2010-07-08 Tejas Belagod <tejas.belagod@arm.com>
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
b43420e6 3 2004, 2005, 2006, 2007, 2008, 2009, 2010
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3
MGD
100/* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
188static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
7e806470
PB
198static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
e74cfd16
PB
200
201static const arm_feature_set arm_arch_any = ARM_ANY;
202static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
203static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
204static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
205
2d447fca
JM
206static const arm_feature_set arm_cext_iwmmxt2 =
207 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
208static const arm_feature_set arm_cext_iwmmxt =
209 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
210static const arm_feature_set arm_cext_xscale =
211 ARM_FEATURE (0, ARM_CEXT_XSCALE);
212static const arm_feature_set arm_cext_maverick =
213 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
214static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
215static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
216static const arm_feature_set fpu_vfp_ext_v1xd =
217 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
218static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
219static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 220static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 221static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
222static const arm_feature_set fpu_vfp_ext_d32 =
223 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
224static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
225static const arm_feature_set fpu_vfp_v3_or_neon_ext =
226 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
227static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
228static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
229static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 230
33a392fb 231static int mfloat_abi_opt = -1;
e74cfd16
PB
232/* Record user cpu selection for object attributes. */
233static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
234/* Must be long enough to hold any of the names in arm_cpus. */
235static char selected_cpu_name[16];
7cc69913 236#ifdef OBJ_ELF
deeaaff8
DJ
237# ifdef EABI_DEFAULT
238static int meabi_flags = EABI_DEFAULT;
239# else
d507cf36 240static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 241# endif
e1da3f5b 242
ee3c0378
AS
243static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
244
e1da3f5b 245bfd_boolean
5f4273c7 246arm_is_eabi (void)
e1da3f5b
PB
247{
248 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
249}
7cc69913 250#endif
b99bd4ef 251
b99bd4ef 252#ifdef OBJ_ELF
c19d1205 253/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
254symbolS * GOT_symbol;
255#endif
256
b99bd4ef
NC
257/* 0: assemble for ARM,
258 1: assemble for Thumb,
259 2: assemble for Thumb even though target CPU does not support thumb
260 instructions. */
261static int thumb_mode = 0;
8dc2430f
NC
262/* A value distinct from the possible values for thumb_mode that we
263 can use to record whether thumb_mode has been copied into the
264 tc_frag_data field of a frag. */
265#define MODE_RECORDED (1 << 4)
b99bd4ef 266
e07e6e58
NC
267/* Specifies the intrinsic IT insn behavior mode. */
268enum implicit_it_mode
269{
270 IMPLICIT_IT_MODE_NEVER = 0x00,
271 IMPLICIT_IT_MODE_ARM = 0x01,
272 IMPLICIT_IT_MODE_THUMB = 0x02,
273 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
274};
275static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
276
c19d1205
ZW
277/* If unified_syntax is true, we are processing the new unified
278 ARM/Thumb syntax. Important differences from the old ARM mode:
279
280 - Immediate operands do not require a # prefix.
281 - Conditional affixes always appear at the end of the
282 instruction. (For backward compatibility, those instructions
283 that formerly had them in the middle, continue to accept them
284 there.)
285 - The IT instruction may appear, and if it does is validated
286 against subsequent conditional affixes. It does not generate
287 machine code.
288
289 Important differences from the old Thumb mode:
290
291 - Immediate operands do not require a # prefix.
292 - Most of the V6T2 instructions are only available in unified mode.
293 - The .N and .W suffixes are recognized and honored (it is an error
294 if they cannot be honored).
295 - All instructions set the flags if and only if they have an 's' affix.
296 - Conditional affixes may be used. They are validated against
297 preceding IT instructions. Unlike ARM mode, you cannot use a
298 conditional affix except in the scope of an IT instruction. */
299
300static bfd_boolean unified_syntax = FALSE;
b99bd4ef 301
5287ad62
JB
302enum neon_el_type
303{
dcbf9037 304 NT_invtype,
5287ad62
JB
305 NT_untyped,
306 NT_integer,
307 NT_float,
308 NT_poly,
309 NT_signed,
dcbf9037 310 NT_unsigned
5287ad62
JB
311};
312
313struct neon_type_el
314{
315 enum neon_el_type type;
316 unsigned size;
317};
318
319#define NEON_MAX_TYPE_ELS 4
320
321struct neon_type
322{
323 struct neon_type_el el[NEON_MAX_TYPE_ELS];
324 unsigned elems;
325};
326
e07e6e58
NC
327enum it_instruction_type
328{
329 OUTSIDE_IT_INSN,
330 INSIDE_IT_INSN,
331 INSIDE_IT_LAST_INSN,
332 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
333 if inside, should be the last one. */
334 NEUTRAL_IT_INSN, /* This could be either inside or outside,
335 i.e. BKPT and NOP. */
336 IT_INSN /* The IT insn has been parsed. */
337};
338
b99bd4ef
NC
339struct arm_it
340{
c19d1205 341 const char * error;
b99bd4ef 342 unsigned long instruction;
c19d1205
ZW
343 int size;
344 int size_req;
345 int cond;
037e8744
JB
346 /* "uncond_value" is set to the value in place of the conditional field in
347 unconditional versions of the instruction, or -1 if nothing is
348 appropriate. */
349 int uncond_value;
5287ad62 350 struct neon_type vectype;
88714cb8
DG
351 /* This does not indicate an actual NEON instruction, only that
352 the mnemonic accepts neon-style type suffixes. */
353 int is_neon;
0110f2b8
PB
354 /* Set to the opcode if the instruction needs relaxation.
355 Zero if the instruction is not relaxed. */
356 unsigned long relax;
b99bd4ef
NC
357 struct
358 {
359 bfd_reloc_code_real_type type;
c19d1205
ZW
360 expressionS exp;
361 int pc_rel;
b99bd4ef 362 } reloc;
b99bd4ef 363
e07e6e58
NC
364 enum it_instruction_type it_insn_type;
365
c19d1205
ZW
366 struct
367 {
368 unsigned reg;
ca3f61f7 369 signed int imm;
dcbf9037 370 struct neon_type_el vectype;
ca3f61f7
NC
371 unsigned present : 1; /* Operand present. */
372 unsigned isreg : 1; /* Operand was a register. */
373 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
374 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
375 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 376 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
377 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
378 instructions. This allows us to disambiguate ARM <-> vector insns. */
379 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 380 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 381 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 382 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
383 unsigned hasreloc : 1; /* Operand has relocation suffix. */
384 unsigned writeback : 1; /* Operand has trailing ! */
385 unsigned preind : 1; /* Preindexed address. */
386 unsigned postind : 1; /* Postindexed address. */
387 unsigned negative : 1; /* Index register was negated. */
388 unsigned shifted : 1; /* Shift applied to operation. */
389 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 390 } operands[6];
b99bd4ef
NC
391};
392
c19d1205 393static struct arm_it inst;
b99bd4ef
NC
394
395#define NUM_FLOAT_VALS 8
396
05d2d07e 397const char * fp_const[] =
b99bd4ef
NC
398{
399 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
400};
401
c19d1205 402/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
403#define MAX_LITTLENUMS 6
404
405LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
406
407#define FAIL (-1)
408#define SUCCESS (0)
409
410#define SUFF_S 1
411#define SUFF_D 2
412#define SUFF_E 3
413#define SUFF_P 4
414
c19d1205
ZW
415#define CP_T_X 0x00008000
416#define CP_T_Y 0x00400000
b99bd4ef 417
c19d1205
ZW
418#define CONDS_BIT 0x00100000
419#define LOAD_BIT 0x00100000
b99bd4ef
NC
420
421#define DOUBLE_LOAD_FLAG 0x00000001
422
423struct asm_cond
424{
d3ce72d0 425 const char * template_name;
c921be7d 426 unsigned long value;
b99bd4ef
NC
427};
428
c19d1205 429#define COND_ALWAYS 0xE
b99bd4ef 430
b99bd4ef
NC
431struct asm_psr
432{
d3ce72d0 433 const char * template_name;
c921be7d 434 unsigned long field;
b99bd4ef
NC
435};
436
62b3e311
PB
437struct asm_barrier_opt
438{
d3ce72d0 439 const char * template_name;
c921be7d 440 unsigned long value;
62b3e311
PB
441};
442
2d2255b5 443/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
444#define SPSR_BIT (1 << 22)
445
c19d1205
ZW
446/* The individual PSR flag bits. */
447#define PSR_c (1 << 16)
448#define PSR_x (1 << 17)
449#define PSR_s (1 << 18)
450#define PSR_f (1 << 19)
b99bd4ef 451
c19d1205 452struct reloc_entry
bfae80f2 453{
c921be7d
NC
454 char * name;
455 bfd_reloc_code_real_type reloc;
bfae80f2
RE
456};
457
5287ad62 458enum vfp_reg_pos
bfae80f2 459{
5287ad62
JB
460 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
461 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
462};
463
464enum vfp_ldstm_type
465{
466 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
467};
468
dcbf9037
JB
469/* Bits for DEFINED field in neon_typed_alias. */
470#define NTA_HASTYPE 1
471#define NTA_HASINDEX 2
472
473struct neon_typed_alias
474{
c921be7d
NC
475 unsigned char defined;
476 unsigned char index;
477 struct neon_type_el eltype;
dcbf9037
JB
478};
479
c19d1205
ZW
480/* ARM register categories. This includes coprocessor numbers and various
481 architecture extensions' registers. */
482enum arm_reg_type
bfae80f2 483{
c19d1205
ZW
484 REG_TYPE_RN,
485 REG_TYPE_CP,
486 REG_TYPE_CN,
487 REG_TYPE_FN,
488 REG_TYPE_VFS,
489 REG_TYPE_VFD,
5287ad62 490 REG_TYPE_NQ,
037e8744 491 REG_TYPE_VFSD,
5287ad62 492 REG_TYPE_NDQ,
037e8744 493 REG_TYPE_NSDQ,
c19d1205
ZW
494 REG_TYPE_VFC,
495 REG_TYPE_MVF,
496 REG_TYPE_MVD,
497 REG_TYPE_MVFX,
498 REG_TYPE_MVDX,
499 REG_TYPE_MVAX,
500 REG_TYPE_DSPSC,
501 REG_TYPE_MMXWR,
502 REG_TYPE_MMXWC,
503 REG_TYPE_MMXWCG,
504 REG_TYPE_XSCALE,
bfae80f2
RE
505};
506
dcbf9037
JB
507/* Structure for a hash table entry for a register.
508 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
509 information which states whether a vector type or index is specified (for a
510 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
511struct reg_entry
512{
c921be7d
NC
513 const char * name;
514 unsigned char number;
515 unsigned char type;
516 unsigned char builtin;
517 struct neon_typed_alias * neon;
6c43fab6
RE
518};
519
c19d1205 520/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 521const char * const reg_expected_msgs[] =
c19d1205
ZW
522{
523 N_("ARM register expected"),
524 N_("bad or missing co-processor number"),
525 N_("co-processor register expected"),
526 N_("FPA register expected"),
527 N_("VFP single precision register expected"),
5287ad62
JB
528 N_("VFP/Neon double precision register expected"),
529 N_("Neon quad precision register expected"),
037e8744 530 N_("VFP single or double precision register expected"),
5287ad62 531 N_("Neon double or quad precision register expected"),
037e8744 532 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
533 N_("VFP system register expected"),
534 N_("Maverick MVF register expected"),
535 N_("Maverick MVD register expected"),
536 N_("Maverick MVFX register expected"),
537 N_("Maverick MVDX register expected"),
538 N_("Maverick MVAX register expected"),
539 N_("Maverick DSPSC register expected"),
540 N_("iWMMXt data register expected"),
541 N_("iWMMXt control register expected"),
542 N_("iWMMXt scalar register expected"),
543 N_("XScale accumulator register expected"),
6c43fab6
RE
544};
545
c19d1205
ZW
546/* Some well known registers that we refer to directly elsewhere. */
547#define REG_SP 13
548#define REG_LR 14
549#define REG_PC 15
404ff6b5 550
b99bd4ef
NC
551/* ARM instructions take 4bytes in the object file, Thumb instructions
552 take 2: */
c19d1205 553#define INSN_SIZE 4
b99bd4ef
NC
554
555struct asm_opcode
556{
557 /* Basic string to match. */
d3ce72d0 558 const char * template_name;
c19d1205
ZW
559
560 /* Parameters to instruction. */
5be8be5d 561 unsigned int operands[8];
c19d1205
ZW
562
563 /* Conditional tag - see opcode_lookup. */
564 unsigned int tag : 4;
b99bd4ef
NC
565
566 /* Basic instruction code. */
c19d1205 567 unsigned int avalue : 28;
b99bd4ef 568
c19d1205
ZW
569 /* Thumb-format instruction code. */
570 unsigned int tvalue;
b99bd4ef 571
90e4755a 572 /* Which architecture variant provides this instruction. */
c921be7d
NC
573 const arm_feature_set * avariant;
574 const arm_feature_set * tvariant;
c19d1205
ZW
575
576 /* Function to call to encode instruction in ARM format. */
577 void (* aencode) (void);
b99bd4ef 578
c19d1205
ZW
579 /* Function to call to encode instruction in Thumb format. */
580 void (* tencode) (void);
b99bd4ef
NC
581};
582
a737bd4d
NC
583/* Defines for various bits that we will want to toggle. */
584#define INST_IMMEDIATE 0x02000000
585#define OFFSET_REG 0x02000000
c19d1205 586#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
587#define SHIFT_BY_REG 0x00000010
588#define PRE_INDEX 0x01000000
589#define INDEX_UP 0x00800000
590#define WRITE_BACK 0x00200000
591#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 592#define CPSI_MMOD 0x00020000
90e4755a 593
a737bd4d
NC
594#define LITERAL_MASK 0xf000f000
595#define OPCODE_MASK 0xfe1fffff
596#define V4_STR_BIT 0x00000020
90e4755a 597
efd81785
PB
598#define T2_SUBS_PC_LR 0xf3de8f00
599
a737bd4d 600#define DATA_OP_SHIFT 21
90e4755a 601
ef8d22e6
PB
602#define T2_OPCODE_MASK 0xfe1fffff
603#define T2_DATA_OP_SHIFT 21
604
a737bd4d
NC
605/* Codes to distinguish the arithmetic instructions. */
606#define OPCODE_AND 0
607#define OPCODE_EOR 1
608#define OPCODE_SUB 2
609#define OPCODE_RSB 3
610#define OPCODE_ADD 4
611#define OPCODE_ADC 5
612#define OPCODE_SBC 6
613#define OPCODE_RSC 7
614#define OPCODE_TST 8
615#define OPCODE_TEQ 9
616#define OPCODE_CMP 10
617#define OPCODE_CMN 11
618#define OPCODE_ORR 12
619#define OPCODE_MOV 13
620#define OPCODE_BIC 14
621#define OPCODE_MVN 15
90e4755a 622
ef8d22e6
PB
623#define T2_OPCODE_AND 0
624#define T2_OPCODE_BIC 1
625#define T2_OPCODE_ORR 2
626#define T2_OPCODE_ORN 3
627#define T2_OPCODE_EOR 4
628#define T2_OPCODE_ADD 8
629#define T2_OPCODE_ADC 10
630#define T2_OPCODE_SBC 11
631#define T2_OPCODE_SUB 13
632#define T2_OPCODE_RSB 14
633
a737bd4d
NC
634#define T_OPCODE_MUL 0x4340
635#define T_OPCODE_TST 0x4200
636#define T_OPCODE_CMN 0x42c0
637#define T_OPCODE_NEG 0x4240
638#define T_OPCODE_MVN 0x43c0
90e4755a 639
a737bd4d
NC
640#define T_OPCODE_ADD_R3 0x1800
641#define T_OPCODE_SUB_R3 0x1a00
642#define T_OPCODE_ADD_HI 0x4400
643#define T_OPCODE_ADD_ST 0xb000
644#define T_OPCODE_SUB_ST 0xb080
645#define T_OPCODE_ADD_SP 0xa800
646#define T_OPCODE_ADD_PC 0xa000
647#define T_OPCODE_ADD_I8 0x3000
648#define T_OPCODE_SUB_I8 0x3800
649#define T_OPCODE_ADD_I3 0x1c00
650#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 651
a737bd4d
NC
652#define T_OPCODE_ASR_R 0x4100
653#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
654#define T_OPCODE_LSR_R 0x40c0
655#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
656#define T_OPCODE_ASR_I 0x1000
657#define T_OPCODE_LSL_I 0x0000
658#define T_OPCODE_LSR_I 0x0800
b99bd4ef 659
a737bd4d
NC
660#define T_OPCODE_MOV_I8 0x2000
661#define T_OPCODE_CMP_I8 0x2800
662#define T_OPCODE_CMP_LR 0x4280
663#define T_OPCODE_MOV_HR 0x4600
664#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 665
a737bd4d
NC
666#define T_OPCODE_LDR_PC 0x4800
667#define T_OPCODE_LDR_SP 0x9800
668#define T_OPCODE_STR_SP 0x9000
669#define T_OPCODE_LDR_IW 0x6800
670#define T_OPCODE_STR_IW 0x6000
671#define T_OPCODE_LDR_IH 0x8800
672#define T_OPCODE_STR_IH 0x8000
673#define T_OPCODE_LDR_IB 0x7800
674#define T_OPCODE_STR_IB 0x7000
675#define T_OPCODE_LDR_RW 0x5800
676#define T_OPCODE_STR_RW 0x5000
677#define T_OPCODE_LDR_RH 0x5a00
678#define T_OPCODE_STR_RH 0x5200
679#define T_OPCODE_LDR_RB 0x5c00
680#define T_OPCODE_STR_RB 0x5400
c9b604bd 681
a737bd4d
NC
682#define T_OPCODE_PUSH 0xb400
683#define T_OPCODE_POP 0xbc00
b99bd4ef 684
2fc8bdac 685#define T_OPCODE_BRANCH 0xe000
b99bd4ef 686
a737bd4d 687#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 688#define THUMB_PP_PC_LR 0x0100
c19d1205 689#define THUMB_LOAD_BIT 0x0800
53365c0d 690#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
691
692#define BAD_ARGS _("bad arguments to instruction")
fdfde340 693#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
694#define BAD_PC _("r15 not allowed here")
695#define BAD_COND _("instruction cannot be conditional")
696#define BAD_OVERLAP _("registers may not be the same")
697#define BAD_HIREG _("lo register required")
698#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 699#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
700#define BAD_BRANCH _("branch must be last instruction in IT block")
701#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 702#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
703#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
704#define BAD_IT_COND _("incorrect condition in IT block")
705#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 706#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
707#define BAD_PC_ADDRESSING \
708 _("cannot use register index with PC-relative addressing")
709#define BAD_PC_WRITEBACK \
710 _("cannot use writeback with PC-relative addressing")
c19d1205 711
c921be7d
NC
712static struct hash_control * arm_ops_hsh;
713static struct hash_control * arm_cond_hsh;
714static struct hash_control * arm_shift_hsh;
715static struct hash_control * arm_psr_hsh;
716static struct hash_control * arm_v7m_psr_hsh;
717static struct hash_control * arm_reg_hsh;
718static struct hash_control * arm_reloc_hsh;
719static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 720
b99bd4ef
NC
721/* Stuff needed to resolve the label ambiguity
722 As:
723 ...
724 label: <insn>
725 may differ from:
726 ...
727 label:
5f4273c7 728 <insn> */
b99bd4ef
NC
729
730symbolS * last_label_seen;
b34976b6 731static int label_is_thumb_function_name = FALSE;
e07e6e58 732
3d0c9500
NC
733/* Literal pool structure. Held on a per-section
734 and per-sub-section basis. */
a737bd4d 735
c19d1205 736#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 737typedef struct literal_pool
b99bd4ef 738{
c921be7d
NC
739 expressionS literals [MAX_LITERAL_POOL_SIZE];
740 unsigned int next_free_entry;
741 unsigned int id;
742 symbolS * symbol;
743 segT section;
744 subsegT sub_section;
745 struct literal_pool * next;
3d0c9500 746} literal_pool;
b99bd4ef 747
3d0c9500
NC
748/* Pointer to a linked list of literal pools. */
749literal_pool * list_of_pools = NULL;
e27ec89e 750
e07e6e58
NC
751#ifdef OBJ_ELF
752# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
753#else
754static struct current_it now_it;
755#endif
756
757static inline int
758now_it_compatible (int cond)
759{
760 return (cond & ~1) == (now_it.cc & ~1);
761}
762
763static inline int
764conditional_insn (void)
765{
766 return inst.cond != COND_ALWAYS;
767}
768
769static int in_it_block (void);
770
771static int handle_it_state (void);
772
773static void force_automatic_it_block_close (void);
774
c921be7d
NC
775static void it_fsm_post_encode (void);
776
e07e6e58
NC
777#define set_it_insn_type(type) \
778 do \
779 { \
780 inst.it_insn_type = type; \
781 if (handle_it_state () == FAIL) \
782 return; \
783 } \
784 while (0)
785
c921be7d
NC
786#define set_it_insn_type_nonvoid(type, failret) \
787 do \
788 { \
789 inst.it_insn_type = type; \
790 if (handle_it_state () == FAIL) \
791 return failret; \
792 } \
793 while(0)
794
e07e6e58
NC
795#define set_it_insn_type_last() \
796 do \
797 { \
798 if (inst.cond == COND_ALWAYS) \
799 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
800 else \
801 set_it_insn_type (INSIDE_IT_LAST_INSN); \
802 } \
803 while (0)
804
c19d1205 805/* Pure syntax. */
b99bd4ef 806
c19d1205
ZW
807/* This array holds the chars that always start a comment. If the
808 pre-processor is disabled, these aren't very useful. */
809const char comment_chars[] = "@";
3d0c9500 810
c19d1205
ZW
811/* This array holds the chars that only start a comment at the beginning of
812 a line. If the line seems to have the form '# 123 filename'
813 .line and .file directives will appear in the pre-processed output. */
814/* Note that input_file.c hand checks for '#' at the beginning of the
815 first line of the input file. This is because the compiler outputs
816 #NO_APP at the beginning of its output. */
817/* Also note that comments like this one will always work. */
818const char line_comment_chars[] = "#";
3d0c9500 819
c19d1205 820const char line_separator_chars[] = ";";
b99bd4ef 821
c19d1205
ZW
822/* Chars that can be used to separate mant
823 from exp in floating point numbers. */
824const char EXP_CHARS[] = "eE";
3d0c9500 825
c19d1205
ZW
826/* Chars that mean this number is a floating point constant. */
827/* As in 0f12.456 */
828/* or 0d1.2345e12 */
b99bd4ef 829
c19d1205 830const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 831
c19d1205
ZW
832/* Prefix characters that indicate the start of an immediate
833 value. */
834#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 835
c19d1205
ZW
836/* Separator character handling. */
837
838#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
839
840static inline int
841skip_past_char (char ** str, char c)
842{
843 if (**str == c)
844 {
845 (*str)++;
846 return SUCCESS;
3d0c9500 847 }
c19d1205
ZW
848 else
849 return FAIL;
850}
c921be7d 851
c19d1205 852#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 853
c19d1205
ZW
854/* Arithmetic expressions (possibly involving symbols). */
855
856/* Return TRUE if anything in the expression is a bignum. */
857
858static int
859walk_no_bignums (symbolS * sp)
860{
861 if (symbol_get_value_expression (sp)->X_op == O_big)
862 return 1;
863
864 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 865 {
c19d1205
ZW
866 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
867 || (symbol_get_value_expression (sp)->X_op_symbol
868 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
869 }
870
c19d1205 871 return 0;
3d0c9500
NC
872}
873
c19d1205
ZW
874static int in_my_get_expression = 0;
875
876/* Third argument to my_get_expression. */
877#define GE_NO_PREFIX 0
878#define GE_IMM_PREFIX 1
879#define GE_OPT_PREFIX 2
5287ad62
JB
880/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
881 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
882#define GE_OPT_PREFIX_BIG 3
a737bd4d 883
b99bd4ef 884static int
c19d1205 885my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 886{
c19d1205
ZW
887 char * save_in;
888 segT seg;
b99bd4ef 889
c19d1205
ZW
890 /* In unified syntax, all prefixes are optional. */
891 if (unified_syntax)
5287ad62
JB
892 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
893 : GE_OPT_PREFIX;
b99bd4ef 894
c19d1205 895 switch (prefix_mode)
b99bd4ef 896 {
c19d1205
ZW
897 case GE_NO_PREFIX: break;
898 case GE_IMM_PREFIX:
899 if (!is_immediate_prefix (**str))
900 {
901 inst.error = _("immediate expression requires a # prefix");
902 return FAIL;
903 }
904 (*str)++;
905 break;
906 case GE_OPT_PREFIX:
5287ad62 907 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
908 if (is_immediate_prefix (**str))
909 (*str)++;
910 break;
911 default: abort ();
912 }
b99bd4ef 913
c19d1205 914 memset (ep, 0, sizeof (expressionS));
b99bd4ef 915
c19d1205
ZW
916 save_in = input_line_pointer;
917 input_line_pointer = *str;
918 in_my_get_expression = 1;
919 seg = expression (ep);
920 in_my_get_expression = 0;
921
f86adc07 922 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 923 {
f86adc07 924 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
925 *str = input_line_pointer;
926 input_line_pointer = save_in;
927 if (inst.error == NULL)
f86adc07
NS
928 inst.error = (ep->X_op == O_absent
929 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
930 return 1;
931 }
b99bd4ef 932
c19d1205
ZW
933#ifdef OBJ_AOUT
934 if (seg != absolute_section
935 && seg != text_section
936 && seg != data_section
937 && seg != bss_section
938 && seg != undefined_section)
939 {
940 inst.error = _("bad segment");
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 return 1;
b99bd4ef 944 }
87975d2a
AM
945#else
946 (void) seg;
c19d1205 947#endif
b99bd4ef 948
c19d1205
ZW
949 /* Get rid of any bignums now, so that we don't generate an error for which
950 we can't establish a line number later on. Big numbers are never valid
951 in instructions, which is where this routine is always called. */
5287ad62
JB
952 if (prefix_mode != GE_OPT_PREFIX_BIG
953 && (ep->X_op == O_big
954 || (ep->X_add_symbol
955 && (walk_no_bignums (ep->X_add_symbol)
956 || (ep->X_op_symbol
957 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
958 {
959 inst.error = _("invalid constant");
960 *str = input_line_pointer;
961 input_line_pointer = save_in;
962 return 1;
963 }
b99bd4ef 964
c19d1205
ZW
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 return 0;
b99bd4ef
NC
968}
969
c19d1205
ZW
970/* Turn a string in input_line_pointer into a floating point constant
971 of type TYPE, and store the appropriate bytes in *LITP. The number
972 of LITTLENUMS emitted is stored in *SIZEP. An error message is
973 returned, or NULL on OK.
b99bd4ef 974
c19d1205
ZW
975 Note that fp constants aren't represent in the normal way on the ARM.
976 In big endian mode, things are as expected. However, in little endian
977 mode fp constants are big-endian word-wise, and little-endian byte-wise
978 within the words. For example, (double) 1.1 in big endian mode is
979 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
980 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 981
c19d1205 982 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 983
c19d1205
ZW
984char *
985md_atof (int type, char * litP, int * sizeP)
986{
987 int prec;
988 LITTLENUM_TYPE words[MAX_LITTLENUMS];
989 char *t;
990 int i;
b99bd4ef 991
c19d1205
ZW
992 switch (type)
993 {
994 case 'f':
995 case 'F':
996 case 's':
997 case 'S':
998 prec = 2;
999 break;
b99bd4ef 1000
c19d1205
ZW
1001 case 'd':
1002 case 'D':
1003 case 'r':
1004 case 'R':
1005 prec = 4;
1006 break;
b99bd4ef 1007
c19d1205
ZW
1008 case 'x':
1009 case 'X':
499ac353 1010 prec = 5;
c19d1205 1011 break;
b99bd4ef 1012
c19d1205
ZW
1013 case 'p':
1014 case 'P':
499ac353 1015 prec = 5;
c19d1205 1016 break;
a737bd4d 1017
c19d1205
ZW
1018 default:
1019 *sizeP = 0;
499ac353 1020 return _("Unrecognized or unsupported floating point constant");
c19d1205 1021 }
b99bd4ef 1022
c19d1205
ZW
1023 t = atof_ieee (input_line_pointer, type, words);
1024 if (t)
1025 input_line_pointer = t;
499ac353 1026 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1027
c19d1205
ZW
1028 if (target_big_endian)
1029 {
1030 for (i = 0; i < prec; i++)
1031 {
499ac353
NC
1032 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1033 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1034 }
1035 }
1036 else
1037 {
e74cfd16 1038 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1039 for (i = prec - 1; i >= 0; i--)
1040 {
499ac353
NC
1041 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1042 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1043 }
1044 else
1045 /* For a 4 byte float the order of elements in `words' is 1 0.
1046 For an 8 byte float the order is 1 0 3 2. */
1047 for (i = 0; i < prec; i += 2)
1048 {
499ac353
NC
1049 md_number_to_chars (litP, (valueT) words[i + 1],
1050 sizeof (LITTLENUM_TYPE));
1051 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1052 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1053 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1054 }
1055 }
b99bd4ef 1056
499ac353 1057 return NULL;
c19d1205 1058}
b99bd4ef 1059
c19d1205
ZW
1060/* We handle all bad expressions here, so that we can report the faulty
1061 instruction in the error message. */
1062void
91d6fa6a 1063md_operand (expressionS * exp)
c19d1205
ZW
1064{
1065 if (in_my_get_expression)
91d6fa6a 1066 exp->X_op = O_illegal;
b99bd4ef
NC
1067}
1068
c19d1205 1069/* Immediate values. */
b99bd4ef 1070
c19d1205
ZW
1071/* Generic immediate-value read function for use in directives.
1072 Accepts anything that 'expression' can fold to a constant.
1073 *val receives the number. */
1074#ifdef OBJ_ELF
1075static int
1076immediate_for_directive (int *val)
b99bd4ef 1077{
c19d1205
ZW
1078 expressionS exp;
1079 exp.X_op = O_illegal;
b99bd4ef 1080
c19d1205
ZW
1081 if (is_immediate_prefix (*input_line_pointer))
1082 {
1083 input_line_pointer++;
1084 expression (&exp);
1085 }
b99bd4ef 1086
c19d1205
ZW
1087 if (exp.X_op != O_constant)
1088 {
1089 as_bad (_("expected #constant"));
1090 ignore_rest_of_line ();
1091 return FAIL;
1092 }
1093 *val = exp.X_add_number;
1094 return SUCCESS;
b99bd4ef 1095}
c19d1205 1096#endif
b99bd4ef 1097
c19d1205 1098/* Register parsing. */
b99bd4ef 1099
c19d1205
ZW
1100/* Generic register parser. CCP points to what should be the
1101 beginning of a register name. If it is indeed a valid register
1102 name, advance CCP over it and return the reg_entry structure;
1103 otherwise return NULL. Does not issue diagnostics. */
1104
1105static struct reg_entry *
1106arm_reg_parse_multi (char **ccp)
b99bd4ef 1107{
c19d1205
ZW
1108 char *start = *ccp;
1109 char *p;
1110 struct reg_entry *reg;
b99bd4ef 1111
c19d1205
ZW
1112#ifdef REGISTER_PREFIX
1113 if (*start != REGISTER_PREFIX)
01cfc07f 1114 return NULL;
c19d1205
ZW
1115 start++;
1116#endif
1117#ifdef OPTIONAL_REGISTER_PREFIX
1118 if (*start == OPTIONAL_REGISTER_PREFIX)
1119 start++;
1120#endif
b99bd4ef 1121
c19d1205
ZW
1122 p = start;
1123 if (!ISALPHA (*p) || !is_name_beginner (*p))
1124 return NULL;
b99bd4ef 1125
c19d1205
ZW
1126 do
1127 p++;
1128 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1129
1130 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1131
1132 if (!reg)
1133 return NULL;
1134
1135 *ccp = p;
1136 return reg;
b99bd4ef
NC
1137}
1138
1139static int
dcbf9037
JB
1140arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1141 enum arm_reg_type type)
b99bd4ef 1142{
c19d1205
ZW
1143 /* Alternative syntaxes are accepted for a few register classes. */
1144 switch (type)
1145 {
1146 case REG_TYPE_MVF:
1147 case REG_TYPE_MVD:
1148 case REG_TYPE_MVFX:
1149 case REG_TYPE_MVDX:
1150 /* Generic coprocessor register names are allowed for these. */
79134647 1151 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1152 return reg->number;
1153 break;
69b97547 1154
c19d1205
ZW
1155 case REG_TYPE_CP:
1156 /* For backward compatibility, a bare number is valid here. */
1157 {
1158 unsigned long processor = strtoul (start, ccp, 10);
1159 if (*ccp != start && processor <= 15)
1160 return processor;
1161 }
6057a28f 1162
c19d1205
ZW
1163 case REG_TYPE_MMXWC:
1164 /* WC includes WCG. ??? I'm not sure this is true for all
1165 instructions that take WC registers. */
79134647 1166 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1167 return reg->number;
6057a28f 1168 break;
c19d1205 1169
6057a28f 1170 default:
c19d1205 1171 break;
6057a28f
NC
1172 }
1173
dcbf9037
JB
1174 return FAIL;
1175}
1176
1177/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1178 return value is the register number or FAIL. */
1179
1180static int
1181arm_reg_parse (char **ccp, enum arm_reg_type type)
1182{
1183 char *start = *ccp;
1184 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1185 int ret;
1186
1187 /* Do not allow a scalar (reg+index) to parse as a register. */
1188 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1189 return FAIL;
1190
1191 if (reg && reg->type == type)
1192 return reg->number;
1193
1194 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1195 return ret;
1196
c19d1205
ZW
1197 *ccp = start;
1198 return FAIL;
1199}
69b97547 1200
dcbf9037
JB
1201/* Parse a Neon type specifier. *STR should point at the leading '.'
1202 character. Does no verification at this stage that the type fits the opcode
1203 properly. E.g.,
1204
1205 .i32.i32.s16
1206 .s32.f32
1207 .u16
1208
1209 Can all be legally parsed by this function.
1210
1211 Fills in neon_type struct pointer with parsed information, and updates STR
1212 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1213 type, FAIL if not. */
1214
1215static int
1216parse_neon_type (struct neon_type *type, char **str)
1217{
1218 char *ptr = *str;
1219
1220 if (type)
1221 type->elems = 0;
1222
1223 while (type->elems < NEON_MAX_TYPE_ELS)
1224 {
1225 enum neon_el_type thistype = NT_untyped;
1226 unsigned thissize = -1u;
1227
1228 if (*ptr != '.')
1229 break;
1230
1231 ptr++;
1232
1233 /* Just a size without an explicit type. */
1234 if (ISDIGIT (*ptr))
1235 goto parsesize;
1236
1237 switch (TOLOWER (*ptr))
1238 {
1239 case 'i': thistype = NT_integer; break;
1240 case 'f': thistype = NT_float; break;
1241 case 'p': thistype = NT_poly; break;
1242 case 's': thistype = NT_signed; break;
1243 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1244 case 'd':
1245 thistype = NT_float;
1246 thissize = 64;
1247 ptr++;
1248 goto done;
dcbf9037
JB
1249 default:
1250 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1251 return FAIL;
1252 }
1253
1254 ptr++;
1255
1256 /* .f is an abbreviation for .f32. */
1257 if (thistype == NT_float && !ISDIGIT (*ptr))
1258 thissize = 32;
1259 else
1260 {
1261 parsesize:
1262 thissize = strtoul (ptr, &ptr, 10);
1263
1264 if (thissize != 8 && thissize != 16 && thissize != 32
1265 && thissize != 64)
1266 {
1267 as_bad (_("bad size %d in type specifier"), thissize);
1268 return FAIL;
1269 }
1270 }
1271
037e8744 1272 done:
dcbf9037
JB
1273 if (type)
1274 {
1275 type->el[type->elems].type = thistype;
1276 type->el[type->elems].size = thissize;
1277 type->elems++;
1278 }
1279 }
1280
1281 /* Empty/missing type is not a successful parse. */
1282 if (type->elems == 0)
1283 return FAIL;
1284
1285 *str = ptr;
1286
1287 return SUCCESS;
1288}
1289
1290/* Errors may be set multiple times during parsing or bit encoding
1291 (particularly in the Neon bits), but usually the earliest error which is set
1292 will be the most meaningful. Avoid overwriting it with later (cascading)
1293 errors by calling this function. */
1294
1295static void
1296first_error (const char *err)
1297{
1298 if (!inst.error)
1299 inst.error = err;
1300}
1301
1302/* Parse a single type, e.g. ".s32", leading period included. */
1303static int
1304parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1305{
1306 char *str = *ccp;
1307 struct neon_type optype;
1308
1309 if (*str == '.')
1310 {
1311 if (parse_neon_type (&optype, &str) == SUCCESS)
1312 {
1313 if (optype.elems == 1)
1314 *vectype = optype.el[0];
1315 else
1316 {
1317 first_error (_("only one type should be specified for operand"));
1318 return FAIL;
1319 }
1320 }
1321 else
1322 {
1323 first_error (_("vector type expected"));
1324 return FAIL;
1325 }
1326 }
1327 else
1328 return FAIL;
5f4273c7 1329
dcbf9037 1330 *ccp = str;
5f4273c7 1331
dcbf9037
JB
1332 return SUCCESS;
1333}
1334
1335/* Special meanings for indices (which have a range of 0-7), which will fit into
1336 a 4-bit integer. */
1337
1338#define NEON_ALL_LANES 15
1339#define NEON_INTERLEAVE_LANES 14
1340
1341/* Parse either a register or a scalar, with an optional type. Return the
1342 register number, and optionally fill in the actual type of the register
1343 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1344 type/index information in *TYPEINFO. */
1345
1346static int
1347parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1348 enum arm_reg_type *rtype,
1349 struct neon_typed_alias *typeinfo)
1350{
1351 char *str = *ccp;
1352 struct reg_entry *reg = arm_reg_parse_multi (&str);
1353 struct neon_typed_alias atype;
1354 struct neon_type_el parsetype;
1355
1356 atype.defined = 0;
1357 atype.index = -1;
1358 atype.eltype.type = NT_invtype;
1359 atype.eltype.size = -1;
1360
1361 /* Try alternate syntax for some types of register. Note these are mutually
1362 exclusive with the Neon syntax extensions. */
1363 if (reg == NULL)
1364 {
1365 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1366 if (altreg != FAIL)
1367 *ccp = str;
1368 if (typeinfo)
1369 *typeinfo = atype;
1370 return altreg;
1371 }
1372
037e8744
JB
1373 /* Undo polymorphism when a set of register types may be accepted. */
1374 if ((type == REG_TYPE_NDQ
1375 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1376 || (type == REG_TYPE_VFSD
1377 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1378 || (type == REG_TYPE_NSDQ
1379 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1380 || reg->type == REG_TYPE_NQ))
1381 || (type == REG_TYPE_MMXWC
1382 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1383 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1384
1385 if (type != reg->type)
1386 return FAIL;
1387
1388 if (reg->neon)
1389 atype = *reg->neon;
5f4273c7 1390
dcbf9037
JB
1391 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1392 {
1393 if ((atype.defined & NTA_HASTYPE) != 0)
1394 {
1395 first_error (_("can't redefine type for operand"));
1396 return FAIL;
1397 }
1398 atype.defined |= NTA_HASTYPE;
1399 atype.eltype = parsetype;
1400 }
5f4273c7 1401
dcbf9037
JB
1402 if (skip_past_char (&str, '[') == SUCCESS)
1403 {
1404 if (type != REG_TYPE_VFD)
1405 {
1406 first_error (_("only D registers may be indexed"));
1407 return FAIL;
1408 }
5f4273c7 1409
dcbf9037
JB
1410 if ((atype.defined & NTA_HASINDEX) != 0)
1411 {
1412 first_error (_("can't change index for operand"));
1413 return FAIL;
1414 }
1415
1416 atype.defined |= NTA_HASINDEX;
1417
1418 if (skip_past_char (&str, ']') == SUCCESS)
1419 atype.index = NEON_ALL_LANES;
1420 else
1421 {
1422 expressionS exp;
1423
1424 my_get_expression (&exp, &str, GE_NO_PREFIX);
1425
1426 if (exp.X_op != O_constant)
1427 {
1428 first_error (_("constant expression required"));
1429 return FAIL;
1430 }
1431
1432 if (skip_past_char (&str, ']') == FAIL)
1433 return FAIL;
1434
1435 atype.index = exp.X_add_number;
1436 }
1437 }
5f4273c7 1438
dcbf9037
JB
1439 if (typeinfo)
1440 *typeinfo = atype;
5f4273c7 1441
dcbf9037
JB
1442 if (rtype)
1443 *rtype = type;
5f4273c7 1444
dcbf9037 1445 *ccp = str;
5f4273c7 1446
dcbf9037
JB
1447 return reg->number;
1448}
1449
1450/* Like arm_reg_parse, but allow allow the following extra features:
1451 - If RTYPE is non-zero, return the (possibly restricted) type of the
1452 register (e.g. Neon double or quad reg when either has been requested).
1453 - If this is a Neon vector type with additional type information, fill
1454 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1455 This function will fault on encountering a scalar. */
dcbf9037
JB
1456
1457static int
1458arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1459 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1460{
1461 struct neon_typed_alias atype;
1462 char *str = *ccp;
1463 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1464
1465 if (reg == FAIL)
1466 return FAIL;
1467
1468 /* Do not allow a scalar (reg+index) to parse as a register. */
1469 if ((atype.defined & NTA_HASINDEX) != 0)
1470 {
1471 first_error (_("register operand expected, but got scalar"));
1472 return FAIL;
1473 }
1474
1475 if (vectype)
1476 *vectype = atype.eltype;
1477
1478 *ccp = str;
1479
1480 return reg;
1481}
1482
1483#define NEON_SCALAR_REG(X) ((X) >> 4)
1484#define NEON_SCALAR_INDEX(X) ((X) & 15)
1485
5287ad62
JB
1486/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1487 have enough information to be able to do a good job bounds-checking. So, we
1488 just do easy checks here, and do further checks later. */
1489
1490static int
dcbf9037 1491parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1492{
dcbf9037 1493 int reg;
5287ad62 1494 char *str = *ccp;
dcbf9037 1495 struct neon_typed_alias atype;
5f4273c7 1496
dcbf9037 1497 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1498
dcbf9037 1499 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1500 return FAIL;
5f4273c7 1501
dcbf9037 1502 if (atype.index == NEON_ALL_LANES)
5287ad62 1503 {
dcbf9037 1504 first_error (_("scalar must have an index"));
5287ad62
JB
1505 return FAIL;
1506 }
dcbf9037 1507 else if (atype.index >= 64 / elsize)
5287ad62 1508 {
dcbf9037 1509 first_error (_("scalar index out of range"));
5287ad62
JB
1510 return FAIL;
1511 }
5f4273c7 1512
dcbf9037
JB
1513 if (type)
1514 *type = atype.eltype;
5f4273c7 1515
5287ad62 1516 *ccp = str;
5f4273c7 1517
dcbf9037 1518 return reg * 16 + atype.index;
5287ad62
JB
1519}
1520
c19d1205 1521/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1522
c19d1205
ZW
1523static long
1524parse_reg_list (char ** strp)
1525{
1526 char * str = * strp;
1527 long range = 0;
1528 int another_range;
a737bd4d 1529
c19d1205
ZW
1530 /* We come back here if we get ranges concatenated by '+' or '|'. */
1531 do
6057a28f 1532 {
c19d1205 1533 another_range = 0;
a737bd4d 1534
c19d1205
ZW
1535 if (*str == '{')
1536 {
1537 int in_range = 0;
1538 int cur_reg = -1;
a737bd4d 1539
c19d1205
ZW
1540 str++;
1541 do
1542 {
1543 int reg;
6057a28f 1544
dcbf9037 1545 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1546 {
dcbf9037 1547 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1548 return FAIL;
1549 }
a737bd4d 1550
c19d1205
ZW
1551 if (in_range)
1552 {
1553 int i;
a737bd4d 1554
c19d1205
ZW
1555 if (reg <= cur_reg)
1556 {
dcbf9037 1557 first_error (_("bad range in register list"));
c19d1205
ZW
1558 return FAIL;
1559 }
40a18ebd 1560
c19d1205
ZW
1561 for (i = cur_reg + 1; i < reg; i++)
1562 {
1563 if (range & (1 << i))
1564 as_tsktsk
1565 (_("Warning: duplicated register (r%d) in register list"),
1566 i);
1567 else
1568 range |= 1 << i;
1569 }
1570 in_range = 0;
1571 }
a737bd4d 1572
c19d1205
ZW
1573 if (range & (1 << reg))
1574 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1575 reg);
1576 else if (reg <= cur_reg)
1577 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1578
c19d1205
ZW
1579 range |= 1 << reg;
1580 cur_reg = reg;
1581 }
1582 while (skip_past_comma (&str) != FAIL
1583 || (in_range = 1, *str++ == '-'));
1584 str--;
a737bd4d 1585
c19d1205
ZW
1586 if (*str++ != '}')
1587 {
dcbf9037 1588 first_error (_("missing `}'"));
c19d1205
ZW
1589 return FAIL;
1590 }
1591 }
1592 else
1593 {
91d6fa6a 1594 expressionS exp;
40a18ebd 1595
91d6fa6a 1596 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1597 return FAIL;
40a18ebd 1598
91d6fa6a 1599 if (exp.X_op == O_constant)
c19d1205 1600 {
91d6fa6a
NC
1601 if (exp.X_add_number
1602 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1603 {
1604 inst.error = _("invalid register mask");
1605 return FAIL;
1606 }
a737bd4d 1607
91d6fa6a 1608 if ((range & exp.X_add_number) != 0)
c19d1205 1609 {
91d6fa6a 1610 int regno = range & exp.X_add_number;
a737bd4d 1611
c19d1205
ZW
1612 regno &= -regno;
1613 regno = (1 << regno) - 1;
1614 as_tsktsk
1615 (_("Warning: duplicated register (r%d) in register list"),
1616 regno);
1617 }
a737bd4d 1618
91d6fa6a 1619 range |= exp.X_add_number;
c19d1205
ZW
1620 }
1621 else
1622 {
1623 if (inst.reloc.type != 0)
1624 {
1625 inst.error = _("expression too complex");
1626 return FAIL;
1627 }
a737bd4d 1628
91d6fa6a 1629 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1630 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1631 inst.reloc.pc_rel = 0;
1632 }
1633 }
a737bd4d 1634
c19d1205
ZW
1635 if (*str == '|' || *str == '+')
1636 {
1637 str++;
1638 another_range = 1;
1639 }
a737bd4d 1640 }
c19d1205 1641 while (another_range);
a737bd4d 1642
c19d1205
ZW
1643 *strp = str;
1644 return range;
a737bd4d
NC
1645}
1646
5287ad62
JB
1647/* Types of registers in a list. */
1648
1649enum reg_list_els
1650{
1651 REGLIST_VFP_S,
1652 REGLIST_VFP_D,
1653 REGLIST_NEON_D
1654};
1655
c19d1205
ZW
1656/* Parse a VFP register list. If the string is invalid return FAIL.
1657 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1658 register. Parses registers of type ETYPE.
1659 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1660 - Q registers can be used to specify pairs of D registers
1661 - { } can be omitted from around a singleton register list
1662 FIXME: This is not implemented, as it would require backtracking in
1663 some cases, e.g.:
1664 vtbl.8 d3,d4,d5
1665 This could be done (the meaning isn't really ambiguous), but doesn't
1666 fit in well with the current parsing framework.
dcbf9037
JB
1667 - 32 D registers may be used (also true for VFPv3).
1668 FIXME: Types are ignored in these register lists, which is probably a
1669 bug. */
6057a28f 1670
c19d1205 1671static int
037e8744 1672parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1673{
037e8744 1674 char *str = *ccp;
c19d1205
ZW
1675 int base_reg;
1676 int new_base;
21d799b5 1677 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1678 int max_regs = 0;
c19d1205
ZW
1679 int count = 0;
1680 int warned = 0;
1681 unsigned long mask = 0;
a737bd4d 1682 int i;
6057a28f 1683
037e8744 1684 if (*str != '{')
5287ad62
JB
1685 {
1686 inst.error = _("expecting {");
1687 return FAIL;
1688 }
6057a28f 1689
037e8744 1690 str++;
6057a28f 1691
5287ad62 1692 switch (etype)
c19d1205 1693 {
5287ad62 1694 case REGLIST_VFP_S:
c19d1205
ZW
1695 regtype = REG_TYPE_VFS;
1696 max_regs = 32;
5287ad62 1697 break;
5f4273c7 1698
5287ad62
JB
1699 case REGLIST_VFP_D:
1700 regtype = REG_TYPE_VFD;
b7fc2769 1701 break;
5f4273c7 1702
b7fc2769
JB
1703 case REGLIST_NEON_D:
1704 regtype = REG_TYPE_NDQ;
1705 break;
1706 }
1707
1708 if (etype != REGLIST_VFP_S)
1709 {
b1cc4aeb
PB
1710 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1711 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1712 {
1713 max_regs = 32;
1714 if (thumb_mode)
1715 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1716 fpu_vfp_ext_d32);
5287ad62
JB
1717 else
1718 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1719 fpu_vfp_ext_d32);
5287ad62
JB
1720 }
1721 else
1722 max_regs = 16;
c19d1205 1723 }
6057a28f 1724
c19d1205 1725 base_reg = max_regs;
a737bd4d 1726
c19d1205
ZW
1727 do
1728 {
5287ad62 1729 int setmask = 1, addregs = 1;
dcbf9037 1730
037e8744 1731 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1732
c19d1205 1733 if (new_base == FAIL)
a737bd4d 1734 {
dcbf9037 1735 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1736 return FAIL;
1737 }
5f4273c7 1738
b7fc2769
JB
1739 if (new_base >= max_regs)
1740 {
1741 first_error (_("register out of range in list"));
1742 return FAIL;
1743 }
5f4273c7 1744
5287ad62
JB
1745 /* Note: a value of 2 * n is returned for the register Q<n>. */
1746 if (regtype == REG_TYPE_NQ)
1747 {
1748 setmask = 3;
1749 addregs = 2;
1750 }
1751
c19d1205
ZW
1752 if (new_base < base_reg)
1753 base_reg = new_base;
a737bd4d 1754
5287ad62 1755 if (mask & (setmask << new_base))
c19d1205 1756 {
dcbf9037 1757 first_error (_("invalid register list"));
c19d1205 1758 return FAIL;
a737bd4d 1759 }
a737bd4d 1760
c19d1205
ZW
1761 if ((mask >> new_base) != 0 && ! warned)
1762 {
1763 as_tsktsk (_("register list not in ascending order"));
1764 warned = 1;
1765 }
0bbf2aa4 1766
5287ad62
JB
1767 mask |= setmask << new_base;
1768 count += addregs;
0bbf2aa4 1769
037e8744 1770 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1771 {
1772 int high_range;
0bbf2aa4 1773
037e8744 1774 str++;
0bbf2aa4 1775
037e8744 1776 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1777 == FAIL)
c19d1205
ZW
1778 {
1779 inst.error = gettext (reg_expected_msgs[regtype]);
1780 return FAIL;
1781 }
0bbf2aa4 1782
b7fc2769
JB
1783 if (high_range >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
5287ad62
JB
1789 if (regtype == REG_TYPE_NQ)
1790 high_range = high_range + 1;
1791
c19d1205
ZW
1792 if (high_range <= new_base)
1793 {
1794 inst.error = _("register range not in ascending order");
1795 return FAIL;
1796 }
0bbf2aa4 1797
5287ad62 1798 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1799 {
5287ad62 1800 if (mask & (setmask << new_base))
0bbf2aa4 1801 {
c19d1205
ZW
1802 inst.error = _("invalid register list");
1803 return FAIL;
0bbf2aa4 1804 }
c19d1205 1805
5287ad62
JB
1806 mask |= setmask << new_base;
1807 count += addregs;
0bbf2aa4 1808 }
0bbf2aa4 1809 }
0bbf2aa4 1810 }
037e8744 1811 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1812
037e8744 1813 str++;
0bbf2aa4 1814
c19d1205
ZW
1815 /* Sanity check -- should have raised a parse error above. */
1816 if (count == 0 || count > max_regs)
1817 abort ();
1818
1819 *pbase = base_reg;
1820
1821 /* Final test -- the registers must be consecutive. */
1822 mask >>= base_reg;
1823 for (i = 0; i < count; i++)
1824 {
1825 if ((mask & (1u << i)) == 0)
1826 {
1827 inst.error = _("non-contiguous register range");
1828 return FAIL;
1829 }
1830 }
1831
037e8744
JB
1832 *ccp = str;
1833
c19d1205 1834 return count;
b99bd4ef
NC
1835}
1836
dcbf9037
JB
1837/* True if two alias types are the same. */
1838
c921be7d 1839static bfd_boolean
dcbf9037
JB
1840neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1841{
1842 if (!a && !b)
c921be7d 1843 return TRUE;
5f4273c7 1844
dcbf9037 1845 if (!a || !b)
c921be7d 1846 return FALSE;
dcbf9037
JB
1847
1848 if (a->defined != b->defined)
c921be7d 1849 return FALSE;
5f4273c7 1850
dcbf9037
JB
1851 if ((a->defined & NTA_HASTYPE) != 0
1852 && (a->eltype.type != b->eltype.type
1853 || a->eltype.size != b->eltype.size))
c921be7d 1854 return FALSE;
dcbf9037
JB
1855
1856 if ((a->defined & NTA_HASINDEX) != 0
1857 && (a->index != b->index))
c921be7d 1858 return FALSE;
5f4273c7 1859
c921be7d 1860 return TRUE;
dcbf9037
JB
1861}
1862
5287ad62
JB
1863/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1864 The base register is put in *PBASE.
dcbf9037 1865 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1866 the return value.
1867 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1868 Bits [6:5] encode the list length (minus one).
1869 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1870
5287ad62 1871#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1872#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1873#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1874
1875static int
dcbf9037
JB
1876parse_neon_el_struct_list (char **str, unsigned *pbase,
1877 struct neon_type_el *eltype)
5287ad62
JB
1878{
1879 char *ptr = *str;
1880 int base_reg = -1;
1881 int reg_incr = -1;
1882 int count = 0;
1883 int lane = -1;
1884 int leading_brace = 0;
1885 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1886 const char *const incr_error = _("register stride must be 1 or 2");
1887 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1888 struct neon_typed_alias firsttype;
5f4273c7 1889
5287ad62
JB
1890 if (skip_past_char (&ptr, '{') == SUCCESS)
1891 leading_brace = 1;
5f4273c7 1892
5287ad62
JB
1893 do
1894 {
dcbf9037
JB
1895 struct neon_typed_alias atype;
1896 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1897
5287ad62
JB
1898 if (getreg == FAIL)
1899 {
dcbf9037 1900 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1901 return FAIL;
1902 }
5f4273c7 1903
5287ad62
JB
1904 if (base_reg == -1)
1905 {
1906 base_reg = getreg;
1907 if (rtype == REG_TYPE_NQ)
1908 {
1909 reg_incr = 1;
5287ad62 1910 }
dcbf9037 1911 firsttype = atype;
5287ad62
JB
1912 }
1913 else if (reg_incr == -1)
1914 {
1915 reg_incr = getreg - base_reg;
1916 if (reg_incr < 1 || reg_incr > 2)
1917 {
dcbf9037 1918 first_error (_(incr_error));
5287ad62
JB
1919 return FAIL;
1920 }
1921 }
1922 else if (getreg != base_reg + reg_incr * count)
1923 {
dcbf9037
JB
1924 first_error (_(incr_error));
1925 return FAIL;
1926 }
1927
c921be7d 1928 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1929 {
1930 first_error (_(type_error));
5287ad62
JB
1931 return FAIL;
1932 }
5f4273c7 1933
5287ad62
JB
1934 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1935 modes. */
1936 if (ptr[0] == '-')
1937 {
dcbf9037 1938 struct neon_typed_alias htype;
5287ad62
JB
1939 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1940 if (lane == -1)
1941 lane = NEON_INTERLEAVE_LANES;
1942 else if (lane != NEON_INTERLEAVE_LANES)
1943 {
dcbf9037 1944 first_error (_(type_error));
5287ad62
JB
1945 return FAIL;
1946 }
1947 if (reg_incr == -1)
1948 reg_incr = 1;
1949 else if (reg_incr != 1)
1950 {
dcbf9037 1951 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1952 return FAIL;
1953 }
1954 ptr++;
dcbf9037 1955 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1956 if (hireg == FAIL)
1957 {
dcbf9037
JB
1958 first_error (_(reg_expected_msgs[rtype]));
1959 return FAIL;
1960 }
c921be7d 1961 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1962 {
1963 first_error (_(type_error));
5287ad62
JB
1964 return FAIL;
1965 }
1966 count += hireg + dregs - getreg;
1967 continue;
1968 }
5f4273c7 1969
5287ad62
JB
1970 /* If we're using Q registers, we can't use [] or [n] syntax. */
1971 if (rtype == REG_TYPE_NQ)
1972 {
1973 count += 2;
1974 continue;
1975 }
5f4273c7 1976
dcbf9037 1977 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1978 {
dcbf9037
JB
1979 if (lane == -1)
1980 lane = atype.index;
1981 else if (lane != atype.index)
5287ad62 1982 {
dcbf9037
JB
1983 first_error (_(type_error));
1984 return FAIL;
5287ad62
JB
1985 }
1986 }
1987 else if (lane == -1)
1988 lane = NEON_INTERLEAVE_LANES;
1989 else if (lane != NEON_INTERLEAVE_LANES)
1990 {
dcbf9037 1991 first_error (_(type_error));
5287ad62
JB
1992 return FAIL;
1993 }
1994 count++;
1995 }
1996 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1997
5287ad62
JB
1998 /* No lane set by [x]. We must be interleaving structures. */
1999 if (lane == -1)
2000 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2001
5287ad62
JB
2002 /* Sanity check. */
2003 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2004 || (count > 1 && reg_incr == -1))
2005 {
dcbf9037 2006 first_error (_("error parsing element/structure list"));
5287ad62
JB
2007 return FAIL;
2008 }
2009
2010 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2011 {
dcbf9037 2012 first_error (_("expected }"));
5287ad62
JB
2013 return FAIL;
2014 }
5f4273c7 2015
5287ad62
JB
2016 if (reg_incr == -1)
2017 reg_incr = 1;
2018
dcbf9037
JB
2019 if (eltype)
2020 *eltype = firsttype.eltype;
2021
5287ad62
JB
2022 *pbase = base_reg;
2023 *str = ptr;
5f4273c7 2024
5287ad62
JB
2025 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2026}
2027
c19d1205
ZW
2028/* Parse an explicit relocation suffix on an expression. This is
2029 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2030 arm_reloc_hsh contains no entries, so this function can only
2031 succeed if there is no () after the word. Returns -1 on error,
2032 BFD_RELOC_UNUSED if there wasn't any suffix. */
2033static int
2034parse_reloc (char **str)
b99bd4ef 2035{
c19d1205
ZW
2036 struct reloc_entry *r;
2037 char *p, *q;
b99bd4ef 2038
c19d1205
ZW
2039 if (**str != '(')
2040 return BFD_RELOC_UNUSED;
b99bd4ef 2041
c19d1205
ZW
2042 p = *str + 1;
2043 q = p;
2044
2045 while (*q && *q != ')' && *q != ',')
2046 q++;
2047 if (*q != ')')
2048 return -1;
2049
21d799b5
NC
2050 if ((r = (struct reloc_entry *)
2051 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2052 return -1;
2053
2054 *str = q + 1;
2055 return r->reloc;
b99bd4ef
NC
2056}
2057
c19d1205
ZW
2058/* Directives: register aliases. */
2059
dcbf9037 2060static struct reg_entry *
c19d1205 2061insert_reg_alias (char *str, int number, int type)
b99bd4ef 2062{
d3ce72d0 2063 struct reg_entry *new_reg;
c19d1205 2064 const char *name;
b99bd4ef 2065
d3ce72d0 2066 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2067 {
d3ce72d0 2068 if (new_reg->builtin)
c19d1205 2069 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2070
c19d1205
ZW
2071 /* Only warn about a redefinition if it's not defined as the
2072 same register. */
d3ce72d0 2073 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2074 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2075
d929913e 2076 return NULL;
c19d1205 2077 }
b99bd4ef 2078
c19d1205 2079 name = xstrdup (str);
d3ce72d0 2080 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2081
d3ce72d0
NC
2082 new_reg->name = name;
2083 new_reg->number = number;
2084 new_reg->type = type;
2085 new_reg->builtin = FALSE;
2086 new_reg->neon = NULL;
b99bd4ef 2087
d3ce72d0 2088 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2089 abort ();
5f4273c7 2090
d3ce72d0 2091 return new_reg;
dcbf9037
JB
2092}
2093
2094static void
2095insert_neon_reg_alias (char *str, int number, int type,
2096 struct neon_typed_alias *atype)
2097{
2098 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2099
dcbf9037
JB
2100 if (!reg)
2101 {
2102 first_error (_("attempt to redefine typed alias"));
2103 return;
2104 }
5f4273c7 2105
dcbf9037
JB
2106 if (atype)
2107 {
21d799b5
NC
2108 reg->neon = (struct neon_typed_alias *)
2109 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2110 *reg->neon = *atype;
2111 }
c19d1205 2112}
b99bd4ef 2113
c19d1205 2114/* Look for the .req directive. This is of the form:
b99bd4ef 2115
c19d1205 2116 new_register_name .req existing_register_name
b99bd4ef 2117
c19d1205 2118 If we find one, or if it looks sufficiently like one that we want to
d929913e 2119 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2120
d929913e 2121static bfd_boolean
c19d1205
ZW
2122create_register_alias (char * newname, char *p)
2123{
2124 struct reg_entry *old;
2125 char *oldname, *nbuf;
2126 size_t nlen;
b99bd4ef 2127
c19d1205
ZW
2128 /* The input scrubber ensures that whitespace after the mnemonic is
2129 collapsed to single spaces. */
2130 oldname = p;
2131 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2132 return FALSE;
b99bd4ef 2133
c19d1205
ZW
2134 oldname += 6;
2135 if (*oldname == '\0')
d929913e 2136 return FALSE;
b99bd4ef 2137
21d799b5 2138 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2139 if (!old)
b99bd4ef 2140 {
c19d1205 2141 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2142 return TRUE;
b99bd4ef
NC
2143 }
2144
c19d1205
ZW
2145 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2146 the desired alias name, and p points to its end. If not, then
2147 the desired alias name is in the global original_case_string. */
2148#ifdef TC_CASE_SENSITIVE
2149 nlen = p - newname;
2150#else
2151 newname = original_case_string;
2152 nlen = strlen (newname);
2153#endif
b99bd4ef 2154
21d799b5 2155 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2156 memcpy (nbuf, newname, nlen);
2157 nbuf[nlen] = '\0';
b99bd4ef 2158
c19d1205
ZW
2159 /* Create aliases under the new name as stated; an all-lowercase
2160 version of the new name; and an all-uppercase version of the new
2161 name. */
d929913e
NC
2162 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2163 {
2164 for (p = nbuf; *p; p++)
2165 *p = TOUPPER (*p);
c19d1205 2166
d929913e
NC
2167 if (strncmp (nbuf, newname, nlen))
2168 {
2169 /* If this attempt to create an additional alias fails, do not bother
2170 trying to create the all-lower case alias. We will fail and issue
2171 a second, duplicate error message. This situation arises when the
2172 programmer does something like:
2173 foo .req r0
2174 Foo .req r1
2175 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2176 the artificial FOO alias because it has already been created by the
d929913e
NC
2177 first .req. */
2178 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2179 return TRUE;
2180 }
c19d1205 2181
d929913e
NC
2182 for (p = nbuf; *p; p++)
2183 *p = TOLOWER (*p);
c19d1205 2184
d929913e
NC
2185 if (strncmp (nbuf, newname, nlen))
2186 insert_reg_alias (nbuf, old->number, old->type);
2187 }
c19d1205 2188
d929913e 2189 return TRUE;
b99bd4ef
NC
2190}
2191
dcbf9037
JB
2192/* Create a Neon typed/indexed register alias using directives, e.g.:
2193 X .dn d5.s32[1]
2194 Y .qn 6.s16
2195 Z .dn d7
2196 T .dn Z[0]
2197 These typed registers can be used instead of the types specified after the
2198 Neon mnemonic, so long as all operands given have types. Types can also be
2199 specified directly, e.g.:
5f4273c7 2200 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2201
c921be7d 2202static bfd_boolean
dcbf9037
JB
2203create_neon_reg_alias (char *newname, char *p)
2204{
2205 enum arm_reg_type basetype;
2206 struct reg_entry *basereg;
2207 struct reg_entry mybasereg;
2208 struct neon_type ntype;
2209 struct neon_typed_alias typeinfo;
2210 char *namebuf, *nameend;
2211 int namelen;
5f4273c7 2212
dcbf9037
JB
2213 typeinfo.defined = 0;
2214 typeinfo.eltype.type = NT_invtype;
2215 typeinfo.eltype.size = -1;
2216 typeinfo.index = -1;
5f4273c7 2217
dcbf9037 2218 nameend = p;
5f4273c7 2219
dcbf9037
JB
2220 if (strncmp (p, " .dn ", 5) == 0)
2221 basetype = REG_TYPE_VFD;
2222 else if (strncmp (p, " .qn ", 5) == 0)
2223 basetype = REG_TYPE_NQ;
2224 else
c921be7d 2225 return FALSE;
5f4273c7 2226
dcbf9037 2227 p += 5;
5f4273c7 2228
dcbf9037 2229 if (*p == '\0')
c921be7d 2230 return FALSE;
5f4273c7 2231
dcbf9037
JB
2232 basereg = arm_reg_parse_multi (&p);
2233
2234 if (basereg && basereg->type != basetype)
2235 {
2236 as_bad (_("bad type for register"));
c921be7d 2237 return FALSE;
dcbf9037
JB
2238 }
2239
2240 if (basereg == NULL)
2241 {
2242 expressionS exp;
2243 /* Try parsing as an integer. */
2244 my_get_expression (&exp, &p, GE_NO_PREFIX);
2245 if (exp.X_op != O_constant)
2246 {
2247 as_bad (_("expression must be constant"));
c921be7d 2248 return FALSE;
dcbf9037
JB
2249 }
2250 basereg = &mybasereg;
2251 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2252 : exp.X_add_number;
2253 basereg->neon = 0;
2254 }
2255
2256 if (basereg->neon)
2257 typeinfo = *basereg->neon;
2258
2259 if (parse_neon_type (&ntype, &p) == SUCCESS)
2260 {
2261 /* We got a type. */
2262 if (typeinfo.defined & NTA_HASTYPE)
2263 {
2264 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2265 return FALSE;
dcbf9037 2266 }
5f4273c7 2267
dcbf9037
JB
2268 typeinfo.defined |= NTA_HASTYPE;
2269 if (ntype.elems != 1)
2270 {
2271 as_bad (_("you must specify a single type only"));
c921be7d 2272 return FALSE;
dcbf9037
JB
2273 }
2274 typeinfo.eltype = ntype.el[0];
2275 }
5f4273c7 2276
dcbf9037
JB
2277 if (skip_past_char (&p, '[') == SUCCESS)
2278 {
2279 expressionS exp;
2280 /* We got a scalar index. */
5f4273c7 2281
dcbf9037
JB
2282 if (typeinfo.defined & NTA_HASINDEX)
2283 {
2284 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2285 return FALSE;
dcbf9037 2286 }
5f4273c7 2287
dcbf9037 2288 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2289
dcbf9037
JB
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("scalar index must be constant"));
c921be7d 2293 return FALSE;
dcbf9037 2294 }
5f4273c7 2295
dcbf9037
JB
2296 typeinfo.defined |= NTA_HASINDEX;
2297 typeinfo.index = exp.X_add_number;
5f4273c7 2298
dcbf9037
JB
2299 if (skip_past_char (&p, ']') == FAIL)
2300 {
2301 as_bad (_("expecting ]"));
c921be7d 2302 return FALSE;
dcbf9037
JB
2303 }
2304 }
2305
2306 namelen = nameend - newname;
21d799b5 2307 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2308 strncpy (namebuf, newname, namelen);
2309 namebuf[namelen] = '\0';
5f4273c7 2310
dcbf9037
JB
2311 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2312 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2313
dcbf9037
JB
2314 /* Insert name in all uppercase. */
2315 for (p = namebuf; *p; p++)
2316 *p = TOUPPER (*p);
5f4273c7 2317
dcbf9037
JB
2318 if (strncmp (namebuf, newname, namelen))
2319 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2320 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2321
dcbf9037
JB
2322 /* Insert name in all lowercase. */
2323 for (p = namebuf; *p; p++)
2324 *p = TOLOWER (*p);
5f4273c7 2325
dcbf9037
JB
2326 if (strncmp (namebuf, newname, namelen))
2327 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2328 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2329
c921be7d 2330 return TRUE;
dcbf9037
JB
2331}
2332
c19d1205
ZW
2333/* Should never be called, as .req goes between the alias and the
2334 register name, not at the beginning of the line. */
c921be7d 2335
b99bd4ef 2336static void
c19d1205 2337s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2338{
c19d1205
ZW
2339 as_bad (_("invalid syntax for .req directive"));
2340}
b99bd4ef 2341
dcbf9037
JB
2342static void
2343s_dn (int a ATTRIBUTE_UNUSED)
2344{
2345 as_bad (_("invalid syntax for .dn directive"));
2346}
2347
2348static void
2349s_qn (int a ATTRIBUTE_UNUSED)
2350{
2351 as_bad (_("invalid syntax for .qn directive"));
2352}
2353
c19d1205
ZW
2354/* The .unreq directive deletes an alias which was previously defined
2355 by .req. For example:
b99bd4ef 2356
c19d1205
ZW
2357 my_alias .req r11
2358 .unreq my_alias */
b99bd4ef
NC
2359
2360static void
c19d1205 2361s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2362{
c19d1205
ZW
2363 char * name;
2364 char saved_char;
b99bd4ef 2365
c19d1205
ZW
2366 name = input_line_pointer;
2367
2368 while (*input_line_pointer != 0
2369 && *input_line_pointer != ' '
2370 && *input_line_pointer != '\n')
2371 ++input_line_pointer;
2372
2373 saved_char = *input_line_pointer;
2374 *input_line_pointer = 0;
2375
2376 if (!*name)
2377 as_bad (_("invalid syntax for .unreq directive"));
2378 else
2379 {
21d799b5
NC
2380 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2381 name);
c19d1205
ZW
2382
2383 if (!reg)
2384 as_bad (_("unknown register alias '%s'"), name);
2385 else if (reg->builtin)
2386 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2387 name);
2388 else
2389 {
d929913e
NC
2390 char * p;
2391 char * nbuf;
2392
db0bc284 2393 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2394 free ((char *) reg->name);
dcbf9037
JB
2395 if (reg->neon)
2396 free (reg->neon);
c19d1205 2397 free (reg);
d929913e
NC
2398
2399 /* Also locate the all upper case and all lower case versions.
2400 Do not complain if we cannot find one or the other as it
2401 was probably deleted above. */
5f4273c7 2402
d929913e
NC
2403 nbuf = strdup (name);
2404 for (p = nbuf; *p; p++)
2405 *p = TOUPPER (*p);
21d799b5 2406 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2407 if (reg)
2408 {
db0bc284 2409 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2410 free ((char *) reg->name);
2411 if (reg->neon)
2412 free (reg->neon);
2413 free (reg);
2414 }
2415
2416 for (p = nbuf; *p; p++)
2417 *p = TOLOWER (*p);
21d799b5 2418 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2419 if (reg)
2420 {
db0bc284 2421 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2422 free ((char *) reg->name);
2423 if (reg->neon)
2424 free (reg->neon);
2425 free (reg);
2426 }
2427
2428 free (nbuf);
c19d1205
ZW
2429 }
2430 }
b99bd4ef 2431
c19d1205 2432 *input_line_pointer = saved_char;
b99bd4ef
NC
2433 demand_empty_rest_of_line ();
2434}
2435
c19d1205
ZW
2436/* Directives: Instruction set selection. */
2437
2438#ifdef OBJ_ELF
2439/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2440 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2441 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2442 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2443
cd000bff
DJ
2444/* Create a new mapping symbol for the transition to STATE. */
2445
2446static void
2447make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2448{
a737bd4d 2449 symbolS * symbolP;
c19d1205
ZW
2450 const char * symname;
2451 int type;
b99bd4ef 2452
c19d1205 2453 switch (state)
b99bd4ef 2454 {
c19d1205
ZW
2455 case MAP_DATA:
2456 symname = "$d";
2457 type = BSF_NO_FLAGS;
2458 break;
2459 case MAP_ARM:
2460 symname = "$a";
2461 type = BSF_NO_FLAGS;
2462 break;
2463 case MAP_THUMB:
2464 symname = "$t";
2465 type = BSF_NO_FLAGS;
2466 break;
c19d1205
ZW
2467 default:
2468 abort ();
2469 }
2470
cd000bff 2471 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2472 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2473
2474 switch (state)
2475 {
2476 case MAP_ARM:
2477 THUMB_SET_FUNC (symbolP, 0);
2478 ARM_SET_THUMB (symbolP, 0);
2479 ARM_SET_INTERWORK (symbolP, support_interwork);
2480 break;
2481
2482 case MAP_THUMB:
2483 THUMB_SET_FUNC (symbolP, 1);
2484 ARM_SET_THUMB (symbolP, 1);
2485 ARM_SET_INTERWORK (symbolP, support_interwork);
2486 break;
2487
2488 case MAP_DATA:
2489 default:
cd000bff
DJ
2490 break;
2491 }
2492
2493 /* Save the mapping symbols for future reference. Also check that
2494 we do not place two mapping symbols at the same offset within a
2495 frag. We'll handle overlap between frags in
2de7820f
JZ
2496 check_mapping_symbols.
2497
2498 If .fill or other data filling directive generates zero sized data,
2499 the mapping symbol for the following code will have the same value
2500 as the one generated for the data filling directive. In this case,
2501 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2502 if (value == 0)
2503 {
2de7820f
JZ
2504 if (frag->tc_frag_data.first_map != NULL)
2505 {
2506 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2507 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2508 }
cd000bff
DJ
2509 frag->tc_frag_data.first_map = symbolP;
2510 }
2511 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2512 {
2513 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2514 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2515 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2516 }
cd000bff
DJ
2517 frag->tc_frag_data.last_map = symbolP;
2518}
2519
2520/* We must sometimes convert a region marked as code to data during
2521 code alignment, if an odd number of bytes have to be padded. The
2522 code mapping symbol is pushed to an aligned address. */
2523
2524static void
2525insert_data_mapping_symbol (enum mstate state,
2526 valueT value, fragS *frag, offsetT bytes)
2527{
2528 /* If there was already a mapping symbol, remove it. */
2529 if (frag->tc_frag_data.last_map != NULL
2530 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2531 {
2532 symbolS *symp = frag->tc_frag_data.last_map;
2533
2534 if (value == 0)
2535 {
2536 know (frag->tc_frag_data.first_map == symp);
2537 frag->tc_frag_data.first_map = NULL;
2538 }
2539 frag->tc_frag_data.last_map = NULL;
2540 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2541 }
cd000bff
DJ
2542
2543 make_mapping_symbol (MAP_DATA, value, frag);
2544 make_mapping_symbol (state, value + bytes, frag);
2545}
2546
2547static void mapping_state_2 (enum mstate state, int max_chars);
2548
2549/* Set the mapping state to STATE. Only call this when about to
2550 emit some STATE bytes to the file. */
2551
2552void
2553mapping_state (enum mstate state)
2554{
940b5ce0
DJ
2555 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2556
cd000bff
DJ
2557#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2558
2559 if (mapstate == state)
2560 /* The mapping symbol has already been emitted.
2561 There is nothing else to do. */
2562 return;
2563 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2564 /* This case will be evaluated later in the next else. */
2565 return;
2566 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2567 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2568 {
2569 /* Only add the symbol if the offset is > 0:
2570 if we're at the first frag, check it's size > 0;
2571 if we're not at the first frag, then for sure
2572 the offset is > 0. */
2573 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2574 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2575
2576 if (add_symbol)
2577 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2578 }
2579
2580 mapping_state_2 (state, 0);
2581#undef TRANSITION
2582}
2583
2584/* Same as mapping_state, but MAX_CHARS bytes have already been
2585 allocated. Put the mapping symbol that far back. */
2586
2587static void
2588mapping_state_2 (enum mstate state, int max_chars)
2589{
940b5ce0
DJ
2590 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2591
2592 if (!SEG_NORMAL (now_seg))
2593 return;
2594
cd000bff
DJ
2595 if (mapstate == state)
2596 /* The mapping symbol has already been emitted.
2597 There is nothing else to do. */
2598 return;
2599
cd000bff
DJ
2600 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2601 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2602}
2603#else
d3106081
NS
2604#define mapping_state(x) ((void)0)
2605#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2606#endif
2607
2608/* Find the real, Thumb encoded start of a Thumb function. */
2609
4343666d 2610#ifdef OBJ_COFF
c19d1205
ZW
2611static symbolS *
2612find_real_start (symbolS * symbolP)
2613{
2614 char * real_start;
2615 const char * name = S_GET_NAME (symbolP);
2616 symbolS * new_target;
2617
2618 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2619#define STUB_NAME ".real_start_of"
2620
2621 if (name == NULL)
2622 abort ();
2623
37f6032b
ZW
2624 /* The compiler may generate BL instructions to local labels because
2625 it needs to perform a branch to a far away location. These labels
2626 do not have a corresponding ".real_start_of" label. We check
2627 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2628 the ".real_start_of" convention for nonlocal branches. */
2629 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2630 return symbolP;
2631
37f6032b 2632 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2633 new_target = symbol_find (real_start);
2634
2635 if (new_target == NULL)
2636 {
bd3ba5d1 2637 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2638 new_target = symbolP;
2639 }
2640
c19d1205
ZW
2641 return new_target;
2642}
4343666d 2643#endif
c19d1205
ZW
2644
2645static void
2646opcode_select (int width)
2647{
2648 switch (width)
2649 {
2650 case 16:
2651 if (! thumb_mode)
2652 {
e74cfd16 2653 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2654 as_bad (_("selected processor does not support THUMB opcodes"));
2655
2656 thumb_mode = 1;
2657 /* No need to force the alignment, since we will have been
2658 coming from ARM mode, which is word-aligned. */
2659 record_alignment (now_seg, 1);
2660 }
c19d1205
ZW
2661 break;
2662
2663 case 32:
2664 if (thumb_mode)
2665 {
e74cfd16 2666 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2667 as_bad (_("selected processor does not support ARM opcodes"));
2668
2669 thumb_mode = 0;
2670
2671 if (!need_pass_2)
2672 frag_align (2, 0, 0);
2673
2674 record_alignment (now_seg, 1);
2675 }
c19d1205
ZW
2676 break;
2677
2678 default:
2679 as_bad (_("invalid instruction size selected (%d)"), width);
2680 }
2681}
2682
2683static void
2684s_arm (int ignore ATTRIBUTE_UNUSED)
2685{
2686 opcode_select (32);
2687 demand_empty_rest_of_line ();
2688}
2689
2690static void
2691s_thumb (int ignore ATTRIBUTE_UNUSED)
2692{
2693 opcode_select (16);
2694 demand_empty_rest_of_line ();
2695}
2696
2697static void
2698s_code (int unused ATTRIBUTE_UNUSED)
2699{
2700 int temp;
2701
2702 temp = get_absolute_expression ();
2703 switch (temp)
2704 {
2705 case 16:
2706 case 32:
2707 opcode_select (temp);
2708 break;
2709
2710 default:
2711 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2712 }
2713}
2714
2715static void
2716s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2717{
2718 /* If we are not already in thumb mode go into it, EVEN if
2719 the target processor does not support thumb instructions.
2720 This is used by gcc/config/arm/lib1funcs.asm for example
2721 to compile interworking support functions even if the
2722 target processor should not support interworking. */
2723 if (! thumb_mode)
2724 {
2725 thumb_mode = 2;
2726 record_alignment (now_seg, 1);
2727 }
2728
2729 demand_empty_rest_of_line ();
2730}
2731
2732static void
2733s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2734{
2735 s_thumb (0);
2736
2737 /* The following label is the name/address of the start of a Thumb function.
2738 We need to know this for the interworking support. */
2739 label_is_thumb_function_name = TRUE;
2740}
2741
2742/* Perform a .set directive, but also mark the alias as
2743 being a thumb function. */
2744
2745static void
2746s_thumb_set (int equiv)
2747{
2748 /* XXX the following is a duplicate of the code for s_set() in read.c
2749 We cannot just call that code as we need to get at the symbol that
2750 is created. */
2751 char * name;
2752 char delim;
2753 char * end_name;
2754 symbolS * symbolP;
2755
2756 /* Especial apologies for the random logic:
2757 This just grew, and could be parsed much more simply!
2758 Dean - in haste. */
2759 name = input_line_pointer;
2760 delim = get_symbol_end ();
2761 end_name = input_line_pointer;
2762 *end_name = delim;
2763
2764 if (*input_line_pointer != ',')
2765 {
2766 *end_name = 0;
2767 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2768 *end_name = delim;
2769 ignore_rest_of_line ();
2770 return;
2771 }
2772
2773 input_line_pointer++;
2774 *end_name = 0;
2775
2776 if (name[0] == '.' && name[1] == '\0')
2777 {
2778 /* XXX - this should not happen to .thumb_set. */
2779 abort ();
2780 }
2781
2782 if ((symbolP = symbol_find (name)) == NULL
2783 && (symbolP = md_undefined_symbol (name)) == NULL)
2784 {
2785#ifndef NO_LISTING
2786 /* When doing symbol listings, play games with dummy fragments living
2787 outside the normal fragment chain to record the file and line info
c19d1205 2788 for this symbol. */
b99bd4ef
NC
2789 if (listing & LISTING_SYMBOLS)
2790 {
2791 extern struct list_info_struct * listing_tail;
21d799b5 2792 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2793
2794 memset (dummy_frag, 0, sizeof (fragS));
2795 dummy_frag->fr_type = rs_fill;
2796 dummy_frag->line = listing_tail;
2797 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2798 dummy_frag->fr_symbol = symbolP;
2799 }
2800 else
2801#endif
2802 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2803
2804#ifdef OBJ_COFF
2805 /* "set" symbols are local unless otherwise specified. */
2806 SF_SET_LOCAL (symbolP);
2807#endif /* OBJ_COFF */
2808 } /* Make a new symbol. */
2809
2810 symbol_table_insert (symbolP);
2811
2812 * end_name = delim;
2813
2814 if (equiv
2815 && S_IS_DEFINED (symbolP)
2816 && S_GET_SEGMENT (symbolP) != reg_section)
2817 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2818
2819 pseudo_set (symbolP);
2820
2821 demand_empty_rest_of_line ();
2822
c19d1205 2823 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2824
2825 THUMB_SET_FUNC (symbolP, 1);
2826 ARM_SET_THUMB (symbolP, 1);
2827#if defined OBJ_ELF || defined OBJ_COFF
2828 ARM_SET_INTERWORK (symbolP, support_interwork);
2829#endif
2830}
2831
c19d1205 2832/* Directives: Mode selection. */
b99bd4ef 2833
c19d1205
ZW
2834/* .syntax [unified|divided] - choose the new unified syntax
2835 (same for Arm and Thumb encoding, modulo slight differences in what
2836 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2837static void
c19d1205 2838s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2839{
c19d1205
ZW
2840 char *name, delim;
2841
2842 name = input_line_pointer;
2843 delim = get_symbol_end ();
2844
2845 if (!strcasecmp (name, "unified"))
2846 unified_syntax = TRUE;
2847 else if (!strcasecmp (name, "divided"))
2848 unified_syntax = FALSE;
2849 else
2850 {
2851 as_bad (_("unrecognized syntax mode \"%s\""), name);
2852 return;
2853 }
2854 *input_line_pointer = delim;
b99bd4ef
NC
2855 demand_empty_rest_of_line ();
2856}
2857
c19d1205
ZW
2858/* Directives: sectioning and alignment. */
2859
2860/* Same as s_align_ptwo but align 0 => align 2. */
2861
b99bd4ef 2862static void
c19d1205 2863s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2864{
a737bd4d 2865 int temp;
dce323d1 2866 bfd_boolean fill_p;
c19d1205
ZW
2867 long temp_fill;
2868 long max_alignment = 15;
b99bd4ef
NC
2869
2870 temp = get_absolute_expression ();
c19d1205
ZW
2871 if (temp > max_alignment)
2872 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2873 else if (temp < 0)
b99bd4ef 2874 {
c19d1205
ZW
2875 as_bad (_("alignment negative. 0 assumed."));
2876 temp = 0;
2877 }
b99bd4ef 2878
c19d1205
ZW
2879 if (*input_line_pointer == ',')
2880 {
2881 input_line_pointer++;
2882 temp_fill = get_absolute_expression ();
dce323d1 2883 fill_p = TRUE;
b99bd4ef 2884 }
c19d1205 2885 else
dce323d1
PB
2886 {
2887 fill_p = FALSE;
2888 temp_fill = 0;
2889 }
b99bd4ef 2890
c19d1205
ZW
2891 if (!temp)
2892 temp = 2;
b99bd4ef 2893
c19d1205
ZW
2894 /* Only make a frag if we HAVE to. */
2895 if (temp && !need_pass_2)
dce323d1
PB
2896 {
2897 if (!fill_p && subseg_text_p (now_seg))
2898 frag_align_code (temp, 0);
2899 else
2900 frag_align (temp, (int) temp_fill, 0);
2901 }
c19d1205
ZW
2902 demand_empty_rest_of_line ();
2903
2904 record_alignment (now_seg, temp);
b99bd4ef
NC
2905}
2906
c19d1205
ZW
2907static void
2908s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2909{
c19d1205
ZW
2910 /* We don't support putting frags in the BSS segment, we fake it by
2911 marking in_bss, then looking at s_skip for clues. */
2912 subseg_set (bss_section, 0);
2913 demand_empty_rest_of_line ();
cd000bff
DJ
2914
2915#ifdef md_elf_section_change_hook
2916 md_elf_section_change_hook ();
2917#endif
c19d1205 2918}
b99bd4ef 2919
c19d1205
ZW
2920static void
2921s_even (int ignore ATTRIBUTE_UNUSED)
2922{
2923 /* Never make frag if expect extra pass. */
2924 if (!need_pass_2)
2925 frag_align (1, 0, 0);
b99bd4ef 2926
c19d1205 2927 record_alignment (now_seg, 1);
b99bd4ef 2928
c19d1205 2929 demand_empty_rest_of_line ();
b99bd4ef
NC
2930}
2931
c19d1205 2932/* Directives: Literal pools. */
a737bd4d 2933
c19d1205
ZW
2934static literal_pool *
2935find_literal_pool (void)
a737bd4d 2936{
c19d1205 2937 literal_pool * pool;
a737bd4d 2938
c19d1205 2939 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2940 {
c19d1205
ZW
2941 if (pool->section == now_seg
2942 && pool->sub_section == now_subseg)
2943 break;
a737bd4d
NC
2944 }
2945
c19d1205 2946 return pool;
a737bd4d
NC
2947}
2948
c19d1205
ZW
2949static literal_pool *
2950find_or_make_literal_pool (void)
a737bd4d 2951{
c19d1205
ZW
2952 /* Next literal pool ID number. */
2953 static unsigned int latest_pool_num = 1;
2954 literal_pool * pool;
a737bd4d 2955
c19d1205 2956 pool = find_literal_pool ();
a737bd4d 2957
c19d1205 2958 if (pool == NULL)
a737bd4d 2959 {
c19d1205 2960 /* Create a new pool. */
21d799b5 2961 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2962 if (! pool)
2963 return NULL;
a737bd4d 2964
c19d1205
ZW
2965 pool->next_free_entry = 0;
2966 pool->section = now_seg;
2967 pool->sub_section = now_subseg;
2968 pool->next = list_of_pools;
2969 pool->symbol = NULL;
2970
2971 /* Add it to the list. */
2972 list_of_pools = pool;
a737bd4d 2973 }
a737bd4d 2974
c19d1205
ZW
2975 /* New pools, and emptied pools, will have a NULL symbol. */
2976 if (pool->symbol == NULL)
a737bd4d 2977 {
c19d1205
ZW
2978 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2979 (valueT) 0, &zero_address_frag);
2980 pool->id = latest_pool_num ++;
a737bd4d
NC
2981 }
2982
c19d1205
ZW
2983 /* Done. */
2984 return pool;
a737bd4d
NC
2985}
2986
c19d1205 2987/* Add the literal in the global 'inst'
5f4273c7 2988 structure to the relevant literal pool. */
b99bd4ef
NC
2989
2990static int
c19d1205 2991add_to_lit_pool (void)
b99bd4ef 2992{
c19d1205
ZW
2993 literal_pool * pool;
2994 unsigned int entry;
b99bd4ef 2995
c19d1205
ZW
2996 pool = find_or_make_literal_pool ();
2997
2998 /* Check if this literal value is already in the pool. */
2999 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3000 {
c19d1205
ZW
3001 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3002 && (inst.reloc.exp.X_op == O_constant)
3003 && (pool->literals[entry].X_add_number
3004 == inst.reloc.exp.X_add_number)
3005 && (pool->literals[entry].X_unsigned
3006 == inst.reloc.exp.X_unsigned))
3007 break;
3008
3009 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3010 && (inst.reloc.exp.X_op == O_symbol)
3011 && (pool->literals[entry].X_add_number
3012 == inst.reloc.exp.X_add_number)
3013 && (pool->literals[entry].X_add_symbol
3014 == inst.reloc.exp.X_add_symbol)
3015 && (pool->literals[entry].X_op_symbol
3016 == inst.reloc.exp.X_op_symbol))
3017 break;
b99bd4ef
NC
3018 }
3019
c19d1205
ZW
3020 /* Do we need to create a new entry? */
3021 if (entry == pool->next_free_entry)
3022 {
3023 if (entry >= MAX_LITERAL_POOL_SIZE)
3024 {
3025 inst.error = _("literal pool overflow");
3026 return FAIL;
3027 }
3028
3029 pool->literals[entry] = inst.reloc.exp;
3030 pool->next_free_entry += 1;
3031 }
b99bd4ef 3032
c19d1205
ZW
3033 inst.reloc.exp.X_op = O_symbol;
3034 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3035 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3036
c19d1205 3037 return SUCCESS;
b99bd4ef
NC
3038}
3039
c19d1205
ZW
3040/* Can't use symbol_new here, so have to create a symbol and then at
3041 a later date assign it a value. Thats what these functions do. */
e16bb312 3042
c19d1205
ZW
3043static void
3044symbol_locate (symbolS * symbolP,
3045 const char * name, /* It is copied, the caller can modify. */
3046 segT segment, /* Segment identifier (SEG_<something>). */
3047 valueT valu, /* Symbol value. */
3048 fragS * frag) /* Associated fragment. */
3049{
3050 unsigned int name_length;
3051 char * preserved_copy_of_name;
e16bb312 3052
c19d1205
ZW
3053 name_length = strlen (name) + 1; /* +1 for \0. */
3054 obstack_grow (&notes, name, name_length);
21d799b5 3055 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3056
c19d1205
ZW
3057#ifdef tc_canonicalize_symbol_name
3058 preserved_copy_of_name =
3059 tc_canonicalize_symbol_name (preserved_copy_of_name);
3060#endif
b99bd4ef 3061
c19d1205 3062 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3063
c19d1205
ZW
3064 S_SET_SEGMENT (symbolP, segment);
3065 S_SET_VALUE (symbolP, valu);
3066 symbol_clear_list_pointers (symbolP);
b99bd4ef 3067
c19d1205 3068 symbol_set_frag (symbolP, frag);
b99bd4ef 3069
c19d1205
ZW
3070 /* Link to end of symbol chain. */
3071 {
3072 extern int symbol_table_frozen;
b99bd4ef 3073
c19d1205
ZW
3074 if (symbol_table_frozen)
3075 abort ();
3076 }
b99bd4ef 3077
c19d1205 3078 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3079
c19d1205 3080 obj_symbol_new_hook (symbolP);
b99bd4ef 3081
c19d1205
ZW
3082#ifdef tc_symbol_new_hook
3083 tc_symbol_new_hook (symbolP);
3084#endif
3085
3086#ifdef DEBUG_SYMS
3087 verify_symbol_chain (symbol_rootP, symbol_lastP);
3088#endif /* DEBUG_SYMS */
b99bd4ef
NC
3089}
3090
b99bd4ef 3091
c19d1205
ZW
3092static void
3093s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3094{
c19d1205
ZW
3095 unsigned int entry;
3096 literal_pool * pool;
3097 char sym_name[20];
b99bd4ef 3098
c19d1205
ZW
3099 pool = find_literal_pool ();
3100 if (pool == NULL
3101 || pool->symbol == NULL
3102 || pool->next_free_entry == 0)
3103 return;
b99bd4ef 3104
c19d1205 3105 mapping_state (MAP_DATA);
b99bd4ef 3106
c19d1205
ZW
3107 /* Align pool as you have word accesses.
