* gas/config/tc-arm.c (CVT_FLAVOUR_VAR): New define.
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
fa94de6b 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
3da1d841 35#include "libiberty.h"
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef 99#ifndef CPU_DEFAULT
8a59fff3 100/* The code that was here used to select a default CPU depending on compiler
fa94de6b 101 pre-defines which were only present when doing native builds, thus
8a59fff3
MGD
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
b99bd4ef
NC
106#endif
107
108#ifndef FPU_DEFAULT
c820d418
MM
109# ifdef TE_LINUX
110# define FPU_DEFAULT FPU_ARCH_FPA
111# elif defined (TE_NetBSD)
112# ifdef OBJ_ELF
113# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114# else
115 /* Legacy a.out format. */
116# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117# endif
4e7fd91e
PB
118# elif defined (TE_VXWORKS)
119# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
120# else
121 /* For backwards compatibility, default to FPA. */
122# define FPU_DEFAULT FPU_ARCH_FPA
123# endif
124#endif /* ifndef FPU_DEFAULT */
b99bd4ef 125
c19d1205 126#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 127
e74cfd16
PB
128static arm_feature_set cpu_variant;
129static arm_feature_set arm_arch_used;
130static arm_feature_set thumb_arch_used;
b99bd4ef 131
b99bd4ef 132/* Flags stored in private area of BFD structure. */
c19d1205
ZW
133static int uses_apcs_26 = FALSE;
134static int atpcs = FALSE;
b34976b6
AM
135static int support_interwork = FALSE;
136static int uses_apcs_float = FALSE;
c19d1205 137static int pic_code = FALSE;
845b51d6 138static int fix_v4bx = FALSE;
278df34e
NS
139/* Warn on using deprecated features. */
140static int warn_on_deprecated = TRUE;
141
03b1477f
RE
142
143/* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
e74cfd16
PB
146static const arm_feature_set *legacy_cpu = NULL;
147static const arm_feature_set *legacy_fpu = NULL;
148
149static const arm_feature_set *mcpu_cpu_opt = NULL;
150static const arm_feature_set *mcpu_fpu_opt = NULL;
151static const arm_feature_set *march_cpu_opt = NULL;
152static const arm_feature_set *march_fpu_opt = NULL;
153static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 154static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
155
156/* Constants for known architecture features. */
157static const arm_feature_set fpu_default = FPU_DEFAULT;
158static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
160static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
162static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167#ifdef CPU_DEFAULT
168static const arm_feature_set cpu_default = CPU_DEFAULT;
169#endif
170
171static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
e74cfd16 187static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
b2a5fbdc 188static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
62b3e311 189static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
9e3c6df6 190static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
9e3c6df6 197static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
bca38921 198static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
7e806470 199static const arm_feature_set arm_ext_m =
b2a5fbdc 200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
60e5ef9f 201static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
f4c65163 202static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
b2a5fbdc 203static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
eea54501 204static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
90ec0d68 205static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
e74cfd16
PB
206
207static const arm_feature_set arm_arch_any = ARM_ANY;
208static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
251665fc 211static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
e74cfd16 212
2d447fca
JM
213static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
215static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 227static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 228static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
229static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
231static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
234static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
bca38921
MGD
237static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
e74cfd16 243
33a392fb 244static int mfloat_abi_opt = -1;
e74cfd16
PB
245/* Record user cpu selection for object attributes. */
246static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
247/* Must be long enough to hold any of the names in arm_cpus. */
248static char selected_cpu_name[16];
8d67f500
NC
249
250/* Return if no cpu was selected on command-line. */
251static bfd_boolean
252no_cpu_selected (void)
253{
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256}
257
7cc69913 258#ifdef OBJ_ELF
deeaaff8
DJ
259# ifdef EABI_DEFAULT
260static int meabi_flags = EABI_DEFAULT;
261# else
d507cf36 262static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 263# endif
e1da3f5b 264
ee3c0378
AS
265static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
e1da3f5b 267bfd_boolean
5f4273c7 268arm_is_eabi (void)
e1da3f5b
PB
269{
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271}
7cc69913 272#endif
b99bd4ef 273
b99bd4ef 274#ifdef OBJ_ELF
c19d1205 275/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
276symbolS * GOT_symbol;
277#endif
278
b99bd4ef
NC
279/* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283static int thumb_mode = 0;
8dc2430f
NC
284/* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287#define MODE_RECORDED (1 << 4)
b99bd4ef 288
e07e6e58
NC
289/* Specifies the intrinsic IT insn behavior mode. */
290enum implicit_it_mode
291{
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296};
297static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
c19d1205
ZW
299/* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322static bfd_boolean unified_syntax = FALSE;
b99bd4ef 323
5287ad62
JB
324enum neon_el_type
325{
dcbf9037 326 NT_invtype,
5287ad62
JB
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
dcbf9037 332 NT_unsigned
5287ad62
JB
333};
334
335struct neon_type_el
336{
337 enum neon_el_type type;
338 unsigned size;
339};
340
341#define NEON_MAX_TYPE_ELS 4
342
343struct neon_type
344{
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347};
348
e07e6e58
NC
349enum it_instruction_type
350{
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359};
360
ad6cec43
MGD
361/* The maximum number of operands we need. */
362#define ARM_IT_MAX_OPERANDS 6
363
b99bd4ef
NC
364struct arm_it
365{
c19d1205 366 const char * error;
b99bd4ef 367 unsigned long instruction;
c19d1205
ZW
368 int size;
369 int size_req;
370 int cond;
037e8744
JB
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
5287ad62 375 struct neon_type vectype;
88714cb8
DG
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
0110f2b8
PB
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
b99bd4ef
NC
382 struct
383 {
384 bfd_reloc_code_real_type type;
c19d1205
ZW
385 expressionS exp;
386 int pc_rel;
b99bd4ef 387 } reloc;
b99bd4ef 388
e07e6e58
NC
389 enum it_instruction_type it_insn_type;
390
c19d1205
ZW
391 struct
392 {
393 unsigned reg;
ca3f61f7 394 signed int imm;
dcbf9037 395 struct neon_type_el vectype;
ca3f61f7
NC
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
ad6cec43 415 } operands[ARM_IT_MAX_OPERANDS];
b99bd4ef
NC
416};
417
c19d1205 418static struct arm_it inst;
b99bd4ef
NC
419
420#define NUM_FLOAT_VALS 8
421
05d2d07e 422const char * fp_const[] =
b99bd4ef
NC
423{
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425};
426
c19d1205 427/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
428#define MAX_LITTLENUMS 6
429
430LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432#define FAIL (-1)
433#define SUCCESS (0)
434
435#define SUFF_S 1
436#define SUFF_D 2
437#define SUFF_E 3
438#define SUFF_P 4
439
c19d1205
ZW
440#define CP_T_X 0x00008000
441#define CP_T_Y 0x00400000
b99bd4ef 442
c19d1205
ZW
443#define CONDS_BIT 0x00100000
444#define LOAD_BIT 0x00100000
b99bd4ef
NC
445
446#define DOUBLE_LOAD_FLAG 0x00000001
447
448struct asm_cond
449{
d3ce72d0 450 const char * template_name;
c921be7d 451 unsigned long value;
b99bd4ef
NC
452};
453
c19d1205 454#define COND_ALWAYS 0xE
b99bd4ef 455
b99bd4ef
NC
456struct asm_psr
457{
d3ce72d0 458 const char * template_name;
c921be7d 459 unsigned long field;
b99bd4ef
NC
460};
461
62b3e311
PB
462struct asm_barrier_opt
463{
e797f7e0
MGD
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
62b3e311
PB
467};
468
2d2255b5 469/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
470#define SPSR_BIT (1 << 22)
471
c19d1205
ZW
472/* The individual PSR flag bits. */
473#define PSR_c (1 << 16)
474#define PSR_x (1 << 17)
475#define PSR_s (1 << 18)
476#define PSR_f (1 << 19)
b99bd4ef 477
c19d1205 478struct reloc_entry
bfae80f2 479{
c921be7d
NC
480 char * name;
481 bfd_reloc_code_real_type reloc;
bfae80f2
RE
482};
483
5287ad62 484enum vfp_reg_pos
bfae80f2 485{
5287ad62
JB
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
488};
489
490enum vfp_ldstm_type
491{
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493};
494
dcbf9037
JB
495/* Bits for DEFINED field in neon_typed_alias. */
496#define NTA_HASTYPE 1
497#define NTA_HASINDEX 2
498
499struct neon_typed_alias
500{
c921be7d
NC
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
dcbf9037
JB
504};
505
c19d1205
ZW
506/* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508enum arm_reg_type
bfae80f2 509{
c19d1205
ZW
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
5287ad62 516 REG_TYPE_NQ,
037e8744 517 REG_TYPE_VFSD,
5287ad62 518 REG_TYPE_NDQ,
037e8744 519 REG_TYPE_NSDQ,
c19d1205
ZW
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
90ec0d68 531 REG_TYPE_RNB
bfae80f2
RE
532};
533
dcbf9037
JB
534/* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
538struct reg_entry
539{
c921be7d 540 const char * name;
90ec0d68 541 unsigned int number;
c921be7d
NC
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
6c43fab6
RE
545};
546
c19d1205 547/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 548const char * const reg_expected_msgs[] =
c19d1205
ZW
549{
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
5287ad62
JB
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
037e8744 557 N_("VFP single or double precision register expected"),
5287ad62 558 N_("Neon double or quad precision register expected"),
037e8744 559 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
6c43fab6
RE
571};
572
c19d1205 573/* Some well known registers that we refer to directly elsewhere. */
bd340a04 574#define REG_R12 12
c19d1205
ZW
575#define REG_SP 13
576#define REG_LR 14
577#define REG_PC 15
404ff6b5 578
b99bd4ef
NC
579/* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
c19d1205 581#define INSN_SIZE 4
b99bd4ef
NC
582
583struct asm_opcode
584{
585 /* Basic string to match. */
d3ce72d0 586 const char * template_name;
c19d1205
ZW
587
588 /* Parameters to instruction. */
5be8be5d 589 unsigned int operands[8];
c19d1205
ZW
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
b99bd4ef
NC
593
594 /* Basic instruction code. */
c19d1205 595 unsigned int avalue : 28;
b99bd4ef 596
c19d1205
ZW
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
b99bd4ef 599
90e4755a 600 /* Which architecture variant provides this instruction. */
c921be7d
NC
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
c19d1205
ZW
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
b99bd4ef 606
c19d1205
ZW
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
b99bd4ef
NC
609};
610
a737bd4d
NC
611/* Defines for various bits that we will want to toggle. */
612#define INST_IMMEDIATE 0x02000000
613#define OFFSET_REG 0x02000000
c19d1205 614#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
615#define SHIFT_BY_REG 0x00000010
616#define PRE_INDEX 0x01000000
617#define INDEX_UP 0x00800000
618#define WRITE_BACK 0x00200000
619#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 620#define CPSI_MMOD 0x00020000
90e4755a 621
a737bd4d
NC
622#define LITERAL_MASK 0xf000f000
623#define OPCODE_MASK 0xfe1fffff
624#define V4_STR_BIT 0x00000020
90e4755a 625
efd81785
PB
626#define T2_SUBS_PC_LR 0xf3de8f00
627
a737bd4d 628#define DATA_OP_SHIFT 21
90e4755a 629
ef8d22e6
PB
630#define T2_OPCODE_MASK 0xfe1fffff
631#define T2_DATA_OP_SHIFT 21
632
6530b175
NC
633#define A_COND_MASK 0xf0000000
634#define A_PUSH_POP_OP_MASK 0x0fff0000
635
636/* Opcodes for pushing/poping registers to/from the stack. */
637#define A1_OPCODE_PUSH 0x092d0000
638#define A2_OPCODE_PUSH 0x052d0004
639#define A2_OPCODE_POP 0x049d0004
640
a737bd4d
NC
641/* Codes to distinguish the arithmetic instructions. */
642#define OPCODE_AND 0
643#define OPCODE_EOR 1
644#define OPCODE_SUB 2
645#define OPCODE_RSB 3
646#define OPCODE_ADD 4
647#define OPCODE_ADC 5
648#define OPCODE_SBC 6
649#define OPCODE_RSC 7
650#define OPCODE_TST 8
651#define OPCODE_TEQ 9
652#define OPCODE_CMP 10
653#define OPCODE_CMN 11
654#define OPCODE_ORR 12
655#define OPCODE_MOV 13
656#define OPCODE_BIC 14
657#define OPCODE_MVN 15
90e4755a 658
ef8d22e6
PB
659#define T2_OPCODE_AND 0
660#define T2_OPCODE_BIC 1
661#define T2_OPCODE_ORR 2
662#define T2_OPCODE_ORN 3
663#define T2_OPCODE_EOR 4
664#define T2_OPCODE_ADD 8
665#define T2_OPCODE_ADC 10
666#define T2_OPCODE_SBC 11
667#define T2_OPCODE_SUB 13
668#define T2_OPCODE_RSB 14
669
a737bd4d
NC
670#define T_OPCODE_MUL 0x4340
671#define T_OPCODE_TST 0x4200
672#define T_OPCODE_CMN 0x42c0
673#define T_OPCODE_NEG 0x4240
674#define T_OPCODE_MVN 0x43c0
90e4755a 675
a737bd4d
NC
676#define T_OPCODE_ADD_R3 0x1800
677#define T_OPCODE_SUB_R3 0x1a00
678#define T_OPCODE_ADD_HI 0x4400
679#define T_OPCODE_ADD_ST 0xb000
680#define T_OPCODE_SUB_ST 0xb080
681#define T_OPCODE_ADD_SP 0xa800
682#define T_OPCODE_ADD_PC 0xa000
683#define T_OPCODE_ADD_I8 0x3000
684#define T_OPCODE_SUB_I8 0x3800
685#define T_OPCODE_ADD_I3 0x1c00
686#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 687
a737bd4d
NC
688#define T_OPCODE_ASR_R 0x4100
689#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
690#define T_OPCODE_LSR_R 0x40c0
691#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
692#define T_OPCODE_ASR_I 0x1000
693#define T_OPCODE_LSL_I 0x0000
694#define T_OPCODE_LSR_I 0x0800
b99bd4ef 695
a737bd4d
NC
696#define T_OPCODE_MOV_I8 0x2000
697#define T_OPCODE_CMP_I8 0x2800
698#define T_OPCODE_CMP_LR 0x4280
699#define T_OPCODE_MOV_HR 0x4600
700#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 701
a737bd4d
NC
702#define T_OPCODE_LDR_PC 0x4800
703#define T_OPCODE_LDR_SP 0x9800
704#define T_OPCODE_STR_SP 0x9000
705#define T_OPCODE_LDR_IW 0x6800
706#define T_OPCODE_STR_IW 0x6000
707#define T_OPCODE_LDR_IH 0x8800
708#define T_OPCODE_STR_IH 0x8000
709#define T_OPCODE_LDR_IB 0x7800
710#define T_OPCODE_STR_IB 0x7000
711#define T_OPCODE_LDR_RW 0x5800
712#define T_OPCODE_STR_RW 0x5000
713#define T_OPCODE_LDR_RH 0x5a00
714#define T_OPCODE_STR_RH 0x5200
715#define T_OPCODE_LDR_RB 0x5c00
716#define T_OPCODE_STR_RB 0x5400
c9b604bd 717
a737bd4d
NC
718#define T_OPCODE_PUSH 0xb400
719#define T_OPCODE_POP 0xbc00
b99bd4ef 720
2fc8bdac 721#define T_OPCODE_BRANCH 0xe000
b99bd4ef 722
a737bd4d 723#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 724#define THUMB_PP_PC_LR 0x0100
c19d1205 725#define THUMB_LOAD_BIT 0x0800
53365c0d 726#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
727
728#define BAD_ARGS _("bad arguments to instruction")
fdfde340 729#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
730#define BAD_PC _("r15 not allowed here")
731#define BAD_COND _("instruction cannot be conditional")
732#define BAD_OVERLAP _("registers may not be the same")
733#define BAD_HIREG _("lo register required")
734#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 735#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
736#define BAD_BRANCH _("branch must be last instruction in IT block")
737#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 738#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
739#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740#define BAD_IT_COND _("incorrect condition in IT block")
741#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 742#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
5be8be5d
DG
743#define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745#define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
08f10d51 747#define BAD_RANGE _("branch out of range")
c19d1205 748
c921be7d
NC
749static struct hash_control * arm_ops_hsh;
750static struct hash_control * arm_cond_hsh;
751static struct hash_control * arm_shift_hsh;
752static struct hash_control * arm_psr_hsh;
753static struct hash_control * arm_v7m_psr_hsh;
754static struct hash_control * arm_reg_hsh;
755static struct hash_control * arm_reloc_hsh;
756static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 757
b99bd4ef
NC
758/* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
5f4273c7 765 <insn> */
b99bd4ef
NC
766
767symbolS * last_label_seen;
b34976b6 768static int label_is_thumb_function_name = FALSE;
e07e6e58 769
3d0c9500
NC
770/* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
a737bd4d 772
c19d1205 773#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 774typedef struct literal_pool
b99bd4ef 775{
c921be7d
NC
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
a8040cf2
NC
782#ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784#endif
c921be7d 785 struct literal_pool * next;
3d0c9500 786} literal_pool;
b99bd4ef 787
3d0c9500
NC
788/* Pointer to a linked list of literal pools. */
789literal_pool * list_of_pools = NULL;
e27ec89e 790
e07e6e58
NC
791#ifdef OBJ_ELF
792# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793#else
794static struct current_it now_it;
795#endif
796
797static inline int
798now_it_compatible (int cond)
799{
800 return (cond & ~1) == (now_it.cc & ~1);
801}
802
803static inline int
804conditional_insn (void)
805{
806 return inst.cond != COND_ALWAYS;
807}
808
809static int in_it_block (void);
810
811static int handle_it_state (void);
812
813static void force_automatic_it_block_close (void);
814
c921be7d
NC
815static void it_fsm_post_encode (void);
816
e07e6e58
NC
817#define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
c921be7d
NC
826#define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
e07e6e58
NC
835#define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
c19d1205 845/* Pure syntax. */
b99bd4ef 846
c19d1205
ZW
847/* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849const char comment_chars[] = "@";
3d0c9500 850
c19d1205
ZW
851/* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854/* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857/* Also note that comments like this one will always work. */
858const char line_comment_chars[] = "#";
3d0c9500 859
c19d1205 860const char line_separator_chars[] = ";";
b99bd4ef 861
c19d1205
ZW
862/* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864const char EXP_CHARS[] = "eE";
3d0c9500 865
c19d1205
ZW
866/* Chars that mean this number is a floating point constant. */
867/* As in 0f12.456 */
868/* or 0d1.2345e12 */
b99bd4ef 869
c19d1205 870const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 871
c19d1205
ZW
872/* Prefix characters that indicate the start of an immediate
873 value. */
874#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 875
c19d1205
ZW
876/* Separator character handling. */
877
878#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880static inline int
881skip_past_char (char ** str, char c)
882{
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
3d0c9500 887 }
c19d1205
ZW
888 else
889 return FAIL;
890}
c921be7d 891
c19d1205 892#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 893
c19d1205
ZW
894/* Arithmetic expressions (possibly involving symbols). */
895
896/* Return TRUE if anything in the expression is a bignum. */
897
898static int
899walk_no_bignums (symbolS * sp)
900{
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 905 {
c19d1205
ZW
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
909 }
910
c19d1205 911 return 0;
3d0c9500
NC
912}
913
c19d1205
ZW
914static int in_my_get_expression = 0;
915
916/* Third argument to my_get_expression. */
917#define GE_NO_PREFIX 0
918#define GE_IMM_PREFIX 1
919#define GE_OPT_PREFIX 2
5287ad62
JB
920/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922#define GE_OPT_PREFIX_BIG 3
a737bd4d 923
b99bd4ef 924static int
c19d1205 925my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 926{
c19d1205
ZW
927 char * save_in;
928 segT seg;
b99bd4ef 929
c19d1205
ZW
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
5287ad62
JB
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
b99bd4ef 934
c19d1205 935 switch (prefix_mode)
b99bd4ef 936 {
c19d1205
ZW
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
5287ad62 947 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
b99bd4ef 953
c19d1205 954 memset (ep, 0, sizeof (expressionS));
b99bd4ef 955
c19d1205
ZW
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
f86adc07 962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 963 {
f86adc07 964 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
f86adc07
NS
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
970 return 1;
971 }
b99bd4ef 972
c19d1205
ZW
973#ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
b99bd4ef 984 }
87975d2a
AM
985#else
986 (void) seg;
c19d1205 987#endif
b99bd4ef 988
c19d1205
ZW
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
5287ad62
JB
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
b99bd4ef 1004
c19d1205
ZW
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
b99bd4ef
NC
1008}
1009
c19d1205
ZW
1010/* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
b99bd4ef 1014
c19d1205
ZW
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 1021
c19d1205 1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 1023
c19d1205
ZW
1024char *
1025md_atof (int type, char * litP, int * sizeP)
1026{
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
b99bd4ef 1031
c19d1205
ZW
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
b99bd4ef 1040
c19d1205
ZW
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
b99bd4ef 1047
c19d1205
ZW
1048 case 'x':
1049 case 'X':
499ac353 1050 prec = 5;
c19d1205 1051 break;
b99bd4ef 1052
c19d1205
ZW
1053 case 'p':
1054 case 'P':
499ac353 1055 prec = 5;
c19d1205 1056 break;
a737bd4d 1057
c19d1205
ZW
1058 default:
1059 *sizeP = 0;
499ac353 1060 return _("Unrecognized or unsupported floating point constant");
c19d1205 1061 }
b99bd4ef 1062
c19d1205
ZW
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
499ac353 1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1067
c19d1205
ZW
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
499ac353
NC
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1074 }
1075 }
1076 else
1077 {
e74cfd16 1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1079 for (i = prec - 1; i >= 0; i--)
1080 {
499ac353
NC
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
499ac353
NC
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1094 }
1095 }
b99bd4ef 1096
499ac353 1097 return NULL;
c19d1205 1098}
b99bd4ef 1099
c19d1205
ZW
1100/* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102void
91d6fa6a 1103md_operand (expressionS * exp)
c19d1205
ZW
1104{
1105 if (in_my_get_expression)
91d6fa6a 1106 exp->X_op = O_illegal;
b99bd4ef
NC
1107}
1108
c19d1205 1109/* Immediate values. */
b99bd4ef 1110
c19d1205
ZW
1111/* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114#ifdef OBJ_ELF
1115static int
1116immediate_for_directive (int *val)
b99bd4ef 1117{
c19d1205
ZW
1118 expressionS exp;
1119 exp.X_op = O_illegal;
b99bd4ef 1120
c19d1205
ZW
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
b99bd4ef 1126
c19d1205
ZW
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
b99bd4ef 1135}
c19d1205 1136#endif
b99bd4ef 1137
c19d1205 1138/* Register parsing. */
b99bd4ef 1139
c19d1205
ZW
1140/* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145static struct reg_entry *
1146arm_reg_parse_multi (char **ccp)
b99bd4ef 1147{
c19d1205
ZW
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
b99bd4ef 1151
c19d1205
ZW
1152#ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
01cfc07f 1154 return NULL;
c19d1205
ZW
1155 start++;
1156#endif
1157#ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160#endif
b99bd4ef 1161
c19d1205
ZW
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
b99bd4ef 1165
c19d1205
ZW
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
b99bd4ef
NC
1177}
1178
1179static int
dcbf9037
JB
1180arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
b99bd4ef 1182{
c19d1205
ZW
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
79134647 1191 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1192 return reg->number;
1193 break;
69b97547 1194
c19d1205
ZW
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
6057a28f 1202
c19d1205
ZW
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
79134647 1206 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1207 return reg->number;
6057a28f 1208 break;
c19d1205 1209
6057a28f 1210 default:
c19d1205 1211 break;
6057a28f
NC
1212 }
1213
dcbf9037
JB
1214 return FAIL;
1215}
1216
1217/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220static int
1221arm_reg_parse (char **ccp, enum arm_reg_type type)
1222{
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
c19d1205
ZW
1237 *ccp = start;
1238 return FAIL;
1239}
69b97547 1240
dcbf9037
JB
1241/* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255static int
1256parse_neon_type (struct neon_type *type, char **str)
1257{
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
dcbf9037
JB
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
037e8744 1312 done:
dcbf9037
JB
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328}
1329
1330/* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335static void
1336first_error (const char *err)
1337{
1338 if (!inst.error)
1339 inst.error = err;
1340}
1341
1342/* Parse a single type, e.g. ".s32", leading period included. */
1343static int
1344parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345{
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
5f4273c7 1369
dcbf9037 1370 *ccp = str;
5f4273c7 1371
dcbf9037
JB
1372 return SUCCESS;
1373}
1374
1375/* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378#define NEON_ALL_LANES 15
1379#define NEON_INTERLEAVE_LANES 14
1380
1381/* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386static int
1387parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390{
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
037e8744
JB
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1423 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
5f4273c7 1430
dcbf9037
JB
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
5f4273c7 1441
dcbf9037
JB
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
5f4273c7 1449
dcbf9037
JB
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
5f4273c7 1478
dcbf9037
JB
1479 if (typeinfo)
1480 *typeinfo = atype;
5f4273c7 1481
dcbf9037
JB
1482 if (rtype)
1483 *rtype = type;
5f4273c7 1484
dcbf9037 1485 *ccp = str;
5f4273c7 1486
dcbf9037
JB
1487 return reg->number;
1488}
1489
1490/* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1495 This function will fault on encountering a scalar. */
dcbf9037
JB
1496
1497static int
1498arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500{
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
0855e32b
NS
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
dcbf9037
JB
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525}
1526
1527#define NEON_SCALAR_REG(X) ((X) >> 4)
1528#define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
5287ad62
JB
1530/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534static int
dcbf9037 1535parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1536{
dcbf9037 1537 int reg;
5287ad62 1538 char *str = *ccp;
dcbf9037 1539 struct neon_typed_alias atype;
5f4273c7 1540
dcbf9037 1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1542
dcbf9037 1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1544 return FAIL;
5f4273c7 1545
dcbf9037 1546 if (atype.index == NEON_ALL_LANES)
5287ad62 1547 {
dcbf9037 1548 first_error (_("scalar must have an index"));
5287ad62
JB
1549 return FAIL;
1550 }
dcbf9037 1551 else if (atype.index >= 64 / elsize)
5287ad62 1552 {
dcbf9037 1553 first_error (_("scalar index out of range"));
5287ad62
JB
1554 return FAIL;
1555 }
5f4273c7 1556
dcbf9037
JB
1557 if (type)
1558 *type = atype.eltype;
5f4273c7 1559
5287ad62 1560 *ccp = str;
5f4273c7 1561
dcbf9037 1562 return reg * 16 + atype.index;
5287ad62
JB
1563}
1564
c19d1205 1565/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1566
c19d1205
ZW
1567static long
1568parse_reg_list (char ** strp)
1569{
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
a737bd4d 1573
c19d1205
ZW
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
6057a28f 1576 {
c19d1205 1577 another_range = 0;
a737bd4d 1578
c19d1205
ZW
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
a737bd4d 1583
c19d1205
ZW
1584 str++;
1585 do
1586 {
1587 int reg;
6057a28f 1588
dcbf9037 1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1590 {
dcbf9037 1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1592 return FAIL;
1593 }
a737bd4d 1594
c19d1205
ZW
1595 if (in_range)
1596 {
1597 int i;
a737bd4d 1598
c19d1205
ZW
1599 if (reg <= cur_reg)
1600 {
dcbf9037 1601 first_error (_("bad range in register list"));
c19d1205
ZW
1602 return FAIL;
1603 }
40a18ebd 1604
c19d1205
ZW
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
a737bd4d 1616
c19d1205
ZW
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1622
c19d1205
ZW
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
a737bd4d 1629
c19d1205
ZW
1630 if (*str++ != '}')
1631 {
dcbf9037 1632 first_error (_("missing `}'"));
c19d1205
ZW
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
91d6fa6a 1638 expressionS exp;
40a18ebd 1639
91d6fa6a 1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
c19d1205 1641 return FAIL;
40a18ebd 1642
91d6fa6a 1643 if (exp.X_op == O_constant)
c19d1205 1644 {
91d6fa6a
NC
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
c19d1205
ZW
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
a737bd4d 1651
91d6fa6a 1652 if ((range & exp.X_add_number) != 0)
c19d1205 1653 {
91d6fa6a 1654 int regno = range & exp.X_add_number;
a737bd4d 1655
c19d1205
ZW
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
a737bd4d 1662
91d6fa6a 1663 range |= exp.X_add_number;
c19d1205
ZW
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
a737bd4d 1672
91d6fa6a 1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
c19d1205
ZW
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
a737bd4d 1678
c19d1205
ZW
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
a737bd4d 1684 }
c19d1205 1685 while (another_range);
a737bd4d 1686
c19d1205
ZW
1687 *strp = str;
1688 return range;
a737bd4d
NC
1689}
1690
5287ad62
JB
1691/* Types of registers in a list. */
1692
1693enum reg_list_els
1694{
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698};
1699
c19d1205
ZW
1700/* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
dcbf9037
JB
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
6057a28f 1714
c19d1205 1715static int
037e8744 1716parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1717{
037e8744 1718 char *str = *ccp;
c19d1205
ZW
1719 int base_reg;
1720 int new_base;
21d799b5 1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1722 int max_regs = 0;
c19d1205
ZW
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
a737bd4d 1726 int i;
6057a28f 1727
037e8744 1728 if (*str != '{')
5287ad62
JB
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
6057a28f 1733
037e8744 1734 str++;
6057a28f 1735
5287ad62 1736 switch (etype)
c19d1205 1737 {
5287ad62 1738 case REGLIST_VFP_S:
c19d1205
ZW
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
5287ad62 1741 break;
5f4273c7 1742
5287ad62
JB
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
b7fc2769 1745 break;
5f4273c7 1746
b7fc2769
JB
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
b1cc4aeb
PB
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1760 fpu_vfp_ext_d32);
5287ad62
JB
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1763 fpu_vfp_ext_d32);
5287ad62
JB
1764 }
1765 else
1766 max_regs = 16;
c19d1205 1767 }
6057a28f 1768
c19d1205 1769 base_reg = max_regs;
a737bd4d 1770
c19d1205
ZW
1771 do
1772 {
5287ad62 1773 int setmask = 1, addregs = 1;
dcbf9037 1774
037e8744 1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1776
c19d1205 1777 if (new_base == FAIL)
a737bd4d 1778 {
dcbf9037 1779 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1780 return FAIL;
1781 }
5f4273c7 1782
b7fc2769
JB
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
5f4273c7 1788
5287ad62
JB
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
c19d1205
ZW
1796 if (new_base < base_reg)
1797 base_reg = new_base;
a737bd4d 1798
5287ad62 1799 if (mask & (setmask << new_base))
c19d1205 1800 {
dcbf9037 1801 first_error (_("invalid register list"));
c19d1205 1802 return FAIL;
a737bd4d 1803 }
a737bd4d 1804
c19d1205
ZW
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
0bbf2aa4 1810
5287ad62
JB
1811 mask |= setmask << new_base;
1812 count += addregs;
0bbf2aa4 1813
037e8744 1814 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1815 {
1816 int high_range;
0bbf2aa4 1817
037e8744 1818 str++;
0bbf2aa4 1819
037e8744 1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1821 == FAIL)
c19d1205
ZW
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
0bbf2aa4 1826
b7fc2769
JB
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
5287ad62
JB
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
c19d1205
ZW
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
0bbf2aa4 1841
5287ad62 1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1843 {
5287ad62 1844 if (mask & (setmask << new_base))
0bbf2aa4 1845 {
c19d1205
ZW
1846 inst.error = _("invalid register list");
1847 return FAIL;
0bbf2aa4 1848 }
c19d1205 1849
5287ad62
JB
1850 mask |= setmask << new_base;
1851 count += addregs;
0bbf2aa4 1852 }
0bbf2aa4 1853 }
0bbf2aa4 1854 }
037e8744 1855 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1856
037e8744 1857 str++;
0bbf2aa4 1858
c19d1205
ZW
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
037e8744
JB
1876 *ccp = str;
1877
c19d1205 1878 return count;
b99bd4ef
NC
1879}
1880
dcbf9037
JB
1881/* True if two alias types are the same. */
1882
c921be7d 1883static bfd_boolean
dcbf9037
JB
1884neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885{
1886 if (!a && !b)
c921be7d 1887 return TRUE;
5f4273c7 1888
dcbf9037 1889 if (!a || !b)
c921be7d 1890 return FALSE;
dcbf9037
JB
1891
1892 if (a->defined != b->defined)
c921be7d 1893 return FALSE;
5f4273c7 1894
dcbf9037
JB
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
c921be7d 1898 return FALSE;
dcbf9037
JB
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
c921be7d 1902 return FALSE;
5f4273c7 1903
c921be7d 1904 return TRUE;
dcbf9037
JB
1905}
1906
5287ad62
JB
1907/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
dcbf9037 1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1914
5287ad62 1915#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1916#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1917#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919static int
dcbf9037
JB
1920parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
5287ad62
JB
1922{
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
20203fb9
NC
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1932 struct neon_typed_alias firsttype;
5f4273c7 1933
5287ad62
JB
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
5f4273c7 1936
5287ad62
JB
1937 do
1938 {
dcbf9037
JB
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
5287ad62
JB
1942 if (getreg == FAIL)
1943 {
dcbf9037 1944 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1945 return FAIL;
1946 }
5f4273c7 1947
5287ad62
JB
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
5287ad62 1954 }
dcbf9037 1955 firsttype = atype;
5287ad62
JB
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
dcbf9037 1962 first_error (_(incr_error));
5287ad62
JB
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
dcbf9037
JB
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
c921be7d 1972 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1973 {
1974 first_error (_(type_error));
5287ad62
JB
1975 return FAIL;
1976 }
5f4273c7 1977
5287ad62
JB
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
dcbf9037 1982 struct neon_typed_alias htype;
5287ad62
JB
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
dcbf9037 1988 first_error (_(type_error));
5287ad62
JB
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
dcbf9037 1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1996 return FAIL;
1997 }
1998 ptr++;
dcbf9037 1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
2000 if (hireg == FAIL)
2001 {
dcbf9037
JB
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
c921be7d 2005 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
2006 {
2007 first_error (_(type_error));
5287ad62
JB
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
5f4273c7 2013
5287ad62
JB
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
5f4273c7 2020
dcbf9037 2021 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 2022 {
dcbf9037
JB
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
5287ad62 2026 {
dcbf9037
JB
2027 first_error (_(type_error));
2028 return FAIL;
5287ad62
JB
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
dcbf9037 2035 first_error (_(type_error));
5287ad62
JB
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 2041
5287ad62
JB
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
5f4273c7 2045
5287ad62
JB
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
dcbf9037 2050 first_error (_("error parsing element/structure list"));
5287ad62
JB
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
dcbf9037 2056 first_error (_("expected }"));
5287ad62
JB
2057 return FAIL;
2058 }
5f4273c7 2059
5287ad62
JB
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
dcbf9037
JB
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
5287ad62
JB
2066 *pbase = base_reg;
2067 *str = ptr;
5f4273c7 2068
5287ad62
JB
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070}
2071
c19d1205
ZW
2072/* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
3da1d841 2077
c19d1205
ZW
2078static int
2079parse_reloc (char **str)
b99bd4ef 2080{
c19d1205
ZW
2081 struct reloc_entry *r;
2082 char *p, *q;
b99bd4ef 2083
c19d1205
ZW
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
b99bd4ef 2086
c19d1205
ZW
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
21d799b5
NC
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
b99bd4ef
NC
2101}
2102
c19d1205
ZW
2103/* Directives: register aliases. */
2104
dcbf9037 2105static struct reg_entry *
90ec0d68 2106insert_reg_alias (char *str, unsigned number, int type)
b99bd4ef 2107{
d3ce72d0 2108 struct reg_entry *new_reg;
c19d1205 2109 const char *name;
b99bd4ef 2110
d3ce72d0 2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2112 {
d3ce72d0 2113 if (new_reg->builtin)
c19d1205 2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2115
c19d1205
ZW
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
d3ce72d0 2118 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2120
d929913e 2121 return NULL;
c19d1205 2122 }
b99bd4ef 2123
c19d1205 2124 name = xstrdup (str);
d3ce72d0 2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2126
d3ce72d0
NC
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
b99bd4ef 2132
d3ce72d0 2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2134 abort ();
5f4273c7 2135
d3ce72d0 2136 return new_reg;
dcbf9037
JB
2137}
2138
2139static void
2140insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142{
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2144
dcbf9037
JB
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
5f4273c7 2150
dcbf9037
JB
2151 if (atype)
2152 {
21d799b5
NC
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2155 *reg->neon = *atype;
2156 }
c19d1205 2157}
b99bd4ef 2158
c19d1205 2159/* Look for the .req directive. This is of the form:
b99bd4ef 2160
c19d1205 2161 new_register_name .req existing_register_name
b99bd4ef 2162
c19d1205 2163 If we find one, or if it looks sufficiently like one that we want to
d929913e 2164 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2165
d929913e 2166static bfd_boolean
c19d1205
ZW
2167create_register_alias (char * newname, char *p)
2168{
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
b99bd4ef 2172
c19d1205
ZW
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2177 return FALSE;
b99bd4ef 2178
c19d1205
ZW
2179 oldname += 6;
2180 if (*oldname == '\0')
d929913e 2181 return FALSE;
b99bd4ef 2182
21d799b5 2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2184 if (!old)
b99bd4ef 2185 {
c19d1205 2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2187 return TRUE;
b99bd4ef
NC
2188 }
2189
c19d1205
ZW
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193#ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195#else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198#endif
b99bd4ef 2199
21d799b5 2200 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
b99bd4ef 2203
c19d1205
ZW
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
d929913e
NC
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
c19d1205 2211
d929913e
NC
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2221 the artificial FOO alias because it has already been created by the
d929913e
NC
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
c19d1205 2226
d929913e
NC
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
c19d1205 2229
d929913e
NC
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
c19d1205 2233
d929913e 2234 return TRUE;
b99bd4ef
NC
2235}
2236
dcbf9037
JB
2237/* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
5f4273c7 2245 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2246
c921be7d 2247static bfd_boolean
dcbf9037
JB
2248create_neon_reg_alias (char *newname, char *p)
2249{
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
12d6b0b7 2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
dcbf9037 2256 int namelen;
5f4273c7 2257
dcbf9037
JB
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
5f4273c7 2262
dcbf9037 2263 nameend = p;
5f4273c7 2264
dcbf9037
JB
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
c921be7d 2270 return FALSE;
5f4273c7 2271
dcbf9037 2272 p += 5;
5f4273c7 2273
dcbf9037 2274 if (*p == '\0')
c921be7d 2275 return FALSE;
5f4273c7 2276
dcbf9037
JB
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
c921be7d 2282 return FALSE;
dcbf9037
JB
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
c921be7d 2293 return FALSE;
dcbf9037
JB
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2310 return FALSE;
dcbf9037 2311 }
5f4273c7 2312
dcbf9037
JB
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
c921be7d 2317 return FALSE;
dcbf9037
JB
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
5f4273c7 2321
dcbf9037
JB
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
5f4273c7 2326
dcbf9037
JB
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2330 return FALSE;
dcbf9037 2331 }
5f4273c7 2332
dcbf9037 2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2334
dcbf9037
JB
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
c921be7d 2338 return FALSE;
dcbf9037 2339 }
5f4273c7 2340
dcbf9037
JB
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
5f4273c7 2343
dcbf9037
JB
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
c921be7d 2347 return FALSE;
dcbf9037
JB
2348 }
2349 }
2350
15735687
NS
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354#ifdef TC_CASE_SENSITIVE
dcbf9037 2355 namelen = nameend - newname;
15735687
NS
2356#else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359#endif
2360
21d799b5 2361 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
5f4273c7 2364
dcbf9037
JB
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2367
dcbf9037
JB
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
5f4273c7 2371
dcbf9037
JB
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2375
dcbf9037
JB
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
5f4273c7 2379
dcbf9037
JB
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2383
c921be7d 2384 return TRUE;
dcbf9037
JB
2385}
2386
c19d1205
ZW
2387/* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
c921be7d 2389
b99bd4ef 2390static void
c19d1205 2391s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2392{
c19d1205
ZW
2393 as_bad (_("invalid syntax for .req directive"));
2394}
b99bd4ef 2395
dcbf9037
JB
2396static void
2397s_dn (int a ATTRIBUTE_UNUSED)
2398{
2399 as_bad (_("invalid syntax for .dn directive"));
2400}
2401
2402static void
2403s_qn (int a ATTRIBUTE_UNUSED)
2404{
2405 as_bad (_("invalid syntax for .qn directive"));
2406}
2407
c19d1205
ZW
2408/* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
b99bd4ef 2410
c19d1205
ZW
2411 my_alias .req r11
2412 .unreq my_alias */
b99bd4ef
NC
2413
2414static void
c19d1205 2415s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2416{
c19d1205
ZW
2417 char * name;
2418 char saved_char;
b99bd4ef 2419
c19d1205
ZW
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
21d799b5
NC
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
c19d1205
ZW
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
a1727c1a 2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
c19d1205
ZW
2441 name);
2442 else
2443 {
d929913e
NC
2444 char * p;
2445 char * nbuf;
2446
db0bc284 2447 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2448 free ((char *) reg->name);
dcbf9037
JB
2449 if (reg->neon)
2450 free (reg->neon);
c19d1205 2451 free (reg);
d929913e
NC
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
5f4273c7 2456
d929913e
NC
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
21d799b5 2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2461 if (reg)
2462 {
db0bc284 2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
21d799b5 2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2473 if (reg)
2474 {
db0bc284 2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
c19d1205
ZW
2483 }
2484 }
b99bd4ef 2485
c19d1205 2486 *input_line_pointer = saved_char;
b99bd4ef
NC
2487 demand_empty_rest_of_line ();
2488}
2489
c19d1205
ZW
2490/* Directives: Instruction set selection. */
2491
2492#ifdef OBJ_ELF
2493/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
cd000bff
DJ
2498/* Create a new mapping symbol for the transition to STATE. */
2499
2500static void
2501make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2502{
a737bd4d 2503 symbolS * symbolP;
c19d1205
ZW
2504 const char * symname;
2505 int type;
b99bd4ef 2506
c19d1205 2507 switch (state)
b99bd4ef 2508 {
c19d1205
ZW
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
c19d1205
ZW
2521 default:
2522 abort ();
2523 }
2524
cd000bff 2525 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
cd000bff
DJ
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2de7820f
JZ
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
cd000bff
DJ
2556 if (value == 0)
2557 {
2de7820f
JZ
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
cd000bff
DJ
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
0f020cef
JZ
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
0f020cef
JZ
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
cd000bff
DJ
2571 frag->tc_frag_data.last_map = symbolP;
2572}
2573
2574/* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578static void
2579insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581{
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2595 }
cd000bff
DJ
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599}
2600
2601static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603/* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606void
2607mapping_state (enum mstate state)
2608{
940b5ce0
DJ
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
cd000bff
DJ
2611#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
49c62a33
NC
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
cd000bff
DJ
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652#undef TRANSITION
2653}
2654
2655/* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658static void
2659mapping_state_2 (enum mstate state, int max_chars)
2660{
940b5ce0
DJ
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
cd000bff
DJ
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
cd000bff
DJ
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2673}
2674#else
d3106081
NS
2675#define mapping_state(x) ((void)0)
2676#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2677#endif
2678
2679/* Find the real, Thumb encoded start of a Thumb function. */
2680
4343666d 2681#ifdef OBJ_COFF
c19d1205
ZW
2682static symbolS *
2683find_real_start (symbolS * symbolP)
2684{
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690#define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
37f6032b
ZW
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2701 return symbolP;
2702
37f6032b 2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
bd3ba5d1 2708 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2709 new_target = symbolP;
2710 }
2711
c19d1205
ZW
2712 return new_target;
2713}
4343666d 2714#endif
c19d1205
ZW
2715
2716static void
2717opcode_select (int width)
2718{
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
e74cfd16 2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
c19d1205
ZW
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
e74cfd16 2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
c19d1205
ZW
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752}
2753
2754static void
2755s_arm (int ignore ATTRIBUTE_UNUSED)
2756{
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759}
2760
2761static void
2762s_thumb (int ignore ATTRIBUTE_UNUSED)
2763{
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766}
2767
2768static void
2769s_code (int unused ATTRIBUTE_UNUSED)
2770{
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784}
2785
2786static void
2787s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788{
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801}
2802
2803static void
2804s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805{
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811}
2812
2813/* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816static void
2817s_thumb_set (int equiv)
2818{
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856#ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
c19d1205 2859 for this symbol. */
b99bd4ef
NC
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
21d799b5 2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872#endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875#ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878#endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
c19d1205 2894 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898#if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900#endif
2901}
2902
c19d1205 2903/* Directives: Mode selection. */
b99bd4ef 2904
c19d1205
ZW
2905/* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2908static void
c19d1205 2909s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2910{
c19d1205
ZW
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
b99bd4ef
NC
2926 demand_empty_rest_of_line ();
2927}
2928
c19d1205
ZW
2929/* Directives: sectioning and alignment. */
2930
2931/* Same as s_align_ptwo but align 0 => align 2. */
2932
b99bd4ef 2933static void
c19d1205 2934s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2935{
a737bd4d 2936 int temp;
dce323d1 2937 bfd_boolean fill_p;
c19d1205
ZW
2938 long temp_fill;
2939 long max_alignment = 15;
b99bd4ef
NC
2940
2941 temp = get_absolute_expression ();
c19d1205
ZW
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
b99bd4ef 2945 {
c19d1205
ZW
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
b99bd4ef 2949
c19d1205
ZW
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
dce323d1 2954 fill_p = TRUE;
b99bd4ef 2955 }
c19d1205 2956 else
dce323d1
PB
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
b99bd4ef 2961
c19d1205
ZW
2962 if (!temp)
2963 temp = 2;
b99bd4ef 2964
c19d1205
ZW
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
dce323d1
PB
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
c19d1205
ZW
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
b99bd4ef
NC
2976}
2977
c19d1205
ZW
2978static void
2979s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2980{
c19d1205
ZW
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
cd000bff
DJ
2985
2986#ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988#endif
c19d1205 2989}
b99bd4ef 2990
c19d1205
ZW
2991static void
2992s_even (int ignore ATTRIBUTE_UNUSED)
2993{
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
b99bd4ef 2997
c19d1205 2998 record_alignment (now_seg, 1);
b99bd4ef 2999
c19d1205 3000 demand_empty_rest_of_line ();
b99bd4ef
NC
3001}
3002
c19d1205 3003/* Directives: Literal pools. */
a737bd4d 3004
c19d1205
ZW
3005static literal_pool *
3006find_literal_pool (void)
a737bd4d 3007{
c19d1205 3008 literal_pool * pool;
a737bd4d 3009
c19d1205 3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 3011 {
c19d1205
ZW
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
a737bd4d
NC
3015 }
3016
c19d1205 3017 return pool;
a737bd4d
NC
3018}
3019
c19d1205
ZW
3020static literal_pool *
3021find_or_make_literal_pool (void)
a737bd4d 3022{
c19d1205
ZW
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
a737bd4d 3026
c19d1205 3027 pool = find_literal_pool ();
a737bd4d 3028
c19d1205 3029 if (pool == NULL)
a737bd4d 3030 {
c19d1205 3031 /* Create a new pool. */
21d799b5 3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
3033 if (! pool)
3034 return NULL;
a737bd4d 3035
c19d1205
ZW
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
a737bd4d 3044 }
a737bd4d 3045
c19d1205
ZW
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
a737bd4d 3048 {
c19d1205
ZW
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
a737bd4d
NC
3052 }
3053
c19d1205
ZW
3054 /* Done. */
3055 return pool;
a737bd4d
NC
3056}
3057
c19d1205 3058/* Add the literal in the global 'inst'
5f4273c7 3059 structure to the relevant literal pool. */
b99bd4ef
NC
3060
3061static int
c19d1205 3062add_to_lit_pool (void)
b99bd4ef 3063{
c19d1205
ZW
3064 literal_pool * pool;
3065 unsigned int entry;
b99bd4ef 3066
c19d1205
ZW
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 3071 {
c19d1205
ZW
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
b99bd4ef
NC
3089 }
3090
c19d1205
ZW
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
a8040cf2
NC
3101#ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108#endif
c19d1205
ZW
3109 pool->next_free_entry += 1;
3110 }
b99bd4ef 3111
c19d1205
ZW
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3115
c19d1205 3116 return SUCCESS;
b99bd4ef
NC
3117}
3118
c19d1205
ZW
3119/* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
e16bb312 3121
c19d1205
ZW
3122static void
3123symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128{
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
e16bb312 3131
c19d1205
ZW
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
21d799b5 3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3135
c19d1205
ZW
3136#ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139#endif
b99bd4ef 3140
c19d1205 3141 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3142
c19d1205
ZW
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
b99bd4ef 3146
c19d1205 3147 symbol_set_frag (symbolP, frag);
b99bd4ef 3148
c19d1205
ZW
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
b99bd4ef 3152
c19d1205
ZW
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
b99bd4ef 3156
c19d1205 3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3158
c19d1205 3159 obj_symbol_new_hook (symbolP);
b99bd4ef 3160
c19d1205
ZW
3161#ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163#endif
3164
3165#ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167#endif /* DEBUG_SYMS */
b99bd4ef
NC
3168}
3169
b99bd4ef 3170
c19d1205
ZW
3171static void
3172s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3173{
c19d1205
ZW
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
b99bd4ef 3177
c19d1205
ZW
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
b99bd4ef 3183
c19d1205 3184 mapping_state (MAP_DATA);
b99bd4ef 3185
c19d1205
ZW
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
b99bd4ef 3190
c19d1205 3191 record_alignment (now_seg, 2);
b99bd4ef 3192
c19d1205 3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3194
c19d1205
ZW
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
b99bd4ef 3198
c19d1205 3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3200
c19d1205
ZW
3201#if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203#endif
6c43fab6 3204
c19d1205 3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
a8040cf2
NC
3206 {
3207#ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210#endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
b99bd4ef 3214
c19d1205
ZW
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
b99bd4ef
NC
3218}
3219
c19d1205
ZW
3220#ifdef OBJ_ELF
3221/* Forward declarations for functions below, in the MD interface
3222 section. */
3223static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224static valueT create_unwind_entry (int);
3225static void start_unwind_section (const segT, int);
3226static void add_unwind_opcode (valueT, int);
3227static void flush_pending_unwind (void);
b99bd4ef 3228
c19d1205 3229/* Directives: Data. */
b99bd4ef 3230
c19d1205
ZW
3231static void
3232s_arm_elf_cons (int nbytes)
3233{
3234 expressionS exp;
b99bd4ef 3235
c19d1205
ZW
3236#ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238#endif
b99bd4ef 3239
c19d1205 3240 if (is_it_end_of_statement ())
b99bd4ef 3241 {
c19d1205
ZW
3242 demand_empty_rest_of_line ();
3243 return;
b99bd4ef
NC
3244 }
3245
c19d1205
ZW
3246#ifdef md_cons_align
3247 md_cons_align (nbytes);
3248#endif
b99bd4ef 3249
c19d1205
ZW
3250 mapping_state (MAP_DATA);
3251 do
b99bd4ef 3252 {
c19d1205
ZW
3253 int reloc;
3254 char *base = input_line_pointer;
b99bd4ef 3255
c19d1205 3256 expression (& exp);
b99bd4ef 3257
c19d1205
ZW
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
21d799b5
NC
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
c19d1205 3277 int size = bfd_get_reloc_size (howto);
b99bd4ef 3278
2fc8bdac
ZW
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
c19d1205 3286 if (size > nbytes)
2fc8bdac 3287 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
21d799b5 3297 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3310 }
3311 }
3312 }
b99bd4ef 3313 }
c19d1205 3314 while (*input_line_pointer++ == ',');
b99bd4ef 3315
c19d1205
ZW
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
b99bd4ef
NC
3319}
3320
c921be7d
NC
3321/* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324static void
3325emit_thumb32_expr (expressionS * exp)
3326{
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333}
3334
3335/* Guess the instruction size based on the opcode. */
3336
3337static int
3338thumb_insn_size (int opcode)
3339{
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346}
3347
3348static bfd_boolean
3349emit_insn (expressionS *exp, int nbytes)
3350{
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391}
3392
3393/* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396static void
3397s_arm_elf_inst (int nbytes)
3398{
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441}
b99bd4ef 3442
c19d1205 3443/* Parse a .rel31 directive. */
b99bd4ef 3444
c19d1205
ZW
3445static void
3446s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447{
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
b99bd4ef 3451
c19d1205
ZW
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
b99bd4ef 3457
c19d1205
ZW
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
b99bd4ef 3462
c19d1205
ZW
3463#ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465#endif
b99bd4ef 3466
c19d1205
ZW
3467#ifdef md_cons_align
3468 md_cons_align (4);
3469#endif
b99bd4ef 3470
c19d1205 3471 mapping_state (MAP_DATA);
b99bd4ef 3472
c19d1205 3473 expression (&exp);
b99bd4ef 3474
c19d1205
ZW
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
b99bd4ef 3479
c19d1205 3480 demand_empty_rest_of_line ();
b99bd4ef
NC
3481}
3482
c19d1205 3483/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3484
c19d1205 3485/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3486
c19d1205
ZW
3487static void
3488s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489{
3490 demand_empty_rest_of_line ();
921e5f0a
PB
3491 if (unwind.proc_start)
3492 {
c921be7d 3493 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3494 return;
3495 }
3496
c19d1205
ZW
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
b99bd4ef 3499
c19d1205
ZW
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
fdfde340 3507 unwind.fp_reg = REG_SP;
c19d1205
ZW
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510}
b99bd4ef 3511
b99bd4ef 3512
c19d1205
ZW
3513/* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
b99bd4ef 3515
c19d1205
ZW
3516static void
3517s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518{
3519 demand_empty_rest_of_line ();
921e5f0a 3520 if (!unwind.proc_start)
c921be7d 3521 as_bad (MISSING_FNSTART);
921e5f0a 3522
c19d1205 3523 if (unwind.table_entry)
6decc662 3524 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3525
c19d1205
ZW
3526 create_unwind_entry (1);
3527}
a737bd4d 3528
c19d1205 3529/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3530
c19d1205
ZW
3531static void
3532s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533{
3534 long where;
3535 char *ptr;
3536 valueT val;
940b5ce0 3537 unsigned int marked_pr_dependency;
f02232aa 3538
c19d1205 3539 demand_empty_rest_of_line ();
f02232aa 3540
921e5f0a
PB
3541 if (!unwind.proc_start)
3542 {
c921be7d 3543 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3544 return;
3545 }
3546
c19d1205
ZW
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
f02232aa 3552
c19d1205
ZW
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
b99bd4ef 3557
c19d1205 3558 ptr = frag_more (8);
5011093d 3559 memset (ptr, 0, 8);
c19d1205 3560 where = frag_now_fix () - 8;
f02232aa 3561
c19d1205
ZW
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
f02232aa 3565
c19d1205
ZW
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
940b5ce0
DJ
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
5f4273c7
NC
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
c19d1205
ZW
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3582 |= 1 << unwind.personality_index;
c19d1205 3583 }
f02232aa 3584
c19d1205
ZW
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
f02232aa 3592
c19d1205
ZW
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3595
3596 unwind.proc_start = NULL;
c19d1205 3597}
f02232aa 3598
f02232aa 3599
c19d1205 3600/* Parse an unwind_cantunwind directive. */
b99bd4ef 3601
c19d1205
ZW
3602static void
3603s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604{
3605 demand_empty_rest_of_line ();
921e5f0a 3606 if (!unwind.proc_start)
c921be7d 3607 as_bad (MISSING_FNSTART);
921e5f0a 3608
c19d1205
ZW
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3611
c19d1205
ZW
3612 unwind.personality_index = -2;
3613}
b99bd4ef 3614
b99bd4ef 3615
c19d1205 3616/* Parse a personalityindex directive. */
b99bd4ef 3617
c19d1205
ZW
3618static void
3619s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620{
3621 expressionS exp;
b99bd4ef 3622
921e5f0a 3623 if (!unwind.proc_start)
c921be7d 3624 as_bad (MISSING_FNSTART);
921e5f0a 3625
c19d1205
ZW
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3628
c19d1205 3629 expression (&exp);
b99bd4ef 3630
c19d1205
ZW
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3633 {
c19d1205
ZW
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
b99bd4ef
NC
3637 }
3638
c19d1205 3639 unwind.personality_index = exp.X_add_number;
b99bd4ef 3640
c19d1205
ZW
3641 demand_empty_rest_of_line ();
3642}
e16bb312 3643
e16bb312 3644
c19d1205 3645/* Parse a personality directive. */
e16bb312 3646
c19d1205
ZW
3647static void
3648s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649{
3650 char *name, *p, c;
a737bd4d 3651
921e5f0a 3652 if (!unwind.proc_start)
c921be7d 3653 as_bad (MISSING_FNSTART);
921e5f0a 3654
c19d1205
ZW
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
a737bd4d 3657
c19d1205
ZW
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664}
e16bb312 3665
e16bb312 3666
c19d1205 3667/* Parse a directive saving core registers. */
e16bb312 3668
c19d1205
ZW
3669static void
3670s_arm_unwind_save_core (void)
e16bb312 3671{
c19d1205
ZW
3672 valueT op;
3673 long range;
3674 int n;
e16bb312 3675
c19d1205
ZW
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
e16bb312 3678 {
c19d1205
ZW
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
e16bb312 3683
c19d1205 3684 demand_empty_rest_of_line ();
e16bb312 3685
c19d1205
ZW
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
e16bb312 3697
01ae4198
DJ
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
c19d1205 3700 {
01ae4198
DJ
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
0dd132b6 3716 else
01ae4198
DJ
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
c19d1205 3726 }
0dd132b6 3727
c19d1205
ZW
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
0dd132b6
NC
3733 }
3734
c19d1205
ZW
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
0dd132b6
NC
3741}
3742
c19d1205
ZW
3743
3744/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3745
3746static void
c19d1205 3747s_arm_unwind_save_fpa (int reg)
b99bd4ef 3748{
c19d1205
ZW
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
b99bd4ef 3752
c19d1205
ZW
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
b99bd4ef 3758
c19d1205 3759 if (exp.X_op != O_constant)
b99bd4ef 3760 {
c19d1205
ZW
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
b99bd4ef
NC
3763 return;
3764 }
3765
c19d1205
ZW
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3769 {
c19d1205
ZW
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
b99bd4ef
NC
3772 return;
3773 }
3774
c19d1205 3775 demand_empty_rest_of_line ();
b99bd4ef 3776
c19d1205
ZW
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
b99bd4ef
NC
3783 else
3784 {
c19d1205
ZW
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
b99bd4ef 3788 }
c19d1205 3789 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3790}
3791
c19d1205 3792
fa073d69
MS
3793/* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795static void
3796s_arm_unwind_save_vfp_armv6 (void)
3797{
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840}
3841
3842
3843/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3844
3845static void
c19d1205 3846s_arm_unwind_save_vfp (void)
b99bd4ef 3847{
c19d1205 3848 int count;
ca3f61f7 3849 unsigned int reg;
c19d1205 3850 valueT op;
b99bd4ef 3851
5287ad62 3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3853 if (count == FAIL)
b99bd4ef 3854 {
c19d1205
ZW
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
b99bd4ef
NC
3857 return;
3858 }
3859
c19d1205 3860 demand_empty_rest_of_line ();
b99bd4ef 3861
c19d1205 3862 if (reg == 8)
b99bd4ef 3863 {
c19d1205
ZW
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
b99bd4ef 3867 }
c19d1205 3868 else
b99bd4ef 3869 {
c19d1205
ZW
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
b99bd4ef 3873 }
c19d1205
ZW
3874 unwind.frame_size += count * 8 + 4;
3875}
b99bd4ef 3876
b99bd4ef 3877
c19d1205
ZW
3878/* Parse a directive saving iWMMXt data registers. */
3879
3880static void
3881s_arm_unwind_save_mmxwr (void)
3882{
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
b99bd4ef 3888
c19d1205
ZW
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
b99bd4ef 3891
c19d1205 3892 do
b99bd4ef 3893 {
dcbf9037 3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3895
c19d1205 3896 if (reg == FAIL)
b99bd4ef 3897 {
9b7132d3 3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3899 goto error;
b99bd4ef
NC
3900 }
3901
c19d1205
ZW
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
b99bd4ef 3905
c19d1205
ZW
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
dcbf9037 3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3910 if (hi_reg == FAIL)
3911 {
9b7132d3 3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3925
c19d1205
ZW
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
b99bd4ef 3928
c19d1205 3929 demand_empty_rest_of_line ();
b99bd4ef 3930
708587a4 3931 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3932 the list. */
3933 flush_pending_unwind ();
b99bd4ef 3934
c19d1205 3935 for (i = 0; i < 16; i++)
b99bd4ef 3936 {
c19d1205
ZW
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
b99bd4ef
NC
3939 }
3940
c19d1205
ZW
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
b99bd4ef 3945 {
c19d1205
ZW
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
b99bd4ef 3964
c19d1205
ZW
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
87a1fd79 3967 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
b99bd4ef
NC
3976 }
3977
c19d1205
ZW
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3982 {
c19d1205
ZW
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3988 preceding block. */
c19d1205
ZW
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
b99bd4ef
NC
4006 }
4007
c19d1205
ZW
4008 return;
4009error:
4010 ignore_rest_of_line ();
b99bd4ef
NC
4011}
4012
4013static void
c19d1205 4014s_arm_unwind_save_mmxwcg (void)
b99bd4ef 4015{
c19d1205
ZW
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
b99bd4ef 4020
c19d1205
ZW
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
b99bd4ef 4023
c19d1205 4024 do
b99bd4ef 4025 {
dcbf9037 4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 4027
c19d1205
ZW
4028 if (reg == FAIL)
4029 {
9b7132d3 4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4031 goto error;
4032 }
b99bd4ef 4033
c19d1205
ZW
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
b99bd4ef 4038
c19d1205
ZW
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
dcbf9037 4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
4043 if (hi_reg == FAIL)
4044 {
9b7132d3 4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
b99bd4ef 4056 }
c19d1205 4057 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 4058
c19d1205
ZW
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
b99bd4ef 4061
c19d1205
ZW
4062 demand_empty_rest_of_line ();
4063
708587a4 4064 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
4065 the list. */
4066 flush_pending_unwind ();
b99bd4ef 4067
c19d1205 4068 for (reg = 0; reg < 16; reg++)
b99bd4ef 4069 {
c19d1205
ZW
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
b99bd4ef 4072 }
c19d1205
ZW
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076error:
4077 ignore_rest_of_line ();
b99bd4ef
NC
4078}
4079
c19d1205 4080
fa073d69
MS
4081/* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
c19d1205 4083
b99bd4ef 4084static void
fa073d69 4085s_arm_unwind_save (int arch_v6)
b99bd4ef 4086{
c19d1205
ZW
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
b99bd4ef 4090
921e5f0a 4091 if (!unwind.proc_start)
c921be7d 4092 as_bad (MISSING_FNSTART);
921e5f0a 4093
c19d1205
ZW
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
b99bd4ef 4096
c19d1205 4097 if (*peek == '{')
b99bd4ef 4098 {
c19d1205
ZW
4099 had_brace = TRUE;
4100 peek++;
b99bd4ef
NC
4101 }
4102
c19d1205 4103 reg = arm_reg_parse_multi (&peek);
b99bd4ef 4104
c19d1205 4105 if (!reg)
b99bd4ef 4106 {
c19d1205
ZW
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
b99bd4ef
NC
4109 return;
4110 }
4111
c19d1205 4112 switch (reg->type)
b99bd4ef 4113 {
c19d1205
ZW
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
93ac2687 4121 input_line_pointer = peek;
c19d1205 4122 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4123 return;
c19d1205
ZW
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
c19d1205
ZW
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
b99bd4ef 4138 }
c19d1205 4139}
b99bd4ef 4140
b99bd4ef 4141
c19d1205
ZW
4142/* Parse an unwind_movsp directive. */
4143
4144static void
4145s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146{
4147 int reg;
4148 valueT op;
4fa3602b 4149 int offset;
c19d1205 4150
921e5f0a 4151 if (!unwind.proc_start)
c921be7d 4152 as_bad (MISSING_FNSTART);
921e5f0a 4153
dcbf9037 4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4155 if (reg == FAIL)
b99bd4ef 4156 {
9b7132d3 4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4158 ignore_rest_of_line ();
b99bd4ef
NC
4159 return;
4160 }
4fa3602b
PB
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
c19d1205 4171 demand_empty_rest_of_line ();
b99bd4ef 4172
c19d1205 4173 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4174 {
c19d1205 4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4176 return;
4177 }
4178
c19d1205
ZW
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4181
c19d1205
ZW
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4fa3602b 4188 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4189 unwind.sp_restored = 1;
b05fe5cf
ZW
4190}
4191
c19d1205
ZW
4192/* Parse an unwind_pad directive. */
4193
b05fe5cf 4194static void
c19d1205 4195s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4196{
c19d1205 4197 int offset;
b05fe5cf 4198
921e5f0a 4199 if (!unwind.proc_start)
c921be7d 4200 as_bad (MISSING_FNSTART);
921e5f0a 4201
c19d1205
ZW
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
b99bd4ef 4204
c19d1205
ZW
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
b99bd4ef 4211
c19d1205
ZW
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217}
4218
4219/* Parse an unwind_setfp directive. */
4220
4221static void
4222s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4223{
c19d1205
ZW
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
921e5f0a 4228 if (!unwind.proc_start)
c921be7d 4229 as_bad (MISSING_FNSTART);
921e5f0a 4230
dcbf9037 4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
dcbf9037 4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4236
c19d1205
ZW
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
b99bd4ef 4243
c19d1205
ZW
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
a737bd4d 4252
c19d1205 4253 demand_empty_rest_of_line ();
a737bd4d 4254
fdfde340 4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4256 {
c19d1205
ZW
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
a737bd4d
NC
4260 }
4261
c19d1205
ZW
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
fdfde340 4265 if (sp_reg == REG_SP)
c19d1205
ZW
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
a737bd4d
NC
4269}
4270
c19d1205
ZW
4271/* Parse an unwind_raw directive. */
4272
4273static void
4274s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4275{
c19d1205 4276 expressionS exp;
708587a4 4277 /* This is an arbitrary limit. */
c19d1205
ZW
4278 unsigned char op[16];
4279 int count;
a737bd4d 4280
921e5f0a 4281 if (!unwind.proc_start)
c921be7d 4282 as_bad (MISSING_FNSTART);
921e5f0a 4283
c19d1205
ZW
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4287 {
c19d1205
ZW
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
a737bd4d 4293
c19d1205
ZW
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
a737bd4d 4300
c19d1205 4301 count = 0;
a737bd4d 4302
c19d1205
ZW
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
a737bd4d 4310 }
c19d1205 4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4312 {
c19d1205
ZW
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
a737bd4d 4316 }
c19d1205 4317 op[count++] = exp.X_add_number;
a737bd4d 4318
c19d1205
ZW
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
a737bd4d 4322
c19d1205
ZW
4323 expression (&exp);
4324 }
b99bd4ef 4325
c19d1205
ZW
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
b99bd4ef 4329
c19d1205 4330 demand_empty_rest_of_line ();
b99bd4ef 4331}
ee065d83
PB
4332
4333
4334/* Parse a .eabi_attribute directive. */
4335
4336static void
4337s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338{
ee3c0378
AS
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
ee065d83
PB
4343}
4344
0855e32b
NS
4345/* Emit a tls fix for the symbol. */
4346
4347static void
4348s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349{
4350 char *p;
4351 expressionS exp;
4352#ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354#endif
4355
4356#ifdef md_cons_align
4357 md_cons_align (4);
4358#endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367}
cdf9ccec 4368#endif /* OBJ_ELF */
0855e32b 4369
ee065d83 4370static void s_arm_arch (int);
7a1d4c38 4371static void s_arm_object_arch (int);
ee065d83
PB
4372static void s_arm_cpu (int);
4373static void s_arm_fpu (int);
69133863 4374static void s_arm_arch_extension (int);
b99bd4ef 4375
f0927246
NC
4376#ifdef TE_PE
4377
4378static void
5f4273c7 4379pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4380{
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395}
4396#endif /* TE_PE */
4397
c19d1205
ZW
4398/* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
b99bd4ef 4403
c19d1205 4404const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4405{
c19d1205
ZW
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
dcbf9037
JB
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
c19d1205
ZW
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
8463be01
PB
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
7a1d4c38 4426 { "object_arch", s_arm_object_arch, 0 },
8463be01 4427 { "fpu", s_arm_fpu, 0 },
69133863 4428 { "arch_extension", s_arm_arch_extension, 0 },
c19d1205 4429#ifdef OBJ_ELF
c921be7d
NC
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
fa073d69 4443 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
0855e32b 4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
c19d1205
ZW
4450#else
4451 { "word", cons, 4},
f0927246
NC
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4461#endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
f0927246
NC
4465#ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467#endif
c19d1205
ZW
4468 { 0, 0, 0 }
4469};
4470\f
4471/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4472
c19d1205
ZW
4473/* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
b99bd4ef 4478
c19d1205
ZW
4479static int
4480parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482{
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
b99bd4ef 4486 {
c19d1205
ZW
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
b99bd4ef 4490
c19d1205
ZW
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
b99bd4ef 4496
c19d1205
ZW
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499}
b99bd4ef 4500
5287ad62 4501/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505static int
4506parse_big_immediate (char **str, int i)
4507{
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
036dc3f7
PB
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
58ad575f 4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
036dc3f7
PB
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
5287ad62 4526 else if (exp.X_op == O_big
95b75c01 4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
5287ad62
JB
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
95b75c01 4530
5287ad62
JB
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4534 gas_assert (parts != 0);
95b75c01
NC
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
5287ad62
JB
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
5f4273c7 4565
5287ad62
JB
4566 *str = ptr;
4567
4568 return SUCCESS;
4569}
4570
c19d1205
ZW
4571/* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
b99bd4ef 4573
c19d1205
ZW
4574static int
4575parse_fpa_immediate (char ** str)
4576{
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
b99bd4ef 4582
c19d1205
ZW
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
b99bd4ef 4585
c19d1205
ZW
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4589 {
c19d1205 4590 char *start = *str;
b99bd4ef 4591
c19d1205
ZW
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
b99bd4ef 4598
c19d1205
ZW
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
b99bd4ef 4603
c19d1205 4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4605
c19d1205
ZW
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4613 {
c19d1205
ZW
4614 if (words[j] != fp_values[i][j])
4615 break;
b99bd4ef
NC
4616 }
4617
c19d1205 4618 if (j == MAX_LITTLENUMS)
b99bd4ef 4619 {
c19d1205
ZW
4620 *str = save_in;
4621 return i + 8;
b99bd4ef
NC
4622 }
4623 }
4624 }
b99bd4ef 4625
c19d1205
ZW
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
b99bd4ef 4645
c19d1205
ZW
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
b99bd4ef
NC
4654 }
4655
c19d1205
ZW
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
b99bd4ef
NC
4660}
4661
136da414
JB
4662/* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665static int
4666is_quarter_float (unsigned imm)
4667{
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670}
4671
4672/* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
136da414
JB
4677
4678static unsigned
4679parse_qfloat_immediate (char **ccp, int *immed)
4680{
4681 char *str = *ccp;
c96612cc 4682 char *fpnum;
136da414 4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4684 int found_fpchar = 0;
5f4273c7 4685
136da414 4686 skip_past_char (&str, '#');
5f4273c7 4687
c96612cc
JB
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
5f4273c7 4710
136da414
JB
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
5f4273c7 4715
136da414
JB
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
5f4273c7 4722
c96612cc 4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
5f4273c7 4729
136da414
JB
4730 return SUCCESS;
4731 }
5f4273c7 4732
136da414
JB
4733 return FAIL;
4734}
4735
c19d1205
ZW
4736/* Shift operands. */
4737enum shift_kind
b99bd4ef 4738{
c19d1205
ZW
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740};
b99bd4ef 4741
c19d1205
ZW
4742struct asm_shift_name
4743{
4744 const char *name;
4745 enum shift_kind kind;
4746};
b99bd4ef 4747
c19d1205
ZW
4748/* Third argument to parse_shift. */
4749enum parse_shift_mode
4750{
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756};
b99bd4ef 4757
c19d1205
ZW
4758/* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
b99bd4ef 4760
c19d1205
ZW
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
b99bd4ef 4764
c19d1205
ZW
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4767
c19d1205
ZW
4768static int
4769parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4770{
c19d1205
ZW
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
b99bd4ef 4776
c19d1205
ZW
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
b99bd4ef 4779
c19d1205 4780 if (p == *str)
b99bd4ef 4781 {
c19d1205
ZW
4782 inst.error = _("shift expression expected");
4783 return FAIL;
b99bd4ef
NC
4784 }
4785
21d799b5
NC
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
c19d1205
ZW
4788
4789 if (shift_name == NULL)
b99bd4ef 4790 {
c19d1205
ZW
4791 inst.error = _("shift expression expected");
4792 return FAIL;
b99bd4ef
NC
4793 }
4794
c19d1205 4795 shift = shift_name->kind;
b99bd4ef 4796
c19d1205
ZW
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
b99bd4ef 4801
c19d1205
ZW
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
b99bd4ef 4809
c19d1205
ZW
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
b99bd4ef 4817
c19d1205
ZW
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
b99bd4ef 4825
c19d1205
ZW
4826 default: abort ();
4827 }
b99bd4ef 4828
c19d1205
ZW
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
b99bd4ef 4833
c19d1205 4834 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
b99bd4ef
NC
4847}
4848
c19d1205 4849/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4850
c19d1205
ZW
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
b99bd4ef 4855
c19d1205
ZW
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4858 is deferred to md_apply_fix. */
b99bd4ef 4859
c19d1205
ZW
4860static int
4861parse_shifter_operand (char **str, int i)
4862{
4863 int value;
91d6fa6a 4864 expressionS exp;
b99bd4ef 4865
dcbf9037 4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
b99bd4ef 4870
c19d1205
ZW
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4874
c19d1205
ZW
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
b99bd4ef 4877
c19d1205
ZW
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4880 }
4881
c19d1205
ZW
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
b99bd4ef 4884
c19d1205 4885 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4886 {
c19d1205 4887 /* #x, y -- ie explicit rotation by Y. */
91d6fa6a 4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
c19d1205 4889 return FAIL;
b99bd4ef 4890
91d6fa6a 4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
c19d1205
ZW
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
b99bd4ef 4896
91d6fa6a 4897 value = exp.X_add_number;
c19d1205
ZW
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
09d92015 4908
a415b1cd
JB
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
09d92015
MM
4912 }
4913
c19d1205
ZW
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
09d92015
MM
4917}
4918
4962c51a
MS
4919/* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926struct group_reloc_table_entry
4927{
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933};
4934
4935typedef enum
4936{
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942} group_reloc_type;
4943
4944static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998/* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005static int
5006find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007{
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5f4273c7
NC
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
4962c51a
MS
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023}
5024
5025/* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039static parse_operand_result
5040parse_shifter_operand_group_reloc (char **str, int i)
5041{
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
21d799b5 5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 5070 gas_assert (inst.reloc.type != 0);
4962c51a
MS
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079}
5080
8e560766
MGD
5081/* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
fa94de6b 5083
8e560766
MGD
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085static parse_operand_result
5086parse_neon_alignment (char **str, int i)
5087{
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106}
5107
c19d1205
ZW
5108/* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
09d92015 5110
c19d1205 5111 Preindexed addressing (.preind=1):
09d92015 5112
c19d1205
ZW
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5117
c19d1205 5118 These three may have a trailing ! which causes .writeback to be set also.
