22722 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22723 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22724 {"psr", 0x3 }, {"PSR", 0x3 },
22725 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22726 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22727 {"epsr", 0x6 }, {"EPSR", 0x6 },
22728 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22729 {"msp", 0x8 }, {"MSP", 0x8 },
22730 {"psp", 0x9 }, {"PSP", 0x9 },
22731 {"msplim", 0xa }, {"MSPLIM", 0xa },
22732 {"psplim", 0xb }, {"PSPLIM", 0xb },
22733 {"primask", 0x10}, {"PRIMASK", 0x10},
22734 {"basepri", 0x11}, {"BASEPRI", 0x11},
22735 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
1a336194
TP
22736 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22737 {"control", 0x14}, {"CONTROL", 0x14},
22738 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22739 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22740 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22741 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22742 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22743 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22744 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22745 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22746 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
62b3e311
PB
22747};
22748
c19d1205
ZW
22749/* Table of all shift-in-operand names. */
22750static const struct asm_shift_name shift_names [] =
b99bd4ef 22751{
c19d1205
ZW
22752 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22753 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22754 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22755 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22756 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
f5f10c66
AV
22757 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22758 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
c19d1205 22759};
b99bd4ef 22760
c19d1205
ZW
22761/* Table of all explicit relocation names. */
22762#ifdef OBJ_ELF
22763static struct reloc_entry reloc_names[] =
22764{
22765 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22766 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22767 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22768 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22769 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22770 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22771 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22772 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22773 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22774 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 22775 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
22776 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22777 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
477330fc 22778 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
0855e32b 22779 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
477330fc 22780 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
0855e32b 22781 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
188fd7ae
CL
22782 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22783 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22784 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22785 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22786 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22787 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
5c5a4843
CL
22788 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22789 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22790 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22791 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
c19d1205
ZW
22792};
22793#endif
b99bd4ef 22794
5ee91343 22795/* Table of all conditional affixes. */
c19d1205
ZW
22796static const struct asm_cond conds[] =
22797{
22798 {"eq", 0x0},
22799 {"ne", 0x1},
22800 {"cs", 0x2}, {"hs", 0x2},
22801 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22802 {"mi", 0x4},
22803 {"pl", 0x5},
22804 {"vs", 0x6},
22805 {"vc", 0x7},
22806 {"hi", 0x8},
22807 {"ls", 0x9},
22808 {"ge", 0xa},
22809 {"lt", 0xb},
22810 {"gt", 0xc},
22811 {"le", 0xd},
22812 {"al", 0xe}
22813};
5ee91343
AV
22814static const struct asm_cond vconds[] =
22815{
22816 {"t", 0xf},
22817 {"e", 0x10}
22818};
bfae80f2 22819
e797f7e0 22820#define UL_BARRIER(L,U,CODE,FEAT) \
823d2571
TG
22821 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22822 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
e797f7e0 22823
62b3e311
PB
22824static struct asm_barrier_opt barrier_opt_names[] =
22825{
e797f7e0
MGD
22826 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22827 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22828 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22829 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22830 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22831 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22832 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22833 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22834 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22835 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22836 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22837 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22838 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22839 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22840 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22841 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
22842};
22843
e797f7e0
MGD
22844#undef UL_BARRIER
22845
c19d1205
ZW
22846/* Table of ARM-format instructions. */
22847
22848/* Macros for gluing together operand strings. N.B. In all cases
22849 other than OPS0, the trailing OP_stop comes from default
22850 zero-initialization of the unspecified elements of the array. */
22851#define OPS0() { OP_stop, }
22852#define OPS1(a) { OP_##a, }
22853#define OPS2(a,b) { OP_##a,OP_##b, }
22854#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22855#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22856#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22857#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22858
5be8be5d
DG
22859/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22860 This is useful when mixing operands for ARM and THUMB, i.e. using the
22861 MIX_ARM_THUMB_OPERANDS macro.
22862 In order to use these macros, prefix the number of operands with _
22863 e.g. _3. */
22864#define OPS_1(a) { a, }
22865#define OPS_2(a,b) { a,b, }
22866#define OPS_3(a,b,c) { a,b,c, }
22867#define OPS_4(a,b,c,d) { a,b,c,d, }
22868#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22869#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22870
c19d1205
ZW
22871/* These macros abstract out the exact format of the mnemonic table and
22872 save some repeated characters. */
22873
22874/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22875#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22876 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
5ee91343 22877 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22878
22879/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22880 a T_MNEM_xyz enumerator. */
22881#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22882 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22883#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22884 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
22885
22886/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22887 infix after the third character. */
22888#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 22889 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
5ee91343 22890 THUMB_VARIANT, do_##ae, do_##te, 0 }
088fa78e 22891#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 22892 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
5ee91343 22893 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22894#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22895 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 22896#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 22897 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 22898#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22899 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 22900#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 22901 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205 22902
c19d1205 22903/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
22904 field is still 0xE. Many of the Thumb variants can be executed
22905 conditionally, so this is checked separately. */
c19d1205 22906#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 22907 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22908 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205 22909
dd5181d5
KT
22910/* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22911 Used by mnemonics that have very minimal differences in the encoding for
22912 ARM and Thumb variants and can be handled in a common function. */
22913#define TUEc(mnem, op, top, nops, ops, en) \
22914 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22915 THUMB_VARIANT, do_##en, do_##en, 0 }
dd5181d5 22916
c19d1205
ZW
22917/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22918 condition code field. */
22919#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 22920 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
5ee91343 22921 THUMB_VARIANT, do_##ae, do_##te, 0 }
c19d1205
ZW
22922
22923/* ARM-only variants of all the above. */
6a86118a 22924#define CE(mnem, op, nops, ops, ae) \
5ee91343 22925 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22926
22927#define C3(mnem, op, nops, ops, ae) \
5ee91343 22928 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 22929
cf3cf39d
TP
22930/* Thumb-only variants of TCE and TUE. */
22931#define ToC(mnem, top, nops, ops, te) \
22932 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22933 do_##te, 0 }
cf3cf39d
TP
22934
22935#define ToU(mnem, top, nops, ops, te) \
22936 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
5ee91343 22937 NULL, do_##te, 0 }
cf3cf39d 22938
4389b29a
AV
22939/* T_MNEM_xyz enumerator variants of ToC. */
22940#define toC(mnem, top, nops, ops, te) \
22941 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
5ee91343 22942 do_##te, 0 }
4389b29a 22943
f6b2b12d
AV
22944/* T_MNEM_xyz enumerator variants of ToU. */
22945#define toU(mnem, top, nops, ops, te) \
22946 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
5ee91343 22947 NULL, do_##te, 0 }
f6b2b12d 22948
e3cb604e
PB
22949/* Legacy mnemonics that always have conditional infix after the third
22950 character. */
22951#define CL(mnem, op, nops, ops, ae) \
21d799b5 22952 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22953 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
e3cb604e 22954
8f06b2d8
PB
22955/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22956#define cCE(mnem, op, nops, ops, ae) \
5ee91343 22957 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22958
57785aa2
AV
22959/* mov instructions that are shared between coprocessor and MVE. */
22960#define mcCE(mnem, op, nops, ops, ae) \
22961 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22962
e3cb604e
PB
22963/* Legacy coprocessor instructions where conditional infix and conditional
22964 suffix are ambiguous. For consistency this includes all FPA instructions,
22965 not just the potentially ambiguous ones. */
22966#define cCL(mnem, op, nops, ops, ae) \
21d799b5 22967 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
5ee91343 22968 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
e3cb604e
PB
22969
22970/* Coprocessor, takes either a suffix or a position-3 infix
22971 (for an FPA corner case). */
22972#define C3E(mnem, op, nops, ops, ae) \
21d799b5 22973 { mnem, OPS##nops ops, OT_csuf_or_in3, \
5ee91343 22974 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
8f06b2d8 22975
6a86118a 22976#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
22977 { m1 #m2 m3, OPS##nops ops, \
22978 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
5ee91343 22979 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
22980
22981#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
22982 xCM_ (m1, , m2, op, nops, ops, ae), \
22983 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22984 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22985 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22986 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22987 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22988 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22989 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22990 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22991 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22992 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22993 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22994 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22995 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22996 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22997 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22998 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22999 xCM_ (m1, le, m2, op, nops, ops, ae), \
23000 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
23001
23002#define UE(mnem, op, nops, ops, ae) \
5ee91343 23003 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a
NC
23004
23005#define UF(mnem, op, nops, ops, ae) \
5ee91343 23006 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
6a86118a 23007
5287ad62
JB
23008/* Neon data-processing. ARM versions are unconditional with cond=0xf.
23009 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
23010 use the same encoding function for each. */
23011#define NUF(mnem, op, nops, ops, enc) \
23012 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
5ee91343 23013 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
23014
23015/* Neon data processing, version which indirects through neon_enc_tab for
23016 the various overloaded versions of opcodes. */
23017#define nUF(mnem, op, nops, ops, enc) \
21d799b5 23018 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5ee91343 23019 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
5287ad62
JB
23020
23021/* Neon insn with conditional suffix for the ARM version, non-overloaded
23022 version. */
5ee91343 23023#define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
037e8744 23024 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5ee91343 23025 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 23026
037e8744 23027#define NCE(mnem, op, nops, ops, enc) \
5ee91343 23028 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
23029
23030#define NCEF(mnem, op, nops, ops, enc) \
5ee91343 23031 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
037e8744 23032
5287ad62 23033/* Neon insn with conditional suffix for the ARM version, overloaded types. */
5ee91343 23034#define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21d799b5 23035 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5ee91343 23036 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
5287ad62 23037
037e8744 23038#define nCE(mnem, op, nops, ops, enc) \
5ee91343 23039 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
037e8744
JB
23040
23041#define nCEF(mnem, op, nops, ops, enc) \
5ee91343
AV
23042 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
23043
23044/* */
23045#define mCEF(mnem, op, nops, ops, enc) \
a302e574 23046 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
5ee91343
AV
23047 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23048
23049
23050/* nCEF but for MVE predicated instructions. */
23051#define mnCEF(mnem, op, nops, ops, enc) \
23052 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
23053
23054/* nCE but for MVE predicated instructions. */
23055#define mnCE(mnem, op, nops, ops, enc) \
23056 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
037e8744 23057
5ee91343
AV
23058/* NUF but for potentially MVE predicated instructions. */
23059#define MNUF(mnem, op, nops, ops, enc) \
23060 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
23061 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23062
23063/* nUF but for potentially MVE predicated instructions. */
23064#define mnUF(mnem, op, nops, ops, enc) \
23065 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
23066 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
23067
23068/* ToC but for potentially MVE predicated instructions. */
23069#define mToC(mnem, top, nops, ops, te) \
23070 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
23071 do_##te, 1 }
23072
23073/* NCE but for MVE predicated instructions. */
23074#define MNCE(mnem, op, nops, ops, enc) \
23075 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
23076
23077/* NCEF but for MVE predicated instructions. */
23078#define MNCEF(mnem, op, nops, ops, enc) \
23079 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
c19d1205
ZW
23080#define do_0 0
23081
c19d1205 23082static const struct asm_opcode insns[] =
bfae80f2 23083{
74db7efb
NC
23084#define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
23085#define THUMB_VARIANT & arm_ext_v4t
21d799b5
NC
23086 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
23087 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
23088 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
23089 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
23090 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
23091 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
23092 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
23093 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
23094 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
23095 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
23096 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
23097 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
23098 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
23099 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
23100 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
23101 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
23102
23103 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
23104 for setting PSR flag bits. They are obsolete in V6 and do not
23105 have Thumb equivalents. */
21d799b5
NC
23106 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23107 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
23108 CL("tstp", 110f000, 2, (RR, SH), cmp),
23109 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23110 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
23111 CL("cmpp", 150f000, 2, (RR, SH), cmp),
23112 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23113 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
23114 CL("cmnp", 170f000, 2, (RR, SH), cmp),
23115
23116 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
72d98d16 23117 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21d799b5
NC
23118 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
23119 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
23120
23121 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
23122 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
23123 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
23124 OP_RRnpc),
23125 OP_ADDRGLDR),ldst, t_ldst),
23126 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
23127
23128 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23129 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23130 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23131 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23132 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23133 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23134
21d799b5
NC
23135 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
23136 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 23137
c19d1205 23138 /* Pseudo ops. */
21d799b5 23139 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 23140 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 23141 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
74db7efb 23142 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
c19d1205
ZW
23143
23144 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
23145 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
23146 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
23147 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
23148 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
23149 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
23150 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
23151 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
23152 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
23153 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
23154 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
23155 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
23156 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 23157
16a4cf17 23158 /* These may simplify to neg. */
21d799b5
NC
23159 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
23160 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 23161
173205ca
TP
23162#undef THUMB_VARIANT
23163#define THUMB_VARIANT & arm_ext_os
23164
23165 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
23166 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
23167
c921be7d
NC
23168#undef THUMB_VARIANT
23169#define THUMB_VARIANT & arm_ext_v6
23170
21d799b5 23171 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
23172
23173 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
23174#undef THUMB_VARIANT
23175#define THUMB_VARIANT & arm_ext_v6t2
23176
21d799b5
NC
23177 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23178 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
23179 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 23180
5be8be5d
DG
23181 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23182 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
23183 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
23184 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 23185
21d799b5
NC
23186 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23187 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 23188
21d799b5
NC
23189 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
23190 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
23191
23192 /* V1 instructions with no Thumb analogue at all. */
21d799b5 23193 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
23194 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
23195
23196 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
23197 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
23198 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
23199 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
23200 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
23201 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
23202 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
23203 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
23204
c921be7d
NC
23205#undef ARM_VARIANT
23206#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
23207#undef THUMB_VARIANT
23208#define THUMB_VARIANT & arm_ext_v4t
23209
21d799b5
NC
23210 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
23211 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 23212
c921be7d
NC
23213#undef THUMB_VARIANT
23214#define THUMB_VARIANT & arm_ext_v6t2
23215
21d799b5 23216 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
23217 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
23218
23219 /* Generic coprocessor instructions. */
21d799b5
NC
23220 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23221 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23222 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23223 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23224 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23225 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 23226 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23227
c921be7d
NC
23228#undef ARM_VARIANT
23229#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23230
21d799b5 23231 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
23232 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23233
c921be7d
NC
23234#undef ARM_VARIANT
23235#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23236#undef THUMB_VARIANT
23237#define THUMB_VARIANT & arm_ext_msr
23238
d2cd1205
JB
23239 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23240 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 23241
c921be7d
NC
23242#undef ARM_VARIANT
23243#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23244#undef THUMB_VARIANT
23245#define THUMB_VARIANT & arm_ext_v6t2
23246
21d799b5
NC
23247 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23248 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23249 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23250 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23251 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23252 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23253 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23254 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 23255
c921be7d
NC
23256#undef ARM_VARIANT
23257#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23258#undef THUMB_VARIANT
23259#define THUMB_VARIANT & arm_ext_v4t
23260
5be8be5d
DG
23261 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23262 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23263 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23264 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
56c0a61f
RE
23265 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23266 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 23267
c921be7d
NC
23268#undef ARM_VARIANT
23269#define ARM_VARIANT & arm_ext_v4t_5
23270
c19d1205
ZW
23271 /* ARM Architecture 4T. */
23272 /* Note: bx (and blx) are required on V5, even if the processor does
23273 not support Thumb. */
21d799b5 23274 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 23275
c921be7d
NC
23276#undef ARM_VARIANT
23277#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23278#undef THUMB_VARIANT
23279#define THUMB_VARIANT & arm_ext_v5t
23280
c19d1205
ZW
23281 /* Note: blx has 2 variants; the .value coded here is for
23282 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
23283 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23284 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 23285
c921be7d
NC
23286#undef THUMB_VARIANT
23287#define THUMB_VARIANT & arm_ext_v6t2
23288
21d799b5
NC
23289 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23290 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23291 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23292 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23293 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23294 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23295 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23296 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 23297
c921be7d 23298#undef ARM_VARIANT
74db7efb
NC
23299#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23300#undef THUMB_VARIANT
23301#define THUMB_VARIANT & arm_ext_v5exp
c921be7d 23302
21d799b5
NC
23303 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23304 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23305 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23306 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23307
21d799b5
NC
23308 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23309 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 23310
21d799b5
NC
23311 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23312 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23313 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23314 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 23315
21d799b5
NC
23316 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23317 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23318 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23319 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23320
21d799b5
NC
23321 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23322 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 23323
03ee1b7f
NC
23324 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23325 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23326 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23327 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 23328
c921be7d 23329#undef ARM_VARIANT
74db7efb
NC
23330#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23331#undef THUMB_VARIANT
23332#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23333
21d799b5 23334 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
23335 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23336 ldrd, t_ldstd),
23337 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23338 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 23339
21d799b5
NC
23340 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23341 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 23342
c921be7d
NC
23343#undef ARM_VARIANT
23344#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23345
21d799b5 23346 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 23347
c921be7d
NC
23348#undef ARM_VARIANT
23349#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23350#undef THUMB_VARIANT
23351#define THUMB_VARIANT & arm_ext_v6
23352
21d799b5
NC
23353 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23354 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23355 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23356 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23357 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23358 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23359 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23360 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23361 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23362 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 23363
c921be7d 23364#undef THUMB_VARIANT
ff8646ee 23365#define THUMB_VARIANT & arm_ext_v6t2_v8m
c921be7d 23366
5be8be5d
DG
23367 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23368 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23369 strex, t_strex),
ff8646ee
TP
23370#undef THUMB_VARIANT
23371#define THUMB_VARIANT & arm_ext_v6t2
23372
21d799b5
NC
23373 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23374 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 23375
21d799b5
NC
23376 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23377 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 23378
9e3c6df6 23379/* ARM V6 not included in V7M. */
c921be7d
NC
23380#undef THUMB_VARIANT
23381#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6 23382 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6 23383 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
9e3c6df6
PB
23384 UF(rfeib, 9900a00, 1, (RRw), rfe),
23385 UF(rfeda, 8100a00, 1, (RRw), rfe),
23386 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23387 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
d709e4e6
RE
23388 UF(rfefa, 8100a00, 1, (RRw), rfe),
23389 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23390 UF(rfeed, 9900a00, 1, (RRw), rfe),
9e3c6df6 23391 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
d709e4e6
RE
23392 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23393 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
9e3c6df6 23394 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
d709e4e6 23395 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
9e3c6df6 23396 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
d709e4e6 23397 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
9e3c6df6 23398 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
d709e4e6 23399 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
941c9cad 23400 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
c921be7d 23401
9e3c6df6
PB
23402/* ARM V6 not included in V7M (eg. integer SIMD). */
23403#undef THUMB_VARIANT
23404#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
23405 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23406 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23407 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23408 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23409 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23410 /* Old name for QASX. */
74db7efb 23411 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23412 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23413 /* Old name for QSAX. */
74db7efb 23414 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23415 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23416 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23417 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23418 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23419 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23420 /* Old name for SASX. */
74db7efb 23421 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23422 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23423 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23424 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23425 /* Old name for SHASX. */
21d799b5 23426 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23427 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23428 /* Old name for SHSAX. */
21d799b5
NC
23429 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23430 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23431 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23432 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23433 /* Old name for SSAX. */
74db7efb 23434 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23435 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23436 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23437 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23438 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23439 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23440 /* Old name for UASX. */
74db7efb 23441 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23442 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23443 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23444 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23445 /* Old name for UHASX. */
21d799b5
NC
23446 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23447 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23448 /* Old name for UHSAX. */
21d799b5
NC
23449 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23450 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23451 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23452 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23453 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
74db7efb 23454 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23455 /* Old name for UQASX. */
21d799b5
NC
23456 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23457 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23458 /* Old name for UQSAX. */
21d799b5
NC
23459 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23460 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23461 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23462 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23463 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 23464 /* Old name for USAX. */
74db7efb 23465 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5 23466 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
23467 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23468 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23469 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23470 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23471 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23472 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23473 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23474 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23475 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23476 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23477 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23478 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23479 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23480 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23481 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23482 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23483 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23484 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23485 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23486 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23487 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23488 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23489 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23490 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23491 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23492 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23493 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
23494 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23495 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23496 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23497 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23498 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 23499
c921be7d 23500#undef ARM_VARIANT
55e8aae7 23501#define ARM_VARIANT & arm_ext_v6k_v6t2
c921be7d 23502#undef THUMB_VARIANT
55e8aae7 23503#define THUMB_VARIANT & arm_ext_v6k_v6t2
c921be7d 23504
21d799b5
NC
23505 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23506 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23507 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23508 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 23509
c921be7d
NC
23510#undef THUMB_VARIANT
23511#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
23512 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23513 ldrexd, t_ldrexd),
23514 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23515 RRnpcb), strexd, t_strexd),
ebdca51a 23516
c921be7d 23517#undef THUMB_VARIANT
ff8646ee 23518#define THUMB_VARIANT & arm_ext_v6t2_v8m
5be8be5d
DG
23519 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23520 rd_rn, rd_rn),
23521 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23522 rd_rn, rd_rn),
23523 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23524 strex, t_strexbh),
5be8be5d 23525 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 23526 strex, t_strexbh),
21d799b5 23527 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 23528
c921be7d 23529#undef ARM_VARIANT
f4c65163 23530#define ARM_VARIANT & arm_ext_sec
74db7efb 23531#undef THUMB_VARIANT
f4c65163 23532#define THUMB_VARIANT & arm_ext_sec
c921be7d 23533
21d799b5 23534 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 23535
90ec0d68
MGD
23536#undef ARM_VARIANT
23537#define ARM_VARIANT & arm_ext_virt
23538#undef THUMB_VARIANT
23539#define THUMB_VARIANT & arm_ext_virt
23540
23541 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23542 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23543
ddfded2f
MW
23544#undef ARM_VARIANT
23545#define ARM_VARIANT & arm_ext_pan
23546#undef THUMB_VARIANT
23547#define THUMB_VARIANT & arm_ext_pan
23548
23549 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23550
c921be7d 23551#undef ARM_VARIANT
74db7efb 23552#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
23553#undef THUMB_VARIANT
23554#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23555
21d799b5
NC
23556 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23557 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23558 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23559 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 23560
21d799b5 23561 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
21d799b5 23562 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 23563
5be8be5d
DG
23564 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23565 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23566 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23567 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 23568
91d8b670
JG
23569#undef ARM_VARIANT
23570#define ARM_VARIANT & arm_ext_v3
23571#undef THUMB_VARIANT
23572#define THUMB_VARIANT & arm_ext_v6t2
23573
23574 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
c597cc3d
SD
23575 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23576 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
91d8b670
JG
23577
23578#undef ARM_VARIANT
23579#define ARM_VARIANT & arm_ext_v6t2
ff8646ee
TP
23580#undef THUMB_VARIANT
23581#define THUMB_VARIANT & arm_ext_v6t2_v8m
23582 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23583 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23584
bf3eeda7 23585 /* Thumb-only instructions. */
74db7efb 23586#undef ARM_VARIANT
bf3eeda7
NS
23587#define ARM_VARIANT NULL
23588 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23589 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
23590
23591 /* ARM does not really have an IT instruction, so always allow it.
23592 The opcode is copied from Thumb in order to allow warnings in
23593 -mimplicit-it=[never | arm] modes. */
23594#undef ARM_VARIANT
23595#define ARM_VARIANT & arm_ext_v1
ff8646ee
TP
23596#undef THUMB_VARIANT
23597#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 23598
21d799b5
NC
23599 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23600 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23601 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23602 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23603 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23604 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23605 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23606 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23607 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23608 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23609 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23610 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23611 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23612 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23613 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 23614 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
23615 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23616 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 23617
92e90b6e 23618 /* Thumb2 only instructions. */
c921be7d
NC
23619#undef ARM_VARIANT
23620#define ARM_VARIANT NULL
92e90b6e 23621
21d799b5
NC
23622 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23623 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23624 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23625 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23626 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23627 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 23628
eea54501
MGD
23629 /* Hardware division instructions. */
23630#undef ARM_VARIANT
23631#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
23632#undef THUMB_VARIANT
23633#define THUMB_VARIANT & arm_ext_div
23634
eea54501
MGD
23635 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23636 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 23637
7e806470 23638 /* ARM V6M/V7 instructions. */
c921be7d
NC
23639#undef ARM_VARIANT
23640#define ARM_VARIANT & arm_ext_barrier
23641#undef THUMB_VARIANT
23642#define THUMB_VARIANT & arm_ext_barrier
23643
ccb84d65
JB
23644 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23645 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23646 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
7e806470 23647
62b3e311 23648 /* ARM V7 instructions. */
c921be7d
NC
23649#undef ARM_VARIANT
23650#define ARM_VARIANT & arm_ext_v7
23651#undef THUMB_VARIANT
23652#define THUMB_VARIANT & arm_ext_v7
23653
21d799b5
NC
23654 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23655 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 23656
74db7efb 23657#undef ARM_VARIANT
60e5ef9f 23658#define ARM_VARIANT & arm_ext_mp
74db7efb 23659#undef THUMB_VARIANT
60e5ef9f
MGD
23660#define THUMB_VARIANT & arm_ext_mp
23661
23662 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23663
53c4b28b
MGD
23664 /* AArchv8 instructions. */
23665#undef ARM_VARIANT
23666#define ARM_VARIANT & arm_ext_v8
4ed7ed8d
TP
23667
23668/* Instructions shared between armv8-a and armv8-m. */
53c4b28b 23669#undef THUMB_VARIANT
4ed7ed8d 23670#define THUMB_VARIANT & arm_ext_atomics
53c4b28b 23671
4ed7ed8d
TP
23672 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23673 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23674 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23675 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23676 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23677 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
4b8c8c02 23678 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
4b8c8c02
RE
23679 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23680 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23681 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23682 stlex, t_stlex),
4b8c8c02
RE
23683 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23684 stlex, t_stlex),
23685 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23686 stlex, t_stlex),
4ed7ed8d
TP
23687#undef THUMB_VARIANT
23688#define THUMB_VARIANT & arm_ext_v8
53c4b28b 23689
4ed7ed8d 23690 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
4ed7ed8d
TP
23691 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23692 ldrexd, t_ldrexd),
23693 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23694 strexd, t_strexd),
f7dd2fb2
TC
23695
23696/* Defined in V8 but is in undefined encoding space for earlier
23697 architectures. However earlier architectures are required to treat
23698 this instuction as a semihosting trap as well. Hence while not explicitly
23699 defined as such, it is in fact correct to define the instruction for all
23700 architectures. */
23701#undef THUMB_VARIANT
23702#define THUMB_VARIANT & arm_ext_v1
23703#undef ARM_VARIANT
23704#define ARM_VARIANT & arm_ext_v1
23705 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23706
8884b720 23707 /* ARMv8 T32 only. */
74db7efb 23708#undef ARM_VARIANT
b79f7053
MGD
23709#define ARM_VARIANT NULL
23710 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23711 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23712 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23713
33399f07
MGD
23714 /* FP for ARMv8. */
23715#undef ARM_VARIANT
a715796b 23716#define ARM_VARIANT & fpu_vfp_ext_armv8xd
33399f07 23717#undef THUMB_VARIANT
a715796b 23718#define THUMB_VARIANT & fpu_vfp_ext_armv8xd
33399f07
MGD
23719
23720 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23721 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23722 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23723 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
30bdf752 23724 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
a710b305
AV
23725 mnCE(vrintz, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintz),
23726 mnCE(vrintx, _vrintr, 2, (RNSDQMQ, oRNSDQMQ), vrintx),
23727 mnUF(vrinta, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrinta),
23728 mnUF(vrintn, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintn),
23729 mnUF(vrintp, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintp),
23730 mnUF(vrintm, _vrinta, 2, (RNSDQMQ, oRNSDQMQ), vrintm),
33399f07 23731
91ff7894
MGD
23732 /* Crypto v1 extensions. */
23733#undef ARM_VARIANT
23734#define ARM_VARIANT & fpu_crypto_ext_armv8
23735#undef THUMB_VARIANT
23736#define THUMB_VARIANT & fpu_crypto_ext_armv8
23737
23738 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23739 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23740 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23741 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
48adcd8e
MGD
23742 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23743 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23744 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23745 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23746 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23747 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23748 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
3c9017d2
MGD
23749 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23750 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23751 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
91ff7894 23752
dd5181d5 23753#undef ARM_VARIANT
74db7efb 23754#define ARM_VARIANT & crc_ext_armv8
dd5181d5
KT
23755#undef THUMB_VARIANT
23756#define THUMB_VARIANT & crc_ext_armv8
23757 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23758 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23759 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23760 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23761 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23762 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23763
105bde57
MW
23764 /* ARMv8.2 RAS extension. */
23765#undef ARM_VARIANT
4d1464f2 23766#define ARM_VARIANT & arm_ext_ras
105bde57 23767#undef THUMB_VARIANT
4d1464f2 23768#define THUMB_VARIANT & arm_ext_ras
105bde57
MW
23769 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23770
49e8a725
SN
23771#undef ARM_VARIANT
23772#define ARM_VARIANT & arm_ext_v8_3
23773#undef THUMB_VARIANT
23774#define THUMB_VARIANT & arm_ext_v8_3
23775 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23776
c604a79a
JW
23777#undef ARM_VARIANT
23778#define ARM_VARIANT & fpu_neon_ext_dotprod
23779#undef THUMB_VARIANT
23780#define THUMB_VARIANT & fpu_neon_ext_dotprod
23781 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23782 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23783
c921be7d
NC
23784#undef ARM_VARIANT
23785#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
23786#undef THUMB_VARIANT
23787#define THUMB_VARIANT NULL
c921be7d 23788
21d799b5
NC
23789 cCE("wfs", e200110, 1, (RR), rd),
23790 cCE("rfs", e300110, 1, (RR), rd),
23791 cCE("wfc", e400110, 1, (RR), rd),
23792 cCE("rfc", e500110, 1, (RR), rd),
23793
23794 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23795 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23796 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23797 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23798
23799 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23800 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23801 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23802 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23803
23804 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23805 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23806 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23807 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23808 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23809 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23810 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23811 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23812 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23813 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23814 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23815 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23816
23817 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23818 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23819 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23820 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23821 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23822 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23823 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23824 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23825 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23826 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23827 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23828 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23829
23830 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23831 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23832 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23833 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23834 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23835 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23836 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23837 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23838 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23839 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23840 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23841 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23842
23843 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23844 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23845 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23846 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23847 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23848 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23849 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23850 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23851 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23852 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23853 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23854 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23855
23856 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23857 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23858 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23859 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23860 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23861 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23862 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23863 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23864 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23865 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23866 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23867 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23868
23869 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23870 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23871 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23872 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23873 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23874 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23875 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23876 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23877 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23878 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23879 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23880 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23881
23882 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23883 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23884 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23885 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23886 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23887 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23888 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23889 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23890 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23891 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23892 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23893 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23894
23895 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23896 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23897 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23898 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23899 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23900 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23901 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23902 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23903 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23904 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23905 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23906 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23907
23908 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23909 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23910 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23911 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23912 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23913 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23914 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23915 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23916 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23917 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23918 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23919 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23920
23921 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23922 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23923 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23924 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23925 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23926 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23927 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23928 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23929 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23930 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23931 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23932 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23933
23934 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23935 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23936 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23937 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23938 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23939 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23940 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23941 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23942 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23943 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23944 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23945 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23946
23947 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23948 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23949 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23950 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23951 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23952 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23953 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23954 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23955 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23956 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23957 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23958 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23959
23960 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23961 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23962 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23963 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23964 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23965 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23966 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23967 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23968 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23969 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23970 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23971 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23972
23973 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23974 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23975 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23976 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23977 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23978 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23979 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23980 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23981 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23982 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23983 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23984 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23985
23986 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23987 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23988 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23989 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23990 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23991 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23992 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23993 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23994 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23995 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23996 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23997 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23998
23999 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
24000 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
24001 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
24002 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
24003 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
24004 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
24005 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
24006 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
24007 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
24008 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
24009 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
24010 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
24011
24012 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
24013 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
24014 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
24015 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
24016 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
24017 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24018 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24019 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24020 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
24021 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
24022 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
24023 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
24024
24025 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
24026 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
24027 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
24028 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
24029 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
24030 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24031 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24032 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24033 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
24034 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
24035 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
24036 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
24037
24038 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
24039 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
24040 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
24041 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
24042 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
24043 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24044 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24045 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24046 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
24047 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
24048 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
24049 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
24050
24051 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
24052 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
24053 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
24054 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
24055 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
24056 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24057 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24058 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24059 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
24060 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
24061 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
24062 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
24063
24064 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
24065 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
24066 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
24067 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
24068 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
24069 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24070 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24071 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24072 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
24073 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
24074 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
24075 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
24076
24077 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
24078 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
24079 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
24080 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
24081 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
24082 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24083 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24084 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24085 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
24086 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
24087 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
24088 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
24089
24090 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
24091 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
24092 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
24093 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
24094 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
24095 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24096 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24097 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24098 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
24099 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
24100 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
24101 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
24102
24103 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
24104 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
24105 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
24106 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
24107 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
24108 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24109 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24110 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24111 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
24112 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
24113 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
24114 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
24115
24116 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
24117 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
24118 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
24119 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
24120 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
24121 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24122 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24123 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24124 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
24125 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
24126 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
24127 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
24128
24129 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
24130 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
24131 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
24132 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
24133 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
24134 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24135 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24136 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24137 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
24138 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
24139 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
24140 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
24141
24142 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24143 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24144 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24145 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24146 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24147 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24148 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24149 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24150 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24151 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24152 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24153 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24154
24155 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24156 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24157 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24158 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24159 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24160 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24161 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24162 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24163 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24164 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24165 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24166 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24167
24168 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
24169 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
24170 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
24171 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
24172 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
24173 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
24174 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
24175 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
24176 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
24177 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
24178 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
24179 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
24180
24181 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
24182 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
24183 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
24184 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
24185
24186 cCL("flts", e000110, 2, (RF, RR), rn_rd),
24187 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
24188 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
24189 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
24190 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
24191 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
24192 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
24193 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
24194 cCL("flte", e080110, 2, (RF, RR), rn_rd),
24195 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
24196 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
24197 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 24198
c19d1205
ZW
24199 /* The implementation of the FIX instruction is broken on some
24200 assemblers, in that it accepts a precision specifier as well as a
24201 rounding specifier, despite the fact that this is meaningless.