3108 Only make a frag if we have to. */
3109 if (!need_pass_2)
3110 frag_align (2, 0, 0);
b99bd4ef 3111
c19d1205 3112 record_alignment (now_seg, 2);
b99bd4ef 3113
c19d1205 3114 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3115
c19d1205
ZW
3116 symbol_locate (pool->symbol, sym_name, now_seg,
3117 (valueT) frag_now_fix (), frag_now);
3118 symbol_table_insert (pool->symbol);
b99bd4ef 3119
c19d1205 3120 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3121
c19d1205
ZW
3122#if defined OBJ_COFF || defined OBJ_ELF
3123 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3124#endif
6c43fab6 3125
c19d1205
ZW
3126 for (entry = 0; entry < pool->next_free_entry; entry ++)
3127 /* First output the expression in the instruction to the pool. */
3128 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3129
c19d1205
ZW
3130 /* Mark the pool as empty. */
3131 pool->next_free_entry = 0;
3132 pool->symbol = NULL;
b99bd4ef
NC
3133}
3134
c19d1205
ZW
3135#ifdef OBJ_ELF
3136/* Forward declarations for functions below, in the MD interface
3137 section. */
3138static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3139static valueT create_unwind_entry (int);
3140static void start_unwind_section (const segT, int);
3141static void add_unwind_opcode (valueT, int);
3142static void flush_pending_unwind (void);
b99bd4ef 3143
c19d1205 3144/* Directives: Data. */
b99bd4ef 3145
c19d1205
ZW
3146static void
3147s_arm_elf_cons (int nbytes)
3148{
3149 expressionS exp;
b99bd4ef 3150
c19d1205
ZW
3151#ifdef md_flush_pending_output
3152 md_flush_pending_output ();
3153#endif
b99bd4ef 3154
c19d1205 3155 if (is_it_end_of_statement ())
b99bd4ef 3156 {
c19d1205
ZW
3157 demand_empty_rest_of_line ();
3158 return;
b99bd4ef
NC
3159 }
3160
c19d1205
ZW
3161#ifdef md_cons_align
3162 md_cons_align (nbytes);
3163#endif
b99bd4ef 3164
c19d1205
ZW
3165 mapping_state (MAP_DATA);
3166 do
b99bd4ef 3167 {
c19d1205
ZW
3168 int reloc;
3169 char *base = input_line_pointer;
b99bd4ef 3170
c19d1205 3171 expression (& exp);
b99bd4ef 3172
c19d1205
ZW
3173 if (exp.X_op != O_symbol)
3174 emit_expr (&exp, (unsigned int) nbytes);
3175 else
3176 {
3177 char *before_reloc = input_line_pointer;
3178 reloc = parse_reloc (&input_line_pointer);
3179 if (reloc == -1)
3180 {
3181 as_bad (_("unrecognized relocation suffix"));
3182 ignore_rest_of_line ();
3183 return;
3184 }
3185 else if (reloc == BFD_RELOC_UNUSED)
3186 emit_expr (&exp, (unsigned int) nbytes);
3187 else
3188 {
21d799b5
NC
3189 reloc_howto_type *howto = (reloc_howto_type *)
3190 bfd_reloc_type_lookup (stdoutput,
3191 (bfd_reloc_code_real_type) reloc);
c19d1205 3192 int size = bfd_get_reloc_size (howto);
b99bd4ef 3193
2fc8bdac
ZW
3194 if (reloc == BFD_RELOC_ARM_PLT32)
3195 {
3196 as_bad (_("(plt) is only valid on branch targets"));
3197 reloc = BFD_RELOC_UNUSED;
3198 size = 0;
3199 }
3200
c19d1205 3201 if (size > nbytes)
2fc8bdac 3202 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3203 howto->name, nbytes);
3204 else
3205 {
3206 /* We've parsed an expression stopping at O_symbol.
3207 But there may be more expression left now that we
3208 have parsed the relocation marker. Parse it again.
3209 XXX Surely there is a cleaner way to do this. */
3210 char *p = input_line_pointer;
3211 int offset;
21d799b5 3212 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3213 memcpy (save_buf, base, input_line_pointer - base);
3214 memmove (base + (input_line_pointer - before_reloc),
3215 base, before_reloc - base);
3216
3217 input_line_pointer = base + (input_line_pointer-before_reloc);
3218 expression (&exp);
3219 memcpy (base, save_buf, p - base);
3220
3221 offset = nbytes - size;
3222 p = frag_more ((int) nbytes);
3223 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3224 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3225 }
3226 }
3227 }
b99bd4ef 3228 }
c19d1205 3229 while (*input_line_pointer++ == ',');
b99bd4ef 3230
c19d1205
ZW
3231 /* Put terminator back into stream. */
3232 input_line_pointer --;
3233 demand_empty_rest_of_line ();
b99bd4ef
NC
3234}
3235
c921be7d
NC
3236/* Emit an expression containing a 32-bit thumb instruction.
3237 Implementation based on put_thumb32_insn. */
3238
3239static void
3240emit_thumb32_expr (expressionS * exp)
3241{
3242 expressionS exp_high = *exp;
3243
3244 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3245 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3246 exp->X_add_number &= 0xffff;
3247 emit_expr (exp, (unsigned int) THUMB_SIZE);
3248}
3249
3250/* Guess the instruction size based on the opcode. */
3251
3252static int
3253thumb_insn_size (int opcode)
3254{
3255 if ((unsigned int) opcode < 0xe800u)
3256 return 2;
3257 else if ((unsigned int) opcode >= 0xe8000000u)
3258 return 4;
3259 else
3260 return 0;
3261}
3262
3263static bfd_boolean
3264emit_insn (expressionS *exp, int nbytes)
3265{
3266 int size = 0;
3267
3268 if (exp->X_op == O_constant)
3269 {
3270 size = nbytes;
3271
3272 if (size == 0)
3273 size = thumb_insn_size (exp->X_add_number);
3274
3275 if (size != 0)
3276 {
3277 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3278 {
3279 as_bad (_(".inst.n operand too big. "\
3280 "Use .inst.w instead"));
3281 size = 0;
3282 }
3283 else
3284 {
3285 if (now_it.state == AUTOMATIC_IT_BLOCK)
3286 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3287 else
3288 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3289
3290 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3291 emit_thumb32_expr (exp);
3292 else
3293 emit_expr (exp, (unsigned int) size);
3294
3295 it_fsm_post_encode ();
3296 }
3297 }
3298 else
3299 as_bad (_("cannot determine Thumb instruction size. " \
3300 "Use .inst.n/.inst.w instead"));
3301 }
3302 else
3303 as_bad (_("constant expression required"));
3304
3305 return (size != 0);
3306}
3307
3308/* Like s_arm_elf_cons but do not use md_cons_align and
3309 set the mapping state to MAP_ARM/MAP_THUMB. */
3310
3311static void
3312s_arm_elf_inst (int nbytes)
3313{
3314 if (is_it_end_of_statement ())
3315 {
3316 demand_empty_rest_of_line ();
3317 return;
3318 }
3319
3320 /* Calling mapping_state () here will not change ARM/THUMB,
3321 but will ensure not to be in DATA state. */
3322
3323 if (thumb_mode)
3324 mapping_state (MAP_THUMB);
3325 else
3326 {
3327 if (nbytes != 0)
3328 {
3329 as_bad (_("width suffixes are invalid in ARM mode"));
3330 ignore_rest_of_line ();
3331 return;
3332 }
3333
3334 nbytes = 4;
3335
3336 mapping_state (MAP_ARM);
3337 }
3338
3339 do
3340 {
3341 expressionS exp;
3342
3343 expression (& exp);
3344
3345 if (! emit_insn (& exp, nbytes))
3346 {
3347 ignore_rest_of_line ();
3348 return;
3349 }
3350 }
3351 while (*input_line_pointer++ == ',');
3352
3353 /* Put terminator back into stream. */
3354 input_line_pointer --;
3355 demand_empty_rest_of_line ();
3356}
b99bd4ef 3357
c19d1205 3358/* Parse a .rel31 directive. */
b99bd4ef 3359
c19d1205
ZW
3360static void
3361s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3362{
3363 expressionS exp;
3364 char *p;
3365 valueT highbit;
b99bd4ef 3366
c19d1205
ZW
3367 highbit = 0;
3368 if (*input_line_pointer == '1')
3369 highbit = 0x80000000;
3370 else if (*input_line_pointer != '0')
3371 as_bad (_("expected 0 or 1"));
b99bd4ef 3372
c19d1205
ZW
3373 input_line_pointer++;
3374 if (*input_line_pointer != ',')
3375 as_bad (_("missing comma"));
3376 input_line_pointer++;
b99bd4ef 3377
c19d1205
ZW
3378#ifdef md_flush_pending_output
3379 md_flush_pending_output ();
3380#endif
b99bd4ef 3381
c19d1205
ZW
3382#ifdef md_cons_align
3383 md_cons_align (4);
3384#endif
b99bd4ef 3385
c19d1205 3386 mapping_state (MAP_DATA);
b99bd4ef 3387
c19d1205 3388 expression (&exp);
b99bd4ef 3389
c19d1205
ZW
3390 p = frag_more (4);
3391 md_number_to_chars (p, highbit, 4);
3392 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3393 BFD_RELOC_ARM_PREL31);
b99bd4ef 3394
c19d1205 3395 demand_empty_rest_of_line ();
b99bd4ef
NC
3396}
3397
c19d1205 3398/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3399
c19d1205 3400/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3401
c19d1205
ZW
3402static void
3403s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3404{
3405 demand_empty_rest_of_line ();
921e5f0a
PB
3406 if (unwind.proc_start)
3407 {
c921be7d 3408 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3409 return;
3410 }
3411
c19d1205
ZW
3412 /* Mark the start of the function. */
3413 unwind.proc_start = expr_build_dot ();
b99bd4ef 3414
c19d1205
ZW
3415 /* Reset the rest of the unwind info. */
3416 unwind.opcode_count = 0;
3417 unwind.table_entry = NULL;
3418 unwind.personality_routine = NULL;
3419 unwind.personality_index = -1;
3420 unwind.frame_size = 0;
3421 unwind.fp_offset = 0;
fdfde340 3422 unwind.fp_reg = REG_SP;
c19d1205
ZW
3423 unwind.fp_used = 0;
3424 unwind.sp_restored = 0;
3425}
b99bd4ef 3426
b99bd4ef 3427
c19d1205
ZW
3428/* Parse a handlerdata directive. Creates the exception handling table entry
3429 for the function. */
b99bd4ef 3430
c19d1205
ZW
3431static void
3432s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3433{
3434 demand_empty_rest_of_line ();
921e5f0a 3435 if (!unwind.proc_start)
c921be7d 3436 as_bad (MISSING_FNSTART);
921e5f0a 3437
c19d1205 3438 if (unwind.table_entry)
6decc662 3439 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3440
c19d1205
ZW
3441 create_unwind_entry (1);
3442}
a737bd4d 3443
c19d1205 3444/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3445
c19d1205
ZW
3446static void
3447s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3448{
3449 long where;
3450 char *ptr;
3451 valueT val;
940b5ce0 3452 unsigned int marked_pr_dependency;
f02232aa 3453
c19d1205 3454 demand_empty_rest_of_line ();
f02232aa 3455
921e5f0a
PB
3456 if (!unwind.proc_start)
3457 {
c921be7d 3458 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3459 return;
3460 }
3461
c19d1205
ZW
3462 /* Add eh table entry. */
3463 if (unwind.table_entry == NULL)
3464 val = create_unwind_entry (0);
3465 else
3466 val = 0;
f02232aa 3467
c19d1205
ZW
3468 /* Add index table entry. This is two words. */
3469 start_unwind_section (unwind.saved_seg, 1);
3470 frag_align (2, 0, 0);
3471 record_alignment (now_seg, 2);
b99bd4ef 3472
c19d1205
ZW
3473 ptr = frag_more (8);
3474 where = frag_now_fix () - 8;
f02232aa 3475
c19d1205
ZW
3476 /* Self relative offset of the function start. */
3477 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3478 BFD_RELOC_ARM_PREL31);
f02232aa 3479
c19d1205
ZW
3480 /* Indicate dependency on EHABI-defined personality routines to the
3481 linker, if it hasn't been done already. */
940b5ce0
DJ
3482 marked_pr_dependency
3483 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3484 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3485 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3486 {
5f4273c7
NC
3487 static const char *const name[] =
3488 {
3489 "__aeabi_unwind_cpp_pr0",
3490 "__aeabi_unwind_cpp_pr1",
3491 "__aeabi_unwind_cpp_pr2"
3492 };
c19d1205
ZW
3493 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3494 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3495 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3496 |= 1 << unwind.personality_index;
c19d1205 3497 }
f02232aa 3498
c19d1205
ZW
3499 if (val)
3500 /* Inline exception table entry. */
3501 md_number_to_chars (ptr + 4, val, 4);
3502 else
3503 /* Self relative offset of the table entry. */
3504 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3505 BFD_RELOC_ARM_PREL31);
f02232aa 3506
c19d1205
ZW
3507 /* Restore the original section. */
3508 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3509
3510 unwind.proc_start = NULL;
c19d1205 3511}
f02232aa 3512
f02232aa 3513
c19d1205 3514/* Parse an unwind_cantunwind directive. */
b99bd4ef 3515
c19d1205
ZW
3516static void
3517s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3518{
3519 demand_empty_rest_of_line ();
921e5f0a 3520 if (!unwind.proc_start)
c921be7d 3521 as_bad (MISSING_FNSTART);
921e5f0a 3522
c19d1205
ZW
3523 if (unwind.personality_routine || unwind.personality_index != -1)
3524 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3525
c19d1205
ZW
3526 unwind.personality_index = -2;
3527}
b99bd4ef 3528
b99bd4ef 3529
c19d1205 3530/* Parse a personalityindex directive. */
b99bd4ef 3531
c19d1205
ZW
3532static void
3533s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3534{
3535 expressionS exp;
b99bd4ef 3536
921e5f0a 3537 if (!unwind.proc_start)
c921be7d 3538 as_bad (MISSING_FNSTART);
921e5f0a 3539
c19d1205
ZW
3540 if (unwind.personality_routine || unwind.personality_index != -1)
3541 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3542
c19d1205 3543 expression (&exp);
b99bd4ef 3544
c19d1205
ZW
3545 if (exp.X_op != O_constant
3546 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3547 {
c19d1205
ZW
3548 as_bad (_("bad personality routine number"));
3549 ignore_rest_of_line ();
3550 return;
b99bd4ef
NC
3551 }
3552
c19d1205 3553 unwind.personality_index = exp.X_add_number;
b99bd4ef 3554
c19d1205
ZW
3555 demand_empty_rest_of_line ();
3556}
e16bb312 3557
e16bb312 3558
c19d1205 3559/* Parse a personality directive. */
e16bb312 3560
c19d1205
ZW
3561static void
3562s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3563{
3564 char *name, *p, c;
a737bd4d 3565
921e5f0a 3566 if (!unwind.proc_start)
c921be7d 3567 as_bad (MISSING_FNSTART);
921e5f0a 3568
c19d1205
ZW
3569 if (unwind.personality_routine || unwind.personality_index != -1)
3570 as_bad (_("duplicate .personality directive"));
a737bd4d 3571
c19d1205
ZW
3572 name = input_line_pointer;
3573 c = get_symbol_end ();
3574 p = input_line_pointer;
3575 unwind.personality_routine = symbol_find_or_make (name);
3576 *p = c;
3577 demand_empty_rest_of_line ();
3578}
e16bb312 3579
e16bb312 3580
c19d1205 3581/* Parse a directive saving core registers. */
e16bb312 3582
c19d1205
ZW
3583static void
3584s_arm_unwind_save_core (void)
e16bb312 3585{
c19d1205
ZW
3586 valueT op;
3587 long range;
3588 int n;
e16bb312 3589
c19d1205
ZW
3590 range = parse_reg_list (&input_line_pointer);
3591 if (range == FAIL)
e16bb312 3592 {
c19d1205
ZW
3593 as_bad (_("expected register list"));
3594 ignore_rest_of_line ();
3595 return;
3596 }
e16bb312 3597
c19d1205 3598 demand_empty_rest_of_line ();
e16bb312 3599
c19d1205
ZW
3600 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3601 into .unwind_save {..., sp...}. We aren't bothered about the value of
3602 ip because it is clobbered by calls. */
3603 if (unwind.sp_restored && unwind.fp_reg == 12
3604 && (range & 0x3000) == 0x1000)
3605 {
3606 unwind.opcode_count--;
3607 unwind.sp_restored = 0;
3608 range = (range | 0x2000) & ~0x1000;
3609 unwind.pending_offset = 0;
3610 }
e16bb312 3611
01ae4198
DJ
3612 /* Pop r4-r15. */
3613 if (range & 0xfff0)
c19d1205 3614 {
01ae4198
DJ
3615 /* See if we can use the short opcodes. These pop a block of up to 8
3616 registers starting with r4, plus maybe r14. */
3617 for (n = 0; n < 8; n++)
3618 {
3619 /* Break at the first non-saved register. */
3620 if ((range & (1 << (n + 4))) == 0)
3621 break;
3622 }
3623 /* See if there are any other bits set. */
3624 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3625 {
3626 /* Use the long form. */
3627 op = 0x8000 | ((range >> 4) & 0xfff);
3628 add_unwind_opcode (op, 2);
3629 }
0dd132b6 3630 else
01ae4198
DJ
3631 {
3632 /* Use the short form. */
3633 if (range & 0x4000)
3634 op = 0xa8; /* Pop r14. */
3635 else
3636 op = 0xa0; /* Do not pop r14. */
3637 op |= (n - 1);
3638 add_unwind_opcode (op, 1);
3639 }
c19d1205 3640 }
0dd132b6 3641
c19d1205
ZW
3642 /* Pop r0-r3. */
3643 if (range & 0xf)
3644 {
3645 op = 0xb100 | (range & 0xf);
3646 add_unwind_opcode (op, 2);
0dd132b6
NC
3647 }
3648
c19d1205
ZW
3649 /* Record the number of bytes pushed. */
3650 for (n = 0; n < 16; n++)
3651 {
3652 if (range & (1 << n))
3653 unwind.frame_size += 4;
3654 }
0dd132b6
NC
3655}
3656
c19d1205
ZW
3657
3658/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3659
3660static void
c19d1205 3661s_arm_unwind_save_fpa (int reg)
b99bd4ef 3662{
c19d1205
ZW
3663 expressionS exp;
3664 int num_regs;
3665 valueT op;
b99bd4ef 3666
c19d1205
ZW
3667 /* Get Number of registers to transfer. */
3668 if (skip_past_comma (&input_line_pointer) != FAIL)
3669 expression (&exp);
3670 else
3671 exp.X_op = O_illegal;
b99bd4ef 3672
c19d1205 3673 if (exp.X_op != O_constant)
b99bd4ef 3674 {
c19d1205
ZW
3675 as_bad (_("expected , <constant>"));
3676 ignore_rest_of_line ();
b99bd4ef
NC
3677 return;
3678 }
3679
c19d1205
ZW
3680 num_regs = exp.X_add_number;
3681
3682 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3683 {
c19d1205
ZW
3684 as_bad (_("number of registers must be in the range [1:4]"));
3685 ignore_rest_of_line ();
b99bd4ef
NC
3686 return;
3687 }
3688
c19d1205 3689 demand_empty_rest_of_line ();
b99bd4ef 3690
c19d1205
ZW
3691 if (reg == 4)
3692 {
3693 /* Short form. */
3694 op = 0xb4 | (num_regs - 1);
3695 add_unwind_opcode (op, 1);
3696 }
b99bd4ef
NC
3697 else
3698 {
c19d1205
ZW
3699 /* Long form. */
3700 op = 0xc800 | (reg << 4) | (num_regs - 1);
3701 add_unwind_opcode (op, 2);
b99bd4ef 3702 }
c19d1205 3703 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3704}
3705
c19d1205 3706
fa073d69
MS
3707/* Parse a directive saving VFP registers for ARMv6 and above. */
3708
3709static void
3710s_arm_unwind_save_vfp_armv6 (void)
3711{
3712 int count;
3713 unsigned int start;
3714 valueT op;
3715 int num_vfpv3_regs = 0;
3716 int num_regs_below_16;
3717
3718 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3719 if (count == FAIL)
3720 {
3721 as_bad (_("expected register list"));
3722 ignore_rest_of_line ();
3723 return;
3724 }
3725
3726 demand_empty_rest_of_line ();
3727
3728 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3729 than FSTMX/FLDMX-style ones). */
3730
3731 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3732 if (start >= 16)
3733 num_vfpv3_regs = count;
3734 else if (start + count > 16)
3735 num_vfpv3_regs = start + count - 16;
3736
3737 if (num_vfpv3_regs > 0)
3738 {
3739 int start_offset = start > 16 ? start - 16 : 0;
3740 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3741 add_unwind_opcode (op, 2);
3742 }
3743
3744 /* Generate opcode for registers numbered in the range 0 .. 15. */
3745 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3746 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3747 if (num_regs_below_16 > 0)
3748 {
3749 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3750 add_unwind_opcode (op, 2);
3751 }
3752
3753 unwind.frame_size += count * 8;
3754}
3755
3756
3757/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3758
3759static void
c19d1205 3760s_arm_unwind_save_vfp (void)
b99bd4ef 3761{
c19d1205 3762 int count;
ca3f61f7 3763 unsigned int reg;
c19d1205 3764 valueT op;
b99bd4ef 3765
5287ad62 3766 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3767 if (count == FAIL)
b99bd4ef 3768 {
c19d1205
ZW
3769 as_bad (_("expected register list"));
3770 ignore_rest_of_line ();
b99bd4ef
NC
3771 return;
3772 }
3773
c19d1205 3774 demand_empty_rest_of_line ();
b99bd4ef 3775
c19d1205 3776 if (reg == 8)
b99bd4ef 3777 {
c19d1205
ZW
3778 /* Short form. */
3779 op = 0xb8 | (count - 1);
3780 add_unwind_opcode (op, 1);
b99bd4ef 3781 }
c19d1205 3782 else
b99bd4ef 3783 {
c19d1205
ZW
3784 /* Long form. */
3785 op = 0xb300 | (reg << 4) | (count - 1);
3786 add_unwind_opcode (op, 2);
b99bd4ef 3787 }
c19d1205
ZW
3788 unwind.frame_size += count * 8 + 4;
3789}
b99bd4ef 3790
b99bd4ef 3791
c19d1205
ZW
3792/* Parse a directive saving iWMMXt data registers. */
3793
3794static void
3795s_arm_unwind_save_mmxwr (void)
3796{
3797 int reg;
3798 int hi_reg;
3799 int i;
3800 unsigned mask = 0;
3801 valueT op;
b99bd4ef 3802
c19d1205
ZW
3803 if (*input_line_pointer == '{')
3804 input_line_pointer++;
b99bd4ef 3805
c19d1205 3806 do
b99bd4ef 3807 {
dcbf9037 3808 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3809
c19d1205 3810 if (reg == FAIL)
b99bd4ef 3811 {
9b7132d3 3812 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3813 goto error;
b99bd4ef
NC
3814 }
3815
c19d1205
ZW
3816 if (mask >> reg)
3817 as_tsktsk (_("register list not in ascending order"));
3818 mask |= 1 << reg;
b99bd4ef 3819
c19d1205
ZW
3820 if (*input_line_pointer == '-')
3821 {
3822 input_line_pointer++;
dcbf9037 3823 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3824 if (hi_reg == FAIL)
3825 {
9b7132d3 3826 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3827 goto error;
3828 }
3829 else if (reg >= hi_reg)
3830 {
3831 as_bad (_("bad register range"));
3832 goto error;
3833 }
3834 for (; reg < hi_reg; reg++)
3835 mask |= 1 << reg;
3836 }
3837 }
3838 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3839
c19d1205
ZW
3840 if (*input_line_pointer == '}')
3841 input_line_pointer++;
b99bd4ef 3842
c19d1205 3843 demand_empty_rest_of_line ();
b99bd4ef 3844
708587a4 3845 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3846 the list. */
3847 flush_pending_unwind ();
b99bd4ef 3848
c19d1205 3849 for (i = 0; i < 16; i++)
b99bd4ef 3850 {
c19d1205
ZW
3851 if (mask & (1 << i))
3852 unwind.frame_size += 8;
b99bd4ef
NC
3853 }
3854
c19d1205
ZW
3855 /* Attempt to combine with a previous opcode. We do this because gcc
3856 likes to output separate unwind directives for a single block of
3857 registers. */
3858 if (unwind.opcode_count > 0)
b99bd4ef 3859 {
c19d1205
ZW
3860 i = unwind.opcodes[unwind.opcode_count - 1];
3861 if ((i & 0xf8) == 0xc0)
3862 {
3863 i &= 7;
3864 /* Only merge if the blocks are contiguous. */
3865 if (i < 6)
3866 {
3867 if ((mask & 0xfe00) == (1 << 9))
3868 {
3869 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3870 unwind.opcode_count--;
3871 }
3872 }
3873 else if (i == 6 && unwind.opcode_count >= 2)
3874 {
3875 i = unwind.opcodes[unwind.opcode_count - 2];
3876 reg = i >> 4;
3877 i &= 0xf;
b99bd4ef 3878
c19d1205
ZW
3879 op = 0xffff << (reg - 1);
3880 if (reg > 0
87a1fd79 3881 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3882 {
3883 op = (1 << (reg + i + 1)) - 1;
3884 op &= ~((1 << reg) - 1);
3885 mask |= op;
3886 unwind.opcode_count -= 2;
3887 }
3888 }
3889 }
b99bd4ef
NC
3890 }
3891
c19d1205
ZW
3892 hi_reg = 15;
3893 /* We want to generate opcodes in the order the registers have been
3894 saved, ie. descending order. */
3895 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3896 {
c19d1205
ZW
3897 /* Save registers in blocks. */
3898 if (reg < 0
3899 || !(mask & (1 << reg)))
3900 {
3901 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3902 preceding block. */
c19d1205
ZW
3903 if (reg != hi_reg)
3904 {
3905 if (reg == 9)
3906 {
3907 /* Short form. */
3908 op = 0xc0 | (hi_reg - 10);
3909 add_unwind_opcode (op, 1);
3910 }
3911 else
3912 {
3913 /* Long form. */
3914 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3915 add_unwind_opcode (op, 2);
3916 }
3917 }
3918 hi_reg = reg - 1;
3919 }
b99bd4ef
NC
3920 }
3921
c19d1205
ZW
3922 return;
3923error:
3924 ignore_rest_of_line ();
b99bd4ef
NC
3925}
3926
3927static void
c19d1205 3928s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3929{
c19d1205
ZW
3930 int reg;
3931 int hi_reg;
3932 unsigned mask = 0;
3933 valueT op;
b99bd4ef 3934
c19d1205
ZW
3935 if (*input_line_pointer == '{')
3936 input_line_pointer++;
b99bd4ef 3937
c19d1205 3938 do
b99bd4ef 3939 {
dcbf9037 3940 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3941
c19d1205
ZW
3942 if (reg == FAIL)
3943 {
9b7132d3 3944 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3945 goto error;
3946 }
b99bd4ef 3947
c19d1205
ZW
3948 reg -= 8;
3949 if (mask >> reg)
3950 as_tsktsk (_("register list not in ascending order"));
3951 mask |= 1 << reg;
b99bd4ef 3952
c19d1205
ZW
3953 if (*input_line_pointer == '-')
3954 {
3955 input_line_pointer++;
dcbf9037 3956 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3957 if (hi_reg == FAIL)
3958 {
9b7132d3 3959 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3960 goto error;
3961 }
3962 else if (reg >= hi_reg)
3963 {
3964 as_bad (_("bad register range"));
3965 goto error;
3966 }
3967 for (; reg < hi_reg; reg++)
3968 mask |= 1 << reg;
3969 }
b99bd4ef 3970 }
c19d1205 3971 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3972
c19d1205
ZW
3973 if (*input_line_pointer == '}')
3974 input_line_pointer++;
b99bd4ef 3975
c19d1205
ZW
3976 demand_empty_rest_of_line ();
3977
708587a4 3978 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3979 the list. */
3980 flush_pending_unwind ();
b99bd4ef 3981
c19d1205 3982 for (reg = 0; reg < 16; reg++)
b99bd4ef 3983 {
c19d1205
ZW
3984 if (mask & (1 << reg))
3985 unwind.frame_size += 4;
b99bd4ef 3986 }
c19d1205
ZW
3987 op = 0xc700 | mask;
3988 add_unwind_opcode (op, 2);
3989 return;
3990error:
3991 ignore_rest_of_line ();
b99bd4ef
NC
3992}
3993
c19d1205 3994
fa073d69
MS
3995/* Parse an unwind_save directive.
3996 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3997
b99bd4ef 3998static void
fa073d69 3999s_arm_unwind_save (int arch_v6)
b99bd4ef 4000{
c19d1205
ZW
4001 char *peek;
4002 struct reg_entry *reg;
4003 bfd_boolean had_brace = FALSE;
b99bd4ef 4004
921e5f0a 4005 if (!unwind.proc_start)
c921be7d 4006 as_bad (MISSING_FNSTART);
921e5f0a 4007
c19d1205
ZW
4008 /* Figure out what sort of save we have. */
4009 peek = input_line_pointer;
b99bd4ef 4010
c19d1205 4011 if (*peek == '{')
b99bd4ef 4012 {
c19d1205
ZW
4013 had_brace = TRUE;
4014 peek++;
b99bd4ef
NC
4015 }
4016
c19d1205 4017 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4018
c19d1205 4019 if (!reg)
b99bd4ef 4020 {
c19d1205
ZW
4021 as_bad (_("register expected"));
4022 ignore_rest_of_line ();
b99bd4ef
NC
4023 return;
4024 }
4025
c19d1205 4026 switch (reg->type)
b99bd4ef 4027 {
c19d1205
ZW
4028 case REG_TYPE_FN:
4029 if (had_brace)
4030 {
4031 as_bad (_("FPA .unwind_save does not take a register list"));
4032 ignore_rest_of_line ();
4033 return;
4034 }
93ac2687 4035 input_line_pointer = peek;
c19d1205 4036 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4037 return;
c19d1205
ZW
4038
4039 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4040 case REG_TYPE_VFD:
4041 if (arch_v6)
4042 s_arm_unwind_save_vfp_armv6 ();
4043 else
4044 s_arm_unwind_save_vfp ();
4045 return;
c19d1205
ZW
4046 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4047 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4048
4049 default:
4050 as_bad (_(".unwind_save does not support this kind of register"));
4051 ignore_rest_of_line ();
b99bd4ef 4052 }
c19d1205 4053}
b99bd4ef 4054
b99bd4ef 4055
c19d1205
ZW
4056/* Parse an unwind_movsp directive. */
4057
4058static void
4059s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4060{
4061 int reg;
4062 valueT op;
4fa3602b 4063 int offset;
c19d1205 4064
921e5f0a 4065 if (!unwind.proc_start)
c921be7d 4066 as_bad (MISSING_FNSTART);
921e5f0a 4067
dcbf9037 4068 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4069 if (reg == FAIL)
b99bd4ef 4070 {
9b7132d3 4071 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4072 ignore_rest_of_line ();
b99bd4ef
NC
4073 return;
4074 }
4fa3602b
PB
4075
4076 /* Optional constant. */
4077 if (skip_past_comma (&input_line_pointer) != FAIL)
4078 {
4079 if (immediate_for_directive (&offset) == FAIL)
4080 return;
4081 }
4082 else
4083 offset = 0;
4084
c19d1205 4085 demand_empty_rest_of_line ();
b99bd4ef 4086
c19d1205 4087 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4088 {
c19d1205 4089 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4090 return;
4091 }
4092
c19d1205
ZW
4093 if (unwind.fp_reg != REG_SP)
4094 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4095
c19d1205
ZW
4096 /* Generate opcode to restore the value. */
4097 op = 0x90 | reg;
4098 add_unwind_opcode (op, 1);
4099
4100 /* Record the information for later. */
4101 unwind.fp_reg = reg;
4fa3602b 4102 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4103 unwind.sp_restored = 1;
b05fe5cf
ZW
4104}
4105
c19d1205
ZW
4106/* Parse an unwind_pad directive. */
4107
b05fe5cf 4108static void
c19d1205 4109s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4110{
c19d1205 4111 int offset;
b05fe5cf 4112
921e5f0a 4113 if (!unwind.proc_start)
c921be7d 4114 as_bad (MISSING_FNSTART);
921e5f0a 4115
c19d1205
ZW
4116 if (immediate_for_directive (&offset) == FAIL)
4117 return;
b99bd4ef 4118
c19d1205
ZW
4119 if (offset & 3)
4120 {
4121 as_bad (_("stack increment must be multiple of 4"));
4122 ignore_rest_of_line ();
4123 return;
4124 }
b99bd4ef 4125
c19d1205
ZW
4126 /* Don't generate any opcodes, just record the details for later. */
4127 unwind.frame_size += offset;
4128 unwind.pending_offset += offset;
4129
4130 demand_empty_rest_of_line ();
4131}
4132
4133/* Parse an unwind_setfp directive. */
4134
4135static void
4136s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4137{
c19d1205
ZW
4138 int sp_reg;
4139 int fp_reg;
4140 int offset;
4141
921e5f0a 4142 if (!unwind.proc_start)
c921be7d 4143 as_bad (MISSING_FNSTART);
921e5f0a 4144
dcbf9037 4145 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4146 if (skip_past_comma (&input_line_pointer) == FAIL)
4147 sp_reg = FAIL;
4148 else
dcbf9037 4149 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4150
c19d1205
ZW
4151 if (fp_reg == FAIL || sp_reg == FAIL)
4152 {
4153 as_bad (_("expected <reg>, <reg>"));
4154 ignore_rest_of_line ();
4155 return;
4156 }
b99bd4ef 4157
c19d1205
ZW
4158 /* Optional constant. */
4159 if (skip_past_comma (&input_line_pointer) != FAIL)
4160 {
4161 if (immediate_for_directive (&offset) == FAIL)
4162 return;
4163 }
4164 else
4165 offset = 0;
a737bd4d 4166
c19d1205 4167 demand_empty_rest_of_line ();
a737bd4d 4168
fdfde340 4169 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4170 {
c19d1205
ZW
4171 as_bad (_("register must be either sp or set by a previous"
4172 "unwind_movsp directive"));
4173 return;
a737bd4d
NC
4174 }
4175
c19d1205
ZW
4176 /* Don't generate any opcodes, just record the information for later. */
4177 unwind.fp_reg = fp_reg;
4178 unwind.fp_used = 1;
fdfde340 4179 if (sp_reg == REG_SP)
c19d1205
ZW
4180 unwind.fp_offset = unwind.frame_size - offset;
4181 else
4182 unwind.fp_offset -= offset;
a737bd4d
NC
4183}
4184
c19d1205
ZW
4185/* Parse an unwind_raw directive. */
4186
4187static void
4188s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4189{
c19d1205 4190 expressionS exp;
708587a4 4191 /* This is an arbitrary limit. */
c19d1205
ZW
4192 unsigned char op[16];
4193 int count;
a737bd4d 4194
921e5f0a 4195 if (!unwind.proc_start)
c921be7d 4196 as_bad (MISSING_FNSTART);
921e5f0a 4197
c19d1205
ZW
4198 expression (&exp);
4199 if (exp.X_op == O_constant
4200 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4201 {
c19d1205
ZW
4202 unwind.frame_size += exp.X_add_number;
4203 expression (&exp);
4204 }
4205 else
4206 exp.X_op = O_illegal;
a737bd4d 4207
c19d1205
ZW
4208 if (exp.X_op != O_constant)
4209 {
4210 as_bad (_("expected <offset>, <opcode>"));
4211 ignore_rest_of_line ();
4212 return;
4213 }
a737bd4d 4214
c19d1205 4215 count = 0;
a737bd4d 4216
c19d1205
ZW
4217 /* Parse the opcode. */
4218 for (;;)
4219 {
4220 if (count >= 16)
4221 {
4222 as_bad (_("unwind opcode too long"));
4223 ignore_rest_of_line ();
a737bd4d 4224 }
c19d1205 4225 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4226 {
c19d1205
ZW
4227 as_bad (_("invalid unwind opcode"));
4228 ignore_rest_of_line ();
4229 return;
a737bd4d 4230 }
c19d1205 4231 op[count++] = exp.X_add_number;
a737bd4d 4232
c19d1205
ZW
4233 /* Parse the next byte. */
4234 if (skip_past_comma (&input_line_pointer) == FAIL)
4235 break;
a737bd4d 4236
c19d1205
ZW
4237 expression (&exp);
4238 }
b99bd4ef 4239
c19d1205
ZW
4240 /* Add the opcode bytes in reverse order. */
4241 while (count--)
4242 add_unwind_opcode (op[count], 1);
b99bd4ef 4243
c19d1205 4244 demand_empty_rest_of_line ();
b99bd4ef 4245}
ee065d83
PB
4246
4247
4248/* Parse a .eabi_attribute directive. */
4249
4250static void
4251s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4252{
ee3c0378
AS
4253 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4254
4255 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4256 attributes_set_explicitly[tag] = 1;
ee065d83 4257}
8463be01 4258#endif /* OBJ_ELF */
ee065d83
PB
4259
4260static void s_arm_arch (int);
7a1d4c38 4261static void s_arm_object_arch (int);
ee065d83
PB
4262static void s_arm_cpu (int);
4263static void s_arm_fpu (int);
b99bd4ef 4264
f0927246
NC
4265#ifdef TE_PE
4266
4267static void
5f4273c7 4268pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4269{
4270 expressionS exp;
4271
4272 do
4273 {
4274 expression (&exp);
4275 if (exp.X_op == O_symbol)
4276 exp.X_op = O_secrel;
4277
4278 emit_expr (&exp, 4);
4279 }
4280 while (*input_line_pointer++ == ',');
4281
4282 input_line_pointer--;
4283 demand_empty_rest_of_line ();
4284}
4285#endif /* TE_PE */
4286
c19d1205
ZW
4287/* This table describes all the machine specific pseudo-ops the assembler
4288 has to support. The fields are:
4289 pseudo-op name without dot
4290 function to call to execute this pseudo-op
4291 Integer arg to pass to the function. */
b99bd4ef 4292
c19d1205 4293const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4294{
c19d1205
ZW
4295 /* Never called because '.req' does not start a line. */
4296 { "req", s_req, 0 },
dcbf9037
JB
4297 /* Following two are likewise never called. */
4298 { "dn", s_dn, 0 },
4299 { "qn", s_qn, 0 },
c19d1205
ZW
4300 { "unreq", s_unreq, 0 },
4301 { "bss", s_bss, 0 },
4302 { "align", s_align, 0 },
4303 { "arm", s_arm, 0 },
4304 { "thumb", s_thumb, 0 },
4305 { "code", s_code, 0 },
4306 { "force_thumb", s_force_thumb, 0 },
4307 { "thumb_func", s_thumb_func, 0 },
4308 { "thumb_set", s_thumb_set, 0 },
4309 { "even", s_even, 0 },
4310 { "ltorg", s_ltorg, 0 },
4311 { "pool", s_ltorg, 0 },
4312 { "syntax", s_syntax, 0 },
8463be01
PB
4313 { "cpu", s_arm_cpu, 0 },
4314 { "arch", s_arm_arch, 0 },
7a1d4c38 4315 { "object_arch", s_arm_object_arch, 0 },
8463be01 4316 { "fpu", s_arm_fpu, 0 },
c19d1205 4317#ifdef OBJ_ELF
c921be7d
NC
4318 { "word", s_arm_elf_cons, 4 },
4319 { "long", s_arm_elf_cons, 4 },
4320 { "inst.n", s_arm_elf_inst, 2 },
4321 { "inst.w", s_arm_elf_inst, 4 },
4322 { "inst", s_arm_elf_inst, 0 },
4323 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4324 { "fnstart", s_arm_unwind_fnstart, 0 },
4325 { "fnend", s_arm_unwind_fnend, 0 },
4326 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4327 { "personality", s_arm_unwind_personality, 0 },
4328 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4329 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4330 { "save", s_arm_unwind_save, 0 },
fa073d69 4331 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4332 { "movsp", s_arm_unwind_movsp, 0 },
4333 { "pad", s_arm_unwind_pad, 0 },
4334 { "setfp", s_arm_unwind_setfp, 0 },
4335 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4336 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
4337#else
4338 { "word", cons, 4},
f0927246
NC
4339
4340 /* These are used for dwarf. */
4341 {"2byte", cons, 2},
4342 {"4byte", cons, 4},
4343 {"8byte", cons, 8},
4344 /* These are used for dwarf2. */
4345 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4346 { "loc", dwarf2_directive_loc, 0 },
4347 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4348#endif
4349 { "extend", float_cons, 'x' },
4350 { "ldouble", float_cons, 'x' },
4351 { "packed", float_cons, 'p' },
f0927246
NC
4352#ifdef TE_PE
4353 {"secrel32", pe_directive_secrel, 0},
4354#endif
c19d1205
ZW
4355 { 0, 0, 0 }
4356};
4357\f
4358/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4359
c19d1205
ZW
4360/* Generic immediate-value read function for use in insn parsing.
4361 STR points to the beginning of the immediate (the leading #);
4362 VAL receives the value; if the value is outside [MIN, MAX]
4363 issue an error. PREFIX_OPT is true if the immediate prefix is
4364 optional. */
b99bd4ef 4365
c19d1205
ZW
4366static int
4367parse_immediate (char **str, int *val, int min, int max,
4368 bfd_boolean prefix_opt)
4369{
4370 expressionS exp;
4371 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4372 if (exp.X_op != O_constant)
b99bd4ef 4373 {
c19d1205
ZW
4374 inst.error = _("constant expression required");
4375 return FAIL;
4376 }
b99bd4ef 4377
c19d1205
ZW
4378 if (exp.X_add_number < min || exp.X_add_number > max)
4379 {
4380 inst.error = _("immediate value out of range");
4381 return FAIL;
4382 }
b99bd4ef 4383
c19d1205
ZW
4384 *val = exp.X_add_number;
4385 return SUCCESS;
4386}
b99bd4ef 4387
5287ad62 4388/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4389 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4390 instructions. Puts the result directly in inst.operands[i]. */
4391
4392static int
4393parse_big_immediate (char **str, int i)
4394{
4395 expressionS exp;
4396 char *ptr = *str;
4397
4398 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4399
4400 if (exp.X_op == O_constant)
036dc3f7
PB
4401 {
4402 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4403 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4404 O_constant. We have to be careful not to break compilation for
4405 32-bit X_add_number, though. */
4406 if ((exp.X_add_number & ~0xffffffffl) != 0)
4407 {
4408 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4409 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4410 inst.operands[i].regisimm = 1;
4411 }
4412 }
5287ad62
JB
4413 else if (exp.X_op == O_big
4414 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4415 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4416 {
4417 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4418 /* Bignums have their least significant bits in
4419 generic_bignum[0]. Make sure we put 32 bits in imm and
4420 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4421 gas_assert (parts != 0);
5287ad62
JB
4422 inst.operands[i].imm = 0;
4423 for (j = 0; j < parts; j++, idx++)
4424 inst.operands[i].imm |= generic_bignum[idx]
4425 << (LITTLENUM_NUMBER_OF_BITS * j);
4426 inst.operands[i].reg = 0;
4427 for (j = 0; j < parts; j++, idx++)
4428 inst.operands[i].reg |= generic_bignum[idx]
4429 << (LITTLENUM_NUMBER_OF_BITS * j);
4430 inst.operands[i].regisimm = 1;
4431 }
4432 else
4433 return FAIL;
5f4273c7 4434
5287ad62
JB
4435 *str = ptr;
4436
4437 return SUCCESS;
4438}
4439
c19d1205
ZW
4440/* Returns the pseudo-register number of an FPA immediate constant,
4441 or FAIL if there isn't a valid constant here. */
b99bd4ef 4442
c19d1205
ZW
4443static int
4444parse_fpa_immediate (char ** str)
4445{
4446 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4447 char * save_in;
4448 expressionS exp;
4449 int i;
4450 int j;
b99bd4ef 4451
c19d1205
ZW
4452 /* First try and match exact strings, this is to guarantee
4453 that some formats will work even for cross assembly. */
b99bd4ef 4454
c19d1205
ZW
4455 for (i = 0; fp_const[i]; i++)
4456 {
4457 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4458 {
c19d1205 4459 char *start = *str;
b99bd4ef 4460
c19d1205
ZW
4461 *str += strlen (fp_const[i]);
4462 if (is_end_of_line[(unsigned char) **str])
4463 return i + 8;
4464 *str = start;
4465 }
4466 }
b99bd4ef 4467
c19d1205
ZW
4468 /* Just because we didn't get a match doesn't mean that the constant
4469 isn't valid, just that it is in a format that we don't
4470 automatically recognize. Try parsing it with the standard
4471 expression routines. */
b99bd4ef 4472
c19d1205 4473 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4474
c19d1205
ZW
4475 /* Look for a raw floating point number. */
4476 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4477 && is_end_of_line[(unsigned char) *save_in])
4478 {
4479 for (i = 0; i < NUM_FLOAT_VALS; i++)
4480 {
4481 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4482 {
c19d1205
ZW
4483 if (words[j] != fp_values[i][j])
4484 break;
b99bd4ef
NC
4485 }
4486
c19d1205 4487 if (j == MAX_LITTLENUMS)
b99bd4ef 4488 {
c19d1205
ZW
4489 *str = save_in;
4490 return i + 8;
b99bd4ef
NC
4491 }
4492 }
4493 }
b99bd4ef 4494
c19d1205
ZW
4495 /* Try and parse a more complex expression, this will probably fail
4496 unless the code uses a floating point prefix (eg "0f"). */
4497 save_in = input_line_pointer;
4498 input_line_pointer = *str;
4499 if (expression (&exp) == absolute_section
4500 && exp.X_op == O_big
4501 && exp.X_add_number < 0)
4502 {
4503 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4504 Ditto for 15. */
4505 if (gen_to_words (words, 5, (long) 15) == 0)
4506 {
4507 for (i = 0; i < NUM_FLOAT_VALS; i++)
4508 {
4509 for (j = 0; j < MAX_LITTLENUMS; j++)
4510 {
4511 if (words[j] != fp_values[i][j])
4512 break;
4513 }
b99bd4ef 4514
c19d1205
ZW
4515 if (j == MAX_LITTLENUMS)
4516 {
4517 *str = input_line_pointer;
4518 input_line_pointer = save_in;
4519 return i + 8;
4520 }
4521 }
4522 }
b99bd4ef
NC
4523 }
4524
c19d1205
ZW
4525 *str = input_line_pointer;
4526 input_line_pointer = save_in;
4527 inst.error = _("invalid FPA immediate expression");
4528 return FAIL;
b99bd4ef
NC
4529}
4530
136da414
JB
4531/* Returns 1 if a number has "quarter-precision" float format
4532 0baBbbbbbc defgh000 00000000 00000000. */
4533
4534static int
4535is_quarter_float (unsigned imm)
4536{
4537 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4538 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4539}
4540
4541/* Parse an 8-bit "quarter-precision" floating point number of the form:
4542 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4543 The zero and minus-zero cases need special handling, since they can't be
4544 encoded in the "quarter-precision" float format, but can nonetheless be
4545 loaded as integer constants. */
136da414
JB
4546
4547static unsigned
4548parse_qfloat_immediate (char **ccp, int *immed)
4549{
4550 char *str = *ccp;
c96612cc 4551 char *fpnum;
136da414 4552 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4553 int found_fpchar = 0;
5f4273c7 4554
136da414 4555 skip_past_char (&str, '#');
5f4273c7 4556
c96612cc
JB
4557 /* We must not accidentally parse an integer as a floating-point number. Make
4558 sure that the value we parse is not an integer by checking for special
4559 characters '.' or 'e'.
4560 FIXME: This is a horrible hack, but doing better is tricky because type
4561 information isn't in a very usable state at parse time. */
4562 fpnum = str;
4563 skip_whitespace (fpnum);
4564
4565 if (strncmp (fpnum, "0x", 2) == 0)
4566 return FAIL;
4567 else
4568 {
4569 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4570 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4571 {
4572 found_fpchar = 1;
4573 break;
4574 }
4575
4576 if (!found_fpchar)
4577 return FAIL;
4578 }
5f4273c7 4579
136da414
JB
4580 if ((str = atof_ieee (str, 's', words)) != NULL)
4581 {
4582 unsigned fpword = 0;
4583 int i;
5f4273c7 4584
136da414
JB
4585 /* Our FP word must be 32 bits (single-precision FP). */
4586 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4587 {
4588 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4589 fpword |= words[i];
4590 }
5f4273c7 4591
c96612cc 4592 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4593 *immed = fpword;
4594 else
4595 return FAIL;
4596
4597 *ccp = str;
5f4273c7 4598
136da414
JB
4599 return SUCCESS;
4600 }
5f4273c7 4601
136da414
JB
4602 return FAIL;
4603}
4604
c19d1205
ZW
4605/* Shift operands. */
4606enum shift_kind
b99bd4ef 4607{
c19d1205
ZW
4608 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4609};
b99bd4ef 4610
c19d1205
ZW
4611struct asm_shift_name
4612{
4613 const char *name;
4614 enum shift_kind kind;
4615};
b99bd4ef 4616
c19d1205
ZW
4617/* Third argument to parse_shift. */
4618enum parse_shift_mode
4619{
4620 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4621 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4622 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4623 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4624 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4625};
b99bd4ef 4626
c19d1205
ZW
4627/* Parse a <shift> specifier on an ARM data processing instruction.
4628 This has three forms:
b99bd4ef 4629
c19d1205
ZW
4630 (LSL|LSR|ASL|ASR|ROR) Rs
4631 (LSL|LSR|ASL|ASR|ROR) #imm
4632 RRX
b99bd4ef 4633
c19d1205
ZW
4634 Note that ASL is assimilated to LSL in the instruction encoding, and
4635 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4636
c19d1205
ZW
4637static int
4638parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4639{
c19d1205
ZW
4640 const struct asm_shift_name *shift_name;
4641 enum shift_kind shift;
4642 char *s = *str;
4643 char *p = s;
4644 int reg;
b99bd4ef 4645
c19d1205
ZW
4646 for (p = *str; ISALPHA (*p); p++)
4647 ;
b99bd4ef 4648
c19d1205 4649 if (p == *str)
b99bd4ef 4650 {
c19d1205
ZW
4651 inst.error = _("shift expression expected");
4652 return FAIL;
b99bd4ef
NC
4653 }
4654
21d799b5
NC
4655 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4656 p - *str);
c19d1205
ZW
4657
4658 if (shift_name == NULL)
b99bd4ef 4659 {
c19d1205
ZW
4660 inst.error = _("shift expression expected");
4661 return FAIL;
b99bd4ef
NC
4662 }
4663
c19d1205 4664 shift = shift_name->kind;
b99bd4ef 4665
c19d1205
ZW
4666 switch (mode)
4667 {
4668 case NO_SHIFT_RESTRICT:
4669 case SHIFT_IMMEDIATE: break;
b99bd4ef 4670
c19d1205
ZW
4671 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4672 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4673 {
4674 inst.error = _("'LSL' or 'ASR' required");
4675 return FAIL;
4676 }
4677 break;
b99bd4ef 4678
c19d1205
ZW
4679 case SHIFT_LSL_IMMEDIATE:
4680 if (shift != SHIFT_LSL)
4681 {
4682 inst.error = _("'LSL' required");
4683 return FAIL;
4684 }
4685 break;
b99bd4ef 4686
c19d1205
ZW
4687 case SHIFT_ASR_IMMEDIATE:
4688 if (shift != SHIFT_ASR)
4689 {
4690 inst.error = _("'ASR' required");
4691 return FAIL;
4692 }
4693 break;
b99bd4ef 4694
c19d1205
ZW
4695 default: abort ();
4696 }
b99bd4ef 4697
c19d1205
ZW
4698 if (shift != SHIFT_RRX)
4699 {
4700 /* Whitespace can appear here if the next thing is a bare digit. */
4701 skip_whitespace (p);
b99bd4ef 4702
c19d1205 4703 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4704 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4705 {
4706 inst.operands[i].imm = reg;
4707 inst.operands[i].immisreg = 1;
4708 }
4709 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4710 return FAIL;
4711 }
4712 inst.operands[i].shift_kind = shift;
4713 inst.operands[i].shifted = 1;
4714 *str = p;
4715 return SUCCESS;
b99bd4ef
NC
4716}
4717
c19d1205 4718/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4719
c19d1205
ZW
4720 #<immediate>
4721 #<immediate>, <rotate>
4722 <Rm>
4723 <Rm>, <shift>
b99bd4ef 4724
c19d1205
ZW
4725 where <shift> is defined by parse_shift above, and <rotate> is a
4726 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4727 is deferred to md_apply_fix. */
b99bd4ef 4728
c19d1205
ZW
4729static int
4730parse_shifter_operand (char **str, int i)
4731{
4732 int value;
91d6fa6a 4733 expressionS exp;
b99bd4ef 4734
dcbf9037 4735 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4736 {
4737 inst.operands[i].reg = value;
4738 inst.operands[i].isreg = 1;
b99bd4ef 4739
c19d1205
ZW
4740 /* parse_shift will override this if appropriate */
4741 inst.reloc.exp.X_op = O_constant;
4742 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4743
c19d1205
ZW
4744 if (skip_past_comma (str) == FAIL)
4745 return SUCCESS;
b99bd4ef 4746
c19d1205
ZW
4747 /* Shift operation on register. */
4748 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4749 }
4750
c19d1205
ZW
4751 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4752 return FAIL;
b99bd4ef 4753
c19d1205 4754 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4755 {
c19d1205 4756 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4757 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4758 return FAIL;
b99bd4ef 4759
91d6fa6a 4760 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4761 {
4762 inst.error = _("constant expression expected");
4763 return FAIL;
4764 }
b99bd4ef 4765
91d6fa6a 4766 value = exp.X_add_number;
c19d1205
ZW
4767 if (value < 0 || value > 30 || value % 2 != 0)
4768 {
4769 inst.error = _("invalid rotation");
4770 return FAIL;
4771 }
4772 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4773 {
4774 inst.error = _("invalid constant");
4775 return FAIL;
4776 }
09d92015 4777
55cf6793 4778 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4779 inst.reloc.exp.X_add_number
4780 = (((inst.reloc.exp.X_add_number << (32 - value))
4781 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4782 }
4783
c19d1205
ZW
4784 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4785 inst.reloc.pc_rel = 0;
4786 return SUCCESS;
09d92015
MM
4787}
4788
4962c51a
MS
4789/* Group relocation information. Each entry in the table contains the
4790 textual name of the relocation as may appear in assembler source
4791 and must end with a colon.
4792 Along with this textual name are the relocation codes to be used if
4793 the corresponding instruction is an ALU instruction (ADD or SUB only),
4794 an LDR, an LDRS, or an LDC. */
4795
4796struct group_reloc_table_entry
4797{
4798 const char *name;
4799 int alu_code;
4800 int ldr_code;
4801 int ldrs_code;
4802 int ldc_code;
4803};
4804
4805typedef enum
4806{
4807 /* Varieties of non-ALU group relocation. */
4808
4809 GROUP_LDR,
4810 GROUP_LDRS,
4811 GROUP_LDC
4812} group_reloc_type;
4813
4814static struct group_reloc_table_entry group_reloc_table[] =
4815 { /* Program counter relative: */
4816 { "pc_g0_nc",
4817 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4818 0, /* LDR */
4819 0, /* LDRS */
4820 0 }, /* LDC */
4821 { "pc_g0",
4822 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4823 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4824 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4825 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4826 { "pc_g1_nc",
4827 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4828 0, /* LDR */
4829 0, /* LDRS */
4830 0 }, /* LDC */
4831 { "pc_g1",
4832 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4833 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4834 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4835 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4836 { "pc_g2",
4837 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4838 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4839 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4840 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4841 /* Section base relative */
4842 { "sb_g0_nc",
4843 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4844 0, /* LDR */
4845 0, /* LDRS */
4846 0 }, /* LDC */
4847 { "sb_g0",
4848 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4849 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4850 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4851 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4852 { "sb_g1_nc",
4853 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4854 0, /* LDR */
4855 0, /* LDRS */
4856 0 }, /* LDC */
4857 { "sb_g1",
4858 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4859 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4860 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4861 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4862 { "sb_g2",
4863 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4864 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4865 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4866 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4867
4868/* Given the address of a pointer pointing to the textual name of a group
4869 relocation as may appear in assembler source, attempt to find its details
4870 in group_reloc_table. The pointer will be updated to the character after
4871 the trailing colon. On failure, FAIL will be returned; SUCCESS
4872 otherwise. On success, *entry will be updated to point at the relevant
4873 group_reloc_table entry. */
4874
4875static int
4876find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4877{
4878 unsigned int i;
4879 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4880 {
4881 int length = strlen (group_reloc_table[i].name);
4882
5f4273c7
NC
4883 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4884 && (*str)[length] == ':')
4962c51a
MS
4885 {
4886 *out = &group_reloc_table[i];
4887 *str += (length + 1);
4888 return SUCCESS;
4889 }
4890 }
4891
4892 return FAIL;
4893}
4894
4895/* Parse a <shifter_operand> for an ARM data processing instruction
4896 (as for parse_shifter_operand) where group relocations are allowed:
4897
4898 #<immediate>
4899 #<immediate>, <rotate>
4900 #:<group_reloc>:<expression>
4901 <Rm>
4902 <Rm>, <shift>
4903
4904 where <group_reloc> is one of the strings defined in group_reloc_table.
4905 The hashes are optional.
4906
4907 Everything else is as for parse_shifter_operand. */
4908
4909static parse_operand_result
4910parse_shifter_operand_group_reloc (char **str, int i)
4911{
4912 /* Determine if we have the sequence of characters #: or just :
4913 coming next. If we do, then we check for a group relocation.
4914 If we don't, punt the whole lot to parse_shifter_operand. */
4915
4916 if (((*str)[0] == '#' && (*str)[1] == ':')
4917 || (*str)[0] == ':')
4918 {
4919 struct group_reloc_table_entry *entry;
4920
4921 if ((*str)[0] == '#')
4922 (*str) += 2;
4923 else
4924 (*str)++;
4925
4926 /* Try to parse a group relocation. Anything else is an error. */
4927 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4928 {
4929 inst.error = _("unknown group relocation");
4930 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4931 }
4932
4933 /* We now have the group relocation table entry corresponding to
4934 the name in the assembler source. Next, we parse the expression. */
4935 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4936 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4937
4938 /* Record the relocation type (always the ALU variant here). */
21d799b5 4939 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 4940 gas_assert (inst.reloc.type != 0);
4962c51a
MS
4941
4942 return PARSE_OPERAND_SUCCESS;
4943 }
4944 else
4945 return parse_shifter_operand (str, i) == SUCCESS
4946 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4947
4948 /* Never reached. */
4949}
4950
8e560766
MGD
4951/* Parse a Neon alignment expression. Information is written to
4952 inst.operands[i]. We assume the initial ':' has been skipped.
4953
4954 align .imm = align << 8, .immisalign=1, .preind=0 */
4955static parse_operand_result
4956parse_neon_alignment (char **str, int i)
4957{
4958 char *p = *str;
4959 expressionS exp;
4960
4961 my_get_expression (&exp, &p, GE_NO_PREFIX);
4962
4963 if (exp.X_op != O_constant)
4964 {
4965 inst.error = _("alignment must be constant");
4966 return PARSE_OPERAND_FAIL;
4967 }
4968
4969 inst.operands[i].imm = exp.X_add_number << 8;
4970 inst.operands[i].immisalign = 1;
4971 /* Alignments are not pre-indexes. */
4972 inst.operands[i].preind = 0;
4973
4974 *str = p;
4975 return PARSE_OPERAND_SUCCESS;
4976}
4977
c19d1205
ZW
4978/* Parse all forms of an ARM address expression. Information is written
4979 to inst.operands[i] and/or inst.reloc.
09d92015 4980
c19d1205 4981 Preindexed addressing (.preind=1):
09d92015 4982
c19d1205
ZW
4983 [Rn, #offset] .reg=Rn .reloc.exp=offset
4984 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4985 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4986 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4987
c19d1205 4988 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4989
c19d1205 4990 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4991
c19d1205
ZW
4992 [Rn], #offset .reg=Rn .reloc.exp=offset
4993 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4994 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4995 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4996
c19d1205 4997 Unindexed addressing (.preind=0, .postind=0):
09d92015 4998
c19d1205 4999 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5000
c19d1205 5001 Other:
09d92015 5002
c19d1205
ZW
5003 [Rn]{!} shorthand for [Rn,#0]{!}
5004 =immediate .isreg=0 .reloc.exp=immediate
5005 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5006
c19d1205
ZW
5007 It is the caller's responsibility to check for addressing modes not
5008 supported by the instruction, and to set inst.reloc.type. */
5009
4962c51a
MS
5010static parse_operand_result
5011parse_address_main (char **str, int i, int group_relocations,
5012 group_reloc_type group_type)
09d92015 5013{
c19d1205
ZW
5014 char *p = *str;
5015 int reg;
09d92015 5016
c19d1205 5017 if (skip_past_char (&p, '[') == FAIL)
09d92015 5018 {
c19d1205
ZW
5019 if (skip_past_char (&p, '=') == FAIL)
5020 {
974da60d 5021 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5022 inst.reloc.pc_rel = 1;
5023 inst.operands[i].reg = REG_PC;
5024 inst.operands[i].isreg = 1;
5025 inst.operands[i].preind = 1;
5026 }
974da60d 5027 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5028
c19d1205 5029 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5030 return PARSE_OPERAND_FAIL;
09d92015 5031
c19d1205 5032 *str = p;
4962c51a 5033 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5034 }
5035
dcbf9037 5036 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5037 {
c19d1205 5038 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5039 return PARSE_OPERAND_FAIL;
09d92015 5040 }
c19d1205
ZW
5041 inst.operands[i].reg = reg;
5042 inst.operands[i].isreg = 1;
09d92015 5043
c19d1205 5044 if (skip_past_comma (&p) == SUCCESS)
09d92015 5045 {
c19d1205 5046 inst.operands[i].preind = 1;
09d92015 5047
c19d1205
ZW
5048 if (*p == '+') p++;
5049 else if (*p == '-') p++, inst.operands[i].negative = 1;
5050
dcbf9037 5051 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5052 {
c19d1205
ZW
5053 inst.operands[i].imm = reg;
5054 inst.operands[i].immisreg = 1;
5055
5056 if (skip_past_comma (&p) == SUCCESS)
5057 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5058 return PARSE_OPERAND_FAIL;
c19d1205 5059 }
5287ad62 5060 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5061 {
5062 /* FIXME: '@' should be used here, but it's filtered out by generic
5063 code before we get to see it here. This may be subject to
5064 change. */
5065 parse_operand_result result = parse_neon_alignment (&p, i);
5066
5067 if (result != PARSE_OPERAND_SUCCESS)
5068 return result;
5069 }
c19d1205
ZW
5070 else
5071 {
5072 if (inst.operands[i].negative)
5073 {
5074 inst.operands[i].negative = 0;
5075 p--;
5076 }
4962c51a 5077
5f4273c7
NC
5078 if (group_relocations
5079 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5080 {
5081 struct group_reloc_table_entry *entry;
5082
5083 /* Skip over the #: or : sequence. */
5084 if (*p == '#')
5085 p += 2;
5086 else
5087 p++;
5088
5089 /* Try to parse a group relocation. Anything else is an
5090 error. */
5091 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5092 {
5093 inst.error = _("unknown group relocation");
5094 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5095 }
5096
5097 /* We now have the group relocation table entry corresponding to
5098 the name in the assembler source. Next, we parse the
5099 expression. */
5100 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5101 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5102
5103 /* Record the relocation type. */
5104 switch (group_type)
5105 {
5106 case GROUP_LDR:
21d799b5 5107 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5108 break;
5109
5110 case GROUP_LDRS:
21d799b5 5111 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5112 break;
5113
5114 case GROUP_LDC:
21d799b5 5115 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5116 break;
5117
5118 default:
9c2799c2 5119 gas_assert (0);
4962c51a
MS
5120 }
5121
5122 if (inst.reloc.type == 0)
5123 {
5124 inst.error = _("this group relocation is not allowed on this instruction");
5125 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5126 }
5127 }
5128 else
5129 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5130 return PARSE_OPERAND_FAIL;
09d92015
MM
5131 }
5132 }
8e560766
MGD
5133 else if (skip_past_char (&p, ':') == SUCCESS)
5134 {
5135 /* FIXME: '@' should be used here, but it's filtered out by generic code
5136 before we get to see it here. This may be subject to change. */
5137 parse_operand_result result = parse_neon_alignment (&p, i);
5138
5139 if (result != PARSE_OPERAND_SUCCESS)
5140 return result;
5141 }
09d92015 5142
c19d1205 5143 if (skip_past_char (&p, ']') == FAIL)
09d92015 5144 {
c19d1205 5145 inst.error = _("']' expected");
4962c51a 5146 return PARSE_OPERAND_FAIL;
09d92015
MM
5147 }
5148
c19d1205
ZW
5149 if (skip_past_char (&p, '!') == SUCCESS)
5150 inst.operands[i].writeback = 1;
09d92015 5151
c19d1205 5152 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5153 {
c19d1205
ZW
5154 if (skip_past_char (&p, '{') == SUCCESS)
5155 {
5156 /* [Rn], {expr} - unindexed, with option */
5157 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5158 0, 255, TRUE) == FAIL)
4962c51a 5159 return PARSE_OPERAND_FAIL;
09d92015 5160
c19d1205
ZW
5161 if (skip_past_char (&p, '}') == FAIL)
5162 {
5163 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5164 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5165 }
5166 if (inst.operands[i].preind)
5167 {
5168 inst.error = _("cannot combine index with option");
4962c51a 5169 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5170 }
5171 *str = p;
4962c51a 5172 return PARSE_OPERAND_SUCCESS;
09d92015 5173 }
c19d1205
ZW
5174 else
5175 {
5176 inst.operands[i].postind = 1;
5177 inst.operands[i].writeback = 1;
09d92015 5178
c19d1205
ZW
5179 if (inst.operands[i].preind)
5180 {
5181 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5182 return PARSE_OPERAND_FAIL;
c19d1205 5183 }
09d92015 5184
c19d1205
ZW
5185 if (*p == '+') p++;
5186 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5187
dcbf9037 5188 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5189 {
5287ad62
JB
5190 /* We might be using the immediate for alignment already. If we
5191 are, OR the register number into the low-order bits. */
5192 if (inst.operands[i].immisalign)
5193 inst.operands[i].imm |= reg;
5194 else
5195 inst.operands[i].imm = reg;
c19d1205 5196 inst.operands[i].immisreg = 1;
a737bd4d 5197
c19d1205
ZW
5198 if (skip_past_comma (&p) == SUCCESS)
5199 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5200 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5201 }
5202 else
5203 {
5204 if (inst.operands[i].negative)
5205 {
5206 inst.operands[i].negative = 0;
5207 p--;
5208 }
5209 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5210 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5211 }
5212 }
a737bd4d
NC
5213 }
5214
c19d1205
ZW
5215 /* If at this point neither .preind nor .postind is set, we have a
5216 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5217 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5218 {
5219 inst.operands[i].preind = 1;
5220 inst.reloc.exp.X_op = O_constant;
5221 inst.reloc.exp.X_add_number = 0;
5222 }
5223 *str = p;
4962c51a
MS
5224 return PARSE_OPERAND_SUCCESS;
5225}
5226
5227static int
5228parse_address (char **str, int i)
5229{
21d799b5 5230 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5231 ? SUCCESS : FAIL;
5232}
5233
5234static parse_operand_result
5235parse_address_group_reloc (char **str, int i, group_reloc_type type)
5236{
5237 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5238}
5239
b6895b4f
PB
5240/* Parse an operand for a MOVW or MOVT instruction. */
5241static int
5242parse_half (char **str)
5243{
5244 char * p;
5f4273c7 5245
b6895b4f
PB
5246 p = *str;
5247 skip_past_char (&p, '#');
5f4273c7 5248 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5249 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5250 else if (strncasecmp (p, ":upper16:", 9) == 0)
5251 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5252
5253 if (inst.reloc.type != BFD_RELOC_UNUSED)
5254 {
5255 p += 9;
5f4273c7 5256 skip_whitespace (p);
b6895b4f
PB
5257 }
5258
5259 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5260 return FAIL;
5261
5262 if (inst.reloc.type == BFD_RELOC_UNUSED)
5263 {
5264 if (inst.reloc.exp.X_op != O_constant)
5265 {
5266 inst.error = _("constant expression expected");
5267 return FAIL;
5268 }
5269 if (inst.reloc.exp.X_add_number < 0
5270 || inst.reloc.exp.X_add_number > 0xffff)
5271 {
5272 inst.error = _("immediate value out of range");
5273 return FAIL;
5274 }
5275 }
5276 *str = p;
5277 return SUCCESS;
5278}
5279
c19d1205 5280/* Miscellaneous. */
a737bd4d 5281
c19d1205
ZW
5282/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5283 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5284static int
5285parse_psr (char **str)
09d92015 5286{
c19d1205
ZW
5287 char *p;
5288 unsigned long psr_field;
62b3e311
PB
5289 const struct asm_psr *psr;
5290 char *start;
09d92015 5291
c19d1205
ZW
5292 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5293 feature for ease of use and backwards compatibility. */
5294 p = *str;
62b3e311 5295 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 5296 psr_field = SPSR_BIT;
62b3e311 5297 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
5298 psr_field = 0;
5299 else
62b3e311
PB
5300 {
5301 start = p;
5302 do
5303 p++;
5304 while (ISALNUM (*p) || *p == '_');
5305
21d799b5
NC
5306 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5307 p - start);
62b3e311
PB
5308 if (!psr)
5309 return FAIL;
09d92015 5310
62b3e311
PB
5311 *str = p;
5312 return psr->field;
5313 }
09d92015 5314
62b3e311 5315 p += 4;
c19d1205
ZW
5316 if (*p == '_')
5317 {
5318 /* A suffix follows. */
c19d1205
ZW
5319 p++;
5320 start = p;
a737bd4d 5321
c19d1205
ZW
5322 do
5323 p++;
5324 while (ISALNUM (*p) || *p == '_');
a737bd4d 5325
21d799b5
NC
5326 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5327 p - start);
c19d1205
ZW
5328 if (!psr)
5329 goto error;
a737bd4d 5330
c19d1205 5331 psr_field |= psr->field;
a737bd4d 5332 }
c19d1205 5333 else
a737bd4d 5334 {
c19d1205
ZW
5335 if (ISALNUM (*p))
5336 goto error; /* Garbage after "[CS]PSR". */
5337
5338 psr_field |= (PSR_c | PSR_f);
a737bd4d 5339 }
c19d1205
ZW
5340 *str = p;
5341 return psr_field;
a737bd4d 5342
c19d1205
ZW
5343 error:
5344 inst.error = _("flag for {c}psr instruction expected");
5345 return FAIL;
a737bd4d
NC
5346}
5347
c19d1205
ZW
5348/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5349 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5350
c19d1205
ZW
5351static int
5352parse_cps_flags (char **str)
a737bd4d 5353{
c19d1205
ZW
5354 int val = 0;
5355 int saw_a_flag = 0;
5356 char *s = *str;
a737bd4d 5357
c19d1205
ZW
5358 for (;;)
5359 switch (*s++)
5360 {
5361 case '\0': case ',':
5362 goto done;
a737bd4d 5363
c19d1205
ZW
5364 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5365 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5366 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5367
c19d1205
ZW
5368 default:
5369 inst.error = _("unrecognized CPS flag");
5370 return FAIL;
5371 }
a737bd4d 5372
c19d1205
ZW
5373 done:
5374 if (saw_a_flag == 0)
a737bd4d 5375 {
c19d1205
ZW
5376 inst.error = _("missing CPS flags");
5377 return FAIL;
a737bd4d 5378 }
a737bd4d 5379
c19d1205
ZW
5380 *str = s - 1;
5381 return val;
a737bd4d
NC
5382}
5383
c19d1205
ZW
5384/* Parse an endian specifier ("BE" or "LE", case insensitive);
5385 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5386
5387static int
c19d1205 5388parse_endian_specifier (char **str)
a737bd4d 5389{
c19d1205
ZW
5390 int little_endian;
5391 char *s = *str;
a737bd4d 5392
c19d1205
ZW
5393 if (strncasecmp (s, "BE", 2))
5394 little_endian = 0;
5395 else if (strncasecmp (s, "LE", 2))
5396 little_endian = 1;
5397 else
a737bd4d 5398 {
c19d1205 5399 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5400 return FAIL;
5401 }
5402
c19d1205 5403 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5404 {
c19d1205 5405 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5406 return FAIL;
5407 }
5408
c19d1205
ZW
5409 *str = s + 2;
5410 return little_endian;
5411}
a737bd4d 5412
c19d1205
ZW
5413/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5414 value suitable for poking into the rotate field of an sxt or sxta
5415 instruction, or FAIL on error. */
5416
5417static int
5418parse_ror (char **str)
5419{
5420 int rot;
5421 char *s = *str;
5422
5423 if (strncasecmp (s, "ROR", 3) == 0)
5424 s += 3;
5425 else
a737bd4d 5426 {
c19d1205 5427 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5428 return FAIL;
5429 }
c19d1205
ZW
5430
5431 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5432 return FAIL;
5433
5434 switch (rot)
a737bd4d 5435 {
c19d1205
ZW
5436 case 0: *str = s; return 0x0;
5437 case 8: *str = s; return 0x1;
5438 case 16: *str = s; return 0x2;
5439 case 24: *str = s; return 0x3;
5440
5441 default:
5442 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5443 return FAIL;
5444 }
c19d1205 5445}
a737bd4d 5446
c19d1205
ZW
5447/* Parse a conditional code (from conds[] below). The value returned is in the
5448 range 0 .. 14, or FAIL. */
5449static int
5450parse_cond (char **str)
5451{
c462b453 5452 char *q;
c19d1205 5453 const struct asm_cond *c;
c462b453
PB
5454 int n;
5455 /* Condition codes are always 2 characters, so matching up to
5456 3 characters is sufficient. */
5457 char cond[3];
a737bd4d 5458
c462b453
PB
5459 q = *str;
5460 n = 0;
5461 while (ISALPHA (*q) && n < 3)
5462 {
e07e6e58 5463 cond[n] = TOLOWER (*q);
c462b453
PB
5464 q++;
5465 n++;
5466 }
a737bd4d 5467
21d799b5 5468 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5469 if (!c)
a737bd4d 5470 {
c19d1205 5471 inst.error = _("condition required");
a737bd4d
NC
5472 return FAIL;
5473 }
5474
c19d1205
ZW
5475 *str = q;
5476 return c->value;
5477}
5478
62b3e311
PB
5479/* Parse an option for a barrier instruction. Returns the encoding for the
5480 option, or FAIL. */
5481static int
5482parse_barrier (char **str)
5483{
5484 char *p, *q;
5485 const struct asm_barrier_opt *o;
5486
5487 p = q = *str;
5488 while (ISALPHA (*q))
5489 q++;
5490
21d799b5
NC
5491 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5492 q - p);
62b3e311
PB
5493 if (!o)
5494 return FAIL;
5495
5496 *str = q;
5497 return o->value;
5498}
5499
92e90b6e
PB
5500/* Parse the operands of a table branch instruction. Similar to a memory
5501 operand. */
5502static int
5503parse_tb (char **str)
5504{
5505 char * p = *str;
5506 int reg;
5507
5508 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5509 {
5510 inst.error = _("'[' expected");
5511 return FAIL;
5512 }
92e90b6e 5513
dcbf9037 5514 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5515 {
5516 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5517 return FAIL;
5518 }
5519 inst.operands[0].reg = reg;
5520
5521 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5522 {
5523 inst.error = _("',' expected");
5524 return FAIL;
5525 }
5f4273c7 5526
dcbf9037 5527 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5528 {
5529 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5530 return FAIL;
5531 }
5532 inst.operands[0].imm = reg;
5533
5534 if (skip_past_comma (&p) == SUCCESS)
5535 {
5536 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5537 return FAIL;
5538 if (inst.reloc.exp.X_add_number != 1)
5539 {
5540 inst.error = _("invalid shift");
5541 return FAIL;
5542 }
5543 inst.operands[0].shifted = 1;
5544 }
5545
5546 if (skip_past_char (&p, ']') == FAIL)
5547 {
5548 inst.error = _("']' expected");
5549 return FAIL;
5550 }
5551 *str = p;
5552 return SUCCESS;
5553}
5554
5287ad62
JB
5555/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5556 information on the types the operands can take and how they are encoded.
037e8744
JB
5557 Up to four operands may be read; this function handles setting the
5558 ".present" field for each read operand itself.