09d92015 5119
c19d1205 5120 Postindexed addressing (.postind=1, .writeback=1):
09d92015 5121
c19d1205
ZW
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
09d92015 5126
c19d1205 5127 Unindexed addressing (.preind=0, .postind=0):
09d92015 5128
c19d1205 5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 5130
c19d1205 5131 Other:
09d92015 5132
c19d1205
ZW
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 5136
c19d1205
ZW
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
4962c51a
MS
5140static parse_operand_result
5141parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
09d92015 5143{
c19d1205
ZW
5144 char *p = *str;
5145 int reg;
09d92015 5146
c19d1205 5147 if (skip_past_char (&p, '[') == FAIL)
09d92015 5148 {
c19d1205
ZW
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
974da60d 5151 /* Bare address - translate to PC-relative offset. */
c19d1205
ZW
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
974da60d 5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
09d92015 5158
c19d1205 5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 5160 return PARSE_OPERAND_FAIL;
09d92015 5161
c19d1205 5162 *str = p;
4962c51a 5163 return PARSE_OPERAND_SUCCESS;
09d92015
MM
5164 }
5165
dcbf9037 5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 5167 {
c19d1205 5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 5169 return PARSE_OPERAND_FAIL;
09d92015 5170 }
c19d1205
ZW
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
09d92015 5173
c19d1205 5174 if (skip_past_comma (&p) == SUCCESS)
09d92015 5175 {
c19d1205 5176 inst.operands[i].preind = 1;
09d92015 5177
c19d1205
ZW
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
dcbf9037 5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5182 {
c19d1205
ZW
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5188 return PARSE_OPERAND_FAIL;
c19d1205 5189 }
5287ad62 5190 else if (skip_past_char (&p, ':') == SUCCESS)
8e560766
MGD
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5196
8e560766
MGD
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
c19d1205
ZW
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
4962c51a 5207
5f4273c7
NC
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
21d799b5 5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5238 break;
5239
5240 case GROUP_LDRS:
21d799b5 5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5242 break;
5243
5244 case GROUP_LDC:
21d799b5 5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5246 break;
5247
5248 default:
9c2799c2 5249 gas_assert (0);
4962c51a
MS
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
26d97720
NS
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
09d92015
MM
5277 }
5278 }
8e560766
MGD
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
fa94de6b 5284
8e560766
MGD
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
09d92015 5288
c19d1205 5289 if (skip_past_char (&p, ']') == FAIL)
09d92015 5290 {
c19d1205 5291 inst.error = _("']' expected");
4962c51a 5292 return PARSE_OPERAND_FAIL;
09d92015
MM
5293 }
5294
c19d1205
ZW
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
09d92015 5297
c19d1205 5298 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5299 {
c19d1205
ZW
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5304 0, 255, TRUE) == FAIL)
4962c51a 5305 return PARSE_OPERAND_FAIL;
09d92015 5306
c19d1205
ZW
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5310 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
4962c51a 5315 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5316 }
5317 *str = p;
4962c51a 5318 return PARSE_OPERAND_SUCCESS;
09d92015 5319 }
c19d1205
ZW
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
09d92015 5324
c19d1205
ZW
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5328 return PARSE_OPERAND_FAIL;
c19d1205 5329 }
09d92015 5330
c19d1205
ZW
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5333
dcbf9037 5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5335 {
5287ad62
JB
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
c19d1205 5342 inst.operands[i].immisreg = 1;
a737bd4d 5343
c19d1205
ZW
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5346 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5347 }
5348 else
5349 {
26d97720 5350 char *q = p;
c19d1205
ZW
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5357 return PARSE_OPERAND_FAIL;
26d97720
NS
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
c19d1205
ZW
5371 }
5372 }
a737bd4d
NC
5373 }
5374
c19d1205
ZW
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
4962c51a
MS
5384 return PARSE_OPERAND_SUCCESS;
5385}
5386
5387static int
5388parse_address (char **str, int i)
5389{
21d799b5 5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5391 ? SUCCESS : FAIL;
5392}
5393
5394static parse_operand_result
5395parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396{
5397 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5398}
5399
b6895b4f
PB
5400/* Parse an operand for a MOVW or MOVT instruction. */
5401static int
5402parse_half (char **str)
5403{
5404 char * p;
5f4273c7 5405
b6895b4f
PB
5406 p = *str;
5407 skip_past_char (&p, '#');
5f4273c7 5408 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5f4273c7 5416 skip_whitespace (p);
b6895b4f
PB
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438}
5439
c19d1205 5440/* Miscellaneous. */
a737bd4d 5441
c19d1205
ZW
5442/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444static int
d2cd1205 5445parse_psr (char **str, bfd_boolean lhs)
09d92015 5446{
c19d1205
ZW
5447 char *p;
5448 unsigned long psr_field;
62b3e311
PB
5449 const struct asm_psr *psr;
5450 char *start;
d2cd1205 5451 bfd_boolean is_apsr = FALSE;
ac7f631b 5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
09d92015 5453
a4482bb6
NC
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
c19d1205
ZW
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
62b3e311 5463 if (strncasecmp (p, "SPSR", 4) == 0)
d2cd1205
JB
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
fa94de6b 5467
d2cd1205
JB
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
62b3e311
PB
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
d2cd1205
JB
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
21d799b5
NC
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
d2cd1205 5499
62b3e311
PB
5500 if (!psr)
5501 return FAIL;
09d92015 5502
d2cd1205
JB
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
62b3e311 5512 *str = p;
d2cd1205
JB
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
62b3e311 5518 }
d2cd1205
JB
5519 else
5520 goto unsupported_psr;
09d92015 5521
62b3e311 5522 p += 4;
d2cd1205 5523check_suffix:
c19d1205
ZW
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
c19d1205
ZW
5527 p++;
5528 start = p;
a737bd4d 5529
c19d1205
ZW
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
a737bd4d 5533
d2cd1205
JB
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
fa94de6b 5540
d2cd1205
JB
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
fa94de6b 5560
d2cd1205
JB
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
fa94de6b 5564
d2cd1205
JB
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
fa94de6b 5568
d2cd1205
JB
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
fa94de6b 5574
d2cd1205
JB
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
fa94de6b 5577
d2cd1205
JB
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
fa94de6b 5589
d2cd1205
JB
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
a737bd4d 5604
d2cd1205
JB
5605 psr_field |= psr->field;
5606 }
a737bd4d 5607 }
c19d1205 5608 else
a737bd4d 5609 {
c19d1205
ZW
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
d2cd1205
JB
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
a737bd4d 5625 }
c19d1205
ZW
5626 *str = p;
5627 return psr_field;
a737bd4d 5628
d2cd1205
JB
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
c19d1205
ZW
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
a737bd4d
NC
5637}
5638
c19d1205
ZW
5639/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5641
c19d1205
ZW
5642static int
5643parse_cps_flags (char **str)
a737bd4d 5644{
c19d1205
ZW
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
a737bd4d 5648
c19d1205
ZW
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
a737bd4d 5654
c19d1205
ZW
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5658
c19d1205
ZW
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
a737bd4d 5663
c19d1205
ZW
5664 done:
5665 if (saw_a_flag == 0)
a737bd4d 5666 {
c19d1205
ZW
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
a737bd4d 5669 }
a737bd4d 5670
c19d1205
ZW
5671 *str = s - 1;
5672 return val;
a737bd4d
NC
5673}
5674
c19d1205
ZW
5675/* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5677
5678static int
c19d1205 5679parse_endian_specifier (char **str)
a737bd4d 5680{
c19d1205
ZW
5681 int little_endian;
5682 char *s = *str;
a737bd4d 5683
c19d1205
ZW
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
a737bd4d 5689 {
c19d1205 5690 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5691 return FAIL;
5692 }
5693
c19d1205 5694 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5695 {
c19d1205 5696 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5697 return FAIL;
5698 }
5699
c19d1205
ZW
5700 *str = s + 2;
5701 return little_endian;
5702}
a737bd4d 5703
c19d1205
ZW
5704/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708static int
5709parse_ror (char **str)
5710{
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
a737bd4d 5717 {
c19d1205 5718 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5719 return FAIL;
5720 }
c19d1205
ZW
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
a737bd4d 5726 {
c19d1205
ZW
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5734 return FAIL;
5735 }
c19d1205 5736}
a737bd4d 5737
c19d1205
ZW
5738/* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740static int
5741parse_cond (char **str)
5742{
c462b453 5743 char *q;
c19d1205 5744 const struct asm_cond *c;
c462b453
PB
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
a737bd4d 5749
c462b453
PB
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
e07e6e58 5754 cond[n] = TOLOWER (*q);
c462b453
PB
5755 q++;
5756 n++;
5757 }
a737bd4d 5758
21d799b5 5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5760 if (!c)
a737bd4d 5761 {
c19d1205 5762 inst.error = _("condition required");
a737bd4d
NC
5763 return FAIL;
5764 }
5765
c19d1205
ZW
5766 *str = q;
5767 return c->value;
5768}
5769
e797f7e0
MGD
5770/* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772static bfd_boolean
5773mark_feature_used (const arm_feature_set *feature)
5774{
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787}
5788
62b3e311
PB
5789/* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791static int
5792parse_barrier (char **str)
5793{
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
21d799b5
NC
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
62b3e311
PB
5803 if (!o)
5804 return FAIL;
5805
e797f7e0
MGD
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
62b3e311
PB
5809 *str = q;
5810 return o->value;
5811}
5812
92e90b6e
PB
5813/* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815static int
5816parse_tb (char **str)
5817{
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
92e90b6e 5826
dcbf9037 5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5f4273c7 5839
dcbf9037 5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866}
5867
5287ad62
JB
5868/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
037e8744
JB
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5287ad62
JB
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875static int
5876parse_neon_mov (char **str, int *which_operand)
5877{
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
dcbf9037 5881 struct neon_type_el optype;
5f4273c7 5882
dcbf9037 5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
dcbf9037 5888 inst.operands[i].vectype = optype;
5287ad62
JB
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5f4273c7 5893
dcbf9037 5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5895 goto wanted_arm;
5f4273c7 5896
5287ad62
JB
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
037e8744 5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5902 != FAIL)
5287ad62
JB
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5f4273c7 5907
5287ad62
JB
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
dcbf9037 5913 inst.operands[i].vectype = optype;
5287ad62
JB
5914 inst.operands[i++].present = 1;
5915
dcbf9037 5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5917 {
037e8744
JB
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
037e8744 5922 inst.operands[i].present = 1;
5287ad62
JB
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
dcbf9037 5926 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5927 return FAIL;
5928 }
037e8744
JB
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5287ad62 5940 }
037e8744
JB
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5287ad62
JB
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
dcbf9037 5954 inst.operands[i].vectype = optype;
5287ad62 5955 inst.operands[i].present = 1;
5f4273c7 5956
037e8744
JB
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5f4273c7 5968
037e8744
JB
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5f4273c7 5971
037e8744
JB
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5f4273c7 5974
037e8744
JB
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
1b11b49f 5977 inst.operands[i].present = 1;
037e8744 5978 }
5287ad62 5979 }
4641781c
PB
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5287ad62
JB
5990 else
5991 {
dcbf9037 5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5993 return FAIL;
5994 }
5995 }
dcbf9037 5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
5f4273c7 6002
5287ad62
JB
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
5f4273c7 6005
dcbf9037 6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
dcbf9037 6012 inst.operands[i].vectype = optype;
5287ad62 6013 }
dcbf9037 6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
5f4273c7 6020
5287ad62
JB
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
5f4273c7 6023
037e8744 6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 6025 == FAIL)
5287ad62 6026 {
037e8744 6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
037e8744
JB
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 6035 inst.operands[i].vectype = optype;
5287ad62 6036 inst.operands[i].present = 1;
5f4273c7 6037
037e8744
JB
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
1b11b49f 6067 inst.operands[i].present = 1;
5287ad62
JB
6068 }
6069 }
6070 else
6071 {
dcbf9037 6072 first_error (_("parse error"));
5287ad62
JB
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
5f4273c7 6081 wanted_comma:
dcbf9037 6082 first_error (_("expected comma"));
5287ad62 6083 return FAIL;
5f4273c7
NC
6084
6085 wanted_arm:
dcbf9037 6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 6087 return FAIL;
5287ad62
JB
6088}
6089
5be8be5d
DG
6090/* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092#define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
c19d1205
ZW
6095/* Matcher codes for parse_operands. */
6096enum operand_parse_code
6097{
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
5be8be5d 6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
c19d1205 6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
fa94de6b 6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
55881a11 6105 optional trailing ! */
c19d1205
ZW
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
5287ad62
JB
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
037e8744 6114 OP_RVSD, /* VFP single or double precision register */
5287ad62 6115 OP_RNDQ, /* Neon double or quad precision register */
037e8744 6116 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 6117 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
037e8744 6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
5287ad62 6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
4316f0d2 6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5287ad62 6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
6147
6148 OP_I0, /* immediate zero */
c19d1205
ZW
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
5287ad62 6152 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
5287ad62
JB
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
c19d1205 6158 OP_I63s, /* -64 .. 63 */
5287ad62
JB
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
c19d1205 6161 OP_I255, /* 0 .. 255 */
c19d1205
ZW
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
4962c51a 6169 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 6170 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
d2cd1205
JB
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
c19d1205 6183 OP_COND, /* conditional code */
92e90b6e 6184 OP_TB, /* Table branch. */
c19d1205 6185
037e8744
JB
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
c19d1205
ZW
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
5287ad62 6198 OP_oI32b, /* 1 .. 32 */
5f1af56b 6199 OP_oI32z, /* 0 .. 32 */
c19d1205
ZW
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
5be8be5d 6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
b6702015 6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
52e7f43d 6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
c19d1205 6216
5be8be5d
DG
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
c19d1205
ZW
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223};
a737bd4d 6224
c19d1205
ZW
6225/* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229static int
5be8be5d 6230parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
c19d1205 6231{
5be8be5d 6232 unsigned const int *upat = pattern;
c19d1205
ZW
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
99aad254 6235 int i, val = 0, backtrack_index = 0;
5287ad62 6236 enum arm_reg_type rtype;
4962c51a 6237 parse_operand_result result;
5be8be5d 6238 unsigned int op_parse_code;
c19d1205 6239
e07e6e58
NC
6240#define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
c19d1205 6247
e07e6e58
NC
6248#define po_reg_or_fail(regtype) \
6249 do \
dcbf9037 6250 { \
e07e6e58
NC
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
dcbf9037 6265 } \
e07e6e58
NC
6266 while (0)
6267
6268#define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
dcbf9037 6275 \
e07e6e58
NC
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286#define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295#define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306#define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314#define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
4962c51a 6324
52e7f43d
RE
6325#define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
c19d1205
ZW
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
5be8be5d
DG
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
c19d1205
ZW
6359 {
6360 /* Remember where we are in case we need to backtrack. */
9c2799c2 6361 gas_assert (!backtrack_pos);
c19d1205
ZW
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
b6702015 6367 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
6368 po_char_or_fail (',');
6369
5be8be5d 6370 switch (op_parse_code)
c19d1205
ZW
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
5be8be5d 6374 case OP_oRRnpcsp:
c19d1205 6375 case OP_RRnpc:
5be8be5d 6376 case OP_RRnpcsp:
c19d1205
ZW
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
c19d1205
ZW
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
5287ad62
JB
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
037e8744
JB
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
5287ad62
JB
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
037e8744
JB
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
5287ad62
JB
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
4316f0d2 6470 case OP_RNDQ_Ibig:
5287ad62 6471 {
4316f0d2 6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
5287ad62 6473 break;
4316f0d2 6474 try_immbig:
5287ad62
JB
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
c19d1205
ZW
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
a737bd4d 6499
55881a11 6500 case OP_RRnpctw:
c19d1205 6501 case OP_RRw:
b6702015 6502 case OP_oRRw:
c19d1205
ZW
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5f1af56b 6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
c19d1205
ZW
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6572 {
c19d1205
ZW
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
a737bd4d 6584 }
c19d1205 6585 break;
a737bd4d 6586
b6895b4f
PB
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
e07e6e58 6592 /* Register or expression. */
c19d1205
ZW
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6595
e07e6e58 6596 /* Register or immediate. */
c19d1205
ZW
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6599
c19d1205
ZW
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
09d92015 6613
2d447fca
JM
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
e07e6e58 6617 /* Two kinds of register. */
c19d1205
ZW
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
09d92015 6633
41adaa5c
JM
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
c19d1205
ZW
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
c19d1205 6653 case OP_COND: val = parse_cond (&str); break;
52e7f43d
RE
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
c19d1205 6660
fa94de6b 6661 case OP_wPSR:
d2cd1205 6662 case OP_rPSR:
90ec0d68
MGD
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
d2cd1205
JB
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
037e8744
JB
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
f7c21dc7
NC
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
037e8744
JB
6699 }
6700 else
6701 goto failure;
6702 break;
6703
92e90b6e
PB
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
e07e6e58 6708 /* Register lists. */
c19d1205
ZW
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
09d92015 6717
c19d1205 6718 case OP_VRSLST:
5287ad62 6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6720 break;
09d92015 6721
c19d1205 6722 case OP_VRDLST:
5287ad62 6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6724 break;
a737bd4d 6725
037e8744
JB
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
5287ad62
JB
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
dcbf9037
JB
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
5287ad62
JB
6747 break;
6748
c19d1205
ZW
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
09d92015 6753
4962c51a
MS
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
c19d1205
ZW
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
09d92015 6772
4962c51a
MS
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
c19d1205
ZW
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
09d92015 6781
c19d1205
ZW
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
09d92015 6785
c19d1205
ZW
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
09d92015 6789
c19d1205 6790 default:
5be8be5d 6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
c19d1205 6792 }
09d92015 6793
c19d1205
ZW
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
5be8be5d 6797 switch (op_parse_code)
c19d1205
ZW
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
b6702015 6803 case OP_oRRw:
c19d1205
ZW
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
09d92015 6808
5be8be5d
DG
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
55881a11 6820 case OP_RRnpctw:
fa94de6b
RM
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
55881a11
MGD
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
c19d1205
ZW
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
d2cd1205
JB
6830 case OP_wPSR:
6831 case OP_rPSR:
c19d1205 6832 case OP_COND:
52e7f43d 6833 case OP_oBARRIER_I15:
c19d1205
ZW
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
037e8744 6837 case OP_VRSDLST:
5287ad62
JB
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
c19d1205
ZW
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
a737bd4d 6844
c19d1205
ZW
6845 default:
6846 break;
6847 }
09d92015 6848
c19d1205
ZW
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
09d92015 6852
c19d1205 6853 bad_args:
09d92015 6854 inst.error = BAD_ARGS;
c19d1205
ZW
6855
6856 failure:
6857 if (!backtrack_pos)
d252fdde
PB
6858 {
6859 /* The parse routine should already have set inst.error, but set a
5f4273c7 6860 default here just in case. */
d252fdde
PB
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
c19d1205
ZW
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
d252fdde
PB
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
c19d1205
ZW
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
09d92015 6884 }
09d92015 6885
c19d1205
ZW
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
09d92015 6889
c19d1205 6890 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6891}
6892
c19d1205
ZW
6893#undef po_char_or_fail
6894#undef po_reg_or_fail
6895#undef po_reg_or_goto
6896#undef po_imm_or_fail
5287ad62 6897#undef po_scalar_or_fail
52e7f43d 6898#undef po_barrier_or_imm
e07e6e58 6899
c19d1205 6900/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6901#define constraint(expr, err) \
6902 do \
c19d1205 6903 { \
e07e6e58
NC
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
c19d1205 6909 } \
e07e6e58 6910 while (0)
c19d1205 6911
fdfde340
JM
6912/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915#define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
94206790
MM
6924/* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926#define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
c19d1205
ZW
6932/* Functions for operand encoding. ARM, then Thumb. */
6933
6934#define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936/* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939static unsigned int
6940encode_arm_immediate (unsigned int val)
09d92015 6941{
c19d1205
ZW
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
09d92015
MM
6949}
6950
c19d1205
ZW
6951/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953static unsigned int
6954encode_thumb32_immediate (unsigned int val)
09d92015 6955{
c19d1205 6956 unsigned int a, i;
09d92015 6957
9c3c69f2 6958 if (val <= 0xff)
c19d1205 6959 return val;
a737bd4d 6960
9c3c69f2 6961 for (i = 1; i <= 24; i++)
09d92015 6962 {
9c3c69f2
PB
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6966 }
a737bd4d 6967
c19d1205
ZW
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
09d92015 6973
c19d1205
ZW
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
a737bd4d 6977
c19d1205 6978 return FAIL;
09d92015 6979}
5287ad62 6980/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6981
6982static void
5287ad62
JB
6983encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984{
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
b1cc4aeb 6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6992 fpu_vfp_ext_d32);
5287ad62
JB
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6995 fpu_vfp_ext_d32);
5287ad62
JB
6996 }
6997 else
6998 {
dcbf9037 6999 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
7000 return;
7001 }
7002 }
7003
c19d1205 7004 switch (pos)
09d92015 7005 {
c19d1205
ZW
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
5287ad62
JB
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
5f4273c7 7021
5287ad62
JB
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
5f4273c7 7025
5287ad62
JB
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
c19d1205
ZW
7030 default:
7031 abort ();
09d92015 7032 }
09d92015
MM
7033}
7034
c19d1205 7035/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 7036 if any, is handled by md_apply_fix. */
09d92015 7037static void
c19d1205 7038encode_arm_shift (int i)
09d92015 7039{
c19d1205
ZW
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
09d92015 7043 {
c19d1205
ZW
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 7052 }
c19d1205 7053}
09d92015 7054
c19d1205
ZW
7055static void
7056encode_arm_shifter_operand (int i)
7057{
7058 if (inst.operands[i].isreg)
09d92015 7059 {
c19d1205
ZW
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
09d92015 7062 }
c19d1205 7063 else
a415b1cd
JB
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
09d92015
MM
7069}
7070
c19d1205 7071/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 7072static void
c19d1205 7073encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 7074{
2b2f5df9
NC
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
c19d1205 7080 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7081
c19d1205 7082 if (inst.operands[i].preind)
09d92015 7083 {
c19d1205
ZW
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
09d92015 7092
c19d1205
ZW
7093 }
7094 else if (inst.operands[i].postind)
7095 {
9c2799c2 7096 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
09d92015 7101 {
c19d1205 7102 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
7103 return;
7104 }
7105
c19d1205
ZW
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
09d92015
MM
7112}
7113
c19d1205
ZW
7114/* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
a737bd4d 7118static void
c19d1205 7119encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 7120{
5be8be5d
DG
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
c19d1205 7123 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7124
c19d1205 7125 if (inst.operands[i].immisreg)
09d92015 7126 {
5be8be5d
DG
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
c19d1205
ZW
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
09d92015 7144 }
c19d1205 7145 else /* immediate offset in inst.reloc */
09d92015 7146 {
5be8be5d
DG
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
23a10334
JZ
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
5be8be5d 7155 BAD_PC_ADDRESSING);
23a10334 7156
dc5ec521 7157 /* Use of PC in str is deprecated for ARMv7. */
23a10334
JZ
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
5be8be5d
DG
7162 }
7163
c19d1205 7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
09d92015 7171 }
09d92015
MM
7172}
7173
c19d1205
ZW
7174/* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179static void
7180encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 7181{
c19d1205 7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 7183 {
c19d1205
ZW
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
09d92015 7186 }
a737bd4d 7187
c19d1205 7188 encode_arm_addr_mode_common (i, is_t);
a737bd4d 7189
c19d1205
ZW
7190 if (inst.operands[i].immisreg)
7191 {
5be8be5d
DG
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
c19d1205
ZW
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
5be8be5d
DG
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
c19d1205
ZW
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
26d97720
NS
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
c19d1205 7213 }
a737bd4d
NC
7214}
7215
c19d1205
ZW
7216/* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
09d92015 7223
c19d1205
ZW
7224static int
7225encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 7226{
c19d1205 7227 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 7228
9c2799c2 7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 7230
c19d1205 7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 7232 {
9c2799c2 7233 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
09d92015 7242 }
a737bd4d 7243
c19d1205
ZW
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
a737bd4d 7246
c19d1205 7247 if (inst.operands[i].writeback)
09d92015 7248 {
c19d1205
ZW
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
09d92015 7260 }
a737bd4d 7261
c19d1205 7262 if (reloc_override)
21d799b5 7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
26d97720
NS
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
c19d1205
ZW
7278 return SUCCESS;
7279}
a737bd4d 7280
c19d1205
ZW
7281/* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
c921be7d
NC
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
a737bd4d 7287
c19d1205
ZW
7288 inst.operands[i] describes the destination register. */
7289
c921be7d 7290static bfd_boolean
c19d1205
ZW
7291move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292{
53365c0d
PB
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
09d92015 7301 {
c19d1205 7302 inst.error = _("invalid pseudo operation");
c921be7d 7303 return TRUE;
09d92015 7304 }
c19d1205 7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
7306 {
7307 inst.error = _("constant expression expected");
c921be7d 7308 return TRUE;
09d92015 7309 }
c19d1205 7310 if (inst.reloc.exp.X_op == O_constant)
09d92015 7311 {
c19d1205
ZW
7312 if (thumb_p)
7313 {
53365c0d 7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 7319 return TRUE;
c19d1205
ZW
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
c921be7d 7331 return TRUE;
c19d1205 7332 }
09d92015 7333
c19d1205
ZW
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
c921be7d 7341 return TRUE;
c19d1205
ZW
7342 }
7343 }
09d92015
MM
7344 }
7345
c19d1205
ZW
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
c921be7d 7349 return TRUE;
c19d1205
ZW
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
c921be7d 7360 return FALSE;
09d92015
MM
7361}
7362
5f4273c7 7363/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
09d92015 7366
a737bd4d 7367static void
c19d1205 7368do_noargs (void)
09d92015 7369{
c19d1205 7370}
a737bd4d 7371
c19d1205
ZW
7372static void
7373do_rd (void)
7374{
7375 inst.instruction |= inst.operands[0].reg << 12;
7376}
a737bd4d 7377
c19d1205
ZW
7378static void
7379do_rd_rm (void)
7380{
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383}
09d92015 7384
9eb6c0f1
MGD
7385static void
7386do_rm_rn (void)
7387{
7388 inst.instruction |= inst.operands[0].reg;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390}
7391
c19d1205
ZW
7392static void
7393do_rd_rn (void)
7394{
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= inst.operands[1].reg << 16;
7397}
a737bd4d 7398
c19d1205
ZW
7399static void
7400do_rn_rd (void)
7401{
7402 inst.instruction |= inst.operands[0].reg << 16;
7403 inst.instruction |= inst.operands[1].reg << 12;
7404}
09d92015 7405
59d09be6
MGD
7406static bfd_boolean
7407check_obsolete (const arm_feature_set *feature, const char *msg)
7408{
7409 if (ARM_CPU_IS_ANY (cpu_variant))
7410 {
7411 as_warn ("%s", msg);
7412 return TRUE;
7413 }
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7415 {
7416 as_bad ("%s", msg);
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421}
7422
c19d1205
ZW
7423static void
7424do_rd_rm_rn (void)
7425{
9a64e435 7426 unsigned Rn = inst.operands[2].reg;
708587a4 7427 /* Enforce restrictions on SWP instruction. */
9a64e435 7428 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
56adecf4
DG
7429 {
7430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7431 _("Rn must not overlap other operands"));
7432
59d09be6
MGD
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7434 */
7435 if (!check_obsolete (&arm_ext_v8,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
56adecf4 7440 }
59d09be6 7441
c19d1205
ZW
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
9a64e435 7444 inst.instruction |= Rn << 16;
c19d1205 7445}
09d92015 7446
c19d1205
ZW
7447static void
7448do_rd_rn_rm (void)
7449{
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.instruction |= inst.operands[2].reg;
7453}
a737bd4d 7454
c19d1205
ZW
7455static void
7456do_rm_rd_rn (void)
7457{
5be8be5d
DG
7458 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7459 constraint (((inst.reloc.exp.X_op != O_constant
7460 && inst.reloc.exp.X_op != O_illegal)
7461 || inst.reloc.exp.X_add_number != 0),
7462 BAD_ADDR_MODE);
c19d1205
ZW
7463 inst.instruction |= inst.operands[0].reg;
7464 inst.instruction |= inst.operands[1].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466}
09d92015 7467
c19d1205
ZW
7468static void
7469do_imm0 (void)
7470{
7471 inst.instruction |= inst.operands[0].imm;
7472}
09d92015 7473
c19d1205
ZW
7474static void
7475do_rd_cpaddr (void)
7476{
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 7479}
a737bd4d 7480
c19d1205
ZW
7481/* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7483 wrap). */
09d92015 7484
c19d1205
ZW
7485/* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
7487
7488static void
c19d1205 7489do_adr (void)
09d92015 7490{
c19d1205 7491 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7492
c19d1205
ZW
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 7496 inst.reloc.pc_rel = 1;
2fc8bdac 7497 inst.reloc.exp.X_add_number -= 8;
c19d1205 7498}
b99bd4ef 7499
c19d1205
ZW
7500/* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
b99bd4ef 7504
c19d1205
ZW
7505static void
7506do_adrl (void)
7507{
7508 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7509
c19d1205
ZW
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7513 inst.reloc.pc_rel = 1;
7514 inst.size = INSN_SIZE * 2;
2fc8bdac 7515 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7516}
7517
b99bd4ef 7518static void
c19d1205 7519do_arit (void)
b99bd4ef 7520{
c19d1205
ZW
7521 if (!inst.operands[1].present)
7522 inst.operands[1].reg = inst.operands[0].reg;
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg << 16;
7525 encode_arm_shifter_operand (2);
7526}
b99bd4ef 7527
62b3e311
PB
7528static void
7529do_barrier (void)
7530{
7531 if (inst.operands[0].present)
7532 {
7533 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
7534 && inst.operands[0].imm > 0xf
7535 && inst.operands[0].imm < 0x0,
bd3ba5d1 7536 _("bad barrier type"));
62b3e311
PB
7537 inst.instruction |= inst.operands[0].imm;
7538 }
7539 else
7540 inst.instruction |= 0xf;
7541}
7542
c19d1205
ZW
7543static void
7544do_bfc (void)
7545{
7546 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7547 constraint (msb > 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].imm << 7;
7552 inst.instruction |= (msb - 1) << 16;
7553}
b99bd4ef 7554
c19d1205
ZW
7555static void
7556do_bfi (void)
7557{
7558 unsigned int msb;
b99bd4ef 7559
c19d1205
ZW
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst.operands[1].isreg)
7563 inst.operands[1].reg = REG_PC;
b99bd4ef 7564
c19d1205
ZW
7565 msb = inst.operands[2].imm + inst.operands[3].imm;
7566 constraint (msb > 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst.instruction |= inst.operands[0].reg << 12;
7570 inst.instruction |= inst.operands[1].reg;
7571 inst.instruction |= inst.operands[2].imm << 7;
7572 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7573}
7574
b99bd4ef 7575static void
c19d1205 7576do_bfx (void)
b99bd4ef 7577{
c19d1205
ZW
7578 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7579 _("bit-field extends past end of register"));
7580 inst.instruction |= inst.operands[0].reg << 12;
7581 inst.instruction |= inst.operands[1].reg;
7582 inst.instruction |= inst.operands[2].imm << 7;
7583 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7584}
09d92015 7585
c19d1205
ZW
7586/* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
b99bd4ef 7591
c19d1205
ZW
7592static void
7593do_bkpt (void)
7594{
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7597
c19d1205
ZW
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst.instruction |= inst.operands[0].imm & 0xf;
7600}
09d92015 7601
c19d1205
ZW
7602static void
7603encode_branch (int default_reloc)
7604{
7605 if (inst.operands[0].hasreloc)
7606 {
0855e32b
NS
7607 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7608 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
c19d1205 7613 }
b99bd4ef 7614 else
9ae92b05 7615 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
2fc8bdac 7616 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7617}
7618
b99bd4ef 7619static void
c19d1205 7620do_branch (void)
b99bd4ef 7621{
39b41c9c
PB
7622#ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7625 else
7626#endif
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7628}
7629
7630static void
7631do_bl (void)
7632{
7633#ifdef OBJ_ELF
7634 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7635 {
7636 if (inst.cond == COND_ALWAYS)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7638 else
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7640 }
7641 else
7642#endif
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7644}
b99bd4ef 7645
c19d1205
ZW
7646/* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7653
c19d1205
ZW
7654static void
7655do_blx (void)
7656{
7657 if (inst.operands[0].isreg)
b99bd4ef 7658 {
c19d1205
ZW
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst.operands[0].reg == REG_PC)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7663
c19d1205
ZW
7664 inst.instruction |= inst.operands[0].reg;
7665 }
7666 else
b99bd4ef 7667 {
c19d1205 7668 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7672 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7673 inst.instruction = 0xfa000000;
267bf995 7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7675 }
c19d1205
ZW
7676}
7677
7678static void
7679do_bx (void)
7680{
845b51d6
PB
7681 bfd_boolean want_reloc;
7682
c19d1205
ZW
7683 if (inst.operands[0].reg == REG_PC)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7685
c19d1205 7686 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7690 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7691 want_reloc = TRUE;
7692
5ad34203 7693#ifdef OBJ_ELF
845b51d6 7694 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7695#endif
584206db 7696 want_reloc = FALSE;
845b51d6
PB
7697
7698 if (want_reloc)
7699 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7700}
7701
c19d1205
ZW
7702
7703/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7704
7705static void
c19d1205 7706do_bxj (void)
a737bd4d 7707{
c19d1205
ZW
7708 if (inst.operands[0].reg == REG_PC)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7710
7711 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7712}
7713
c19d1205
ZW
7714/* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7717static void
7718do_cdp (void)
7719{
7720 inst.instruction |= inst.operands[0].reg << 8;
7721 inst.instruction |= inst.operands[1].imm << 20;
7722 inst.instruction |= inst.operands[2].reg << 12;
7723 inst.instruction |= inst.operands[3].reg << 16;
7724 inst.instruction |= inst.operands[4].reg;
7725 inst.instruction |= inst.operands[5].imm << 5;
7726}
a737bd4d
NC
7727
7728static void
c19d1205 7729do_cmp (void)
a737bd4d 7730{
c19d1205
ZW
7731 inst.instruction |= inst.operands[0].reg << 16;
7732 encode_arm_shifter_operand (1);
a737bd4d
NC
7733}
7734
c19d1205
ZW
7735/* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7737 MRC2
7738 MCR{cond}
7739 MCR2
7740
7741 No special properties. */
09d92015 7742
dcbd0d71
MGD
7743struct deprecated_coproc_regs_s
7744{
7745 unsigned cp;
7746 int opc1;
7747 unsigned crn;
7748 unsigned crm;
7749 int opc2;
7750 arm_feature_set deprecated;
7751 arm_feature_set obsoleted;
7752 const char *dep_msg;
7753 const char *obs_msg;
7754};
7755
7756#define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7758
7759/* Table of all deprecated coprocessor registers. */
7760static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7761{
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8, NULL},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8, NULL},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8, NULL},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8, NULL},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8, NULL},
7777};
7778
7779#undef DEPR_ACCESS_V8
7780
7781static const size_t deprecated_coproc_reg_count =
7782 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7783
09d92015 7784static void
c19d1205 7785do_co_reg (void)
09d92015 7786{
fdfde340 7787 unsigned Rd;
dcbd0d71 7788 size_t i;
fdfde340
JM
7789
7790 Rd = inst.operands[2].reg;
7791 if (thumb_mode)
7792 {
7793 if (inst.instruction == 0xee000010
7794 || inst.instruction == 0xfe000010)
7795 /* MCR, MCR2 */
7796 reject_bad_reg (Rd);
7797 else
7798 /* MRC, MRC2 */
7799 constraint (Rd == REG_SP, BAD_SP);
7800 }
7801 else
7802 {
7803 /* MCR */
7804 if (inst.instruction == 0xe000010)
7805 constraint (Rd == REG_PC, BAD_PC);
7806 }
7807
dcbd0d71
MGD
7808 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7809 {
7810 const struct deprecated_coproc_regs_s *r =
7811 deprecated_coproc_regs + i;
7812
7813 if (inst.operands[0].reg == r->cp
7814 && inst.operands[1].imm == r->opc1
7815 && inst.operands[3].reg == r->crn
7816 && inst.operands[4].reg == r->crm
7817 && inst.operands[5].imm == r->opc2)
7818 {
7819 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7822 as_warn ("%s", r->dep_msg);
7823 }
7824 }
fdfde340 7825
c19d1205
ZW
7826 inst.instruction |= inst.operands[0].reg << 8;
7827 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7828 inst.instruction |= Rd << 12;
c19d1205
ZW
7829 inst.instruction |= inst.operands[3].reg << 16;
7830 inst.instruction |= inst.operands[4].reg;
7831 inst.instruction |= inst.operands[5].imm << 5;
7832}
09d92015 7833
c19d1205
ZW
7834/* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7836 MCRR2
7837 MRRC{cond}
7838 MRRC2
b99bd4ef 7839
c19d1205 7840 Two XScale instructions are special cases of these:
09d92015 7841
c19d1205
ZW
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7844
5f4273c7 7845 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7846
c19d1205
ZW
7847static void
7848do_co_reg2c (void)
7849{
fdfde340
JM
7850 unsigned Rd, Rn;
7851
7852 Rd = inst.operands[2].reg;
7853 Rn = inst.operands[3].reg;
7854
7855 if (thumb_mode)
7856 {
7857 reject_bad_reg (Rd);
7858 reject_bad_reg (Rn);
7859 }
7860 else
7861 {
7862 constraint (Rd == REG_PC, BAD_PC);
7863 constraint (Rn == REG_PC, BAD_PC);
7864 }
7865
c19d1205
ZW
7866 inst.instruction |= inst.operands[0].reg << 8;
7867 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7868 inst.instruction |= Rd << 12;
7869 inst.instruction |= Rn << 16;
c19d1205 7870 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7871}
7872
c19d1205
ZW
7873static void
7874do_cpsi (void)
7875{
7876 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7877 if (inst.operands[1].present)
7878 {
7879 inst.instruction |= CPSI_MMOD;
7880 inst.instruction |= inst.operands[1].imm;
7881 }
c19d1205 7882}
b99bd4ef 7883
62b3e311
PB
7884static void
7885do_dbg (void)
7886{
7887 inst.instruction |= inst.operands[0].imm;
7888}
7889
eea54501
MGD
7890static void
7891do_div (void)
7892{
7893 unsigned Rd, Rn, Rm;
7894
7895 Rd = inst.operands[0].reg;
7896 Rn = (inst.operands[1].present
7897 ? inst.operands[1].reg : Rd);
7898 Rm = inst.operands[2].reg;
7899
7900 constraint ((Rd == REG_PC), BAD_PC);
7901 constraint ((Rn == REG_PC), BAD_PC);
7902 constraint ((Rm == REG_PC), BAD_PC);
7903
7904 inst.instruction |= Rd << 16;
7905 inst.instruction |= Rn << 0;
7906 inst.instruction |= Rm << 8;
7907}
7908
b99bd4ef 7909static void
c19d1205 7910do_it (void)
b99bd4ef 7911{
c19d1205 7912 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7916
c19d1205 7917 inst.size = 0;
e07e6e58
NC
7918 if (unified_syntax)
7919 {
7920 set_it_insn_type (IT_INSN);
7921 now_it.mask = (inst.instruction & 0xf) | 0x10;
7922 now_it.cc = inst.operands[0].imm;
7923 }
09d92015 7924}
b99bd4ef 7925
6530b175
NC
7926/* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7928static int
7929only_one_reg_in_list (int range)
7930{
7931 int i = ffs (range) - 1;
7932 return (i > 15 || range != (1 << i)) ? -1 : i;
7933}
7934
09d92015 7935static void
6530b175 7936encode_ldmstm(int from_push_pop_mnem)
ea6ef066 7937{
c19d1205
ZW
7938 int base_reg = inst.operands[0].reg;
7939 int range = inst.operands[1].imm;
6530b175 7940 int one_reg;
ea6ef066 7941
c19d1205
ZW
7942 inst.instruction |= base_reg << 16;
7943 inst.instruction |= range;
ea6ef066 7944
c19d1205
ZW
7945 if (inst.operands[1].writeback)
7946 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7947
c19d1205 7948 if (inst.operands[0].writeback)
ea6ef066 7949 {
c19d1205
ZW
7950 inst.instruction |= WRITE_BACK;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst.instruction & LOAD_BIT)
09d92015 7953 {
c19d1205
ZW
7954 /* Not allowed in LDM type 2. */
7955 if ((inst.instruction & LDM_TYPE_2_OR_3)
7956 && ((range & (1 << REG_PC)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range & (1 << base_reg))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7961 }
7962 else /* STM. */
7963 {
7964 /* Not allowed for type 2. */
7965 if (inst.instruction & LDM_TYPE_2_OR_3)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range & (1 << base_reg))
7969 && (range & ((1 << base_reg) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7971 }
ea6ef066 7972 }
6530b175
NC
7973
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg = only_one_reg_in_list (range);
7976 if (from_push_pop_mnem && one_reg >= 0)
7977 {
7978 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7979
7980 inst.instruction &= A_COND_MASK;
7981 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7982 inst.instruction |= one_reg << 12;
7983 }
7984}
7985
7986static void
7987do_ldmstm (void)
7988{
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
a737bd4d
NC
7990}
7991
c19d1205
ZW
7992/* ARMv5TE load-consecutive (argument parse)
7993 Mode is like LDRH.
7994
7995 LDRccD R, mode
7996 STRccD R, mode. */
7997
a737bd4d 7998static void
c19d1205 7999do_ldrd (void)
a737bd4d 8000{
c19d1205 8001 constraint (inst.operands[0].reg % 2 != 0,
c56791bb 8002 _("first transfer register must be even"));
c19d1205
ZW
8003 constraint (inst.operands[1].present
8004 && inst.operands[1].reg != inst.operands[0].reg + 1,
c56791bb 8005 _("can only transfer two consecutive registers"));
c19d1205
ZW
8006 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8007 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 8008
c19d1205
ZW
8009 if (!inst.operands[1].present)
8010 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 8011
c56791bb
RE
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
ea6ef066 8015
c56791bb
RE
8016 if (inst.operands[2].reg == inst.operands[1].reg
8017 && (inst.operands[2].writeback || inst.operands[2].postind))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
b05fe5cf 8020
c56791bb
RE
8021 if (!(inst.instruction & V4_STR_BIT))
8022 {
c19d1205 8023 /* For an index-register load, the index register must not overlap the
c56791bb
RE
8024 destination (even if not write-back). */
8025 if (inst.operands[2].immisreg
8026 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8027 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8028 as_warn (_("index register overlaps transfer register"));
b05fe5cf 8029 }
c19d1205
ZW
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
8032}
8033
8034static void
c19d1205 8035do_ldrex (void)
b05fe5cf 8036{
c19d1205
ZW
8037 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8038 || inst.operands[1].postind || inst.operands[1].writeback
8039 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
8040 || inst.operands[1].negative
8041 /* This can arise if the programmer has written
8042 strex rN, rM, foo
8043 or if they have mistakenly used a register name as the last
8044 operand, eg:
8045 strex rN, rM, rX
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst.operands[1].reg == REG_PC),
8053 BAD_ADDR_MODE);
b05fe5cf 8054
c19d1205
ZW
8055 constraint (inst.reloc.exp.X_op != O_constant
8056 || inst.reloc.exp.X_add_number != 0,
8057 _("offset must be zero in ARM encoding"));
b05fe5cf 8058
5be8be5d
DG
8059 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8060
c19d1205
ZW
8061 inst.instruction |= inst.operands[0].reg << 12;
8062 inst.instruction |= inst.operands[1].reg << 16;
8063 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
8064}
8065
8066static void
c19d1205 8067do_ldrexd (void)
b05fe5cf 8068{
c19d1205
ZW
8069 constraint (inst.operands[0].reg % 2 != 0,
8070 _("even register required"));
8071 constraint (inst.operands[1].present
8072 && inst.operands[1].reg != inst.operands[0].reg + 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 8077
c19d1205
ZW
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
8080}
8081
1be5fd2e
NC
8082/* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8084static void
8085check_ldr_r15_aligned (void)
8086{
8087 constraint (!(inst.operands[1].immisreg)
8088 && (inst.operands[0].reg == REG_PC
8089 && inst.operands[1].reg == REG_PC
8090 && (inst.reloc.exp.X_add_number & 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8092}
8093
b05fe5cf 8094static void
c19d1205 8095do_ldst (void)
b05fe5cf 8096{
c19d1205
ZW
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 if (!inst.operands[1].isreg)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 8100 return;
c19d1205 8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
1be5fd2e 8102 check_ldr_r15_aligned ();
b05fe5cf
ZW
8103}
8104
8105static void
c19d1205 8106do_ldstt (void)
b05fe5cf 8107{
c19d1205
ZW
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8109 reject [Rn,...]. */
8110 if (inst.operands[1].preind)
b05fe5cf 8111 {
bd3ba5d1
NC
8112 constraint (inst.reloc.exp.X_op != O_constant
8113 || inst.reloc.exp.X_add_number != 0,
c19d1205 8114 _("this instruction requires a post-indexed address"));
b05fe5cf 8115
c19d1205
ZW
8116 inst.operands[1].preind = 0;
8117 inst.operands[1].postind = 1;
8118 inst.operands[1].writeback = 1;
b05fe5cf 8119 }
c19d1205
ZW
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8122}
b05fe5cf 8123
c19d1205 8124/* Halfword and signed-byte load/store operations. */
b05fe5cf 8125
c19d1205
ZW
8126static void
8127do_ldstv4 (void)
8128{
ff4a8d2b 8129 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205
ZW
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 if (!inst.operands[1].isreg)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 8133 return;
c19d1205 8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
8135}
8136
8137static void
c19d1205 8138do_ldsttv4 (void)
b05fe5cf 8139{
c19d1205
ZW
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8141 reject [Rn,...]. */
8142 if (inst.operands[1].preind)
b05fe5cf 8143 {
bd3ba5d1
NC
8144 constraint (inst.reloc.exp.X_op != O_constant
8145 || inst.reloc.exp.X_add_number != 0,
c19d1205 8146 _("this instruction requires a post-indexed address"));
b05fe5cf 8147
c19d1205
ZW
8148 inst.operands[1].preind = 0;
8149 inst.operands[1].postind = 1;
8150 inst.operands[1].writeback = 1;
b05fe5cf 8151 }
c19d1205
ZW
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8154}
b05fe5cf 8155
c19d1205
ZW
8156/* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8158static void
8159do_lstc (void)
8160{
8161 inst.instruction |= inst.operands[0].reg << 8;
8162 inst.instruction |= inst.operands[1].reg << 12;
8163 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
8164}
8165
b05fe5cf 8166static void
c19d1205 8167do_mlas (void)
b05fe5cf 8168{
8fb9d7b9 8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 8170 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 8171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 8172 && !(inst.instruction & 0x00400000))
8fb9d7b9 8173 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 8174
c19d1205
ZW
8175 inst.instruction |= inst.operands[0].reg << 16;
8176 inst.instruction |= inst.operands[1].reg;
8177 inst.instruction |= inst.operands[2].reg << 8;
8178 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 8179}
b05fe5cf 8180
c19d1205
ZW
8181static void
8182do_mov (void)
8183{
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 encode_arm_shifter_operand (1);
8186}
b05fe5cf 8187
c19d1205
ZW
8188/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8189static void
8190do_mov16 (void)
8191{
b6895b4f
PB
8192 bfd_vma imm;
8193 bfd_boolean top;
8194
8195 top = (inst.instruction & 0x00400000) != 0;
8196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8199 _(":upper16: not allowed instruction"));
c19d1205 8200 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
8201 if (inst.reloc.type == BFD_RELOC_UNUSED)
8202 {
8203 imm = inst.reloc.exp.X_add_number;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst.instruction |= (imm & 0x00000fff);
8206 inst.instruction |= (imm & 0x0000f000) << 4;
8207 }
b05fe5cf 8208}
b99bd4ef 8209
037e8744
JB
8210static void do_vfp_nsyn_opcode (const char *);
8211
8212static int
8213do_vfp_nsyn_mrs (void)
8214{
8215 if (inst.operands[0].isvec)
8216 {
8217 if (inst.operands[1].reg != 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8222 }
8223 else if (inst.operands[1].isvec)
8224 do_vfp_nsyn_opcode ("fmrx");
8225 else
8226 return FAIL;
5f4273c7 8227
037e8744
JB
8228 return SUCCESS;
8229}
8230
8231static int
8232do_vfp_nsyn_msr (void)
8233{
8234 if (inst.operands[0].isvec)
8235 do_vfp_nsyn_opcode ("fmxr");
8236 else
8237 return FAIL;
8238
8239 return SUCCESS;
8240}
8241
f7c21dc7
NC
8242static void
8243do_vmrs (void)
8244{
8245 unsigned Rt = inst.operands[0].reg;
fa94de6b 8246
f7c21dc7
NC
8247 if (thumb_mode && inst.operands[0].reg == REG_SP)
8248 {
8249 inst.error = BAD_SP;
8250 return;
8251 }
8252
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8255 {
8256 inst.error = BAD_PC;
8257 return;
8258 }
8259
7465e07a
NC
8260 switch (inst.operands[1].reg)
8261 {
8262 case 0: /* FPSID */
8263 case 1: /* FPSCR */
8264 case 6: /* MVFR1 */
8265 case 7: /* MVFR0 */
8266 case 8: /* FPEXC */
8267 inst.instruction |= (inst.operands[1].reg << 16);
8268 break;
8269 default:
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8271 }
f7c21dc7
NC
8272
8273 inst.instruction |= (Rt << 12);
8274}
8275
8276static void
8277do_vmsr (void)
8278{
8279 unsigned Rt = inst.operands[1].reg;
fa94de6b 8280
f7c21dc7
NC
8281 if (thumb_mode)
8282 reject_bad_reg (Rt);
8283 else if (Rt == REG_PC)
8284 {
8285 inst.error = BAD_PC;
8286 return;
8287 }
8288
7465e07a
NC
8289 switch (inst.operands[0].reg)
8290 {
8291 case 0: /* FPSID */
8292 case 1: /* FPSCR */
8293 case 8: /* FPEXC */
8294 inst.instruction |= (inst.operands[0].reg << 16);
8295 break;
8296 default:
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8298 }
f7c21dc7
NC
8299
8300 inst.instruction |= (Rt << 12);
8301}
8302
b99bd4ef 8303static void
c19d1205 8304do_mrs (void)
b99bd4ef 8305{
90ec0d68
MGD
8306 unsigned br;
8307
037e8744
JB
8308 if (do_vfp_nsyn_mrs () == SUCCESS)
8309 return;
8310
ff4a8d2b 8311 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
c19d1205 8312 inst.instruction |= inst.operands[0].reg << 12;
90ec0d68
MGD
8313
8314 if (inst.operands[1].isreg)
8315 {
8316 br = inst.operands[1].reg;
8317 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8319 }
8320 else
8321 {
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8324 != (PSR_c|PSR_f),
d2cd1205 8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
90ec0d68
MGD
8326 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8327 }
8328
8329 inst.instruction |= br;
c19d1205 8330}
b99bd4ef 8331
c19d1205
ZW
8332/* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
b99bd4ef 8335
c19d1205
ZW
8336static void
8337do_msr (void)
8338{
037e8744
JB
8339 if (do_vfp_nsyn_msr () == SUCCESS)
8340 return;
8341
c19d1205
ZW
8342 inst.instruction |= inst.operands[0].imm;
8343 if (inst.operands[1].isreg)
8344 inst.instruction |= inst.operands[1].reg;
8345 else
b99bd4ef 8346 {
c19d1205
ZW
8347 inst.instruction |= INST_IMMEDIATE;
8348 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8349 inst.reloc.pc_rel = 0;
b99bd4ef 8350 }
b99bd4ef
NC
8351}
8352
c19d1205
ZW
8353static void
8354do_mul (void)
a737bd4d 8355{
ff4a8d2b
NC
8356 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8357
c19d1205
ZW
8358 if (!inst.operands[2].present)
8359 inst.operands[2].reg = inst.operands[0].reg;
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 8363
8fb9d7b9
MS
8364 if (inst.operands[0].reg == inst.operands[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
8367}
8368
c19d1205
ZW
8369/* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
8374
8375static void
c19d1205 8376do_mull (void)
b99bd4ef 8377{
c19d1205
ZW
8378 inst.instruction |= inst.operands[0].reg << 12;
8379 inst.instruction |= inst.operands[1].reg << 16;
8380 inst.instruction |= inst.operands[2].reg;
8381 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 8382
682b27ad
PB
8383 /* rdhi and rdlo must be different. */
8384 if (inst.operands[0].reg == inst.operands[1].reg)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8386
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 8389 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 8390 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8392}
b99bd4ef 8393
c19d1205
ZW
8394static void
8395do_nop (void)
8396{
e7495e45
NS
8397 if (inst.operands[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
8399 {
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst.instruction &= 0xf0000000;
e7495e45
NS
8402 inst.instruction |= 0x0320f000;
8403 if (inst.operands[0].present)
8404 inst.instruction |= inst.operands[0].imm;
c19d1205 8405 }
b99bd4ef
NC
8406}
8407
c19d1205
ZW
8408/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
8412
8413static void
c19d1205 8414do_pkhbt (void)
b99bd4ef 8415{
c19d1205
ZW
8416 inst.instruction |= inst.operands[0].reg << 12;
8417 inst.instruction |= inst.operands[1].reg << 16;
8418 inst.instruction |= inst.operands[2].reg;
8419 if (inst.operands[3].present)
8420 encode_arm_shift (3);
8421}
b99bd4ef 8422
c19d1205 8423/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 8424
c19d1205
ZW
8425static void
8426do_pkhtb (void)
8427{
8428 if (!inst.operands[3].present)
b99bd4ef 8429 {
c19d1205
ZW
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst.instruction &= 0xfff00010;
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].reg;
8435 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8436 }
8437 else
8438 {
c19d1205
ZW
8439 inst.instruction |= inst.operands[0].reg << 12;
8440 inst.instruction |= inst.operands[1].reg << 16;
8441 inst.instruction |= inst.operands[2].reg;
8442 encode_arm_shift (3);
b99bd4ef
NC
8443 }
8444}
8445
c19d1205 8446/* ARMv5TE: Preload-Cache
60e5ef9f 8447 MP Extensions: Preload for write
c19d1205 8448
60e5ef9f 8449 PLD(W) <addr_mode>
c19d1205
ZW
8450
8451 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
8452
8453static void
c19d1205 8454do_pld (void)
b99bd4ef 8455{
c19d1205
ZW
8456 constraint (!inst.operands[0].isreg,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst.operands[0].postind,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst.operands[0].writeback,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst.operands[0].preind,
8463 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8465}
b99bd4ef 8466
62b3e311
PB
8467/* ARMv7: PLI <addr_mode> */
8468static void
8469do_pli (void)
8470{
8471 constraint (!inst.operands[0].isreg,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst.operands[0].postind,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst.operands[0].writeback,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst.operands[0].preind,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8480 inst.instruction &= ~PRE_INDEX;
8481}
8482
c19d1205
ZW
8483static void
8484do_push_pop (void)
8485{
8486 inst.operands[1] = inst.operands[0];
8487 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8488 inst.operands[0].isreg = 1;
8489 inst.operands[0].writeback = 1;
8490 inst.operands[0].reg = REG_SP;
6530b175 8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
c19d1205 8492}
b99bd4ef 8493
c19d1205
ZW
8494/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8496 respectively.