24202 To be more compatible, we accept it as well, though of course it
24203 does not set any bits. */
21d799b5
NC
24204 cCE("fix", e100110, 2, (RR, RF), rd_rm),
24205 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
24206 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
24207 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
24208 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
24209 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
24210 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
24211 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
24212 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
24213 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
24214 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
24215 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
24216 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 24217
c19d1205 24218 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
24219#undef ARM_VARIANT
24220#define ARM_VARIANT & fpu_fpa_ext_v2
24221
21d799b5
NC
24222 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24223 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24224 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24225 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24226 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
24227 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 24228
c921be7d
NC
24229#undef ARM_VARIANT
24230#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24231
c19d1205 24232 /* Moves and type conversions. */
21d799b5 24233 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
24234 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
24235 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
24236 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24237 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24238 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24239 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24240 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24241 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24242 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24243 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
24244
24245 /* Memory operations. */
21d799b5
NC
24246 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24247 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
24248 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24249 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24250 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24251 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24252 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24253 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24254 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24255 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24256 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24257 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24258 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24259 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24260 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24261 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24262 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24263 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 24264
c19d1205 24265 /* Monadic operations. */
21d799b5
NC
24266 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24267 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24268 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
24269
24270 /* Dyadic operations. */
21d799b5
NC
24271 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24272 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24273 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24274 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24275 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24276 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24277 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24278 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24279 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 24280
c19d1205 24281 /* Comparisons. */
21d799b5
NC
24282 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24283 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24284 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24285 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 24286
62f3b8c8
PB
24287 /* Double precision load/store are still present on single precision
24288 implementations. */
24289 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24290 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
24291 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24292 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24293 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24294 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24295 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24296 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24297 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24298 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 24299
c921be7d
NC
24300#undef ARM_VARIANT
24301#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24302
c19d1205 24303 /* Moves and type conversions. */
21d799b5
NC
24304 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24305 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24306 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24307 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24308 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24309 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24310 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24311 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24312 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24313 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24314 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24315 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 24316
c19d1205 24317 /* Monadic operations. */
21d799b5
NC
24318 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24319 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24320 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
24321
24322 /* Dyadic operations. */
21d799b5
NC
24323 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24324 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24325 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24326 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24327 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24328 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24329 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24330 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24331 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 24332
c19d1205 24333 /* Comparisons. */
21d799b5
NC
24334 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24335 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24336 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24337 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 24338
037e8744
JB
24339/* Instructions which may belong to either the Neon or VFP instruction sets.
24340 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
24341#undef ARM_VARIANT
24342#define ARM_VARIANT & fpu_vfp_ext_v1xd
24343#undef THUMB_VARIANT
24344#define THUMB_VARIANT & fpu_vfp_ext_v1xd
24345
037e8744
JB
24346 /* These mnemonics are unique to VFP. */
24347 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24348 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
24349 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24350 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24351 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
037e8744
JB
24352 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24353 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24354 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24355
24356 /* Mnemonics shared by Neon and VFP. */
21d799b5 24357 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 24358
55881a11
MGD
24359 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24360 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24361 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24362 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24363 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24364 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
037e8744 24365
dd9634d9 24366 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
e3e535bc 24367 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
dd9634d9
AV
24368 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24369 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
f31fef98 24370
037e8744
JB
24371
24372 /* NOTE: All VMOV encoding is special-cased! */
037e8744
JB
24373 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24374
32c36c3c
AV
24375#undef THUMB_VARIANT
24376/* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24377 by different feature bits. Since we are setting the Thumb guard, we can
24378 require Thumb-1 which makes it a nop guard and set the right feature bit in
24379 do_vldr_vstr (). */
24380#define THUMB_VARIANT & arm_ext_v4t
24381 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24382 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24383
9db2f6b4
RL
24384#undef ARM_VARIANT
24385#define ARM_VARIANT & arm_ext_fp16
24386#undef THUMB_VARIANT
24387#define THUMB_VARIANT & arm_ext_fp16
24388 /* New instructions added from v8.2, allowing the extraction and insertion of
24389 the upper 16 bits of a 32-bit vector register. */
24390 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24391 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24392
dec41383
JW
24393 /* New backported fma/fms instructions optional in v8.2. */
24394 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24395 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24396
c921be7d
NC
24397#undef THUMB_VARIANT
24398#define THUMB_VARIANT & fpu_neon_ext_v1
24399#undef ARM_VARIANT
24400#define ARM_VARIANT & fpu_neon_ext_v1
24401
5287ad62
JB
24402 /* Data processing with three registers of the same length. */
24403 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24404 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24405 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
5287ad62 24406 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62 24407 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
5287ad62
JB
24408 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24409 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 24410 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
5287ad62 24411 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7 24412 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
627907b7 24413 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62 24414 /* If not immediate, fall back to neon_dyadic_i64_su.
5150f0d8
AV
24415 shl should accept I8 I16 I32 I64,
24416 qshl should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24417 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl),
24418 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl),
5287ad62 24419 /* Logic ops, types optional & ignored. */
4316f0d2 24420 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24421 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24422 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24423 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
4316f0d2 24424 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
24425 /* Bitfield ops, untyped. */
24426 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24427 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24428 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24429 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24430 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24431 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
cc933301 24432 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
21d799b5 24433 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24434 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
21d799b5 24435 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
24436 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24437 back to neon_dyadic_if_su. */
21d799b5
NC
24438 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24439 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24440 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24441 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24442 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24443 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24444 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24445 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 24446 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
24447 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24448 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 24449 /* As above, D registers only. */
21d799b5
NC
24450 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24451 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 24452 /* Int and float variants, signedness unimportant. */
21d799b5
NC
24453 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24454 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24455 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 24456 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
24457 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24458 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
24459 /* vtst takes sizes 8, 16, 32. */
24460 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24461 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24462 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 24463 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 24464 /* VQD{R}MULH takes S16 S32. */
21d799b5 24465 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
21d799b5 24466 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
24467 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24468 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24469 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24470 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
24471 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24472 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24473 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24474 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
24475 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24476 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24477 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24478 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
d6b4b13e 24479 /* ARM v8.1 extension. */
643afb90
MW
24480 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24481 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24482 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
5287ad62
JB
24483
24484 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 24485 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
24486 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24487
24488 /* Data processing with two registers and a shift amount. */
24489 /* Right shifts, and variants with rounding.
24490 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62 24491 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
5287ad62
JB
24492 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24493 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24494 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24495 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24496 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24497 /* Shift and insert. Sizes accepted 8 16 32 64. */
5287ad62 24498 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
5287ad62
JB
24499 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24500 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
5287ad62
JB
24501 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24502 /* Right shift immediate, saturating & narrowing, with rounding variants.
24503 Types accepted S16 S32 S64 U16 U32 U64. */
24504 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24505 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24506 /* As above, unsigned. Types accepted S16 S32 S64. */
24507 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24508 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24509 /* Right shift narrowing. Types accepted I16 I32 I64. */
24510 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24511 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24512 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 24513 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 24514 /* CVT with optional immediate for fixed-point variant. */
21d799b5 24515 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 24516
4316f0d2 24517 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
24518
24519 /* Data processing, three registers of different lengths. */
24520 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24521 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
5287ad62
JB
24522 /* If not scalar, fall back to neon_dyadic_long.
24523 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
24524 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24525 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
24526 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24527 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24528 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24529 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24530 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24531 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24532 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24533 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24534 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
24535 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24536 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24537 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
24538 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24539 S16 S32 U16 U32. */
21d799b5 24540 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
24541
24542 /* Extract. Size 8. */
3b8d421e
PB
24543 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24544 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
24545
24546 /* Two registers, miscellaneous. */
24547 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
5287ad62 24548 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
5287ad62 24549 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
5287ad62
JB
24550 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24551 /* Vector replicate. Sizes 8 16 32. */
21d799b5 24552 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
24553 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24554 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24555 /* VMOVN. Types I16 I32 I64. */
21d799b5 24556 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 24557 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 24558 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 24559 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 24560 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
24561 /* VZIP / VUZP. Sizes 8 16 32. */
24562 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24563 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24564 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24565 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24566 /* VQABS / VQNEG. Types S8 S16 S32. */
5287ad62 24567 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
5287ad62
JB
24568 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24569 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24570 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24571 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24572 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24573 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
cc933301 24574 /* Reciprocal estimates. Types U32 F16 F32. */
5287ad62
JB
24575 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24576 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24577 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24578 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24579 /* VCLS. Types S8 S16 S32. */
5287ad62
JB
24580 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24581 /* VCLZ. Types I8 I16 I32. */
5287ad62
JB
24582 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24583 /* VCNT. Size 8. */
24584 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24585 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24586 /* Two address, untyped. */
24587 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24588 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24589 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
24590 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24591 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
24592
24593 /* Table lookup. Size 8. */
24594 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24595 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24596
c921be7d
NC
24597#undef THUMB_VARIANT
24598#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24599#undef ARM_VARIANT
24600#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24601
5287ad62 24602 /* Neon element/structure load/store. */
21d799b5
NC
24603 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24604 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24605 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24606 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24607 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24608 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24609 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24610 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 24611
c921be7d 24612#undef THUMB_VARIANT
74db7efb
NC
24613#define THUMB_VARIANT & fpu_vfp_ext_v3xd
24614#undef ARM_VARIANT
24615#define ARM_VARIANT & fpu_vfp_ext_v3xd
62f3b8c8
PB
24616 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24617 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24618 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24619 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24620 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24621 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24622 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24623 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24624 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24625
74db7efb 24626#undef THUMB_VARIANT
c921be7d
NC
24627#define THUMB_VARIANT & fpu_vfp_ext_v3
24628#undef ARM_VARIANT
24629#define ARM_VARIANT & fpu_vfp_ext_v3
24630
21d799b5 24631 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 24632 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24633 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24634 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24635 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24636 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24637 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 24638 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 24639 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 24640
74db7efb
NC
24641#undef ARM_VARIANT
24642#define ARM_VARIANT & fpu_vfp_ext_fma
24643#undef THUMB_VARIANT
24644#define THUMB_VARIANT & fpu_vfp_ext_fma
d58196e0 24645 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
62f3b8c8
PB
24646 VFP FMA variant; NEON and VFP FMA always includes the NEON
24647 FMA instructions. */
d58196e0
AV
24648 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24649 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24650
62f3b8c8
PB
24651 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24652 the v form should always be used. */
24653 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24654 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24655 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24656 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24657 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24658 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24659
5287ad62 24660#undef THUMB_VARIANT
c921be7d
NC
24661#undef ARM_VARIANT
24662#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24663
21d799b5
NC
24664 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24665 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24666 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24667 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24668 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24669 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24670 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24671 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 24672
c921be7d
NC
24673#undef ARM_VARIANT
24674#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24675
21d799b5
NC
24676 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24677 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24678 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24679 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24680 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24681 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24682 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24683 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24684 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
74db7efb
NC
24685 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24686 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24687 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24688 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24689 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24690 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
21d799b5
NC
24691 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24692 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24693 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24694 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24695 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24696 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24697 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24698 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24699 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24700 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24701 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
74db7efb
NC
24702 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24703 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24704 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
21d799b5
NC
24705 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24706 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24707 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24708 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24709 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24710 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24711 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24712 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24713 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24714 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24715 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24716 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24717 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24718 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24719 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24720 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24721 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24722 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
74db7efb
NC
24723 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24724 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24725 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24726 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24727 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24728 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24729 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24730 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24731 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24732 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24733 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24734 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24735 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24736 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24737 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24738 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24739 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24740 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24741 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24742 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24743 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24744 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24745 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24746 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24747 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24748 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24749 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24750 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24751 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24752 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24753 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24754 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24755 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24756 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24757 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24758 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24759 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24760 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24761 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24762 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24763 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24764 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24765 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24766 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24767 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24768 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24769 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
74db7efb
NC
24770 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24771 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24772 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24773 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24774 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24775 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
21d799b5
NC
24776 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24777 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24778 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24779 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24780 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24781 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24782 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24783 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24784 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24785 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24786 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24787 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24788 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24789 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24790 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24791 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24792 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24793 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24794 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24795 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24796 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24797 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24798 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24799 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24800 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24801 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24802 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24803 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24804 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24805 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24806 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24807 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24808 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24809 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24810 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24811 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24812 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24813 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24814 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24815 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24816 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24817 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24818 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24819 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24820 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24821 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24822 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24823 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24824 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24825 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24826 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24827 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24828 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24829 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24830 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24831 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24832 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24833 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24834 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24835 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24836 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24837 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 24838
c921be7d
NC
24839#undef ARM_VARIANT
24840#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24841
21d799b5
NC
24842 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24843 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24844 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24845 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24846 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24847 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24848 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24849 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24850 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24851 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24852 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24853 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24854 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24855 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24856 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24857 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24858 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24859 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24860 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24861 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24862 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24863 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24864 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24865 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24866 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24867 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24868 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24869 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24870 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24871 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24872 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24873 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24874 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24875 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24876 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24877 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24878 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24879 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24880 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24881 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24882 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24883 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24884 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24885 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24886 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24887 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24888 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24889 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24890 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24891 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24892 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24893 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24894 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24895 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24896 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24897 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24898 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 24899
c921be7d
NC
24900#undef ARM_VARIANT
24901#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24902
21d799b5
NC
24903 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24904 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24905 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24906 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24907 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24908 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24909 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24910 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24911 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24912 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24913 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24914 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24915 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24916 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
74db7efb
NC
24917 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24918 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24919 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24920 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24921 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24922 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24923 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24924 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24925 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24926 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
21d799b5
NC
24927 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24928 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24929 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24930 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
74db7efb
NC
24931 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24932 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
21d799b5
NC
24933 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24934 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24935 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24936 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
74db7efb
NC
24937 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24938 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24939 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24940 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24941 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24942 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
21d799b5
NC
24943 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24944 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
74db7efb
NC
24945 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24946 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
21d799b5
NC
24947 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24948 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24949 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24950 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24951 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24952 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24953 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24954 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24955 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24956 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24957 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24958 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24959 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24960 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24961 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24962 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24963 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24964 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24965 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24966 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24967 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24968 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24969 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24970 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24971 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24972 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24973 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24974 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
74db7efb
NC
24975 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24976 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
21d799b5
NC
24977 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24978 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
4ed7ed8d 24979
7fadb25d
SD
24980 /* ARMv8.5-A instructions. */
24981#undef ARM_VARIANT
24982#define ARM_VARIANT & arm_ext_sb
24983#undef THUMB_VARIANT
24984#define THUMB_VARIANT & arm_ext_sb
24985 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24986
dad0c3bf
SD
24987#undef ARM_VARIANT
24988#define ARM_VARIANT & arm_ext_predres
24989#undef THUMB_VARIANT
24990#define THUMB_VARIANT & arm_ext_predres
24991 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24992 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24993 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24994
16a1fa25 24995 /* ARMv8-M instructions. */
4ed7ed8d
TP
24996#undef ARM_VARIANT
24997#define ARM_VARIANT NULL
24998#undef THUMB_VARIANT
24999#define THUMB_VARIANT & arm_ext_v8m
cf3cf39d
TP
25000 ToU("sg", e97fe97f, 0, (), noargs),
25001 ToC("blxns", 4784, 1, (RRnpc), t_blx),
25002 ToC("bxns", 4704, 1, (RRnpc), t_bx),
25003 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
25004 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
25005 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
25006 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
16a1fa25
TP
25007
25008 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
25009 instructions behave as nop if no VFP is present. */
25010#undef THUMB_VARIANT
25011#define THUMB_VARIANT & arm_ext_v8m_main
cf3cf39d
TP
25012 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
25013 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
4389b29a
AV
25014
25015 /* Armv8.1-M Mainline instructions. */
25016#undef THUMB_VARIANT
25017#define THUMB_VARIANT & arm_ext_v8_1m_main
25018 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
f6b2b12d 25019 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
f1c7f421 25020 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
65d1bc05 25021 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
f1c7f421 25022 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
60f993ce
AV
25023
25024 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
25025 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
25026 toU("le", _le, 2, (oLR, EXP), t_loloop),
4b5a202f 25027
efd6b359 25028 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
5ee91343
AV
25029 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
25030
25031#undef THUMB_VARIANT
25032#define THUMB_VARIANT & mve_ext
1b883319
AV
25033
25034 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25035 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25036 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25037 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25038 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25039 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25040 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25041 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25042 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25043 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25044 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25045 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25046 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25047 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25048 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
25049
5ee91343
AV
25050 ToC("vpst", fe710f4d, 0, (), mve_vpt),
25051 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
25052 ToC("vpste", fe718f4d, 0, (), mve_vpt),
25053 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
25054 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
25055 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
25056 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
25057 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
25058 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
25059 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
25060 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
25061 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
25062 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
25063 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
25064 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
25065
a302e574 25066 /* MVE and MVE FP only. */
7df54120 25067 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
c2dafc2a
AV
25068 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
25069 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
25070 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
25071 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
886e1c73 25072 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
a302e574
AV
25073 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
25074 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25075 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25076 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25077 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25078 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25079 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25080 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
25081 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
25082 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
25083 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
25084
35c228db
AV
25085 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25086 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25087 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25088 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25089 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25090 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25091 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25092 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
25093 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25094 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25095 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
25096 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
f5f10c66
AV
25097 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25098 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25099 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25100 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25101 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25102 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25103 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
25104 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
35c228db 25105
57785aa2
AV
25106 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
25107 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
c2dafc2a 25108 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
26c1e780
AV
25109 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
25110 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
25111 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
25112 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
b409bdb6
AV
25113 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
25114 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
25115 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
25116 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
935295b5
AV
25117 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
25118 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
13ccd4c0
AV
25119 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
25120 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
25121 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
25122 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
57785aa2 25123
93925576
AV
25124 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25125 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25126 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25127 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25128 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25129 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25130 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25131 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25132 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25133 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
25134 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25135 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25136 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25137 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25138 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25139 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25140 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25141 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25142 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25143 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
25144
2d78f95b
AV
25145 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
25146 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
25147 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
3063888e
AV
25148 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
25149 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
2d78f95b 25150
8b8b22a4
AV
25151 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25152 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25153 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25154 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25155 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25156 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25157 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
25158 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
42b16635
AV
25159 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25160 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
25161 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
35d1cfc2
AV
25162 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
25163 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
1be7aba3
AV
25164 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
25165 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
25166 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
25167 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
8b8b22a4 25168
4aa88b50
AV
25169 mCEF(vshrnt, _vshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25170 mCEF(vshrnb, _vshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25171 mCEF(vrshrnt, _vrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25172 mCEF(vrshrnb, _vrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25173 mCEF(vqshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25174 mCEF(vqshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25175 mCEF(vqshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25176 mCEF(vqshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25177 mCEF(vqrshrnt, _vqrshrnt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25178 mCEF(vqrshrnb, _vqrshrnb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25179 mCEF(vqrshrunt, _vqrshrunt, 3, (RMQ, RMQ, I32z), mve_vshrn),
25180 mCEF(vqrshrunb, _vqrshrunb, 3, (RMQ, RMQ, I32z), mve_vshrn),
25181
5d281bf0
AV
25182#undef THUMB_VARIANT
25183#define THUMB_VARIANT & mve_fp_ext
25184 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
f30ee27c 25185 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
935295b5
AV
25186 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
25187 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
8cd78170
AV
25188 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
25189 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
25190 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
25191 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
5d281bf0 25192
5ee91343 25193#undef ARM_VARIANT
57785aa2 25194#define ARM_VARIANT & fpu_vfp_ext_v1
5ee91343
AV
25195#undef THUMB_VARIANT
25196#define THUMB_VARIANT & arm_ext_v6t2
a8465a06
AV
25197 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
25198 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
5ee91343 25199
57785aa2
AV
25200 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
25201
25202#undef ARM_VARIANT
25203#define ARM_VARIANT & fpu_vfp_ext_v1xd
25204
25205 MNCE(vmov, 0, 1, (VMOV), neon_mov),
25206 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
25207 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
25208 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
25209
886e1c73
AV
25210 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
25211 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
25212 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
5ee91343 25213
485dee97
AV
25214 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25215 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
25216
57785aa2
AV
25217 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
25218 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
25219
1b883319
AV
25220 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25221 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
25222
57785aa2
AV
25223#undef ARM_VARIANT
25224#define ARM_VARIANT & fpu_vfp_ext_v2
25225
25226 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
25227 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
25228 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
25229 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
25230
dd9634d9
AV
25231#undef ARM_VARIANT
25232#define ARM_VARIANT & fpu_vfp_ext_armv8xd
25233 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25234 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25235 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25236 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
935295b5
AV
25237 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25238 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
dd9634d9
AV
25239
25240#undef ARM_VARIANT
5ee91343 25241#define ARM_VARIANT & fpu_neon_ext_v1
f601a00c 25242 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
5ee91343
AV
25243 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25244 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25245 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
f601a00c
AV
25246 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25247 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25248 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25249 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25250 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
f30ee27c
AV
25251 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25252 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
b409bdb6 25253 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
7df54120
AV
25254 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25255 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25256 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
935295b5
AV
25257 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25258 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
a8465a06
AV
25259 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25260 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
1a186d29
AV
25261 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25262 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25263 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
42b16635
AV
25264 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25265 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25266 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
1be7aba3
AV
25267 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25268 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
4401c241
AV
25269 MNUF(vshr, 0800010, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25270 MNUF(vrshr, 0800210, 3, (RNDQMQ, oRNDQMQ, I64z), neon_rshift_round_imm),
25271 MNUF(vsli, 1800510, 3, (RNDQMQ, oRNDQMQ, I63), neon_sli),
25272 MNUF(vsri, 1800410, 3, (RNDQMQ, oRNDQMQ, I64z), neon_sri),
25273 MNUF(vrev64, 1b00000, 2, (RNDQMQ, RNDQMQ), neon_rev),
25274 MNUF(vrev32, 1b00080, 2, (RNDQMQ, RNDQMQ), neon_rev),
25275 MNUF(vrev16, 1b00100, 2, (RNDQMQ, RNDQMQ), neon_rev),
5150f0d8
AV
25276 mnUF(vshl, _vshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_shl),
25277 mnUF(vqshl, _vqshl, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_I63b_RR), neon_qshl),
25278 MNUF(vqshlu, 1800610, 3, (RNDQMQ, oRNDQMQ, I63), neon_qshlu_imm),
5d281bf0
AV
25279
25280#undef ARM_VARIANT
25281#define ARM_VARIANT & arm_ext_v8_3
25282#undef THUMB_VARIANT
25283#define THUMB_VARIANT & arm_ext_v6t2_v8m
25284 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25285 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
c19d1205
ZW
25286};
25287#undef ARM_VARIANT
25288#undef THUMB_VARIANT
25289#undef TCE
c19d1205
ZW
25290#undef TUE
25291#undef TUF
25292#undef TCC
8f06b2d8 25293#undef cCE
e3cb604e
PB
25294#undef cCL
25295#undef C3E
4389b29a 25296#undef C3
c19d1205
ZW
25297#undef CE
25298#undef CM
4389b29a 25299#undef CL
c19d1205
ZW
25300#undef UE
25301#undef UF
25302#undef UT
5287ad62
JB
25303#undef NUF
25304#undef nUF
25305#undef NCE
25306#undef nCE
c19d1205
ZW
25307#undef OPS0
25308#undef OPS1
25309#undef OPS2
25310#undef OPS3
25311#undef OPS4
25312#undef OPS5
25313#undef OPS6
25314#undef do_0
4389b29a
AV
25315#undef ToC
25316#undef toC
25317#undef ToU
f6b2b12d 25318#undef toU
c19d1205
ZW
25319\f
25320/* MD interface: bits in the object file. */
bfae80f2 25321
c19d1205
ZW
25322/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25323 for use in the a.out file, and stores them in the array pointed to by buf.
25324 This knows about the endian-ness of the target machine and does
25325 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25326 2 (short) and 4 (long) Floating numbers are put out as a series of
25327 LITTLENUMS (shorts, here at least). */
b99bd4ef 25328
c19d1205
ZW
25329void
25330md_number_to_chars (char * buf, valueT val, int n)
25331{
25332 if (target_big_endian)
25333 number_to_chars_bigendian (buf, val, n);
25334 else
25335 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
25336}
25337
c19d1205
ZW
25338static valueT
25339md_chars_to_number (char * buf, int n)
bfae80f2 25340{
c19d1205
ZW
25341 valueT result = 0;
25342 unsigned char * where = (unsigned char *) buf;
bfae80f2 25343
c19d1205 25344 if (target_big_endian)
b99bd4ef 25345 {
c19d1205
ZW
25346 while (n--)
25347 {
25348 result <<= 8;
25349 result |= (*where++ & 255);
25350 }
b99bd4ef 25351 }
c19d1205 25352 else
b99bd4ef 25353 {
c19d1205
ZW
25354 while (n--)
25355 {
25356 result <<= 8;
25357 result |= (where[n] & 255);
25358 }
bfae80f2 25359 }
b99bd4ef 25360
c19d1205 25361 return result;
bfae80f2 25362}
b99bd4ef 25363
c19d1205 25364/* MD interface: Sections. */
b99bd4ef 25365
fa94de6b
RM
25366/* Calculate the maximum variable size (i.e., excluding fr_fix)
25367 that an rs_machine_dependent frag may reach. */
25368
25369unsigned int
25370arm_frag_max_var (fragS *fragp)
25371{
25372 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25373 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25374
25375 Note that we generate relaxable instructions even for cases that don't
25376 really need it, like an immediate that's a trivial constant. So we're
25377 overestimating the instruction size for some of those cases. Rather
25378 than putting more intelligence here, it would probably be better to
25379 avoid generating a relaxation frag in the first place when it can be
25380 determined up front that a short instruction will suffice. */
25381
25382 gas_assert (fragp->fr_type == rs_machine_dependent);
25383 return INSN_SIZE;
25384}
25385
0110f2b8
PB
25386/* Estimate the size of a frag before relaxing. Assume everything fits in
25387 2 bytes. */
25388
c19d1205 25389int
0110f2b8 25390md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
25391 segT segtype ATTRIBUTE_UNUSED)
25392{
0110f2b8
PB
25393 fragp->fr_var = 2;
25394 return 2;
25395}
25396
25397/* Convert a machine dependent frag. */
25398
25399void
25400md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25401{
25402 unsigned long insn;
25403 unsigned long old_op;
25404 char *buf;
25405 expressionS exp;
25406 fixS *fixp;
25407 int reloc_type;
25408 int pc_rel;
25409 int opcode;
25410
25411 buf = fragp->fr_literal + fragp->fr_fix;
25412
25413 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
25414 if (fragp->fr_symbol)
25415 {
0110f2b8
PB
25416 exp.X_op = O_symbol;
25417 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
25418 }
25419 else
25420 {
0110f2b8 25421 exp.X_op = O_constant;
5f4273c7 25422 }
0110f2b8
PB
25423 exp.X_add_number = fragp->fr_offset;
25424 opcode = fragp->fr_subtype;
25425 switch (opcode)
25426 {
25427 case T_MNEM_ldr_pc:
25428 case T_MNEM_ldr_pc2:
25429 case T_MNEM_ldr_sp:
25430 case T_MNEM_str_sp:
25431 case T_MNEM_ldr:
25432 case T_MNEM_ldrb:
25433 case T_MNEM_ldrh:
25434 case T_MNEM_str:
25435 case T_MNEM_strb:
25436 case T_MNEM_strh:
25437 if (fragp->fr_var == 4)
25438 {
5f4273c7 25439 insn = THUMB_OP32 (opcode);
0110f2b8
PB
25440 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25441 {
25442 insn |= (old_op & 0x700) << 4;
25443 }
25444 else
25445 {
25446 insn |= (old_op & 7) << 12;
25447 insn |= (old_op & 0x38) << 13;
25448 }
25449 insn |= 0x00000c00;
25450 put_thumb32_insn (buf, insn);
25451 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25452 }
25453 else
25454 {
25455 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25456 }
25457 pc_rel = (opcode == T_MNEM_ldr_pc2);
25458 break;
25459 case T_MNEM_adr:
25460 if (fragp->fr_var == 4)
25461 {
25462 insn = THUMB_OP32 (opcode);
25463 insn |= (old_op & 0xf0) << 4;
25464 put_thumb32_insn (buf, insn);
25465 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25466 }
25467 else
25468 {
25469 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25470 exp.X_add_number -= 4;
25471 }
25472 pc_rel = 1;
25473 break;
25474 case T_MNEM_mov:
25475 case T_MNEM_movs:
25476 case T_MNEM_cmp:
25477 case T_MNEM_cmn:
25478 if (fragp->fr_var == 4)
25479 {
25480 int r0off = (opcode == T_MNEM_mov
25481 || opcode == T_MNEM_movs) ? 0 : 8;
25482 insn = THUMB_OP32 (opcode);
25483 insn = (insn & 0xe1ffffff) | 0x10000000;
25484 insn |= (old_op & 0x700) << r0off;
25485 put_thumb32_insn (buf, insn);
25486 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25487 }
25488 else
25489 {
25490 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25491 }
25492 pc_rel = 0;
25493 break;
25494 case T_MNEM_b:
25495 if (fragp->fr_var == 4)
25496 {
25497 insn = THUMB_OP32(opcode);
25498 put_thumb32_insn (buf, insn);
25499 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25500 }
25501 else
25502 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25503 pc_rel = 1;
25504 break;
25505 case T_MNEM_bcond:
25506 if (fragp->fr_var == 4)
25507 {
25508 insn = THUMB_OP32(opcode);
25509 insn |= (old_op & 0xf00) << 14;
25510 put_thumb32_insn (buf, insn);
25511 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25512 }
25513 else
25514 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25515 pc_rel = 1;
25516 break;
25517 case T_MNEM_add_sp:
25518 case T_MNEM_add_pc:
25519 case T_MNEM_inc_sp:
25520 case T_MNEM_dec_sp:
25521 if (fragp->fr_var == 4)
25522 {
25523 /* ??? Choose between add and addw. */
25524 insn = THUMB_OP32 (opcode);
25525 insn |= (old_op & 0xf0) << 4;
25526 put_thumb32_insn (buf, insn);
16805f35
PB
25527 if (opcode == T_MNEM_add_pc)
25528 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25529 else
25530 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
25531 }
25532 else
25533 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25534 pc_rel = 0;
25535 break;
25536
25537 case T_MNEM_addi:
25538 case T_MNEM_addis:
25539 case T_MNEM_subi:
25540 case T_MNEM_subis:
25541 if (fragp->fr_var == 4)
25542 {
25543 insn = THUMB_OP32 (opcode);
25544 insn |= (old_op & 0xf0) << 4;
25545 insn |= (old_op & 0xf) << 16;
25546 put_thumb32_insn (buf, insn);
16805f35
PB
25547 if (insn & (1 << 20))
25548 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25549 else
25550 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
25551 }
25552 else
25553 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25554 pc_rel = 0;
25555 break;
25556 default:
5f4273c7 25557 abort ();
0110f2b8
PB
25558 }
25559 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 25560 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
25561 fixp->fx_file = fragp->fr_file;
25562 fixp->fx_line = fragp->fr_line;
25563 fragp->fr_fix += fragp->fr_var;
3cfdb781
TG
25564
25565 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25566 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25567 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25568 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
0110f2b8
PB
25569}
25570
25571/* Return the size of a relaxable immediate operand instruction.
25572 SHIFT and SIZE specify the form of the allowable immediate. */
25573static int
25574relax_immediate (fragS *fragp, int size, int shift)
25575{
25576 offsetT offset;
25577 offsetT mask;
25578 offsetT low;
25579
25580 /* ??? Should be able to do better than this. */
25581 if (fragp->fr_symbol)
25582 return 4;
25583
25584 low = (1 << shift) - 1;
25585 mask = (1 << (shift + size)) - (1 << shift);
25586 offset = fragp->fr_offset;
25587 /* Force misaligned offsets to 32-bit variant. */
25588 if (offset & low)
5e77afaa 25589 return 4;
0110f2b8
PB
25590 if (offset & ~mask)
25591 return 4;
25592 return 2;
25593}
25594
5e77afaa
PB
25595/* Get the address of a symbol during relaxation. */
25596static addressT
5f4273c7 25597relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
25598{
25599 fragS *sym_frag;
25600 addressT addr;
25601 symbolS *sym;
25602
25603 sym = fragp->fr_symbol;
25604 sym_frag = symbol_get_frag (sym);
25605 know (S_GET_SEGMENT (sym) != absolute_section
25606 || sym_frag == &zero_address_frag);
25607 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25608
25609 /* If frag has yet to be reached on this pass, assume it will
25610 move by STRETCH just as we did. If this is not so, it will
25611 be because some frag between grows, and that will force
25612 another pass. */
25613
25614 if (stretch != 0
25615 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
25616 {
25617 fragS *f;
25618
25619 /* Adjust stretch for any alignment frag. Note that if have
25620 been expanding the earlier code, the symbol may be
25621 defined in what appears to be an earlier frag. FIXME:
25622 This doesn't handle the fr_subtype field, which specifies
25623 a maximum number of bytes to skip when doing an
25624 alignment. */
25625 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25626 {
25627 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25628 {
25629 if (stretch < 0)
25630 stretch = - ((- stretch)
25631 & ~ ((1 << (int) f->fr_offset) - 1));
25632 else
25633 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25634 if (stretch == 0)
25635 break;
25636 }
25637 }
25638 if (f != NULL)
25639 addr += stretch;
25640 }
5e77afaa
PB
25641
25642 return addr;
25643}
25644
0110f2b8
PB
25645/* Return the size of a relaxable adr pseudo-instruction or PC-relative
25646 load. */
25647static int
5e77afaa 25648relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
25649{
25650 addressT addr;
25651 offsetT val;
25652
25653 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
25654 if (fragp->fr_symbol == NULL
25655 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25656 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25657 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25658 return 4;
25659
5f4273c7 25660 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25661 addr = fragp->fr_address + fragp->fr_fix;
25662 addr = (addr + 4) & ~3;
5e77afaa 25663 /* Force misaligned targets to 32-bit variant. */
0110f2b8 25664 if (val & 3)
5e77afaa 25665 return 4;
0110f2b8
PB
25666 val -= addr;
25667 if (val < 0 || val > 1020)
25668 return 4;
25669 return 2;
25670}
25671
25672/* Return the size of a relaxable add/sub immediate instruction. */
25673static int
25674relax_addsub (fragS *fragp, asection *sec)
25675{
25676 char *buf;
25677 int op;
25678
25679 buf = fragp->fr_literal + fragp->fr_fix;
25680 op = bfd_get_16(sec->owner, buf);
25681 if ((op & 0xf) == ((op >> 4) & 0xf))
25682 return relax_immediate (fragp, 8, 0);
25683 else
25684 return relax_immediate (fragp, 3, 0);
25685}
25686
e83a675f
RE
25687/* Return TRUE iff the definition of symbol S could be pre-empted
25688 (overridden) at link or load time. */
25689static bfd_boolean
25690symbol_preemptible (symbolS *s)
25691{
25692 /* Weak symbols can always be pre-empted. */
25693 if (S_IS_WEAK (s))
25694 return TRUE;
25695
25696 /* Non-global symbols cannot be pre-empted. */
25697 if (! S_IS_EXTERNAL (s))
25698 return FALSE;
25699
25700#ifdef OBJ_ELF
25701 /* In ELF, a global symbol can be marked protected, or private. In that
25702 case it can't be pre-empted (other definitions in the same link unit
25703 would violate the ODR). */
25704 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25705 return FALSE;
25706#endif
25707
25708 /* Other global symbols might be pre-empted. */
25709 return TRUE;
25710}
0110f2b8
PB
25711
25712/* Return the size of a relaxable branch instruction. BITS is the
25713 size of the offset field in the narrow instruction. */
25714
25715static int
5e77afaa 25716relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
25717{
25718 addressT addr;
25719 offsetT val;
25720 offsetT limit;
25721
25722 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 25723 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
25724 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25725 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
25726 return 4;
25727
267bf995 25728#ifdef OBJ_ELF
e83a675f 25729 /* A branch to a function in ARM state will require interworking. */
267bf995
RR
25730 if (S_IS_DEFINED (fragp->fr_symbol)
25731 && ARM_IS_FUNC (fragp->fr_symbol))
25732 return 4;
e83a675f 25733#endif
0d9b4b55 25734
e83a675f 25735 if (symbol_preemptible (fragp->fr_symbol))
0d9b4b55 25736 return 4;
267bf995 25737
5f4273c7 25738 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
25739 addr = fragp->fr_address + fragp->fr_fix + 4;
25740 val -= addr;
25741
25742 /* Offset is a signed value *2 */
25743 limit = 1 << bits;
25744 if (val >= limit || val < -limit)
25745 return 4;
25746 return 2;
25747}
25748
25749
25750/* Relax a machine dependent frag. This returns the amount by which
25751 the current size of the frag should change. */
25752
25753int
5e77afaa 25754arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
25755{
25756 int oldsize;
25757 int newsize;
25758
25759 oldsize = fragp->fr_var;
25760 switch (fragp->fr_subtype)
25761 {
25762 case T_MNEM_ldr_pc2:
5f4273c7 25763 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25764 break;
25765 case T_MNEM_ldr_pc:
25766 case T_MNEM_ldr_sp:
25767 case T_MNEM_str_sp:
5f4273c7 25768 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
25769 break;
25770 case T_MNEM_ldr:
25771 case T_MNEM_str:
5f4273c7 25772 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
25773 break;
25774 case T_MNEM_ldrh:
25775 case T_MNEM_strh:
5f4273c7 25776 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
25777 break;
25778 case T_MNEM_ldrb:
25779 case T_MNEM_strb:
5f4273c7 25780 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
25781 break;
25782 case T_MNEM_adr:
5f4273c7 25783 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
25784 break;
25785 case T_MNEM_mov:
25786 case T_MNEM_movs:
25787 case T_MNEM_cmp:
25788 case T_MNEM_cmn:
5f4273c7 25789 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
25790 break;
25791 case T_MNEM_b:
5f4273c7 25792 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
25793 break;
25794 case T_MNEM_bcond:
5f4273c7 25795 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
25796 break;
25797 case T_MNEM_add_sp:
25798 case T_MNEM_add_pc:
25799 newsize = relax_immediate (fragp, 8, 2);
25800 break;
25801 case T_MNEM_inc_sp:
25802 case T_MNEM_dec_sp:
25803 newsize = relax_immediate (fragp, 7, 2);
25804 break;
25805 case T_MNEM_addi:
25806 case T_MNEM_addis:
25807 case T_MNEM_subi:
25808 case T_MNEM_subis:
25809 newsize = relax_addsub (fragp, sec);
25810 break;
25811 default:
5f4273c7 25812 abort ();
0110f2b8 25813 }
5e77afaa
PB
25814
25815 fragp->fr_var = newsize;
25816 /* Freeze wide instructions that are at or before the same location as
25817 in the previous pass. This avoids infinite loops.