5287ad62
JB
5559 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5560 else returns FAIL. */
5561
5562static int
5563parse_neon_mov (char **str, int *which_operand)
5564{
5565 int i = *which_operand, val;
5566 enum arm_reg_type rtype;
5567 char *ptr = *str;
dcbf9037 5568 struct neon_type_el optype;
5f4273c7 5569
dcbf9037 5570 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5571 {
5572 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5573 inst.operands[i].reg = val;
5574 inst.operands[i].isscalar = 1;
dcbf9037 5575 inst.operands[i].vectype = optype;
5287ad62
JB
5576 inst.operands[i++].present = 1;
5577
5578 if (skip_past_comma (&ptr) == FAIL)
5579 goto wanted_comma;
5f4273c7 5580
dcbf9037 5581 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5582 goto wanted_arm;
5f4273c7 5583
5287ad62
JB
5584 inst.operands[i].reg = val;
5585 inst.operands[i].isreg = 1;
5586 inst.operands[i].present = 1;
5587 }
037e8744 5588 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5589 != FAIL)
5287ad62
JB
5590 {
5591 /* Cases 0, 1, 2, 3, 5 (D only). */
5592 if (skip_past_comma (&ptr) == FAIL)
5593 goto wanted_comma;
5f4273c7 5594
5287ad62
JB
5595 inst.operands[i].reg = val;
5596 inst.operands[i].isreg = 1;
5597 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5598 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5599 inst.operands[i].isvec = 1;
dcbf9037 5600 inst.operands[i].vectype = optype;
5287ad62
JB
5601 inst.operands[i++].present = 1;
5602
dcbf9037 5603 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5604 {
037e8744
JB
5605 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5606 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5607 inst.operands[i].reg = val;
5608 inst.operands[i].isreg = 1;
037e8744 5609 inst.operands[i].present = 1;
5287ad62
JB
5610
5611 if (rtype == REG_TYPE_NQ)
5612 {
dcbf9037 5613 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5614 return FAIL;
5615 }
037e8744
JB
5616 else if (rtype != REG_TYPE_VFS)
5617 {
5618 i++;
5619 if (skip_past_comma (&ptr) == FAIL)
5620 goto wanted_comma;
5621 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5622 goto wanted_arm;
5623 inst.operands[i].reg = val;
5624 inst.operands[i].isreg = 1;
5625 inst.operands[i].present = 1;
5626 }
5287ad62 5627 }
037e8744
JB
5628 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5629 &optype)) != FAIL)
5287ad62
JB
5630 {
5631 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5632 Case 1: VMOV<c><q> <Dd>, <Dm>
5633 Case 8: VMOV.F32 <Sd>, <Sm>
5634 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5635
5636 inst.operands[i].reg = val;
5637 inst.operands[i].isreg = 1;
5638 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5639 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5640 inst.operands[i].isvec = 1;
dcbf9037 5641 inst.operands[i].vectype = optype;
5287ad62 5642 inst.operands[i].present = 1;
5f4273c7 5643
037e8744
JB
5644 if (skip_past_comma (&ptr) == SUCCESS)
5645 {
5646 /* Case 15. */
5647 i++;
5648
5649 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5650 goto wanted_arm;
5651
5652 inst.operands[i].reg = val;
5653 inst.operands[i].isreg = 1;
5654 inst.operands[i++].present = 1;
5f4273c7 5655
037e8744
JB
5656 if (skip_past_comma (&ptr) == FAIL)
5657 goto wanted_comma;
5f4273c7 5658
037e8744
JB
5659 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5660 goto wanted_arm;
5f4273c7 5661
037e8744
JB
5662 inst.operands[i].reg = val;
5663 inst.operands[i].isreg = 1;
5664 inst.operands[i++].present = 1;
5665 }
5287ad62 5666 }
4641781c
PB
5667 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5668 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5669 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5670 Case 10: VMOV.F32 <Sd>, #<imm>
5671 Case 11: VMOV.F64 <Dd>, #<imm> */
5672 inst.operands[i].immisfloat = 1;
5673 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5674 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5675 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5676 ;
5287ad62
JB
5677 else
5678 {
dcbf9037 5679 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5680 return FAIL;
5681 }
5682 }
dcbf9037 5683 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5684 {
5685 /* Cases 6, 7. */
5686 inst.operands[i].reg = val;
5687 inst.operands[i].isreg = 1;
5688 inst.operands[i++].present = 1;
5f4273c7 5689
5287ad62
JB
5690 if (skip_past_comma (&ptr) == FAIL)
5691 goto wanted_comma;
5f4273c7 5692
dcbf9037 5693 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5694 {
5695 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5696 inst.operands[i].reg = val;
5697 inst.operands[i].isscalar = 1;
5698 inst.operands[i].present = 1;
dcbf9037 5699 inst.operands[i].vectype = optype;
5287ad62 5700 }
dcbf9037 5701 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5702 {
5703 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5704 inst.operands[i].reg = val;
5705 inst.operands[i].isreg = 1;
5706 inst.operands[i++].present = 1;
5f4273c7 5707
5287ad62
JB
5708 if (skip_past_comma (&ptr) == FAIL)
5709 goto wanted_comma;
5f4273c7 5710
037e8744 5711 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5712 == FAIL)
5287ad62 5713 {
037e8744 5714 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5715 return FAIL;
5716 }
5717
5718 inst.operands[i].reg = val;
5719 inst.operands[i].isreg = 1;
037e8744
JB
5720 inst.operands[i].isvec = 1;
5721 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5722 inst.operands[i].vectype = optype;
5287ad62 5723 inst.operands[i].present = 1;
5f4273c7 5724
037e8744
JB
5725 if (rtype == REG_TYPE_VFS)
5726 {
5727 /* Case 14. */
5728 i++;
5729 if (skip_past_comma (&ptr) == FAIL)
5730 goto wanted_comma;
5731 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5732 &optype)) == FAIL)
5733 {
5734 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5735 return FAIL;
5736 }
5737 inst.operands[i].reg = val;
5738 inst.operands[i].isreg = 1;
5739 inst.operands[i].isvec = 1;
5740 inst.operands[i].issingle = 1;
5741 inst.operands[i].vectype = optype;
5742 inst.operands[i].present = 1;
5743 }
5744 }
5745 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5746 != FAIL)
5747 {
5748 /* Case 13. */
5749 inst.operands[i].reg = val;
5750 inst.operands[i].isreg = 1;
5751 inst.operands[i].isvec = 1;
5752 inst.operands[i].issingle = 1;
5753 inst.operands[i].vectype = optype;
5754 inst.operands[i++].present = 1;
5287ad62
JB
5755 }
5756 }
5757 else
5758 {
dcbf9037 5759 first_error (_("parse error"));
5287ad62
JB
5760 return FAIL;
5761 }
5762
5763 /* Successfully parsed the operands. Update args. */
5764 *which_operand = i;
5765 *str = ptr;
5766 return SUCCESS;
5767
5f4273c7 5768 wanted_comma:
dcbf9037 5769 first_error (_("expected comma"));
5287ad62 5770 return FAIL;
5f4273c7
NC
5771
5772 wanted_arm:
dcbf9037 5773 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5774 return FAIL;
5287ad62
JB
5775}
5776
5be8be5d
DG
5777/* Use this macro when the operand constraints are different
5778 for ARM and THUMB (e.g. ldrd). */
5779#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5780 ((arm_operand) | ((thumb_operand) << 16))
5781
c19d1205
ZW
5782/* Matcher codes for parse_operands. */
5783enum operand_parse_code
5784{
5785 OP_stop, /* end of line */
5786
5787 OP_RR, /* ARM register */
5788 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 5789 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 5790 OP_RRnpcb, /* ARM register, not r15, in square brackets */
55881a11
MGD
5791 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5792 optional trailing ! */
c19d1205
ZW
5793 OP_RRw, /* ARM register, not r15, optional trailing ! */
5794 OP_RCP, /* Coprocessor number */
5795 OP_RCN, /* Coprocessor register */
5796 OP_RF, /* FPA register */
5797 OP_RVS, /* VFP single precision register */
5287ad62
JB
5798 OP_RVD, /* VFP double precision register (0..15) */
5799 OP_RND, /* Neon double precision register (0..31) */
5800 OP_RNQ, /* Neon quad precision register */
037e8744 5801 OP_RVSD, /* VFP single or double precision register */
5287ad62 5802 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5803 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5804 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5805 OP_RVC, /* VFP control register */
5806 OP_RMF, /* Maverick F register */
5807 OP_RMD, /* Maverick D register */
5808 OP_RMFX, /* Maverick FX register */
5809 OP_RMDX, /* Maverick DX register */
5810 OP_RMAX, /* Maverick AX register */
5811 OP_RMDS, /* Maverick DSPSC register */
5812 OP_RIWR, /* iWMMXt wR register */
5813 OP_RIWC, /* iWMMXt wC register */
5814 OP_RIWG, /* iWMMXt wCG register */
5815 OP_RXA, /* XScale accumulator register */
5816
5817 OP_REGLST, /* ARM register list */
5818 OP_VRSLST, /* VFP single-precision register list */
5819 OP_VRDLST, /* VFP double-precision register list */
037e8744 5820 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5821 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5822 OP_NSTRLST, /* Neon element/structure list */
5823
5287ad62 5824 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5825 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5826 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5827 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5828 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5829 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5830 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 5831 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 5832 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5833 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5834
5835 OP_I0, /* immediate zero */
c19d1205
ZW
5836 OP_I7, /* immediate value 0 .. 7 */
5837 OP_I15, /* 0 .. 15 */
5838 OP_I16, /* 1 .. 16 */
5287ad62 5839 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5840 OP_I31, /* 0 .. 31 */
5841 OP_I31w, /* 0 .. 31, optional trailing ! */
5842 OP_I32, /* 1 .. 32 */
5287ad62
JB
5843 OP_I32z, /* 0 .. 32 */
5844 OP_I63, /* 0 .. 63 */
c19d1205 5845 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5846 OP_I64, /* 1 .. 64 */
5847 OP_I64z, /* 0 .. 64 */
c19d1205 5848 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5849
5850 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5851 OP_I7b, /* 0 .. 7 */
5852 OP_I15b, /* 0 .. 15 */
5853 OP_I31b, /* 0 .. 31 */
5854
5855 OP_SH, /* shifter operand */
4962c51a 5856 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5857 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5858 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5859 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5860 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5861 OP_EXP, /* arbitrary expression */
5862 OP_EXPi, /* same, with optional immediate prefix */
5863 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5864 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5865
5866 OP_CPSF, /* CPS flags */
5867 OP_ENDI, /* Endianness specifier */
5868 OP_PSR, /* CPSR/SPSR mask for msr */
5869 OP_COND, /* conditional code */
92e90b6e 5870 OP_TB, /* Table branch. */
c19d1205 5871
037e8744
JB
5872 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5873 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5874
c19d1205
ZW
5875 OP_RRnpc_I0, /* ARM register or literal 0 */
5876 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5877 OP_RR_EXi, /* ARM register or expression with imm prefix */
5878 OP_RF_IF, /* FPA register or immediate */
5879 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5880 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5881
5882 /* Optional operands. */
5883 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5884 OP_oI31b, /* 0 .. 31 */
5287ad62 5885 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5886 OP_oIffffb, /* 0 .. 65535 */
5887 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5888
5889 OP_oRR, /* ARM register */
5890 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 5891 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 5892 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5893 OP_oRND, /* Optional Neon double precision register */
5894 OP_oRNQ, /* Optional Neon quad precision register */
5895 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5896 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5897 OP_oSHll, /* LSL immediate */
5898 OP_oSHar, /* ASR immediate */
5899 OP_oSHllar, /* LSL or ASR immediate */
5900 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 5901 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 5902
5be8be5d
DG
5903 /* Some pre-defined mixed (ARM/THUMB) operands. */
5904 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5905 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5906 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5907
c19d1205
ZW
5908 OP_FIRST_OPTIONAL = OP_oI7b
5909};
a737bd4d 5910
c19d1205
ZW
5911/* Generic instruction operand parser. This does no encoding and no
5912 semantic validation; it merely squirrels values away in the inst
5913 structure. Returns SUCCESS or FAIL depending on whether the
5914 specified grammar matched. */
5915static int
5be8be5d 5916parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 5917{
5be8be5d 5918 unsigned const int *upat = pattern;
c19d1205
ZW
5919 char *backtrack_pos = 0;
5920 const char *backtrack_error = 0;
5921 int i, val, backtrack_index = 0;
5287ad62 5922 enum arm_reg_type rtype;
4962c51a 5923 parse_operand_result result;
5be8be5d 5924 unsigned int op_parse_code;
c19d1205 5925
e07e6e58
NC
5926#define po_char_or_fail(chr) \
5927 do \
5928 { \
5929 if (skip_past_char (&str, chr) == FAIL) \
5930 goto bad_args; \
5931 } \
5932 while (0)
c19d1205 5933
e07e6e58
NC
5934#define po_reg_or_fail(regtype) \
5935 do \
dcbf9037 5936 { \
e07e6e58
NC
5937 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5938 & inst.operands[i].vectype); \
5939 if (val == FAIL) \
5940 { \
5941 first_error (_(reg_expected_msgs[regtype])); \
5942 goto failure; \
5943 } \
5944 inst.operands[i].reg = val; \
5945 inst.operands[i].isreg = 1; \
5946 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5947 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5948 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5949 || rtype == REG_TYPE_VFD \
5950 || rtype == REG_TYPE_NQ); \
dcbf9037 5951 } \
e07e6e58
NC
5952 while (0)
5953
5954#define po_reg_or_goto(regtype, label) \
5955 do \
5956 { \
5957 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5958 & inst.operands[i].vectype); \
5959 if (val == FAIL) \
5960 goto label; \
dcbf9037 5961 \
e07e6e58
NC
5962 inst.operands[i].reg = val; \
5963 inst.operands[i].isreg = 1; \
5964 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5965 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5966 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5967 || rtype == REG_TYPE_VFD \
5968 || rtype == REG_TYPE_NQ); \
5969 } \
5970 while (0)
5971
5972#define po_imm_or_fail(min, max, popt) \
5973 do \
5974 { \
5975 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5976 goto failure; \
5977 inst.operands[i].imm = val; \
5978 } \
5979 while (0)
5980
5981#define po_scalar_or_goto(elsz, label) \
5982 do \
5983 { \
5984 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5985 if (val == FAIL) \
5986 goto label; \
5987 inst.operands[i].reg = val; \
5988 inst.operands[i].isscalar = 1; \
5989 } \
5990 while (0)
5991
5992#define po_misc_or_fail(expr) \
5993 do \
5994 { \
5995 if (expr) \
5996 goto failure; \
5997 } \
5998 while (0)
5999
6000#define po_misc_or_fail_no_backtrack(expr) \
6001 do \
6002 { \
6003 result = expr; \
6004 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6005 backtrack_pos = 0; \
6006 if (result != PARSE_OPERAND_SUCCESS) \
6007 goto failure; \
6008 } \
6009 while (0)
4962c51a 6010
52e7f43d
RE
6011#define po_barrier_or_imm(str) \
6012 do \
6013 { \
6014 val = parse_barrier (&str); \
6015 if (val == FAIL) \
6016 { \
6017 if (ISALPHA (*str)) \
6018 goto failure; \
6019 else \
6020 goto immediate; \
6021 } \
6022 else \
6023 { \
6024 if ((inst.instruction & 0xf0) == 0x60 \
6025 && val != 0xf) \
6026 { \
6027 /* ISB can only take SY as an option. */ \
6028 inst.error = _("invalid barrier type"); \
6029 goto failure; \
6030 } \
6031 } \
6032 } \
6033 while (0)
6034
c19d1205
ZW
6035 skip_whitespace (str);
6036
6037 for (i = 0; upat[i] != OP_stop; i++)
6038 {
5be8be5d
DG
6039 op_parse_code = upat[i];
6040 if (op_parse_code >= 1<<16)
6041 op_parse_code = thumb ? (op_parse_code >> 16)
6042 : (op_parse_code & ((1<<16)-1));
6043
6044 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6045 {
6046 /* Remember where we are in case we need to backtrack. */
9c2799c2 6047 gas_assert (!backtrack_pos);
c19d1205
ZW
6048 backtrack_pos = str;
6049 backtrack_error = inst.error;
6050 backtrack_index = i;
6051 }
6052
b6702015 6053 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6054 po_char_or_fail (',');
6055
5be8be5d 6056 switch (op_parse_code)
c19d1205
ZW
6057 {
6058 /* Registers */
6059 case OP_oRRnpc:
5be8be5d 6060 case OP_oRRnpcsp:
c19d1205 6061 case OP_RRnpc:
5be8be5d 6062 case OP_RRnpcsp:
c19d1205
ZW
6063 case OP_oRR:
6064 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6065 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6066 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6067 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6068 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6069 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6070 case OP_oRND:
6071 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6072 case OP_RVC:
6073 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6074 break;
6075 /* Also accept generic coprocessor regs for unknown registers. */
6076 coproc_reg:
6077 po_reg_or_fail (REG_TYPE_CN);
6078 break;
c19d1205
ZW
6079 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6080 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6081 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6082 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6083 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6084 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6085 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6086 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6087 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6088 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6089 case OP_oRNQ:
6090 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6091 case OP_oRNDQ:
6092 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6093 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6094 case OP_oRNSDQ:
6095 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6096
6097 /* Neon scalar. Using an element size of 8 means that some invalid
6098 scalars are accepted here, so deal with those in later code. */
6099 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6100
5287ad62
JB
6101 case OP_RNDQ_I0:
6102 {
6103 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6104 break;
6105 try_imm0:
6106 po_imm_or_fail (0, 0, TRUE);
6107 }
6108 break;
6109
037e8744
JB
6110 case OP_RVSD_I0:
6111 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6112 break;
6113
5287ad62
JB
6114 case OP_RR_RNSC:
6115 {
6116 po_scalar_or_goto (8, try_rr);
6117 break;
6118 try_rr:
6119 po_reg_or_fail (REG_TYPE_RN);
6120 }
6121 break;
6122
037e8744
JB
6123 case OP_RNSDQ_RNSC:
6124 {
6125 po_scalar_or_goto (8, try_nsdq);
6126 break;
6127 try_nsdq:
6128 po_reg_or_fail (REG_TYPE_NSDQ);
6129 }
6130 break;
6131
5287ad62
JB
6132 case OP_RNDQ_RNSC:
6133 {
6134 po_scalar_or_goto (8, try_ndq);
6135 break;
6136 try_ndq:
6137 po_reg_or_fail (REG_TYPE_NDQ);
6138 }
6139 break;
6140
6141 case OP_RND_RNSC:
6142 {
6143 po_scalar_or_goto (8, try_vfd);
6144 break;
6145 try_vfd:
6146 po_reg_or_fail (REG_TYPE_VFD);
6147 }
6148 break;
6149
6150 case OP_VMOV:
6151 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6152 not careful then bad things might happen. */
6153 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6154 break;
6155
4316f0d2 6156 case OP_RNDQ_Ibig:
5287ad62 6157 {
4316f0d2 6158 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6159 break;
4316f0d2 6160 try_immbig:
5287ad62
JB
6161 /* There's a possibility of getting a 64-bit immediate here, so
6162 we need special handling. */
6163 if (parse_big_immediate (&str, i) == FAIL)
6164 {
6165 inst.error = _("immediate value is out of range");
6166 goto failure;
6167 }
6168 }
6169 break;
6170
6171 case OP_RNDQ_I63b:
6172 {
6173 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6174 break;
6175 try_shimm:
6176 po_imm_or_fail (0, 63, TRUE);
6177 }
6178 break;
c19d1205
ZW
6179
6180 case OP_RRnpcb:
6181 po_char_or_fail ('[');
6182 po_reg_or_fail (REG_TYPE_RN);
6183 po_char_or_fail (']');
6184 break;
a737bd4d 6185
55881a11 6186 case OP_RRnpctw:
c19d1205 6187 case OP_RRw:
b6702015 6188 case OP_oRRw:
c19d1205
ZW
6189 po_reg_or_fail (REG_TYPE_RN);
6190 if (skip_past_char (&str, '!') == SUCCESS)
6191 inst.operands[i].writeback = 1;
6192 break;
6193
6194 /* Immediates */
6195 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6196 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6197 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6198 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6199 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6200 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6201 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6202 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6203 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6204 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6205 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6206 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6207
6208 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6209 case OP_oI7b:
6210 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6211 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6212 case OP_oI31b:
6213 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6214 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6215 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6216
6217 /* Immediate variants */
6218 case OP_oI255c:
6219 po_char_or_fail ('{');
6220 po_imm_or_fail (0, 255, TRUE);
6221 po_char_or_fail ('}');
6222 break;
6223
6224 case OP_I31w:
6225 /* The expression parser chokes on a trailing !, so we have
6226 to find it first and zap it. */
6227 {
6228 char *s = str;
6229 while (*s && *s != ',')
6230 s++;
6231 if (s[-1] == '!')
6232 {
6233 s[-1] = '\0';
6234 inst.operands[i].writeback = 1;
6235 }
6236 po_imm_or_fail (0, 31, TRUE);
6237 if (str == s - 1)
6238 str = s;
6239 }
6240 break;
6241
6242 /* Expressions */
6243 case OP_EXPi: EXPi:
6244 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6245 GE_OPT_PREFIX));
6246 break;
6247
6248 case OP_EXP:
6249 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6250 GE_NO_PREFIX));
6251 break;
6252
6253 case OP_EXPr: EXPr:
6254 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6255 GE_NO_PREFIX));
6256 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6257 {
c19d1205
ZW
6258 val = parse_reloc (&str);
6259 if (val == -1)
6260 {
6261 inst.error = _("unrecognized relocation suffix");
6262 goto failure;
6263 }
6264 else if (val != BFD_RELOC_UNUSED)
6265 {
6266 inst.operands[i].imm = val;
6267 inst.operands[i].hasreloc = 1;
6268 }
a737bd4d 6269 }
c19d1205 6270 break;
a737bd4d 6271
b6895b4f
PB
6272 /* Operand for MOVW or MOVT. */
6273 case OP_HALF:
6274 po_misc_or_fail (parse_half (&str));
6275 break;
6276
e07e6e58 6277 /* Register or expression. */
c19d1205
ZW
6278 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6279 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6280
e07e6e58 6281 /* Register or immediate. */
c19d1205
ZW
6282 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6283 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6284
c19d1205
ZW
6285 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6286 IF:
6287 if (!is_immediate_prefix (*str))
6288 goto bad_args;
6289 str++;
6290 val = parse_fpa_immediate (&str);
6291 if (val == FAIL)
6292 goto failure;
6293 /* FPA immediates are encoded as registers 8-15.
6294 parse_fpa_immediate has already applied the offset. */
6295 inst.operands[i].reg = val;
6296 inst.operands[i].isreg = 1;
6297 break;
09d92015 6298
2d447fca
JM
6299 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6300 I32z: po_imm_or_fail (0, 32, FALSE); break;
6301
e07e6e58 6302 /* Two kinds of register. */
c19d1205
ZW
6303 case OP_RIWR_RIWC:
6304 {
6305 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6306 if (!rege
6307 || (rege->type != REG_TYPE_MMXWR
6308 && rege->type != REG_TYPE_MMXWC
6309 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6310 {
6311 inst.error = _("iWMMXt data or control register expected");
6312 goto failure;
6313 }
6314 inst.operands[i].reg = rege->number;
6315 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6316 }
6317 break;
09d92015 6318
41adaa5c
JM
6319 case OP_RIWC_RIWG:
6320 {
6321 struct reg_entry *rege = arm_reg_parse_multi (&str);
6322 if (!rege
6323 || (rege->type != REG_TYPE_MMXWC
6324 && rege->type != REG_TYPE_MMXWCG))
6325 {
6326 inst.error = _("iWMMXt control register expected");
6327 goto failure;
6328 }
6329 inst.operands[i].reg = rege->number;
6330 inst.operands[i].isreg = 1;
6331 }
6332 break;
6333
c19d1205
ZW
6334 /* Misc */
6335 case OP_CPSF: val = parse_cps_flags (&str); break;
6336 case OP_ENDI: val = parse_endian_specifier (&str); break;
6337 case OP_oROR: val = parse_ror (&str); break;
6338 case OP_PSR: val = parse_psr (&str); break;
6339 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6340 case OP_oBARRIER_I15:
6341 po_barrier_or_imm (str); break;
6342 immediate:
6343 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6344 goto failure;
6345 break;
c19d1205 6346
037e8744
JB
6347 case OP_RVC_PSR:
6348 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6349 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6350 break;
6351 try_psr:
6352 val = parse_psr (&str);
6353 break;
6354
6355 case OP_APSR_RR:
6356 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6357 break;
6358 try_apsr:
6359 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6360 instruction). */
6361 if (strncasecmp (str, "APSR_", 5) == 0)
6362 {
6363 unsigned found = 0;
6364 str += 5;
6365 while (found < 15)
6366 switch (*str++)
6367 {
6368 case 'c': found = (found & 1) ? 16 : found | 1; break;
6369 case 'n': found = (found & 2) ? 16 : found | 2; break;
6370 case 'z': found = (found & 4) ? 16 : found | 4; break;
6371 case 'v': found = (found & 8) ? 16 : found | 8; break;
6372 default: found = 16;
6373 }
6374 if (found != 15)
6375 goto failure;
6376 inst.operands[i].isvec = 1;
f7c21dc7
NC
6377 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6378 inst.operands[i].reg = REG_PC;
037e8744
JB
6379 }
6380 else
6381 goto failure;
6382 break;
6383
92e90b6e
PB
6384 case OP_TB:
6385 po_misc_or_fail (parse_tb (&str));
6386 break;
6387
e07e6e58 6388 /* Register lists. */
c19d1205
ZW
6389 case OP_REGLST:
6390 val = parse_reg_list (&str);
6391 if (*str == '^')
6392 {
6393 inst.operands[1].writeback = 1;
6394 str++;
6395 }
6396 break;
09d92015 6397
c19d1205 6398 case OP_VRSLST:
5287ad62 6399 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6400 break;
09d92015 6401
c19d1205 6402 case OP_VRDLST:
5287ad62 6403 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6404 break;
a737bd4d 6405
037e8744
JB
6406 case OP_VRSDLST:
6407 /* Allow Q registers too. */
6408 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6409 REGLIST_NEON_D);
6410 if (val == FAIL)
6411 {
6412 inst.error = NULL;
6413 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6414 REGLIST_VFP_S);
6415 inst.operands[i].issingle = 1;
6416 }
6417 break;
6418
5287ad62
JB
6419 case OP_NRDLST:
6420 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6421 REGLIST_NEON_D);
6422 break;
6423
6424 case OP_NSTRLST:
dcbf9037
JB
6425 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6426 &inst.operands[i].vectype);
5287ad62
JB
6427 break;
6428
c19d1205
ZW
6429 /* Addressing modes */
6430 case OP_ADDR:
6431 po_misc_or_fail (parse_address (&str, i));
6432 break;
09d92015 6433
4962c51a
MS
6434 case OP_ADDRGLDR:
6435 po_misc_or_fail_no_backtrack (
6436 parse_address_group_reloc (&str, i, GROUP_LDR));
6437 break;
6438
6439 case OP_ADDRGLDRS:
6440 po_misc_or_fail_no_backtrack (
6441 parse_address_group_reloc (&str, i, GROUP_LDRS));
6442 break;
6443
6444 case OP_ADDRGLDC:
6445 po_misc_or_fail_no_backtrack (
6446 parse_address_group_reloc (&str, i, GROUP_LDC));
6447 break;
6448
c19d1205
ZW
6449 case OP_SH:
6450 po_misc_or_fail (parse_shifter_operand (&str, i));
6451 break;
09d92015 6452
4962c51a
MS
6453 case OP_SHG:
6454 po_misc_or_fail_no_backtrack (
6455 parse_shifter_operand_group_reloc (&str, i));
6456 break;
6457
c19d1205
ZW
6458 case OP_oSHll:
6459 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6460 break;
09d92015 6461
c19d1205
ZW
6462 case OP_oSHar:
6463 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6464 break;
09d92015 6465
c19d1205
ZW
6466 case OP_oSHllar:
6467 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6468 break;
09d92015 6469
c19d1205 6470 default:
5be8be5d 6471 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6472 }
09d92015 6473
c19d1205
ZW
6474 /* Various value-based sanity checks and shared operations. We
6475 do not signal immediate failures for the register constraints;
6476 this allows a syntax error to take precedence. */
5be8be5d 6477 switch (op_parse_code)
c19d1205
ZW
6478 {
6479 case OP_oRRnpc:
6480 case OP_RRnpc:
6481 case OP_RRnpcb:
6482 case OP_RRw:
b6702015 6483 case OP_oRRw:
c19d1205
ZW
6484 case OP_RRnpc_I0:
6485 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6486 inst.error = BAD_PC;
6487 break;
09d92015 6488
5be8be5d
DG
6489 case OP_oRRnpcsp:
6490 case OP_RRnpcsp:
6491 if (inst.operands[i].isreg)
6492 {
6493 if (inst.operands[i].reg == REG_PC)
6494 inst.error = BAD_PC;
6495 else if (inst.operands[i].reg == REG_SP)
6496 inst.error = BAD_SP;
6497 }
6498 break;
6499
55881a11
MGD
6500 case OP_RRnpctw:
6501 if (inst.operands[i].isreg
6502 && inst.operands[i].reg == REG_PC
6503 && (inst.operands[i].writeback || thumb))
6504 inst.error = BAD_PC;
6505 break;
6506
c19d1205
ZW
6507 case OP_CPSF:
6508 case OP_ENDI:
6509 case OP_oROR:
6510 case OP_PSR:
037e8744 6511 case OP_RVC_PSR:
c19d1205 6512 case OP_COND:
52e7f43d 6513 case OP_oBARRIER_I15:
c19d1205
ZW
6514 case OP_REGLST:
6515 case OP_VRSLST:
6516 case OP_VRDLST:
037e8744 6517 case OP_VRSDLST:
5287ad62
JB
6518 case OP_NRDLST:
6519 case OP_NSTRLST:
c19d1205
ZW
6520 if (val == FAIL)
6521 goto failure;
6522 inst.operands[i].imm = val;
6523 break;
a737bd4d 6524
c19d1205
ZW
6525 default:
6526 break;
6527 }
09d92015 6528
c19d1205
ZW
6529 /* If we get here, this operand was successfully parsed. */
6530 inst.operands[i].present = 1;
6531 continue;
09d92015 6532
c19d1205 6533 bad_args:
09d92015 6534 inst.error = BAD_ARGS;
c19d1205
ZW
6535
6536 failure:
6537 if (!backtrack_pos)
d252fdde
PB
6538 {
6539 /* The parse routine should already have set inst.error, but set a
5f4273c7 6540 default here just in case. */
d252fdde
PB
6541 if (!inst.error)
6542 inst.error = _("syntax error");
6543 return FAIL;
6544 }
c19d1205
ZW
6545
6546 /* Do not backtrack over a trailing optional argument that
6547 absorbed some text. We will only fail again, with the
6548 'garbage following instruction' error message, which is
6549 probably less helpful than the current one. */
6550 if (backtrack_index == i && backtrack_pos != str
6551 && upat[i+1] == OP_stop)
d252fdde
PB
6552 {
6553 if (!inst.error)
6554 inst.error = _("syntax error");
6555 return FAIL;
6556 }
c19d1205
ZW
6557
6558 /* Try again, skipping the optional argument at backtrack_pos. */
6559 str = backtrack_pos;
6560 inst.error = backtrack_error;
6561 inst.operands[backtrack_index].present = 0;
6562 i = backtrack_index;
6563 backtrack_pos = 0;
09d92015 6564 }
09d92015 6565
c19d1205
ZW
6566 /* Check that we have parsed all the arguments. */
6567 if (*str != '\0' && !inst.error)
6568 inst.error = _("garbage following instruction");
09d92015 6569
c19d1205 6570 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6571}
6572
c19d1205
ZW
6573#undef po_char_or_fail
6574#undef po_reg_or_fail
6575#undef po_reg_or_goto
6576#undef po_imm_or_fail
5287ad62 6577#undef po_scalar_or_fail
52e7f43d 6578#undef po_barrier_or_imm
e07e6e58 6579
c19d1205 6580/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6581#define constraint(expr, err) \
6582 do \
c19d1205 6583 { \
e07e6e58
NC
6584 if (expr) \
6585 { \
6586 inst.error = err; \
6587 return; \
6588 } \
c19d1205 6589 } \
e07e6e58 6590 while (0)
c19d1205 6591
fdfde340
JM
6592/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6593 instructions are unpredictable if these registers are used. This
6594 is the BadReg predicate in ARM's Thumb-2 documentation. */
6595#define reject_bad_reg(reg) \
6596 do \
6597 if (reg == REG_SP || reg == REG_PC) \
6598 { \
6599 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6600 return; \
6601 } \
6602 while (0)
6603
94206790
MM
6604/* If REG is R13 (the stack pointer), warn that its use is
6605 deprecated. */
6606#define warn_deprecated_sp(reg) \
6607 do \
6608 if (warn_on_deprecated && reg == REG_SP) \
6609 as_warn (_("use of r13 is deprecated")); \
6610 while (0)
6611
c19d1205
ZW
6612/* Functions for operand encoding. ARM, then Thumb. */
6613
6614#define rotate_left(v, n) (v << n | v >> (32 - n))
6615
6616/* If VAL can be encoded in the immediate field of an ARM instruction,
6617 return the encoded form. Otherwise, return FAIL. */
6618
6619static unsigned int
6620encode_arm_immediate (unsigned int val)
09d92015 6621{
c19d1205
ZW
6622 unsigned int a, i;
6623
6624 for (i = 0; i < 32; i += 2)
6625 if ((a = rotate_left (val, i)) <= 0xff)
6626 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6627
6628 return FAIL;
09d92015
MM
6629}
6630
c19d1205
ZW
6631/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6632 return the encoded form. Otherwise, return FAIL. */
6633static unsigned int
6634encode_thumb32_immediate (unsigned int val)
09d92015 6635{
c19d1205 6636 unsigned int a, i;
09d92015 6637
9c3c69f2 6638 if (val <= 0xff)
c19d1205 6639 return val;
a737bd4d 6640
9c3c69f2 6641 for (i = 1; i <= 24; i++)
09d92015 6642 {
9c3c69f2
PB
6643 a = val >> i;
6644 if ((val & ~(0xff << i)) == 0)
6645 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6646 }
a737bd4d 6647
c19d1205
ZW
6648 a = val & 0xff;
6649 if (val == ((a << 16) | a))
6650 return 0x100 | a;
6651 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6652 return 0x300 | a;
09d92015 6653
c19d1205
ZW
6654 a = val & 0xff00;
6655 if (val == ((a << 16) | a))
6656 return 0x200 | (a >> 8);
a737bd4d 6657
c19d1205 6658 return FAIL;
09d92015 6659}
5287ad62 6660/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6661
6662static void
5287ad62
JB
6663encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6664{
6665 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6666 && reg > 15)
6667 {
b1cc4aeb 6668 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6669 {
6670 if (thumb_mode)
6671 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6672 fpu_vfp_ext_d32);
5287ad62
JB
6673 else
6674 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6675 fpu_vfp_ext_d32);
5287ad62
JB
6676 }
6677 else
6678 {
dcbf9037 6679 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6680 return;
6681 }
6682 }
6683
c19d1205 6684 switch (pos)
09d92015 6685 {
c19d1205
ZW
6686 case VFP_REG_Sd:
6687 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6688 break;
6689
6690 case VFP_REG_Sn:
6691 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6692 break;
6693
6694 case VFP_REG_Sm:
6695 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6696 break;
6697
5287ad62
JB
6698 case VFP_REG_Dd:
6699 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6700 break;
5f4273c7 6701
5287ad62
JB
6702 case VFP_REG_Dn:
6703 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6704 break;
5f4273c7 6705
5287ad62
JB
6706 case VFP_REG_Dm:
6707 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6708 break;
6709
c19d1205
ZW
6710 default:
6711 abort ();
09d92015 6712 }
09d92015
MM
6713}
6714
c19d1205 6715/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6716 if any, is handled by md_apply_fix. */
09d92015 6717static void
c19d1205 6718encode_arm_shift (int i)
09d92015 6719{
c19d1205
ZW
6720 if (inst.operands[i].shift_kind == SHIFT_RRX)
6721 inst.instruction |= SHIFT_ROR << 5;
6722 else
09d92015 6723 {
c19d1205
ZW
6724 inst.instruction |= inst.operands[i].shift_kind << 5;
6725 if (inst.operands[i].immisreg)
6726 {
6727 inst.instruction |= SHIFT_BY_REG;
6728 inst.instruction |= inst.operands[i].imm << 8;
6729 }
6730 else
6731 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6732 }
c19d1205 6733}
09d92015 6734
c19d1205
ZW
6735static void
6736encode_arm_shifter_operand (int i)
6737{
6738 if (inst.operands[i].isreg)
09d92015 6739 {
c19d1205
ZW
6740 inst.instruction |= inst.operands[i].reg;
6741 encode_arm_shift (i);
09d92015 6742 }
c19d1205
ZW
6743 else
6744 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6745}
6746
c19d1205 6747/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6748static void
c19d1205 6749encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6750{
9c2799c2 6751 gas_assert (inst.operands[i].isreg);
c19d1205 6752 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6753
c19d1205 6754 if (inst.operands[i].preind)
09d92015 6755 {
c19d1205
ZW
6756 if (is_t)
6757 {
6758 inst.error = _("instruction does not accept preindexed addressing");
6759 return;
6760 }
6761 inst.instruction |= PRE_INDEX;
6762 if (inst.operands[i].writeback)
6763 inst.instruction |= WRITE_BACK;
09d92015 6764
c19d1205
ZW
6765 }
6766 else if (inst.operands[i].postind)
6767 {
9c2799c2 6768 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
6769 if (is_t)
6770 inst.instruction |= WRITE_BACK;
6771 }
6772 else /* unindexed - only for coprocessor */
09d92015 6773 {
c19d1205 6774 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6775 return;
6776 }
6777
c19d1205
ZW
6778 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6779 && (((inst.instruction & 0x000f0000) >> 16)
6780 == ((inst.instruction & 0x0000f000) >> 12)))
6781 as_warn ((inst.instruction & LOAD_BIT)
6782 ? _("destination register same as write-back base")
6783 : _("source register same as write-back base"));
09d92015
MM
6784}
6785
c19d1205
ZW
6786/* inst.operands[i] was set up by parse_address. Encode it into an
6787 ARM-format mode 2 load or store instruction. If is_t is true,
6788 reject forms that cannot be used with a T instruction (i.e. not
6789 post-indexed). */
a737bd4d 6790static void
c19d1205 6791encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6792{
5be8be5d
DG
6793 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6794
c19d1205 6795 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6796
c19d1205 6797 if (inst.operands[i].immisreg)
09d92015 6798 {
5be8be5d
DG
6799 constraint ((inst.operands[i].imm == REG_PC
6800 || (is_pc && inst.operands[i].writeback)),
6801 BAD_PC_ADDRESSING);
c19d1205
ZW
6802 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6803 inst.instruction |= inst.operands[i].imm;
6804 if (!inst.operands[i].negative)
6805 inst.instruction |= INDEX_UP;
6806 if (inst.operands[i].shifted)
6807 {
6808 if (inst.operands[i].shift_kind == SHIFT_RRX)
6809 inst.instruction |= SHIFT_ROR << 5;
6810 else
6811 {
6812 inst.instruction |= inst.operands[i].shift_kind << 5;
6813 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6814 }
6815 }
09d92015 6816 }
c19d1205 6817 else /* immediate offset in inst.reloc */
09d92015 6818 {
5be8be5d
DG
6819 if (is_pc && !inst.reloc.pc_rel)
6820 {
6821 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6822 /* BAD_PC_ADDRESSING Condition =
6823 is_load => is_t
6824 which becomes !is_load || is_t. */
6825 constraint ((!is_load || is_t),
6826 BAD_PC_ADDRESSING);
6827 }
6828
c19d1205
ZW
6829 if (inst.reloc.type == BFD_RELOC_UNUSED)
6830 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6831 }
09d92015
MM
6832}
6833
c19d1205
ZW
6834/* inst.operands[i] was set up by parse_address. Encode it into an
6835 ARM-format mode 3 load or store instruction. Reject forms that
6836 cannot be used with such instructions. If is_t is true, reject
6837 forms that cannot be used with a T instruction (i.e. not
6838 post-indexed). */
6839static void
6840encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6841{
c19d1205 6842 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6843 {
c19d1205
ZW
6844 inst.error = _("instruction does not accept scaled register index");
6845 return;
09d92015 6846 }
a737bd4d 6847
c19d1205 6848 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6849
c19d1205
ZW
6850 if (inst.operands[i].immisreg)
6851 {
5be8be5d
DG
6852 constraint ((inst.operands[i].imm == REG_PC
6853 || inst.operands[i].reg == REG_PC),
6854 BAD_PC_ADDRESSING);
c19d1205
ZW
6855 inst.instruction |= inst.operands[i].imm;
6856 if (!inst.operands[i].negative)
6857 inst.instruction |= INDEX_UP;
6858 }
6859 else /* immediate offset in inst.reloc */
6860 {
5be8be5d
DG
6861 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6862 && inst.operands[i].writeback),
6863 BAD_PC_WRITEBACK);
c19d1205
ZW
6864 inst.instruction |= HWOFFSET_IMM;
6865 if (inst.reloc.type == BFD_RELOC_UNUSED)
6866 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6867 }
a737bd4d
NC
6868}
6869
c19d1205
ZW
6870/* inst.operands[i] was set up by parse_address. Encode it into an
6871 ARM-format instruction. Reject all forms which cannot be encoded
6872 into a coprocessor load/store instruction. If wb_ok is false,
6873 reject use of writeback; if unind_ok is false, reject use of
6874 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6875 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6876 (in which case it is preserved). */
09d92015 6877
c19d1205
ZW
6878static int
6879encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6880{
c19d1205 6881 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6882
9c2799c2 6883 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6884
c19d1205 6885 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6886 {
9c2799c2 6887 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
6888 if (!unind_ok)
6889 {
6890 inst.error = _("instruction does not support unindexed addressing");
6891 return FAIL;
6892 }
6893 inst.instruction |= inst.operands[i].imm;
6894 inst.instruction |= INDEX_UP;
6895 return SUCCESS;
09d92015 6896 }
a737bd4d 6897
c19d1205
ZW
6898 if (inst.operands[i].preind)
6899 inst.instruction |= PRE_INDEX;
a737bd4d 6900
c19d1205 6901 if (inst.operands[i].writeback)
09d92015 6902 {
c19d1205
ZW
6903 if (inst.operands[i].reg == REG_PC)
6904 {
6905 inst.error = _("pc may not be used with write-back");
6906 return FAIL;
6907 }
6908 if (!wb_ok)
6909 {
6910 inst.error = _("instruction does not support writeback");
6911 return FAIL;
6912 }
6913 inst.instruction |= WRITE_BACK;
09d92015 6914 }
a737bd4d 6915
c19d1205 6916 if (reloc_override)
21d799b5 6917 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
6918 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6919 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6920 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6921 {
6922 if (thumb_mode)
6923 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6924 else
6925 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6926 }
6927
c19d1205
ZW
6928 return SUCCESS;
6929}
a737bd4d 6930
c19d1205
ZW
6931/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6932 Determine whether it can be performed with a move instruction; if
6933 it can, convert inst.instruction to that move instruction and
c921be7d
NC
6934 return TRUE; if it can't, convert inst.instruction to a literal-pool
6935 load and return FALSE. If this is not a valid thing to do in the
6936 current context, set inst.error and return TRUE.
a737bd4d 6937
c19d1205
ZW
6938 inst.operands[i] describes the destination register. */
6939
c921be7d 6940static bfd_boolean
c19d1205
ZW
6941move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6942{
53365c0d
PB
6943 unsigned long tbit;
6944
6945 if (thumb_p)
6946 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6947 else
6948 tbit = LOAD_BIT;
6949
6950 if ((inst.instruction & tbit) == 0)
09d92015 6951 {
c19d1205 6952 inst.error = _("invalid pseudo operation");
c921be7d 6953 return TRUE;
09d92015 6954 }
c19d1205 6955 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6956 {
6957 inst.error = _("constant expression expected");
c921be7d 6958 return TRUE;
09d92015 6959 }
c19d1205 6960 if (inst.reloc.exp.X_op == O_constant)
09d92015 6961 {
c19d1205
ZW
6962 if (thumb_p)
6963 {
53365c0d 6964 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6965 {
6966 /* This can be done with a mov(1) instruction. */
6967 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6968 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 6969 return TRUE;
c19d1205
ZW
6970 }
6971 }
6972 else
6973 {
6974 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6975 if (value != FAIL)
6976 {
6977 /* This can be done with a mov instruction. */
6978 inst.instruction &= LITERAL_MASK;
6979 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6980 inst.instruction |= value & 0xfff;
c921be7d 6981 return TRUE;
c19d1205 6982 }
09d92015 6983
c19d1205
ZW
6984 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6985 if (value != FAIL)
6986 {
6987 /* This can be done with a mvn instruction. */
6988 inst.instruction &= LITERAL_MASK;
6989 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6990 inst.instruction |= value & 0xfff;
c921be7d 6991 return TRUE;
c19d1205
ZW
6992 }
6993 }
09d92015
MM
6994 }
6995
c19d1205
ZW
6996 if (add_to_lit_pool () == FAIL)
6997 {
6998 inst.error = _("literal pool insertion failed");
c921be7d 6999 return TRUE;
c19d1205
ZW
7000 }
7001 inst.operands[1].reg = REG_PC;
7002 inst.operands[1].isreg = 1;
7003 inst.operands[1].preind = 1;
7004 inst.reloc.pc_rel = 1;
7005 inst.reloc.type = (thumb_p
7006 ? BFD_RELOC_ARM_THUMB_OFFSET
7007 : (mode_3
7008 ? BFD_RELOC_ARM_HWLITERAL
7009 : BFD_RELOC_ARM_LITERAL));
c921be7d 7010 return FALSE;
09d92015
MM
7011}
7012
5f4273c7 7013/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7014 First some generics; their names are taken from the conventional
7015 bit positions for register arguments in ARM format instructions. */
09d92015 7016
a737bd4d 7017static void
c19d1205 7018do_noargs (void)
09d92015 7019{
c19d1205 7020}
a737bd4d 7021
c19d1205
ZW
7022static void
7023do_rd (void)
7024{
7025 inst.instruction |= inst.operands[0].reg << 12;
7026}
a737bd4d 7027
c19d1205
ZW
7028static void
7029do_rd_rm (void)
7030{
7031 inst.instruction |= inst.operands[0].reg << 12;
7032 inst.instruction |= inst.operands[1].reg;
7033}
09d92015 7034
c19d1205
ZW
7035static void
7036do_rd_rn (void)
7037{
7038 inst.instruction |= inst.operands[0].reg << 12;
7039 inst.instruction |= inst.operands[1].reg << 16;
7040}
a737bd4d 7041
c19d1205
ZW
7042static void
7043do_rn_rd (void)
7044{
7045 inst.instruction |= inst.operands[0].reg << 16;
7046 inst.instruction |= inst.operands[1].reg << 12;
7047}
09d92015 7048
c19d1205
ZW
7049static void
7050do_rd_rm_rn (void)
7051{
9a64e435 7052 unsigned Rn = inst.operands[2].reg;
708587a4 7053 /* Enforce restrictions on SWP instruction. */
9a64e435 7054 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7055 {
7056 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7057 _("Rn must not overlap other operands"));
7058
7059 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7060 if (warn_on_deprecated
7061 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7062 as_warn (_("swp{b} use is deprecated for this architecture"));
7063
7064 }
c19d1205
ZW
7065 inst.instruction |= inst.operands[0].reg << 12;
7066 inst.instruction |= inst.operands[1].reg;
9a64e435 7067 inst.instruction |= Rn << 16;
c19d1205 7068}
09d92015 7069
c19d1205
ZW
7070static void
7071do_rd_rn_rm (void)
7072{
7073 inst.instruction |= inst.operands[0].reg << 12;
7074 inst.instruction |= inst.operands[1].reg << 16;
7075 inst.instruction |= inst.operands[2].reg;
7076}
a737bd4d 7077
c19d1205
ZW
7078static void
7079do_rm_rd_rn (void)
7080{
5be8be5d
DG
7081 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7082 constraint (((inst.reloc.exp.X_op != O_constant
7083 && inst.reloc.exp.X_op != O_illegal)
7084 || inst.reloc.exp.X_add_number != 0),
7085 BAD_ADDR_MODE);
c19d1205
ZW
7086 inst.instruction |= inst.operands[0].reg;
7087 inst.instruction |= inst.operands[1].reg << 12;
7088 inst.instruction |= inst.operands[2].reg << 16;
7089}
09d92015 7090
c19d1205
ZW
7091static void
7092do_imm0 (void)
7093{
7094 inst.instruction |= inst.operands[0].imm;
7095}
09d92015 7096
c19d1205
ZW
7097static void
7098do_rd_cpaddr (void)
7099{
7100 inst.instruction |= inst.operands[0].reg << 12;
7101 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7102}
a737bd4d 7103
c19d1205
ZW
7104/* ARM instructions, in alphabetical order by function name (except
7105 that wrapper functions appear immediately after the function they
7106 wrap). */
09d92015 7107
c19d1205
ZW
7108/* This is a pseudo-op of the form "adr rd, label" to be converted
7109 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7110
7111static void
c19d1205 7112do_adr (void)
09d92015 7113{
c19d1205 7114 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7115
c19d1205
ZW
7116 /* Frag hacking will turn this into a sub instruction if the offset turns
7117 out to be negative. */
7118 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7119 inst.reloc.pc_rel = 1;
2fc8bdac 7120 inst.reloc.exp.X_add_number -= 8;
c19d1205 7121}
b99bd4ef 7122
c19d1205
ZW
7123/* This is a pseudo-op of the form "adrl rd, label" to be converted
7124 into a relative address of the form:
7125 add rd, pc, #low(label-.-8)"
7126 add rd, rd, #high(label-.-8)" */
b99bd4ef 7127
c19d1205
ZW
7128static void
7129do_adrl (void)
7130{
7131 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7132
c19d1205
ZW
7133 /* Frag hacking will turn this into a sub instruction if the offset turns
7134 out to be negative. */
7135 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7136 inst.reloc.pc_rel = 1;
7137 inst.size = INSN_SIZE * 2;
2fc8bdac 7138 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7139}
7140
b99bd4ef 7141static void
c19d1205 7142do_arit (void)
b99bd4ef 7143{
c19d1205
ZW
7144 if (!inst.operands[1].present)
7145 inst.operands[1].reg = inst.operands[0].reg;
7146 inst.instruction |= inst.operands[0].reg << 12;
7147 inst.instruction |= inst.operands[1].reg << 16;
7148 encode_arm_shifter_operand (2);
7149}
b99bd4ef 7150
62b3e311
PB
7151static void
7152do_barrier (void)
7153{
7154 if (inst.operands[0].present)
7155 {
7156 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7157 && inst.operands[0].imm > 0xf
7158 && inst.operands[0].imm < 0x0,
bd3ba5d1 7159 _("bad barrier type"));
62b3e311
PB
7160 inst.instruction |= inst.operands[0].imm;
7161 }
7162 else
7163 inst.instruction |= 0xf;
7164}
7165
c19d1205
ZW
7166static void
7167do_bfc (void)
7168{
7169 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7170 constraint (msb > 32, _("bit-field extends past end of register"));
7171 /* The instruction encoding stores the LSB and MSB,
7172 not the LSB and width. */
7173 inst.instruction |= inst.operands[0].reg << 12;
7174 inst.instruction |= inst.operands[1].imm << 7;
7175 inst.instruction |= (msb - 1) << 16;
7176}
b99bd4ef 7177
c19d1205
ZW
7178static void
7179do_bfi (void)
7180{
7181 unsigned int msb;
b99bd4ef 7182
c19d1205
ZW
7183 /* #0 in second position is alternative syntax for bfc, which is
7184 the same instruction but with REG_PC in the Rm field. */
7185 if (!inst.operands[1].isreg)
7186 inst.operands[1].reg = REG_PC;
b99bd4ef 7187
c19d1205
ZW
7188 msb = inst.operands[2].imm + inst.operands[3].imm;
7189 constraint (msb > 32, _("bit-field extends past end of register"));
7190 /* The instruction encoding stores the LSB and MSB,
7191 not the LSB and width. */
7192 inst.instruction |= inst.operands[0].reg << 12;
7193 inst.instruction |= inst.operands[1].reg;
7194 inst.instruction |= inst.operands[2].imm << 7;
7195 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7196}
7197
b99bd4ef 7198static void
c19d1205 7199do_bfx (void)
b99bd4ef 7200{
c19d1205
ZW
7201 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7202 _("bit-field extends past end of register"));
7203 inst.instruction |= inst.operands[0].reg << 12;
7204 inst.instruction |= inst.operands[1].reg;
7205 inst.instruction |= inst.operands[2].imm << 7;
7206 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7207}
09d92015 7208
c19d1205
ZW
7209/* ARM V5 breakpoint instruction (argument parse)
7210 BKPT <16 bit unsigned immediate>
7211 Instruction is not conditional.
7212 The bit pattern given in insns[] has the COND_ALWAYS condition,
7213 and it is an error if the caller tried to override that. */
b99bd4ef 7214
c19d1205
ZW
7215static void
7216do_bkpt (void)
7217{
7218 /* Top 12 of 16 bits to bits 19:8. */
7219 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7220
c19d1205
ZW
7221 /* Bottom 4 of 16 bits to bits 3:0. */
7222 inst.instruction |= inst.operands[0].imm & 0xf;
7223}
09d92015 7224
c19d1205
ZW
7225static void
7226encode_branch (int default_reloc)
7227{
7228 if (inst.operands[0].hasreloc)
7229 {
7230 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7231 _("the only suffix valid here is '(plt)'"));
267bf995 7232 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 7233 }
b99bd4ef 7234 else
c19d1205 7235 {
21d799b5 7236 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
c19d1205 7237 }
2fc8bdac 7238 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7239}
7240
b99bd4ef 7241static void
c19d1205 7242do_branch (void)
b99bd4ef 7243{
39b41c9c
PB
7244#ifdef OBJ_ELF
7245 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7246 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7247 else
7248#endif
7249 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7250}
7251
7252static void
7253do_bl (void)
7254{
7255#ifdef OBJ_ELF
7256 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7257 {
7258 if (inst.cond == COND_ALWAYS)
7259 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7260 else
7261 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7262 }
7263 else
7264#endif
7265 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7266}
b99bd4ef 7267
c19d1205
ZW
7268/* ARM V5 branch-link-exchange instruction (argument parse)
7269 BLX <target_addr> ie BLX(1)
7270 BLX{<condition>} <Rm> ie BLX(2)
7271 Unfortunately, there are two different opcodes for this mnemonic.
7272 So, the insns[].value is not used, and the code here zaps values
7273 into inst.instruction.
7274 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7275
c19d1205
ZW
7276static void
7277do_blx (void)
7278{
7279 if (inst.operands[0].isreg)
b99bd4ef 7280 {
c19d1205
ZW
7281 /* Arg is a register; the opcode provided by insns[] is correct.
7282 It is not illegal to do "blx pc", just useless. */
7283 if (inst.operands[0].reg == REG_PC)
7284 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7285
c19d1205
ZW
7286 inst.instruction |= inst.operands[0].reg;
7287 }
7288 else
b99bd4ef 7289 {
c19d1205 7290 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7291 conditionally, and the opcode must be adjusted.
7292 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7293 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7294 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7295 inst.instruction = 0xfa000000;
267bf995 7296 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7297 }
c19d1205
ZW
7298}
7299
7300static void
7301do_bx (void)
7302{
845b51d6
PB
7303 bfd_boolean want_reloc;
7304
c19d1205
ZW
7305 if (inst.operands[0].reg == REG_PC)
7306 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7307
c19d1205 7308 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7309 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7310 it is for ARMv4t or earlier. */
7311 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7312 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7313 want_reloc = TRUE;
7314
5ad34203 7315#ifdef OBJ_ELF
845b51d6 7316 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7317#endif
584206db 7318 want_reloc = FALSE;
845b51d6
PB
7319
7320 if (want_reloc)
7321 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7322}
7323
c19d1205
ZW
7324
7325/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7326
7327static void
c19d1205 7328do_bxj (void)
a737bd4d 7329{
c19d1205
ZW
7330 if (inst.operands[0].reg == REG_PC)
7331 as_tsktsk (_("use of r15 in bxj is not really useful"));
7332
7333 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7334}
7335
c19d1205
ZW
7336/* Co-processor data operation:
7337 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7338 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7339static void
7340do_cdp (void)
7341{
7342 inst.instruction |= inst.operands[0].reg << 8;
7343 inst.instruction |= inst.operands[1].imm << 20;
7344 inst.instruction |= inst.operands[2].reg << 12;
7345 inst.instruction |= inst.operands[3].reg << 16;
7346 inst.instruction |= inst.operands[4].reg;
7347 inst.instruction |= inst.operands[5].imm << 5;
7348}
a737bd4d
NC
7349
7350static void
c19d1205 7351do_cmp (void)
a737bd4d 7352{
c19d1205
ZW
7353 inst.instruction |= inst.operands[0].reg << 16;
7354 encode_arm_shifter_operand (1);
a737bd4d
NC
7355}
7356
c19d1205
ZW
7357/* Transfer between coprocessor and ARM registers.
7358 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7359 MRC2
7360 MCR{cond}
7361 MCR2
7362
7363 No special properties. */
09d92015
MM
7364
7365static void
c19d1205 7366do_co_reg (void)
09d92015 7367{
fdfde340
JM
7368 unsigned Rd;
7369
7370 Rd = inst.operands[2].reg;
7371 if (thumb_mode)
7372 {
7373 if (inst.instruction == 0xee000010
7374 || inst.instruction == 0xfe000010)
7375 /* MCR, MCR2 */
7376 reject_bad_reg (Rd);
7377 else
7378 /* MRC, MRC2 */
7379 constraint (Rd == REG_SP, BAD_SP);
7380 }
7381 else
7382 {
7383 /* MCR */
7384 if (inst.instruction == 0xe000010)
7385 constraint (Rd == REG_PC, BAD_PC);
7386 }
7387
7388
c19d1205
ZW
7389 inst.instruction |= inst.operands[0].reg << 8;
7390 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7391 inst.instruction |= Rd << 12;
c19d1205
ZW
7392 inst.instruction |= inst.operands[3].reg << 16;
7393 inst.instruction |= inst.operands[4].reg;
7394 inst.instruction |= inst.operands[5].imm << 5;
7395}
09d92015 7396
c19d1205
ZW
7397/* Transfer between coprocessor register and pair of ARM registers.
7398 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7399 MCRR2
7400 MRRC{cond}
7401 MRRC2
b99bd4ef 7402
c19d1205 7403 Two XScale instructions are special cases of these:
09d92015 7404
c19d1205
ZW
7405 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7406 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7407
5f4273c7 7408 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7409
c19d1205
ZW
7410static void
7411do_co_reg2c (void)
7412{
fdfde340
JM
7413 unsigned Rd, Rn;
7414
7415 Rd = inst.operands[2].reg;
7416 Rn = inst.operands[3].reg;
7417
7418 if (thumb_mode)
7419 {
7420 reject_bad_reg (Rd);
7421 reject_bad_reg (Rn);
7422 }
7423 else
7424 {
7425 constraint (Rd == REG_PC, BAD_PC);
7426 constraint (Rn == REG_PC, BAD_PC);
7427 }
7428
c19d1205
ZW
7429 inst.instruction |= inst.operands[0].reg << 8;
7430 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7431 inst.instruction |= Rd << 12;
7432 inst.instruction |= Rn << 16;
c19d1205 7433 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7434}
7435
c19d1205
ZW
7436static void
7437do_cpsi (void)
7438{
7439 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7440 if (inst.operands[1].present)
7441 {
7442 inst.instruction |= CPSI_MMOD;
7443 inst.instruction |= inst.operands[1].imm;
7444 }
c19d1205 7445}
b99bd4ef 7446
62b3e311
PB
7447static void
7448do_dbg (void)
7449{
7450 inst.instruction |= inst.operands[0].imm;
7451}
7452
b99bd4ef 7453static void
c19d1205 7454do_it (void)
b99bd4ef 7455{
c19d1205 7456 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7457 process it to do the validation as if in
7458 thumb mode, just in case the code gets
7459 assembled for thumb using the unified syntax. */
7460
c19d1205 7461 inst.size = 0;
e07e6e58
NC
7462 if (unified_syntax)
7463 {
7464 set_it_insn_type (IT_INSN);
7465 now_it.mask = (inst.instruction & 0xf) | 0x10;
7466 now_it.cc = inst.operands[0].imm;
7467 }
09d92015 7468}
b99bd4ef 7469
09d92015 7470static void
c19d1205 7471do_ldmstm (void)
ea6ef066 7472{
c19d1205
ZW
7473 int base_reg = inst.operands[0].reg;
7474 int range = inst.operands[1].imm;
ea6ef066 7475
c19d1205
ZW
7476 inst.instruction |= base_reg << 16;
7477 inst.instruction |= range;
ea6ef066 7478
c19d1205
ZW
7479 if (inst.operands[1].writeback)
7480 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7481
c19d1205 7482 if (inst.operands[0].writeback)
ea6ef066 7483 {
c19d1205
ZW
7484 inst.instruction |= WRITE_BACK;
7485 /* Check for unpredictable uses of writeback. */
7486 if (inst.instruction & LOAD_BIT)
09d92015 7487 {
c19d1205
ZW
7488 /* Not allowed in LDM type 2. */
7489 if ((inst.instruction & LDM_TYPE_2_OR_3)
7490 && ((range & (1 << REG_PC)) == 0))
7491 as_warn (_("writeback of base register is UNPREDICTABLE"));
7492 /* Only allowed if base reg not in list for other types. */
7493 else if (range & (1 << base_reg))
7494 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7495 }
7496 else /* STM. */
7497 {
7498 /* Not allowed for type 2. */
7499 if (inst.instruction & LDM_TYPE_2_OR_3)
7500 as_warn (_("writeback of base register is UNPREDICTABLE"));
7501 /* Only allowed if base reg not in list, or first in list. */
7502 else if ((range & (1 << base_reg))
7503 && (range & ((1 << base_reg) - 1)))
7504 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7505 }
ea6ef066 7506 }
a737bd4d
NC
7507}
7508
c19d1205
ZW
7509/* ARMv5TE load-consecutive (argument parse)
7510 Mode is like LDRH.
7511
7512 LDRccD R, mode
7513 STRccD R, mode. */
7514
a737bd4d 7515static void
c19d1205 7516do_ldrd (void)
a737bd4d 7517{
c19d1205
ZW
7518 constraint (inst.operands[0].reg % 2 != 0,
7519 _("first destination register must be even"));
7520 constraint (inst.operands[1].present
7521 && inst.operands[1].reg != inst.operands[0].reg + 1,
7522 _("can only load two consecutive registers"));
7523 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7524 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7525
c19d1205
ZW
7526 if (!inst.operands[1].present)
7527 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7528
c19d1205 7529 if (inst.instruction & LOAD_BIT)
a737bd4d 7530 {
c19d1205
ZW
7531 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7532 register and the first register written; we have to diagnose
7533 overlap between the base and the second register written here. */
ea6ef066 7534
c19d1205
ZW
7535 if (inst.operands[2].reg == inst.operands[1].reg
7536 && (inst.operands[2].writeback || inst.operands[2].postind))
7537 as_warn (_("base register written back, and overlaps "
7538 "second destination register"));
b05fe5cf 7539
c19d1205
ZW
7540 /* For an index-register load, the index register must not overlap the
7541 destination (even if not write-back). */
7542 else if (inst.operands[2].immisreg
ca3f61f7
NC
7543 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7544 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7545 as_warn (_("index register overlaps destination register"));
b05fe5cf 7546 }
c19d1205
ZW
7547
7548 inst.instruction |= inst.operands[0].reg << 12;
7549 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7550}
7551
7552static void
c19d1205 7553do_ldrex (void)
b05fe5cf 7554{
c19d1205
ZW
7555 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7556 || inst.operands[1].postind || inst.operands[1].writeback
7557 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7558 || inst.operands[1].negative
7559 /* This can arise if the programmer has written
7560 strex rN, rM, foo
7561 or if they have mistakenly used a register name as the last
7562 operand, eg:
7563 strex rN, rM, rX
7564 It is very difficult to distinguish between these two cases
7565 because "rX" might actually be a label. ie the register
7566 name has been occluded by a symbol of the same name. So we
7567 just generate a general 'bad addressing mode' type error
7568 message and leave it up to the programmer to discover the
7569 true cause and fix their mistake. */
7570 || (inst.operands[1].reg == REG_PC),
7571 BAD_ADDR_MODE);
b05fe5cf 7572
c19d1205
ZW
7573 constraint (inst.reloc.exp.X_op != O_constant
7574 || inst.reloc.exp.X_add_number != 0,
7575 _("offset must be zero in ARM encoding"));
b05fe5cf 7576
5be8be5d
DG
7577 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7578
c19d1205
ZW
7579 inst.instruction |= inst.operands[0].reg << 12;
7580 inst.instruction |= inst.operands[1].reg << 16;
7581 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7582}
7583
7584static void
c19d1205 7585do_ldrexd (void)
b05fe5cf 7586{
c19d1205
ZW
7587 constraint (inst.operands[0].reg % 2 != 0,
7588 _("even register required"));
7589 constraint (inst.operands[1].present
7590 && inst.operands[1].reg != inst.operands[0].reg + 1,
7591 _("can only load two consecutive registers"));
7592 /* If op 1 were present and equal to PC, this function wouldn't
7593 have been called in the first place. */
7594 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7595
c19d1205
ZW
7596 inst.instruction |= inst.operands[0].reg << 12;
7597 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7598}
7599
7600static void
c19d1205 7601do_ldst (void)
b05fe5cf 7602{
c19d1205
ZW
7603 inst.instruction |= inst.operands[0].reg << 12;
7604 if (!inst.operands[1].isreg)
7605 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7606 return;
c19d1205 7607 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7608}
7609
7610static void
c19d1205 7611do_ldstt (void)
b05fe5cf 7612{
c19d1205
ZW
7613 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7614 reject [Rn,...]. */
7615 if (inst.operands[1].preind)
b05fe5cf 7616 {
bd3ba5d1
NC
7617 constraint (inst.reloc.exp.X_op != O_constant
7618 || inst.reloc.exp.X_add_number != 0,
c19d1205 7619 _("this instruction requires a post-indexed address"));
b05fe5cf 7620
c19d1205
ZW
7621 inst.operands[1].preind = 0;
7622 inst.operands[1].postind = 1;
7623 inst.operands[1].writeback = 1;
b05fe5cf 7624 }
c19d1205
ZW
7625 inst.instruction |= inst.operands[0].reg << 12;
7626 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7627}
b05fe5cf 7628
c19d1205 7629/* Halfword and signed-byte load/store operations. */
b05fe5cf 7630
c19d1205
ZW
7631static void
7632do_ldstv4 (void)
7633{
ff4a8d2b 7634 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7635 inst.instruction |= inst.operands[0].reg << 12;
7636 if (!inst.operands[1].isreg)
7637 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7638 return;
c19d1205 7639 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7640}
7641
7642static void
c19d1205 7643do_ldsttv4 (void)
b05fe5cf 7644{
c19d1205
ZW
7645 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7646 reject [Rn,...]. */
7647 if (inst.operands[1].preind)
b05fe5cf 7648 {
bd3ba5d1
NC
7649 constraint (inst.reloc.exp.X_op != O_constant
7650 || inst.reloc.exp.X_add_number != 0,
c19d1205 7651 _("this instruction requires a post-indexed address"));
b05fe5cf 7652
c19d1205
ZW
7653 inst.operands[1].preind = 0;
7654 inst.operands[1].postind = 1;
7655 inst.operands[1].writeback = 1;
b05fe5cf 7656 }
c19d1205
ZW
7657 inst.instruction |= inst.operands[0].reg << 12;
7658 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7659}
b05fe5cf 7660
c19d1205
ZW
7661/* Co-processor register load/store.
7662 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7663static void
7664do_lstc (void)
7665{
7666 inst.instruction |= inst.operands[0].reg << 8;
7667 inst.instruction |= inst.operands[1].reg << 12;
7668 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7669}
7670
b05fe5cf 7671static void
c19d1205 7672do_mlas (void)
b05fe5cf 7673{
8fb9d7b9 7674 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7675 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7676 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7677 && !(inst.instruction & 0x00400000))
8fb9d7b9 7678 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7679
c19d1205
ZW
7680 inst.instruction |= inst.operands[0].reg << 16;
7681 inst.instruction |= inst.operands[1].reg;
7682 inst.instruction |= inst.operands[2].reg << 8;
7683 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7684}
b05fe5cf 7685
c19d1205
ZW
7686static void
7687do_mov (void)
7688{
7689 inst.instruction |= inst.operands[0].reg << 12;
7690 encode_arm_shifter_operand (1);
7691}
b05fe5cf 7692
c19d1205
ZW
7693/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7694static void
7695do_mov16 (void)
7696{
b6895b4f
PB
7697 bfd_vma imm;
7698 bfd_boolean top;
7699
7700 top = (inst.instruction & 0x00400000) != 0;
7701 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7702 _(":lower16: not allowed this instruction"));
7703 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7704 _(":upper16: not allowed instruction"));
c19d1205 7705 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7706 if (inst.reloc.type == BFD_RELOC_UNUSED)
7707 {
7708 imm = inst.reloc.exp.X_add_number;
7709 /* The value is in two pieces: 0:11, 16:19. */
7710 inst.instruction |= (imm & 0x00000fff);
7711 inst.instruction |= (imm & 0x0000f000) << 4;
7712 }
b05fe5cf 7713}
b99bd4ef 7714
037e8744
JB
7715static void do_vfp_nsyn_opcode (const char *);
7716
7717static int
7718do_vfp_nsyn_mrs (void)
7719{
7720 if (inst.operands[0].isvec)
7721 {
7722 if (inst.operands[1].reg != 1)
7723 first_error (_("operand 1 must be FPSCR"));
7724 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7725 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7726 do_vfp_nsyn_opcode ("fmstat");
7727 }
7728 else if (inst.operands[1].isvec)
7729 do_vfp_nsyn_opcode ("fmrx");
7730 else
7731 return FAIL;
5f4273c7 7732
037e8744
JB
7733 return SUCCESS;
7734}
7735
7736static int
7737do_vfp_nsyn_msr (void)
7738{
7739 if (inst.operands[0].isvec)
7740 do_vfp_nsyn_opcode ("fmxr");
7741 else
7742 return FAIL;
7743
7744 return SUCCESS;
7745}
7746
f7c21dc7
NC
7747static void
7748do_vmrs (void)
7749{
7750 unsigned Rt = inst.operands[0].reg;
7751
7752 if (thumb_mode && inst.operands[0].reg == REG_SP)
7753 {
7754 inst.error = BAD_SP;
7755 return;
7756 }
7757
7758 /* APSR_ sets isvec. All other refs to PC are illegal. */
7759 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7760 {
7761 inst.error = BAD_PC;
7762 return;
7763 }
7764
7765 if (inst.operands[1].reg != 1)
7766 first_error (_("operand 1 must be FPSCR"));
7767
7768 inst.instruction |= (Rt << 12);
7769}
7770
7771static void
7772do_vmsr (void)
7773{
7774 unsigned Rt = inst.operands[1].reg;
7775
7776 if (thumb_mode)
7777 reject_bad_reg (Rt);
7778 else if (Rt == REG_PC)
7779 {
7780 inst.error = BAD_PC;
7781 return;
7782 }
7783
7784 if (inst.operands[0].reg != 1)
7785 first_error (_("operand 0 must be FPSCR"));
7786
7787 inst.instruction |= (Rt << 12);
7788}
7789
b99bd4ef 7790static void
c19d1205 7791do_mrs (void)
b99bd4ef 7792{
037e8744
JB
7793 if (do_vfp_nsyn_mrs () == SUCCESS)
7794 return;
7795
c19d1205
ZW
7796 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7797 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7798 != (PSR_c|PSR_f),
7799 _("'CPSR' or 'SPSR' expected"));
ff4a8d2b 7800 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
7801 inst.instruction |= inst.operands[0].reg << 12;
7802 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7803}
b99bd4ef 7804
c19d1205
ZW
7805/* Two possible forms:
7806 "{C|S}PSR_<field>, Rm",
7807 "{C|S}PSR_f, #expression". */
b99bd4ef 7808
c19d1205
ZW
7809static void
7810do_msr (void)
7811{
037e8744
JB
7812 if (do_vfp_nsyn_msr () == SUCCESS)
7813 return;
7814
c19d1205
ZW
7815 inst.instruction |= inst.operands[0].imm;
7816 if (inst.operands[1].isreg)
7817 inst.instruction |= inst.operands[1].reg;
7818 else
b99bd4ef 7819 {
c19d1205
ZW
7820 inst.instruction |= INST_IMMEDIATE;
7821 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7822 inst.reloc.pc_rel = 0;
b99bd4ef 7823 }
b99bd4ef
NC
7824}
7825
c19d1205
ZW
7826static void
7827do_mul (void)
a737bd4d 7828{
ff4a8d2b
NC
7829 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7830
c19d1205
ZW
7831 if (!inst.operands[2].present)
7832 inst.operands[2].reg = inst.operands[0].reg;
7833 inst.instruction |= inst.operands[0].reg << 16;
7834 inst.instruction |= inst.operands[1].reg;
7835 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7836
8fb9d7b9
MS
7837 if (inst.operands[0].reg == inst.operands[1].reg
7838 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7839 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7840}
7841
c19d1205
ZW
7842/* Long Multiply Parser
7843 UMULL RdLo, RdHi, Rm, Rs
7844 SMULL RdLo, RdHi, Rm, Rs
7845 UMLAL RdLo, RdHi, Rm, Rs
7846 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7847
7848static void
c19d1205 7849do_mull (void)
b99bd4ef 7850{
c19d1205
ZW
7851 inst.instruction |= inst.operands[0].reg << 12;
7852 inst.instruction |= inst.operands[1].reg << 16;
7853 inst.instruction |= inst.operands[2].reg;
7854 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7855
682b27ad
PB
7856 /* rdhi and rdlo must be different. */
7857 if (inst.operands[0].reg == inst.operands[1].reg)
7858 as_tsktsk (_("rdhi and rdlo must be different"));
7859
7860 /* rdhi, rdlo and rm must all be different before armv6. */
7861 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7862 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7863 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7864 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7865}
b99bd4ef 7866
c19d1205
ZW
7867static void
7868do_nop (void)
7869{
e7495e45
NS
7870 if (inst.operands[0].present
7871 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
7872 {
7873 /* Architectural NOP hints are CPSR sets with no bits selected. */
7874 inst.instruction &= 0xf0000000;
e7495e45
NS
7875 inst.instruction |= 0x0320f000;
7876 if (inst.operands[0].present)
7877 inst.instruction |= inst.operands[0].imm;
c19d1205 7878 }
b99bd4ef
NC
7879}
7880
c19d1205
ZW
7881/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7882 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7883 Condition defaults to COND_ALWAYS.
7884 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7885
7886static void
c19d1205 7887do_pkhbt (void)
b99bd4ef 7888{
c19d1205
ZW
7889 inst.instruction |= inst.operands[0].reg << 12;
7890 inst.instruction |= inst.operands[1].reg << 16;
7891 inst.instruction |= inst.operands[2].reg;
7892 if (inst.operands[3].present)
7893 encode_arm_shift (3);
7894}
b99bd4ef 7895
c19d1205 7896/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7897
c19d1205
ZW
7898static void
7899do_pkhtb (void)
7900{
7901 if (!inst.operands[3].present)
b99bd4ef 7902 {
c19d1205
ZW
7903 /* If the shift specifier is omitted, turn the instruction
7904 into pkhbt rd, rm, rn. */
7905 inst.instruction &= 0xfff00010;
7906 inst.instruction |= inst.operands[0].reg << 12;
7907 inst.instruction |= inst.operands[1].reg;
7908 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7909 }
7910 else
7911 {
c19d1205
ZW
7912 inst.instruction |= inst.operands[0].reg << 12;
7913 inst.instruction |= inst.operands[1].reg << 16;
7914 inst.instruction |= inst.operands[2].reg;
7915 encode_arm_shift (3);
b99bd4ef
NC
7916 }
7917}
7918
c19d1205
ZW
7919/* ARMv5TE: Preload-Cache
7920
7921 PLD <addr_mode>
7922
7923 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7924
7925static void
c19d1205 7926do_pld (void)
b99bd4ef 7927{
c19d1205
ZW
7928 constraint (!inst.operands[0].isreg,
7929 _("'[' expected after PLD mnemonic"));
7930 constraint (inst.operands[0].postind,
7931 _("post-indexed expression used in preload instruction"));
7932 constraint (inst.operands[0].writeback,
7933 _("writeback used in preload instruction"));
7934 constraint (!inst.operands[0].preind,
7935 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7936 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7937}
b99bd4ef 7938
62b3e311
PB
7939/* ARMv7: PLI <addr_mode> */
7940static void
7941do_pli (void)
7942{
7943 constraint (!inst.operands[0].isreg,
7944 _("'[' expected after PLI mnemonic"));
7945 constraint (inst.operands[0].postind,
7946 _("post-indexed expression used in preload instruction"));
7947 constraint (inst.operands[0].writeback,
7948 _("writeback used in preload instruction"));
7949 constraint (!inst.operands[0].preind,
7950 _("unindexed addressing used in preload instruction"));
7951 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7952 inst.instruction &= ~PRE_INDEX;
7953}
7954
c19d1205
ZW
7955static void
7956do_push_pop (void)
7957{
7958 inst.operands[1] = inst.operands[0];
7959 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7960 inst.operands[0].isreg = 1;
7961 inst.operands[0].writeback = 1;
7962 inst.operands[0].reg = REG_SP;
7963 do_ldmstm ();
7964}
b99bd4ef 7965
c19d1205
ZW
7966/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7967 word at the specified address and the following word
7968 respectively.
7969 Unconditionally executed.
7970 Error if Rn is R15. */
b99bd4ef 7971
c19d1205
ZW
7972static void
7973do_rfe (void)
7974{
7975 inst.instruction |= inst.operands[0].reg << 16;
7976 if (inst.operands[0].writeback)
7977 inst.instruction |= WRITE_BACK;
7978}
b99bd4ef 7979
c19d1205 7980/* ARM V6 ssat (argument parse). */
b99bd4ef 7981
c19d1205
ZW
7982static void
7983do_ssat (void)
7984{
7985 inst.instruction |= inst.operands[0].reg << 12;
7986 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7987 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7988
c19d1205
ZW
7989 if (inst.operands[3].present)
7990 encode_arm_shift (3);
b99bd4ef
NC
7991}
7992
c19d1205 7993/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7994
7995static void
c19d1205 7996do_usat (void)
b99bd4ef 7997{
c19d1205
ZW
7998 inst.instruction |= inst.operands[0].reg << 12;
7999 inst.instruction |= inst.operands[1].imm << 16;
8000 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8001
c19d1205
ZW
8002 if (inst.operands[3].present)
8003 encode_arm_shift (3);
b99bd4ef
NC
8004}
8005
c19d1205 8006/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8007
8008static void
c19d1205 8009do_ssat16 (void)
09d92015 8010{
c19d1205
ZW
8011 inst.instruction |= inst.operands[0].reg << 12;
8012 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8013 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8014}
8015
c19d1205
ZW
8016static void
8017do_usat16 (void)
a737bd4d 8018{
c19d1205
ZW
8019 inst.instruction |= inst.operands[0].reg << 12;
8020 inst.instruction |= inst.operands[1].imm << 16;
8021 inst.instruction |= inst.operands[2].reg;
8022}
a737bd4d 8023
c19d1205
ZW
8024/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8025 preserving the other bits.
a737bd4d 8026
c19d1205
ZW
8027 setend <endian_specifier>, where <endian_specifier> is either
8028 BE or LE. */
a737bd4d 8029
c19d1205
ZW
8030static void
8031do_setend (void)
8032{
8033 if (inst.operands[0].imm)
8034 inst.instruction |= 0x200;
a737bd4d
NC
8035}
8036
8037static void
c19d1205 8038do_shift (void)
a737bd4d 8039{
c19d1205
ZW
8040 unsigned int Rm = (inst.operands[1].present
8041 ? inst.operands[1].reg
8042 : inst.operands[0].reg);
a737bd4d 8043
c19d1205
ZW
8044 inst.instruction |= inst.operands[0].reg << 12;
8045 inst.instruction |= Rm;
8046 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8047 {
c19d1205
ZW
8048 inst.instruction |= inst.operands[2].reg << 8;
8049 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
8050 }
8051 else
c19d1205 8052 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8053}
8054
09d92015 8055static void
3eb17e6b 8056do_smc (void)
09d92015 8057{
3eb17e6b 8058 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8059 inst.reloc.pc_rel = 0;
09d92015
MM
8060}
8061
09d92015 8062static void
c19d1205 8063do_swi (void)
09d92015 8064{
c19d1205
ZW
8065 inst.reloc.type = BFD_RELOC_ARM_SWI;
8066 inst.reloc.pc_rel = 0;
09d92015
MM
8067}
8068
c19d1205
ZW
8069/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8070 SMLAxy{cond} Rd,Rm,Rs,Rn
8071 SMLAWy{cond} Rd,Rm,Rs,Rn
8072 Error if any register is R15. */
e16bb312 8073
c19d1205
ZW
8074static void
8075do_smla (void)
e16bb312 8076{
c19d1205
ZW
8077 inst.instruction |= inst.operands[0].reg << 16;
8078 inst.instruction |= inst.operands[1].reg;
8079 inst.instruction |= inst.operands[2].reg << 8;
8080 inst.instruction |= inst.operands[3].reg << 12;
8081}
a737bd4d 8082
c19d1205
ZW
8083/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8084 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8085 Error if any register is R15.
8086 Warning if Rdlo == Rdhi. */
a737bd4d 8087
c19d1205
ZW
8088static void
8089do_smlal (void)
8090{
8091 inst.instruction |= inst.operands[0].reg << 12;
8092 inst.instruction |= inst.operands[1].reg << 16;
8093 inst.instruction |= inst.operands[2].reg;
8094 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8095
c19d1205
ZW
8096 if (inst.operands[0].reg == inst.operands[1].reg)
8097 as_tsktsk (_("rdhi and rdlo must be different"));
8098}
a737bd4d 8099
c19d1205
ZW
8100/* ARM V5E (El Segundo) signed-multiply (argument parse)
8101 SMULxy{cond} Rd,Rm,Rs
8102 Error if any register is R15. */
a737bd4d 8103
c19d1205
ZW
8104static void
8105do_smul (void)
8106{
8107 inst.instruction |= inst.operands[0].reg << 16;
8108 inst.instruction |= inst.operands[1].reg;
8109 inst.instruction |= inst.operands[2].reg << 8;
8110}
a737bd4d 8111
b6702015
PB
8112/* ARM V6 srs (argument parse). The variable fields in the encoding are
8113 the same for both ARM and Thumb-2. */
a737bd4d 8114
c19d1205
ZW
8115static void
8116do_srs (void)
8117{
b6702015
PB
8118 int reg;
8119
8120 if (inst.operands[0].present)
8121 {
8122 reg = inst.operands[0].reg;
fdfde340 8123 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8124 }
8125 else
fdfde340 8126 reg = REG_SP;
b6702015
PB
8127
8128 inst.instruction |= reg << 16;
8129 inst.instruction |= inst.operands[1].imm;
8130 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8131 inst.instruction |= WRITE_BACK;
8132}
a737bd4d 8133
c19d1205 8134/* ARM V6 strex (argument parse). */
a737bd4d 8135
c19d1205
ZW
8136static void
8137do_strex (void)
8138{
8139 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8140 || inst.operands[2].postind || inst.operands[2].writeback
8141 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8142 || inst.operands[2].negative
8143 /* See comment in do_ldrex(). */
8144 || (inst.operands[2].reg == REG_PC),
8145 BAD_ADDR_MODE);
a737bd4d 8146
c19d1205
ZW
8147 constraint (inst.operands[0].reg == inst.operands[1].reg
8148 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8149
c19d1205
ZW
8150 constraint (inst.reloc.exp.X_op != O_constant
8151 || inst.reloc.exp.X_add_number != 0,
8152 _("offset must be zero in ARM encoding"));
a737bd4d 8153
c19d1205
ZW
8154 inst.instruction |= inst.operands[0].reg << 12;
8155 inst.instruction |= inst.operands[1].reg;
8156 inst.instruction |= inst.operands[2].reg << 16;
8157 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8158}
8159
8160static void
c19d1205 8161do_strexd (void)
e16bb312 8162{
c19d1205
ZW
8163 constraint (inst.operands[1].reg % 2 != 0,
8164 _("even register required"));
8165 constraint (inst.operands[2].present
8166 && inst.operands[2].reg != inst.operands[1].reg + 1,
8167 _("can only store two consecutive registers"));
8168 /* If op 2 were present and equal to PC, this function wouldn't
8169 have been called in the first place. */
8170 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8171
c19d1205
ZW
8172 constraint (inst.operands[0].reg == inst.operands[1].reg
8173 || inst.operands[0].reg == inst.operands[1].reg + 1
8174 || inst.operands[0].reg == inst.operands[3].reg,
8175 BAD_OVERLAP);
e16bb312 8176
c19d1205
ZW
8177 inst.instruction |= inst.operands[0].reg << 12;
8178 inst.instruction |= inst.operands[1].reg;
8179 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8180}
8181
c19d1205
ZW
8182/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8183 extends it to 32-bits, and adds the result to a value in another
8184 register. You can specify a rotation by 0, 8, 16, or 24 bits
8185 before extracting the 16-bit value.
8186 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8187 Condition defaults to COND_ALWAYS.
8188 Error if any register uses R15. */
8189
e16bb312 8190static void
c19d1205 8191do_sxtah (void)
e16bb312 8192{
c19d1205
ZW
8193 inst.instruction |= inst.operands[0].reg << 12;
8194 inst.instruction |= inst.operands[1].reg << 16;
8195 inst.instruction |= inst.operands[2].reg;
8196 inst.instruction |= inst.operands[3].imm << 10;
8197}
e16bb312 8198
c19d1205 8199/* ARM V6 SXTH.
e16bb312 8200
c19d1205
ZW
8201 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8202 Condition defaults to COND_ALWAYS.
8203 Error if any register uses R15. */
e16bb312
NC
8204
8205static void
c19d1205 8206do_sxth (void)
e16bb312 8207{
c19d1205
ZW
8208 inst.instruction |= inst.operands[0].reg << 12;
8209 inst.instruction |= inst.operands[1].reg;
8210 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8211}
c19d1205
ZW
8212\f
8213/* VFP instructions. In a logical order: SP variant first, monad
8214 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8215
8216static void
c19d1205 8217do_vfp_sp_monadic (void)
e16bb312 8218{
5287ad62
JB
8219 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8220 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8221}
8222
8223static void
c19d1205 8224do_vfp_sp_dyadic (void)
e16bb312 8225{
5287ad62
JB
8226 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8227 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8228 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8229}
8230
8231static void
c19d1205 8232do_vfp_sp_compare_z (void)
e16bb312 8233{
5287ad62 8234 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8235}
8236
8237static void
c19d1205 8238do_vfp_dp_sp_cvt (void)
e16bb312 8239{
5287ad62
JB
8240 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8241 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8242}
8243
8244static void
c19d1205 8245do_vfp_sp_dp_cvt (void)
e16bb312 8246{
5287ad62
JB
8247 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8248 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8249}
8250
8251static void
c19d1205 8252do_vfp_reg_from_sp (void)
e16bb312 8253{
c19d1205 8254 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8255 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8256}
8257
8258static void
c19d1205 8259do_vfp_reg2_from_sp2 (void)
e16bb312 8260{
c19d1205
ZW
8261 constraint (inst.operands[2].imm != 2,
8262 _("only two consecutive VFP SP registers allowed here"));
8263 inst.instruction |= inst.operands[0].reg << 12;
8264 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8265 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8266}
8267
8268static void
c19d1205 8269do_vfp_sp_from_reg (void)
e16bb312 8270{
5287ad62 8271 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8272 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8273}
8274
8275static void
c19d1205 8276do_vfp_sp2_from_reg2 (void)
e16bb312 8277{
c19d1205
ZW
8278 constraint (inst.operands[0].imm != 2,
8279 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8280 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8281 inst.instruction |= inst.operands[1].reg << 12;
8282 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8283}
8284
8285static void
c19d1205 8286do_vfp_sp_ldst (void)
e16bb312 8287{
5287ad62 8288 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8289 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8290}
8291
8292static void
c19d1205 8293do_vfp_dp_ldst (void)
e16bb312 8294{
5287ad62 8295 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8296 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8297}
8298
c19d1205 8299
e16bb312 8300static void
c19d1205 8301vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8302{
c19d1205
ZW
8303 if (inst.operands[0].writeback)
8304 inst.instruction |= WRITE_BACK;
8305 else
8306 constraint (ldstm_type != VFP_LDSTMIA,
8307 _("this addressing mode requires base-register writeback"));
8308 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8309 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8310 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8311}
8312
8313static void
c19d1205 8314vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8315{
c19d1205 8316 int count;
e16bb312 8317
c19d1205
ZW
8318 if (inst.operands[0].writeback)
8319 inst.instruction |= WRITE_BACK;
8320 else
8321 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8322 _("this addressing mode requires base-register writeback"));
e16bb312 8323
c19d1205 8324 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8325 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8326
c19d1205
ZW
8327 count = inst.operands[1].imm << 1;
8328 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8329 count += 1;
e16bb312 8330
c19d1205 8331 inst.instruction |= count;
e16bb312
NC
8332}
8333
8334static void
c19d1205 8335do_vfp_sp_ldstmia (void)
e16bb312 8336{
c19d1205 8337 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8338}
8339
8340static void
c19d1205 8341do_vfp_sp_ldstmdb (void)
e16bb312 8342{
c19d1205 8343 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8344}
8345
8346static void
c19d1205 8347do_vfp_dp_ldstmia (void)
e16bb312 8348{
c19d1205 8349 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8350}
8351
8352static void
c19d1205 8353do_vfp_dp_ldstmdb (void)
e16bb312 8354{
c19d1205 8355 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8356}
8357
8358static void
c19d1205 8359do_vfp_xp_ldstmia (void)
e16bb312 8360{
c19d1205
ZW
8361 vfp_dp_ldstm (VFP_LDSTMIAX);
8362}
e16bb312 8363
c19d1205
ZW
8364static void
8365do_vfp_xp_ldstmdb (void)
8366{
8367 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8368}
5287ad62
JB
8369
8370static void
8371do_vfp_dp_rd_rm (void)
8372{
8373 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8374 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8375}
8376
8377static void
8378do_vfp_dp_rn_rd (void)
8379{
8380 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8381 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8382}
8383
8384static void
8385do_vfp_dp_rd_rn (void)
8386{
8387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8388 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8389}
8390
8391static void
8392do_vfp_dp_rd_rn_rm (void)
8393{
8394 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8395 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8396 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8397}
8398
8399static void
8400do_vfp_dp_rd (void)
8401{
8402 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8403}
8404
8405static void
8406do_vfp_dp_rm_rd_rn (void)
8407{
8408 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8409 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8410 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8411}
8412
8413/* VFPv3 instructions. */
8414static void
8415do_vfp_sp_const (void)
8416{
8417 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8418 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8419 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8420}
8421
8422static void
8423do_vfp_dp_const (void)
8424{
8425 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8426 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8427 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8428}
8429
8430static void
8431vfp_conv (int srcsize)
8432{
8433 unsigned immbits = srcsize - inst.operands[1].imm;
8434 inst.instruction |= (immbits & 1) << 5;
8435 inst.instruction |= (immbits >> 1);
8436}
8437
8438static void
8439do_vfp_sp_conv_16 (void)
8440{
8441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8442 vfp_conv (16);
8443}
8444
8445static void
8446do_vfp_dp_conv_16 (void)
8447{
8448 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8449 vfp_conv (16);
8450}
8451
8452static void
8453do_vfp_sp_conv_32 (void)
8454{
8455 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8456 vfp_conv (32);
8457}
8458
8459static void
8460do_vfp_dp_conv_32 (void)
8461{
8462 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8463 vfp_conv (32);
8464}
c19d1205
ZW
8465\f
8466/* FPA instructions. Also in a logical order. */
e16bb312 8467
c19d1205
ZW
8468static void
8469do_fpa_cmp (void)
8470{
8471 inst.instruction |= inst.operands[0].reg << 16;
8472 inst.instruction |= inst.operands[1].reg;
8473}
b99bd4ef
NC
8474
8475static void
c19d1205 8476do_fpa_ldmstm (void)
b99bd4ef 8477{
c19d1205
ZW
8478 inst.instruction |= inst.operands[0].reg << 12;
8479 switch (inst.operands[1].imm)
8480 {
8481 case 1: inst.instruction |= CP_T_X; break;
8482 case 2: inst.instruction |= CP_T_Y; break;
8483 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8484 case 4: break;
8485 default: abort ();
8486 }
b99bd4ef 8487
c19d1205
ZW
8488 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8489 {
8490 /* The instruction specified "ea" or "fd", so we can only accept
8491 [Rn]{!}. The instruction does not really support stacking or
8492 unstacking, so we have to emulate these by setting appropriate
8493 bits and offsets. */
8494 constraint (inst.reloc.exp.X_op != O_constant
8495 || inst.reloc.exp.X_add_number != 0,
8496 _("this instruction does not support indexing"));
b99bd4ef 8497
c19d1205
ZW
8498 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8499 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8500
c19d1205
ZW
8501 if (!(inst.instruction & INDEX_UP))
8502 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8503
c19d1205
ZW
8504 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8505 {
8506 inst.operands[2].preind = 0;
8507 inst.operands[2].postind = 1;
8508 }
8509 }
b99bd4ef 8510
c19d1205 8511 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8512}
c19d1205
ZW
8513\f
8514/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8515
c19d1205
ZW
8516static void
8517do_iwmmxt_tandorc (void)
8518{
8519 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8520}
b99bd4ef 8521
c19d1205
ZW
8522static void
8523do_iwmmxt_textrc (void)
8524{
8525 inst.instruction |= inst.operands[0].reg << 12;
8526 inst.instruction |= inst.operands[1].imm;
8527}
b99bd4ef
NC
8528
8529static void
c19d1205 8530do_iwmmxt_textrm (void)
b99bd4ef 8531{
c19d1205
ZW
8532 inst.instruction |= inst.operands[0].reg << 12;
8533 inst.instruction |= inst.operands[1].reg << 16;
8534 inst.instruction |= inst.operands[2].imm;
8535}
b99bd4ef 8536
c19d1205
ZW
8537static void
8538do_iwmmxt_tinsr (void)
8539{
8540 inst.instruction |= inst.operands[0].reg << 16;
8541 inst.instruction |= inst.operands[1].reg << 12;
8542 inst.instruction |= inst.operands[2].imm;
8543}
b99bd4ef 8544
c19d1205
ZW
8545static void
8546do_iwmmxt_tmia (void)
8547{
8548 inst.instruction |= inst.operands[0].reg << 5;
8549 inst.instruction |= inst.operands[1].reg;
8550 inst.instruction |= inst.operands[2].reg << 12;
8551}
b99bd4ef 8552
c19d1205
ZW
8553static void
8554do_iwmmxt_waligni (void)
8555{
8556 inst.instruction |= inst.operands[0].reg << 12;
8557 inst.instruction |= inst.operands[1].reg << 16;
8558 inst.instruction |= inst.operands[2].reg;
8559 inst.instruction |= inst.operands[3].imm << 20;
8560}
b99bd4ef 8561
2d447fca
JM
8562static void
8563do_iwmmxt_wmerge (void)
8564{
8565 inst.instruction |= inst.operands[0].reg << 12;
8566 inst.instruction |= inst.operands[1].reg << 16;
8567 inst.instruction |= inst.operands[2].reg;
8568 inst.instruction |= inst.operands[3].imm << 21;
8569}
8570
c19d1205
ZW
8571static void
8572do_iwmmxt_wmov (void)
8573{
8574 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8575 inst.instruction |= inst.operands[0].reg << 12;
8576 inst.instruction |= inst.operands[1].reg << 16;
8577 inst.instruction |= inst.operands[1].reg;
8578}
b99bd4ef 8579
c19d1205
ZW
8580static void
8581do_iwmmxt_wldstbh (void)
8582{
8f06b2d8 8583 int reloc;
c19d1205 8584 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8585 if (thumb_mode)
8586 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8587 else
8588 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8589 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8590}
8591
c19d1205
ZW
8592static void
8593do_iwmmxt_wldstw (void)
8594{
8595 /* RIWR_RIWC clears .isreg for a control register. */
8596 if (!inst.operands[0].isreg)
8597 {
8598 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8599 inst.instruction |= 0xf0000000;
8600 }
b99bd4ef 8601
c19d1205
ZW
8602 inst.instruction |= inst.operands[0].reg << 12;
8603 encode_arm_cp_address (1, TRUE, TRUE, 0);
8604}
b99bd4ef
NC
8605
8606static void
c19d1205 8607do_iwmmxt_wldstd (void)
b99bd4ef 8608{
c19d1205 8609 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8610 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8611 && inst.operands[1].immisreg)
8612 {
8613 inst.instruction &= ~0x1a000ff;
8614 inst.instruction |= (0xf << 28);
8615 if (inst.operands[1].preind)
8616 inst.instruction |= PRE_INDEX;
8617 if (!inst.operands[1].negative)
8618 inst.instruction |= INDEX_UP;
8619 if (inst.operands[1].writeback)
8620 inst.instruction |= WRITE_BACK;
8621 inst.instruction |= inst.operands[1].reg << 16;
8622 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8623 inst.instruction |= inst.operands[1].imm;
8624 }
8625 else
8626 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8627}
b99bd4ef 8628
c19d1205
ZW
8629static void
8630do_iwmmxt_wshufh (void)
8631{
8632 inst.instruction |= inst.operands[0].reg << 12;
8633 inst.instruction |= inst.operands[1].reg << 16;
8634 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8635 inst.instruction |= (inst.operands[2].imm & 0x0f);
8636}
b99bd4ef 8637
c19d1205
ZW
8638static void
8639do_iwmmxt_wzero (void)
8640{
8641 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8642 inst.instruction |= inst.operands[0].reg;
8643 inst.instruction |= inst.operands[0].reg << 12;
8644 inst.instruction |= inst.operands[0].reg << 16;
8645}
2d447fca
JM
8646
8647static void
8648do_iwmmxt_wrwrwr_or_imm5 (void)
8649{
8650 if (inst.operands[2].isreg)
8651 do_rd_rn_rm ();
8652 else {
8653 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8654 _("immediate operand requires iWMMXt2"));
8655 do_rd_rn ();
8656 if (inst.operands[2].imm == 0)
8657 {
8658 switch ((inst.instruction >> 20) & 0xf)
8659 {
8660 case 4:
8661 case 5:
8662 case 6:
5f4273c7 8663 case 7:
2d447fca
JM
8664 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8665 inst.operands[2].imm = 16;
8666 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8667 break;
8668 case 8:
8669 case 9:
8670 case 10:
8671 case 11:
8672 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8673 inst.operands[2].imm = 32;
8674 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8675 break;
8676 case 12:
8677 case 13:
8678 case 14:
8679 case 15:
8680 {
8681 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8682 unsigned long wrn;
8683 wrn = (inst.instruction >> 16) & 0xf;
8684 inst.instruction &= 0xff0fff0f;
8685 inst.instruction |= wrn;
8686 /* Bail out here; the instruction is now assembled. */
8687 return;
8688 }
8689 }
8690 }
8691 /* Map 32 -> 0, etc. */
8692 inst.operands[2].imm &= 0x1f;
8693 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8694 }
8695}
c19d1205
ZW
8696\f
8697/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8698 operations first, then control, shift, and load/store. */
b99bd4ef 8699
c19d1205 8700/* Insns like "foo X,Y,Z". */
b99bd4ef 8701
c19d1205
ZW
8702static void
8703do_mav_triple (void)
8704{
8705 inst.instruction |= inst.operands[0].reg << 16;
8706 inst.instruction |= inst.operands[1].reg;
8707 inst.instruction |= inst.operands[2].reg << 12;
8708}
b99bd4ef 8709
c19d1205
ZW
8710/* Insns like "foo W,X,Y,Z".