8497 Unconditionally executed.
8498 Error if Rn is R15. */
b99bd4ef 8499
c19d1205
ZW
8500static void
8501do_rfe (void)
8502{
8503 inst.instruction |= inst.operands[0].reg << 16;
8504 if (inst.operands[0].writeback)
8505 inst.instruction |= WRITE_BACK;
8506}
b99bd4ef 8507
c19d1205 8508/* ARM V6 ssat (argument parse). */
b99bd4ef 8509
c19d1205
ZW
8510static void
8511do_ssat (void)
8512{
8513 inst.instruction |= inst.operands[0].reg << 12;
8514 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8515 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8516
c19d1205
ZW
8517 if (inst.operands[3].present)
8518 encode_arm_shift (3);
b99bd4ef
NC
8519}
8520
c19d1205 8521/* ARM V6 usat (argument parse). */
b99bd4ef
NC
8522
8523static void
c19d1205 8524do_usat (void)
b99bd4ef 8525{
c19d1205
ZW
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 inst.instruction |= inst.operands[1].imm << 16;
8528 inst.instruction |= inst.operands[2].reg;
b99bd4ef 8529
c19d1205
ZW
8530 if (inst.operands[3].present)
8531 encode_arm_shift (3);
b99bd4ef
NC
8532}
8533
c19d1205 8534/* ARM V6 ssat16 (argument parse). */
09d92015
MM
8535
8536static void
c19d1205 8537do_ssat16 (void)
09d92015 8538{
c19d1205
ZW
8539 inst.instruction |= inst.operands[0].reg << 12;
8540 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8541 inst.instruction |= inst.operands[2].reg;
09d92015
MM
8542}
8543
c19d1205
ZW
8544static void
8545do_usat16 (void)
a737bd4d 8546{
c19d1205
ZW
8547 inst.instruction |= inst.operands[0].reg << 12;
8548 inst.instruction |= inst.operands[1].imm << 16;
8549 inst.instruction |= inst.operands[2].reg;
8550}
a737bd4d 8551
c19d1205
ZW
8552/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
a737bd4d 8554
c19d1205
ZW
8555 setend <endian_specifier>, where <endian_specifier> is either
8556 BE or LE. */
a737bd4d 8557
c19d1205
ZW
8558static void
8559do_setend (void)
8560{
12e37cbc
MGD
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8564
c19d1205
ZW
8565 if (inst.operands[0].imm)
8566 inst.instruction |= 0x200;
a737bd4d
NC
8567}
8568
8569static void
c19d1205 8570do_shift (void)
a737bd4d 8571{
c19d1205
ZW
8572 unsigned int Rm = (inst.operands[1].present
8573 ? inst.operands[1].reg
8574 : inst.operands[0].reg);
a737bd4d 8575
c19d1205
ZW
8576 inst.instruction |= inst.operands[0].reg << 12;
8577 inst.instruction |= Rm;
8578 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 8579 {
c19d1205
ZW
8580 inst.instruction |= inst.operands[2].reg << 8;
8581 inst.instruction |= SHIFT_BY_REG;
94342ec3
NC
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst.operands[2].shifted,
8584 _("extraneous shift as part of operand to shift insn"));
a737bd4d
NC
8585 }
8586 else
c19d1205 8587 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
8588}
8589
09d92015 8590static void
3eb17e6b 8591do_smc (void)
09d92015 8592{
3eb17e6b 8593 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 8594 inst.reloc.pc_rel = 0;
09d92015
MM
8595}
8596
90ec0d68
MGD
8597static void
8598do_hvc (void)
8599{
8600 inst.reloc.type = BFD_RELOC_ARM_HVC;
8601 inst.reloc.pc_rel = 0;
8602}
8603
09d92015 8604static void
c19d1205 8605do_swi (void)
09d92015 8606{
c19d1205
ZW
8607 inst.reloc.type = BFD_RELOC_ARM_SWI;
8608 inst.reloc.pc_rel = 0;
09d92015
MM
8609}
8610
c19d1205
ZW
8611/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
e16bb312 8615
c19d1205
ZW
8616static void
8617do_smla (void)
e16bb312 8618{
c19d1205
ZW
8619 inst.instruction |= inst.operands[0].reg << 16;
8620 inst.instruction |= inst.operands[1].reg;
8621 inst.instruction |= inst.operands[2].reg << 8;
8622 inst.instruction |= inst.operands[3].reg << 12;
8623}
a737bd4d 8624
c19d1205
ZW
8625/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
a737bd4d 8629
c19d1205
ZW
8630static void
8631do_smlal (void)
8632{
8633 inst.instruction |= inst.operands[0].reg << 12;
8634 inst.instruction |= inst.operands[1].reg << 16;
8635 inst.instruction |= inst.operands[2].reg;
8636 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 8637
c19d1205
ZW
8638 if (inst.operands[0].reg == inst.operands[1].reg)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8640}
a737bd4d 8641
c19d1205
ZW
8642/* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
a737bd4d 8645
c19d1205
ZW
8646static void
8647do_smul (void)
8648{
8649 inst.instruction |= inst.operands[0].reg << 16;
8650 inst.instruction |= inst.operands[1].reg;
8651 inst.instruction |= inst.operands[2].reg << 8;
8652}
a737bd4d 8653
b6702015
PB
8654/* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
a737bd4d 8656
c19d1205
ZW
8657static void
8658do_srs (void)
8659{
b6702015
PB
8660 int reg;
8661
8662 if (inst.operands[0].present)
8663 {
8664 reg = inst.operands[0].reg;
fdfde340 8665 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
8666 }
8667 else
fdfde340 8668 reg = REG_SP;
b6702015
PB
8669
8670 inst.instruction |= reg << 16;
8671 inst.instruction |= inst.operands[1].imm;
8672 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
8673 inst.instruction |= WRITE_BACK;
8674}
a737bd4d 8675
c19d1205 8676/* ARM V6 strex (argument parse). */
a737bd4d 8677
c19d1205
ZW
8678static void
8679do_strex (void)
8680{
8681 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8682 || inst.operands[2].postind || inst.operands[2].writeback
8683 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
8684 || inst.operands[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst.operands[2].reg == REG_PC),
8687 BAD_ADDR_MODE);
a737bd4d 8688
c19d1205
ZW
8689 constraint (inst.operands[0].reg == inst.operands[1].reg
8690 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 8691
c19d1205
ZW
8692 constraint (inst.reloc.exp.X_op != O_constant
8693 || inst.reloc.exp.X_add_number != 0,
8694 _("offset must be zero in ARM encoding"));
a737bd4d 8695
c19d1205
ZW
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 inst.instruction |= inst.operands[1].reg;
8698 inst.instruction |= inst.operands[2].reg << 16;
8699 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
8700}
8701
877807f8
NC
8702static void
8703do_t_strexbh (void)
8704{
8705 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8706 || inst.operands[2].postind || inst.operands[2].writeback
8707 || inst.operands[2].immisreg || inst.operands[2].shifted
8708 || inst.operands[2].negative,
8709 BAD_ADDR_MODE);
8710
8711 constraint (inst.operands[0].reg == inst.operands[1].reg
8712 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8713
8714 do_rm_rd_rn ();
8715}
8716
e16bb312 8717static void
c19d1205 8718do_strexd (void)
e16bb312 8719{
c19d1205
ZW
8720 constraint (inst.operands[1].reg % 2 != 0,
8721 _("even register required"));
8722 constraint (inst.operands[2].present
8723 && inst.operands[2].reg != inst.operands[1].reg + 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 8728
c19d1205
ZW
8729 constraint (inst.operands[0].reg == inst.operands[1].reg
8730 || inst.operands[0].reg == inst.operands[1].reg + 1
8731 || inst.operands[0].reg == inst.operands[3].reg,
8732 BAD_OVERLAP);
e16bb312 8733
c19d1205
ZW
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 inst.instruction |= inst.operands[1].reg;
8736 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8737}
8738
9eb6c0f1
MGD
8739/* ARM V8 STRL. */
8740static void
8741do_strlex (void)
8742{
8743 constraint (inst.operands[0].reg == inst.operands[1].reg
8744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8745
8746 do_rd_rm_rn ();
8747}
8748
8749static void
8750do_t_strlex (void)
8751{
8752 constraint (inst.operands[0].reg == inst.operands[1].reg
8753 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8754
8755 do_rm_rd_rn ();
8756}
8757
c19d1205
ZW
8758/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8765
e16bb312 8766static void
c19d1205 8767do_sxtah (void)
e16bb312 8768{
c19d1205
ZW
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].reg << 16;
8771 inst.instruction |= inst.operands[2].reg;
8772 inst.instruction |= inst.operands[3].imm << 10;
8773}
e16bb312 8774
c19d1205 8775/* ARM V6 SXTH.
e16bb312 8776
c19d1205
ZW
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
e16bb312
NC
8780
8781static void
c19d1205 8782do_sxth (void)
e16bb312 8783{
c19d1205
ZW
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 inst.instruction |= inst.operands[1].reg;
8786 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8787}
c19d1205
ZW
8788\f
8789/* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8791
8792static void
c19d1205 8793do_vfp_sp_monadic (void)
e16bb312 8794{
5287ad62
JB
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8797}
8798
8799static void
c19d1205 8800do_vfp_sp_dyadic (void)
e16bb312 8801{
5287ad62
JB
8802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8803 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8804 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8805}
8806
8807static void
c19d1205 8808do_vfp_sp_compare_z (void)
e16bb312 8809{
5287ad62 8810 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8811}
8812
8813static void
c19d1205 8814do_vfp_dp_sp_cvt (void)
e16bb312 8815{
5287ad62
JB
8816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8817 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8818}
8819
8820static void
c19d1205 8821do_vfp_sp_dp_cvt (void)
e16bb312 8822{
5287ad62
JB
8823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8824 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8825}
8826
8827static void
c19d1205 8828do_vfp_reg_from_sp (void)
e16bb312 8829{
c19d1205 8830 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8831 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8832}
8833
8834static void
c19d1205 8835do_vfp_reg2_from_sp2 (void)
e16bb312 8836{
c19d1205
ZW
8837 constraint (inst.operands[2].imm != 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst.instruction |= inst.operands[0].reg << 12;
8840 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8842}
8843
8844static void
c19d1205 8845do_vfp_sp_from_reg (void)
e16bb312 8846{
5287ad62 8847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8848 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8849}
8850
8851static void
c19d1205 8852do_vfp_sp2_from_reg2 (void)
e16bb312 8853{
c19d1205
ZW
8854 constraint (inst.operands[0].imm != 2,
8855 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8857 inst.instruction |= inst.operands[1].reg << 12;
8858 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8859}
8860
8861static void
c19d1205 8862do_vfp_sp_ldst (void)
e16bb312 8863{
5287ad62 8864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8865 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8866}
8867
8868static void
c19d1205 8869do_vfp_dp_ldst (void)
e16bb312 8870{
5287ad62 8871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8872 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8873}
8874
c19d1205 8875
e16bb312 8876static void
c19d1205 8877vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8878{
c19d1205
ZW
8879 if (inst.operands[0].writeback)
8880 inst.instruction |= WRITE_BACK;
8881 else
8882 constraint (ldstm_type != VFP_LDSTMIA,
8883 _("this addressing mode requires base-register writeback"));
8884 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8886 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8887}
8888
8889static void
c19d1205 8890vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8891{
c19d1205 8892 int count;
e16bb312 8893
c19d1205
ZW
8894 if (inst.operands[0].writeback)
8895 inst.instruction |= WRITE_BACK;
8896 else
8897 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8898 _("this addressing mode requires base-register writeback"));
e16bb312 8899
c19d1205 8900 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8901 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8902
c19d1205
ZW
8903 count = inst.operands[1].imm << 1;
8904 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8905 count += 1;
e16bb312 8906
c19d1205 8907 inst.instruction |= count;
e16bb312
NC
8908}
8909
8910static void
c19d1205 8911do_vfp_sp_ldstmia (void)
e16bb312 8912{
c19d1205 8913 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8914}
8915
8916static void
c19d1205 8917do_vfp_sp_ldstmdb (void)
e16bb312 8918{
c19d1205 8919 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8920}
8921
8922static void
c19d1205 8923do_vfp_dp_ldstmia (void)
e16bb312 8924{
c19d1205 8925 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8926}
8927
8928static void
c19d1205 8929do_vfp_dp_ldstmdb (void)
e16bb312 8930{
c19d1205 8931 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8932}
8933
8934static void
c19d1205 8935do_vfp_xp_ldstmia (void)
e16bb312 8936{
c19d1205
ZW
8937 vfp_dp_ldstm (VFP_LDSTMIAX);
8938}
e16bb312 8939
c19d1205
ZW
8940static void
8941do_vfp_xp_ldstmdb (void)
8942{
8943 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8944}
5287ad62
JB
8945
8946static void
8947do_vfp_dp_rd_rm (void)
8948{
8949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8951}
8952
8953static void
8954do_vfp_dp_rn_rd (void)
8955{
8956 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8957 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8958}
8959
8960static void
8961do_vfp_dp_rd_rn (void)
8962{
8963 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8964 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8965}
8966
8967static void
8968do_vfp_dp_rd_rn_rm (void)
8969{
8970 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8971 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8972 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8973}
8974
8975static void
8976do_vfp_dp_rd (void)
8977{
8978 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8979}
8980
8981static void
8982do_vfp_dp_rm_rd_rn (void)
8983{
8984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8985 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8986 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8987}
8988
8989/* VFPv3 instructions. */
8990static void
8991do_vfp_sp_const (void)
8992{
8993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8994 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8995 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8996}
8997
8998static void
8999do_vfp_dp_const (void)
9000{
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
9002 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9003 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
9004}
9005
9006static void
9007vfp_conv (int srcsize)
9008{
5f1af56b
MGD
9009 int immbits = srcsize - inst.operands[1].imm;
9010
fa94de6b
RM
9011 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9012 {
5f1af56b
MGD
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst.error = _("immediate value out of range, expected range [0, 16]");
9016 return;
9017 }
fa94de6b 9018 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
5f1af56b
MGD
9019 {
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst.error = _("immediate value out of range, expected range [1, 32]");
9023 return;
9024 }
9025
5287ad62
JB
9026 inst.instruction |= (immbits & 1) << 5;
9027 inst.instruction |= (immbits >> 1);
9028}
9029
9030static void
9031do_vfp_sp_conv_16 (void)
9032{
9033 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9034 vfp_conv (16);
9035}
9036
9037static void
9038do_vfp_dp_conv_16 (void)
9039{
9040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9041 vfp_conv (16);
9042}
9043
9044static void
9045do_vfp_sp_conv_32 (void)
9046{
9047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9048 vfp_conv (32);
9049}
9050
9051static void
9052do_vfp_dp_conv_32 (void)
9053{
9054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9055 vfp_conv (32);
9056}
c19d1205
ZW
9057\f
9058/* FPA instructions. Also in a logical order. */
e16bb312 9059
c19d1205
ZW
9060static void
9061do_fpa_cmp (void)
9062{
9063 inst.instruction |= inst.operands[0].reg << 16;
9064 inst.instruction |= inst.operands[1].reg;
9065}
b99bd4ef
NC
9066
9067static void
c19d1205 9068do_fpa_ldmstm (void)
b99bd4ef 9069{
c19d1205
ZW
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 switch (inst.operands[1].imm)
9072 {
9073 case 1: inst.instruction |= CP_T_X; break;
9074 case 2: inst.instruction |= CP_T_Y; break;
9075 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9076 case 4: break;
9077 default: abort ();
9078 }
b99bd4ef 9079
c19d1205
ZW
9080 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9081 {
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst.reloc.exp.X_op != O_constant
9087 || inst.reloc.exp.X_add_number != 0,
9088 _("this instruction does not support indexing"));
b99bd4ef 9089
c19d1205
ZW
9090 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9091 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 9092
c19d1205
ZW
9093 if (!(inst.instruction & INDEX_UP))
9094 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 9095
c19d1205
ZW
9096 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9097 {
9098 inst.operands[2].preind = 0;
9099 inst.operands[2].postind = 1;
9100 }
9101 }
b99bd4ef 9102
c19d1205 9103 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 9104}
c19d1205
ZW
9105\f
9106/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 9107
c19d1205
ZW
9108static void
9109do_iwmmxt_tandorc (void)
9110{
9111 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9112}
b99bd4ef 9113
c19d1205
ZW
9114static void
9115do_iwmmxt_textrc (void)
9116{
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].imm;
9119}
b99bd4ef
NC
9120
9121static void
c19d1205 9122do_iwmmxt_textrm (void)
b99bd4ef 9123{
c19d1205
ZW
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 inst.instruction |= inst.operands[2].imm;
9127}
b99bd4ef 9128
c19d1205
ZW
9129static void
9130do_iwmmxt_tinsr (void)
9131{
9132 inst.instruction |= inst.operands[0].reg << 16;
9133 inst.instruction |= inst.operands[1].reg << 12;
9134 inst.instruction |= inst.operands[2].imm;
9135}
b99bd4ef 9136
c19d1205
ZW
9137static void
9138do_iwmmxt_tmia (void)
9139{
9140 inst.instruction |= inst.operands[0].reg << 5;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].reg << 12;
9143}
b99bd4ef 9144
c19d1205
ZW
9145static void
9146do_iwmmxt_waligni (void)
9147{
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 inst.instruction |= inst.operands[1].reg << 16;
9150 inst.instruction |= inst.operands[2].reg;
9151 inst.instruction |= inst.operands[3].imm << 20;
9152}
b99bd4ef 9153
2d447fca
JM
9154static void
9155do_iwmmxt_wmerge (void)
9156{
9157 inst.instruction |= inst.operands[0].reg << 12;
9158 inst.instruction |= inst.operands[1].reg << 16;
9159 inst.instruction |= inst.operands[2].reg;
9160 inst.instruction |= inst.operands[3].imm << 21;
9161}
9162
c19d1205
ZW
9163static void
9164do_iwmmxt_wmov (void)
9165{
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst.instruction |= inst.operands[0].reg << 12;
9168 inst.instruction |= inst.operands[1].reg << 16;
9169 inst.instruction |= inst.operands[1].reg;
9170}
b99bd4ef 9171
c19d1205
ZW
9172static void
9173do_iwmmxt_wldstbh (void)
9174{
8f06b2d8 9175 int reloc;
c19d1205 9176 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
9177 if (thumb_mode)
9178 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9179 else
9180 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9181 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
9182}
9183
c19d1205
ZW
9184static void
9185do_iwmmxt_wldstw (void)
9186{
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst.operands[0].isreg)
9189 {
9190 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9191 inst.instruction |= 0xf0000000;
9192 }
b99bd4ef 9193
c19d1205
ZW
9194 inst.instruction |= inst.operands[0].reg << 12;
9195 encode_arm_cp_address (1, TRUE, TRUE, 0);
9196}
b99bd4ef
NC
9197
9198static void
c19d1205 9199do_iwmmxt_wldstd (void)
b99bd4ef 9200{
c19d1205 9201 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9203 && inst.operands[1].immisreg)
9204 {
9205 inst.instruction &= ~0x1a000ff;
9206 inst.instruction |= (0xf << 28);
9207 if (inst.operands[1].preind)
9208 inst.instruction |= PRE_INDEX;
9209 if (!inst.operands[1].negative)
9210 inst.instruction |= INDEX_UP;
9211 if (inst.operands[1].writeback)
9212 inst.instruction |= WRITE_BACK;
9213 inst.instruction |= inst.operands[1].reg << 16;
9214 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9215 inst.instruction |= inst.operands[1].imm;
9216 }
9217 else
9218 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 9219}
b99bd4ef 9220
c19d1205
ZW
9221static void
9222do_iwmmxt_wshufh (void)
9223{
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9227 inst.instruction |= (inst.operands[2].imm & 0x0f);
9228}
b99bd4ef 9229
c19d1205
ZW
9230static void
9231do_iwmmxt_wzero (void)
9232{
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst.instruction |= inst.operands[0].reg;
9235 inst.instruction |= inst.operands[0].reg << 12;
9236 inst.instruction |= inst.operands[0].reg << 16;
9237}
2d447fca
JM
9238
9239static void
9240do_iwmmxt_wrwrwr_or_imm5 (void)
9241{
9242 if (inst.operands[2].isreg)
9243 do_rd_rn_rm ();
9244 else {
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9246 _("immediate operand requires iWMMXt2"));
9247 do_rd_rn ();
9248 if (inst.operands[2].imm == 0)
9249 {
9250 switch ((inst.instruction >> 20) & 0xf)
9251 {
9252 case 4:
9253 case 5:
9254 case 6:
5f4273c7 9255 case 7:
2d447fca
JM
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst.operands[2].imm = 16;
9258 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9259 break;
9260 case 8:
9261 case 9:
9262 case 10:
9263 case 11:
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst.operands[2].imm = 32;
9266 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9267 break;
9268 case 12:
9269 case 13:
9270 case 14:
9271 case 15:
9272 {
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9274 unsigned long wrn;
9275 wrn = (inst.instruction >> 16) & 0xf;
9276 inst.instruction &= 0xff0fff0f;
9277 inst.instruction |= wrn;
9278 /* Bail out here; the instruction is now assembled. */
9279 return;
9280 }
9281 }
9282 }
9283 /* Map 32 -> 0, etc. */
9284 inst.operands[2].imm &= 0x1f;
9285 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9286 }
9287}
c19d1205
ZW
9288\f
9289/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
b99bd4ef 9291
c19d1205 9292/* Insns like "foo X,Y,Z". */
b99bd4ef 9293
c19d1205
ZW
9294static void
9295do_mav_triple (void)
9296{
9297 inst.instruction |= inst.operands[0].reg << 16;
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300}
b99bd4ef 9301
c19d1205
ZW
9302/* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 9304
c19d1205
ZW
9305static void
9306do_mav_quad (void)
9307{
9308 inst.instruction |= inst.operands[0].reg << 5;
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
9312}
9313
c19d1205
ZW
9314/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9315static void
9316do_mav_dspsc (void)
a737bd4d 9317{
c19d1205
ZW
9318 inst.instruction |= inst.operands[1].reg << 12;
9319}
a737bd4d 9320
c19d1205
ZW
9321/* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 9324
c19d1205
ZW
9325static void
9326do_mav_shift (void)
9327{
9328 int imm = inst.operands[2].imm;
a737bd4d 9329
c19d1205
ZW
9330 inst.instruction |= inst.operands[0].reg << 12;
9331 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 9332
c19d1205
ZW
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 9337
c19d1205
ZW
9338 inst.instruction |= imm;
9339}
9340\f
9341/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 9342
c19d1205
ZW
9343/* Xscale multiply-accumulate (argument parse)
9344 MIAcc acc0,Rm,Rs
9345 MIAPHcc acc0,Rm,Rs
9346 MIAxycc acc0,Rm,Rs. */
a737bd4d 9347
c19d1205
ZW
9348static void
9349do_xsc_mia (void)
9350{
9351 inst.instruction |= inst.operands[1].reg;
9352 inst.instruction |= inst.operands[2].reg << 12;
9353}
a737bd4d 9354
c19d1205 9355/* Xscale move-accumulator-register (argument parse)
a737bd4d 9356
c19d1205 9357 MARcc acc0,RdLo,RdHi. */
b99bd4ef 9358
c19d1205
ZW
9359static void
9360do_xsc_mar (void)
9361{
9362 inst.instruction |= inst.operands[1].reg << 12;
9363 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9364}
9365
c19d1205 9366/* Xscale move-register-accumulator (argument parse)
b99bd4ef 9367
c19d1205 9368 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
9369
9370static void
c19d1205 9371do_xsc_mra (void)
b99bd4ef 9372{
c19d1205
ZW
9373 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg << 16;
9376}
9377\f
9378/* Encoding functions relevant only to Thumb. */
b99bd4ef 9379
c19d1205
ZW
9380/* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9382
9383static void
9384encode_thumb32_shifted_operand (int i)
9385{
9386 unsigned int value = inst.reloc.exp.X_add_number;
9387 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 9388
9c3c69f2
PB
9389 constraint (inst.operands[i].immisreg,
9390 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
9391 inst.instruction |= inst.operands[i].reg;
9392 if (shift == SHIFT_RRX)
9393 inst.instruction |= SHIFT_ROR << 4;
9394 else
b99bd4ef 9395 {
c19d1205
ZW
9396 constraint (inst.reloc.exp.X_op != O_constant,
9397 _("expression too complex"));
9398
9399 constraint (value > 32
9400 || (value == 32 && (shift == SHIFT_LSL
9401 || shift == SHIFT_ROR)),
9402 _("shift expression is too large"));
9403
9404 if (value == 0)
9405 shift = SHIFT_LSL;
9406 else if (value == 32)
9407 value = 0;
9408
9409 inst.instruction |= shift << 4;
9410 inst.instruction |= (value & 0x1c) << 10;
9411 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 9412 }
c19d1205 9413}
b99bd4ef 9414
b99bd4ef 9415
c19d1205
ZW
9416/* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
5be8be5d
DG
9420 that cannot be used with a D instruction. If it is a store insn,
9421 reject PC in Rn. */
b99bd4ef 9422
c19d1205
ZW
9423static void
9424encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9425{
5be8be5d 9426 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
c19d1205
ZW
9427
9428 constraint (!inst.operands[i].isreg,
53365c0d 9429 _("Instruction does not support =N addresses"));
b99bd4ef 9430
c19d1205
ZW
9431 inst.instruction |= inst.operands[i].reg << 16;
9432 if (inst.operands[i].immisreg)
b99bd4ef 9433 {
5be8be5d 9434 constraint (is_pc, BAD_PC_ADDRESSING);
c19d1205
ZW
9435 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9436 constraint (inst.operands[i].negative,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst.operands[i].postind,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst.operands[i].writeback,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9443 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 9444
f40d1643 9445 inst.instruction |= inst.operands[i].imm;
c19d1205 9446 if (inst.operands[i].shifted)
b99bd4ef 9447 {
c19d1205
ZW
9448 constraint (inst.reloc.exp.X_op != O_constant,
9449 _("expression too complex"));
9c3c69f2
PB
9450 constraint (inst.reloc.exp.X_add_number < 0
9451 || inst.reloc.exp.X_add_number > 3,
c19d1205 9452 _("shift out of range"));
9c3c69f2 9453 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
9454 }
9455 inst.reloc.type = BFD_RELOC_UNUSED;
9456 }
9457 else if (inst.operands[i].preind)
9458 {
5be8be5d 9459 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
f40d1643 9460 constraint (is_t && inst.operands[i].writeback,
c19d1205 9461 _("cannot use writeback with this instruction"));
5be8be5d
DG
9462 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9463 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
c19d1205
ZW
9464
9465 if (is_d)
9466 {
9467 inst.instruction |= 0x01000000;
9468 if (inst.operands[i].writeback)
9469 inst.instruction |= 0x00200000;
b99bd4ef 9470 }
c19d1205 9471 else
b99bd4ef 9472 {
c19d1205
ZW
9473 inst.instruction |= 0x00000c00;
9474 if (inst.operands[i].writeback)
9475 inst.instruction |= 0x00000100;
b99bd4ef 9476 }
c19d1205 9477 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 9478 }
c19d1205 9479 else if (inst.operands[i].postind)
b99bd4ef 9480 {
9c2799c2 9481 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
9482 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t, _("cannot use post-indexing with this instruction"));
9484
9485 if (is_d)
9486 inst.instruction |= 0x00200000;
9487 else
9488 inst.instruction |= 0x00000900;
9489 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9490 }
9491 else /* unindexed - only for coprocessor */
9492 inst.error = _("instruction does not accept unindexed addressing");
9493}
9494
9495/* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
9499 holds variant (1).
9500 Also contains several pseudo-instructions used during relaxation. */
c19d1205 9501#define T16_32_TAB \
21d799b5
NC
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
53c4b28b
MGD
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
c19d1205
ZW
9580
9581/* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
21d799b5 9584#define X(a,b,c) T_MNEM##a
c19d1205
ZW
9585enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9586#undef X
9587
9588#define X(a,b,c) 0x##b
9589static const unsigned short thumb_op16[] = { T16_32_TAB };
9590#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9591#undef X
9592
9593#define X(a,b,c) 0x##c
9594static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
9595#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
9597#undef X
9598#undef T16_32_TAB
9599
9600/* Thumb instruction encoders, in alphabetical order. */
9601
92e90b6e 9602/* ADDW or SUBW. */
c921be7d 9603
92e90b6e
PB
9604static void
9605do_t_add_sub_w (void)
9606{
9607 int Rd, Rn;
9608
9609 Rd = inst.operands[0].reg;
9610 Rn = inst.operands[1].reg;
9611
539d4391
NC
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9614 if (Rn == REG_SP)
9615 constraint (Rd == REG_PC, BAD_PC);
9616 else
9617 reject_bad_reg (Rd);
fdfde340 9618
92e90b6e
PB
9619 inst.instruction |= (Rn << 16) | (Rd << 8);
9620 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9621}
9622
c19d1205
ZW
9623/* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9625
9626static void
9627do_t_add_sub (void)
9628{
9629 int Rd, Rs, Rn;
9630
9631 Rd = inst.operands[0].reg;
9632 Rs = (inst.operands[1].present
9633 ? inst.operands[1].reg /* Rd, Rs, foo */
9634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9635
e07e6e58
NC
9636 if (Rd == REG_PC)
9637 set_it_insn_type_last ();
9638
c19d1205
ZW
9639 if (unified_syntax)
9640 {
0110f2b8
PB
9641 bfd_boolean flags;
9642 bfd_boolean narrow;
9643 int opcode;
9644
9645 flags = (inst.instruction == T_MNEM_adds
9646 || inst.instruction == T_MNEM_subs);
9647 if (flags)
e07e6e58 9648 narrow = !in_it_block ();
0110f2b8 9649 else
e07e6e58 9650 narrow = in_it_block ();
c19d1205 9651 if (!inst.operands[2].isreg)
b99bd4ef 9652 {
16805f35
PB
9653 int add;
9654
fdfde340
JM
9655 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9656
16805f35
PB
9657 add = (inst.instruction == T_MNEM_add
9658 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
9659 opcode = 0;
9660 if (inst.size_req != 4)
9661 {
0110f2b8
PB
9662 /* Attempt to use a narrow opcode, with relaxation if
9663 appropriate. */
9664 if (Rd == REG_SP && Rs == REG_SP && !flags)
9665 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9666 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9667 opcode = T_MNEM_add_sp;
9668 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9669 opcode = T_MNEM_add_pc;
9670 else if (Rd <= 7 && Rs <= 7 && narrow)
9671 {
9672 if (flags)
9673 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9674 else
9675 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9676 }
9677 if (opcode)
9678 {
9679 inst.instruction = THUMB_OP16(opcode);
9680 inst.instruction |= (Rd << 4) | Rs;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9682 if (inst.size_req != 2)
9683 inst.relax = opcode;
9684 }
9685 else
9686 constraint (inst.size_req == 2, BAD_HIREG);
9687 }
9688 if (inst.size_req == 4
9689 || (inst.size_req != 2 && !opcode))
9690 {
efd81785
PB
9691 if (Rd == REG_PC)
9692 {
fdfde340 9693 constraint (add, BAD_PC);
efd81785
PB
9694 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst.reloc.exp.X_op != O_constant,
9697 _("expression too complex"));
9698 constraint (inst.reloc.exp.X_add_number < 0
9699 || inst.reloc.exp.X_add_number > 0xff,
9700 _("immediate value out of range"));
9701 inst.instruction = T2_SUBS_PC_LR
9702 | inst.reloc.exp.X_add_number;
9703 inst.reloc.type = BFD_RELOC_UNUSED;
9704 return;
9705 }
9706 else if (Rs == REG_PC)
16805f35
PB
9707 {
9708 /* Always use addw/subw. */
9709 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9710 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9711 }
9712 else
9713 {
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction = (inst.instruction & 0xe1ffffff)
9716 | 0x10000000;
9717 if (flags)
9718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9719 else
9720 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9721 }
dc4503c6
PB
9722 inst.instruction |= Rd << 8;
9723 inst.instruction |= Rs << 16;
0110f2b8 9724 }
b99bd4ef 9725 }
c19d1205
ZW
9726 else
9727 {
5f4cb198
NC
9728 unsigned int value = inst.reloc.exp.X_add_number;
9729 unsigned int shift = inst.operands[2].shift_kind;
9730
c19d1205
ZW
9731 Rn = inst.operands[2].reg;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst.operands[2].shifted && inst.size_req != 4)
9734 {
e27ec89e
PB
9735 if (Rd > 7 || Rs > 7 || Rn > 7)
9736 narrow = FALSE;
9737
9738 if (narrow)
c19d1205 9739 {
e27ec89e
PB
9740 inst.instruction = ((inst.instruction == T_MNEM_adds
9741 || inst.instruction == T_MNEM_add)
c19d1205
ZW
9742 ? T_OPCODE_ADD_R3
9743 : T_OPCODE_SUB_R3);
9744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9745 return;
9746 }
b99bd4ef 9747
7e806470 9748 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 9749 {
7e806470
PB
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd > 7 || Rn > 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 9755 {
7e806470
PB
9756 if (Rd == Rn)
9757 {
9758 Rn = Rs;
9759 Rs = Rd;
9760 }
c19d1205
ZW
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 inst.instruction |= Rn << 3;
9765 return;
9766 }
c19d1205
ZW
9767 }
9768 }
c921be7d 9769
fdfde340
JM
9770 constraint (Rd == REG_PC, BAD_PC);
9771 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9772 constraint (Rs == REG_PC, BAD_PC);
9773 reject_bad_reg (Rn);
9774
c19d1205
ZW
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9777 _("shift must be constant"));
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction |= Rd << 8;
9780 inst.instruction |= Rs << 16;
5f4cb198
NC
9781 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9784 _("only LSL shift allowed in thumb mode"));
c19d1205
ZW
9785 encode_thumb32_shifted_operand (2);
9786 }
9787 }
9788 else
9789 {
9790 constraint (inst.instruction == T_MNEM_adds
9791 || inst.instruction == T_MNEM_subs,
9792 BAD_THUMB32);
b99bd4ef 9793
c19d1205 9794 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9795 {
c19d1205
ZW
9796 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9797 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9798 BAD_HIREG);
9799
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? 0x0000 : 0x8000);
9802 inst.instruction |= (Rd << 4) | Rs;
9803 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9804 return;
9805 }
9806
c19d1205
ZW
9807 Rn = inst.operands[2].reg;
9808 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9809
c19d1205
ZW
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9812 {
c19d1205
ZW
9813 /* Can't do this for SUB. */
9814 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9815 inst.instruction = T_OPCODE_ADD_HI;
9816 inst.instruction |= (Rd & 8) << 4;
9817 inst.instruction |= (Rd & 7);
9818 if (Rs == Rd)
9819 inst.instruction |= Rn << 3;
9820 else if (Rn == Rd)
9821 inst.instruction |= Rs << 3;
9822 else
9823 constraint (1, _("dest must overlap one source register"));
9824 }
9825 else
9826 {
9827 inst.instruction = (inst.instruction == T_MNEM_add
9828 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9829 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9830 }
b99bd4ef 9831 }
b99bd4ef
NC
9832}
9833
c19d1205
ZW
9834static void
9835do_t_adr (void)
9836{
fdfde340
JM
9837 unsigned Rd;
9838
9839 Rd = inst.operands[0].reg;
9840 reject_bad_reg (Rd);
9841
9842 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9843 {
9844 /* Defer to section relaxation. */
9845 inst.relax = inst.instruction;
9846 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9847 inst.instruction |= Rd << 4;
0110f2b8
PB
9848 }
9849 else if (unified_syntax && inst.size_req != 2)
e9f89963 9850 {
0110f2b8 9851 /* Generate a 32-bit opcode. */
e9f89963 9852 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9853 inst.instruction |= Rd << 8;
e9f89963
PB
9854 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9855 inst.reloc.pc_rel = 1;
9856 }
9857 else
9858 {
0110f2b8 9859 /* Generate a 16-bit opcode. */
e9f89963
PB
9860 inst.instruction = THUMB_OP16 (inst.instruction);
9861 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9862 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9863 inst.reloc.pc_rel = 1;
b99bd4ef 9864
fdfde340 9865 inst.instruction |= Rd << 4;
e9f89963 9866 }
c19d1205 9867}
b99bd4ef 9868
c19d1205
ZW
9869/* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9875static void
c19d1205 9876do_t_arit3 (void)
b99bd4ef 9877{
c19d1205 9878 int Rd, Rs, Rn;
b99bd4ef 9879
c19d1205
ZW
9880 Rd = inst.operands[0].reg;
9881 Rs = (inst.operands[1].present
9882 ? inst.operands[1].reg /* Rd, Rs, foo */
9883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9884 Rn = inst.operands[2].reg;
b99bd4ef 9885
fdfde340
JM
9886 reject_bad_reg (Rd);
9887 reject_bad_reg (Rs);
9888 if (inst.operands[2].isreg)
9889 reject_bad_reg (Rn);
9890
c19d1205 9891 if (unified_syntax)
b99bd4ef 9892 {
c19d1205
ZW
9893 if (!inst.operands[2].isreg)
9894 {
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst.instruction = THUMB_OP32 (inst.instruction);
9898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9899 inst.instruction |= Rd << 8;
9900 inst.instruction |= Rs << 16;
9901 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9902 }
9903 else
9904 {
e27ec89e
PB
9905 bfd_boolean narrow;
9906
c19d1205 9907 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9908 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9909 narrow = !in_it_block ();
e27ec89e 9910 else
e07e6e58 9911 narrow = in_it_block ();
e27ec89e
PB
9912
9913 if (Rd > 7 || Rn > 7 || Rs > 7)
9914 narrow = FALSE;
9915 if (inst.operands[2].shifted)
9916 narrow = FALSE;
9917 if (inst.size_req == 4)
9918 narrow = FALSE;
9919
9920 if (narrow
c19d1205
ZW
9921 && Rd == Rs)
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= Rd;
9925 inst.instruction |= Rn << 3;
9926 return;
9927 }
b99bd4ef 9928
c19d1205
ZW
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst.operands[2].shifted
9931 && inst.operands[2].immisreg,
9932 _("shift must be constant"));
9933 inst.instruction = THUMB_OP32 (inst.instruction);
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rs << 16;
9936 encode_thumb32_shifted_operand (2);
9937 }
a737bd4d 9938 }
c19d1205 9939 else
b99bd4ef 9940 {
c19d1205
ZW
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9943 says it doesn't. */
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9945
c19d1205
ZW
9946 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9947 _("unshifted register required"));
9948 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9949 constraint (Rd != Rs,
9950 _("dest and source1 must be the same register"));
a737bd4d 9951
c19d1205
ZW
9952 inst.instruction = THUMB_OP16 (inst.instruction);
9953 inst.instruction |= Rd;
9954 inst.instruction |= Rn << 3;
b99bd4ef 9955 }
a737bd4d 9956}
b99bd4ef 9957
c19d1205
ZW
9958/* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9962 accepted. */
9963static void
9964do_t_arit3c (void)
a737bd4d 9965{
c19d1205 9966 int Rd, Rs, Rn;
b99bd4ef 9967
c19d1205
ZW
9968 Rd = inst.operands[0].reg;
9969 Rs = (inst.operands[1].present
9970 ? inst.operands[1].reg /* Rd, Rs, foo */
9971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9972 Rn = inst.operands[2].reg;
c921be7d 9973
fdfde340
JM
9974 reject_bad_reg (Rd);
9975 reject_bad_reg (Rs);
9976 if (inst.operands[2].isreg)
9977 reject_bad_reg (Rn);
a737bd4d 9978
c19d1205 9979 if (unified_syntax)
a737bd4d 9980 {
c19d1205 9981 if (!inst.operands[2].isreg)
b99bd4ef 9982 {
c19d1205
ZW
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst.instruction = THUMB_OP32 (inst.instruction);
9986 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9987 inst.instruction |= Rd << 8;
9988 inst.instruction |= Rs << 16;
9989 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9990 }
c19d1205 9991 else
a737bd4d 9992 {
e27ec89e
PB
9993 bfd_boolean narrow;
9994
c19d1205 9995 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9996 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9997 narrow = !in_it_block ();
e27ec89e 9998 else
e07e6e58 9999 narrow = in_it_block ();
e27ec89e
PB
10000
10001 if (Rd > 7 || Rn > 7 || Rs > 7)
10002 narrow = FALSE;
10003 if (inst.operands[2].shifted)
10004 narrow = FALSE;
10005 if (inst.size_req == 4)
10006 narrow = FALSE;
10007
10008 if (narrow)
a737bd4d 10009 {
c19d1205 10010 if (Rd == Rs)
a737bd4d 10011 {
c19d1205
ZW
10012 inst.instruction = THUMB_OP16 (inst.instruction);
10013 inst.instruction |= Rd;
10014 inst.instruction |= Rn << 3;
10015 return;
a737bd4d 10016 }
c19d1205 10017 if (Rd == Rn)
a737bd4d 10018 {
c19d1205
ZW
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= Rd;
10021 inst.instruction |= Rs << 3;
10022 return;
a737bd4d
NC
10023 }
10024 }
c19d1205
ZW
10025
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst.operands[2].shifted
10028 && inst.operands[2].immisreg,
10029 _("shift must be constant"));
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 inst.instruction |= Rd << 8;
10032 inst.instruction |= Rs << 16;
10033 encode_thumb32_shifted_operand (2);
a737bd4d 10034 }
b99bd4ef 10035 }
c19d1205
ZW
10036 else
10037 {
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 10042
c19d1205
ZW
10043 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10044 _("unshifted register required"));
10045 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10046
10047 inst.instruction = THUMB_OP16 (inst.instruction);
10048 inst.instruction |= Rd;
10049
10050 if (Rd == Rs)
10051 inst.instruction |= Rn << 3;
10052 else if (Rd == Rn)
10053 inst.instruction |= Rs << 3;
10054 else
10055 constraint (1, _("dest must overlap one source register"));
10056 }
a737bd4d
NC
10057}
10058
62b3e311
PB
10059static void
10060do_t_barrier (void)
10061{
10062 if (inst.operands[0].present)
10063 {
10064 constraint ((inst.instruction & 0xf0) != 0x40
52e7f43d
RE
10065 && inst.operands[0].imm > 0xf
10066 && inst.operands[0].imm < 0x0,
bd3ba5d1 10067 _("bad barrier type"));
62b3e311
PB
10068 inst.instruction |= inst.operands[0].imm;
10069 }
10070 else
10071 inst.instruction |= 0xf;
10072}
10073
c19d1205
ZW
10074static void
10075do_t_bfc (void)
a737bd4d 10076{
fdfde340 10077 unsigned Rd;
c19d1205
ZW
10078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
fdfde340
JM
10082 Rd = inst.operands[0].reg;
10083 reject_bad_reg (Rd);
10084 inst.instruction |= Rd << 8;
c19d1205
ZW
10085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10087 inst.instruction |= msb - 1;
b99bd4ef
NC
10088}
10089
c19d1205
ZW
10090static void
10091do_t_bfi (void)
b99bd4ef 10092{
fdfde340 10093 int Rd, Rn;
c19d1205 10094 unsigned int msb;
b99bd4ef 10095
fdfde340
JM
10096 Rd = inst.operands[0].reg;
10097 reject_bad_reg (Rd);
10098
c19d1205
ZW
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst.operands[1].isreg)
fdfde340
JM
10102 Rn = REG_PC;
10103 else
10104 {
10105 Rn = inst.operands[1].reg;
10106 reject_bad_reg (Rn);
10107 }
b99bd4ef 10108
c19d1205
ZW
10109 msb = inst.operands[2].imm + inst.operands[3].imm;
10110 constraint (msb > 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
fdfde340
JM
10113 inst.instruction |= Rd << 8;
10114 inst.instruction |= Rn << 16;
c19d1205
ZW
10115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10117 inst.instruction |= msb - 1;
b99bd4ef
NC
10118}
10119
c19d1205
ZW
10120static void
10121do_t_bfx (void)
b99bd4ef 10122{
fdfde340
JM
10123 unsigned Rd, Rn;
10124
10125 Rd = inst.operands[0].reg;
10126 Rn = inst.operands[1].reg;
10127
10128 reject_bad_reg (Rd);
10129 reject_bad_reg (Rn);
10130
c19d1205
ZW
10131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10132 _("bit-field extends past end of register"));
fdfde340
JM
10133 inst.instruction |= Rd << 8;
10134 inst.instruction |= Rn << 16;
c19d1205
ZW
10135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10137 inst.instruction |= inst.operands[3].imm - 1;
10138}
b99bd4ef 10139
c19d1205
ZW
10140/* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
b99bd4ef 10146
c19d1205
ZW
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
b99bd4ef 10149
c19d1205
ZW
10150static void
10151do_t_blx (void)
10152{
e07e6e58
NC
10153 set_it_insn_type_last ();
10154
c19d1205 10155 if (inst.operands[0].isreg)
fdfde340
JM
10156 {
10157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10158 /* We have a register, so this is BLX(2). */
10159 inst.instruction |= inst.operands[0].reg << 3;
10160 }
b99bd4ef
NC
10161 else
10162 {
c19d1205 10163 /* No register. This must be BLX(1). */
2fc8bdac 10164 inst.instruction = 0xf000e800;
0855e32b 10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
b99bd4ef
NC
10166 }
10167}
10168
c19d1205
ZW
10169static void
10170do_t_branch (void)
b99bd4ef 10171{
0110f2b8 10172 int opcode;
dfa9f0d5 10173 int cond;
9ae92b05 10174 int reloc;
dfa9f0d5 10175
e07e6e58
NC
10176 cond = inst.cond;
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10178
10179 if (in_it_block ())
dfa9f0d5
PB
10180 {
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10182 branches. */
10183 cond = COND_ALWAYS;
dfa9f0d5
PB
10184 }
10185 else
10186 cond = inst.cond;
10187
10188 if (cond != COND_ALWAYS)
0110f2b8
PB
10189 opcode = T_MNEM_bcond;
10190 else
10191 opcode = inst.instruction;
10192
12d6b0b7
RS
10193 if (unified_syntax
10194 && (inst.size_req == 4
10960bfb
PB
10195 || (inst.size_req != 2
10196 && (inst.operands[0].hasreloc
10197 || inst.reloc.exp.X_op == O_constant))))
c19d1205 10198 {
0110f2b8 10199 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 10200 if (cond == COND_ALWAYS)
9ae92b05 10201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
10202 else
10203 {
9c2799c2 10204 gas_assert (cond != 0xF);
dfa9f0d5 10205 inst.instruction |= cond << 22;
9ae92b05 10206 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
c19d1205
ZW
10207 }
10208 }
b99bd4ef
NC
10209 else
10210 {
0110f2b8 10211 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 10212 if (cond == COND_ALWAYS)
9ae92b05 10213 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
c19d1205 10214 else
b99bd4ef 10215 {
dfa9f0d5 10216 inst.instruction |= cond << 8;
9ae92b05 10217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 10218 }
0110f2b8
PB
10219 /* Allow section relaxation. */
10220 if (unified_syntax && inst.size_req != 2)
10221 inst.relax = opcode;
b99bd4ef 10222 }
9ae92b05 10223 inst.reloc.type = reloc;
c19d1205 10224 inst.reloc.pc_rel = 1;
b99bd4ef
NC
10225}
10226
8884b720
MGD
10227/* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10229 RANGE. */
b99bd4ef 10230static void
8884b720 10231do_t_bkpt_hlt1 (int range)
b99bd4ef 10232{
dfa9f0d5
PB
10233 constraint (inst.cond != COND_ALWAYS,
10234 _("instruction is always unconditional"));
c19d1205 10235 if (inst.operands[0].present)
b99bd4ef 10236 {
8884b720 10237 constraint (inst.operands[0].imm > range,
c19d1205
ZW
10238 _("immediate value out of range"));
10239 inst.instruction |= inst.operands[0].imm;
b99bd4ef 10240 }
8884b720
MGD
10241
10242 set_it_insn_type (NEUTRAL_IT_INSN);
10243}
10244
10245static void
10246do_t_hlt (void)
10247{
10248 do_t_bkpt_hlt1 (63);
10249}
10250
10251static void
10252do_t_bkpt (void)
10253{
10254 do_t_bkpt_hlt1 (255);
b99bd4ef
NC
10255}
10256
10257static void
c19d1205 10258do_t_branch23 (void)
b99bd4ef 10259{
e07e6e58 10260 set_it_insn_type_last ();
0855e32b 10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
fa94de6b 10262
0855e32b
NS
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10269 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a 10270
4343666d 10271#if defined(OBJ_COFF)
c19d1205
ZW
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst.reloc.exp.X_op == O_symbol
10277 && inst.reloc.exp.X_add_symbol != NULL
10278 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10279 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10280 inst.reloc.exp.X_add_symbol =
10281 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 10282#endif
90e4755a
RE
10283}
10284
10285static void
c19d1205 10286do_t_bx (void)
90e4755a 10287{
e07e6e58 10288 set_it_insn_type_last ();
c19d1205
ZW
10289 inst.instruction |= inst.operands[0].reg << 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10293}
90e4755a 10294
c19d1205
ZW
10295static void
10296do_t_bxj (void)
10297{
fdfde340 10298 int Rm;
90e4755a 10299
e07e6e58 10300 set_it_insn_type_last ();
fdfde340
JM
10301 Rm = inst.operands[0].reg;
10302 reject_bad_reg (Rm);
10303 inst.instruction |= Rm << 16;
90e4755a
RE
10304}
10305
10306static void
c19d1205 10307do_t_clz (void)
90e4755a 10308{
fdfde340
JM
10309 unsigned Rd;
10310 unsigned Rm;
10311
10312 Rd = inst.operands[0].reg;
10313 Rm = inst.operands[1].reg;
10314
10315 reject_bad_reg (Rd);
10316 reject_bad_reg (Rm);
10317
10318 inst.instruction |= Rd << 8;
10319 inst.instruction |= Rm << 16;
10320 inst.instruction |= Rm;
c19d1205 10321}
90e4755a 10322
dfa9f0d5
PB
10323static void
10324do_t_cps (void)
10325{
e07e6e58 10326 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
10327 inst.instruction |= inst.operands[0].imm;
10328}
10329
c19d1205
ZW
10330static void
10331do_t_cpsi (void)
10332{
e07e6e58 10333 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 10334 if (unified_syntax
62b3e311
PB
10335 && (inst.operands[1].present || inst.size_req == 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 10337 {
c19d1205
ZW
10338 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10339 inst.instruction = 0xf3af8000;
10340 inst.instruction |= imod << 9;
10341 inst.instruction |= inst.operands[0].imm << 5;
10342 if (inst.operands[1].present)
10343 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 10344 }
c19d1205 10345 else
90e4755a 10346 {
62b3e311
PB
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10348 && (inst.operands[0].imm & 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst.instruction |= inst.operands[0].imm;
90e4755a 10355 }
90e4755a
RE
10356}
10357
c19d1205
ZW
10358/* THUMB CPY instruction (argument parse). */
10359
90e4755a 10360static void
c19d1205 10361do_t_cpy (void)
90e4755a 10362{
c19d1205 10363 if (inst.size_req == 4)
90e4755a 10364 {
c19d1205
ZW
10365 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
90e4755a 10368 }
c19d1205 10369 else
90e4755a 10370 {
c19d1205
ZW
10371 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10372 inst.instruction |= (inst.operands[0].reg & 0x7);
10373 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 10374 }
90e4755a
RE
10375}
10376
90e4755a 10377static void
25fe350b 10378do_t_cbz (void)
90e4755a 10379{
e07e6e58 10380 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10381 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10382 inst.instruction |= inst.operands[0].reg;
10383 inst.reloc.pc_rel = 1;
10384 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10385}
90e4755a 10386
62b3e311
PB
10387static void
10388do_t_dbg (void)
10389{
10390 inst.instruction |= inst.operands[0].imm;
10391}
10392
10393static void
10394do_t_div (void)
10395{
fdfde340
JM
10396 unsigned Rd, Rn, Rm;
10397
10398 Rd = inst.operands[0].reg;
10399 Rn = (inst.operands[1].present
10400 ? inst.operands[1].reg : Rd);
10401 Rm = inst.operands[2].reg;
10402
10403 reject_bad_reg (Rd);
10404 reject_bad_reg (Rn);
10405 reject_bad_reg (Rm);
10406
10407 inst.instruction |= Rd << 8;
10408 inst.instruction |= Rn << 16;
10409 inst.instruction |= Rm;
62b3e311
PB
10410}
10411
c19d1205
ZW
10412static void
10413do_t_hint (void)
10414{
10415 if (unified_syntax && inst.size_req == 4)
10416 inst.instruction = THUMB_OP32 (inst.instruction);
10417 else
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419}
90e4755a 10420
c19d1205
ZW
10421static void
10422do_t_it (void)
10423{
10424 unsigned int cond = inst.operands[0].imm;
e27ec89e 10425
e07e6e58
NC
10426 set_it_insn_type (IT_INSN);
10427 now_it.mask = (inst.instruction & 0xf) | 0x10;
10428 now_it.cc = cond;
5a01bb1d 10429 now_it.warn_deprecated = FALSE;
e27ec89e
PB
10430
10431 /* If the condition is a negative condition, invert the mask. */
c19d1205 10432 if ((cond & 0x1) == 0x0)
90e4755a 10433 {
c19d1205 10434 unsigned int mask = inst.instruction & 0x000f;
90e4755a 10435
c19d1205 10436 if ((mask & 0x7) == 0)
5a01bb1d
MGD
10437 {
10438 /* No conversion needed. */
10439 now_it.block_length = 1;
10440 }
c19d1205 10441 else if ((mask & 0x3) == 0)
5a01bb1d
MGD
10442 {
10443 mask ^= 0x8;
10444 now_it.block_length = 2;
10445 }
e27ec89e 10446 else if ((mask & 0x1) == 0)
5a01bb1d
MGD
10447 {
10448 mask ^= 0xC;
10449 now_it.block_length = 3;
10450 }
c19d1205 10451 else
5a01bb1d
MGD
10452 {
10453 mask ^= 0xE;
10454 now_it.block_length = 4;
10455 }
90e4755a 10456
e27ec89e
PB
10457 inst.instruction &= 0xfff0;
10458 inst.instruction |= mask;
c19d1205 10459 }
90e4755a 10460
c19d1205
ZW
10461 inst.instruction |= cond << 4;
10462}
90e4755a 10463
3c707909
PB
10464/* Helper function used for both push/pop and ldm/stm. */
10465static void
10466encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10467{
10468 bfd_boolean load;
10469
10470 load = (inst.instruction & (1 << 20)) != 0;
10471
10472 if (mask & (1 << 13))
10473 inst.error = _("SP not allowed in register list");
1e5b0379
NC
10474
10475 if ((mask & (1 << base)) != 0
10476 && writeback)
10477 inst.error = _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10479
3c707909
PB
10480 if (load)
10481 {
e07e6e58
NC
10482 if (mask & (1 << 15))
10483 {
10484 if (mask & (1 << 14))
10485 inst.error = _("LR and PC should not both be in register list");
10486 else
10487 set_it_insn_type_last ();
10488 }
3c707909
PB
10489 }
10490 else
10491 {
10492 if (mask & (1 << 15))
10493 inst.error = _("PC not allowed in register list");
3c707909
PB
10494 }
10495
10496 if ((mask & (mask - 1)) == 0)
10497 {
10498 /* Single register transfers implemented as str/ldr. */
10499 if (writeback)
10500 {
10501 if (inst.instruction & (1 << 23))
10502 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10503 else
10504 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10505 }
10506 else
10507 {
10508 if (inst.instruction & (1 << 23))
10509 inst.instruction = 0x00800000; /* ia -> [base] */
10510 else
10511 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10512 }
10513
10514 inst.instruction |= 0xf8400000;
10515 if (load)
10516 inst.instruction |= 0x00100000;
10517
5f4273c7 10518 mask = ffs (mask) - 1;
3c707909
PB
10519 mask <<= 12;
10520 }
10521 else if (writeback)
10522 inst.instruction |= WRITE_BACK;
10523
10524 inst.instruction |= mask;
10525 inst.instruction |= base << 16;
10526}
10527
c19d1205
ZW
10528static void
10529do_t_ldmstm (void)
10530{
10531 /* This really doesn't seem worth it. */
10532 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10533 _("expression too complex"));
10534 constraint (inst.operands[1].writeback,
10535 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 10536
c19d1205
ZW
10537 if (unified_syntax)
10538 {
3c707909
PB
10539 bfd_boolean narrow;
10540 unsigned mask;
10541
10542 narrow = FALSE;
c19d1205
ZW
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10545 && inst.size_req != 4
3c707909 10546 && !(inst.operands[1].imm & ~0xff))
90e4755a 10547 {
3c707909 10548 mask = 1 << inst.operands[0].reg;
90e4755a 10549
eab4f823 10550 if (inst.operands[0].reg <= 7)
90e4755a 10551 {
3c707909 10552 if (inst.instruction == T_MNEM_stmia
eab4f823
MGD
10553 ? inst.operands[0].writeback
10554 : (inst.operands[0].writeback
10555 == !(inst.operands[1].imm & mask)))
10556 {
10557 if (inst.instruction == T_MNEM_stmia
10558 && (inst.operands[1].imm & mask)
10559 && (inst.operands[1].imm & (mask - 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst.operands[0].reg);
3c707909 10562
eab4f823
MGD
10563 inst.instruction = THUMB_OP16 (inst.instruction);
10564 inst.instruction |= inst.operands[0].reg << 8;
10565 inst.instruction |= inst.operands[1].imm;
10566 narrow = TRUE;
10567 }
10568 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10569 {
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10573 reglist.