5f4273c7
NC
25818 Don't freeze them unconditionally because targets may be artificially
25819 misaligned by the expansion of preceding frags. */
5e77afaa 25820 if (stretch <= 0 && newsize > 2)
0110f2b8 25821 {
0110f2b8 25822 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 25823 frag_wane (fragp);
0110f2b8 25824 }
5e77afaa 25825
0110f2b8 25826 return newsize - oldsize;
c19d1205 25827}
b99bd4ef 25828
c19d1205 25829/* Round up a section size to the appropriate boundary. */
b99bd4ef 25830
c19d1205
ZW
25831valueT
25832md_section_align (segT segment ATTRIBUTE_UNUSED,
25833 valueT size)
25834{
6844c0cc 25835 return size;
bfae80f2 25836}
b99bd4ef 25837
c19d1205
ZW
25838/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25839 of an rs_align_code fragment. */
25840
25841void
25842arm_handle_align (fragS * fragP)
bfae80f2 25843{
d9235011 25844 static unsigned char const arm_noop[2][2][4] =
e7495e45
NS
25845 {
25846 { /* ARMv1 */
25847 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25848 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25849 },
25850 { /* ARMv6k */
25851 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25852 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25853 },
25854 };
d9235011 25855 static unsigned char const thumb_noop[2][2][2] =
e7495e45
NS
25856 {
25857 { /* Thumb-1 */
25858 {0xc0, 0x46}, /* LE */
25859 {0x46, 0xc0}, /* BE */
25860 },
25861 { /* Thumb-2 */
25862 {0x00, 0xbf}, /* LE */
25863 {0xbf, 0x00} /* BE */
25864 }
25865 };
d9235011 25866 static unsigned char const wide_thumb_noop[2][4] =
e7495e45
NS
25867 { /* Wide Thumb-2 */
25868 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25869 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25870 };
c921be7d 25871
e7495e45 25872 unsigned bytes, fix, noop_size;
c19d1205 25873 char * p;
d9235011
TS
25874 const unsigned char * noop;
25875 const unsigned char *narrow_noop = NULL;
cd000bff
DJ
25876#ifdef OBJ_ELF
25877 enum mstate state;
25878#endif
bfae80f2 25879
c19d1205 25880 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
25881 return;
25882
c19d1205
ZW
25883 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25884 p = fragP->fr_literal + fragP->fr_fix;
25885 fix = 0;
bfae80f2 25886
c19d1205
ZW
25887 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25888 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 25889
cd000bff 25890 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 25891
cd000bff 25892 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 25893 {
7f78eb34
JW
25894 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25895 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
e7495e45
NS
25896 {
25897 narrow_noop = thumb_noop[1][target_big_endian];
25898 noop = wide_thumb_noop[target_big_endian];
25899 }
c19d1205 25900 else
e7495e45
NS
25901 noop = thumb_noop[0][target_big_endian];
25902 noop_size = 2;
cd000bff
DJ
25903#ifdef OBJ_ELF
25904 state = MAP_THUMB;
25905#endif
7ed4c4c5
NC
25906 }
25907 else
25908 {
7f78eb34
JW
25909 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25910 ? selected_cpu : arm_arch_none,
25911 arm_ext_v6k) != 0]
e7495e45
NS
25912 [target_big_endian];
25913 noop_size = 4;
cd000bff
DJ
25914#ifdef OBJ_ELF
25915 state = MAP_ARM;
25916#endif
7ed4c4c5 25917 }
c921be7d 25918
e7495e45 25919 fragP->fr_var = noop_size;
c921be7d 25920
c19d1205 25921 if (bytes & (noop_size - 1))
7ed4c4c5 25922 {
c19d1205 25923 fix = bytes & (noop_size - 1);
cd000bff
DJ
25924#ifdef OBJ_ELF
25925 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25926#endif
c19d1205
ZW
25927 memset (p, 0, fix);
25928 p += fix;
25929 bytes -= fix;
a737bd4d 25930 }
a737bd4d 25931
e7495e45
NS
25932 if (narrow_noop)
25933 {
25934 if (bytes & noop_size)
25935 {
25936 /* Insert a narrow noop. */
25937 memcpy (p, narrow_noop, noop_size);
25938 p += noop_size;
25939 bytes -= noop_size;
25940 fix += noop_size;
25941 }
25942
25943 /* Use wide noops for the remainder */
25944 noop_size = 4;
25945 }
25946
c19d1205 25947 while (bytes >= noop_size)
a737bd4d 25948 {
c19d1205
ZW
25949 memcpy (p, noop, noop_size);
25950 p += noop_size;
25951 bytes -= noop_size;
25952 fix += noop_size;
a737bd4d
NC
25953 }
25954
c19d1205 25955 fragP->fr_fix += fix;
a737bd4d
NC
25956}
25957
c19d1205
ZW
25958/* Called from md_do_align. Used to create an alignment
25959 frag in a code section. */
25960
25961void
25962arm_frag_align_code (int n, int max)
bfae80f2 25963{
c19d1205 25964 char * p;
7ed4c4c5 25965
c19d1205 25966 /* We assume that there will never be a requirement
6ec8e702 25967 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 25968 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
25969 {
25970 char err_msg[128];
25971
fa94de6b 25972 sprintf (err_msg,
477330fc
RM
25973 _("alignments greater than %d bytes not supported in .text sections."),
25974 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 25975 as_fatal ("%s", err_msg);
6ec8e702 25976 }
bfae80f2 25977
c19d1205
ZW
25978 p = frag_var (rs_align_code,
25979 MAX_MEM_FOR_RS_ALIGN_CODE,
25980 1,
25981 (relax_substateT) max,
25982 (symbolS *) NULL,
25983 (offsetT) n,
25984 (char *) NULL);
25985 *p = 0;
25986}
bfae80f2 25987
8dc2430f
NC
25988/* Perform target specific initialisation of a frag.
25989 Note - despite the name this initialisation is not done when the frag
25990 is created, but only when its type is assigned. A frag can be created
25991 and used a long time before its type is set, so beware of assuming that
33eaf5de 25992 this initialisation is performed first. */
bfae80f2 25993
cd000bff
DJ
25994#ifndef OBJ_ELF
25995void
25996arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25997{
25998 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 25999 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
26000}
26001
26002#else /* OBJ_ELF is defined. */
c19d1205 26003void
cd000bff 26004arm_init_frag (fragS * fragP, int max_chars)
c19d1205 26005{
e8d84ca1 26006 bfd_boolean frag_thumb_mode;
b968d18a 26007
8dc2430f
NC
26008 /* If the current ARM vs THUMB mode has not already
26009 been recorded into this frag then do so now. */
cd000bff 26010 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
b968d18a
JW
26011 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
26012
e8d84ca1
NC
26013 /* PR 21809: Do not set a mapping state for debug sections
26014 - it just confuses other tools. */
26015 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
26016 return;
26017
b968d18a 26018 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
cd000bff 26019
f9c1b181
RL
26020 /* Record a mapping symbol for alignment frags. We will delete this
26021 later if the alignment ends up empty. */
26022 switch (fragP->fr_type)
26023 {
26024 case rs_align:
26025 case rs_align_test:
26026 case rs_fill:
26027 mapping_state_2 (MAP_DATA, max_chars);
26028 break;
26029 case rs_align_code:
b968d18a 26030 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
f9c1b181
RL
26031 break;
26032 default:
26033 break;
cd000bff 26034 }
bfae80f2
RE
26035}
26036
c19d1205
ZW
26037/* When we change sections we need to issue a new mapping symbol. */
26038
26039void
26040arm_elf_change_section (void)
bfae80f2 26041{
c19d1205
ZW
26042 /* Link an unlinked unwind index table section to the .text section. */
26043 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
26044 && elf_linked_to_section (now_seg) == NULL)
26045 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
26046}
26047
c19d1205
ZW
26048int
26049arm_elf_section_type (const char * str, size_t len)
e45d0630 26050{
c19d1205
ZW
26051 if (len == 5 && strncmp (str, "exidx", 5) == 0)
26052 return SHT_ARM_EXIDX;
e45d0630 26053
c19d1205
ZW
26054 return -1;
26055}
26056\f
26057/* Code to deal with unwinding tables. */
e45d0630 26058
c19d1205 26059static void add_unwind_adjustsp (offsetT);
e45d0630 26060
5f4273c7 26061/* Generate any deferred unwind frame offset. */
e45d0630 26062
bfae80f2 26063static void
c19d1205 26064flush_pending_unwind (void)
bfae80f2 26065{
c19d1205 26066 offsetT offset;
bfae80f2 26067
c19d1205
ZW
26068 offset = unwind.pending_offset;
26069 unwind.pending_offset = 0;
26070 if (offset != 0)
26071 add_unwind_adjustsp (offset);
bfae80f2
RE
26072}
26073
c19d1205
ZW
26074/* Add an opcode to this list for this function. Two-byte opcodes should
26075 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
26076 order. */
26077
bfae80f2 26078static void
c19d1205 26079add_unwind_opcode (valueT op, int length)
bfae80f2 26080{
c19d1205
ZW
26081 /* Add any deferred stack adjustment. */
26082 if (unwind.pending_offset)
26083 flush_pending_unwind ();
bfae80f2 26084
c19d1205 26085 unwind.sp_restored = 0;
bfae80f2 26086
c19d1205 26087 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 26088 {
c19d1205
ZW
26089 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
26090 if (unwind.opcodes)
325801bd
TS
26091 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
26092 unwind.opcode_alloc);
c19d1205 26093 else
325801bd 26094 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
bfae80f2 26095 }
c19d1205 26096 while (length > 0)
bfae80f2 26097 {
c19d1205
ZW
26098 length--;
26099 unwind.opcodes[unwind.opcode_count] = op & 0xff;
26100 op >>= 8;
26101 unwind.opcode_count++;
bfae80f2 26102 }
bfae80f2
RE
26103}
26104
c19d1205
ZW
26105/* Add unwind opcodes to adjust the stack pointer. */
26106
bfae80f2 26107static void
c19d1205 26108add_unwind_adjustsp (offsetT offset)
bfae80f2 26109{
c19d1205 26110 valueT op;
bfae80f2 26111
c19d1205 26112 if (offset > 0x200)
bfae80f2 26113 {
c19d1205
ZW
26114 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
26115 char bytes[5];
26116 int n;
26117 valueT o;
bfae80f2 26118
c19d1205
ZW
26119 /* Long form: 0xb2, uleb128. */
26120 /* This might not fit in a word so add the individual bytes,
26121 remembering the list is built in reverse order. */
26122 o = (valueT) ((offset - 0x204) >> 2);
26123 if (o == 0)
26124 add_unwind_opcode (0, 1);
bfae80f2 26125
c19d1205
ZW
26126 /* Calculate the uleb128 encoding of the offset. */
26127 n = 0;
26128 while (o)
26129 {
26130 bytes[n] = o & 0x7f;
26131 o >>= 7;
26132 if (o)
26133 bytes[n] |= 0x80;
26134 n++;
26135 }
26136 /* Add the insn. */
26137 for (; n; n--)
26138 add_unwind_opcode (bytes[n - 1], 1);
26139 add_unwind_opcode (0xb2, 1);
26140 }
26141 else if (offset > 0x100)
bfae80f2 26142 {
c19d1205
ZW
26143 /* Two short opcodes. */
26144 add_unwind_opcode (0x3f, 1);
26145 op = (offset - 0x104) >> 2;
26146 add_unwind_opcode (op, 1);
bfae80f2 26147 }
c19d1205
ZW
26148 else if (offset > 0)
26149 {
26150 /* Short opcode. */
26151 op = (offset - 4) >> 2;
26152 add_unwind_opcode (op, 1);
26153 }
26154 else if (offset < 0)
bfae80f2 26155 {
c19d1205
ZW
26156 offset = -offset;
26157 while (offset > 0x100)
bfae80f2 26158 {
c19d1205
ZW
26159 add_unwind_opcode (0x7f, 1);
26160 offset -= 0x100;
bfae80f2 26161 }
c19d1205
ZW
26162 op = ((offset - 4) >> 2) | 0x40;
26163 add_unwind_opcode (op, 1);
bfae80f2 26164 }
bfae80f2
RE
26165}
26166
c19d1205 26167/* Finish the list of unwind opcodes for this function. */
0198d5e6 26168
c19d1205
ZW
26169static void
26170finish_unwind_opcodes (void)
bfae80f2 26171{
c19d1205 26172 valueT op;
bfae80f2 26173
c19d1205 26174 if (unwind.fp_used)
bfae80f2 26175 {
708587a4 26176 /* Adjust sp as necessary. */
c19d1205
ZW
26177 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
26178 flush_pending_unwind ();
bfae80f2 26179
c19d1205
ZW
26180 /* After restoring sp from the frame pointer. */
26181 op = 0x90 | unwind.fp_reg;
26182 add_unwind_opcode (op, 1);
26183 }
26184 else
26185 flush_pending_unwind ();
bfae80f2
RE
26186}
26187
bfae80f2 26188
c19d1205
ZW
26189/* Start an exception table entry. If idx is nonzero this is an index table
26190 entry. */
bfae80f2
RE
26191
26192static void
c19d1205 26193start_unwind_section (const segT text_seg, int idx)
bfae80f2 26194{
c19d1205
ZW
26195 const char * text_name;
26196 const char * prefix;
26197 const char * prefix_once;
26198 const char * group_name;
c19d1205 26199 char * sec_name;
c19d1205
ZW
26200 int type;
26201 int flags;
26202 int linkonce;
bfae80f2 26203
c19d1205 26204 if (idx)
bfae80f2 26205 {
c19d1205
ZW
26206 prefix = ELF_STRING_ARM_unwind;
26207 prefix_once = ELF_STRING_ARM_unwind_once;
26208 type = SHT_ARM_EXIDX;
bfae80f2 26209 }
c19d1205 26210 else
bfae80f2 26211 {
c19d1205
ZW
26212 prefix = ELF_STRING_ARM_unwind_info;
26213 prefix_once = ELF_STRING_ARM_unwind_info_once;
26214 type = SHT_PROGBITS;
bfae80f2
RE
26215 }
26216
c19d1205
ZW
26217 text_name = segment_name (text_seg);
26218 if (streq (text_name, ".text"))
26219 text_name = "";
26220
26221 if (strncmp (text_name, ".gnu.linkonce.t.",
26222 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 26223 {
c19d1205
ZW
26224 prefix = prefix_once;
26225 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
26226 }
26227
29a2809e 26228 sec_name = concat (prefix, text_name, (char *) NULL);
bfae80f2 26229
c19d1205
ZW
26230 flags = SHF_ALLOC;
26231 linkonce = 0;
26232 group_name = 0;
bfae80f2 26233
c19d1205
ZW
26234 /* Handle COMDAT group. */
26235 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 26236 {
c19d1205
ZW
26237 group_name = elf_group_name (text_seg);
26238 if (group_name == NULL)
26239 {
bd3ba5d1 26240 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
26241 segment_name (text_seg));
26242 ignore_rest_of_line ();
26243 return;
26244 }
26245 flags |= SHF_GROUP;
26246 linkonce = 1;
bfae80f2
RE
26247 }
26248
a91e1603
L
26249 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26250 linkonce, 0);
bfae80f2 26251
5f4273c7 26252 /* Set the section link for index tables. */
c19d1205
ZW
26253 if (idx)
26254 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
26255}
26256
bfae80f2 26257
c19d1205
ZW
26258/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26259 personality routine data. Returns zero, or the index table value for
cad0da33 26260 an inline entry. */
c19d1205
ZW
26261
26262static valueT
26263create_unwind_entry (int have_data)
bfae80f2 26264{
c19d1205
ZW
26265 int size;
26266 addressT where;
26267 char *ptr;
26268 /* The current word of data. */
26269 valueT data;
26270 /* The number of bytes left in this word. */
26271 int n;
bfae80f2 26272
c19d1205 26273 finish_unwind_opcodes ();
bfae80f2 26274
c19d1205
ZW
26275 /* Remember the current text section. */
26276 unwind.saved_seg = now_seg;
26277 unwind.saved_subseg = now_subseg;
bfae80f2 26278
c19d1205 26279 start_unwind_section (now_seg, 0);
bfae80f2 26280
c19d1205 26281 if (unwind.personality_routine == NULL)
bfae80f2 26282 {
c19d1205
ZW
26283 if (unwind.personality_index == -2)
26284 {
26285 if (have_data)
5f4273c7 26286 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
26287 return 1; /* EXIDX_CANTUNWIND. */
26288 }
bfae80f2 26289
c19d1205
ZW
26290 /* Use a default personality routine if none is specified. */
26291 if (unwind.personality_index == -1)
26292 {
26293 if (unwind.opcode_count > 3)
26294 unwind.personality_index = 1;
26295 else
26296 unwind.personality_index = 0;
26297 }
bfae80f2 26298
c19d1205
ZW
26299 /* Space for the personality routine entry. */
26300 if (unwind.personality_index == 0)
26301 {
26302 if (unwind.opcode_count > 3)
26303 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 26304
c19d1205
ZW
26305 if (!have_data)
26306 {
26307 /* All the data is inline in the index table. */
26308 data = 0x80;
26309 n = 3;
26310 while (unwind.opcode_count > 0)
26311 {
26312 unwind.opcode_count--;
26313 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26314 n--;
26315 }
bfae80f2 26316
c19d1205
ZW
26317 /* Pad with "finish" opcodes. */
26318 while (n--)
26319 data = (data << 8) | 0xb0;
bfae80f2 26320
c19d1205
ZW
26321 return data;
26322 }
26323 size = 0;
26324 }
26325 else
26326 /* We get two opcodes "free" in the first word. */
26327 size = unwind.opcode_count - 2;
26328 }
26329 else
5011093d 26330 {
cad0da33
NC
26331 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26332 if (unwind.personality_index != -1)
26333 {
26334 as_bad (_("attempt to recreate an unwind entry"));
26335 return 1;
26336 }
5011093d
NC
26337
26338 /* An extra byte is required for the opcode count. */
26339 size = unwind.opcode_count + 1;
26340 }
bfae80f2 26341
c19d1205
ZW
26342 size = (size + 3) >> 2;
26343 if (size > 0xff)
26344 as_bad (_("too many unwind opcodes"));
bfae80f2 26345
c19d1205
ZW
26346 frag_align (2, 0, 0);
26347 record_alignment (now_seg, 2);
26348 unwind.table_entry = expr_build_dot ();
26349
26350 /* Allocate the table entry. */
26351 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
26352 /* PR 13449: Zero the table entries in case some of them are not used. */
26353 memset (ptr, 0, (size << 2) + 4);
c19d1205 26354 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 26355
c19d1205 26356 switch (unwind.personality_index)
bfae80f2 26357 {
c19d1205
ZW
26358 case -1:
26359 /* ??? Should this be a PLT generating relocation? */
26360 /* Custom personality routine. */
26361 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26362 BFD_RELOC_ARM_PREL31);
bfae80f2 26363
c19d1205
ZW
26364 where += 4;
26365 ptr += 4;
bfae80f2 26366
c19d1205 26367 /* Set the first byte to the number of additional words. */
5011093d 26368 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
26369 n = 3;
26370 break;
bfae80f2 26371
c19d1205
ZW
26372 /* ABI defined personality routines. */
26373 case 0:
26374 /* Three opcodes bytes are packed into the first word. */
26375 data = 0x80;
26376 n = 3;
26377 break;
bfae80f2 26378
c19d1205
ZW
26379 case 1:
26380 case 2:
26381 /* The size and first two opcode bytes go in the first word. */
26382 data = ((0x80 + unwind.personality_index) << 8) | size;
26383 n = 2;
26384 break;
bfae80f2 26385
c19d1205
ZW
26386 default:
26387 /* Should never happen. */
26388 abort ();
26389 }
bfae80f2 26390
c19d1205
ZW
26391 /* Pack the opcodes into words (MSB first), reversing the list at the same
26392 time. */
26393 while (unwind.opcode_count > 0)
26394 {
26395 if (n == 0)
26396 {
26397 md_number_to_chars (ptr, data, 4);
26398 ptr += 4;
26399 n = 4;
26400 data = 0;
26401 }
26402 unwind.opcode_count--;
26403 n--;
26404 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26405 }
26406
26407 /* Finish off the last word. */
26408 if (n < 4)
26409 {
26410 /* Pad with "finish" opcodes. */
26411 while (n--)
26412 data = (data << 8) | 0xb0;
26413
26414 md_number_to_chars (ptr, data, 4);
26415 }
26416
26417 if (!have_data)
26418 {
26419 /* Add an empty descriptor if there is no user-specified data. */
26420 ptr = frag_more (4);
26421 md_number_to_chars (ptr, 0, 4);
26422 }
26423
26424 return 0;
bfae80f2
RE
26425}
26426
f0927246
NC
26427
26428/* Initialize the DWARF-2 unwind information for this procedure. */
26429
26430void
26431tc_arm_frame_initial_instructions (void)
26432{
26433 cfi_add_CFA_def_cfa (REG_SP, 0);
26434}
26435#endif /* OBJ_ELF */
26436
c19d1205
ZW
26437/* Convert REGNAME to a DWARF-2 register number. */
26438
26439int
1df69f4f 26440tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 26441{
1df69f4f 26442 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
1f5afe1c
NC
26443 if (reg != FAIL)
26444 return reg;
c19d1205 26445
1f5afe1c
NC
26446 /* PR 16694: Allow VFP registers as well. */
26447 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26448 if (reg != FAIL)
26449 return 64 + reg;
c19d1205 26450
1f5afe1c
NC
26451 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26452 if (reg != FAIL)
26453 return reg + 256;
26454
0198d5e6 26455 return FAIL;
bfae80f2
RE
26456}
26457
f0927246 26458#ifdef TE_PE
c19d1205 26459void
f0927246 26460tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 26461{
91d6fa6a 26462 expressionS exp;
bfae80f2 26463
91d6fa6a
NC
26464 exp.X_op = O_secrel;
26465 exp.X_add_symbol = symbol;
26466 exp.X_add_number = 0;
26467 emit_expr (&exp, size);
f0927246
NC
26468}
26469#endif
bfae80f2 26470
c19d1205 26471/* MD interface: Symbol and relocation handling. */
bfae80f2 26472
2fc8bdac
ZW
26473/* Return the address within the segment that a PC-relative fixup is
26474 relative to. For ARM, PC-relative fixups applied to instructions
26475 are generally relative to the location of the fixup plus 8 bytes.
26476 Thumb branches are offset by 4, and Thumb loads relative to PC
26477 require special handling. */
bfae80f2 26478
c19d1205 26479long
2fc8bdac 26480md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 26481{
2fc8bdac
ZW
26482 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26483
26484 /* If this is pc-relative and we are going to emit a relocation
26485 then we just want to put out any pipeline compensation that the linker
53baae48
NC
26486 will need. Otherwise we want to use the calculated base.
26487 For WinCE we skip the bias for externals as well, since this
26488 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 26489 if (fixP->fx_pcrel
2fc8bdac 26490 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
26491 || (arm_force_relocation (fixP)
26492#ifdef TE_WINCE
26493 && !S_IS_EXTERNAL (fixP->fx_addsy)
26494#endif
26495 )))
2fc8bdac 26496 base = 0;
bfae80f2 26497
267bf995 26498
c19d1205 26499 switch (fixP->fx_r_type)
bfae80f2 26500 {
2fc8bdac
ZW
26501 /* PC relative addressing on the Thumb is slightly odd as the
26502 bottom two bits of the PC are forced to zero for the
26503 calculation. This happens *after* application of the
26504 pipeline offset. However, Thumb adrl already adjusts for
26505 this, so we need not do it again. */
c19d1205 26506 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 26507 return base & ~3;
c19d1205
ZW
26508
26509 case BFD_RELOC_ARM_THUMB_OFFSET:
26510 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 26511 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 26512 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 26513 return (base + 4) & ~3;
c19d1205 26514
2fc8bdac 26515 /* Thumb branches are simply offset by +4. */
e12437dc 26516 case BFD_RELOC_THUMB_PCREL_BRANCH5:
2fc8bdac
ZW
26517 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26518 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26519 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26520 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 26521 case BFD_RELOC_THUMB_PCREL_BRANCH25:
f6b2b12d 26522 case BFD_RELOC_THUMB_PCREL_BFCSEL:
e5d6e09e 26523 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 26524 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 26525 case BFD_RELOC_ARM_THUMB_BF13:
60f993ce 26526 case BFD_RELOC_ARM_THUMB_LOOP12:
2fc8bdac 26527 return base + 4;
bfae80f2 26528
267bf995 26529 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
26530 if (fixP->fx_addsy
26531 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26532 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995 26533 && ARM_IS_FUNC (fixP->fx_addsy)
477330fc
RM
26534 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26535 base = fixP->fx_where + fixP->fx_frag->fr_address;
267bf995
RR
26536 return base + 4;
26537
00adf2d4
JB
26538 /* BLX is like branches above, but forces the low two bits of PC to
26539 zero. */
486499d0
CL
26540 case BFD_RELOC_THUMB_PCREL_BLX:
26541 if (fixP->fx_addsy
26542 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26543 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26544 && THUMB_IS_FUNC (fixP->fx_addsy)
26545 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26546 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
26547 return (base + 4) & ~3;
26548
2fc8bdac
ZW
26549 /* ARM mode branches are offset by +8. However, the Windows CE
26550 loader expects the relocation not to take this into account. */
267bf995 26551 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
26552 if (fixP->fx_addsy
26553 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26554 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26555 && ARM_IS_FUNC (fixP->fx_addsy)
26556 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26557 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26558 return base + 8;
267bf995 26559
486499d0
CL
26560 case BFD_RELOC_ARM_PCREL_CALL:
26561 if (fixP->fx_addsy
26562 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 26563 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
477330fc
RM
26564 && THUMB_IS_FUNC (fixP->fx_addsy)
26565 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26566 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 26567 return base + 8;
267bf995 26568
2fc8bdac 26569 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 26570 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 26571 case BFD_RELOC_ARM_PLT32:
c19d1205 26572#ifdef TE_WINCE
5f4273c7 26573 /* When handling fixups immediately, because we have already
477330fc 26574 discovered the value of a symbol, or the address of the frag involved
53baae48 26575 we must account for the offset by +8, as the OS loader will never see the reloc.
477330fc
RM
26576 see fixup_segment() in write.c
26577 The S_IS_EXTERNAL test handles the case of global symbols.
26578 Those need the calculated base, not just the pipe compensation the linker will need. */
53baae48
NC
26579 if (fixP->fx_pcrel
26580 && fixP->fx_addsy != NULL
26581 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26582 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26583 return base + 8;
2fc8bdac 26584 return base;
c19d1205 26585#else
2fc8bdac 26586 return base + 8;
c19d1205 26587#endif
2fc8bdac 26588
267bf995 26589
2fc8bdac
ZW
26590 /* ARM mode loads relative to PC are also offset by +8. Unlike
26591 branches, the Windows CE loader *does* expect the relocation
26592 to take this into account. */
26593 case BFD_RELOC_ARM_OFFSET_IMM:
26594 case BFD_RELOC_ARM_OFFSET_IMM8:
26595 case BFD_RELOC_ARM_HWLITERAL:
26596 case BFD_RELOC_ARM_LITERAL:
26597 case BFD_RELOC_ARM_CP_OFF_IMM:
26598 return base + 8;
26599
26600
26601 /* Other PC-relative relocations are un-offset. */
26602 default:
26603 return base;
26604 }
bfae80f2
RE
26605}
26606
8b2d793c
NC
26607static bfd_boolean flag_warn_syms = TRUE;
26608
ae8714c2
NC
26609bfd_boolean
26610arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
bfae80f2 26611{
8b2d793c
NC
26612 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26613 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26614 does mean that the resulting code might be very confusing to the reader.
26615 Also this warning can be triggered if the user omits an operand before
26616 an immediate address, eg:
26617
26618 LDR =foo
26619
26620 GAS treats this as an assignment of the value of the symbol foo to a
26621 symbol LDR, and so (without this code) it will not issue any kind of
26622 warning or error message.
26623
26624 Note - ARM instructions are case-insensitive but the strings in the hash
26625 table are all stored in lower case, so we must first ensure that name is
ae8714c2
NC
26626 lower case too. */
26627 if (flag_warn_syms && arm_ops_hsh)
8b2d793c
NC
26628 {
26629 char * nbuf = strdup (name);
26630 char * p;
26631
26632 for (p = nbuf; *p; p++)
26633 *p = TOLOWER (*p);
26634 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26635 {
26636 static struct hash_control * already_warned = NULL;
26637
26638 if (already_warned == NULL)
26639 already_warned = hash_new ();
26640 /* Only warn about the symbol once. To keep the code
26641 simple we let hash_insert do the lookup for us. */
3076e594 26642 if (hash_insert (already_warned, nbuf, NULL) == NULL)
ae8714c2 26643 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
8b2d793c
NC
26644 }
26645 else
26646 free (nbuf);
26647 }
3739860c 26648
ae8714c2
NC
26649 return FALSE;
26650}
26651
26652/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26653 Otherwise we have no need to default values of symbols. */
26654
26655symbolS *
26656md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26657{
26658#ifdef OBJ_ELF
26659 if (name[0] == '_' && name[1] == 'G'
26660 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26661 {
26662 if (!GOT_symbol)
26663 {
26664 if (symbol_find (name))
26665 as_bad (_("GOT already in the symbol table"));
26666
26667 GOT_symbol = symbol_new (name, undefined_section,
26668 (valueT) 0, & zero_address_frag);
26669 }
26670
26671 return GOT_symbol;
26672 }
26673#endif
26674
c921be7d 26675 return NULL;
bfae80f2
RE
26676}
26677
55cf6793 26678/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
26679 computed as two separate immediate values, added together. We
26680 already know that this value cannot be computed by just one ARM
26681 instruction. */
26682
26683static unsigned int
26684validate_immediate_twopart (unsigned int val,
26685 unsigned int * highpart)
bfae80f2 26686{
c19d1205
ZW
26687 unsigned int a;
26688 unsigned int i;
bfae80f2 26689
c19d1205
ZW
26690 for (i = 0; i < 32; i += 2)
26691 if (((a = rotate_left (val, i)) & 0xff) != 0)
26692 {
26693 if (a & 0xff00)
26694 {
26695 if (a & ~ 0xffff)
26696 continue;
26697 * highpart = (a >> 8) | ((i + 24) << 7);
26698 }
26699 else if (a & 0xff0000)
26700 {
26701 if (a & 0xff000000)
26702 continue;
26703 * highpart = (a >> 16) | ((i + 16) << 7);
26704 }
26705 else
26706 {
9c2799c2 26707 gas_assert (a & 0xff000000);
c19d1205
ZW
26708 * highpart = (a >> 24) | ((i + 8) << 7);
26709 }
bfae80f2 26710
c19d1205
ZW
26711 return (a & 0xff) | (i << 7);
26712 }
bfae80f2 26713
c19d1205 26714 return FAIL;
bfae80f2
RE
26715}
26716
c19d1205
ZW
26717static int
26718validate_offset_imm (unsigned int val, int hwse)
26719{
26720 if ((hwse && val > 255) || val > 4095)
26721 return FAIL;
26722 return val;
26723}
bfae80f2 26724
55cf6793 26725/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
26726 negative immediate constant by altering the instruction. A bit of
26727 a hack really.