8711 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8712
c19d1205
ZW
8713static void
8714do_mav_quad (void)
8715{
8716 inst.instruction |= inst.operands[0].reg << 5;
8717 inst.instruction |= inst.operands[1].reg << 12;
8718 inst.instruction |= inst.operands[2].reg << 16;
8719 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8720}
8721
c19d1205
ZW
8722/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8723static void
8724do_mav_dspsc (void)
a737bd4d 8725{
c19d1205
ZW
8726 inst.instruction |= inst.operands[1].reg << 12;
8727}
a737bd4d 8728
c19d1205
ZW
8729/* Maverick shift immediate instructions.
8730 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8731 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8732
c19d1205
ZW
8733static void
8734do_mav_shift (void)
8735{
8736 int imm = inst.operands[2].imm;
a737bd4d 8737
c19d1205
ZW
8738 inst.instruction |= inst.operands[0].reg << 12;
8739 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8740
c19d1205
ZW
8741 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8742 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8743 Bit 4 should be 0. */
8744 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8745
c19d1205
ZW
8746 inst.instruction |= imm;
8747}
8748\f
8749/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8750
c19d1205
ZW
8751/* Xscale multiply-accumulate (argument parse)
8752 MIAcc acc0,Rm,Rs
8753 MIAPHcc acc0,Rm,Rs
8754 MIAxycc acc0,Rm,Rs. */
a737bd4d 8755
c19d1205
ZW
8756static void
8757do_xsc_mia (void)
8758{
8759 inst.instruction |= inst.operands[1].reg;
8760 inst.instruction |= inst.operands[2].reg << 12;
8761}
a737bd4d 8762
c19d1205 8763/* Xscale move-accumulator-register (argument parse)
a737bd4d 8764
c19d1205 8765 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8766
c19d1205
ZW
8767static void
8768do_xsc_mar (void)
8769{
8770 inst.instruction |= inst.operands[1].reg << 12;
8771 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8772}
8773
c19d1205 8774/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8775
c19d1205 8776 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8777
8778static void
c19d1205 8779do_xsc_mra (void)
b99bd4ef 8780{
c19d1205
ZW
8781 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8782 inst.instruction |= inst.operands[0].reg << 12;
8783 inst.instruction |= inst.operands[1].reg << 16;
8784}
8785\f
8786/* Encoding functions relevant only to Thumb. */
b99bd4ef 8787
c19d1205
ZW
8788/* inst.operands[i] is a shifted-register operand; encode
8789 it into inst.instruction in the format used by Thumb32. */
8790
8791static void
8792encode_thumb32_shifted_operand (int i)
8793{
8794 unsigned int value = inst.reloc.exp.X_add_number;
8795 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8796
9c3c69f2
PB
8797 constraint (inst.operands[i].immisreg,
8798 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8799 inst.instruction |= inst.operands[i].reg;
8800 if (shift == SHIFT_RRX)
8801 inst.instruction |= SHIFT_ROR << 4;
8802 else
b99bd4ef 8803 {
c19d1205
ZW
8804 constraint (inst.reloc.exp.X_op != O_constant,
8805 _("expression too complex"));
8806
8807 constraint (value > 32
8808 || (value == 32 && (shift == SHIFT_LSL
8809 || shift == SHIFT_ROR)),
8810 _("shift expression is too large"));
8811
8812 if (value == 0)
8813 shift = SHIFT_LSL;
8814 else if (value == 32)
8815 value = 0;
8816
8817 inst.instruction |= shift << 4;
8818 inst.instruction |= (value & 0x1c) << 10;
8819 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8820 }
c19d1205 8821}
b99bd4ef 8822
b99bd4ef 8823
c19d1205
ZW
8824/* inst.operands[i] was set up by parse_address. Encode it into a
8825 Thumb32 format load or store instruction. Reject forms that cannot
8826 be used with such instructions. If is_t is true, reject forms that
8827 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
8828 that cannot be used with a D instruction. If it is a store insn,
8829 reject PC in Rn. */
b99bd4ef 8830
c19d1205
ZW
8831static void
8832encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8833{
5be8be5d 8834 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
8835
8836 constraint (!inst.operands[i].isreg,
53365c0d 8837 _("Instruction does not support =N addresses"));
b99bd4ef 8838
c19d1205
ZW
8839 inst.instruction |= inst.operands[i].reg << 16;
8840 if (inst.operands[i].immisreg)
b99bd4ef 8841 {
5be8be5d 8842 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
8843 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8844 constraint (inst.operands[i].negative,
8845 _("Thumb does not support negative register indexing"));
8846 constraint (inst.operands[i].postind,
8847 _("Thumb does not support register post-indexing"));
8848 constraint (inst.operands[i].writeback,
8849 _("Thumb does not support register indexing with writeback"));
8850 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8851 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8852
f40d1643 8853 inst.instruction |= inst.operands[i].imm;
c19d1205 8854 if (inst.operands[i].shifted)
b99bd4ef 8855 {
c19d1205
ZW
8856 constraint (inst.reloc.exp.X_op != O_constant,
8857 _("expression too complex"));
9c3c69f2
PB
8858 constraint (inst.reloc.exp.X_add_number < 0
8859 || inst.reloc.exp.X_add_number > 3,
c19d1205 8860 _("shift out of range"));
9c3c69f2 8861 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8862 }
8863 inst.reloc.type = BFD_RELOC_UNUSED;
8864 }
8865 else if (inst.operands[i].preind)
8866 {
5be8be5d 8867 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 8868 constraint (is_t && inst.operands[i].writeback,
c19d1205 8869 _("cannot use writeback with this instruction"));
5be8be5d
DG
8870 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8871 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
8872
8873 if (is_d)
8874 {
8875 inst.instruction |= 0x01000000;
8876 if (inst.operands[i].writeback)
8877 inst.instruction |= 0x00200000;
b99bd4ef 8878 }
c19d1205 8879 else
b99bd4ef 8880 {
c19d1205
ZW
8881 inst.instruction |= 0x00000c00;
8882 if (inst.operands[i].writeback)
8883 inst.instruction |= 0x00000100;
b99bd4ef 8884 }
c19d1205 8885 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8886 }
c19d1205 8887 else if (inst.operands[i].postind)
b99bd4ef 8888 {
9c2799c2 8889 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8890 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8891 constraint (is_t, _("cannot use post-indexing with this instruction"));
8892
8893 if (is_d)
8894 inst.instruction |= 0x00200000;
8895 else
8896 inst.instruction |= 0x00000900;
8897 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8898 }
8899 else /* unindexed - only for coprocessor */
8900 inst.error = _("instruction does not accept unindexed addressing");
8901}
8902
8903/* Table of Thumb instructions which exist in both 16- and 32-bit
8904 encodings (the latter only in post-V6T2 cores). The index is the
8905 value used in the insns table below. When there is more than one
8906 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8907 holds variant (1).
8908 Also contains several pseudo-instructions used during relaxation. */
c19d1205 8909#define T16_32_TAB \
21d799b5
NC
8910 X(_adc, 4140, eb400000), \
8911 X(_adcs, 4140, eb500000), \
8912 X(_add, 1c00, eb000000), \
8913 X(_adds, 1c00, eb100000), \
8914 X(_addi, 0000, f1000000), \
8915 X(_addis, 0000, f1100000), \
8916 X(_add_pc,000f, f20f0000), \
8917 X(_add_sp,000d, f10d0000), \
8918 X(_adr, 000f, f20f0000), \
8919 X(_and, 4000, ea000000), \
8920 X(_ands, 4000, ea100000), \
8921 X(_asr, 1000, fa40f000), \
8922 X(_asrs, 1000, fa50f000), \
8923 X(_b, e000, f000b000), \
8924 X(_bcond, d000, f0008000), \
8925 X(_bic, 4380, ea200000), \
8926 X(_bics, 4380, ea300000), \
8927 X(_cmn, 42c0, eb100f00), \
8928 X(_cmp, 2800, ebb00f00), \
8929 X(_cpsie, b660, f3af8400), \
8930 X(_cpsid, b670, f3af8600), \
8931 X(_cpy, 4600, ea4f0000), \
8932 X(_dec_sp,80dd, f1ad0d00), \
8933 X(_eor, 4040, ea800000), \
8934 X(_eors, 4040, ea900000), \
8935 X(_inc_sp,00dd, f10d0d00), \
8936 X(_ldmia, c800, e8900000), \
8937 X(_ldr, 6800, f8500000), \
8938 X(_ldrb, 7800, f8100000), \
8939 X(_ldrh, 8800, f8300000), \
8940 X(_ldrsb, 5600, f9100000), \
8941 X(_ldrsh, 5e00, f9300000), \
8942 X(_ldr_pc,4800, f85f0000), \
8943 X(_ldr_pc2,4800, f85f0000), \
8944 X(_ldr_sp,9800, f85d0000), \
8945 X(_lsl, 0000, fa00f000), \
8946 X(_lsls, 0000, fa10f000), \
8947 X(_lsr, 0800, fa20f000), \
8948 X(_lsrs, 0800, fa30f000), \
8949 X(_mov, 2000, ea4f0000), \
8950 X(_movs, 2000, ea5f0000), \
8951 X(_mul, 4340, fb00f000), \
8952 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8953 X(_mvn, 43c0, ea6f0000), \
8954 X(_mvns, 43c0, ea7f0000), \
8955 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8956 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8957 X(_orr, 4300, ea400000), \
8958 X(_orrs, 4300, ea500000), \
8959 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8960 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8961 X(_rev, ba00, fa90f080), \
8962 X(_rev16, ba40, fa90f090), \
8963 X(_revsh, bac0, fa90f0b0), \
8964 X(_ror, 41c0, fa60f000), \
8965 X(_rors, 41c0, fa70f000), \
8966 X(_sbc, 4180, eb600000), \
8967 X(_sbcs, 4180, eb700000), \
8968 X(_stmia, c000, e8800000), \
8969 X(_str, 6000, f8400000), \
8970 X(_strb, 7000, f8000000), \
8971 X(_strh, 8000, f8200000), \
8972 X(_str_sp,9000, f84d0000), \
8973 X(_sub, 1e00, eba00000), \
8974 X(_subs, 1e00, ebb00000), \
8975 X(_subi, 8000, f1a00000), \
8976 X(_subis, 8000, f1b00000), \
8977 X(_sxtb, b240, fa4ff080), \
8978 X(_sxth, b200, fa0ff080), \
8979 X(_tst, 4200, ea100f00), \
8980 X(_uxtb, b2c0, fa5ff080), \
8981 X(_uxth, b280, fa1ff080), \
8982 X(_nop, bf00, f3af8000), \
8983 X(_yield, bf10, f3af8001), \
8984 X(_wfe, bf20, f3af8002), \
8985 X(_wfi, bf30, f3af8003), \
8986 X(_sev, bf40, f3af8004),
c19d1205
ZW
8987
8988/* To catch errors in encoding functions, the codes are all offset by
8989 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8990 as 16-bit instructions. */
21d799b5 8991#define X(a,b,c) T_MNEM##a
c19d1205
ZW
8992enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8993#undef X
8994
8995#define X(a,b,c) 0x##b
8996static const unsigned short thumb_op16[] = { T16_32_TAB };
8997#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8998#undef X
8999
9000#define X(a,b,c) 0x##c
9001static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9002#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9003#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9004#undef X
9005#undef T16_32_TAB
9006
9007/* Thumb instruction encoders, in alphabetical order. */
9008
92e90b6e 9009/* ADDW or SUBW. */
c921be7d 9010
92e90b6e
PB
9011static void
9012do_t_add_sub_w (void)
9013{
9014 int Rd, Rn;
9015
9016 Rd = inst.operands[0].reg;
9017 Rn = inst.operands[1].reg;
9018
539d4391
NC
9019 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9020 is the SP-{plus,minus}-immediate form of the instruction. */
9021 if (Rn == REG_SP)
9022 constraint (Rd == REG_PC, BAD_PC);
9023 else
9024 reject_bad_reg (Rd);
fdfde340 9025
92e90b6e
PB
9026 inst.instruction |= (Rn << 16) | (Rd << 8);
9027 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9028}
9029
c19d1205
ZW
9030/* Parse an add or subtract instruction. We get here with inst.instruction
9031 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9032
9033static void
9034do_t_add_sub (void)
9035{
9036 int Rd, Rs, Rn;
9037
9038 Rd = inst.operands[0].reg;
9039 Rs = (inst.operands[1].present
9040 ? inst.operands[1].reg /* Rd, Rs, foo */
9041 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9042
e07e6e58
NC
9043 if (Rd == REG_PC)
9044 set_it_insn_type_last ();
9045
c19d1205
ZW
9046 if (unified_syntax)
9047 {
0110f2b8
PB
9048 bfd_boolean flags;
9049 bfd_boolean narrow;
9050 int opcode;
9051
9052 flags = (inst.instruction == T_MNEM_adds
9053 || inst.instruction == T_MNEM_subs);
9054 if (flags)
e07e6e58 9055 narrow = !in_it_block ();
0110f2b8 9056 else
e07e6e58 9057 narrow = in_it_block ();
c19d1205 9058 if (!inst.operands[2].isreg)
b99bd4ef 9059 {
16805f35
PB
9060 int add;
9061
fdfde340
JM
9062 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9063
16805f35
PB
9064 add = (inst.instruction == T_MNEM_add
9065 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9066 opcode = 0;
9067 if (inst.size_req != 4)
9068 {
0110f2b8
PB
9069 /* Attempt to use a narrow opcode, with relaxation if
9070 appropriate. */
9071 if (Rd == REG_SP && Rs == REG_SP && !flags)
9072 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9073 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9074 opcode = T_MNEM_add_sp;
9075 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9076 opcode = T_MNEM_add_pc;
9077 else if (Rd <= 7 && Rs <= 7 && narrow)
9078 {
9079 if (flags)
9080 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9081 else
9082 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9083 }
9084 if (opcode)
9085 {
9086 inst.instruction = THUMB_OP16(opcode);
9087 inst.instruction |= (Rd << 4) | Rs;
9088 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9089 if (inst.size_req != 2)
9090 inst.relax = opcode;
9091 }
9092 else
9093 constraint (inst.size_req == 2, BAD_HIREG);
9094 }
9095 if (inst.size_req == 4
9096 || (inst.size_req != 2 && !opcode))
9097 {
efd81785
PB
9098 if (Rd == REG_PC)
9099 {
fdfde340 9100 constraint (add, BAD_PC);
efd81785
PB
9101 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9102 _("only SUBS PC, LR, #const allowed"));
9103 constraint (inst.reloc.exp.X_op != O_constant,
9104 _("expression too complex"));
9105 constraint (inst.reloc.exp.X_add_number < 0
9106 || inst.reloc.exp.X_add_number > 0xff,
9107 _("immediate value out of range"));
9108 inst.instruction = T2_SUBS_PC_LR
9109 | inst.reloc.exp.X_add_number;
9110 inst.reloc.type = BFD_RELOC_UNUSED;
9111 return;
9112 }
9113 else if (Rs == REG_PC)
16805f35
PB
9114 {
9115 /* Always use addw/subw. */
9116 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9117 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9118 }
9119 else
9120 {
9121 inst.instruction = THUMB_OP32 (inst.instruction);
9122 inst.instruction = (inst.instruction & 0xe1ffffff)
9123 | 0x10000000;
9124 if (flags)
9125 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9126 else
9127 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9128 }
dc4503c6
PB
9129 inst.instruction |= Rd << 8;
9130 inst.instruction |= Rs << 16;
0110f2b8 9131 }
b99bd4ef 9132 }
c19d1205
ZW
9133 else
9134 {
9135 Rn = inst.operands[2].reg;
9136 /* See if we can do this with a 16-bit instruction. */
9137 if (!inst.operands[2].shifted && inst.size_req != 4)
9138 {
e27ec89e
PB
9139 if (Rd > 7 || Rs > 7 || Rn > 7)
9140 narrow = FALSE;
9141
9142 if (narrow)
c19d1205 9143 {
e27ec89e
PB
9144 inst.instruction = ((inst.instruction == T_MNEM_adds
9145 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9146 ? T_OPCODE_ADD_R3
9147 : T_OPCODE_SUB_R3);
9148 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9149 return;
9150 }
b99bd4ef 9151
7e806470 9152 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9153 {
7e806470
PB
9154 /* Thumb-1 cores (except v6-M) require at least one high
9155 register in a narrow non flag setting add. */
9156 if (Rd > 7 || Rn > 7
9157 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9158 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9159 {
7e806470
PB
9160 if (Rd == Rn)
9161 {
9162 Rn = Rs;
9163 Rs = Rd;
9164 }
c19d1205
ZW
9165 inst.instruction = T_OPCODE_ADD_HI;
9166 inst.instruction |= (Rd & 8) << 4;
9167 inst.instruction |= (Rd & 7);
9168 inst.instruction |= Rn << 3;
9169 return;
9170 }
c19d1205
ZW
9171 }
9172 }
c921be7d 9173
fdfde340
JM
9174 constraint (Rd == REG_PC, BAD_PC);
9175 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9176 constraint (Rs == REG_PC, BAD_PC);
9177 reject_bad_reg (Rn);
9178
c19d1205
ZW
9179 /* If we get here, it can't be done in 16 bits. */
9180 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9181 _("shift must be constant"));
9182 inst.instruction = THUMB_OP32 (inst.instruction);
9183 inst.instruction |= Rd << 8;
9184 inst.instruction |= Rs << 16;
9185 encode_thumb32_shifted_operand (2);
9186 }
9187 }
9188 else
9189 {
9190 constraint (inst.instruction == T_MNEM_adds
9191 || inst.instruction == T_MNEM_subs,
9192 BAD_THUMB32);
b99bd4ef 9193
c19d1205 9194 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9195 {
c19d1205
ZW
9196 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9197 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9198 BAD_HIREG);
9199
9200 inst.instruction = (inst.instruction == T_MNEM_add
9201 ? 0x0000 : 0x8000);
9202 inst.instruction |= (Rd << 4) | Rs;
9203 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9204 return;
9205 }
9206
c19d1205
ZW
9207 Rn = inst.operands[2].reg;
9208 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9209
c19d1205
ZW
9210 /* We now have Rd, Rs, and Rn set to registers. */
9211 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9212 {
c19d1205
ZW
9213 /* Can't do this for SUB. */
9214 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9215 inst.instruction = T_OPCODE_ADD_HI;
9216 inst.instruction |= (Rd & 8) << 4;
9217 inst.instruction |= (Rd & 7);
9218 if (Rs == Rd)
9219 inst.instruction |= Rn << 3;
9220 else if (Rn == Rd)
9221 inst.instruction |= Rs << 3;
9222 else
9223 constraint (1, _("dest must overlap one source register"));
9224 }
9225 else
9226 {
9227 inst.instruction = (inst.instruction == T_MNEM_add
9228 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9229 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9230 }
b99bd4ef 9231 }
b99bd4ef
NC
9232}
9233
c19d1205
ZW
9234static void
9235do_t_adr (void)
9236{
fdfde340
JM
9237 unsigned Rd;
9238
9239 Rd = inst.operands[0].reg;
9240 reject_bad_reg (Rd);
9241
9242 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9243 {
9244 /* Defer to section relaxation. */
9245 inst.relax = inst.instruction;
9246 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9247 inst.instruction |= Rd << 4;
0110f2b8
PB
9248 }
9249 else if (unified_syntax && inst.size_req != 2)
e9f89963 9250 {
0110f2b8 9251 /* Generate a 32-bit opcode. */
e9f89963 9252 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9253 inst.instruction |= Rd << 8;
e9f89963
PB
9254 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9255 inst.reloc.pc_rel = 1;
9256 }
9257 else
9258 {
0110f2b8 9259 /* Generate a 16-bit opcode. */
e9f89963
PB
9260 inst.instruction = THUMB_OP16 (inst.instruction);
9261 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9262 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9263 inst.reloc.pc_rel = 1;
b99bd4ef 9264
fdfde340 9265 inst.instruction |= Rd << 4;
e9f89963 9266 }
c19d1205 9267}
b99bd4ef 9268
c19d1205
ZW
9269/* Arithmetic instructions for which there is just one 16-bit
9270 instruction encoding, and it allows only two low registers.
9271 For maximal compatibility with ARM syntax, we allow three register
9272 operands even when Thumb-32 instructions are not available, as long
9273 as the first two are identical. For instance, both "sbc r0,r1" and
9274 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9275static void
c19d1205 9276do_t_arit3 (void)
b99bd4ef 9277{
c19d1205 9278 int Rd, Rs, Rn;
b99bd4ef 9279
c19d1205
ZW
9280 Rd = inst.operands[0].reg;
9281 Rs = (inst.operands[1].present
9282 ? inst.operands[1].reg /* Rd, Rs, foo */
9283 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9284 Rn = inst.operands[2].reg;
b99bd4ef 9285
fdfde340
JM
9286 reject_bad_reg (Rd);
9287 reject_bad_reg (Rs);
9288 if (inst.operands[2].isreg)
9289 reject_bad_reg (Rn);
9290
c19d1205 9291 if (unified_syntax)
b99bd4ef 9292 {
c19d1205
ZW
9293 if (!inst.operands[2].isreg)
9294 {
9295 /* For an immediate, we always generate a 32-bit opcode;
9296 section relaxation will shrink it later if possible. */
9297 inst.instruction = THUMB_OP32 (inst.instruction);
9298 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9299 inst.instruction |= Rd << 8;
9300 inst.instruction |= Rs << 16;
9301 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9302 }
9303 else
9304 {
e27ec89e
PB
9305 bfd_boolean narrow;
9306
c19d1205 9307 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9308 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9309 narrow = !in_it_block ();
e27ec89e 9310 else
e07e6e58 9311 narrow = in_it_block ();
e27ec89e
PB
9312
9313 if (Rd > 7 || Rn > 7 || Rs > 7)
9314 narrow = FALSE;
9315 if (inst.operands[2].shifted)
9316 narrow = FALSE;
9317 if (inst.size_req == 4)
9318 narrow = FALSE;
9319
9320 if (narrow
c19d1205
ZW
9321 && Rd == Rs)
9322 {
9323 inst.instruction = THUMB_OP16 (inst.instruction);
9324 inst.instruction |= Rd;
9325 inst.instruction |= Rn << 3;
9326 return;
9327 }
b99bd4ef 9328
c19d1205
ZW
9329 /* If we get here, it can't be done in 16 bits. */
9330 constraint (inst.operands[2].shifted
9331 && inst.operands[2].immisreg,
9332 _("shift must be constant"));
9333 inst.instruction = THUMB_OP32 (inst.instruction);
9334 inst.instruction |= Rd << 8;
9335 inst.instruction |= Rs << 16;
9336 encode_thumb32_shifted_operand (2);
9337 }
a737bd4d 9338 }
c19d1205 9339 else
b99bd4ef 9340 {
c19d1205
ZW
9341 /* On its face this is a lie - the instruction does set the
9342 flags. However, the only supported mnemonic in this mode
9343 says it doesn't. */
9344 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9345
c19d1205
ZW
9346 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9347 _("unshifted register required"));
9348 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9349 constraint (Rd != Rs,
9350 _("dest and source1 must be the same register"));
a737bd4d 9351
c19d1205
ZW
9352 inst.instruction = THUMB_OP16 (inst.instruction);
9353 inst.instruction |= Rd;
9354 inst.instruction |= Rn << 3;
b99bd4ef 9355 }
a737bd4d 9356}
b99bd4ef 9357
c19d1205
ZW
9358/* Similarly, but for instructions where the arithmetic operation is
9359 commutative, so we can allow either of them to be different from
9360 the destination operand in a 16-bit instruction. For instance, all
9361 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9362 accepted. */
9363static void
9364do_t_arit3c (void)
a737bd4d 9365{
c19d1205 9366 int Rd, Rs, Rn;
b99bd4ef 9367
c19d1205
ZW
9368 Rd = inst.operands[0].reg;
9369 Rs = (inst.operands[1].present
9370 ? inst.operands[1].reg /* Rd, Rs, foo */
9371 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9372 Rn = inst.operands[2].reg;
c921be7d 9373
fdfde340
JM
9374 reject_bad_reg (Rd);
9375 reject_bad_reg (Rs);
9376 if (inst.operands[2].isreg)
9377 reject_bad_reg (Rn);
a737bd4d 9378
c19d1205 9379 if (unified_syntax)
a737bd4d 9380 {
c19d1205 9381 if (!inst.operands[2].isreg)
b99bd4ef 9382 {
c19d1205
ZW
9383 /* For an immediate, we always generate a 32-bit opcode;
9384 section relaxation will shrink it later if possible. */
9385 inst.instruction = THUMB_OP32 (inst.instruction);
9386 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9387 inst.instruction |= Rd << 8;
9388 inst.instruction |= Rs << 16;
9389 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9390 }
c19d1205 9391 else
a737bd4d 9392 {
e27ec89e
PB
9393 bfd_boolean narrow;
9394
c19d1205 9395 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9396 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9397 narrow = !in_it_block ();
e27ec89e 9398 else
e07e6e58 9399 narrow = in_it_block ();
e27ec89e
PB
9400
9401 if (Rd > 7 || Rn > 7 || Rs > 7)
9402 narrow = FALSE;
9403 if (inst.operands[2].shifted)
9404 narrow = FALSE;
9405 if (inst.size_req == 4)
9406 narrow = FALSE;
9407
9408 if (narrow)
a737bd4d 9409 {
c19d1205 9410 if (Rd == Rs)
a737bd4d 9411 {
c19d1205
ZW
9412 inst.instruction = THUMB_OP16 (inst.instruction);
9413 inst.instruction |= Rd;
9414 inst.instruction |= Rn << 3;
9415 return;
a737bd4d 9416 }
c19d1205 9417 if (Rd == Rn)
a737bd4d 9418 {
c19d1205
ZW
9419 inst.instruction = THUMB_OP16 (inst.instruction);
9420 inst.instruction |= Rd;
9421 inst.instruction |= Rs << 3;
9422 return;
a737bd4d
NC
9423 }
9424 }
c19d1205
ZW
9425
9426 /* If we get here, it can't be done in 16 bits. */
9427 constraint (inst.operands[2].shifted
9428 && inst.operands[2].immisreg,
9429 _("shift must be constant"));
9430 inst.instruction = THUMB_OP32 (inst.instruction);
9431 inst.instruction |= Rd << 8;
9432 inst.instruction |= Rs << 16;
9433 encode_thumb32_shifted_operand (2);
a737bd4d 9434 }
b99bd4ef 9435 }
c19d1205
ZW
9436 else
9437 {
9438 /* On its face this is a lie - the instruction does set the
9439 flags. However, the only supported mnemonic in this mode
9440 says it doesn't. */
9441 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9442
c19d1205
ZW
9443 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9444 _("unshifted register required"));
9445 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9446
9447 inst.instruction = THUMB_OP16 (inst.instruction);
9448 inst.instruction |= Rd;
9449
9450 if (Rd == Rs)
9451 inst.instruction |= Rn << 3;
9452 else if (Rd == Rn)
9453 inst.instruction |= Rs << 3;
9454 else
9455 constraint (1, _("dest must overlap one source register"));
9456 }
a737bd4d
NC
9457}
9458
62b3e311
PB
9459static void
9460do_t_barrier (void)
9461{
9462 if (inst.operands[0].present)
9463 {
9464 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
9465 && inst.operands[0].imm > 0xf
9466 && inst.operands[0].imm < 0x0,
bd3ba5d1 9467 _("bad barrier type"));
62b3e311
PB
9468 inst.instruction |= inst.operands[0].imm;
9469 }
9470 else
9471 inst.instruction |= 0xf;
9472}
9473
c19d1205
ZW
9474static void
9475do_t_bfc (void)
a737bd4d 9476{
fdfde340 9477 unsigned Rd;
c19d1205
ZW
9478 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9479 constraint (msb > 32, _("bit-field extends past end of register"));
9480 /* The instruction encoding stores the LSB and MSB,
9481 not the LSB and width. */
fdfde340
JM
9482 Rd = inst.operands[0].reg;
9483 reject_bad_reg (Rd);
9484 inst.instruction |= Rd << 8;
c19d1205
ZW
9485 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9486 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9487 inst.instruction |= msb - 1;
b99bd4ef
NC
9488}
9489
c19d1205
ZW
9490static void
9491do_t_bfi (void)
b99bd4ef 9492{
fdfde340 9493 int Rd, Rn;
c19d1205 9494 unsigned int msb;
b99bd4ef 9495
fdfde340
JM
9496 Rd = inst.operands[0].reg;
9497 reject_bad_reg (Rd);
9498
c19d1205
ZW
9499 /* #0 in second position is alternative syntax for bfc, which is
9500 the same instruction but with REG_PC in the Rm field. */
9501 if (!inst.operands[1].isreg)
fdfde340
JM
9502 Rn = REG_PC;
9503 else
9504 {
9505 Rn = inst.operands[1].reg;
9506 reject_bad_reg (Rn);
9507 }
b99bd4ef 9508
c19d1205
ZW
9509 msb = inst.operands[2].imm + inst.operands[3].imm;
9510 constraint (msb > 32, _("bit-field extends past end of register"));
9511 /* The instruction encoding stores the LSB and MSB,
9512 not the LSB and width. */
fdfde340
JM
9513 inst.instruction |= Rd << 8;
9514 inst.instruction |= Rn << 16;
c19d1205
ZW
9515 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9516 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9517 inst.instruction |= msb - 1;
b99bd4ef
NC
9518}
9519
c19d1205
ZW
9520static void
9521do_t_bfx (void)
b99bd4ef 9522{
fdfde340
JM
9523 unsigned Rd, Rn;
9524
9525 Rd = inst.operands[0].reg;
9526 Rn = inst.operands[1].reg;
9527
9528 reject_bad_reg (Rd);
9529 reject_bad_reg (Rn);
9530
c19d1205
ZW
9531 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9532 _("bit-field extends past end of register"));
fdfde340
JM
9533 inst.instruction |= Rd << 8;
9534 inst.instruction |= Rn << 16;
c19d1205
ZW
9535 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9536 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9537 inst.instruction |= inst.operands[3].imm - 1;
9538}
b99bd4ef 9539
c19d1205
ZW
9540/* ARM V5 Thumb BLX (argument parse)
9541 BLX <target_addr> which is BLX(1)
9542 BLX <Rm> which is BLX(2)
9543 Unfortunately, there are two different opcodes for this mnemonic.
9544 So, the insns[].value is not used, and the code here zaps values
9545 into inst.instruction.
b99bd4ef 9546
c19d1205
ZW
9547 ??? How to take advantage of the additional two bits of displacement
9548 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9549
c19d1205
ZW
9550static void
9551do_t_blx (void)
9552{
e07e6e58
NC
9553 set_it_insn_type_last ();
9554
c19d1205 9555 if (inst.operands[0].isreg)
fdfde340
JM
9556 {
9557 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9558 /* We have a register, so this is BLX(2). */
9559 inst.instruction |= inst.operands[0].reg << 3;
9560 }
b99bd4ef
NC
9561 else
9562 {
c19d1205 9563 /* No register. This must be BLX(1). */
2fc8bdac 9564 inst.instruction = 0xf000e800;
00adf2d4 9565 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 9566 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9567 }
9568}
9569
c19d1205
ZW
9570static void
9571do_t_branch (void)
b99bd4ef 9572{
0110f2b8 9573 int opcode;
dfa9f0d5
PB
9574 int cond;
9575
e07e6e58
NC
9576 cond = inst.cond;
9577 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9578
9579 if (in_it_block ())
dfa9f0d5
PB
9580 {
9581 /* Conditional branches inside IT blocks are encoded as unconditional
9582 branches. */
9583 cond = COND_ALWAYS;
dfa9f0d5
PB
9584 }
9585 else
9586 cond = inst.cond;
9587
9588 if (cond != COND_ALWAYS)
0110f2b8
PB
9589 opcode = T_MNEM_bcond;
9590 else
9591 opcode = inst.instruction;
9592
9593 if (unified_syntax && inst.size_req == 4)
c19d1205 9594 {
0110f2b8 9595 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9596 if (cond == COND_ALWAYS)
0110f2b8 9597 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9598 else
9599 {
9c2799c2 9600 gas_assert (cond != 0xF);
dfa9f0d5 9601 inst.instruction |= cond << 22;
c19d1205
ZW
9602 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9603 }
9604 }
b99bd4ef
NC
9605 else
9606 {
0110f2b8 9607 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9608 if (cond == COND_ALWAYS)
c19d1205
ZW
9609 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9610 else
b99bd4ef 9611 {
dfa9f0d5 9612 inst.instruction |= cond << 8;
c19d1205 9613 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9614 }
0110f2b8
PB
9615 /* Allow section relaxation. */
9616 if (unified_syntax && inst.size_req != 2)
9617 inst.relax = opcode;
b99bd4ef 9618 }
c19d1205
ZW
9619
9620 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9621}
9622
9623static void
c19d1205 9624do_t_bkpt (void)
b99bd4ef 9625{
dfa9f0d5
PB
9626 constraint (inst.cond != COND_ALWAYS,
9627 _("instruction is always unconditional"));
c19d1205 9628 if (inst.operands[0].present)
b99bd4ef 9629 {
c19d1205
ZW
9630 constraint (inst.operands[0].imm > 255,
9631 _("immediate value out of range"));
9632 inst.instruction |= inst.operands[0].imm;
e07e6e58 9633 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9634 }
b99bd4ef
NC
9635}
9636
9637static void
c19d1205 9638do_t_branch23 (void)
b99bd4ef 9639{
e07e6e58 9640 set_it_insn_type_last ();
c19d1205 9641 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
9642 inst.reloc.pc_rel = 1;
9643
4343666d 9644#if defined(OBJ_COFF)
c19d1205
ZW
9645 /* If the destination of the branch is a defined symbol which does not have
9646 the THUMB_FUNC attribute, then we must be calling a function which has
9647 the (interfacearm) attribute. We look for the Thumb entry point to that
9648 function and change the branch to refer to that function instead. */
9649 if ( inst.reloc.exp.X_op == O_symbol
9650 && inst.reloc.exp.X_add_symbol != NULL
9651 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9652 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9653 inst.reloc.exp.X_add_symbol =
9654 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9655#endif
90e4755a
RE
9656}
9657
9658static void
c19d1205 9659do_t_bx (void)
90e4755a 9660{
e07e6e58 9661 set_it_insn_type_last ();
c19d1205
ZW
9662 inst.instruction |= inst.operands[0].reg << 3;
9663 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9664 should cause the alignment to be checked once it is known. This is
9665 because BX PC only works if the instruction is word aligned. */
9666}
90e4755a 9667
c19d1205
ZW
9668static void
9669do_t_bxj (void)
9670{
fdfde340 9671 int Rm;
90e4755a 9672
e07e6e58 9673 set_it_insn_type_last ();
fdfde340
JM
9674 Rm = inst.operands[0].reg;
9675 reject_bad_reg (Rm);
9676 inst.instruction |= Rm << 16;
90e4755a
RE
9677}
9678
9679static void
c19d1205 9680do_t_clz (void)
90e4755a 9681{
fdfde340
JM
9682 unsigned Rd;
9683 unsigned Rm;
9684
9685 Rd = inst.operands[0].reg;
9686 Rm = inst.operands[1].reg;
9687
9688 reject_bad_reg (Rd);
9689 reject_bad_reg (Rm);
9690
9691 inst.instruction |= Rd << 8;
9692 inst.instruction |= Rm << 16;
9693 inst.instruction |= Rm;
c19d1205 9694}
90e4755a 9695
dfa9f0d5
PB
9696static void
9697do_t_cps (void)
9698{
e07e6e58 9699 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
9700 inst.instruction |= inst.operands[0].imm;
9701}
9702
c19d1205
ZW
9703static void
9704do_t_cpsi (void)
9705{
e07e6e58 9706 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 9707 if (unified_syntax
62b3e311
PB
9708 && (inst.operands[1].present || inst.size_req == 4)
9709 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9710 {
c19d1205
ZW
9711 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9712 inst.instruction = 0xf3af8000;
9713 inst.instruction |= imod << 9;
9714 inst.instruction |= inst.operands[0].imm << 5;
9715 if (inst.operands[1].present)
9716 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9717 }
c19d1205 9718 else
90e4755a 9719 {
62b3e311
PB
9720 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9721 && (inst.operands[0].imm & 4),
9722 _("selected processor does not support 'A' form "
9723 "of this instruction"));
9724 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9725 _("Thumb does not support the 2-argument "
9726 "form of this instruction"));
9727 inst.instruction |= inst.operands[0].imm;
90e4755a 9728 }
90e4755a
RE
9729}
9730
c19d1205
ZW
9731/* THUMB CPY instruction (argument parse). */
9732
90e4755a 9733static void
c19d1205 9734do_t_cpy (void)
90e4755a 9735{
c19d1205 9736 if (inst.size_req == 4)
90e4755a 9737 {
c19d1205
ZW
9738 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9739 inst.instruction |= inst.operands[0].reg << 8;
9740 inst.instruction |= inst.operands[1].reg;
90e4755a 9741 }
c19d1205 9742 else
90e4755a 9743 {
c19d1205
ZW
9744 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9745 inst.instruction |= (inst.operands[0].reg & 0x7);
9746 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9747 }
90e4755a
RE
9748}
9749
90e4755a 9750static void
25fe350b 9751do_t_cbz (void)
90e4755a 9752{
e07e6e58 9753 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
9754 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9755 inst.instruction |= inst.operands[0].reg;
9756 inst.reloc.pc_rel = 1;
9757 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9758}
90e4755a 9759
62b3e311
PB
9760static void
9761do_t_dbg (void)
9762{
9763 inst.instruction |= inst.operands[0].imm;
9764}
9765
9766static void
9767do_t_div (void)
9768{
fdfde340
JM
9769 unsigned Rd, Rn, Rm;
9770
9771 Rd = inst.operands[0].reg;
9772 Rn = (inst.operands[1].present
9773 ? inst.operands[1].reg : Rd);
9774 Rm = inst.operands[2].reg;
9775
9776 reject_bad_reg (Rd);
9777 reject_bad_reg (Rn);
9778 reject_bad_reg (Rm);
9779
9780 inst.instruction |= Rd << 8;
9781 inst.instruction |= Rn << 16;
9782 inst.instruction |= Rm;
62b3e311
PB
9783}
9784
c19d1205
ZW
9785static void
9786do_t_hint (void)
9787{
9788 if (unified_syntax && inst.size_req == 4)
9789 inst.instruction = THUMB_OP32 (inst.instruction);
9790 else
9791 inst.instruction = THUMB_OP16 (inst.instruction);
9792}
90e4755a 9793
c19d1205
ZW
9794static void
9795do_t_it (void)
9796{
9797 unsigned int cond = inst.operands[0].imm;
e27ec89e 9798
e07e6e58
NC
9799 set_it_insn_type (IT_INSN);
9800 now_it.mask = (inst.instruction & 0xf) | 0x10;
9801 now_it.cc = cond;
e27ec89e
PB
9802
9803 /* If the condition is a negative condition, invert the mask. */
c19d1205 9804 if ((cond & 0x1) == 0x0)
90e4755a 9805 {
c19d1205 9806 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9807
c19d1205
ZW
9808 if ((mask & 0x7) == 0)
9809 /* no conversion needed */;
9810 else if ((mask & 0x3) == 0)
e27ec89e
PB
9811 mask ^= 0x8;
9812 else if ((mask & 0x1) == 0)
9813 mask ^= 0xC;
c19d1205 9814 else
e27ec89e 9815 mask ^= 0xE;
90e4755a 9816
e27ec89e
PB
9817 inst.instruction &= 0xfff0;
9818 inst.instruction |= mask;
c19d1205 9819 }
90e4755a 9820
c19d1205
ZW
9821 inst.instruction |= cond << 4;
9822}
90e4755a 9823
3c707909
PB
9824/* Helper function used for both push/pop and ldm/stm. */
9825static void
9826encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9827{
9828 bfd_boolean load;
9829
9830 load = (inst.instruction & (1 << 20)) != 0;
9831
9832 if (mask & (1 << 13))
9833 inst.error = _("SP not allowed in register list");
1e5b0379
NC
9834
9835 if ((mask & (1 << base)) != 0
9836 && writeback)
9837 inst.error = _("having the base register in the register list when "
9838 "using write back is UNPREDICTABLE");
9839
3c707909
PB
9840 if (load)
9841 {
e07e6e58
NC
9842 if (mask & (1 << 15))
9843 {
9844 if (mask & (1 << 14))
9845 inst.error = _("LR and PC should not both be in register list");
9846 else
9847 set_it_insn_type_last ();
9848 }
3c707909
PB
9849 }
9850 else
9851 {
9852 if (mask & (1 << 15))
9853 inst.error = _("PC not allowed in register list");
3c707909
PB
9854 }
9855
9856 if ((mask & (mask - 1)) == 0)
9857 {
9858 /* Single register transfers implemented as str/ldr. */
9859 if (writeback)
9860 {
9861 if (inst.instruction & (1 << 23))
9862 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9863 else
9864 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9865 }
9866 else
9867 {
9868 if (inst.instruction & (1 << 23))
9869 inst.instruction = 0x00800000; /* ia -> [base] */
9870 else
9871 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9872 }
9873
9874 inst.instruction |= 0xf8400000;
9875 if (load)
9876 inst.instruction |= 0x00100000;
9877
5f4273c7 9878 mask = ffs (mask) - 1;
3c707909
PB
9879 mask <<= 12;
9880 }
9881 else if (writeback)
9882 inst.instruction |= WRITE_BACK;
9883
9884 inst.instruction |= mask;
9885 inst.instruction |= base << 16;
9886}
9887
c19d1205
ZW
9888static void
9889do_t_ldmstm (void)
9890{
9891 /* This really doesn't seem worth it. */
9892 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9893 _("expression too complex"));
9894 constraint (inst.operands[1].writeback,
9895 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9896
c19d1205
ZW
9897 if (unified_syntax)
9898 {
3c707909
PB
9899 bfd_boolean narrow;
9900 unsigned mask;
9901
9902 narrow = FALSE;
c19d1205
ZW
9903 /* See if we can use a 16-bit instruction. */
9904 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9905 && inst.size_req != 4
3c707909 9906 && !(inst.operands[1].imm & ~0xff))
90e4755a 9907 {
3c707909 9908 mask = 1 << inst.operands[0].reg;
90e4755a 9909
3c707909
PB
9910 if (inst.operands[0].reg <= 7
9911 && (inst.instruction == T_MNEM_stmia
9912 ? inst.operands[0].writeback
9913 : (inst.operands[0].writeback
9914 == !(inst.operands[1].imm & mask))))
90e4755a 9915 {
3c707909
PB
9916 if (inst.instruction == T_MNEM_stmia
9917 && (inst.operands[1].imm & mask)
9918 && (inst.operands[1].imm & (mask - 1)))
1e5b0379 9919 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 9920 inst.operands[0].reg);
3c707909
PB
9921
9922 inst.instruction = THUMB_OP16 (inst.instruction);
9923 inst.instruction |= inst.operands[0].reg << 8;
9924 inst.instruction |= inst.operands[1].imm;
9925 narrow = TRUE;
90e4755a 9926 }
3c707909
PB
9927 else if (inst.operands[0] .reg == REG_SP
9928 && inst.operands[0].writeback)
90e4755a 9929 {
3c707909
PB
9930 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9931 ? T_MNEM_push : T_MNEM_pop);
9932 inst.instruction |= inst.operands[1].imm;
9933 narrow = TRUE;
90e4755a 9934 }
3c707909
PB
9935 }
9936
9937 if (!narrow)
9938 {
c19d1205
ZW
9939 if (inst.instruction < 0xffff)
9940 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9941
5f4273c7
NC
9942 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9943 inst.operands[0].writeback);
90e4755a
RE
9944 }
9945 }
c19d1205 9946 else
90e4755a 9947 {
c19d1205
ZW
9948 constraint (inst.operands[0].reg > 7
9949 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9950 constraint (inst.instruction != T_MNEM_ldmia
9951 && inst.instruction != T_MNEM_stmia,
9952 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9953 if (inst.instruction == T_MNEM_stmia)
f03698e6 9954 {
c19d1205
ZW
9955 if (!inst.operands[0].writeback)
9956 as_warn (_("this instruction will write back the base register"));
9957 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9958 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 9959 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 9960 inst.operands[0].reg);
f03698e6 9961 }
c19d1205 9962 else
90e4755a 9963 {
c19d1205
ZW
9964 if (!inst.operands[0].writeback
9965 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9966 as_warn (_("this instruction will write back the base register"));
9967 else if (inst.operands[0].writeback
9968 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9969 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9970 }
9971
c19d1205
ZW
9972 inst.instruction = THUMB_OP16 (inst.instruction);
9973 inst.instruction |= inst.operands[0].reg << 8;
9974 inst.instruction |= inst.operands[1].imm;
9975 }
9976}
e28cd48c 9977
c19d1205
ZW
9978static void
9979do_t_ldrex (void)
9980{
9981 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9982 || inst.operands[1].postind || inst.operands[1].writeback
9983 || inst.operands[1].immisreg || inst.operands[1].shifted
9984 || inst.operands[1].negative,
01cfc07f 9985 BAD_ADDR_MODE);
e28cd48c 9986
5be8be5d
DG
9987 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9988
c19d1205
ZW
9989 inst.instruction |= inst.operands[0].reg << 12;
9990 inst.instruction |= inst.operands[1].reg << 16;
9991 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9992}
e28cd48c 9993
c19d1205
ZW
9994static void
9995do_t_ldrexd (void)
9996{
9997 if (!inst.operands[1].present)
1cac9012 9998 {
c19d1205
ZW
9999 constraint (inst.operands[0].reg == REG_LR,
10000 _("r14 not allowed as first register "
10001 "when second register is omitted"));
10002 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10003 }
c19d1205
ZW
10004 constraint (inst.operands[0].reg == inst.operands[1].reg,
10005 BAD_OVERLAP);
b99bd4ef 10006
c19d1205
ZW
10007 inst.instruction |= inst.operands[0].reg << 12;
10008 inst.instruction |= inst.operands[1].reg << 8;
10009 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10010}
10011
10012static void
c19d1205 10013do_t_ldst (void)
b99bd4ef 10014{
0110f2b8
PB
10015 unsigned long opcode;
10016 int Rn;
10017
e07e6e58
NC
10018 if (inst.operands[0].isreg
10019 && !inst.operands[0].preind
10020 && inst.operands[0].reg == REG_PC)
10021 set_it_insn_type_last ();
10022
0110f2b8 10023 opcode = inst.instruction;
c19d1205 10024 if (unified_syntax)
b99bd4ef 10025 {
53365c0d
PB
10026 if (!inst.operands[1].isreg)
10027 {
10028 if (opcode <= 0xffff)
10029 inst.instruction = THUMB_OP32 (opcode);
10030 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10031 return;
10032 }
0110f2b8
PB
10033 if (inst.operands[1].isreg
10034 && !inst.operands[1].writeback
c19d1205
ZW
10035 && !inst.operands[1].shifted && !inst.operands[1].postind
10036 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10037 && opcode <= 0xffff
10038 && inst.size_req != 4)
c19d1205 10039 {
0110f2b8
PB
10040 /* Insn may have a 16-bit form. */
10041 Rn = inst.operands[1].reg;
10042 if (inst.operands[1].immisreg)
10043 {
10044 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10045 /* [Rn, Rik] */
0110f2b8
PB
10046 if (Rn <= 7 && inst.operands[1].imm <= 7)
10047 goto op16;
5be8be5d
DG
10048 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10049 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10050 }
10051 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10052 && opcode != T_MNEM_ldrsb)
10053 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10054 || (Rn == REG_SP && opcode == T_MNEM_str))
10055 {
10056 /* [Rn, #const] */
10057 if (Rn > 7)
10058 {
10059 if (Rn == REG_PC)
10060 {
10061 if (inst.reloc.pc_rel)
10062 opcode = T_MNEM_ldr_pc2;
10063 else
10064 opcode = T_MNEM_ldr_pc;
10065 }
10066 else
10067 {
10068 if (opcode == T_MNEM_ldr)
10069 opcode = T_MNEM_ldr_sp;
10070 else
10071 opcode = T_MNEM_str_sp;
10072 }
10073 inst.instruction = inst.operands[0].reg << 8;
10074 }
10075 else
10076 {
10077 inst.instruction = inst.operands[0].reg;
10078 inst.instruction |= inst.operands[1].reg << 3;
10079 }
10080 inst.instruction |= THUMB_OP16 (opcode);
10081 if (inst.size_req == 2)
10082 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10083 else
10084 inst.relax = opcode;
10085 return;
10086 }
c19d1205 10087 }
0110f2b8 10088 /* Definitely a 32-bit variant. */
5be8be5d
DG
10089
10090 /* Do some validations regarding addressing modes. */
10091 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10092 && opcode != T_MNEM_str)
10093 reject_bad_reg (inst.operands[1].imm);
10094
0110f2b8 10095 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10096 inst.instruction |= inst.operands[0].reg << 12;
10097 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
10098 return;
10099 }
10100
c19d1205
ZW
10101 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10102
10103 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10104 {
c19d1205
ZW
10105 /* Only [Rn,Rm] is acceptable. */
10106 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10107 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10108 || inst.operands[1].postind || inst.operands[1].shifted
10109 || inst.operands[1].negative,
10110 _("Thumb does not support this addressing mode"));
10111 inst.instruction = THUMB_OP16 (inst.instruction);
10112 goto op16;
b99bd4ef 10113 }
5f4273c7 10114
c19d1205
ZW
10115 inst.instruction = THUMB_OP16 (inst.instruction);
10116 if (!inst.operands[1].isreg)
10117 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10118 return;
b99bd4ef 10119
c19d1205
ZW
10120 constraint (!inst.operands[1].preind
10121 || inst.operands[1].shifted
10122 || inst.operands[1].writeback,
10123 _("Thumb does not support this addressing mode"));
10124 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10125 {
c19d1205
ZW
10126 constraint (inst.instruction & 0x0600,
10127 _("byte or halfword not valid for base register"));
10128 constraint (inst.operands[1].reg == REG_PC
10129 && !(inst.instruction & THUMB_LOAD_BIT),
10130 _("r15 based store not allowed"));
10131 constraint (inst.operands[1].immisreg,
10132 _("invalid base register for register offset"));
b99bd4ef 10133
c19d1205
ZW
10134 if (inst.operands[1].reg == REG_PC)
10135 inst.instruction = T_OPCODE_LDR_PC;
10136 else if (inst.instruction & THUMB_LOAD_BIT)
10137 inst.instruction = T_OPCODE_LDR_SP;
10138 else
10139 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10140
c19d1205
ZW
10141 inst.instruction |= inst.operands[0].reg << 8;
10142 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10143 return;
10144 }
90e4755a 10145
c19d1205
ZW
10146 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10147 if (!inst.operands[1].immisreg)
10148 {
10149 /* Immediate offset. */
10150 inst.instruction |= inst.operands[0].reg;
10151 inst.instruction |= inst.operands[1].reg << 3;
10152 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10153 return;
10154 }
90e4755a 10155
c19d1205
ZW
10156 /* Register offset. */
10157 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10158 constraint (inst.operands[1].negative,
10159 _("Thumb does not support this addressing mode"));
90e4755a 10160
c19d1205
ZW
10161 op16:
10162 switch (inst.instruction)
10163 {
10164 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10165 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10166 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10167 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10168 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10169 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10170 case 0x5600 /* ldrsb */:
10171 case 0x5e00 /* ldrsh */: break;
10172 default: abort ();
10173 }
90e4755a 10174
c19d1205
ZW
10175 inst.instruction |= inst.operands[0].reg;
10176 inst.instruction |= inst.operands[1].reg << 3;
10177 inst.instruction |= inst.operands[1].imm << 6;
10178}
90e4755a 10179
c19d1205
ZW
10180static void
10181do_t_ldstd (void)
10182{
10183 if (!inst.operands[1].present)
b99bd4ef 10184 {
c19d1205
ZW
10185 inst.operands[1].reg = inst.operands[0].reg + 1;
10186 constraint (inst.operands[0].reg == REG_LR,
10187 _("r14 not allowed here"));
b99bd4ef 10188 }
c19d1205
ZW
10189 inst.instruction |= inst.operands[0].reg << 12;
10190 inst.instruction |= inst.operands[1].reg << 8;
10191 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10192}
10193
c19d1205
ZW
10194static void
10195do_t_ldstt (void)
10196{
10197 inst.instruction |= inst.operands[0].reg << 12;
10198 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10199}
a737bd4d 10200
b99bd4ef 10201static void
c19d1205 10202do_t_mla (void)
b99bd4ef 10203{
fdfde340 10204 unsigned Rd, Rn, Rm, Ra;
c921be7d 10205
fdfde340
JM
10206 Rd = inst.operands[0].reg;
10207 Rn = inst.operands[1].reg;
10208 Rm = inst.operands[2].reg;
10209 Ra = inst.operands[3].reg;
10210
10211 reject_bad_reg (Rd);
10212 reject_bad_reg (Rn);
10213 reject_bad_reg (Rm);
10214 reject_bad_reg (Ra);
10215
10216 inst.instruction |= Rd << 8;
10217 inst.instruction |= Rn << 16;
10218 inst.instruction |= Rm;
10219 inst.instruction |= Ra << 12;
c19d1205 10220}
b99bd4ef 10221
c19d1205
ZW
10222static void
10223do_t_mlal (void)
10224{
fdfde340
JM
10225 unsigned RdLo, RdHi, Rn, Rm;
10226
10227 RdLo = inst.operands[0].reg;
10228 RdHi = inst.operands[1].reg;
10229 Rn = inst.operands[2].reg;
10230 Rm = inst.operands[3].reg;
10231
10232 reject_bad_reg (RdLo);
10233 reject_bad_reg (RdHi);
10234 reject_bad_reg (Rn);
10235 reject_bad_reg (Rm);
10236
10237 inst.instruction |= RdLo << 12;
10238 inst.instruction |= RdHi << 8;
10239 inst.instruction |= Rn << 16;
10240 inst.instruction |= Rm;
c19d1205 10241}
b99bd4ef 10242
c19d1205
ZW
10243static void
10244do_t_mov_cmp (void)
10245{
fdfde340
JM
10246 unsigned Rn, Rm;
10247
10248 Rn = inst.operands[0].reg;
10249 Rm = inst.operands[1].reg;
10250
e07e6e58
NC
10251 if (Rn == REG_PC)
10252 set_it_insn_type_last ();
10253
c19d1205 10254 if (unified_syntax)
b99bd4ef 10255 {
c19d1205
ZW
10256 int r0off = (inst.instruction == T_MNEM_mov
10257 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10258 unsigned long opcode;
3d388997
PB
10259 bfd_boolean narrow;
10260 bfd_boolean low_regs;
10261
fdfde340 10262 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10263 opcode = inst.instruction;
e07e6e58 10264 if (in_it_block ())
0110f2b8 10265 narrow = opcode != T_MNEM_movs;
3d388997 10266 else
0110f2b8 10267 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10268 if (inst.size_req == 4
10269 || inst.operands[1].shifted)
10270 narrow = FALSE;
10271
efd81785
PB
10272 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10273 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10274 && !inst.operands[1].shifted
fdfde340
JM
10275 && Rn == REG_PC
10276 && Rm == REG_LR)
efd81785
PB
10277 {
10278 inst.instruction = T2_SUBS_PC_LR;
10279 return;
10280 }
10281
fdfde340
JM
10282 if (opcode == T_MNEM_cmp)
10283 {
10284 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10285 if (narrow)
10286 {
10287 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10288 but valid. */
10289 warn_deprecated_sp (Rm);
10290 /* R15 was documented as a valid choice for Rm in ARMv6,
10291 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10292 tools reject R15, so we do too. */
10293 constraint (Rm == REG_PC, BAD_PC);
10294 }
10295 else
10296 reject_bad_reg (Rm);
fdfde340
JM
10297 }
10298 else if (opcode == T_MNEM_mov
10299 || opcode == T_MNEM_movs)
10300 {
10301 if (inst.operands[1].isreg)
10302 {
10303 if (opcode == T_MNEM_movs)
10304 {
10305 reject_bad_reg (Rn);
10306 reject_bad_reg (Rm);
10307 }
76fa04a4
MGD
10308 else if (narrow)
10309 {
10310 /* This is mov.n. */
10311 if ((Rn == REG_SP || Rn == REG_PC)
10312 && (Rm == REG_SP || Rm == REG_PC))
10313 {
10314 as_warn (_("Use of r%u as a source register is "
10315 "deprecated when r%u is the destination "
10316 "register."), Rm, Rn);
10317 }
10318 }
10319 else
10320 {
10321 /* This is mov.w. */
10322 constraint (Rn == REG_PC, BAD_PC);
10323 constraint (Rm == REG_PC, BAD_PC);
10324 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10325 }
fdfde340
JM
10326 }
10327 else
10328 reject_bad_reg (Rn);
10329 }
10330
c19d1205
ZW
10331 if (!inst.operands[1].isreg)
10332 {
0110f2b8 10333 /* Immediate operand. */
e07e6e58 10334 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10335 narrow = 0;
10336 if (low_regs && narrow)
10337 {
10338 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10339 inst.instruction |= Rn << 8;
0110f2b8
PB
10340 if (inst.size_req == 2)
10341 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10342 else
10343 inst.relax = opcode;
10344 }
10345 else
10346 {
10347 inst.instruction = THUMB_OP32 (inst.instruction);
10348 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10349 inst.instruction |= Rn << r0off;
0110f2b8
PB
10350 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10351 }
c19d1205 10352 }
728ca7c9
PB
10353 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10354 && (inst.instruction == T_MNEM_mov
10355 || inst.instruction == T_MNEM_movs))
10356 {
10357 /* Register shifts are encoded as separate shift instructions. */
10358 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10359
e07e6e58 10360 if (in_it_block ())
728ca7c9
PB
10361 narrow = !flags;
10362 else
10363 narrow = flags;
10364
10365 if (inst.size_req == 4)
10366 narrow = FALSE;
10367
10368 if (!low_regs || inst.operands[1].imm > 7)
10369 narrow = FALSE;
10370
fdfde340 10371 if (Rn != Rm)
728ca7c9
PB
10372 narrow = FALSE;
10373
10374 switch (inst.operands[1].shift_kind)
10375 {
10376 case SHIFT_LSL:
10377 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10378 break;
10379 case SHIFT_ASR:
10380 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10381 break;
10382 case SHIFT_LSR:
10383 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10384 break;
10385 case SHIFT_ROR:
10386 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10387 break;
10388 default:
5f4273c7 10389 abort ();
728ca7c9
PB
10390 }
10391
10392 inst.instruction = opcode;
10393 if (narrow)
10394 {
fdfde340 10395 inst.instruction |= Rn;
728ca7c9
PB
10396 inst.instruction |= inst.operands[1].imm << 3;
10397 }
10398 else
10399 {
10400 if (flags)
10401 inst.instruction |= CONDS_BIT;
10402
fdfde340
JM
10403 inst.instruction |= Rn << 8;
10404 inst.instruction |= Rm << 16;
728ca7c9
PB
10405 inst.instruction |= inst.operands[1].imm;
10406 }
10407 }
3d388997 10408 else if (!narrow)
c19d1205 10409 {
728ca7c9
PB
10410 /* Some mov with immediate shift have narrow variants.
10411 Register shifts are handled above. */
10412 if (low_regs && inst.operands[1].shifted
10413 && (inst.instruction == T_MNEM_mov
10414 || inst.instruction == T_MNEM_movs))
10415 {
e07e6e58 10416 if (in_it_block ())
728ca7c9
PB
10417 narrow = (inst.instruction == T_MNEM_mov);
10418 else
10419 narrow = (inst.instruction == T_MNEM_movs);
10420 }
10421
10422 if (narrow)
10423 {
10424 switch (inst.operands[1].shift_kind)
10425 {
10426 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10427 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10428 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10429 default: narrow = FALSE; break;
10430 }
10431 }
10432
10433 if (narrow)
10434 {
fdfde340
JM
10435 inst.instruction |= Rn;
10436 inst.instruction |= Rm << 3;
728ca7c9
PB
10437 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10438 }
10439 else
10440 {
10441 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10442 inst.instruction |= Rn << r0off;
728ca7c9
PB
10443 encode_thumb32_shifted_operand (1);
10444 }
c19d1205
ZW
10445 }
10446 else
10447 switch (inst.instruction)
10448 {
10449 case T_MNEM_mov:
10450 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10451 inst.instruction |= (Rn & 0x8) << 4;
10452 inst.instruction |= (Rn & 0x7);
10453 inst.instruction |= Rm << 3;
c19d1205 10454 break;
b99bd4ef 10455
c19d1205
ZW
10456 case T_MNEM_movs:
10457 /* We know we have low registers at this point.
941a8a52
MGD
10458 Generate LSLS Rd, Rs, #0. */
10459 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
10460 inst.instruction |= Rn;
10461 inst.instruction |= Rm << 3;
c19d1205
ZW
10462 break;
10463
10464 case T_MNEM_cmp:
3d388997 10465 if (low_regs)
c19d1205
ZW
10466 {
10467 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10468 inst.instruction |= Rn;
10469 inst.instruction |= Rm << 3;
c19d1205
ZW
10470 }
10471 else
10472 {
10473 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10474 inst.instruction |= (Rn & 0x8) << 4;
10475 inst.instruction |= (Rn & 0x7);
10476 inst.instruction |= Rm << 3;
c19d1205
ZW
10477 }
10478 break;
10479 }
b99bd4ef
NC
10480 return;
10481 }
10482
c19d1205 10483 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10484
10485 /* PR 10443: Do not silently ignore shifted operands. */
10486 constraint (inst.operands[1].shifted,
10487 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10488
c19d1205 10489 if (inst.operands[1].isreg)
b99bd4ef 10490 {
fdfde340 10491 if (Rn < 8 && Rm < 8)
b99bd4ef 10492 {
c19d1205
ZW
10493 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10494 since a MOV instruction produces unpredictable results. */
10495 if (inst.instruction == T_OPCODE_MOV_I8)
10496 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10497 else
c19d1205 10498 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10499
fdfde340
JM
10500 inst.instruction |= Rn;
10501 inst.instruction |= Rm << 3;
b99bd4ef
NC
10502 }
10503 else
10504 {
c19d1205
ZW
10505 if (inst.instruction == T_OPCODE_MOV_I8)
10506 inst.instruction = T_OPCODE_MOV_HR;
10507 else
10508 inst.instruction = T_OPCODE_CMP_HR;
10509 do_t_cpy ();
b99bd4ef
NC
10510 }
10511 }
c19d1205 10512 else
b99bd4ef 10513 {
fdfde340 10514 constraint (Rn > 7,
c19d1205 10515 _("only lo regs allowed with immediate"));
fdfde340 10516 inst.instruction |= Rn << 8;
c19d1205
ZW
10517 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10518 }
10519}
b99bd4ef 10520
c19d1205
ZW
10521static void
10522do_t_mov16 (void)
10523{
fdfde340 10524 unsigned Rd;
b6895b4f
PB
10525 bfd_vma imm;
10526 bfd_boolean top;
10527
10528 top = (inst.instruction & 0x00800000) != 0;
10529 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10530 {
10531 constraint (top, _(":lower16: not allowed this instruction"));
10532 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10533 }
10534 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10535 {
10536 constraint (!top, _(":upper16: not allowed this instruction"));
10537 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10538 }
10539
fdfde340
JM
10540 Rd = inst.operands[0].reg;
10541 reject_bad_reg (Rd);
10542
10543 inst.instruction |= Rd << 8;
b6895b4f
PB
10544 if (inst.reloc.type == BFD_RELOC_UNUSED)
10545 {
10546 imm = inst.reloc.exp.X_add_number;
10547 inst.instruction |= (imm & 0xf000) << 4;
10548 inst.instruction |= (imm & 0x0800) << 15;
10549 inst.instruction |= (imm & 0x0700) << 4;
10550 inst.instruction |= (imm & 0x00ff);
10551 }
c19d1205 10552}
b99bd4ef 10553
c19d1205
ZW
10554static void
10555do_t_mvn_tst (void)
10556{
fdfde340 10557 unsigned Rn, Rm;
c921be7d 10558
fdfde340
JM
10559 Rn = inst.operands[0].reg;
10560 Rm = inst.operands[1].reg;
10561
10562 if (inst.instruction == T_MNEM_cmp
10563 || inst.instruction == T_MNEM_cmn)
10564 constraint (Rn == REG_PC, BAD_PC);
10565 else
10566 reject_bad_reg (Rn);
10567 reject_bad_reg (Rm);
10568
c19d1205
ZW
10569 if (unified_syntax)
10570 {
10571 int r0off = (inst.instruction == T_MNEM_mvn
10572 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10573 bfd_boolean narrow;
10574
10575 if (inst.size_req == 4
10576 || inst.instruction > 0xffff
10577 || inst.operands[1].shifted
fdfde340 10578 || Rn > 7 || Rm > 7)
3d388997
PB
10579 narrow = FALSE;
10580 else if (inst.instruction == T_MNEM_cmn)
10581 narrow = TRUE;
10582 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10583 narrow = !in_it_block ();
3d388997 10584 else
e07e6e58 10585 narrow = in_it_block ();
3d388997 10586
c19d1205 10587 if (!inst.operands[1].isreg)
b99bd4ef 10588 {
c19d1205
ZW
10589 /* For an immediate, we always generate a 32-bit opcode;
10590 section relaxation will shrink it later if possible. */
10591 if (inst.instruction < 0xffff)
10592 inst.instruction = THUMB_OP32 (inst.instruction);
10593 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10594 inst.instruction |= Rn << r0off;
c19d1205 10595 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10596 }
c19d1205 10597 else
b99bd4ef 10598 {
c19d1205 10599 /* See if we can do this with a 16-bit instruction. */
3d388997 10600 if (narrow)
b99bd4ef 10601 {
c19d1205 10602 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10603 inst.instruction |= Rn;
10604 inst.instruction |= Rm << 3;
b99bd4ef 10605 }
c19d1205 10606 else
b99bd4ef 10607 {
c19d1205
ZW
10608 constraint (inst.operands[1].shifted
10609 && inst.operands[1].immisreg,
10610 _("shift must be constant"));
10611 if (inst.instruction < 0xffff)
10612 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10613 inst.instruction |= Rn << r0off;
c19d1205 10614 encode_thumb32_shifted_operand (1);
b99bd4ef 10615 }
b99bd4ef
NC
10616 }
10617 }
10618 else
10619 {
c19d1205
ZW
10620 constraint (inst.instruction > 0xffff
10621 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10622 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10623 _("unshifted register required"));
fdfde340 10624 constraint (Rn > 7 || Rm > 7,
c19d1205 10625 BAD_HIREG);
b99bd4ef 10626
c19d1205 10627 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10628 inst.instruction |= Rn;
10629 inst.instruction |= Rm << 3;
b99bd4ef 10630 }
b99bd4ef
NC
10631}
10632
b05fe5cf 10633static void
c19d1205 10634do_t_mrs (void)
b05fe5cf 10635{
fdfde340 10636 unsigned Rd;
62b3e311 10637 int flags;
037e8744
JB
10638
10639 if (do_vfp_nsyn_mrs () == SUCCESS)
10640 return;
10641
62b3e311
PB
10642 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10643 if (flags == 0)
10644 {
7e806470 10645 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10646 _("selected processor does not support "
10647 "requested special purpose register"));
10648 }
10649 else
10650 {
10651 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10652 _("selected processor does not support "
44bf2362 10653 "requested special purpose register"));
62b3e311
PB
10654 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10655 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10656 _("'CPSR' or 'SPSR' expected"));
10657 }
5f4273c7 10658
fdfde340
JM
10659 Rd = inst.operands[0].reg;
10660 reject_bad_reg (Rd);
10661
10662 inst.instruction |= Rd << 8;
62b3e311
PB
10663 inst.instruction |= (flags & SPSR_BIT) >> 2;
10664 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 10665}
b05fe5cf 10666
c19d1205
ZW
10667static void
10668do_t_msr (void)
10669{
62b3e311 10670 int flags;
fdfde340 10671 unsigned Rn;
62b3e311 10672
037e8744
JB
10673 if (do_vfp_nsyn_msr () == SUCCESS)
10674 return;
10675
c19d1205
ZW
10676 constraint (!inst.operands[1].isreg,
10677 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
10678 flags = inst.operands[0].imm;
10679 if (flags & ~0xff)
10680 {
10681 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10682 _("selected processor does not support "
10683 "requested special purpose register"));
10684 }
10685 else
10686 {
7e806470 10687 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10688 _("selected processor does not support "
10689 "requested special purpose register"));
10690 flags |= PSR_f;
10691 }
c921be7d 10692
fdfde340
JM
10693 Rn = inst.operands[1].reg;
10694 reject_bad_reg (Rn);
10695
62b3e311
PB
10696 inst.instruction |= (flags & SPSR_BIT) >> 2;
10697 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10698 inst.instruction |= (flags & 0xff);
fdfde340 10699 inst.instruction |= Rn << 16;
c19d1205 10700}
b05fe5cf 10701
c19d1205
ZW
10702static void
10703do_t_mul (void)
10704{
17828f45 10705 bfd_boolean narrow;
fdfde340 10706 unsigned Rd, Rn, Rm;
17828f45 10707
c19d1205
ZW
10708 if (!inst.operands[2].present)
10709 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 10710
fdfde340
JM
10711 Rd = inst.operands[0].reg;
10712 Rn = inst.operands[1].reg;
10713 Rm = inst.operands[2].reg;
10714
17828f45 10715 if (unified_syntax)
b05fe5cf 10716 {
17828f45 10717 if (inst.size_req == 4
fdfde340
JM
10718 || (Rd != Rn
10719 && Rd != Rm)
10720 || Rn > 7
10721 || Rm > 7)
17828f45
JM
10722 narrow = FALSE;
10723 else if (inst.instruction == T_MNEM_muls)
e07e6e58 10724 narrow = !in_it_block ();
17828f45 10725 else
e07e6e58 10726 narrow = in_it_block ();
b05fe5cf 10727 }
c19d1205 10728 else
b05fe5cf 10729 {
17828f45 10730 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 10731 constraint (Rn > 7 || Rm > 7,
c19d1205 10732 BAD_HIREG);
17828f45
JM
10733 narrow = TRUE;
10734 }
b05fe5cf 10735
17828f45
JM
10736 if (narrow)
10737 {
10738 /* 16-bit MULS/Conditional MUL. */
c19d1205 10739 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10740 inst.instruction |= Rd;
b05fe5cf 10741
fdfde340
JM
10742 if (Rd == Rn)
10743 inst.instruction |= Rm << 3;
10744 else if (Rd == Rm)
10745 inst.instruction |= Rn << 3;
c19d1205
ZW
10746 else
10747 constraint (1, _("dest must overlap one source register"));
10748 }
17828f45
JM
10749 else
10750 {
e07e6e58
NC
10751 constraint (inst.instruction != T_MNEM_mul,
10752 _("Thumb-2 MUL must not set flags"));
17828f45
JM
10753 /* 32-bit MUL. */
10754 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10755 inst.instruction |= Rd << 8;
10756 inst.instruction |= Rn << 16;
10757 inst.instruction |= Rm << 0;
10758
10759 reject_bad_reg (Rd);
10760 reject_bad_reg (Rn);
10761 reject_bad_reg (Rm);
17828f45 10762 }
c19d1205 10763}
b05fe5cf 10764
c19d1205
ZW
10765static void
10766do_t_mull (void)
10767{
fdfde340 10768 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 10769
fdfde340
JM
10770 RdLo = inst.operands[0].reg;
10771 RdHi = inst.operands[1].reg;
10772 Rn = inst.operands[2].reg;
10773 Rm = inst.operands[3].reg;
10774
10775 reject_bad_reg (RdLo);
10776 reject_bad_reg (RdHi);
10777 reject_bad_reg (Rn);
10778 reject_bad_reg (Rm);
10779
10780 inst.instruction |= RdLo << 12;
10781 inst.instruction |= RdHi << 8;
10782 inst.instruction |= Rn << 16;
10783 inst.instruction |= Rm;
10784
10785 if (RdLo == RdHi)
c19d1205
ZW
10786 as_tsktsk (_("rdhi and rdlo must be different"));
10787}
b05fe5cf 10788
c19d1205
ZW
10789static void
10790do_t_nop (void)
10791{
e07e6e58
NC
10792 set_it_insn_type (NEUTRAL_IT_INSN);
10793
c19d1205
ZW
10794 if (unified_syntax)
10795 {
10796 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 10797 {
c19d1205
ZW
10798 inst.instruction = THUMB_OP32 (inst.instruction);
10799 inst.instruction |= inst.operands[0].imm;
10800 }
10801 else
10802 {
bc2d1808
NC
10803 /* PR9722: Check for Thumb2 availability before
10804 generating a thumb2 nop instruction. */
afa62d5e 10805 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
10806 {
10807 inst.instruction = THUMB_OP16 (inst.instruction);
10808 inst.instruction |= inst.operands[0].imm << 4;
10809 }
10810 else
10811 inst.instruction = 0x46c0;
c19d1205
ZW
10812 }
10813 }
10814 else
10815 {
10816 constraint (inst.operands[0].present,
10817 _("Thumb does not support NOP with hints"));
10818 inst.instruction = 0x46c0;
10819 }
10820}
b05fe5cf 10821
c19d1205
ZW
10822static void
10823do_t_neg (void)
10824{
10825 if (unified_syntax)
10826 {
3d388997
PB
10827 bfd_boolean narrow;
10828
10829 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10830 narrow = !in_it_block ();
3d388997 10831 else
e07e6e58 10832 narrow = in_it_block ();
3d388997
PB
10833 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10834 narrow = FALSE;
10835 if (inst.size_req == 4)
10836 narrow = FALSE;
10837
10838 if (!narrow)
c19d1205
ZW
10839 {
10840 inst.instruction = THUMB_OP32 (inst.instruction);
10841 inst.instruction |= inst.operands[0].reg << 8;
10842 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
10843 }
10844 else
10845 {
c19d1205
ZW
10846 inst.instruction = THUMB_OP16 (inst.instruction);
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
10849 }
10850 }
10851 else
10852 {
c19d1205
ZW
10853 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10854 BAD_HIREG);
10855 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10856
10857 inst.instruction = THUMB_OP16 (inst.instruction);
10858 inst.instruction |= inst.operands[0].reg;
10859 inst.instruction |= inst.operands[1].reg << 3;
10860 }
10861}
10862
1c444d06
JM
10863static void
10864do_t_orn (void)
10865{
10866 unsigned Rd, Rn;
10867
10868 Rd = inst.operands[0].reg;
10869 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10870
fdfde340
JM
10871 reject_bad_reg (Rd);
10872 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10873 reject_bad_reg (Rn);
10874
1c444d06
JM
10875 inst.instruction |= Rd << 8;
10876 inst.instruction |= Rn << 16;
10877
10878 if (!inst.operands[2].isreg)
10879 {
10880 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10881 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10882 }
10883 else
10884 {
10885 unsigned Rm;
10886
10887 Rm = inst.operands[2].reg;
fdfde340 10888 reject_bad_reg (Rm);
1c444d06
JM
10889
10890 constraint (inst.operands[2].shifted
10891 && inst.operands[2].immisreg,
10892 _("shift must be constant"));
10893 encode_thumb32_shifted_operand (2);
10894 }
10895}
10896
c19d1205
ZW
10897static void
10898do_t_pkhbt (void)
10899{
fdfde340
JM
10900 unsigned Rd, Rn, Rm;
10901
10902 Rd = inst.operands[0].reg;
10903 Rn = inst.operands[1].reg;
10904 Rm = inst.operands[2].reg;
10905
10906 reject_bad_reg (Rd);
10907 reject_bad_reg (Rn);
10908 reject_bad_reg (Rm);
10909
10910 inst.instruction |= Rd << 8;
10911 inst.instruction |= Rn << 16;
10912 inst.instruction |= Rm;
c19d1205
ZW
10913 if (inst.operands[3].present)
10914 {
10915 unsigned int val = inst.reloc.exp.X_add_number;
10916 constraint (inst.reloc.exp.X_op != O_constant,
10917 _("expression too complex"));
10918 inst.instruction |= (val & 0x1c) << 10;
10919 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 10920 }
c19d1205 10921}
b05fe5cf 10922
c19d1205
ZW
10923static void
10924do_t_pkhtb (void)
10925{
10926 if (!inst.operands[3].present)
1ef52f49
NC
10927 {
10928 unsigned Rtmp;
10929
10930 inst.instruction &= ~0x00000020;
10931
10932 /* PR 10168. Swap the Rm and Rn registers. */
10933 Rtmp = inst.operands[1].reg;
10934 inst.operands[1].reg = inst.operands[2].reg;
10935 inst.operands[2].reg = Rtmp;
10936 }
c19d1205 10937 do_t_pkhbt ();
b05fe5cf
ZW
10938}
10939
c19d1205
ZW
10940static void
10941do_t_pld (void)
10942{
fdfde340
JM
10943 if (inst.operands[0].immisreg)
10944 reject_bad_reg (inst.operands[0].imm);
10945
c19d1205
ZW
10946 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10947}
b05fe5cf 10948
c19d1205
ZW
10949static void
10950do_t_push_pop (void)
b99bd4ef 10951{
e9f89963 10952 unsigned mask;
5f4273c7 10953
c19d1205
ZW
10954 constraint (inst.operands[0].writeback,
10955 _("push/pop do not support {reglist}^"));
10956 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10957 _("expression too complex"));
b99bd4ef 10958
e9f89963
PB
10959 mask = inst.operands[0].imm;
10960 if ((mask & ~0xff) == 0)
3c707909 10961 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 10962 else if ((inst.instruction == T_MNEM_push
e9f89963 10963 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 10964 || (inst.instruction == T_MNEM_pop
e9f89963 10965 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10966 {
c19d1205
ZW
10967 inst.instruction = THUMB_OP16 (inst.instruction);
10968 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10969 inst.instruction |= mask & 0xff;
c19d1205
ZW
10970 }
10971 else if (unified_syntax)
10972 {
3c707909 10973 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10974 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10975 }
10976 else
10977 {
10978 inst.error = _("invalid register list to push/pop instruction");
10979 return;
10980 }
c19d1205 10981}
b99bd4ef 10982
c19d1205
ZW
10983static void
10984do_t_rbit (void)
10985{
fdfde340
JM
10986 unsigned Rd, Rm;
10987
10988 Rd = inst.operands[0].reg;
10989 Rm = inst.operands[1].reg;
10990
10991 reject_bad_reg (Rd);
10992 reject_bad_reg (Rm);
10993
10994 inst.instruction |= Rd << 8;
10995 inst.instruction |= Rm << 16;
10996 inst.instruction |= Rm;
c19d1205 10997}
b99bd4ef 10998
c19d1205
ZW
10999static void
11000do_t_rev (void)
11001{
fdfde340
JM
11002 unsigned Rd, Rm;
11003
11004 Rd = inst.operands[0].reg;
11005 Rm = inst.operands[1].reg;
11006
11007 reject_bad_reg (Rd);
11008 reject_bad_reg (Rm);
11009
11010 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11011 && inst.size_req != 4)
11012 {
11013 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11014 inst.instruction |= Rd;
11015 inst.instruction |= Rm << 3;
c19d1205
ZW
11016 }
11017 else if (unified_syntax)
11018 {
11019 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11020 inst.instruction |= Rd << 8;
11021 inst.instruction |= Rm << 16;
11022 inst.instruction |= Rm;
c19d1205
ZW
11023 }
11024 else
11025 inst.error = BAD_HIREG;
11026}
b99bd4ef 11027
1c444d06
JM
11028static void
11029do_t_rrx (void)
11030{
11031 unsigned Rd, Rm;
11032
11033 Rd = inst.operands[0].reg;
11034 Rm = inst.operands[1].reg;
11035
fdfde340
JM
11036 reject_bad_reg (Rd);
11037 reject_bad_reg (Rm);
c921be7d 11038
1c444d06
JM
11039 inst.instruction |= Rd << 8;
11040 inst.instruction |= Rm;
11041}
11042
c19d1205
ZW
11043static void
11044do_t_rsb (void)
11045{
fdfde340 11046 unsigned Rd, Rs;
b99bd4ef 11047
c19d1205
ZW
11048 Rd = inst.operands[0].reg;
11049 Rs = (inst.operands[1].present
11050 ? inst.operands[1].reg /* Rd, Rs, foo */
11051 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11052
fdfde340
JM
11053 reject_bad_reg (Rd);
11054 reject_bad_reg (Rs);
11055 if (inst.operands[2].isreg)
11056 reject_bad_reg (inst.operands[2].reg);
11057
c19d1205
ZW
11058 inst.instruction |= Rd << 8;
11059 inst.instruction |= Rs << 16;
11060 if (!inst.operands[2].isreg)
11061 {
026d3abb
PB
11062 bfd_boolean narrow;
11063
11064 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11065 narrow = !in_it_block ();
026d3abb 11066 else
e07e6e58 11067 narrow = in_it_block ();
026d3abb
PB
11068
11069 if (Rd > 7 || Rs > 7)
11070 narrow = FALSE;
11071
11072 if (inst.size_req == 4 || !unified_syntax)
11073 narrow = FALSE;
11074
11075 if (inst.reloc.exp.X_op != O_constant
11076 || inst.reloc.exp.X_add_number != 0)
11077 narrow = FALSE;
11078
11079 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11080 relaxation, but it doesn't seem worth the hassle. */
11081 if (narrow)
11082 {
11083 inst.reloc.type = BFD_RELOC_UNUSED;
11084 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11085 inst.instruction |= Rs << 3;
11086 inst.instruction |= Rd;
11087 }
11088 else
11089 {
11090 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11091 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11092 }
c19d1205
ZW
11093 }
11094 else
11095 encode_thumb32_shifted_operand (2);
11096}
b99bd4ef 11097
c19d1205
ZW
11098static void
11099do_t_setend (void)
11100{
e07e6e58 11101 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11102 if (inst.operands[0].imm)
11103 inst.instruction |= 0x8;
11104}
b99bd4ef 11105
c19d1205
ZW
11106static void
11107do_t_shift (void)
11108{
11109 if (!inst.operands[1].present)
11110 inst.operands[1].reg = inst.operands[0].reg;
11111
11112 if (unified_syntax)
11113 {
3d388997
PB
11114 bfd_boolean narrow;
11115 int shift_kind;
11116
11117 switch (inst.instruction)
11118 {
11119 case T_MNEM_asr:
11120 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11121 case T_MNEM_lsl:
11122 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11123 case T_MNEM_lsr:
11124 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11125 case T_MNEM_ror:
11126 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11127 default: abort ();
11128 }
11129
11130 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11131 narrow = !in_it_block ();
3d388997 11132 else
e07e6e58 11133 narrow = in_it_block ();
3d388997
PB
11134 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11135 narrow = FALSE;
11136 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11137 narrow = FALSE;
11138 if (inst.operands[2].isreg
11139 && (inst.operands[1].reg != inst.operands[0].reg
11140 || inst.operands[2].reg > 7))
11141 narrow = FALSE;
11142 if (inst.size_req == 4)
11143 narrow = FALSE;
11144
fdfde340
JM
11145 reject_bad_reg (inst.operands[0].reg);
11146 reject_bad_reg (inst.operands[1].reg);
c921be7d 11147
3d388997 11148 if (!narrow)
c19d1205
ZW
11149 {
11150 if (inst.operands[2].isreg)
b99bd4ef 11151 {
fdfde340 11152 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11153 inst.instruction = THUMB_OP32 (inst.instruction);
11154 inst.instruction |= inst.operands[0].reg << 8;
11155 inst.instruction |= inst.operands[1].reg << 16;
11156 inst.instruction |= inst.operands[2].reg;
11157 }
11158 else
11159 {
11160 inst.operands[1].shifted = 1;
3d388997 11161 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11162 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11163 ? T_MNEM_movs : T_MNEM_mov);
11164 inst.instruction |= inst.operands[0].reg << 8;
11165 encode_thumb32_shifted_operand (1);
11166 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11167 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11168 }
11169 }
11170 else
11171 {
c19d1205 11172 if (inst.operands[2].isreg)
b99bd4ef 11173 {
3d388997 11174 switch (shift_kind)
b99bd4ef 11175 {
3d388997
PB
11176 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11177 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11178 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11179 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11180 default: abort ();
b99bd4ef 11181 }
5f4273c7 11182
c19d1205
ZW
11183 inst.instruction |= inst.operands[0].reg;
11184 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
11185 }
11186 else
11187 {
3d388997 11188 switch (shift_kind)
b99bd4ef 11189 {
3d388997
PB
11190 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11191 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11192 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11193 default: abort ();
b99bd4ef 11194 }
c19d1205
ZW
11195 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11196 inst.instruction |= inst.operands[0].reg;
11197 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11198 }
11199 }
c19d1205
ZW
11200 }
11201 else
11202 {
11203 constraint (inst.operands[0].reg > 7
11204 || inst.operands[1].reg > 7, BAD_HIREG);
11205 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11206
c19d1205
ZW
11207 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11208 {
11209 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11210 constraint (inst.operands[0].reg != inst.operands[1].reg,
11211 _("source1 and dest must be same register"));
b99bd4ef 11212
c19d1205
ZW
11213 switch (inst.instruction)
11214 {
11215 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11216 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11217 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11218 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11219 default: abort ();
11220 }
5f4273c7 11221
c19d1205
ZW
11222 inst.instruction |= inst.operands[0].reg;
11223 inst.instruction |= inst.operands[2].reg << 3;
11224 }
11225 else
b99bd4ef 11226 {
c19d1205
ZW
11227 switch (inst.instruction)
11228 {
11229 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11230 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11231 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11232 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11233 default: abort ();
11234 }
11235 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11236 inst.instruction |= inst.operands[0].reg;
11237 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11238 }
11239 }
b99bd4ef
NC
11240}
11241
11242static void
c19d1205 11243do_t_simd (void)
b99bd4ef 11244{
fdfde340
JM
11245 unsigned Rd, Rn, Rm;
11246
11247 Rd = inst.operands[0].reg;
11248 Rn = inst.operands[1].reg;
11249 Rm = inst.operands[2].reg;
11250
11251 reject_bad_reg (Rd);
11252 reject_bad_reg (Rn);
11253 reject_bad_reg (Rm);
11254
11255 inst.instruction |= Rd << 8;
11256 inst.instruction |= Rn << 16;
11257 inst.instruction |= Rm;
c19d1205 11258}
b99bd4ef 11259
03ee1b7f
NC
11260static void
11261do_t_simd2 (void)
11262{
11263 unsigned Rd, Rn, Rm;
11264
11265 Rd = inst.operands[0].reg;
11266 Rm = inst.operands[1].reg;
11267 Rn = inst.operands[2].reg;
11268
11269 reject_bad_reg (Rd);
11270 reject_bad_reg (Rn);
11271 reject_bad_reg (Rm);
11272
11273 inst.instruction |= Rd << 8;
11274 inst.instruction |= Rn << 16;
11275 inst.instruction |= Rm;
11276}
11277
c19d1205 11278static void
3eb17e6b 11279do_t_smc (void)
c19d1205
ZW
11280{
11281 unsigned int value = inst.reloc.exp.X_add_number;
11282 constraint (inst.reloc.exp.X_op != O_constant,
11283 _("expression too complex"));
11284 inst.reloc.type = BFD_RELOC_UNUSED;
11285 inst.instruction |= (value & 0xf000) >> 12;
11286 inst.instruction |= (value & 0x0ff0);
11287 inst.instruction |= (value & 0x000f) << 16;
11288}
b99bd4ef 11289
c19d1205 11290static void
3a21c15a 11291do_t_ssat_usat (int bias)
c19d1205 11292{
fdfde340
JM
11293 unsigned Rd, Rn;
11294
11295 Rd = inst.operands[0].reg;
11296 Rn = inst.operands[2].reg;
11297
11298 reject_bad_reg (Rd);
11299 reject_bad_reg (Rn);
11300
11301 inst.instruction |= Rd << 8;
3a21c15a 11302 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11303 inst.instruction |= Rn << 16;
b99bd4ef 11304
c19d1205 11305 if (inst.operands[3].present)
b99bd4ef 11306 {
3a21c15a
NC
11307 offsetT shift_amount = inst.reloc.exp.X_add_number;
11308
11309 inst.reloc.type = BFD_RELOC_UNUSED;
11310
c19d1205
ZW
11311 constraint (inst.reloc.exp.X_op != O_constant,
11312 _("expression too complex"));
b99bd4ef 11313
3a21c15a 11314 if (shift_amount != 0)
6189168b 11315 {
3a21c15a
NC
11316 constraint (shift_amount > 31,
11317 _("shift expression is too large"));
11318
c19d1205 11319 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11320 inst.instruction |= 0x00200000; /* sh bit. */
11321
11322 inst.instruction |= (shift_amount & 0x1c) << 10;
11323 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11324 }
11325 }
b99bd4ef 11326}
c921be7d 11327
3a21c15a
NC
11328static void
11329do_t_ssat (void)
11330{
11331 do_t_ssat_usat (1);
11332}
b99bd4ef 11333
0dd132b6 11334static void
c19d1205 11335do_t_ssat16 (void)
0dd132b6 11336{
fdfde340
JM
11337 unsigned Rd, Rn;
11338
11339 Rd = inst.operands[0].reg;
11340 Rn = inst.operands[2].reg;
11341
11342 reject_bad_reg (Rd);
11343 reject_bad_reg (Rn);
11344
11345 inst.instruction |= Rd << 8;
c19d1205 11346 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11347 inst.instruction |= Rn << 16;
c19d1205 11348}
0dd132b6 11349
c19d1205
ZW
11350static void
11351do_t_strex (void)
11352{
11353 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11354 || inst.operands[2].postind || inst.operands[2].writeback
11355 || inst.operands[2].immisreg || inst.operands[2].shifted
11356 || inst.operands[2].negative,
01cfc07f 11357 BAD_ADDR_MODE);
0dd132b6 11358
5be8be5d
DG
11359 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11360
c19d1205
ZW
11361 inst.instruction |= inst.operands[0].reg << 8;
11362 inst.instruction |= inst.operands[1].reg << 12;
11363 inst.instruction |= inst.operands[2].reg << 16;
11364 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11365}
11366
b99bd4ef 11367static void
c19d1205 11368do_t_strexd (void)
b99bd4ef 11369{
c19d1205
ZW
11370 if (!inst.operands[2].present)
11371 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11372
c19d1205
ZW
11373 constraint (inst.operands[0].reg == inst.operands[1].reg
11374 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 11375 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 11376 BAD_OVERLAP);
b99bd4ef 11377
c19d1205
ZW
11378 inst.instruction |= inst.operands[0].reg;
11379 inst.instruction |= inst.operands[1].reg << 12;
11380 inst.instruction |= inst.operands[2].reg << 8;
11381 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11382}
11383
11384static void
c19d1205 11385do_t_sxtah (void)
b99bd4ef 11386{
fdfde340
JM
11387 unsigned Rd, Rn, Rm;
11388
11389 Rd = inst.operands[0].reg;
11390 Rn = inst.operands[1].reg;
11391 Rm = inst.operands[2].reg;
11392
11393 reject_bad_reg (Rd);
11394 reject_bad_reg (Rn);
11395 reject_bad_reg (Rm);
11396
11397 inst.instruction |= Rd << 8;
11398 inst.instruction |= Rn << 16;
11399 inst.instruction |= Rm;
c19d1205
ZW
11400 inst.instruction |= inst.operands[3].imm << 4;
11401}
b99bd4ef 11402
c19d1205
ZW
11403static void
11404do_t_sxth (void)
11405{
fdfde340
JM
11406 unsigned Rd, Rm;
11407
11408 Rd = inst.operands[0].reg;
11409 Rm = inst.operands[1].reg;
11410
11411 reject_bad_reg (Rd);
11412 reject_bad_reg (Rm);
c921be7d
NC
11413
11414 if (inst.instruction <= 0xffff
11415 && inst.size_req != 4
fdfde340 11416 && Rd <= 7 && Rm <= 7
c19d1205 11417 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11418 {
c19d1205 11419 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11420 inst.instruction |= Rd;
11421 inst.instruction |= Rm << 3;
b99bd4ef 11422 }
c19d1205 11423 else if (unified_syntax)
b99bd4ef 11424 {
c19d1205
ZW
11425 if (inst.instruction <= 0xffff)
11426 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11427 inst.instruction |= Rd << 8;
11428 inst.instruction |= Rm;
c19d1205 11429 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11430 }
c19d1205 11431 else
b99bd4ef 11432 {
c19d1205
ZW
11433 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11434 _("Thumb encoding does not support rotation"));
11435 constraint (1, BAD_HIREG);
b99bd4ef 11436 }
c19d1205 11437}
b99bd4ef 11438
c19d1205
ZW
11439static void
11440do_t_swi (void)
11441{
11442 inst.reloc.type = BFD_RELOC_ARM_SWI;
11443}
b99bd4ef 11444
92e90b6e
PB
11445static void
11446do_t_tb (void)
11447{
fdfde340 11448 unsigned Rn, Rm;
92e90b6e
PB
11449 int half;
11450
11451 half = (inst.instruction & 0x10) != 0;
e07e6e58 11452 set_it_insn_type_last ();
dfa9f0d5
PB
11453 constraint (inst.operands[0].immisreg,
11454 _("instruction requires register index"));
fdfde340
JM
11455
11456 Rn = inst.operands[0].reg;
11457 Rm = inst.operands[0].imm;
c921be7d 11458
fdfde340
JM
11459 constraint (Rn == REG_SP, BAD_SP);
11460 reject_bad_reg (Rm);
11461
92e90b6e
PB
11462 constraint (!half && inst.operands[0].shifted,
11463 _("instruction does not allow shifted index"));
fdfde340 11464 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11465}
11466
c19d1205
ZW
11467static void
11468do_t_usat (void)
11469{
3a21c15a 11470 do_t_ssat_usat (0);
b99bd4ef
NC
11471}
11472
11473static void
c19d1205 11474do_t_usat16 (void)
b99bd4ef 11475{
fdfde340
JM
11476 unsigned Rd, Rn;
11477
11478 Rd = inst.operands[0].reg;
11479 Rn = inst.operands[2].reg;
11480
11481 reject_bad_reg (Rd);
11482 reject_bad_reg (Rn);
11483
11484 inst.instruction |= Rd << 8;
c19d1205 11485 inst.instruction |= inst.operands[1].imm;
fdfde340 11486 inst.instruction |= Rn << 16;
b99bd4ef 11487}
c19d1205 11488
5287ad62 11489/* Neon instruction encoder helpers. */
5f4273c7 11490
5287ad62 11491/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11492
5287ad62
JB
11493/* An "invalid" code for the following tables. */
11494#define N_INV -1u
11495
11496struct neon_tab_entry
b99bd4ef 11497{
5287ad62
JB
11498 unsigned integer;
11499 unsigned float_or_poly;
11500 unsigned scalar_or_imm;
11501};
5f4273c7 11502
5287ad62
JB
11503/* Map overloaded Neon opcodes to their respective encodings. */
11504#define NEON_ENC_TAB \
11505 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11506 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11507 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11508 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11509 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11510 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11511 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11512 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11513 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11514 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11515 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11516 /* Register variants of the following two instructions are encoded as
e07e6e58 11517 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11518 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11519 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11520 X(vfma, N_INV, 0x0000c10, N_INV), \
11521 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11522 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11523 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11524 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11525 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11526 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11527 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11528 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11529 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11530 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11531 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11532 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11533 X(vshl, 0x0000400, N_INV, 0x0800510), \
11534 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11535 X(vand, 0x0000110, N_INV, 0x0800030), \
11536 X(vbic, 0x0100110, N_INV, 0x0800030), \
11537 X(veor, 0x1000110, N_INV, N_INV), \
11538 X(vorn, 0x0300110, N_INV, 0x0800010), \
11539 X(vorr, 0x0200110, N_INV, 0x0800010), \
11540 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11541 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11542 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11543 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11544 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11545 X(vst1, 0x0000000, 0x0800000, N_INV), \
11546 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11547 X(vst2, 0x0000100, 0x0800100, N_INV), \
11548 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11549 X(vst3, 0x0000200, 0x0800200, N_INV), \
11550 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11551 X(vst4, 0x0000300, 0x0800300, N_INV), \
11552 X(vmovn, 0x1b20200, N_INV, N_INV), \
11553 X(vtrn, 0x1b20080, N_INV, N_INV), \
11554 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11555 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11556 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11557 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11558 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11559 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11560 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11561 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11562 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11563 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11564 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11565
11566enum neon_opc
11567{
11568#define X(OPC,I,F,S) N_MNEM_##OPC
11569NEON_ENC_TAB
11570#undef X
11571};
b99bd4ef 11572
5287ad62
JB
11573static const struct neon_tab_entry neon_enc_tab[] =
11574{
11575#define X(OPC,I,F,S) { (I), (F), (S) }
11576NEON_ENC_TAB
11577#undef X
11578};
b99bd4ef 11579
88714cb8
DG
11580/* Do not use these macros; instead, use NEON_ENCODE defined below. */
11581#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11582#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11583#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11584#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11585#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11586#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11587#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11588#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11589#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11590#define NEON_ENC_SINGLE_(X) \
037e8744 11591 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 11592#define NEON_ENC_DOUBLE_(X) \
037e8744 11593 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11594
88714cb8
DG
11595#define NEON_ENCODE(type, inst) \
11596 do \
11597 { \
11598 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11599 inst.is_neon = 1; \
11600 } \
11601 while (0)
11602
11603#define check_neon_suffixes \
11604 do \
11605 { \
11606 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11607 { \
11608 as_bad (_("invalid neon suffix for non neon instruction")); \
11609 return; \
11610 } \
11611 } \
11612 while (0)
11613
037e8744
JB
11614/* Define shapes for instruction operands. The following mnemonic characters
11615 are used in this table:
5287ad62 11616
037e8744 11617 F - VFP S<n> register
5287ad62
JB
11618 D - Neon D<n> register
11619 Q - Neon Q<n> register
11620 I - Immediate
11621 S - Scalar
11622 R - ARM register
11623 L - D<n> register list
5f4273c7 11624
037e8744
JB
11625 This table is used to generate various data:
11626 - enumerations of the form NS_DDR to be used as arguments to
11627 neon_select_shape.