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode;
10579 /* First, record an error for Case 3. */
10580 if (inst.operands[1].imm & mask
10581 && inst.operands[0].writeback)
fa94de6b 10582 inst.error =
eab4f823
MGD
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
fa94de6b
RM
10585
10586 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
eab4f823
MGD
10587 : T_MNEM_ldr);
10588 inst.instruction = THUMB_OP16 (opcode);
10589 inst.instruction |= inst.operands[0].reg << 3;
10590 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10591 narrow = TRUE;
10592 }
90e4755a 10593 }
eab4f823 10594 else if (inst.operands[0] .reg == REG_SP)
90e4755a 10595 {
eab4f823
MGD
10596 if (inst.operands[0].writeback)
10597 {
fa94de6b 10598 inst.instruction =
eab4f823
MGD
10599 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10600 ? T_MNEM_push : T_MNEM_pop);
10601 inst.instruction |= inst.operands[1].imm;
10602 narrow = TRUE;
10603 }
10604 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10605 {
fa94de6b 10606 inst.instruction =
eab4f823
MGD
10607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10608 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10609 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10610 narrow = TRUE;
10611 }
90e4755a 10612 }
3c707909
PB
10613 }
10614
10615 if (!narrow)
10616 {
c19d1205
ZW
10617 if (inst.instruction < 0xffff)
10618 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 10619
5f4273c7
NC
10620 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10621 inst.operands[0].writeback);
90e4755a
RE
10622 }
10623 }
c19d1205 10624 else
90e4755a 10625 {
c19d1205
ZW
10626 constraint (inst.operands[0].reg > 7
10627 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
10628 constraint (inst.instruction != T_MNEM_ldmia
10629 && inst.instruction != T_MNEM_stmia,
10630 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 10631 if (inst.instruction == T_MNEM_stmia)
f03698e6 10632 {
c19d1205
ZW
10633 if (!inst.operands[0].writeback)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10636 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
1e5b0379 10637 as_warn (_("value stored for r%d is UNKNOWN"),
c19d1205 10638 inst.operands[0].reg);
f03698e6 10639 }
c19d1205 10640 else
90e4755a 10641 {
c19d1205
ZW
10642 if (!inst.operands[0].writeback
10643 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst.operands[0].writeback
10646 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10647 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
10648 }
10649
c19d1205
ZW
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].reg << 8;
10652 inst.instruction |= inst.operands[1].imm;
10653 }
10654}
e28cd48c 10655
c19d1205
ZW
10656static void
10657do_t_ldrex (void)
10658{
10659 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10660 || inst.operands[1].postind || inst.operands[1].writeback
10661 || inst.operands[1].immisreg || inst.operands[1].shifted
10662 || inst.operands[1].negative,
01cfc07f 10663 BAD_ADDR_MODE);
e28cd48c 10664
5be8be5d
DG
10665 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10666
c19d1205
ZW
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 inst.instruction |= inst.operands[1].reg << 16;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10670}
e28cd48c 10671
c19d1205
ZW
10672static void
10673do_t_ldrexd (void)
10674{
10675 if (!inst.operands[1].present)
1cac9012 10676 {
c19d1205
ZW
10677 constraint (inst.operands[0].reg == REG_LR,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 10681 }
c19d1205
ZW
10682 constraint (inst.operands[0].reg == inst.operands[1].reg,
10683 BAD_OVERLAP);
b99bd4ef 10684
c19d1205
ZW
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 inst.instruction |= inst.operands[1].reg << 8;
10687 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
10688}
10689
10690static void
c19d1205 10691do_t_ldst (void)
b99bd4ef 10692{
0110f2b8
PB
10693 unsigned long opcode;
10694 int Rn;
10695
e07e6e58
NC
10696 if (inst.operands[0].isreg
10697 && !inst.operands[0].preind
10698 && inst.operands[0].reg == REG_PC)
10699 set_it_insn_type_last ();
10700
0110f2b8 10701 opcode = inst.instruction;
c19d1205 10702 if (unified_syntax)
b99bd4ef 10703 {
53365c0d
PB
10704 if (!inst.operands[1].isreg)
10705 {
10706 if (opcode <= 0xffff)
10707 inst.instruction = THUMB_OP32 (opcode);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10709 return;
10710 }
0110f2b8
PB
10711 if (inst.operands[1].isreg
10712 && !inst.operands[1].writeback
c19d1205
ZW
10713 && !inst.operands[1].shifted && !inst.operands[1].postind
10714 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
10715 && opcode <= 0xffff
10716 && inst.size_req != 4)
c19d1205 10717 {
0110f2b8
PB
10718 /* Insn may have a 16-bit form. */
10719 Rn = inst.operands[1].reg;
10720 if (inst.operands[1].immisreg)
10721 {
10722 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 10723 /* [Rn, Rik] */
0110f2b8
PB
10724 if (Rn <= 7 && inst.operands[1].imm <= 7)
10725 goto op16;
5be8be5d
DG
10726 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10727 reject_bad_reg (inst.operands[1].imm);
0110f2b8
PB
10728 }
10729 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10730 && opcode != T_MNEM_ldrsb)
10731 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10732 || (Rn == REG_SP && opcode == T_MNEM_str))
10733 {
10734 /* [Rn, #const] */
10735 if (Rn > 7)
10736 {
10737 if (Rn == REG_PC)
10738 {
10739 if (inst.reloc.pc_rel)
10740 opcode = T_MNEM_ldr_pc2;
10741 else
10742 opcode = T_MNEM_ldr_pc;
10743 }
10744 else
10745 {
10746 if (opcode == T_MNEM_ldr)
10747 opcode = T_MNEM_ldr_sp;
10748 else
10749 opcode = T_MNEM_str_sp;
10750 }
10751 inst.instruction = inst.operands[0].reg << 8;
10752 }
10753 else
10754 {
10755 inst.instruction = inst.operands[0].reg;
10756 inst.instruction |= inst.operands[1].reg << 3;
10757 }
10758 inst.instruction |= THUMB_OP16 (opcode);
10759 if (inst.size_req == 2)
10760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10761 else
10762 inst.relax = opcode;
10763 return;
10764 }
c19d1205 10765 }
0110f2b8 10766 /* Definitely a 32-bit variant. */
5be8be5d 10767
8d67f500
NC
10768 /* Warning for Erratum 752419. */
10769 if (opcode == T_MNEM_ldr
10770 && inst.operands[0].reg == REG_SP
10771 && inst.operands[1].writeback == 1
10772 && !inst.operands[1].immisreg)
10773 {
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10781 }
10782
5be8be5d 10783 /* Do some validations regarding addressing modes. */
1be5fd2e 10784 if (inst.operands[1].immisreg)
5be8be5d
DG
10785 reject_bad_reg (inst.operands[1].imm);
10786
1be5fd2e
NC
10787 constraint (inst.operands[1].writeback == 1
10788 && inst.operands[0].reg == inst.operands[1].reg,
10789 BAD_OVERLAP);
10790
0110f2b8 10791 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
10792 inst.instruction |= inst.operands[0].reg << 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
1be5fd2e 10794 check_ldr_r15_aligned ();
b99bd4ef
NC
10795 return;
10796 }
10797
c19d1205
ZW
10798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10799
10800 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 10801 {
c19d1205
ZW
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10804 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10805 || inst.operands[1].postind || inst.operands[1].shifted
10806 || inst.operands[1].negative,
10807 _("Thumb does not support this addressing mode"));
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 goto op16;
b99bd4ef 10810 }
5f4273c7 10811
c19d1205
ZW
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 if (!inst.operands[1].isreg)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10815 return;
b99bd4ef 10816
c19d1205
ZW
10817 constraint (!inst.operands[1].preind
10818 || inst.operands[1].shifted
10819 || inst.operands[1].writeback,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 10822 {
c19d1205
ZW
10823 constraint (inst.instruction & 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst.operands[1].reg == REG_PC
10826 && !(inst.instruction & THUMB_LOAD_BIT),
10827 _("r15 based store not allowed"));
10828 constraint (inst.operands[1].immisreg,
10829 _("invalid base register for register offset"));
b99bd4ef 10830
c19d1205
ZW
10831 if (inst.operands[1].reg == REG_PC)
10832 inst.instruction = T_OPCODE_LDR_PC;
10833 else if (inst.instruction & THUMB_LOAD_BIT)
10834 inst.instruction = T_OPCODE_LDR_SP;
10835 else
10836 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 10837
c19d1205
ZW
10838 inst.instruction |= inst.operands[0].reg << 8;
10839 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10840 return;
10841 }
90e4755a 10842
c19d1205
ZW
10843 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10844 if (!inst.operands[1].immisreg)
10845 {
10846 /* Immediate offset. */
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10850 return;
10851 }
90e4755a 10852
c19d1205
ZW
10853 /* Register offset. */
10854 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10855 constraint (inst.operands[1].negative,
10856 _("Thumb does not support this addressing mode"));
90e4755a 10857
c19d1205
ZW
10858 op16:
10859 switch (inst.instruction)
10860 {
10861 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10862 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10863 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10864 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10865 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10866 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10869 default: abort ();
10870 }
90e4755a 10871
c19d1205
ZW
10872 inst.instruction |= inst.operands[0].reg;
10873 inst.instruction |= inst.operands[1].reg << 3;
10874 inst.instruction |= inst.operands[1].imm << 6;
10875}
90e4755a 10876
c19d1205
ZW
10877static void
10878do_t_ldstd (void)
10879{
10880 if (!inst.operands[1].present)
b99bd4ef 10881 {
c19d1205
ZW
10882 inst.operands[1].reg = inst.operands[0].reg + 1;
10883 constraint (inst.operands[0].reg == REG_LR,
10884 _("r14 not allowed here"));
bd340a04
MGD
10885 constraint (inst.operands[0].reg == REG_R12,
10886 _("r12 not allowed here"));
b99bd4ef 10887 }
bd340a04
MGD
10888
10889 if (inst.operands[2].writeback
10890 && (inst.operands[0].reg == inst.operands[2].reg
10891 || inst.operands[1].reg == inst.operands[2].reg))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10894
c19d1205
ZW
10895 inst.instruction |= inst.operands[0].reg << 12;
10896 inst.instruction |= inst.operands[1].reg << 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10898}
10899
c19d1205
ZW
10900static void
10901do_t_ldstt (void)
10902{
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10905}
a737bd4d 10906
b99bd4ef 10907static void
c19d1205 10908do_t_mla (void)
b99bd4ef 10909{
fdfde340 10910 unsigned Rd, Rn, Rm, Ra;
c921be7d 10911
fdfde340
JM
10912 Rd = inst.operands[0].reg;
10913 Rn = inst.operands[1].reg;
10914 Rm = inst.operands[2].reg;
10915 Ra = inst.operands[3].reg;
10916
10917 reject_bad_reg (Rd);
10918 reject_bad_reg (Rn);
10919 reject_bad_reg (Rm);
10920 reject_bad_reg (Ra);
10921
10922 inst.instruction |= Rd << 8;
10923 inst.instruction |= Rn << 16;
10924 inst.instruction |= Rm;
10925 inst.instruction |= Ra << 12;
c19d1205 10926}
b99bd4ef 10927
c19d1205
ZW
10928static void
10929do_t_mlal (void)
10930{
fdfde340
JM
10931 unsigned RdLo, RdHi, Rn, Rm;
10932
10933 RdLo = inst.operands[0].reg;
10934 RdHi = inst.operands[1].reg;
10935 Rn = inst.operands[2].reg;
10936 Rm = inst.operands[3].reg;
10937
10938 reject_bad_reg (RdLo);
10939 reject_bad_reg (RdHi);
10940 reject_bad_reg (Rn);
10941 reject_bad_reg (Rm);
10942
10943 inst.instruction |= RdLo << 12;
10944 inst.instruction |= RdHi << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
c19d1205 10947}
b99bd4ef 10948
c19d1205
ZW
10949static void
10950do_t_mov_cmp (void)
10951{
fdfde340
JM
10952 unsigned Rn, Rm;
10953
10954 Rn = inst.operands[0].reg;
10955 Rm = inst.operands[1].reg;
10956
e07e6e58
NC
10957 if (Rn == REG_PC)
10958 set_it_insn_type_last ();
10959
c19d1205 10960 if (unified_syntax)
b99bd4ef 10961 {
c19d1205
ZW
10962 int r0off = (inst.instruction == T_MNEM_mov
10963 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10964 unsigned long opcode;
3d388997
PB
10965 bfd_boolean narrow;
10966 bfd_boolean low_regs;
10967
fdfde340 10968 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10969 opcode = inst.instruction;
e07e6e58 10970 if (in_it_block ())
0110f2b8 10971 narrow = opcode != T_MNEM_movs;
3d388997 10972 else
0110f2b8 10973 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10974 if (inst.size_req == 4
10975 || inst.operands[1].shifted)
10976 narrow = FALSE;
10977
efd81785
PB
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10980 && !inst.operands[1].shifted
fdfde340
JM
10981 && Rn == REG_PC
10982 && Rm == REG_LR)
efd81785
PB
10983 {
10984 inst.instruction = T2_SUBS_PC_LR;
10985 return;
10986 }
10987
fdfde340
JM
10988 if (opcode == T_MNEM_cmp)
10989 {
10990 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10991 if (narrow)
10992 {
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10994 but valid. */
10995 warn_deprecated_sp (Rm);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm == REG_PC, BAD_PC);
11000 }
11001 else
11002 reject_bad_reg (Rm);
fdfde340
JM
11003 }
11004 else if (opcode == T_MNEM_mov
11005 || opcode == T_MNEM_movs)
11006 {
11007 if (inst.operands[1].isreg)
11008 {
11009 if (opcode == T_MNEM_movs)
11010 {
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013 }
76fa04a4
MGD
11014 else if (narrow)
11015 {
11016 /* This is mov.n. */
11017 if ((Rn == REG_SP || Rn == REG_PC)
11018 && (Rm == REG_SP || Rm == REG_PC))
11019 {
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm, Rn);
11023 }
11024 }
11025 else
11026 {
11027 /* This is mov.w. */
11028 constraint (Rn == REG_PC, BAD_PC);
11029 constraint (Rm == REG_PC, BAD_PC);
11030 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11031 }
fdfde340
JM
11032 }
11033 else
11034 reject_bad_reg (Rn);
11035 }
11036
c19d1205
ZW
11037 if (!inst.operands[1].isreg)
11038 {
0110f2b8 11039 /* Immediate operand. */
e07e6e58 11040 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
11041 narrow = 0;
11042 if (low_regs && narrow)
11043 {
11044 inst.instruction = THUMB_OP16 (opcode);
fdfde340 11045 inst.instruction |= Rn << 8;
0110f2b8
PB
11046 if (inst.size_req == 2)
11047 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11048 else
11049 inst.relax = opcode;
11050 }
11051 else
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11055 inst.instruction |= Rn << r0off;
0110f2b8
PB
11056 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11057 }
c19d1205 11058 }
728ca7c9
PB
11059 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11060 && (inst.instruction == T_MNEM_mov
11061 || inst.instruction == T_MNEM_movs))
11062 {
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11065
e07e6e58 11066 if (in_it_block ())
728ca7c9
PB
11067 narrow = !flags;
11068 else
11069 narrow = flags;
11070
11071 if (inst.size_req == 4)
11072 narrow = FALSE;
11073
11074 if (!low_regs || inst.operands[1].imm > 7)
11075 narrow = FALSE;
11076
fdfde340 11077 if (Rn != Rm)
728ca7c9
PB
11078 narrow = FALSE;
11079
11080 switch (inst.operands[1].shift_kind)
11081 {
11082 case SHIFT_LSL:
11083 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11084 break;
11085 case SHIFT_ASR:
11086 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11087 break;
11088 case SHIFT_LSR:
11089 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11090 break;
11091 case SHIFT_ROR:
11092 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11093 break;
11094 default:
5f4273c7 11095 abort ();
728ca7c9
PB
11096 }
11097
11098 inst.instruction = opcode;
11099 if (narrow)
11100 {
fdfde340 11101 inst.instruction |= Rn;
728ca7c9
PB
11102 inst.instruction |= inst.operands[1].imm << 3;
11103 }
11104 else
11105 {
11106 if (flags)
11107 inst.instruction |= CONDS_BIT;
11108
fdfde340
JM
11109 inst.instruction |= Rn << 8;
11110 inst.instruction |= Rm << 16;
728ca7c9
PB
11111 inst.instruction |= inst.operands[1].imm;
11112 }
11113 }
3d388997 11114 else if (!narrow)
c19d1205 11115 {
728ca7c9
PB
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs && inst.operands[1].shifted
11119 && (inst.instruction == T_MNEM_mov
11120 || inst.instruction == T_MNEM_movs))
11121 {
e07e6e58 11122 if (in_it_block ())
728ca7c9
PB
11123 narrow = (inst.instruction == T_MNEM_mov);
11124 else
11125 narrow = (inst.instruction == T_MNEM_movs);
11126 }
11127
11128 if (narrow)
11129 {
11130 switch (inst.operands[1].shift_kind)
11131 {
11132 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11133 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11134 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11135 default: narrow = FALSE; break;
11136 }
11137 }
11138
11139 if (narrow)
11140 {
fdfde340
JM
11141 inst.instruction |= Rn;
11142 inst.instruction |= Rm << 3;
728ca7c9
PB
11143 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11144 }
11145 else
11146 {
11147 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11148 inst.instruction |= Rn << r0off;
728ca7c9
PB
11149 encode_thumb32_shifted_operand (1);
11150 }
c19d1205
ZW
11151 }
11152 else
11153 switch (inst.instruction)
11154 {
11155 case T_MNEM_mov:
837b3435 11156 /* In v4t or v5t a move of two lowregs produces unpredictable
c6400f8a
MGD
11157 results. Don't allow this. */
11158 if (low_regs)
11159 {
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
fa94de6b 11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
c6400f8a
MGD
11164 arm_ext_v6);
11165 }
11166
c19d1205 11167 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
11168 inst.instruction |= (Rn & 0x8) << 4;
11169 inst.instruction |= (Rn & 0x7);
11170 inst.instruction |= Rm << 3;
c19d1205 11171 break;
b99bd4ef 11172
c19d1205
ZW
11173 case T_MNEM_movs:
11174 /* We know we have low registers at this point.
941a8a52
MGD
11175 Generate LSLS Rd, Rs, #0. */
11176 inst.instruction = T_OPCODE_LSL_I;
fdfde340
JM
11177 inst.instruction |= Rn;
11178 inst.instruction |= Rm << 3;
c19d1205
ZW
11179 break;
11180
11181 case T_MNEM_cmp:
3d388997 11182 if (low_regs)
c19d1205
ZW
11183 {
11184 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
11185 inst.instruction |= Rn;
11186 inst.instruction |= Rm << 3;
c19d1205
ZW
11187 }
11188 else
11189 {
11190 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
11191 inst.instruction |= (Rn & 0x8) << 4;
11192 inst.instruction |= (Rn & 0x7);
11193 inst.instruction |= Rm << 3;
c19d1205
ZW
11194 }
11195 break;
11196 }
b99bd4ef
NC
11197 return;
11198 }
11199
c19d1205 11200 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
11201
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst.operands[1].shifted,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11205
c19d1205 11206 if (inst.operands[1].isreg)
b99bd4ef 11207 {
fdfde340 11208 if (Rn < 8 && Rm < 8)
b99bd4ef 11209 {
c19d1205
ZW
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst.instruction == T_OPCODE_MOV_I8)
11213 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 11214 else
c19d1205 11215 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 11216
fdfde340
JM
11217 inst.instruction |= Rn;
11218 inst.instruction |= Rm << 3;
b99bd4ef
NC
11219 }
11220 else
11221 {
c19d1205
ZW
11222 if (inst.instruction == T_OPCODE_MOV_I8)
11223 inst.instruction = T_OPCODE_MOV_HR;
11224 else
11225 inst.instruction = T_OPCODE_CMP_HR;
11226 do_t_cpy ();
b99bd4ef
NC
11227 }
11228 }
c19d1205 11229 else
b99bd4ef 11230 {
fdfde340 11231 constraint (Rn > 7,
c19d1205 11232 _("only lo regs allowed with immediate"));
fdfde340 11233 inst.instruction |= Rn << 8;
c19d1205
ZW
11234 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11235 }
11236}
b99bd4ef 11237
c19d1205
ZW
11238static void
11239do_t_mov16 (void)
11240{
fdfde340 11241 unsigned Rd;
b6895b4f
PB
11242 bfd_vma imm;
11243 bfd_boolean top;
11244
11245 top = (inst.instruction & 0x00800000) != 0;
11246 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11247 {
11248 constraint (top, _(":lower16: not allowed this instruction"));
11249 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11250 }
11251 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11252 {
11253 constraint (!top, _(":upper16: not allowed this instruction"));
11254 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11255 }
11256
fdfde340
JM
11257 Rd = inst.operands[0].reg;
11258 reject_bad_reg (Rd);
11259
11260 inst.instruction |= Rd << 8;
b6895b4f
PB
11261 if (inst.reloc.type == BFD_RELOC_UNUSED)
11262 {
11263 imm = inst.reloc.exp.X_add_number;
11264 inst.instruction |= (imm & 0xf000) << 4;
11265 inst.instruction |= (imm & 0x0800) << 15;
11266 inst.instruction |= (imm & 0x0700) << 4;
11267 inst.instruction |= (imm & 0x00ff);
11268 }
c19d1205 11269}
b99bd4ef 11270
c19d1205
ZW
11271static void
11272do_t_mvn_tst (void)
11273{
fdfde340 11274 unsigned Rn, Rm;
c921be7d 11275
fdfde340
JM
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[1].reg;
11278
11279 if (inst.instruction == T_MNEM_cmp
11280 || inst.instruction == T_MNEM_cmn)
11281 constraint (Rn == REG_PC, BAD_PC);
11282 else
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
c19d1205
ZW
11286 if (unified_syntax)
11287 {
11288 int r0off = (inst.instruction == T_MNEM_mvn
11289 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
11290 bfd_boolean narrow;
11291
11292 if (inst.size_req == 4
11293 || inst.instruction > 0xffff
11294 || inst.operands[1].shifted
fdfde340 11295 || Rn > 7 || Rm > 7)
3d388997
PB
11296 narrow = FALSE;
11297 else if (inst.instruction == T_MNEM_cmn)
11298 narrow = TRUE;
11299 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11300 narrow = !in_it_block ();
3d388997 11301 else
e07e6e58 11302 narrow = in_it_block ();
3d388997 11303
c19d1205 11304 if (!inst.operands[1].isreg)
b99bd4ef 11305 {
c19d1205
ZW
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst.instruction < 0xffff)
11309 inst.instruction = THUMB_OP32 (inst.instruction);
11310 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 11311 inst.instruction |= Rn << r0off;
c19d1205 11312 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 11313 }
c19d1205 11314 else
b99bd4ef 11315 {
c19d1205 11316 /* See if we can do this with a 16-bit instruction. */
3d388997 11317 if (narrow)
b99bd4ef 11318 {
c19d1205 11319 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11320 inst.instruction |= Rn;
11321 inst.instruction |= Rm << 3;
b99bd4ef 11322 }
c19d1205 11323 else
b99bd4ef 11324 {
c19d1205
ZW
11325 constraint (inst.operands[1].shifted
11326 && inst.operands[1].immisreg,
11327 _("shift must be constant"));
11328 if (inst.instruction < 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 11330 inst.instruction |= Rn << r0off;
c19d1205 11331 encode_thumb32_shifted_operand (1);
b99bd4ef 11332 }
b99bd4ef
NC
11333 }
11334 }
11335 else
11336 {
c19d1205
ZW
11337 constraint (inst.instruction > 0xffff
11338 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11339 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11340 _("unshifted register required"));
fdfde340 11341 constraint (Rn > 7 || Rm > 7,
c19d1205 11342 BAD_HIREG);
b99bd4ef 11343
c19d1205 11344 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11345 inst.instruction |= Rn;
11346 inst.instruction |= Rm << 3;
b99bd4ef 11347 }
b99bd4ef
NC
11348}
11349
b05fe5cf 11350static void
c19d1205 11351do_t_mrs (void)
b05fe5cf 11352{
fdfde340 11353 unsigned Rd;
037e8744
JB
11354
11355 if (do_vfp_nsyn_mrs () == SUCCESS)
11356 return;
11357
90ec0d68
MGD
11358 Rd = inst.operands[0].reg;
11359 reject_bad_reg (Rd);
11360 inst.instruction |= Rd << 8;
11361
11362 if (inst.operands[1].isreg)
62b3e311 11363 {
90ec0d68
MGD
11364 unsigned br = inst.operands[1].reg;
11365 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11367
11368 inst.instruction |= br & (0xf << 16);
11369 inst.instruction |= (br & 0x300) >> 4;
11370 inst.instruction |= (br & SPSR_BIT) >> 2;
62b3e311
PB
11371 }
11372 else
11373 {
90ec0d68 11374 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
5f4273c7 11375
d2cd1205 11376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
1a43faaf
NC
11377 {
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11382 constraint ((flags != 0) && m_profile, _("selected processor does "
11383 "not support requested special purpose register"));
11384 }
90ec0d68 11385 else
d2cd1205
JB
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11387 devices). */
11388 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
fdfde340 11390
90ec0d68
MGD
11391 inst.instruction |= (flags & SPSR_BIT) >> 2;
11392 inst.instruction |= inst.operands[1].imm & 0xff;
11393 inst.instruction |= 0xf0000;
11394 }
c19d1205 11395}
b05fe5cf 11396
c19d1205
ZW
11397static void
11398do_t_msr (void)
11399{
62b3e311 11400 int flags;
fdfde340 11401 unsigned Rn;
62b3e311 11402
037e8744
JB
11403 if (do_vfp_nsyn_msr () == SUCCESS)
11404 return;
11405
c19d1205
ZW
11406 constraint (!inst.operands[1].isreg,
11407 _("Thumb encoding does not support an immediate here"));
90ec0d68
MGD
11408
11409 if (inst.operands[0].isreg)
11410 flags = (int)(inst.operands[0].reg);
11411 else
11412 flags = inst.operands[0].imm;
11413
d2cd1205 11414 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
62b3e311 11415 {
d2cd1205
JB
11416 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11417
1a43faaf
NC
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11423 && (bits & ~(PSR_s | PSR_f)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11425 && bits != PSR_f)) && m_profile,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
62b3e311
PB
11428 }
11429 else
d2cd1205
JB
11430 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
c921be7d 11432
fdfde340
JM
11433 Rn = inst.operands[1].reg;
11434 reject_bad_reg (Rn);
11435
62b3e311 11436 inst.instruction |= (flags & SPSR_BIT) >> 2;
90ec0d68
MGD
11437 inst.instruction |= (flags & 0xf0000) >> 8;
11438 inst.instruction |= (flags & 0x300) >> 4;
62b3e311 11439 inst.instruction |= (flags & 0xff);
fdfde340 11440 inst.instruction |= Rn << 16;
c19d1205 11441}
b05fe5cf 11442
c19d1205
ZW
11443static void
11444do_t_mul (void)
11445{
17828f45 11446 bfd_boolean narrow;
fdfde340 11447 unsigned Rd, Rn, Rm;
17828f45 11448
c19d1205
ZW
11449 if (!inst.operands[2].present)
11450 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 11451
fdfde340
JM
11452 Rd = inst.operands[0].reg;
11453 Rn = inst.operands[1].reg;
11454 Rm = inst.operands[2].reg;
11455
17828f45 11456 if (unified_syntax)
b05fe5cf 11457 {
17828f45 11458 if (inst.size_req == 4
fdfde340
JM
11459 || (Rd != Rn
11460 && Rd != Rm)
11461 || Rn > 7
11462 || Rm > 7)
17828f45
JM
11463 narrow = FALSE;
11464 else if (inst.instruction == T_MNEM_muls)
e07e6e58 11465 narrow = !in_it_block ();
17828f45 11466 else
e07e6e58 11467 narrow = in_it_block ();
b05fe5cf 11468 }
c19d1205 11469 else
b05fe5cf 11470 {
17828f45 11471 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 11472 constraint (Rn > 7 || Rm > 7,
c19d1205 11473 BAD_HIREG);
17828f45
JM
11474 narrow = TRUE;
11475 }
b05fe5cf 11476
17828f45
JM
11477 if (narrow)
11478 {
11479 /* 16-bit MULS/Conditional MUL. */
c19d1205 11480 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 11481 inst.instruction |= Rd;
b05fe5cf 11482
fdfde340
JM
11483 if (Rd == Rn)
11484 inst.instruction |= Rm << 3;
11485 else if (Rd == Rm)
11486 inst.instruction |= Rn << 3;
c19d1205
ZW
11487 else
11488 constraint (1, _("dest must overlap one source register"));
11489 }
17828f45
JM
11490 else
11491 {
e07e6e58
NC
11492 constraint (inst.instruction != T_MNEM_mul,
11493 _("Thumb-2 MUL must not set flags"));
17828f45
JM
11494 /* 32-bit MUL. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11496 inst.instruction |= Rd << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm << 0;
11499
11500 reject_bad_reg (Rd);
11501 reject_bad_reg (Rn);
11502 reject_bad_reg (Rm);
17828f45 11503 }
c19d1205 11504}
b05fe5cf 11505
c19d1205
ZW
11506static void
11507do_t_mull (void)
11508{
fdfde340 11509 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 11510
fdfde340
JM
11511 RdLo = inst.operands[0].reg;
11512 RdHi = inst.operands[1].reg;
11513 Rn = inst.operands[2].reg;
11514 Rm = inst.operands[3].reg;
11515
11516 reject_bad_reg (RdLo);
11517 reject_bad_reg (RdHi);
11518 reject_bad_reg (Rn);
11519 reject_bad_reg (Rm);
11520
11521 inst.instruction |= RdLo << 12;
11522 inst.instruction |= RdHi << 8;
11523 inst.instruction |= Rn << 16;
11524 inst.instruction |= Rm;
11525
11526 if (RdLo == RdHi)
c19d1205
ZW
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11528}
b05fe5cf 11529
c19d1205
ZW
11530static void
11531do_t_nop (void)
11532{
e07e6e58
NC
11533 set_it_insn_type (NEUTRAL_IT_INSN);
11534
c19d1205
ZW
11535 if (unified_syntax)
11536 {
11537 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 11538 {
c19d1205
ZW
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].imm;
11541 }
11542 else
11543 {
bc2d1808
NC
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
afa62d5e 11546 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
bc2d1808
NC
11547 {
11548 inst.instruction = THUMB_OP16 (inst.instruction);
11549 inst.instruction |= inst.operands[0].imm << 4;
11550 }
11551 else
11552 inst.instruction = 0x46c0;
c19d1205
ZW
11553 }
11554 }
11555 else
11556 {
11557 constraint (inst.operands[0].present,
11558 _("Thumb does not support NOP with hints"));
11559 inst.instruction = 0x46c0;
11560 }
11561}
b05fe5cf 11562
c19d1205
ZW
11563static void
11564do_t_neg (void)
11565{
11566 if (unified_syntax)
11567 {
3d388997
PB
11568 bfd_boolean narrow;
11569
11570 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11571 narrow = !in_it_block ();
3d388997 11572 else
e07e6e58 11573 narrow = in_it_block ();
3d388997
PB
11574 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11575 narrow = FALSE;
11576 if (inst.size_req == 4)
11577 narrow = FALSE;
11578
11579 if (!narrow)
c19d1205
ZW
11580 {
11581 inst.instruction = THUMB_OP32 (inst.instruction);
11582 inst.instruction |= inst.operands[0].reg << 8;
11583 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
11584 }
11585 else
11586 {
c19d1205
ZW
11587 inst.instruction = THUMB_OP16 (inst.instruction);
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
11590 }
11591 }
11592 else
11593 {
c19d1205
ZW
11594 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11595 BAD_HIREG);
11596 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 }
11602}
11603
1c444d06
JM
11604static void
11605do_t_orn (void)
11606{
11607 unsigned Rd, Rn;
11608
11609 Rd = inst.operands[0].reg;
11610 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11611
fdfde340
JM
11612 reject_bad_reg (Rd);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn);
11615
1c444d06
JM
11616 inst.instruction |= Rd << 8;
11617 inst.instruction |= Rn << 16;
11618
11619 if (!inst.operands[2].isreg)
11620 {
11621 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11623 }
11624 else
11625 {
11626 unsigned Rm;
11627
11628 Rm = inst.operands[2].reg;
fdfde340 11629 reject_bad_reg (Rm);
1c444d06
JM
11630
11631 constraint (inst.operands[2].shifted
11632 && inst.operands[2].immisreg,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11635 }
11636}
11637
c19d1205
ZW
11638static void
11639do_t_pkhbt (void)
11640{
fdfde340
JM
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
c19d1205
ZW
11654 if (inst.operands[3].present)
11655 {
11656 unsigned int val = inst.reloc.exp.X_add_number;
11657 constraint (inst.reloc.exp.X_op != O_constant,
11658 _("expression too complex"));
11659 inst.instruction |= (val & 0x1c) << 10;
11660 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 11661 }
c19d1205 11662}
b05fe5cf 11663
c19d1205
ZW
11664static void
11665do_t_pkhtb (void)
11666{
11667 if (!inst.operands[3].present)
1ef52f49
NC
11668 {
11669 unsigned Rtmp;
11670
11671 inst.instruction &= ~0x00000020;
11672
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp = inst.operands[1].reg;
11675 inst.operands[1].reg = inst.operands[2].reg;
11676 inst.operands[2].reg = Rtmp;
11677 }
c19d1205 11678 do_t_pkhbt ();
b05fe5cf
ZW
11679}
11680
c19d1205
ZW
11681static void
11682do_t_pld (void)
11683{
fdfde340
JM
11684 if (inst.operands[0].immisreg)
11685 reject_bad_reg (inst.operands[0].imm);
11686
c19d1205
ZW
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11688}
b05fe5cf 11689
c19d1205
ZW
11690static void
11691do_t_push_pop (void)
b99bd4ef 11692{
e9f89963 11693 unsigned mask;
5f4273c7 11694
c19d1205
ZW
11695 constraint (inst.operands[0].writeback,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11698 _("expression too complex"));
b99bd4ef 11699
e9f89963
PB
11700 mask = inst.operands[0].imm;
11701 if ((mask & ~0xff) == 0)
3c707909 11702 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 11703 else if ((inst.instruction == T_MNEM_push
e9f89963 11704 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 11705 || (inst.instruction == T_MNEM_pop
e9f89963 11706 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 11707 {
c19d1205
ZW
11708 inst.instruction = THUMB_OP16 (inst.instruction);
11709 inst.instruction |= THUMB_PP_PC_LR;
3c707909 11710 inst.instruction |= mask & 0xff;
c19d1205
ZW
11711 }
11712 else if (unified_syntax)
11713 {
3c707909 11714 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 11715 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
11716 }
11717 else
11718 {
11719 inst.error = _("invalid register list to push/pop instruction");
11720 return;
11721 }
c19d1205 11722}
b99bd4ef 11723
c19d1205
ZW
11724static void
11725do_t_rbit (void)
11726{
fdfde340
JM
11727 unsigned Rd, Rm;
11728
11729 Rd = inst.operands[0].reg;
11730 Rm = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rm);
11734
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
c19d1205 11738}
b99bd4ef 11739
c19d1205
ZW
11740static void
11741do_t_rev (void)
11742{
fdfde340
JM
11743 unsigned Rd, Rm;
11744
11745 Rd = inst.operands[0].reg;
11746 Rm = inst.operands[1].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rm);
11750
11751 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
11752 && inst.size_req != 4)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rm << 3;
c19d1205
ZW
11757 }
11758 else if (unified_syntax)
11759 {
11760 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rm << 16;
11763 inst.instruction |= Rm;
c19d1205
ZW
11764 }
11765 else
11766 inst.error = BAD_HIREG;
11767}
b99bd4ef 11768
1c444d06
JM
11769static void
11770do_t_rrx (void)
11771{
11772 unsigned Rd, Rm;
11773
11774 Rd = inst.operands[0].reg;
11775 Rm = inst.operands[1].reg;
11776
fdfde340
JM
11777 reject_bad_reg (Rd);
11778 reject_bad_reg (Rm);
c921be7d 11779
1c444d06
JM
11780 inst.instruction |= Rd << 8;
11781 inst.instruction |= Rm;
11782}
11783
c19d1205
ZW
11784static void
11785do_t_rsb (void)
11786{
fdfde340 11787 unsigned Rd, Rs;
b99bd4ef 11788
c19d1205
ZW
11789 Rd = inst.operands[0].reg;
11790 Rs = (inst.operands[1].present
11791 ? inst.operands[1].reg /* Rd, Rs, foo */
11792 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 11793
fdfde340
JM
11794 reject_bad_reg (Rd);
11795 reject_bad_reg (Rs);
11796 if (inst.operands[2].isreg)
11797 reject_bad_reg (inst.operands[2].reg);
11798
c19d1205
ZW
11799 inst.instruction |= Rd << 8;
11800 inst.instruction |= Rs << 16;
11801 if (!inst.operands[2].isreg)
11802 {
026d3abb
PB
11803 bfd_boolean narrow;
11804
11805 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 11806 narrow = !in_it_block ();
026d3abb 11807 else
e07e6e58 11808 narrow = in_it_block ();
026d3abb
PB
11809
11810 if (Rd > 7 || Rs > 7)
11811 narrow = FALSE;
11812
11813 if (inst.size_req == 4 || !unified_syntax)
11814 narrow = FALSE;
11815
11816 if (inst.reloc.exp.X_op != O_constant
11817 || inst.reloc.exp.X_add_number != 0)
11818 narrow = FALSE;
11819
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11822 if (narrow)
11823 {
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11826 inst.instruction |= Rs << 3;
11827 inst.instruction |= Rd;
11828 }
11829 else
11830 {
11831 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11832 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11833 }
c19d1205
ZW
11834 }
11835 else
11836 encode_thumb32_shifted_operand (2);
11837}
b99bd4ef 11838
c19d1205
ZW
11839static void
11840do_t_setend (void)
11841{
12e37cbc
MGD
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11845
e07e6e58 11846 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
11847 if (inst.operands[0].imm)
11848 inst.instruction |= 0x8;
11849}
b99bd4ef 11850
c19d1205
ZW
11851static void
11852do_t_shift (void)
11853{
11854 if (!inst.operands[1].present)
11855 inst.operands[1].reg = inst.operands[0].reg;
11856
11857 if (unified_syntax)
11858 {
3d388997
PB
11859 bfd_boolean narrow;
11860 int shift_kind;
11861
11862 switch (inst.instruction)
11863 {
11864 case T_MNEM_asr:
11865 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11866 case T_MNEM_lsl:
11867 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11868 case T_MNEM_lsr:
11869 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11870 case T_MNEM_ror:
11871 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11872 default: abort ();
11873 }
11874
11875 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 11876 narrow = !in_it_block ();
3d388997 11877 else
e07e6e58 11878 narrow = in_it_block ();
3d388997
PB
11879 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11880 narrow = FALSE;
11881 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11882 narrow = FALSE;
11883 if (inst.operands[2].isreg
11884 && (inst.operands[1].reg != inst.operands[0].reg
11885 || inst.operands[2].reg > 7))
11886 narrow = FALSE;
11887 if (inst.size_req == 4)
11888 narrow = FALSE;
11889
fdfde340
JM
11890 reject_bad_reg (inst.operands[0].reg);
11891 reject_bad_reg (inst.operands[1].reg);
c921be7d 11892
3d388997 11893 if (!narrow)
c19d1205
ZW
11894 {
11895 if (inst.operands[2].isreg)
b99bd4ef 11896 {
fdfde340 11897 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
11898 inst.instruction = THUMB_OP32 (inst.instruction);
11899 inst.instruction |= inst.operands[0].reg << 8;
11900 inst.instruction |= inst.operands[1].reg << 16;
11901 inst.instruction |= inst.operands[2].reg;
94342ec3
NC
11902
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst.operands[2].shifted,
11905 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11906 }
11907 else
11908 {
11909 inst.operands[1].shifted = 1;
3d388997 11910 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
11911 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11912 ? T_MNEM_movs : T_MNEM_mov);
11913 inst.instruction |= inst.operands[0].reg << 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
11917 }
11918 }
11919 else
11920 {
c19d1205 11921 if (inst.operands[2].isreg)
b99bd4ef 11922 {
3d388997 11923 switch (shift_kind)
b99bd4ef 11924 {
3d388997
PB
11925 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11926 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11927 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11928 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 11929 default: abort ();
b99bd4ef 11930 }
5f4273c7 11931
c19d1205
ZW
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
b99bd4ef
NC
11938 }
11939 else
11940 {
3d388997 11941 switch (shift_kind)
b99bd4ef 11942 {
3d388997
PB
11943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 11946 default: abort ();
b99bd4ef 11947 }
c19d1205
ZW
11948 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11951 }
11952 }
c19d1205
ZW
11953 }
11954 else
11955 {
11956 constraint (inst.operands[0].reg > 7
11957 || inst.operands[1].reg > 7, BAD_HIREG);
11958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11959
c19d1205
ZW
11960 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11961 {
11962 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11963 constraint (inst.operands[0].reg != inst.operands[1].reg,
11964 _("source1 and dest must be same register"));
b99bd4ef 11965
c19d1205
ZW
11966 switch (inst.instruction)
11967 {
11968 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11969 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11970 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11971 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11972 default: abort ();
11973 }
5f4273c7 11974
c19d1205
ZW
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.instruction |= inst.operands[2].reg << 3;
af199b06
NC
11977
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst.operands[2].shifted,
11980 _("extraneous shift as part of operand to shift insn"));
c19d1205
ZW
11981 }
11982 else
b99bd4ef 11983 {
c19d1205
ZW
11984 switch (inst.instruction)
11985 {
11986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11989 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11990 default: abort ();
11991 }
11992 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11993 inst.instruction |= inst.operands[0].reg;
11994 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11995 }
11996 }
b99bd4ef
NC
11997}
11998
11999static void
c19d1205 12000do_t_simd (void)
b99bd4ef 12001{
fdfde340
JM
12002 unsigned Rd, Rn, Rm;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[1].reg;
12006 Rm = inst.operands[2].reg;
12007
12008 reject_bad_reg (Rd);
12009 reject_bad_reg (Rn);
12010 reject_bad_reg (Rm);
12011
12012 inst.instruction |= Rd << 8;
12013 inst.instruction |= Rn << 16;
12014 inst.instruction |= Rm;
c19d1205 12015}
b99bd4ef 12016
03ee1b7f
NC
12017static void
12018do_t_simd2 (void)
12019{
12020 unsigned Rd, Rn, Rm;
12021
12022 Rd = inst.operands[0].reg;
12023 Rm = inst.operands[1].reg;
12024 Rn = inst.operands[2].reg;
12025
12026 reject_bad_reg (Rd);
12027 reject_bad_reg (Rn);
12028 reject_bad_reg (Rm);
12029
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= Rm;
12033}
12034
c19d1205 12035static void
3eb17e6b 12036do_t_smc (void)
c19d1205
ZW
12037{
12038 unsigned int value = inst.reloc.exp.X_add_number;
f4c65163
MGD
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12040 _("SMC is not permitted on this architecture"));
c19d1205
ZW
12041 constraint (inst.reloc.exp.X_op != O_constant,
12042 _("expression too complex"));
12043 inst.reloc.type = BFD_RELOC_UNUSED;
12044 inst.instruction |= (value & 0xf000) >> 12;
12045 inst.instruction |= (value & 0x0ff0);
12046 inst.instruction |= (value & 0x000f) << 16;
12047}
b99bd4ef 12048
90ec0d68
MGD
12049static void
12050do_t_hvc (void)
12051{
12052 unsigned int value = inst.reloc.exp.X_add_number;
12053
12054 inst.reloc.type = BFD_RELOC_UNUSED;
12055 inst.instruction |= (value & 0x0fff);
12056 inst.instruction |= (value & 0xf000) << 4;
12057}
12058
c19d1205 12059static void
3a21c15a 12060do_t_ssat_usat (int bias)
c19d1205 12061{
fdfde340
JM
12062 unsigned Rd, Rn;
12063
12064 Rd = inst.operands[0].reg;
12065 Rn = inst.operands[2].reg;
12066
12067 reject_bad_reg (Rd);
12068 reject_bad_reg (Rn);
12069
12070 inst.instruction |= Rd << 8;
3a21c15a 12071 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 12072 inst.instruction |= Rn << 16;
b99bd4ef 12073
c19d1205 12074 if (inst.operands[3].present)
b99bd4ef 12075 {
3a21c15a
NC
12076 offsetT shift_amount = inst.reloc.exp.X_add_number;
12077
12078 inst.reloc.type = BFD_RELOC_UNUSED;
12079
c19d1205
ZW
12080 constraint (inst.reloc.exp.X_op != O_constant,
12081 _("expression too complex"));
b99bd4ef 12082
3a21c15a 12083 if (shift_amount != 0)
6189168b 12084 {
3a21c15a
NC
12085 constraint (shift_amount > 31,
12086 _("shift expression is too large"));
12087
c19d1205 12088 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
12089 inst.instruction |= 0x00200000; /* sh bit. */
12090
12091 inst.instruction |= (shift_amount & 0x1c) << 10;
12092 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
12093 }
12094 }
b99bd4ef 12095}
c921be7d 12096
3a21c15a
NC
12097static void
12098do_t_ssat (void)
12099{
12100 do_t_ssat_usat (1);
12101}
b99bd4ef 12102
0dd132b6 12103static void
c19d1205 12104do_t_ssat16 (void)
0dd132b6 12105{
fdfde340
JM
12106 unsigned Rd, Rn;
12107
12108 Rd = inst.operands[0].reg;
12109 Rn = inst.operands[2].reg;
12110
12111 reject_bad_reg (Rd);
12112 reject_bad_reg (Rn);
12113
12114 inst.instruction |= Rd << 8;
c19d1205 12115 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 12116 inst.instruction |= Rn << 16;
c19d1205 12117}
0dd132b6 12118
c19d1205
ZW
12119static void
12120do_t_strex (void)
12121{
12122 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12123 || inst.operands[2].postind || inst.operands[2].writeback
12124 || inst.operands[2].immisreg || inst.operands[2].shifted
12125 || inst.operands[2].negative,
01cfc07f 12126 BAD_ADDR_MODE);
0dd132b6 12127
5be8be5d
DG
12128 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12129
c19d1205
ZW
12130 inst.instruction |= inst.operands[0].reg << 8;
12131 inst.instruction |= inst.operands[1].reg << 12;
12132 inst.instruction |= inst.operands[2].reg << 16;
12133 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
12134}
12135
b99bd4ef 12136static void
c19d1205 12137do_t_strexd (void)
b99bd4ef 12138{
c19d1205
ZW
12139 if (!inst.operands[2].present)
12140 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 12141
c19d1205
ZW
12142 constraint (inst.operands[0].reg == inst.operands[1].reg
12143 || inst.operands[0].reg == inst.operands[2].reg
f8a8e9d6 12144 || inst.operands[0].reg == inst.operands[3].reg,
c19d1205 12145 BAD_OVERLAP);
b99bd4ef 12146
c19d1205
ZW
12147 inst.instruction |= inst.operands[0].reg;
12148 inst.instruction |= inst.operands[1].reg << 12;
12149 inst.instruction |= inst.operands[2].reg << 8;
12150 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
12151}
12152
12153static void
c19d1205 12154do_t_sxtah (void)
b99bd4ef 12155{
fdfde340
JM
12156 unsigned Rd, Rn, Rm;
12157
12158 Rd = inst.operands[0].reg;
12159 Rn = inst.operands[1].reg;
12160 Rm = inst.operands[2].reg;
12161
12162 reject_bad_reg (Rd);
12163 reject_bad_reg (Rn);
12164 reject_bad_reg (Rm);
12165
12166 inst.instruction |= Rd << 8;
12167 inst.instruction |= Rn << 16;
12168 inst.instruction |= Rm;
c19d1205
ZW
12169 inst.instruction |= inst.operands[3].imm << 4;
12170}
b99bd4ef 12171
c19d1205
ZW
12172static void
12173do_t_sxth (void)
12174{
fdfde340
JM
12175 unsigned Rd, Rm;
12176
12177 Rd = inst.operands[0].reg;
12178 Rm = inst.operands[1].reg;
12179
12180 reject_bad_reg (Rd);
12181 reject_bad_reg (Rm);
c921be7d
NC
12182
12183 if (inst.instruction <= 0xffff
12184 && inst.size_req != 4
fdfde340 12185 && Rd <= 7 && Rm <= 7
c19d1205 12186 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 12187 {
c19d1205 12188 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
12189 inst.instruction |= Rd;
12190 inst.instruction |= Rm << 3;
b99bd4ef 12191 }
c19d1205 12192 else if (unified_syntax)
b99bd4ef 12193 {
c19d1205
ZW
12194 if (inst.instruction <= 0xffff)
12195 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= Rm;
c19d1205 12198 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 12199 }
c19d1205 12200 else
b99bd4ef 12201 {
c19d1205
ZW
12202 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG);
b99bd4ef 12205 }
c19d1205 12206}
b99bd4ef 12207
c19d1205
ZW
12208static void
12209do_t_swi (void)
12210{
b2a5fbdc
MGD
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12212 to ARM_EXT_V6M. */
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12214 {
ac7f631b
NC
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
b2a5fbdc
MGD
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12220 }
12221
c19d1205
ZW
12222 inst.reloc.type = BFD_RELOC_ARM_SWI;
12223}
b99bd4ef 12224
92e90b6e
PB
12225static void
12226do_t_tb (void)
12227{
fdfde340 12228 unsigned Rn, Rm;
92e90b6e
PB
12229 int half;
12230
12231 half = (inst.instruction & 0x10) != 0;
e07e6e58 12232 set_it_insn_type_last ();
dfa9f0d5
PB
12233 constraint (inst.operands[0].immisreg,
12234 _("instruction requires register index"));
fdfde340
JM
12235
12236 Rn = inst.operands[0].reg;
12237 Rm = inst.operands[0].imm;
c921be7d 12238
fdfde340
JM
12239 constraint (Rn == REG_SP, BAD_SP);
12240 reject_bad_reg (Rm);
12241
92e90b6e
PB
12242 constraint (!half && inst.operands[0].shifted,
12243 _("instruction does not allow shifted index"));
fdfde340 12244 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
12245}
12246
c19d1205
ZW
12247static void
12248do_t_usat (void)
12249{
3a21c15a 12250 do_t_ssat_usat (0);
b99bd4ef
NC
12251}
12252
12253static void
c19d1205 12254do_t_usat16 (void)
b99bd4ef 12255{
fdfde340
JM
12256 unsigned Rd, Rn;
12257
12258 Rd = inst.operands[0].reg;
12259 Rn = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263
12264 inst.instruction |= Rd << 8;
c19d1205 12265 inst.instruction |= inst.operands[1].imm;
fdfde340 12266 inst.instruction |= Rn << 16;
b99bd4ef 12267}
c19d1205 12268
5287ad62 12269/* Neon instruction encoder helpers. */
5f4273c7 12270
5287ad62 12271/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 12272
5287ad62
JB
12273/* An "invalid" code for the following tables. */
12274#define N_INV -1u
12275
12276struct neon_tab_entry
b99bd4ef 12277{
5287ad62
JB
12278 unsigned integer;
12279 unsigned float_or_poly;
12280 unsigned scalar_or_imm;
12281};
5f4273c7 12282
5287ad62
JB
12283/* Map overloaded Neon opcodes to their respective encodings. */
12284#define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
e07e6e58 12297 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
33399f07
MGD
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12345 X(vseleq, 0xe000a00, N_INV, N_INV), \
12346 X(vselvs, 0xe100a00, N_INV, N_INV), \
12347 X(vselge, 0xe200a00, N_INV, N_INV), \
73924fbc
MGD
12348 X(vselgt, 0xe300a00, N_INV, N_INV), \
12349 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
12350 X(vminnm, 0xe800a40, 0x3200f10, N_INV)
5287ad62
JB
12351
12352enum neon_opc
12353{
12354#define X(OPC,I,F,S) N_MNEM_##OPC
12355NEON_ENC_TAB
12356#undef X
12357};
b99bd4ef 12358
5287ad62
JB
12359static const struct neon_tab_entry neon_enc_tab[] =
12360{
12361#define X(OPC,I,F,S) { (I), (F), (S) }
12362NEON_ENC_TAB
12363#undef X
12364};
b99bd4ef 12365
88714cb8
DG
12366/* Do not use these macros; instead, use NEON_ENCODE defined below. */
12367#define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12368#define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12369#define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12370#define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12371#define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12372#define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12373#define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12374#define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12375#define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12376#define NEON_ENC_SINGLE_(X) \
037e8744 12377 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
88714cb8 12378#define NEON_ENC_DOUBLE_(X) \
037e8744 12379 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
33399f07
MGD
12380#define NEON_ENC_FPV8_(X) \
12381 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
5287ad62 12382
88714cb8
DG
12383#define NEON_ENCODE(type, inst) \
12384 do \
12385 { \
12386 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12387 inst.is_neon = 1; \
12388 } \
12389 while (0)
12390
12391#define check_neon_suffixes \
12392 do \
12393 { \
12394 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12395 { \
12396 as_bad (_("invalid neon suffix for non neon instruction")); \
12397 return; \
12398 } \
12399 } \
12400 while (0)
12401
037e8744
JB
12402/* Define shapes for instruction operands. The following mnemonic characters
12403 are used in this table:
5287ad62 12404
037e8744 12405 F - VFP S<n> register
5287ad62
JB
12406 D - Neon D<n> register
12407 Q - Neon Q<n> register
12408 I - Immediate
12409 S - Scalar
12410 R - ARM register
12411 L - D<n> register list
5f4273c7 12412
037e8744
JB
12413 This table is used to generate various data:
12414 - enumerations of the form NS_DDR to be used as arguments to
12415 neon_select_shape.
12416 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 12417 - a table used to drive neon_select_shape. */
b99bd4ef 12418
037e8744
JB
12419#define NEON_SHAPE_DEF \
12420 X(3, (D, D, D), DOUBLE), \
12421 X(3, (Q, Q, Q), QUAD), \
12422 X(3, (D, D, I), DOUBLE), \
12423 X(3, (Q, Q, I), QUAD), \
12424 X(3, (D, D, S), DOUBLE), \
12425 X(3, (Q, Q, S), QUAD), \
12426 X(2, (D, D), DOUBLE), \
12427 X(2, (Q, Q), QUAD), \
12428 X(2, (D, S), DOUBLE), \
12429 X(2, (Q, S), QUAD), \
12430 X(2, (D, R), DOUBLE), \
12431 X(2, (Q, R), QUAD), \
12432 X(2, (D, I), DOUBLE), \
12433 X(2, (Q, I), QUAD), \
12434 X(3, (D, L, D), DOUBLE), \
12435 X(2, (D, Q), MIXED), \
12436 X(2, (Q, D), MIXED), \
12437 X(3, (D, Q, I), MIXED), \
12438 X(3, (Q, D, I), MIXED), \
12439 X(3, (Q, D, D), MIXED), \
12440 X(3, (D, Q, Q), MIXED), \
12441 X(3, (Q, Q, D), MIXED), \
12442 X(3, (Q, D, S), MIXED), \
12443 X(3, (D, Q, S), MIXED), \
12444 X(4, (D, D, D, I), DOUBLE), \
12445 X(4, (Q, Q, Q, I), QUAD), \
12446 X(2, (F, F), SINGLE), \
12447 X(3, (F, F, F), SINGLE), \
12448 X(2, (F, I), SINGLE), \
12449 X(2, (F, D), MIXED), \
12450 X(2, (D, F), MIXED), \
12451 X(3, (F, F, I), MIXED), \
12452 X(4, (R, R, F, F), SINGLE), \
12453 X(4, (F, F, R, R), SINGLE), \
12454 X(3, (D, R, R), DOUBLE), \
12455 X(3, (R, R, D), DOUBLE), \
12456 X(2, (S, R), SINGLE), \
12457 X(2, (R, S), SINGLE), \
12458 X(2, (F, R), SINGLE), \
12459 X(2, (R, F), SINGLE)
12460
12461#define S2(A,B) NS_##A##B
12462#define S3(A,B,C) NS_##A##B##C
12463#define S4(A,B,C,D) NS_##A##B##C##D
12464
12465#define X(N, L, C) S##N L
12466
5287ad62
JB
12467enum neon_shape
12468{
037e8744
JB
12469 NEON_SHAPE_DEF,
12470 NS_NULL
5287ad62 12471};
b99bd4ef 12472
037e8744
JB
12473#undef X
12474#undef S2
12475#undef S3
12476#undef S4
12477
12478enum neon_shape_class
12479{
12480 SC_SINGLE,
12481 SC_DOUBLE,
12482 SC_QUAD,
12483 SC_MIXED
12484};
12485
12486#define X(N, L, C) SC_##C
12487
12488static enum neon_shape_class neon_shape_class[] =
12489{
12490 NEON_SHAPE_DEF
12491};
12492
12493#undef X
12494
12495enum neon_shape_el
12496{
12497 SE_F,
12498 SE_D,
12499 SE_Q,
12500 SE_I,
12501 SE_S,
12502 SE_R,
12503 SE_L
12504};
12505
12506/* Register widths of above. */
12507static unsigned neon_shape_el_size[] =
12508{
12509 32,
12510 64,
12511 128,
12512 0,
12513 32,
12514 32,
12515 0
12516};
12517
12518struct neon_shape_info
12519{
12520 unsigned els;
12521 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12522};
12523
12524#define S2(A,B) { SE_##A, SE_##B }
12525#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12526#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12527
12528#define X(N, L, C) { N, S##N L }
12529
12530static struct neon_shape_info neon_shape_tab[] =
12531{
12532 NEON_SHAPE_DEF
12533};
12534
12535#undef X
12536#undef S2
12537#undef S3
12538#undef S4
12539
5287ad62
JB
12540/* Bit masks used in type checking given instructions.
12541 'N_EQK' means the type must be the same as (or based on in some way) the key
12542 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12543 set, various other bits can be set as well in order to modify the meaning of
12544 the type constraint. */
12545
12546enum neon_type_mask
12547{
8e79c3df
CM
12548 N_S8 = 0x0000001,
12549 N_S16 = 0x0000002,
12550 N_S32 = 0x0000004,
12551 N_S64 = 0x0000008,
12552 N_U8 = 0x0000010,
12553 N_U16 = 0x0000020,
12554 N_U32 = 0x0000040,
12555 N_U64 = 0x0000080,
12556 N_I8 = 0x0000100,
12557 N_I16 = 0x0000200,
12558 N_I32 = 0x0000400,
12559 N_I64 = 0x0000800,
12560 N_8 = 0x0001000,
12561 N_16 = 0x0002000,
12562 N_32 = 0x0004000,
12563 N_64 = 0x0008000,
12564 N_P8 = 0x0010000,
12565 N_P16 = 0x0020000,
12566 N_F16 = 0x0040000,
12567 N_F32 = 0x0080000,
12568 N_F64 = 0x0100000,
c921be7d
NC
12569 N_KEY = 0x1000000, /* Key element (main type specifier). */
12570 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 12571 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
12572 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12573 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12574 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12575 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12576 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12577 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12578 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 12579 N_UTYP = 0,
037e8744 12580 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
12581};
12582
dcbf9037
JB
12583#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12584
5287ad62
JB
12585#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12586#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12587#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12588#define N_SUF_32 (N_SU_32 | N_F32)
12589#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12590#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12591
12592/* Pass this as the first type argument to neon_check_type to ignore types
12593 altogether. */
12594#define N_IGNORE_TYPE (N_KEY | N_EQK)
12595
037e8744
JB
12596/* Select a "shape" for the current instruction (describing register types or
12597 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12598 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12599 function of operand parsing, so this function doesn't need to be called.