26728 MOV <-> MVN
26729 AND <-> BIC
26730 ADC <-> SBC
26731 by inverting the second operand, and
26732 ADD <-> SUB
26733 CMP <-> CMN
26734 by negating the second operand. */
bfae80f2 26735
c19d1205
ZW
26736static int
26737negate_data_op (unsigned long * instruction,
26738 unsigned long value)
bfae80f2 26739{
c19d1205
ZW
26740 int op, new_inst;
26741 unsigned long negated, inverted;
bfae80f2 26742
c19d1205
ZW
26743 negated = encode_arm_immediate (-value);
26744 inverted = encode_arm_immediate (~value);
bfae80f2 26745
c19d1205
ZW
26746 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26747 switch (op)
bfae80f2 26748 {
c19d1205
ZW
26749 /* First negates. */
26750 case OPCODE_SUB: /* ADD <-> SUB */
26751 new_inst = OPCODE_ADD;
26752 value = negated;
26753 break;
bfae80f2 26754
c19d1205
ZW
26755 case OPCODE_ADD:
26756 new_inst = OPCODE_SUB;
26757 value = negated;
26758 break;
bfae80f2 26759
c19d1205
ZW
26760 case OPCODE_CMP: /* CMP <-> CMN */
26761 new_inst = OPCODE_CMN;
26762 value = negated;
26763 break;
bfae80f2 26764
c19d1205
ZW
26765 case OPCODE_CMN:
26766 new_inst = OPCODE_CMP;
26767 value = negated;
26768 break;
bfae80f2 26769
c19d1205
ZW
26770 /* Now Inverted ops. */
26771 case OPCODE_MOV: /* MOV <-> MVN */
26772 new_inst = OPCODE_MVN;
26773 value = inverted;
26774 break;
bfae80f2 26775
c19d1205
ZW
26776 case OPCODE_MVN:
26777 new_inst = OPCODE_MOV;
26778 value = inverted;
26779 break;
bfae80f2 26780
c19d1205
ZW
26781 case OPCODE_AND: /* AND <-> BIC */
26782 new_inst = OPCODE_BIC;
26783 value = inverted;
26784 break;
bfae80f2 26785
c19d1205
ZW
26786 case OPCODE_BIC:
26787 new_inst = OPCODE_AND;
26788 value = inverted;
26789 break;
bfae80f2 26790
c19d1205
ZW
26791 case OPCODE_ADC: /* ADC <-> SBC */
26792 new_inst = OPCODE_SBC;
26793 value = inverted;
26794 break;
bfae80f2 26795
c19d1205
ZW
26796 case OPCODE_SBC:
26797 new_inst = OPCODE_ADC;
26798 value = inverted;
26799 break;
bfae80f2 26800
c19d1205
ZW
26801 /* We cannot do anything. */
26802 default:
26803 return FAIL;
b99bd4ef
NC
26804 }
26805
c19d1205
ZW
26806 if (value == (unsigned) FAIL)
26807 return FAIL;
26808
26809 *instruction &= OPCODE_MASK;
26810 *instruction |= new_inst << DATA_OP_SHIFT;
26811 return value;
b99bd4ef
NC
26812}
26813
ef8d22e6
PB
26814/* Like negate_data_op, but for Thumb-2. */
26815
26816static unsigned int
16dd5e42 26817thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
26818{
26819 int op, new_inst;
26820 int rd;
16dd5e42 26821 unsigned int negated, inverted;
ef8d22e6
PB
26822
26823 negated = encode_thumb32_immediate (-value);
26824 inverted = encode_thumb32_immediate (~value);
26825
26826 rd = (*instruction >> 8) & 0xf;
26827 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26828 switch (op)
26829 {
26830 /* ADD <-> SUB. Includes CMP <-> CMN. */
26831 case T2_OPCODE_SUB:
26832 new_inst = T2_OPCODE_ADD;
26833 value = negated;
26834 break;
26835
26836 case T2_OPCODE_ADD:
26837 new_inst = T2_OPCODE_SUB;
26838 value = negated;
26839 break;
26840
26841 /* ORR <-> ORN. Includes MOV <-> MVN. */
26842 case T2_OPCODE_ORR:
26843 new_inst = T2_OPCODE_ORN;
26844 value = inverted;
26845 break;
26846
26847 case T2_OPCODE_ORN:
26848 new_inst = T2_OPCODE_ORR;
26849 value = inverted;
26850 break;
26851
26852 /* AND <-> BIC. TST has no inverted equivalent. */
26853 case T2_OPCODE_AND:
26854 new_inst = T2_OPCODE_BIC;
26855 if (rd == 15)
26856 value = FAIL;
26857 else
26858 value = inverted;
26859 break;
26860
26861 case T2_OPCODE_BIC:
26862 new_inst = T2_OPCODE_AND;
26863 value = inverted;
26864 break;
26865
26866 /* ADC <-> SBC */
26867 case T2_OPCODE_ADC:
26868 new_inst = T2_OPCODE_SBC;
26869 value = inverted;
26870 break;
26871
26872 case T2_OPCODE_SBC:
26873 new_inst = T2_OPCODE_ADC;
26874 value = inverted;
26875 break;
26876
26877 /* We cannot do anything. */
26878 default:
26879 return FAIL;
26880 }
26881
16dd5e42 26882 if (value == (unsigned int)FAIL)
ef8d22e6
PB
26883 return FAIL;
26884
26885 *instruction &= T2_OPCODE_MASK;
26886 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26887 return value;
26888}
26889
8f06b2d8 26890/* Read a 32-bit thumb instruction from buf. */
0198d5e6 26891
8f06b2d8
PB
26892static unsigned long
26893get_thumb32_insn (char * buf)
26894{
26895 unsigned long insn;
26896 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26897 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26898
26899 return insn;
26900}
26901
a8bc6c78
PB
26902/* We usually want to set the low bit on the address of thumb function
26903 symbols. In particular .word foo - . should have the low bit set.
26904 Generic code tries to fold the difference of two symbols to
26905 a constant. Prevent this and force a relocation when the first symbols
26906 is a thumb function. */
c921be7d
NC
26907
26908bfd_boolean
a8bc6c78
PB
26909arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26910{
26911 if (op == O_subtract
26912 && l->X_op == O_symbol
26913 && r->X_op == O_symbol
26914 && THUMB_IS_FUNC (l->X_add_symbol))
26915 {
26916 l->X_op = O_subtract;
26917 l->X_op_symbol = r->X_add_symbol;
26918 l->X_add_number -= r->X_add_number;
c921be7d 26919 return TRUE;
a8bc6c78 26920 }
c921be7d 26921
a8bc6c78 26922 /* Process as normal. */
c921be7d 26923 return FALSE;
a8bc6c78
PB
26924}
26925
4a42ebbc
RR
26926/* Encode Thumb2 unconditional branches and calls. The encoding
26927 for the 2 are identical for the immediate values. */
26928
26929static void
26930encode_thumb2_b_bl_offset (char * buf, offsetT value)
26931{
26932#define T2I1I2MASK ((1 << 13) | (1 << 11))
26933 offsetT newval;
26934 offsetT newval2;
26935 addressT S, I1, I2, lo, hi;
26936
26937 S = (value >> 24) & 0x01;
26938 I1 = (value >> 23) & 0x01;
26939 I2 = (value >> 22) & 0x01;
26940 hi = (value >> 12) & 0x3ff;
fa94de6b 26941 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
26942 newval = md_chars_to_number (buf, THUMB_SIZE);
26943 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26944 newval |= (S << 10) | hi;
26945 newval2 &= ~T2I1I2MASK;
26946 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26947 md_number_to_chars (buf, newval, THUMB_SIZE);
26948 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26949}
26950
c19d1205 26951void
55cf6793 26952md_apply_fix (fixS * fixP,
c19d1205
ZW
26953 valueT * valP,
26954 segT seg)
26955{
26956 offsetT value = * valP;
26957 offsetT newval;
26958 unsigned int newimm;
26959 unsigned long temp;
26960 int sign;
26961 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 26962
9c2799c2 26963 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 26964
c19d1205 26965 /* Note whether this will delete the relocation. */
4962c51a 26966
c19d1205
ZW
26967 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26968 fixP->fx_done = 1;
b99bd4ef 26969
adbaf948 26970 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 26971 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
26972 for emit_reloc. */
26973 value &= 0xffffffff;
26974 value ^= 0x80000000;
5f4273c7 26975 value -= 0x80000000;
adbaf948
ZW
26976
26977 *valP = value;
c19d1205 26978 fixP->fx_addnumber = value;
b99bd4ef 26979
adbaf948
ZW
26980 /* Same treatment for fixP->fx_offset. */
26981 fixP->fx_offset &= 0xffffffff;
26982 fixP->fx_offset ^= 0x80000000;
26983 fixP->fx_offset -= 0x80000000;
26984
c19d1205 26985 switch (fixP->fx_r_type)
b99bd4ef 26986 {
c19d1205
ZW
26987 case BFD_RELOC_NONE:
26988 /* This will need to go in the object file. */
26989 fixP->fx_done = 0;
26990 break;
b99bd4ef 26991
c19d1205
ZW
26992 case BFD_RELOC_ARM_IMMEDIATE:
26993 /* We claim that this fixup has been processed here,
26994 even if in fact we generate an error because we do
26995 not have a reloc for it, so tc_gen_reloc will reject it. */
26996 fixP->fx_done = 1;
b99bd4ef 26997
77db8e2e 26998 if (fixP->fx_addsy)
b99bd4ef 26999 {
77db8e2e 27000 const char *msg = 0;
b99bd4ef 27001
77db8e2e
NC
27002 if (! S_IS_DEFINED (fixP->fx_addsy))
27003 msg = _("undefined symbol %s used as an immediate value");
27004 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27005 msg = _("symbol %s is in a different section");
27006 else if (S_IS_WEAK (fixP->fx_addsy))
27007 msg = _("symbol %s is weak and may be overridden later");
27008
27009 if (msg)
27010 {
27011 as_bad_where (fixP->fx_file, fixP->fx_line,
27012 msg, S_GET_NAME (fixP->fx_addsy));
27013 break;
27014 }
42e5fcbf
AS
27015 }
27016
c19d1205
ZW
27017 temp = md_chars_to_number (buf, INSN_SIZE);
27018
5e73442d
SL
27019 /* If the offset is negative, we should use encoding A2 for ADR. */
27020 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
27021 newimm = negate_data_op (&temp, value);
27022 else
27023 {
27024 newimm = encode_arm_immediate (value);
27025
27026 /* If the instruction will fail, see if we can fix things up by
27027 changing the opcode. */
27028 if (newimm == (unsigned int) FAIL)
27029 newimm = negate_data_op (&temp, value);
bada4342
JW
27030 /* MOV accepts both ARM modified immediate (A1 encoding) and
27031 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
27032 When disassembling, MOV is preferred when there is no encoding
27033 overlap. */
27034 if (newimm == (unsigned int) FAIL
27035 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
27036 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
27037 && !((temp >> SBIT_SHIFT) & 0x1)
27038 && value >= 0 && value <= 0xffff)
27039 {
27040 /* Clear bits[23:20] to change encoding from A1 to A2. */
27041 temp &= 0xff0fffff;
27042 /* Encoding high 4bits imm. Code below will encode the remaining
27043 low 12bits. */
27044 temp |= (value & 0x0000f000) << 4;
27045 newimm = value & 0x00000fff;
27046 }
5e73442d
SL
27047 }
27048
27049 if (newimm == (unsigned int) FAIL)
b99bd4ef 27050 {
c19d1205
ZW
27051 as_bad_where (fixP->fx_file, fixP->fx_line,
27052 _("invalid constant (%lx) after fixup"),
27053 (unsigned long) value);
27054 break;
b99bd4ef 27055 }
b99bd4ef 27056
c19d1205
ZW
27057 newimm |= (temp & 0xfffff000);
27058 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
27059 break;
b99bd4ef 27060
c19d1205
ZW
27061 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27062 {
27063 unsigned int highpart = 0;
27064 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 27065
77db8e2e 27066 if (fixP->fx_addsy)
42e5fcbf 27067 {
77db8e2e 27068 const char *msg = 0;
42e5fcbf 27069
77db8e2e
NC
27070 if (! S_IS_DEFINED (fixP->fx_addsy))
27071 msg = _("undefined symbol %s used as an immediate value");
27072 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
27073 msg = _("symbol %s is in a different section");
27074 else if (S_IS_WEAK (fixP->fx_addsy))
27075 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 27076
77db8e2e
NC
27077 if (msg)
27078 {
27079 as_bad_where (fixP->fx_file, fixP->fx_line,
27080 msg, S_GET_NAME (fixP->fx_addsy));
27081 break;
27082 }
27083 }
fa94de6b 27084
c19d1205
ZW
27085 newimm = encode_arm_immediate (value);
27086 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 27087
c19d1205
ZW
27088 /* If the instruction will fail, see if we can fix things up by
27089 changing the opcode. */
27090 if (newimm == (unsigned int) FAIL
27091 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
27092 {
27093 /* No ? OK - try using two ADD instructions to generate
27094 the value. */
27095 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 27096
c19d1205
ZW
27097 /* Yes - then make sure that the second instruction is
27098 also an add. */
27099 if (newimm != (unsigned int) FAIL)
27100 newinsn = temp;
27101 /* Still No ? Try using a negated value. */
27102 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
27103 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
27104 /* Otherwise - give up. */
27105 else
27106 {
27107 as_bad_where (fixP->fx_file, fixP->fx_line,
27108 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
27109 (long) value);
27110 break;
27111 }
b99bd4ef 27112
c19d1205
ZW
27113 /* Replace the first operand in the 2nd instruction (which
27114 is the PC) with the destination register. We have
27115 already added in the PC in the first instruction and we
27116 do not want to do it again. */
27117 newinsn &= ~ 0xf0000;
27118 newinsn |= ((newinsn & 0x0f000) << 4);
27119 }
b99bd4ef 27120
c19d1205
ZW
27121 newimm |= (temp & 0xfffff000);
27122 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 27123
c19d1205
ZW
27124 highpart |= (newinsn & 0xfffff000);
27125 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
27126 }
27127 break;
b99bd4ef 27128
c19d1205 27129 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
27130 if (!fixP->fx_done && seg->use_rela_p)
27131 value = 0;
1a0670f3 27132 /* Fall through. */
00a97672 27133
c19d1205 27134 case BFD_RELOC_ARM_LITERAL:
26d97720 27135 sign = value > 0;
b99bd4ef 27136
c19d1205
ZW
27137 if (value < 0)
27138 value = - value;
b99bd4ef 27139
c19d1205 27140 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 27141 {
c19d1205
ZW
27142 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
27143 as_bad_where (fixP->fx_file, fixP->fx_line,
27144 _("invalid literal constant: pool needs to be closer"));
27145 else
27146 as_bad_where (fixP->fx_file, fixP->fx_line,
27147 _("bad immediate value for offset (%ld)"),
27148 (long) value);
27149 break;
f03698e6
RE
27150 }
27151
c19d1205 27152 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
27153 if (value == 0)
27154 newval &= 0xfffff000;
27155 else
27156 {
27157 newval &= 0xff7ff000;
27158 newval |= value | (sign ? INDEX_UP : 0);
27159 }
c19d1205
ZW
27160 md_number_to_chars (buf, newval, INSN_SIZE);
27161 break;
b99bd4ef 27162
c19d1205
ZW
27163 case BFD_RELOC_ARM_OFFSET_IMM8:
27164 case BFD_RELOC_ARM_HWLITERAL:
26d97720 27165 sign = value > 0;
b99bd4ef 27166
c19d1205
ZW
27167 if (value < 0)
27168 value = - value;
b99bd4ef 27169
c19d1205 27170 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 27171 {
c19d1205
ZW
27172 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
27173 as_bad_where (fixP->fx_file, fixP->fx_line,
27174 _("invalid literal constant: pool needs to be closer"));
27175 else
427d0db6
RM
27176 as_bad_where (fixP->fx_file, fixP->fx_line,
27177 _("bad immediate value for 8-bit offset (%ld)"),
27178 (long) value);
c19d1205 27179 break;
b99bd4ef
NC
27180 }
27181
c19d1205 27182 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
27183 if (value == 0)
27184 newval &= 0xfffff0f0;
27185 else
27186 {
27187 newval &= 0xff7ff0f0;
27188 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
27189 }
c19d1205
ZW
27190 md_number_to_chars (buf, newval, INSN_SIZE);
27191 break;
b99bd4ef 27192
c19d1205
ZW
27193 case BFD_RELOC_ARM_T32_OFFSET_U8:
27194 if (value < 0 || value > 1020 || value % 4 != 0)
27195 as_bad_where (fixP->fx_file, fixP->fx_line,
27196 _("bad immediate value for offset (%ld)"), (long) value);
27197 value /= 4;
b99bd4ef 27198
c19d1205 27199 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
27200 newval |= value;
27201 md_number_to_chars (buf+2, newval, THUMB_SIZE);
27202 break;
b99bd4ef 27203
c19d1205
ZW
27204 case BFD_RELOC_ARM_T32_OFFSET_IMM:
27205 /* This is a complicated relocation used for all varieties of Thumb32
27206 load/store instruction with immediate offset:
27207
27208 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
477330fc 27209 *4, optional writeback(W)
c19d1205
ZW
27210 (doubleword load/store)
27211
27212 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
27213 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
27214 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
27215 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
27216 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
27217
27218 Uppercase letters indicate bits that are already encoded at
27219 this point. Lowercase letters are our problem. For the
27220 second block of instructions, the secondary opcode nybble
27221 (bits 8..11) is present, and bit 23 is zero, even if this is
27222 a PC-relative operation. */
27223 newval = md_chars_to_number (buf, THUMB_SIZE);
27224 newval <<= 16;
27225 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 27226
c19d1205 27227 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 27228 {
c19d1205
ZW
27229 /* Doubleword load/store: 8-bit offset, scaled by 4. */
27230 if (value >= 0)
27231 newval |= (1 << 23);
27232 else
27233 value = -value;
27234 if (value % 4 != 0)
27235 {
27236 as_bad_where (fixP->fx_file, fixP->fx_line,
27237 _("offset not a multiple of 4"));
27238 break;
27239 }
27240 value /= 4;
216d22bc 27241 if (value > 0xff)
c19d1205
ZW
27242 {
27243 as_bad_where (fixP->fx_file, fixP->fx_line,
27244 _("offset out of range"));
27245 break;
27246 }
27247 newval &= ~0xff;
b99bd4ef 27248 }
c19d1205 27249 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 27250 {
c19d1205
ZW
27251 /* PC-relative, 12-bit offset. */
27252 if (value >= 0)
27253 newval |= (1 << 23);
27254 else
27255 value = -value;
216d22bc 27256 if (value > 0xfff)
c19d1205
ZW
27257 {
27258 as_bad_where (fixP->fx_file, fixP->fx_line,
27259 _("offset out of range"));
27260 break;
27261 }
27262 newval &= ~0xfff;
b99bd4ef 27263 }
c19d1205 27264 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 27265 {
c19d1205
ZW
27266 /* Writeback: 8-bit, +/- offset. */
27267 if (value >= 0)
27268 newval |= (1 << 9);
27269 else
27270 value = -value;
216d22bc 27271 if (value > 0xff)
c19d1205
ZW
27272 {
27273 as_bad_where (fixP->fx_file, fixP->fx_line,
27274 _("offset out of range"));
27275 break;
27276 }
27277 newval &= ~0xff;
b99bd4ef 27278 }
c19d1205 27279 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 27280 {
c19d1205 27281 /* T-instruction: positive 8-bit offset. */
216d22bc 27282 if (value < 0 || value > 0xff)
b99bd4ef 27283 {
c19d1205
ZW
27284 as_bad_where (fixP->fx_file, fixP->fx_line,
27285 _("offset out of range"));
27286 break;
b99bd4ef 27287 }
c19d1205
ZW
27288 newval &= ~0xff;
27289 newval |= value;
b99bd4ef
NC
27290 }
27291 else
b99bd4ef 27292 {
c19d1205
ZW
27293 /* Positive 12-bit or negative 8-bit offset. */
27294 int limit;
27295 if (value >= 0)
b99bd4ef 27296 {
c19d1205
ZW
27297 newval |= (1 << 23);
27298 limit = 0xfff;
27299 }
27300 else
27301 {
27302 value = -value;
27303 limit = 0xff;
27304 }
27305 if (value > limit)
27306 {
27307 as_bad_where (fixP->fx_file, fixP->fx_line,
27308 _("offset out of range"));
27309 break;
b99bd4ef 27310 }
c19d1205 27311 newval &= ~limit;
b99bd4ef 27312 }
b99bd4ef 27313
c19d1205
ZW
27314 newval |= value;
27315 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27316 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27317 break;
404ff6b5 27318
c19d1205
ZW
27319 case BFD_RELOC_ARM_SHIFT_IMM:
27320 newval = md_chars_to_number (buf, INSN_SIZE);
27321 if (((unsigned long) value) > 32
27322 || (value == 32
27323 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27324 {
27325 as_bad_where (fixP->fx_file, fixP->fx_line,
27326 _("shift expression is too large"));
27327 break;
27328 }
404ff6b5 27329
c19d1205
ZW
27330 if (value == 0)
27331 /* Shifts of zero must be done as lsl. */
27332 newval &= ~0x60;
27333 else if (value == 32)
27334 value = 0;
27335 newval &= 0xfffff07f;
27336 newval |= (value & 0x1f) << 7;
27337 md_number_to_chars (buf, newval, INSN_SIZE);
27338 break;
404ff6b5 27339
c19d1205 27340 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 27341 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 27342 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 27343 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
27344 /* We claim that this fixup has been processed here,
27345 even if in fact we generate an error because we do
27346 not have a reloc for it, so tc_gen_reloc will reject it. */
27347 fixP->fx_done = 1;
404ff6b5 27348
c19d1205
ZW
27349 if (fixP->fx_addsy
27350 && ! S_IS_DEFINED (fixP->fx_addsy))
27351 {
27352 as_bad_where (fixP->fx_file, fixP->fx_line,
27353 _("undefined symbol %s used as an immediate value"),
27354 S_GET_NAME (fixP->fx_addsy));
27355 break;
27356 }
404ff6b5 27357
c19d1205
ZW
27358 newval = md_chars_to_number (buf, THUMB_SIZE);
27359 newval <<= 16;
27360 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 27361
16805f35 27362 newimm = FAIL;
bada4342
JW
27363 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27364 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27365 Thumb2 modified immediate encoding (T2). */
27366 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
16805f35 27367 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
27368 {
27369 newimm = encode_thumb32_immediate (value);
27370 if (newimm == (unsigned int) FAIL)
27371 newimm = thumb32_negate_data_op (&newval, value);
27372 }
bada4342 27373 if (newimm == (unsigned int) FAIL)
92e90b6e 27374 {
bada4342 27375 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
e9f89963 27376 {
bada4342
JW
27377 /* Turn add/sum into addw/subw. */
27378 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27379 newval = (newval & 0xfeffffff) | 0x02000000;
27380 /* No flat 12-bit imm encoding for addsw/subsw. */
27381 if ((newval & 0x00100000) == 0)
40f246e3 27382 {
bada4342
JW
27383 /* 12 bit immediate for addw/subw. */
27384 if (value < 0)
27385 {
27386 value = -value;
27387 newval ^= 0x00a00000;
27388 }
27389 if (value > 0xfff)
27390 newimm = (unsigned int) FAIL;
27391 else
27392 newimm = value;
27393 }
27394 }
27395 else
27396 {
27397 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27398 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27399 disassembling, MOV is preferred when there is no encoding
db7bf105 27400 overlap. */
bada4342 27401 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
db7bf105
NC
27402 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27403 but with the Rn field [19:16] set to 1111. */
27404 && (((newval >> 16) & 0xf) == 0xf)
bada4342
JW
27405 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27406 && !((newval >> T2_SBIT_SHIFT) & 0x1)
db7bf105 27407 && value >= 0 && value <= 0xffff)
bada4342
JW
27408 {
27409 /* Toggle bit[25] to change encoding from T2 to T3. */
27410 newval ^= 1 << 25;
27411 /* Clear bits[19:16]. */
27412 newval &= 0xfff0ffff;
27413 /* Encoding high 4bits imm. Code below will encode the
27414 remaining low 12bits. */
27415 newval |= (value & 0x0000f000) << 4;
27416 newimm = value & 0x00000fff;
40f246e3 27417 }
e9f89963 27418 }
92e90b6e 27419 }
cc8a6dd0 27420
c19d1205 27421 if (newimm == (unsigned int)FAIL)
3631a3c8 27422 {
c19d1205
ZW
27423 as_bad_where (fixP->fx_file, fixP->fx_line,
27424 _("invalid constant (%lx) after fixup"),
27425 (unsigned long) value);
27426 break;
3631a3c8
NC
27427 }
27428
c19d1205
ZW
27429 newval |= (newimm & 0x800) << 15;
27430 newval |= (newimm & 0x700) << 4;
27431 newval |= (newimm & 0x0ff);
cc8a6dd0 27432
c19d1205
ZW
27433 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27434 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27435 break;
a737bd4d 27436
3eb17e6b 27437 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
27438 if (((unsigned long) value) > 0xffff)
27439 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 27440 _("invalid smc expression"));
2fc8bdac 27441 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27442 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27443 md_number_to_chars (buf, newval, INSN_SIZE);
27444 break;
a737bd4d 27445
90ec0d68
MGD
27446 case BFD_RELOC_ARM_HVC:
27447 if (((unsigned long) value) > 0xffff)
27448 as_bad_where (fixP->fx_file, fixP->fx_line,
27449 _("invalid hvc expression"));
27450 newval = md_chars_to_number (buf, INSN_SIZE);
27451 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27452 md_number_to_chars (buf, newval, INSN_SIZE);
27453 break;
27454
c19d1205 27455 case BFD_RELOC_ARM_SWI:
adbaf948 27456 if (fixP->tc_fix_data != 0)
c19d1205
ZW
27457 {
27458 if (((unsigned long) value) > 0xff)
27459 as_bad_where (fixP->fx_file, fixP->fx_line,
27460 _("invalid swi expression"));
2fc8bdac 27461 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
27462 newval |= value;
27463 md_number_to_chars (buf, newval, THUMB_SIZE);
27464 }
27465 else
27466 {
27467 if (((unsigned long) value) > 0x00ffffff)
27468 as_bad_where (fixP->fx_file, fixP->fx_line,
27469 _("invalid swi expression"));
2fc8bdac 27470 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
27471 newval |= value;
27472 md_number_to_chars (buf, newval, INSN_SIZE);
27473 }
27474 break;
a737bd4d 27475
c19d1205
ZW
27476 case BFD_RELOC_ARM_MULTI:
27477 if (((unsigned long) value) > 0xffff)
27478 as_bad_where (fixP->fx_file, fixP->fx_line,
27479 _("invalid expression in load/store multiple"));
27480 newval = value | md_chars_to_number (buf, INSN_SIZE);
27481 md_number_to_chars (buf, newval, INSN_SIZE);
27482 break;
a737bd4d 27483
c19d1205 27484#ifdef OBJ_ELF
39b41c9c 27485 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
27486
27487 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27488 && fixP->fx_addsy
34e77a92 27489 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27490 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27491 && THUMB_IS_FUNC (fixP->fx_addsy))
27492 /* Flip the bl to blx. This is a simple flip
27493 bit here because we generate PCREL_CALL for
27494 unconditional bls. */
27495 {
27496 newval = md_chars_to_number (buf, INSN_SIZE);
27497 newval = newval | 0x10000000;
27498 md_number_to_chars (buf, newval, INSN_SIZE);
27499 temp = 1;
27500 fixP->fx_done = 1;
27501 }
39b41c9c
PB
27502 else
27503 temp = 3;
27504 goto arm_branch_common;
27505
27506 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
27507 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27508 && fixP->fx_addsy
34e77a92 27509 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27510 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27511 && THUMB_IS_FUNC (fixP->fx_addsy))
27512 {
27513 /* This would map to a bl<cond>, b<cond>,
27514 b<always> to a Thumb function. We
27515 need to force a relocation for this particular
27516 case. */
27517 newval = md_chars_to_number (buf, INSN_SIZE);
27518 fixP->fx_done = 0;
27519 }
1a0670f3 27520 /* Fall through. */
267bf995 27521
2fc8bdac 27522 case BFD_RELOC_ARM_PLT32:
c19d1205 27523#endif
39b41c9c
PB
27524 case BFD_RELOC_ARM_PCREL_BRANCH:
27525 temp = 3;
27526 goto arm_branch_common;
a737bd4d 27527
39b41c9c 27528 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 27529
39b41c9c 27530 temp = 1;
267bf995
RR
27531 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27532 && fixP->fx_addsy
34e77a92 27533 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27534 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27535 && ARM_IS_FUNC (fixP->fx_addsy))
27536 {
27537 /* Flip the blx to a bl and warn. */
27538 const char *name = S_GET_NAME (fixP->fx_addsy);
27539 newval = 0xeb000000;
27540 as_warn_where (fixP->fx_file, fixP->fx_line,
27541 _("blx to '%s' an ARM ISA state function changed to bl"),
27542 name);
27543 md_number_to_chars (buf, newval, INSN_SIZE);
27544 temp = 3;
27545 fixP->fx_done = 1;
27546 }
27547
27548#ifdef OBJ_ELF
27549 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
477330fc 27550 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
267bf995
RR
27551#endif
27552
39b41c9c 27553 arm_branch_common:
c19d1205 27554 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
27555 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27556 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
de194d85 27557 also be clear. */
39b41c9c 27558 if (value & temp)
c19d1205 27559 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
27560 _("misaligned branch destination"));
27561 if ((value & (offsetT)0xfe000000) != (offsetT)0
27562 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 27563 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27564
2fc8bdac 27565 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27566 {
2fc8bdac
ZW
27567 newval = md_chars_to_number (buf, INSN_SIZE);
27568 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
27569 /* Set the H bit on BLX instructions. */
27570 if (temp == 1)
27571 {
27572 if (value & 2)
27573 newval |= 0x01000000;
27574 else
27575 newval &= ~0x01000000;
27576 }
2fc8bdac 27577 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 27578 }
c19d1205 27579 break;
a737bd4d 27580
25fe350b
MS
27581 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27582 /* CBZ can only branch forward. */
a737bd4d 27583
738755b0 27584 /* Attempts to use CBZ to branch to the next instruction
477330fc
RM
27585 (which, strictly speaking, are prohibited) will be turned into
27586 no-ops.