11628 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 11629 - a table used to drive neon_select_shape. */
b99bd4ef 11630
037e8744
JB
11631#define NEON_SHAPE_DEF \
11632 X(3, (D, D, D), DOUBLE), \
11633 X(3, (Q, Q, Q), QUAD), \
11634 X(3, (D, D, I), DOUBLE), \
11635 X(3, (Q, Q, I), QUAD), \
11636 X(3, (D, D, S), DOUBLE), \
11637 X(3, (Q, Q, S), QUAD), \
11638 X(2, (D, D), DOUBLE), \
11639 X(2, (Q, Q), QUAD), \
11640 X(2, (D, S), DOUBLE), \
11641 X(2, (Q, S), QUAD), \
11642 X(2, (D, R), DOUBLE), \
11643 X(2, (Q, R), QUAD), \
11644 X(2, (D, I), DOUBLE), \
11645 X(2, (Q, I), QUAD), \
11646 X(3, (D, L, D), DOUBLE), \
11647 X(2, (D, Q), MIXED), \
11648 X(2, (Q, D), MIXED), \
11649 X(3, (D, Q, I), MIXED), \
11650 X(3, (Q, D, I), MIXED), \
11651 X(3, (Q, D, D), MIXED), \
11652 X(3, (D, Q, Q), MIXED), \
11653 X(3, (Q, Q, D), MIXED), \
11654 X(3, (Q, D, S), MIXED), \
11655 X(3, (D, Q, S), MIXED), \
11656 X(4, (D, D, D, I), DOUBLE), \
11657 X(4, (Q, Q, Q, I), QUAD), \
11658 X(2, (F, F), SINGLE), \
11659 X(3, (F, F, F), SINGLE), \
11660 X(2, (F, I), SINGLE), \
11661 X(2, (F, D), MIXED), \
11662 X(2, (D, F), MIXED), \
11663 X(3, (F, F, I), MIXED), \
11664 X(4, (R, R, F, F), SINGLE), \
11665 X(4, (F, F, R, R), SINGLE), \
11666 X(3, (D, R, R), DOUBLE), \
11667 X(3, (R, R, D), DOUBLE), \
11668 X(2, (S, R), SINGLE), \
11669 X(2, (R, S), SINGLE), \
11670 X(2, (F, R), SINGLE), \
11671 X(2, (R, F), SINGLE)
11672
11673#define S2(A,B) NS_##A##B
11674#define S3(A,B,C) NS_##A##B##C
11675#define S4(A,B,C,D) NS_##A##B##C##D
11676
11677#define X(N, L, C) S##N L
11678
5287ad62
JB
11679enum neon_shape
11680{
037e8744
JB
11681 NEON_SHAPE_DEF,
11682 NS_NULL
5287ad62 11683};
b99bd4ef 11684
037e8744
JB
11685#undef X
11686#undef S2
11687#undef S3
11688#undef S4
11689
11690enum neon_shape_class
11691{
11692 SC_SINGLE,
11693 SC_DOUBLE,
11694 SC_QUAD,
11695 SC_MIXED
11696};
11697
11698#define X(N, L, C) SC_##C
11699
11700static enum neon_shape_class neon_shape_class[] =
11701{
11702 NEON_SHAPE_DEF
11703};
11704
11705#undef X
11706
11707enum neon_shape_el
11708{
11709 SE_F,
11710 SE_D,
11711 SE_Q,
11712 SE_I,
11713 SE_S,
11714 SE_R,
11715 SE_L
11716};
11717
11718/* Register widths of above. */
11719static unsigned neon_shape_el_size[] =
11720{
11721 32,
11722 64,
11723 128,
11724 0,
11725 32,
11726 32,
11727 0
11728};
11729
11730struct neon_shape_info
11731{
11732 unsigned els;
11733 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11734};
11735
11736#define S2(A,B) { SE_##A, SE_##B }
11737#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11738#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11739
11740#define X(N, L, C) { N, S##N L }
11741
11742static struct neon_shape_info neon_shape_tab[] =
11743{
11744 NEON_SHAPE_DEF
11745};
11746
11747#undef X
11748#undef S2
11749#undef S3
11750#undef S4
11751
5287ad62
JB
11752/* Bit masks used in type checking given instructions.
11753 'N_EQK' means the type must be the same as (or based on in some way) the key
11754 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11755 set, various other bits can be set as well in order to modify the meaning of
11756 the type constraint. */
11757
11758enum neon_type_mask
11759{
8e79c3df
CM
11760 N_S8 = 0x0000001,
11761 N_S16 = 0x0000002,
11762 N_S32 = 0x0000004,
11763 N_S64 = 0x0000008,
11764 N_U8 = 0x0000010,
11765 N_U16 = 0x0000020,
11766 N_U32 = 0x0000040,
11767 N_U64 = 0x0000080,
11768 N_I8 = 0x0000100,
11769 N_I16 = 0x0000200,
11770 N_I32 = 0x0000400,
11771 N_I64 = 0x0000800,
11772 N_8 = 0x0001000,
11773 N_16 = 0x0002000,
11774 N_32 = 0x0004000,
11775 N_64 = 0x0008000,
11776 N_P8 = 0x0010000,
11777 N_P16 = 0x0020000,
11778 N_F16 = 0x0040000,
11779 N_F32 = 0x0080000,
11780 N_F64 = 0x0100000,
c921be7d
NC
11781 N_KEY = 0x1000000, /* Key element (main type specifier). */
11782 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 11783 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
11784 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11785 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11786 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11787 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11788 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11789 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11790 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 11791 N_UTYP = 0,
037e8744 11792 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
11793};
11794
dcbf9037
JB
11795#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11796
5287ad62
JB
11797#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11798#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11799#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11800#define N_SUF_32 (N_SU_32 | N_F32)
11801#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11802#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11803
11804/* Pass this as the first type argument to neon_check_type to ignore types
11805 altogether. */
11806#define N_IGNORE_TYPE (N_KEY | N_EQK)
11807
037e8744
JB
11808/* Select a "shape" for the current instruction (describing register types or
11809 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11810 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11811 function of operand parsing, so this function doesn't need to be called.
11812 Shapes should be listed in order of decreasing length. */
5287ad62
JB
11813
11814static enum neon_shape
037e8744 11815neon_select_shape (enum neon_shape shape, ...)
5287ad62 11816{
037e8744
JB
11817 va_list ap;
11818 enum neon_shape first_shape = shape;
5287ad62
JB
11819
11820 /* Fix missing optional operands. FIXME: we don't know at this point how
11821 many arguments we should have, so this makes the assumption that we have
11822 > 1. This is true of all current Neon opcodes, I think, but may not be
11823 true in the future. */
11824 if (!inst.operands[1].present)
11825 inst.operands[1] = inst.operands[0];
11826
037e8744 11827 va_start (ap, shape);
5f4273c7 11828
21d799b5 11829 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
11830 {
11831 unsigned j;
11832 int matches = 1;
11833
11834 for (j = 0; j < neon_shape_tab[shape].els; j++)
11835 {
11836 if (!inst.operands[j].present)
11837 {
11838 matches = 0;
11839 break;
11840 }
11841
11842 switch (neon_shape_tab[shape].el[j])
11843 {
11844 case SE_F:
11845 if (!(inst.operands[j].isreg
11846 && inst.operands[j].isvec
11847 && inst.operands[j].issingle
11848 && !inst.operands[j].isquad))
11849 matches = 0;
11850 break;
11851
11852 case SE_D:
11853 if (!(inst.operands[j].isreg
11854 && inst.operands[j].isvec
11855 && !inst.operands[j].isquad
11856 && !inst.operands[j].issingle))
11857 matches = 0;
11858 break;
11859
11860 case SE_R:
11861 if (!(inst.operands[j].isreg
11862 && !inst.operands[j].isvec))
11863 matches = 0;
11864 break;
11865
11866 case SE_Q:
11867 if (!(inst.operands[j].isreg
11868 && inst.operands[j].isvec
11869 && inst.operands[j].isquad
11870 && !inst.operands[j].issingle))
11871 matches = 0;
11872 break;
11873
11874 case SE_I:
11875 if (!(!inst.operands[j].isreg
11876 && !inst.operands[j].isscalar))
11877 matches = 0;
11878 break;
11879
11880 case SE_S:
11881 if (!(!inst.operands[j].isreg
11882 && inst.operands[j].isscalar))
11883 matches = 0;
11884 break;
11885
11886 case SE_L:
11887 break;
11888 }
3fde54a2
JZ
11889 if (!matches)
11890 break;
037e8744
JB
11891 }
11892 if (matches)
5287ad62 11893 break;
037e8744 11894 }
5f4273c7 11895
037e8744 11896 va_end (ap);
5287ad62 11897
037e8744
JB
11898 if (shape == NS_NULL && first_shape != NS_NULL)
11899 first_error (_("invalid instruction shape"));
5287ad62 11900
037e8744
JB
11901 return shape;
11902}
5287ad62 11903
037e8744
JB
11904/* True if SHAPE is predominantly a quadword operation (most of the time, this
11905 means the Q bit should be set). */
11906
11907static int
11908neon_quad (enum neon_shape shape)
11909{
11910 return neon_shape_class[shape] == SC_QUAD;
5287ad62 11911}
037e8744 11912
5287ad62
JB
11913static void
11914neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11915 unsigned *g_size)
11916{
11917 /* Allow modification to be made to types which are constrained to be
11918 based on the key element, based on bits set alongside N_EQK. */
11919 if ((typebits & N_EQK) != 0)
11920 {
11921 if ((typebits & N_HLF) != 0)
11922 *g_size /= 2;
11923 else if ((typebits & N_DBL) != 0)
11924 *g_size *= 2;
11925 if ((typebits & N_SGN) != 0)
11926 *g_type = NT_signed;
11927 else if ((typebits & N_UNS) != 0)
11928 *g_type = NT_unsigned;
11929 else if ((typebits & N_INT) != 0)
11930 *g_type = NT_integer;
11931 else if ((typebits & N_FLT) != 0)
11932 *g_type = NT_float;
dcbf9037
JB
11933 else if ((typebits & N_SIZ) != 0)
11934 *g_type = NT_untyped;
5287ad62
JB
11935 }
11936}
5f4273c7 11937
5287ad62
JB
11938/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11939 operand type, i.e. the single type specified in a Neon instruction when it
11940 is the only one given. */
11941
11942static struct neon_type_el
11943neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11944{
11945 struct neon_type_el dest = *key;
5f4273c7 11946
9c2799c2 11947 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 11948
5287ad62
JB
11949 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11950
11951 return dest;
11952}
11953
11954/* Convert Neon type and size into compact bitmask representation. */
11955
11956static enum neon_type_mask
11957type_chk_of_el_type (enum neon_el_type type, unsigned size)
11958{
11959 switch (type)
11960 {
11961 case NT_untyped:
11962 switch (size)
11963 {
11964 case 8: return N_8;
11965 case 16: return N_16;
11966 case 32: return N_32;
11967 case 64: return N_64;
11968 default: ;
11969 }
11970 break;
11971
11972 case NT_integer:
11973 switch (size)
11974 {
11975 case 8: return N_I8;
11976 case 16: return N_I16;
11977 case 32: return N_I32;
11978 case 64: return N_I64;
11979 default: ;
11980 }
11981 break;
11982
11983 case NT_float:
037e8744
JB
11984 switch (size)
11985 {
8e79c3df 11986 case 16: return N_F16;
037e8744
JB
11987 case 32: return N_F32;
11988 case 64: return N_F64;
11989 default: ;
11990 }
5287ad62
JB
11991 break;
11992
11993 case NT_poly:
11994 switch (size)
11995 {
11996 case 8: return N_P8;
11997 case 16: return N_P16;
11998 default: ;
11999 }
12000 break;
12001
12002 case NT_signed:
12003 switch (size)
12004 {
12005 case 8: return N_S8;
12006 case 16: return N_S16;
12007 case 32: return N_S32;
12008 case 64: return N_S64;
12009 default: ;
12010 }
12011 break;
12012
12013 case NT_unsigned:
12014 switch (size)
12015 {
12016 case 8: return N_U8;
12017 case 16: return N_U16;
12018 case 32: return N_U32;
12019 case 64: return N_U64;
12020 default: ;
12021 }
12022 break;
12023
12024 default: ;
12025 }
5f4273c7 12026
5287ad62
JB
12027 return N_UTYP;
12028}
12029
12030/* Convert compact Neon bitmask type representation to a type and size. Only
12031 handles the case where a single bit is set in the mask. */
12032
dcbf9037 12033static int
5287ad62
JB
12034el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12035 enum neon_type_mask mask)
12036{
dcbf9037
JB
12037 if ((mask & N_EQK) != 0)
12038 return FAIL;
12039
5287ad62
JB
12040 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12041 *size = 8;
dcbf9037 12042 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12043 *size = 16;
dcbf9037 12044 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12045 *size = 32;
037e8744 12046 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12047 *size = 64;
dcbf9037
JB
12048 else
12049 return FAIL;
12050
5287ad62
JB
12051 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12052 *type = NT_signed;
dcbf9037 12053 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12054 *type = NT_unsigned;
dcbf9037 12055 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12056 *type = NT_integer;
dcbf9037 12057 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12058 *type = NT_untyped;
dcbf9037 12059 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12060 *type = NT_poly;
037e8744 12061 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12062 *type = NT_float;
dcbf9037
JB
12063 else
12064 return FAIL;
5f4273c7 12065
dcbf9037 12066 return SUCCESS;
5287ad62
JB
12067}
12068
12069/* Modify a bitmask of allowed types. This is only needed for type
12070 relaxation. */
12071
12072static unsigned
12073modify_types_allowed (unsigned allowed, unsigned mods)
12074{
12075 unsigned size;
12076 enum neon_el_type type;
12077 unsigned destmask;
12078 int i;
5f4273c7 12079
5287ad62 12080 destmask = 0;
5f4273c7 12081
5287ad62
JB
12082 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12083 {
21d799b5
NC
12084 if (el_type_of_type_chk (&type, &size,
12085 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12086 {
12087 neon_modify_type_size (mods, &type, &size);
12088 destmask |= type_chk_of_el_type (type, size);
12089 }
5287ad62 12090 }
5f4273c7 12091
5287ad62
JB
12092 return destmask;
12093}
12094
12095/* Check type and return type classification.
12096 The manual states (paraphrase): If one datatype is given, it indicates the
12097 type given in:
12098 - the second operand, if there is one
12099 - the operand, if there is no second operand
12100 - the result, if there are no operands.
12101 This isn't quite good enough though, so we use a concept of a "key" datatype
12102 which is set on a per-instruction basis, which is the one which matters when
12103 only one data type is written.
12104 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12105 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12106
12107static struct neon_type_el
12108neon_check_type (unsigned els, enum neon_shape ns, ...)
12109{
12110 va_list ap;
12111 unsigned i, pass, key_el = 0;
12112 unsigned types[NEON_MAX_TYPE_ELS];
12113 enum neon_el_type k_type = NT_invtype;
12114 unsigned k_size = -1u;
12115 struct neon_type_el badtype = {NT_invtype, -1};
12116 unsigned key_allowed = 0;
12117
12118 /* Optional registers in Neon instructions are always (not) in operand 1.
12119 Fill in the missing operand here, if it was omitted. */
12120 if (els > 1 && !inst.operands[1].present)
12121 inst.operands[1] = inst.operands[0];
12122
12123 /* Suck up all the varargs. */
12124 va_start (ap, ns);
12125 for (i = 0; i < els; i++)
12126 {
12127 unsigned thisarg = va_arg (ap, unsigned);
12128 if (thisarg == N_IGNORE_TYPE)
12129 {
12130 va_end (ap);
12131 return badtype;
12132 }
12133 types[i] = thisarg;
12134 if ((thisarg & N_KEY) != 0)
12135 key_el = i;
12136 }
12137 va_end (ap);
12138
dcbf9037
JB
12139 if (inst.vectype.elems > 0)
12140 for (i = 0; i < els; i++)
12141 if (inst.operands[i].vectype.type != NT_invtype)
12142 {
12143 first_error (_("types specified in both the mnemonic and operands"));
12144 return badtype;
12145 }
12146
5287ad62
JB
12147 /* Duplicate inst.vectype elements here as necessary.
12148 FIXME: No idea if this is exactly the same as the ARM assembler,
12149 particularly when an insn takes one register and one non-register
12150 operand. */
12151 if (inst.vectype.elems == 1 && els > 1)
12152 {
12153 unsigned j;
12154 inst.vectype.elems = els;
12155 inst.vectype.el[key_el] = inst.vectype.el[0];
12156 for (j = 0; j < els; j++)
dcbf9037
JB
12157 if (j != key_el)
12158 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12159 types[j]);
12160 }
12161 else if (inst.vectype.elems == 0 && els > 0)
12162 {
12163 unsigned j;
12164 /* No types were given after the mnemonic, so look for types specified
12165 after each operand. We allow some flexibility here; as long as the
12166 "key" operand has a type, we can infer the others. */
12167 for (j = 0; j < els; j++)
12168 if (inst.operands[j].vectype.type != NT_invtype)
12169 inst.vectype.el[j] = inst.operands[j].vectype;
12170
12171 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12172 {
dcbf9037
JB
12173 for (j = 0; j < els; j++)
12174 if (inst.operands[j].vectype.type == NT_invtype)
12175 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12176 types[j]);
12177 }
12178 else
12179 {
12180 first_error (_("operand types can't be inferred"));
12181 return badtype;
5287ad62
JB
12182 }
12183 }
12184 else if (inst.vectype.elems != els)
12185 {
dcbf9037 12186 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12187 return badtype;
12188 }
12189
12190 for (pass = 0; pass < 2; pass++)
12191 {
12192 for (i = 0; i < els; i++)
12193 {
12194 unsigned thisarg = types[i];
12195 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12196 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12197 enum neon_el_type g_type = inst.vectype.el[i].type;
12198 unsigned g_size = inst.vectype.el[i].size;
12199
12200 /* Decay more-specific signed & unsigned types to sign-insensitive
12201 integer types if sign-specific variants are unavailable. */
12202 if ((g_type == NT_signed || g_type == NT_unsigned)
12203 && (types_allowed & N_SU_ALL) == 0)
12204 g_type = NT_integer;
12205
12206 /* If only untyped args are allowed, decay any more specific types to
12207 them. Some instructions only care about signs for some element
12208 sizes, so handle that properly. */
12209 if ((g_size == 8 && (types_allowed & N_8) != 0)
12210 || (g_size == 16 && (types_allowed & N_16) != 0)
12211 || (g_size == 32 && (types_allowed & N_32) != 0)
12212 || (g_size == 64 && (types_allowed & N_64) != 0))
12213 g_type = NT_untyped;
12214
12215 if (pass == 0)
12216 {
12217 if ((thisarg & N_KEY) != 0)
12218 {
12219 k_type = g_type;
12220 k_size = g_size;
12221 key_allowed = thisarg & ~N_KEY;
12222 }
12223 }
12224 else
12225 {
037e8744
JB
12226 if ((thisarg & N_VFP) != 0)
12227 {
99b253c5
NC
12228 enum neon_shape_el regshape;
12229 unsigned regwidth, match;
12230
12231 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12232 if (ns == NS_NULL)
12233 {
12234 first_error (_("invalid instruction shape"));
12235 return badtype;
12236 }
12237 regshape = neon_shape_tab[ns].el[i];
12238 regwidth = neon_shape_el_size[regshape];
037e8744
JB
12239
12240 /* In VFP mode, operands must match register widths. If we
12241 have a key operand, use its width, else use the width of
12242 the current operand. */
12243 if (k_size != -1u)
12244 match = k_size;
12245 else
12246 match = g_size;
12247
12248 if (regwidth != match)
12249 {
12250 first_error (_("operand size must match register width"));
12251 return badtype;
12252 }
12253 }
5f4273c7 12254
5287ad62
JB
12255 if ((thisarg & N_EQK) == 0)
12256 {
12257 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12258
12259 if ((given_type & types_allowed) == 0)
12260 {
dcbf9037 12261 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12262 return badtype;
12263 }
12264 }
12265 else
12266 {
12267 enum neon_el_type mod_k_type = k_type;
12268 unsigned mod_k_size = k_size;
12269 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12270 if (g_type != mod_k_type || g_size != mod_k_size)
12271 {
dcbf9037 12272 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12273 return badtype;
12274 }
12275 }
12276 }
12277 }
12278 }
12279
12280 return inst.vectype.el[key_el];
12281}
12282
037e8744 12283/* Neon-style VFP instruction forwarding. */
5287ad62 12284
037e8744
JB
12285/* Thumb VFP instructions have 0xE in the condition field. */
12286
12287static void
12288do_vfp_cond_or_thumb (void)
5287ad62 12289{
88714cb8
DG
12290 inst.is_neon = 1;
12291
5287ad62 12292 if (thumb_mode)
037e8744 12293 inst.instruction |= 0xe0000000;
5287ad62 12294 else
037e8744 12295 inst.instruction |= inst.cond << 28;
5287ad62
JB
12296}
12297
037e8744
JB
12298/* Look up and encode a simple mnemonic, for use as a helper function for the
12299 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12300 etc. It is assumed that operand parsing has already been done, and that the
12301 operands are in the form expected by the given opcode (this isn't necessarily
12302 the same as the form in which they were parsed, hence some massaging must
12303 take place before this function is called).
12304 Checks current arch version against that in the looked-up opcode. */
5287ad62 12305
037e8744
JB
12306static void
12307do_vfp_nsyn_opcode (const char *opname)
5287ad62 12308{
037e8744 12309 const struct asm_opcode *opcode;
5f4273c7 12310
21d799b5 12311 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12312
037e8744
JB
12313 if (!opcode)
12314 abort ();
5287ad62 12315
037e8744
JB
12316 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12317 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12318 _(BAD_FPU));
5287ad62 12319
88714cb8
DG
12320 inst.is_neon = 1;
12321
037e8744
JB
12322 if (thumb_mode)
12323 {
12324 inst.instruction = opcode->tvalue;
12325 opcode->tencode ();
12326 }
12327 else
12328 {
12329 inst.instruction = (inst.cond << 28) | opcode->avalue;
12330 opcode->aencode ();
12331 }
12332}
5287ad62
JB
12333
12334static void
037e8744 12335do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12336{
037e8744
JB
12337 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12338
12339 if (rs == NS_FFF)
12340 {
12341 if (is_add)
12342 do_vfp_nsyn_opcode ("fadds");
12343 else
12344 do_vfp_nsyn_opcode ("fsubs");
12345 }
12346 else
12347 {
12348 if (is_add)
12349 do_vfp_nsyn_opcode ("faddd");
12350 else
12351 do_vfp_nsyn_opcode ("fsubd");
12352 }
12353}
12354
12355/* Check operand types to see if this is a VFP instruction, and if so call
12356 PFN (). */
12357
12358static int
12359try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12360{
12361 enum neon_shape rs;
12362 struct neon_type_el et;
12363
12364 switch (args)
12365 {
12366 case 2:
12367 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12368 et = neon_check_type (2, rs,
12369 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12370 break;
5f4273c7 12371
037e8744
JB
12372 case 3:
12373 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12374 et = neon_check_type (3, rs,
12375 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12376 break;
12377
12378 default:
12379 abort ();
12380 }
12381
12382 if (et.type != NT_invtype)
12383 {
12384 pfn (rs);
12385 return SUCCESS;
12386 }
037e8744 12387
99b253c5 12388 inst.error = NULL;
037e8744
JB
12389 return FAIL;
12390}
12391
12392static void
12393do_vfp_nsyn_mla_mls (enum neon_shape rs)
12394{
12395 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12396
037e8744
JB
12397 if (rs == NS_FFF)
12398 {
12399 if (is_mla)
12400 do_vfp_nsyn_opcode ("fmacs");
12401 else
1ee69515 12402 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
12403 }
12404 else
12405 {
12406 if (is_mla)
12407 do_vfp_nsyn_opcode ("fmacd");
12408 else
1ee69515 12409 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
12410 }
12411}
12412
62f3b8c8
PB
12413static void
12414do_vfp_nsyn_fma_fms (enum neon_shape rs)
12415{
12416 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12417
12418 if (rs == NS_FFF)
12419 {
12420 if (is_fma)
12421 do_vfp_nsyn_opcode ("ffmas");
12422 else
12423 do_vfp_nsyn_opcode ("ffnmas");
12424 }
12425 else
12426 {
12427 if (is_fma)
12428 do_vfp_nsyn_opcode ("ffmad");
12429 else
12430 do_vfp_nsyn_opcode ("ffnmad");
12431 }
12432}
12433
037e8744
JB
12434static void
12435do_vfp_nsyn_mul (enum neon_shape rs)
12436{
12437 if (rs == NS_FFF)
12438 do_vfp_nsyn_opcode ("fmuls");
12439 else
12440 do_vfp_nsyn_opcode ("fmuld");
12441}
12442
12443static void
12444do_vfp_nsyn_abs_neg (enum neon_shape rs)
12445{
12446 int is_neg = (inst.instruction & 0x80) != 0;
12447 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12448
12449 if (rs == NS_FF)
12450 {
12451 if (is_neg)
12452 do_vfp_nsyn_opcode ("fnegs");
12453 else
12454 do_vfp_nsyn_opcode ("fabss");
12455 }
12456 else
12457 {
12458 if (is_neg)
12459 do_vfp_nsyn_opcode ("fnegd");
12460 else
12461 do_vfp_nsyn_opcode ("fabsd");
12462 }
12463}
12464
12465/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12466 insns belong to Neon, and are handled elsewhere. */
12467
12468static void
12469do_vfp_nsyn_ldm_stm (int is_dbmode)
12470{
12471 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12472 if (is_ldm)
12473 {
12474 if (is_dbmode)
12475 do_vfp_nsyn_opcode ("fldmdbs");
12476 else
12477 do_vfp_nsyn_opcode ("fldmias");
12478 }
12479 else
12480 {
12481 if (is_dbmode)
12482 do_vfp_nsyn_opcode ("fstmdbs");
12483 else
12484 do_vfp_nsyn_opcode ("fstmias");
12485 }
12486}
12487
037e8744
JB
12488static void
12489do_vfp_nsyn_sqrt (void)
12490{
12491 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12492 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12493
037e8744
JB
12494 if (rs == NS_FF)
12495 do_vfp_nsyn_opcode ("fsqrts");
12496 else
12497 do_vfp_nsyn_opcode ("fsqrtd");
12498}
12499
12500static void
12501do_vfp_nsyn_div (void)
12502{
12503 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12504 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12505 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12506
037e8744
JB
12507 if (rs == NS_FFF)
12508 do_vfp_nsyn_opcode ("fdivs");
12509 else
12510 do_vfp_nsyn_opcode ("fdivd");
12511}
12512
12513static void
12514do_vfp_nsyn_nmul (void)
12515{
12516 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12517 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12518 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12519
037e8744
JB
12520 if (rs == NS_FFF)
12521 {
88714cb8 12522 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12523 do_vfp_sp_dyadic ();
12524 }
12525 else
12526 {
88714cb8 12527 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12528 do_vfp_dp_rd_rn_rm ();
12529 }
12530 do_vfp_cond_or_thumb ();
12531}
12532
12533static void
12534do_vfp_nsyn_cmp (void)
12535{
12536 if (inst.operands[1].isreg)
12537 {
12538 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12539 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12540
037e8744
JB
12541 if (rs == NS_FF)
12542 {
88714cb8 12543 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12544 do_vfp_sp_monadic ();
12545 }
12546 else
12547 {
88714cb8 12548 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12549 do_vfp_dp_rd_rm ();
12550 }
12551 }
12552 else
12553 {
12554 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12555 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12556
12557 switch (inst.instruction & 0x0fffffff)
12558 {
12559 case N_MNEM_vcmp:
12560 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12561 break;
12562 case N_MNEM_vcmpe:
12563 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12564 break;
12565 default:
12566 abort ();
12567 }
5f4273c7 12568
037e8744
JB
12569 if (rs == NS_FI)
12570 {
88714cb8 12571 NEON_ENCODE (SINGLE, inst);
037e8744
JB
12572 do_vfp_sp_compare_z ();
12573 }
12574 else
12575 {
88714cb8 12576 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
12577 do_vfp_dp_rd ();
12578 }
12579 }
12580 do_vfp_cond_or_thumb ();
12581}
12582
12583static void
12584nsyn_insert_sp (void)
12585{
12586 inst.operands[1] = inst.operands[0];
12587 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12588 inst.operands[0].reg = REG_SP;
037e8744
JB
12589 inst.operands[0].isreg = 1;
12590 inst.operands[0].writeback = 1;
12591 inst.operands[0].present = 1;
12592}
12593
12594static void
12595do_vfp_nsyn_push (void)
12596{
12597 nsyn_insert_sp ();
12598 if (inst.operands[1].issingle)
12599 do_vfp_nsyn_opcode ("fstmdbs");
12600 else
12601 do_vfp_nsyn_opcode ("fstmdbd");
12602}
12603
12604static void
12605do_vfp_nsyn_pop (void)
12606{
12607 nsyn_insert_sp ();
12608 if (inst.operands[1].issingle)
22b5b651 12609 do_vfp_nsyn_opcode ("fldmias");
037e8744 12610 else
22b5b651 12611 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
12612}
12613
12614/* Fix up Neon data-processing instructions, ORing in the correct bits for
12615 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12616
88714cb8
DG
12617static void
12618neon_dp_fixup (struct arm_it* insn)
037e8744 12619{
88714cb8
DG
12620 unsigned int i = insn->instruction;
12621 insn->is_neon = 1;
12622
037e8744
JB
12623 if (thumb_mode)
12624 {
12625 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12626 if (i & (1 << 24))
12627 i |= 1 << 28;
5f4273c7 12628
037e8744 12629 i &= ~(1 << 24);
5f4273c7 12630
037e8744
JB
12631 i |= 0xef000000;
12632 }
12633 else
12634 i |= 0xf2000000;
5f4273c7 12635
88714cb8 12636 insn->instruction = i;
037e8744
JB
12637}
12638
12639/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12640 (0, 1, 2, 3). */
12641
12642static unsigned
12643neon_logbits (unsigned x)
12644{
12645 return ffs (x) - 4;
12646}
12647
12648#define LOW4(R) ((R) & 0xf)
12649#define HI1(R) (((R) >> 4) & 1)
12650
12651/* Encode insns with bit pattern:
12652
12653 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12654 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 12655
037e8744
JB
12656 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12657 different meaning for some instruction. */
12658
12659static void
12660neon_three_same (int isquad, int ubit, int size)
12661{
12662 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12663 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12664 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12665 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12666 inst.instruction |= LOW4 (inst.operands[2].reg);
12667 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12668 inst.instruction |= (isquad != 0) << 6;
12669 inst.instruction |= (ubit != 0) << 24;
12670 if (size != -1)
12671 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12672
88714cb8 12673 neon_dp_fixup (&inst);
037e8744
JB
12674}
12675
12676/* Encode instructions of the form:
12677
12678 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12679 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
12680
12681 Don't write size if SIZE == -1. */
12682
12683static void
12684neon_two_same (int qbit, int ubit, int size)
12685{
12686 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12687 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12688 inst.instruction |= LOW4 (inst.operands[1].reg);
12689 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12690 inst.instruction |= (qbit != 0) << 6;
12691 inst.instruction |= (ubit != 0) << 24;
12692
12693 if (size != -1)
12694 inst.instruction |= neon_logbits (size) << 18;
12695
88714cb8 12696 neon_dp_fixup (&inst);
5287ad62
JB
12697}
12698
12699/* Neon instruction encoders, in approximate order of appearance. */
12700
12701static void
12702do_neon_dyadic_i_su (void)
12703{
037e8744 12704 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12705 struct neon_type_el et = neon_check_type (3, rs,
12706 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 12707 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12708}
12709
12710static void
12711do_neon_dyadic_i64_su (void)
12712{
037e8744 12713 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12714 struct neon_type_el et = neon_check_type (3, rs,
12715 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 12716 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12717}
12718
12719static void
12720neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12721 unsigned immbits)
12722{
12723 unsigned size = et.size >> 3;
12724 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12725 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12726 inst.instruction |= LOW4 (inst.operands[1].reg);
12727 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12728 inst.instruction |= (isquad != 0) << 6;
12729 inst.instruction |= immbits << 16;
12730 inst.instruction |= (size >> 3) << 7;
12731 inst.instruction |= (size & 0x7) << 19;
12732 if (write_ubit)
12733 inst.instruction |= (uval != 0) << 24;
12734
88714cb8 12735 neon_dp_fixup (&inst);
5287ad62
JB
12736}
12737
12738static void
12739do_neon_shl_imm (void)
12740{
12741 if (!inst.operands[2].isreg)
12742 {
037e8744 12743 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12744 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 12745 NEON_ENCODE (IMMED, inst);
037e8744 12746 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
12747 }
12748 else
12749 {
037e8744 12750 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12751 struct neon_type_el et = neon_check_type (3, rs,
12752 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12753 unsigned int tmp;
12754
12755 /* VSHL/VQSHL 3-register variants have syntax such as:
12756 vshl.xx Dd, Dm, Dn
12757 whereas other 3-register operations encoded by neon_three_same have
12758 syntax like:
12759 vadd.xx Dd, Dn, Dm
12760 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12761 here. */
12762 tmp = inst.operands[2].reg;
12763 inst.operands[2].reg = inst.operands[1].reg;
12764 inst.operands[1].reg = tmp;
88714cb8 12765 NEON_ENCODE (INTEGER, inst);
037e8744 12766 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12767 }
12768}
12769
12770static void
12771do_neon_qshl_imm (void)
12772{
12773 if (!inst.operands[2].isreg)
12774 {
037e8744 12775 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12776 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 12777
88714cb8 12778 NEON_ENCODE (IMMED, inst);
037e8744 12779 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12780 inst.operands[2].imm);
12781 }
12782 else
12783 {
037e8744 12784 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12785 struct neon_type_el et = neon_check_type (3, rs,
12786 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12787 unsigned int tmp;
12788
12789 /* See note in do_neon_shl_imm. */
12790 tmp = inst.operands[2].reg;
12791 inst.operands[2].reg = inst.operands[1].reg;
12792 inst.operands[1].reg = tmp;
88714cb8 12793 NEON_ENCODE (INTEGER, inst);
037e8744 12794 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12795 }
12796}
12797
627907b7
JB
12798static void
12799do_neon_rshl (void)
12800{
12801 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12802 struct neon_type_el et = neon_check_type (3, rs,
12803 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12804 unsigned int tmp;
12805
12806 tmp = inst.operands[2].reg;
12807 inst.operands[2].reg = inst.operands[1].reg;
12808 inst.operands[1].reg = tmp;
12809 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12810}
12811
5287ad62
JB
12812static int
12813neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12814{
036dc3f7
PB
12815 /* Handle .I8 pseudo-instructions. */
12816 if (size == 8)
5287ad62 12817 {
5287ad62
JB
12818 /* Unfortunately, this will make everything apart from zero out-of-range.
12819 FIXME is this the intended semantics? There doesn't seem much point in
12820 accepting .I8 if so. */
12821 immediate |= immediate << 8;
12822 size = 16;
036dc3f7
PB
12823 }
12824
12825 if (size >= 32)
12826 {
12827 if (immediate == (immediate & 0x000000ff))
12828 {
12829 *immbits = immediate;
12830 return 0x1;
12831 }
12832 else if (immediate == (immediate & 0x0000ff00))
12833 {
12834 *immbits = immediate >> 8;
12835 return 0x3;
12836 }
12837 else if (immediate == (immediate & 0x00ff0000))
12838 {
12839 *immbits = immediate >> 16;
12840 return 0x5;
12841 }
12842 else if (immediate == (immediate & 0xff000000))
12843 {
12844 *immbits = immediate >> 24;
12845 return 0x7;
12846 }
12847 if ((immediate & 0xffff) != (immediate >> 16))
12848 goto bad_immediate;
12849 immediate &= 0xffff;
5287ad62
JB
12850 }
12851
12852 if (immediate == (immediate & 0x000000ff))
12853 {
12854 *immbits = immediate;
036dc3f7 12855 return 0x9;
5287ad62
JB
12856 }
12857 else if (immediate == (immediate & 0x0000ff00))
12858 {
12859 *immbits = immediate >> 8;
036dc3f7 12860 return 0xb;
5287ad62
JB
12861 }
12862
12863 bad_immediate:
dcbf9037 12864 first_error (_("immediate value out of range"));
5287ad62
JB
12865 return FAIL;
12866}
12867
12868/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12869 A, B, C, D. */
12870
12871static int
12872neon_bits_same_in_bytes (unsigned imm)
12873{
12874 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12875 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12876 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12877 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12878}
12879
12880/* For immediate of above form, return 0bABCD. */
12881
12882static unsigned
12883neon_squash_bits (unsigned imm)
12884{
12885 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12886 | ((imm & 0x01000000) >> 21);
12887}
12888
136da414 12889/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
12890
12891static unsigned
12892neon_qfloat_bits (unsigned imm)
12893{
136da414 12894 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
12895}
12896
12897/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12898 the instruction. *OP is passed as the initial value of the op field, and
12899 may be set to a different value depending on the constant (i.e.
12900 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 12901 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 12902 try smaller element sizes. */
5287ad62
JB
12903
12904static int
c96612cc
JB
12905neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12906 unsigned *immbits, int *op, int size,
12907 enum neon_el_type type)
5287ad62 12908{
c96612cc
JB
12909 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12910 float. */
12911 if (type == NT_float && !float_p)
12912 return FAIL;
12913
136da414
JB
12914 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12915 {
12916 if (size != 32 || *op == 1)
12917 return FAIL;
12918 *immbits = neon_qfloat_bits (immlo);
12919 return 0xf;
12920 }
036dc3f7
PB
12921
12922 if (size == 64)
5287ad62 12923 {
036dc3f7
PB
12924 if (neon_bits_same_in_bytes (immhi)
12925 && neon_bits_same_in_bytes (immlo))
12926 {
12927 if (*op == 1)
12928 return FAIL;
12929 *immbits = (neon_squash_bits (immhi) << 4)
12930 | neon_squash_bits (immlo);
12931 *op = 1;
12932 return 0xe;
12933 }
12934
12935 if (immhi != immlo)
12936 return FAIL;
5287ad62 12937 }
036dc3f7
PB
12938
12939 if (size >= 32)
5287ad62 12940 {
036dc3f7
PB
12941 if (immlo == (immlo & 0x000000ff))
12942 {
12943 *immbits = immlo;
12944 return 0x0;
12945 }
12946 else if (immlo == (immlo & 0x0000ff00))
12947 {
12948 *immbits = immlo >> 8;
12949 return 0x2;
12950 }
12951 else if (immlo == (immlo & 0x00ff0000))
12952 {
12953 *immbits = immlo >> 16;
12954 return 0x4;
12955 }
12956 else if (immlo == (immlo & 0xff000000))
12957 {
12958 *immbits = immlo >> 24;
12959 return 0x6;
12960 }
12961 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12962 {
12963 *immbits = (immlo >> 8) & 0xff;
12964 return 0xc;
12965 }
12966 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12967 {
12968 *immbits = (immlo >> 16) & 0xff;
12969 return 0xd;
12970 }
12971
12972 if ((immlo & 0xffff) != (immlo >> 16))
12973 return FAIL;
12974 immlo &= 0xffff;
5287ad62 12975 }
036dc3f7
PB
12976
12977 if (size >= 16)
5287ad62 12978 {
036dc3f7
PB
12979 if (immlo == (immlo & 0x000000ff))
12980 {
12981 *immbits = immlo;
12982 return 0x8;
12983 }
12984 else if (immlo == (immlo & 0x0000ff00))
12985 {
12986 *immbits = immlo >> 8;
12987 return 0xa;
12988 }
12989
12990 if ((immlo & 0xff) != (immlo >> 8))
12991 return FAIL;
12992 immlo &= 0xff;
5287ad62 12993 }
036dc3f7
PB
12994
12995 if (immlo == (immlo & 0x000000ff))
5287ad62 12996 {
036dc3f7
PB
12997 /* Don't allow MVN with 8-bit immediate. */
12998 if (*op == 1)
12999 return FAIL;
13000 *immbits = immlo;
13001 return 0xe;
5287ad62 13002 }
5287ad62
JB
13003
13004 return FAIL;
13005}
13006
13007/* Write immediate bits [7:0] to the following locations:
13008
13009 |28/24|23 19|18 16|15 4|3 0|
13010 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13011
13012 This function is used by VMOV/VMVN/VORR/VBIC. */
13013
13014static void
13015neon_write_immbits (unsigned immbits)
13016{
13017 inst.instruction |= immbits & 0xf;
13018 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13019 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13020}
13021
13022/* Invert low-order SIZE bits of XHI:XLO. */
13023
13024static void
13025neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13026{
13027 unsigned immlo = xlo ? *xlo : 0;
13028 unsigned immhi = xhi ? *xhi : 0;
13029
13030 switch (size)
13031 {
13032 case 8:
13033 immlo = (~immlo) & 0xff;
13034 break;
13035
13036 case 16:
13037 immlo = (~immlo) & 0xffff;
13038 break;
13039
13040 case 64:
13041 immhi = (~immhi) & 0xffffffff;
13042 /* fall through. */
13043
13044 case 32:
13045 immlo = (~immlo) & 0xffffffff;
13046 break;
13047
13048 default:
13049 abort ();
13050 }
13051
13052 if (xlo)
13053 *xlo = immlo;
13054
13055 if (xhi)
13056 *xhi = immhi;
13057}
13058
13059static void
13060do_neon_logic (void)
13061{
13062 if (inst.operands[2].present && inst.operands[2].isreg)
13063 {
037e8744 13064 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13065 neon_check_type (3, rs, N_IGNORE_TYPE);
13066 /* U bit and size field were set as part of the bitmask. */
88714cb8 13067 NEON_ENCODE (INTEGER, inst);
037e8744 13068 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13069 }
13070 else
13071 {
4316f0d2
DG
13072 const int three_ops_form = (inst.operands[2].present
13073 && !inst.operands[2].isreg);
13074 const int immoperand = (three_ops_form ? 2 : 1);
13075 enum neon_shape rs = (three_ops_form
13076 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13077 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13078 struct neon_type_el et = neon_check_type (2, rs,
13079 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13080 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13081 unsigned immbits;
13082 int cmode;
5f4273c7 13083
5287ad62
JB
13084 if (et.type == NT_invtype)
13085 return;
5f4273c7 13086
4316f0d2
DG
13087 if (three_ops_form)
13088 constraint (inst.operands[0].reg != inst.operands[1].reg,
13089 _("first and second operands shall be the same register"));
13090
88714cb8 13091 NEON_ENCODE (IMMED, inst);
5287ad62 13092
4316f0d2 13093 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13094 if (et.size == 64)
13095 {
13096 /* .i64 is a pseudo-op, so the immediate must be a repeating
13097 pattern. */
4316f0d2
DG
13098 if (immbits != (inst.operands[immoperand].regisimm ?
13099 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13100 {
13101 /* Set immbits to an invalid constant. */
13102 immbits = 0xdeadbeef;
13103 }
13104 }
13105
5287ad62
JB
13106 switch (opcode)
13107 {
13108 case N_MNEM_vbic:
036dc3f7 13109 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13110 break;
5f4273c7 13111
5287ad62 13112 case N_MNEM_vorr:
036dc3f7 13113 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13114 break;
5f4273c7 13115
5287ad62
JB
13116 case N_MNEM_vand:
13117 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13118 neon_invert_size (&immbits, 0, et.size);
13119 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13120 break;
5f4273c7 13121
5287ad62
JB
13122 case N_MNEM_vorn:
13123 /* Pseudo-instruction for VORR. */
5287ad62
JB
13124 neon_invert_size (&immbits, 0, et.size);
13125 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13126 break;
5f4273c7 13127
5287ad62
JB
13128 default:
13129 abort ();
13130 }
13131
13132 if (cmode == FAIL)
13133 return;
13134
037e8744 13135 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13136 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13137 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13138 inst.instruction |= cmode << 8;
13139 neon_write_immbits (immbits);
5f4273c7 13140
88714cb8 13141 neon_dp_fixup (&inst);
5287ad62
JB
13142 }
13143}
13144
13145static void
13146do_neon_bitfield (void)
13147{
037e8744 13148 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13149 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13150 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13151}
13152
13153static void
dcbf9037
JB
13154neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13155 unsigned destbits)
5287ad62 13156{
037e8744 13157 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13158 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13159 types | N_KEY);
5287ad62
JB
13160 if (et.type == NT_float)
13161 {
88714cb8 13162 NEON_ENCODE (FLOAT, inst);
037e8744 13163 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13164 }
13165 else
13166 {
88714cb8 13167 NEON_ENCODE (INTEGER, inst);
037e8744 13168 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13169 }
13170}
13171
13172static void
13173do_neon_dyadic_if_su (void)
13174{
dcbf9037 13175 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13176}
13177
13178static void
13179do_neon_dyadic_if_su_d (void)
13180{
13181 /* This version only allow D registers, but that constraint is enforced during
13182 operand parsing so we don't need to do anything extra here. */
dcbf9037 13183 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13184}
13185
5287ad62
JB
13186static void
13187do_neon_dyadic_if_i_d (void)
13188{
428e3f1f
PB
13189 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13190 affected if we specify unsigned args. */
13191 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13192}
13193
037e8744
JB
13194enum vfp_or_neon_is_neon_bits
13195{
13196 NEON_CHECK_CC = 1,
13197 NEON_CHECK_ARCH = 2
13198};
13199
13200/* Call this function if an instruction which may have belonged to the VFP or
13201 Neon instruction sets, but turned out to be a Neon instruction (due to the
13202 operand types involved, etc.). We have to check and/or fix-up a couple of
13203 things:
13204
13205 - Make sure the user hasn't attempted to make a Neon instruction
13206 conditional.
13207 - Alter the value in the condition code field if necessary.
13208 - Make sure that the arch supports Neon instructions.
13209
13210 Which of these operations take place depends on bits from enum
13211 vfp_or_neon_is_neon_bits.
13212
13213 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13214 current instruction's condition is COND_ALWAYS, the condition field is
13215 changed to inst.uncond_value. This is necessary because instructions shared
13216 between VFP and Neon may be conditional for the VFP variants only, and the
13217 unconditional Neon version must have, e.g., 0xF in the condition field. */
13218
13219static int
13220vfp_or_neon_is_neon (unsigned check)
13221{
13222 /* Conditions are always legal in Thumb mode (IT blocks). */
13223 if (!thumb_mode && (check & NEON_CHECK_CC))
13224 {
13225 if (inst.cond != COND_ALWAYS)
13226 {
13227 first_error (_(BAD_COND));
13228 return FAIL;
13229 }
13230 if (inst.uncond_value != -1)
13231 inst.instruction |= inst.uncond_value << 28;
13232 }
5f4273c7 13233
037e8744
JB
13234 if ((check & NEON_CHECK_ARCH)
13235 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13236 {
13237 first_error (_(BAD_FPU));
13238 return FAIL;
13239 }
5f4273c7 13240
037e8744
JB
13241 return SUCCESS;
13242}
13243
5287ad62
JB
13244static void
13245do_neon_addsub_if_i (void)
13246{
037e8744
JB
13247 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13248 return;
13249
13250 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13251 return;
13252
5287ad62
JB
13253 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13254 affected if we specify unsigned args. */
dcbf9037 13255 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
13256}
13257
13258/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13259 result to be:
13260 V<op> A,B (A is operand 0, B is operand 2)
13261 to mean:
13262 V<op> A,B,A
13263 not:
13264 V<op> A,B,B
13265 so handle that case specially. */
13266
13267static void
13268neon_exchange_operands (void)
13269{
13270 void *scratch = alloca (sizeof (inst.operands[0]));
13271 if (inst.operands[1].present)
13272 {
13273 /* Swap operands[1] and operands[2]. */
13274 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13275 inst.operands[1] = inst.operands[2];
13276 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13277 }
13278 else
13279 {
13280 inst.operands[1] = inst.operands[2];
13281 inst.operands[2] = inst.operands[0];
13282 }
13283}
13284
13285static void
13286neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13287{
13288 if (inst.operands[2].isreg)
13289 {
13290 if (invert)
13291 neon_exchange_operands ();
dcbf9037 13292 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13293 }
13294 else
13295 {
037e8744 13296 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13297 struct neon_type_el et = neon_check_type (2, rs,
13298 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 13299
88714cb8 13300 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13301 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13302 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13303 inst.instruction |= LOW4 (inst.operands[1].reg);
13304 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13305 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13306 inst.instruction |= (et.type == NT_float) << 10;
13307 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13308
88714cb8 13309 neon_dp_fixup (&inst);
5287ad62
JB
13310 }
13311}
13312
13313static void
13314do_neon_cmp (void)
13315{
13316 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13317}
13318
13319static void
13320do_neon_cmp_inv (void)
13321{
13322 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13323}
13324
13325static void
13326do_neon_ceq (void)
13327{
13328 neon_compare (N_IF_32, N_IF_32, FALSE);
13329}
13330
13331/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13332 scalars, which are encoded in 5 bits, M : Rm.
13333 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13334 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13335 index in M. */
13336
13337static unsigned
13338neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13339{
dcbf9037
JB
13340 unsigned regno = NEON_SCALAR_REG (scalar);
13341 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13342
13343 switch (elsize)
13344 {
13345 case 16:
13346 if (regno > 7 || elno > 3)
13347 goto bad_scalar;
13348 return regno | (elno << 3);
5f4273c7 13349
5287ad62
JB
13350 case 32:
13351 if (regno > 15 || elno > 1)
13352 goto bad_scalar;
13353 return regno | (elno << 4);
13354
13355 default:
13356 bad_scalar:
dcbf9037 13357 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13358 }
13359
13360 return 0;
13361}
13362
13363/* Encode multiply / multiply-accumulate scalar instructions. */
13364
13365static void
13366neon_mul_mac (struct neon_type_el et, int ubit)
13367{
dcbf9037
JB
13368 unsigned scalar;
13369
13370 /* Give a more helpful error message if we have an invalid type. */
13371 if (et.type == NT_invtype)
13372 return;
5f4273c7 13373
dcbf9037 13374 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13375 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13376 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13377 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13378 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13379 inst.instruction |= LOW4 (scalar);
13380 inst.instruction |= HI1 (scalar) << 5;
13381 inst.instruction |= (et.type == NT_float) << 8;
13382 inst.instruction |= neon_logbits (et.size) << 20;
13383 inst.instruction |= (ubit != 0) << 24;
13384
88714cb8 13385 neon_dp_fixup (&inst);
5287ad62
JB
13386}
13387
13388static void
13389do_neon_mac_maybe_scalar (void)
13390{
037e8744
JB
13391 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13392 return;
13393
13394 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13395 return;
13396
5287ad62
JB
13397 if (inst.operands[2].isscalar)
13398 {
037e8744 13399 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13400 struct neon_type_el et = neon_check_type (3, rs,
13401 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 13402 NEON_ENCODE (SCALAR, inst);
037e8744 13403 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13404 }
13405 else
428e3f1f
PB
13406 {
13407 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13408 affected if we specify unsigned args. */
13409 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13410 }
5287ad62
JB
13411}
13412
62f3b8c8
PB
13413static void
13414do_neon_fmac (void)
13415{
13416 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13417 return;
13418
13419 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13420 return;
13421
13422 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13423}
13424
5287ad62
JB
13425static void
13426do_neon_tst (void)
13427{
037e8744 13428 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13429 struct neon_type_el et = neon_check_type (3, rs,
13430 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13431 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13432}
13433
13434/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13435 same types as the MAC equivalents. The polynomial type for this instruction
13436 is encoded the same as the integer type. */
13437
13438static void
13439do_neon_mul (void)
13440{
037e8744
JB
13441 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13442 return;
13443
13444 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13445 return;
13446
5287ad62
JB
13447 if (inst.operands[2].isscalar)
13448 do_neon_mac_maybe_scalar ();
13449 else
dcbf9037 13450 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13451}
13452
13453static void
13454do_neon_qdmulh (void)
13455{
13456 if (inst.operands[2].isscalar)
13457 {
037e8744 13458 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13459 struct neon_type_el et = neon_check_type (3, rs,
13460 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13461 NEON_ENCODE (SCALAR, inst);
037e8744 13462 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13463 }
13464 else
13465 {
037e8744 13466 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13467 struct neon_type_el et = neon_check_type (3, rs,
13468 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 13469 NEON_ENCODE (INTEGER, inst);
5287ad62 13470 /* The U bit (rounding) comes from bit mask. */
037e8744 13471 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13472 }
13473}
13474
13475static void
13476do_neon_fcmp_absolute (void)
13477{
037e8744 13478 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13479 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13480 /* Size field comes from bit mask. */
037e8744 13481 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13482}
13483
13484static void
13485do_neon_fcmp_absolute_inv (void)
13486{
13487 neon_exchange_operands ();
13488 do_neon_fcmp_absolute ();
13489}
13490
13491static void
13492do_neon_step (void)
13493{
037e8744 13494 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13495 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13496 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13497}
13498
13499static void
13500do_neon_abs_neg (void)
13501{
037e8744
JB
13502 enum neon_shape rs;
13503 struct neon_type_el et;
5f4273c7 13504
037e8744
JB
13505 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13506 return;
13507
13508 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13509 return;
13510
13511 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13512 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13513
5287ad62
JB
13514 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13515 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13516 inst.instruction |= LOW4 (inst.operands[1].reg);
13517 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13518 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13519 inst.instruction |= (et.type == NT_float) << 10;
13520 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13521
88714cb8 13522 neon_dp_fixup (&inst);
5287ad62
JB
13523}
13524
13525static void
13526do_neon_sli (void)
13527{
037e8744 13528 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13529 struct neon_type_el et = neon_check_type (2, rs,
13530 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13531 int imm = inst.operands[2].imm;
13532 constraint (imm < 0 || (unsigned)imm >= et.size,
13533 _("immediate out of range for insert"));
037e8744 13534 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13535}
13536
13537static void
13538do_neon_sri (void)
13539{
037e8744 13540 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13541 struct neon_type_el et = neon_check_type (2, rs,
13542 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13543 int imm = inst.operands[2].imm;
13544 constraint (imm < 1 || (unsigned)imm > et.size,
13545 _("immediate out of range for insert"));
037e8744 13546 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13547}
13548
13549static void
13550do_neon_qshlu_imm (void)
13551{
037e8744 13552 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13553 struct neon_type_el et = neon_check_type (2, rs,
13554 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13555 int imm = inst.operands[2].imm;
13556 constraint (imm < 0 || (unsigned)imm >= et.size,
13557 _("immediate out of range for shift"));
13558 /* Only encodes the 'U present' variant of the instruction.
13559 In this case, signed types have OP (bit 8) set to 0.
13560 Unsigned types have OP set to 1. */
13561 inst.instruction |= (et.type == NT_unsigned) << 8;
13562 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13563 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13564}
13565
13566static void
13567do_neon_qmovn (void)
13568{
13569 struct neon_type_el et = neon_check_type (2, NS_DQ,
13570 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13571 /* Saturating move where operands can be signed or unsigned, and the
13572 destination has the same signedness. */
88714cb8 13573 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13574 if (et.type == NT_unsigned)
13575 inst.instruction |= 0xc0;
13576 else
13577 inst.instruction |= 0x80;
13578 neon_two_same (0, 1, et.size / 2);
13579}
13580
13581static void
13582do_neon_qmovun (void)
13583{
13584 struct neon_type_el et = neon_check_type (2, NS_DQ,
13585 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13586 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 13587 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13588 neon_two_same (0, 1, et.size / 2);
13589}
13590
13591static void
13592do_neon_rshift_sat_narrow (void)
13593{
13594 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13595 or unsigned. If operands are unsigned, results must also be unsigned. */
13596 struct neon_type_el et = neon_check_type (2, NS_DQI,
13597 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13598 int imm = inst.operands[2].imm;
13599 /* This gets the bounds check, size encoding and immediate bits calculation
13600 right. */
13601 et.size /= 2;
5f4273c7 13602
5287ad62
JB
13603 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13604 VQMOVN.I<size> <Dd>, <Qm>. */
13605 if (imm == 0)
13606 {
13607 inst.operands[2].present = 0;
13608 inst.instruction = N_MNEM_vqmovn;
13609 do_neon_qmovn ();
13610 return;
13611 }
5f4273c7 13612
5287ad62
JB
13613 constraint (imm < 1 || (unsigned)imm > et.size,
13614 _("immediate out of range"));
13615 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13616}
13617
13618static void
13619do_neon_rshift_sat_narrow_u (void)
13620{
13621 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13622 or unsigned. If operands are unsigned, results must also be unsigned. */
13623 struct neon_type_el et = neon_check_type (2, NS_DQI,
13624 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13625 int imm = inst.operands[2].imm;
13626 /* This gets the bounds check, size encoding and immediate bits calculation
13627 right. */
13628 et.size /= 2;
13629
13630 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13631 VQMOVUN.I<size> <Dd>, <Qm>. */
13632 if (imm == 0)
13633 {
13634 inst.operands[2].present = 0;
13635 inst.instruction = N_MNEM_vqmovun;
13636 do_neon_qmovun ();
13637 return;
13638 }
13639
13640 constraint (imm < 1 || (unsigned)imm > et.size,
13641 _("immediate out of range"));
13642 /* FIXME: The manual is kind of unclear about what value U should have in
13643 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13644 must be 1. */
13645 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13646}
13647
13648static void
13649do_neon_movn (void)
13650{
13651 struct neon_type_el et = neon_check_type (2, NS_DQ,
13652 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 13653 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13654 neon_two_same (0, 1, et.size / 2);
13655}
13656
13657static void
13658do_neon_rshift_narrow (void)
13659{
13660 struct neon_type_el et = neon_check_type (2, NS_DQI,
13661 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13662 int imm = inst.operands[2].imm;
13663 /* This gets the bounds check, size encoding and immediate bits calculation
13664 right. */
13665 et.size /= 2;
5f4273c7 13666
5287ad62
JB
13667 /* If immediate is zero then we are a pseudo-instruction for
13668 VMOVN.I<size> <Dd>, <Qm> */
13669 if (imm == 0)
13670 {
13671 inst.operands[2].present = 0;
13672 inst.instruction = N_MNEM_vmovn;
13673 do_neon_movn ();
13674 return;
13675 }
5f4273c7 13676
5287ad62
JB
13677 constraint (imm < 1 || (unsigned)imm > et.size,
13678 _("immediate out of range for narrowing operation"));
13679 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13680}
13681
13682static void
13683do_neon_shll (void)
13684{
13685 /* FIXME: Type checking when lengthening. */
13686 struct neon_type_el et = neon_check_type (2, NS_QDI,
13687 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13688 unsigned imm = inst.operands[2].imm;
13689
13690 if (imm == et.size)
13691 {
13692 /* Maximum shift variant. */
88714cb8 13693 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
13694 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13695 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13696 inst.instruction |= LOW4 (inst.operands[1].reg);
13697 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13698 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13699
88714cb8 13700 neon_dp_fixup (&inst);
5287ad62
JB
13701 }
13702 else
13703 {
13704 /* A more-specific type check for non-max versions. */
13705 et = neon_check_type (2, NS_QDI,
13706 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 13707 NEON_ENCODE (IMMED, inst);
5287ad62
JB
13708 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13709 }
13710}
13711
037e8744 13712/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
13713 the current instruction is. */
13714
13715static int
13716neon_cvt_flavour (enum neon_shape rs)
13717{
037e8744
JB
13718#define CVT_VAR(C,X,Y) \
13719 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13720 if (et.type != NT_invtype) \
13721 { \
13722 inst.error = NULL; \
13723 return (C); \
5287ad62
JB
13724 }
13725 struct neon_type_el et;
037e8744
JB
13726 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13727 || rs == NS_FF) ? N_VFP : 0;
13728 /* The instruction versions which take an immediate take one register
13729 argument, which is extended to the width of the full register. Thus the
13730 "source" and "destination" registers must have the same width. Hack that
13731 here by making the size equal to the key (wider, in this case) operand. */
13732 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 13733
5287ad62
JB
13734 CVT_VAR (0, N_S32, N_F32);
13735 CVT_VAR (1, N_U32, N_F32);
13736 CVT_VAR (2, N_F32, N_S32);
13737 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
13738 /* Half-precision conversions. */
13739 CVT_VAR (4, N_F32, N_F16);
13740 CVT_VAR (5, N_F16, N_F32);
5f4273c7 13741
037e8744 13742 whole_reg = N_VFP;
5f4273c7 13743
037e8744 13744 /* VFP instructions. */
8e79c3df
CM
13745 CVT_VAR (6, N_F32, N_F64);
13746 CVT_VAR (7, N_F64, N_F32);
13747 CVT_VAR (8, N_S32, N_F64 | key);
13748 CVT_VAR (9, N_U32, N_F64 | key);
13749 CVT_VAR (10, N_F64 | key, N_S32);
13750 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 13751 /* VFP instructions with bitshift. */
8e79c3df
CM
13752 CVT_VAR (12, N_F32 | key, N_S16);
13753 CVT_VAR (13, N_F32 | key, N_U16);
13754 CVT_VAR (14, N_F64 | key, N_S16);
13755 CVT_VAR (15, N_F64 | key, N_U16);
13756 CVT_VAR (16, N_S16, N_F32 | key);
13757 CVT_VAR (17, N_U16, N_F32 | key);
13758 CVT_VAR (18, N_S16, N_F64 | key);
13759 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 13760
5287ad62
JB
13761 return -1;
13762#undef CVT_VAR
13763}
13764
037e8744
JB
13765/* Neon-syntax VFP conversions. */
13766
5287ad62 13767static void
037e8744 13768do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 13769{
037e8744 13770 const char *opname = 0;
5f4273c7 13771
037e8744 13772 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 13773 {
037e8744
JB
13774 /* Conversions with immediate bitshift. */
13775 const char *enc[] =
13776 {
13777 "ftosls",
13778 "ftouls",
13779 "fsltos",
13780 "fultos",
13781 NULL,
13782 NULL,
8e79c3df
CM
13783 NULL,
13784 NULL,
037e8744
JB
13785 "ftosld",
13786 "ftould",
13787 "fsltod",
13788 "fultod",
13789 "fshtos",
13790 "fuhtos",
13791 "fshtod",
13792 "fuhtod",
13793 "ftoshs",
13794 "ftouhs",
13795 "ftoshd",
13796 "ftouhd"
13797 };
13798
13799 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13800 {
13801 opname = enc[flavour];
13802 constraint (inst.operands[0].reg != inst.operands[1].reg,
13803 _("operands 0 and 1 must be the same register"));
13804 inst.operands[1] = inst.operands[2];
13805 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13806 }
5287ad62
JB
13807 }
13808 else
13809 {
037e8744
JB
13810 /* Conversions without bitshift. */
13811 const char *enc[] =
13812 {
13813 "ftosis",
13814 "ftouis",
13815 "fsitos",
13816 "fuitos",
8e79c3df
CM
13817 "NULL",
13818 "NULL",
037e8744
JB
13819 "fcvtsd",
13820 "fcvtds",
13821 "ftosid",
13822 "ftouid",
13823 "fsitod",
13824 "fuitod"
13825 };
13826
13827 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13828 opname = enc[flavour];
13829 }
13830
13831 if (opname)
13832 do_vfp_nsyn_opcode (opname);
13833}
13834
13835static void
13836do_vfp_nsyn_cvtz (void)
13837{
13838 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13839 int flavour = neon_cvt_flavour (rs);
13840 const char *enc[] =
13841 {
13842 "ftosizs",
13843 "ftouizs",
13844 NULL,
13845 NULL,
13846 NULL,
13847 NULL,
8e79c3df
CM
13848 NULL,
13849 NULL,
037e8744
JB
13850 "ftosizd",
13851 "ftouizd"
13852 };
13853
13854 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13855 do_vfp_nsyn_opcode (enc[flavour]);
13856}
f31fef98 13857
037e8744 13858static void
e3e535bc 13859do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
13860{
13861 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 13862 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
13863 int flavour = neon_cvt_flavour (rs);
13864
e3e535bc
NC
13865 /* PR11109: Handle round-to-zero for VCVT conversions. */
13866 if (round_to_zero
13867 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
13868 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
13869 && (rs == NS_FD || rs == NS_FF))
13870 {
13871 do_vfp_nsyn_cvtz ();
13872 return;
13873 }
13874
037e8744 13875 /* VFP rather than Neon conversions. */
8e79c3df 13876 if (flavour >= 6)
037e8744
JB
13877 {
13878 do_vfp_nsyn_cvt (rs, flavour);
13879 return;
13880 }
13881
13882 switch (rs)
13883 {
13884 case NS_DDI:
13885 case NS_QQI:
13886 {
35997600
NC
13887 unsigned immbits;
13888 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13889
037e8744
JB
13890 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13891 return;
13892
13893 /* Fixed-point conversion with #0 immediate is encoded as an
13894 integer conversion. */
13895 if (inst.operands[2].present && inst.operands[2].imm == 0)
13896 goto int_encode;
35997600 13897 immbits = 32 - inst.operands[2].imm;
88714cb8 13898 NEON_ENCODE (IMMED, inst);
037e8744
JB
13899 if (flavour != -1)
13900 inst.instruction |= enctab[flavour];
13901 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13902 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13903 inst.instruction |= LOW4 (inst.operands[1].reg);
13904 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13905 inst.instruction |= neon_quad (rs) << 6;
13906 inst.instruction |= 1 << 21;
13907 inst.instruction |= immbits << 16;
13908
88714cb8 13909 neon_dp_fixup (&inst);
037e8744
JB
13910 }
13911 break;
13912
13913 case NS_DD:
13914 case NS_QQ:
13915 int_encode:
13916 {
13917 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13918
88714cb8 13919 NEON_ENCODE (INTEGER, inst);
037e8744
JB
13920
13921 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13922 return;
13923
13924 if (flavour != -1)
13925 inst.instruction |= enctab[flavour];
13926
13927 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13928 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13929 inst.instruction |= LOW4 (inst.operands[1].reg);
13930 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13931 inst.instruction |= neon_quad (rs) << 6;
13932 inst.instruction |= 2 << 18;
13933
88714cb8 13934 neon_dp_fixup (&inst);
037e8744
JB
13935 }
13936 break;
13937
8e79c3df
CM
13938 /* Half-precision conversions for Advanced SIMD -- neon. */
13939 case NS_QD:
13940 case NS_DQ:
13941
13942 if ((rs == NS_DQ)
13943 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13944 {
13945 as_bad (_("operand size must match register width"));
13946 break;
13947 }
13948
13949 if ((rs == NS_QD)
13950 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13951 {
13952 as_bad (_("operand size must match register width"));
13953 break;
13954 }
13955
13956 if (rs == NS_DQ)
13957 inst.instruction = 0x3b60600;
13958 else
13959 inst.instruction = 0x3b60700;
13960
13961 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13962 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13963 inst.instruction |= LOW4 (inst.operands[1].reg);
13964 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 13965 neon_dp_fixup (&inst);
8e79c3df
CM
13966 break;
13967
037e8744
JB
13968 default:
13969 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13970 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 13971 }
5287ad62
JB
13972}
13973
e3e535bc
NC
13974static void
13975do_neon_cvtr (void)
13976{
13977 do_neon_cvt_1 (FALSE);
13978}
13979
13980static void
13981do_neon_cvt (void)
13982{
13983 do_neon_cvt_1 (TRUE);
13984}
13985
8e79c3df
CM
13986static void
13987do_neon_cvtb (void)
13988{
13989 inst.instruction = 0xeb20a40;
13990
13991 /* The sizes are attached to the mnemonic. */
13992 if (inst.vectype.el[0].type != NT_invtype
13993 && inst.vectype.el[0].size == 16)
13994 inst.instruction |= 0x00010000;
13995
13996 /* Programmer's syntax: the sizes are attached to the operands. */
13997 else if (inst.operands[0].vectype.type != NT_invtype
13998 && inst.operands[0].vectype.size == 16)
13999 inst.instruction |= 0x00010000;
14000
14001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14002 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14003 do_vfp_cond_or_thumb ();
14004}
14005
14006
14007static void
14008do_neon_cvtt (void)
14009{
14010 do_neon_cvtb ();
14011 inst.instruction |= 0x80;
14012}
14013
5287ad62
JB
14014static void
14015neon_move_immediate (void)
14016{
037e8744
JB
14017 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14018 struct neon_type_el et = neon_check_type (2, rs,
14019 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14020 unsigned immlo, immhi = 0, immbits;
c96612cc 14021 int op, cmode, float_p;
5287ad62 14022
037e8744
JB
14023 constraint (et.type == NT_invtype,
14024 _("operand size must be specified for immediate VMOV"));
14025
5287ad62
JB
14026 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14027 op = (inst.instruction & (1 << 5)) != 0;
14028
14029 immlo = inst.operands[1].imm;
14030 if (inst.operands[1].regisimm)
14031 immhi = inst.operands[1].reg;
14032
14033 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14034 _("immediate has bits set outside the operand size"));
14035
c96612cc
JB
14036 float_p = inst.operands[1].immisfloat;
14037
14038 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14039 et.size, et.type)) == FAIL)
5287ad62
JB
14040 {
14041 /* Invert relevant bits only. */
14042 neon_invert_size (&immlo, &immhi, et.size);
14043 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14044 with one or the other; those cases are caught by
14045 neon_cmode_for_move_imm. */
14046 op = !op;
c96612cc
JB
14047 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14048 &op, et.size, et.type)) == FAIL)
5287ad62 14049 {
dcbf9037 14050 first_error (_("immediate out of range"));
5287ad62
JB
14051 return;
14052 }
14053 }
14054
14055 inst.instruction &= ~(1 << 5);
14056 inst.instruction |= op << 5;
14057
14058 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14059 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14060 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14061 inst.instruction |= cmode << 8;
14062
14063 neon_write_immbits (immbits);
14064}
14065
14066static void
14067do_neon_mvn (void)
14068{
14069 if (inst.operands[1].isreg)
14070 {
037e8744 14071 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14072
88714cb8 14073 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14074 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14075 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14076 inst.instruction |= LOW4 (inst.operands[1].reg);
14077 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14078 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14079 }
14080 else
14081 {
88714cb8 14082 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14083 neon_move_immediate ();
14084 }
14085
88714cb8 14086 neon_dp_fixup (&inst);
5287ad62
JB
14087}
14088
14089/* Encode instructions of form:
14090
14091 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14092 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14093
14094static void
14095neon_mixed_length (struct neon_type_el et, unsigned size)
14096{
14097 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14098 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14099 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14100 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14101 inst.instruction |= LOW4 (inst.operands[2].reg);
14102 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14103 inst.instruction |= (et.type == NT_unsigned) << 24;
14104 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14105
88714cb8 14106 neon_dp_fixup (&inst);
5287ad62
JB
14107}
14108
14109static void
14110do_neon_dyadic_long (void)
14111{
14112 /* FIXME: Type checking for lengthening op. */
14113 struct neon_type_el et = neon_check_type (3, NS_QDD,
14114 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14115 neon_mixed_length (et, et.size);
14116}
14117
14118static void
14119do_neon_abal (void)
14120{
14121 struct neon_type_el et = neon_check_type (3, NS_QDD,
14122 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14123 neon_mixed_length (et, et.size);
14124}
14125
14126static void
14127neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14128{
14129 if (inst.operands[2].isscalar)
14130 {
dcbf9037
JB
14131 struct neon_type_el et = neon_check_type (3, NS_QDS,
14132 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14133 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14134 neon_mul_mac (et, et.type == NT_unsigned);
14135 }
14136 else
14137 {
14138 struct neon_type_el et = neon_check_type (3, NS_QDD,
14139 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14140 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14141 neon_mixed_length (et, et.size);
14142 }
14143}
14144
14145static void
14146do_neon_mac_maybe_scalar_long (void)
14147{
14148 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14149}
14150
14151static void
14152do_neon_dyadic_wide (void)
14153{
14154 struct neon_type_el et = neon_check_type (3, NS_QQD,
14155 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14156 neon_mixed_length (et, et.size);
14157}
14158
14159static void
14160do_neon_dyadic_narrow (void)
14161{
14162 struct neon_type_el et = neon_check_type (3, NS_QDD,
14163 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14164 /* Operand sign is unimportant, and the U bit is part of the opcode,
14165 so force the operand type to integer. */
14166 et.type = NT_integer;
5287ad62
JB
14167 neon_mixed_length (et, et.size / 2);
14168}
14169
14170static void
14171do_neon_mul_sat_scalar_long (void)
14172{
14173 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14174}
14175
14176static void
14177do_neon_vmull (void)
14178{
14179 if (inst.operands[2].isscalar)
14180 do_neon_mac_maybe_scalar_long ();
14181 else
14182 {
14183 struct neon_type_el et = neon_check_type (3, NS_QDD,
14184 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14185 if (et.type == NT_poly)
88714cb8 14186 NEON_ENCODE (POLY, inst);
5287ad62 14187 else
88714cb8 14188 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14189 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14190 zero. Should be OK as-is. */
14191 neon_mixed_length (et, et.size);
14192 }
14193}
14194
14195static void
14196do_neon_ext (void)
14197{
037e8744 14198 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14199 struct neon_type_el et = neon_check_type (3, rs,
14200 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14201 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14202
14203 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14204 _("shift out of range"));
5287ad62
JB
14205 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14206 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14207 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14208 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14209 inst.instruction |= LOW4 (inst.operands[2].reg);
14210 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14211 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14212 inst.instruction |= imm << 8;
5f4273c7 14213
88714cb8 14214 neon_dp_fixup (&inst);
5287ad62
JB
14215}
14216
14217static void
14218do_neon_rev (void)
14219{
037e8744 14220 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14221 struct neon_type_el et = neon_check_type (2, rs,
14222 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14223 unsigned op = (inst.instruction >> 7) & 3;
14224 /* N (width of reversed regions) is encoded as part of the bitmask. We
14225 extract it here to check the elements to be reversed are smaller.