12600 Shapes should be listed in order of decreasing length. */
5287ad62
JB
12601
12602static enum neon_shape
037e8744 12603neon_select_shape (enum neon_shape shape, ...)
5287ad62 12604{
037e8744
JB
12605 va_list ap;
12606 enum neon_shape first_shape = shape;
5287ad62
JB
12607
12608 /* Fix missing optional operands. FIXME: we don't know at this point how
12609 many arguments we should have, so this makes the assumption that we have
12610 > 1. This is true of all current Neon opcodes, I think, but may not be
12611 true in the future. */
12612 if (!inst.operands[1].present)
12613 inst.operands[1] = inst.operands[0];
12614
037e8744 12615 va_start (ap, shape);
5f4273c7 12616
21d799b5 12617 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
12618 {
12619 unsigned j;
12620 int matches = 1;
12621
12622 for (j = 0; j < neon_shape_tab[shape].els; j++)
12623 {
12624 if (!inst.operands[j].present)
12625 {
12626 matches = 0;
12627 break;
12628 }
12629
12630 switch (neon_shape_tab[shape].el[j])
12631 {
12632 case SE_F:
12633 if (!(inst.operands[j].isreg
12634 && inst.operands[j].isvec
12635 && inst.operands[j].issingle
12636 && !inst.operands[j].isquad))
12637 matches = 0;
12638 break;
12639
12640 case SE_D:
12641 if (!(inst.operands[j].isreg
12642 && inst.operands[j].isvec
12643 && !inst.operands[j].isquad
12644 && !inst.operands[j].issingle))
12645 matches = 0;
12646 break;
12647
12648 case SE_R:
12649 if (!(inst.operands[j].isreg
12650 && !inst.operands[j].isvec))
12651 matches = 0;
12652 break;
12653
12654 case SE_Q:
12655 if (!(inst.operands[j].isreg
12656 && inst.operands[j].isvec
12657 && inst.operands[j].isquad
12658 && !inst.operands[j].issingle))
12659 matches = 0;
12660 break;
12661
12662 case SE_I:
12663 if (!(!inst.operands[j].isreg
12664 && !inst.operands[j].isscalar))
12665 matches = 0;
12666 break;
12667
12668 case SE_S:
12669 if (!(!inst.operands[j].isreg
12670 && inst.operands[j].isscalar))
12671 matches = 0;
12672 break;
12673
12674 case SE_L:
12675 break;
12676 }
3fde54a2
JZ
12677 if (!matches)
12678 break;
037e8744 12679 }
ad6cec43
MGD
12680 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12681 /* We've matched all the entries in the shape table, and we don't
12682 have any left over operands which have not been matched. */
5287ad62 12683 break;
037e8744 12684 }
5f4273c7 12685
037e8744 12686 va_end (ap);
5287ad62 12687
037e8744
JB
12688 if (shape == NS_NULL && first_shape != NS_NULL)
12689 first_error (_("invalid instruction shape"));
5287ad62 12690
037e8744
JB
12691 return shape;
12692}
5287ad62 12693
037e8744
JB
12694/* True if SHAPE is predominantly a quadword operation (most of the time, this
12695 means the Q bit should be set). */
12696
12697static int
12698neon_quad (enum neon_shape shape)
12699{
12700 return neon_shape_class[shape] == SC_QUAD;
5287ad62 12701}
037e8744 12702
5287ad62
JB
12703static void
12704neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12705 unsigned *g_size)
12706{
12707 /* Allow modification to be made to types which are constrained to be
12708 based on the key element, based on bits set alongside N_EQK. */
12709 if ((typebits & N_EQK) != 0)
12710 {
12711 if ((typebits & N_HLF) != 0)
12712 *g_size /= 2;
12713 else if ((typebits & N_DBL) != 0)
12714 *g_size *= 2;
12715 if ((typebits & N_SGN) != 0)
12716 *g_type = NT_signed;
12717 else if ((typebits & N_UNS) != 0)
12718 *g_type = NT_unsigned;
12719 else if ((typebits & N_INT) != 0)
12720 *g_type = NT_integer;
12721 else if ((typebits & N_FLT) != 0)
12722 *g_type = NT_float;
dcbf9037
JB
12723 else if ((typebits & N_SIZ) != 0)
12724 *g_type = NT_untyped;
5287ad62
JB
12725 }
12726}
5f4273c7 12727
5287ad62
JB
12728/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12729 operand type, i.e. the single type specified in a Neon instruction when it
12730 is the only one given. */
12731
12732static struct neon_type_el
12733neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12734{
12735 struct neon_type_el dest = *key;
5f4273c7 12736
9c2799c2 12737 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 12738
5287ad62
JB
12739 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12740
12741 return dest;
12742}
12743
12744/* Convert Neon type and size into compact bitmask representation. */
12745
12746static enum neon_type_mask
12747type_chk_of_el_type (enum neon_el_type type, unsigned size)
12748{
12749 switch (type)
12750 {
12751 case NT_untyped:
12752 switch (size)
12753 {
12754 case 8: return N_8;
12755 case 16: return N_16;
12756 case 32: return N_32;
12757 case 64: return N_64;
12758 default: ;
12759 }
12760 break;
12761
12762 case NT_integer:
12763 switch (size)
12764 {
12765 case 8: return N_I8;
12766 case 16: return N_I16;
12767 case 32: return N_I32;
12768 case 64: return N_I64;
12769 default: ;
12770 }
12771 break;
12772
12773 case NT_float:
037e8744
JB
12774 switch (size)
12775 {
8e79c3df 12776 case 16: return N_F16;
037e8744
JB
12777 case 32: return N_F32;
12778 case 64: return N_F64;
12779 default: ;
12780 }
5287ad62
JB
12781 break;
12782
12783 case NT_poly:
12784 switch (size)
12785 {
12786 case 8: return N_P8;
12787 case 16: return N_P16;
12788 default: ;
12789 }
12790 break;
12791
12792 case NT_signed:
12793 switch (size)
12794 {
12795 case 8: return N_S8;
12796 case 16: return N_S16;
12797 case 32: return N_S32;
12798 case 64: return N_S64;
12799 default: ;
12800 }
12801 break;
12802
12803 case NT_unsigned:
12804 switch (size)
12805 {
12806 case 8: return N_U8;
12807 case 16: return N_U16;
12808 case 32: return N_U32;
12809 case 64: return N_U64;
12810 default: ;
12811 }
12812 break;
12813
12814 default: ;
12815 }
5f4273c7 12816
5287ad62
JB
12817 return N_UTYP;
12818}
12819
12820/* Convert compact Neon bitmask type representation to a type and size. Only
12821 handles the case where a single bit is set in the mask. */
12822
dcbf9037 12823static int
5287ad62
JB
12824el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12825 enum neon_type_mask mask)
12826{
dcbf9037
JB
12827 if ((mask & N_EQK) != 0)
12828 return FAIL;
12829
5287ad62
JB
12830 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12831 *size = 8;
dcbf9037 12832 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 12833 *size = 16;
dcbf9037 12834 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 12835 *size = 32;
037e8744 12836 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 12837 *size = 64;
dcbf9037
JB
12838 else
12839 return FAIL;
12840
5287ad62
JB
12841 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12842 *type = NT_signed;
dcbf9037 12843 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 12844 *type = NT_unsigned;
dcbf9037 12845 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 12846 *type = NT_integer;
dcbf9037 12847 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 12848 *type = NT_untyped;
dcbf9037 12849 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 12850 *type = NT_poly;
037e8744 12851 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 12852 *type = NT_float;
dcbf9037
JB
12853 else
12854 return FAIL;
5f4273c7 12855
dcbf9037 12856 return SUCCESS;
5287ad62
JB
12857}
12858
12859/* Modify a bitmask of allowed types. This is only needed for type
12860 relaxation. */
12861
12862static unsigned
12863modify_types_allowed (unsigned allowed, unsigned mods)
12864{
12865 unsigned size;
12866 enum neon_el_type type;
12867 unsigned destmask;
12868 int i;
5f4273c7 12869
5287ad62 12870 destmask = 0;
5f4273c7 12871
5287ad62
JB
12872 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12873 {
21d799b5
NC
12874 if (el_type_of_type_chk (&type, &size,
12875 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
12876 {
12877 neon_modify_type_size (mods, &type, &size);
12878 destmask |= type_chk_of_el_type (type, size);
12879 }
5287ad62 12880 }
5f4273c7 12881
5287ad62
JB
12882 return destmask;
12883}
12884
12885/* Check type and return type classification.
12886 The manual states (paraphrase): If one datatype is given, it indicates the
12887 type given in:
12888 - the second operand, if there is one
12889 - the operand, if there is no second operand
12890 - the result, if there are no operands.
12891 This isn't quite good enough though, so we use a concept of a "key" datatype
12892 which is set on a per-instruction basis, which is the one which matters when
12893 only one data type is written.
12894 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 12895 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
12896
12897static struct neon_type_el
12898neon_check_type (unsigned els, enum neon_shape ns, ...)
12899{
12900 va_list ap;
12901 unsigned i, pass, key_el = 0;
12902 unsigned types[NEON_MAX_TYPE_ELS];
12903 enum neon_el_type k_type = NT_invtype;
12904 unsigned k_size = -1u;
12905 struct neon_type_el badtype = {NT_invtype, -1};
12906 unsigned key_allowed = 0;
12907
12908 /* Optional registers in Neon instructions are always (not) in operand 1.
12909 Fill in the missing operand here, if it was omitted. */
12910 if (els > 1 && !inst.operands[1].present)
12911 inst.operands[1] = inst.operands[0];
12912
12913 /* Suck up all the varargs. */
12914 va_start (ap, ns);
12915 for (i = 0; i < els; i++)
12916 {
12917 unsigned thisarg = va_arg (ap, unsigned);
12918 if (thisarg == N_IGNORE_TYPE)
12919 {
12920 va_end (ap);
12921 return badtype;
12922 }
12923 types[i] = thisarg;
12924 if ((thisarg & N_KEY) != 0)
12925 key_el = i;
12926 }
12927 va_end (ap);
12928
dcbf9037
JB
12929 if (inst.vectype.elems > 0)
12930 for (i = 0; i < els; i++)
12931 if (inst.operands[i].vectype.type != NT_invtype)
12932 {
12933 first_error (_("types specified in both the mnemonic and operands"));
12934 return badtype;
12935 }
12936
5287ad62
JB
12937 /* Duplicate inst.vectype elements here as necessary.
12938 FIXME: No idea if this is exactly the same as the ARM assembler,
12939 particularly when an insn takes one register and one non-register
12940 operand. */
12941 if (inst.vectype.elems == 1 && els > 1)
12942 {
12943 unsigned j;
12944 inst.vectype.elems = els;
12945 inst.vectype.el[key_el] = inst.vectype.el[0];
12946 for (j = 0; j < els; j++)
dcbf9037
JB
12947 if (j != key_el)
12948 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12949 types[j]);
12950 }
12951 else if (inst.vectype.elems == 0 && els > 0)
12952 {
12953 unsigned j;
12954 /* No types were given after the mnemonic, so look for types specified
12955 after each operand. We allow some flexibility here; as long as the
12956 "key" operand has a type, we can infer the others. */
12957 for (j = 0; j < els; j++)
12958 if (inst.operands[j].vectype.type != NT_invtype)
12959 inst.vectype.el[j] = inst.operands[j].vectype;
12960
12961 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 12962 {
dcbf9037
JB
12963 for (j = 0; j < els; j++)
12964 if (inst.operands[j].vectype.type == NT_invtype)
12965 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12966 types[j]);
12967 }
12968 else
12969 {
12970 first_error (_("operand types can't be inferred"));
12971 return badtype;
5287ad62
JB
12972 }
12973 }
12974 else if (inst.vectype.elems != els)
12975 {
dcbf9037 12976 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
12977 return badtype;
12978 }
12979
12980 for (pass = 0; pass < 2; pass++)
12981 {
12982 for (i = 0; i < els; i++)
12983 {
12984 unsigned thisarg = types[i];
12985 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12986 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12987 enum neon_el_type g_type = inst.vectype.el[i].type;
12988 unsigned g_size = inst.vectype.el[i].size;
12989
12990 /* Decay more-specific signed & unsigned types to sign-insensitive
12991 integer types if sign-specific variants are unavailable. */
12992 if ((g_type == NT_signed || g_type == NT_unsigned)
12993 && (types_allowed & N_SU_ALL) == 0)
12994 g_type = NT_integer;
12995
12996 /* If only untyped args are allowed, decay any more specific types to
12997 them. Some instructions only care about signs for some element
12998 sizes, so handle that properly. */
12999 if ((g_size == 8 && (types_allowed & N_8) != 0)
13000 || (g_size == 16 && (types_allowed & N_16) != 0)
13001 || (g_size == 32 && (types_allowed & N_32) != 0)
13002 || (g_size == 64 && (types_allowed & N_64) != 0))
13003 g_type = NT_untyped;
13004
13005 if (pass == 0)
13006 {
13007 if ((thisarg & N_KEY) != 0)
13008 {
13009 k_type = g_type;
13010 k_size = g_size;
13011 key_allowed = thisarg & ~N_KEY;
13012 }
13013 }
13014 else
13015 {
037e8744
JB
13016 if ((thisarg & N_VFP) != 0)
13017 {
99b253c5
NC
13018 enum neon_shape_el regshape;
13019 unsigned regwidth, match;
13020
13021 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13022 if (ns == NS_NULL)
13023 {
13024 first_error (_("invalid instruction shape"));
13025 return badtype;
13026 }
13027 regshape = neon_shape_tab[ns].el[i];
13028 regwidth = neon_shape_el_size[regshape];
037e8744
JB
13029
13030 /* In VFP mode, operands must match register widths. If we
13031 have a key operand, use its width, else use the width of
13032 the current operand. */
13033 if (k_size != -1u)
13034 match = k_size;
13035 else
13036 match = g_size;
13037
13038 if (regwidth != match)
13039 {
13040 first_error (_("operand size must match register width"));
13041 return badtype;
13042 }
13043 }
5f4273c7 13044
5287ad62
JB
13045 if ((thisarg & N_EQK) == 0)
13046 {
13047 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13048
13049 if ((given_type & types_allowed) == 0)
13050 {
dcbf9037 13051 first_error (_("bad type in Neon instruction"));
5287ad62
JB
13052 return badtype;
13053 }
13054 }
13055 else
13056 {
13057 enum neon_el_type mod_k_type = k_type;
13058 unsigned mod_k_size = k_size;
13059 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13060 if (g_type != mod_k_type || g_size != mod_k_size)
13061 {
dcbf9037 13062 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
13063 return badtype;
13064 }
13065 }
13066 }
13067 }
13068 }
13069
13070 return inst.vectype.el[key_el];
13071}
13072
037e8744 13073/* Neon-style VFP instruction forwarding. */
5287ad62 13074
037e8744
JB
13075/* Thumb VFP instructions have 0xE in the condition field. */
13076
13077static void
13078do_vfp_cond_or_thumb (void)
5287ad62 13079{
88714cb8
DG
13080 inst.is_neon = 1;
13081
5287ad62 13082 if (thumb_mode)
037e8744 13083 inst.instruction |= 0xe0000000;
5287ad62 13084 else
037e8744 13085 inst.instruction |= inst.cond << 28;
5287ad62
JB
13086}
13087
037e8744
JB
13088/* Look up and encode a simple mnemonic, for use as a helper function for the
13089 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13090 etc. It is assumed that operand parsing has already been done, and that the
13091 operands are in the form expected by the given opcode (this isn't necessarily
13092 the same as the form in which they were parsed, hence some massaging must
13093 take place before this function is called).
13094 Checks current arch version against that in the looked-up opcode. */
5287ad62 13095
037e8744
JB
13096static void
13097do_vfp_nsyn_opcode (const char *opname)
5287ad62 13098{
037e8744 13099 const struct asm_opcode *opcode;
5f4273c7 13100
21d799b5 13101 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 13102
037e8744
JB
13103 if (!opcode)
13104 abort ();
5287ad62 13105
037e8744
JB
13106 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13107 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13108 _(BAD_FPU));
5287ad62 13109
88714cb8
DG
13110 inst.is_neon = 1;
13111
037e8744
JB
13112 if (thumb_mode)
13113 {
13114 inst.instruction = opcode->tvalue;
13115 opcode->tencode ();
13116 }
13117 else
13118 {
13119 inst.instruction = (inst.cond << 28) | opcode->avalue;
13120 opcode->aencode ();
13121 }
13122}
5287ad62
JB
13123
13124static void
037e8744 13125do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 13126{
037e8744
JB
13127 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13128
13129 if (rs == NS_FFF)
13130 {
13131 if (is_add)
13132 do_vfp_nsyn_opcode ("fadds");
13133 else
13134 do_vfp_nsyn_opcode ("fsubs");
13135 }
13136 else
13137 {
13138 if (is_add)
13139 do_vfp_nsyn_opcode ("faddd");
13140 else
13141 do_vfp_nsyn_opcode ("fsubd");
13142 }
13143}
13144
13145/* Check operand types to see if this is a VFP instruction, and if so call
13146 PFN (). */
13147
13148static int
13149try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13150{
13151 enum neon_shape rs;
13152 struct neon_type_el et;
13153
13154 switch (args)
13155 {
13156 case 2:
13157 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13158 et = neon_check_type (2, rs,
13159 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13160 break;
5f4273c7 13161
037e8744
JB
13162 case 3:
13163 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13164 et = neon_check_type (3, rs,
13165 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13166 break;
13167
13168 default:
13169 abort ();
13170 }
13171
13172 if (et.type != NT_invtype)
13173 {
13174 pfn (rs);
13175 return SUCCESS;
13176 }
037e8744 13177
99b253c5 13178 inst.error = NULL;
037e8744
JB
13179 return FAIL;
13180}
13181
13182static void
13183do_vfp_nsyn_mla_mls (enum neon_shape rs)
13184{
13185 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 13186
037e8744
JB
13187 if (rs == NS_FFF)
13188 {
13189 if (is_mla)
13190 do_vfp_nsyn_opcode ("fmacs");
13191 else
1ee69515 13192 do_vfp_nsyn_opcode ("fnmacs");
037e8744
JB
13193 }
13194 else
13195 {
13196 if (is_mla)
13197 do_vfp_nsyn_opcode ("fmacd");
13198 else
1ee69515 13199 do_vfp_nsyn_opcode ("fnmacd");
037e8744
JB
13200 }
13201}
13202
62f3b8c8
PB
13203static void
13204do_vfp_nsyn_fma_fms (enum neon_shape rs)
13205{
13206 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13207
13208 if (rs == NS_FFF)
13209 {
13210 if (is_fma)
13211 do_vfp_nsyn_opcode ("ffmas");
13212 else
13213 do_vfp_nsyn_opcode ("ffnmas");
13214 }
13215 else
13216 {
13217 if (is_fma)
13218 do_vfp_nsyn_opcode ("ffmad");
13219 else
13220 do_vfp_nsyn_opcode ("ffnmad");
13221 }
13222}
13223
037e8744
JB
13224static void
13225do_vfp_nsyn_mul (enum neon_shape rs)
13226{
13227 if (rs == NS_FFF)
13228 do_vfp_nsyn_opcode ("fmuls");
13229 else
13230 do_vfp_nsyn_opcode ("fmuld");
13231}
13232
13233static void
13234do_vfp_nsyn_abs_neg (enum neon_shape rs)
13235{
13236 int is_neg = (inst.instruction & 0x80) != 0;
13237 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13238
13239 if (rs == NS_FF)
13240 {
13241 if (is_neg)
13242 do_vfp_nsyn_opcode ("fnegs");
13243 else
13244 do_vfp_nsyn_opcode ("fabss");
13245 }
13246 else
13247 {
13248 if (is_neg)
13249 do_vfp_nsyn_opcode ("fnegd");
13250 else
13251 do_vfp_nsyn_opcode ("fabsd");
13252 }
13253}
13254
13255/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13256 insns belong to Neon, and are handled elsewhere. */
13257
13258static void
13259do_vfp_nsyn_ldm_stm (int is_dbmode)
13260{
13261 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13262 if (is_ldm)
13263 {
13264 if (is_dbmode)
13265 do_vfp_nsyn_opcode ("fldmdbs");
13266 else
13267 do_vfp_nsyn_opcode ("fldmias");
13268 }
13269 else
13270 {
13271 if (is_dbmode)
13272 do_vfp_nsyn_opcode ("fstmdbs");
13273 else
13274 do_vfp_nsyn_opcode ("fstmias");
13275 }
13276}
13277
037e8744
JB
13278static void
13279do_vfp_nsyn_sqrt (void)
13280{
13281 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13282 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13283
037e8744
JB
13284 if (rs == NS_FF)
13285 do_vfp_nsyn_opcode ("fsqrts");
13286 else
13287 do_vfp_nsyn_opcode ("fsqrtd");
13288}
13289
13290static void
13291do_vfp_nsyn_div (void)
13292{
13293 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13294 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13295 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13296
037e8744
JB
13297 if (rs == NS_FFF)
13298 do_vfp_nsyn_opcode ("fdivs");
13299 else
13300 do_vfp_nsyn_opcode ("fdivd");
13301}
13302
13303static void
13304do_vfp_nsyn_nmul (void)
13305{
13306 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13307 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13308 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13309
037e8744
JB
13310 if (rs == NS_FFF)
13311 {
88714cb8 13312 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13313 do_vfp_sp_dyadic ();
13314 }
13315 else
13316 {
88714cb8 13317 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13318 do_vfp_dp_rd_rn_rm ();
13319 }
13320 do_vfp_cond_or_thumb ();
13321}
13322
13323static void
13324do_vfp_nsyn_cmp (void)
13325{
13326 if (inst.operands[1].isreg)
13327 {
13328 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13329 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 13330
037e8744
JB
13331 if (rs == NS_FF)
13332 {
88714cb8 13333 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13334 do_vfp_sp_monadic ();
13335 }
13336 else
13337 {
88714cb8 13338 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13339 do_vfp_dp_rd_rm ();
13340 }
13341 }
13342 else
13343 {
13344 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13345 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13346
13347 switch (inst.instruction & 0x0fffffff)
13348 {
13349 case N_MNEM_vcmp:
13350 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13351 break;
13352 case N_MNEM_vcmpe:
13353 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13354 break;
13355 default:
13356 abort ();
13357 }
5f4273c7 13358
037e8744
JB
13359 if (rs == NS_FI)
13360 {
88714cb8 13361 NEON_ENCODE (SINGLE, inst);
037e8744
JB
13362 do_vfp_sp_compare_z ();
13363 }
13364 else
13365 {
88714cb8 13366 NEON_ENCODE (DOUBLE, inst);
037e8744
JB
13367 do_vfp_dp_rd ();
13368 }
13369 }
13370 do_vfp_cond_or_thumb ();
13371}
13372
13373static void
13374nsyn_insert_sp (void)
13375{
13376 inst.operands[1] = inst.operands[0];
13377 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 13378 inst.operands[0].reg = REG_SP;
037e8744
JB
13379 inst.operands[0].isreg = 1;
13380 inst.operands[0].writeback = 1;
13381 inst.operands[0].present = 1;
13382}
13383
13384static void
13385do_vfp_nsyn_push (void)
13386{
13387 nsyn_insert_sp ();
13388 if (inst.operands[1].issingle)
13389 do_vfp_nsyn_opcode ("fstmdbs");
13390 else
13391 do_vfp_nsyn_opcode ("fstmdbd");
13392}
13393
13394static void
13395do_vfp_nsyn_pop (void)
13396{
13397 nsyn_insert_sp ();
13398 if (inst.operands[1].issingle)
22b5b651 13399 do_vfp_nsyn_opcode ("fldmias");
037e8744 13400 else
22b5b651 13401 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
13402}
13403
13404/* Fix up Neon data-processing instructions, ORing in the correct bits for
13405 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13406
88714cb8
DG
13407static void
13408neon_dp_fixup (struct arm_it* insn)
037e8744 13409{
88714cb8
DG
13410 unsigned int i = insn->instruction;
13411 insn->is_neon = 1;
13412
037e8744
JB
13413 if (thumb_mode)
13414 {
13415 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13416 if (i & (1 << 24))
13417 i |= 1 << 28;
5f4273c7 13418
037e8744 13419 i &= ~(1 << 24);
5f4273c7 13420
037e8744
JB
13421 i |= 0xef000000;
13422 }
13423 else
13424 i |= 0xf2000000;
5f4273c7 13425
88714cb8 13426 insn->instruction = i;
037e8744
JB
13427}
13428
13429/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13430 (0, 1, 2, 3). */
13431
13432static unsigned
13433neon_logbits (unsigned x)
13434{
13435 return ffs (x) - 4;
13436}
13437
13438#define LOW4(R) ((R) & 0xf)
13439#define HI1(R) (((R) >> 4) & 1)
13440
13441/* Encode insns with bit pattern:
13442
13443 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13444 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 13445
037e8744
JB
13446 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13447 different meaning for some instruction. */
13448
13449static void
13450neon_three_same (int isquad, int ubit, int size)
13451{
13452 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13453 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13454 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13455 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13456 inst.instruction |= LOW4 (inst.operands[2].reg);
13457 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13458 inst.instruction |= (isquad != 0) << 6;
13459 inst.instruction |= (ubit != 0) << 24;
13460 if (size != -1)
13461 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13462
88714cb8 13463 neon_dp_fixup (&inst);
037e8744
JB
13464}
13465
13466/* Encode instructions of the form:
13467
13468 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13469 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
13470
13471 Don't write size if SIZE == -1. */
13472
13473static void
13474neon_two_same (int qbit, int ubit, int size)
13475{
13476 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13477 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13478 inst.instruction |= LOW4 (inst.operands[1].reg);
13479 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13480 inst.instruction |= (qbit != 0) << 6;
13481 inst.instruction |= (ubit != 0) << 24;
13482
13483 if (size != -1)
13484 inst.instruction |= neon_logbits (size) << 18;
13485
88714cb8 13486 neon_dp_fixup (&inst);
5287ad62
JB
13487}
13488
13489/* Neon instruction encoders, in approximate order of appearance. */
13490
13491static void
13492do_neon_dyadic_i_su (void)
13493{
037e8744 13494 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13495 struct neon_type_el et = neon_check_type (3, rs,
13496 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 13497 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13498}
13499
13500static void
13501do_neon_dyadic_i64_su (void)
13502{
037e8744 13503 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13504 struct neon_type_el et = neon_check_type (3, rs,
13505 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 13506 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13507}
13508
13509static void
13510neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13511 unsigned immbits)
13512{
13513 unsigned size = et.size >> 3;
13514 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13515 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13516 inst.instruction |= LOW4 (inst.operands[1].reg);
13517 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13518 inst.instruction |= (isquad != 0) << 6;
13519 inst.instruction |= immbits << 16;
13520 inst.instruction |= (size >> 3) << 7;
13521 inst.instruction |= (size & 0x7) << 19;
13522 if (write_ubit)
13523 inst.instruction |= (uval != 0) << 24;
13524
88714cb8 13525 neon_dp_fixup (&inst);
5287ad62
JB
13526}
13527
13528static void
13529do_neon_shl_imm (void)
13530{
13531 if (!inst.operands[2].isreg)
13532 {
037e8744 13533 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13534 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
88714cb8 13535 NEON_ENCODE (IMMED, inst);
037e8744 13536 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
13537 }
13538 else
13539 {
037e8744 13540 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13541 struct neon_type_el et = neon_check_type (3, rs,
13542 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13543 unsigned int tmp;
13544
13545 /* VSHL/VQSHL 3-register variants have syntax such as:
13546 vshl.xx Dd, Dm, Dn
13547 whereas other 3-register operations encoded by neon_three_same have
13548 syntax like:
13549 vadd.xx Dd, Dn, Dm
13550 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13551 here. */
13552 tmp = inst.operands[2].reg;
13553 inst.operands[2].reg = inst.operands[1].reg;
13554 inst.operands[1].reg = tmp;
88714cb8 13555 NEON_ENCODE (INTEGER, inst);
037e8744 13556 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13557 }
13558}
13559
13560static void
13561do_neon_qshl_imm (void)
13562{
13563 if (!inst.operands[2].isreg)
13564 {
037e8744 13565 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 13566 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 13567
88714cb8 13568 NEON_ENCODE (IMMED, inst);
037e8744 13569 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
13570 inst.operands[2].imm);
13571 }
13572 else
13573 {
037e8744 13574 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13575 struct neon_type_el et = neon_check_type (3, rs,
13576 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
13577 unsigned int tmp;
13578
13579 /* See note in do_neon_shl_imm. */
13580 tmp = inst.operands[2].reg;
13581 inst.operands[2].reg = inst.operands[1].reg;
13582 inst.operands[1].reg = tmp;
88714cb8 13583 NEON_ENCODE (INTEGER, inst);
037e8744 13584 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
13585 }
13586}
13587
627907b7
JB
13588static void
13589do_neon_rshl (void)
13590{
13591 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13592 struct neon_type_el et = neon_check_type (3, rs,
13593 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13594 unsigned int tmp;
13595
13596 tmp = inst.operands[2].reg;
13597 inst.operands[2].reg = inst.operands[1].reg;
13598 inst.operands[1].reg = tmp;
13599 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13600}
13601
5287ad62
JB
13602static int
13603neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13604{
036dc3f7
PB
13605 /* Handle .I8 pseudo-instructions. */
13606 if (size == 8)
5287ad62 13607 {
5287ad62
JB
13608 /* Unfortunately, this will make everything apart from zero out-of-range.
13609 FIXME is this the intended semantics? There doesn't seem much point in
13610 accepting .I8 if so. */
13611 immediate |= immediate << 8;
13612 size = 16;
036dc3f7
PB
13613 }
13614
13615 if (size >= 32)
13616 {
13617 if (immediate == (immediate & 0x000000ff))
13618 {
13619 *immbits = immediate;
13620 return 0x1;
13621 }
13622 else if (immediate == (immediate & 0x0000ff00))
13623 {
13624 *immbits = immediate >> 8;
13625 return 0x3;
13626 }
13627 else if (immediate == (immediate & 0x00ff0000))
13628 {
13629 *immbits = immediate >> 16;
13630 return 0x5;
13631 }
13632 else if (immediate == (immediate & 0xff000000))
13633 {
13634 *immbits = immediate >> 24;
13635 return 0x7;
13636 }
13637 if ((immediate & 0xffff) != (immediate >> 16))
13638 goto bad_immediate;
13639 immediate &= 0xffff;
5287ad62
JB
13640 }
13641
13642 if (immediate == (immediate & 0x000000ff))
13643 {
13644 *immbits = immediate;
036dc3f7 13645 return 0x9;
5287ad62
JB
13646 }
13647 else if (immediate == (immediate & 0x0000ff00))
13648 {
13649 *immbits = immediate >> 8;
036dc3f7 13650 return 0xb;
5287ad62
JB
13651 }
13652
13653 bad_immediate:
dcbf9037 13654 first_error (_("immediate value out of range"));
5287ad62
JB
13655 return FAIL;
13656}
13657
13658/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13659 A, B, C, D. */
13660
13661static int
13662neon_bits_same_in_bytes (unsigned imm)
13663{
13664 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13665 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13666 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13667 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13668}
13669
13670/* For immediate of above form, return 0bABCD. */
13671
13672static unsigned
13673neon_squash_bits (unsigned imm)
13674{
13675 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13676 | ((imm & 0x01000000) >> 21);
13677}
13678
136da414 13679/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
13680
13681static unsigned
13682neon_qfloat_bits (unsigned imm)
13683{
136da414 13684 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
13685}
13686
13687/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13688 the instruction. *OP is passed as the initial value of the op field, and
13689 may be set to a different value depending on the constant (i.e.
13690 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 13691 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 13692 try smaller element sizes. */
5287ad62
JB
13693
13694static int
c96612cc
JB
13695neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13696 unsigned *immbits, int *op, int size,
13697 enum neon_el_type type)
5287ad62 13698{
c96612cc
JB
13699 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13700 float. */
13701 if (type == NT_float && !float_p)
13702 return FAIL;
13703
136da414
JB
13704 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13705 {
13706 if (size != 32 || *op == 1)
13707 return FAIL;
13708 *immbits = neon_qfloat_bits (immlo);
13709 return 0xf;
13710 }
036dc3f7
PB
13711
13712 if (size == 64)
5287ad62 13713 {
036dc3f7
PB
13714 if (neon_bits_same_in_bytes (immhi)
13715 && neon_bits_same_in_bytes (immlo))
13716 {
13717 if (*op == 1)
13718 return FAIL;
13719 *immbits = (neon_squash_bits (immhi) << 4)
13720 | neon_squash_bits (immlo);
13721 *op = 1;
13722 return 0xe;
13723 }
13724
13725 if (immhi != immlo)
13726 return FAIL;
5287ad62 13727 }
036dc3f7
PB
13728
13729 if (size >= 32)
5287ad62 13730 {
036dc3f7
PB
13731 if (immlo == (immlo & 0x000000ff))
13732 {
13733 *immbits = immlo;
13734 return 0x0;
13735 }
13736 else if (immlo == (immlo & 0x0000ff00))
13737 {
13738 *immbits = immlo >> 8;
13739 return 0x2;
13740 }
13741 else if (immlo == (immlo & 0x00ff0000))
13742 {
13743 *immbits = immlo >> 16;
13744 return 0x4;
13745 }
13746 else if (immlo == (immlo & 0xff000000))
13747 {
13748 *immbits = immlo >> 24;
13749 return 0x6;
13750 }
13751 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13752 {
13753 *immbits = (immlo >> 8) & 0xff;
13754 return 0xc;
13755 }
13756 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13757 {
13758 *immbits = (immlo >> 16) & 0xff;
13759 return 0xd;
13760 }
13761
13762 if ((immlo & 0xffff) != (immlo >> 16))
13763 return FAIL;
13764 immlo &= 0xffff;
5287ad62 13765 }
036dc3f7
PB
13766
13767 if (size >= 16)
5287ad62 13768 {
036dc3f7
PB
13769 if (immlo == (immlo & 0x000000ff))
13770 {
13771 *immbits = immlo;
13772 return 0x8;
13773 }
13774 else if (immlo == (immlo & 0x0000ff00))
13775 {
13776 *immbits = immlo >> 8;
13777 return 0xa;
13778 }
13779
13780 if ((immlo & 0xff) != (immlo >> 8))
13781 return FAIL;
13782 immlo &= 0xff;
5287ad62 13783 }
036dc3f7
PB
13784
13785 if (immlo == (immlo & 0x000000ff))
5287ad62 13786 {
036dc3f7
PB
13787 /* Don't allow MVN with 8-bit immediate. */
13788 if (*op == 1)
13789 return FAIL;
13790 *immbits = immlo;
13791 return 0xe;
5287ad62 13792 }
5287ad62
JB
13793
13794 return FAIL;
13795}
13796
13797/* Write immediate bits [7:0] to the following locations:
13798
13799 |28/24|23 19|18 16|15 4|3 0|
13800 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13801
13802 This function is used by VMOV/VMVN/VORR/VBIC. */
13803
13804static void
13805neon_write_immbits (unsigned immbits)
13806{
13807 inst.instruction |= immbits & 0xf;
13808 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13809 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13810}
13811
13812/* Invert low-order SIZE bits of XHI:XLO. */
13813
13814static void
13815neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13816{
13817 unsigned immlo = xlo ? *xlo : 0;
13818 unsigned immhi = xhi ? *xhi : 0;
13819
13820 switch (size)
13821 {
13822 case 8:
13823 immlo = (~immlo) & 0xff;
13824 break;
13825
13826 case 16:
13827 immlo = (~immlo) & 0xffff;
13828 break;
13829
13830 case 64:
13831 immhi = (~immhi) & 0xffffffff;
13832 /* fall through. */
13833
13834 case 32:
13835 immlo = (~immlo) & 0xffffffff;
13836 break;
13837
13838 default:
13839 abort ();
13840 }
13841
13842 if (xlo)
13843 *xlo = immlo;
13844
13845 if (xhi)
13846 *xhi = immhi;
13847}
13848
13849static void
13850do_neon_logic (void)
13851{
13852 if (inst.operands[2].present && inst.operands[2].isreg)
13853 {
037e8744 13854 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13855 neon_check_type (3, rs, N_IGNORE_TYPE);
13856 /* U bit and size field were set as part of the bitmask. */
88714cb8 13857 NEON_ENCODE (INTEGER, inst);
037e8744 13858 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13859 }
13860 else
13861 {
4316f0d2
DG
13862 const int three_ops_form = (inst.operands[2].present
13863 && !inst.operands[2].isreg);
13864 const int immoperand = (three_ops_form ? 2 : 1);
13865 enum neon_shape rs = (three_ops_form
13866 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13867 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
037e8744
JB
13868 struct neon_type_el et = neon_check_type (2, rs,
13869 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 13870 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
13871 unsigned immbits;
13872 int cmode;
5f4273c7 13873
5287ad62
JB
13874 if (et.type == NT_invtype)
13875 return;
5f4273c7 13876
4316f0d2
DG
13877 if (three_ops_form)
13878 constraint (inst.operands[0].reg != inst.operands[1].reg,
13879 _("first and second operands shall be the same register"));
13880
88714cb8 13881 NEON_ENCODE (IMMED, inst);
5287ad62 13882
4316f0d2 13883 immbits = inst.operands[immoperand].imm;
036dc3f7
PB
13884 if (et.size == 64)
13885 {
13886 /* .i64 is a pseudo-op, so the immediate must be a repeating
13887 pattern. */
4316f0d2
DG
13888 if (immbits != (inst.operands[immoperand].regisimm ?
13889 inst.operands[immoperand].reg : 0))
036dc3f7
PB
13890 {
13891 /* Set immbits to an invalid constant. */
13892 immbits = 0xdeadbeef;
13893 }
13894 }
13895
5287ad62
JB
13896 switch (opcode)
13897 {
13898 case N_MNEM_vbic:
036dc3f7 13899 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13900 break;
5f4273c7 13901
5287ad62 13902 case N_MNEM_vorr:
036dc3f7 13903 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 13904 break;
5f4273c7 13905
5287ad62
JB
13906 case N_MNEM_vand:
13907 /* Pseudo-instruction for VBIC. */
5287ad62
JB
13908 neon_invert_size (&immbits, 0, et.size);
13909 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13910 break;
5f4273c7 13911
5287ad62
JB
13912 case N_MNEM_vorn:
13913 /* Pseudo-instruction for VORR. */
5287ad62
JB
13914 neon_invert_size (&immbits, 0, et.size);
13915 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13916 break;
5f4273c7 13917
5287ad62
JB
13918 default:
13919 abort ();
13920 }
13921
13922 if (cmode == FAIL)
13923 return;
13924
037e8744 13925 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13926 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13927 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13928 inst.instruction |= cmode << 8;
13929 neon_write_immbits (immbits);
5f4273c7 13930
88714cb8 13931 neon_dp_fixup (&inst);
5287ad62
JB
13932 }
13933}
13934
13935static void
13936do_neon_bitfield (void)
13937{
037e8744 13938 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 13939 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 13940 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13941}
13942
13943static void
dcbf9037
JB
13944neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13945 unsigned destbits)
5287ad62 13946{
037e8744 13947 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
13948 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13949 types | N_KEY);
5287ad62
JB
13950 if (et.type == NT_float)
13951 {
88714cb8 13952 NEON_ENCODE (FLOAT, inst);
037e8744 13953 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13954 }
13955 else
13956 {
88714cb8 13957 NEON_ENCODE (INTEGER, inst);
037e8744 13958 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
13959 }
13960}
13961
13962static void
13963do_neon_dyadic_if_su (void)
13964{
dcbf9037 13965 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13966}
13967
13968static void
13969do_neon_dyadic_if_su_d (void)
13970{
13971 /* This version only allow D registers, but that constraint is enforced during
13972 operand parsing so we don't need to do anything extra here. */
dcbf9037 13973 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
13974}
13975
5287ad62
JB
13976static void
13977do_neon_dyadic_if_i_d (void)
13978{
428e3f1f
PB
13979 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13980 affected if we specify unsigned args. */
13981 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
13982}
13983
037e8744
JB
13984enum vfp_or_neon_is_neon_bits
13985{
13986 NEON_CHECK_CC = 1,
73924fbc
MGD
13987 NEON_CHECK_ARCH = 2,
13988 NEON_CHECK_ARCH8 = 4
037e8744
JB
13989};
13990
13991/* Call this function if an instruction which may have belonged to the VFP or
13992 Neon instruction sets, but turned out to be a Neon instruction (due to the
13993 operand types involved, etc.). We have to check and/or fix-up a couple of
13994 things:
13995
13996 - Make sure the user hasn't attempted to make a Neon instruction
13997 conditional.
13998 - Alter the value in the condition code field if necessary.
13999 - Make sure that the arch supports Neon instructions.
14000
14001 Which of these operations take place depends on bits from enum
14002 vfp_or_neon_is_neon_bits.
14003
14004 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14005 current instruction's condition is COND_ALWAYS, the condition field is
14006 changed to inst.uncond_value. This is necessary because instructions shared
14007 between VFP and Neon may be conditional for the VFP variants only, and the
14008 unconditional Neon version must have, e.g., 0xF in the condition field. */
14009
14010static int
14011vfp_or_neon_is_neon (unsigned check)
14012{
14013 /* Conditions are always legal in Thumb mode (IT blocks). */
14014 if (!thumb_mode && (check & NEON_CHECK_CC))
14015 {
14016 if (inst.cond != COND_ALWAYS)
14017 {
14018 first_error (_(BAD_COND));
14019 return FAIL;
14020 }
14021 if (inst.uncond_value != -1)
14022 inst.instruction |= inst.uncond_value << 28;
14023 }
5f4273c7 14024
037e8744 14025 if ((check & NEON_CHECK_ARCH)
73924fbc
MGD
14026 && !mark_feature_used (&fpu_neon_ext_v1))
14027 {
14028 first_error (_(BAD_FPU));
14029 return FAIL;
14030 }
14031
14032 if ((check & NEON_CHECK_ARCH8)
14033 && !mark_feature_used (&fpu_neon_ext_armv8))
037e8744
JB
14034 {
14035 first_error (_(BAD_FPU));
14036 return FAIL;
14037 }
5f4273c7 14038
037e8744
JB
14039 return SUCCESS;
14040}
14041
5287ad62
JB
14042static void
14043do_neon_addsub_if_i (void)
14044{
037e8744
JB
14045 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14046 return;
14047
14048 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14049 return;
14050
5287ad62
JB
14051 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14052 affected if we specify unsigned args. */
dcbf9037 14053 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
14054}
14055
14056/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14057 result to be:
14058 V<op> A,B (A is operand 0, B is operand 2)
14059 to mean:
14060 V<op> A,B,A
14061 not:
14062 V<op> A,B,B
14063 so handle that case specially. */
14064
14065static void
14066neon_exchange_operands (void)
14067{
14068 void *scratch = alloca (sizeof (inst.operands[0]));
14069 if (inst.operands[1].present)
14070 {
14071 /* Swap operands[1] and operands[2]. */
14072 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14073 inst.operands[1] = inst.operands[2];
14074 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14075 }
14076 else
14077 {
14078 inst.operands[1] = inst.operands[2];
14079 inst.operands[2] = inst.operands[0];
14080 }
14081}
14082
14083static void
14084neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14085{
14086 if (inst.operands[2].isreg)
14087 {
14088 if (invert)
14089 neon_exchange_operands ();
dcbf9037 14090 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
14091 }
14092 else
14093 {
037e8744 14094 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
14095 struct neon_type_el et = neon_check_type (2, rs,
14096 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62 14097
88714cb8 14098 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14099 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14100 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14101 inst.instruction |= LOW4 (inst.operands[1].reg);
14102 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14103 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14104 inst.instruction |= (et.type == NT_float) << 10;
14105 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14106
88714cb8 14107 neon_dp_fixup (&inst);
5287ad62
JB
14108 }
14109}
14110
14111static void
14112do_neon_cmp (void)
14113{
14114 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14115}
14116
14117static void
14118do_neon_cmp_inv (void)
14119{
14120 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14121}
14122
14123static void
14124do_neon_ceq (void)
14125{
14126 neon_compare (N_IF_32, N_IF_32, FALSE);
14127}
14128
14129/* For multiply instructions, we have the possibility of 16-bit or 32-bit
14130 scalars, which are encoded in 5 bits, M : Rm.
14131 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14132 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14133 index in M. */
14134
14135static unsigned
14136neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14137{
dcbf9037
JB
14138 unsigned regno = NEON_SCALAR_REG (scalar);
14139 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
14140
14141 switch (elsize)
14142 {
14143 case 16:
14144 if (regno > 7 || elno > 3)
14145 goto bad_scalar;
14146 return regno | (elno << 3);
5f4273c7 14147
5287ad62
JB
14148 case 32:
14149 if (regno > 15 || elno > 1)
14150 goto bad_scalar;
14151 return regno | (elno << 4);
14152
14153 default:
14154 bad_scalar:
dcbf9037 14155 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
14156 }
14157
14158 return 0;
14159}
14160
14161/* Encode multiply / multiply-accumulate scalar instructions. */
14162
14163static void
14164neon_mul_mac (struct neon_type_el et, int ubit)
14165{
dcbf9037
JB
14166 unsigned scalar;
14167
14168 /* Give a more helpful error message if we have an invalid type. */
14169 if (et.type == NT_invtype)
14170 return;
5f4273c7 14171
dcbf9037 14172 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
14173 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14174 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14175 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14176 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14177 inst.instruction |= LOW4 (scalar);
14178 inst.instruction |= HI1 (scalar) << 5;
14179 inst.instruction |= (et.type == NT_float) << 8;
14180 inst.instruction |= neon_logbits (et.size) << 20;
14181 inst.instruction |= (ubit != 0) << 24;
14182
88714cb8 14183 neon_dp_fixup (&inst);
5287ad62
JB
14184}
14185
14186static void
14187do_neon_mac_maybe_scalar (void)
14188{
037e8744
JB
14189 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14190 return;
14191
14192 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14193 return;
14194
5287ad62
JB
14195 if (inst.operands[2].isscalar)
14196 {
037e8744 14197 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14198 struct neon_type_el et = neon_check_type (3, rs,
14199 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
88714cb8 14200 NEON_ENCODE (SCALAR, inst);
037e8744 14201 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14202 }
14203 else
428e3f1f
PB
14204 {
14205 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14206 affected if we specify unsigned args. */
14207 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14208 }
5287ad62
JB
14209}
14210
62f3b8c8
PB
14211static void
14212do_neon_fmac (void)
14213{
14214 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14215 return;
14216
14217 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14218 return;
14219
14220 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14221}
14222
5287ad62
JB
14223static void
14224do_neon_tst (void)
14225{
037e8744 14226 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14227 struct neon_type_el et = neon_check_type (3, rs,
14228 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 14229 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14230}
14231
14232/* VMUL with 3 registers allows the P8 type. The scalar version supports the
14233 same types as the MAC equivalents. The polynomial type for this instruction
14234 is encoded the same as the integer type. */
14235
14236static void
14237do_neon_mul (void)
14238{
037e8744
JB
14239 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14240 return;
14241
14242 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14243 return;
14244
5287ad62
JB
14245 if (inst.operands[2].isscalar)
14246 do_neon_mac_maybe_scalar ();
14247 else
dcbf9037 14248 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
14249}
14250
14251static void
14252do_neon_qdmulh (void)
14253{
14254 if (inst.operands[2].isscalar)
14255 {
037e8744 14256 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
14257 struct neon_type_el et = neon_check_type (3, rs,
14258 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14259 NEON_ENCODE (SCALAR, inst);
037e8744 14260 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
14261 }
14262 else
14263 {
037e8744 14264 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14265 struct neon_type_el et = neon_check_type (3, rs,
14266 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
88714cb8 14267 NEON_ENCODE (INTEGER, inst);
5287ad62 14268 /* The U bit (rounding) comes from bit mask. */
037e8744 14269 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
14270 }
14271}
14272
14273static void
14274do_neon_fcmp_absolute (void)
14275{
037e8744 14276 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
14277 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14278 /* Size field comes from bit mask. */
037e8744 14279 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
14280}
14281
14282static void
14283do_neon_fcmp_absolute_inv (void)
14284{
14285 neon_exchange_operands ();
14286 do_neon_fcmp_absolute ();
14287}
14288
14289static void
14290do_neon_step (void)
14291{
037e8744 14292 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 14293 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 14294 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
14295}
14296
14297static void
14298do_neon_abs_neg (void)
14299{
037e8744
JB
14300 enum neon_shape rs;
14301 struct neon_type_el et;
5f4273c7 14302
037e8744
JB
14303 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14304 return;
14305
14306 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14307 return;
14308
14309 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14310 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 14311
5287ad62
JB
14312 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14313 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14314 inst.instruction |= LOW4 (inst.operands[1].reg);
14315 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14316 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14317 inst.instruction |= (et.type == NT_float) << 10;
14318 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14319
88714cb8 14320 neon_dp_fixup (&inst);
5287ad62
JB
14321}
14322
14323static void
14324do_neon_sli (void)
14325{
037e8744 14326 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14327 struct neon_type_el et = neon_check_type (2, rs,
14328 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14329 int imm = inst.operands[2].imm;
14330 constraint (imm < 0 || (unsigned)imm >= et.size,
14331 _("immediate out of range for insert"));
037e8744 14332 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14333}
14334
14335static void
14336do_neon_sri (void)
14337{
037e8744 14338 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14339 struct neon_type_el et = neon_check_type (2, rs,
14340 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14341 int imm = inst.operands[2].imm;
14342 constraint (imm < 1 || (unsigned)imm > et.size,
14343 _("immediate out of range for insert"));
037e8744 14344 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
14345}
14346
14347static void
14348do_neon_qshlu_imm (void)
14349{
037e8744 14350 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14351 struct neon_type_el et = neon_check_type (2, rs,
14352 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14353 int imm = inst.operands[2].imm;
14354 constraint (imm < 0 || (unsigned)imm >= et.size,
14355 _("immediate out of range for shift"));
14356 /* Only encodes the 'U present' variant of the instruction.
14357 In this case, signed types have OP (bit 8) set to 0.
14358 Unsigned types have OP set to 1. */
14359 inst.instruction |= (et.type == NT_unsigned) << 8;
14360 /* The rest of the bits are the same as other immediate shifts. */
037e8744 14361 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
14362}
14363
14364static void
14365do_neon_qmovn (void)
14366{
14367 struct neon_type_el et = neon_check_type (2, NS_DQ,
14368 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14369 /* Saturating move where operands can be signed or unsigned, and the
14370 destination has the same signedness. */
88714cb8 14371 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14372 if (et.type == NT_unsigned)
14373 inst.instruction |= 0xc0;
14374 else
14375 inst.instruction |= 0x80;
14376 neon_two_same (0, 1, et.size / 2);
14377}
14378
14379static void
14380do_neon_qmovun (void)
14381{
14382 struct neon_type_el et = neon_check_type (2, NS_DQ,
14383 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14384 /* Saturating move with unsigned results. Operands must be signed. */
88714cb8 14385 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14386 neon_two_same (0, 1, et.size / 2);
14387}
14388
14389static void
14390do_neon_rshift_sat_narrow (void)
14391{
14392 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14393 or unsigned. If operands are unsigned, results must also be unsigned. */
14394 struct neon_type_el et = neon_check_type (2, NS_DQI,
14395 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14396 int imm = inst.operands[2].imm;
14397 /* This gets the bounds check, size encoding and immediate bits calculation
14398 right. */
14399 et.size /= 2;
5f4273c7 14400
5287ad62
JB
14401 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14402 VQMOVN.I<size> <Dd>, <Qm>. */
14403 if (imm == 0)
14404 {
14405 inst.operands[2].present = 0;
14406 inst.instruction = N_MNEM_vqmovn;
14407 do_neon_qmovn ();
14408 return;
14409 }
5f4273c7 14410
5287ad62
JB
14411 constraint (imm < 1 || (unsigned)imm > et.size,
14412 _("immediate out of range"));
14413 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14414}
14415
14416static void
14417do_neon_rshift_sat_narrow_u (void)
14418{
14419 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14420 or unsigned. If operands are unsigned, results must also be unsigned. */
14421 struct neon_type_el et = neon_check_type (2, NS_DQI,
14422 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14423 int imm = inst.operands[2].imm;
14424 /* This gets the bounds check, size encoding and immediate bits calculation
14425 right. */
14426 et.size /= 2;
14427
14428 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14429 VQMOVUN.I<size> <Dd>, <Qm>. */
14430 if (imm == 0)
14431 {
14432 inst.operands[2].present = 0;
14433 inst.instruction = N_MNEM_vqmovun;
14434 do_neon_qmovun ();
14435 return;
14436 }
14437
14438 constraint (imm < 1 || (unsigned)imm > et.size,
14439 _("immediate out of range"));
14440 /* FIXME: The manual is kind of unclear about what value U should have in
14441 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14442 must be 1. */
14443 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14444}
14445
14446static void
14447do_neon_movn (void)
14448{
14449 struct neon_type_el et = neon_check_type (2, NS_DQ,
14450 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
88714cb8 14451 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14452 neon_two_same (0, 1, et.size / 2);
14453}
14454
14455static void
14456do_neon_rshift_narrow (void)
14457{
14458 struct neon_type_el et = neon_check_type (2, NS_DQI,
14459 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14460 int imm = inst.operands[2].imm;
14461 /* This gets the bounds check, size encoding and immediate bits calculation
14462 right. */
14463 et.size /= 2;
5f4273c7 14464
5287ad62
JB
14465 /* If immediate is zero then we are a pseudo-instruction for
14466 VMOVN.I<size> <Dd>, <Qm> */
14467 if (imm == 0)
14468 {
14469 inst.operands[2].present = 0;
14470 inst.instruction = N_MNEM_vmovn;
14471 do_neon_movn ();
14472 return;
14473 }
5f4273c7 14474
5287ad62
JB
14475 constraint (imm < 1 || (unsigned)imm > et.size,
14476 _("immediate out of range for narrowing operation"));
14477 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14478}
14479
14480static void
14481do_neon_shll (void)
14482{
14483 /* FIXME: Type checking when lengthening. */
14484 struct neon_type_el et = neon_check_type (2, NS_QDI,
14485 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14486 unsigned imm = inst.operands[2].imm;
14487
14488 if (imm == et.size)
14489 {
14490 /* Maximum shift variant. */
88714cb8 14491 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14492 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14493 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14494 inst.instruction |= LOW4 (inst.operands[1].reg);
14495 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14496 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 14497
88714cb8 14498 neon_dp_fixup (&inst);
5287ad62
JB
14499 }
14500 else
14501 {
14502 /* A more-specific type check for non-max versions. */
14503 et = neon_check_type (2, NS_QDI,
14504 N_EQK | N_DBL, N_SU_32 | N_KEY);
88714cb8 14505 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14506 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14507 }
14508}
14509
037e8744 14510/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
14511 the current instruction is. */
14512
6b9a8b67
MGD
14513#define CVT_FLAVOUR_VAR \
14514 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
14515 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
14516 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
14517 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
14518 /* Half-precision conversions. */ \
14519 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
14520 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
14521 /* VFP instructions. */ \
14522 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
14523 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
14524 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
14525 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
14526 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
14527 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
14528 /* VFP instructions with bitshift. */ \
14529 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
14530 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
14531 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
14532 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
14533 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
14534 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
14535 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
14536 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
14537
14538#define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
14539 neon_cvt_flavour_##C,
14540
14541/* The different types of conversions we can do. */
14542enum neon_cvt_flavour
14543{
14544 CVT_FLAVOUR_VAR
14545 neon_cvt_flavour_invalid,
14546 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
14547};
14548
14549#undef CVT_VAR
14550
14551static enum neon_cvt_flavour
14552get_neon_cvt_flavour (enum neon_shape rs)
5287ad62 14553{
6b9a8b67
MGD
14554#define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
14555 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
14556 if (et.type != NT_invtype) \
14557 { \
14558 inst.error = NULL; \
14559 return (neon_cvt_flavour_##C); \
5287ad62 14560 }
6b9a8b67 14561
5287ad62 14562 struct neon_type_el et;
037e8744
JB
14563 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14564 || rs == NS_FF) ? N_VFP : 0;
14565 /* The instruction versions which take an immediate take one register
14566 argument, which is extended to the width of the full register. Thus the
14567 "source" and "destination" registers must have the same width. Hack that
14568 here by making the size equal to the key (wider, in this case) operand. */
14569 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 14570
6b9a8b67
MGD
14571 CVT_FLAVOUR_VAR;
14572
14573 return neon_cvt_flavour_invalid;
5287ad62
JB
14574#undef CVT_VAR
14575}
14576
037e8744
JB
14577/* Neon-syntax VFP conversions. */
14578
5287ad62 14579static void
6b9a8b67 14580do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
5287ad62 14581{
037e8744 14582 const char *opname = 0;
5f4273c7 14583
037e8744 14584 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 14585 {
037e8744
JB
14586 /* Conversions with immediate bitshift. */
14587 const char *enc[] =
14588 {
6b9a8b67
MGD
14589#define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
14590 CVT_FLAVOUR_VAR
14591 NULL
14592#undef CVT_VAR
037e8744
JB
14593 };
14594
6b9a8b67 14595 if (flavour < (int) ARRAY_SIZE (enc))
037e8744
JB
14596 {
14597 opname = enc[flavour];
14598 constraint (inst.operands[0].reg != inst.operands[1].reg,
14599 _("operands 0 and 1 must be the same register"));
14600 inst.operands[1] = inst.operands[2];
14601 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14602 }
5287ad62
JB
14603 }
14604 else
14605 {
037e8744
JB
14606 /* Conversions without bitshift. */
14607 const char *enc[] =
14608 {
6b9a8b67
MGD
14609#define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
14610 CVT_FLAVOUR_VAR
14611 NULL
14612#undef CVT_VAR
037e8744
JB
14613 };
14614
6b9a8b67 14615 if (flavour < (int) ARRAY_SIZE (enc))
037e8744
JB
14616 opname = enc[flavour];
14617 }
14618
14619 if (opname)
14620 do_vfp_nsyn_opcode (opname);
14621}
14622
14623static void
14624do_vfp_nsyn_cvtz (void)
14625{
14626 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
6b9a8b67 14627 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744
JB
14628 const char *enc[] =
14629 {
6b9a8b67
MGD
14630#define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
14631 CVT_FLAVOUR_VAR
14632 NULL
14633#undef CVT_VAR
037e8744
JB
14634 };
14635
6b9a8b67 14636 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
037e8744
JB
14637 do_vfp_nsyn_opcode (enc[flavour]);
14638}
f31fef98 14639
037e8744 14640static void
e3e535bc 14641do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
037e8744
JB
14642{
14643 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 14644 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
6b9a8b67 14645 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
037e8744 14646
e3e535bc
NC
14647 /* PR11109: Handle round-to-zero for VCVT conversions. */
14648 if (round_to_zero
14649 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
6b9a8b67
MGD
14650 && (flavour == neon_cvt_flavour_s32_f32
14651 || flavour == neon_cvt_flavour_u32_f32
14652 || flavour == neon_cvt_flavour_s32_f64
14653 || flavour == neon_cvt_flavour_u32_f64)
e3e535bc
NC
14654 && (rs == NS_FD || rs == NS_FF))
14655 {
14656 do_vfp_nsyn_cvtz ();
14657 return;
14658 }
14659
037e8744 14660 /* VFP rather than Neon conversions. */
6b9a8b67 14661 if (flavour >= neon_cvt_flavour_first_fp)
037e8744
JB
14662 {
14663 do_vfp_nsyn_cvt (rs, flavour);
14664 return;
14665 }
14666
14667 switch (rs)
14668 {
14669 case NS_DDI:
14670 case NS_QQI:
14671 {
35997600
NC
14672 unsigned immbits;
14673 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14674
037e8744
JB
14675 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14676 return;
14677
14678 /* Fixed-point conversion with #0 immediate is encoded as an
14679 integer conversion. */
14680 if (inst.operands[2].present && inst.operands[2].imm == 0)
14681 goto int_encode;
35997600 14682 immbits = 32 - inst.operands[2].imm;
88714cb8 14683 NEON_ENCODE (IMMED, inst);
6b9a8b67 14684 if (flavour != neon_cvt_flavour_invalid)
037e8744
JB
14685 inst.instruction |= enctab[flavour];
14686 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14687 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14688 inst.instruction |= LOW4 (inst.operands[1].reg);
14689 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14690 inst.instruction |= neon_quad (rs) << 6;
14691 inst.instruction |= 1 << 21;
14692 inst.instruction |= immbits << 16;
14693
88714cb8 14694 neon_dp_fixup (&inst);
037e8744
JB
14695 }
14696 break;
14697
14698 case NS_DD:
14699 case NS_QQ:
14700 int_encode:
14701 {
14702 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14703
88714cb8 14704 NEON_ENCODE (INTEGER, inst);
037e8744
JB
14705
14706 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14707 return;
14708
6b9a8b67
MGD
14709 if (flavour != neon_cvt_flavour_invalid)
14710 inst.instruction |= enctab[flavour];
037e8744
JB
14711
14712 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14713 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14714 inst.instruction |= LOW4 (inst.operands[1].reg);
14715 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14716 inst.instruction |= neon_quad (rs) << 6;
14717 inst.instruction |= 2 << 18;
14718
88714cb8 14719 neon_dp_fixup (&inst);
037e8744
JB
14720 }
14721 break;
14722
8e79c3df
CM
14723 /* Half-precision conversions for Advanced SIMD -- neon. */
14724 case NS_QD:
14725 case NS_DQ:
14726
14727 if ((rs == NS_DQ)
14728 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14729 {
14730 as_bad (_("operand size must match register width"));
14731 break;
14732 }
14733
14734 if ((rs == NS_QD)
14735 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14736 {
14737 as_bad (_("operand size must match register width"));
14738 break;
14739 }
14740
14741 if (rs == NS_DQ)
14742 inst.instruction = 0x3b60600;
14743 else
14744 inst.instruction = 0x3b60700;
14745
14746 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14747 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14748 inst.instruction |= LOW4 (inst.operands[1].reg);
14749 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
88714cb8 14750 neon_dp_fixup (&inst);
8e79c3df
CM
14751 break;
14752
037e8744
JB
14753 default:
14754 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14755 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 14756 }
5287ad62
JB
14757}
14758
e3e535bc
NC
14759static void
14760do_neon_cvtr (void)
14761{
14762 do_neon_cvt_1 (FALSE);
14763}
14764
14765static void
14766do_neon_cvt (void)
14767{
14768 do_neon_cvt_1 (TRUE);
14769}
14770
8e79c3df
CM
14771static void
14772do_neon_cvtb (void)
14773{
14774 inst.instruction = 0xeb20a40;
14775
14776 /* The sizes are attached to the mnemonic. */
14777 if (inst.vectype.el[0].type != NT_invtype
14778 && inst.vectype.el[0].size == 16)
14779 inst.instruction |= 0x00010000;
14780
14781 /* Programmer's syntax: the sizes are attached to the operands. */
14782 else if (inst.operands[0].vectype.type != NT_invtype
14783 && inst.operands[0].vectype.size == 16)
14784 inst.instruction |= 0x00010000;
14785
14786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14787 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14788 do_vfp_cond_or_thumb ();
14789}
14790
14791
14792static void
14793do_neon_cvtt (void)
14794{
14795 do_neon_cvtb ();
14796 inst.instruction |= 0x80;
14797}
14798
5287ad62
JB
14799static void
14800neon_move_immediate (void)
14801{
037e8744
JB
14802 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14803 struct neon_type_el et = neon_check_type (2, rs,
14804 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 14805 unsigned immlo, immhi = 0, immbits;
c96612cc 14806 int op, cmode, float_p;
5287ad62 14807
037e8744
JB
14808 constraint (et.type == NT_invtype,
14809 _("operand size must be specified for immediate VMOV"));
14810
5287ad62
JB
14811 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14812 op = (inst.instruction & (1 << 5)) != 0;
14813
14814 immlo = inst.operands[1].imm;
14815 if (inst.operands[1].regisimm)
14816 immhi = inst.operands[1].reg;
14817
14818 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14819 _("immediate has bits set outside the operand size"));
14820
c96612cc
JB
14821 float_p = inst.operands[1].immisfloat;
14822
14823 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 14824 et.size, et.type)) == FAIL)
5287ad62
JB
14825 {
14826 /* Invert relevant bits only. */
14827 neon_invert_size (&immlo, &immhi, et.size);
14828 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14829 with one or the other; those cases are caught by
14830 neon_cmode_for_move_imm. */
14831 op = !op;
c96612cc
JB
14832 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14833 &op, et.size, et.type)) == FAIL)
5287ad62 14834 {
dcbf9037 14835 first_error (_("immediate out of range"));
5287ad62
JB
14836 return;
14837 }
14838 }
14839
14840 inst.instruction &= ~(1 << 5);
14841 inst.instruction |= op << 5;
14842
14843 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14844 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 14845 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14846 inst.instruction |= cmode << 8;
14847
14848 neon_write_immbits (immbits);
14849}
14850
14851static void
14852do_neon_mvn (void)
14853{
14854 if (inst.operands[1].isreg)
14855 {
037e8744 14856 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 14857
88714cb8 14858 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14859 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14860 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14861 inst.instruction |= LOW4 (inst.operands[1].reg);
14862 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 14863 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
14864 }
14865 else
14866 {
88714cb8 14867 NEON_ENCODE (IMMED, inst);
5287ad62
JB
14868 neon_move_immediate ();
14869 }
14870
88714cb8 14871 neon_dp_fixup (&inst);
5287ad62
JB
14872}
14873
14874/* Encode instructions of form:
14875
14876 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 14877 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
14878
14879static void
14880neon_mixed_length (struct neon_type_el et, unsigned size)
14881{
14882 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14883 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14884 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14885 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14886 inst.instruction |= LOW4 (inst.operands[2].reg);
14887 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14888 inst.instruction |= (et.type == NT_unsigned) << 24;
14889 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 14890
88714cb8 14891 neon_dp_fixup (&inst);
5287ad62
JB
14892}
14893
14894static void
14895do_neon_dyadic_long (void)
14896{
14897 /* FIXME: Type checking for lengthening op. */
14898 struct neon_type_el et = neon_check_type (3, NS_QDD,
14899 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14900 neon_mixed_length (et, et.size);
14901}
14902
14903static void
14904do_neon_abal (void)
14905{
14906 struct neon_type_el et = neon_check_type (3, NS_QDD,
14907 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14908 neon_mixed_length (et, et.size);
14909}
14910
14911static void
14912neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14913{
14914 if (inst.operands[2].isscalar)
14915 {
dcbf9037
JB
14916 struct neon_type_el et = neon_check_type (3, NS_QDS,
14917 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
88714cb8 14918 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
14919 neon_mul_mac (et, et.type == NT_unsigned);
14920 }
14921 else
14922 {
14923 struct neon_type_el et = neon_check_type (3, NS_QDD,
14924 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
88714cb8 14925 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14926 neon_mixed_length (et, et.size);
14927 }
14928}
14929
14930static void
14931do_neon_mac_maybe_scalar_long (void)
14932{
14933 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14934}
14935
14936static void
14937do_neon_dyadic_wide (void)
14938{
14939 struct neon_type_el et = neon_check_type (3, NS_QQD,
14940 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14941 neon_mixed_length (et, et.size);
14942}
14943
14944static void
14945do_neon_dyadic_narrow (void)
14946{
14947 struct neon_type_el et = neon_check_type (3, NS_QDD,
14948 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
14949 /* Operand sign is unimportant, and the U bit is part of the opcode,
14950 so force the operand type to integer. */
14951 et.type = NT_integer;
5287ad62
JB
14952 neon_mixed_length (et, et.size / 2);
14953}
14954
14955static void
14956do_neon_mul_sat_scalar_long (void)
14957{
14958 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14959}
14960
14961static void
14962do_neon_vmull (void)
14963{
14964 if (inst.operands[2].isscalar)
14965 do_neon_mac_maybe_scalar_long ();
14966 else
14967 {
14968 struct neon_type_el et = neon_check_type (3, NS_QDD,
14969 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14970 if (et.type == NT_poly)
88714cb8 14971 NEON_ENCODE (POLY, inst);
5287ad62 14972 else
88714cb8 14973 NEON_ENCODE (INTEGER, inst);
5287ad62
JB
14974 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14975 zero. Should be OK as-is. */
14976 neon_mixed_length (et, et.size);
14977 }
14978}
14979
14980static void
14981do_neon_ext (void)
14982{
037e8744 14983 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
14984 struct neon_type_el et = neon_check_type (3, rs,
14985 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14986 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
14987
14988 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14989 _("shift out of range"));
5287ad62
JB
14990 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14991 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14992 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14993 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14994 inst.instruction |= LOW4 (inst.operands[2].reg);
14995 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 14996 inst.instruction |= neon_quad (rs) << 6;
5287ad62 14997 inst.instruction |= imm << 8;
5f4273c7 14998
88714cb8 14999 neon_dp_fixup (&inst);
5287ad62
JB
15000}
15001
15002static void
15003do_neon_rev (void)
15004{
037e8744 15005 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15006 struct neon_type_el et = neon_check_type (2, rs,
15007 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15008 unsigned op = (inst.instruction >> 7) & 3;
15009 /* N (width of reversed regions) is encoded as part of the bitmask. We
15010 extract it here to check the elements to be reversed are smaller.