738755b0
MS
27587
27588 FIXME: It may be better to remove the instruction completely and
27589 perform relaxation. */
27590 if (value == -2)
2fc8bdac
ZW
27591 {
27592 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 27593 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
27594 md_number_to_chars (buf, newval, THUMB_SIZE);
27595 }
738755b0
MS
27596 else
27597 {
27598 if (value & ~0x7e)
08f10d51 27599 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0 27600
477330fc 27601 if (fixP->fx_done || !seg->use_rela_p)
738755b0
MS
27602 {
27603 newval = md_chars_to_number (buf, THUMB_SIZE);
27604 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27605 md_number_to_chars (buf, newval, THUMB_SIZE);
27606 }
27607 }
c19d1205 27608 break;
a737bd4d 27609
c19d1205 27610 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 27611 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 27612 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27613
2fc8bdac
ZW
27614 if (fixP->fx_done || !seg->use_rela_p)
27615 {
27616 newval = md_chars_to_number (buf, THUMB_SIZE);
27617 newval |= (value & 0x1ff) >> 1;
27618 md_number_to_chars (buf, newval, THUMB_SIZE);
27619 }
c19d1205 27620 break;
a737bd4d 27621
c19d1205 27622 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 27623 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 27624 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 27625
2fc8bdac
ZW
27626 if (fixP->fx_done || !seg->use_rela_p)
27627 {
27628 newval = md_chars_to_number (buf, THUMB_SIZE);
27629 newval |= (value & 0xfff) >> 1;
27630 md_number_to_chars (buf, newval, THUMB_SIZE);
27631 }
c19d1205 27632 break;
a737bd4d 27633
c19d1205 27634 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
27635 if (fixP->fx_addsy
27636 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27637 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27638 && ARM_IS_FUNC (fixP->fx_addsy)
27639 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27640 {
27641 /* Force a relocation for a branch 20 bits wide. */
27642 fixP->fx_done = 0;
27643 }
08f10d51 27644 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
27645 as_bad_where (fixP->fx_file, fixP->fx_line,
27646 _("conditional branch out of range"));
404ff6b5 27647
2fc8bdac
ZW
27648 if (fixP->fx_done || !seg->use_rela_p)
27649 {
27650 offsetT newval2;
27651 addressT S, J1, J2, lo, hi;
404ff6b5 27652
2fc8bdac
ZW
27653 S = (value & 0x00100000) >> 20;
27654 J2 = (value & 0x00080000) >> 19;
27655 J1 = (value & 0x00040000) >> 18;
27656 hi = (value & 0x0003f000) >> 12;
27657 lo = (value & 0x00000ffe) >> 1;
6c43fab6 27658
2fc8bdac
ZW
27659 newval = md_chars_to_number (buf, THUMB_SIZE);
27660 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27661 newval |= (S << 10) | hi;
27662 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27663 md_number_to_chars (buf, newval, THUMB_SIZE);
27664 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27665 }
c19d1205 27666 break;
6c43fab6 27667
c19d1205 27668 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
27669 /* If there is a blx from a thumb state function to
27670 another thumb function flip this to a bl and warn
27671 about it. */
27672
27673 if (fixP->fx_addsy
34e77a92 27674 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27675 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27676 && THUMB_IS_FUNC (fixP->fx_addsy))
27677 {
27678 const char *name = S_GET_NAME (fixP->fx_addsy);
27679 as_warn_where (fixP->fx_file, fixP->fx_line,
27680 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27681 name);
27682 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27683 newval = newval | 0x1000;
27684 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27685 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27686 fixP->fx_done = 1;
27687 }
27688
27689
27690 goto thumb_bl_common;
27691
c19d1205 27692 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
27693 /* A bl from Thumb state ISA to an internal ARM state function
27694 is converted to a blx. */
27695 if (fixP->fx_addsy
27696 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 27697 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
27698 && ARM_IS_FUNC (fixP->fx_addsy)
27699 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27700 {
27701 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27702 newval = newval & ~0x1000;
27703 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27704 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27705 fixP->fx_done = 1;
27706 }
27707
27708 thumb_bl_common:
27709
2fc8bdac
ZW
27710 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27711 /* For a BLX instruction, make sure that the relocation is rounded up
27712 to a word boundary. This follows the semantics of the instruction
27713 which specifies that bit 1 of the target address will come from bit
27714 1 of the base address. */
d406f3e4
JB
27715 value = (value + 3) & ~ 3;
27716
27717#ifdef OBJ_ELF
27718 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27719 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27720 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27721#endif
404ff6b5 27722
2b2f5df9
NC
27723 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27724 {
fc289b0a 27725 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
2b2f5df9
NC
27726 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27727 else if ((value & ~0x1ffffff)
27728 && ((value & ~0x1ffffff) != ~0x1ffffff))
27729 as_bad_where (fixP->fx_file, fixP->fx_line,
27730 _("Thumb2 branch out of range"));
27731 }
4a42ebbc
RR
27732
27733 if (fixP->fx_done || !seg->use_rela_p)
27734 encode_thumb2_b_bl_offset (buf, value);
27735
c19d1205 27736 break;
404ff6b5 27737
c19d1205 27738 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
27739 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27740 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 27741
2fc8bdac 27742 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 27743 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 27744
2fc8bdac 27745 break;
a737bd4d 27746
2fc8bdac
ZW
27747 case BFD_RELOC_8:
27748 if (fixP->fx_done || !seg->use_rela_p)
4b1a927e 27749 *buf = value;
c19d1205 27750 break;
a737bd4d 27751
c19d1205 27752 case BFD_RELOC_16:
2fc8bdac 27753 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 27754 md_number_to_chars (buf, value, 2);
c19d1205 27755 break;
a737bd4d 27756
c19d1205 27757#ifdef OBJ_ELF
0855e32b
NS
27758 case BFD_RELOC_ARM_TLS_CALL:
27759 case BFD_RELOC_ARM_THM_TLS_CALL:
27760 case BFD_RELOC_ARM_TLS_DESCSEQ:
27761 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
0855e32b 27762 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
27763 case BFD_RELOC_ARM_TLS_GD32:
27764 case BFD_RELOC_ARM_TLS_LE32:
27765 case BFD_RELOC_ARM_TLS_IE32:
27766 case BFD_RELOC_ARM_TLS_LDM32:
27767 case BFD_RELOC_ARM_TLS_LDO32:
27768 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4b1a927e 27769 break;
6c43fab6 27770
5c5a4843
CL
27771 /* Same handling as above, but with the arm_fdpic guard. */
27772 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27773 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27774 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27775 if (arm_fdpic)
27776 {
27777 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27778 }
27779 else
27780 {
27781 as_bad_where (fixP->fx_file, fixP->fx_line,
27782 _("Relocation supported only in FDPIC mode"));
27783 }
27784 break;
27785
c19d1205
ZW
27786 case BFD_RELOC_ARM_GOT32:
27787 case BFD_RELOC_ARM_GOTOFF:
c19d1205 27788 break;
b43420e6
NC
27789
27790 case BFD_RELOC_ARM_GOT_PREL:
27791 if (fixP->fx_done || !seg->use_rela_p)
477330fc 27792 md_number_to_chars (buf, value, 4);
b43420e6
NC
27793 break;
27794
9a6f4e97
NS
27795 case BFD_RELOC_ARM_TARGET2:
27796 /* TARGET2 is not partial-inplace, so we need to write the
477330fc
RM
27797 addend here for REL targets, because it won't be written out
27798 during reloc processing later. */
9a6f4e97
NS
27799 if (fixP->fx_done || !seg->use_rela_p)
27800 md_number_to_chars (buf, fixP->fx_offset, 4);
27801 break;
188fd7ae
CL
27802
27803 /* Relocations for FDPIC. */
27804 case BFD_RELOC_ARM_GOTFUNCDESC:
27805 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27806 case BFD_RELOC_ARM_FUNCDESC:
27807 if (arm_fdpic)
27808 {
27809 if (fixP->fx_done || !seg->use_rela_p)
27810 md_number_to_chars (buf, 0, 4);
27811 }
27812 else
27813 {
27814 as_bad_where (fixP->fx_file, fixP->fx_line,
27815 _("Relocation supported only in FDPIC mode"));
27816 }
27817 break;
c19d1205 27818#endif
6c43fab6 27819
c19d1205
ZW
27820 case BFD_RELOC_RVA:
27821 case BFD_RELOC_32:
27822 case BFD_RELOC_ARM_TARGET1:
27823 case BFD_RELOC_ARM_ROSEGREL32:
27824 case BFD_RELOC_ARM_SBREL32:
27825 case BFD_RELOC_32_PCREL:
f0927246
NC
27826#ifdef TE_PE
27827 case BFD_RELOC_32_SECREL:
27828#endif
2fc8bdac 27829 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
27830#ifdef TE_WINCE
27831 /* For WinCE we only do this for pcrel fixups. */
27832 if (fixP->fx_done || fixP->fx_pcrel)
27833#endif
27834 md_number_to_chars (buf, value, 4);
c19d1205 27835 break;
6c43fab6 27836
c19d1205
ZW
27837#ifdef OBJ_ELF
27838 case BFD_RELOC_ARM_PREL31:
2fc8bdac 27839 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
27840 {
27841 newval = md_chars_to_number (buf, 4) & 0x80000000;
27842 if ((value ^ (value >> 1)) & 0x40000000)
27843 {
27844 as_bad_where (fixP->fx_file, fixP->fx_line,
27845 _("rel31 relocation overflow"));
27846 }
27847 newval |= value & 0x7fffffff;
27848 md_number_to_chars (buf, newval, 4);
27849 }
27850 break;
c19d1205 27851#endif
a737bd4d 27852
c19d1205 27853 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 27854 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
32c36c3c 27855 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
9db2f6b4
RL
27856 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27857 newval = md_chars_to_number (buf, INSN_SIZE);
27858 else
27859 newval = get_thumb32_insn (buf);
27860 if ((newval & 0x0f200f00) == 0x0d000900)
27861 {
27862 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27863 has permitted values that are multiples of 2, in the range 0
27864 to 510. */
27865 if (value < -510 || value > 510 || (value & 1))
27866 as_bad_where (fixP->fx_file, fixP->fx_line,
27867 _("co-processor offset out of range"));
27868 }
32c36c3c
AV
27869 else if ((newval & 0xfe001f80) == 0xec000f80)
27870 {
27871 if (value < -511 || value > 512 || (value & 3))
27872 as_bad_where (fixP->fx_file, fixP->fx_line,
27873 _("co-processor offset out of range"));
27874 }
9db2f6b4 27875 else if (value < -1023 || value > 1023 || (value & 3))
c19d1205
ZW
27876 as_bad_where (fixP->fx_file, fixP->fx_line,
27877 _("co-processor offset out of range"));
27878 cp_off_common:
26d97720 27879 sign = value > 0;
c19d1205
ZW
27880 if (value < 0)
27881 value = -value;
8f06b2d8
PB
27882 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27883 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27884 newval = md_chars_to_number (buf, INSN_SIZE);
27885 else
27886 newval = get_thumb32_insn (buf);
26d97720 27887 if (value == 0)
32c36c3c
AV
27888 {
27889 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27890 newval &= 0xffffff80;
27891 else
27892 newval &= 0xffffff00;
27893 }
26d97720
NS
27894 else
27895 {
32c36c3c
AV
27896 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27897 newval &= 0xff7fff80;
27898 else
27899 newval &= 0xff7fff00;
9db2f6b4
RL
27900 if ((newval & 0x0f200f00) == 0x0d000900)
27901 {
27902 /* This is a fp16 vstr/vldr.
27903
27904 It requires the immediate offset in the instruction is shifted
27905 left by 1 to be a half-word offset.
27906
27907 Here, left shift by 1 first, and later right shift by 2
27908 should get the right offset. */
27909 value <<= 1;
27910 }
26d97720
NS
27911 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27912 }
8f06b2d8
PB
27913 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27914 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27915 md_number_to_chars (buf, newval, INSN_SIZE);
27916 else
27917 put_thumb32_insn (buf, newval);
c19d1205 27918 break;
a737bd4d 27919
c19d1205 27920 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 27921 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
27922 if (value < -255 || value > 255)
27923 as_bad_where (fixP->fx_file, fixP->fx_line,
27924 _("co-processor offset out of range"));
df7849c5 27925 value *= 4;
c19d1205 27926 goto cp_off_common;
6c43fab6 27927
c19d1205
ZW
27928 case BFD_RELOC_ARM_THUMB_OFFSET:
27929 newval = md_chars_to_number (buf, THUMB_SIZE);
27930 /* Exactly what ranges, and where the offset is inserted depends
27931 on the type of instruction, we can establish this from the
27932 top 4 bits. */
27933 switch (newval >> 12)
27934 {
27935 case 4: /* PC load. */
27936 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27937 forced to zero for these loads; md_pcrel_from has already
27938 compensated for this. */
27939 if (value & 3)
27940 as_bad_where (fixP->fx_file, fixP->fx_line,
27941 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
27942 (((unsigned long) fixP->fx_frag->fr_address
27943 + (unsigned long) fixP->fx_where) & ~3)
27944 + (unsigned long) value);
a737bd4d 27945
c19d1205
ZW
27946 if (value & ~0x3fc)
27947 as_bad_where (fixP->fx_file, fixP->fx_line,
27948 _("invalid offset, value too big (0x%08lX)"),
27949 (long) value);
a737bd4d 27950
c19d1205
ZW
27951 newval |= value >> 2;
27952 break;
a737bd4d 27953
c19d1205
ZW
27954 case 9: /* SP load/store. */
27955 if (value & ~0x3fc)
27956 as_bad_where (fixP->fx_file, fixP->fx_line,
27957 _("invalid offset, value too big (0x%08lX)"),
27958 (long) value);
27959 newval |= value >> 2;
27960 break;
6c43fab6 27961
c19d1205
ZW
27962 case 6: /* Word load/store. */
27963 if (value & ~0x7c)
27964 as_bad_where (fixP->fx_file, fixP->fx_line,
27965 _("invalid offset, value too big (0x%08lX)"),
27966 (long) value);
27967 newval |= value << 4; /* 6 - 2. */
27968 break;
a737bd4d 27969
c19d1205
ZW
27970 case 7: /* Byte load/store. */
27971 if (value & ~0x1f)
27972 as_bad_where (fixP->fx_file, fixP->fx_line,
27973 _("invalid offset, value too big (0x%08lX)"),
27974 (long) value);
27975 newval |= value << 6;
27976 break;
a737bd4d 27977
c19d1205
ZW
27978 case 8: /* Halfword load/store. */
27979 if (value & ~0x3e)
27980 as_bad_where (fixP->fx_file, fixP->fx_line,
27981 _("invalid offset, value too big (0x%08lX)"),
27982 (long) value);
27983 newval |= value << 5; /* 6 - 1. */
27984 break;
a737bd4d 27985
c19d1205
ZW
27986 default:
27987 as_bad_where (fixP->fx_file, fixP->fx_line,
27988 "Unable to process relocation for thumb opcode: %lx",
27989 (unsigned long) newval);
27990 break;
27991 }
27992 md_number_to_chars (buf, newval, THUMB_SIZE);
27993 break;
a737bd4d 27994
c19d1205
ZW
27995 case BFD_RELOC_ARM_THUMB_ADD:
27996 /* This is a complicated relocation, since we use it for all of
27997 the following immediate relocations:
a737bd4d 27998
c19d1205
ZW
27999 3bit ADD/SUB
28000 8bit ADD/SUB
28001 9bit ADD/SUB SP word-aligned
28002 10bit ADD PC/SP word-aligned
a737bd4d 28003
c19d1205
ZW
28004 The type of instruction being processed is encoded in the
28005 instruction field:
a737bd4d 28006
c19d1205
ZW
28007 0x8000 SUB
28008 0x00F0 Rd
28009 0x000F Rs
28010 */
28011 newval = md_chars_to_number (buf, THUMB_SIZE);
28012 {
28013 int rd = (newval >> 4) & 0xf;
28014 int rs = newval & 0xf;
28015 int subtract = !!(newval & 0x8000);
a737bd4d 28016
c19d1205
ZW
28017 /* Check for HI regs, only very restricted cases allowed:
28018 Adjusting SP, and using PC or SP to get an address. */
28019 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
28020 || (rs > 7 && rs != REG_SP && rs != REG_PC))
28021 as_bad_where (fixP->fx_file, fixP->fx_line,
28022 _("invalid Hi register with immediate"));
a737bd4d 28023
c19d1205
ZW
28024 /* If value is negative, choose the opposite instruction. */
28025 if (value < 0)
28026 {
28027 value = -value;
28028 subtract = !subtract;
28029 if (value < 0)
28030 as_bad_where (fixP->fx_file, fixP->fx_line,
28031 _("immediate value out of range"));
28032 }
a737bd4d 28033
c19d1205
ZW
28034 if (rd == REG_SP)
28035 {
75c11999 28036 if (value & ~0x1fc)
c19d1205
ZW
28037 as_bad_where (fixP->fx_file, fixP->fx_line,
28038 _("invalid immediate for stack address calculation"));
28039 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
28040 newval |= value >> 2;
28041 }
28042 else if (rs == REG_PC || rs == REG_SP)
28043 {
c12d2c9d
NC
28044 /* PR gas/18541. If the addition is for a defined symbol
28045 within range of an ADR instruction then accept it. */
28046 if (subtract
28047 && value == 4
28048 && fixP->fx_addsy != NULL)
28049 {
28050 subtract = 0;
28051
28052 if (! S_IS_DEFINED (fixP->fx_addsy)
28053 || S_GET_SEGMENT (fixP->fx_addsy) != seg
28054 || S_IS_WEAK (fixP->fx_addsy))
28055 {
28056 as_bad_where (fixP->fx_file, fixP->fx_line,
28057 _("address calculation needs a strongly defined nearby symbol"));
28058 }
28059 else
28060 {
28061 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
28062
28063 /* Round up to the next 4-byte boundary. */
28064 if (v & 3)
28065 v = (v + 3) & ~ 3;
28066 else
28067 v += 4;
28068 v = S_GET_VALUE (fixP->fx_addsy) - v;
28069
28070 if (v & ~0x3fc)
28071 {
28072 as_bad_where (fixP->fx_file, fixP->fx_line,
28073 _("symbol too far away"));
28074 }
28075 else
28076 {
28077 fixP->fx_done = 1;
28078 value = v;
28079 }
28080 }
28081 }
28082
c19d1205
ZW
28083 if (subtract || value & ~0x3fc)
28084 as_bad_where (fixP->fx_file, fixP->fx_line,
28085 _("invalid immediate for address calculation (value = 0x%08lX)"),
5fc177c8 28086 (unsigned long) (subtract ? - value : value));
c19d1205
ZW
28087 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
28088 newval |= rd << 8;
28089 newval |= value >> 2;
28090 }
28091 else if (rs == rd)
28092 {
28093 if (value & ~0xff)
28094 as_bad_where (fixP->fx_file, fixP->fx_line,
28095 _("immediate value out of range"));
28096 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
28097 newval |= (rd << 8) | value;
28098 }
28099 else
28100 {
28101 if (value & ~0x7)
28102 as_bad_where (fixP->fx_file, fixP->fx_line,
28103 _("immediate value out of range"));
28104 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
28105 newval |= rd | (rs << 3) | (value << 6);
28106 }
28107 }
28108 md_number_to_chars (buf, newval, THUMB_SIZE);
28109 break;
a737bd4d 28110
c19d1205
ZW
28111 case BFD_RELOC_ARM_THUMB_IMM:
28112 newval = md_chars_to_number (buf, THUMB_SIZE);
28113 if (value < 0 || value > 255)
28114 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 28115 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
28116 (long) value);
28117 newval |= value;
28118 md_number_to_chars (buf, newval, THUMB_SIZE);
28119 break;
a737bd4d 28120
c19d1205
ZW
28121 case BFD_RELOC_ARM_THUMB_SHIFT:
28122 /* 5bit shift value (0..32). LSL cannot take 32. */
28123 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
28124 temp = newval & 0xf800;
28125 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
28126 as_bad_where (fixP->fx_file, fixP->fx_line,
28127 _("invalid shift value: %ld"), (long) value);
28128 /* Shifts of zero must be encoded as LSL. */
28129 if (value == 0)
28130 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
28131 /* Shifts of 32 are encoded as zero. */
28132 else if (value == 32)
28133 value = 0;
28134 newval |= value << 6;
28135 md_number_to_chars (buf, newval, THUMB_SIZE);
28136 break;
a737bd4d 28137
c19d1205
ZW
28138 case BFD_RELOC_VTABLE_INHERIT:
28139 case BFD_RELOC_VTABLE_ENTRY:
28140 fixP->fx_done = 0;
28141 return;
6c43fab6 28142
b6895b4f
PB
28143 case BFD_RELOC_ARM_MOVW:
28144 case BFD_RELOC_ARM_MOVT:
28145 case BFD_RELOC_ARM_THUMB_MOVW:
28146 case BFD_RELOC_ARM_THUMB_MOVT:
28147 if (fixP->fx_done || !seg->use_rela_p)
28148 {
28149 /* REL format relocations are limited to a 16-bit addend. */
28150 if (!fixP->fx_done)
28151 {
39623e12 28152 if (value < -0x8000 || value > 0x7fff)
b6895b4f 28153 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 28154 _("offset out of range"));
b6895b4f
PB
28155 }
28156 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28157 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28158 {
28159 value >>= 16;
28160 }
28161
28162 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28163 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
28164 {
28165 newval = get_thumb32_insn (buf);
28166 newval &= 0xfbf08f00;
28167 newval |= (value & 0xf000) << 4;
28168 newval |= (value & 0x0800) << 15;
28169 newval |= (value & 0x0700) << 4;
28170 newval |= (value & 0x00ff);
28171 put_thumb32_insn (buf, newval);
28172 }
28173 else
28174 {
28175 newval = md_chars_to_number (buf, 4);
28176 newval &= 0xfff0f000;
28177 newval |= value & 0x0fff;
28178 newval |= (value & 0xf000) << 4;
28179 md_number_to_chars (buf, newval, 4);
28180 }
28181 }
28182 return;
28183
72d98d16
MG
28184 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28185 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28186 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28187 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28188 gas_assert (!fixP->fx_done);
28189 {
28190 bfd_vma insn;
28191 bfd_boolean is_mov;
28192 bfd_vma encoded_addend = value;
28193
28194 /* Check that addend can be encoded in instruction. */
28195 if (!seg->use_rela_p && (value < 0 || value > 255))
28196 as_bad_where (fixP->fx_file, fixP->fx_line,
28197 _("the offset 0x%08lX is not representable"),
28198 (unsigned long) encoded_addend);
28199
28200 /* Extract the instruction. */
28201 insn = md_chars_to_number (buf, THUMB_SIZE);
28202 is_mov = (insn & 0xf800) == 0x2000;
28203
28204 /* Encode insn. */
28205 if (is_mov)
28206 {
28207 if (!seg->use_rela_p)
28208 insn |= encoded_addend;
28209 }
28210 else
28211 {
28212 int rd, rs;
28213
28214 /* Extract the instruction. */
28215 /* Encoding is the following
28216 0x8000 SUB
28217 0x00F0 Rd
28218 0x000F Rs
28219 */
28220 /* The following conditions must be true :
28221 - ADD
28222 - Rd == Rs
28223 - Rd <= 7
28224 */
28225 rd = (insn >> 4) & 0xf;
28226 rs = insn & 0xf;
28227 if ((insn & 0x8000) || (rd != rs) || rd > 7)
28228 as_bad_where (fixP->fx_file, fixP->fx_line,
28229 _("Unable to process relocation for thumb opcode: %lx"),
28230 (unsigned long) insn);
28231
28232 /* Encode as ADD immediate8 thumb 1 code. */
28233 insn = 0x3000 | (rd << 8);
28234
28235 /* Place the encoded addend into the first 8 bits of the
28236 instruction. */
28237 if (!seg->use_rela_p)
28238 insn |= encoded_addend;
28239 }
28240
28241 /* Update the instruction. */
28242 md_number_to_chars (buf, insn, THUMB_SIZE);
28243 }
28244 break;
28245
4962c51a
MS
28246 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28247 case BFD_RELOC_ARM_ALU_PC_G0:
28248 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28249 case BFD_RELOC_ARM_ALU_PC_G1:
28250 case BFD_RELOC_ARM_ALU_PC_G2:
28251 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28252 case BFD_RELOC_ARM_ALU_SB_G0:
28253 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28254 case BFD_RELOC_ARM_ALU_SB_G1:
28255 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 28256 gas_assert (!fixP->fx_done);
4962c51a
MS
28257 if (!seg->use_rela_p)
28258 {
477330fc
RM
28259 bfd_vma insn;
28260 bfd_vma encoded_addend;
3ca4a8ec 28261 bfd_vma addend_abs = llabs (value);
477330fc
RM
28262
28263 /* Check that the absolute value of the addend can be
28264 expressed as an 8-bit constant plus a rotation. */
28265 encoded_addend = encode_arm_immediate (addend_abs);
28266 if (encoded_addend == (unsigned int) FAIL)
4962c51a 28267 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28268 _("the offset 0x%08lX is not representable"),
28269 (unsigned long) addend_abs);
28270
28271 /* Extract the instruction. */
28272 insn = md_chars_to_number (buf, INSN_SIZE);
28273
28274 /* If the addend is positive, use an ADD instruction.
28275 Otherwise use a SUB. Take care not to destroy the S bit. */
28276 insn &= 0xff1fffff;
28277 if (value < 0)
28278 insn |= 1 << 22;
28279 else
28280 insn |= 1 << 23;
28281
28282 /* Place the encoded addend into the first 12 bits of the
28283 instruction. */
28284 insn &= 0xfffff000;
28285 insn |= encoded_addend;
28286
28287 /* Update the instruction. */
28288 md_number_to_chars (buf, insn, INSN_SIZE);
4962c51a
MS
28289 }
28290 break;
28291
28292 case BFD_RELOC_ARM_LDR_PC_G0:
28293 case BFD_RELOC_ARM_LDR_PC_G1:
28294 case BFD_RELOC_ARM_LDR_PC_G2:
28295 case BFD_RELOC_ARM_LDR_SB_G0:
28296 case BFD_RELOC_ARM_LDR_SB_G1:
28297 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 28298 gas_assert (!fixP->fx_done);
4962c51a 28299 if (!seg->use_rela_p)
477330fc
RM
28300 {
28301 bfd_vma insn;
3ca4a8ec 28302 bfd_vma addend_abs = llabs (value);
4962c51a 28303
477330fc
RM
28304 /* Check that the absolute value of the addend can be
28305 encoded in 12 bits. */
28306 if (addend_abs >= 0x1000)
4962c51a 28307 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28308 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28309 (unsigned long) addend_abs);
28310
28311 /* Extract the instruction. */
28312 insn = md_chars_to_number (buf, INSN_SIZE);
28313
28314 /* If the addend is negative, clear bit 23 of the instruction.
28315 Otherwise set it. */
28316 if (value < 0)
28317 insn &= ~(1 << 23);
28318 else
28319 insn |= 1 << 23;
28320
28321 /* Place the absolute value of the addend into the first 12 bits
28322 of the instruction. */
28323 insn &= 0xfffff000;
28324 insn |= addend_abs;
28325
28326 /* Update the instruction. */
28327 md_number_to_chars (buf, insn, INSN_SIZE);
28328 }
4962c51a
MS
28329 break;
28330
28331 case BFD_RELOC_ARM_LDRS_PC_G0:
28332 case BFD_RELOC_ARM_LDRS_PC_G1:
28333 case BFD_RELOC_ARM_LDRS_PC_G2:
28334 case BFD_RELOC_ARM_LDRS_SB_G0:
28335 case BFD_RELOC_ARM_LDRS_SB_G1:
28336 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 28337 gas_assert (!fixP->fx_done);
4962c51a 28338 if (!seg->use_rela_p)
477330fc
RM
28339 {
28340 bfd_vma insn;
3ca4a8ec 28341 bfd_vma addend_abs = llabs (value);
4962c51a 28342
477330fc
RM
28343 /* Check that the absolute value of the addend can be
28344 encoded in 8 bits. */
28345 if (addend_abs >= 0x100)
4962c51a 28346 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28347 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28348 (unsigned long) addend_abs);
28349
28350 /* Extract the instruction. */
28351 insn = md_chars_to_number (buf, INSN_SIZE);
28352
28353 /* If the addend is negative, clear bit 23 of the instruction.
28354 Otherwise set it. */
28355 if (value < 0)
28356 insn &= ~(1 << 23);
28357 else
28358 insn |= 1 << 23;
28359
28360 /* Place the first four bits of the absolute value of the addend
28361 into the first 4 bits of the instruction, and the remaining
28362 four into bits 8 .. 11. */
28363 insn &= 0xfffff0f0;
28364 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28365
28366 /* Update the instruction. */
28367 md_number_to_chars (buf, insn, INSN_SIZE);
28368 }
4962c51a
MS
28369 break;
28370
28371 case BFD_RELOC_ARM_LDC_PC_G0:
28372 case BFD_RELOC_ARM_LDC_PC_G1:
28373 case BFD_RELOC_ARM_LDC_PC_G2:
28374 case BFD_RELOC_ARM_LDC_SB_G0:
28375 case BFD_RELOC_ARM_LDC_SB_G1:
28376 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 28377 gas_assert (!fixP->fx_done);
4962c51a 28378 if (!seg->use_rela_p)
477330fc
RM
28379 {
28380 bfd_vma insn;
3ca4a8ec 28381 bfd_vma addend_abs = llabs (value);
4962c51a 28382
477330fc
RM
28383 /* Check that the absolute value of the addend is a multiple of
28384 four and, when divided by four, fits in 8 bits. */
28385 if (addend_abs & 0x3)
4962c51a 28386 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28387 _("bad offset 0x%08lX (must be word-aligned)"),
28388 (unsigned long) addend_abs);
4962c51a 28389
477330fc 28390 if ((addend_abs >> 2) > 0xff)
4962c51a 28391 as_bad_where (fixP->fx_file, fixP->fx_line,
477330fc
RM
28392 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28393 (unsigned long) addend_abs);
28394
28395 /* Extract the instruction. */
28396 insn = md_chars_to_number (buf, INSN_SIZE);
28397
28398 /* If the addend is negative, clear bit 23 of the instruction.
28399 Otherwise set it. */
28400 if (value < 0)
28401 insn &= ~(1 << 23);
28402 else
28403 insn |= 1 << 23;
28404
28405 /* Place the addend (divided by four) into the first eight
28406 bits of the instruction. */
28407 insn &= 0xfffffff0;
28408 insn |= addend_abs >> 2;
28409
28410 /* Update the instruction. */
28411 md_number_to_chars (buf, insn, INSN_SIZE);
28412 }
4962c51a
MS
28413 break;
28414
e12437dc
AV
28415 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28416 if (fixP->fx_addsy
28417 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28418 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28419 && ARM_IS_FUNC (fixP->fx_addsy)
28420 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28421 {
28422 /* Force a relocation for a branch 5 bits wide. */
28423 fixP->fx_done = 0;
28424 }
28425 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28426 as_bad_where (fixP->fx_file, fixP->fx_line,
28427 BAD_BRANCH_OFF);
28428
28429 if (fixP->fx_done || !seg->use_rela_p)
28430 {
28431 addressT boff = value >> 1;
28432
28433 newval = md_chars_to_number (buf, THUMB_SIZE);
28434 newval |= (boff << 7);
28435 md_number_to_chars (buf, newval, THUMB_SIZE);
28436 }
28437 break;
28438
f6b2b12d
AV
28439 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28440 if (fixP->fx_addsy
28441 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28442 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28443 && ARM_IS_FUNC (fixP->fx_addsy)
28444 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28445 {
28446 fixP->fx_done = 0;
28447 }
28448 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28449 as_bad_where (fixP->fx_file, fixP->fx_line,
28450 _("branch out of range"));
28451
28452 if (fixP->fx_done || !seg->use_rela_p)
28453 {
28454 newval = md_chars_to_number (buf, THUMB_SIZE);
28455
28456 addressT boff = ((newval & 0x0780) >> 7) << 1;
28457 addressT diff = value - boff;
28458
28459 if (diff == 4)
28460 {
28461 newval |= 1 << 1; /* T bit. */
28462 }
28463 else if (diff != 2)
28464 {
28465 as_bad_where (fixP->fx_file, fixP->fx_line,
28466 _("out of range label-relative fixup value"));
28467 }
28468 md_number_to_chars (buf, newval, THUMB_SIZE);
28469 }
28470 break;
28471
e5d6e09e
AV
28472 case BFD_RELOC_ARM_THUMB_BF17:
28473 if (fixP->fx_addsy
28474 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28475 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28476 && ARM_IS_FUNC (fixP->fx_addsy)
28477 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28478 {
28479 /* Force a relocation for a branch 17 bits wide. */
28480 fixP->fx_done = 0;
28481 }
28482
28483 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28484 as_bad_where (fixP->fx_file, fixP->fx_line,
28485 BAD_BRANCH_OFF);
28486
28487 if (fixP->fx_done || !seg->use_rela_p)
28488 {
28489 offsetT newval2;
28490 addressT immA, immB, immC;
28491
28492 immA = (value & 0x0001f000) >> 12;
28493 immB = (value & 0x00000ffc) >> 2;
28494 immC = (value & 0x00000002) >> 1;
28495
28496 newval = md_chars_to_number (buf, THUMB_SIZE);
28497 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28498 newval |= immA;
28499 newval2 |= (immC << 11) | (immB << 1);
28500 md_number_to_chars (buf, newval, THUMB_SIZE);
28501 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28502 }
28503 break;
28504
1caf72a5
AV
28505 case BFD_RELOC_ARM_THUMB_BF19:
28506 if (fixP->fx_addsy
28507 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28508 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28509 && ARM_IS_FUNC (fixP->fx_addsy)
28510 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28511 {
28512 /* Force a relocation for a branch 19 bits wide. */
28513 fixP->fx_done = 0;
28514 }
28515
28516 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28517 as_bad_where (fixP->fx_file, fixP->fx_line,
28518 BAD_BRANCH_OFF);
28519
28520 if (fixP->fx_done || !seg->use_rela_p)
28521 {
28522 offsetT newval2;
28523 addressT immA, immB, immC;
28524
28525 immA = (value & 0x0007f000) >> 12;
28526 immB = (value & 0x00000ffc) >> 2;
28527 immC = (value & 0x00000002) >> 1;
28528
28529 newval = md_chars_to_number (buf, THUMB_SIZE);
28530 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28531 newval |= immA;
28532 newval2 |= (immC << 11) | (immB << 1);
28533 md_number_to_chars (buf, newval, THUMB_SIZE);
28534 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28535 }
28536 break;
28537
1889da70
AV
28538 case BFD_RELOC_ARM_THUMB_BF13:
28539 if (fixP->fx_addsy
28540 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28541 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28542 && ARM_IS_FUNC (fixP->fx_addsy)
28543 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28544 {
28545 /* Force a relocation for a branch 13 bits wide. */
28546 fixP->fx_done = 0;
28547 }
28548
28549 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28550 as_bad_where (fixP->fx_file, fixP->fx_line,
28551 BAD_BRANCH_OFF);
28552
28553 if (fixP->fx_done || !seg->use_rela_p)
28554 {
28555 offsetT newval2;
28556 addressT immA, immB, immC;
28557
28558 immA = (value & 0x00001000) >> 12;
28559 immB = (value & 0x00000ffc) >> 2;
28560 immC = (value & 0x00000002) >> 1;
28561
28562 newval = md_chars_to_number (buf, THUMB_SIZE);
28563 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28564 newval |= immA;
28565 newval2 |= (immC << 11) | (immB << 1);
28566 md_number_to_chars (buf, newval, THUMB_SIZE);
28567 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28568 }
28569 break;
28570
60f993ce
AV
28571 case BFD_RELOC_ARM_THUMB_LOOP12:
28572 if (fixP->fx_addsy
28573 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28574 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28575 && ARM_IS_FUNC (fixP->fx_addsy)
28576 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28577 {
28578 /* Force a relocation for a branch 12 bits wide. */
28579 fixP->fx_done = 0;
28580 }
28581
28582 bfd_vma insn = get_thumb32_insn (buf);
28583 /* le lr, <label> or le <label> */
28584 if (((insn & 0xffffffff) == 0xf00fc001)
28585 || ((insn & 0xffffffff) == 0xf02fc001))
28586 value = -value;
28587
28588 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28589 as_bad_where (fixP->fx_file, fixP->fx_line,
28590 BAD_BRANCH_OFF);
28591 if (fixP->fx_done || !seg->use_rela_p)
28592 {
28593 addressT imml, immh;
28594
28595 immh = (value & 0x00000ffc) >> 2;
28596 imml = (value & 0x00000002) >> 1;
28597
28598 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28599 newval |= (imml << 11) | (immh << 1);
28600 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28601 }
28602 break;
28603
845b51d6
PB
28604 case BFD_RELOC_ARM_V4BX:
28605 /* This will need to go in the object file. */
28606 fixP->fx_done = 0;
28607 break;
28608
c19d1205
ZW
28609 case BFD_RELOC_UNUSED:
28610 default:
28611 as_bad_where (fixP->fx_file, fixP->fx_line,
28612 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28613 }
6c43fab6
RE
28614}
28615
c19d1205
ZW
28616/* Translate internal representation of relocation info to BFD target
28617 format. */
a737bd4d 28618
c19d1205 28619arelent *
00a97672 28620tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 28621{
c19d1205
ZW
28622 arelent * reloc;
28623 bfd_reloc_code_real_type code;
a737bd4d 28624
325801bd 28625 reloc = XNEW (arelent);
a737bd4d 28626
325801bd 28627 reloc->sym_ptr_ptr = XNEW (asymbol *);
c19d1205
ZW
28628 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28629 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 28630
2fc8bdac 28631 if (fixp->fx_pcrel)
00a97672
RS
28632 {
28633 if (section->use_rela_p)
28634 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28635 else
28636 fixp->fx_offset = reloc->address;
28637 }
c19d1205 28638 reloc->addend = fixp->fx_offset;
a737bd4d 28639
c19d1205 28640 switch (fixp->fx_r_type)
a737bd4d 28641 {
c19d1205
ZW
28642 case BFD_RELOC_8:
28643 if (fixp->fx_pcrel)
28644 {
28645 code = BFD_RELOC_8_PCREL;
28646 break;
28647 }
1a0670f3 28648 /* Fall through. */
a737bd4d 28649
c19d1205
ZW
28650 case BFD_RELOC_16:
28651 if (fixp->fx_pcrel)
28652 {
28653 code = BFD_RELOC_16_PCREL;
28654 break;
28655 }
1a0670f3 28656 /* Fall through. */
6c43fab6 28657
c19d1205
ZW
28658 case BFD_RELOC_32:
28659 if (fixp->fx_pcrel)
28660 {
28661 code = BFD_RELOC_32_PCREL;
28662 break;
28663 }
1a0670f3 28664 /* Fall through. */
a737bd4d 28665
b6895b4f
PB
28666 case BFD_RELOC_ARM_MOVW:
28667 if (fixp->fx_pcrel)
28668 {
28669 code = BFD_RELOC_ARM_MOVW_PCREL;
28670 break;
28671 }
1a0670f3 28672 /* Fall through. */
b6895b4f
PB
28673
28674 case BFD_RELOC_ARM_MOVT:
28675 if (fixp->fx_pcrel)
28676 {
28677 code = BFD_RELOC_ARM_MOVT_PCREL;
28678 break;
28679 }
1a0670f3 28680 /* Fall through. */
b6895b4f
PB
28681
28682 case BFD_RELOC_ARM_THUMB_MOVW:
28683 if (fixp->fx_pcrel)
28684 {
28685 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28686 break;
28687 }
1a0670f3 28688 /* Fall through. */
b6895b4f
PB
28689
28690 case BFD_RELOC_ARM_THUMB_MOVT:
28691 if (fixp->fx_pcrel)
28692 {
28693 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28694 break;
28695 }
1a0670f3 28696 /* Fall through. */
b6895b4f 28697
c19d1205
ZW
28698 case BFD_RELOC_NONE:
28699 case BFD_RELOC_ARM_PCREL_BRANCH:
28700 case BFD_RELOC_ARM_PCREL_BLX:
28701 case BFD_RELOC_RVA:
28702 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28703 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28704 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28705 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28706 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28707 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
28708 case BFD_RELOC_VTABLE_ENTRY:
28709 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
28710#ifdef TE_PE
28711 case BFD_RELOC_32_SECREL:
28712#endif
c19d1205
ZW
28713 code = fixp->fx_r_type;
28714 break;
a737bd4d 28715
00adf2d4
JB
28716 case BFD_RELOC_THUMB_PCREL_BLX:
28717#ifdef OBJ_ELF
28718 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28719 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28720 else
28721#endif
28722 code = BFD_RELOC_THUMB_PCREL_BLX;
28723 break;
28724
c19d1205
ZW
28725 case BFD_RELOC_ARM_LITERAL:
28726 case BFD_RELOC_ARM_HWLITERAL:
28727 /* If this is called then the a literal has
28728 been referenced across a section boundary. */
28729 as_bad_where (fixp->fx_file, fixp->fx_line,
28730 _("literal referenced across section boundary"));
28731 return NULL;
a737bd4d 28732
c19d1205 28733#ifdef OBJ_ELF
0855e32b
NS
28734 case BFD_RELOC_ARM_TLS_CALL:
28735 case BFD_RELOC_ARM_THM_TLS_CALL:
28736 case BFD_RELOC_ARM_TLS_DESCSEQ:
28737 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
28738 case BFD_RELOC_ARM_GOT32:
28739 case BFD_RELOC_ARM_GOTOFF:
b43420e6 28740 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
28741 case BFD_RELOC_ARM_PLT32:
28742 case BFD_RELOC_ARM_TARGET1:
28743 case BFD_RELOC_ARM_ROSEGREL32:
28744 case BFD_RELOC_ARM_SBREL32:
28745 case BFD_RELOC_ARM_PREL31:
28746 case BFD_RELOC_ARM_TARGET2:
c19d1205 28747 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
28748 case BFD_RELOC_ARM_PCREL_CALL:
28749 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
28750 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28751 case BFD_RELOC_ARM_ALU_PC_G0:
28752 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28753 case BFD_RELOC_ARM_ALU_PC_G1:
28754 case BFD_RELOC_ARM_ALU_PC_G2:
28755 case BFD_RELOC_ARM_LDR_PC_G0:
28756 case BFD_RELOC_ARM_LDR_PC_G1:
28757 case BFD_RELOC_ARM_LDR_PC_G2:
28758 case BFD_RELOC_ARM_LDRS_PC_G0:
28759 case BFD_RELOC_ARM_LDRS_PC_G1:
28760 case BFD_RELOC_ARM_LDRS_PC_G2:
28761 case BFD_RELOC_ARM_LDC_PC_G0:
28762 case BFD_RELOC_ARM_LDC_PC_G1:
28763 case BFD_RELOC_ARM_LDC_PC_G2:
28764 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28765 case BFD_RELOC_ARM_ALU_SB_G0:
28766 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28767 case BFD_RELOC_ARM_ALU_SB_G1:
28768 case BFD_RELOC_ARM_ALU_SB_G2:
28769 case BFD_RELOC_ARM_LDR_SB_G0:
28770 case BFD_RELOC_ARM_LDR_SB_G1:
28771 case BFD_RELOC_ARM_LDR_SB_G2:
28772 case BFD_RELOC_ARM_LDRS_SB_G0:
28773 case BFD_RELOC_ARM_LDRS_SB_G1:
28774 case BFD_RELOC_ARM_LDRS_SB_G2:
28775 case BFD_RELOC_ARM_LDC_SB_G0:
28776 case BFD_RELOC_ARM_LDC_SB_G1:
28777 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 28778 case BFD_RELOC_ARM_V4BX:
72d98d16
MG
28779 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28780 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28781 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28782 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
188fd7ae
CL
28783 case BFD_RELOC_ARM_GOTFUNCDESC:
28784 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28785 case BFD_RELOC_ARM_FUNCDESC:
e5d6e09e 28786 case BFD_RELOC_ARM_THUMB_BF17:
1caf72a5 28787 case BFD_RELOC_ARM_THUMB_BF19:
1889da70 28788 case BFD_RELOC_ARM_THUMB_BF13:
c19d1205
ZW
28789 code = fixp->fx_r_type;
28790 break;
a737bd4d 28791
0855e32b 28792 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205 28793 case BFD_RELOC_ARM_TLS_GD32:
5c5a4843 28794 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
75c11999 28795 case BFD_RELOC_ARM_TLS_LE32:
c19d1205 28796 case BFD_RELOC_ARM_TLS_IE32:
5c5a4843 28797 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
c19d1205 28798 case BFD_RELOC_ARM_TLS_LDM32:
5c5a4843 28799 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
c19d1205
ZW
28800 /* BFD will include the symbol's address in the addend.