14226 Otherwise we'd get a reserved instruction. */
14227 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 14228 gas_assert (elsize != 0);
5287ad62
JB
14229 constraint (et.size >= elsize,
14230 _("elements must be smaller than reversal region"));
037e8744 14231 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14232}
14233
14234static void
14235do_neon_dup (void)
14236{
14237 if (inst.operands[1].isscalar)
14238 {
037e8744 14239 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
14240 struct neon_type_el et = neon_check_type (2, rs,
14241 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 14242 unsigned sizebits = et.size >> 3;
dcbf9037 14243 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 14244 int logsize = neon_logbits (et.size);
dcbf9037 14245 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
14246
14247 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14248 return;
14249
88714cb8 14250 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14251 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14252 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14253 inst.instruction |= LOW4 (dm);
14254 inst.instruction |= HI1 (dm) << 5;
037e8744 14255 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14256 inst.instruction |= x << 17;
14257 inst.instruction |= sizebits << 16;
5f4273c7 14258
88714cb8 14259 neon_dp_fixup (&inst);
5287ad62
JB
14260 }
14261 else
14262 {
037e8744
JB
14263 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14264 struct neon_type_el et = neon_check_type (2, rs,
14265 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 14266 /* Duplicate ARM register to lanes of vector. */
88714cb8 14267 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
14268 switch (et.size)
14269 {
14270 case 8: inst.instruction |= 0x400000; break;
14271 case 16: inst.instruction |= 0x000020; break;
14272 case 32: inst.instruction |= 0x000000; break;
14273 default: break;
14274 }
14275 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14276 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14277 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 14278 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
14279 /* The encoding for this instruction is identical for the ARM and Thumb
14280 variants, except for the condition field. */
037e8744 14281 do_vfp_cond_or_thumb ();
5287ad62
JB
14282 }
14283}
14284
14285/* VMOV has particularly many variations. It can be one of:
14286 0. VMOV<c><q> <Qd>, <Qm>
14287 1. VMOV<c><q> <Dd>, <Dm>
14288 (Register operations, which are VORR with Rm = Rn.)
14289 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14290 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14291 (Immediate loads.)
14292 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14293 (ARM register to scalar.)
14294 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14295 (Two ARM registers to vector.)
14296 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14297 (Scalar to ARM register.)
14298 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14299 (Vector to two ARM registers.)
037e8744
JB
14300 8. VMOV.F32 <Sd>, <Sm>
14301 9. VMOV.F64 <Dd>, <Dm>
14302 (VFP register moves.)
14303 10. VMOV.F32 <Sd>, #imm
14304 11. VMOV.F64 <Dd>, #imm
14305 (VFP float immediate load.)
14306 12. VMOV <Rd>, <Sm>
14307 (VFP single to ARM reg.)
14308 13. VMOV <Sd>, <Rm>
14309 (ARM reg to VFP single.)
14310 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14311 (Two ARM regs to two VFP singles.)
14312 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14313 (Two VFP singles to two ARM regs.)
5f4273c7 14314
037e8744
JB
14315 These cases can be disambiguated using neon_select_shape, except cases 1/9
14316 and 3/11 which depend on the operand type too.
5f4273c7 14317
5287ad62 14318 All the encoded bits are hardcoded by this function.
5f4273c7 14319
b7fc2769
JB
14320 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14321 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14322
5287ad62 14323 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14324 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14325
14326static void
14327do_neon_mov (void)
14328{
037e8744
JB
14329 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14330 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14331 NS_NULL);
14332 struct neon_type_el et;
14333 const char *ldconst = 0;
5287ad62 14334
037e8744 14335 switch (rs)
5287ad62 14336 {
037e8744
JB
14337 case NS_DD: /* case 1/9. */
14338 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14339 /* It is not an error here if no type is given. */
14340 inst.error = NULL;
14341 if (et.type == NT_float && et.size == 64)
5287ad62 14342 {
037e8744
JB
14343 do_vfp_nsyn_opcode ("fcpyd");
14344 break;
5287ad62 14345 }
037e8744 14346 /* fall through. */
5287ad62 14347
037e8744
JB
14348 case NS_QQ: /* case 0/1. */
14349 {
14350 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14351 return;
14352 /* The architecture manual I have doesn't explicitly state which
14353 value the U bit should have for register->register moves, but
14354 the equivalent VORR instruction has U = 0, so do that. */
14355 inst.instruction = 0x0200110;
14356 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14357 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14358 inst.instruction |= LOW4 (inst.operands[1].reg);
14359 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14360 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14361 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14362 inst.instruction |= neon_quad (rs) << 6;
14363
88714cb8 14364 neon_dp_fixup (&inst);
037e8744
JB
14365 }
14366 break;
5f4273c7 14367
037e8744
JB
14368 case NS_DI: /* case 3/11. */
14369 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14370 inst.error = NULL;
14371 if (et.type == NT_float && et.size == 64)
5287ad62 14372 {
037e8744
JB
14373 /* case 11 (fconstd). */
14374 ldconst = "fconstd";
14375 goto encode_fconstd;
5287ad62 14376 }
037e8744
JB
14377 /* fall through. */
14378
14379 case NS_QI: /* case 2/3. */
14380 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14381 return;
14382 inst.instruction = 0x0800010;
14383 neon_move_immediate ();
88714cb8 14384 neon_dp_fixup (&inst);
5287ad62 14385 break;
5f4273c7 14386
037e8744
JB
14387 case NS_SR: /* case 4. */
14388 {
14389 unsigned bcdebits = 0;
91d6fa6a 14390 int logsize;
037e8744
JB
14391 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14392 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14393
91d6fa6a
NC
14394 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14395 logsize = neon_logbits (et.size);
14396
037e8744
JB
14397 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14398 _(BAD_FPU));
14399 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14400 && et.size != 32, _(BAD_FPU));
14401 constraint (et.type == NT_invtype, _("bad type for scalar"));
14402 constraint (x >= 64 / et.size, _("scalar index out of range"));
14403
14404 switch (et.size)
14405 {
14406 case 8: bcdebits = 0x8; break;
14407 case 16: bcdebits = 0x1; break;
14408 case 32: bcdebits = 0x0; break;
14409 default: ;
14410 }
14411
14412 bcdebits |= x << logsize;
14413
14414 inst.instruction = 0xe000b10;
14415 do_vfp_cond_or_thumb ();
14416 inst.instruction |= LOW4 (dn) << 16;
14417 inst.instruction |= HI1 (dn) << 7;
14418 inst.instruction |= inst.operands[1].reg << 12;
14419 inst.instruction |= (bcdebits & 3) << 5;
14420 inst.instruction |= (bcdebits >> 2) << 21;
14421 }
14422 break;
5f4273c7 14423
037e8744 14424 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14425 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14426 _(BAD_FPU));
b7fc2769 14427
037e8744
JB
14428 inst.instruction = 0xc400b10;
14429 do_vfp_cond_or_thumb ();
14430 inst.instruction |= LOW4 (inst.operands[0].reg);
14431 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14432 inst.instruction |= inst.operands[1].reg << 12;
14433 inst.instruction |= inst.operands[2].reg << 16;
14434 break;
5f4273c7 14435
037e8744
JB
14436 case NS_RS: /* case 6. */
14437 {
91d6fa6a 14438 unsigned logsize;
037e8744
JB
14439 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14440 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14441 unsigned abcdebits = 0;
14442
91d6fa6a
NC
14443 et = neon_check_type (2, NS_NULL,
14444 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14445 logsize = neon_logbits (et.size);
14446
037e8744
JB
14447 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14448 _(BAD_FPU));
14449 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14450 && et.size != 32, _(BAD_FPU));
14451 constraint (et.type == NT_invtype, _("bad type for scalar"));
14452 constraint (x >= 64 / et.size, _("scalar index out of range"));
14453
14454 switch (et.size)
14455 {
14456 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14457 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14458 case 32: abcdebits = 0x00; break;
14459 default: ;
14460 }
14461
14462 abcdebits |= x << logsize;
14463 inst.instruction = 0xe100b10;
14464 do_vfp_cond_or_thumb ();
14465 inst.instruction |= LOW4 (dn) << 16;
14466 inst.instruction |= HI1 (dn) << 7;
14467 inst.instruction |= inst.operands[0].reg << 12;
14468 inst.instruction |= (abcdebits & 3) << 5;
14469 inst.instruction |= (abcdebits >> 2) << 21;
14470 }
14471 break;
5f4273c7 14472
037e8744
JB
14473 case NS_RRD: /* case 7 (fmrrd). */
14474 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14475 _(BAD_FPU));
14476
14477 inst.instruction = 0xc500b10;
14478 do_vfp_cond_or_thumb ();
14479 inst.instruction |= inst.operands[0].reg << 12;
14480 inst.instruction |= inst.operands[1].reg << 16;
14481 inst.instruction |= LOW4 (inst.operands[2].reg);
14482 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14483 break;
5f4273c7 14484
037e8744
JB
14485 case NS_FF: /* case 8 (fcpys). */
14486 do_vfp_nsyn_opcode ("fcpys");
14487 break;
5f4273c7 14488
037e8744
JB
14489 case NS_FI: /* case 10 (fconsts). */
14490 ldconst = "fconsts";
14491 encode_fconstd:
14492 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14493 {
037e8744
JB
14494 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14495 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14496 }
14497 else
037e8744
JB
14498 first_error (_("immediate out of range"));
14499 break;
5f4273c7 14500
037e8744
JB
14501 case NS_RF: /* case 12 (fmrs). */
14502 do_vfp_nsyn_opcode ("fmrs");
14503 break;
5f4273c7 14504
037e8744
JB
14505 case NS_FR: /* case 13 (fmsr). */
14506 do_vfp_nsyn_opcode ("fmsr");
14507 break;
5f4273c7 14508
037e8744
JB
14509 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14510 (one of which is a list), but we have parsed four. Do some fiddling to
14511 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14512 expect. */
14513 case NS_RRFF: /* case 14 (fmrrs). */
14514 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14515 _("VFP registers must be adjacent"));
14516 inst.operands[2].imm = 2;
14517 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14518 do_vfp_nsyn_opcode ("fmrrs");
14519 break;
5f4273c7 14520
037e8744
JB
14521 case NS_FFRR: /* case 15 (fmsrr). */
14522 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14523 _("VFP registers must be adjacent"));
14524 inst.operands[1] = inst.operands[2];
14525 inst.operands[2] = inst.operands[3];
14526 inst.operands[0].imm = 2;
14527 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14528 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14529 break;
5f4273c7 14530
5287ad62
JB
14531 default:
14532 abort ();
14533 }
14534}
14535
14536static void
14537do_neon_rshift_round_imm (void)
14538{
037e8744 14539 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14540 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14541 int imm = inst.operands[2].imm;
14542
14543 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14544 if (imm == 0)
14545 {
14546 inst.operands[2].present = 0;
14547 do_neon_mov ();
14548 return;
14549 }
14550
14551 constraint (imm < 1 || (unsigned)imm > et.size,
14552 _("immediate out of range for shift"));
037e8744 14553 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14554 et.size - imm);
14555}
14556
14557static void
14558do_neon_movl (void)
14559{
14560 struct neon_type_el et = neon_check_type (2, NS_QD,
14561 N_EQK | N_DBL, N_SU_32 | N_KEY);
14562 unsigned sizebits = et.size >> 3;
14563 inst.instruction |= sizebits << 19;
14564 neon_two_same (0, et.type == NT_unsigned, -1);
14565}
14566
14567static void
14568do_neon_trn (void)
14569{
037e8744 14570 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14571 struct neon_type_el et = neon_check_type (2, rs,
14572 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 14573 NEON_ENCODE (INTEGER, inst);
037e8744 14574 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14575}
14576
14577static void
14578do_neon_zip_uzp (void)
14579{
037e8744 14580 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14581 struct neon_type_el et = neon_check_type (2, rs,
14582 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14583 if (rs == NS_DD && et.size == 32)
14584 {
14585 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14586 inst.instruction = N_MNEM_vtrn;
14587 do_neon_trn ();
14588 return;
14589 }
037e8744 14590 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14591}
14592
14593static void
14594do_neon_sat_abs_neg (void)
14595{
037e8744 14596 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14597 struct neon_type_el et = neon_check_type (2, rs,
14598 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14599 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14600}
14601
14602static void
14603do_neon_pair_long (void)
14604{
037e8744 14605 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14606 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14607 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14608 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 14609 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14610}
14611
14612static void
14613do_neon_recip_est (void)
14614{
037e8744 14615 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14616 struct neon_type_el et = neon_check_type (2, rs,
14617 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14618 inst.instruction |= (et.type == NT_float) << 8;
037e8744 14619 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14620}
14621
14622static void
14623do_neon_cls (void)
14624{
037e8744 14625 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14626 struct neon_type_el et = neon_check_type (2, rs,
14627 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14628 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14629}
14630
14631static void
14632do_neon_clz (void)
14633{
037e8744 14634 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14635 struct neon_type_el et = neon_check_type (2, rs,
14636 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 14637 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14638}
14639
14640static void
14641do_neon_cnt (void)
14642{
037e8744 14643 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14644 struct neon_type_el et = neon_check_type (2, rs,
14645 N_EQK | N_INT, N_8 | N_KEY);
037e8744 14646 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14647}
14648
14649static void
14650do_neon_swp (void)
14651{
037e8744
JB
14652 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14653 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
14654}
14655
14656static void
14657do_neon_tbl_tbx (void)
14658{
14659 unsigned listlenbits;
dcbf9037 14660 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 14661
5287ad62
JB
14662 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14663 {
dcbf9037 14664 first_error (_("bad list length for table lookup"));
5287ad62
JB
14665 return;
14666 }
5f4273c7 14667
5287ad62
JB
14668 listlenbits = inst.operands[1].imm - 1;
14669 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14670 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14671 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14672 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14673 inst.instruction |= LOW4 (inst.operands[2].reg);
14674 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14675 inst.instruction |= listlenbits << 8;
5f4273c7 14676
88714cb8 14677 neon_dp_fixup (&inst);
5287ad62
JB
14678}
14679
14680static void
14681do_neon_ldm_stm (void)
14682{
14683 /* P, U and L bits are part of bitmask. */
14684 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14685 unsigned offsetbits = inst.operands[1].imm * 2;
14686
037e8744
JB
14687 if (inst.operands[1].issingle)
14688 {
14689 do_vfp_nsyn_ldm_stm (is_dbmode);
14690 return;
14691 }
14692
5287ad62
JB
14693 constraint (is_dbmode && !inst.operands[0].writeback,
14694 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14695
14696 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14697 _("register list must contain at least 1 and at most 16 "
14698 "registers"));
14699
14700 inst.instruction |= inst.operands[0].reg << 16;
14701 inst.instruction |= inst.operands[0].writeback << 21;
14702 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14703 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14704
14705 inst.instruction |= offsetbits;
5f4273c7 14706
037e8744 14707 do_vfp_cond_or_thumb ();
5287ad62
JB
14708}
14709
14710static void
14711do_neon_ldr_str (void)
14712{
5287ad62 14713 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 14714
037e8744
JB
14715 if (inst.operands[0].issingle)
14716 {
cd2f129f
JB
14717 if (is_ldr)
14718 do_vfp_nsyn_opcode ("flds");
14719 else
14720 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
14721 }
14722 else
5287ad62 14723 {
cd2f129f
JB
14724 if (is_ldr)
14725 do_vfp_nsyn_opcode ("fldd");
5287ad62 14726 else
cd2f129f 14727 do_vfp_nsyn_opcode ("fstd");
5287ad62 14728 }
5287ad62
JB
14729}
14730
14731/* "interleave" version also handles non-interleaving register VLD1/VST1
14732 instructions. */
14733
14734static void
14735do_neon_ld_st_interleave (void)
14736{
037e8744 14737 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
14738 N_8 | N_16 | N_32 | N_64);
14739 unsigned alignbits = 0;
14740 unsigned idx;
14741 /* The bits in this table go:
14742 0: register stride of one (0) or two (1)
14743 1,2: register list length, minus one (1, 2, 3, 4).
14744 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14745 We use -1 for invalid entries. */
14746 const int typetable[] =
14747 {
14748 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14749 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14750 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14751 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14752 };
14753 int typebits;
14754
dcbf9037
JB
14755 if (et.type == NT_invtype)
14756 return;
14757
5287ad62
JB
14758 if (inst.operands[1].immisalign)
14759 switch (inst.operands[1].imm >> 8)
14760 {
14761 case 64: alignbits = 1; break;
14762 case 128:
e23c0ad8
JZ
14763 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14764 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14765 goto bad_alignment;
14766 alignbits = 2;
14767 break;
14768 case 256:
e23c0ad8 14769 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
14770 goto bad_alignment;
14771 alignbits = 3;
14772 break;
14773 default:
14774 bad_alignment:
dcbf9037 14775 first_error (_("bad alignment"));
5287ad62
JB
14776 return;
14777 }
14778
14779 inst.instruction |= alignbits << 4;
14780 inst.instruction |= neon_logbits (et.size) << 6;
14781
14782 /* Bits [4:6] of the immediate in a list specifier encode register stride
14783 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14784 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14785 up the right value for "type" in a table based on this value and the given
14786 list style, then stick it back. */
14787 idx = ((inst.operands[0].imm >> 4) & 7)
14788 | (((inst.instruction >> 8) & 3) << 3);
14789
14790 typebits = typetable[idx];
5f4273c7 14791
5287ad62
JB
14792 constraint (typebits == -1, _("bad list type for instruction"));
14793
14794 inst.instruction &= ~0xf00;
14795 inst.instruction |= typebits << 8;
14796}
14797
14798/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14799 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14800 otherwise. The variable arguments are a list of pairs of legal (size, align)
14801 values, terminated with -1. */
14802
14803static int
14804neon_alignment_bit (int size, int align, int *do_align, ...)
14805{
14806 va_list ap;
14807 int result = FAIL, thissize, thisalign;
5f4273c7 14808
5287ad62
JB
14809 if (!inst.operands[1].immisalign)
14810 {
14811 *do_align = 0;
14812 return SUCCESS;
14813 }
5f4273c7 14814
5287ad62
JB
14815 va_start (ap, do_align);
14816
14817 do
14818 {
14819 thissize = va_arg (ap, int);
14820 if (thissize == -1)
14821 break;
14822 thisalign = va_arg (ap, int);
14823
14824 if (size == thissize && align == thisalign)
14825 result = SUCCESS;
14826 }
14827 while (result != SUCCESS);
14828
14829 va_end (ap);
14830
14831 if (result == SUCCESS)
14832 *do_align = 1;
14833 else
dcbf9037 14834 first_error (_("unsupported alignment for instruction"));
5f4273c7 14835
5287ad62
JB
14836 return result;
14837}
14838
14839static void
14840do_neon_ld_st_lane (void)
14841{
037e8744 14842 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14843 int align_good, do_align = 0;
14844 int logsize = neon_logbits (et.size);
14845 int align = inst.operands[1].imm >> 8;
14846 int n = (inst.instruction >> 8) & 3;
14847 int max_el = 64 / et.size;
5f4273c7 14848
dcbf9037
JB
14849 if (et.type == NT_invtype)
14850 return;
5f4273c7 14851
5287ad62
JB
14852 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14853 _("bad list length"));
14854 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14855 _("scalar index out of range"));
14856 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14857 && et.size == 8,
14858 _("stride of 2 unavailable when element size is 8"));
5f4273c7 14859
5287ad62
JB
14860 switch (n)
14861 {
14862 case 0: /* VLD1 / VST1. */
14863 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14864 32, 32, -1);
14865 if (align_good == FAIL)
14866 return;
14867 if (do_align)
14868 {
14869 unsigned alignbits = 0;
14870 switch (et.size)
14871 {
14872 case 16: alignbits = 0x1; break;
14873 case 32: alignbits = 0x3; break;
14874 default: ;
14875 }
14876 inst.instruction |= alignbits << 4;
14877 }
14878 break;
14879
14880 case 1: /* VLD2 / VST2. */
14881 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14882 32, 64, -1);
14883 if (align_good == FAIL)
14884 return;
14885 if (do_align)
14886 inst.instruction |= 1 << 4;
14887 break;
14888
14889 case 2: /* VLD3 / VST3. */
14890 constraint (inst.operands[1].immisalign,
14891 _("can't use alignment with this instruction"));
14892 break;
14893
14894 case 3: /* VLD4 / VST4. */
14895 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14896 16, 64, 32, 64, 32, 128, -1);
14897 if (align_good == FAIL)
14898 return;
14899 if (do_align)
14900 {
14901 unsigned alignbits = 0;
14902 switch (et.size)
14903 {
14904 case 8: alignbits = 0x1; break;
14905 case 16: alignbits = 0x1; break;
14906 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14907 default: ;
14908 }
14909 inst.instruction |= alignbits << 4;
14910 }
14911 break;
14912
14913 default: ;
14914 }
14915
14916 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14917 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14918 inst.instruction |= 1 << (4 + logsize);
5f4273c7 14919
5287ad62
JB
14920 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14921 inst.instruction |= logsize << 10;
14922}
14923
14924/* Encode single n-element structure to all lanes VLD<n> instructions. */
14925
14926static void
14927do_neon_ld_dup (void)
14928{
037e8744 14929 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14930 int align_good, do_align = 0;
14931
dcbf9037
JB
14932 if (et.type == NT_invtype)
14933 return;
14934
5287ad62
JB
14935 switch ((inst.instruction >> 8) & 3)
14936 {
14937 case 0: /* VLD1. */
9c2799c2 14938 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
14939 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14940 &do_align, 16, 16, 32, 32, -1);
14941 if (align_good == FAIL)
14942 return;
14943 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14944 {
14945 case 1: break;
14946 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 14947 default: first_error (_("bad list length")); return;
5287ad62
JB
14948 }
14949 inst.instruction |= neon_logbits (et.size) << 6;
14950 break;
14951
14952 case 1: /* VLD2. */
14953 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14954 &do_align, 8, 16, 16, 32, 32, 64, -1);
14955 if (align_good == FAIL)
14956 return;
14957 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14958 _("bad list length"));
14959 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14960 inst.instruction |= 1 << 5;
14961 inst.instruction |= neon_logbits (et.size) << 6;
14962 break;
14963
14964 case 2: /* VLD3. */
14965 constraint (inst.operands[1].immisalign,
14966 _("can't use alignment with this instruction"));
14967 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14968 _("bad list length"));
14969 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14970 inst.instruction |= 1 << 5;
14971 inst.instruction |= neon_logbits (et.size) << 6;
14972 break;
14973
14974 case 3: /* VLD4. */
14975 {
14976 int align = inst.operands[1].imm >> 8;
14977 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14978 16, 64, 32, 64, 32, 128, -1);
14979 if (align_good == FAIL)
14980 return;
14981 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14982 _("bad list length"));
14983 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14984 inst.instruction |= 1 << 5;
14985 if (et.size == 32 && align == 128)
14986 inst.instruction |= 0x3 << 6;
14987 else
14988 inst.instruction |= neon_logbits (et.size) << 6;
14989 }
14990 break;
14991
14992 default: ;
14993 }
14994
14995 inst.instruction |= do_align << 4;
14996}
14997
14998/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14999 apart from bits [11:4]. */
15000
15001static void
15002do_neon_ldx_stx (void)
15003{
b1a769ed
DG
15004 if (inst.operands[1].isreg)
15005 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15006
5287ad62
JB
15007 switch (NEON_LANE (inst.operands[0].imm))
15008 {
15009 case NEON_INTERLEAVE_LANES:
88714cb8 15010 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15011 do_neon_ld_st_interleave ();
15012 break;
5f4273c7 15013
5287ad62 15014 case NEON_ALL_LANES:
88714cb8 15015 NEON_ENCODE (DUP, inst);
5287ad62
JB
15016 do_neon_ld_dup ();
15017 break;
5f4273c7 15018
5287ad62 15019 default:
88714cb8 15020 NEON_ENCODE (LANE, inst);
5287ad62
JB
15021 do_neon_ld_st_lane ();
15022 }
15023
15024 /* L bit comes from bit mask. */
15025 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15026 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15027 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15028
5287ad62
JB
15029 if (inst.operands[1].postind)
15030 {
15031 int postreg = inst.operands[1].imm & 0xf;
15032 constraint (!inst.operands[1].immisreg,
15033 _("post-index must be a register"));
15034 constraint (postreg == 0xd || postreg == 0xf,
15035 _("bad register for post-index"));
15036 inst.instruction |= postreg;
15037 }
15038 else if (inst.operands[1].writeback)
15039 {
15040 inst.instruction |= 0xd;
15041 }
15042 else
5f4273c7
NC
15043 inst.instruction |= 0xf;
15044
5287ad62
JB
15045 if (thumb_mode)
15046 inst.instruction |= 0xf9000000;
15047 else
15048 inst.instruction |= 0xf4000000;
15049}
5287ad62
JB
15050\f
15051/* Overall per-instruction processing. */
15052
15053/* We need to be able to fix up arbitrary expressions in some statements.
15054 This is so that we can handle symbols that are an arbitrary distance from
15055 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15056 which returns part of an address in a form which will be valid for
15057 a data instruction. We do this by pushing the expression into a symbol
15058 in the expr_section, and creating a fix for that. */
15059
15060static void
15061fix_new_arm (fragS * frag,
15062 int where,
15063 short int size,
15064 expressionS * exp,
15065 int pc_rel,
15066 int reloc)
15067{
15068 fixS * new_fix;
15069
15070 switch (exp->X_op)
15071 {
15072 case O_constant:
15073 case O_symbol:
15074 case O_add:
15075 case O_subtract:
21d799b5
NC
15076 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15077 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15078 break;
15079
15080 default:
21d799b5
NC
15081 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15082 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15083 break;
15084 }
15085
15086 /* Mark whether the fix is to a THUMB instruction, or an ARM
15087 instruction. */
15088 new_fix->tc_fix_data = thumb_mode;
15089}
15090
15091/* Create a frg for an instruction requiring relaxation. */
15092static void
15093output_relax_insn (void)
15094{
15095 char * to;
15096 symbolS *sym;
0110f2b8
PB
15097 int offset;
15098
6e1cb1a6
PB
15099 /* The size of the instruction is unknown, so tie the debug info to the
15100 start of the instruction. */
15101 dwarf2_emit_insn (0);
6e1cb1a6 15102
0110f2b8
PB
15103 switch (inst.reloc.exp.X_op)
15104 {
15105 case O_symbol:
15106 sym = inst.reloc.exp.X_add_symbol;
15107 offset = inst.reloc.exp.X_add_number;
15108 break;
15109 case O_constant:
15110 sym = NULL;
15111 offset = inst.reloc.exp.X_add_number;
15112 break;
15113 default:
15114 sym = make_expr_symbol (&inst.reloc.exp);
15115 offset = 0;
15116 break;
15117 }
15118 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15119 inst.relax, sym, offset, NULL/*offset, opcode*/);
15120 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15121}
15122
15123/* Write a 32-bit thumb instruction to buf. */
15124static void
15125put_thumb32_insn (char * buf, unsigned long insn)
15126{
15127 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15128 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15129}
15130
b99bd4ef 15131static void
c19d1205 15132output_inst (const char * str)
b99bd4ef 15133{
c19d1205 15134 char * to = NULL;
b99bd4ef 15135
c19d1205 15136 if (inst.error)
b99bd4ef 15137 {
c19d1205 15138 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
15139 return;
15140 }
5f4273c7
NC
15141 if (inst.relax)
15142 {
15143 output_relax_insn ();
0110f2b8 15144 return;
5f4273c7 15145 }
c19d1205
ZW
15146 if (inst.size == 0)
15147 return;
b99bd4ef 15148
c19d1205 15149 to = frag_more (inst.size);
8dc2430f
NC
15150 /* PR 9814: Record the thumb mode into the current frag so that we know
15151 what type of NOP padding to use, if necessary. We override any previous
15152 setting so that if the mode has changed then the NOPS that we use will
15153 match the encoding of the last instruction in the frag. */
cd000bff 15154 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
15155
15156 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 15157 {
9c2799c2 15158 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 15159 put_thumb32_insn (to, inst.instruction);
b99bd4ef 15160 }
c19d1205 15161 else if (inst.size > INSN_SIZE)
b99bd4ef 15162 {
9c2799c2 15163 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
15164 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15165 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 15166 }
c19d1205
ZW
15167 else
15168 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 15169
c19d1205
ZW
15170 if (inst.reloc.type != BFD_RELOC_UNUSED)
15171 fix_new_arm (frag_now, to - frag_now->fr_literal,
15172 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15173 inst.reloc.type);
b99bd4ef 15174
c19d1205 15175 dwarf2_emit_insn (inst.size);
c19d1205 15176}
b99bd4ef 15177
e07e6e58
NC
15178static char *
15179output_it_inst (int cond, int mask, char * to)
15180{
15181 unsigned long instruction = 0xbf00;
15182
15183 mask &= 0xf;
15184 instruction |= mask;
15185 instruction |= cond << 4;
15186
15187 if (to == NULL)
15188 {
15189 to = frag_more (2);
15190#ifdef OBJ_ELF
15191 dwarf2_emit_insn (2);
15192#endif
15193 }
15194
15195 md_number_to_chars (to, instruction, 2);
15196
15197 return to;
15198}
15199
c19d1205
ZW
15200/* Tag values used in struct asm_opcode's tag field. */
15201enum opcode_tag
15202{
15203 OT_unconditional, /* Instruction cannot be conditionalized.
15204 The ARM condition field is still 0xE. */
15205 OT_unconditionalF, /* Instruction cannot be conditionalized
15206 and carries 0xF in its ARM condition field. */
15207 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
15208 OT_csuffixF, /* Some forms of the instruction take a conditional
15209 suffix, others place 0xF where the condition field
15210 would be. */
c19d1205
ZW
15211 OT_cinfix3, /* Instruction takes a conditional infix,
15212 beginning at character index 3. (In
15213 unified mode, it becomes a suffix.) */
088fa78e
KH
15214 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15215 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
15216 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15217 character index 3, even in unified mode. Used for
15218 legacy instructions where suffix and infix forms
15219 may be ambiguous. */
c19d1205 15220 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 15221 suffix or an infix at character index 3. */
c19d1205
ZW
15222 OT_odd_infix_unc, /* This is the unconditional variant of an
15223 instruction that takes a conditional infix
15224 at an unusual position. In unified mode,
15225 this variant will accept a suffix. */
15226 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15227 are the conditional variants of instructions that
15228 take conditional infixes in unusual positions.
15229 The infix appears at character index
15230 (tag - OT_odd_infix_0). These are not accepted
15231 in unified mode. */
15232};
b99bd4ef 15233
c19d1205
ZW
15234/* Subroutine of md_assemble, responsible for looking up the primary
15235 opcode from the mnemonic the user wrote. STR points to the
15236 beginning of the mnemonic.
15237
15238 This is not simply a hash table lookup, because of conditional
15239 variants. Most instructions have conditional variants, which are
15240 expressed with a _conditional affix_ to the mnemonic. If we were
15241 to encode each conditional variant as a literal string in the opcode
15242 table, it would have approximately 20,000 entries.
15243
15244 Most mnemonics take this affix as a suffix, and in unified syntax,
15245 'most' is upgraded to 'all'. However, in the divided syntax, some
15246 instructions take the affix as an infix, notably the s-variants of
15247 the arithmetic instructions. Of those instructions, all but six
15248 have the infix appear after the third character of the mnemonic.
15249
15250 Accordingly, the algorithm for looking up primary opcodes given
15251 an identifier is:
15252
15253 1. Look up the identifier in the opcode table.
15254 If we find a match, go to step U.
15255
15256 2. Look up the last two characters of the identifier in the
15257 conditions table. If we find a match, look up the first N-2
15258 characters of the identifier in the opcode table. If we
15259 find a match, go to step CE.
15260
15261 3. Look up the fourth and fifth characters of the identifier in
15262 the conditions table. If we find a match, extract those
15263 characters from the identifier, and look up the remaining
15264 characters in the opcode table. If we find a match, go
15265 to step CM.
15266
15267 4. Fail.
15268
15269 U. Examine the tag field of the opcode structure, in case this is
15270 one of the six instructions with its conditional infix in an
15271 unusual place. If it is, the tag tells us where to find the
15272 infix; look it up in the conditions table and set inst.cond
15273 accordingly. Otherwise, this is an unconditional instruction.
15274 Again set inst.cond accordingly. Return the opcode structure.
15275
15276 CE. Examine the tag field to make sure this is an instruction that
15277 should receive a conditional suffix. If it is not, fail.
15278 Otherwise, set inst.cond from the suffix we already looked up,
15279 and return the opcode structure.
15280
15281 CM. Examine the tag field to make sure this is an instruction that
15282 should receive a conditional infix after the third character.
15283 If it is not, fail. Otherwise, undo the edits to the current
15284 line of input and proceed as for case CE. */
15285
15286static const struct asm_opcode *
15287opcode_lookup (char **str)
15288{
15289 char *end, *base;
15290 char *affix;
15291 const struct asm_opcode *opcode;
15292 const struct asm_cond *cond;
e3cb604e 15293 char save[2];
c19d1205
ZW
15294
15295 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15296 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15297 for (base = end = *str; *end != '\0'; end++)
721a8186 15298 if (*end == ' ' || *end == '.')
c19d1205 15299 break;
b99bd4ef 15300
c19d1205 15301 if (end == base)
c921be7d 15302 return NULL;
b99bd4ef 15303
5287ad62 15304 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15305 if (end[0] == '.')
b99bd4ef 15306 {
5287ad62 15307 int offset = 2;
5f4273c7 15308
267d2029
JB
15309 /* The .w and .n suffixes are only valid if the unified syntax is in
15310 use. */
15311 if (unified_syntax && end[1] == 'w')
c19d1205 15312 inst.size_req = 4;
267d2029 15313 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15314 inst.size_req = 2;
15315 else
5287ad62
JB
15316 offset = 0;
15317
15318 inst.vectype.elems = 0;
15319
15320 *str = end + offset;
b99bd4ef 15321
5f4273c7 15322 if (end[offset] == '.')
5287ad62 15323 {
267d2029
JB
15324 /* See if we have a Neon type suffix (possible in either unified or
15325 non-unified ARM syntax mode). */
dcbf9037 15326 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15327 return NULL;
5287ad62
JB
15328 }
15329 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15330 return NULL;
b99bd4ef 15331 }
c19d1205
ZW
15332 else
15333 *str = end;
b99bd4ef 15334
c19d1205 15335 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15336 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15337 end - base);
c19d1205 15338 if (opcode)
b99bd4ef 15339 {
c19d1205
ZW
15340 /* step U */
15341 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15342 {
c19d1205
ZW
15343 inst.cond = COND_ALWAYS;
15344 return opcode;
b99bd4ef 15345 }
b99bd4ef 15346
278df34e 15347 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15348 as_warn (_("conditional infixes are deprecated in unified syntax"));
15349 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15350 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15351 gas_assert (cond);
b99bd4ef 15352
c19d1205
ZW
15353 inst.cond = cond->value;
15354 return opcode;
15355 }
b99bd4ef 15356
c19d1205
ZW
15357 /* Cannot have a conditional suffix on a mnemonic of less than two
15358 characters. */
15359 if (end - base < 3)
c921be7d 15360 return NULL;
b99bd4ef 15361
c19d1205
ZW
15362 /* Look for suffixed mnemonic. */
15363 affix = end - 2;
21d799b5
NC
15364 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15365 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15366 affix - base);
c19d1205
ZW
15367 if (opcode && cond)
15368 {
15369 /* step CE */
15370 switch (opcode->tag)
15371 {
e3cb604e
PB
15372 case OT_cinfix3_legacy:
15373 /* Ignore conditional suffixes matched on infix only mnemonics. */
15374 break;
15375
c19d1205 15376 case OT_cinfix3:
088fa78e 15377 case OT_cinfix3_deprecated:
c19d1205
ZW
15378 case OT_odd_infix_unc:
15379 if (!unified_syntax)
e3cb604e 15380 return 0;
c19d1205
ZW
15381 /* else fall through */
15382
15383 case OT_csuffix:
037e8744 15384 case OT_csuffixF:
c19d1205
ZW
15385 case OT_csuf_or_in3:
15386 inst.cond = cond->value;
15387 return opcode;
15388
15389 case OT_unconditional:
15390 case OT_unconditionalF:
dfa9f0d5 15391 if (thumb_mode)
c921be7d 15392 inst.cond = cond->value;
dfa9f0d5
PB
15393 else
15394 {
c921be7d 15395 /* Delayed diagnostic. */
dfa9f0d5
PB
15396 inst.error = BAD_COND;
15397 inst.cond = COND_ALWAYS;
15398 }
c19d1205 15399 return opcode;
b99bd4ef 15400
c19d1205 15401 default:
c921be7d 15402 return NULL;
c19d1205
ZW
15403 }
15404 }
b99bd4ef 15405
c19d1205
ZW
15406 /* Cannot have a usual-position infix on a mnemonic of less than
15407 six characters (five would be a suffix). */
15408 if (end - base < 6)
c921be7d 15409 return NULL;
b99bd4ef 15410
c19d1205
ZW
15411 /* Look for infixed mnemonic in the usual position. */
15412 affix = base + 3;
21d799b5 15413 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15414 if (!cond)
c921be7d 15415 return NULL;
e3cb604e
PB
15416
15417 memcpy (save, affix, 2);
15418 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15419 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15420 (end - base) - 2);
e3cb604e
PB
15421 memmove (affix + 2, affix, (end - affix) - 2);
15422 memcpy (affix, save, 2);
15423
088fa78e
KH
15424 if (opcode
15425 && (opcode->tag == OT_cinfix3
15426 || opcode->tag == OT_cinfix3_deprecated
15427 || opcode->tag == OT_csuf_or_in3
15428 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15429 {
c921be7d 15430 /* Step CM. */
278df34e 15431 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15432 && (opcode->tag == OT_cinfix3
15433 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15434 as_warn (_("conditional infixes are deprecated in unified syntax"));
15435
15436 inst.cond = cond->value;
15437 return opcode;
b99bd4ef
NC
15438 }
15439
c921be7d 15440 return NULL;
b99bd4ef
NC
15441}
15442
e07e6e58
NC
15443/* This function generates an initial IT instruction, leaving its block
15444 virtually open for the new instructions. Eventually,
15445 the mask will be updated by now_it_add_mask () each time
15446 a new instruction needs to be included in the IT block.
15447 Finally, the block is closed with close_automatic_it_block ().
15448 The block closure can be requested either from md_assemble (),
15449 a tencode (), or due to a label hook. */
15450
15451static void
15452new_automatic_it_block (int cond)
15453{
15454 now_it.state = AUTOMATIC_IT_BLOCK;
15455 now_it.mask = 0x18;
15456 now_it.cc = cond;
15457 now_it.block_length = 1;
cd000bff 15458 mapping_state (MAP_THUMB);
e07e6e58
NC
15459 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15460}
15461
15462/* Close an automatic IT block.
15463 See comments in new_automatic_it_block (). */
15464
15465static void
15466close_automatic_it_block (void)
15467{
15468 now_it.mask = 0x10;
15469 now_it.block_length = 0;
15470}
15471
15472/* Update the mask of the current automatically-generated IT
15473 instruction. See comments in new_automatic_it_block (). */
15474
15475static void
15476now_it_add_mask (int cond)
15477{
15478#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15479#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15480 | ((bitvalue) << (nbit)))
e07e6e58 15481 const int resulting_bit = (cond & 1);
c921be7d 15482
e07e6e58
NC
15483 now_it.mask &= 0xf;
15484 now_it.mask = SET_BIT_VALUE (now_it.mask,
15485 resulting_bit,
15486 (5 - now_it.block_length));
15487 now_it.mask = SET_BIT_VALUE (now_it.mask,
15488 1,
15489 ((5 - now_it.block_length) - 1) );
15490 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15491
15492#undef CLEAR_BIT
15493#undef SET_BIT_VALUE
e07e6e58
NC
15494}
15495
15496/* The IT blocks handling machinery is accessed through the these functions:
15497 it_fsm_pre_encode () from md_assemble ()
15498 set_it_insn_type () optional, from the tencode functions
15499 set_it_insn_type_last () ditto
15500 in_it_block () ditto
15501 it_fsm_post_encode () from md_assemble ()
15502 force_automatic_it_block_close () from label habdling functions
15503
15504 Rationale:
15505 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15506 initializing the IT insn type with a generic initial value depending
15507 on the inst.condition.
15508 2) During the tencode function, two things may happen:
15509 a) The tencode function overrides the IT insn type by
15510 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15511 b) The tencode function queries the IT block state by
15512 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15513
15514 Both set_it_insn_type and in_it_block run the internal FSM state
15515 handling function (handle_it_state), because: a) setting the IT insn
15516 type may incur in an invalid state (exiting the function),
15517 and b) querying the state requires the FSM to be updated.
15518 Specifically we want to avoid creating an IT block for conditional
15519 branches, so it_fsm_pre_encode is actually a guess and we can't
15520 determine whether an IT block is required until the tencode () routine
15521 has decided what type of instruction this actually it.
15522 Because of this, if set_it_insn_type and in_it_block have to be used,
15523 set_it_insn_type has to be called first.
15524
15525 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15526 determines the insn IT type depending on the inst.cond code.
15527 When a tencode () routine encodes an instruction that can be
15528 either outside an IT block, or, in the case of being inside, has to be
15529 the last one, set_it_insn_type_last () will determine the proper
15530 IT instruction type based on the inst.cond code. Otherwise,
15531 set_it_insn_type can be called for overriding that logic or
15532 for covering other cases.
15533
15534 Calling handle_it_state () may not transition the IT block state to
15535 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15536 still queried. Instead, if the FSM determines that the state should
15537 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15538 after the tencode () function: that's what it_fsm_post_encode () does.
15539
15540 Since in_it_block () calls the state handling function to get an
15541 updated state, an error may occur (due to invalid insns combination).
15542 In that case, inst.error is set.
15543 Therefore, inst.error has to be checked after the execution of
15544 the tencode () routine.
15545
15546 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15547 any pending state change (if any) that didn't take place in
15548 handle_it_state () as explained above. */
15549
15550static void
15551it_fsm_pre_encode (void)
15552{
15553 if (inst.cond != COND_ALWAYS)
15554 inst.it_insn_type = INSIDE_IT_INSN;
15555 else
15556 inst.it_insn_type = OUTSIDE_IT_INSN;
15557
15558 now_it.state_handled = 0;
15559}
15560
15561/* IT state FSM handling function. */
15562
15563static int
15564handle_it_state (void)
15565{
15566 now_it.state_handled = 1;
15567
15568 switch (now_it.state)
15569 {
15570 case OUTSIDE_IT_BLOCK:
15571 switch (inst.it_insn_type)
15572 {
15573 case OUTSIDE_IT_INSN:
15574 break;
15575
15576 case INSIDE_IT_INSN:
15577 case INSIDE_IT_LAST_INSN:
15578 if (thumb_mode == 0)
15579 {
c921be7d 15580 if (unified_syntax
e07e6e58
NC
15581 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15582 as_tsktsk (_("Warning: conditional outside an IT block"\
15583 " for Thumb."));
15584 }
15585 else
15586 {
15587 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15588 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15589 {
15590 /* Automatically generate the IT instruction. */
15591 new_automatic_it_block (inst.cond);
15592 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15593 close_automatic_it_block ();
15594 }
15595 else
15596 {
15597 inst.error = BAD_OUT_IT;
15598 return FAIL;
15599 }
15600 }
15601 break;
15602
15603 case IF_INSIDE_IT_LAST_INSN:
15604 case NEUTRAL_IT_INSN:
15605 break;
15606
15607 case IT_INSN:
15608 now_it.state = MANUAL_IT_BLOCK;
15609 now_it.block_length = 0;
15610 break;
15611 }
15612 break;
15613
15614 case AUTOMATIC_IT_BLOCK:
15615 /* Three things may happen now:
15616 a) We should increment current it block size;
15617 b) We should close current it block (closing insn or 4 insns);
15618 c) We should close current it block and start a new one (due
15619 to incompatible conditions or
15620 4 insns-length block reached). */
15621
15622 switch (inst.it_insn_type)
15623 {
15624 case OUTSIDE_IT_INSN:
15625 /* The closure of the block shall happen immediatelly,
15626 so any in_it_block () call reports the block as closed. */
15627 force_automatic_it_block_close ();
15628 break;
15629
15630 case INSIDE_IT_INSN:
15631 case INSIDE_IT_LAST_INSN:
15632 case IF_INSIDE_IT_LAST_INSN:
15633 now_it.block_length++;
15634
15635 if (now_it.block_length > 4
15636 || !now_it_compatible (inst.cond))
15637 {
15638 force_automatic_it_block_close ();
15639 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15640 new_automatic_it_block (inst.cond);
15641 }
15642 else
15643 {
15644 now_it_add_mask (inst.cond);
15645 }
15646
15647 if (now_it.state == AUTOMATIC_IT_BLOCK
15648 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15649 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15650 close_automatic_it_block ();
15651 break;
15652
15653 case NEUTRAL_IT_INSN:
15654 now_it.block_length++;
15655
15656 if (now_it.block_length > 4)
15657 force_automatic_it_block_close ();
15658 else
15659 now_it_add_mask (now_it.cc & 1);
15660 break;
15661
15662 case IT_INSN:
15663 close_automatic_it_block ();
15664 now_it.state = MANUAL_IT_BLOCK;
15665 break;
15666 }
15667 break;
15668
15669 case MANUAL_IT_BLOCK:
15670 {
15671 /* Check conditional suffixes. */
15672 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15673 int is_last;
15674 now_it.mask <<= 1;
15675 now_it.mask &= 0x1f;
15676 is_last = (now_it.mask == 0x10);
15677
15678 switch (inst.it_insn_type)
15679 {
15680 case OUTSIDE_IT_INSN:
15681 inst.error = BAD_NOT_IT;
15682 return FAIL;
15683
15684 case INSIDE_IT_INSN:
15685 if (cond != inst.cond)
15686 {
15687 inst.error = BAD_IT_COND;
15688 return FAIL;
15689 }
15690 break;
15691
15692 case INSIDE_IT_LAST_INSN:
15693 case IF_INSIDE_IT_LAST_INSN:
15694 if (cond != inst.cond)
15695 {
15696 inst.error = BAD_IT_COND;
15697 return FAIL;
15698 }
15699 if (!is_last)
15700 {
15701 inst.error = BAD_BRANCH;
15702 return FAIL;
15703 }
15704 break;
15705
15706 case NEUTRAL_IT_INSN:
15707 /* The BKPT instruction is unconditional even in an IT block. */
15708 break;
15709
15710 case IT_INSN:
15711 inst.error = BAD_IT_IT;
15712 return FAIL;
15713 }
15714 }
15715 break;
15716 }
15717
15718 return SUCCESS;
15719}
15720
15721static void
15722it_fsm_post_encode (void)
15723{
15724 int is_last;
15725
15726 if (!now_it.state_handled)
15727 handle_it_state ();
15728
15729 is_last = (now_it.mask == 0x10);
15730 if (is_last)
15731 {
15732 now_it.state = OUTSIDE_IT_BLOCK;
15733 now_it.mask = 0;
15734 }
15735}
15736
15737static void
15738force_automatic_it_block_close (void)
15739{
15740 if (now_it.state == AUTOMATIC_IT_BLOCK)
15741 {
15742 close_automatic_it_block ();
15743 now_it.state = OUTSIDE_IT_BLOCK;
15744 now_it.mask = 0;
15745 }
15746}
15747
15748static int
15749in_it_block (void)
15750{
15751 if (!now_it.state_handled)
15752 handle_it_state ();
15753
15754 return now_it.state != OUTSIDE_IT_BLOCK;
15755}
15756
c19d1205
ZW
15757void
15758md_assemble (char *str)
b99bd4ef 15759{
c19d1205
ZW
15760 char *p = str;
15761 const struct asm_opcode * opcode;
b99bd4ef 15762
c19d1205
ZW
15763 /* Align the previous label if needed. */
15764 if (last_label_seen != NULL)
b99bd4ef 15765 {
c19d1205
ZW
15766 symbol_set_frag (last_label_seen, frag_now);
15767 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15768 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
15769 }
15770
c19d1205
ZW
15771 memset (&inst, '\0', sizeof (inst));
15772 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 15773
c19d1205
ZW
15774 opcode = opcode_lookup (&p);
15775 if (!opcode)
b99bd4ef 15776 {
c19d1205 15777 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 15778 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
15779 if (! create_register_alias (str, p)
15780 && ! create_neon_reg_alias (str, p))
c19d1205 15781 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 15782
b99bd4ef
NC
15783 return;
15784 }
15785
278df34e 15786 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
15787 as_warn (_("s suffix on comparison instruction is deprecated"));
15788
037e8744
JB
15789 /* The value which unconditional instructions should have in place of the
15790 condition field. */
15791 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15792
c19d1205 15793 if (thumb_mode)
b99bd4ef 15794 {
e74cfd16 15795 arm_feature_set variant;
8f06b2d8
PB
15796
15797 variant = cpu_variant;
15798 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
15799 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15800 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 15801 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
15802 if (!opcode->tvariant
15803 || (thumb_mode == 1
15804 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 15805 {
bf3eeda7 15806 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
15807 return;
15808 }
c19d1205
ZW
15809 if (inst.cond != COND_ALWAYS && !unified_syntax
15810 && opcode->tencode != do_t_branch)
b99bd4ef 15811 {
c19d1205 15812 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
15813 return;
15814 }
15815
752d5da4 15816 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 15817 {
7e806470 15818 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
15819 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15820 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15821 {
15822 /* Two things are addressed here.
15823 1) Implicit require narrow instructions on Thumb-1.
15824 This avoids relaxation accidentally introducing Thumb-2
15825 instructions.
15826 2) Reject wide instructions in non Thumb-2 cores. */
15827 if (inst.size_req == 0)
15828 inst.size_req = 2;
15829 else if (inst.size_req == 4)
15830 {
bf3eeda7 15831 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
15832 return;
15833 }
15834 }
076d447c
PB
15835 }
15836
c19d1205
ZW
15837 inst.instruction = opcode->tvalue;
15838
5be8be5d 15839 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
15840 {
15841 /* Prepare the it_insn_type for those encodings that don't set
15842 it. */
15843 it_fsm_pre_encode ();
c19d1205 15844
e07e6e58
NC
15845 opcode->tencode ();
15846
15847 it_fsm_post_encode ();
15848 }
e27ec89e 15849
0110f2b8 15850 if (!(inst.error || inst.relax))
b99bd4ef 15851 {
9c2799c2 15852 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
15853 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15854 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 15855 {
c19d1205 15856 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
15857 return;
15858 }
15859 }
076d447c
PB
15860
15861 /* Something has gone badly wrong if we try to relax a fixed size
15862 instruction. */
9c2799c2 15863 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 15864
e74cfd16
PB
15865 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15866 *opcode->tvariant);
ee065d83 15867 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 15868 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 15869 anything other than bl/blx and v6-M instructions.
ee065d83 15870 This is overly pessimistic for relaxable instructions. */
7e806470
PB
15871 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15872 || inst.relax)
e07e6e58
NC
15873 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15874 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
15875 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15876 arm_ext_v6t2);
cd000bff 15877
88714cb8
DG
15878 check_neon_suffixes;
15879
cd000bff 15880 if (!inst.error)
c877a2f2
NC
15881 {
15882 mapping_state (MAP_THUMB);
15883 }
c19d1205 15884 }
3e9e4fcf 15885 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 15886 {
845b51d6
PB
15887 bfd_boolean is_bx;
15888
15889 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15890 is_bx = (opcode->aencode == do_bx);
15891
c19d1205 15892 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
15893 if (!(is_bx && fix_v4bx)
15894 && !(opcode->avariant &&
15895 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 15896 {
bf3eeda7 15897 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 15898 return;
b99bd4ef 15899 }
c19d1205 15900 if (inst.size_req)
b99bd4ef 15901 {
c19d1205
ZW
15902 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15903 return;
b99bd4ef
NC
15904 }
15905
c19d1205
ZW
15906 inst.instruction = opcode->avalue;
15907 if (opcode->tag == OT_unconditionalF)
15908 inst.instruction |= 0xF << 28;
15909 else
15910 inst.instruction |= inst.cond << 28;
15911 inst.size = INSN_SIZE;
5be8be5d 15912 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
15913 {
15914 it_fsm_pre_encode ();
15915 opcode->aencode ();
15916 it_fsm_post_encode ();
15917 }
ee065d83
PB
15918 /* Arm mode bx is marked as both v4T and v5 because it's still required
15919 on a hypothetical non-thumb v5 core. */
845b51d6 15920 if (is_bx)
e74cfd16 15921 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 15922 else
e74cfd16
PB
15923 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15924 *opcode->avariant);
88714cb8
DG
15925
15926 check_neon_suffixes;
15927
cd000bff 15928 if (!inst.error)
c877a2f2
NC
15929 {
15930 mapping_state (MAP_ARM);
15931 }
b99bd4ef 15932 }
3e9e4fcf
JB
15933 else
15934 {
15935 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15936 "-- `%s'"), str);
15937 return;
15938 }
c19d1205
ZW
15939 output_inst (str);
15940}
b99bd4ef 15941
e07e6e58
NC
15942static void
15943check_it_blocks_finished (void)
15944{
15945#ifdef OBJ_ELF
15946 asection *sect;
15947
15948 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15949 if (seg_info (sect)->tc_segment_info_data.current_it.state
15950 == MANUAL_IT_BLOCK)
15951 {
15952 as_warn (_("section '%s' finished with an open IT block."),
15953 sect->name);
15954 }
15955#else
15956 if (now_it.state == MANUAL_IT_BLOCK)
15957 as_warn (_("file finished with an open IT block."));
15958#endif
15959}
15960
c19d1205
ZW
15961/* Various frobbings of labels and their addresses. */
15962
15963void
15964arm_start_line_hook (void)
15965{
15966 last_label_seen = NULL;
b99bd4ef
NC
15967}
15968
c19d1205
ZW
15969void
15970arm_frob_label (symbolS * sym)
b99bd4ef 15971{
c19d1205 15972 last_label_seen = sym;
b99bd4ef 15973
c19d1205 15974 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 15975
c19d1205
ZW
15976#if defined OBJ_COFF || defined OBJ_ELF
15977 ARM_SET_INTERWORK (sym, support_interwork);
15978#endif
b99bd4ef 15979
e07e6e58
NC
15980 force_automatic_it_block_close ();
15981
5f4273c7 15982 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
15983 as Thumb functions. This is because these labels, whilst
15984 they exist inside Thumb code, are not the entry points for
15985 possible ARM->Thumb calls. Also, these labels can be used
15986 as part of a computed goto or switch statement. eg gcc
15987 can generate code that looks like this:
b99bd4ef 15988
c19d1205
ZW
15989 ldr r2, [pc, .Laaa]
15990 lsl r3, r3, #2
15991 ldr r2, [r3, r2]
15992 mov pc, r2
b99bd4ef 15993
c19d1205
ZW
15994 .Lbbb: .word .Lxxx
15995 .Lccc: .word .Lyyy
15996 ..etc...
15997 .Laaa: .word Lbbb
b99bd4ef 15998
c19d1205
ZW
15999 The first instruction loads the address of the jump table.
16000 The second instruction converts a table index into a byte offset.
16001 The third instruction gets the jump address out of the table.
16002 The fourth instruction performs the jump.
b99bd4ef 16003
c19d1205
ZW
16004 If the address stored at .Laaa is that of a symbol which has the
16005 Thumb_Func bit set, then the linker will arrange for this address
16006 to have the bottom bit set, which in turn would mean that the
16007 address computation performed by the third instruction would end
16008 up with the bottom bit set. Since the ARM is capable of unaligned
16009 word loads, the instruction would then load the incorrect address
16010 out of the jump table, and chaos would ensue. */
16011 if (label_is_thumb_function_name
16012 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16013 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16014 {
c19d1205
ZW
16015 /* When the address of a Thumb function is taken the bottom
16016 bit of that address should be set. This will allow
16017 interworking between Arm and Thumb functions to work
16018 correctly. */
b99bd4ef 16019
c19d1205 16020 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16021
c19d1205 16022 label_is_thumb_function_name = FALSE;
b99bd4ef 16023 }
07a53e5c 16024
07a53e5c 16025 dwarf2_emit_label (sym);
b99bd4ef
NC
16026}
16027
c921be7d 16028bfd_boolean
c19d1205 16029arm_data_in_code (void)
b99bd4ef 16030{
c19d1205 16031 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16032 {
c19d1205
ZW
16033 *input_line_pointer = '/';
16034 input_line_pointer += 5;
16035 *input_line_pointer = 0;
c921be7d 16036 return TRUE;
b99bd4ef
NC
16037 }
16038
c921be7d 16039 return FALSE;
b99bd4ef
NC
16040}
16041
c19d1205
ZW
16042char *
16043arm_canonicalize_symbol_name (char * name)
b99bd4ef 16044{
c19d1205 16045 int len;
b99bd4ef 16046
c19d1205
ZW
16047 if (thumb_mode && (len = strlen (name)) > 5
16048 && streq (name + len - 5, "/data"))
16049 *(name + len - 5) = 0;
b99bd4ef 16050
c19d1205 16051 return name;
b99bd4ef 16052}
c19d1205
ZW
16053\f
16054/* Table of all register names defined by default. The user can
16055 define additional names with .req. Note that all register names
16056 should appear in both upper and lowercase variants. Some registers
16057 also have mixed-case names. */
b99bd4ef 16058
dcbf9037 16059#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16060#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16061#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16062#define REGSET(p,t) \
16063 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16064 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16065 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16066 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16067#define REGSETH(p,t) \
16068 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16069 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16070 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16071 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16072#define REGSET2(p,t) \
16073 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16074 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16075 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16076 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 16077
c19d1205 16078static const struct reg_entry reg_names[] =
7ed4c4c5 16079{
c19d1205
ZW
16080 /* ARM integer registers. */
16081 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 16082
c19d1205
ZW
16083 /* ATPCS synonyms. */
16084 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16085 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16086 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 16087
c19d1205
ZW
16088 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16089 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16090 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 16091
c19d1205
ZW
16092 /* Well-known aliases. */
16093 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16094 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16095
16096 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16097 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16098
16099 /* Coprocessor numbers. */
16100 REGSET(p, CP), REGSET(P, CP),
16101
16102 /* Coprocessor register numbers. The "cr" variants are for backward
16103 compatibility. */
16104 REGSET(c, CN), REGSET(C, CN),
16105 REGSET(cr, CN), REGSET(CR, CN),
16106
16107 /* FPA registers. */
16108 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16109 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16110
16111 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16112 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16113
16114 /* VFP SP registers. */
5287ad62
JB
16115 REGSET(s,VFS), REGSET(S,VFS),
16116 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
16117
16118 /* VFP DP Registers. */
5287ad62
JB
16119 REGSET(d,VFD), REGSET(D,VFD),
16120 /* Extra Neon DP registers. */
16121 REGSETH(d,VFD), REGSETH(D,VFD),
16122
16123 /* Neon QP registers. */
16124 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
16125
16126 /* VFP control registers. */
16127 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16128 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
16129 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16130 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16131 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16132 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
16133
16134 /* Maverick DSP coprocessor registers. */
16135 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16136 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16137
16138 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16139 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16140 REGDEF(dspsc,0,DSPSC),
16141
16142 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16143 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16144 REGDEF(DSPSC,0,DSPSC),
16145
16146 /* iWMMXt data registers - p0, c0-15. */
16147 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16148
16149 /* iWMMXt control registers - p1, c0-3. */
16150 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16151 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16152 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16153 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16154
16155 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16156 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16157 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16158 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16159 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16160
16161 /* XScale accumulator registers. */
16162 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16163};
16164#undef REGDEF
16165#undef REGNUM
16166#undef REGSET
7ed4c4c5 16167
c19d1205
ZW
16168/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16169 within psr_required_here. */
16170static const struct asm_psr psrs[] =
16171{
16172 /* Backward compatibility notation. Note that "all" is no longer
16173 truly all possible PSR bits. */
16174 {"all", PSR_c | PSR_f},
16175 {"flg", PSR_f},
16176 {"ctl", PSR_c},
16177
16178 /* Individual flags. */
16179 {"f", PSR_f},
16180 {"c", PSR_c},
16181 {"x", PSR_x},
16182 {"s", PSR_s},
16183 /* Combinations of flags. */
16184 {"fs", PSR_f | PSR_s},
16185 {"fx", PSR_f | PSR_x},
16186 {"fc", PSR_f | PSR_c},
16187 {"sf", PSR_s | PSR_f},
16188 {"sx", PSR_s | PSR_x},
16189 {"sc", PSR_s | PSR_c},
16190 {"xf", PSR_x | PSR_f},
16191 {"xs", PSR_x | PSR_s},
16192 {"xc", PSR_x | PSR_c},
16193 {"cf", PSR_c | PSR_f},
16194 {"cs", PSR_c | PSR_s},
16195 {"cx", PSR_c | PSR_x},
16196 {"fsx", PSR_f | PSR_s | PSR_x},
16197 {"fsc", PSR_f | PSR_s | PSR_c},
16198 {"fxs", PSR_f | PSR_x | PSR_s},
16199 {"fxc", PSR_f | PSR_x | PSR_c},
16200 {"fcs", PSR_f | PSR_c | PSR_s},
16201 {"fcx", PSR_f | PSR_c | PSR_x},
16202 {"sfx", PSR_s | PSR_f | PSR_x},
16203 {"sfc", PSR_s | PSR_f | PSR_c},
16204 {"sxf", PSR_s | PSR_x | PSR_f},
16205 {"sxc", PSR_s | PSR_x | PSR_c},
16206 {"scf", PSR_s | PSR_c | PSR_f},
16207 {"scx", PSR_s | PSR_c | PSR_x},
16208 {"xfs", PSR_x | PSR_f | PSR_s},
16209 {"xfc", PSR_x | PSR_f | PSR_c},
16210 {"xsf", PSR_x | PSR_s | PSR_f},
16211 {"xsc", PSR_x | PSR_s | PSR_c},
16212 {"xcf", PSR_x | PSR_c | PSR_f},
16213 {"xcs", PSR_x | PSR_c | PSR_s},
16214 {"cfs", PSR_c | PSR_f | PSR_s},
16215 {"cfx", PSR_c | PSR_f | PSR_x},
16216 {"csf", PSR_c | PSR_s | PSR_f},
16217 {"csx", PSR_c | PSR_s | PSR_x},
16218 {"cxf", PSR_c | PSR_x | PSR_f},
16219 {"cxs", PSR_c | PSR_x | PSR_s},
16220 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16221 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16222 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16223 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16224 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16225 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16226 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16227 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16228 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16229 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16230 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16231 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16232 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16233 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16234 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16235 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16236 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16237 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16238 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16239 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16240 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16241 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16242 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16243 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16244};
16245
62b3e311
PB
16246/* Table of V7M psr names. */
16247static const struct asm_psr v7m_psrs[] =
16248{
2b744c99
PB
16249 {"apsr", 0 }, {"APSR", 0 },
16250 {"iapsr", 1 }, {"IAPSR", 1 },
16251 {"eapsr", 2 }, {"EAPSR", 2 },
16252 {"psr", 3 }, {"PSR", 3 },
16253 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16254 {"ipsr", 5 }, {"IPSR", 5 },
16255 {"epsr", 6 }, {"EPSR", 6 },
16256 {"iepsr", 7 }, {"IEPSR", 7 },
16257 {"msp", 8 }, {"MSP", 8 },
16258 {"psp", 9 }, {"PSP", 9 },
16259 {"primask", 16}, {"PRIMASK", 16},
16260 {"basepri", 17}, {"BASEPRI", 17},
16261 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16262 {"faultmask", 19}, {"FAULTMASK", 19},
16263 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
16264};
16265
c19d1205
ZW
16266/* Table of all shift-in-operand names. */
16267static const struct asm_shift_name shift_names [] =
b99bd4ef 16268{
c19d1205
ZW
16269 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16270 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16271 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16272 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16273 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16274 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16275};
b99bd4ef 16276
c19d1205
ZW
16277/* Table of all explicit relocation names. */
16278#ifdef OBJ_ELF
16279static struct reloc_entry reloc_names[] =
16280{
16281 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16282 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16283 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16284 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16285 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16286 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16287 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16288 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16289 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16290 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6
NC
16291 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16292 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL}
c19d1205
ZW
16293};
16294#endif
b99bd4ef 16295
c19d1205
ZW
16296/* Table of all conditional affixes. 0xF is not defined as a condition code. */
16297static const struct asm_cond conds[] =
16298{
16299 {"eq", 0x0},
16300 {"ne", 0x1},
16301 {"cs", 0x2}, {"hs", 0x2},
16302 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16303 {"mi", 0x4},
16304 {"pl", 0x5},
16305 {"vs", 0x6},
16306 {"vc", 0x7},
16307 {"hi", 0x8},
16308 {"ls", 0x9},
16309 {"ge", 0xa},
16310 {"lt", 0xb},
16311 {"gt", 0xc},
16312 {"le", 0xd},
16313 {"al", 0xe}
16314};
bfae80f2 16315
62b3e311
PB
16316static struct asm_barrier_opt barrier_opt_names[] =
16317{
52e7f43d
RE
16318 { "sy", 0xf }, { "SY", 0xf },
16319 { "un", 0x7 }, { "UN", 0x7 },
16320 { "st", 0xe }, { "ST", 0xe },
16321 { "unst", 0x6 }, { "UNST", 0x6 },
16322 { "ish", 0xb }, { "ISH", 0xb },
16323 { "sh", 0xb }, { "SH", 0xb },
16324 { "ishst", 0xa }, { "ISHST", 0xa },
16325 { "shst", 0xa }, { "SHST", 0xa },
16326 { "nsh", 0x7 }, { "NSH", 0x7 },
16327 { "nshst", 0x6 }, { "NSHST", 0x6 },
16328 { "osh", 0x3 }, { "OSH", 0x3 },
16329 { "oshst", 0x2 }, { "OSHST", 0x2 }
62b3e311
PB
16330};
16331
c19d1205
ZW
16332/* Table of ARM-format instructions. */
16333
16334/* Macros for gluing together operand strings. N.B. In all cases
16335 other than OPS0, the trailing OP_stop comes from default
16336 zero-initialization of the unspecified elements of the array. */
16337#define OPS0() { OP_stop, }
16338#define OPS1(a) { OP_##a, }
16339#define OPS2(a,b) { OP_##a,OP_##b, }
16340#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16341#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16342#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16343#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16344
5be8be5d
DG
16345/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16346 This is useful when mixing operands for ARM and THUMB, i.e. using the
16347 MIX_ARM_THUMB_OPERANDS macro.
16348 In order to use these macros, prefix the number of operands with _
16349 e.g. _3. */
16350#define OPS_1(a) { a, }
16351#define OPS_2(a,b) { a,b, }
16352#define OPS_3(a,b,c) { a,b,c, }
16353#define OPS_4(a,b,c,d) { a,b,c,d, }
16354#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16355#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16356
c19d1205
ZW
16357/* These macros abstract out the exact format of the mnemonic table and
16358 save some repeated characters. */
16359
16360/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16361#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16362 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16363 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16364
16365/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16366 a T_MNEM_xyz enumerator. */
16367#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16368 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16369#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16370 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16371
16372/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16373 infix after the third character. */
16374#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16375 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16376 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16377#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16378 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16379 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16380#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16381 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16382#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16383 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16384#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16385 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16386#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16387 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16388
16389/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16390 appear in the condition table. */
16391#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16392 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16393 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16394
16395#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16396 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16397 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16398 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16399 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16400 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16401 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16402 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16403 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16404 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16405 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16406 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16407 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16408 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16409 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16410 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16411 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16412 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16413 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16414 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16415
16416#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16417 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16418#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16419 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16420
16421/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16422 field is still 0xE. Many of the Thumb variants can be executed
16423 conditionally, so this is checked separately. */
c19d1205 16424#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16425 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16426 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16427
16428/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16429 condition code field. */
16430#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16431 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16432 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16433
16434/* ARM-only variants of all the above. */
6a86118a 16435#define CE(mnem, op, nops, ops, ae) \
21d799b5 16436 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16437
16438#define C3(mnem, op, nops, ops, ae) \
16439 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16440
e3cb604e
PB
16441/* Legacy mnemonics that always have conditional infix after the third
16442 character. */
16443#define CL(mnem, op, nops, ops, ae) \
21d799b5 16444 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16445 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16446
8f06b2d8
PB
16447/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16448#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16449 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16450
e3cb604e
PB
16451/* Legacy coprocessor instructions where conditional infix and conditional
16452 suffix are ambiguous. For consistency this includes all FPA instructions,
16453 not just the potentially ambiguous ones. */
16454#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16455 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16456 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16457
16458/* Coprocessor, takes either a suffix or a position-3 infix
16459 (for an FPA corner case). */
16460#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16461 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16462 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16463
6a86118a 16464#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16465 { m1 #m2 m3, OPS##nops ops, \
16466 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16467 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16468
16469#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16470 xCM_ (m1, , m2, op, nops, ops, ae), \
16471 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16472 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16473 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16474 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16475 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16476 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16477 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16478 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16479 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16480 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16481 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16482 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16483 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16484 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16485 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16486 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16487 xCM_ (m1, le, m2, op, nops, ops, ae), \
16488 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16489
16490#define UE(mnem, op, nops, ops, ae) \
16491 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16492
16493#define UF(mnem, op, nops, ops, ae) \
16494 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16495
5287ad62
JB
16496/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16497 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16498 use the same encoding function for each. */
16499#define NUF(mnem, op, nops, ops, enc) \
16500 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16501 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16502
16503/* Neon data processing, version which indirects through neon_enc_tab for
16504 the various overloaded versions of opcodes. */
16505#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16506 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16507 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16508
16509/* Neon insn with conditional suffix for the ARM version, non-overloaded
16510 version. */
037e8744
JB
16511#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16512 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16513 THUMB_VARIANT, do_##enc, do_##enc }
16514
037e8744 16515#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16516 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16517
16518#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16519 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16520
5287ad62 16521/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16522#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 16523 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16524 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16525
037e8744 16526#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 16527 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16528
16529#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 16530 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16531
c19d1205
ZW
16532#define do_0 0
16533
c19d1205 16534static const struct asm_opcode insns[] =
bfae80f2 16535{
e74cfd16
PB
16536#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16537#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
16538 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16539 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16540 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16541 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16542 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16543 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16544 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16545 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16546 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16547 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16548 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16549 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16550 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16551 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16552 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16553 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
16554
16555 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16556 for setting PSR flag bits. They are obsolete in V6 and do not
16557 have Thumb equivalents. */
21d799b5
NC
16558 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16559 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16560 CL("tstp", 110f000, 2, (RR, SH), cmp),
16561 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16562 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16563 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16564 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16565 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16566 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16567
16568 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16569 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16570 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16571 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16572
16573 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
16574 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16575 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16576 OP_RRnpc),
16577 OP_ADDRGLDR),ldst, t_ldst),
16578 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
16579
16580 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16581 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16582 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16583 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16584 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16585 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16586
16587 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16588 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16589 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16590 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 16591
c19d1205 16592 /* Pseudo ops. */
21d799b5 16593 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 16594 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 16595 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
16596
16597 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
16598 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16599 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16600 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16601 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16602 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16603 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16604 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16605 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16606 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16607 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16608 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16609 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 16610
16a4cf17 16611 /* These may simplify to neg. */
21d799b5
NC
16612 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16613 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 16614
c921be7d
NC
16615#undef THUMB_VARIANT
16616#define THUMB_VARIANT & arm_ext_v6
16617
21d799b5 16618 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
16619
16620 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
16621#undef THUMB_VARIANT
16622#define THUMB_VARIANT & arm_ext_v6t2
16623
21d799b5
NC
16624 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16625 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16626 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 16627
5be8be5d
DG
16628 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16629 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16630 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16631 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 16632
21d799b5
NC
16633 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16634 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 16635
21d799b5
NC
16636 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16637 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
16638
16639 /* V1 instructions with no Thumb analogue at all. */
21d799b5 16640 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
16641 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16642
16643 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16644 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16645 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16646 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16647 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16648 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16649 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16650 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16651
c921be7d
NC
16652#undef ARM_VARIANT
16653#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16654#undef THUMB_VARIANT
16655#define THUMB_VARIANT & arm_ext_v4t
16656
21d799b5
NC
16657 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16658 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 16659
c921be7d
NC
16660#undef THUMB_VARIANT
16661#define THUMB_VARIANT & arm_ext_v6t2
16662
21d799b5 16663 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
16664 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16665
16666 /* Generic coprocessor instructions. */
21d799b5
NC
16667 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16668 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16669 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16670 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16671 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16672 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16673 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16674
c921be7d
NC
16675#undef ARM_VARIANT
16676#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16677
21d799b5 16678 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
16679 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16680
c921be7d
NC
16681#undef ARM_VARIANT
16682#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16683#undef THUMB_VARIANT
16684#define THUMB_VARIANT & arm_ext_msr
16685
21d799b5
NC
16686 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16687 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205 16688
c921be7d
NC
16689#undef ARM_VARIANT
16690#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16691#undef THUMB_VARIANT
16692#define THUMB_VARIANT & arm_ext_v6t2
16693
21d799b5
NC
16694 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16695 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16696 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16697 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16698 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16699 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16700 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16701 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 16702
c921be7d
NC
16703#undef ARM_VARIANT
16704#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16705#undef THUMB_VARIANT
16706#define THUMB_VARIANT & arm_ext_v4t
16707
5be8be5d
DG
16708 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16709 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16710 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16711 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16712 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16713 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 16714
c921be7d
NC
16715#undef ARM_VARIANT
16716#define ARM_VARIANT & arm_ext_v4t_5
16717
c19d1205
ZW
16718 /* ARM Architecture 4T. */
16719 /* Note: bx (and blx) are required on V5, even if the processor does
16720 not support Thumb. */
21d799b5 16721 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 16722
c921be7d
NC
16723#undef ARM_VARIANT
16724#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16725#undef THUMB_VARIANT
16726#define THUMB_VARIANT & arm_ext_v5t
16727
c19d1205
ZW
16728 /* Note: blx has 2 variants; the .value coded here is for
16729 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
16730 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16731 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 16732
c921be7d
NC
16733#undef THUMB_VARIANT
16734#define THUMB_VARIANT & arm_ext_v6t2
16735
21d799b5
NC
16736 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16737 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16738 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16739 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16740 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16741 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16742 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16743 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16744
c921be7d
NC
16745#undef ARM_VARIANT
16746#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
16747#undef THUMB_VARIANT
16748#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 16749
21d799b5
NC
16750 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16751 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16752 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16753 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16754
21d799b5
NC
16755 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16756 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16757
21d799b5
NC
16758 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16759 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16760 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16761 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 16762
21d799b5
NC
16763 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16764 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16765 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16766 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16767
21d799b5
NC
16768 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16769 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16770
03ee1b7f
NC
16771 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16772 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16773 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16774 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 16775
c921be7d
NC
16776#undef ARM_VARIANT
16777#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
16778#undef THUMB_VARIANT
16779#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 16780
21d799b5 16781 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
16782 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
16783 ldrd, t_ldstd),
16784 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
16785 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 16786
21d799b5
NC
16787 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16788 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 16789
c921be7d
NC
16790#undef ARM_VARIANT
16791#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16792
21d799b5 16793 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 16794
c921be7d
NC
16795#undef ARM_VARIANT
16796#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16797#undef THUMB_VARIANT
16798#define THUMB_VARIANT & arm_ext_v6
16799
21d799b5
NC
16800 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16801 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16802 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16803 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16804 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16805 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16806 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16807 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16808 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16809 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 16810
c921be7d
NC
16811#undef THUMB_VARIANT
16812#define THUMB_VARIANT & arm_ext_v6t2
16813
5be8be5d
DG
16814 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
16815 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16816 strex, t_strex),
21d799b5
NC
16817 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16818 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 16819
21d799b5
NC
16820 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16821 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 16822
9e3c6df6 16823/* ARM V6 not included in V7M. */
c921be7d
NC
16824#undef THUMB_VARIANT
16825#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
16826 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16827 UF(rfeib, 9900a00, 1, (RRw), rfe),
16828 UF(rfeda, 8100a00, 1, (RRw), rfe),
16829 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16830 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16831 UF(rfefa, 9900a00, 1, (RRw), rfe),
16832 UF(rfeea, 8100a00, 1, (RRw), rfe),
16833 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16834 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16835 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16836 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16837 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 16838
9e3c6df6
PB
16839/* ARM V6 not included in V7M (eg. integer SIMD). */
16840#undef THUMB_VARIANT
16841#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
16842 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16843 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16844 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16845 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16846 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16847 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16848 /* Old name for QASX. */
21d799b5
NC
16849 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16850 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16851 /* Old name for QSAX. */
21d799b5
NC
16852 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16853 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16854 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16855 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16856 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16857 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16858 /* Old name for SASX. */
21d799b5
NC
16859 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16860 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16861 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16862 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16863 /* Old name for SHASX. */
21d799b5
NC
16864 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16865 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16866 /* Old name for SHSAX. */
21d799b5
NC
16867 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16868 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16869 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16870 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16871 /* Old name for SSAX. */
21d799b5
NC
16872 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16873 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16874 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16875 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16876 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16877 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16878 /* Old name for UASX. */
21d799b5
NC
16879 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16880 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16881 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16882 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16883 /* Old name for UHASX. */
21d799b5
NC
16884 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16885 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16886 /* Old name for UHSAX. */
21d799b5
NC
16887 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16888 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16889 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16890 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16891 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16892 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16893 /* Old name for UQASX. */
21d799b5
NC
16894 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16895 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16896 /* Old name for UQSAX. */
21d799b5
NC
16897 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16898 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16899 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16900 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16901 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16902 /* Old name for USAX. */
21d799b5
NC
16903 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16904 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
16905 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16906 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16907 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16908 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16909 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16910 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16911 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16912 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16913 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16914 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16915 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16916 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16917 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16918 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16919 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16920 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16921 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16922 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16923 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16924 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16925 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16926 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16927 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16928 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16929 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16930 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16931 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
16932 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16933 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16934 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16935 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16936 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 16937
c921be7d
NC
16938#undef ARM_VARIANT
16939#define ARM_VARIANT & arm_ext_v6k
16940#undef THUMB_VARIANT
16941#define THUMB_VARIANT & arm_ext_v6k
16942
21d799b5
NC
16943 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16944 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16945 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16946 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 16947
c921be7d
NC
16948#undef THUMB_VARIANT
16949#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
16950 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
16951 ldrexd, t_ldrexd),
16952 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
16953 RRnpcb), strexd, t_strexd),
ebdca51a 16954
c921be7d
NC
16955#undef THUMB_VARIANT
16956#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
16957 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
16958 rd_rn, rd_rn),
16959 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
16960 rd_rn, rd_rn),
16961 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16962 strex, rm_rd_rn),
16963 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16964 strex, rm_rd_rn),
21d799b5 16965 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 16966
c921be7d
NC
16967#undef ARM_VARIANT
16968#define ARM_VARIANT & arm_ext_v6z
16969
21d799b5 16970 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 16971
c921be7d
NC
16972#undef ARM_VARIANT
16973#define ARM_VARIANT & arm_ext_v6t2
16974
21d799b5
NC
16975 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16976 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16977 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16978 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 16979
21d799b5
NC
16980 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16981 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16982 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16983 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 16984
5be8be5d
DG
16985 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16986 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16987 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16988 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 16989
bf3eeda7
NS
16990 /* Thumb-only instructions. */
16991#undef ARM_VARIANT
16992#define ARM_VARIANT NULL
16993 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
16994 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
16995
16996 /* ARM does not really have an IT instruction, so always allow it.
16997 The opcode is copied from Thumb in order to allow warnings in
16998 -mimplicit-it=[never | arm] modes. */
16999#undef ARM_VARIANT
17000#define ARM_VARIANT & arm_ext_v1
17001
21d799b5
NC
17002 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17003 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17004 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17005 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17006 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17007 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17008 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17009 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17010 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17011 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17012 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17013 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17014 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17015 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17016 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 17017 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
17018 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17019 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 17020
92e90b6e 17021 /* Thumb2 only instructions. */
c921be7d
NC
17022#undef ARM_VARIANT
17023#define ARM_VARIANT NULL
92e90b6e 17024
21d799b5
NC
17025 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17026 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17027 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17028 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17029 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17030 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 17031
62b3e311 17032 /* Thumb-2 hardware division instructions (R and M profiles only). */
c921be7d
NC
17033#undef THUMB_VARIANT
17034#define THUMB_VARIANT & arm_ext_div
17035
21d799b5
NC
17036 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
17037 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
62b3e311 17038
7e806470 17039 /* ARM V6M/V7 instructions. */
c921be7d
NC
17040#undef ARM_VARIANT
17041#define ARM_VARIANT & arm_ext_barrier
17042#undef THUMB_VARIANT
17043#define THUMB_VARIANT & arm_ext_barrier
17044
52e7f43d
RE
17045 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17046 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17047 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 17048
62b3e311 17049 /* ARM V7 instructions. */
c921be7d
NC
17050#undef ARM_VARIANT
17051#define ARM_VARIANT & arm_ext_v7
17052#undef THUMB_VARIANT
17053#define THUMB_VARIANT & arm_ext_v7
17054
21d799b5
NC
17055 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17056 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 17057
c921be7d
NC
17058#undef ARM_VARIANT
17059#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17060
21d799b5
NC
17061 cCE("wfs", e200110, 1, (RR), rd),
17062 cCE("rfs", e300110, 1, (RR), rd),
17063 cCE("wfc", e400110, 1, (RR), rd),
17064 cCE("rfc", e500110, 1, (RR), rd),
17065
17066 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17067 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17068 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17069 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17070
17071 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17072 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17073 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17074 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17075
17076 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17077 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17078 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17079 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17080 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17081 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17082 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17083 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17084 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17085 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17086 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17087 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17088
17089 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17090 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17091 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17092 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17093 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17094 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17095 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17096 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17097 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17098 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17099 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17100 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17101
17102 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17103 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17104 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17105 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17106 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17107 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17108 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17109 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17110 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17111 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17112 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17113 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17114
17115 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17116 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17117 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17118 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17119 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17120 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17121 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17122 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17123 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17124 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17125 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17126 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17127
17128 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17129 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17130 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17131 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17132 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17133 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17134 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17135 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17136 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17137 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17138 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17139 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17140
17141 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17142 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17143 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17144 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17145 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17146 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17147 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17148 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17149 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17150 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17151 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17152 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17153
17154 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17155 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17156 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17157 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17158 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17159 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17160 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17161 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17162 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17163 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17164 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17165 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17166
17167 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17168 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17169 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17170 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17171 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17172 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17173 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17174 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17175 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17176 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17177 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17178 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17179
17180 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17181 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17182 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17183 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17184 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17185 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17186 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17187 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17188 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17189 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17190 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17191 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17192
17193 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17194 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17195 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17196 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17197 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17198 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17199 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17200 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17201 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17202 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17203 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17204 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17205
17206 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17207 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17208 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17209 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17210 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17211 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17212 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17213 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17214 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17215 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17216 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17217 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17218
17219 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17220 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17221 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17222 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17223 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17224 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17225 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17226 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17227 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17228 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17229 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17230 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17231
17232 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17233 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17234 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17235 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17236 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17237 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17238 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17239 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17240 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17241 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17242 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17243 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17244
17245 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17246 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17247 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17248 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17249 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17250 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17251 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17252 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17253 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17254 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17255 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17256 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17257
17258 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17259 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17260 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17261 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17262 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17263 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17264 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17265 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17266 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17267 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17268 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17269 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17270
17271 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17272 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17273 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17274 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17275 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17276 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17277 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17278 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17279 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17280 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17281 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17282 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17283
17284 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17285 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17286 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17287 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17288 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17289 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17290 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17291 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17292 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17293 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17294 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17295 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17296
17297 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17298 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17299 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17300 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17301 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17302 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17303 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17304 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17305 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17306 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17307 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17308 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17309
17310 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17311 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17312 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17313 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17314 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17315 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17316 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17317 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17318 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17319 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17320 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17321 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17322
17323 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17324 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17325 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17326 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17327 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17328 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17329 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17330 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17331 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17332 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17333 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17334 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17335
17336 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17337 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17338 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17339 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17340 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17341 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17342 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17343 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17344 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17345 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17346 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17347 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17348
17349 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17350 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17351 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17352 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17353 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17354 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17355 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17356 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17357 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17358 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17359 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17360 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17361
17362 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17363 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17364 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17365 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17366 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17367 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17368 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17369 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17370 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17371 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17372 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17373 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17374
17375 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17376 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17377 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17378 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17379 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17380 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17381 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17382 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17383 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17384 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17385 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17386 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17387
17388 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17389 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17390 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17391 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17392 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17393 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17394 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17395 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17396 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17397 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17398 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17399 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17400
17401 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17402 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17403 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17404 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17405 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17406 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17407 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17408 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17409 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17410 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17411 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17412 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17413
17414 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17415 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17416 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17417 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17418 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17419 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17420 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17421 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17422 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17423 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17424 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17425 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17426
17427 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17428 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17429 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17430 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17431 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17432 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17433 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17434 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17435 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17436 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17437 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17438 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17439
17440 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17441 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17442 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17443 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17444 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17445 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17446 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17447 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17448 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17449 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17450 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17451 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17452
17453 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17454 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17455 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17456 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17457
17458 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17459 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17460 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17461 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17462 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17463 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17464 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17465 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17466 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17467 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17468 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17469 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17470
c19d1205
ZW
17471 /* The implementation of the FIX instruction is broken on some
17472 assemblers, in that it accepts a precision specifier as well as a
17473 rounding specifier, despite the fact that this is meaningless.