15011 Otherwise we'd get a reserved instruction. */
15012 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 15013 gas_assert (elsize != 0);
5287ad62
JB
15014 constraint (et.size >= elsize,
15015 _("elements must be smaller than reversal region"));
037e8744 15016 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15017}
15018
15019static void
15020do_neon_dup (void)
15021{
15022 if (inst.operands[1].isscalar)
15023 {
037e8744 15024 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
15025 struct neon_type_el et = neon_check_type (2, rs,
15026 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 15027 unsigned sizebits = et.size >> 3;
dcbf9037 15028 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 15029 int logsize = neon_logbits (et.size);
dcbf9037 15030 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
15031
15032 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15033 return;
15034
88714cb8 15035 NEON_ENCODE (SCALAR, inst);
5287ad62
JB
15036 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15037 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15038 inst.instruction |= LOW4 (dm);
15039 inst.instruction |= HI1 (dm) << 5;
037e8744 15040 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
15041 inst.instruction |= x << 17;
15042 inst.instruction |= sizebits << 16;
5f4273c7 15043
88714cb8 15044 neon_dp_fixup (&inst);
5287ad62
JB
15045 }
15046 else
15047 {
037e8744
JB
15048 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15049 struct neon_type_el et = neon_check_type (2, rs,
15050 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62 15051 /* Duplicate ARM register to lanes of vector. */
88714cb8 15052 NEON_ENCODE (ARMREG, inst);
5287ad62
JB
15053 switch (et.size)
15054 {
15055 case 8: inst.instruction |= 0x400000; break;
15056 case 16: inst.instruction |= 0x000020; break;
15057 case 32: inst.instruction |= 0x000000; break;
15058 default: break;
15059 }
15060 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15061 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15062 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 15063 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
15064 /* The encoding for this instruction is identical for the ARM and Thumb
15065 variants, except for the condition field. */
037e8744 15066 do_vfp_cond_or_thumb ();
5287ad62
JB
15067 }
15068}
15069
15070/* VMOV has particularly many variations. It can be one of:
15071 0. VMOV<c><q> <Qd>, <Qm>
15072 1. VMOV<c><q> <Dd>, <Dm>
15073 (Register operations, which are VORR with Rm = Rn.)
15074 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15075 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15076 (Immediate loads.)
15077 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15078 (ARM register to scalar.)
15079 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15080 (Two ARM registers to vector.)
15081 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15082 (Scalar to ARM register.)
15083 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15084 (Vector to two ARM registers.)
037e8744
JB
15085 8. VMOV.F32 <Sd>, <Sm>
15086 9. VMOV.F64 <Dd>, <Dm>
15087 (VFP register moves.)
15088 10. VMOV.F32 <Sd>, #imm
15089 11. VMOV.F64 <Dd>, #imm
15090 (VFP float immediate load.)
15091 12. VMOV <Rd>, <Sm>
15092 (VFP single to ARM reg.)
15093 13. VMOV <Sd>, <Rm>
15094 (ARM reg to VFP single.)
15095 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15096 (Two ARM regs to two VFP singles.)
15097 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15098 (Two VFP singles to two ARM regs.)
5f4273c7 15099
037e8744
JB
15100 These cases can be disambiguated using neon_select_shape, except cases 1/9
15101 and 3/11 which depend on the operand type too.
5f4273c7 15102
5287ad62 15103 All the encoded bits are hardcoded by this function.
5f4273c7 15104
b7fc2769
JB
15105 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15106 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 15107
5287ad62 15108 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 15109 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
15110
15111static void
15112do_neon_mov (void)
15113{
037e8744
JB
15114 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15115 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15116 NS_NULL);
15117 struct neon_type_el et;
15118 const char *ldconst = 0;
5287ad62 15119
037e8744 15120 switch (rs)
5287ad62 15121 {
037e8744
JB
15122 case NS_DD: /* case 1/9. */
15123 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15124 /* It is not an error here if no type is given. */
15125 inst.error = NULL;
15126 if (et.type == NT_float && et.size == 64)
5287ad62 15127 {
037e8744
JB
15128 do_vfp_nsyn_opcode ("fcpyd");
15129 break;
5287ad62 15130 }
037e8744 15131 /* fall through. */
5287ad62 15132
037e8744
JB
15133 case NS_QQ: /* case 0/1. */
15134 {
15135 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15136 return;
15137 /* The architecture manual I have doesn't explicitly state which
15138 value the U bit should have for register->register moves, but
15139 the equivalent VORR instruction has U = 0, so do that. */
15140 inst.instruction = 0x0200110;
15141 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15142 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15143 inst.instruction |= LOW4 (inst.operands[1].reg);
15144 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15145 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15146 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15147 inst.instruction |= neon_quad (rs) << 6;
15148
88714cb8 15149 neon_dp_fixup (&inst);
037e8744
JB
15150 }
15151 break;
5f4273c7 15152
037e8744
JB
15153 case NS_DI: /* case 3/11. */
15154 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15155 inst.error = NULL;
15156 if (et.type == NT_float && et.size == 64)
5287ad62 15157 {
037e8744
JB
15158 /* case 11 (fconstd). */
15159 ldconst = "fconstd";
15160 goto encode_fconstd;
5287ad62 15161 }
037e8744
JB
15162 /* fall through. */
15163
15164 case NS_QI: /* case 2/3. */
15165 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15166 return;
15167 inst.instruction = 0x0800010;
15168 neon_move_immediate ();
88714cb8 15169 neon_dp_fixup (&inst);
5287ad62 15170 break;
5f4273c7 15171
037e8744
JB
15172 case NS_SR: /* case 4. */
15173 {
15174 unsigned bcdebits = 0;
91d6fa6a 15175 int logsize;
037e8744
JB
15176 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15177 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15178
91d6fa6a
NC
15179 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15180 logsize = neon_logbits (et.size);
15181
037e8744
JB
15182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15183 _(BAD_FPU));
15184 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15185 && et.size != 32, _(BAD_FPU));
15186 constraint (et.type == NT_invtype, _("bad type for scalar"));
15187 constraint (x >= 64 / et.size, _("scalar index out of range"));
15188
15189 switch (et.size)
15190 {
15191 case 8: bcdebits = 0x8; break;
15192 case 16: bcdebits = 0x1; break;
15193 case 32: bcdebits = 0x0; break;
15194 default: ;
15195 }
15196
15197 bcdebits |= x << logsize;
15198
15199 inst.instruction = 0xe000b10;
15200 do_vfp_cond_or_thumb ();
15201 inst.instruction |= LOW4 (dn) << 16;
15202 inst.instruction |= HI1 (dn) << 7;
15203 inst.instruction |= inst.operands[1].reg << 12;
15204 inst.instruction |= (bcdebits & 3) << 5;
15205 inst.instruction |= (bcdebits >> 2) << 21;
15206 }
15207 break;
5f4273c7 15208
037e8744 15209 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 15210 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 15211 _(BAD_FPU));
b7fc2769 15212
037e8744
JB
15213 inst.instruction = 0xc400b10;
15214 do_vfp_cond_or_thumb ();
15215 inst.instruction |= LOW4 (inst.operands[0].reg);
15216 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15217 inst.instruction |= inst.operands[1].reg << 12;
15218 inst.instruction |= inst.operands[2].reg << 16;
15219 break;
5f4273c7 15220
037e8744
JB
15221 case NS_RS: /* case 6. */
15222 {
91d6fa6a 15223 unsigned logsize;
037e8744
JB
15224 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15225 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15226 unsigned abcdebits = 0;
15227
91d6fa6a
NC
15228 et = neon_check_type (2, NS_NULL,
15229 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15230 logsize = neon_logbits (et.size);
15231
037e8744
JB
15232 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15233 _(BAD_FPU));
15234 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15235 && et.size != 32, _(BAD_FPU));
15236 constraint (et.type == NT_invtype, _("bad type for scalar"));
15237 constraint (x >= 64 / et.size, _("scalar index out of range"));
15238
15239 switch (et.size)
15240 {
15241 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15242 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15243 case 32: abcdebits = 0x00; break;
15244 default: ;
15245 }
15246
15247 abcdebits |= x << logsize;
15248 inst.instruction = 0xe100b10;
15249 do_vfp_cond_or_thumb ();
15250 inst.instruction |= LOW4 (dn) << 16;
15251 inst.instruction |= HI1 (dn) << 7;
15252 inst.instruction |= inst.operands[0].reg << 12;
15253 inst.instruction |= (abcdebits & 3) << 5;
15254 inst.instruction |= (abcdebits >> 2) << 21;
15255 }
15256 break;
5f4273c7 15257
037e8744
JB
15258 case NS_RRD: /* case 7 (fmrrd). */
15259 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15260 _(BAD_FPU));
15261
15262 inst.instruction = 0xc500b10;
15263 do_vfp_cond_or_thumb ();
15264 inst.instruction |= inst.operands[0].reg << 12;
15265 inst.instruction |= inst.operands[1].reg << 16;
15266 inst.instruction |= LOW4 (inst.operands[2].reg);
15267 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15268 break;
5f4273c7 15269
037e8744
JB
15270 case NS_FF: /* case 8 (fcpys). */
15271 do_vfp_nsyn_opcode ("fcpys");
15272 break;
5f4273c7 15273
037e8744
JB
15274 case NS_FI: /* case 10 (fconsts). */
15275 ldconst = "fconsts";
15276 encode_fconstd:
15277 if (is_quarter_float (inst.operands[1].imm))
5287ad62 15278 {
037e8744
JB
15279 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15280 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
15281 }
15282 else
037e8744
JB
15283 first_error (_("immediate out of range"));
15284 break;
5f4273c7 15285
037e8744
JB
15286 case NS_RF: /* case 12 (fmrs). */
15287 do_vfp_nsyn_opcode ("fmrs");
15288 break;
5f4273c7 15289
037e8744
JB
15290 case NS_FR: /* case 13 (fmsr). */
15291 do_vfp_nsyn_opcode ("fmsr");
15292 break;
5f4273c7 15293
037e8744
JB
15294 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15295 (one of which is a list), but we have parsed four. Do some fiddling to
15296 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15297 expect. */
15298 case NS_RRFF: /* case 14 (fmrrs). */
15299 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15300 _("VFP registers must be adjacent"));
15301 inst.operands[2].imm = 2;
15302 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15303 do_vfp_nsyn_opcode ("fmrrs");
15304 break;
5f4273c7 15305
037e8744
JB
15306 case NS_FFRR: /* case 15 (fmsrr). */
15307 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15308 _("VFP registers must be adjacent"));
15309 inst.operands[1] = inst.operands[2];
15310 inst.operands[2] = inst.operands[3];
15311 inst.operands[0].imm = 2;
15312 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15313 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 15314 break;
5f4273c7 15315
5287ad62
JB
15316 default:
15317 abort ();
15318 }
15319}
15320
15321static void
15322do_neon_rshift_round_imm (void)
15323{
037e8744 15324 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
15325 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15326 int imm = inst.operands[2].imm;
15327
15328 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15329 if (imm == 0)
15330 {
15331 inst.operands[2].present = 0;
15332 do_neon_mov ();
15333 return;
15334 }
15335
15336 constraint (imm < 1 || (unsigned)imm > et.size,
15337 _("immediate out of range for shift"));
037e8744 15338 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
15339 et.size - imm);
15340}
15341
15342static void
15343do_neon_movl (void)
15344{
15345 struct neon_type_el et = neon_check_type (2, NS_QD,
15346 N_EQK | N_DBL, N_SU_32 | N_KEY);
15347 unsigned sizebits = et.size >> 3;
15348 inst.instruction |= sizebits << 19;
15349 neon_two_same (0, et.type == NT_unsigned, -1);
15350}
15351
15352static void
15353do_neon_trn (void)
15354{
037e8744 15355 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15356 struct neon_type_el et = neon_check_type (2, rs,
15357 N_EQK, N_8 | N_16 | N_32 | N_KEY);
88714cb8 15358 NEON_ENCODE (INTEGER, inst);
037e8744 15359 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15360}
15361
15362static void
15363do_neon_zip_uzp (void)
15364{
037e8744 15365 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15366 struct neon_type_el et = neon_check_type (2, rs,
15367 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15368 if (rs == NS_DD && et.size == 32)
15369 {
15370 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15371 inst.instruction = N_MNEM_vtrn;
15372 do_neon_trn ();
15373 return;
15374 }
037e8744 15375 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15376}
15377
15378static void
15379do_neon_sat_abs_neg (void)
15380{
037e8744 15381 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15382 struct neon_type_el et = neon_check_type (2, rs,
15383 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15384 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15385}
15386
15387static void
15388do_neon_pair_long (void)
15389{
037e8744 15390 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15391 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15392 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15393 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 15394 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15395}
15396
15397static void
15398do_neon_recip_est (void)
15399{
037e8744 15400 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15401 struct neon_type_el et = neon_check_type (2, rs,
15402 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15403 inst.instruction |= (et.type == NT_float) << 8;
037e8744 15404 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15405}
15406
15407static void
15408do_neon_cls (void)
15409{
037e8744 15410 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15411 struct neon_type_el et = neon_check_type (2, rs,
15412 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 15413 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15414}
15415
15416static void
15417do_neon_clz (void)
15418{
037e8744 15419 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15420 struct neon_type_el et = neon_check_type (2, rs,
15421 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 15422 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15423}
15424
15425static void
15426do_neon_cnt (void)
15427{
037e8744 15428 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
15429 struct neon_type_el et = neon_check_type (2, rs,
15430 N_EQK | N_INT, N_8 | N_KEY);
037e8744 15431 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
15432}
15433
15434static void
15435do_neon_swp (void)
15436{
037e8744
JB
15437 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15438 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
15439}
15440
15441static void
15442do_neon_tbl_tbx (void)
15443{
15444 unsigned listlenbits;
dcbf9037 15445 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 15446
5287ad62
JB
15447 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15448 {
dcbf9037 15449 first_error (_("bad list length for table lookup"));
5287ad62
JB
15450 return;
15451 }
5f4273c7 15452
5287ad62
JB
15453 listlenbits = inst.operands[1].imm - 1;
15454 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15455 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15456 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15457 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15458 inst.instruction |= LOW4 (inst.operands[2].reg);
15459 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15460 inst.instruction |= listlenbits << 8;
5f4273c7 15461
88714cb8 15462 neon_dp_fixup (&inst);
5287ad62
JB
15463}
15464
15465static void
15466do_neon_ldm_stm (void)
15467{
15468 /* P, U and L bits are part of bitmask. */
15469 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15470 unsigned offsetbits = inst.operands[1].imm * 2;
15471
037e8744
JB
15472 if (inst.operands[1].issingle)
15473 {
15474 do_vfp_nsyn_ldm_stm (is_dbmode);
15475 return;
15476 }
15477
5287ad62
JB
15478 constraint (is_dbmode && !inst.operands[0].writeback,
15479 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15480
15481 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15482 _("register list must contain at least 1 and at most 16 "
15483 "registers"));
15484
15485 inst.instruction |= inst.operands[0].reg << 16;
15486 inst.instruction |= inst.operands[0].writeback << 21;
15487 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15488 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15489
15490 inst.instruction |= offsetbits;
5f4273c7 15491
037e8744 15492 do_vfp_cond_or_thumb ();
5287ad62
JB
15493}
15494
15495static void
15496do_neon_ldr_str (void)
15497{
5287ad62 15498 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 15499
6844b2c2
MGD
15500 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15501 And is UNPREDICTABLE in thumb mode. */
fa94de6b 15502 if (!is_ldr
6844b2c2
MGD
15503 && inst.operands[1].reg == REG_PC
15504 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15505 {
15506 if (!thumb_mode && warn_on_deprecated)
15507 as_warn (_("Use of PC here is deprecated"));
15508 else
15509 inst.error = _("Use of PC here is UNPREDICTABLE");
15510 }
15511
037e8744
JB
15512 if (inst.operands[0].issingle)
15513 {
cd2f129f
JB
15514 if (is_ldr)
15515 do_vfp_nsyn_opcode ("flds");
15516 else
15517 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
15518 }
15519 else
5287ad62 15520 {
cd2f129f
JB
15521 if (is_ldr)
15522 do_vfp_nsyn_opcode ("fldd");
5287ad62 15523 else
cd2f129f 15524 do_vfp_nsyn_opcode ("fstd");
5287ad62 15525 }
5287ad62
JB
15526}
15527
15528/* "interleave" version also handles non-interleaving register VLD1/VST1
15529 instructions. */
15530
15531static void
15532do_neon_ld_st_interleave (void)
15533{
037e8744 15534 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
15535 N_8 | N_16 | N_32 | N_64);
15536 unsigned alignbits = 0;
15537 unsigned idx;
15538 /* The bits in this table go:
15539 0: register stride of one (0) or two (1)
15540 1,2: register list length, minus one (1, 2, 3, 4).
15541 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15542 We use -1 for invalid entries. */
15543 const int typetable[] =
15544 {
15545 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15546 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15547 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15548 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15549 };
15550 int typebits;
15551
dcbf9037
JB
15552 if (et.type == NT_invtype)
15553 return;
15554
5287ad62
JB
15555 if (inst.operands[1].immisalign)
15556 switch (inst.operands[1].imm >> 8)
15557 {
15558 case 64: alignbits = 1; break;
15559 case 128:
e23c0ad8
JZ
15560 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15561 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15562 goto bad_alignment;
15563 alignbits = 2;
15564 break;
15565 case 256:
e23c0ad8 15566 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
5287ad62
JB
15567 goto bad_alignment;
15568 alignbits = 3;
15569 break;
15570 default:
15571 bad_alignment:
dcbf9037 15572 first_error (_("bad alignment"));
5287ad62
JB
15573 return;
15574 }
15575
15576 inst.instruction |= alignbits << 4;
15577 inst.instruction |= neon_logbits (et.size) << 6;
15578
15579 /* Bits [4:6] of the immediate in a list specifier encode register stride
15580 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15581 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15582 up the right value for "type" in a table based on this value and the given
15583 list style, then stick it back. */
15584 idx = ((inst.operands[0].imm >> 4) & 7)
15585 | (((inst.instruction >> 8) & 3) << 3);
15586
15587 typebits = typetable[idx];
5f4273c7 15588
5287ad62
JB
15589 constraint (typebits == -1, _("bad list type for instruction"));
15590
15591 inst.instruction &= ~0xf00;
15592 inst.instruction |= typebits << 8;
15593}
15594
15595/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15596 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15597 otherwise. The variable arguments are a list of pairs of legal (size, align)
15598 values, terminated with -1. */
15599
15600static int
15601neon_alignment_bit (int size, int align, int *do_align, ...)
15602{
15603 va_list ap;
15604 int result = FAIL, thissize, thisalign;
5f4273c7 15605
5287ad62
JB
15606 if (!inst.operands[1].immisalign)
15607 {
15608 *do_align = 0;
15609 return SUCCESS;
15610 }
5f4273c7 15611
5287ad62
JB
15612 va_start (ap, do_align);
15613
15614 do
15615 {
15616 thissize = va_arg (ap, int);
15617 if (thissize == -1)
15618 break;
15619 thisalign = va_arg (ap, int);
15620
15621 if (size == thissize && align == thisalign)
15622 result = SUCCESS;
15623 }
15624 while (result != SUCCESS);
15625
15626 va_end (ap);
15627
15628 if (result == SUCCESS)
15629 *do_align = 1;
15630 else
dcbf9037 15631 first_error (_("unsupported alignment for instruction"));
5f4273c7 15632
5287ad62
JB
15633 return result;
15634}
15635
15636static void
15637do_neon_ld_st_lane (void)
15638{
037e8744 15639 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15640 int align_good, do_align = 0;
15641 int logsize = neon_logbits (et.size);
15642 int align = inst.operands[1].imm >> 8;
15643 int n = (inst.instruction >> 8) & 3;
15644 int max_el = 64 / et.size;
5f4273c7 15645
dcbf9037
JB
15646 if (et.type == NT_invtype)
15647 return;
5f4273c7 15648
5287ad62
JB
15649 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15650 _("bad list length"));
15651 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15652 _("scalar index out of range"));
15653 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15654 && et.size == 8,
15655 _("stride of 2 unavailable when element size is 8"));
5f4273c7 15656
5287ad62
JB
15657 switch (n)
15658 {
15659 case 0: /* VLD1 / VST1. */
15660 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15661 32, 32, -1);
15662 if (align_good == FAIL)
15663 return;
15664 if (do_align)
15665 {
15666 unsigned alignbits = 0;
15667 switch (et.size)
15668 {
15669 case 16: alignbits = 0x1; break;
15670 case 32: alignbits = 0x3; break;
15671 default: ;
15672 }
15673 inst.instruction |= alignbits << 4;
15674 }
15675 break;
15676
15677 case 1: /* VLD2 / VST2. */
15678 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15679 32, 64, -1);
15680 if (align_good == FAIL)
15681 return;
15682 if (do_align)
15683 inst.instruction |= 1 << 4;
15684 break;
15685
15686 case 2: /* VLD3 / VST3. */
15687 constraint (inst.operands[1].immisalign,
15688 _("can't use alignment with this instruction"));
15689 break;
15690
15691 case 3: /* VLD4 / VST4. */
15692 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15693 16, 64, 32, 64, 32, 128, -1);
15694 if (align_good == FAIL)
15695 return;
15696 if (do_align)
15697 {
15698 unsigned alignbits = 0;
15699 switch (et.size)
15700 {
15701 case 8: alignbits = 0x1; break;
15702 case 16: alignbits = 0x1; break;
15703 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15704 default: ;
15705 }
15706 inst.instruction |= alignbits << 4;
15707 }
15708 break;
15709
15710 default: ;
15711 }
15712
15713 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15714 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15715 inst.instruction |= 1 << (4 + logsize);
5f4273c7 15716
5287ad62
JB
15717 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15718 inst.instruction |= logsize << 10;
15719}
15720
15721/* Encode single n-element structure to all lanes VLD<n> instructions. */
15722
15723static void
15724do_neon_ld_dup (void)
15725{
037e8744 15726 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
15727 int align_good, do_align = 0;
15728
dcbf9037
JB
15729 if (et.type == NT_invtype)
15730 return;
15731
5287ad62
JB
15732 switch ((inst.instruction >> 8) & 3)
15733 {
15734 case 0: /* VLD1. */
9c2799c2 15735 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
15736 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15737 &do_align, 16, 16, 32, 32, -1);
15738 if (align_good == FAIL)
15739 return;
15740 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15741 {
15742 case 1: break;
15743 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 15744 default: first_error (_("bad list length")); return;
5287ad62
JB
15745 }
15746 inst.instruction |= neon_logbits (et.size) << 6;
15747 break;
15748
15749 case 1: /* VLD2. */
15750 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15751 &do_align, 8, 16, 16, 32, 32, 64, -1);
15752 if (align_good == FAIL)
15753 return;
15754 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15755 _("bad list length"));
15756 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15757 inst.instruction |= 1 << 5;
15758 inst.instruction |= neon_logbits (et.size) << 6;
15759 break;
15760
15761 case 2: /* VLD3. */
15762 constraint (inst.operands[1].immisalign,
15763 _("can't use alignment with this instruction"));
15764 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15765 _("bad list length"));
15766 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15767 inst.instruction |= 1 << 5;
15768 inst.instruction |= neon_logbits (et.size) << 6;
15769 break;
15770
15771 case 3: /* VLD4. */
15772 {
15773 int align = inst.operands[1].imm >> 8;
15774 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15775 16, 64, 32, 64, 32, 128, -1);
15776 if (align_good == FAIL)
15777 return;
15778 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15779 _("bad list length"));
15780 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15781 inst.instruction |= 1 << 5;
15782 if (et.size == 32 && align == 128)
15783 inst.instruction |= 0x3 << 6;
15784 else
15785 inst.instruction |= neon_logbits (et.size) << 6;
15786 }
15787 break;
15788
15789 default: ;
15790 }
15791
15792 inst.instruction |= do_align << 4;
15793}
15794
15795/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15796 apart from bits [11:4]. */
15797
15798static void
15799do_neon_ldx_stx (void)
15800{
b1a769ed
DG
15801 if (inst.operands[1].isreg)
15802 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15803
5287ad62
JB
15804 switch (NEON_LANE (inst.operands[0].imm))
15805 {
15806 case NEON_INTERLEAVE_LANES:
88714cb8 15807 NEON_ENCODE (INTERLV, inst);
5287ad62
JB
15808 do_neon_ld_st_interleave ();
15809 break;
5f4273c7 15810
5287ad62 15811 case NEON_ALL_LANES:
88714cb8 15812 NEON_ENCODE (DUP, inst);
5287ad62
JB
15813 do_neon_ld_dup ();
15814 break;
5f4273c7 15815
5287ad62 15816 default:
88714cb8 15817 NEON_ENCODE (LANE, inst);
5287ad62
JB
15818 do_neon_ld_st_lane ();
15819 }
15820
15821 /* L bit comes from bit mask. */
15822 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15823 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15824 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 15825
5287ad62
JB
15826 if (inst.operands[1].postind)
15827 {
15828 int postreg = inst.operands[1].imm & 0xf;
15829 constraint (!inst.operands[1].immisreg,
15830 _("post-index must be a register"));
15831 constraint (postreg == 0xd || postreg == 0xf,
15832 _("bad register for post-index"));
15833 inst.instruction |= postreg;
15834 }
15835 else if (inst.operands[1].writeback)
15836 {
15837 inst.instruction |= 0xd;
15838 }
15839 else
5f4273c7
NC
15840 inst.instruction |= 0xf;
15841
5287ad62
JB
15842 if (thumb_mode)
15843 inst.instruction |= 0xf9000000;
15844 else
15845 inst.instruction |= 0xf4000000;
15846}
33399f07
MGD
15847
15848/* FP v8. */
15849static void
15850do_vfp_nsyn_fpv8 (enum neon_shape rs)
15851{
15852 NEON_ENCODE (FPV8, inst);
15853
15854 if (rs == NS_FFF)
15855 do_vfp_sp_dyadic ();
15856 else
15857 do_vfp_dp_rd_rn_rm ();
15858
15859 if (rs == NS_DDD)
15860 inst.instruction |= 0x100;
15861
15862 inst.instruction |= 0xf0000000;
15863}
15864
15865static void
15866do_vsel (void)
15867{
15868 set_it_insn_type (OUTSIDE_IT_INSN);
15869
15870 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
15871 first_error (_("invalid instruction shape"));
15872}
15873
73924fbc
MGD
15874static void
15875do_vmaxnm (void)
15876{
15877 set_it_insn_type (OUTSIDE_IT_INSN);
15878
15879 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
15880 return;
15881
15882 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
15883 return;
15884
15885 neon_dyadic_misc (NT_untyped, N_F32, 0);
15886}
15887
5287ad62
JB
15888\f
15889/* Overall per-instruction processing. */
15890
15891/* We need to be able to fix up arbitrary expressions in some statements.
15892 This is so that we can handle symbols that are an arbitrary distance from
15893 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15894 which returns part of an address in a form which will be valid for
15895 a data instruction. We do this by pushing the expression into a symbol
15896 in the expr_section, and creating a fix for that. */
15897
15898static void
15899fix_new_arm (fragS * frag,
15900 int where,
15901 short int size,
15902 expressionS * exp,
15903 int pc_rel,
15904 int reloc)
15905{
15906 fixS * new_fix;
15907
15908 switch (exp->X_op)
15909 {
15910 case O_constant:
6e7ce2cd
PB
15911 if (pc_rel)
15912 {
15913 /* Create an absolute valued symbol, so we have something to
15914 refer to in the object file. Unfortunately for us, gas's
15915 generic expression parsing will already have folded out
15916 any use of .set foo/.type foo %function that may have
15917 been used to set type information of the target location,
15918 that's being specified symbolically. We have to presume
15919 the user knows what they are doing. */
15920 char name[16 + 8];
15921 symbolS *symbol;
15922
15923 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15924
15925 symbol = symbol_find_or_make (name);
15926 S_SET_SEGMENT (symbol, absolute_section);
15927 symbol_set_frag (symbol, &zero_address_frag);
15928 S_SET_VALUE (symbol, exp->X_add_number);
15929 exp->X_op = O_symbol;
15930 exp->X_add_symbol = symbol;
15931 exp->X_add_number = 0;
15932 }
15933 /* FALLTHROUGH */
5287ad62
JB
15934 case O_symbol:
15935 case O_add:
15936 case O_subtract:
21d799b5
NC
15937 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15938 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15939 break;
15940
15941 default:
21d799b5
NC
15942 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15943 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
15944 break;
15945 }
15946
15947 /* Mark whether the fix is to a THUMB instruction, or an ARM
15948 instruction. */
15949 new_fix->tc_fix_data = thumb_mode;
15950}
15951
15952/* Create a frg for an instruction requiring relaxation. */
15953static void
15954output_relax_insn (void)
15955{
15956 char * to;
15957 symbolS *sym;
0110f2b8
PB
15958 int offset;
15959
6e1cb1a6
PB
15960 /* The size of the instruction is unknown, so tie the debug info to the
15961 start of the instruction. */
15962 dwarf2_emit_insn (0);
6e1cb1a6 15963
0110f2b8
PB
15964 switch (inst.reloc.exp.X_op)
15965 {
15966 case O_symbol:
15967 sym = inst.reloc.exp.X_add_symbol;
15968 offset = inst.reloc.exp.X_add_number;
15969 break;
15970 case O_constant:
15971 sym = NULL;
15972 offset = inst.reloc.exp.X_add_number;
15973 break;
15974 default:
15975 sym = make_expr_symbol (&inst.reloc.exp);
15976 offset = 0;
15977 break;
15978 }
15979 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15980 inst.relax, sym, offset, NULL/*offset, opcode*/);
15981 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
15982}
15983
15984/* Write a 32-bit thumb instruction to buf. */
15985static void
15986put_thumb32_insn (char * buf, unsigned long insn)
15987{
15988 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15989 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15990}
15991
b99bd4ef 15992static void
c19d1205 15993output_inst (const char * str)
b99bd4ef 15994{
c19d1205 15995 char * to = NULL;
b99bd4ef 15996
c19d1205 15997 if (inst.error)
b99bd4ef 15998 {
c19d1205 15999 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
16000 return;
16001 }
5f4273c7
NC
16002 if (inst.relax)
16003 {
16004 output_relax_insn ();
0110f2b8 16005 return;
5f4273c7 16006 }
c19d1205
ZW
16007 if (inst.size == 0)
16008 return;
b99bd4ef 16009
c19d1205 16010 to = frag_more (inst.size);
8dc2430f
NC
16011 /* PR 9814: Record the thumb mode into the current frag so that we know
16012 what type of NOP padding to use, if necessary. We override any previous
16013 setting so that if the mode has changed then the NOPS that we use will
16014 match the encoding of the last instruction in the frag. */
cd000bff 16015 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
16016
16017 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 16018 {
9c2799c2 16019 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 16020 put_thumb32_insn (to, inst.instruction);
b99bd4ef 16021 }
c19d1205 16022 else if (inst.size > INSN_SIZE)
b99bd4ef 16023 {
9c2799c2 16024 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
16025 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16026 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 16027 }
c19d1205
ZW
16028 else
16029 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 16030
c19d1205
ZW
16031 if (inst.reloc.type != BFD_RELOC_UNUSED)
16032 fix_new_arm (frag_now, to - frag_now->fr_literal,
16033 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16034 inst.reloc.type);
b99bd4ef 16035
c19d1205 16036 dwarf2_emit_insn (inst.size);
c19d1205 16037}
b99bd4ef 16038
e07e6e58
NC
16039static char *
16040output_it_inst (int cond, int mask, char * to)
16041{
16042 unsigned long instruction = 0xbf00;
16043
16044 mask &= 0xf;
16045 instruction |= mask;
16046 instruction |= cond << 4;
16047
16048 if (to == NULL)
16049 {
16050 to = frag_more (2);
16051#ifdef OBJ_ELF
16052 dwarf2_emit_insn (2);
16053#endif
16054 }
16055
16056 md_number_to_chars (to, instruction, 2);
16057
16058 return to;
16059}
16060
c19d1205
ZW
16061/* Tag values used in struct asm_opcode's tag field. */
16062enum opcode_tag
16063{
16064 OT_unconditional, /* Instruction cannot be conditionalized.
16065 The ARM condition field is still 0xE. */
16066 OT_unconditionalF, /* Instruction cannot be conditionalized
16067 and carries 0xF in its ARM condition field. */
16068 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
16069 OT_csuffixF, /* Some forms of the instruction take a conditional
16070 suffix, others place 0xF where the condition field
16071 would be. */
c19d1205
ZW
16072 OT_cinfix3, /* Instruction takes a conditional infix,
16073 beginning at character index 3. (In
16074 unified mode, it becomes a suffix.) */
088fa78e
KH
16075 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16076 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
16077 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16078 character index 3, even in unified mode. Used for
16079 legacy instructions where suffix and infix forms
16080 may be ambiguous. */
c19d1205 16081 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 16082 suffix or an infix at character index 3. */
c19d1205
ZW
16083 OT_odd_infix_unc, /* This is the unconditional variant of an
16084 instruction that takes a conditional infix
16085 at an unusual position. In unified mode,
16086 this variant will accept a suffix. */
16087 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16088 are the conditional variants of instructions that
16089 take conditional infixes in unusual positions.
16090 The infix appears at character index
16091 (tag - OT_odd_infix_0). These are not accepted
16092 in unified mode. */
16093};
b99bd4ef 16094
c19d1205
ZW
16095/* Subroutine of md_assemble, responsible for looking up the primary
16096 opcode from the mnemonic the user wrote. STR points to the
16097 beginning of the mnemonic.
16098
16099 This is not simply a hash table lookup, because of conditional
16100 variants. Most instructions have conditional variants, which are
16101 expressed with a _conditional affix_ to the mnemonic. If we were
16102 to encode each conditional variant as a literal string in the opcode
16103 table, it would have approximately 20,000 entries.
16104
16105 Most mnemonics take this affix as a suffix, and in unified syntax,
16106 'most' is upgraded to 'all'. However, in the divided syntax, some
16107 instructions take the affix as an infix, notably the s-variants of
16108 the arithmetic instructions. Of those instructions, all but six
16109 have the infix appear after the third character of the mnemonic.
16110
16111 Accordingly, the algorithm for looking up primary opcodes given
16112 an identifier is:
16113
16114 1. Look up the identifier in the opcode table.
16115 If we find a match, go to step U.
16116
16117 2. Look up the last two characters of the identifier in the
16118 conditions table. If we find a match, look up the first N-2
16119 characters of the identifier in the opcode table. If we
16120 find a match, go to step CE.
16121
16122 3. Look up the fourth and fifth characters of the identifier in
16123 the conditions table. If we find a match, extract those
16124 characters from the identifier, and look up the remaining
16125 characters in the opcode table. If we find a match, go
16126 to step CM.
16127
16128 4. Fail.
16129
16130 U. Examine the tag field of the opcode structure, in case this is
16131 one of the six instructions with its conditional infix in an
16132 unusual place. If it is, the tag tells us where to find the
16133 infix; look it up in the conditions table and set inst.cond
16134 accordingly. Otherwise, this is an unconditional instruction.
16135 Again set inst.cond accordingly. Return the opcode structure.
16136
16137 CE. Examine the tag field to make sure this is an instruction that
16138 should receive a conditional suffix. If it is not, fail.
16139 Otherwise, set inst.cond from the suffix we already looked up,
16140 and return the opcode structure.
16141
16142 CM. Examine the tag field to make sure this is an instruction that
16143 should receive a conditional infix after the third character.
16144 If it is not, fail. Otherwise, undo the edits to the current
16145 line of input and proceed as for case CE. */
16146
16147static const struct asm_opcode *
16148opcode_lookup (char **str)
16149{
16150 char *end, *base;
16151 char *affix;
16152 const struct asm_opcode *opcode;
16153 const struct asm_cond *cond;
e3cb604e 16154 char save[2];
c19d1205
ZW
16155
16156 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 16157 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 16158 for (base = end = *str; *end != '\0'; end++)
721a8186 16159 if (*end == ' ' || *end == '.')
c19d1205 16160 break;
b99bd4ef 16161
c19d1205 16162 if (end == base)
c921be7d 16163 return NULL;
b99bd4ef 16164
5287ad62 16165 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 16166 if (end[0] == '.')
b99bd4ef 16167 {
5287ad62 16168 int offset = 2;
5f4273c7 16169
267d2029
JB
16170 /* The .w and .n suffixes are only valid if the unified syntax is in
16171 use. */
16172 if (unified_syntax && end[1] == 'w')
c19d1205 16173 inst.size_req = 4;
267d2029 16174 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
16175 inst.size_req = 2;
16176 else
5287ad62
JB
16177 offset = 0;
16178
16179 inst.vectype.elems = 0;
16180
16181 *str = end + offset;
b99bd4ef 16182
5f4273c7 16183 if (end[offset] == '.')
5287ad62 16184 {
267d2029
JB
16185 /* See if we have a Neon type suffix (possible in either unified or
16186 non-unified ARM syntax mode). */
dcbf9037 16187 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 16188 return NULL;
5287ad62
JB
16189 }
16190 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 16191 return NULL;
b99bd4ef 16192 }
c19d1205
ZW
16193 else
16194 *str = end;
b99bd4ef 16195
c19d1205 16196 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
16197 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16198 end - base);
c19d1205 16199 if (opcode)
b99bd4ef 16200 {
c19d1205
ZW
16201 /* step U */
16202 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 16203 {
c19d1205
ZW
16204 inst.cond = COND_ALWAYS;
16205 return opcode;
b99bd4ef 16206 }
b99bd4ef 16207
278df34e 16208 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
16209 as_warn (_("conditional infixes are deprecated in unified syntax"));
16210 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 16211 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 16212 gas_assert (cond);
b99bd4ef 16213
c19d1205
ZW
16214 inst.cond = cond->value;
16215 return opcode;
16216 }
b99bd4ef 16217
c19d1205
ZW
16218 /* Cannot have a conditional suffix on a mnemonic of less than two
16219 characters. */
16220 if (end - base < 3)
c921be7d 16221 return NULL;
b99bd4ef 16222
c19d1205
ZW
16223 /* Look for suffixed mnemonic. */
16224 affix = end - 2;
21d799b5
NC
16225 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16226 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16227 affix - base);
c19d1205
ZW
16228 if (opcode && cond)
16229 {
16230 /* step CE */
16231 switch (opcode->tag)
16232 {
e3cb604e
PB
16233 case OT_cinfix3_legacy:
16234 /* Ignore conditional suffixes matched on infix only mnemonics. */
16235 break;
16236
c19d1205 16237 case OT_cinfix3:
088fa78e 16238 case OT_cinfix3_deprecated:
c19d1205
ZW
16239 case OT_odd_infix_unc:
16240 if (!unified_syntax)
e3cb604e 16241 return 0;
c19d1205
ZW
16242 /* else fall through */
16243
16244 case OT_csuffix:
037e8744 16245 case OT_csuffixF:
c19d1205
ZW
16246 case OT_csuf_or_in3:
16247 inst.cond = cond->value;
16248 return opcode;
16249
16250 case OT_unconditional:
16251 case OT_unconditionalF:
dfa9f0d5 16252 if (thumb_mode)
c921be7d 16253 inst.cond = cond->value;
dfa9f0d5
PB
16254 else
16255 {
c921be7d 16256 /* Delayed diagnostic. */
dfa9f0d5
PB
16257 inst.error = BAD_COND;
16258 inst.cond = COND_ALWAYS;
16259 }
c19d1205 16260 return opcode;
b99bd4ef 16261
c19d1205 16262 default:
c921be7d 16263 return NULL;
c19d1205
ZW
16264 }
16265 }
b99bd4ef 16266
c19d1205
ZW
16267 /* Cannot have a usual-position infix on a mnemonic of less than
16268 six characters (five would be a suffix). */
16269 if (end - base < 6)
c921be7d 16270 return NULL;
b99bd4ef 16271
c19d1205
ZW
16272 /* Look for infixed mnemonic in the usual position. */
16273 affix = base + 3;
21d799b5 16274 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 16275 if (!cond)
c921be7d 16276 return NULL;
e3cb604e
PB
16277
16278 memcpy (save, affix, 2);
16279 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
16280 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16281 (end - base) - 2);
e3cb604e
PB
16282 memmove (affix + 2, affix, (end - affix) - 2);
16283 memcpy (affix, save, 2);
16284
088fa78e
KH
16285 if (opcode
16286 && (opcode->tag == OT_cinfix3
16287 || opcode->tag == OT_cinfix3_deprecated
16288 || opcode->tag == OT_csuf_or_in3
16289 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 16290 {
c921be7d 16291 /* Step CM. */
278df34e 16292 if (warn_on_deprecated && unified_syntax
088fa78e
KH
16293 && (opcode->tag == OT_cinfix3
16294 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
16295 as_warn (_("conditional infixes are deprecated in unified syntax"));
16296
16297 inst.cond = cond->value;
16298 return opcode;
b99bd4ef
NC
16299 }
16300
c921be7d 16301 return NULL;
b99bd4ef
NC
16302}
16303
e07e6e58
NC
16304/* This function generates an initial IT instruction, leaving its block
16305 virtually open for the new instructions. Eventually,
16306 the mask will be updated by now_it_add_mask () each time
16307 a new instruction needs to be included in the IT block.
16308 Finally, the block is closed with close_automatic_it_block ().
16309 The block closure can be requested either from md_assemble (),
16310 a tencode (), or due to a label hook. */
16311
16312static void
16313new_automatic_it_block (int cond)
16314{
16315 now_it.state = AUTOMATIC_IT_BLOCK;
16316 now_it.mask = 0x18;
16317 now_it.cc = cond;
16318 now_it.block_length = 1;
cd000bff 16319 mapping_state (MAP_THUMB);
e07e6e58 16320 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
5a01bb1d
MGD
16321 now_it.warn_deprecated = FALSE;
16322 now_it.insn_cond = TRUE;
e07e6e58
NC
16323}
16324
16325/* Close an automatic IT block.
16326 See comments in new_automatic_it_block (). */
16327
16328static void
16329close_automatic_it_block (void)
16330{
16331 now_it.mask = 0x10;
16332 now_it.block_length = 0;
16333}
16334
16335/* Update the mask of the current automatically-generated IT
16336 instruction. See comments in new_automatic_it_block (). */
16337
16338static void
16339now_it_add_mask (int cond)
16340{
16341#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16342#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16343 | ((bitvalue) << (nbit)))
e07e6e58 16344 const int resulting_bit = (cond & 1);
c921be7d 16345
e07e6e58
NC
16346 now_it.mask &= 0xf;
16347 now_it.mask = SET_BIT_VALUE (now_it.mask,
16348 resulting_bit,
16349 (5 - now_it.block_length));
16350 now_it.mask = SET_BIT_VALUE (now_it.mask,
16351 1,
16352 ((5 - now_it.block_length) - 1) );
16353 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16354
16355#undef CLEAR_BIT
16356#undef SET_BIT_VALUE
e07e6e58
NC
16357}
16358
16359/* The IT blocks handling machinery is accessed through the these functions:
16360 it_fsm_pre_encode () from md_assemble ()
16361 set_it_insn_type () optional, from the tencode functions
16362 set_it_insn_type_last () ditto
16363 in_it_block () ditto
16364 it_fsm_post_encode () from md_assemble ()
16365 force_automatic_it_block_close () from label habdling functions
16366
16367 Rationale:
16368 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16369 initializing the IT insn type with a generic initial value depending
16370 on the inst.condition.
16371 2) During the tencode function, two things may happen:
16372 a) The tencode function overrides the IT insn type by
16373 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16374 b) The tencode function queries the IT block state by
16375 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16376
16377 Both set_it_insn_type and in_it_block run the internal FSM state
16378 handling function (handle_it_state), because: a) setting the IT insn
16379 type may incur in an invalid state (exiting the function),
16380 and b) querying the state requires the FSM to be updated.
16381 Specifically we want to avoid creating an IT block for conditional
16382 branches, so it_fsm_pre_encode is actually a guess and we can't
16383 determine whether an IT block is required until the tencode () routine
16384 has decided what type of instruction this actually it.
16385 Because of this, if set_it_insn_type and in_it_block have to be used,
16386 set_it_insn_type has to be called first.
16387
16388 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16389 determines the insn IT type depending on the inst.cond code.
16390 When a tencode () routine encodes an instruction that can be
16391 either outside an IT block, or, in the case of being inside, has to be
16392 the last one, set_it_insn_type_last () will determine the proper
16393 IT instruction type based on the inst.cond code. Otherwise,
16394 set_it_insn_type can be called for overriding that logic or
16395 for covering other cases.
16396
16397 Calling handle_it_state () may not transition the IT block state to
16398 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16399 still queried. Instead, if the FSM determines that the state should
16400 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16401 after the tencode () function: that's what it_fsm_post_encode () does.
16402
16403 Since in_it_block () calls the state handling function to get an
16404 updated state, an error may occur (due to invalid insns combination).
16405 In that case, inst.error is set.
16406 Therefore, inst.error has to be checked after the execution of
16407 the tencode () routine.
16408
16409 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16410 any pending state change (if any) that didn't take place in
16411 handle_it_state () as explained above. */
16412
16413static void
16414it_fsm_pre_encode (void)
16415{
16416 if (inst.cond != COND_ALWAYS)
16417 inst.it_insn_type = INSIDE_IT_INSN;
16418 else
16419 inst.it_insn_type = OUTSIDE_IT_INSN;
16420
16421 now_it.state_handled = 0;
16422}
16423
16424/* IT state FSM handling function. */
16425
16426static int
16427handle_it_state (void)
16428{
16429 now_it.state_handled = 1;
5a01bb1d 16430 now_it.insn_cond = FALSE;
e07e6e58
NC
16431
16432 switch (now_it.state)
16433 {
16434 case OUTSIDE_IT_BLOCK:
16435 switch (inst.it_insn_type)
16436 {
16437 case OUTSIDE_IT_INSN:
16438 break;
16439
16440 case INSIDE_IT_INSN:
16441 case INSIDE_IT_LAST_INSN:
16442 if (thumb_mode == 0)
16443 {
c921be7d 16444 if (unified_syntax
e07e6e58
NC
16445 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16446 as_tsktsk (_("Warning: conditional outside an IT block"\
16447 " for Thumb."));
16448 }
16449 else
16450 {
16451 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16452 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16453 {
16454 /* Automatically generate the IT instruction. */
16455 new_automatic_it_block (inst.cond);
16456 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16457 close_automatic_it_block ();
16458 }
16459 else
16460 {
16461 inst.error = BAD_OUT_IT;
16462 return FAIL;
16463 }
16464 }
16465 break;
16466
16467 case IF_INSIDE_IT_LAST_INSN:
16468 case NEUTRAL_IT_INSN:
16469 break;
16470
16471 case IT_INSN:
16472 now_it.state = MANUAL_IT_BLOCK;
16473 now_it.block_length = 0;
16474 break;
16475 }
16476 break;
16477
16478 case AUTOMATIC_IT_BLOCK:
16479 /* Three things may happen now:
16480 a) We should increment current it block size;
16481 b) We should close current it block (closing insn or 4 insns);
16482 c) We should close current it block and start a new one (due
16483 to incompatible conditions or
16484 4 insns-length block reached). */
16485
16486 switch (inst.it_insn_type)
16487 {
16488 case OUTSIDE_IT_INSN:
16489 /* The closure of the block shall happen immediatelly,
16490 so any in_it_block () call reports the block as closed. */
16491 force_automatic_it_block_close ();
16492 break;
16493
16494 case INSIDE_IT_INSN:
16495 case INSIDE_IT_LAST_INSN:
16496 case IF_INSIDE_IT_LAST_INSN:
16497 now_it.block_length++;
16498
16499 if (now_it.block_length > 4
16500 || !now_it_compatible (inst.cond))
16501 {
16502 force_automatic_it_block_close ();
16503 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16504 new_automatic_it_block (inst.cond);
16505 }
16506 else
16507 {
5a01bb1d 16508 now_it.insn_cond = TRUE;
e07e6e58
NC
16509 now_it_add_mask (inst.cond);
16510 }
16511
16512 if (now_it.state == AUTOMATIC_IT_BLOCK
16513 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16514 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16515 close_automatic_it_block ();
16516 break;
16517
16518 case NEUTRAL_IT_INSN:
16519 now_it.block_length++;
5a01bb1d 16520 now_it.insn_cond = TRUE;
e07e6e58
NC
16521
16522 if (now_it.block_length > 4)
16523 force_automatic_it_block_close ();
16524 else
16525 now_it_add_mask (now_it.cc & 1);
16526 break;
16527
16528 case IT_INSN:
16529 close_automatic_it_block ();
16530 now_it.state = MANUAL_IT_BLOCK;
16531 break;
16532 }
16533 break;
16534
16535 case MANUAL_IT_BLOCK:
16536 {
16537 /* Check conditional suffixes. */
16538 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16539 int is_last;
16540 now_it.mask <<= 1;
16541 now_it.mask &= 0x1f;
16542 is_last = (now_it.mask == 0x10);
5a01bb1d 16543 now_it.insn_cond = TRUE;
e07e6e58
NC
16544
16545 switch (inst.it_insn_type)
16546 {
16547 case OUTSIDE_IT_INSN:
16548 inst.error = BAD_NOT_IT;
16549 return FAIL;
16550
16551 case INSIDE_IT_INSN:
16552 if (cond != inst.cond)
16553 {
16554 inst.error = BAD_IT_COND;
16555 return FAIL;
16556 }
16557 break;
16558
16559 case INSIDE_IT_LAST_INSN:
16560 case IF_INSIDE_IT_LAST_INSN:
16561 if (cond != inst.cond)
16562 {
16563 inst.error = BAD_IT_COND;
16564 return FAIL;
16565 }
16566 if (!is_last)
16567 {
16568 inst.error = BAD_BRANCH;
16569 return FAIL;
16570 }
16571 break;
16572
16573 case NEUTRAL_IT_INSN:
16574 /* The BKPT instruction is unconditional even in an IT block. */
16575 break;
16576
16577 case IT_INSN:
16578 inst.error = BAD_IT_IT;
16579 return FAIL;
16580 }
16581 }
16582 break;
16583 }
16584
16585 return SUCCESS;
16586}
16587
5a01bb1d
MGD
16588struct depr_insn_mask
16589{
16590 unsigned long pattern;
16591 unsigned long mask;
16592 const char* description;
16593};
16594
16595/* List of 16-bit instruction patterns deprecated in an IT block in
16596 ARMv8. */
16597static const struct depr_insn_mask depr_it_insns[] = {
16598 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16599 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16600 { 0xa000, 0xb800, N_("ADR") },
16601 { 0x4800, 0xf800, N_("Literal loads") },
16602 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16603 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16604 { 0, 0, NULL }
16605};
16606
e07e6e58
NC
16607static void
16608it_fsm_post_encode (void)
16609{
16610 int is_last;
16611
16612 if (!now_it.state_handled)
16613 handle_it_state ();
16614
5a01bb1d
MGD
16615 if (now_it.insn_cond
16616 && !now_it.warn_deprecated
16617 && warn_on_deprecated
16618 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16619 {
16620 if (inst.instruction >= 0x10000)
16621 {
16622 as_warn (_("it blocks containing wide Thumb instructions are "
16623 "deprecated in ARMv8"));
16624 now_it.warn_deprecated = TRUE;
16625 }
16626 else
16627 {
16628 const struct depr_insn_mask *p = depr_it_insns;
16629
16630 while (p->mask != 0)
16631 {
16632 if ((inst.instruction & p->mask) == p->pattern)
16633 {
16634 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16635 "of the following class are deprecated in ARMv8: "
16636 "%s"), p->description);
16637 now_it.warn_deprecated = TRUE;
16638 break;
16639 }
16640
16641 ++p;
16642 }
16643 }
16644
16645 if (now_it.block_length > 1)
16646 {
16647 as_warn (_("it blocks of more than one conditional instruction are "
16648 "deprecated in ARMv8"));
16649 now_it.warn_deprecated = TRUE;
16650 }
16651 }
16652
e07e6e58
NC
16653 is_last = (now_it.mask == 0x10);
16654 if (is_last)
16655 {
16656 now_it.state = OUTSIDE_IT_BLOCK;
16657 now_it.mask = 0;
16658 }
16659}
16660
16661static void
16662force_automatic_it_block_close (void)
16663{
16664 if (now_it.state == AUTOMATIC_IT_BLOCK)
16665 {
16666 close_automatic_it_block ();
16667 now_it.state = OUTSIDE_IT_BLOCK;
16668 now_it.mask = 0;
16669 }
16670}
16671
16672static int
16673in_it_block (void)
16674{
16675 if (!now_it.state_handled)
16676 handle_it_state ();
16677
16678 return now_it.state != OUTSIDE_IT_BLOCK;
16679}
16680
c19d1205
ZW
16681void
16682md_assemble (char *str)
b99bd4ef 16683{
c19d1205
ZW
16684 char *p = str;
16685 const struct asm_opcode * opcode;
b99bd4ef 16686
c19d1205
ZW
16687 /* Align the previous label if needed. */
16688 if (last_label_seen != NULL)
b99bd4ef 16689 {
c19d1205
ZW
16690 symbol_set_frag (last_label_seen, frag_now);
16691 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16692 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
16693 }
16694
c19d1205
ZW
16695 memset (&inst, '\0', sizeof (inst));
16696 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 16697
c19d1205
ZW
16698 opcode = opcode_lookup (&p);
16699 if (!opcode)
b99bd4ef 16700 {
c19d1205 16701 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 16702 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
16703 if (! create_register_alias (str, p)
16704 && ! create_neon_reg_alias (str, p))
c19d1205 16705 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 16706
b99bd4ef
NC
16707 return;
16708 }
16709
278df34e 16710 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
16711 as_warn (_("s suffix on comparison instruction is deprecated"));
16712
037e8744
JB
16713 /* The value which unconditional instructions should have in place of the
16714 condition field. */
16715 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16716
c19d1205 16717 if (thumb_mode)
b99bd4ef 16718 {
e74cfd16 16719 arm_feature_set variant;
8f06b2d8
PB
16720
16721 variant = cpu_variant;
16722 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
16723 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16724 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 16725 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
16726 if (!opcode->tvariant
16727 || (thumb_mode == 1
16728 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 16729 {
bf3eeda7 16730 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
b99bd4ef
NC
16731 return;
16732 }
c19d1205
ZW
16733 if (inst.cond != COND_ALWAYS && !unified_syntax
16734 && opcode->tencode != do_t_branch)
b99bd4ef 16735 {
c19d1205 16736 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
16737 return;
16738 }
16739
752d5da4 16740 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 16741 {
7e806470 16742 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
16743 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16744 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16745 {
16746 /* Two things are addressed here.