28801 But we don't want that, so subtract it out again here. */
28802 if (!S_IS_COMMON (fixp->fx_addsy))
28803 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28804 code = fixp->fx_r_type;
28805 break;
28806#endif
a737bd4d 28807
c19d1205
ZW
28808 case BFD_RELOC_ARM_IMMEDIATE:
28809 as_bad_where (fixp->fx_file, fixp->fx_line,
28810 _("internal relocation (type: IMMEDIATE) not fixed up"));
28811 return NULL;
a737bd4d 28812
c19d1205
ZW
28813 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28814 as_bad_where (fixp->fx_file, fixp->fx_line,
28815 _("ADRL used for a symbol not defined in the same file"));
28816 return NULL;
a737bd4d 28817
e12437dc 28818 case BFD_RELOC_THUMB_PCREL_BRANCH5:
f6b2b12d 28819 case BFD_RELOC_THUMB_PCREL_BFCSEL:
60f993ce 28820 case BFD_RELOC_ARM_THUMB_LOOP12:
e12437dc
AV
28821 as_bad_where (fixp->fx_file, fixp->fx_line,
28822 _("%s used for a symbol not defined in the same file"),
28823 bfd_get_reloc_code_name (fixp->fx_r_type));
28824 return NULL;
28825
c19d1205 28826 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
28827 if (section->use_rela_p)
28828 {
28829 code = fixp->fx_r_type;
28830 break;
28831 }
28832
c19d1205
ZW
28833 if (fixp->fx_addsy != NULL
28834 && !S_IS_DEFINED (fixp->fx_addsy)
28835 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 28836 {
c19d1205
ZW
28837 as_bad_where (fixp->fx_file, fixp->fx_line,
28838 _("undefined local label `%s'"),
28839 S_GET_NAME (fixp->fx_addsy));
28840 return NULL;
a737bd4d
NC
28841 }
28842
c19d1205
ZW
28843 as_bad_where (fixp->fx_file, fixp->fx_line,
28844 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28845 return NULL;
a737bd4d 28846
c19d1205
ZW
28847 default:
28848 {
e0471c16 28849 const char * type;
6c43fab6 28850
c19d1205
ZW
28851 switch (fixp->fx_r_type)
28852 {
28853 case BFD_RELOC_NONE: type = "NONE"; break;
28854 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28855 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 28856 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
28857 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28858 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28859 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 28860 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 28861 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
28862 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28863 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28864 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28865 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28866 default: type = _("<unknown>"); break;
28867 }
28868 as_bad_where (fixp->fx_file, fixp->fx_line,
28869 _("cannot represent %s relocation in this object file format"),
28870 type);
28871 return NULL;
28872 }
a737bd4d 28873 }
6c43fab6 28874
c19d1205
ZW
28875#ifdef OBJ_ELF
28876 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28877 && GOT_symbol
28878 && fixp->fx_addsy == GOT_symbol)
28879 {
28880 code = BFD_RELOC_ARM_GOTPC;
28881 reloc->addend = fixp->fx_offset = reloc->address;
28882 }
28883#endif
6c43fab6 28884
c19d1205 28885 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 28886
c19d1205
ZW
28887 if (reloc->howto == NULL)
28888 {
28889 as_bad_where (fixp->fx_file, fixp->fx_line,
28890 _("cannot represent %s relocation in this object file format"),
28891 bfd_get_reloc_code_name (code));
28892 return NULL;
28893 }
6c43fab6 28894
c19d1205
ZW
28895 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28896 vtable entry to be used in the relocation's section offset. */
28897 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28898 reloc->address = fixp->fx_offset;
6c43fab6 28899
c19d1205 28900 return reloc;
6c43fab6
RE
28901}
28902
c19d1205 28903/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 28904
c19d1205
ZW
28905void
28906cons_fix_new_arm (fragS * frag,
28907 int where,
28908 int size,
62ebcb5c
AM
28909 expressionS * exp,
28910 bfd_reloc_code_real_type reloc)
6c43fab6 28911{
c19d1205 28912 int pcrel = 0;
6c43fab6 28913
c19d1205
ZW
28914 /* Pick a reloc.
28915 FIXME: @@ Should look at CPU word size. */
28916 switch (size)
28917 {
28918 case 1:
62ebcb5c 28919 reloc = BFD_RELOC_8;
c19d1205
ZW
28920 break;
28921 case 2:
62ebcb5c 28922 reloc = BFD_RELOC_16;
c19d1205
ZW
28923 break;
28924 case 4:
28925 default:
62ebcb5c 28926 reloc = BFD_RELOC_32;
c19d1205
ZW
28927 break;
28928 case 8:
62ebcb5c 28929 reloc = BFD_RELOC_64;
c19d1205
ZW
28930 break;
28931 }
6c43fab6 28932
f0927246
NC
28933#ifdef TE_PE
28934 if (exp->X_op == O_secrel)
28935 {
28936 exp->X_op = O_symbol;
62ebcb5c 28937 reloc = BFD_RELOC_32_SECREL;
f0927246
NC
28938 }
28939#endif
28940
62ebcb5c 28941 fix_new_exp (frag, where, size, exp, pcrel, reloc);
c19d1205 28942}
6c43fab6 28943
4343666d 28944#if defined (OBJ_COFF)
c19d1205
ZW
28945void
28946arm_validate_fix (fixS * fixP)
6c43fab6 28947{
c19d1205
ZW
28948 /* If the destination of the branch is a defined symbol which does not have
28949 the THUMB_FUNC attribute, then we must be calling a function which has
28950 the (interfacearm) attribute. We look for the Thumb entry point to that
28951 function and change the branch to refer to that function instead. */
28952 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28953 && fixP->fx_addsy != NULL
28954 && S_IS_DEFINED (fixP->fx_addsy)
28955 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 28956 {
c19d1205 28957 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 28958 }
c19d1205
ZW
28959}
28960#endif
6c43fab6 28961
267bf995 28962
c19d1205
ZW
28963int
28964arm_force_relocation (struct fix * fixp)
28965{
28966#if defined (OBJ_COFF) && defined (TE_PE)
28967 if (fixp->fx_r_type == BFD_RELOC_RVA)
28968 return 1;
28969#endif
6c43fab6 28970
267bf995
RR
28971 /* In case we have a call or a branch to a function in ARM ISA mode from
28972 a thumb function or vice-versa force the relocation. These relocations
28973 are cleared off for some cores that might have blx and simple transformations
28974 are possible. */
28975
28976#ifdef OBJ_ELF
28977 switch (fixp->fx_r_type)
28978 {
28979 case BFD_RELOC_ARM_PCREL_JUMP:
28980 case BFD_RELOC_ARM_PCREL_CALL:
28981 case BFD_RELOC_THUMB_PCREL_BLX:
28982 if (THUMB_IS_FUNC (fixp->fx_addsy))
28983 return 1;
28984 break;
28985
28986 case BFD_RELOC_ARM_PCREL_BLX:
28987 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28988 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28989 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28990 if (ARM_IS_FUNC (fixp->fx_addsy))
28991 return 1;
28992 break;
28993
28994 default:
28995 break;
28996 }
28997#endif
28998
b5884301
PB
28999 /* Resolve these relocations even if the symbol is extern or weak.
29000 Technically this is probably wrong due to symbol preemption.
29001 In practice these relocations do not have enough range to be useful
29002 at dynamic link time, and some code (e.g. in the Linux kernel)
29003 expects these references to be resolved. */
c19d1205
ZW
29004 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
29005 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 29006 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 29007 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
29008 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
29009 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
29010 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 29011 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
29012 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
29013 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
29014 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
29015 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
29016 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
29017 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 29018 return 0;
a737bd4d 29019
4962c51a
MS
29020 /* Always leave these relocations for the linker. */
29021 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29022 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29023 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
29024 return 1;
29025
f0291e4c
PB
29026 /* Always generate relocations against function symbols. */
29027 if (fixp->fx_r_type == BFD_RELOC_32
29028 && fixp->fx_addsy
29029 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
29030 return 1;
29031
c19d1205 29032 return generic_force_reloc (fixp);
404ff6b5
AH
29033}
29034
0ffdc86c 29035#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
29036/* Relocations against function names must be left unadjusted,
29037 so that the linker can use this information to generate interworking
29038 stubs. The MIPS version of this function
c19d1205
ZW
29039 also prevents relocations that are mips-16 specific, but I do not
29040 know why it does this.
404ff6b5 29041
c19d1205
ZW
29042 FIXME:
29043 There is one other problem that ought to be addressed here, but
29044 which currently is not: Taking the address of a label (rather
29045 than a function) and then later jumping to that address. Such
29046 addresses also ought to have their bottom bit set (assuming that
29047 they reside in Thumb code), but at the moment they will not. */
404ff6b5 29048
c19d1205
ZW
29049bfd_boolean
29050arm_fix_adjustable (fixS * fixP)
404ff6b5 29051{
c19d1205
ZW
29052 if (fixP->fx_addsy == NULL)
29053 return 1;
404ff6b5 29054
e28387c3
PB
29055 /* Preserve relocations against symbols with function type. */
29056 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 29057 return FALSE;
e28387c3 29058
c19d1205
ZW
29059 if (THUMB_IS_FUNC (fixP->fx_addsy)
29060 && fixP->fx_subsy == NULL)
c921be7d 29061 return FALSE;
a737bd4d 29062
c19d1205
ZW
29063 /* We need the symbol name for the VTABLE entries. */
29064 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
29065 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 29066 return FALSE;
404ff6b5 29067
c19d1205
ZW
29068 /* Don't allow symbols to be discarded on GOT related relocs. */
29069 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
29070 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
29071 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
29072 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
5c5a4843 29073 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
c19d1205
ZW
29074 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
29075 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
5c5a4843 29076 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
c19d1205 29077 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
5c5a4843 29078 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
c19d1205 29079 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
29080 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
29081 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
29082 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
29083 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
29084 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 29085 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 29086 return FALSE;
a737bd4d 29087
4962c51a
MS
29088 /* Similarly for group relocations. */
29089 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
29090 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
29091 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 29092 return FALSE;
4962c51a 29093
79947c54
CD
29094 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
29095 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
29096 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
29097 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
29098 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
29099 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
29100 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
29101 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
29102 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 29103 return FALSE;
79947c54 29104
72d98d16
MG
29105 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
29106 offsets, so keep these symbols. */
29107 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
29108 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
29109 return FALSE;
29110
c921be7d 29111 return TRUE;
a737bd4d 29112}
0ffdc86c
NC
29113#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
29114
29115#ifdef OBJ_ELF
c19d1205
ZW
29116const char *
29117elf32_arm_target_format (void)
404ff6b5 29118{
c19d1205
ZW
29119#ifdef TE_SYMBIAN
29120 return (target_big_endian
29121 ? "elf32-bigarm-symbian"
29122 : "elf32-littlearm-symbian");
29123#elif defined (TE_VXWORKS)
29124 return (target_big_endian
29125 ? "elf32-bigarm-vxworks"
29126 : "elf32-littlearm-vxworks");
b38cadfb
NC
29127#elif defined (TE_NACL)
29128 return (target_big_endian
29129 ? "elf32-bigarm-nacl"
29130 : "elf32-littlearm-nacl");
c19d1205 29131#else
18a20338
CL
29132 if (arm_fdpic)
29133 {
29134 if (target_big_endian)
29135 return "elf32-bigarm-fdpic";
29136 else
29137 return "elf32-littlearm-fdpic";
29138 }
c19d1205 29139 else
18a20338
CL
29140 {
29141 if (target_big_endian)
29142 return "elf32-bigarm";
29143 else
29144 return "elf32-littlearm";
29145 }
c19d1205 29146#endif
404ff6b5
AH
29147}
29148
c19d1205
ZW
29149void
29150armelf_frob_symbol (symbolS * symp,
29151 int * puntp)
404ff6b5 29152{
c19d1205
ZW
29153 elf_frob_symbol (symp, puntp);
29154}
29155#endif
404ff6b5 29156
c19d1205 29157/* MD interface: Finalization. */
a737bd4d 29158
c19d1205
ZW
29159void
29160arm_cleanup (void)
29161{
29162 literal_pool * pool;
a737bd4d 29163
5ee91343
AV
29164 /* Ensure that all the predication blocks are properly closed. */
29165 check_pred_blocks_finished ();
e07e6e58 29166
c19d1205
ZW
29167 for (pool = list_of_pools; pool; pool = pool->next)
29168 {
5f4273c7 29169 /* Put it at the end of the relevant section. */
c19d1205
ZW
29170 subseg_set (pool->section, pool->sub_section);
29171#ifdef OBJ_ELF
29172 arm_elf_change_section ();
29173#endif
29174 s_ltorg (0);
29175 }
404ff6b5
AH
29176}
29177
cd000bff
DJ
29178#ifdef OBJ_ELF
29179/* Remove any excess mapping symbols generated for alignment frags in
29180 SEC. We may have created a mapping symbol before a zero byte
29181 alignment; remove it if there's a mapping symbol after the
29182 alignment. */
29183static void
29184check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
29185 void *dummy ATTRIBUTE_UNUSED)
29186{
29187 segment_info_type *seginfo = seg_info (sec);
29188 fragS *fragp;
29189
29190 if (seginfo == NULL || seginfo->frchainP == NULL)
29191 return;
29192
29193 for (fragp = seginfo->frchainP->frch_root;
29194 fragp != NULL;
29195 fragp = fragp->fr_next)
29196 {
29197 symbolS *sym = fragp->tc_frag_data.last_map;
29198 fragS *next = fragp->fr_next;
29199
29200 /* Variable-sized frags have been converted to fixed size by
29201 this point. But if this was variable-sized to start with,
29202 there will be a fixed-size frag after it. So don't handle
29203 next == NULL. */
29204 if (sym == NULL || next == NULL)
29205 continue;
29206
29207 if (S_GET_VALUE (sym) < next->fr_address)
29208 /* Not at the end of this frag. */
29209 continue;
29210 know (S_GET_VALUE (sym) == next->fr_address);
29211
29212 do
29213 {
29214 if (next->tc_frag_data.first_map != NULL)
29215 {
29216 /* Next frag starts with a mapping symbol. Discard this
29217 one. */
29218 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29219 break;
29220 }
29221
29222 if (next->fr_next == NULL)
29223 {
29224 /* This mapping symbol is at the end of the section. Discard
29225 it. */
29226 know (next->fr_fix == 0 && next->fr_var == 0);
29227 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
29228 break;
29229 }
29230
29231 /* As long as we have empty frags without any mapping symbols,
29232 keep looking. */
29233 /* If the next frag is non-empty and does not start with a
29234 mapping symbol, then this mapping symbol is required. */
29235 if (next->fr_address != next->fr_next->fr_address)
29236 break;
29237
29238 next = next->fr_next;
29239 }
29240 while (next != NULL);
29241 }
29242}
29243#endif
29244
c19d1205
ZW
29245/* Adjust the symbol table. This marks Thumb symbols as distinct from
29246 ARM ones. */
404ff6b5 29247
c19d1205
ZW
29248void
29249arm_adjust_symtab (void)
404ff6b5 29250{
c19d1205
ZW
29251#ifdef OBJ_COFF
29252 symbolS * sym;
404ff6b5 29253
c19d1205
ZW
29254 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29255 {
29256 if (ARM_IS_THUMB (sym))
29257 {
29258 if (THUMB_IS_FUNC (sym))
29259 {
29260 /* Mark the symbol as a Thumb function. */
29261 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29262 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29263 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 29264
c19d1205
ZW
29265 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29266 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29267 else
29268 as_bad (_("%s: unexpected function type: %d"),
29269 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29270 }
29271 else switch (S_GET_STORAGE_CLASS (sym))
29272 {
29273 case C_EXT:
29274 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29275 break;
29276 case C_STAT:
29277 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29278 break;
29279 case C_LABEL:
29280 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29281 break;
29282 default:
29283 /* Do nothing. */
29284 break;
29285 }
29286 }
a737bd4d 29287
c19d1205
ZW
29288 if (ARM_IS_INTERWORK (sym))
29289 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 29290 }
c19d1205
ZW
29291#endif
29292#ifdef OBJ_ELF
29293 symbolS * sym;
29294 char bind;
404ff6b5 29295
c19d1205 29296 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 29297 {
c19d1205
ZW
29298 if (ARM_IS_THUMB (sym))
29299 {
29300 elf_symbol_type * elf_sym;
404ff6b5 29301
c19d1205
ZW
29302 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29303 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 29304
b0796911
PB
29305 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29306 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
29307 {
29308 /* If it's a .thumb_func, declare it as so,
29309 otherwise tag label as .code 16. */
29310 if (THUMB_IS_FUNC (sym))
39d911fc
TP
29311 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29312 ST_BRANCH_TO_THUMB);
3ba67470 29313 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
29314 elf_sym->internal_elf_sym.st_info =
29315 ELF_ST_INFO (bind, STT_ARM_16BIT);
29316 }
29317 }
29318 }
cd000bff
DJ
29319
29320 /* Remove any overlapping mapping symbols generated by alignment frags. */
29321 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
29322 /* Now do generic ELF adjustments. */
29323 elf_adjust_symtab ();
c19d1205 29324#endif
404ff6b5
AH
29325}
29326
c19d1205 29327/* MD interface: Initialization. */
404ff6b5 29328
a737bd4d 29329static void
c19d1205 29330set_constant_flonums (void)
a737bd4d 29331{
c19d1205 29332 int i;
404ff6b5 29333
c19d1205
ZW
29334 for (i = 0; i < NUM_FLOAT_VALS; i++)
29335 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29336 abort ();
a737bd4d 29337}
404ff6b5 29338
3e9e4fcf
JB
29339/* Auto-select Thumb mode if it's the only available instruction set for the
29340 given architecture. */
29341
29342static void
29343autoselect_thumb_from_cpu_variant (void)
29344{
29345 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29346 opcode_select (16);
29347}
29348
c19d1205
ZW
29349void
29350md_begin (void)
a737bd4d 29351{
c19d1205
ZW
29352 unsigned mach;
29353 unsigned int i;
404ff6b5 29354
c19d1205
ZW
29355 if ( (arm_ops_hsh = hash_new ()) == NULL
29356 || (arm_cond_hsh = hash_new ()) == NULL
5ee91343 29357 || (arm_vcond_hsh = hash_new ()) == NULL
c19d1205
ZW
29358 || (arm_shift_hsh = hash_new ()) == NULL
29359 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 29360 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 29361 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
29362 || (arm_reloc_hsh = hash_new ()) == NULL
29363 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
29364 as_fatal (_("virtual memory exhausted"));
29365
29366 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 29367 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 29368 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 29369 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
5ee91343
AV
29370 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29371 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
c19d1205 29372 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 29373 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 29374 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29375 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 29376 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 29377 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
477330fc 29378 (void *) (v7m_psrs + i));
c19d1205 29379 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 29380 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
29381 for (i = 0;
29382 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29383 i++)
d3ce72d0 29384 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 29385 (void *) (barrier_opt_names + i));
c19d1205 29386#ifdef OBJ_ELF
3da1d841
NC
29387 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29388 {
29389 struct reloc_entry * entry = reloc_names + i;
29390
29391 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29392 /* This makes encode_branch() use the EABI versions of this relocation. */
29393 entry->reloc = BFD_RELOC_UNUSED;
29394
29395 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29396 }
c19d1205
ZW
29397#endif
29398
29399 set_constant_flonums ();
404ff6b5 29400
c19d1205
ZW
29401 /* Set the cpu variant based on the command-line options. We prefer
29402 -mcpu= over -march= if both are set (as for GCC); and we prefer
29403 -mfpu= over any other way of setting the floating point unit.
29404 Use of legacy options with new options are faulted. */
e74cfd16 29405 if (legacy_cpu)
404ff6b5 29406 {
e74cfd16 29407 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
29408 as_bad (_("use of old and new-style options to set CPU type"));
29409
4d354d8b 29410 selected_arch = *legacy_cpu;
404ff6b5 29411 }
4d354d8b
TP
29412 else if (mcpu_cpu_opt)
29413 {
29414 selected_arch = *mcpu_cpu_opt;
29415 selected_ext = *mcpu_ext_opt;
29416 }
29417 else if (march_cpu_opt)
c168ce07 29418 {
4d354d8b
TP
29419 selected_arch = *march_cpu_opt;
29420 selected_ext = *march_ext_opt;
c168ce07 29421 }
4d354d8b 29422 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
404ff6b5 29423
e74cfd16 29424 if (legacy_fpu)
c19d1205 29425 {
e74cfd16 29426 if (mfpu_opt)
c19d1205 29427 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f 29428
4d354d8b 29429 selected_fpu = *legacy_fpu;
03b1477f 29430 }
4d354d8b
TP
29431 else if (mfpu_opt)
29432 selected_fpu = *mfpu_opt;
29433 else
03b1477f 29434 {
45eb4c1b
NS
29435#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29436 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
29437 /* Some environments specify a default FPU. If they don't, infer it
29438 from the processor. */
e74cfd16 29439 if (mcpu_fpu_opt)
4d354d8b 29440 selected_fpu = *mcpu_fpu_opt;
e7da50fa 29441 else if (march_fpu_opt)
4d354d8b 29442 selected_fpu = *march_fpu_opt;
39c2da32 29443#else
4d354d8b 29444 selected_fpu = fpu_default;
39c2da32 29445#endif
03b1477f
RE
29446 }
29447
4d354d8b 29448 if (ARM_FEATURE_ZERO (selected_fpu))
03b1477f 29449 {
4d354d8b
TP
29450 if (!no_cpu_selected ())
29451 selected_fpu = fpu_default;
03b1477f 29452 else
4d354d8b 29453 selected_fpu = fpu_arch_fpa;
03b1477f
RE
29454 }
29455
ee065d83 29456#ifdef CPU_DEFAULT
4d354d8b 29457 if (ARM_FEATURE_ZERO (selected_arch))
ee065d83 29458 {
4d354d8b
TP
29459 selected_arch = cpu_default;
29460 selected_cpu = selected_arch;
ee065d83 29461 }
4d354d8b 29462 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
e74cfd16 29463#else
4d354d8b
TP
29464 /* Autodection of feature mode: allow all features in cpu_variant but leave
29465 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29466 after all instruction have been processed and we can decide what CPU
29467 should be selected. */
29468 if (ARM_FEATURE_ZERO (selected_arch))
29469 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
ee065d83 29470 else
4d354d8b 29471 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83 29472#endif
03b1477f 29473
3e9e4fcf
JB
29474 autoselect_thumb_from_cpu_variant ();
29475
e74cfd16 29476 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 29477
f17c130b 29478#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 29479 {
7cc69913
NC
29480 unsigned int flags = 0;
29481
29482#if defined OBJ_ELF
29483 flags = meabi_flags;
d507cf36
PB
29484
29485 switch (meabi_flags)
33a392fb 29486 {
d507cf36 29487 case EF_ARM_EABI_UNKNOWN:
7cc69913 29488#endif
d507cf36
PB
29489 /* Set the flags in the private structure. */
29490 if (uses_apcs_26) flags |= F_APCS26;
29491 if (support_interwork) flags |= F_INTERWORK;
29492 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 29493 if (pic_code) flags |= F_PIC;
e74cfd16 29494 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
29495 flags |= F_SOFT_FLOAT;
29496
d507cf36
PB
29497 switch (mfloat_abi_opt)
29498 {
29499 case ARM_FLOAT_ABI_SOFT:
29500 case ARM_FLOAT_ABI_SOFTFP:
29501 flags |= F_SOFT_FLOAT;
29502 break;
33a392fb 29503
d507cf36
PB
29504 case ARM_FLOAT_ABI_HARD:
29505 if (flags & F_SOFT_FLOAT)
29506 as_bad (_("hard-float conflicts with specified fpu"));
29507 break;
29508 }
03b1477f 29509
e74cfd16
PB
29510 /* Using pure-endian doubles (even if soft-float). */
29511 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 29512 flags |= F_VFP_FLOAT;
f17c130b 29513
fde78edd 29514#if defined OBJ_ELF
e74cfd16 29515 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 29516 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
29517 break;
29518
8cb51566 29519 case EF_ARM_EABI_VER4:
3a4a14e9 29520 case EF_ARM_EABI_VER5:
c19d1205 29521 /* No additional flags to set. */
d507cf36
PB
29522 break;
29523
29524 default:
29525 abort ();
29526 }
7cc69913 29527#endif
b99bd4ef
NC
29528 bfd_set_private_flags (stdoutput, flags);
29529
29530 /* We have run out flags in the COFF header to encode the
29531 status of ATPCS support, so instead we create a dummy,
c19d1205 29532 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
29533 if (atpcs)
29534 {
29535 asection * sec;
29536
29537 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29538
29539 if (sec != NULL)
29540 {
29541 bfd_set_section_flags
29542 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29543 bfd_set_section_size (stdoutput, sec, 0);
29544 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29545 }
29546 }
7cc69913 29547 }
f17c130b 29548#endif
b99bd4ef
NC
29549
29550 /* Record the CPU type as well. */
2d447fca
JM
29551 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29552 mach = bfd_mach_arm_iWMMXt2;
29553 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 29554 mach = bfd_mach_arm_iWMMXt;
e74cfd16 29555 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 29556 mach = bfd_mach_arm_XScale;
e74cfd16 29557 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 29558 mach = bfd_mach_arm_ep9312;
e74cfd16 29559 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 29560 mach = bfd_mach_arm_5TE;
e74cfd16 29561 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 29562 {
e74cfd16 29563 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29564 mach = bfd_mach_arm_5T;
29565 else
29566 mach = bfd_mach_arm_5;
29567 }
e74cfd16 29568 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 29569 {
e74cfd16 29570 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
29571 mach = bfd_mach_arm_4T;
29572 else
29573 mach = bfd_mach_arm_4;
29574 }
e74cfd16 29575 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 29576 mach = bfd_mach_arm_3M;
e74cfd16
PB
29577 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29578 mach = bfd_mach_arm_3;
29579 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29580 mach = bfd_mach_arm_2a;
29581 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29582 mach = bfd_mach_arm_2;
29583 else
29584 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
29585
29586 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29587}
29588
c19d1205 29589/* Command line processing. */
b99bd4ef 29590
c19d1205
ZW
29591/* md_parse_option
29592 Invocation line includes a switch not recognized by the base assembler.
29593 See if it's a processor-specific option.
b99bd4ef 29594
c19d1205
ZW
29595 This routine is somewhat complicated by the need for backwards
29596 compatibility (since older releases of gcc can't be changed).
29597 The new options try to make the interface as compatible as
29598 possible with GCC.
b99bd4ef 29599
c19d1205 29600 New options (supported) are:
b99bd4ef 29601
c19d1205
ZW
29602 -mcpu=<cpu name> Assemble for selected processor
29603 -march=<architecture name> Assemble for selected architecture
29604 -mfpu=<fpu architecture> Assemble for selected FPU.
29605 -EB/-mbig-endian Big-endian
29606 -EL/-mlittle-endian Little-endian
29607 -k Generate PIC code
29608 -mthumb Start in Thumb mode
29609 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 29610
278df34e 29611 -m[no-]warn-deprecated Warn about deprecated features
8b2d793c 29612 -m[no-]warn-syms Warn when symbols match instructions
267bf995 29613
c19d1205 29614 For now we will also provide support for:
b99bd4ef 29615
c19d1205
ZW
29616 -mapcs-32 32-bit Program counter
29617 -mapcs-26 26-bit Program counter
29618 -macps-float Floats passed in FP registers
29619 -mapcs-reentrant Reentrant code
29620 -matpcs
29621 (sometime these will probably be replaced with -mapcs=<list of options>
29622 and -matpcs=<list of options>)
b99bd4ef 29623
c19d1205
ZW
29624 The remaining options are only supported for back-wards compatibility.
29625 Cpu variants, the arm part is optional:
29626 -m[arm]1 Currently not supported.