17474 To be more compatible, we accept it as well, though of course it
17475 does not set any bits. */
21d799b5
NC
17476 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17477 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17478 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17479 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17480 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17481 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17482 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17483 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17484 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17485 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17486 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17487 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17488 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17489
c19d1205 17490 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17491#undef ARM_VARIANT
17492#define ARM_VARIANT & fpu_fpa_ext_v2
17493
21d799b5
NC
17494 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17495 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17496 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17497 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17498 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17499 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17500
c921be7d
NC
17501#undef ARM_VARIANT
17502#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17503
c19d1205 17504 /* Moves and type conversions. */
21d799b5
NC
17505 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17506 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17507 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17508 cCE("fmstat", ef1fa10, 0, (), noargs),
f7c21dc7
NC
17509 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17510 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
21d799b5
NC
17511 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17512 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17513 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17514 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17515 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17516 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17517 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17518 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
17519
17520 /* Memory operations. */
21d799b5
NC
17521 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17522 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
17523 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17524 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17525 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17526 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17527 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17528 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17529 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17530 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17531 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17532 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17533 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17534 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17535 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17536 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17537 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17538 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 17539
c19d1205 17540 /* Monadic operations. */
21d799b5
NC
17541 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17542 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17543 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
17544
17545 /* Dyadic operations. */
21d799b5
NC
17546 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17547 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17548 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17549 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17550 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17551 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17552 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17553 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17554 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 17555
c19d1205 17556 /* Comparisons. */
21d799b5
NC
17557 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17558 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17559 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17560 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 17561
62f3b8c8
PB
17562 /* Double precision load/store are still present on single precision
17563 implementations. */
17564 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17565 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
17566 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17567 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17568 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17569 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17570 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17571 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
17572 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
17573 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 17574
c921be7d
NC
17575#undef ARM_VARIANT
17576#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17577
c19d1205 17578 /* Moves and type conversions. */
21d799b5
NC
17579 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17580 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17581 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17582 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17583 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17584 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17585 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17586 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17587 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17588 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17589 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17590 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17591 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 17592
c19d1205 17593 /* Monadic operations. */
21d799b5
NC
17594 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17595 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17596 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
17597
17598 /* Dyadic operations. */
21d799b5
NC
17599 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17600 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17601 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17602 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17603 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17604 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17605 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17606 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17607 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 17608
c19d1205 17609 /* Comparisons. */
21d799b5
NC
17610 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17611 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17612 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17613 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 17614
c921be7d
NC
17615#undef ARM_VARIANT
17616#define ARM_VARIANT & fpu_vfp_ext_v2
17617
21d799b5
NC
17618 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17619 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17620 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17621 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 17622
037e8744
JB
17623/* Instructions which may belong to either the Neon or VFP instruction sets.
17624 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
17625#undef ARM_VARIANT
17626#define ARM_VARIANT & fpu_vfp_ext_v1xd
17627#undef THUMB_VARIANT
17628#define THUMB_VARIANT & fpu_vfp_ext_v1xd
17629
037e8744
JB
17630 /* These mnemonics are unique to VFP. */
17631 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17632 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
17633 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17634 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17635 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17636 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17637 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
17638 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17639 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17640 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17641
17642 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
17643 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17644 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17645 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 17646
21d799b5
NC
17647 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17648 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
17649
17650 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17651 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17652
55881a11
MGD
17653 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17654 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17655 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17656 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17657 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
17658 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
17659 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17660 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 17661
e3e535bc
NC
17662 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17663 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
17664 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17665 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 17666
037e8744
JB
17667
17668 /* NOTE: All VMOV encoding is special-cased! */
17669 NCE(vmov, 0, 1, (VMOV), neon_mov),
17670 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17671
c921be7d
NC
17672#undef THUMB_VARIANT
17673#define THUMB_VARIANT & fpu_neon_ext_v1
17674#undef ARM_VARIANT
17675#define ARM_VARIANT & fpu_neon_ext_v1
17676
5287ad62
JB
17677 /* Data processing with three registers of the same length. */
17678 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17679 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17680 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17681 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17682 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17683 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17684 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17685 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17686 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17687 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17688 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17689 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17690 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17691 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
17692 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17693 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17694 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17695 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
17696 /* If not immediate, fall back to neon_dyadic_i64_su.
17697 shl_imm should accept I8 I16 I32 I64,
17698 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
17699 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17700 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17701 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17702 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 17703 /* Logic ops, types optional & ignored. */
4316f0d2
DG
17704 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17705 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17706 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17707 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17708 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17709 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17710 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17711 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17712 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17713 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
17714 /* Bitfield ops, untyped. */
17715 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17716 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17717 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17718 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17719 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17720 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17721 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
17722 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17723 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17724 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17725 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17726 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17727 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
17728 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17729 back to neon_dyadic_if_su. */
21d799b5
NC
17730 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17731 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17732 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17733 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17734 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17735 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17736 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17737 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 17738 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
17739 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17740 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 17741 /* As above, D registers only. */
21d799b5
NC
17742 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17743 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 17744 /* Int and float variants, signedness unimportant. */
21d799b5
NC
17745 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17746 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17747 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 17748 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
17749 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17750 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
17751 /* vtst takes sizes 8, 16, 32. */
17752 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17753 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17754 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 17755 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 17756 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
17757 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17758 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17759 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17760 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
17761 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17762 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17763 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17764 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
17765 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17766 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17767 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17768 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
17769 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17770 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17771 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17772 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17773
17774 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 17775 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
17776 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17777
17778 /* Data processing with two registers and a shift amount. */
17779 /* Right shifts, and variants with rounding.
17780 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17781 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17782 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17783 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17784 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17785 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17786 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17787 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17788 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17789 /* Shift and insert. Sizes accepted 8 16 32 64. */
17790 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17791 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17792 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17793 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17794 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17795 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17796 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17797 /* Right shift immediate, saturating & narrowing, with rounding variants.
17798 Types accepted S16 S32 S64 U16 U32 U64. */
17799 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17800 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17801 /* As above, unsigned. Types accepted S16 S32 S64. */
17802 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17803 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17804 /* Right shift narrowing. Types accepted I16 I32 I64. */
17805 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17806 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17807 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 17808 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 17809 /* CVT with optional immediate for fixed-point variant. */
21d799b5 17810 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 17811
4316f0d2
DG
17812 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
17813 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
17814
17815 /* Data processing, three registers of different lengths. */
17816 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17817 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17818 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17819 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17820 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17821 /* If not scalar, fall back to neon_dyadic_long.
17822 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
17823 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17824 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
17825 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17826 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17827 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17828 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17829 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17830 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17831 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17832 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17833 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
17834 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17835 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17836 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
17837 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17838 S16 S32 U16 U32. */
21d799b5 17839 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
17840
17841 /* Extract. Size 8. */
3b8d421e
PB
17842 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17843 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
17844
17845 /* Two registers, miscellaneous. */
17846 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17847 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17848 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17849 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17850 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17851 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17852 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17853 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
17854 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17855 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
17856 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17857 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17858 /* VMOVN. Types I16 I32 I64. */
21d799b5 17859 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 17860 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 17861 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 17862 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 17863 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
17864 /* VZIP / VUZP. Sizes 8 16 32. */
17865 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17866 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17867 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17868 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17869 /* VQABS / VQNEG. Types S8 S16 S32. */
17870 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17871 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17872 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17873 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17874 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17875 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17876 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17877 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17878 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17879 /* Reciprocal estimates. Types U32 F32. */
17880 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17881 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17882 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17883 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17884 /* VCLS. Types S8 S16 S32. */
17885 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17886 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17887 /* VCLZ. Types I8 I16 I32. */
17888 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17889 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17890 /* VCNT. Size 8. */
17891 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17892 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17893 /* Two address, untyped. */
17894 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17895 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17896 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
17897 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17898 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
17899
17900 /* Table lookup. Size 8. */
17901 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17902 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17903
c921be7d
NC
17904#undef THUMB_VARIANT
17905#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17906#undef ARM_VARIANT
17907#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17908
5287ad62 17909 /* Neon element/structure load/store. */
21d799b5
NC
17910 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17911 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17912 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17913 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17914 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17915 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17916 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17917 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 17918
c921be7d 17919#undef THUMB_VARIANT
62f3b8c8
PB
17920#define THUMB_VARIANT &fpu_vfp_ext_v3xd
17921#undef ARM_VARIANT
17922#define ARM_VARIANT &fpu_vfp_ext_v3xd
17923 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17924 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17925 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17926 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17927 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17928 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17929 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17930 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17931 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17932
17933#undef THUMB_VARIANT
c921be7d
NC
17934#define THUMB_VARIANT & fpu_vfp_ext_v3
17935#undef ARM_VARIANT
17936#define ARM_VARIANT & fpu_vfp_ext_v3
17937
21d799b5 17938 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 17939 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17940 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17941 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17942 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17943 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17944 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17945 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17946 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 17947
62f3b8c8
PB
17948#undef ARM_VARIANT
17949#define ARM_VARIANT &fpu_vfp_ext_fma
17950#undef THUMB_VARIANT
17951#define THUMB_VARIANT &fpu_vfp_ext_fma
17952 /* Mnemonics shared by Neon and VFP. These are included in the
17953 VFP FMA variant; NEON and VFP FMA always includes the NEON
17954 FMA instructions. */
17955 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17956 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17957 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17958 the v form should always be used. */
17959 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17960 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17961 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17962 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17963 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17964 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17965
5287ad62 17966#undef THUMB_VARIANT
c921be7d
NC
17967#undef ARM_VARIANT
17968#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17969
21d799b5
NC
17970 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17971 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17972 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17973 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17974 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17975 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17976 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17977 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 17978
c921be7d
NC
17979#undef ARM_VARIANT
17980#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17981
21d799b5
NC
17982 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17983 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17984 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17985 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17986 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17987 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17988 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17989 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17990 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17991 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17992 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17993 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17994 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17995 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17996 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17997 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17998 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17999 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18000 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18001 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18002 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18003 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18004 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18005 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18006 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18007 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18008 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18009 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18010 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18011 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18012 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18013 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18014 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18015 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18016 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18017 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18018 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18019 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18020 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18021 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18022 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18023 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18024 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18025 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18026 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18027 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18028 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18029 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18030 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18031 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18032 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18033 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18034 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18035 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18036 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18037 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18038 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18039 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18040 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18041 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18042 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18043 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18044 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18045 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18046 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18047 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18048 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18049 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18050 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18051 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18052 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18053 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18054 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18055 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18056 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18057 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18058 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18059 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18060 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18061 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18062 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18063 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18064 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18065 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18066 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18067 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18068 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18069 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18070 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18071 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18072 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18073 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18074 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18075 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18076 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18077 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18078 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18079 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18080 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18081 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18082 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18083 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18084 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18085 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18086 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18087 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18088 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18089 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18090 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18091 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18092 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18093 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18094 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18095 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18096 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18097 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18098 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18099 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18100 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18101 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18102 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18103 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18104 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18105 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18106 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18107 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18108 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18109 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18110 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18111 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18112 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18113 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18114 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18115 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18116 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18117 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18118 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18119 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18120 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18121 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18122 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18123 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18124 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18125 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18126 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18127 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18128 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18129 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18130 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18131 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18132 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18133 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18134 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18135 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18136 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18137 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18138 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18139 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18140 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18141 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18142 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18143 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 18144
c921be7d
NC
18145#undef ARM_VARIANT
18146#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18147
21d799b5
NC
18148 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18149 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18150 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18151 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18152 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18153 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18154 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18155 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18156 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18157 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18158 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18159 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18160 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18161 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18162 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18163 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18164 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18165 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18166 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18167 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18168 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18169 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18170 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18171 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18172 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18173 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18174 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18175 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18176 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18177 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18178 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18179 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18180 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18181 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18182 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18183 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18184 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18185 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18186 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18187 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18188 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18189 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18190 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18191 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18192 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18193 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18194 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18195 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18196 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18197 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18198 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18199 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18200 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18201 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18202 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18203 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18204 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 18205
c921be7d
NC
18206#undef ARM_VARIANT
18207#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18208
21d799b5
NC
18209 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18210 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18211 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18212 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18213 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18214 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18215 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18216 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18217 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18218 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18219 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18220 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18221 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18222 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18223 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18224 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18225 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18226 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18227 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18228 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18229 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18230 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18231 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18232 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18233 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18234 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18235 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18236 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18237 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18238 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18239 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18240 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18241 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18242 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18243 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18244 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18245 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18246 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18247 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18248 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18249 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18250 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18251 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18252 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18253 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18254 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18255 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18256 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18257 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18258 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18259 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18260 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18261 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18262 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18263 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18264 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18265 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18266 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18267 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18268 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18269 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18270 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18271 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18272 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18273 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18274 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18275 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18276 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18277 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18278 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18279 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18280 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18281 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18282 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18283 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18284 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
18285};
18286#undef ARM_VARIANT
18287#undef THUMB_VARIANT
18288#undef TCE
18289#undef TCM
18290#undef TUE
18291#undef TUF
18292#undef TCC
8f06b2d8 18293#undef cCE
e3cb604e
PB
18294#undef cCL
18295#undef C3E
c19d1205
ZW
18296#undef CE
18297#undef CM
18298#undef UE
18299#undef UF
18300#undef UT
5287ad62
JB
18301#undef NUF
18302#undef nUF
18303#undef NCE
18304#undef nCE
c19d1205
ZW
18305#undef OPS0
18306#undef OPS1
18307#undef OPS2
18308#undef OPS3
18309#undef OPS4
18310#undef OPS5
18311#undef OPS6
18312#undef do_0
18313\f
18314/* MD interface: bits in the object file. */
bfae80f2 18315
c19d1205
ZW
18316/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18317 for use in the a.out file, and stores them in the array pointed to by buf.
18318 This knows about the endian-ness of the target machine and does
18319 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18320 2 (short) and 4 (long) Floating numbers are put out as a series of
18321 LITTLENUMS (shorts, here at least). */
b99bd4ef 18322
c19d1205
ZW
18323void
18324md_number_to_chars (char * buf, valueT val, int n)
18325{
18326 if (target_big_endian)
18327 number_to_chars_bigendian (buf, val, n);
18328 else
18329 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
18330}
18331
c19d1205
ZW
18332static valueT
18333md_chars_to_number (char * buf, int n)
bfae80f2 18334{
c19d1205
ZW
18335 valueT result = 0;
18336 unsigned char * where = (unsigned char *) buf;
bfae80f2 18337
c19d1205 18338 if (target_big_endian)
b99bd4ef 18339 {
c19d1205
ZW
18340 while (n--)
18341 {
18342 result <<= 8;
18343 result |= (*where++ & 255);
18344 }
b99bd4ef 18345 }
c19d1205 18346 else
b99bd4ef 18347 {
c19d1205
ZW
18348 while (n--)
18349 {
18350 result <<= 8;
18351 result |= (where[n] & 255);
18352 }
bfae80f2 18353 }
b99bd4ef 18354
c19d1205 18355 return result;
bfae80f2 18356}
b99bd4ef 18357
c19d1205 18358/* MD interface: Sections. */
b99bd4ef 18359
0110f2b8
PB
18360/* Estimate the size of a frag before relaxing. Assume everything fits in
18361 2 bytes. */
18362
c19d1205 18363int
0110f2b8 18364md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18365 segT segtype ATTRIBUTE_UNUSED)
18366{
0110f2b8
PB
18367 fragp->fr_var = 2;
18368 return 2;
18369}
18370
18371/* Convert a machine dependent frag. */
18372
18373void
18374md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18375{
18376 unsigned long insn;
18377 unsigned long old_op;
18378 char *buf;
18379 expressionS exp;
18380 fixS *fixp;
18381 int reloc_type;
18382 int pc_rel;
18383 int opcode;
18384
18385 buf = fragp->fr_literal + fragp->fr_fix;
18386
18387 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18388 if (fragp->fr_symbol)
18389 {
0110f2b8
PB
18390 exp.X_op = O_symbol;
18391 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18392 }
18393 else
18394 {
0110f2b8 18395 exp.X_op = O_constant;
5f4273c7 18396 }
0110f2b8
PB
18397 exp.X_add_number = fragp->fr_offset;
18398 opcode = fragp->fr_subtype;
18399 switch (opcode)
18400 {
18401 case T_MNEM_ldr_pc:
18402 case T_MNEM_ldr_pc2:
18403 case T_MNEM_ldr_sp:
18404 case T_MNEM_str_sp:
18405 case T_MNEM_ldr:
18406 case T_MNEM_ldrb:
18407 case T_MNEM_ldrh:
18408 case T_MNEM_str:
18409 case T_MNEM_strb:
18410 case T_MNEM_strh:
18411 if (fragp->fr_var == 4)
18412 {
5f4273c7 18413 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18414 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18415 {
18416 insn |= (old_op & 0x700) << 4;
18417 }
18418 else
18419 {
18420 insn |= (old_op & 7) << 12;
18421 insn |= (old_op & 0x38) << 13;
18422 }
18423 insn |= 0x00000c00;
18424 put_thumb32_insn (buf, insn);
18425 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18426 }
18427 else
18428 {
18429 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18430 }
18431 pc_rel = (opcode == T_MNEM_ldr_pc2);
18432 break;
18433 case T_MNEM_adr:
18434 if (fragp->fr_var == 4)
18435 {
18436 insn = THUMB_OP32 (opcode);
18437 insn |= (old_op & 0xf0) << 4;
18438 put_thumb32_insn (buf, insn);
18439 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18440 }
18441 else
18442 {
18443 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18444 exp.X_add_number -= 4;
18445 }
18446 pc_rel = 1;
18447 break;
18448 case T_MNEM_mov:
18449 case T_MNEM_movs:
18450 case T_MNEM_cmp:
18451 case T_MNEM_cmn:
18452 if (fragp->fr_var == 4)
18453 {
18454 int r0off = (opcode == T_MNEM_mov
18455 || opcode == T_MNEM_movs) ? 0 : 8;
18456 insn = THUMB_OP32 (opcode);
18457 insn = (insn & 0xe1ffffff) | 0x10000000;
18458 insn |= (old_op & 0x700) << r0off;
18459 put_thumb32_insn (buf, insn);
18460 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18461 }
18462 else
18463 {
18464 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18465 }
18466 pc_rel = 0;
18467 break;
18468 case T_MNEM_b:
18469 if (fragp->fr_var == 4)
18470 {
18471 insn = THUMB_OP32(opcode);
18472 put_thumb32_insn (buf, insn);
18473 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18474 }
18475 else
18476 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18477 pc_rel = 1;
18478 break;
18479 case T_MNEM_bcond:
18480 if (fragp->fr_var == 4)
18481 {
18482 insn = THUMB_OP32(opcode);
18483 insn |= (old_op & 0xf00) << 14;
18484 put_thumb32_insn (buf, insn);
18485 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18486 }
18487 else
18488 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18489 pc_rel = 1;
18490 break;
18491 case T_MNEM_add_sp:
18492 case T_MNEM_add_pc:
18493 case T_MNEM_inc_sp:
18494 case T_MNEM_dec_sp:
18495 if (fragp->fr_var == 4)
18496 {
18497 /* ??? Choose between add and addw. */
18498 insn = THUMB_OP32 (opcode);
18499 insn |= (old_op & 0xf0) << 4;
18500 put_thumb32_insn (buf, insn);
16805f35
PB
18501 if (opcode == T_MNEM_add_pc)
18502 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18503 else
18504 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
18505 }
18506 else
18507 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18508 pc_rel = 0;
18509 break;
18510
18511 case T_MNEM_addi:
18512 case T_MNEM_addis:
18513 case T_MNEM_subi:
18514 case T_MNEM_subis:
18515 if (fragp->fr_var == 4)
18516 {
18517 insn = THUMB_OP32 (opcode);
18518 insn |= (old_op & 0xf0) << 4;
18519 insn |= (old_op & 0xf) << 16;
18520 put_thumb32_insn (buf, insn);
16805f35
PB
18521 if (insn & (1 << 20))
18522 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18523 else
18524 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
18525 }
18526 else
18527 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18528 pc_rel = 0;
18529 break;
18530 default:
5f4273c7 18531 abort ();
0110f2b8
PB
18532 }
18533 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 18534 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
18535 fixp->fx_file = fragp->fr_file;
18536 fixp->fx_line = fragp->fr_line;
18537 fragp->fr_fix += fragp->fr_var;
18538}
18539
18540/* Return the size of a relaxable immediate operand instruction.
18541 SHIFT and SIZE specify the form of the allowable immediate. */
18542static int
18543relax_immediate (fragS *fragp, int size, int shift)
18544{
18545 offsetT offset;
18546 offsetT mask;
18547 offsetT low;
18548
18549 /* ??? Should be able to do better than this. */
18550 if (fragp->fr_symbol)
18551 return 4;
18552
18553 low = (1 << shift) - 1;
18554 mask = (1 << (shift + size)) - (1 << shift);
18555 offset = fragp->fr_offset;
18556 /* Force misaligned offsets to 32-bit variant. */
18557 if (offset & low)
5e77afaa 18558 return 4;
0110f2b8
PB
18559 if (offset & ~mask)
18560 return 4;
18561 return 2;
18562}
18563
5e77afaa
PB
18564/* Get the address of a symbol during relaxation. */
18565static addressT
5f4273c7 18566relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
18567{
18568 fragS *sym_frag;
18569 addressT addr;
18570 symbolS *sym;
18571
18572 sym = fragp->fr_symbol;
18573 sym_frag = symbol_get_frag (sym);
18574 know (S_GET_SEGMENT (sym) != absolute_section
18575 || sym_frag == &zero_address_frag);
18576 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18577
18578 /* If frag has yet to be reached on this pass, assume it will
18579 move by STRETCH just as we did. If this is not so, it will
18580 be because some frag between grows, and that will force
18581 another pass. */
18582
18583 if (stretch != 0
18584 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
18585 {
18586 fragS *f;
18587
18588 /* Adjust stretch for any alignment frag. Note that if have
18589 been expanding the earlier code, the symbol may be
18590 defined in what appears to be an earlier frag. FIXME:
18591 This doesn't handle the fr_subtype field, which specifies
18592 a maximum number of bytes to skip when doing an
18593 alignment. */
18594 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18595 {
18596 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18597 {
18598 if (stretch < 0)
18599 stretch = - ((- stretch)
18600 & ~ ((1 << (int) f->fr_offset) - 1));
18601 else
18602 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18603 if (stretch == 0)
18604 break;
18605 }
18606 }
18607 if (f != NULL)
18608 addr += stretch;
18609 }
5e77afaa
PB
18610
18611 return addr;
18612}
18613
0110f2b8
PB
18614/* Return the size of a relaxable adr pseudo-instruction or PC-relative
18615 load. */
18616static int
5e77afaa 18617relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
18618{
18619 addressT addr;
18620 offsetT val;
18621
18622 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
18623 if (fragp->fr_symbol == NULL
18624 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
18625 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18626 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
18627 return 4;
18628
5f4273c7 18629 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18630 addr = fragp->fr_address + fragp->fr_fix;
18631 addr = (addr + 4) & ~3;
5e77afaa 18632 /* Force misaligned targets to 32-bit variant. */
0110f2b8 18633 if (val & 3)
5e77afaa 18634 return 4;
0110f2b8
PB
18635 val -= addr;
18636 if (val < 0 || val > 1020)
18637 return 4;
18638 return 2;
18639}
18640
18641/* Return the size of a relaxable add/sub immediate instruction. */
18642static int
18643relax_addsub (fragS *fragp, asection *sec)
18644{
18645 char *buf;
18646 int op;
18647
18648 buf = fragp->fr_literal + fragp->fr_fix;
18649 op = bfd_get_16(sec->owner, buf);
18650 if ((op & 0xf) == ((op >> 4) & 0xf))
18651 return relax_immediate (fragp, 8, 0);
18652 else
18653 return relax_immediate (fragp, 3, 0);
18654}
18655
18656
18657/* Return the size of a relaxable branch instruction. BITS is the
18658 size of the offset field in the narrow instruction. */
18659
18660static int
5e77afaa 18661relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
18662{
18663 addressT addr;
18664 offsetT val;
18665 offsetT limit;
18666
18667 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 18668 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
18669 || sec != S_GET_SEGMENT (fragp->fr_symbol)
18670 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
18671 return 4;
18672
267bf995
RR
18673#ifdef OBJ_ELF
18674 if (S_IS_DEFINED (fragp->fr_symbol)
18675 && ARM_IS_FUNC (fragp->fr_symbol))
18676 return 4;
18677#endif
18678
5f4273c7 18679 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18680 addr = fragp->fr_address + fragp->fr_fix + 4;
18681 val -= addr;
18682
18683 /* Offset is a signed value *2 */
18684 limit = 1 << bits;
18685 if (val >= limit || val < -limit)
18686 return 4;
18687 return 2;
18688}
18689
18690
18691/* Relax a machine dependent frag. This returns the amount by which
18692 the current size of the frag should change. */
18693
18694int
5e77afaa 18695arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
18696{
18697 int oldsize;
18698 int newsize;
18699
18700 oldsize = fragp->fr_var;
18701 switch (fragp->fr_subtype)
18702 {
18703 case T_MNEM_ldr_pc2:
5f4273c7 18704 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18705 break;
18706 case T_MNEM_ldr_pc:
18707 case T_MNEM_ldr_sp:
18708 case T_MNEM_str_sp:
5f4273c7 18709 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
18710 break;
18711 case T_MNEM_ldr:
18712 case T_MNEM_str:
5f4273c7 18713 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
18714 break;
18715 case T_MNEM_ldrh:
18716 case T_MNEM_strh:
5f4273c7 18717 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
18718 break;
18719 case T_MNEM_ldrb:
18720 case T_MNEM_strb:
5f4273c7 18721 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
18722 break;
18723 case T_MNEM_adr:
5f4273c7 18724 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18725 break;
18726 case T_MNEM_mov:
18727 case T_MNEM_movs:
18728 case T_MNEM_cmp:
18729 case T_MNEM_cmn:
5f4273c7 18730 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
18731 break;
18732 case T_MNEM_b:
5f4273c7 18733 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
18734 break;
18735 case T_MNEM_bcond:
5f4273c7 18736 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
18737 break;
18738 case T_MNEM_add_sp:
18739 case T_MNEM_add_pc:
18740 newsize = relax_immediate (fragp, 8, 2);
18741 break;
18742 case T_MNEM_inc_sp:
18743 case T_MNEM_dec_sp:
18744 newsize = relax_immediate (fragp, 7, 2);
18745 break;
18746 case T_MNEM_addi:
18747 case T_MNEM_addis:
18748 case T_MNEM_subi:
18749 case T_MNEM_subis:
18750 newsize = relax_addsub (fragp, sec);
18751 break;
18752 default:
5f4273c7 18753 abort ();
0110f2b8 18754 }
5e77afaa
PB
18755
18756 fragp->fr_var = newsize;
18757 /* Freeze wide instructions that are at or before the same location as
18758 in the previous pass. This avoids infinite loops.
5f4273c7
NC
18759 Don't freeze them unconditionally because targets may be artificially
18760 misaligned by the expansion of preceding frags. */
5e77afaa 18761 if (stretch <= 0 && newsize > 2)
0110f2b8 18762 {
0110f2b8 18763 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 18764 frag_wane (fragp);
0110f2b8 18765 }
5e77afaa 18766
0110f2b8 18767 return newsize - oldsize;
c19d1205 18768}
b99bd4ef 18769
c19d1205 18770/* Round up a section size to the appropriate boundary. */
b99bd4ef 18771
c19d1205
ZW
18772valueT
18773md_section_align (segT segment ATTRIBUTE_UNUSED,
18774 valueT size)
18775{
f0927246
NC
18776#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18777 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18778 {
18779 /* For a.out, force the section size to be aligned. If we don't do
18780 this, BFD will align it for us, but it will not write out the
18781 final bytes of the section. This may be a bug in BFD, but it is
18782 easier to fix it here since that is how the other a.out targets
18783 work. */
18784 int align;
18785
18786 align = bfd_get_section_alignment (stdoutput, segment);
18787 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18788 }
c19d1205 18789#endif
f0927246
NC
18790
18791 return size;
bfae80f2 18792}
b99bd4ef 18793
c19d1205
ZW
18794/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18795 of an rs_align_code fragment. */
18796
18797void
18798arm_handle_align (fragS * fragP)
bfae80f2 18799{
e7495e45
NS
18800 static char const arm_noop[2][2][4] =
18801 {
18802 { /* ARMv1 */
18803 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18804 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18805 },
18806 { /* ARMv6k */
18807 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18808 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18809 },
18810 };
18811 static char const thumb_noop[2][2][2] =
18812 {
18813 { /* Thumb-1 */
18814 {0xc0, 0x46}, /* LE */
18815 {0x46, 0xc0}, /* BE */
18816 },
18817 { /* Thumb-2 */
18818 {0x00, 0xbf}, /* LE */
18819 {0xbf, 0x00} /* BE */
18820 }
18821 };
18822 static char const wide_thumb_noop[2][4] =
18823 { /* Wide Thumb-2 */
18824 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18825 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18826 };
c921be7d 18827
e7495e45 18828 unsigned bytes, fix, noop_size;
c19d1205
ZW
18829 char * p;
18830 const char * noop;
e7495e45 18831 const char *narrow_noop = NULL;
cd000bff
DJ
18832#ifdef OBJ_ELF
18833 enum mstate state;
18834#endif
bfae80f2 18835
c19d1205 18836 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
18837 return;
18838
c19d1205
ZW
18839 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18840 p = fragP->fr_literal + fragP->fr_fix;
18841 fix = 0;
bfae80f2 18842
c19d1205
ZW
18843 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18844 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 18845
cd000bff 18846 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 18847
cd000bff 18848 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 18849 {
e7495e45
NS
18850 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18851 {
18852 narrow_noop = thumb_noop[1][target_big_endian];
18853 noop = wide_thumb_noop[target_big_endian];
18854 }
c19d1205 18855 else
e7495e45
NS
18856 noop = thumb_noop[0][target_big_endian];
18857 noop_size = 2;
cd000bff
DJ
18858#ifdef OBJ_ELF
18859 state = MAP_THUMB;
18860#endif
7ed4c4c5
NC
18861 }
18862 else
18863 {
e7495e45
NS
18864 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18865 [target_big_endian];
18866 noop_size = 4;
cd000bff
DJ
18867#ifdef OBJ_ELF
18868 state = MAP_ARM;
18869#endif
7ed4c4c5 18870 }
c921be7d 18871
e7495e45 18872 fragP->fr_var = noop_size;
c921be7d 18873
c19d1205 18874 if (bytes & (noop_size - 1))
7ed4c4c5 18875 {
c19d1205 18876 fix = bytes & (noop_size - 1);
cd000bff
DJ
18877#ifdef OBJ_ELF
18878 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18879#endif
c19d1205
ZW
18880 memset (p, 0, fix);
18881 p += fix;
18882 bytes -= fix;
a737bd4d 18883 }
a737bd4d 18884
e7495e45
NS
18885 if (narrow_noop)
18886 {
18887 if (bytes & noop_size)
18888 {
18889 /* Insert a narrow noop. */
18890 memcpy (p, narrow_noop, noop_size);
18891 p += noop_size;
18892 bytes -= noop_size;
18893 fix += noop_size;
18894 }
18895
18896 /* Use wide noops for the remainder */
18897 noop_size = 4;
18898 }
18899
c19d1205 18900 while (bytes >= noop_size)
a737bd4d 18901 {
c19d1205
ZW
18902 memcpy (p, noop, noop_size);
18903 p += noop_size;
18904 bytes -= noop_size;
18905 fix += noop_size;
a737bd4d
NC
18906 }
18907
c19d1205 18908 fragP->fr_fix += fix;
a737bd4d
NC
18909}
18910
c19d1205
ZW
18911/* Called from md_do_align. Used to create an alignment
18912 frag in a code section. */
18913
18914void
18915arm_frag_align_code (int n, int max)
bfae80f2 18916{
c19d1205 18917 char * p;
7ed4c4c5 18918
c19d1205 18919 /* We assume that there will never be a requirement
6ec8e702 18920 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 18921 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
18922 {
18923 char err_msg[128];
18924
18925 sprintf (err_msg,
18926 _("alignments greater than %d bytes not supported in .text sections."),
18927 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 18928 as_fatal ("%s", err_msg);
6ec8e702 18929 }
bfae80f2 18930
c19d1205
ZW
18931 p = frag_var (rs_align_code,
18932 MAX_MEM_FOR_RS_ALIGN_CODE,
18933 1,
18934 (relax_substateT) max,
18935 (symbolS *) NULL,
18936 (offsetT) n,
18937 (char *) NULL);
18938 *p = 0;
18939}
bfae80f2 18940
8dc2430f
NC
18941/* Perform target specific initialisation of a frag.
18942 Note - despite the name this initialisation is not done when the frag
18943 is created, but only when its type is assigned. A frag can be created
18944 and used a long time before its type is set, so beware of assuming that
18945 this initialisationis performed first. */
bfae80f2 18946
cd000bff
DJ
18947#ifndef OBJ_ELF
18948void
18949arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18950{
18951 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 18952 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
18953}
18954
18955#else /* OBJ_ELF is defined. */
c19d1205 18956void
cd000bff 18957arm_init_frag (fragS * fragP, int max_chars)
c19d1205 18958{
8dc2430f
NC
18959 /* If the current ARM vs THUMB mode has not already
18960 been recorded into this frag then do so now. */
cd000bff
DJ
18961 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18962 {
18963 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18964
18965 /* Record a mapping symbol for alignment frags. We will delete this
18966 later if the alignment ends up empty. */
18967 switch (fragP->fr_type)
18968 {
18969 case rs_align:
18970 case rs_align_test:
18971 case rs_fill:
18972 mapping_state_2 (MAP_DATA, max_chars);
18973 break;
18974 case rs_align_code:
18975 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18976 break;
18977 default:
18978 break;
18979 }
18980 }
bfae80f2
RE
18981}
18982
c19d1205
ZW
18983/* When we change sections we need to issue a new mapping symbol. */
18984
18985void
18986arm_elf_change_section (void)
bfae80f2 18987{
c19d1205
ZW
18988 /* Link an unlinked unwind index table section to the .text section. */
18989 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18990 && elf_linked_to_section (now_seg) == NULL)
18991 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
18992}
18993
c19d1205
ZW
18994int
18995arm_elf_section_type (const char * str, size_t len)
e45d0630 18996{
c19d1205
ZW
18997 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18998 return SHT_ARM_EXIDX;
e45d0630 18999
c19d1205
ZW
19000 return -1;
19001}
19002\f
19003/* Code to deal with unwinding tables. */
e45d0630 19004
c19d1205 19005static void add_unwind_adjustsp (offsetT);
e45d0630 19006
5f4273c7 19007/* Generate any deferred unwind frame offset. */
e45d0630 19008
bfae80f2 19009static void
c19d1205 19010flush_pending_unwind (void)
bfae80f2 19011{
c19d1205 19012 offsetT offset;
bfae80f2 19013
c19d1205
ZW
19014 offset = unwind.pending_offset;
19015 unwind.pending_offset = 0;
19016 if (offset != 0)
19017 add_unwind_adjustsp (offset);
bfae80f2
RE
19018}
19019
c19d1205
ZW
19020/* Add an opcode to this list for this function. Two-byte opcodes should
19021 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19022 order. */
19023
bfae80f2 19024static void
c19d1205 19025add_unwind_opcode (valueT op, int length)
bfae80f2 19026{
c19d1205
ZW
19027 /* Add any deferred stack adjustment. */
19028 if (unwind.pending_offset)
19029 flush_pending_unwind ();
bfae80f2 19030
c19d1205 19031 unwind.sp_restored = 0;
bfae80f2 19032
c19d1205 19033 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 19034 {
c19d1205
ZW
19035 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19036 if (unwind.opcodes)
21d799b5
NC
19037 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19038 unwind.opcode_alloc);
c19d1205 19039 else
21d799b5 19040 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 19041 }
c19d1205 19042 while (length > 0)
bfae80f2 19043 {
c19d1205
ZW
19044 length--;
19045 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19046 op >>= 8;
19047 unwind.opcode_count++;
bfae80f2 19048 }
bfae80f2
RE
19049}
19050
c19d1205
ZW
19051/* Add unwind opcodes to adjust the stack pointer. */
19052
bfae80f2 19053static void
c19d1205 19054add_unwind_adjustsp (offsetT offset)
bfae80f2 19055{
c19d1205 19056 valueT op;
bfae80f2 19057
c19d1205 19058 if (offset > 0x200)
bfae80f2 19059 {
c19d1205
ZW
19060 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19061 char bytes[5];
19062 int n;
19063 valueT o;
bfae80f2 19064
c19d1205
ZW
19065 /* Long form: 0xb2, uleb128. */
19066 /* This might not fit in a word so add the individual bytes,
19067 remembering the list is built in reverse order. */
19068 o = (valueT) ((offset - 0x204) >> 2);
19069 if (o == 0)
19070 add_unwind_opcode (0, 1);
bfae80f2 19071
c19d1205
ZW
19072 /* Calculate the uleb128 encoding of the offset. */
19073 n = 0;
19074 while (o)
19075 {
19076 bytes[n] = o & 0x7f;
19077 o >>= 7;
19078 if (o)
19079 bytes[n] |= 0x80;
19080 n++;
19081 }
19082 /* Add the insn. */
19083 for (; n; n--)
19084 add_unwind_opcode (bytes[n - 1], 1);
19085 add_unwind_opcode (0xb2, 1);
19086 }
19087 else if (offset > 0x100)
bfae80f2 19088 {
c19d1205
ZW
19089 /* Two short opcodes. */
19090 add_unwind_opcode (0x3f, 1);
19091 op = (offset - 0x104) >> 2;
19092 add_unwind_opcode (op, 1);
bfae80f2 19093 }
c19d1205
ZW
19094 else if (offset > 0)
19095 {
19096 /* Short opcode. */
19097 op = (offset - 4) >> 2;
19098 add_unwind_opcode (op, 1);
19099 }
19100 else if (offset < 0)
bfae80f2 19101 {
c19d1205
ZW
19102 offset = -offset;
19103 while (offset > 0x100)
bfae80f2 19104 {
c19d1205
ZW
19105 add_unwind_opcode (0x7f, 1);
19106 offset -= 0x100;
bfae80f2 19107 }
c19d1205
ZW
19108 op = ((offset - 4) >> 2) | 0x40;
19109 add_unwind_opcode (op, 1);
bfae80f2 19110 }
bfae80f2
RE
19111}
19112
c19d1205
ZW
19113/* Finish the list of unwind opcodes for this function. */
19114static void
19115finish_unwind_opcodes (void)
bfae80f2 19116{
c19d1205 19117 valueT op;
bfae80f2 19118
c19d1205 19119 if (unwind.fp_used)
bfae80f2 19120 {
708587a4 19121 /* Adjust sp as necessary. */
c19d1205
ZW
19122 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19123 flush_pending_unwind ();
bfae80f2 19124
c19d1205
ZW
19125 /* After restoring sp from the frame pointer. */
19126 op = 0x90 | unwind.fp_reg;
19127 add_unwind_opcode (op, 1);
19128 }
19129 else
19130 flush_pending_unwind ();
bfae80f2
RE
19131}
19132
bfae80f2 19133
c19d1205
ZW
19134/* Start an exception table entry. If idx is nonzero this is an index table
19135 entry. */
bfae80f2
RE
19136
19137static void
c19d1205 19138start_unwind_section (const segT text_seg, int idx)
bfae80f2 19139{
c19d1205
ZW
19140 const char * text_name;
19141 const char * prefix;
19142 const char * prefix_once;
19143 const char * group_name;
19144 size_t prefix_len;
19145 size_t text_len;
19146 char * sec_name;
19147 size_t sec_name_len;
19148 int type;
19149 int flags;
19150 int linkonce;
bfae80f2 19151
c19d1205 19152 if (idx)
bfae80f2 19153 {
c19d1205
ZW
19154 prefix = ELF_STRING_ARM_unwind;
19155 prefix_once = ELF_STRING_ARM_unwind_once;
19156 type = SHT_ARM_EXIDX;
bfae80f2 19157 }
c19d1205 19158 else
bfae80f2 19159 {
c19d1205
ZW
19160 prefix = ELF_STRING_ARM_unwind_info;
19161 prefix_once = ELF_STRING_ARM_unwind_info_once;
19162 type = SHT_PROGBITS;
bfae80f2
RE
19163 }
19164
c19d1205
ZW
19165 text_name = segment_name (text_seg);
19166 if (streq (text_name, ".text"))
19167 text_name = "";
19168
19169 if (strncmp (text_name, ".gnu.linkonce.t.",
19170 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 19171 {
c19d1205
ZW
19172 prefix = prefix_once;
19173 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
19174 }
19175
c19d1205
ZW
19176 prefix_len = strlen (prefix);
19177 text_len = strlen (text_name);
19178 sec_name_len = prefix_len + text_len;
21d799b5 19179 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
19180 memcpy (sec_name, prefix, prefix_len);
19181 memcpy (sec_name + prefix_len, text_name, text_len);
19182 sec_name[prefix_len + text_len] = '\0';
bfae80f2 19183
c19d1205
ZW
19184 flags = SHF_ALLOC;
19185 linkonce = 0;
19186 group_name = 0;
bfae80f2 19187
c19d1205
ZW
19188 /* Handle COMDAT group. */
19189 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 19190 {
c19d1205
ZW
19191 group_name = elf_group_name (text_seg);
19192 if (group_name == NULL)
19193 {
bd3ba5d1 19194 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
19195 segment_name (text_seg));
19196 ignore_rest_of_line ();
19197 return;
19198 }
19199 flags |= SHF_GROUP;
19200 linkonce = 1;
bfae80f2
RE
19201 }
19202
c19d1205 19203 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 19204
5f4273c7 19205 /* Set the section link for index tables. */
c19d1205
ZW
19206 if (idx)
19207 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
19208}
19209
bfae80f2 19210
c19d1205
ZW
19211/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19212 personality routine data. Returns zero, or the index table value for
19213 and inline entry. */
19214
19215static valueT
19216create_unwind_entry (int have_data)
bfae80f2 19217{
c19d1205
ZW
19218 int size;
19219 addressT where;
19220 char *ptr;
19221 /* The current word of data. */
19222 valueT data;
19223 /* The number of bytes left in this word. */
19224 int n;
bfae80f2 19225
c19d1205 19226 finish_unwind_opcodes ();
bfae80f2 19227
c19d1205
ZW
19228 /* Remember the current text section. */
19229 unwind.saved_seg = now_seg;
19230 unwind.saved_subseg = now_subseg;
bfae80f2 19231
c19d1205 19232 start_unwind_section (now_seg, 0);
bfae80f2 19233
c19d1205 19234 if (unwind.personality_routine == NULL)
bfae80f2 19235 {
c19d1205
ZW
19236 if (unwind.personality_index == -2)
19237 {
19238 if (have_data)
5f4273c7 19239 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
19240 return 1; /* EXIDX_CANTUNWIND. */
19241 }
bfae80f2 19242
c19d1205
ZW
19243 /* Use a default personality routine if none is specified. */
19244 if (unwind.personality_index == -1)
19245 {
19246 if (unwind.opcode_count > 3)
19247 unwind.personality_index = 1;
19248 else
19249 unwind.personality_index = 0;
19250 }
bfae80f2 19251
c19d1205
ZW
19252 /* Space for the personality routine entry. */
19253 if (unwind.personality_index == 0)
19254 {
19255 if (unwind.opcode_count > 3)
19256 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 19257
c19d1205
ZW
19258 if (!have_data)
19259 {
19260 /* All the data is inline in the index table. */
19261 data = 0x80;
19262 n = 3;
19263 while (unwind.opcode_count > 0)
19264 {
19265 unwind.opcode_count--;
19266 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19267 n--;
19268 }
bfae80f2 19269
c19d1205
ZW
19270 /* Pad with "finish" opcodes. */
19271 while (n--)
19272 data = (data << 8) | 0xb0;
bfae80f2 19273
c19d1205
ZW
19274 return data;
19275 }
19276 size = 0;
19277 }
19278 else
19279 /* We get two opcodes "free" in the first word. */
19280 size = unwind.opcode_count - 2;
19281 }
19282 else
19283 /* An extra byte is required for the opcode count. */
19284 size = unwind.opcode_count + 1;
bfae80f2 19285
c19d1205
ZW
19286 size = (size + 3) >> 2;
19287 if (size > 0xff)
19288 as_bad (_("too many unwind opcodes"));
bfae80f2 19289
c19d1205
ZW
19290 frag_align (2, 0, 0);
19291 record_alignment (now_seg, 2);
19292 unwind.table_entry = expr_build_dot ();
19293
19294 /* Allocate the table entry. */
19295 ptr = frag_more ((size << 2) + 4);
19296 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 19297
c19d1205 19298 switch (unwind.personality_index)
bfae80f2 19299 {
c19d1205
ZW
19300 case -1:
19301 /* ??? Should this be a PLT generating relocation? */
19302 /* Custom personality routine. */
19303 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19304 BFD_RELOC_ARM_PREL31);
bfae80f2 19305
c19d1205
ZW
19306 where += 4;
19307 ptr += 4;
bfae80f2 19308
c19d1205
ZW
19309 /* Set the first byte to the number of additional words. */
19310 data = size - 1;
19311 n = 3;
19312 break;
bfae80f2 19313
c19d1205
ZW
19314 /* ABI defined personality routines. */
19315 case 0:
19316 /* Three opcodes bytes are packed into the first word. */
19317 data = 0x80;
19318 n = 3;
19319 break;
bfae80f2 19320
c19d1205
ZW
19321 case 1:
19322 case 2:
19323 /* The size and first two opcode bytes go in the first word. */
19324 data = ((0x80 + unwind.personality_index) << 8) | size;
19325 n = 2;
19326 break;
bfae80f2 19327
c19d1205
ZW
19328 default:
19329 /* Should never happen. */
19330 abort ();
19331 }
bfae80f2 19332
c19d1205
ZW
19333 /* Pack the opcodes into words (MSB first), reversing the list at the same
19334 time. */
19335 while (unwind.opcode_count > 0)
19336 {
19337 if (n == 0)
19338 {
19339 md_number_to_chars (ptr, data, 4);
19340 ptr += 4;
19341 n = 4;
19342 data = 0;
19343 }
19344 unwind.opcode_count--;
19345 n--;
19346 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19347 }
19348
19349 /* Finish off the last word. */
19350 if (n < 4)
19351 {
19352 /* Pad with "finish" opcodes. */
19353 while (n--)
19354 data = (data << 8) | 0xb0;
19355
19356 md_number_to_chars (ptr, data, 4);
19357 }
19358
19359 if (!have_data)
19360 {
19361 /* Add an empty descriptor if there is no user-specified data. */
19362 ptr = frag_more (4);
19363 md_number_to_chars (ptr, 0, 4);
19364 }
19365
19366 return 0;
bfae80f2
RE
19367}
19368
f0927246
NC
19369
19370/* Initialize the DWARF-2 unwind information for this procedure. */
19371
19372void
19373tc_arm_frame_initial_instructions (void)
19374{
19375 cfi_add_CFA_def_cfa (REG_SP, 0);
19376}
19377#endif /* OBJ_ELF */
19378
c19d1205
ZW
19379/* Convert REGNAME to a DWARF-2 register number. */
19380
19381int
1df69f4f 19382tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19383{
1df69f4f 19384 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19385
19386 if (reg == FAIL)
19387 return -1;
19388
19389 return reg;
bfae80f2
RE
19390}
19391
f0927246 19392#ifdef TE_PE
c19d1205 19393void
f0927246 19394tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19395{
91d6fa6a 19396 expressionS exp;
bfae80f2 19397
91d6fa6a
NC
19398 exp.X_op = O_secrel;
19399 exp.X_add_symbol = symbol;
19400 exp.X_add_number = 0;
19401 emit_expr (&exp, size);
f0927246
NC
19402}
19403#endif
bfae80f2 19404
c19d1205 19405/* MD interface: Symbol and relocation handling. */
bfae80f2 19406
2fc8bdac
ZW
19407/* Return the address within the segment that a PC-relative fixup is
19408 relative to. For ARM, PC-relative fixups applied to instructions
19409 are generally relative to the location of the fixup plus 8 bytes.
19410 Thumb branches are offset by 4, and Thumb loads relative to PC
19411 require special handling. */
bfae80f2 19412
c19d1205 19413long
2fc8bdac 19414md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19415{
2fc8bdac
ZW
19416 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19417
19418 /* If this is pc-relative and we are going to emit a relocation
19419 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19420 will need. Otherwise we want to use the calculated base.
19421 For WinCE we skip the bias for externals as well, since this
19422 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19423 if (fixP->fx_pcrel
2fc8bdac 19424 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19425 || (arm_force_relocation (fixP)
19426#ifdef TE_WINCE
19427 && !S_IS_EXTERNAL (fixP->fx_addsy)
19428#endif
19429 )))
2fc8bdac 19430 base = 0;
bfae80f2 19431
267bf995 19432
c19d1205 19433 switch (fixP->fx_r_type)
bfae80f2 19434 {
2fc8bdac
ZW
19435 /* PC relative addressing on the Thumb is slightly odd as the
19436 bottom two bits of the PC are forced to zero for the
19437 calculation. This happens *after* application of the
19438 pipeline offset. However, Thumb adrl already adjusts for
19439 this, so we need not do it again. */
c19d1205 19440 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19441 return base & ~3;
c19d1205
ZW
19442
19443 case BFD_RELOC_ARM_THUMB_OFFSET:
19444 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19445 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19446 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19447 return (base + 4) & ~3;
c19d1205 19448
2fc8bdac
ZW
19449 /* Thumb branches are simply offset by +4. */
19450 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19451 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19452 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19453 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19454 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19455 return base + 4;
bfae80f2 19456
267bf995 19457 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
19458 if (fixP->fx_addsy
19459 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19460 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19461 && ARM_IS_FUNC (fixP->fx_addsy)
19462 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19463 base = fixP->fx_where + fixP->fx_frag->fr_address;
19464 return base + 4;
19465
00adf2d4
JB
19466 /* BLX is like branches above, but forces the low two bits of PC to
19467 zero. */
486499d0
CL
19468 case BFD_RELOC_THUMB_PCREL_BLX:
19469 if (fixP->fx_addsy
19470 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19471 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19472 && THUMB_IS_FUNC (fixP->fx_addsy)
19473 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19474 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19475 return (base + 4) & ~3;
19476
2fc8bdac
ZW
19477 /* ARM mode branches are offset by +8. However, the Windows CE
19478 loader expects the relocation not to take this into account. */
267bf995 19479 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
19480 if (fixP->fx_addsy
19481 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19482 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19483 && ARM_IS_FUNC (fixP->fx_addsy)
19484 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19485 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19486 return base + 8;
267bf995 19487
486499d0
CL
19488 case BFD_RELOC_ARM_PCREL_CALL:
19489 if (fixP->fx_addsy
19490 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19491 && (!S_IS_EXTERNAL (fixP->fx_addsy))
267bf995
RR
19492 && THUMB_IS_FUNC (fixP->fx_addsy)
19493 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19494 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 19495 return base + 8;
267bf995 19496
2fc8bdac 19497 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 19498 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 19499 case BFD_RELOC_ARM_PLT32:
c19d1205 19500#ifdef TE_WINCE
5f4273c7 19501 /* When handling fixups immediately, because we have already
53baae48
NC
19502 discovered the value of a symbol, or the address of the frag involved
19503 we must account for the offset by +8, as the OS loader will never see the reloc.
19504 see fixup_segment() in write.c
19505 The S_IS_EXTERNAL test handles the case of global symbols.
19506 Those need the calculated base, not just the pipe compensation the linker will need. */
19507 if (fixP->fx_pcrel
19508 && fixP->fx_addsy != NULL
19509 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19510 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19511 return base + 8;
2fc8bdac 19512 return base;
c19d1205 19513#else
2fc8bdac 19514 return base + 8;
c19d1205 19515#endif
2fc8bdac 19516
267bf995 19517
2fc8bdac
ZW
19518 /* ARM mode loads relative to PC are also offset by +8. Unlike
19519 branches, the Windows CE loader *does* expect the relocation
19520 to take this into account. */
19521 case BFD_RELOC_ARM_OFFSET_IMM:
19522 case BFD_RELOC_ARM_OFFSET_IMM8:
19523 case BFD_RELOC_ARM_HWLITERAL:
19524 case BFD_RELOC_ARM_LITERAL:
19525 case BFD_RELOC_ARM_CP_OFF_IMM:
19526 return base + 8;
19527
19528
19529 /* Other PC-relative relocations are un-offset. */
19530 default:
19531 return base;
19532 }
bfae80f2
RE
19533}
19534
c19d1205
ZW
19535/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19536 Otherwise we have no need to default values of symbols. */
19537
19538symbolS *
19539md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 19540{
c19d1205
ZW
19541#ifdef OBJ_ELF
19542 if (name[0] == '_' && name[1] == 'G'
19543 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19544 {
19545 if (!GOT_symbol)
19546 {
19547 if (symbol_find (name))
bd3ba5d1 19548 as_bad (_("GOT already in the symbol table"));
bfae80f2 19549
c19d1205
ZW
19550 GOT_symbol = symbol_new (name, undefined_section,
19551 (valueT) 0, & zero_address_frag);
19552 }
bfae80f2 19553
c19d1205 19554 return GOT_symbol;
bfae80f2 19555 }
c19d1205 19556#endif
bfae80f2 19557
c921be7d 19558 return NULL;
bfae80f2
RE
19559}
19560
55cf6793 19561/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
19562 computed as two separate immediate values, added together. We
19563 already know that this value cannot be computed by just one ARM
19564 instruction. */
19565
19566static unsigned int
19567validate_immediate_twopart (unsigned int val,
19568 unsigned int * highpart)
bfae80f2 19569{
c19d1205
ZW
19570 unsigned int a;
19571 unsigned int i;
bfae80f2 19572
c19d1205
ZW
19573 for (i = 0; i < 32; i += 2)
19574 if (((a = rotate_left (val, i)) & 0xff) != 0)
19575 {
19576 if (a & 0xff00)
19577 {
19578 if (a & ~ 0xffff)
19579 continue;
19580 * highpart = (a >> 8) | ((i + 24) << 7);
19581 }
19582 else if (a & 0xff0000)
19583 {
19584 if (a & 0xff000000)
19585 continue;
19586 * highpart = (a >> 16) | ((i + 16) << 7);
19587 }
19588 else
19589 {
9c2799c2 19590 gas_assert (a & 0xff000000);
c19d1205
ZW
19591 * highpart = (a >> 24) | ((i + 8) << 7);
19592 }
bfae80f2 19593
c19d1205
ZW
19594 return (a & 0xff) | (i << 7);
19595 }
bfae80f2 19596
c19d1205 19597 return FAIL;
bfae80f2
RE
19598}
19599
c19d1205
ZW
19600static int
19601validate_offset_imm (unsigned int val, int hwse)
19602{
19603 if ((hwse && val > 255) || val > 4095)
19604 return FAIL;
19605 return val;
19606}
bfae80f2 19607
55cf6793 19608/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
19609 negative immediate constant by altering the instruction. A bit of
19610 a hack really.
19611 MOV <-> MVN
19612 AND <-> BIC
19613 ADC <-> SBC
19614 by inverting the second operand, and
19615 ADD <-> SUB
19616 CMP <-> CMN
19617 by negating the second operand. */
bfae80f2 19618
c19d1205
ZW
19619static int
19620negate_data_op (unsigned long * instruction,
19621 unsigned long value)
bfae80f2 19622{
c19d1205
ZW
19623 int op, new_inst;
19624 unsigned long negated, inverted;
bfae80f2 19625
c19d1205
ZW
19626 negated = encode_arm_immediate (-value);
19627 inverted = encode_arm_immediate (~value);
bfae80f2 19628
c19d1205
ZW
19629 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19630 switch (op)
bfae80f2 19631 {
c19d1205
ZW
19632 /* First negates. */
19633 case OPCODE_SUB: /* ADD <-> SUB */
19634 new_inst = OPCODE_ADD;
19635 value = negated;
19636 break;
bfae80f2 19637
c19d1205
ZW
19638 case OPCODE_ADD:
19639 new_inst = OPCODE_SUB;
19640 value = negated;
19641 break;
bfae80f2 19642
c19d1205
ZW
19643 case OPCODE_CMP: /* CMP <-> CMN */
19644 new_inst = OPCODE_CMN;
19645 value = negated;
19646 break;
bfae80f2 19647
c19d1205
ZW
19648 case OPCODE_CMN:
19649 new_inst = OPCODE_CMP;
19650 value = negated;
19651 break;
bfae80f2 19652
c19d1205
ZW
19653 /* Now Inverted ops. */
19654 case OPCODE_MOV: /* MOV <-> MVN */
19655 new_inst = OPCODE_MVN;
19656 value = inverted;
19657 break;
bfae80f2 19658
c19d1205
ZW
19659 case OPCODE_MVN:
19660 new_inst = OPCODE_MOV;
19661 value = inverted;
19662 break;
bfae80f2 19663
c19d1205
ZW
19664 case OPCODE_AND: /* AND <-> BIC */
19665 new_inst = OPCODE_BIC;
19666 value = inverted;
19667 break;
bfae80f2 19668
c19d1205
ZW
19669 case OPCODE_BIC:
19670 new_inst = OPCODE_AND;
19671 value = inverted;
19672 break;
bfae80f2 19673
c19d1205
ZW
19674 case OPCODE_ADC: /* ADC <-> SBC */
19675 new_inst = OPCODE_SBC;
19676 value = inverted;
19677 break;
bfae80f2 19678
c19d1205
ZW
19679 case OPCODE_SBC:
19680 new_inst = OPCODE_ADC;
19681 value = inverted;
19682 break;
bfae80f2 19683
c19d1205
ZW
19684 /* We cannot do anything. */
19685 default:
19686 return FAIL;
b99bd4ef
NC
19687 }
19688
c19d1205
ZW
19689 if (value == (unsigned) FAIL)
19690 return FAIL;
19691
19692 *instruction &= OPCODE_MASK;
19693 *instruction |= new_inst << DATA_OP_SHIFT;
19694 return value;
b99bd4ef
NC
19695}
19696
ef8d22e6
PB
19697/* Like negate_data_op, but for Thumb-2. */
19698
19699static unsigned int
16dd5e42 19700thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
19701{
19702 int op, new_inst;
19703 int rd;
16dd5e42 19704 unsigned int negated, inverted;
ef8d22e6
PB
19705
19706 negated = encode_thumb32_immediate (-value);
19707 inverted = encode_thumb32_immediate (~value);
19708
19709 rd = (*instruction >> 8) & 0xf;
19710 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19711 switch (op)
19712 {
19713 /* ADD <-> SUB. Includes CMP <-> CMN. */
19714 case T2_OPCODE_SUB:
19715 new_inst = T2_OPCODE_ADD;
19716 value = negated;
19717 break;
19718
19719 case T2_OPCODE_ADD:
19720 new_inst = T2_OPCODE_SUB;
19721 value = negated;
19722 break;
19723
19724 /* ORR <-> ORN. Includes MOV <-> MVN. */
19725 case T2_OPCODE_ORR:
19726 new_inst = T2_OPCODE_ORN;
19727 value = inverted;
19728 break;
19729
19730 case T2_OPCODE_ORN:
19731 new_inst = T2_OPCODE_ORR;
19732 value = inverted;
19733 break;
19734
19735 /* AND <-> BIC. TST has no inverted equivalent. */
19736 case T2_OPCODE_AND:
19737 new_inst = T2_OPCODE_BIC;
19738 if (rd == 15)
19739 value = FAIL;
19740 else
19741 value = inverted;
19742 break;
19743
19744 case T2_OPCODE_BIC:
19745 new_inst = T2_OPCODE_AND;
19746 value = inverted;
19747 break;
19748
19749 /* ADC <-> SBC */
19750 case T2_OPCODE_ADC:
19751 new_inst = T2_OPCODE_SBC;
19752 value = inverted;
19753 break;
19754
19755 case T2_OPCODE_SBC:
19756 new_inst = T2_OPCODE_ADC;
19757 value = inverted;
19758 break;
19759
19760 /* We cannot do anything. */
19761 default:
19762 return FAIL;
19763 }
19764
16dd5e42 19765 if (value == (unsigned int)FAIL)
ef8d22e6
PB
19766 return FAIL;
19767
19768 *instruction &= T2_OPCODE_MASK;
19769 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19770 return value;
19771}
19772
8f06b2d8
PB
19773/* Read a 32-bit thumb instruction from buf. */
19774static unsigned long
19775get_thumb32_insn (char * buf)
19776{
19777 unsigned long insn;
19778 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19779 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19780
19781 return insn;
19782}
19783
a8bc6c78
PB
19784
19785/* We usually want to set the low bit on the address of thumb function
19786 symbols. In particular .word foo - . should have the low bit set.
19787 Generic code tries to fold the difference of two symbols to
19788 a constant. Prevent this and force a relocation when the first symbols
19789 is a thumb function. */
c921be7d
NC
19790
19791bfd_boolean
a8bc6c78
PB
19792arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19793{
19794 if (op == O_subtract
19795 && l->X_op == O_symbol
19796 && r->X_op == O_symbol
19797 && THUMB_IS_FUNC (l->X_add_symbol))
19798 {
19799 l->X_op = O_subtract;
19800 l->X_op_symbol = r->X_add_symbol;
19801 l->X_add_number -= r->X_add_number;
c921be7d 19802 return TRUE;
a8bc6c78 19803 }
c921be7d 19804
a8bc6c78 19805 /* Process as normal. */
c921be7d 19806 return FALSE;
a8bc6c78
PB
19807}
19808
4a42ebbc
RR
19809/* Encode Thumb2 unconditional branches and calls. The encoding
19810 for the 2 are identical for the immediate values. */
19811
19812static void
19813encode_thumb2_b_bl_offset (char * buf, offsetT value)
19814{
19815#define T2I1I2MASK ((1 << 13) | (1 << 11))
19816 offsetT newval;
19817 offsetT newval2;
19818 addressT S, I1, I2, lo, hi;
19819
19820 S = (value >> 24) & 0x01;
19821 I1 = (value >> 23) & 0x01;
19822 I2 = (value >> 22) & 0x01;
19823 hi = (value >> 12) & 0x3ff;
19824 lo = (value >> 1) & 0x7ff;
19825 newval = md_chars_to_number (buf, THUMB_SIZE);
19826 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19827 newval |= (S << 10) | hi;
19828 newval2 &= ~T2I1I2MASK;
19829 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
19830 md_number_to_chars (buf, newval, THUMB_SIZE);
19831 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19832}
19833
c19d1205 19834void
55cf6793 19835md_apply_fix (fixS * fixP,
c19d1205
ZW
19836 valueT * valP,
19837 segT seg)
19838{
19839 offsetT value = * valP;
19840 offsetT newval;
19841 unsigned int newimm;
19842 unsigned long temp;
19843 int sign;
19844 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 19845
9c2799c2 19846 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 19847
c19d1205 19848 /* Note whether this will delete the relocation. */
4962c51a 19849
c19d1205
ZW
19850 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19851 fixP->fx_done = 1;
b99bd4ef 19852
adbaf948 19853 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 19854 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
19855 for emit_reloc. */
19856 value &= 0xffffffff;
19857 value ^= 0x80000000;
5f4273c7 19858 value -= 0x80000000;
adbaf948
ZW
19859
19860 *valP = value;
c19d1205 19861 fixP->fx_addnumber = value;
b99bd4ef 19862
adbaf948
ZW
19863 /* Same treatment for fixP->fx_offset. */
19864 fixP->fx_offset &= 0xffffffff;
19865 fixP->fx_offset ^= 0x80000000;
19866 fixP->fx_offset -= 0x80000000;
19867
c19d1205 19868 switch (fixP->fx_r_type)
b99bd4ef 19869 {
c19d1205
ZW
19870 case BFD_RELOC_NONE:
19871 /* This will need to go in the object file. */
19872 fixP->fx_done = 0;
19873 break;
b99bd4ef 19874
c19d1205
ZW
19875 case BFD_RELOC_ARM_IMMEDIATE:
19876 /* We claim that this fixup has been processed here,
19877 even if in fact we generate an error because we do
19878 not have a reloc for it, so tc_gen_reloc will reject it. */
19879 fixP->fx_done = 1;
b99bd4ef 19880
77db8e2e 19881 if (fixP->fx_addsy)
b99bd4ef 19882 {
77db8e2e 19883 const char *msg = 0;
b99bd4ef 19884
77db8e2e
NC
19885 if (! S_IS_DEFINED (fixP->fx_addsy))
19886 msg = _("undefined symbol %s used as an immediate value");
19887 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
19888 msg = _("symbol %s is in a different section");
19889 else if (S_IS_WEAK (fixP->fx_addsy))
19890 msg = _("symbol %s is weak and may be overridden later");
19891
19892 if (msg)
19893 {
19894 as_bad_where (fixP->fx_file, fixP->fx_line,
19895 msg, S_GET_NAME (fixP->fx_addsy));
19896 break;
19897 }
42e5fcbf
AS
19898 }
19899
c19d1205
ZW
19900 newimm = encode_arm_immediate (value);
19901 temp = md_chars_to_number (buf, INSN_SIZE);
19902
19903 /* If the instruction will fail, see if we can fix things up by
19904 changing the opcode. */
19905 if (newimm == (unsigned int) FAIL
19906 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 19907 {
c19d1205
ZW
19908 as_bad_where (fixP->fx_file, fixP->fx_line,
19909 _("invalid constant (%lx) after fixup"),
19910 (unsigned long) value);
19911 break;
b99bd4ef 19912 }
b99bd4ef 19913
c19d1205
ZW
19914 newimm |= (temp & 0xfffff000);
19915 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19916 break;
b99bd4ef 19917
c19d1205
ZW
19918 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19919 {
19920 unsigned int highpart = 0;
19921 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 19922
77db8e2e 19923 if (fixP->fx_addsy)
42e5fcbf 19924 {
77db8e2e 19925 const char *msg = 0;
42e5fcbf 19926
77db8e2e
NC
19927 if (! S_IS_DEFINED (fixP->fx_addsy))
19928 msg = _("undefined symbol %s used as an immediate value");
19929 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
19930 msg = _("symbol %s is in a different section");
19931 else if (S_IS_WEAK (fixP->fx_addsy))
19932 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 19933
77db8e2e
NC
19934 if (msg)
19935 {
19936 as_bad_where (fixP->fx_file, fixP->fx_line,
19937 msg, S_GET_NAME (fixP->fx_addsy));
19938 break;
19939 }
19940 }
19941
c19d1205
ZW
19942 newimm = encode_arm_immediate (value);
19943 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 19944
c19d1205
ZW
19945 /* If the instruction will fail, see if we can fix things up by
19946 changing the opcode. */
19947 if (newimm == (unsigned int) FAIL
19948 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19949 {
19950 /* No ? OK - try using two ADD instructions to generate
19951 the value. */
19952 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 19953
c19d1205
ZW
19954 /* Yes - then make sure that the second instruction is
19955 also an add. */
19956 if (newimm != (unsigned int) FAIL)
19957 newinsn = temp;
19958 /* Still No ? Try using a negated value. */
19959 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19960 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19961 /* Otherwise - give up. */
19962 else
19963 {
19964 as_bad_where (fixP->fx_file, fixP->fx_line,
19965 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19966 (long) value);
19967 break;
19968 }
b99bd4ef 19969
c19d1205
ZW
19970 /* Replace the first operand in the 2nd instruction (which
19971 is the PC) with the destination register. We have
19972 already added in the PC in the first instruction and we
19973 do not want to do it again. */
19974 newinsn &= ~ 0xf0000;
19975 newinsn |= ((newinsn & 0x0f000) << 4);
19976 }
b99bd4ef 19977
c19d1205
ZW
19978 newimm |= (temp & 0xfffff000);
19979 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 19980
c19d1205
ZW
19981 highpart |= (newinsn & 0xfffff000);
19982 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19983 }
19984 break;
b99bd4ef 19985
c19d1205 19986 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19987 if (!fixP->fx_done && seg->use_rela_p)
19988 value = 0;
19989
c19d1205
ZW
19990 case BFD_RELOC_ARM_LITERAL:
19991 sign = value >= 0;
b99bd4ef 19992
c19d1205
ZW
19993 if (value < 0)
19994 value = - value;
b99bd4ef 19995
c19d1205 19996 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 19997 {
c19d1205
ZW
19998 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19999 as_bad_where (fixP->fx_file, fixP->fx_line,
20000 _("invalid literal constant: pool needs to be closer"));
20001 else
20002 as_bad_where (fixP->fx_file, fixP->fx_line,
20003 _("bad immediate value for offset (%ld)"),
20004 (long) value);
20005 break;
f03698e6
RE
20006 }
20007
c19d1205
ZW
20008 newval = md_chars_to_number (buf, INSN_SIZE);
20009 newval &= 0xff7ff000;
20010 newval |= value | (sign ? INDEX_UP : 0);
20011 md_number_to_chars (buf, newval, INSN_SIZE);
20012 break;
b99bd4ef 20013
c19d1205
ZW
20014 case BFD_RELOC_ARM_OFFSET_IMM8:
20015 case BFD_RELOC_ARM_HWLITERAL:
20016 sign = value >= 0;
b99bd4ef 20017
c19d1205
ZW
20018 if (value < 0)
20019 value = - value;
b99bd4ef 20020
c19d1205 20021 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 20022 {
c19d1205
ZW
20023 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20024 as_bad_where (fixP->fx_file, fixP->fx_line,
20025 _("invalid literal constant: pool needs to be closer"));
20026 else
f9d4405b 20027 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
20028 (long) value);
20029 break;
b99bd4ef
NC
20030 }
20031
c19d1205
ZW
20032 newval = md_chars_to_number (buf, INSN_SIZE);
20033 newval &= 0xff7ff0f0;
20034 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20035 md_number_to_chars (buf, newval, INSN_SIZE);
20036 break;
b99bd4ef 20037
c19d1205
ZW
20038 case BFD_RELOC_ARM_T32_OFFSET_U8:
20039 if (value < 0 || value > 1020 || value % 4 != 0)
20040 as_bad_where (fixP->fx_file, fixP->fx_line,
20041 _("bad immediate value for offset (%ld)"), (long) value);
20042 value /= 4;
b99bd4ef 20043
c19d1205 20044 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
20045 newval |= value;
20046 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20047 break;
b99bd4ef 20048
c19d1205
ZW
20049 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20050 /* This is a complicated relocation used for all varieties of Thumb32
20051 load/store instruction with immediate offset:
20052
20053 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20054 *4, optional writeback(W)
20055 (doubleword load/store)
20056
20057 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20058 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20059 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20060 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20061 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20062
20063 Uppercase letters indicate bits that are already encoded at
20064 this point. Lowercase letters are our problem. For the
20065 second block of instructions, the secondary opcode nybble
20066 (bits 8..11) is present, and bit 23 is zero, even if this is
20067 a PC-relative operation. */
20068 newval = md_chars_to_number (buf, THUMB_SIZE);
20069 newval <<= 16;
20070 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 20071
c19d1205 20072 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 20073 {
c19d1205
ZW
20074 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20075 if (value >= 0)
20076 newval |= (1 << 23);
20077 else
20078 value = -value;
20079 if (value % 4 != 0)
20080 {
20081 as_bad_where (fixP->fx_file, fixP->fx_line,
20082 _("offset not a multiple of 4"));
20083 break;
20084 }
20085 value /= 4;
216d22bc 20086 if (value > 0xff)
c19d1205
ZW
20087 {
20088 as_bad_where (fixP->fx_file, fixP->fx_line,
20089 _("offset out of range"));
20090 break;
20091 }
20092 newval &= ~0xff;
b99bd4ef 20093 }
c19d1205 20094 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 20095 {
c19d1205
ZW
20096 /* PC-relative, 12-bit offset. */
20097 if (value >= 0)
20098 newval |= (1 << 23);
20099 else
20100 value = -value;
216d22bc 20101 if (value > 0xfff)
c19d1205
ZW
20102 {
20103 as_bad_where (fixP->fx_file, fixP->fx_line,
20104 _("offset out of range"));
20105 break;
20106 }
20107 newval &= ~0xfff;
b99bd4ef 20108 }
c19d1205 20109 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 20110 {
c19d1205
ZW
20111 /* Writeback: 8-bit, +/- offset. */
20112 if (value >= 0)
20113 newval |= (1 << 9);
20114 else
20115 value = -value;
216d22bc 20116 if (value > 0xff)
c19d1205
ZW
20117 {
20118 as_bad_where (fixP->fx_file, fixP->fx_line,
20119 _("offset out of range"));
20120 break;
20121 }
20122 newval &= ~0xff;
b99bd4ef 20123 }
c19d1205 20124 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 20125 {
c19d1205 20126 /* T-instruction: positive 8-bit offset. */
216d22bc 20127 if (value < 0 || value > 0xff)
b99bd4ef 20128 {
c19d1205
ZW
20129 as_bad_where (fixP->fx_file, fixP->fx_line,
20130 _("offset out of range"));
20131 break;
b99bd4ef 20132 }
c19d1205
ZW
20133 newval &= ~0xff;
20134 newval |= value;
b99bd4ef
NC
20135 }
20136 else
b99bd4ef 20137 {
c19d1205
ZW
20138 /* Positive 12-bit or negative 8-bit offset. */
20139 int limit;
20140 if (value >= 0)
b99bd4ef 20141 {
c19d1205
ZW
20142 newval |= (1 << 23);
20143 limit = 0xfff;
20144 }
20145 else
20146 {
20147 value = -value;
20148 limit = 0xff;
20149 }
20150 if (value > limit)
20151 {
20152 as_bad_where (fixP->fx_file, fixP->fx_line,
20153 _("offset out of range"));
20154 break;
b99bd4ef 20155 }
c19d1205 20156 newval &= ~limit;
b99bd4ef 20157 }
b99bd4ef 20158
c19d1205
ZW
20159 newval |= value;
20160 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20161 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20162 break;
404ff6b5 20163
c19d1205
ZW
20164 case BFD_RELOC_ARM_SHIFT_IMM:
20165 newval = md_chars_to_number (buf, INSN_SIZE);
20166 if (((unsigned long) value) > 32
20167 || (value == 32
20168 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20169 {
20170 as_bad_where (fixP->fx_file, fixP->fx_line,
20171 _("shift expression is too large"));
20172 break;
20173 }
404ff6b5 20174
c19d1205
ZW
20175 if (value == 0)
20176 /* Shifts of zero must be done as lsl. */
20177 newval &= ~0x60;
20178 else if (value == 32)
20179 value = 0;
20180 newval &= 0xfffff07f;
20181 newval |= (value & 0x1f) << 7;
20182 md_number_to_chars (buf, newval, INSN_SIZE);
20183 break;
404ff6b5 20184
c19d1205 20185 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 20186 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 20187 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 20188 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
20189 /* We claim that this fixup has been processed here,
20190 even if in fact we generate an error because we do
20191 not have a reloc for it, so tc_gen_reloc will reject it. */
20192 fixP->fx_done = 1;
404ff6b5 20193
c19d1205
ZW
20194 if (fixP->fx_addsy
20195 && ! S_IS_DEFINED (fixP->fx_addsy))
20196 {
20197 as_bad_where (fixP->fx_file, fixP->fx_line,
20198 _("undefined symbol %s used as an immediate value"),
20199 S_GET_NAME (fixP->fx_addsy));
20200 break;
20201 }
404ff6b5 20202
c19d1205
ZW
20203 newval = md_chars_to_number (buf, THUMB_SIZE);
20204 newval <<= 16;
20205 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 20206
16805f35
PB
20207 newimm = FAIL;
20208 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20209 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
20210 {
20211 newimm = encode_thumb32_immediate (value);
20212 if (newimm == (unsigned int) FAIL)
20213 newimm = thumb32_negate_data_op (&newval, value);
20214 }
16805f35
PB
20215 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20216 && newimm == (unsigned int) FAIL)
92e90b6e 20217 {
16805f35
PB
20218 /* Turn add/sum into addw/subw. */
20219 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20220 newval = (newval & 0xfeffffff) | 0x02000000;
20221
e9f89963
PB
20222 /* 12 bit immediate for addw/subw. */
20223 if (value < 0)
20224 {
20225 value = -value;
20226 newval ^= 0x00a00000;
20227 }
92e90b6e
PB
20228 if (value > 0xfff)
20229 newimm = (unsigned int) FAIL;
20230 else
20231 newimm = value;
20232 }
cc8a6dd0 20233
c19d1205 20234 if (newimm == (unsigned int)FAIL)
3631a3c8 20235 {
c19d1205
ZW
20236 as_bad_where (fixP->fx_file, fixP->fx_line,
20237 _("invalid constant (%lx) after fixup"),
20238 (unsigned long) value);
20239 break;
3631a3c8
NC
20240 }
20241
c19d1205
ZW
20242 newval |= (newimm & 0x800) << 15;
20243 newval |= (newimm & 0x700) << 4;
20244 newval |= (newimm & 0x0ff);
cc8a6dd0 20245
c19d1205
ZW
20246 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20247 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20248 break;
a737bd4d 20249
3eb17e6b 20250 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
20251 if (((unsigned long) value) > 0xffff)
20252 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 20253 _("invalid smc expression"));
2fc8bdac 20254 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20255 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20256 md_number_to_chars (buf, newval, INSN_SIZE);
20257 break;
a737bd4d 20258
c19d1205 20259 case BFD_RELOC_ARM_SWI:
adbaf948 20260 if (fixP->tc_fix_data != 0)
c19d1205
ZW
20261 {
20262 if (((unsigned long) value) > 0xff)
20263 as_bad_where (fixP->fx_file, fixP->fx_line,
20264 _("invalid swi expression"));
2fc8bdac 20265 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
20266 newval |= value;
20267 md_number_to_chars (buf, newval, THUMB_SIZE);
20268 }
20269 else
20270 {
20271 if (((unsigned long) value) > 0x00ffffff)
20272 as_bad_where (fixP->fx_file, fixP->fx_line,
20273 _("invalid swi expression"));
2fc8bdac 20274 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
20275 newval |= value;
20276 md_number_to_chars (buf, newval, INSN_SIZE);
20277 }
20278 break;
a737bd4d 20279
c19d1205
ZW
20280 case BFD_RELOC_ARM_MULTI:
20281 if (((unsigned long) value) > 0xffff)
20282 as_bad_where (fixP->fx_file, fixP->fx_line,
20283 _("invalid expression in load/store multiple"));
20284 newval = value | md_chars_to_number (buf, INSN_SIZE);
20285 md_number_to_chars (buf, newval, INSN_SIZE);
20286 break;
a737bd4d 20287
c19d1205 20288#ifdef OBJ_ELF
39b41c9c 20289 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
20290
20291 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20292 && fixP->fx_addsy
20293 && !S_IS_EXTERNAL (fixP->fx_addsy)
20294 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20295 && THUMB_IS_FUNC (fixP->fx_addsy))
20296 /* Flip the bl to blx. This is a simple flip
20297 bit here because we generate PCREL_CALL for
20298 unconditional bls. */
20299 {
20300 newval = md_chars_to_number (buf, INSN_SIZE);
20301 newval = newval | 0x10000000;
20302 md_number_to_chars (buf, newval, INSN_SIZE);
20303 temp = 1;
20304 fixP->fx_done = 1;
20305 }
39b41c9c
PB
20306 else
20307 temp = 3;
20308 goto arm_branch_common;
20309
20310 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
20311 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20312 && fixP->fx_addsy
20313 && !S_IS_EXTERNAL (fixP->fx_addsy)
20314 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20315 && THUMB_IS_FUNC (fixP->fx_addsy))
20316 {
20317 /* This would map to a bl<cond>, b<cond>,
20318 b<always> to a Thumb function. We
20319 need to force a relocation for this particular
20320 case. */
20321 newval = md_chars_to_number (buf, INSN_SIZE);
20322 fixP->fx_done = 0;
20323 }
20324
2fc8bdac 20325 case BFD_RELOC_ARM_PLT32:
c19d1205 20326#endif
39b41c9c
PB
20327 case BFD_RELOC_ARM_PCREL_BRANCH:
20328 temp = 3;
20329 goto arm_branch_common;
a737bd4d 20330
39b41c9c 20331 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 20332
39b41c9c 20333 temp = 1;
267bf995
RR
20334 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20335 && fixP->fx_addsy
20336 && !S_IS_EXTERNAL (fixP->fx_addsy)
20337 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20338 && ARM_IS_FUNC (fixP->fx_addsy))
20339 {
20340 /* Flip the blx to a bl and warn. */
20341 const char *name = S_GET_NAME (fixP->fx_addsy);
20342 newval = 0xeb000000;
20343 as_warn_where (fixP->fx_file, fixP->fx_line,
20344 _("blx to '%s' an ARM ISA state function changed to bl"),
20345 name);
20346 md_number_to_chars (buf, newval, INSN_SIZE);
20347 temp = 3;
20348 fixP->fx_done = 1;
20349 }
20350
20351#ifdef OBJ_ELF
20352 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20353 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20354#endif
20355
39b41c9c 20356 arm_branch_common:
c19d1205 20357 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
20358 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20359 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20360 also be be clear. */
20361 if (value & temp)
c19d1205 20362 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
20363 _("misaligned branch destination"));
20364 if ((value & (offsetT)0xfe000000) != (offsetT)0
20365 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20366 as_bad_where (fixP->fx_file, fixP->fx_line,
20367 _("branch out of range"));
a737bd4d 20368
2fc8bdac 20369 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20370 {
2fc8bdac
ZW
20371 newval = md_chars_to_number (buf, INSN_SIZE);
20372 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
20373 /* Set the H bit on BLX instructions. */
20374 if (temp == 1)
20375 {
20376 if (value & 2)
20377 newval |= 0x01000000;
20378 else
20379 newval &= ~0x01000000;
20380 }
2fc8bdac 20381 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20382 }
c19d1205 20383 break;
a737bd4d 20384
25fe350b
MS
20385 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20386 /* CBZ can only branch forward. */
a737bd4d 20387
738755b0
MS
20388 /* Attempts to use CBZ to branch to the next instruction
20389 (which, strictly speaking, are prohibited) will be turned into
20390 no-ops.