16747 1) Implicit require narrow instructions on Thumb-1.
16748 This avoids relaxation accidentally introducing Thumb-2
16749 instructions.
16750 2) Reject wide instructions in non Thumb-2 cores. */
16751 if (inst.size_req == 0)
16752 inst.size_req = 2;
16753 else if (inst.size_req == 4)
16754 {
bf3eeda7 16755 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
752d5da4
NC
16756 return;
16757 }
16758 }
076d447c
PB
16759 }
16760
c19d1205
ZW
16761 inst.instruction = opcode->tvalue;
16762
5be8be5d 16763 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
e07e6e58
NC
16764 {
16765 /* Prepare the it_insn_type for those encodings that don't set
16766 it. */
16767 it_fsm_pre_encode ();
c19d1205 16768
e07e6e58
NC
16769 opcode->tencode ();
16770
16771 it_fsm_post_encode ();
16772 }
e27ec89e 16773
0110f2b8 16774 if (!(inst.error || inst.relax))
b99bd4ef 16775 {
9c2799c2 16776 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
16777 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16778 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 16779 {
c19d1205 16780 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
16781 return;
16782 }
16783 }
076d447c
PB
16784
16785 /* Something has gone badly wrong if we try to relax a fixed size
16786 instruction. */
9c2799c2 16787 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 16788
e74cfd16
PB
16789 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16790 *opcode->tvariant);
ee065d83 16791 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 16792 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 16793 anything other than bl/blx and v6-M instructions.
ee065d83 16794 This is overly pessimistic for relaxable instructions. */
7e806470
PB
16795 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16796 || inst.relax)
e07e6e58
NC
16797 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16798 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
16799 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16800 arm_ext_v6t2);
cd000bff 16801
88714cb8
DG
16802 check_neon_suffixes;
16803
cd000bff 16804 if (!inst.error)
c877a2f2
NC
16805 {
16806 mapping_state (MAP_THUMB);
16807 }
c19d1205 16808 }
3e9e4fcf 16809 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 16810 {
845b51d6
PB
16811 bfd_boolean is_bx;
16812
16813 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16814 is_bx = (opcode->aencode == do_bx);
16815
c19d1205 16816 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
16817 if (!(is_bx && fix_v4bx)
16818 && !(opcode->avariant &&
16819 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 16820 {
bf3eeda7 16821 as_bad (_("selected processor does not support ARM mode `%s'"), str);
c19d1205 16822 return;
b99bd4ef 16823 }
c19d1205 16824 if (inst.size_req)
b99bd4ef 16825 {
c19d1205
ZW
16826 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16827 return;
b99bd4ef
NC
16828 }
16829
c19d1205
ZW
16830 inst.instruction = opcode->avalue;
16831 if (opcode->tag == OT_unconditionalF)
16832 inst.instruction |= 0xF << 28;
16833 else
16834 inst.instruction |= inst.cond << 28;
16835 inst.size = INSN_SIZE;
5be8be5d 16836 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
e07e6e58
NC
16837 {
16838 it_fsm_pre_encode ();
16839 opcode->aencode ();
16840 it_fsm_post_encode ();
16841 }
ee065d83
PB
16842 /* Arm mode bx is marked as both v4T and v5 because it's still required
16843 on a hypothetical non-thumb v5 core. */
845b51d6 16844 if (is_bx)
e74cfd16 16845 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 16846 else
e74cfd16
PB
16847 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16848 *opcode->avariant);
88714cb8
DG
16849
16850 check_neon_suffixes;
16851
cd000bff 16852 if (!inst.error)
c877a2f2
NC
16853 {
16854 mapping_state (MAP_ARM);
16855 }
b99bd4ef 16856 }
3e9e4fcf
JB
16857 else
16858 {
16859 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16860 "-- `%s'"), str);
16861 return;
16862 }
c19d1205
ZW
16863 output_inst (str);
16864}
b99bd4ef 16865
e07e6e58
NC
16866static void
16867check_it_blocks_finished (void)
16868{
16869#ifdef OBJ_ELF
16870 asection *sect;
16871
16872 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16873 if (seg_info (sect)->tc_segment_info_data.current_it.state
16874 == MANUAL_IT_BLOCK)
16875 {
16876 as_warn (_("section '%s' finished with an open IT block."),
16877 sect->name);
16878 }
16879#else
16880 if (now_it.state == MANUAL_IT_BLOCK)
16881 as_warn (_("file finished with an open IT block."));
16882#endif
16883}
16884
c19d1205
ZW
16885/* Various frobbings of labels and their addresses. */
16886
16887void
16888arm_start_line_hook (void)
16889{
16890 last_label_seen = NULL;
b99bd4ef
NC
16891}
16892
c19d1205
ZW
16893void
16894arm_frob_label (symbolS * sym)
b99bd4ef 16895{
c19d1205 16896 last_label_seen = sym;
b99bd4ef 16897
c19d1205 16898 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 16899
c19d1205
ZW
16900#if defined OBJ_COFF || defined OBJ_ELF
16901 ARM_SET_INTERWORK (sym, support_interwork);
16902#endif
b99bd4ef 16903
e07e6e58
NC
16904 force_automatic_it_block_close ();
16905
5f4273c7 16906 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
16907 as Thumb functions. This is because these labels, whilst
16908 they exist inside Thumb code, are not the entry points for
16909 possible ARM->Thumb calls. Also, these labels can be used
16910 as part of a computed goto or switch statement. eg gcc
16911 can generate code that looks like this:
b99bd4ef 16912
c19d1205
ZW
16913 ldr r2, [pc, .Laaa]
16914 lsl r3, r3, #2
16915 ldr r2, [r3, r2]
16916 mov pc, r2
b99bd4ef 16917
c19d1205
ZW
16918 .Lbbb: .word .Lxxx
16919 .Lccc: .word .Lyyy
16920 ..etc...
16921 .Laaa: .word Lbbb
b99bd4ef 16922
c19d1205
ZW
16923 The first instruction loads the address of the jump table.
16924 The second instruction converts a table index into a byte offset.
16925 The third instruction gets the jump address out of the table.
16926 The fourth instruction performs the jump.
b99bd4ef 16927
c19d1205
ZW
16928 If the address stored at .Laaa is that of a symbol which has the
16929 Thumb_Func bit set, then the linker will arrange for this address
16930 to have the bottom bit set, which in turn would mean that the
16931 address computation performed by the third instruction would end
16932 up with the bottom bit set. Since the ARM is capable of unaligned
16933 word loads, the instruction would then load the incorrect address
16934 out of the jump table, and chaos would ensue. */
16935 if (label_is_thumb_function_name
16936 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16937 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 16938 {
c19d1205
ZW
16939 /* When the address of a Thumb function is taken the bottom
16940 bit of that address should be set. This will allow
16941 interworking between Arm and Thumb functions to work
16942 correctly. */
b99bd4ef 16943
c19d1205 16944 THUMB_SET_FUNC (sym, 1);
b99bd4ef 16945
c19d1205 16946 label_is_thumb_function_name = FALSE;
b99bd4ef 16947 }
07a53e5c 16948
07a53e5c 16949 dwarf2_emit_label (sym);
b99bd4ef
NC
16950}
16951
c921be7d 16952bfd_boolean
c19d1205 16953arm_data_in_code (void)
b99bd4ef 16954{
c19d1205 16955 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 16956 {
c19d1205
ZW
16957 *input_line_pointer = '/';
16958 input_line_pointer += 5;
16959 *input_line_pointer = 0;
c921be7d 16960 return TRUE;
b99bd4ef
NC
16961 }
16962
c921be7d 16963 return FALSE;
b99bd4ef
NC
16964}
16965
c19d1205
ZW
16966char *
16967arm_canonicalize_symbol_name (char * name)
b99bd4ef 16968{
c19d1205 16969 int len;
b99bd4ef 16970
c19d1205
ZW
16971 if (thumb_mode && (len = strlen (name)) > 5
16972 && streq (name + len - 5, "/data"))
16973 *(name + len - 5) = 0;
b99bd4ef 16974
c19d1205 16975 return name;
b99bd4ef 16976}
c19d1205
ZW
16977\f
16978/* Table of all register names defined by default. The user can
16979 define additional names with .req. Note that all register names
16980 should appear in both upper and lowercase variants. Some registers
16981 also have mixed-case names. */
b99bd4ef 16982
dcbf9037 16983#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 16984#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 16985#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
16986#define REGSET(p,t) \
16987 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16988 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16989 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16990 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
16991#define REGSETH(p,t) \
16992 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16993 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16994 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16995 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16996#define REGSET2(p,t) \
16997 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16998 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16999 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
17000 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
90ec0d68
MGD
17001#define SPLRBANK(base,bank,t) \
17002 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
17003 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
17004 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
17005 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
17006 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
17007 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
7ed4c4c5 17008
c19d1205 17009static const struct reg_entry reg_names[] =
7ed4c4c5 17010{
c19d1205
ZW
17011 /* ARM integer registers. */
17012 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 17013
c19d1205
ZW
17014 /* ATPCS synonyms. */
17015 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17016 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17017 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 17018
c19d1205
ZW
17019 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17020 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17021 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 17022
c19d1205
ZW
17023 /* Well-known aliases. */
17024 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17025 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17026
17027 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17028 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17029
17030 /* Coprocessor numbers. */
17031 REGSET(p, CP), REGSET(P, CP),
17032
17033 /* Coprocessor register numbers. The "cr" variants are for backward
17034 compatibility. */
17035 REGSET(c, CN), REGSET(C, CN),
17036 REGSET(cr, CN), REGSET(CR, CN),
17037
90ec0d68
MGD
17038 /* ARM banked registers. */
17039 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17040 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17041 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17042 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17043 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17044 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17045 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17046
17047 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17048 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17049 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17050 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17051 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17052 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
17053 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17054 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17055
17056 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17057 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17058 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17059 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17060 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17061 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17062 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
fa94de6b 17063 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
90ec0d68
MGD
17064 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17065
c19d1205
ZW
17066 /* FPA registers. */
17067 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17068 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17069
17070 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17071 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17072
17073 /* VFP SP registers. */
5287ad62
JB
17074 REGSET(s,VFS), REGSET(S,VFS),
17075 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
17076
17077 /* VFP DP Registers. */
5287ad62
JB
17078 REGSET(d,VFD), REGSET(D,VFD),
17079 /* Extra Neon DP registers. */
17080 REGSETH(d,VFD), REGSETH(D,VFD),
17081
17082 /* Neon QP registers. */
17083 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
17084
17085 /* VFP control registers. */
17086 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17087 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
17088 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17089 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17090 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17091 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
17092
17093 /* Maverick DSP coprocessor registers. */
17094 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17095 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17096
17097 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17098 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17099 REGDEF(dspsc,0,DSPSC),
17100
17101 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17102 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17103 REGDEF(DSPSC,0,DSPSC),
17104
17105 /* iWMMXt data registers - p0, c0-15. */
17106 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17107
17108 /* iWMMXt control registers - p1, c0-3. */
17109 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17110 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17111 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17112 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17113
17114 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17115 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17116 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17117 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17118 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17119
17120 /* XScale accumulator registers. */
17121 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17122};
17123#undef REGDEF
17124#undef REGNUM
17125#undef REGSET
7ed4c4c5 17126
c19d1205
ZW
17127/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17128 within psr_required_here. */
17129static const struct asm_psr psrs[] =
17130{
17131 /* Backward compatibility notation. Note that "all" is no longer
17132 truly all possible PSR bits. */
17133 {"all", PSR_c | PSR_f},
17134 {"flg", PSR_f},
17135 {"ctl", PSR_c},
17136
17137 /* Individual flags. */
17138 {"f", PSR_f},
17139 {"c", PSR_c},
17140 {"x", PSR_x},
17141 {"s", PSR_s},
59b42a0d 17142
c19d1205
ZW
17143 /* Combinations of flags. */
17144 {"fs", PSR_f | PSR_s},
17145 {"fx", PSR_f | PSR_x},
17146 {"fc", PSR_f | PSR_c},
17147 {"sf", PSR_s | PSR_f},
17148 {"sx", PSR_s | PSR_x},
17149 {"sc", PSR_s | PSR_c},
17150 {"xf", PSR_x | PSR_f},
17151 {"xs", PSR_x | PSR_s},
17152 {"xc", PSR_x | PSR_c},
17153 {"cf", PSR_c | PSR_f},
17154 {"cs", PSR_c | PSR_s},
17155 {"cx", PSR_c | PSR_x},
17156 {"fsx", PSR_f | PSR_s | PSR_x},
17157 {"fsc", PSR_f | PSR_s | PSR_c},
17158 {"fxs", PSR_f | PSR_x | PSR_s},
17159 {"fxc", PSR_f | PSR_x | PSR_c},
17160 {"fcs", PSR_f | PSR_c | PSR_s},
17161 {"fcx", PSR_f | PSR_c | PSR_x},
17162 {"sfx", PSR_s | PSR_f | PSR_x},
17163 {"sfc", PSR_s | PSR_f | PSR_c},
17164 {"sxf", PSR_s | PSR_x | PSR_f},
17165 {"sxc", PSR_s | PSR_x | PSR_c},
17166 {"scf", PSR_s | PSR_c | PSR_f},
17167 {"scx", PSR_s | PSR_c | PSR_x},
17168 {"xfs", PSR_x | PSR_f | PSR_s},
17169 {"xfc", PSR_x | PSR_f | PSR_c},
17170 {"xsf", PSR_x | PSR_s | PSR_f},
17171 {"xsc", PSR_x | PSR_s | PSR_c},
17172 {"xcf", PSR_x | PSR_c | PSR_f},
17173 {"xcs", PSR_x | PSR_c | PSR_s},
17174 {"cfs", PSR_c | PSR_f | PSR_s},
17175 {"cfx", PSR_c | PSR_f | PSR_x},
17176 {"csf", PSR_c | PSR_s | PSR_f},
17177 {"csx", PSR_c | PSR_s | PSR_x},
17178 {"cxf", PSR_c | PSR_x | PSR_f},
17179 {"cxs", PSR_c | PSR_x | PSR_s},
17180 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17181 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17182 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17183 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17184 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17185 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17186 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17187 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17188 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17189 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17190 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17191 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17192 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17193 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17194 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17195 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17196 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17197 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17198 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17199 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17200 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17201 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17202 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17203 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17204};
17205
62b3e311
PB
17206/* Table of V7M psr names. */
17207static const struct asm_psr v7m_psrs[] =
17208{
2b744c99
PB
17209 {"apsr", 0 }, {"APSR", 0 },
17210 {"iapsr", 1 }, {"IAPSR", 1 },
17211 {"eapsr", 2 }, {"EAPSR", 2 },
17212 {"psr", 3 }, {"PSR", 3 },
17213 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17214 {"ipsr", 5 }, {"IPSR", 5 },
17215 {"epsr", 6 }, {"EPSR", 6 },
17216 {"iepsr", 7 }, {"IEPSR", 7 },
17217 {"msp", 8 }, {"MSP", 8 },
17218 {"psp", 9 }, {"PSP", 9 },
17219 {"primask", 16}, {"PRIMASK", 16},
17220 {"basepri", 17}, {"BASEPRI", 17},
00bbc0bd
NC
17221 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17222 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
2b744c99
PB
17223 {"faultmask", 19}, {"FAULTMASK", 19},
17224 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
17225};
17226
c19d1205
ZW
17227/* Table of all shift-in-operand names. */
17228static const struct asm_shift_name shift_names [] =
b99bd4ef 17229{
c19d1205
ZW
17230 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17231 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17232 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17233 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17234 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17235 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17236};
b99bd4ef 17237
c19d1205
ZW
17238/* Table of all explicit relocation names. */
17239#ifdef OBJ_ELF
17240static struct reloc_entry reloc_names[] =
17241{
17242 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17243 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17244 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17245 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17246 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17247 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17248 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17249 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17250 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17251 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
b43420e6 17252 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
0855e32b
NS
17253 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17254 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17255 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17256 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17257 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17258 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17259 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
c19d1205
ZW
17260};
17261#endif
b99bd4ef 17262
c19d1205
ZW
17263/* Table of all conditional affixes. 0xF is not defined as a condition code. */
17264static const struct asm_cond conds[] =
17265{
17266 {"eq", 0x0},
17267 {"ne", 0x1},
17268 {"cs", 0x2}, {"hs", 0x2},
17269 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17270 {"mi", 0x4},
17271 {"pl", 0x5},
17272 {"vs", 0x6},
17273 {"vc", 0x7},
17274 {"hi", 0x8},
17275 {"ls", 0x9},
17276 {"ge", 0xa},
17277 {"lt", 0xb},
17278 {"gt", 0xc},
17279 {"le", 0xd},
17280 {"al", 0xe}
17281};
bfae80f2 17282
e797f7e0
MGD
17283#define UL_BARRIER(L,U,CODE,FEAT) \
17284 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17285 { U, CODE, ARM_FEATURE (FEAT, 0) }
17286
62b3e311
PB
17287static struct asm_barrier_opt barrier_opt_names[] =
17288{
e797f7e0
MGD
17289 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17290 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17291 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17292 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17293 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17294 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17295 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17296 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17297 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17298 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17299 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17300 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17301 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17302 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17303 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17304 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
62b3e311
PB
17305};
17306
e797f7e0
MGD
17307#undef UL_BARRIER
17308
c19d1205
ZW
17309/* Table of ARM-format instructions. */
17310
17311/* Macros for gluing together operand strings. N.B. In all cases
17312 other than OPS0, the trailing OP_stop comes from default
17313 zero-initialization of the unspecified elements of the array. */
17314#define OPS0() { OP_stop, }
17315#define OPS1(a) { OP_##a, }
17316#define OPS2(a,b) { OP_##a,OP_##b, }
17317#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17318#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17319#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17320#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17321
5be8be5d
DG
17322/* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17323 This is useful when mixing operands for ARM and THUMB, i.e. using the
17324 MIX_ARM_THUMB_OPERANDS macro.
17325 In order to use these macros, prefix the number of operands with _
17326 e.g. _3. */
17327#define OPS_1(a) { a, }
17328#define OPS_2(a,b) { a,b, }
17329#define OPS_3(a,b,c) { a,b,c, }
17330#define OPS_4(a,b,c,d) { a,b,c,d, }
17331#define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17332#define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17333
c19d1205
ZW
17334/* These macros abstract out the exact format of the mnemonic table and
17335 save some repeated characters. */
17336
17337/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17338#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17339 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 17340 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17341
17342/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17343 a T_MNEM_xyz enumerator. */
17344#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17345 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17346#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17347 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17348
17349/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17350 infix after the third character. */
17351#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 17352 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 17353 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 17354#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 17355 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 17356 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 17357#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17358 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 17359#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 17360 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 17361#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17362 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 17363#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 17364 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17365
17366/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17367 appear in the condition table. */
17368#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 17369 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 17370 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17371
17372#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
17373 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17374 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17375 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17376 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17377 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17378 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17379 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17380 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17381 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17382 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17383 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17384 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17385 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17386 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17387 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17388 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17389 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17390 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17391 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
17392
17393#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
17394 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17395#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 17396 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
17397
17398/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
17399 field is still 0xE. Many of the Thumb variants can be executed
17400 conditionally, so this is checked separately. */
c19d1205 17401#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 17402 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17403 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17404
17405/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17406 condition code field. */
17407#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 17408 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 17409 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
17410
17411/* ARM-only variants of all the above. */
6a86118a 17412#define CE(mnem, op, nops, ops, ae) \
21d799b5 17413 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
17414
17415#define C3(mnem, op, nops, ops, ae) \
17416 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17417
e3cb604e
PB
17418/* Legacy mnemonics that always have conditional infix after the third
17419 character. */
17420#define CL(mnem, op, nops, ops, ae) \
21d799b5 17421 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17422 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17423
8f06b2d8
PB
17424/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17425#define cCE(mnem, op, nops, ops, ae) \
21d799b5 17426 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17427
e3cb604e
PB
17428/* Legacy coprocessor instructions where conditional infix and conditional
17429 suffix are ambiguous. For consistency this includes all FPA instructions,
17430 not just the potentially ambiguous ones. */
17431#define cCL(mnem, op, nops, ops, ae) \
21d799b5 17432 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
17433 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17434
17435/* Coprocessor, takes either a suffix or a position-3 infix
17436 (for an FPA corner case). */
17437#define C3E(mnem, op, nops, ops, ae) \
21d799b5 17438 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 17439 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 17440
6a86118a 17441#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
17442 { m1 #m2 m3, OPS##nops ops, \
17443 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
17444 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17445
17446#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
17447 xCM_ (m1, , m2, op, nops, ops, ae), \
17448 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17449 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17450 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17451 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17452 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17453 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17454 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17455 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17456 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17457 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17458 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17459 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17460 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17461 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17462 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17463 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17464 xCM_ (m1, le, m2, op, nops, ops, ae), \
17465 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
17466
17467#define UE(mnem, op, nops, ops, ae) \
17468 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17469
17470#define UF(mnem, op, nops, ops, ae) \
17471 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17472
5287ad62
JB
17473/* Neon data-processing. ARM versions are unconditional with cond=0xf.
17474 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17475 use the same encoding function for each. */
17476#define NUF(mnem, op, nops, ops, enc) \
17477 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17478 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17479
17480/* Neon data processing, version which indirects through neon_enc_tab for
17481 the various overloaded versions of opcodes. */
17482#define nUF(mnem, op, nops, ops, enc) \
21d799b5 17483 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17484 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17485
17486/* Neon insn with conditional suffix for the ARM version, non-overloaded
17487 version. */
037e8744
JB
17488#define NCE_tag(mnem, op, nops, ops, enc, tag) \
17489 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
17490 THUMB_VARIANT, do_##enc, do_##enc }
17491
037e8744 17492#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 17493 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17494
17495#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 17496 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17497
5287ad62 17498/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 17499#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 17500 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
17501 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17502
037e8744 17503#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 17504 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
17505
17506#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 17507 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 17508
c19d1205
ZW
17509#define do_0 0
17510
c19d1205 17511static const struct asm_opcode insns[] =
bfae80f2 17512{
e74cfd16
PB
17513#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17514#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
17515 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17516 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17517 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17518 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17519 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17520 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17521 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17522 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17523 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17524 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17525 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17526 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17527 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17528 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17529 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17530 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
17531
17532 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17533 for setting PSR flag bits. They are obsolete in V6 and do not
17534 have Thumb equivalents. */
21d799b5
NC
17535 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17536 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17537 CL("tstp", 110f000, 2, (RR, SH), cmp),
17538 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17539 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17540 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17541 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17542 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17543 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17544
17545 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17546 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17547 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17548 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17549
17550 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
5be8be5d
DG
17551 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17552 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17553 OP_RRnpc),
17554 OP_ADDRGLDR),ldst, t_ldst),
17555 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21d799b5
NC
17556
17557 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17558 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17559 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17560 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17561 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17562 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17563
17564 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17565 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17566 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17567 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 17568
c19d1205 17569 /* Pseudo ops. */
21d799b5 17570 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 17571 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 17572 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
17573
17574 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
17575 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17576 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17577 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17578 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17579 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17580 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17581 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17582 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17583 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17584 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17585 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17586 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 17587
16a4cf17 17588 /* These may simplify to neg. */
21d799b5
NC
17589 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17590 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 17591
c921be7d
NC
17592#undef THUMB_VARIANT
17593#define THUMB_VARIANT & arm_ext_v6
17594
21d799b5 17595 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
17596
17597 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
17598#undef THUMB_VARIANT
17599#define THUMB_VARIANT & arm_ext_v6t2
17600
21d799b5
NC
17601 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17602 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17603 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 17604
5be8be5d
DG
17605 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17606 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17607 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17608 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
c19d1205 17609
21d799b5
NC
17610 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17611 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 17612
21d799b5
NC
17613 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17614 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
17615
17616 /* V1 instructions with no Thumb analogue at all. */
21d799b5 17617 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
17618 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17619
17620 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17621 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17622 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17623 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17624 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17625 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17626 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17627 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17628
c921be7d
NC
17629#undef ARM_VARIANT
17630#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17631#undef THUMB_VARIANT
17632#define THUMB_VARIANT & arm_ext_v4t
17633
21d799b5
NC
17634 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17635 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 17636
c921be7d
NC
17637#undef THUMB_VARIANT
17638#define THUMB_VARIANT & arm_ext_v6t2
17639
21d799b5 17640 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
17641 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17642
17643 /* Generic coprocessor instructions. */
21d799b5
NC
17644 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17645 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17646 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17647 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17648 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17649 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
db472d6f 17650 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17651
c921be7d
NC
17652#undef ARM_VARIANT
17653#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17654
21d799b5 17655 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
17656 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17657
c921be7d
NC
17658#undef ARM_VARIANT
17659#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17660#undef THUMB_VARIANT
17661#define THUMB_VARIANT & arm_ext_msr
17662
d2cd1205
JB
17663 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17664 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
c19d1205 17665
c921be7d
NC
17666#undef ARM_VARIANT
17667#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17668#undef THUMB_VARIANT
17669#define THUMB_VARIANT & arm_ext_v6t2
17670
21d799b5
NC
17671 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17672 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17673 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17674 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17675 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17676 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17677 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17678 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 17679
c921be7d
NC
17680#undef ARM_VARIANT
17681#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17682#undef THUMB_VARIANT
17683#define THUMB_VARIANT & arm_ext_v4t
17684
5be8be5d
DG
17685 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17686 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17687 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17688 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17689 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17690 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 17691
c921be7d
NC
17692#undef ARM_VARIANT
17693#define ARM_VARIANT & arm_ext_v4t_5
17694
c19d1205
ZW
17695 /* ARM Architecture 4T. */
17696 /* Note: bx (and blx) are required on V5, even if the processor does
17697 not support Thumb. */
21d799b5 17698 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 17699
c921be7d
NC
17700#undef ARM_VARIANT
17701#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17702#undef THUMB_VARIANT
17703#define THUMB_VARIANT & arm_ext_v5t
17704
c19d1205
ZW
17705 /* Note: blx has 2 variants; the .value coded here is for
17706 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
17707 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17708 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 17709
c921be7d
NC
17710#undef THUMB_VARIANT
17711#define THUMB_VARIANT & arm_ext_v6t2
17712
21d799b5
NC
17713 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17714 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17715 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17716 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17717 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17718 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17719 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17720 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 17721
c921be7d
NC
17722#undef ARM_VARIANT
17723#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
9e3c6df6
PB
17724#undef THUMB_VARIANT
17725#define THUMB_VARIANT &arm_ext_v5exp
c921be7d 17726
21d799b5
NC
17727 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17728 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17729 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17730 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17731
21d799b5
NC
17732 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17733 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 17734
21d799b5
NC
17735 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17736 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17737 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17738 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 17739
21d799b5
NC
17740 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17741 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17742 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17743 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17744
21d799b5
NC
17745 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17746 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 17747
03ee1b7f
NC
17748 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17749 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17750 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17751 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
c19d1205 17752
c921be7d
NC
17753#undef ARM_VARIANT
17754#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
9e3c6df6
PB
17755#undef THUMB_VARIANT
17756#define THUMB_VARIANT &arm_ext_v6t2
c921be7d 17757
21d799b5 17758 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
5be8be5d
DG
17759 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17760 ldrd, t_ldstd),
17761 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17762 ADDRGLDRS), ldrd, t_ldstd),
c19d1205 17763
21d799b5
NC
17764 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17765 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 17766
c921be7d
NC
17767#undef ARM_VARIANT
17768#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17769
21d799b5 17770 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 17771
c921be7d
NC
17772#undef ARM_VARIANT
17773#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17774#undef THUMB_VARIANT
17775#define THUMB_VARIANT & arm_ext_v6
17776
21d799b5
NC
17777 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17778 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17779 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17780 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17781 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17782 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17783 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17784 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17785 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17786 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 17787
c921be7d
NC
17788#undef THUMB_VARIANT
17789#define THUMB_VARIANT & arm_ext_v6t2
17790
5be8be5d
DG
17791 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17792 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17793 strex, t_strex),
21d799b5
NC
17794 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17795 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 17796
21d799b5
NC
17797 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17798 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311 17799
9e3c6df6 17800/* ARM V6 not included in V7M. */
c921be7d
NC
17801#undef THUMB_VARIANT
17802#define THUMB_VARIANT & arm_ext_v6_notm
9e3c6df6
PB
17803 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17804 UF(rfeib, 9900a00, 1, (RRw), rfe),
17805 UF(rfeda, 8100a00, 1, (RRw), rfe),
17806 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17807 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17808 UF(rfefa, 9900a00, 1, (RRw), rfe),
17809 UF(rfeea, 8100a00, 1, (RRw), rfe),
17810 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17811 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17812 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17813 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17814 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
c921be7d 17815
9e3c6df6
PB
17816/* ARM V6 not included in V7M (eg. integer SIMD). */
17817#undef THUMB_VARIANT
17818#define THUMB_VARIANT & arm_ext_v6_dsp
21d799b5
NC
17819 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17820 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17821 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17822 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17823 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17824 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17825 /* Old name for QASX. */
21d799b5
NC
17826 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17827 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17828 /* Old name for QSAX. */
21d799b5
NC
17829 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17830 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17831 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17832 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17833 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17834 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17835 /* Old name for SASX. */
21d799b5
NC
17836 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17837 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17838 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17839 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17840 /* Old name for SHASX. */
21d799b5
NC
17841 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17842 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17843 /* Old name for SHSAX. */
21d799b5
NC
17844 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17845 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17846 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17847 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17848 /* Old name for SSAX. */
21d799b5
NC
17849 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17850 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17851 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17852 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17853 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17854 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17855 /* Old name for UASX. */
21d799b5
NC
17856 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17857 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17858 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17859 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17860 /* Old name for UHASX. */
21d799b5
NC
17861 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17862 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17863 /* Old name for UHSAX. */
21d799b5
NC
17864 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17865 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17866 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17867 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17868 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17869 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17870 /* Old name for UQASX. */
21d799b5
NC
17871 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17872 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17873 /* Old name for UQSAX. */
21d799b5
NC
17874 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17875 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17876 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17877 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17878 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 17879 /* Old name for USAX. */
21d799b5
NC
17880 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17881 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
21d799b5
NC
17882 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17883 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17884 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17885 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17886 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17887 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17888 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17889 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17890 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17891 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17892 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17893 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17894 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17895 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17896 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17897 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17898 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17899 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17900 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17901 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17902 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17903 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17904 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17905 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17906 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17907 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17908 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
21d799b5
NC
17909 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17910 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17911 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17912 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17913 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 17914
c921be7d
NC
17915#undef ARM_VARIANT
17916#define ARM_VARIANT & arm_ext_v6k
17917#undef THUMB_VARIANT
17918#define THUMB_VARIANT & arm_ext_v6k
17919
21d799b5
NC
17920 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17921 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17922 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17923 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 17924
c921be7d
NC
17925#undef THUMB_VARIANT
17926#define THUMB_VARIANT & arm_ext_v6_notm
5be8be5d
DG
17927 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17928 ldrexd, t_ldrexd),
17929 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17930 RRnpcb), strexd, t_strexd),
ebdca51a 17931
c921be7d
NC
17932#undef THUMB_VARIANT
17933#define THUMB_VARIANT & arm_ext_v6t2
5be8be5d
DG
17934 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17935 rd_rn, rd_rn),
17936 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17937 rd_rn, rd_rn),
17938 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17939 strex, t_strexbh),
5be8be5d 17940 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
877807f8 17941 strex, t_strexbh),
21d799b5 17942 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 17943
c921be7d 17944#undef ARM_VARIANT
f4c65163
MGD
17945#define ARM_VARIANT & arm_ext_sec
17946#undef THUMB_VARIANT
17947#define THUMB_VARIANT & arm_ext_sec
c921be7d 17948
21d799b5 17949 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 17950
90ec0d68
MGD
17951#undef ARM_VARIANT
17952#define ARM_VARIANT & arm_ext_virt
17953#undef THUMB_VARIANT
17954#define THUMB_VARIANT & arm_ext_virt
17955
17956 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17957 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17958
c921be7d
NC
17959#undef ARM_VARIANT
17960#define ARM_VARIANT & arm_ext_v6t2
f4c65163
MGD
17961#undef THUMB_VARIANT
17962#define THUMB_VARIANT & arm_ext_v6t2
c921be7d 17963
21d799b5
NC
17964 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17965 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17966 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17967 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 17968
21d799b5
NC
17969 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17970 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17971 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17972 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 17973
5be8be5d
DG
17974 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17975 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17976 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17977 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
c19d1205 17978
bf3eeda7
NS
17979 /* Thumb-only instructions. */
17980#undef ARM_VARIANT
17981#define ARM_VARIANT NULL
17982 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17983 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
c921be7d
NC
17984
17985 /* ARM does not really have an IT instruction, so always allow it.
17986 The opcode is copied from Thumb in order to allow warnings in
17987 -mimplicit-it=[never | arm] modes. */
17988#undef ARM_VARIANT
17989#define ARM_VARIANT & arm_ext_v1
17990
21d799b5
NC
17991 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17992 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17993 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17994 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17995 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17996 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17997 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17998 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17999 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
18000 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
18001 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
18002 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
18003 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
18004 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
18005 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 18006 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
18007 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
18008 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 18009
92e90b6e 18010 /* Thumb2 only instructions. */
c921be7d
NC
18011#undef ARM_VARIANT
18012#define ARM_VARIANT NULL
92e90b6e 18013
21d799b5
NC
18014 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18015 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18016 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18017 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18018 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18019 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 18020
eea54501
MGD
18021 /* Hardware division instructions. */
18022#undef ARM_VARIANT
18023#define ARM_VARIANT & arm_ext_adiv
c921be7d
NC
18024#undef THUMB_VARIANT
18025#define THUMB_VARIANT & arm_ext_div
18026
eea54501
MGD
18027 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18028 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
62b3e311 18029
7e806470 18030 /* ARM V6M/V7 instructions. */
c921be7d
NC
18031#undef ARM_VARIANT
18032#define ARM_VARIANT & arm_ext_barrier
18033#undef THUMB_VARIANT
18034#define THUMB_VARIANT & arm_ext_barrier
18035
52e7f43d
RE
18036 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
18037 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
18038 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
7e806470 18039
62b3e311 18040 /* ARM V7 instructions. */
c921be7d
NC
18041#undef ARM_VARIANT
18042#define ARM_VARIANT & arm_ext_v7
18043#undef THUMB_VARIANT
18044#define THUMB_VARIANT & arm_ext_v7
18045
21d799b5
NC
18046 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18047 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 18048
60e5ef9f
MGD
18049#undef ARM_VARIANT
18050#define ARM_VARIANT & arm_ext_mp
18051#undef THUMB_VARIANT
18052#define THUMB_VARIANT & arm_ext_mp
18053
18054 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18055
53c4b28b
MGD
18056 /* AArchv8 instructions. */
18057#undef ARM_VARIANT
18058#define ARM_VARIANT & arm_ext_v8
18059#undef THUMB_VARIANT
18060#define THUMB_VARIANT & arm_ext_v8
18061
18062 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
8884b720 18063 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
9eb6c0f1
MGD
18064 TCE("ldraex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18065 TCE("ldraexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18066 ldrexd, t_ldrexd),
18067 TCE("ldraexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18068 TCE("ldraexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18069 TCE("strlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18070 strlex, t_strlex),
18071 TCE("strlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18072 strexd, t_strexd),
18073 TCE("strlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18074 strlex, t_strlex),
18075 TCE("strlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18076 strlex, t_strlex),
18077 TCE("ldra", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18078 TCE("ldrab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18079 TCE("ldrah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18080 TCE("strl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18081 TCE("strlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18082 TCE("strlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
53c4b28b 18083
8884b720 18084 /* ARMv8 T32 only. */
b79f7053
MGD
18085#undef ARM_VARIANT
18086#define ARM_VARIANT NULL
18087 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18088 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18089 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18090
33399f07
MGD
18091 /* FP for ARMv8. */
18092#undef ARM_VARIANT
18093#define ARM_VARIANT & fpu_vfp_ext_armv8
18094#undef THUMB_VARIANT
18095#define THUMB_VARIANT & fpu_vfp_ext_armv8
18096
18097 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18098 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18099 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18100 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
73924fbc
MGD
18101 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18102 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
33399f07 18103
c921be7d
NC
18104#undef ARM_VARIANT
18105#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
53c4b28b
MGD
18106#undef THUMB_VARIANT
18107#define THUMB_VARIANT NULL
c921be7d 18108
21d799b5
NC
18109 cCE("wfs", e200110, 1, (RR), rd),
18110 cCE("rfs", e300110, 1, (RR), rd),
18111 cCE("wfc", e400110, 1, (RR), rd),
18112 cCE("rfc", e500110, 1, (RR), rd),
18113
18114 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18115 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18116 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18117 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18118
18119 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18120 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18121 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18122 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18123
18124 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18125 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18126 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18127 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18128 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18129 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18130 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18131 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18132 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18133 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18134 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18135 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18136
18137 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18138 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18139 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18140 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18141 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18142 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18143 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18144 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18145 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18146 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18147 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18148 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18149
18150 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18151 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18152 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18153 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18154 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18155 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18156 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18157 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18158 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18159 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18160 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18161 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18162
18163 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18164 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18165 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18166 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18167 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18168 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18169 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18170 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18171 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18172 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18173 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18174 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18175
18176 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18177 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18178 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18179 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18180 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18181 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18182 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18183 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18184 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18185 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18186 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18187 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18188
18189 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18190 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18191 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18192 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18193 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18194 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18195 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18196 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18197 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18198 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18199 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18200 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18201
18202 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18203 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18204 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18205 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18206 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18207 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18208 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18209 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18210 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18211 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18212 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18213 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18214
18215 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18216 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18217 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18218 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18219 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18220 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18221 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18222 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18223 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18224 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18225 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18226 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18227
18228 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18229 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18230 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18231 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18232 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18233 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18234 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18235 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18236 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18237 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18238 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18239 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18240
18241 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18242 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18243 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18244 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18245 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18246 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18247 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18248 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18249 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18250 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18251 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18252 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18253
18254 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18255 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18256 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18257 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18258 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18259 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18260 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18261 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18262 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18263 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18264 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18265 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18266
18267 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18268 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18269 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18270 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18271 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18272 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18273 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18274 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18275 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18276 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18277 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18278 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18279
18280 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18281 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18282 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18283 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18284 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18285 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18286 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18287 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18288 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18289 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18290 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18291 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18292
18293 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18294 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18295 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18296 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18297 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18298 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18299 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18300 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18301 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18302 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18303 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18304 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18305
18306 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18307 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18308 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18309 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18310 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18311 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18312 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18313 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18314 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18315 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18316 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18317 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18318
18319 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18320 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18321 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18322 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18323 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18324 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18325 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18326 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18327 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18328 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18329 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18330 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18331
18332 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18333 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18334 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18335 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18336 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18337 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18338 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18339 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18340 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18341 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18342 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18343 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18344
18345 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18346 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18347 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18348 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18349 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18350 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18351 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18352 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18353 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18354 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18355 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18356 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18357
18358 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18359 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18360 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18361 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18362 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18363 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18364 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18365 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18366 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18367 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18368 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18369 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18370
18371 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18372 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18373 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18374 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18375 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18376 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18377 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18378 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18379 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18380 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18381 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18382 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18383
18384 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18385 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18386 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18387 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18388 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18389 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18390 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18391 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18392 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18393 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18394 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18395 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18396
18397 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18398 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18399 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18400 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18401 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18402 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18403 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18404 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18405 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18406 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18407 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18408 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18409
18410 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18411 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18412 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18413 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18414 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18415 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18416 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18417 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18418 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18419 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18420 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18421 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18422
18423 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18424 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18425 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18426 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18427 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18428 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18429 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18430 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18431 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18432 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18433 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18434 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18435
18436 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18437 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18438 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18439 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18440 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18441 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18442 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18443 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18444 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18445 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18446 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18447 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18448
18449 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18450 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18451 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18452 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18453 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18454 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18455 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18456 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18457 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18458 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18459 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18460 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18461
18462 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18463 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18464 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18465 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18466 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18467 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18468 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18469 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18470 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18471 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18472 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18473 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18474
18475 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18476 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18477 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18478 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18479 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18480 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18481 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18482 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18483 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18484 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18485 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18486 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18487
18488 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18489 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18490 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18491 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18492 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18493 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18494 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18495 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18496 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18497 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18498 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18499 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18500
18501 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18502 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18503 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18504 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18505
18506 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18507 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18508 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18509 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18510 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18511 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18512 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18513 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18514 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18515 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18516 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18517 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 18518
c19d1205
ZW
18519 /* The implementation of the FIX instruction is broken on some
18520 assemblers, in that it accepts a precision specifier as well as a
18521 rounding specifier, despite the fact that this is meaningless.
18522 To be more compatible, we accept it as well, though of course it
18523 does not set any bits. */
21d799b5
NC
18524 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18525 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18526 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18527 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18528 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18529 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18530 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18531 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18532 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18533 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18534 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18535 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18536 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 18537
c19d1205 18538 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
18539#undef ARM_VARIANT
18540#define ARM_VARIANT & fpu_fpa_ext_v2
18541
21d799b5
NC
18542 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18543 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18544 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18545 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18546 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18547 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 18548
c921be7d
NC
18549#undef ARM_VARIANT
18550#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18551
c19d1205 18552 /* Moves and type conversions. */
21d799b5
NC
18553 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18554 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18555 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18556 cCE("fmstat", ef1fa10, 0, (), noargs),
7465e07a
NC
18557 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18558 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
21d799b5
NC
18559 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18560 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18561 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18562 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18563 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18564 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18565 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18566 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
18567
18568 /* Memory operations. */
21d799b5
NC
18569 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18570 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
55881a11
MGD
18571 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18572 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18573 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18574 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18575 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18576 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18577 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18578 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18579 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18580 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18581 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18582 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18583 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18584 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18585 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18586 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 18587
c19d1205 18588 /* Monadic operations. */
21d799b5
NC
18589 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18590 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18591 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
18592
18593 /* Dyadic operations. */
21d799b5
NC
18594 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18595 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18596 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18597 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18598 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18599 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18600 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18601 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18602 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 18603
c19d1205 18604 /* Comparisons. */
21d799b5
NC
18605 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18606 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18607 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18608 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 18609
62f3b8c8
PB
18610 /* Double precision load/store are still present on single precision
18611 implementations. */
18612 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18613 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
55881a11
MGD
18614 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18615 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18616 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18617 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18618 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18619 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18620 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18621 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
62f3b8c8 18622
c921be7d
NC
18623#undef ARM_VARIANT
18624#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18625
c19d1205 18626 /* Moves and type conversions. */
21d799b5
NC
18627 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18628 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18629 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18630 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18631 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18632 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18633 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18634 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18635 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18636 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18637 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18638 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18639 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 18640
c19d1205 18641 /* Monadic operations. */
21d799b5
NC
18642 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18643 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18644 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
18645
18646 /* Dyadic operations. */
21d799b5
NC
18647 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18648 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18649 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18650 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18651 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18652 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18653 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18654 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18655 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 18656
c19d1205 18657 /* Comparisons. */
21d799b5
NC
18658 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18659 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18660 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18661 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 18662
c921be7d
NC
18663#undef ARM_VARIANT
18664#define ARM_VARIANT & fpu_vfp_ext_v2
18665
21d799b5
NC
18666 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18667 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18668 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18669 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 18670
037e8744
JB
18671/* Instructions which may belong to either the Neon or VFP instruction sets.
18672 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
18673#undef ARM_VARIANT
18674#define ARM_VARIANT & fpu_vfp_ext_v1xd
18675#undef THUMB_VARIANT
18676#define THUMB_VARIANT & fpu_vfp_ext_v1xd
18677
037e8744
JB
18678 /* These mnemonics are unique to VFP. */
18679 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18680 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
18681 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18682 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18683 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18684 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18685 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
18686 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18687 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18688 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18689
18690 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
18691 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18692 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18693 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 18694
21d799b5
NC
18695 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18696 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
18697
18698 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18699 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18700
55881a11
MGD
18701 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18702 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18703 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18704 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18705 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18706 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
4962c51a
MS
18707 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18708 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 18709
5f1af56b 18710 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
e3e535bc 18711 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
21d799b5
NC
18712 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18713 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 18714
037e8744
JB
18715
18716 /* NOTE: All VMOV encoding is special-cased! */
18717 NCE(vmov, 0, 1, (VMOV), neon_mov),
18718 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18719
c921be7d
NC
18720#undef THUMB_VARIANT
18721#define THUMB_VARIANT & fpu_neon_ext_v1
18722#undef ARM_VARIANT
18723#define ARM_VARIANT & fpu_neon_ext_v1
18724
5287ad62
JB
18725 /* Data processing with three registers of the same length. */
18726 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18727 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18728 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18729 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18730 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18731 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18732 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18733 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18734 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18735 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18736 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18737 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18738 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18739 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
18740 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18741 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18742 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18743 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
18744 /* If not immediate, fall back to neon_dyadic_i64_su.
18745 shl_imm should accept I8 I16 I32 I64,
18746 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
18747 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18748 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18749 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18750 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 18751 /* Logic ops, types optional & ignored. */
4316f0d2
DG
18752 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18753 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18754 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18755 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18756 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18757 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18758 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18759 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18760 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18761 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
18762 /* Bitfield ops, untyped. */
18763 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18764 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18765 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18766 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18767 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18768 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18769 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
18770 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18771 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18772 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18773 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18774 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18775 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
18776 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18777 back to neon_dyadic_if_su. */
21d799b5
NC
18778 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18779 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18780 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18781 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18782 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18783 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18784 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18785 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 18786 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
18787 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18788 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 18789 /* As above, D registers only. */
21d799b5
NC
18790 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18791 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 18792 /* Int and float variants, signedness unimportant. */
21d799b5
NC
18793 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18794 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18795 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 18796 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
18797 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18798 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
18799 /* vtst takes sizes 8, 16, 32. */
18800 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18801 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18802 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 18803 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 18804 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
18805 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18806 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18807 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18808 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
18809 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18810 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18811 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18812 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
18813 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18814 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18815 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18816 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
18817 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18818 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18819 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18820 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18821
18822 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 18823 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
18824 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18825
18826 /* Data processing with two registers and a shift amount. */
18827 /* Right shifts, and variants with rounding.
18828 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18829 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18830 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18831 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18832 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18833 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18834 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18835 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18836 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18837 /* Shift and insert. Sizes accepted 8 16 32 64. */
18838 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18839 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18840 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18841 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18842 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18843 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18844 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18845 /* Right shift immediate, saturating & narrowing, with rounding variants.
18846 Types accepted S16 S32 S64 U16 U32 U64. */
18847 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18848 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18849 /* As above, unsigned. Types accepted S16 S32 S64. */
18850 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18851 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18852 /* Right shift narrowing. Types accepted I16 I32 I64. */
18853 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18854 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18855 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 18856 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 18857 /* CVT with optional immediate for fixed-point variant. */
21d799b5 18858 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 18859
4316f0d2
DG
18860 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18861 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
5287ad62
JB
18862
18863 /* Data processing, three registers of different lengths. */
18864 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18865 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18866 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18867 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18868 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18869 /* If not scalar, fall back to neon_dyadic_long.
18870 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
18871 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18872 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
18873 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18874 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18875 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18876 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18877 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18878 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18879 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18880 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18881 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
18882 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18883 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18884 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
18885 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18886 S16 S32 U16 U32. */
21d799b5 18887 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
18888
18889 /* Extract. Size 8. */
3b8d421e
PB
18890 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18891 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
18892
18893 /* Two registers, miscellaneous. */
18894 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18895 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18896 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18897 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18898 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18899 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18900 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18901 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
18902 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18903 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
18904 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18905 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18906 /* VMOVN. Types I16 I32 I64. */
21d799b5 18907 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 18908 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 18909 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 18910 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 18911 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
18912 /* VZIP / VUZP. Sizes 8 16 32. */
18913 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18914 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18915 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18916 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18917 /* VQABS / VQNEG. Types S8 S16 S32. */
18918 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18919 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18920 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18921 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18922 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18923 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18924 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18925 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18926 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18927 /* Reciprocal estimates. Types U32 F32. */
18928 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18929 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18930 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18931 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18932 /* VCLS. Types S8 S16 S32. */
18933 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18934 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18935 /* VCLZ. Types I8 I16 I32. */
18936 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18937 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18938 /* VCNT. Size 8. */
18939 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18940 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18941 /* Two address, untyped. */
18942 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18943 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18944 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
18945 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18946 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
18947
18948 /* Table lookup. Size 8. */
18949 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18950 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18951
c921be7d
NC
18952#undef THUMB_VARIANT
18953#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18954#undef ARM_VARIANT
18955#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18956
5287ad62 18957 /* Neon element/structure load/store. */
21d799b5
NC
18958 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18959 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18960 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18961 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18962 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18963 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18964 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18965 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 18966
c921be7d 18967#undef THUMB_VARIANT
62f3b8c8
PB
18968#define THUMB_VARIANT &fpu_vfp_ext_v3xd
18969#undef ARM_VARIANT
18970#define ARM_VARIANT &fpu_vfp_ext_v3xd
18971 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18972 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18973 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18974 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18975 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18976 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18977 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18978 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18979 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18980
18981#undef THUMB_VARIANT
c921be7d
NC
18982#define THUMB_VARIANT & fpu_vfp_ext_v3
18983#undef ARM_VARIANT
18984#define ARM_VARIANT & fpu_vfp_ext_v3
18985
21d799b5 18986 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 18987 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18988 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18989 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18990 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18991 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18992 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 18993 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 18994 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 18995
62f3b8c8
PB
18996#undef ARM_VARIANT
18997#define ARM_VARIANT &fpu_vfp_ext_fma
18998#undef THUMB_VARIANT
18999#define THUMB_VARIANT &fpu_vfp_ext_fma
19000 /* Mnemonics shared by Neon and VFP. These are included in the
19001 VFP FMA variant; NEON and VFP FMA always includes the NEON
19002 FMA instructions. */
19003 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19004 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19005 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
19006 the v form should always be used. */
19007 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19008 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19009 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19010 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19011 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19012 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19013
5287ad62 19014#undef THUMB_VARIANT
c921be7d
NC
19015#undef ARM_VARIANT
19016#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19017
21d799b5
NC
19018 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19019 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19020 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19021 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19022 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19023 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19024 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19025 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 19026
c921be7d
NC
19027#undef ARM_VARIANT
19028#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19029
21d799b5
NC
19030 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19031 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19032 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19033 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19034 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19035 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19036 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19037 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19038 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19039 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19040 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19041 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19042 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19043 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19044 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19045 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19046 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19047 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19048 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19049 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19050 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19051 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19052 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19053 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19054 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19055 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19056 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19057 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19058 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19059 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19060 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19061 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19062 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19063 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19064 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19065 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19066 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19067 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19068 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19069 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19070 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19071 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19072 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19073 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19074 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19075 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19076 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19077 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19078 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19079 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19080 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19081 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19082 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19083 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19084 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19085 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19086 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19087 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19088 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19089 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19090 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19091 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19092 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19093 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19094 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19095 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19096 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19097 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19098 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19099 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19100 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19101 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19102 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19103 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19104 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19105 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19106 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19107 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19108 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19109 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19110 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19111 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19112 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19113 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19114 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19115 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19116 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19117 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19118 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19119 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19120 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19121 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19122 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19123 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19124 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19125 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19126 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19127 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19128 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19129 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19130 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19131 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19132 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19133 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19134 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19135 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19136 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19137 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19138 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19139 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19140 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19141 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19142 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19143 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19144 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19145 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19146 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19147 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19148 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19149 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19150 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19151 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19152 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19153 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19154 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19155 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19156 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19157 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19158 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19159 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19160 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19161 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19162 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19163 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19164 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19165 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19166 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19167 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19168 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19169 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19170 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19171 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19172 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19173 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19174 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19175 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19176 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19177 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19178 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19179 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19180 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19181 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19182 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19183 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19184 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19185 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19186 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19187 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19188 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19189 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19190 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19191 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 19192
c921be7d
NC
19193#undef ARM_VARIANT
19194#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19195
21d799b5
NC
19196 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19197 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19198 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19199 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19200 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19201 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19202 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19203 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19204 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19205 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19206 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19207 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19208 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19209 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19210 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19211 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19212 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19213 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19214 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19215 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19216 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19217 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19218 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19219 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19220 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19221 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19222 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19223 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19224 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19225 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19226 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19227 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19228 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19229 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19230 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19231 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19232 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19233 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19234 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19235 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19236 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19237 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19238 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19239 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19240 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19241 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19242 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19243 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19244 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19245 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19246 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19247 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19248 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19249 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19250 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19251 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19252 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 19253
c921be7d
NC
19254#undef ARM_VARIANT
19255#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19256
21d799b5
NC
19257 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19258 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19259 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19260 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19261 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19262 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19263 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19264 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19265 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19266 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19267 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19268 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19269 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19270 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19271 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19272 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19273 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19274 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19275 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19276 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19277 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19278 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19279 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19280 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19281 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19282 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19283 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19284 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19285 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19286 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19287 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19288 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19289 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19290 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19291 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19292 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19293 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19294 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19295 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19296 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19297 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19298 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19299 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19300 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19301 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19302 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19303 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19304 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19305 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19306 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19307 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19308 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19309 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19310 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19311 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19312 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19313 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19314 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19315 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19316 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19317 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19318 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19319 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19320 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19321 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19322 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19323 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19324 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19325 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19326 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19327 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19328 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19329 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19330 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19331 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19332 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
19333};
19334#undef ARM_VARIANT
19335#undef THUMB_VARIANT
19336#undef TCE
19337#undef TCM
19338#undef TUE
19339#undef TUF
19340#undef TCC
8f06b2d8 19341#undef cCE
e3cb604e
PB
19342#undef cCL
19343#undef C3E
c19d1205
ZW
19344#undef CE
19345#undef CM
19346#undef UE
19347#undef UF
19348#undef UT
5287ad62
JB
19349#undef NUF
19350#undef nUF
19351#undef NCE
19352#undef nCE
c19d1205
ZW
19353#undef OPS0
19354#undef OPS1
19355#undef OPS2
19356#undef OPS3
19357#undef OPS4
19358#undef OPS5
19359#undef OPS6
19360#undef do_0
19361\f
19362/* MD interface: bits in the object file. */
bfae80f2 19363
c19d1205
ZW
19364/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19365 for use in the a.out file, and stores them in the array pointed to by buf.
19366 This knows about the endian-ness of the target machine and does
19367 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19368 2 (short) and 4 (long) Floating numbers are put out as a series of
19369 LITTLENUMS (shorts, here at least). */
b99bd4ef 19370
c19d1205
ZW
19371void
19372md_number_to_chars (char * buf, valueT val, int n)
19373{
19374 if (target_big_endian)
19375 number_to_chars_bigendian (buf, val, n);
19376 else
19377 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
19378}
19379
c19d1205
ZW
19380static valueT
19381md_chars_to_number (char * buf, int n)
bfae80f2 19382{
c19d1205
ZW
19383 valueT result = 0;
19384 unsigned char * where = (unsigned char *) buf;
bfae80f2 19385
c19d1205 19386 if (target_big_endian)
b99bd4ef 19387 {
c19d1205
ZW
19388 while (n--)
19389 {
19390 result <<= 8;
19391 result |= (*where++ & 255);
19392 }
b99bd4ef 19393 }
c19d1205 19394 else
b99bd4ef 19395 {
c19d1205
ZW
19396 while (n--)
19397 {
19398 result <<= 8;
19399 result |= (where[n] & 255);
19400 }
bfae80f2 19401 }
b99bd4ef 19402
c19d1205 19403 return result;
bfae80f2 19404}
b99bd4ef 19405
c19d1205 19406/* MD interface: Sections. */
b99bd4ef 19407
fa94de6b
RM
19408/* Calculate the maximum variable size (i.e., excluding fr_fix)
19409 that an rs_machine_dependent frag may reach. */
19410
19411unsigned int
19412arm_frag_max_var (fragS *fragp)
19413{
19414 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19415 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19416
19417 Note that we generate relaxable instructions even for cases that don't
19418 really need it, like an immediate that's a trivial constant. So we're
19419 overestimating the instruction size for some of those cases. Rather
19420 than putting more intelligence here, it would probably be better to
19421 avoid generating a relaxation frag in the first place when it can be
19422 determined up front that a short instruction will suffice. */
19423
19424 gas_assert (fragp->fr_type == rs_machine_dependent);
19425 return INSN_SIZE;
19426}
19427
0110f2b8
PB
19428/* Estimate the size of a frag before relaxing. Assume everything fits in
19429 2 bytes. */
19430
c19d1205 19431int
0110f2b8 19432md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
19433 segT segtype ATTRIBUTE_UNUSED)
19434{
0110f2b8
PB
19435 fragp->fr_var = 2;
19436 return 2;
19437}
19438
19439/* Convert a machine dependent frag. */
19440
19441void
19442md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19443{
19444 unsigned long insn;
19445 unsigned long old_op;
19446 char *buf;
19447 expressionS exp;
19448 fixS *fixp;
19449 int reloc_type;
19450 int pc_rel;
19451 int opcode;
19452
19453 buf = fragp->fr_literal + fragp->fr_fix;
19454
19455 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
19456 if (fragp->fr_symbol)
19457 {
0110f2b8
PB
19458 exp.X_op = O_symbol;
19459 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
19460 }
19461 else
19462 {
0110f2b8 19463 exp.X_op = O_constant;
5f4273c7 19464 }
0110f2b8
PB
19465 exp.X_add_number = fragp->fr_offset;
19466 opcode = fragp->fr_subtype;
19467 switch (opcode)
19468 {
19469 case T_MNEM_ldr_pc:
19470 case T_MNEM_ldr_pc2:
19471 case T_MNEM_ldr_sp:
19472 case T_MNEM_str_sp:
19473 case T_MNEM_ldr:
19474 case T_MNEM_ldrb:
19475 case T_MNEM_ldrh:
19476 case T_MNEM_str:
19477 case T_MNEM_strb:
19478 case T_MNEM_strh:
19479 if (fragp->fr_var == 4)
19480 {
5f4273c7 19481 insn = THUMB_OP32 (opcode);
0110f2b8
PB
19482 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19483 {
19484 insn |= (old_op & 0x700) << 4;
19485 }
19486 else
19487 {
19488 insn |= (old_op & 7) << 12;
19489 insn |= (old_op & 0x38) << 13;
19490 }
19491 insn |= 0x00000c00;
19492 put_thumb32_insn (buf, insn);
19493 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19494 }
19495 else
19496 {
19497 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19498 }
19499 pc_rel = (opcode == T_MNEM_ldr_pc2);
19500 break;
19501 case T_MNEM_adr:
19502 if (fragp->fr_var == 4)
19503 {
19504 insn = THUMB_OP32 (opcode);
19505 insn |= (old_op & 0xf0) << 4;
19506 put_thumb32_insn (buf, insn);
19507 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19508 }
19509 else
19510 {
19511 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19512 exp.X_add_number -= 4;
19513 }
19514 pc_rel = 1;
19515 break;
19516 case T_MNEM_mov:
19517 case T_MNEM_movs:
19518 case T_MNEM_cmp:
19519 case T_MNEM_cmn:
19520 if (fragp->fr_var == 4)
19521 {
19522 int r0off = (opcode == T_MNEM_mov
19523 || opcode == T_MNEM_movs) ? 0 : 8;
19524 insn = THUMB_OP32 (opcode);
19525 insn = (insn & 0xe1ffffff) | 0x10000000;
19526 insn |= (old_op & 0x700) << r0off;
19527 put_thumb32_insn (buf, insn);
19528 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19529 }
19530 else
19531 {
19532 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19533 }
19534 pc_rel = 0;
19535 break;
19536 case T_MNEM_b:
19537 if (fragp->fr_var == 4)
19538 {
19539 insn = THUMB_OP32(opcode);
19540 put_thumb32_insn (buf, insn);
19541 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19542 }
19543 else
19544 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19545 pc_rel = 1;
19546 break;
19547 case T_MNEM_bcond:
19548 if (fragp->fr_var == 4)
19549 {
19550 insn = THUMB_OP32(opcode);
19551 insn |= (old_op & 0xf00) << 14;
19552 put_thumb32_insn (buf, insn);
19553 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19554 }
19555 else
19556 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19557 pc_rel = 1;
19558 break;
19559 case T_MNEM_add_sp:
19560 case T_MNEM_add_pc:
19561 case T_MNEM_inc_sp:
19562 case T_MNEM_dec_sp:
19563 if (fragp->fr_var == 4)
19564 {
19565 /* ??? Choose between add and addw. */
19566 insn = THUMB_OP32 (opcode);
19567 insn |= (old_op & 0xf0) << 4;
19568 put_thumb32_insn (buf, insn);
16805f35
PB
19569 if (opcode == T_MNEM_add_pc)
19570 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19571 else
19572 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
19573 }
19574 else
19575 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19576 pc_rel = 0;
19577 break;
19578
19579 case T_MNEM_addi:
19580 case T_MNEM_addis:
19581 case T_MNEM_subi:
19582 case T_MNEM_subis:
19583 if (fragp->fr_var == 4)
19584 {
19585 insn = THUMB_OP32 (opcode);
19586 insn |= (old_op & 0xf0) << 4;
19587 insn |= (old_op & 0xf) << 16;
19588 put_thumb32_insn (buf, insn);
16805f35
PB
19589 if (insn & (1 << 20))
19590 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19591 else
19592 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
19593 }
19594 else
19595 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19596 pc_rel = 0;
19597 break;
19598 default:
5f4273c7 19599 abort ();
0110f2b8
PB
19600 }
19601 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 19602 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
19603 fixp->fx_file = fragp->fr_file;
19604 fixp->fx_line = fragp->fr_line;
19605 fragp->fr_fix += fragp->fr_var;
19606}
19607
19608/* Return the size of a relaxable immediate operand instruction.