29627 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29628 -m[arm]3 Arm 3 processor
29629 -m[arm]6[xx], Arm 6 processors
29630 -m[arm]7[xx][t][[d]m] Arm 7 processors
29631 -m[arm]8[10] Arm 8 processors
29632 -m[arm]9[20][tdmi] Arm 9 processors
29633 -mstrongarm[110[0]] StrongARM processors
29634 -mxscale XScale processors
29635 -m[arm]v[2345[t[e]]] Arm architectures
29636 -mall All (except the ARM1)
29637 FP variants:
29638 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29639 -mfpe-old (No float load/store multiples)
29640 -mvfpxd VFP Single precision
29641 -mvfp All VFP
29642 -mno-fpu Disable all floating point instructions
b99bd4ef 29643
c19d1205
ZW
29644 The following CPU names are recognized:
29645 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29646 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29647 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29648 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29649 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29650 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29651 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 29652
c19d1205 29653 */
b99bd4ef 29654
c19d1205 29655const char * md_shortopts = "m:k";
b99bd4ef 29656
c19d1205
ZW
29657#ifdef ARM_BI_ENDIAN
29658#define OPTION_EB (OPTION_MD_BASE + 0)
29659#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 29660#else
c19d1205
ZW
29661#if TARGET_BYTES_BIG_ENDIAN
29662#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 29663#else
c19d1205
ZW
29664#define OPTION_EL (OPTION_MD_BASE + 1)
29665#endif
b99bd4ef 29666#endif
845b51d6 29667#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
18a20338 29668#define OPTION_FDPIC (OPTION_MD_BASE + 3)
b99bd4ef 29669
c19d1205 29670struct option md_longopts[] =
b99bd4ef 29671{
c19d1205
ZW
29672#ifdef OPTION_EB
29673 {"EB", no_argument, NULL, OPTION_EB},
29674#endif
29675#ifdef OPTION_EL
29676 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 29677#endif
845b51d6 29678 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
18a20338
CL
29679#ifdef OBJ_ELF
29680 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29681#endif
c19d1205
ZW
29682 {NULL, no_argument, NULL, 0}
29683};
b99bd4ef 29684
c19d1205 29685size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 29686
c19d1205 29687struct arm_option_table
b99bd4ef 29688{
0198d5e6
TC
29689 const char * option; /* Option name to match. */
29690 const char * help; /* Help information. */
29691 int * var; /* Variable to change. */
29692 int value; /* What to change it to. */
29693 const char * deprecated; /* If non-null, print this message. */
c19d1205 29694};
b99bd4ef 29695
c19d1205
ZW
29696struct arm_option_table arm_opts[] =
29697{
29698 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29699 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29700 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29701 &support_interwork, 1, NULL},
29702 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29703 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29704 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29705 1, NULL},
29706 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29707 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29708 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29709 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29710 NULL},
b99bd4ef 29711
c19d1205
ZW
29712 /* These are recognized by the assembler, but have no affect on code. */
29713 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29714 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
29715
29716 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29717 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29718 &warn_on_deprecated, 0, NULL},
8b2d793c
NC
29719 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29720 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
e74cfd16
PB
29721 {NULL, NULL, NULL, 0, NULL}
29722};
29723
29724struct arm_legacy_option_table
29725{
0198d5e6
TC
29726 const char * option; /* Option name to match. */
29727 const arm_feature_set ** var; /* Variable to change. */
29728 const arm_feature_set value; /* What to change it to. */
29729 const char * deprecated; /* If non-null, print this message. */
e74cfd16 29730};
b99bd4ef 29731
e74cfd16
PB
29732const struct arm_legacy_option_table arm_legacy_opts[] =
29733{
c19d1205
ZW
29734 /* DON'T add any new processors to this list -- we want the whole list
29735 to go away... Add them to the processors table instead. */
e74cfd16
PB
29736 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29737 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29738 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29739 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29740 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29741 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29742 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29743 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29744 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29745 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29746 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29747 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29748 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29749 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29750 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29751 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29752 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29753 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29754 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29755 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29756 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29757 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29758 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29759 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29760 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29761 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29762 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29763 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29764 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29765 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29766 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29767 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29768 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29769 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29770 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29771 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29772 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29773 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29774 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29775 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29776 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29777 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29778 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29779 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29780 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29781 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29782 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29783 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29784 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29785 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29786 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29787 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29788 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29789 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29790 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29791 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29792 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29793 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29794 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29795 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29796 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29797 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29798 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29799 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29800 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29801 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29802 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29803 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29804 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29805 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29806 N_("use -mcpu=strongarm110")},
e74cfd16 29807 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29808 N_("use -mcpu=strongarm1100")},
e74cfd16 29809 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 29810 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
29811 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29812 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29813 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 29814
c19d1205 29815 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
29816 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29817 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29818 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29819 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29820 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29821 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29822 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29823 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29824 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29825 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29826 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29827 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29828 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29829 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29830 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29831 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29832 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29833 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 29834
c19d1205 29835 /* Floating point variants -- don't add any more to this list either. */
0198d5e6
TC
29836 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29837 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29838 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29839 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 29840 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 29841
e74cfd16 29842 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 29843};
7ed4c4c5 29844
c19d1205 29845struct arm_cpu_option_table
7ed4c4c5 29846{
0198d5e6
TC
29847 const char * name;
29848 size_t name_len;
29849 const arm_feature_set value;
29850 const arm_feature_set ext;
c19d1205
ZW
29851 /* For some CPUs we assume an FPU unless the user explicitly sets
29852 -mfpu=... */
0198d5e6 29853 const arm_feature_set default_fpu;
ee065d83
PB
29854 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29855 case. */
0198d5e6 29856 const char * canonical_name;
c19d1205 29857};
7ed4c4c5 29858
c19d1205
ZW
29859/* This list should, at a minimum, contain all the cpu names
29860 recognized by GCC. */
996b5569 29861#define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
0198d5e6 29862
e74cfd16 29863static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 29864{
996b5569
TP
29865 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29866 ARM_ARCH_NONE,
29867 FPU_ARCH_FPA),
29868 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29869 ARM_ARCH_NONE,
29870 FPU_ARCH_FPA),
29871 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29872 ARM_ARCH_NONE,
29873 FPU_ARCH_FPA),
29874 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29875 ARM_ARCH_NONE,
29876 FPU_ARCH_FPA),
29877 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29878 ARM_ARCH_NONE,
29879 FPU_ARCH_FPA),
29880 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29881 ARM_ARCH_NONE,
29882 FPU_ARCH_FPA),
29883 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29884 ARM_ARCH_NONE,
29885 FPU_ARCH_FPA),
29886 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29887 ARM_ARCH_NONE,
29888 FPU_ARCH_FPA),
29889 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29890 ARM_ARCH_NONE,
29891 FPU_ARCH_FPA),
29892 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29893 ARM_ARCH_NONE,
29894 FPU_ARCH_FPA),
29895 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29896 ARM_ARCH_NONE,
29897 FPU_ARCH_FPA),
29898 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29899 ARM_ARCH_NONE,
29900 FPU_ARCH_FPA),
29901 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29902 ARM_ARCH_NONE,
29903 FPU_ARCH_FPA),
29904 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29905 ARM_ARCH_NONE,
29906 FPU_ARCH_FPA),
29907 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29908 ARM_ARCH_NONE,
29909 FPU_ARCH_FPA),
29910 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29911 ARM_ARCH_NONE,
29912 FPU_ARCH_FPA),
29913 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29914 ARM_ARCH_NONE,
29915 FPU_ARCH_FPA),
29916 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29917 ARM_ARCH_NONE,
29918 FPU_ARCH_FPA),
29919 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29920 ARM_ARCH_NONE,
29921 FPU_ARCH_FPA),
29922 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29923 ARM_ARCH_NONE,
29924 FPU_ARCH_FPA),
29925 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29926 ARM_ARCH_NONE,
29927 FPU_ARCH_FPA),
29928 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29929 ARM_ARCH_NONE,
29930 FPU_ARCH_FPA),
29931 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29932 ARM_ARCH_NONE,
29933 FPU_ARCH_FPA),
29934 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29935 ARM_ARCH_NONE,
29936 FPU_ARCH_FPA),
29937 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29938 ARM_ARCH_NONE,
29939 FPU_ARCH_FPA),
29940 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29941 ARM_ARCH_NONE,
29942 FPU_ARCH_FPA),
29943 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29944 ARM_ARCH_NONE,
29945 FPU_ARCH_FPA),
29946 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29947 ARM_ARCH_NONE,
29948 FPU_ARCH_FPA),
29949 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29950 ARM_ARCH_NONE,
29951 FPU_ARCH_FPA),
29952 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29953 ARM_ARCH_NONE,
29954 FPU_ARCH_FPA),
29955 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29956 ARM_ARCH_NONE,
29957 FPU_ARCH_FPA),
29958 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29959 ARM_ARCH_NONE,
29960 FPU_ARCH_FPA),
29961 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29962 ARM_ARCH_NONE,
29963 FPU_ARCH_FPA),
29964 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29965 ARM_ARCH_NONE,
29966 FPU_ARCH_FPA),
29967 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29968 ARM_ARCH_NONE,
29969 FPU_ARCH_FPA),
29970 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29971 ARM_ARCH_NONE,
29972 FPU_ARCH_FPA),
29973 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29974 ARM_ARCH_NONE,
29975 FPU_ARCH_FPA),
29976 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29977 ARM_ARCH_NONE,
29978 FPU_ARCH_FPA),
29979 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29980 ARM_ARCH_NONE,
29981 FPU_ARCH_FPA),
29982 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29983 ARM_ARCH_NONE,
29984 FPU_ARCH_FPA),
29985 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29986 ARM_ARCH_NONE,
29987 FPU_ARCH_FPA),
29988 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29989 ARM_ARCH_NONE,
29990 FPU_ARCH_FPA),
29991 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29992 ARM_ARCH_NONE,
29993 FPU_ARCH_FPA),
29994 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29995 ARM_ARCH_NONE,
29996 FPU_ARCH_FPA),
29997 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29998 ARM_ARCH_NONE,
29999 FPU_ARCH_FPA),
30000 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
30001 ARM_ARCH_NONE,
30002 FPU_ARCH_FPA),
30003
c19d1205
ZW
30004 /* For V5 or later processors we default to using VFP; but the user
30005 should really set the FPU type explicitly. */
996b5569
TP
30006 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
30007 ARM_ARCH_NONE,
30008 FPU_ARCH_VFP_V2),
30009 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
30010 ARM_ARCH_NONE,
30011 FPU_ARCH_VFP_V2),
30012 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30013 ARM_ARCH_NONE,
30014 FPU_ARCH_VFP_V2),
30015 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
30016 ARM_ARCH_NONE,
30017 FPU_ARCH_VFP_V2),
30018 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
30019 ARM_ARCH_NONE,
30020 FPU_ARCH_VFP_V2),
30021 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
30022 ARM_ARCH_NONE,
30023 FPU_ARCH_VFP_V2),
30024 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
30025 ARM_ARCH_NONE,
30026 FPU_ARCH_VFP_V2),
30027 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
30028 ARM_ARCH_NONE,
30029 FPU_ARCH_VFP_V2),
30030 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
30031 ARM_ARCH_NONE,
30032 FPU_ARCH_VFP_V2),
30033 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
30034 ARM_ARCH_NONE,
30035 FPU_ARCH_VFP_V2),
30036 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
30037 ARM_ARCH_NONE,
30038 FPU_ARCH_VFP_V2),
30039 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
30040 ARM_ARCH_NONE,
30041 FPU_ARCH_VFP_V2),
30042 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
30043 ARM_ARCH_NONE,
30044 FPU_ARCH_VFP_V1),
30045 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
30046 ARM_ARCH_NONE,
30047 FPU_ARCH_VFP_V1),
30048 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
30049 ARM_ARCH_NONE,
30050 FPU_ARCH_VFP_V2),
30051 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
30052 ARM_ARCH_NONE,
30053 FPU_ARCH_VFP_V2),
30054 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
30055 ARM_ARCH_NONE,
30056 FPU_ARCH_VFP_V1),
30057 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
30058 ARM_ARCH_NONE,
30059 FPU_ARCH_VFP_V2),
30060 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
30061 ARM_ARCH_NONE,
30062 FPU_ARCH_VFP_V2),
30063 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
30064 ARM_ARCH_NONE,
30065 FPU_ARCH_VFP_V2),
30066 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
30067 ARM_ARCH_NONE,
30068 FPU_ARCH_VFP_V2),
30069 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
30070 ARM_ARCH_NONE,
30071 FPU_ARCH_VFP_V2),
30072 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
30073 ARM_ARCH_NONE,
30074 FPU_ARCH_VFP_V2),
30075 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
30076 ARM_ARCH_NONE,
30077 FPU_ARCH_VFP_V2),
30078 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
30079 ARM_ARCH_NONE,
30080 FPU_ARCH_VFP_V2),
30081 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
30082 ARM_ARCH_NONE,
30083 FPU_ARCH_VFP_V2),
30084 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
30085 ARM_ARCH_NONE,
30086 FPU_NONE),
30087 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
30088 ARM_ARCH_NONE,
30089 FPU_NONE),
30090 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
30091 ARM_ARCH_NONE,
30092 FPU_ARCH_VFP_V2),
30093 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
30094 ARM_ARCH_NONE,
30095 FPU_ARCH_VFP_V2),
30096 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
30097 ARM_ARCH_NONE,
30098 FPU_ARCH_VFP_V2),
30099 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
30100 ARM_ARCH_NONE,
30101 FPU_NONE),
30102 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
30103 ARM_ARCH_NONE,
30104 FPU_NONE),
30105 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
30106 ARM_ARCH_NONE,
30107 FPU_ARCH_VFP_V2),
30108 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
30109 ARM_ARCH_NONE,
30110 FPU_NONE),
30111 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
30112 ARM_ARCH_NONE,
30113 FPU_ARCH_VFP_V2),
30114 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
30115 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30116 FPU_NONE),
30117 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
30118 ARM_ARCH_NONE,
30119 FPU_ARCH_NEON_VFP_V4),
30120 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
30121 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30122 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30123 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
30124 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30125 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
30126 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
30127 ARM_ARCH_NONE,
30128 FPU_ARCH_NEON_VFP_V4),
30129 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
30130 ARM_ARCH_NONE,
30131 FPU_ARCH_NEON_VFP_V4),
30132 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
30133 ARM_ARCH_NONE,
30134 FPU_ARCH_NEON_VFP_V4),
30135 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
30136 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30137 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30138 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
30139 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30140 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30141 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
30142 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30143 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
30144 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
30145 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 30146 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
30147 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
30148 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30149 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30150 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
30151 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30152 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30153 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
30154 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30155 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
15a7695f
JG
30156 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
30157 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
0198d5e6 30158 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
7ebd1359 30159 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
30160 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30161 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
ef8df4ca
KT
30162 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
30163 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30164 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
996b5569
TP
30165 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
30166 ARM_ARCH_NONE,
30167 FPU_NONE),
30168 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
30169 ARM_ARCH_NONE,
30170 FPU_ARCH_VFP_V3D16),
30171 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
30172 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30173 FPU_NONE),
30174 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
30175 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30176 FPU_ARCH_VFP_V3D16),
30177 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
30178 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
30179 FPU_ARCH_VFP_V3D16),
0cda1e19
TP
30180 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
30181 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30182 FPU_ARCH_NEON_VFP_ARMV8),
996b5569
TP
30183 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
30184 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30185 FPU_NONE),
30186 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
30187 ARM_ARCH_NONE,
30188 FPU_NONE),
30189 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
30190 ARM_ARCH_NONE,
30191 FPU_NONE),
30192 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
30193 ARM_ARCH_NONE,
30194 FPU_NONE),
30195 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
30196 ARM_ARCH_NONE,
30197 FPU_NONE),
30198 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
30199 ARM_ARCH_NONE,
30200 FPU_NONE),
30201 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
30202 ARM_ARCH_NONE,
30203 FPU_NONE),
30204 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
30205 ARM_ARCH_NONE,
30206 FPU_NONE),
30207 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
30208 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30209 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
83f43c83
KT
30210 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
30211 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30212 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
c19d1205 30213 /* ??? XSCALE is really an architecture. */
996b5569
TP
30214 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
30215 ARM_ARCH_NONE,
30216 FPU_ARCH_VFP_V2),
30217
c19d1205 30218 /* ??? iwmmxt is not a processor. */
996b5569
TP
30219 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
30220 ARM_ARCH_NONE,
30221 FPU_ARCH_VFP_V2),
30222 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
30223 ARM_ARCH_NONE,
30224 FPU_ARCH_VFP_V2),
30225 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
30226 ARM_ARCH_NONE,
30227 FPU_ARCH_VFP_V2),
30228
0198d5e6 30229 /* Maverick. */
996b5569
TP
30230 ARM_CPU_OPT ("ep9312", "ARM920T",
30231 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
30232 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
30233
da4339ed 30234 /* Marvell processors. */
996b5569
TP
30235 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
30236 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30237 FPU_ARCH_VFP_V3D16),
30238 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
30239 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
30240 FPU_ARCH_NEON_VFP_V4),
da4339ed 30241
996b5569
TP
30242 /* APM X-Gene family. */
30243 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30244 ARM_ARCH_NONE,
30245 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30246 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30247 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30248 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30249
30250 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30251};
f3bad469 30252#undef ARM_CPU_OPT
7ed4c4c5 30253
34ef62f4
AV
30254struct arm_ext_table
30255{
30256 const char * name;
30257 size_t name_len;
30258 const arm_feature_set merge;
30259 const arm_feature_set clear;
30260};
30261
c19d1205 30262struct arm_arch_option_table
7ed4c4c5 30263{
34ef62f4
AV
30264 const char * name;
30265 size_t name_len;
30266 const arm_feature_set value;
30267 const arm_feature_set default_fpu;
30268 const struct arm_ext_table * ext_table;
30269};
30270
30271/* Used to add support for +E and +noE extension. */
30272#define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30273/* Used to add support for a +E extension. */
30274#define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30275/* Used to add support for a +noE extension. */
30276#define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30277
30278#define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30279 ~0 & ~FPU_ENDIAN_PURE)
30280
30281static const struct arm_ext_table armv5te_ext_table[] =
30282{
30283 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30284 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30285};
30286
30287static const struct arm_ext_table armv7_ext_table[] =
30288{
30289 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30290 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30291};
30292
30293static const struct arm_ext_table armv7ve_ext_table[] =
30294{
30295 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30296 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30297 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30298 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30299 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30300 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30301 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30302
30303 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30305
30306 /* Aliases for +simd. */
30307 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30308
30309 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30310 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30311 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30312
30313 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30314};
30315
30316static const struct arm_ext_table armv7a_ext_table[] =
30317{
30318 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30319 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30320 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30321 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30322 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30323 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30324 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30325
30326 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30327 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30328
30329 /* Aliases for +simd. */
30330 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30331 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30332
30333 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30334 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30335
30336 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30337 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30338 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30339};
30340
30341static const struct arm_ext_table armv7r_ext_table[] =
30342{
30343 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30344 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30345 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30346 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30347 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30348 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30349 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30350 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30351 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30352};
30353
30354static const struct arm_ext_table armv7em_ext_table[] =
30355{
30356 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30357 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30358 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30359 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30360 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30361 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30362 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30363};
30364
30365static const struct arm_ext_table armv8a_ext_table[] =
30366{
30367 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30368 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30369 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30370 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30371
30372 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30373 should use the +simd option to turn on FP. */
30374 ARM_REMOVE ("fp", ALL_FP),
30375 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30376 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30377 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30378};
30379
30380
30381static const struct arm_ext_table armv81a_ext_table[] =
30382{
30383 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30384 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30385 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30386
30387 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30388 should use the +simd option to turn on FP. */
30389 ARM_REMOVE ("fp", ALL_FP),
30390 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30391 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30392 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30393};
30394
30395static const struct arm_ext_table armv82a_ext_table[] =
30396{
30397 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30398 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30399 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30400 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30401 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30402 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30403
30404 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30405 should use the +simd option to turn on FP. */
30406 ARM_REMOVE ("fp", ALL_FP),
30407 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30408 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30409 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30410};
30411
30412static const struct arm_ext_table armv84a_ext_table[] =
30413{
30414 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30415 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30416 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30417 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30418
30419 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30420 should use the +simd option to turn on FP. */
30421 ARM_REMOVE ("fp", ALL_FP),
30422 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30423 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30424 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30425};
30426
30427static const struct arm_ext_table armv85a_ext_table[] =
30428{
30429 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30430 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30431 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30432 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30433
30434 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30435 should use the +simd option to turn on FP. */
30436 ARM_REMOVE ("fp", ALL_FP),
30437 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30438};
30439
30440static const struct arm_ext_table armv8m_main_ext_table[] =
30441{
30442 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30443 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30444 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30445 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30446 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30447};
30448
e0991585
AV
30449static const struct arm_ext_table armv8_1m_main_ext_table[] =
30450{
30451 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30452 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30453 ARM_EXT ("fp",
30454 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30455 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30456 ALL_FP),
30457 ARM_ADD ("fp.dp",
30458 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30459 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
a7ad558c
AV
30460 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30461 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30462 ARM_ADD ("mve.fp",
30463 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30464 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30465 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
e0991585
AV
30466 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30467};
30468
34ef62f4
AV
30469static const struct arm_ext_table armv8r_ext_table[] =
30470{
30471 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30472 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30473 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30474 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30475 ARM_REMOVE ("fp", ALL_FP),
30476 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30477 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 30478};
7ed4c4c5 30479
c19d1205
ZW
30480/* This list should, at a minimum, contain all the architecture names
30481 recognized by GCC. */
34ef62f4
AV
30482#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30483#define ARM_ARCH_OPT2(N, V, DF, ext) \
30484 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
0198d5e6 30485
e74cfd16 30486static const struct arm_arch_option_table arm_archs[] =
c19d1205 30487{
497d849d
TP
30488 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30489 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30490 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30491 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30492 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30493 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30494 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30495 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30496 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30497 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30498 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30499 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30500 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30501 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
34ef62f4
AV
30502 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30503 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30504 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30505 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30506 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30507 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30508 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30509 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30510 kept to preserve existing behaviour. */
34ef62f4
AV
30511 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30512 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30513 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30514 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30515 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
f33026a9
MW
30516 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30517 kept to preserve existing behaviour. */
34ef62f4
AV
30518 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30519 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
497d849d
TP
30520 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30521 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
34ef62f4 30522 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
c450d570
PB
30523 /* The official spelling of the ARMv7 profile variants is the dashed form.
30524 Accept the non-dashed form for compatibility with old toolchains. */
34ef62f4
AV
30525 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30526 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30527 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30528 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4
AV
30529 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30530 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
497d849d 30531 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
34ef62f4 30532 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
497d849d 30533 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
34ef62f4
AV
30534 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30535 armv8m_main),
e0991585
AV
30536 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30537 armv8_1m_main),
34ef62f4
AV
30538 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30539 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30540 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30541 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30542 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30543 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30544 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
497d849d
TP
30545 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30546 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30547 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
34ef62f4 30548 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 30549};
f3bad469 30550#undef ARM_ARCH_OPT
7ed4c4c5 30551
69133863 30552/* ISA extensions in the co-processor and main instruction set space. */
0198d5e6 30553
69133863 30554struct arm_option_extension_value_table
c19d1205 30555{
0198d5e6
TC
30556 const char * name;
30557 size_t name_len;
30558 const arm_feature_set merge_value;
30559 const arm_feature_set clear_value;
d942732e
TP
30560 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30561 indicates that an extension is available for all architectures while
30562 ARM_ANY marks an empty entry. */
0198d5e6 30563 const arm_feature_set allowed_archs[2];
c19d1205 30564};
7ed4c4c5 30565
0198d5e6
TC
30566/* The following table must be in alphabetical order with a NULL last entry. */
30567
d942732e
TP
30568#define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30569#define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
0198d5e6 30570
34ef62f4
AV
30571/* DEPRECATED: Refrain from using this table to add any new extensions, instead
30572 use the context sensitive approach using arm_ext_table's. */
69133863 30573static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 30574{
823d2571
TG
30575 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30576 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
bca38921 30577 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
823d2571
TG
30578 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30579 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
c604a79a
JW
30580 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30581 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30582 ARM_ARCH_V8_2A),
15afaa63
TP
30583 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30584 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30585 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
823d2571
TG
30586 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30587 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
b8ec4e87
JW
30588 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30589 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30590 ARM_ARCH_V8_2A),
01f48020
TC
30591 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30592 | ARM_EXT2_FP16_FML),
30593 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30594 | ARM_EXT2_FP16_FML),
30595 ARM_ARCH_V8_2A),
d942732e 30596 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
823d2571 30597 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
d942732e
TP
30598 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30599 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
3d030cdb
TP
30600 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30601 Thumb divide instruction. Due to this having the same name as the
30602 previous entry, this will be ignored when doing command-line parsing and
30603 only considered by build attribute selection code. */
30604 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30605 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30606 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
823d2571 30607 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
d942732e 30608 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
823d2571 30609 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
d942732e 30610 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
823d2571 30611 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
d942732e
TP
30612 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30613 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
823d2571 30614 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
d942732e
TP
30615 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30616 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
823d2571
TG
30617 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30618 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30619 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
ddfded2f
MW
30620 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30621 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
ced40572 30622 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
dad0c3bf
SD
30623 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30624 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30625 ARM_ARCH_V8A),
4d1464f2
MW
30626 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30627 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
ced40572 30628 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
643afb90
MW
30629 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30630 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
ced40572 30631 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
7fadb25d
SD
30632 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30633 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30634 ARM_ARCH_V8A),
d942732e 30635 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
823d2571 30636 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
d942732e
TP
30637 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30638 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
643afb90
MW
30639 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30640 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30641 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
823d2571
TG
30642 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30643 | ARM_EXT_DIV),
30644 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30645 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30646 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
d942732e
TP
30647 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30648 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
69133863 30649};
f3bad469 30650#undef ARM_EXT_OPT
69133863
MGD
30651
30652/* ISA floating-point and Advanced SIMD extensions. */
30653struct arm_option_fpu_value_table
30654{
0198d5e6
TC
30655 const char * name;
30656 const arm_feature_set value;
c19d1205 30657};
7ed4c4c5 30658
c19d1205
ZW
30659/* This list should, at a minimum, contain all the fpu names
30660 recognized by GCC. */
69133863 30661static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
30662{
30663 {"softfpa", FPU_NONE},
30664 {"fpe", FPU_ARCH_FPE},
30665 {"fpe2", FPU_ARCH_FPE},
30666 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30667 {"fpa", FPU_ARCH_FPA},
30668 {"fpa10", FPU_ARCH_FPA},
30669 {"fpa11", FPU_ARCH_FPA},
30670 {"arm7500fe", FPU_ARCH_FPA},
30671 {"softvfp", FPU_ARCH_VFP},
30672 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30673 {"vfp", FPU_ARCH_VFP_V2},
30674 {"vfp9", FPU_ARCH_VFP_V2},
d5e0ba9c 30675 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
c19d1205
ZW
30676 {"vfp10", FPU_ARCH_VFP_V2},
30677 {"vfp10-r0", FPU_ARCH_VFP_V1},
30678 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
30679 {"vfpv2", FPU_ARCH_VFP_V2},
30680 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 30681 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 30682 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
30683 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30684 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30685 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
30686 {"arm1020t", FPU_ARCH_VFP_V1},
30687 {"arm1020e", FPU_ARCH_VFP_V2},
d5e0ba9c 30688 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
c19d1205
ZW
30689 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30690 {"maverick", FPU_ARCH_MAVERICK},