20391
20392 FIXME: It may be better to remove the instruction completely and
20393 perform relaxation. */
20394 if (value == -2)
2fc8bdac
ZW
20395 {
20396 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20397 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20398 md_number_to_chars (buf, newval, THUMB_SIZE);
20399 }
738755b0
MS
20400 else
20401 {
20402 if (value & ~0x7e)
20403 as_bad_where (fixP->fx_file, fixP->fx_line,
20404 _("branch out of range"));
20405
20406 if (fixP->fx_done || !seg->use_rela_p)
20407 {
20408 newval = md_chars_to_number (buf, THUMB_SIZE);
20409 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20410 md_number_to_chars (buf, newval, THUMB_SIZE);
20411 }
20412 }
c19d1205 20413 break;
a737bd4d 20414
c19d1205 20415 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20416 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20417 as_bad_where (fixP->fx_file, fixP->fx_line,
20418 _("branch out of range"));
a737bd4d 20419
2fc8bdac
ZW
20420 if (fixP->fx_done || !seg->use_rela_p)
20421 {
20422 newval = md_chars_to_number (buf, THUMB_SIZE);
20423 newval |= (value & 0x1ff) >> 1;
20424 md_number_to_chars (buf, newval, THUMB_SIZE);
20425 }
c19d1205 20426 break;
a737bd4d 20427
c19d1205 20428 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20429 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20430 as_bad_where (fixP->fx_file, fixP->fx_line,
20431 _("branch out of range"));
a737bd4d 20432
2fc8bdac
ZW
20433 if (fixP->fx_done || !seg->use_rela_p)
20434 {
20435 newval = md_chars_to_number (buf, THUMB_SIZE);
20436 newval |= (value & 0xfff) >> 1;
20437 md_number_to_chars (buf, newval, THUMB_SIZE);
20438 }
c19d1205 20439 break;
a737bd4d 20440
c19d1205 20441 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20442 if (fixP->fx_addsy
20443 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20444 && !S_IS_EXTERNAL (fixP->fx_addsy)
20445 && S_IS_DEFINED (fixP->fx_addsy)
20446 && ARM_IS_FUNC (fixP->fx_addsy)
20447 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20448 {
20449 /* Force a relocation for a branch 20 bits wide. */
20450 fixP->fx_done = 0;
20451 }
2fc8bdac
ZW
20452 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20453 as_bad_where (fixP->fx_file, fixP->fx_line,
20454 _("conditional branch out of range"));
404ff6b5 20455
2fc8bdac
ZW
20456 if (fixP->fx_done || !seg->use_rela_p)
20457 {
20458 offsetT newval2;
20459 addressT S, J1, J2, lo, hi;
404ff6b5 20460
2fc8bdac
ZW
20461 S = (value & 0x00100000) >> 20;
20462 J2 = (value & 0x00080000) >> 19;
20463 J1 = (value & 0x00040000) >> 18;
20464 hi = (value & 0x0003f000) >> 12;
20465 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20466
2fc8bdac
ZW
20467 newval = md_chars_to_number (buf, THUMB_SIZE);
20468 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20469 newval |= (S << 10) | hi;
20470 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20471 md_number_to_chars (buf, newval, THUMB_SIZE);
20472 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20473 }
c19d1205 20474 break;
6c43fab6 20475
c19d1205 20476 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
20477
20478 /* If there is a blx from a thumb state function to
20479 another thumb function flip this to a bl and warn
20480 about it. */
20481
20482 if (fixP->fx_addsy
20483 && S_IS_DEFINED (fixP->fx_addsy)
20484 && !S_IS_EXTERNAL (fixP->fx_addsy)
20485 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20486 && THUMB_IS_FUNC (fixP->fx_addsy))
20487 {
20488 const char *name = S_GET_NAME (fixP->fx_addsy);
20489 as_warn_where (fixP->fx_file, fixP->fx_line,
20490 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20491 name);
20492 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20493 newval = newval | 0x1000;
20494 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20495 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20496 fixP->fx_done = 1;
20497 }
20498
20499
20500 goto thumb_bl_common;
20501
c19d1205 20502 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
20503
20504 /* A bl from Thumb state ISA to an internal ARM state function
20505 is converted to a blx. */
20506 if (fixP->fx_addsy
20507 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20508 && !S_IS_EXTERNAL (fixP->fx_addsy)
20509 && S_IS_DEFINED (fixP->fx_addsy)
20510 && ARM_IS_FUNC (fixP->fx_addsy)
20511 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20512 {
20513 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20514 newval = newval & ~0x1000;
20515 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20516 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20517 fixP->fx_done = 1;
20518 }
20519
20520 thumb_bl_common:
20521
20522#ifdef OBJ_ELF
20523 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20524 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20525 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20526#endif
20527
2fc8bdac
ZW
20528 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20529 /* For a BLX instruction, make sure that the relocation is rounded up
20530 to a word boundary. This follows the semantics of the instruction
20531 which specifies that bit 1 of the target address will come from bit
20532 1 of the base address. */
20533 value = (value + 1) & ~ 1;
404ff6b5 20534
2fc8bdac 20535
4a42ebbc
RR
20536 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20537 {
20538 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20539 {
20540 as_bad_where (fixP->fx_file, fixP->fx_line,
20541 _("branch out of range"));
20542 }
20543 else if ((value & ~0x1ffffff)
20544 && ((value & ~0x1ffffff) != ~0x1ffffff))
20545 {
20546 as_bad_where (fixP->fx_file, fixP->fx_line,
20547 _("Thumb2 branch out of range"));
20548 }
c19d1205 20549 }
4a42ebbc
RR
20550
20551 if (fixP->fx_done || !seg->use_rela_p)
20552 encode_thumb2_b_bl_offset (buf, value);
20553
c19d1205 20554 break;
404ff6b5 20555
c19d1205 20556 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
20557 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20558 as_bad_where (fixP->fx_file, fixP->fx_line,
20559 _("branch out of range"));
6c43fab6 20560
2fc8bdac 20561 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 20562 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 20563
2fc8bdac 20564 break;
a737bd4d 20565
2fc8bdac
ZW
20566 case BFD_RELOC_8:
20567 if (fixP->fx_done || !seg->use_rela_p)
20568 md_number_to_chars (buf, value, 1);
c19d1205 20569 break;
a737bd4d 20570
c19d1205 20571 case BFD_RELOC_16:
2fc8bdac 20572 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20573 md_number_to_chars (buf, value, 2);
c19d1205 20574 break;
a737bd4d 20575
c19d1205
ZW
20576#ifdef OBJ_ELF
20577 case BFD_RELOC_ARM_TLS_GD32:
20578 case BFD_RELOC_ARM_TLS_LE32:
20579 case BFD_RELOC_ARM_TLS_IE32:
20580 case BFD_RELOC_ARM_TLS_LDM32:
20581 case BFD_RELOC_ARM_TLS_LDO32:
20582 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20583 /* fall through */
6c43fab6 20584
c19d1205
ZW
20585 case BFD_RELOC_ARM_GOT32:
20586 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
20587 if (fixP->fx_done || !seg->use_rela_p)
20588 md_number_to_chars (buf, 0, 4);
c19d1205 20589 break;
b43420e6
NC
20590
20591 case BFD_RELOC_ARM_GOT_PREL:
20592 if (fixP->fx_done || !seg->use_rela_p)
20593 md_number_to_chars (buf, value, 4);
20594 break;
20595
9a6f4e97
NS
20596 case BFD_RELOC_ARM_TARGET2:
20597 /* TARGET2 is not partial-inplace, so we need to write the
20598 addend here for REL targets, because it won't be written out
20599 during reloc processing later. */
20600 if (fixP->fx_done || !seg->use_rela_p)
20601 md_number_to_chars (buf, fixP->fx_offset, 4);
20602 break;
c19d1205 20603#endif
6c43fab6 20604
c19d1205
ZW
20605 case BFD_RELOC_RVA:
20606 case BFD_RELOC_32:
20607 case BFD_RELOC_ARM_TARGET1:
20608 case BFD_RELOC_ARM_ROSEGREL32:
20609 case BFD_RELOC_ARM_SBREL32:
20610 case BFD_RELOC_32_PCREL:
f0927246
NC
20611#ifdef TE_PE
20612 case BFD_RELOC_32_SECREL:
20613#endif
2fc8bdac 20614 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
20615#ifdef TE_WINCE
20616 /* For WinCE we only do this for pcrel fixups. */
20617 if (fixP->fx_done || fixP->fx_pcrel)
20618#endif
20619 md_number_to_chars (buf, value, 4);
c19d1205 20620 break;
6c43fab6 20621
c19d1205
ZW
20622#ifdef OBJ_ELF
20623 case BFD_RELOC_ARM_PREL31:
2fc8bdac 20624 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
20625 {
20626 newval = md_chars_to_number (buf, 4) & 0x80000000;
20627 if ((value ^ (value >> 1)) & 0x40000000)
20628 {
20629 as_bad_where (fixP->fx_file, fixP->fx_line,
20630 _("rel31 relocation overflow"));
20631 }
20632 newval |= value & 0x7fffffff;
20633 md_number_to_chars (buf, newval, 4);
20634 }
20635 break;
c19d1205 20636#endif
a737bd4d 20637
c19d1205 20638 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 20639 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
20640 if (value < -1023 || value > 1023 || (value & 3))
20641 as_bad_where (fixP->fx_file, fixP->fx_line,
20642 _("co-processor offset out of range"));
20643 cp_off_common:
20644 sign = value >= 0;
20645 if (value < 0)
20646 value = -value;
8f06b2d8
PB
20647 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20648 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20649 newval = md_chars_to_number (buf, INSN_SIZE);
20650 else
20651 newval = get_thumb32_insn (buf);
20652 newval &= 0xff7fff00;
c19d1205 20653 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
20654 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20655 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20656 md_number_to_chars (buf, newval, INSN_SIZE);
20657 else
20658 put_thumb32_insn (buf, newval);
c19d1205 20659 break;
a737bd4d 20660
c19d1205 20661 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 20662 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
20663 if (value < -255 || value > 255)
20664 as_bad_where (fixP->fx_file, fixP->fx_line,
20665 _("co-processor offset out of range"));
df7849c5 20666 value *= 4;
c19d1205 20667 goto cp_off_common;
6c43fab6 20668
c19d1205
ZW
20669 case BFD_RELOC_ARM_THUMB_OFFSET:
20670 newval = md_chars_to_number (buf, THUMB_SIZE);
20671 /* Exactly what ranges, and where the offset is inserted depends
20672 on the type of instruction, we can establish this from the
20673 top 4 bits. */
20674 switch (newval >> 12)
20675 {
20676 case 4: /* PC load. */
20677 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20678 forced to zero for these loads; md_pcrel_from has already
20679 compensated for this. */
20680 if (value & 3)
20681 as_bad_where (fixP->fx_file, fixP->fx_line,
20682 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
20683 (((unsigned long) fixP->fx_frag->fr_address
20684 + (unsigned long) fixP->fx_where) & ~3)
20685 + (unsigned long) value);
a737bd4d 20686
c19d1205
ZW
20687 if (value & ~0x3fc)
20688 as_bad_where (fixP->fx_file, fixP->fx_line,
20689 _("invalid offset, value too big (0x%08lX)"),
20690 (long) value);
a737bd4d 20691
c19d1205
ZW
20692 newval |= value >> 2;
20693 break;
a737bd4d 20694
c19d1205
ZW
20695 case 9: /* SP load/store. */
20696 if (value & ~0x3fc)
20697 as_bad_where (fixP->fx_file, fixP->fx_line,
20698 _("invalid offset, value too big (0x%08lX)"),
20699 (long) value);
20700 newval |= value >> 2;
20701 break;
6c43fab6 20702
c19d1205
ZW
20703 case 6: /* Word load/store. */
20704 if (value & ~0x7c)
20705 as_bad_where (fixP->fx_file, fixP->fx_line,
20706 _("invalid offset, value too big (0x%08lX)"),
20707 (long) value);
20708 newval |= value << 4; /* 6 - 2. */
20709 break;
a737bd4d 20710
c19d1205
ZW
20711 case 7: /* Byte load/store. */
20712 if (value & ~0x1f)
20713 as_bad_where (fixP->fx_file, fixP->fx_line,
20714 _("invalid offset, value too big (0x%08lX)"),
20715 (long) value);
20716 newval |= value << 6;
20717 break;
a737bd4d 20718
c19d1205
ZW
20719 case 8: /* Halfword load/store. */
20720 if (value & ~0x3e)
20721 as_bad_where (fixP->fx_file, fixP->fx_line,
20722 _("invalid offset, value too big (0x%08lX)"),
20723 (long) value);
20724 newval |= value << 5; /* 6 - 1. */
20725 break;
a737bd4d 20726
c19d1205
ZW
20727 default:
20728 as_bad_where (fixP->fx_file, fixP->fx_line,
20729 "Unable to process relocation for thumb opcode: %lx",
20730 (unsigned long) newval);
20731 break;
20732 }
20733 md_number_to_chars (buf, newval, THUMB_SIZE);
20734 break;
a737bd4d 20735
c19d1205
ZW
20736 case BFD_RELOC_ARM_THUMB_ADD:
20737 /* This is a complicated relocation, since we use it for all of
20738 the following immediate relocations:
a737bd4d 20739
c19d1205
ZW
20740 3bit ADD/SUB
20741 8bit ADD/SUB
20742 9bit ADD/SUB SP word-aligned
20743 10bit ADD PC/SP word-aligned
a737bd4d 20744
c19d1205
ZW
20745 The type of instruction being processed is encoded in the
20746 instruction field:
a737bd4d 20747
c19d1205
ZW
20748 0x8000 SUB
20749 0x00F0 Rd
20750 0x000F Rs
20751 */
20752 newval = md_chars_to_number (buf, THUMB_SIZE);
20753 {
20754 int rd = (newval >> 4) & 0xf;
20755 int rs = newval & 0xf;
20756 int subtract = !!(newval & 0x8000);
a737bd4d 20757
c19d1205
ZW
20758 /* Check for HI regs, only very restricted cases allowed:
20759 Adjusting SP, and using PC or SP to get an address. */
20760 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20761 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20762 as_bad_where (fixP->fx_file, fixP->fx_line,
20763 _("invalid Hi register with immediate"));
a737bd4d 20764
c19d1205
ZW
20765 /* If value is negative, choose the opposite instruction. */
20766 if (value < 0)
20767 {
20768 value = -value;
20769 subtract = !subtract;
20770 if (value < 0)
20771 as_bad_where (fixP->fx_file, fixP->fx_line,
20772 _("immediate value out of range"));
20773 }
a737bd4d 20774
c19d1205
ZW
20775 if (rd == REG_SP)
20776 {
20777 if (value & ~0x1fc)
20778 as_bad_where (fixP->fx_file, fixP->fx_line,
20779 _("invalid immediate for stack address calculation"));
20780 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20781 newval |= value >> 2;
20782 }
20783 else if (rs == REG_PC || rs == REG_SP)
20784 {
20785 if (subtract || value & ~0x3fc)
20786 as_bad_where (fixP->fx_file, fixP->fx_line,
20787 _("invalid immediate for address calculation (value = 0x%08lX)"),
20788 (unsigned long) value);
20789 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20790 newval |= rd << 8;
20791 newval |= value >> 2;
20792 }
20793 else if (rs == rd)
20794 {
20795 if (value & ~0xff)
20796 as_bad_where (fixP->fx_file, fixP->fx_line,
20797 _("immediate value out of range"));
20798 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20799 newval |= (rd << 8) | value;
20800 }
20801 else
20802 {
20803 if (value & ~0x7)
20804 as_bad_where (fixP->fx_file, fixP->fx_line,
20805 _("immediate value out of range"));
20806 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20807 newval |= rd | (rs << 3) | (value << 6);
20808 }
20809 }
20810 md_number_to_chars (buf, newval, THUMB_SIZE);
20811 break;
a737bd4d 20812
c19d1205
ZW
20813 case BFD_RELOC_ARM_THUMB_IMM:
20814 newval = md_chars_to_number (buf, THUMB_SIZE);
20815 if (value < 0 || value > 255)
20816 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 20817 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
20818 (long) value);
20819 newval |= value;
20820 md_number_to_chars (buf, newval, THUMB_SIZE);
20821 break;
a737bd4d 20822
c19d1205
ZW
20823 case BFD_RELOC_ARM_THUMB_SHIFT:
20824 /* 5bit shift value (0..32). LSL cannot take 32. */
20825 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20826 temp = newval & 0xf800;
20827 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20828 as_bad_where (fixP->fx_file, fixP->fx_line,
20829 _("invalid shift value: %ld"), (long) value);
20830 /* Shifts of zero must be encoded as LSL. */
20831 if (value == 0)
20832 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20833 /* Shifts of 32 are encoded as zero. */
20834 else if (value == 32)
20835 value = 0;
20836 newval |= value << 6;
20837 md_number_to_chars (buf, newval, THUMB_SIZE);
20838 break;
a737bd4d 20839
c19d1205
ZW
20840 case BFD_RELOC_VTABLE_INHERIT:
20841 case BFD_RELOC_VTABLE_ENTRY:
20842 fixP->fx_done = 0;
20843 return;
6c43fab6 20844
b6895b4f
PB
20845 case BFD_RELOC_ARM_MOVW:
20846 case BFD_RELOC_ARM_MOVT:
20847 case BFD_RELOC_ARM_THUMB_MOVW:
20848 case BFD_RELOC_ARM_THUMB_MOVT:
20849 if (fixP->fx_done || !seg->use_rela_p)
20850 {
20851 /* REL format relocations are limited to a 16-bit addend. */
20852 if (!fixP->fx_done)
20853 {
39623e12 20854 if (value < -0x8000 || value > 0x7fff)
b6895b4f 20855 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 20856 _("offset out of range"));
b6895b4f
PB
20857 }
20858 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20859 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20860 {
20861 value >>= 16;
20862 }
20863
20864 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20865 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20866 {
20867 newval = get_thumb32_insn (buf);
20868 newval &= 0xfbf08f00;
20869 newval |= (value & 0xf000) << 4;
20870 newval |= (value & 0x0800) << 15;
20871 newval |= (value & 0x0700) << 4;
20872 newval |= (value & 0x00ff);
20873 put_thumb32_insn (buf, newval);
20874 }
20875 else
20876 {
20877 newval = md_chars_to_number (buf, 4);
20878 newval &= 0xfff0f000;
20879 newval |= value & 0x0fff;
20880 newval |= (value & 0xf000) << 4;
20881 md_number_to_chars (buf, newval, 4);
20882 }
20883 }
20884 return;
20885
4962c51a
MS
20886 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20887 case BFD_RELOC_ARM_ALU_PC_G0:
20888 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20889 case BFD_RELOC_ARM_ALU_PC_G1:
20890 case BFD_RELOC_ARM_ALU_PC_G2:
20891 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20892 case BFD_RELOC_ARM_ALU_SB_G0:
20893 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20894 case BFD_RELOC_ARM_ALU_SB_G1:
20895 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 20896 gas_assert (!fixP->fx_done);
4962c51a
MS
20897 if (!seg->use_rela_p)
20898 {
20899 bfd_vma insn;
20900 bfd_vma encoded_addend;
20901 bfd_vma addend_abs = abs (value);
20902
20903 /* Check that the absolute value of the addend can be
20904 expressed as an 8-bit constant plus a rotation. */
20905 encoded_addend = encode_arm_immediate (addend_abs);
20906 if (encoded_addend == (unsigned int) FAIL)
20907 as_bad_where (fixP->fx_file, fixP->fx_line,
20908 _("the offset 0x%08lX is not representable"),
495bde8e 20909 (unsigned long) addend_abs);
4962c51a
MS
20910
20911 /* Extract the instruction. */
20912 insn = md_chars_to_number (buf, INSN_SIZE);
20913
20914 /* If the addend is positive, use an ADD instruction.
20915 Otherwise use a SUB. Take care not to destroy the S bit. */
20916 insn &= 0xff1fffff;
20917 if (value < 0)
20918 insn |= 1 << 22;
20919 else
20920 insn |= 1 << 23;
20921
20922 /* Place the encoded addend into the first 12 bits of the
20923 instruction. */
20924 insn &= 0xfffff000;
20925 insn |= encoded_addend;
5f4273c7
NC
20926
20927 /* Update the instruction. */
4962c51a
MS
20928 md_number_to_chars (buf, insn, INSN_SIZE);
20929 }
20930 break;
20931
20932 case BFD_RELOC_ARM_LDR_PC_G0:
20933 case BFD_RELOC_ARM_LDR_PC_G1:
20934 case BFD_RELOC_ARM_LDR_PC_G2:
20935 case BFD_RELOC_ARM_LDR_SB_G0:
20936 case BFD_RELOC_ARM_LDR_SB_G1:
20937 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 20938 gas_assert (!fixP->fx_done);
4962c51a
MS
20939 if (!seg->use_rela_p)
20940 {
20941 bfd_vma insn;
20942 bfd_vma addend_abs = abs (value);
20943
20944 /* Check that the absolute value of the addend can be
20945 encoded in 12 bits. */
20946 if (addend_abs >= 0x1000)
20947 as_bad_where (fixP->fx_file, fixP->fx_line,
20948 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 20949 (unsigned long) addend_abs);
4962c51a
MS
20950
20951 /* Extract the instruction. */
20952 insn = md_chars_to_number (buf, INSN_SIZE);
20953
20954 /* If the addend is negative, clear bit 23 of the instruction.
20955 Otherwise set it. */
20956 if (value < 0)
20957 insn &= ~(1 << 23);
20958 else
20959 insn |= 1 << 23;
20960
20961 /* Place the absolute value of the addend into the first 12 bits
20962 of the instruction. */
20963 insn &= 0xfffff000;
20964 insn |= addend_abs;
5f4273c7
NC
20965
20966 /* Update the instruction. */
4962c51a
MS
20967 md_number_to_chars (buf, insn, INSN_SIZE);
20968 }
20969 break;
20970
20971 case BFD_RELOC_ARM_LDRS_PC_G0:
20972 case BFD_RELOC_ARM_LDRS_PC_G1:
20973 case BFD_RELOC_ARM_LDRS_PC_G2:
20974 case BFD_RELOC_ARM_LDRS_SB_G0:
20975 case BFD_RELOC_ARM_LDRS_SB_G1:
20976 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 20977 gas_assert (!fixP->fx_done);
4962c51a
MS
20978 if (!seg->use_rela_p)
20979 {
20980 bfd_vma insn;
20981 bfd_vma addend_abs = abs (value);
20982
20983 /* Check that the absolute value of the addend can be
20984 encoded in 8 bits. */
20985 if (addend_abs >= 0x100)
20986 as_bad_where (fixP->fx_file, fixP->fx_line,
20987 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 20988 (unsigned long) addend_abs);
4962c51a
MS
20989
20990 /* Extract the instruction. */
20991 insn = md_chars_to_number (buf, INSN_SIZE);
20992
20993 /* If the addend is negative, clear bit 23 of the instruction.
20994 Otherwise set it. */
20995 if (value < 0)
20996 insn &= ~(1 << 23);
20997 else
20998 insn |= 1 << 23;
20999
21000 /* Place the first four bits of the absolute value of the addend
21001 into the first 4 bits of the instruction, and the remaining
21002 four into bits 8 .. 11. */
21003 insn &= 0xfffff0f0;
21004 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
21005
21006 /* Update the instruction. */
4962c51a
MS
21007 md_number_to_chars (buf, insn, INSN_SIZE);
21008 }
21009 break;
21010
21011 case BFD_RELOC_ARM_LDC_PC_G0:
21012 case BFD_RELOC_ARM_LDC_PC_G1:
21013 case BFD_RELOC_ARM_LDC_PC_G2:
21014 case BFD_RELOC_ARM_LDC_SB_G0:
21015 case BFD_RELOC_ARM_LDC_SB_G1:
21016 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 21017 gas_assert (!fixP->fx_done);
4962c51a
MS
21018 if (!seg->use_rela_p)
21019 {
21020 bfd_vma insn;
21021 bfd_vma addend_abs = abs (value);
21022
21023 /* Check that the absolute value of the addend is a multiple of
21024 four and, when divided by four, fits in 8 bits. */
21025 if (addend_abs & 0x3)
21026 as_bad_where (fixP->fx_file, fixP->fx_line,
21027 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 21028 (unsigned long) addend_abs);
4962c51a
MS
21029
21030 if ((addend_abs >> 2) > 0xff)
21031 as_bad_where (fixP->fx_file, fixP->fx_line,
21032 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 21033 (unsigned long) addend_abs);
4962c51a
MS
21034
21035 /* Extract the instruction. */
21036 insn = md_chars_to_number (buf, INSN_SIZE);
21037
21038 /* If the addend is negative, clear bit 23 of the instruction.
21039 Otherwise set it. */
21040 if (value < 0)
21041 insn &= ~(1 << 23);
21042 else
21043 insn |= 1 << 23;
21044
21045 /* Place the addend (divided by four) into the first eight
21046 bits of the instruction. */
21047 insn &= 0xfffffff0;
21048 insn |= addend_abs >> 2;
5f4273c7
NC
21049
21050 /* Update the instruction. */
4962c51a
MS
21051 md_number_to_chars (buf, insn, INSN_SIZE);
21052 }
21053 break;
21054
845b51d6
PB
21055 case BFD_RELOC_ARM_V4BX:
21056 /* This will need to go in the object file. */
21057 fixP->fx_done = 0;
21058 break;
21059
c19d1205
ZW
21060 case BFD_RELOC_UNUSED:
21061 default:
21062 as_bad_where (fixP->fx_file, fixP->fx_line,
21063 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21064 }
6c43fab6
RE
21065}
21066
c19d1205
ZW
21067/* Translate internal representation of relocation info to BFD target
21068 format. */
a737bd4d 21069
c19d1205 21070arelent *
00a97672 21071tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 21072{
c19d1205
ZW
21073 arelent * reloc;
21074 bfd_reloc_code_real_type code;
a737bd4d 21075
21d799b5 21076 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 21077
21d799b5 21078 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
21079 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21080 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 21081
2fc8bdac 21082 if (fixp->fx_pcrel)
00a97672
RS
21083 {
21084 if (section->use_rela_p)
21085 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21086 else
21087 fixp->fx_offset = reloc->address;
21088 }
c19d1205 21089 reloc->addend = fixp->fx_offset;
a737bd4d 21090
c19d1205 21091 switch (fixp->fx_r_type)
a737bd4d 21092 {
c19d1205
ZW
21093 case BFD_RELOC_8:
21094 if (fixp->fx_pcrel)
21095 {
21096 code = BFD_RELOC_8_PCREL;
21097 break;
21098 }
a737bd4d 21099
c19d1205
ZW
21100 case BFD_RELOC_16:
21101 if (fixp->fx_pcrel)
21102 {
21103 code = BFD_RELOC_16_PCREL;
21104 break;
21105 }
6c43fab6 21106
c19d1205
ZW
21107 case BFD_RELOC_32:
21108 if (fixp->fx_pcrel)
21109 {
21110 code = BFD_RELOC_32_PCREL;
21111 break;
21112 }
a737bd4d 21113
b6895b4f
PB
21114 case BFD_RELOC_ARM_MOVW:
21115 if (fixp->fx_pcrel)
21116 {
21117 code = BFD_RELOC_ARM_MOVW_PCREL;
21118 break;
21119 }
21120
21121 case BFD_RELOC_ARM_MOVT:
21122 if (fixp->fx_pcrel)
21123 {
21124 code = BFD_RELOC_ARM_MOVT_PCREL;
21125 break;
21126 }
21127
21128 case BFD_RELOC_ARM_THUMB_MOVW:
21129 if (fixp->fx_pcrel)
21130 {
21131 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21132 break;
21133 }
21134
21135 case BFD_RELOC_ARM_THUMB_MOVT:
21136 if (fixp->fx_pcrel)
21137 {
21138 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21139 break;
21140 }
21141
c19d1205
ZW
21142 case BFD_RELOC_NONE:
21143 case BFD_RELOC_ARM_PCREL_BRANCH:
21144 case BFD_RELOC_ARM_PCREL_BLX:
21145 case BFD_RELOC_RVA:
21146 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21147 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21148 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21149 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21150 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21151 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
21152 case BFD_RELOC_VTABLE_ENTRY:
21153 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
21154#ifdef TE_PE
21155 case BFD_RELOC_32_SECREL:
21156#endif
c19d1205
ZW
21157 code = fixp->fx_r_type;
21158 break;
a737bd4d 21159
00adf2d4
JB
21160 case BFD_RELOC_THUMB_PCREL_BLX:
21161#ifdef OBJ_ELF
21162 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21163 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21164 else
21165#endif
21166 code = BFD_RELOC_THUMB_PCREL_BLX;
21167 break;
21168
c19d1205
ZW
21169 case BFD_RELOC_ARM_LITERAL:
21170 case BFD_RELOC_ARM_HWLITERAL:
21171 /* If this is called then the a literal has
21172 been referenced across a section boundary. */
21173 as_bad_where (fixp->fx_file, fixp->fx_line,
21174 _("literal referenced across section boundary"));
21175 return NULL;
a737bd4d 21176
c19d1205
ZW
21177#ifdef OBJ_ELF
21178 case BFD_RELOC_ARM_GOT32:
21179 case BFD_RELOC_ARM_GOTOFF:
b43420e6 21180 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
21181 case BFD_RELOC_ARM_PLT32:
21182 case BFD_RELOC_ARM_TARGET1:
21183 case BFD_RELOC_ARM_ROSEGREL32:
21184 case BFD_RELOC_ARM_SBREL32:
21185 case BFD_RELOC_ARM_PREL31:
21186 case BFD_RELOC_ARM_TARGET2:
21187 case BFD_RELOC_ARM_TLS_LE32:
21188 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
21189 case BFD_RELOC_ARM_PCREL_CALL:
21190 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
21191 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21192 case BFD_RELOC_ARM_ALU_PC_G0:
21193 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21194 case BFD_RELOC_ARM_ALU_PC_G1:
21195 case BFD_RELOC_ARM_ALU_PC_G2:
21196 case BFD_RELOC_ARM_LDR_PC_G0:
21197 case BFD_RELOC_ARM_LDR_PC_G1:
21198 case BFD_RELOC_ARM_LDR_PC_G2:
21199 case BFD_RELOC_ARM_LDRS_PC_G0:
21200 case BFD_RELOC_ARM_LDRS_PC_G1:
21201 case BFD_RELOC_ARM_LDRS_PC_G2:
21202 case BFD_RELOC_ARM_LDC_PC_G0:
21203 case BFD_RELOC_ARM_LDC_PC_G1:
21204 case BFD_RELOC_ARM_LDC_PC_G2:
21205 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21206 case BFD_RELOC_ARM_ALU_SB_G0:
21207 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21208 case BFD_RELOC_ARM_ALU_SB_G1:
21209 case BFD_RELOC_ARM_ALU_SB_G2:
21210 case BFD_RELOC_ARM_LDR_SB_G0:
21211 case BFD_RELOC_ARM_LDR_SB_G1:
21212 case BFD_RELOC_ARM_LDR_SB_G2:
21213 case BFD_RELOC_ARM_LDRS_SB_G0:
21214 case BFD_RELOC_ARM_LDRS_SB_G1:
21215 case BFD_RELOC_ARM_LDRS_SB_G2:
21216 case BFD_RELOC_ARM_LDC_SB_G0:
21217 case BFD_RELOC_ARM_LDC_SB_G1:
21218 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 21219 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
21220 code = fixp->fx_r_type;
21221 break;
a737bd4d 21222
c19d1205
ZW
21223 case BFD_RELOC_ARM_TLS_GD32:
21224 case BFD_RELOC_ARM_TLS_IE32:
21225 case BFD_RELOC_ARM_TLS_LDM32:
21226 /* BFD will include the symbol's address in the addend.
21227 But we don't want that, so subtract it out again here. */
21228 if (!S_IS_COMMON (fixp->fx_addsy))
21229 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21230 code = fixp->fx_r_type;
21231 break;
21232#endif
a737bd4d 21233
c19d1205
ZW
21234 case BFD_RELOC_ARM_IMMEDIATE:
21235 as_bad_where (fixp->fx_file, fixp->fx_line,
21236 _("internal relocation (type: IMMEDIATE) not fixed up"));
21237 return NULL;
a737bd4d 21238
c19d1205
ZW
21239 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21240 as_bad_where (fixp->fx_file, fixp->fx_line,
21241 _("ADRL used for a symbol not defined in the same file"));
21242 return NULL;
a737bd4d 21243
c19d1205 21244 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21245 if (section->use_rela_p)
21246 {
21247 code = fixp->fx_r_type;
21248 break;
21249 }
21250
c19d1205
ZW
21251 if (fixp->fx_addsy != NULL
21252 && !S_IS_DEFINED (fixp->fx_addsy)
21253 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 21254 {
c19d1205
ZW
21255 as_bad_where (fixp->fx_file, fixp->fx_line,
21256 _("undefined local label `%s'"),
21257 S_GET_NAME (fixp->fx_addsy));
21258 return NULL;
a737bd4d
NC
21259 }
21260
c19d1205
ZW
21261 as_bad_where (fixp->fx_file, fixp->fx_line,
21262 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21263 return NULL;
a737bd4d 21264
c19d1205
ZW
21265 default:
21266 {
21267 char * type;
6c43fab6 21268
c19d1205
ZW
21269 switch (fixp->fx_r_type)
21270 {
21271 case BFD_RELOC_NONE: type = "NONE"; break;
21272 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21273 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 21274 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
21275 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21276 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21277 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 21278 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 21279 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
21280 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21281 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21282 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21283 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21284 default: type = _("<unknown>"); break;
21285 }
21286 as_bad_where (fixp->fx_file, fixp->fx_line,
21287 _("cannot represent %s relocation in this object file format"),
21288 type);
21289 return NULL;
21290 }
a737bd4d 21291 }
6c43fab6 21292
c19d1205
ZW
21293#ifdef OBJ_ELF
21294 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21295 && GOT_symbol
21296 && fixp->fx_addsy == GOT_symbol)
21297 {
21298 code = BFD_RELOC_ARM_GOTPC;
21299 reloc->addend = fixp->fx_offset = reloc->address;
21300 }
21301#endif
6c43fab6 21302
c19d1205 21303 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 21304
c19d1205
ZW
21305 if (reloc->howto == NULL)
21306 {
21307 as_bad_where (fixp->fx_file, fixp->fx_line,
21308 _("cannot represent %s relocation in this object file format"),
21309 bfd_get_reloc_code_name (code));
21310 return NULL;
21311 }
6c43fab6 21312
c19d1205
ZW
21313 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21314 vtable entry to be used in the relocation's section offset. */
21315 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21316 reloc->address = fixp->fx_offset;
6c43fab6 21317
c19d1205 21318 return reloc;
6c43fab6
RE
21319}
21320
c19d1205 21321/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 21322
c19d1205
ZW
21323void
21324cons_fix_new_arm (fragS * frag,
21325 int where,
21326 int size,
21327 expressionS * exp)
6c43fab6 21328{
c19d1205
ZW
21329 bfd_reloc_code_real_type type;
21330 int pcrel = 0;
6c43fab6 21331
c19d1205
ZW
21332 /* Pick a reloc.
21333 FIXME: @@ Should look at CPU word size. */
21334 switch (size)
21335 {
21336 case 1:
21337 type = BFD_RELOC_8;
21338 break;
21339 case 2:
21340 type = BFD_RELOC_16;
21341 break;
21342 case 4:
21343 default:
21344 type = BFD_RELOC_32;
21345 break;
21346 case 8:
21347 type = BFD_RELOC_64;
21348 break;
21349 }
6c43fab6 21350
f0927246
NC
21351#ifdef TE_PE
21352 if (exp->X_op == O_secrel)
21353 {
21354 exp->X_op = O_symbol;
21355 type = BFD_RELOC_32_SECREL;
21356 }
21357#endif
21358
c19d1205
ZW
21359 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21360}
6c43fab6 21361
4343666d 21362#if defined (OBJ_COFF)
c19d1205
ZW
21363void
21364arm_validate_fix (fixS * fixP)
6c43fab6 21365{
c19d1205
ZW
21366 /* If the destination of the branch is a defined symbol which does not have
21367 the THUMB_FUNC attribute, then we must be calling a function which has
21368 the (interfacearm) attribute. We look for the Thumb entry point to that
21369 function and change the branch to refer to that function instead. */
21370 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21371 && fixP->fx_addsy != NULL
21372 && S_IS_DEFINED (fixP->fx_addsy)
21373 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21374 {
c19d1205 21375 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21376 }
c19d1205
ZW
21377}
21378#endif
6c43fab6 21379
267bf995 21380
c19d1205
ZW
21381int
21382arm_force_relocation (struct fix * fixp)
21383{
21384#if defined (OBJ_COFF) && defined (TE_PE)
21385 if (fixp->fx_r_type == BFD_RELOC_RVA)
21386 return 1;
21387#endif
6c43fab6 21388
267bf995
RR
21389 /* In case we have a call or a branch to a function in ARM ISA mode from
21390 a thumb function or vice-versa force the relocation. These relocations
21391 are cleared off for some cores that might have blx and simple transformations
21392 are possible. */
21393
21394#ifdef OBJ_ELF
21395 switch (fixp->fx_r_type)
21396 {
21397 case BFD_RELOC_ARM_PCREL_JUMP:
21398 case BFD_RELOC_ARM_PCREL_CALL:
21399 case BFD_RELOC_THUMB_PCREL_BLX:
21400 if (THUMB_IS_FUNC (fixp->fx_addsy))
21401 return 1;
21402 break;
21403
21404 case BFD_RELOC_ARM_PCREL_BLX:
21405 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21406 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21407 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21408 if (ARM_IS_FUNC (fixp->fx_addsy))
21409 return 1;
21410 break;
21411
21412 default:
21413 break;
21414 }
21415#endif
21416
c19d1205
ZW
21417 /* Resolve these relocations even if the symbol is extern or weak. */
21418 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21419 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 21420 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 21421 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21422 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21423 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21424 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 21425 return 0;
a737bd4d 21426
4962c51a
MS
21427 /* Always leave these relocations for the linker. */
21428 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21429 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21430 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21431 return 1;
21432
f0291e4c
PB
21433 /* Always generate relocations against function symbols. */
21434 if (fixp->fx_r_type == BFD_RELOC_32
21435 && fixp->fx_addsy
21436 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21437 return 1;
21438
c19d1205 21439 return generic_force_reloc (fixp);
404ff6b5
AH
21440}
21441
0ffdc86c 21442#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21443/* Relocations against function names must be left unadjusted,
21444 so that the linker can use this information to generate interworking
21445 stubs. The MIPS version of this function
c19d1205
ZW
21446 also prevents relocations that are mips-16 specific, but I do not
21447 know why it does this.
404ff6b5 21448
c19d1205
ZW
21449 FIXME:
21450 There is one other problem that ought to be addressed here, but
21451 which currently is not: Taking the address of a label (rather
21452 than a function) and then later jumping to that address. Such
21453 addresses also ought to have their bottom bit set (assuming that
21454 they reside in Thumb code), but at the moment they will not. */
404ff6b5 21455
c19d1205
ZW
21456bfd_boolean
21457arm_fix_adjustable (fixS * fixP)
404ff6b5 21458{
c19d1205
ZW
21459 if (fixP->fx_addsy == NULL)
21460 return 1;
404ff6b5 21461
e28387c3
PB
21462 /* Preserve relocations against symbols with function type. */
21463 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 21464 return FALSE;
e28387c3 21465
c19d1205
ZW
21466 if (THUMB_IS_FUNC (fixP->fx_addsy)
21467 && fixP->fx_subsy == NULL)
c921be7d 21468 return FALSE;
a737bd4d 21469
c19d1205
ZW
21470 /* We need the symbol name for the VTABLE entries. */
21471 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21472 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 21473 return FALSE;
404ff6b5 21474
c19d1205
ZW
21475 /* Don't allow symbols to be discarded on GOT related relocs. */
21476 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21477 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21478 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21479 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21480 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21481 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21482 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21483 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21484 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 21485 return FALSE;
a737bd4d 21486
4962c51a
MS
21487 /* Similarly for group relocations. */
21488 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21489 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21490 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 21491 return FALSE;
4962c51a 21492
79947c54
CD
21493 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21494 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21495 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21496 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21497 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21498 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21499 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21500 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21501 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 21502 return FALSE;
79947c54 21503
c921be7d 21504 return TRUE;
a737bd4d 21505}
0ffdc86c
NC
21506#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21507
21508#ifdef OBJ_ELF
404ff6b5 21509
c19d1205
ZW
21510const char *
21511elf32_arm_target_format (void)
404ff6b5 21512{
c19d1205
ZW
21513#ifdef TE_SYMBIAN
21514 return (target_big_endian
21515 ? "elf32-bigarm-symbian"
21516 : "elf32-littlearm-symbian");
21517#elif defined (TE_VXWORKS)
21518 return (target_big_endian
21519 ? "elf32-bigarm-vxworks"
21520 : "elf32-littlearm-vxworks");
21521#else
21522 if (target_big_endian)
21523 return "elf32-bigarm";
21524 else
21525 return "elf32-littlearm";
21526#endif
404ff6b5
AH
21527}
21528
c19d1205
ZW
21529void
21530armelf_frob_symbol (symbolS * symp,
21531 int * puntp)
404ff6b5 21532{
c19d1205
ZW
21533 elf_frob_symbol (symp, puntp);
21534}
21535#endif
404ff6b5 21536
c19d1205 21537/* MD interface: Finalization. */
a737bd4d 21538
c19d1205
ZW
21539void
21540arm_cleanup (void)
21541{
21542 literal_pool * pool;
a737bd4d 21543
e07e6e58
NC
21544 /* Ensure that all the IT blocks are properly closed. */
21545 check_it_blocks_finished ();
21546
c19d1205
ZW
21547 for (pool = list_of_pools; pool; pool = pool->next)
21548 {
5f4273c7 21549 /* Put it at the end of the relevant section. */
c19d1205
ZW
21550 subseg_set (pool->section, pool->sub_section);
21551#ifdef OBJ_ELF
21552 arm_elf_change_section ();
21553#endif
21554 s_ltorg (0);
21555 }
404ff6b5
AH
21556}
21557
cd000bff
DJ
21558#ifdef OBJ_ELF
21559/* Remove any excess mapping symbols generated for alignment frags in
21560 SEC. We may have created a mapping symbol before a zero byte
21561 alignment; remove it if there's a mapping symbol after the
21562 alignment. */
21563static void
21564check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21565 void *dummy ATTRIBUTE_UNUSED)
21566{
21567 segment_info_type *seginfo = seg_info (sec);
21568 fragS *fragp;
21569
21570 if (seginfo == NULL || seginfo->frchainP == NULL)
21571 return;
21572
21573 for (fragp = seginfo->frchainP->frch_root;
21574 fragp != NULL;
21575 fragp = fragp->fr_next)
21576 {
21577 symbolS *sym = fragp->tc_frag_data.last_map;
21578 fragS *next = fragp->fr_next;
21579
21580 /* Variable-sized frags have been converted to fixed size by
21581 this point. But if this was variable-sized to start with,
21582 there will be a fixed-size frag after it. So don't handle
21583 next == NULL. */
21584 if (sym == NULL || next == NULL)
21585 continue;
21586
21587 if (S_GET_VALUE (sym) < next->fr_address)
21588 /* Not at the end of this frag. */
21589 continue;
21590 know (S_GET_VALUE (sym) == next->fr_address);
21591
21592 do
21593 {
21594 if (next->tc_frag_data.first_map != NULL)
21595 {
21596 /* Next frag starts with a mapping symbol. Discard this
21597 one. */
21598 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21599 break;
21600 }
21601
21602 if (next->fr_next == NULL)
21603 {
21604 /* This mapping symbol is at the end of the section. Discard
21605 it. */
21606 know (next->fr_fix == 0 && next->fr_var == 0);
21607 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21608 break;
21609 }
21610
21611 /* As long as we have empty frags without any mapping symbols,
21612 keep looking. */
21613 /* If the next frag is non-empty and does not start with a
21614 mapping symbol, then this mapping symbol is required. */
21615 if (next->fr_address != next->fr_next->fr_address)
21616 break;
21617
21618 next = next->fr_next;
21619 }
21620 while (next != NULL);
21621 }
21622}
21623#endif
21624
c19d1205
ZW
21625/* Adjust the symbol table. This marks Thumb symbols as distinct from
21626 ARM ones. */
404ff6b5 21627
c19d1205
ZW
21628void
21629arm_adjust_symtab (void)
404ff6b5 21630{
c19d1205
ZW
21631#ifdef OBJ_COFF
21632 symbolS * sym;
404ff6b5 21633
c19d1205
ZW
21634 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21635 {
21636 if (ARM_IS_THUMB (sym))
21637 {
21638 if (THUMB_IS_FUNC (sym))
21639 {
21640 /* Mark the symbol as a Thumb function. */
21641 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21642 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21643 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 21644
c19d1205
ZW
21645 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21646 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21647 else
21648 as_bad (_("%s: unexpected function type: %d"),
21649 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21650 }
21651 else switch (S_GET_STORAGE_CLASS (sym))
21652 {
21653 case C_EXT:
21654 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21655 break;
21656 case C_STAT:
21657 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21658 break;
21659 case C_LABEL:
21660 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21661 break;
21662 default:
21663 /* Do nothing. */
21664 break;
21665 }
21666 }
a737bd4d 21667
c19d1205
ZW
21668 if (ARM_IS_INTERWORK (sym))
21669 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 21670 }
c19d1205
ZW
21671#endif
21672#ifdef OBJ_ELF
21673 symbolS * sym;
21674 char bind;
404ff6b5 21675
c19d1205 21676 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 21677 {
c19d1205
ZW
21678 if (ARM_IS_THUMB (sym))
21679 {
21680 elf_symbol_type * elf_sym;
404ff6b5 21681
c19d1205
ZW
21682 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21683 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 21684
b0796911
PB
21685 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21686 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
21687 {
21688 /* If it's a .thumb_func, declare it as so,
21689 otherwise tag label as .code 16. */
21690 if (THUMB_IS_FUNC (sym))
21691 elf_sym->internal_elf_sym.st_info =
21692 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 21693 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
21694 elf_sym->internal_elf_sym.st_info =
21695 ELF_ST_INFO (bind, STT_ARM_16BIT);
21696 }
21697 }
21698 }
cd000bff
DJ
21699
21700 /* Remove any overlapping mapping symbols generated by alignment frags. */
21701 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
c19d1205 21702#endif
404ff6b5
AH
21703}
21704
c19d1205 21705/* MD interface: Initialization. */
404ff6b5 21706
a737bd4d 21707static void
c19d1205 21708set_constant_flonums (void)
a737bd4d 21709{
c19d1205 21710 int i;
404ff6b5 21711
c19d1205
ZW
21712 for (i = 0; i < NUM_FLOAT_VALS; i++)
21713 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21714 abort ();
a737bd4d 21715}
404ff6b5 21716
3e9e4fcf
JB
21717/* Auto-select Thumb mode if it's the only available instruction set for the
21718 given architecture. */
21719
21720static void
21721autoselect_thumb_from_cpu_variant (void)
21722{
21723 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21724 opcode_select (16);
21725}
21726
c19d1205
ZW
21727void
21728md_begin (void)
a737bd4d 21729{
c19d1205
ZW
21730 unsigned mach;
21731 unsigned int i;
404ff6b5 21732
c19d1205
ZW
21733 if ( (arm_ops_hsh = hash_new ()) == NULL
21734 || (arm_cond_hsh = hash_new ()) == NULL
21735 || (arm_shift_hsh = hash_new ()) == NULL
21736 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 21737 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 21738 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
21739 || (arm_reloc_hsh = hash_new ()) == NULL
21740 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
21741 as_fatal (_("virtual memory exhausted"));
21742
21743 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 21744 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 21745 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 21746 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 21747 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 21748 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 21749 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 21750 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 21751 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
21752 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21753 (void *) (v7m_psrs + i));
c19d1205 21754 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 21755 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
21756 for (i = 0;
21757 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21758 i++)
d3ce72d0 21759 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 21760 (void *) (barrier_opt_names + i));
c19d1205
ZW
21761#ifdef OBJ_ELF
21762 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 21763 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
21764#endif
21765
21766 set_constant_flonums ();
404ff6b5 21767
c19d1205
ZW
21768 /* Set the cpu variant based on the command-line options. We prefer
21769 -mcpu= over -march= if both are set (as for GCC); and we prefer
21770 -mfpu= over any other way of setting the floating point unit.
21771 Use of legacy options with new options are faulted. */
e74cfd16 21772 if (legacy_cpu)
404ff6b5 21773 {
e74cfd16 21774 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
21775 as_bad (_("use of old and new-style options to set CPU type"));
21776
21777 mcpu_cpu_opt = legacy_cpu;
404ff6b5 21778 }
e74cfd16 21779 else if (!mcpu_cpu_opt)
c19d1205 21780 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 21781
e74cfd16 21782 if (legacy_fpu)
c19d1205 21783 {
e74cfd16 21784 if (mfpu_opt)
c19d1205 21785 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
21786
21787 mfpu_opt = legacy_fpu;
21788 }
e74cfd16 21789 else if (!mfpu_opt)
03b1477f 21790 {
45eb4c1b
NS
21791#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21792 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
21793 /* Some environments specify a default FPU. If they don't, infer it
21794 from the processor. */
e74cfd16 21795 if (mcpu_fpu_opt)
03b1477f
RE
21796 mfpu_opt = mcpu_fpu_opt;
21797 else
21798 mfpu_opt = march_fpu_opt;
39c2da32 21799#else
e74cfd16 21800 mfpu_opt = &fpu_default;
39c2da32 21801#endif
03b1477f
RE
21802 }
21803
e74cfd16 21804 if (!mfpu_opt)
03b1477f 21805 {
493cb6ef 21806 if (mcpu_cpu_opt != NULL)
e74cfd16 21807 mfpu_opt = &fpu_default;
493cb6ef 21808 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 21809 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 21810 else
e74cfd16 21811 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
21812 }
21813
ee065d83 21814#ifdef CPU_DEFAULT
e74cfd16 21815 if (!mcpu_cpu_opt)
ee065d83 21816 {
e74cfd16
PB
21817 mcpu_cpu_opt = &cpu_default;
21818 selected_cpu = cpu_default;
ee065d83 21819 }
e74cfd16
PB
21820#else
21821 if (mcpu_cpu_opt)
21822 selected_cpu = *mcpu_cpu_opt;
ee065d83 21823 else
e74cfd16 21824 mcpu_cpu_opt = &arm_arch_any;
ee065d83 21825#endif
03b1477f 21826
e74cfd16 21827 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 21828
3e9e4fcf
JB
21829 autoselect_thumb_from_cpu_variant ();
21830
e74cfd16 21831 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 21832
f17c130b 21833#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 21834 {
7cc69913
NC
21835 unsigned int flags = 0;
21836
21837#if defined OBJ_ELF
21838 flags = meabi_flags;
d507cf36
PB
21839
21840 switch (meabi_flags)
33a392fb 21841 {
d507cf36 21842 case EF_ARM_EABI_UNKNOWN:
7cc69913 21843#endif
d507cf36
PB
21844 /* Set the flags in the private structure. */
21845 if (uses_apcs_26) flags |= F_APCS26;
21846 if (support_interwork) flags |= F_INTERWORK;
21847 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 21848 if (pic_code) flags |= F_PIC;
e74cfd16 21849 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
21850 flags |= F_SOFT_FLOAT;
21851
d507cf36
PB
21852 switch (mfloat_abi_opt)
21853 {
21854 case ARM_FLOAT_ABI_SOFT:
21855 case ARM_FLOAT_ABI_SOFTFP:
21856 flags |= F_SOFT_FLOAT;
21857 break;
33a392fb 21858
d507cf36
PB
21859 case ARM_FLOAT_ABI_HARD:
21860 if (flags & F_SOFT_FLOAT)
21861 as_bad (_("hard-float conflicts with specified fpu"));
21862 break;
21863 }
03b1477f 21864
e74cfd16
PB
21865 /* Using pure-endian doubles (even if soft-float). */
21866 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 21867 flags |= F_VFP_FLOAT;
f17c130b 21868
fde78edd 21869#if defined OBJ_ELF
e74cfd16 21870 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 21871 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
21872 break;
21873
8cb51566 21874 case EF_ARM_EABI_VER4:
3a4a14e9 21875 case EF_ARM_EABI_VER5:
c19d1205 21876 /* No additional flags to set. */
d507cf36
PB
21877 break;
21878
21879 default:
21880 abort ();
21881 }
7cc69913 21882#endif
b99bd4ef
NC
21883 bfd_set_private_flags (stdoutput, flags);
21884
21885 /* We have run out flags in the COFF header to encode the
21886 status of ATPCS support, so instead we create a dummy,
c19d1205 21887 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
21888 if (atpcs)
21889 {
21890 asection * sec;
21891
21892 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21893
21894 if (sec != NULL)
21895 {
21896 bfd_set_section_flags
21897 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21898 bfd_set_section_size (stdoutput, sec, 0);
21899 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21900 }
21901 }
7cc69913 21902 }
f17c130b 21903#endif
b99bd4ef
NC
21904
21905 /* Record the CPU type as well. */
2d447fca
JM
21906 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21907 mach = bfd_mach_arm_iWMMXt2;
21908 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 21909 mach = bfd_mach_arm_iWMMXt;
e74cfd16 21910 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 21911 mach = bfd_mach_arm_XScale;
e74cfd16 21912 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 21913 mach = bfd_mach_arm_ep9312;
e74cfd16 21914 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 21915 mach = bfd_mach_arm_5TE;
e74cfd16 21916 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 21917 {
e74cfd16 21918 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21919 mach = bfd_mach_arm_5T;
21920 else
21921 mach = bfd_mach_arm_5;
21922 }
e74cfd16 21923 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 21924 {
e74cfd16 21925 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21926 mach = bfd_mach_arm_4T;
21927 else
21928 mach = bfd_mach_arm_4;
21929 }
e74cfd16 21930 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 21931 mach = bfd_mach_arm_3M;
e74cfd16
PB
21932 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21933 mach = bfd_mach_arm_3;
21934 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21935 mach = bfd_mach_arm_2a;
21936 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21937 mach = bfd_mach_arm_2;
21938 else
21939 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
21940
21941 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21942}
21943
c19d1205 21944/* Command line processing. */
b99bd4ef 21945
c19d1205
ZW
21946/* md_parse_option
21947 Invocation line includes a switch not recognized by the base assembler.
21948 See if it's a processor-specific option.
b99bd4ef 21949
c19d1205
ZW
21950 This routine is somewhat complicated by the need for backwards
21951 compatibility (since older releases of gcc can't be changed).
21952 The new options try to make the interface as compatible as
21953 possible with GCC.
b99bd4ef 21954
c19d1205 21955 New options (supported) are:
b99bd4ef 21956
c19d1205
ZW
21957 -mcpu=<cpu name> Assemble for selected processor
21958 -march=<architecture name> Assemble for selected architecture
21959 -mfpu=<fpu architecture> Assemble for selected FPU.
21960 -EB/-mbig-endian Big-endian
21961 -EL/-mlittle-endian Little-endian
21962 -k Generate PIC code
21963 -mthumb Start in Thumb mode
21964 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 21965
278df34e 21966 -m[no-]warn-deprecated Warn about deprecated features
267bf995 21967
c19d1205 21968 For now we will also provide support for:
b99bd4ef 21969
c19d1205
ZW
21970 -mapcs-32 32-bit Program counter
21971 -mapcs-26 26-bit Program counter
21972 -macps-float Floats passed in FP registers
21973 -mapcs-reentrant Reentrant code
21974 -matpcs
21975 (sometime these will probably be replaced with -mapcs=<list of options>
21976 and -matpcs=<list of options>)
b99bd4ef 21977
c19d1205
ZW
21978 The remaining options are only supported for back-wards compatibility.
21979 Cpu variants, the arm part is optional:
21980 -m[arm]1 Currently not supported.
21981 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21982 -m[arm]3 Arm 3 processor
21983 -m[arm]6[xx], Arm 6 processors
21984 -m[arm]7[xx][t][[d]m] Arm 7 processors
21985 -m[arm]8[10] Arm 8 processors
21986 -m[arm]9[20][tdmi] Arm 9 processors
21987 -mstrongarm[110[0]] StrongARM processors
21988 -mxscale XScale processors
21989 -m[arm]v[2345[t[e]]] Arm architectures
21990 -mall All (except the ARM1)
21991 FP variants:
21992 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21993 -mfpe-old (No float load/store multiples)
21994 -mvfpxd VFP Single precision
21995 -mvfp All VFP
21996 -mno-fpu Disable all floating point instructions
b99bd4ef 21997
c19d1205
ZW
21998 The following CPU names are recognized:
21999 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22000 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22001 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22002 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22003 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22004 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22005 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 22006
c19d1205 22007 */
b99bd4ef 22008
c19d1205 22009const char * md_shortopts = "m:k";
b99bd4ef 22010
c19d1205
ZW
22011#ifdef ARM_BI_ENDIAN
22012#define OPTION_EB (OPTION_MD_BASE + 0)
22013#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 22014#else
c19d1205
ZW
22015#if TARGET_BYTES_BIG_ENDIAN
22016#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 22017#else
c19d1205
ZW
22018#define OPTION_EL (OPTION_MD_BASE + 1)
22019#endif
b99bd4ef 22020#endif
845b51d6 22021#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 22022
c19d1205 22023struct option md_longopts[] =
b99bd4ef 22024{
c19d1205
ZW
22025#ifdef OPTION_EB
22026 {"EB", no_argument, NULL, OPTION_EB},
22027#endif
22028#ifdef OPTION_EL
22029 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 22030#endif
845b51d6 22031 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
22032 {NULL, no_argument, NULL, 0}
22033};
b99bd4ef 22034
c19d1205 22035size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 22036
c19d1205 22037struct arm_option_table
b99bd4ef 22038{
c19d1205
ZW
22039 char *option; /* Option name to match. */
22040 char *help; /* Help information. */
22041 int *var; /* Variable to change. */
22042 int value; /* What to change it to. */
22043 char *deprecated; /* If non-null, print this message. */
22044};
b99bd4ef 22045
c19d1205
ZW
22046struct arm_option_table arm_opts[] =
22047{
22048 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22049 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22050 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22051 &support_interwork, 1, NULL},
22052 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22053 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22054 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22055 1, NULL},
22056 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22057 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22058 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22059 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22060 NULL},
b99bd4ef 22061
c19d1205
ZW
22062 /* These are recognized by the assembler, but have no affect on code. */
22063 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22064 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
22065
22066 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22067 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22068 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
22069 {NULL, NULL, NULL, 0, NULL}
22070};
22071
22072struct arm_legacy_option_table
22073{
22074 char *option; /* Option name to match. */
22075 const arm_feature_set **var; /* Variable to change. */
22076 const arm_feature_set value; /* What to change it to. */
22077 char *deprecated; /* If non-null, print this message. */
22078};
b99bd4ef 22079
e74cfd16
PB
22080const struct arm_legacy_option_table arm_legacy_opts[] =
22081{
c19d1205
ZW
22082 /* DON'T add any new processors to this list -- we want the whole list
22083 to go away... Add them to the processors table instead. */
e74cfd16
PB
22084 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22085 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22086 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22087 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22088 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22089 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22090 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22091 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22092 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22093 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22094 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22095 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22096 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22097 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22098 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22099 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22100 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22101 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22102 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22103 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22104 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22105 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22106 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22107 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22108 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22109 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22110 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22111 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22112 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22113 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22114 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22115 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22116 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22117 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22118 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22119 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22120 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22121 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22122 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22123 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22124 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22125 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22126 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22127 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22128 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22129 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22130 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22131 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22132 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22133 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22134 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22135 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22136 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22137 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22138 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22139 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22140 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22141 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22142 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22143 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22144 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22145 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22146 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22147 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22148 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22149 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22150 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22151 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22152 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22153 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22154 N_("use -mcpu=strongarm110")},
e74cfd16 22155 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22156 N_("use -mcpu=strongarm1100")},
e74cfd16 22157 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 22158 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
22159 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22160 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22161 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 22162
c19d1205 22163 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
22164 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22165 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22166 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22167 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22168 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22169 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22170 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22171 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22172 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22173 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22174 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22175 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22176 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22177 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22178 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22179 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22180 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22181 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 22182
c19d1205 22183 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
22184 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22185 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22186 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22187 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 22188 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 22189
e74cfd16 22190 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 22191};
7ed4c4c5 22192
c19d1205 22193struct arm_cpu_option_table
7ed4c4c5 22194{
c19d1205 22195 char *name;
e74cfd16 22196 const arm_feature_set value;
c19d1205
ZW
22197 /* For some CPUs we assume an FPU unless the user explicitly sets
22198 -mfpu=... */
e74cfd16 22199 const arm_feature_set default_fpu;
ee065d83
PB
22200 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22201 case. */
22202 const char *canonical_name;
c19d1205 22203};
7ed4c4c5 22204
c19d1205
ZW
22205/* This list should, at a minimum, contain all the cpu names
22206 recognized by GCC. */
e74cfd16 22207static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 22208{
ee065d83
PB
22209 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22210 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22211 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22212 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22213 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22214 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22215 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22216 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22217 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22218 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22219 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22220 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22221 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22222 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22223 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22224 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22225 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22226 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22227 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22228 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22229 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22230 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22231 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22232 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22233 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22234 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22235 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22236 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22237 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22238 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22239 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22240 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22241 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22242 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22243 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22244 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22245 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22246 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22247 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22248 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22249 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22250 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22251 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22252 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
22253 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22254 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
22255 /* For V5 or later processors we default to using VFP; but the user
22256 should really set the FPU type explicitly. */
ee065d83
PB
22257 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22258 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22259 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22260 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22261 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22262 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22263 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22264 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22265 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22266 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22267 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22268 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22269 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22270 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22271 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22272 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22273 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22274 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22275 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22276 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22277 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
22278 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22279 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
22280 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22281 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22282 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22283 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22284 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
22285 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
22286 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22287 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22288 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22289 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
b38f9f31 22290 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
e07e6e58 22291 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
5287ad62 22292 | FPU_NEON_EXT_V1),
15290f0a 22293 NULL},
e07e6e58 22294 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
15290f0a 22295 | FPU_NEON_EXT_V1),
5287ad62 22296 NULL},
62b3e311 22297 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
307c948d 22298 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
26b6f191 22299 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, NULL},
62b3e311 22300 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
7e806470 22301 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
5b19eaba 22302 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
c19d1205 22303 /* ??? XSCALE is really an architecture. */
ee065d83 22304 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22305 /* ??? iwmmxt is not a processor. */
ee065d83 22306 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 22307 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 22308 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 22309 /* Maverick */
e07e6e58 22310 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 22311 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 22312};
7ed4c4c5 22313
c19d1205 22314struct arm_arch_option_table
7ed4c4c5 22315{
c19d1205 22316 char *name;
e74cfd16
PB
22317 const arm_feature_set value;
22318 const arm_feature_set default_fpu;
c19d1205 22319};
7ed4c4c5 22320
c19d1205
ZW
22321/* This list should, at a minimum, contain all the architecture names
22322 recognized by GCC. */
e74cfd16 22323static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
22324{
22325 {"all", ARM_ANY, FPU_ARCH_FPA},
22326 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22327 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22328 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22329 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22330 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22331 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22332 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22333 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22334 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22335 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22336 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22337 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22338 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22339 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22340 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22341 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22342 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22343 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22344 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22345 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22346 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22347 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22348 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22349 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22350 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 22351 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
62b3e311 22352 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
22353 /* The official spelling of the ARMv7 profile variants is the dashed form.
22354 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
22355 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22356 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22357 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
22358 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22359 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22360 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
9e3c6df6 22361 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
c19d1205
ZW
22362 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22363 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 22364 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 22365 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 22366};
7ed4c4c5 22367
c19d1205 22368/* ISA extensions in the co-processor space. */
e74cfd16 22369struct arm_option_cpu_value_table
c19d1205
ZW
22370{
22371 char *name;
e74cfd16 22372 const arm_feature_set value;
c19d1205 22373};
7ed4c4c5 22374
e74cfd16 22375static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 22376{
e74cfd16
PB
22377 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22378 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22379 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 22380 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 22381 {NULL, ARM_ARCH_NONE}
c19d1205 22382};
7ed4c4c5 22383
c19d1205
ZW
22384/* This list should, at a minimum, contain all the fpu names
22385 recognized by GCC. */
e74cfd16 22386static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
22387{
22388 {"softfpa", FPU_NONE},
22389 {"fpe", FPU_ARCH_FPE},
22390 {"fpe2", FPU_ARCH_FPE},
22391 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22392 {"fpa", FPU_ARCH_FPA},
22393 {"fpa10", FPU_ARCH_FPA},
22394 {"fpa11", FPU_ARCH_FPA},
22395 {"arm7500fe", FPU_ARCH_FPA},
22396 {"softvfp", FPU_ARCH_VFP},
22397 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22398 {"vfp", FPU_ARCH_VFP_V2},
22399 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22400 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22401 {"vfp10", FPU_ARCH_VFP_V2},
22402 {"vfp10-r0", FPU_ARCH_VFP_V1},
22403 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22404 {"vfpv2", FPU_ARCH_VFP_V2},
22405 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22406 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22407 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
22408 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22409 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22410 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
22411 {"arm1020t", FPU_ARCH_VFP_V1},
22412 {"arm1020e", FPU_ARCH_VFP_V2},
22413 {"arm1136jfs", FPU_ARCH_VFP_V2},
22414 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22415 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 22416 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 22417 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
22418 {"vfpv4", FPU_ARCH_VFP_V4},
22419 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 22420 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 22421 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
22422 {NULL, ARM_ARCH_NONE}
22423};
22424
22425struct arm_option_value_table
22426{
22427 char *name;
22428 long value;
c19d1205 22429};
7ed4c4c5 22430
e74cfd16 22431static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
22432{
22433 {"hard", ARM_FLOAT_ABI_HARD},
22434 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22435 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 22436 {NULL, 0}
c19d1205 22437};
7ed4c4c5 22438
c19d1205 22439#ifdef OBJ_ELF
3a4a14e9 22440/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 22441static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
22442{
22443 {"gnu", EF_ARM_EABI_UNKNOWN},
22444 {"4", EF_ARM_EABI_VER4},
3a4a14e9 22445 {"5", EF_ARM_EABI_VER5},
e74cfd16 22446 {NULL, 0}
c19d1205
ZW
22447};
22448#endif
7ed4c4c5 22449
c19d1205
ZW
22450struct arm_long_option_table
22451{
22452 char * option; /* Substring to match. */
22453 char * help; /* Help information. */
22454 int (* func) (char * subopt); /* Function to decode sub-option. */
22455 char * deprecated; /* If non-null, print this message. */
22456};
7ed4c4c5 22457
c921be7d 22458static bfd_boolean
e74cfd16 22459arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 22460{
21d799b5
NC
22461 arm_feature_set *ext_set = (arm_feature_set *)
22462 xmalloc (sizeof (arm_feature_set));
e74cfd16
PB
22463
22464 /* Copy the feature set, so that we can modify it. */
22465 *ext_set = **opt_p;
22466 *opt_p = ext_set;
22467
c19d1205 22468 while (str != NULL && *str != 0)
7ed4c4c5 22469 {
e74cfd16 22470 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
22471 char * ext;
22472 int optlen;
7ed4c4c5 22473
c19d1205
ZW
22474 if (*str != '+')
22475 {
22476 as_bad (_("invalid architectural extension"));
c921be7d 22477 return FALSE;
c19d1205 22478 }
7ed4c4c5 22479
c19d1205
ZW
22480 str++;
22481 ext = strchr (str, '+');
7ed4c4c5 22482
c19d1205
ZW
22483 if (ext != NULL)
22484 optlen = ext - str;
22485 else
22486 optlen = strlen (str);
7ed4c4c5 22487
c19d1205
ZW
22488 if (optlen == 0)
22489 {
22490 as_bad (_("missing architectural extension"));
c921be7d 22491 return FALSE;
c19d1205 22492 }
7ed4c4c5 22493
c19d1205
ZW
22494 for (opt = arm_extensions; opt->name != NULL; opt++)
22495 if (strncmp (opt->name, str, optlen) == 0)
22496 {
e74cfd16 22497 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
22498 break;
22499 }
7ed4c4c5 22500
c19d1205
ZW
22501 if (opt->name == NULL)
22502 {
5f4273c7 22503 as_bad (_("unknown architectural extension `%s'"), str);
c921be7d 22504 return FALSE;
c19d1205 22505 }
7ed4c4c5 22506
c19d1205
ZW
22507 str = ext;
22508 };
7ed4c4c5 22509
c921be7d 22510 return TRUE;
c19d1205 22511}
7ed4c4c5 22512
c921be7d 22513static bfd_boolean
c19d1205 22514arm_parse_cpu (char * str)
7ed4c4c5 22515{
e74cfd16 22516 const struct arm_cpu_option_table * opt;
c19d1205
ZW
22517 char * ext = strchr (str, '+');
22518 int optlen;
7ed4c4c5 22519
c19d1205
ZW
22520 if (ext != NULL)
22521 optlen = ext - str;
7ed4c4c5 22522 else
c19d1205 22523 optlen = strlen (str);
7ed4c4c5 22524
c19d1205 22525 if (optlen == 0)
7ed4c4c5 22526 {
c19d1205 22527 as_bad (_("missing cpu name `%s'"), str);
c921be7d 22528 return FALSE;
7ed4c4c5
NC
22529 }
22530
c19d1205
ZW
22531 for (opt = arm_cpus; opt->name != NULL; opt++)
22532 if (strncmp (opt->name, str, optlen) == 0)
22533 {
e74cfd16
PB
22534 mcpu_cpu_opt = &opt->value;
22535 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 22536 if (opt->canonical_name)
5f4273c7 22537 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22538 else
22539 {
22540 int i;
c921be7d 22541
ee065d83
PB
22542 for (i = 0; i < optlen; i++)
22543 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22544 selected_cpu_name[i] = 0;
22545 }
7ed4c4c5 22546
c19d1205
ZW
22547 if (ext != NULL)
22548 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 22549
c921be7d 22550 return TRUE;
c19d1205 22551 }
7ed4c4c5 22552
c19d1205 22553 as_bad (_("unknown cpu `%s'"), str);
c921be7d 22554 return FALSE;
7ed4c4c5
NC
22555}
22556
c921be7d 22557static bfd_boolean
c19d1205 22558arm_parse_arch (char * str)
7ed4c4c5 22559{
e74cfd16 22560 const struct arm_arch_option_table *opt;
c19d1205
ZW
22561 char *ext = strchr (str, '+');
22562 int optlen;
7ed4c4c5 22563
c19d1205
ZW
22564 if (ext != NULL)
22565 optlen = ext - str;
7ed4c4c5 22566 else
c19d1205 22567 optlen = strlen (str);
7ed4c4c5 22568
c19d1205 22569 if (optlen == 0)
7ed4c4c5 22570 {
c19d1205 22571 as_bad (_("missing architecture name `%s'"), str);
c921be7d 22572 return FALSE;
7ed4c4c5
NC
22573 }
22574
c19d1205
ZW
22575 for (opt = arm_archs; opt->name != NULL; opt++)
22576 if (streq (opt->name, str))
22577 {
e74cfd16
PB
22578 march_cpu_opt = &opt->value;
22579 march_fpu_opt = &opt->default_fpu;
5f4273c7 22580 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 22581
c19d1205
ZW
22582 if (ext != NULL)
22583 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 22584
c921be7d 22585 return TRUE;
c19d1205
ZW
22586 }
22587
22588 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 22589 return FALSE;
7ed4c4c5 22590}
eb043451 22591
c921be7d 22592static bfd_boolean
c19d1205
ZW
22593arm_parse_fpu (char * str)
22594{
e74cfd16 22595 const struct arm_option_cpu_value_table * opt;
b99bd4ef 22596
c19d1205
ZW
22597 for (opt = arm_fpus; opt->name != NULL; opt++)
22598 if (streq (opt->name, str))
22599 {
e74cfd16 22600 mfpu_opt = &opt->value;
c921be7d 22601 return TRUE;
c19d1205 22602 }
b99bd4ef 22603
c19d1205 22604 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 22605 return FALSE;
c19d1205
ZW
22606}
22607
c921be7d 22608static bfd_boolean
c19d1205 22609arm_parse_float_abi (char * str)
b99bd4ef 22610{
e74cfd16 22611 const struct arm_option_value_table * opt;
b99bd4ef 22612
c19d1205
ZW
22613 for (opt = arm_float_abis; opt->name != NULL; opt++)
22614 if (streq (opt->name, str))
22615 {
22616 mfloat_abi_opt = opt->value;
c921be7d 22617 return TRUE;
c19d1205 22618 }
cc8a6dd0 22619
c19d1205 22620 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 22621 return FALSE;
c19d1205 22622}
b99bd4ef 22623
c19d1205 22624#ifdef OBJ_ELF
c921be7d 22625static bfd_boolean
c19d1205
ZW
22626arm_parse_eabi (char * str)
22627{
e74cfd16 22628 const struct arm_option_value_table *opt;
cc8a6dd0 22629
c19d1205
ZW
22630 for (opt = arm_eabis; opt->name != NULL; opt++)
22631 if (streq (opt->name, str))
22632 {
22633 meabi_flags = opt->value;
c921be7d 22634 return TRUE;
c19d1205
ZW
22635 }
22636 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 22637 return FALSE;
c19d1205
ZW
22638}
22639#endif
cc8a6dd0 22640
c921be7d 22641static bfd_boolean
e07e6e58
NC
22642arm_parse_it_mode (char * str)
22643{
c921be7d 22644 bfd_boolean ret = TRUE;
e07e6e58
NC
22645
22646 if (streq ("arm", str))
22647 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22648 else if (streq ("thumb", str))
22649 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22650 else if (streq ("always", str))
22651 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22652 else if (streq ("never", str))
22653 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22654 else
22655 {
22656 as_bad (_("unknown implicit IT mode `%s', should be "\
22657 "arm, thumb, always, or never."), str);
c921be7d 22658 ret = FALSE;
e07e6e58
NC
22659 }
22660
22661 return ret;
22662}
22663
c19d1205
ZW
22664struct arm_long_option_table arm_long_opts[] =
22665{
22666 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22667 arm_parse_cpu, NULL},
22668 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22669 arm_parse_arch, NULL},
22670 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22671 arm_parse_fpu, NULL},
22672 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22673 arm_parse_float_abi, NULL},
22674#ifdef OBJ_ELF
7fac0536 22675 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
22676 arm_parse_eabi, NULL},
22677#endif
e07e6e58
NC
22678 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22679 arm_parse_it_mode, NULL},
c19d1205
ZW
22680 {NULL, NULL, 0, NULL}
22681};
cc8a6dd0 22682
c19d1205
ZW
22683int
22684md_parse_option (int c, char * arg)
22685{
22686 struct arm_option_table *opt;
e74cfd16 22687 const struct arm_legacy_option_table *fopt;
c19d1205 22688 struct arm_long_option_table *lopt;
b99bd4ef 22689
c19d1205 22690 switch (c)
b99bd4ef 22691 {
c19d1205
ZW
22692#ifdef OPTION_EB
22693 case OPTION_EB:
22694 target_big_endian = 1;
22695 break;
22696#endif
cc8a6dd0 22697
c19d1205
ZW
22698#ifdef OPTION_EL
22699 case OPTION_EL:
22700 target_big_endian = 0;
22701 break;
22702#endif
b99bd4ef 22703
845b51d6
PB
22704 case OPTION_FIX_V4BX:
22705 fix_v4bx = TRUE;
22706 break;
22707
c19d1205
ZW
22708 case 'a':
22709 /* Listing option. Just ignore these, we don't support additional
22710 ones. */
22711 return 0;
b99bd4ef 22712
c19d1205
ZW
22713 default:
22714 for (opt = arm_opts; opt->option != NULL; opt++)
22715 {
22716 if (c == opt->option[0]
22717 && ((arg == NULL && opt->option[1] == 0)
22718 || streq (arg, opt->option + 1)))
22719 {
c19d1205 22720 /* If the option is deprecated, tell the user. */
278df34e 22721 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
22722 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22723 arg ? arg : "", _(opt->deprecated));
b99bd4ef 22724
c19d1205
ZW
22725 if (opt->var != NULL)
22726 *opt->var = opt->value;
cc8a6dd0 22727
c19d1205
ZW
22728 return 1;
22729 }
22730 }
b99bd4ef 22731
e74cfd16
PB
22732 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22733 {
22734 if (c == fopt->option[0]
22735 && ((arg == NULL && fopt->option[1] == 0)
22736 || streq (arg, fopt->option + 1)))
22737 {
e74cfd16 22738 /* If the option is deprecated, tell the user. */
278df34e 22739 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
22740 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22741 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
22742
22743 if (fopt->var != NULL)
22744 *fopt->var = &fopt->value;
22745
22746 return 1;
22747 }
22748 }
22749
c19d1205
ZW
22750 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22751 {
22752 /* These options are expected to have an argument. */
22753 if (c == lopt->option[0]
22754 && arg != NULL
22755 && strncmp (arg, lopt->option + 1,
22756 strlen (lopt->option + 1)) == 0)
22757 {
c19d1205 22758 /* If the option is deprecated, tell the user. */
278df34e 22759 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
22760 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22761 _(lopt->deprecated));
b99bd4ef 22762
c19d1205
ZW
22763 /* Call the sup-option parser. */
22764 return lopt->func (arg + strlen (lopt->option) - 1);
22765 }
22766 }
a737bd4d 22767
c19d1205
ZW
22768 return 0;
22769 }
a394c00f 22770
c19d1205
ZW
22771 return 1;
22772}
a394c00f 22773
c19d1205
ZW
22774void
22775md_show_usage (FILE * fp)
a394c00f 22776{
c19d1205
ZW
22777 struct arm_option_table *opt;
22778 struct arm_long_option_table *lopt;
a394c00f 22779
c19d1205 22780 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 22781
c19d1205
ZW
22782 for (opt = arm_opts; opt->option != NULL; opt++)
22783 if (opt->help != NULL)
22784 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 22785
c19d1205
ZW
22786 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22787 if (lopt->help != NULL)
22788 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 22789
c19d1205
ZW
22790#ifdef OPTION_EB
22791 fprintf (fp, _("\
22792 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
22793#endif
22794
c19d1205
ZW
22795#ifdef OPTION_EL
22796 fprintf (fp, _("\
22797 -EL assemble code for a little-endian cpu\n"));
a737bd4d 22798#endif
845b51d6
PB
22799
22800 fprintf (fp, _("\
22801 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 22802}
ee065d83
PB
22803
22804
22805#ifdef OBJ_ELF
62b3e311
PB
22806typedef struct
22807{
22808 int val;
22809 arm_feature_set flags;
22810} cpu_arch_ver_table;
22811
22812/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22813 least features first. */
22814static const cpu_arch_ver_table cpu_arch_ver[] =
22815{
22816 {1, ARM_ARCH_V4},
22817 {2, ARM_ARCH_V4T},
22818 {3, ARM_ARCH_V5},
ee3c0378 22819 {3, ARM_ARCH_V5T},
62b3e311
PB
22820 {4, ARM_ARCH_V5TE},
22821 {5, ARM_ARCH_V5TEJ},
22822 {6, ARM_ARCH_V6},
22823 {7, ARM_ARCH_V6Z},
7e806470 22824 {9, ARM_ARCH_V6K},
91e22acd 22825 {11, ARM_ARCH_V6M},
7e806470 22826 {8, ARM_ARCH_V6T2},
62b3e311
PB
22827 {10, ARM_ARCH_V7A},
22828 {10, ARM_ARCH_V7R},
22829 {10, ARM_ARCH_V7M},
22830 {0, ARM_ARCH_NONE}
22831};
22832
ee3c0378
AS
22833/* Set an attribute if it has not already been set by the user. */
22834static void
22835aeabi_set_attribute_int (int tag, int value)
22836{
22837 if (tag < 1
22838 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22839 || !attributes_set_explicitly[tag])
22840 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22841}
22842
22843static void
22844aeabi_set_attribute_string (int tag, const char *value)
22845{
22846 if (tag < 1
22847 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22848 || !attributes_set_explicitly[tag])
22849 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22850}
22851
ee065d83
PB
22852/* Set the public EABI object attributes. */
22853static void
22854aeabi_set_public_attributes (void)
22855{
22856 int arch;
e74cfd16 22857 arm_feature_set flags;
62b3e311
PB
22858 arm_feature_set tmp;
22859 const cpu_arch_ver_table *p;
ee065d83
PB
22860
22861 /* Choose the architecture based on the capabilities of the requested cpu
22862 (if any) and/or the instructions actually used. */
e74cfd16
PB
22863 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22864 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22865 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
22866 /*Allow the user to override the reported architecture. */
22867 if (object_arch)
22868 {
22869 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22870 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22871 }
22872
62b3e311
PB
22873 tmp = flags;
22874 arch = 0;
22875 for (p = cpu_arch_ver; p->val; p++)
22876 {
22877 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22878 {
22879 arch = p->val;
22880 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22881 }
22882 }
ee065d83 22883
9e3c6df6
PB
22884 /* The table lookup above finds the last architecture to contribute
22885 a new feature. Unfortunately, Tag13 is a subset of the union of
22886 v6T2 and v7-M, so it is never seen as contributing a new feature.
22887 We can not search for the last entry which is entirely used,
22888 because if no CPU is specified we build up only those flags
22889 actually used. Perhaps we should separate out the specified
22890 and implicit cases. Avoid taking this path for -march=all by
22891 checking for contradictory v7-A / v7-M features. */
22892 if (arch == 10
22893 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22894 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22895 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22896 arch = 13;
22897
ee065d83
PB
22898 /* Tag_CPU_name. */
22899 if (selected_cpu_name[0])
22900 {
91d6fa6a 22901 char *q;
ee065d83 22902
91d6fa6a
NC
22903 q = selected_cpu_name;
22904 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
22905 {
22906 int i;
5f4273c7 22907
91d6fa6a
NC
22908 q += 4;
22909 for (i = 0; q[i]; i++)
22910 q[i] = TOUPPER (q[i]);
ee065d83 22911 }
91d6fa6a 22912 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 22913 }
62f3b8c8 22914
ee065d83 22915 /* Tag_CPU_arch. */
ee3c0378 22916 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 22917
62b3e311
PB
22918 /* Tag_CPU_arch_profile. */
22919 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 22920 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 22921 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 22922 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 22923 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 22924 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 22925
ee065d83 22926 /* Tag_ARM_ISA_use. */
ee3c0378
AS
22927 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22928 || arch == 0)
22929 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 22930
ee065d83 22931 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
22932 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22933 || arch == 0)
22934 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22935 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 22936
ee065d83 22937 /* Tag_VFP_arch. */
62f3b8c8
PB
22938 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22939 aeabi_set_attribute_int (Tag_VFP_arch,
22940 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22941 ? 5 : 6);
22942 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378 22943 aeabi_set_attribute_int (Tag_VFP_arch, 3);
ada65aa3 22944 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
ee3c0378
AS
22945 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22946 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22947 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22948 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22949 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22950 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 22951
4547cb56
NC
22952 /* Tag_ABI_HardFP_use. */
22953 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
22954 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
22955 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
22956
ee065d83 22957 /* Tag_WMMX_arch. */
ee3c0378
AS
22958 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22959 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22960 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22961 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 22962
ee3c0378 22963 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 22964 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
22965 aeabi_set_attribute_int
22966 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22967 ? 2 : 1));
22968
ee3c0378 22969 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 22970 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 22971 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56
NC
22972
22973 /* Tag_DIV_use. */
22974 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
22975 aeabi_set_attribute_int (Tag_DIV_use, 0);
22976 /* Fill this in when gas supports v7a sdiv/udiv.
22977 else if (... v7a with div extension used ...)
22978 aeabi_set_attribute_int (Tag_DIV_use, 2); */
22979 else
22980 aeabi_set_attribute_int (Tag_DIV_use, 1);
ee065d83
PB
22981}
22982
104d59d1 22983/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
22984void
22985arm_md_end (void)
22986{
ee065d83
PB
22987 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22988 return;
22989
22990 aeabi_set_public_attributes ();
ee065d83 22991}
8463be01 22992#endif /* OBJ_ELF */
ee065d83
PB
22993
22994
22995/* Parse a .cpu directive. */
22996
22997static void
22998s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22999{
e74cfd16 23000 const struct arm_cpu_option_table *opt;
ee065d83
PB
23001 char *name;
23002 char saved_char;
23003
23004 name = input_line_pointer;
5f4273c7 23005 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23006 input_line_pointer++;
23007 saved_char = *input_line_pointer;
23008 *input_line_pointer = 0;
23009
23010 /* Skip the first "all" entry. */
23011 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23012 if (streq (opt->name, name))
23013 {
e74cfd16
PB
23014 mcpu_cpu_opt = &opt->value;
23015 selected_cpu = opt->value;
ee065d83 23016 if (opt->canonical_name)
5f4273c7 23017 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23018 else
23019 {
23020 int i;
23021 for (i = 0; opt->name[i]; i++)
23022 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23023 selected_cpu_name[i] = 0;
23024 }
e74cfd16 23025 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23026 *input_line_pointer = saved_char;
23027 demand_empty_rest_of_line ();
23028 return;
23029 }
23030 as_bad (_("unknown cpu `%s'"), name);
23031 *input_line_pointer = saved_char;
23032 ignore_rest_of_line ();
23033}
23034
23035
23036/* Parse a .arch directive. */
23037
23038static void
23039s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23040{
e74cfd16 23041 const struct arm_arch_option_table *opt;
ee065d83
PB
23042 char saved_char;
23043 char *name;
23044
23045 name = input_line_pointer;
5f4273c7 23046 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23047 input_line_pointer++;
23048 saved_char = *input_line_pointer;
23049 *input_line_pointer = 0;
23050
23051 /* Skip the first "all" entry. */
23052 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23053 if (streq (opt->name, name))
23054 {
e74cfd16
PB
23055 mcpu_cpu_opt = &opt->value;
23056 selected_cpu = opt->value;
5f4273c7 23057 strcpy (selected_cpu_name, opt->name);
e74cfd16 23058 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23059 *input_line_pointer = saved_char;
23060 demand_empty_rest_of_line ();
23061 return;
23062 }
23063
23064 as_bad (_("unknown architecture `%s'\n"), name);
23065 *input_line_pointer = saved_char;
23066 ignore_rest_of_line ();
23067}
23068
23069
7a1d4c38
PB
23070/* Parse a .object_arch directive. */
23071
23072static void
23073s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23074{
23075 const struct arm_arch_option_table *opt;
23076 char saved_char;
23077 char *name;
23078
23079 name = input_line_pointer;
5f4273c7 23080 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
23081 input_line_pointer++;
23082 saved_char = *input_line_pointer;
23083 *input_line_pointer = 0;
23084
23085 /* Skip the first "all" entry. */
23086 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23087 if (streq (opt->name, name))
23088 {
23089 object_arch = &opt->value;
23090 *input_line_pointer = saved_char;
23091 demand_empty_rest_of_line ();
23092 return;
23093 }
23094
23095 as_bad (_("unknown architecture `%s'\n"), name);
23096 *input_line_pointer = saved_char;
23097 ignore_rest_of_line ();
23098}
23099
ee065d83
PB
23100/* Parse a .fpu directive. */
23101
23102static void
23103s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23104{
e74cfd16 23105 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
23106 char saved_char;
23107 char *name;
23108
23109 name = input_line_pointer;
5f4273c7 23110 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
23111 input_line_pointer++;
23112 saved_char = *input_line_pointer;
23113 *input_line_pointer = 0;
5f4273c7 23114
ee065d83
PB
23115 for (opt = arm_fpus; opt->name != NULL; opt++)
23116 if (streq (opt->name, name))
23117 {
e74cfd16
PB
23118 mfpu_opt = &opt->value;
23119 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
23120 *input_line_pointer = saved_char;
23121 demand_empty_rest_of_line ();
23122 return;
23123 }
23124
23125 as_bad (_("unknown floating point format `%s'\n"), name);
23126 *input_line_pointer = saved_char;
23127 ignore_rest_of_line ();
23128}
ee065d83 23129
794ba86a 23130/* Copy symbol information. */
f31fef98 23131
794ba86a
DJ
23132void
23133arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23134{
23135 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23136}
e04befd0 23137
f31fef98 23138#ifdef OBJ_ELF
e04befd0
AS
23139/* Given a symbolic attribute NAME, return the proper integer value.
23140 Returns -1 if the attribute is not known. */
f31fef98 23141
e04befd0
AS
23142int
23143arm_convert_symbolic_attribute (const char *name)
23144{
f31fef98
NC
23145 static const struct
23146 {
23147 const char * name;
23148 const int tag;
23149 }
23150 attribute_table[] =
23151 {
23152 /* When you modify this table you should
23153 also modify the list in doc/c-arm.texi. */
e04befd0 23154#define T(tag) {#tag, tag}
f31fef98
NC
23155 T (Tag_CPU_raw_name),
23156 T (Tag_CPU_name),
23157 T (Tag_CPU_arch),
23158 T (Tag_CPU_arch_profile),
23159 T (Tag_ARM_ISA_use),
23160 T (Tag_THUMB_ISA_use),
75375b3e 23161 T (Tag_FP_arch),
f31fef98
NC
23162 T (Tag_VFP_arch),
23163 T (Tag_WMMX_arch),
23164 T (Tag_Advanced_SIMD_arch),
23165 T (Tag_PCS_config),
23166 T (Tag_ABI_PCS_R9_use),
23167 T (Tag_ABI_PCS_RW_data),
23168 T (Tag_ABI_PCS_RO_data),
23169 T (Tag_ABI_PCS_GOT_use),
23170 T (Tag_ABI_PCS_wchar_t),
23171 T (Tag_ABI_FP_rounding),
23172 T (Tag_ABI_FP_denormal),
23173 T (Tag_ABI_FP_exceptions),
23174 T (Tag_ABI_FP_user_exceptions),
23175 T (Tag_ABI_FP_number_model),
75375b3e 23176 T (Tag_ABI_align_needed),
f31fef98 23177 T (Tag_ABI_align8_needed),
75375b3e 23178 T (Tag_ABI_align_preserved),
f31fef98
NC
23179 T (Tag_ABI_align8_preserved),
23180 T (Tag_ABI_enum_size),
23181 T (Tag_ABI_HardFP_use),
23182 T (Tag_ABI_VFP_args),
23183 T (Tag_ABI_WMMX_args),
23184 T (Tag_ABI_optimization_goals),
23185 T (Tag_ABI_FP_optimization_goals),
23186 T (Tag_compatibility),
23187 T (Tag_CPU_unaligned_access),
75375b3e 23188 T (Tag_FP_HP_extension),
f31fef98
NC
23189 T (Tag_VFP_HP_extension),
23190 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
23191 T (Tag_MPextension_use),
23192 T (Tag_DIV_use),
f31fef98
NC
23193 T (Tag_nodefaults),
23194 T (Tag_also_compatible_with),
23195 T (Tag_conformance),
23196 T (Tag_T2EE_use),
23197 T (Tag_Virtualization_use),
cd21e546 23198 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 23199#undef T
f31fef98 23200 };
e04befd0
AS
23201 unsigned int i;
23202
23203 if (name == NULL)
23204 return -1;
23205
f31fef98 23206 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 23207 if (streq (name, attribute_table[i].name))
e04befd0
AS
23208 return attribute_table[i].tag;
23209
23210 return -1;
23211}
267bf995
RR
23212
23213
23214/* Apply sym value for relocations only in the case that
23215 they are for local symbols and you have the respective
23216 architectural feature for blx and simple switches. */
23217int
23218arm_apply_sym_value (struct fix * fixP)
23219{
23220 if (fixP->fx_addsy
23221 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23222 && !S_IS_EXTERNAL (fixP->fx_addsy))
23223 {
23224 switch (fixP->fx_r_type)
23225 {
23226 case BFD_RELOC_ARM_PCREL_BLX:
23227 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23228 if (ARM_IS_FUNC (fixP->fx_addsy))
23229 return 1;
23230 break;
23231
23232 case BFD_RELOC_ARM_PCREL_CALL:
23233 case BFD_RELOC_THUMB_PCREL_BLX:
23234 if (THUMB_IS_FUNC (fixP->fx_addsy))
23235 return 1;
23236 break;
23237
23238 default:
23239 break;
23240 }
23241
23242 }
23243 return 0;
23244}
f31fef98 23245#endif /* OBJ_ELF */
This page took 2.605731 seconds and 4 git commands to generate.