d5e0ba9c 30691 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
d3375ddd 30692 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 30693 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
30694 {"vfpv4", FPU_ARCH_VFP_V4},
30695 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 30696 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
a715796b
TG
30697 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30698 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
62f3b8c8 30699 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
30700 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30701 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30702 {"crypto-neon-fp-armv8",
30703 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
d6b4b13e 30704 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
081e4c7d
MW
30705 {"crypto-neon-fp-armv8.1",
30706 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
e74cfd16
PB
30707 {NULL, ARM_ARCH_NONE}
30708};
30709
30710struct arm_option_value_table
30711{
e0471c16 30712 const char *name;
e74cfd16 30713 long value;
c19d1205 30714};
7ed4c4c5 30715
e74cfd16 30716static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
30717{
30718 {"hard", ARM_FLOAT_ABI_HARD},
30719 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30720 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 30721 {NULL, 0}
c19d1205 30722};
7ed4c4c5 30723
c19d1205 30724#ifdef OBJ_ELF
3a4a14e9 30725/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 30726static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
30727{
30728 {"gnu", EF_ARM_EABI_UNKNOWN},
30729 {"4", EF_ARM_EABI_VER4},
3a4a14e9 30730 {"5", EF_ARM_EABI_VER5},
e74cfd16 30731 {NULL, 0}
c19d1205
ZW
30732};
30733#endif
7ed4c4c5 30734
c19d1205
ZW
30735struct arm_long_option_table
30736{
0198d5e6 30737 const char * option; /* Substring to match. */
e0471c16 30738 const char * help; /* Help information. */
17b9d67d 30739 int (* func) (const char * subopt); /* Function to decode sub-option. */
e0471c16 30740 const char * deprecated; /* If non-null, print this message. */
c19d1205 30741};
7ed4c4c5 30742
c921be7d 30743static bfd_boolean
c168ce07 30744arm_parse_extension (const char *str, const arm_feature_set *opt_set,
34ef62f4
AV
30745 arm_feature_set *ext_set,
30746 const struct arm_ext_table *ext_table)
7ed4c4c5 30747{
69133863 30748 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
30749 extensions being added before being removed. We achieve this by having
30750 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 30751 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 30752 or removing it (0) and only allowing it to change in the order
69133863
MGD
30753 -1 -> 1 -> 0. */
30754 const struct arm_option_extension_value_table * opt = NULL;
d942732e 30755 const arm_feature_set arm_any = ARM_ANY;
69133863
MGD
30756 int adding_value = -1;
30757
c19d1205 30758 while (str != NULL && *str != 0)
7ed4c4c5 30759 {
82b8a785 30760 const char *ext;
f3bad469 30761 size_t len;
7ed4c4c5 30762
c19d1205
ZW
30763 if (*str != '+')
30764 {
30765 as_bad (_("invalid architectural extension"));
c921be7d 30766 return FALSE;
c19d1205 30767 }
7ed4c4c5 30768
c19d1205
ZW
30769 str++;
30770 ext = strchr (str, '+');
7ed4c4c5 30771
c19d1205 30772 if (ext != NULL)
f3bad469 30773 len = ext - str;
c19d1205 30774 else
f3bad469 30775 len = strlen (str);
7ed4c4c5 30776
f3bad469 30777 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
30778 {
30779 if (adding_value != 0)
30780 {
30781 adding_value = 0;
30782 opt = arm_extensions;
30783 }
30784
f3bad469 30785 len -= 2;
69133863
MGD
30786 str += 2;
30787 }
f3bad469 30788 else if (len > 0)
69133863
MGD
30789 {
30790 if (adding_value == -1)
30791 {
30792 adding_value = 1;
30793 opt = arm_extensions;
30794 }
30795 else if (adding_value != 1)
30796 {
30797 as_bad (_("must specify extensions to add before specifying "
30798 "those to remove"));
30799 return FALSE;
30800 }
30801 }
30802
f3bad469 30803 if (len == 0)
c19d1205
ZW
30804 {
30805 as_bad (_("missing architectural extension"));
c921be7d 30806 return FALSE;
c19d1205 30807 }
7ed4c4c5 30808
69133863
MGD
30809 gas_assert (adding_value != -1);
30810 gas_assert (opt != NULL);
30811
34ef62f4
AV
30812 if (ext_table != NULL)
30813 {
30814 const struct arm_ext_table * ext_opt = ext_table;
30815 bfd_boolean found = FALSE;
30816 for (; ext_opt->name != NULL; ext_opt++)
30817 if (ext_opt->name_len == len
30818 && strncmp (ext_opt->name, str, len) == 0)
30819 {
30820 if (adding_value)
30821 {
30822 if (ARM_FEATURE_ZERO (ext_opt->merge))
30823 /* TODO: Option not supported. When we remove the
30824 legacy table this case should error out. */
30825 continue;
30826
30827 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30828 }
30829 else
30830 {
30831 if (ARM_FEATURE_ZERO (ext_opt->clear))
30832 /* TODO: Option not supported. When we remove the
30833 legacy table this case should error out. */
30834 continue;
30835 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30836 }
30837 found = TRUE;
30838 break;
30839 }
30840 if (found)
30841 {
30842 str = ext;
30843 continue;
30844 }
30845 }
30846
69133863
MGD
30847 /* Scan over the options table trying to find an exact match. */
30848 for (; opt->name != NULL; opt++)
f3bad469 30849 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30850 {
d942732e
TP
30851 int i, nb_allowed_archs =
30852 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
69133863 30853 /* Check we can apply the extension to this architecture. */
d942732e
TP
30854 for (i = 0; i < nb_allowed_archs; i++)
30855 {
30856 /* Empty entry. */
30857 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30858 continue;
c168ce07 30859 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
d942732e
TP
30860 break;
30861 }
30862 if (i == nb_allowed_archs)
69133863
MGD
30863 {
30864 as_bad (_("extension does not apply to the base architecture"));
30865 return FALSE;
30866 }
30867
30868 /* Add or remove the extension. */
30869 if (adding_value)
4d354d8b 30870 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
69133863 30871 else
4d354d8b 30872 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
69133863 30873
3d030cdb
TP
30874 /* Allowing Thumb division instructions for ARMv7 in autodetection
30875 rely on this break so that duplicate extensions (extensions
30876 with the same name as a previous extension in the list) are not
30877 considered for command-line parsing. */
c19d1205
ZW
30878 break;
30879 }
7ed4c4c5 30880
c19d1205
ZW
30881 if (opt->name == NULL)
30882 {
69133863
MGD
30883 /* Did we fail to find an extension because it wasn't specified in
30884 alphabetical order, or because it does not exist? */
30885
30886 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 30887 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
30888 break;
30889
30890 if (opt->name == NULL)
30891 as_bad (_("unknown architectural extension `%s'"), str);
30892 else
30893 as_bad (_("architectural extensions must be specified in "
30894 "alphabetical order"));
30895
c921be7d 30896 return FALSE;
c19d1205 30897 }
69133863
MGD
30898 else
30899 {
30900 /* We should skip the extension we've just matched the next time
30901 round. */
30902 opt++;
30903 }
7ed4c4c5 30904
c19d1205
ZW
30905 str = ext;
30906 };
7ed4c4c5 30907
c921be7d 30908 return TRUE;
c19d1205 30909}
7ed4c4c5 30910
c921be7d 30911static bfd_boolean
17b9d67d 30912arm_parse_cpu (const char *str)
7ed4c4c5 30913{
f3bad469 30914 const struct arm_cpu_option_table *opt;
82b8a785 30915 const char *ext = strchr (str, '+');
f3bad469 30916 size_t len;
7ed4c4c5 30917
c19d1205 30918 if (ext != NULL)
f3bad469 30919 len = ext - str;
7ed4c4c5 30920 else
f3bad469 30921 len = strlen (str);
7ed4c4c5 30922
f3bad469 30923 if (len == 0)
7ed4c4c5 30924 {
c19d1205 30925 as_bad (_("missing cpu name `%s'"), str);
c921be7d 30926 return FALSE;
7ed4c4c5
NC
30927 }
30928
c19d1205 30929 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 30930 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30931 {
c168ce07 30932 mcpu_cpu_opt = &opt->value;
4d354d8b
TP
30933 if (mcpu_ext_opt == NULL)
30934 mcpu_ext_opt = XNEW (arm_feature_set);
30935 *mcpu_ext_opt = opt->ext;
e74cfd16 30936 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 30937 if (opt->canonical_name)
ef8e6722
JW
30938 {
30939 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30940 strcpy (selected_cpu_name, opt->canonical_name);
30941 }
ee065d83
PB
30942 else
30943 {
f3bad469 30944 size_t i;
c921be7d 30945
ef8e6722
JW
30946 if (len >= sizeof selected_cpu_name)
30947 len = (sizeof selected_cpu_name) - 1;
30948
f3bad469 30949 for (i = 0; i < len; i++)
ee065d83
PB
30950 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30951 selected_cpu_name[i] = 0;
30952 }
7ed4c4c5 30953
c19d1205 30954 if (ext != NULL)
34ef62f4 30955 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
7ed4c4c5 30956
c921be7d 30957 return TRUE;
c19d1205 30958 }
7ed4c4c5 30959
c19d1205 30960 as_bad (_("unknown cpu `%s'"), str);
c921be7d 30961 return FALSE;
7ed4c4c5
NC
30962}
30963
c921be7d 30964static bfd_boolean
17b9d67d 30965arm_parse_arch (const char *str)
7ed4c4c5 30966{
e74cfd16 30967 const struct arm_arch_option_table *opt;
82b8a785 30968 const char *ext = strchr (str, '+');
f3bad469 30969 size_t len;
7ed4c4c5 30970
c19d1205 30971 if (ext != NULL)
f3bad469 30972 len = ext - str;
7ed4c4c5 30973 else
f3bad469 30974 len = strlen (str);
7ed4c4c5 30975
f3bad469 30976 if (len == 0)
7ed4c4c5 30977 {
c19d1205 30978 as_bad (_("missing architecture name `%s'"), str);
c921be7d 30979 return FALSE;
7ed4c4c5
NC
30980 }
30981
c19d1205 30982 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 30983 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 30984 {
e74cfd16 30985 march_cpu_opt = &opt->value;
4d354d8b
TP
30986 if (march_ext_opt == NULL)
30987 march_ext_opt = XNEW (arm_feature_set);
30988 *march_ext_opt = arm_arch_none;
e74cfd16 30989 march_fpu_opt = &opt->default_fpu;
5f4273c7 30990 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 30991
c19d1205 30992 if (ext != NULL)
34ef62f4
AV
30993 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30994 opt->ext_table);
7ed4c4c5 30995
c921be7d 30996 return TRUE;
c19d1205
ZW
30997 }
30998
30999 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 31000 return FALSE;
7ed4c4c5 31001}
eb043451 31002
c921be7d 31003static bfd_boolean
17b9d67d 31004arm_parse_fpu (const char * str)
c19d1205 31005{
69133863 31006 const struct arm_option_fpu_value_table * opt;
b99bd4ef 31007
c19d1205
ZW
31008 for (opt = arm_fpus; opt->name != NULL; opt++)
31009 if (streq (opt->name, str))
31010 {
e74cfd16 31011 mfpu_opt = &opt->value;
c921be7d 31012 return TRUE;
c19d1205 31013 }
b99bd4ef 31014
c19d1205 31015 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 31016 return FALSE;
c19d1205
ZW
31017}
31018
c921be7d 31019static bfd_boolean
17b9d67d 31020arm_parse_float_abi (const char * str)
b99bd4ef 31021{
e74cfd16 31022 const struct arm_option_value_table * opt;
b99bd4ef 31023
c19d1205
ZW
31024 for (opt = arm_float_abis; opt->name != NULL; opt++)
31025 if (streq (opt->name, str))
31026 {
31027 mfloat_abi_opt = opt->value;
c921be7d 31028 return TRUE;
c19d1205 31029 }
cc8a6dd0 31030
c19d1205 31031 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 31032 return FALSE;
c19d1205 31033}
b99bd4ef 31034
c19d1205 31035#ifdef OBJ_ELF
c921be7d 31036static bfd_boolean
17b9d67d 31037arm_parse_eabi (const char * str)
c19d1205 31038{
e74cfd16 31039 const struct arm_option_value_table *opt;
cc8a6dd0 31040
c19d1205
ZW
31041 for (opt = arm_eabis; opt->name != NULL; opt++)
31042 if (streq (opt->name, str))
31043 {
31044 meabi_flags = opt->value;
c921be7d 31045 return TRUE;
c19d1205
ZW
31046 }
31047 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 31048 return FALSE;
c19d1205
ZW
31049}
31050#endif
cc8a6dd0 31051
c921be7d 31052static bfd_boolean
17b9d67d 31053arm_parse_it_mode (const char * str)
e07e6e58 31054{
c921be7d 31055 bfd_boolean ret = TRUE;
e07e6e58
NC
31056
31057 if (streq ("arm", str))
31058 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
31059 else if (streq ("thumb", str))
31060 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
31061 else if (streq ("always", str))
31062 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
31063 else if (streq ("never", str))
31064 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
31065 else
31066 {
31067 as_bad (_("unknown implicit IT mode `%s', should be "\
477330fc 31068 "arm, thumb, always, or never."), str);
c921be7d 31069 ret = FALSE;
e07e6e58
NC
31070 }
31071
31072 return ret;
31073}
31074
2e6976a8 31075static bfd_boolean
17b9d67d 31076arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
2e6976a8
DG
31077{
31078 codecomposer_syntax = TRUE;
31079 arm_comment_chars[0] = ';';
31080 arm_line_separator_chars[0] = 0;
31081 return TRUE;
31082}
31083
c19d1205
ZW
31084struct arm_long_option_table arm_long_opts[] =
31085{
31086 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
31087 arm_parse_cpu, NULL},
31088 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
31089 arm_parse_arch, NULL},
31090 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
31091 arm_parse_fpu, NULL},
31092 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
31093 arm_parse_float_abi, NULL},
31094#ifdef OBJ_ELF
7fac0536 31095 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
31096 arm_parse_eabi, NULL},
31097#endif
e07e6e58
NC
31098 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
31099 arm_parse_it_mode, NULL},
2e6976a8
DG
31100 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
31101 arm_ccs_mode, NULL},
c19d1205
ZW
31102 {NULL, NULL, 0, NULL}
31103};
cc8a6dd0 31104
c19d1205 31105int
17b9d67d 31106md_parse_option (int c, const char * arg)
c19d1205
ZW
31107{
31108 struct arm_option_table *opt;
e74cfd16 31109 const struct arm_legacy_option_table *fopt;
c19d1205 31110 struct arm_long_option_table *lopt;
b99bd4ef 31111
c19d1205 31112 switch (c)
b99bd4ef 31113 {
c19d1205
ZW
31114#ifdef OPTION_EB
31115 case OPTION_EB:
31116 target_big_endian = 1;
31117 break;
31118#endif
cc8a6dd0 31119
c19d1205
ZW
31120#ifdef OPTION_EL
31121 case OPTION_EL:
31122 target_big_endian = 0;
31123 break;
31124#endif
b99bd4ef 31125
845b51d6
PB
31126 case OPTION_FIX_V4BX:
31127 fix_v4bx = TRUE;
31128 break;
31129
18a20338
CL
31130#ifdef OBJ_ELF
31131 case OPTION_FDPIC:
31132 arm_fdpic = TRUE;
31133 break;
31134#endif /* OBJ_ELF */
31135
c19d1205
ZW
31136 case 'a':
31137 /* Listing option. Just ignore these, we don't support additional
31138 ones. */
31139 return 0;
b99bd4ef 31140
c19d1205
ZW
31141 default:
31142 for (opt = arm_opts; opt->option != NULL; opt++)
31143 {
31144 if (c == opt->option[0]
31145 && ((arg == NULL && opt->option[1] == 0)
31146 || streq (arg, opt->option + 1)))
31147 {
c19d1205 31148 /* If the option is deprecated, tell the user. */
278df34e 31149 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
31150 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31151 arg ? arg : "", _(opt->deprecated));
b99bd4ef 31152
c19d1205
ZW
31153 if (opt->var != NULL)
31154 *opt->var = opt->value;
cc8a6dd0 31155
c19d1205
ZW
31156 return 1;
31157 }
31158 }
b99bd4ef 31159
e74cfd16
PB
31160 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
31161 {
31162 if (c == fopt->option[0]
31163 && ((arg == NULL && fopt->option[1] == 0)
31164 || streq (arg, fopt->option + 1)))
31165 {
e74cfd16 31166 /* If the option is deprecated, tell the user. */
278df34e 31167 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
31168 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
31169 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
31170
31171 if (fopt->var != NULL)
31172 *fopt->var = &fopt->value;
31173
31174 return 1;
31175 }
31176 }
31177
c19d1205
ZW
31178 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31179 {
31180 /* These options are expected to have an argument. */
31181 if (c == lopt->option[0]
31182 && arg != NULL
31183 && strncmp (arg, lopt->option + 1,
31184 strlen (lopt->option + 1)) == 0)
31185 {
c19d1205 31186 /* If the option is deprecated, tell the user. */
278df34e 31187 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
31188 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
31189 _(lopt->deprecated));
b99bd4ef 31190
c19d1205
ZW
31191 /* Call the sup-option parser. */
31192 return lopt->func (arg + strlen (lopt->option) - 1);
31193 }
31194 }
a737bd4d 31195
c19d1205
ZW
31196 return 0;
31197 }
a394c00f 31198
c19d1205
ZW
31199 return 1;
31200}
a394c00f 31201
c19d1205
ZW
31202void
31203md_show_usage (FILE * fp)
a394c00f 31204{
c19d1205
ZW
31205 struct arm_option_table *opt;
31206 struct arm_long_option_table *lopt;
a394c00f 31207
c19d1205 31208 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 31209
c19d1205
ZW
31210 for (opt = arm_opts; opt->option != NULL; opt++)
31211 if (opt->help != NULL)
31212 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 31213
c19d1205
ZW
31214 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
31215 if (lopt->help != NULL)
31216 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 31217
c19d1205
ZW
31218#ifdef OPTION_EB
31219 fprintf (fp, _("\
31220 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
31221#endif
31222
c19d1205
ZW
31223#ifdef OPTION_EL
31224 fprintf (fp, _("\
31225 -EL assemble code for a little-endian cpu\n"));
a737bd4d 31226#endif
845b51d6
PB
31227
31228 fprintf (fp, _("\
31229 --fix-v4bx Allow BX in ARMv4 code\n"));
18a20338
CL
31230
31231#ifdef OBJ_ELF
31232 fprintf (fp, _("\
31233 --fdpic generate an FDPIC object file\n"));
31234#endif /* OBJ_ELF */
c19d1205 31235}
ee065d83 31236
ee065d83 31237#ifdef OBJ_ELF
0198d5e6 31238
62b3e311
PB
31239typedef struct
31240{
31241 int val;
31242 arm_feature_set flags;
31243} cpu_arch_ver_table;
31244
2c6b98ea
TP
31245/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31246 chronologically for architectures, with an exception for ARMv6-M and
31247 ARMv6S-M due to legacy reasons. No new architecture should have a
31248 special case. This allows for build attribute selection results to be
31249 stable when new architectures are added. */
62b3e311
PB
31250static const cpu_arch_ver_table cpu_arch_ver[] =
31251{
031254f2
AV
31252 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31253 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31254 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31255 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31256 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31257 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31258 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31259 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31260 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31261 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31262 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31263 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31264 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31265 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31266 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31267 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31268 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31269 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31270 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31271 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31272 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31273 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31274 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31275 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
2c6b98ea
TP
31276
31277 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31278 always selected build attributes to match those of ARMv6-M
31279 (resp. ARMv6S-M). However, due to these architectures being a strict
31280 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31281 would be selected when fully respecting chronology of architectures.
31282 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31283 move them before ARMv7 architectures. */
031254f2
AV
31284 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31285 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31286
31287 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31288 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31289 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31290 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31291 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31292 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31293 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31294 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31295 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31296 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31297 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31298 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31299 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31300 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31301 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31302 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31303 {-1, ARM_ARCH_NONE}
62b3e311
PB
31304};
31305
ee3c0378 31306/* Set an attribute if it has not already been set by the user. */
0198d5e6 31307
ee3c0378
AS
31308static void
31309aeabi_set_attribute_int (int tag, int value)
31310{
31311 if (tag < 1
31312 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31313 || !attributes_set_explicitly[tag])
31314 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31315}
31316
31317static void
31318aeabi_set_attribute_string (int tag, const char *value)
31319{
31320 if (tag < 1
31321 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31322 || !attributes_set_explicitly[tag])
31323 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31324}
31325
2c6b98ea
TP
31326/* Return whether features in the *NEEDED feature set are available via
31327 extensions for the architecture whose feature set is *ARCH_FSET. */
0198d5e6 31328
2c6b98ea
TP
31329static bfd_boolean
31330have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31331 const arm_feature_set *needed)
31332{
31333 int i, nb_allowed_archs;
31334 arm_feature_set ext_fset;
31335 const struct arm_option_extension_value_table *opt;
31336
31337 ext_fset = arm_arch_none;
31338 for (opt = arm_extensions; opt->name != NULL; opt++)
31339 {
31340 /* Extension does not provide any feature we need. */
31341 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31342 continue;
31343
31344 nb_allowed_archs =
31345 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31346 for (i = 0; i < nb_allowed_archs; i++)
31347 {
31348 /* Empty entry. */
31349 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31350 break;
31351
31352 /* Extension is available, add it. */
31353 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31354 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31355 }
31356 }
31357
31358 /* Can we enable all features in *needed? */
31359 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31360}
31361
31362/* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31363 a given architecture feature set *ARCH_EXT_FSET including extension feature
31364 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31365 - if true, check for an exact match of the architecture modulo extensions;
31366 - otherwise, select build attribute value of the first superset
31367 architecture released so that results remains stable when new architectures
31368 are added.
31369 For -march/-mcpu=all the build attribute value of the most featureful
31370 architecture is returned. Tag_CPU_arch_profile result is returned in
31371 PROFILE. */
0198d5e6 31372
2c6b98ea
TP
31373static int
31374get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31375 const arm_feature_set *ext_fset,
31376 char *profile, int exact_match)
31377{
31378 arm_feature_set arch_fset;
31379 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31380
31381 /* Select most featureful architecture with all its extensions if building
31382 for -march=all as the feature sets used to set build attributes. */
31383 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31384 {
31385 /* Force revisiting of decision for each new architecture. */
031254f2 31386 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
2c6b98ea
TP
31387 *profile = 'A';
31388 return TAG_CPU_ARCH_V8;
31389 }
31390
31391 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31392
31393 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31394 {
31395 arm_feature_set known_arch_fset;
31396
31397 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31398 if (exact_match)
31399 {
31400 /* Base architecture match user-specified architecture and
31401 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31402 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31403 {
31404 p_ver_ret = p_ver;
31405 goto found;
31406 }
31407 /* Base architecture match user-specified architecture only
31408 (eg. ARMv6-M in the same case as above). Record it in case we
31409 find a match with above condition. */
31410 else if (p_ver_ret == NULL
31411 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31412 p_ver_ret = p_ver;
31413 }
31414 else
31415 {
31416
31417 /* Architecture has all features wanted. */
31418 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31419 {
31420 arm_feature_set added_fset;
31421
31422 /* Compute features added by this architecture over the one
31423 recorded in p_ver_ret. */
31424 if (p_ver_ret != NULL)
31425 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31426 p_ver_ret->flags);
31427 /* First architecture that match incl. with extensions, or the
31428 only difference in features over the recorded match is
31429 features that were optional and are now mandatory. */
31430 if (p_ver_ret == NULL
31431 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31432 {
31433 p_ver_ret = p_ver;
31434 goto found;
31435 }
31436 }
31437 else if (p_ver_ret == NULL)
31438 {
31439 arm_feature_set needed_ext_fset;
31440
31441 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31442
31443 /* Architecture has all features needed when using some
31444 extensions. Record it and continue searching in case there
31445 exist an architecture providing all needed features without
31446 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31447 OS extension). */
31448 if (have_ext_for_needed_feat_p (&known_arch_fset,
31449 &needed_ext_fset))
31450 p_ver_ret = p_ver;
31451 }
31452 }
31453 }
31454
31455 if (p_ver_ret == NULL)
31456 return -1;
31457
31458found:
31459 /* Tag_CPU_arch_profile. */
31460 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31461 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31462 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31463 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31464 *profile = 'A';
31465 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31466 *profile = 'R';
31467 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31468 *profile = 'M';
31469 else
31470 *profile = '\0';
31471 return p_ver_ret->val;
31472}
31473
ee065d83 31474/* Set the public EABI object attributes. */
0198d5e6 31475
c168ce07 31476static void
ee065d83
PB
31477aeabi_set_public_attributes (void)
31478{
b90d5ba0 31479 char profile = '\0';
2c6b98ea 31480 int arch = -1;
90ec0d68 31481 int virt_sec = 0;
bca38921 31482 int fp16_optional = 0;
2c6b98ea
TP
31483 int skip_exact_match = 0;
31484 arm_feature_set flags, flags_arch, flags_ext;
ee065d83 31485
54bab281
TP
31486 /* Autodetection mode, choose the architecture based the instructions
31487 actually used. */
31488 if (no_cpu_selected ())
31489 {
31490 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
ddd7f988 31491
54bab281
TP
31492 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31493 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
ddd7f988 31494
54bab281
TP
31495 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31496 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
ddd7f988 31497
54bab281 31498 /* Code run during relaxation relies on selected_cpu being set. */
4d354d8b
TP
31499 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31500 flags_ext = arm_arch_none;
31501 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31502 selected_ext = flags_ext;
54bab281
TP
31503 selected_cpu = flags;
31504 }
31505 /* Otherwise, choose the architecture based on the capabilities of the
31506 requested cpu. */
31507 else
4d354d8b
TP
31508 {
31509 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31510 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31511 flags_ext = selected_ext;
31512 flags = selected_cpu;
31513 }
31514 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
7f78eb34 31515
ddd7f988 31516 /* Allow the user to override the reported architecture. */
4d354d8b 31517 if (!ARM_FEATURE_ZERO (selected_object_arch))
7a1d4c38 31518 {
4d354d8b 31519 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
2c6b98ea 31520 flags_ext = arm_arch_none;
7a1d4c38 31521 }
2c6b98ea 31522 else
4d354d8b 31523 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
2c6b98ea
TP
31524
31525 /* When this function is run again after relaxation has happened there is no
31526 way to determine whether an architecture or CPU was specified by the user:
31527 - selected_cpu is set above for relaxation to work;
31528 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31529 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31530 Therefore, if not in -march=all case we first try an exact match and fall
31531 back to autodetection. */
31532 if (!skip_exact_match)
31533 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31534 if (arch == -1)
31535 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31536 if (arch == -1)
31537 as_bad (_("no architecture contains all the instructions used\n"));
9e3c6df6 31538
ee065d83
PB
31539 /* Tag_CPU_name. */
31540 if (selected_cpu_name[0])
31541 {
91d6fa6a 31542 char *q;
ee065d83 31543
91d6fa6a
NC
31544 q = selected_cpu_name;
31545 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
31546 {
31547 int i;
5f4273c7 31548
91d6fa6a
NC
31549 q += 4;
31550 for (i = 0; q[i]; i++)
31551 q[i] = TOUPPER (q[i]);
ee065d83 31552 }
91d6fa6a 31553 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 31554 }
62f3b8c8 31555
ee065d83 31556 /* Tag_CPU_arch. */
ee3c0378 31557 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 31558
62b3e311 31559 /* Tag_CPU_arch_profile. */
69239280
MGD
31560 if (profile != '\0')
31561 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 31562
15afaa63 31563 /* Tag_DSP_extension. */
4d354d8b 31564 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
6c290d53 31565 aeabi_set_attribute_int (Tag_DSP_extension, 1);
15afaa63 31566
2c6b98ea 31567 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
ee065d83 31568 /* Tag_ARM_ISA_use. */
ee3c0378 31569 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
2c6b98ea 31570 || ARM_FEATURE_ZERO (flags_arch))
ee3c0378 31571 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 31572
ee065d83 31573 /* Tag_THUMB_ISA_use. */
ee3c0378 31574 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
2c6b98ea 31575 || ARM_FEATURE_ZERO (flags_arch))
4ed7ed8d
TP
31576 {
31577 int thumb_isa_use;
31578
31579 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
16a1fa25 31580 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
4ed7ed8d
TP
31581 thumb_isa_use = 3;
31582 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31583 thumb_isa_use = 2;
31584 else
31585 thumb_isa_use = 1;
31586 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31587 }
62f3b8c8 31588
ee065d83 31589 /* Tag_VFP_arch. */
a715796b
TG
31590 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31591 aeabi_set_attribute_int (Tag_VFP_arch,
31592 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31593 ? 7 : 8);
bca38921 31594 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
31595 aeabi_set_attribute_int (Tag_VFP_arch,
31596 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31597 ? 5 : 6);
31598 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
31599 {
31600 fp16_optional = 1;
31601 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31602 }
ada65aa3 31603 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
31604 {
31605 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31606 fp16_optional = 1;
31607 }
ee3c0378
AS
31608 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31609 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31610 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
477330fc 31611 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
ee3c0378 31612 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 31613
4547cb56
NC
31614 /* Tag_ABI_HardFP_use. */
31615 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31616 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31617 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31618
ee065d83 31619 /* Tag_WMMX_arch. */
ee3c0378
AS
31620 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31621 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31622 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31623 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 31624
ee3c0378 31625 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
9411fd44
MW
31626 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31627 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31628 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
bca38921
MGD
31629 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31630 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31631 {
31632 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31633 {
31634 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31635 }
31636 else
31637 {
31638 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31639 fp16_optional = 1;
31640 }
31641 }
fa94de6b 31642
a7ad558c
AV
31643 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31644 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31645 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31646 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31647
ee3c0378 31648 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 31649 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 31650 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 31651
69239280
MGD
31652 /* Tag_DIV_use.
31653
31654 We set Tag_DIV_use to two when integer divide instructions have been used
31655 in ARM state, or when Thumb integer divide instructions have been used,
31656 but we have no architecture profile set, nor have we any ARM instructions.
31657
4ed7ed8d
TP
31658 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31659 by the base architecture.
bca38921 31660
69239280 31661 For new architectures we will have to check these tests. */
031254f2 31662 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4ed7ed8d
TP
31663 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31664 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
bca38921
MGD
31665 aeabi_set_attribute_int (Tag_DIV_use, 0);
31666 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31667 || (profile == '\0'
31668 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31669 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 31670 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
31671
31672 /* Tag_MP_extension_use. */
31673 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31674 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
31675
31676 /* Tag Virtualization_use. */
31677 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
31678 virt_sec |= 1;
31679 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31680 virt_sec |= 2;
31681 if (virt_sec != 0)
31682 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
31683}
31684
c168ce07
TP
31685/* Post relaxation hook. Recompute ARM attributes now that relaxation is
31686 finished and free extension feature bits which will not be used anymore. */
0198d5e6 31687
c168ce07
TP
31688void
31689arm_md_post_relax (void)
31690{
31691 aeabi_set_public_attributes ();
4d354d8b
TP
31692 XDELETE (mcpu_ext_opt);
31693 mcpu_ext_opt = NULL;
31694 XDELETE (march_ext_opt);
31695 march_ext_opt = NULL;
c168ce07
TP
31696}
31697
104d59d1 31698/* Add the default contents for the .ARM.attributes section. */
0198d5e6 31699
ee065d83
PB
31700void
31701arm_md_end (void)
31702{
ee065d83
PB
31703 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31704 return;
31705
31706 aeabi_set_public_attributes ();
ee065d83 31707}
8463be01 31708#endif /* OBJ_ELF */
ee065d83 31709
ee065d83
PB
31710/* Parse a .cpu directive. */
31711
31712static void
31713s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31714{
e74cfd16 31715 const struct arm_cpu_option_table *opt;
ee065d83
PB
31716 char *name;
31717 char saved_char;
31718
31719 name = input_line_pointer;
5f4273c7 31720 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31721 input_line_pointer++;
31722 saved_char = *input_line_pointer;
31723 *input_line_pointer = 0;
31724
31725 /* Skip the first "all" entry. */
31726 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31727 if (streq (opt->name, name))
31728 {
4d354d8b
TP
31729 selected_arch = opt->value;
31730 selected_ext = opt->ext;
31731 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
ee065d83 31732 if (opt->canonical_name)
5f4273c7 31733 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
31734 else
31735 {
31736 int i;
31737 for (i = 0; opt->name[i]; i++)
31738 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 31739
ee065d83
PB
31740 selected_cpu_name[i] = 0;
31741 }
4d354d8b
TP
31742 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31743
ee065d83
PB
31744 *input_line_pointer = saved_char;
31745 demand_empty_rest_of_line ();
31746 return;
31747 }
31748 as_bad (_("unknown cpu `%s'"), name);
31749 *input_line_pointer = saved_char;
31750 ignore_rest_of_line ();
31751}
31752
ee065d83
PB
31753/* Parse a .arch directive. */
31754
31755static void
31756s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31757{
e74cfd16 31758 const struct arm_arch_option_table *opt;
ee065d83
PB
31759 char saved_char;
31760 char *name;
31761
31762 name = input_line_pointer;
5f4273c7 31763 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31764 input_line_pointer++;
31765 saved_char = *input_line_pointer;
31766 *input_line_pointer = 0;
31767
31768 /* Skip the first "all" entry. */
31769 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31770 if (streq (opt->name, name))
31771 {
4d354d8b
TP
31772 selected_arch = opt->value;
31773 selected_ext = arm_arch_none;
31774 selected_cpu = selected_arch;
5f4273c7 31775 strcpy (selected_cpu_name, opt->name);
4d354d8b 31776 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31777 *input_line_pointer = saved_char;
31778 demand_empty_rest_of_line ();
31779 return;
31780 }
31781
31782 as_bad (_("unknown architecture `%s'\n"), name);
31783 *input_line_pointer = saved_char;
31784 ignore_rest_of_line ();
31785}
31786
7a1d4c38
PB
31787/* Parse a .object_arch directive. */
31788
31789static void
31790s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31791{
31792 const struct arm_arch_option_table *opt;
31793 char saved_char;
31794 char *name;
31795
31796 name = input_line_pointer;
5f4273c7 31797 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
31798 input_line_pointer++;
31799 saved_char = *input_line_pointer;
31800 *input_line_pointer = 0;
31801
31802 /* Skip the first "all" entry. */
31803 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31804 if (streq (opt->name, name))
31805 {
4d354d8b 31806 selected_object_arch = opt->value;
7a1d4c38
PB
31807 *input_line_pointer = saved_char;
31808 demand_empty_rest_of_line ();
31809 return;
31810 }
31811
31812 as_bad (_("unknown architecture `%s'\n"), name);
31813 *input_line_pointer = saved_char;
31814 ignore_rest_of_line ();
31815}
31816
69133863
MGD
31817/* Parse a .arch_extension directive. */
31818
31819static void
31820s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31821{
31822 const struct arm_option_extension_value_table *opt;
31823 char saved_char;
31824 char *name;
31825 int adding_value = 1;
31826
31827 name = input_line_pointer;
31828 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31829 input_line_pointer++;
31830 saved_char = *input_line_pointer;
31831 *input_line_pointer = 0;
31832
31833 if (strlen (name) >= 2
31834 && strncmp (name, "no", 2) == 0)
31835 {
31836 adding_value = 0;
31837 name += 2;
31838 }
31839
31840 for (opt = arm_extensions; opt->name != NULL; opt++)
31841 if (streq (opt->name, name))
31842 {
d942732e
TP
31843 int i, nb_allowed_archs =
31844 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31845 for (i = 0; i < nb_allowed_archs; i++)
31846 {
31847 /* Empty entry. */
4d354d8b 31848 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
d942732e 31849 continue;
4d354d8b 31850 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
d942732e
TP
31851 break;
31852 }
31853
31854 if (i == nb_allowed_archs)
69133863
MGD
31855 {
31856 as_bad (_("architectural extension `%s' is not allowed for the "
31857 "current base architecture"), name);
31858 break;
31859 }
31860
31861 if (adding_value)
4d354d8b 31862 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
5a70a223 31863 opt->merge_value);
69133863 31864 else
4d354d8b 31865 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
69133863 31866
4d354d8b
TP
31867 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31868 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
69133863
MGD
31869 *input_line_pointer = saved_char;
31870 demand_empty_rest_of_line ();
3d030cdb
TP
31871 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31872 on this return so that duplicate extensions (extensions with the
31873 same name as a previous extension in the list) are not considered
31874 for command-line parsing. */
69133863
MGD
31875 return;
31876 }
31877
31878 if (opt->name == NULL)
e673710a 31879 as_bad (_("unknown architecture extension `%s'\n"), name);
69133863
MGD
31880
31881 *input_line_pointer = saved_char;
31882 ignore_rest_of_line ();
31883}
31884
ee065d83
PB
31885/* Parse a .fpu directive. */
31886
31887static void
31888s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31889{
69133863 31890 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
31891 char saved_char;
31892 char *name;
31893
31894 name = input_line_pointer;
5f4273c7 31895 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
31896 input_line_pointer++;
31897 saved_char = *input_line_pointer;
31898 *input_line_pointer = 0;
5f4273c7 31899
ee065d83
PB
31900 for (opt = arm_fpus; opt->name != NULL; opt++)
31901 if (streq (opt->name, name))
31902 {
4d354d8b
TP
31903 selected_fpu = opt->value;
31904#ifndef CPU_DEFAULT
31905 if (no_cpu_selected ())
31906 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31907 else
31908#endif
31909 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
ee065d83
PB
31910 *input_line_pointer = saved_char;
31911 demand_empty_rest_of_line ();
31912 return;
31913 }
31914
31915 as_bad (_("unknown floating point format `%s'\n"), name);
31916 *input_line_pointer = saved_char;
31917 ignore_rest_of_line ();
31918}
ee065d83 31919
794ba86a 31920/* Copy symbol information. */
f31fef98 31921
794ba86a
DJ
31922void
31923arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31924{
31925 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31926}
e04befd0 31927
f31fef98 31928#ifdef OBJ_ELF
e04befd0
AS
31929/* Given a symbolic attribute NAME, return the proper integer value.
31930 Returns -1 if the attribute is not known. */
f31fef98 31931
e04befd0
AS
31932int
31933arm_convert_symbolic_attribute (const char *name)
31934{
f31fef98
NC
31935 static const struct
31936 {
31937 const char * name;
31938 const int tag;
31939 }
31940 attribute_table[] =
31941 {
31942 /* When you modify this table you should
31943 also modify the list in doc/c-arm.texi. */
e04befd0 31944#define T(tag) {#tag, tag}
f31fef98
NC
31945 T (Tag_CPU_raw_name),
31946 T (Tag_CPU_name),
31947 T (Tag_CPU_arch),
31948 T (Tag_CPU_arch_profile),
31949 T (Tag_ARM_ISA_use),
31950 T (Tag_THUMB_ISA_use),
75375b3e 31951 T (Tag_FP_arch),
f31fef98
NC
31952 T (Tag_VFP_arch),
31953 T (Tag_WMMX_arch),
31954 T (Tag_Advanced_SIMD_arch),
31955 T (Tag_PCS_config),
31956 T (Tag_ABI_PCS_R9_use),
31957 T (Tag_ABI_PCS_RW_data),
31958 T (Tag_ABI_PCS_RO_data),
31959 T (Tag_ABI_PCS_GOT_use),
31960 T (Tag_ABI_PCS_wchar_t),
31961 T (Tag_ABI_FP_rounding),
31962 T (Tag_ABI_FP_denormal),
31963 T (Tag_ABI_FP_exceptions),
31964 T (Tag_ABI_FP_user_exceptions),
31965 T (Tag_ABI_FP_number_model),
75375b3e 31966 T (Tag_ABI_align_needed),
f31fef98 31967 T (Tag_ABI_align8_needed),
75375b3e 31968 T (Tag_ABI_align_preserved),
f31fef98
NC
31969 T (Tag_ABI_align8_preserved),
31970 T (Tag_ABI_enum_size),
31971 T (Tag_ABI_HardFP_use),
31972 T (Tag_ABI_VFP_args),
31973 T (Tag_ABI_WMMX_args),
31974 T (Tag_ABI_optimization_goals),
31975 T (Tag_ABI_FP_optimization_goals),
31976 T (Tag_compatibility),
31977 T (Tag_CPU_unaligned_access),
75375b3e 31978 T (Tag_FP_HP_extension),
f31fef98
NC
31979 T (Tag_VFP_HP_extension),
31980 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
31981 T (Tag_MPextension_use),
31982 T (Tag_DIV_use),
f31fef98
NC
31983 T (Tag_nodefaults),
31984 T (Tag_also_compatible_with),
31985 T (Tag_conformance),
31986 T (Tag_T2EE_use),
31987 T (Tag_Virtualization_use),
15afaa63 31988 T (Tag_DSP_extension),
a7ad558c 31989 T (Tag_MVE_arch),
cd21e546 31990 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 31991#undef T
f31fef98 31992 };
e04befd0
AS
31993 unsigned int i;
31994
31995 if (name == NULL)
31996 return -1;
31997
f31fef98 31998 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 31999 if (streq (name, attribute_table[i].name))
e04befd0
AS
32000 return attribute_table[i].tag;
32001
32002 return -1;
32003}
267bf995 32004
93ef582d
NC
32005/* Apply sym value for relocations only in the case that they are for
32006 local symbols in the same segment as the fixup and you have the
32007 respective architectural feature for blx and simple switches. */
0198d5e6 32008
267bf995 32009int
93ef582d 32010arm_apply_sym_value (struct fix * fixP, segT this_seg)
267bf995
RR
32011{
32012 if (fixP->fx_addsy
32013 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
93ef582d
NC
32014 /* PR 17444: If the local symbol is in a different section then a reloc
32015 will always be generated for it, so applying the symbol value now
32016 will result in a double offset being stored in the relocation. */
32017 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
34e77a92 32018 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
32019 {
32020 switch (fixP->fx_r_type)
32021 {
32022 case BFD_RELOC_ARM_PCREL_BLX:
32023 case BFD_RELOC_THUMB_PCREL_BRANCH23:
32024 if (ARM_IS_FUNC (fixP->fx_addsy))
32025 return 1;
32026 break;
32027
32028 case BFD_RELOC_ARM_PCREL_CALL:
32029 case BFD_RELOC_THUMB_PCREL_BLX:
32030 if (THUMB_IS_FUNC (fixP->fx_addsy))
93ef582d 32031 return 1;
267bf995
RR
32032 break;
32033
32034 default:
32035 break;
32036 }
32037
32038 }
32039 return 0;
32040}
f31fef98 32041#endif /* OBJ_ELF */
This page took 4.228583 seconds and 4 git commands to generate.