19609 SHIFT and SIZE specify the form of the allowable immediate. */
19610static int
19611relax_immediate (fragS *fragp, int size, int shift)
19612{
19613 offsetT offset;
19614 offsetT mask;
19615 offsetT low;
19616
19617 /* ??? Should be able to do better than this. */
19618 if (fragp->fr_symbol)
19619 return 4;
19620
19621 low = (1 << shift) - 1;
19622 mask = (1 << (shift + size)) - (1 << shift);
19623 offset = fragp->fr_offset;
19624 /* Force misaligned offsets to 32-bit variant. */
19625 if (offset & low)
5e77afaa 19626 return 4;
0110f2b8
PB
19627 if (offset & ~mask)
19628 return 4;
19629 return 2;
19630}
19631
5e77afaa
PB
19632/* Get the address of a symbol during relaxation. */
19633static addressT
5f4273c7 19634relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
19635{
19636 fragS *sym_frag;
19637 addressT addr;
19638 symbolS *sym;
19639
19640 sym = fragp->fr_symbol;
19641 sym_frag = symbol_get_frag (sym);
19642 know (S_GET_SEGMENT (sym) != absolute_section
19643 || sym_frag == &zero_address_frag);
19644 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19645
19646 /* If frag has yet to be reached on this pass, assume it will
19647 move by STRETCH just as we did. If this is not so, it will
19648 be because some frag between grows, and that will force
19649 another pass. */
19650
19651 if (stretch != 0
19652 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
19653 {
19654 fragS *f;
19655
19656 /* Adjust stretch for any alignment frag. Note that if have
19657 been expanding the earlier code, the symbol may be
19658 defined in what appears to be an earlier frag. FIXME:
19659 This doesn't handle the fr_subtype field, which specifies
19660 a maximum number of bytes to skip when doing an
19661 alignment. */
19662 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19663 {
19664 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19665 {
19666 if (stretch < 0)
19667 stretch = - ((- stretch)
19668 & ~ ((1 << (int) f->fr_offset) - 1));
19669 else
19670 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19671 if (stretch == 0)
19672 break;
19673 }
19674 }
19675 if (f != NULL)
19676 addr += stretch;
19677 }
5e77afaa
PB
19678
19679 return addr;
19680}
19681
0110f2b8
PB
19682/* Return the size of a relaxable adr pseudo-instruction or PC-relative
19683 load. */
19684static int
5e77afaa 19685relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
19686{
19687 addressT addr;
19688 offsetT val;
19689
19690 /* Assume worst case for symbols not known to be in the same section. */
974da60d
NC
19691 if (fragp->fr_symbol == NULL
19692 || !S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19693 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19694 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19695 return 4;
19696
5f4273c7 19697 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19698 addr = fragp->fr_address + fragp->fr_fix;
19699 addr = (addr + 4) & ~3;
5e77afaa 19700 /* Force misaligned targets to 32-bit variant. */
0110f2b8 19701 if (val & 3)
5e77afaa 19702 return 4;
0110f2b8
PB
19703 val -= addr;
19704 if (val < 0 || val > 1020)
19705 return 4;
19706 return 2;
19707}
19708
19709/* Return the size of a relaxable add/sub immediate instruction. */
19710static int
19711relax_addsub (fragS *fragp, asection *sec)
19712{
19713 char *buf;
19714 int op;
19715
19716 buf = fragp->fr_literal + fragp->fr_fix;
19717 op = bfd_get_16(sec->owner, buf);
19718 if ((op & 0xf) == ((op >> 4) & 0xf))
19719 return relax_immediate (fragp, 8, 0);
19720 else
19721 return relax_immediate (fragp, 3, 0);
19722}
19723
19724
19725/* Return the size of a relaxable branch instruction. BITS is the
19726 size of the offset field in the narrow instruction. */
19727
19728static int
5e77afaa 19729relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
19730{
19731 addressT addr;
19732 offsetT val;
19733 offsetT limit;
19734
19735 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 19736 if (!S_IS_DEFINED (fragp->fr_symbol)
77db8e2e
NC
19737 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19738 || S_IS_WEAK (fragp->fr_symbol))
0110f2b8
PB
19739 return 4;
19740
267bf995
RR
19741#ifdef OBJ_ELF
19742 if (S_IS_DEFINED (fragp->fr_symbol)
19743 && ARM_IS_FUNC (fragp->fr_symbol))
19744 return 4;
0d9b4b55
NC
19745
19746 /* PR 12532. Global symbols with default visibility might
19747 be preempted, so do not relax relocations to them. */
19748 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19749 && (! S_IS_LOCAL (fragp->fr_symbol)))
19750 return 4;
267bf995
RR
19751#endif
19752
5f4273c7 19753 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
19754 addr = fragp->fr_address + fragp->fr_fix + 4;
19755 val -= addr;
19756
19757 /* Offset is a signed value *2 */
19758 limit = 1 << bits;
19759 if (val >= limit || val < -limit)
19760 return 4;
19761 return 2;
19762}
19763
19764
19765/* Relax a machine dependent frag. This returns the amount by which
19766 the current size of the frag should change. */
19767
19768int
5e77afaa 19769arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
19770{
19771 int oldsize;
19772 int newsize;
19773
19774 oldsize = fragp->fr_var;
19775 switch (fragp->fr_subtype)
19776 {
19777 case T_MNEM_ldr_pc2:
5f4273c7 19778 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19779 break;
19780 case T_MNEM_ldr_pc:
19781 case T_MNEM_ldr_sp:
19782 case T_MNEM_str_sp:
5f4273c7 19783 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
19784 break;
19785 case T_MNEM_ldr:
19786 case T_MNEM_str:
5f4273c7 19787 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
19788 break;
19789 case T_MNEM_ldrh:
19790 case T_MNEM_strh:
5f4273c7 19791 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
19792 break;
19793 case T_MNEM_ldrb:
19794 case T_MNEM_strb:
5f4273c7 19795 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
19796 break;
19797 case T_MNEM_adr:
5f4273c7 19798 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
19799 break;
19800 case T_MNEM_mov:
19801 case T_MNEM_movs:
19802 case T_MNEM_cmp:
19803 case T_MNEM_cmn:
5f4273c7 19804 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
19805 break;
19806 case T_MNEM_b:
5f4273c7 19807 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
19808 break;
19809 case T_MNEM_bcond:
5f4273c7 19810 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
19811 break;
19812 case T_MNEM_add_sp:
19813 case T_MNEM_add_pc:
19814 newsize = relax_immediate (fragp, 8, 2);
19815 break;
19816 case T_MNEM_inc_sp:
19817 case T_MNEM_dec_sp:
19818 newsize = relax_immediate (fragp, 7, 2);
19819 break;
19820 case T_MNEM_addi:
19821 case T_MNEM_addis:
19822 case T_MNEM_subi:
19823 case T_MNEM_subis:
19824 newsize = relax_addsub (fragp, sec);
19825 break;
19826 default:
5f4273c7 19827 abort ();
0110f2b8 19828 }
5e77afaa
PB
19829
19830 fragp->fr_var = newsize;
19831 /* Freeze wide instructions that are at or before the same location as
19832 in the previous pass. This avoids infinite loops.
5f4273c7
NC
19833 Don't freeze them unconditionally because targets may be artificially
19834 misaligned by the expansion of preceding frags. */
5e77afaa 19835 if (stretch <= 0 && newsize > 2)
0110f2b8 19836 {
0110f2b8 19837 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 19838 frag_wane (fragp);
0110f2b8 19839 }
5e77afaa 19840
0110f2b8 19841 return newsize - oldsize;
c19d1205 19842}
b99bd4ef 19843
c19d1205 19844/* Round up a section size to the appropriate boundary. */
b99bd4ef 19845
c19d1205
ZW
19846valueT
19847md_section_align (segT segment ATTRIBUTE_UNUSED,
19848 valueT size)
19849{
f0927246
NC
19850#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19851 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19852 {
19853 /* For a.out, force the section size to be aligned. If we don't do
19854 this, BFD will align it for us, but it will not write out the
19855 final bytes of the section. This may be a bug in BFD, but it is
19856 easier to fix it here since that is how the other a.out targets
19857 work. */
19858 int align;
19859
19860 align = bfd_get_section_alignment (stdoutput, segment);
19861 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19862 }
c19d1205 19863#endif
f0927246
NC
19864
19865 return size;
bfae80f2 19866}
b99bd4ef 19867
c19d1205
ZW
19868/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19869 of an rs_align_code fragment. */
19870
19871void
19872arm_handle_align (fragS * fragP)
bfae80f2 19873{
e7495e45
NS
19874 static char const arm_noop[2][2][4] =
19875 {
19876 { /* ARMv1 */
19877 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19878 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19879 },
19880 { /* ARMv6k */
19881 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19882 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19883 },
19884 };
19885 static char const thumb_noop[2][2][2] =
19886 {
19887 { /* Thumb-1 */
19888 {0xc0, 0x46}, /* LE */
19889 {0x46, 0xc0}, /* BE */
19890 },
19891 { /* Thumb-2 */
19892 {0x00, 0xbf}, /* LE */
19893 {0xbf, 0x00} /* BE */
19894 }
19895 };
19896 static char const wide_thumb_noop[2][4] =
19897 { /* Wide Thumb-2 */
19898 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19899 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19900 };
c921be7d 19901
e7495e45 19902 unsigned bytes, fix, noop_size;
c19d1205
ZW
19903 char * p;
19904 const char * noop;
e7495e45 19905 const char *narrow_noop = NULL;
cd000bff
DJ
19906#ifdef OBJ_ELF
19907 enum mstate state;
19908#endif
bfae80f2 19909
c19d1205 19910 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
19911 return;
19912
c19d1205
ZW
19913 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19914 p = fragP->fr_literal + fragP->fr_fix;
19915 fix = 0;
bfae80f2 19916
c19d1205
ZW
19917 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19918 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 19919
cd000bff 19920 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
8dc2430f 19921
cd000bff 19922 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 19923 {
e7495e45
NS
19924 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19925 {
19926 narrow_noop = thumb_noop[1][target_big_endian];
19927 noop = wide_thumb_noop[target_big_endian];
19928 }
c19d1205 19929 else
e7495e45
NS
19930 noop = thumb_noop[0][target_big_endian];
19931 noop_size = 2;
cd000bff
DJ
19932#ifdef OBJ_ELF
19933 state = MAP_THUMB;
19934#endif
7ed4c4c5
NC
19935 }
19936 else
19937 {
e7495e45
NS
19938 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19939 [target_big_endian];
19940 noop_size = 4;
cd000bff
DJ
19941#ifdef OBJ_ELF
19942 state = MAP_ARM;
19943#endif
7ed4c4c5 19944 }
c921be7d 19945
e7495e45 19946 fragP->fr_var = noop_size;
c921be7d 19947
c19d1205 19948 if (bytes & (noop_size - 1))
7ed4c4c5 19949 {
c19d1205 19950 fix = bytes & (noop_size - 1);
cd000bff
DJ
19951#ifdef OBJ_ELF
19952 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19953#endif
c19d1205
ZW
19954 memset (p, 0, fix);
19955 p += fix;
19956 bytes -= fix;
a737bd4d 19957 }
a737bd4d 19958
e7495e45
NS
19959 if (narrow_noop)
19960 {
19961 if (bytes & noop_size)
19962 {
19963 /* Insert a narrow noop. */
19964 memcpy (p, narrow_noop, noop_size);
19965 p += noop_size;
19966 bytes -= noop_size;
19967 fix += noop_size;
19968 }
19969
19970 /* Use wide noops for the remainder */
19971 noop_size = 4;
19972 }
19973
c19d1205 19974 while (bytes >= noop_size)
a737bd4d 19975 {
c19d1205
ZW
19976 memcpy (p, noop, noop_size);
19977 p += noop_size;
19978 bytes -= noop_size;
19979 fix += noop_size;
a737bd4d
NC
19980 }
19981
c19d1205 19982 fragP->fr_fix += fix;
a737bd4d
NC
19983}
19984
c19d1205
ZW
19985/* Called from md_do_align. Used to create an alignment
19986 frag in a code section. */
19987
19988void
19989arm_frag_align_code (int n, int max)
bfae80f2 19990{
c19d1205 19991 char * p;
7ed4c4c5 19992
c19d1205 19993 /* We assume that there will never be a requirement
6ec8e702 19994 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 19995 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
19996 {
19997 char err_msg[128];
19998
fa94de6b 19999 sprintf (err_msg,
6ec8e702
NC
20000 _("alignments greater than %d bytes not supported in .text sections."),
20001 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 20002 as_fatal ("%s", err_msg);
6ec8e702 20003 }
bfae80f2 20004
c19d1205
ZW
20005 p = frag_var (rs_align_code,
20006 MAX_MEM_FOR_RS_ALIGN_CODE,
20007 1,
20008 (relax_substateT) max,
20009 (symbolS *) NULL,
20010 (offsetT) n,
20011 (char *) NULL);
20012 *p = 0;
20013}
bfae80f2 20014
8dc2430f
NC
20015/* Perform target specific initialisation of a frag.
20016 Note - despite the name this initialisation is not done when the frag
20017 is created, but only when its type is assigned. A frag can be created
20018 and used a long time before its type is set, so beware of assuming that
20019 this initialisationis performed first. */
bfae80f2 20020
cd000bff
DJ
20021#ifndef OBJ_ELF
20022void
20023arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20024{
20025 /* Record whether this frag is in an ARM or a THUMB area. */
2e98972e 20026 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
cd000bff
DJ
20027}
20028
20029#else /* OBJ_ELF is defined. */
c19d1205 20030void
cd000bff 20031arm_init_frag (fragS * fragP, int max_chars)
c19d1205 20032{
8dc2430f
NC
20033 /* If the current ARM vs THUMB mode has not already
20034 been recorded into this frag then do so now. */
cd000bff
DJ
20035 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20036 {
20037 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20038
20039 /* Record a mapping symbol for alignment frags. We will delete this
20040 later if the alignment ends up empty. */
20041 switch (fragP->fr_type)
20042 {
20043 case rs_align:
20044 case rs_align_test:
20045 case rs_fill:
20046 mapping_state_2 (MAP_DATA, max_chars);
20047 break;
20048 case rs_align_code:
20049 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20050 break;
20051 default:
20052 break;
20053 }
20054 }
bfae80f2
RE
20055}
20056
c19d1205
ZW
20057/* When we change sections we need to issue a new mapping symbol. */
20058
20059void
20060arm_elf_change_section (void)
bfae80f2 20061{
c19d1205
ZW
20062 /* Link an unlinked unwind index table section to the .text section. */
20063 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20064 && elf_linked_to_section (now_seg) == NULL)
20065 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
20066}
20067
c19d1205
ZW
20068int
20069arm_elf_section_type (const char * str, size_t len)
e45d0630 20070{
c19d1205
ZW
20071 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20072 return SHT_ARM_EXIDX;
e45d0630 20073
c19d1205
ZW
20074 return -1;
20075}
20076\f
20077/* Code to deal with unwinding tables. */
e45d0630 20078
c19d1205 20079static void add_unwind_adjustsp (offsetT);
e45d0630 20080
5f4273c7 20081/* Generate any deferred unwind frame offset. */
e45d0630 20082
bfae80f2 20083static void
c19d1205 20084flush_pending_unwind (void)
bfae80f2 20085{
c19d1205 20086 offsetT offset;
bfae80f2 20087
c19d1205
ZW
20088 offset = unwind.pending_offset;
20089 unwind.pending_offset = 0;
20090 if (offset != 0)
20091 add_unwind_adjustsp (offset);
bfae80f2
RE
20092}
20093
c19d1205
ZW
20094/* Add an opcode to this list for this function. Two-byte opcodes should
20095 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20096 order. */
20097
bfae80f2 20098static void
c19d1205 20099add_unwind_opcode (valueT op, int length)
bfae80f2 20100{
c19d1205
ZW
20101 /* Add any deferred stack adjustment. */
20102 if (unwind.pending_offset)
20103 flush_pending_unwind ();
bfae80f2 20104
c19d1205 20105 unwind.sp_restored = 0;
bfae80f2 20106
c19d1205 20107 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 20108 {
c19d1205
ZW
20109 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20110 if (unwind.opcodes)
21d799b5
NC
20111 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20112 unwind.opcode_alloc);
c19d1205 20113 else
21d799b5 20114 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 20115 }
c19d1205 20116 while (length > 0)
bfae80f2 20117 {
c19d1205
ZW
20118 length--;
20119 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20120 op >>= 8;
20121 unwind.opcode_count++;
bfae80f2 20122 }
bfae80f2
RE
20123}
20124
c19d1205
ZW
20125/* Add unwind opcodes to adjust the stack pointer. */
20126
bfae80f2 20127static void
c19d1205 20128add_unwind_adjustsp (offsetT offset)
bfae80f2 20129{
c19d1205 20130 valueT op;
bfae80f2 20131
c19d1205 20132 if (offset > 0x200)
bfae80f2 20133 {
c19d1205
ZW
20134 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20135 char bytes[5];
20136 int n;
20137 valueT o;
bfae80f2 20138
c19d1205
ZW
20139 /* Long form: 0xb2, uleb128. */
20140 /* This might not fit in a word so add the individual bytes,
20141 remembering the list is built in reverse order. */
20142 o = (valueT) ((offset - 0x204) >> 2);
20143 if (o == 0)
20144 add_unwind_opcode (0, 1);
bfae80f2 20145
c19d1205
ZW
20146 /* Calculate the uleb128 encoding of the offset. */
20147 n = 0;
20148 while (o)
20149 {
20150 bytes[n] = o & 0x7f;
20151 o >>= 7;
20152 if (o)
20153 bytes[n] |= 0x80;
20154 n++;
20155 }
20156 /* Add the insn. */
20157 for (; n; n--)
20158 add_unwind_opcode (bytes[n - 1], 1);
20159 add_unwind_opcode (0xb2, 1);
20160 }
20161 else if (offset > 0x100)
bfae80f2 20162 {
c19d1205
ZW
20163 /* Two short opcodes. */
20164 add_unwind_opcode (0x3f, 1);
20165 op = (offset - 0x104) >> 2;
20166 add_unwind_opcode (op, 1);
bfae80f2 20167 }
c19d1205
ZW
20168 else if (offset > 0)
20169 {
20170 /* Short opcode. */
20171 op = (offset - 4) >> 2;
20172 add_unwind_opcode (op, 1);
20173 }
20174 else if (offset < 0)
bfae80f2 20175 {
c19d1205
ZW
20176 offset = -offset;
20177 while (offset > 0x100)
bfae80f2 20178 {
c19d1205
ZW
20179 add_unwind_opcode (0x7f, 1);
20180 offset -= 0x100;
bfae80f2 20181 }
c19d1205
ZW
20182 op = ((offset - 4) >> 2) | 0x40;
20183 add_unwind_opcode (op, 1);
bfae80f2 20184 }
bfae80f2
RE
20185}
20186
c19d1205
ZW
20187/* Finish the list of unwind opcodes for this function. */
20188static void
20189finish_unwind_opcodes (void)
bfae80f2 20190{
c19d1205 20191 valueT op;
bfae80f2 20192
c19d1205 20193 if (unwind.fp_used)
bfae80f2 20194 {
708587a4 20195 /* Adjust sp as necessary. */
c19d1205
ZW
20196 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20197 flush_pending_unwind ();
bfae80f2 20198
c19d1205
ZW
20199 /* After restoring sp from the frame pointer. */
20200 op = 0x90 | unwind.fp_reg;
20201 add_unwind_opcode (op, 1);
20202 }
20203 else
20204 flush_pending_unwind ();
bfae80f2
RE
20205}
20206
bfae80f2 20207
c19d1205
ZW
20208/* Start an exception table entry. If idx is nonzero this is an index table
20209 entry. */
bfae80f2
RE
20210
20211static void
c19d1205 20212start_unwind_section (const segT text_seg, int idx)
bfae80f2 20213{
c19d1205
ZW
20214 const char * text_name;
20215 const char * prefix;
20216 const char * prefix_once;
20217 const char * group_name;
20218 size_t prefix_len;
20219 size_t text_len;
20220 char * sec_name;
20221 size_t sec_name_len;
20222 int type;
20223 int flags;
20224 int linkonce;
bfae80f2 20225
c19d1205 20226 if (idx)
bfae80f2 20227 {
c19d1205
ZW
20228 prefix = ELF_STRING_ARM_unwind;
20229 prefix_once = ELF_STRING_ARM_unwind_once;
20230 type = SHT_ARM_EXIDX;
bfae80f2 20231 }
c19d1205 20232 else
bfae80f2 20233 {
c19d1205
ZW
20234 prefix = ELF_STRING_ARM_unwind_info;
20235 prefix_once = ELF_STRING_ARM_unwind_info_once;
20236 type = SHT_PROGBITS;
bfae80f2
RE
20237 }
20238
c19d1205
ZW
20239 text_name = segment_name (text_seg);
20240 if (streq (text_name, ".text"))
20241 text_name = "";
20242
20243 if (strncmp (text_name, ".gnu.linkonce.t.",
20244 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 20245 {
c19d1205
ZW
20246 prefix = prefix_once;
20247 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
20248 }
20249
c19d1205
ZW
20250 prefix_len = strlen (prefix);
20251 text_len = strlen (text_name);
20252 sec_name_len = prefix_len + text_len;
21d799b5 20253 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
20254 memcpy (sec_name, prefix, prefix_len);
20255 memcpy (sec_name + prefix_len, text_name, text_len);
20256 sec_name[prefix_len + text_len] = '\0';
bfae80f2 20257
c19d1205
ZW
20258 flags = SHF_ALLOC;
20259 linkonce = 0;
20260 group_name = 0;
bfae80f2 20261
c19d1205
ZW
20262 /* Handle COMDAT group. */
20263 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 20264 {
c19d1205
ZW
20265 group_name = elf_group_name (text_seg);
20266 if (group_name == NULL)
20267 {
bd3ba5d1 20268 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
20269 segment_name (text_seg));
20270 ignore_rest_of_line ();
20271 return;
20272 }
20273 flags |= SHF_GROUP;
20274 linkonce = 1;
bfae80f2
RE
20275 }
20276
c19d1205 20277 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 20278
5f4273c7 20279 /* Set the section link for index tables. */
c19d1205
ZW
20280 if (idx)
20281 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
20282}
20283
bfae80f2 20284
c19d1205
ZW
20285/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20286 personality routine data. Returns zero, or the index table value for
20287 and inline entry. */
20288
20289static valueT
20290create_unwind_entry (int have_data)
bfae80f2 20291{
c19d1205
ZW
20292 int size;
20293 addressT where;
20294 char *ptr;
20295 /* The current word of data. */
20296 valueT data;
20297 /* The number of bytes left in this word. */
20298 int n;
bfae80f2 20299
c19d1205 20300 finish_unwind_opcodes ();
bfae80f2 20301
c19d1205
ZW
20302 /* Remember the current text section. */
20303 unwind.saved_seg = now_seg;
20304 unwind.saved_subseg = now_subseg;
bfae80f2 20305
c19d1205 20306 start_unwind_section (now_seg, 0);
bfae80f2 20307
c19d1205 20308 if (unwind.personality_routine == NULL)
bfae80f2 20309 {
c19d1205
ZW
20310 if (unwind.personality_index == -2)
20311 {
20312 if (have_data)
5f4273c7 20313 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
20314 return 1; /* EXIDX_CANTUNWIND. */
20315 }
bfae80f2 20316
c19d1205
ZW
20317 /* Use a default personality routine if none is specified. */
20318 if (unwind.personality_index == -1)
20319 {
20320 if (unwind.opcode_count > 3)
20321 unwind.personality_index = 1;
20322 else
20323 unwind.personality_index = 0;
20324 }
bfae80f2 20325
c19d1205
ZW
20326 /* Space for the personality routine entry. */
20327 if (unwind.personality_index == 0)
20328 {
20329 if (unwind.opcode_count > 3)
20330 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 20331
c19d1205
ZW
20332 if (!have_data)
20333 {
20334 /* All the data is inline in the index table. */
20335 data = 0x80;
20336 n = 3;
20337 while (unwind.opcode_count > 0)
20338 {
20339 unwind.opcode_count--;
20340 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20341 n--;
20342 }
bfae80f2 20343
c19d1205
ZW
20344 /* Pad with "finish" opcodes. */
20345 while (n--)
20346 data = (data << 8) | 0xb0;
bfae80f2 20347
c19d1205
ZW
20348 return data;
20349 }
20350 size = 0;
20351 }
20352 else
20353 /* We get two opcodes "free" in the first word. */
20354 size = unwind.opcode_count - 2;
20355 }
20356 else
5011093d
NC
20357 {
20358 gas_assert (unwind.personality_index == -1);
20359
20360 /* An extra byte is required for the opcode count. */
20361 size = unwind.opcode_count + 1;
20362 }
bfae80f2 20363
c19d1205
ZW
20364 size = (size + 3) >> 2;
20365 if (size > 0xff)
20366 as_bad (_("too many unwind opcodes"));
bfae80f2 20367
c19d1205
ZW
20368 frag_align (2, 0, 0);
20369 record_alignment (now_seg, 2);
20370 unwind.table_entry = expr_build_dot ();
20371
20372 /* Allocate the table entry. */
20373 ptr = frag_more ((size << 2) + 4);
74929e7b
NC
20374 /* PR 13449: Zero the table entries in case some of them are not used. */
20375 memset (ptr, 0, (size << 2) + 4);
c19d1205 20376 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 20377
c19d1205 20378 switch (unwind.personality_index)
bfae80f2 20379 {
c19d1205
ZW
20380 case -1:
20381 /* ??? Should this be a PLT generating relocation? */
20382 /* Custom personality routine. */
20383 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20384 BFD_RELOC_ARM_PREL31);
bfae80f2 20385
c19d1205
ZW
20386 where += 4;
20387 ptr += 4;
bfae80f2 20388
c19d1205 20389 /* Set the first byte to the number of additional words. */
5011093d 20390 data = size > 0 ? size - 1 : 0;
c19d1205
ZW
20391 n = 3;
20392 break;
bfae80f2 20393
c19d1205
ZW
20394 /* ABI defined personality routines. */
20395 case 0:
20396 /* Three opcodes bytes are packed into the first word. */
20397 data = 0x80;
20398 n = 3;
20399 break;
bfae80f2 20400
c19d1205
ZW
20401 case 1:
20402 case 2:
20403 /* The size and first two opcode bytes go in the first word. */
20404 data = ((0x80 + unwind.personality_index) << 8) | size;
20405 n = 2;
20406 break;
bfae80f2 20407
c19d1205
ZW
20408 default:
20409 /* Should never happen. */
20410 abort ();
20411 }
bfae80f2 20412
c19d1205
ZW
20413 /* Pack the opcodes into words (MSB first), reversing the list at the same
20414 time. */
20415 while (unwind.opcode_count > 0)
20416 {
20417 if (n == 0)
20418 {
20419 md_number_to_chars (ptr, data, 4);
20420 ptr += 4;
20421 n = 4;
20422 data = 0;
20423 }
20424 unwind.opcode_count--;
20425 n--;
20426 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20427 }
20428
20429 /* Finish off the last word. */
20430 if (n < 4)
20431 {
20432 /* Pad with "finish" opcodes. */
20433 while (n--)
20434 data = (data << 8) | 0xb0;
20435
20436 md_number_to_chars (ptr, data, 4);
20437 }
20438
20439 if (!have_data)
20440 {
20441 /* Add an empty descriptor if there is no user-specified data. */
20442 ptr = frag_more (4);
20443 md_number_to_chars (ptr, 0, 4);
20444 }
20445
20446 return 0;
bfae80f2
RE
20447}
20448
f0927246
NC
20449
20450/* Initialize the DWARF-2 unwind information for this procedure. */
20451
20452void
20453tc_arm_frame_initial_instructions (void)
20454{
20455 cfi_add_CFA_def_cfa (REG_SP, 0);
20456}
20457#endif /* OBJ_ELF */
20458
c19d1205
ZW
20459/* Convert REGNAME to a DWARF-2 register number. */
20460
20461int
1df69f4f 20462tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 20463{
1df69f4f 20464 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
20465
20466 if (reg == FAIL)
20467 return -1;
20468
20469 return reg;
bfae80f2
RE
20470}
20471
f0927246 20472#ifdef TE_PE
c19d1205 20473void
f0927246 20474tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 20475{
91d6fa6a 20476 expressionS exp;
bfae80f2 20477
91d6fa6a
NC
20478 exp.X_op = O_secrel;
20479 exp.X_add_symbol = symbol;
20480 exp.X_add_number = 0;
20481 emit_expr (&exp, size);
f0927246
NC
20482}
20483#endif
bfae80f2 20484
c19d1205 20485/* MD interface: Symbol and relocation handling. */
bfae80f2 20486
2fc8bdac
ZW
20487/* Return the address within the segment that a PC-relative fixup is
20488 relative to. For ARM, PC-relative fixups applied to instructions
20489 are generally relative to the location of the fixup plus 8 bytes.
20490 Thumb branches are offset by 4, and Thumb loads relative to PC
20491 require special handling. */
bfae80f2 20492
c19d1205 20493long
2fc8bdac 20494md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 20495{
2fc8bdac
ZW
20496 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20497
20498 /* If this is pc-relative and we are going to emit a relocation
20499 then we just want to put out any pipeline compensation that the linker
53baae48
NC
20500 will need. Otherwise we want to use the calculated base.
20501 For WinCE we skip the bias for externals as well, since this
20502 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 20503 if (fixP->fx_pcrel
2fc8bdac 20504 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
20505 || (arm_force_relocation (fixP)
20506#ifdef TE_WINCE
20507 && !S_IS_EXTERNAL (fixP->fx_addsy)
20508#endif
20509 )))
2fc8bdac 20510 base = 0;
bfae80f2 20511
267bf995 20512
c19d1205 20513 switch (fixP->fx_r_type)
bfae80f2 20514 {
2fc8bdac
ZW
20515 /* PC relative addressing on the Thumb is slightly odd as the
20516 bottom two bits of the PC are forced to zero for the
20517 calculation. This happens *after* application of the
20518 pipeline offset. However, Thumb adrl already adjusts for
20519 this, so we need not do it again. */
c19d1205 20520 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 20521 return base & ~3;
c19d1205
ZW
20522
20523 case BFD_RELOC_ARM_THUMB_OFFSET:
20524 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 20525 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 20526 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 20527 return (base + 4) & ~3;
c19d1205 20528
2fc8bdac
ZW
20529 /* Thumb branches are simply offset by +4. */
20530 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20531 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20532 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20533 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 20534 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 20535 return base + 4;
bfae80f2 20536
267bf995 20537 case BFD_RELOC_THUMB_PCREL_BRANCH23:
486499d0
CL
20538 if (fixP->fx_addsy
20539 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20540 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20541 && ARM_IS_FUNC (fixP->fx_addsy)
20542 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20543 base = fixP->fx_where + fixP->fx_frag->fr_address;
20544 return base + 4;
20545
00adf2d4
JB
20546 /* BLX is like branches above, but forces the low two bits of PC to
20547 zero. */
486499d0
CL
20548 case BFD_RELOC_THUMB_PCREL_BLX:
20549 if (fixP->fx_addsy
20550 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20551 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20552 && THUMB_IS_FUNC (fixP->fx_addsy)
20553 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20554 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
20555 return (base + 4) & ~3;
20556
2fc8bdac
ZW
20557 /* ARM mode branches are offset by +8. However, the Windows CE
20558 loader expects the relocation not to take this into account. */
267bf995 20559 case BFD_RELOC_ARM_PCREL_BLX:
486499d0
CL
20560 if (fixP->fx_addsy
20561 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20562 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20563 && ARM_IS_FUNC (fixP->fx_addsy)
20564 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20565 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20566 return base + 8;
267bf995 20567
486499d0
CL
20568 case BFD_RELOC_ARM_PCREL_CALL:
20569 if (fixP->fx_addsy
20570 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 20571 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
20572 && THUMB_IS_FUNC (fixP->fx_addsy)
20573 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20574 base = fixP->fx_where + fixP->fx_frag->fr_address;
486499d0 20575 return base + 8;
267bf995 20576
2fc8bdac 20577 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 20578 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 20579 case BFD_RELOC_ARM_PLT32:
c19d1205 20580#ifdef TE_WINCE
5f4273c7 20581 /* When handling fixups immediately, because we have already
53baae48
NC
20582 discovered the value of a symbol, or the address of the frag involved
20583 we must account for the offset by +8, as the OS loader will never see the reloc.
20584 see fixup_segment() in write.c
20585 The S_IS_EXTERNAL test handles the case of global symbols.
20586 Those need the calculated base, not just the pipe compensation the linker will need. */
20587 if (fixP->fx_pcrel
20588 && fixP->fx_addsy != NULL
20589 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20590 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20591 return base + 8;
2fc8bdac 20592 return base;
c19d1205 20593#else
2fc8bdac 20594 return base + 8;
c19d1205 20595#endif
2fc8bdac 20596
267bf995 20597
2fc8bdac
ZW
20598 /* ARM mode loads relative to PC are also offset by +8. Unlike
20599 branches, the Windows CE loader *does* expect the relocation
20600 to take this into account. */
20601 case BFD_RELOC_ARM_OFFSET_IMM:
20602 case BFD_RELOC_ARM_OFFSET_IMM8:
20603 case BFD_RELOC_ARM_HWLITERAL:
20604 case BFD_RELOC_ARM_LITERAL:
20605 case BFD_RELOC_ARM_CP_OFF_IMM:
20606 return base + 8;
20607
20608
20609 /* Other PC-relative relocations are un-offset. */
20610 default:
20611 return base;
20612 }
bfae80f2
RE
20613}
20614
c19d1205
ZW
20615/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20616 Otherwise we have no need to default values of symbols. */
20617
20618symbolS *
20619md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 20620{
c19d1205
ZW
20621#ifdef OBJ_ELF
20622 if (name[0] == '_' && name[1] == 'G'
20623 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20624 {
20625 if (!GOT_symbol)
20626 {
20627 if (symbol_find (name))
bd3ba5d1 20628 as_bad (_("GOT already in the symbol table"));
bfae80f2 20629
c19d1205
ZW
20630 GOT_symbol = symbol_new (name, undefined_section,
20631 (valueT) 0, & zero_address_frag);
20632 }
bfae80f2 20633
c19d1205 20634 return GOT_symbol;
bfae80f2 20635 }
c19d1205 20636#endif
bfae80f2 20637
c921be7d 20638 return NULL;
bfae80f2
RE
20639}
20640
55cf6793 20641/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
20642 computed as two separate immediate values, added together. We
20643 already know that this value cannot be computed by just one ARM
20644 instruction. */
20645
20646static unsigned int
20647validate_immediate_twopart (unsigned int val,
20648 unsigned int * highpart)
bfae80f2 20649{
c19d1205
ZW
20650 unsigned int a;
20651 unsigned int i;
bfae80f2 20652
c19d1205
ZW
20653 for (i = 0; i < 32; i += 2)
20654 if (((a = rotate_left (val, i)) & 0xff) != 0)
20655 {
20656 if (a & 0xff00)
20657 {
20658 if (a & ~ 0xffff)
20659 continue;
20660 * highpart = (a >> 8) | ((i + 24) << 7);
20661 }
20662 else if (a & 0xff0000)
20663 {
20664 if (a & 0xff000000)
20665 continue;
20666 * highpart = (a >> 16) | ((i + 16) << 7);
20667 }
20668 else
20669 {
9c2799c2 20670 gas_assert (a & 0xff000000);
c19d1205
ZW
20671 * highpart = (a >> 24) | ((i + 8) << 7);
20672 }
bfae80f2 20673
c19d1205
ZW
20674 return (a & 0xff) | (i << 7);
20675 }
bfae80f2 20676
c19d1205 20677 return FAIL;
bfae80f2
RE
20678}
20679
c19d1205
ZW
20680static int
20681validate_offset_imm (unsigned int val, int hwse)
20682{
20683 if ((hwse && val > 255) || val > 4095)
20684 return FAIL;
20685 return val;
20686}
bfae80f2 20687
55cf6793 20688/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
20689 negative immediate constant by altering the instruction. A bit of
20690 a hack really.
20691 MOV <-> MVN
20692 AND <-> BIC
20693 ADC <-> SBC
20694 by inverting the second operand, and
20695 ADD <-> SUB
20696 CMP <-> CMN
20697 by negating the second operand. */
bfae80f2 20698
c19d1205
ZW
20699static int
20700negate_data_op (unsigned long * instruction,
20701 unsigned long value)
bfae80f2 20702{
c19d1205
ZW
20703 int op, new_inst;
20704 unsigned long negated, inverted;
bfae80f2 20705
c19d1205
ZW
20706 negated = encode_arm_immediate (-value);
20707 inverted = encode_arm_immediate (~value);
bfae80f2 20708
c19d1205
ZW
20709 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20710 switch (op)
bfae80f2 20711 {
c19d1205
ZW
20712 /* First negates. */
20713 case OPCODE_SUB: /* ADD <-> SUB */
20714 new_inst = OPCODE_ADD;
20715 value = negated;
20716 break;
bfae80f2 20717
c19d1205
ZW
20718 case OPCODE_ADD:
20719 new_inst = OPCODE_SUB;
20720 value = negated;
20721 break;
bfae80f2 20722
c19d1205
ZW
20723 case OPCODE_CMP: /* CMP <-> CMN */
20724 new_inst = OPCODE_CMN;
20725 value = negated;
20726 break;
bfae80f2 20727
c19d1205
ZW
20728 case OPCODE_CMN:
20729 new_inst = OPCODE_CMP;
20730 value = negated;
20731 break;
bfae80f2 20732
c19d1205
ZW
20733 /* Now Inverted ops. */
20734 case OPCODE_MOV: /* MOV <-> MVN */
20735 new_inst = OPCODE_MVN;
20736 value = inverted;
20737 break;
bfae80f2 20738
c19d1205
ZW
20739 case OPCODE_MVN:
20740 new_inst = OPCODE_MOV;
20741 value = inverted;
20742 break;
bfae80f2 20743
c19d1205
ZW
20744 case OPCODE_AND: /* AND <-> BIC */
20745 new_inst = OPCODE_BIC;
20746 value = inverted;
20747 break;
bfae80f2 20748
c19d1205
ZW
20749 case OPCODE_BIC:
20750 new_inst = OPCODE_AND;
20751 value = inverted;
20752 break;
bfae80f2 20753
c19d1205
ZW
20754 case OPCODE_ADC: /* ADC <-> SBC */
20755 new_inst = OPCODE_SBC;
20756 value = inverted;
20757 break;
bfae80f2 20758
c19d1205
ZW
20759 case OPCODE_SBC:
20760 new_inst = OPCODE_ADC;
20761 value = inverted;
20762 break;
bfae80f2 20763
c19d1205
ZW
20764 /* We cannot do anything. */
20765 default:
20766 return FAIL;
b99bd4ef
NC
20767 }
20768
c19d1205
ZW
20769 if (value == (unsigned) FAIL)
20770 return FAIL;
20771
20772 *instruction &= OPCODE_MASK;
20773 *instruction |= new_inst << DATA_OP_SHIFT;
20774 return value;
b99bd4ef
NC
20775}
20776
ef8d22e6
PB
20777/* Like negate_data_op, but for Thumb-2. */
20778
20779static unsigned int
16dd5e42 20780thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
20781{
20782 int op, new_inst;
20783 int rd;
16dd5e42 20784 unsigned int negated, inverted;
ef8d22e6
PB
20785
20786 negated = encode_thumb32_immediate (-value);
20787 inverted = encode_thumb32_immediate (~value);
20788
20789 rd = (*instruction >> 8) & 0xf;
20790 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20791 switch (op)
20792 {
20793 /* ADD <-> SUB. Includes CMP <-> CMN. */
20794 case T2_OPCODE_SUB:
20795 new_inst = T2_OPCODE_ADD;
20796 value = negated;
20797 break;
20798
20799 case T2_OPCODE_ADD:
20800 new_inst = T2_OPCODE_SUB;
20801 value = negated;
20802 break;
20803
20804 /* ORR <-> ORN. Includes MOV <-> MVN. */
20805 case T2_OPCODE_ORR:
20806 new_inst = T2_OPCODE_ORN;
20807 value = inverted;
20808 break;
20809
20810 case T2_OPCODE_ORN:
20811 new_inst = T2_OPCODE_ORR;
20812 value = inverted;
20813 break;
20814
20815 /* AND <-> BIC. TST has no inverted equivalent. */
20816 case T2_OPCODE_AND:
20817 new_inst = T2_OPCODE_BIC;
20818 if (rd == 15)
20819 value = FAIL;
20820 else
20821 value = inverted;
20822 break;
20823
20824 case T2_OPCODE_BIC:
20825 new_inst = T2_OPCODE_AND;
20826 value = inverted;
20827 break;
20828
20829 /* ADC <-> SBC */
20830 case T2_OPCODE_ADC:
20831 new_inst = T2_OPCODE_SBC;
20832 value = inverted;
20833 break;
20834
20835 case T2_OPCODE_SBC:
20836 new_inst = T2_OPCODE_ADC;
20837 value = inverted;
20838 break;
20839
20840 /* We cannot do anything. */
20841 default:
20842 return FAIL;
20843 }
20844
16dd5e42 20845 if (value == (unsigned int)FAIL)
ef8d22e6
PB
20846 return FAIL;
20847
20848 *instruction &= T2_OPCODE_MASK;
20849 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20850 return value;
20851}
20852
8f06b2d8
PB
20853/* Read a 32-bit thumb instruction from buf. */
20854static unsigned long
20855get_thumb32_insn (char * buf)
20856{
20857 unsigned long insn;
20858 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20859 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20860
20861 return insn;
20862}
20863
a8bc6c78
PB
20864
20865/* We usually want to set the low bit on the address of thumb function
20866 symbols. In particular .word foo - . should have the low bit set.
20867 Generic code tries to fold the difference of two symbols to
20868 a constant. Prevent this and force a relocation when the first symbols
20869 is a thumb function. */
c921be7d
NC
20870
20871bfd_boolean
a8bc6c78
PB
20872arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20873{
20874 if (op == O_subtract
20875 && l->X_op == O_symbol
20876 && r->X_op == O_symbol
20877 && THUMB_IS_FUNC (l->X_add_symbol))
20878 {
20879 l->X_op = O_subtract;
20880 l->X_op_symbol = r->X_add_symbol;
20881 l->X_add_number -= r->X_add_number;
c921be7d 20882 return TRUE;
a8bc6c78 20883 }
c921be7d 20884
a8bc6c78 20885 /* Process as normal. */
c921be7d 20886 return FALSE;
a8bc6c78
PB
20887}
20888
4a42ebbc
RR
20889/* Encode Thumb2 unconditional branches and calls. The encoding
20890 for the 2 are identical for the immediate values. */
20891
20892static void
20893encode_thumb2_b_bl_offset (char * buf, offsetT value)
20894{
20895#define T2I1I2MASK ((1 << 13) | (1 << 11))
20896 offsetT newval;
20897 offsetT newval2;
20898 addressT S, I1, I2, lo, hi;
20899
20900 S = (value >> 24) & 0x01;
20901 I1 = (value >> 23) & 0x01;
20902 I2 = (value >> 22) & 0x01;
20903 hi = (value >> 12) & 0x3ff;
fa94de6b 20904 lo = (value >> 1) & 0x7ff;
4a42ebbc
RR
20905 newval = md_chars_to_number (buf, THUMB_SIZE);
20906 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20907 newval |= (S << 10) | hi;
20908 newval2 &= ~T2I1I2MASK;
20909 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20910 md_number_to_chars (buf, newval, THUMB_SIZE);
20911 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20912}
20913
c19d1205 20914void
55cf6793 20915md_apply_fix (fixS * fixP,
c19d1205
ZW
20916 valueT * valP,
20917 segT seg)
20918{
20919 offsetT value = * valP;
20920 offsetT newval;
20921 unsigned int newimm;
20922 unsigned long temp;
20923 int sign;
20924 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 20925
9c2799c2 20926 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 20927
c19d1205 20928 /* Note whether this will delete the relocation. */
4962c51a 20929
c19d1205
ZW
20930 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20931 fixP->fx_done = 1;
b99bd4ef 20932
adbaf948 20933 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 20934 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
20935 for emit_reloc. */
20936 value &= 0xffffffff;
20937 value ^= 0x80000000;
5f4273c7 20938 value -= 0x80000000;
adbaf948
ZW
20939
20940 *valP = value;
c19d1205 20941 fixP->fx_addnumber = value;
b99bd4ef 20942
adbaf948
ZW
20943 /* Same treatment for fixP->fx_offset. */
20944 fixP->fx_offset &= 0xffffffff;
20945 fixP->fx_offset ^= 0x80000000;
20946 fixP->fx_offset -= 0x80000000;
20947
c19d1205 20948 switch (fixP->fx_r_type)
b99bd4ef 20949 {
c19d1205
ZW
20950 case BFD_RELOC_NONE:
20951 /* This will need to go in the object file. */
20952 fixP->fx_done = 0;
20953 break;
b99bd4ef 20954
c19d1205
ZW
20955 case BFD_RELOC_ARM_IMMEDIATE:
20956 /* We claim that this fixup has been processed here,
20957 even if in fact we generate an error because we do
20958 not have a reloc for it, so tc_gen_reloc will reject it. */
20959 fixP->fx_done = 1;
b99bd4ef 20960
77db8e2e 20961 if (fixP->fx_addsy)
b99bd4ef 20962 {
77db8e2e 20963 const char *msg = 0;
b99bd4ef 20964
77db8e2e
NC
20965 if (! S_IS_DEFINED (fixP->fx_addsy))
20966 msg = _("undefined symbol %s used as an immediate value");
20967 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20968 msg = _("symbol %s is in a different section");
20969 else if (S_IS_WEAK (fixP->fx_addsy))
20970 msg = _("symbol %s is weak and may be overridden later");
20971
20972 if (msg)
20973 {
20974 as_bad_where (fixP->fx_file, fixP->fx_line,
20975 msg, S_GET_NAME (fixP->fx_addsy));
20976 break;
20977 }
42e5fcbf
AS
20978 }
20979
c19d1205
ZW
20980 temp = md_chars_to_number (buf, INSN_SIZE);
20981
5e73442d
SL
20982 /* If the offset is negative, we should use encoding A2 for ADR. */
20983 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
20984 newimm = negate_data_op (&temp, value);
20985 else
20986 {
20987 newimm = encode_arm_immediate (value);
20988
20989 /* If the instruction will fail, see if we can fix things up by
20990 changing the opcode. */
20991 if (newimm == (unsigned int) FAIL)
20992 newimm = negate_data_op (&temp, value);
20993 }
20994
20995 if (newimm == (unsigned int) FAIL)
b99bd4ef 20996 {
c19d1205
ZW
20997 as_bad_where (fixP->fx_file, fixP->fx_line,
20998 _("invalid constant (%lx) after fixup"),
20999 (unsigned long) value);
21000 break;
b99bd4ef 21001 }
b99bd4ef 21002
c19d1205
ZW
21003 newimm |= (temp & 0xfffff000);
21004 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21005 break;
b99bd4ef 21006
c19d1205
ZW
21007 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21008 {
21009 unsigned int highpart = 0;
21010 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 21011
77db8e2e 21012 if (fixP->fx_addsy)
42e5fcbf 21013 {
77db8e2e 21014 const char *msg = 0;
42e5fcbf 21015
77db8e2e
NC
21016 if (! S_IS_DEFINED (fixP->fx_addsy))
21017 msg = _("undefined symbol %s used as an immediate value");
21018 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21019 msg = _("symbol %s is in a different section");
21020 else if (S_IS_WEAK (fixP->fx_addsy))
21021 msg = _("symbol %s is weak and may be overridden later");
42e5fcbf 21022
77db8e2e
NC
21023 if (msg)
21024 {
21025 as_bad_where (fixP->fx_file, fixP->fx_line,
21026 msg, S_GET_NAME (fixP->fx_addsy));
21027 break;
21028 }
21029 }
fa94de6b 21030
c19d1205
ZW
21031 newimm = encode_arm_immediate (value);
21032 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 21033
c19d1205
ZW
21034 /* If the instruction will fail, see if we can fix things up by
21035 changing the opcode. */
21036 if (newimm == (unsigned int) FAIL
21037 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21038 {
21039 /* No ? OK - try using two ADD instructions to generate
21040 the value. */
21041 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 21042
c19d1205
ZW
21043 /* Yes - then make sure that the second instruction is
21044 also an add. */
21045 if (newimm != (unsigned int) FAIL)
21046 newinsn = temp;
21047 /* Still No ? Try using a negated value. */
21048 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21049 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21050 /* Otherwise - give up. */
21051 else
21052 {
21053 as_bad_where (fixP->fx_file, fixP->fx_line,
21054 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21055 (long) value);
21056 break;
21057 }
b99bd4ef 21058
c19d1205
ZW
21059 /* Replace the first operand in the 2nd instruction (which
21060 is the PC) with the destination register. We have
21061 already added in the PC in the first instruction and we
21062 do not want to do it again. */
21063 newinsn &= ~ 0xf0000;
21064 newinsn |= ((newinsn & 0x0f000) << 4);
21065 }
b99bd4ef 21066
c19d1205
ZW
21067 newimm |= (temp & 0xfffff000);
21068 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 21069
c19d1205
ZW
21070 highpart |= (newinsn & 0xfffff000);
21071 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21072 }
21073 break;
b99bd4ef 21074
c19d1205 21075 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
21076 if (!fixP->fx_done && seg->use_rela_p)
21077 value = 0;
21078
c19d1205 21079 case BFD_RELOC_ARM_LITERAL:
26d97720 21080 sign = value > 0;
b99bd4ef 21081
c19d1205
ZW
21082 if (value < 0)
21083 value = - value;
b99bd4ef 21084
c19d1205 21085 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 21086 {
c19d1205
ZW
21087 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21088 as_bad_where (fixP->fx_file, fixP->fx_line,
21089 _("invalid literal constant: pool needs to be closer"));
21090 else
21091 as_bad_where (fixP->fx_file, fixP->fx_line,
21092 _("bad immediate value for offset (%ld)"),
21093 (long) value);
21094 break;
f03698e6
RE
21095 }
21096
c19d1205 21097 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
21098 if (value == 0)
21099 newval &= 0xfffff000;
21100 else
21101 {
21102 newval &= 0xff7ff000;
21103 newval |= value | (sign ? INDEX_UP : 0);
21104 }
c19d1205
ZW
21105 md_number_to_chars (buf, newval, INSN_SIZE);
21106 break;
b99bd4ef 21107
c19d1205
ZW
21108 case BFD_RELOC_ARM_OFFSET_IMM8:
21109 case BFD_RELOC_ARM_HWLITERAL:
26d97720 21110 sign = value > 0;
b99bd4ef 21111
c19d1205
ZW
21112 if (value < 0)
21113 value = - value;
b99bd4ef 21114
c19d1205 21115 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 21116 {
c19d1205
ZW
21117 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21118 as_bad_where (fixP->fx_file, fixP->fx_line,
21119 _("invalid literal constant: pool needs to be closer"));
21120 else
f9d4405b 21121 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
21122 (long) value);
21123 break;
b99bd4ef
NC
21124 }
21125
c19d1205 21126 newval = md_chars_to_number (buf, INSN_SIZE);
26d97720
NS
21127 if (value == 0)
21128 newval &= 0xfffff0f0;
21129 else
21130 {
21131 newval &= 0xff7ff0f0;
21132 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21133 }
c19d1205
ZW
21134 md_number_to_chars (buf, newval, INSN_SIZE);
21135 break;
b99bd4ef 21136
c19d1205
ZW
21137 case BFD_RELOC_ARM_T32_OFFSET_U8:
21138 if (value < 0 || value > 1020 || value % 4 != 0)
21139 as_bad_where (fixP->fx_file, fixP->fx_line,
21140 _("bad immediate value for offset (%ld)"), (long) value);
21141 value /= 4;
b99bd4ef 21142
c19d1205 21143 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
21144 newval |= value;
21145 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21146 break;
b99bd4ef 21147
c19d1205
ZW
21148 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21149 /* This is a complicated relocation used for all varieties of Thumb32
21150 load/store instruction with immediate offset:
21151
21152 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21153 *4, optional writeback(W)
21154 (doubleword load/store)
21155
21156 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21157 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21158 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21159 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21160 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21161
21162 Uppercase letters indicate bits that are already encoded at
21163 this point. Lowercase letters are our problem. For the
21164 second block of instructions, the secondary opcode nybble
21165 (bits 8..11) is present, and bit 23 is zero, even if this is
21166 a PC-relative operation. */
21167 newval = md_chars_to_number (buf, THUMB_SIZE);
21168 newval <<= 16;
21169 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 21170
c19d1205 21171 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 21172 {
c19d1205
ZW
21173 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21174 if (value >= 0)
21175 newval |= (1 << 23);
21176 else
21177 value = -value;
21178 if (value % 4 != 0)
21179 {
21180 as_bad_where (fixP->fx_file, fixP->fx_line,
21181 _("offset not a multiple of 4"));
21182 break;
21183 }
21184 value /= 4;
216d22bc 21185 if (value > 0xff)
c19d1205
ZW
21186 {
21187 as_bad_where (fixP->fx_file, fixP->fx_line,
21188 _("offset out of range"));
21189 break;
21190 }
21191 newval &= ~0xff;
b99bd4ef 21192 }
c19d1205 21193 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 21194 {
c19d1205
ZW
21195 /* PC-relative, 12-bit offset. */
21196 if (value >= 0)
21197 newval |= (1 << 23);
21198 else
21199 value = -value;
216d22bc 21200 if (value > 0xfff)
c19d1205
ZW
21201 {
21202 as_bad_where (fixP->fx_file, fixP->fx_line,
21203 _("offset out of range"));
21204 break;
21205 }
21206 newval &= ~0xfff;
b99bd4ef 21207 }
c19d1205 21208 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 21209 {
c19d1205
ZW
21210 /* Writeback: 8-bit, +/- offset. */
21211 if (value >= 0)
21212 newval |= (1 << 9);
21213 else
21214 value = -value;
216d22bc 21215 if (value > 0xff)
c19d1205
ZW
21216 {
21217 as_bad_where (fixP->fx_file, fixP->fx_line,
21218 _("offset out of range"));
21219 break;
21220 }
21221 newval &= ~0xff;
b99bd4ef 21222 }
c19d1205 21223 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 21224 {
c19d1205 21225 /* T-instruction: positive 8-bit offset. */
216d22bc 21226 if (value < 0 || value > 0xff)
b99bd4ef 21227 {
c19d1205
ZW
21228 as_bad_where (fixP->fx_file, fixP->fx_line,
21229 _("offset out of range"));
21230 break;
b99bd4ef 21231 }
c19d1205
ZW
21232 newval &= ~0xff;
21233 newval |= value;
b99bd4ef
NC
21234 }
21235 else
b99bd4ef 21236 {
c19d1205
ZW
21237 /* Positive 12-bit or negative 8-bit offset. */
21238 int limit;
21239 if (value >= 0)
b99bd4ef 21240 {
c19d1205
ZW
21241 newval |= (1 << 23);
21242 limit = 0xfff;
21243 }
21244 else
21245 {
21246 value = -value;
21247 limit = 0xff;
21248 }
21249 if (value > limit)
21250 {
21251 as_bad_where (fixP->fx_file, fixP->fx_line,
21252 _("offset out of range"));
21253 break;
b99bd4ef 21254 }
c19d1205 21255 newval &= ~limit;
b99bd4ef 21256 }
b99bd4ef 21257
c19d1205
ZW
21258 newval |= value;
21259 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21260 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21261 break;
404ff6b5 21262
c19d1205
ZW
21263 case BFD_RELOC_ARM_SHIFT_IMM:
21264 newval = md_chars_to_number (buf, INSN_SIZE);
21265 if (((unsigned long) value) > 32
21266 || (value == 32
21267 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21268 {
21269 as_bad_where (fixP->fx_file, fixP->fx_line,
21270 _("shift expression is too large"));
21271 break;
21272 }
404ff6b5 21273
c19d1205
ZW
21274 if (value == 0)
21275 /* Shifts of zero must be done as lsl. */
21276 newval &= ~0x60;
21277 else if (value == 32)
21278 value = 0;
21279 newval &= 0xfffff07f;
21280 newval |= (value & 0x1f) << 7;
21281 md_number_to_chars (buf, newval, INSN_SIZE);
21282 break;
404ff6b5 21283
c19d1205 21284 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 21285 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 21286 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 21287 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
21288 /* We claim that this fixup has been processed here,
21289 even if in fact we generate an error because we do
21290 not have a reloc for it, so tc_gen_reloc will reject it. */
21291 fixP->fx_done = 1;
404ff6b5 21292
c19d1205
ZW
21293 if (fixP->fx_addsy
21294 && ! S_IS_DEFINED (fixP->fx_addsy))
21295 {
21296 as_bad_where (fixP->fx_file, fixP->fx_line,
21297 _("undefined symbol %s used as an immediate value"),
21298 S_GET_NAME (fixP->fx_addsy));
21299 break;
21300 }
404ff6b5 21301
c19d1205
ZW
21302 newval = md_chars_to_number (buf, THUMB_SIZE);
21303 newval <<= 16;
21304 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 21305
16805f35
PB
21306 newimm = FAIL;
21307 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21308 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
21309 {
21310 newimm = encode_thumb32_immediate (value);
21311 if (newimm == (unsigned int) FAIL)
21312 newimm = thumb32_negate_data_op (&newval, value);
21313 }
16805f35
PB
21314 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21315 && newimm == (unsigned int) FAIL)
92e90b6e 21316 {
16805f35
PB
21317 /* Turn add/sum into addw/subw. */
21318 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21319 newval = (newval & 0xfeffffff) | 0x02000000;
40f246e3
NC
21320 /* No flat 12-bit imm encoding for addsw/subsw. */
21321 if ((newval & 0x00100000) == 0)
e9f89963 21322 {
40f246e3
NC
21323 /* 12 bit immediate for addw/subw. */
21324 if (value < 0)
21325 {
21326 value = -value;
21327 newval ^= 0x00a00000;
21328 }
21329 if (value > 0xfff)
21330 newimm = (unsigned int) FAIL;
21331 else
21332 newimm = value;
e9f89963 21333 }
92e90b6e 21334 }
cc8a6dd0 21335
c19d1205 21336 if (newimm == (unsigned int)FAIL)
3631a3c8 21337 {
c19d1205
ZW
21338 as_bad_where (fixP->fx_file, fixP->fx_line,
21339 _("invalid constant (%lx) after fixup"),
21340 (unsigned long) value);
21341 break;
3631a3c8
NC
21342 }
21343
c19d1205
ZW
21344 newval |= (newimm & 0x800) << 15;
21345 newval |= (newimm & 0x700) << 4;
21346 newval |= (newimm & 0x0ff);
cc8a6dd0 21347
c19d1205
ZW
21348 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21349 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21350 break;
a737bd4d 21351
3eb17e6b 21352 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
21353 if (((unsigned long) value) > 0xffff)
21354 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 21355 _("invalid smc expression"));
2fc8bdac 21356 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21357 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21358 md_number_to_chars (buf, newval, INSN_SIZE);
21359 break;
a737bd4d 21360
90ec0d68
MGD
21361 case BFD_RELOC_ARM_HVC:
21362 if (((unsigned long) value) > 0xffff)
21363 as_bad_where (fixP->fx_file, fixP->fx_line,
21364 _("invalid hvc expression"));
21365 newval = md_chars_to_number (buf, INSN_SIZE);
21366 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21367 md_number_to_chars (buf, newval, INSN_SIZE);
21368 break;
21369
c19d1205 21370 case BFD_RELOC_ARM_SWI:
adbaf948 21371 if (fixP->tc_fix_data != 0)
c19d1205
ZW
21372 {
21373 if (((unsigned long) value) > 0xff)
21374 as_bad_where (fixP->fx_file, fixP->fx_line,
21375 _("invalid swi expression"));
2fc8bdac 21376 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
21377 newval |= value;
21378 md_number_to_chars (buf, newval, THUMB_SIZE);
21379 }
21380 else
21381 {
21382 if (((unsigned long) value) > 0x00ffffff)
21383 as_bad_where (fixP->fx_file, fixP->fx_line,
21384 _("invalid swi expression"));
2fc8bdac 21385 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
21386 newval |= value;
21387 md_number_to_chars (buf, newval, INSN_SIZE);
21388 }
21389 break;
a737bd4d 21390
c19d1205
ZW
21391 case BFD_RELOC_ARM_MULTI:
21392 if (((unsigned long) value) > 0xffff)
21393 as_bad_where (fixP->fx_file, fixP->fx_line,
21394 _("invalid expression in load/store multiple"));
21395 newval = value | md_chars_to_number (buf, INSN_SIZE);
21396 md_number_to_chars (buf, newval, INSN_SIZE);
21397 break;
a737bd4d 21398
c19d1205 21399#ifdef OBJ_ELF
39b41c9c 21400 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
21401
21402 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21403 && fixP->fx_addsy
34e77a92 21404 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21405 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21406 && THUMB_IS_FUNC (fixP->fx_addsy))
21407 /* Flip the bl to blx. This is a simple flip
21408 bit here because we generate PCREL_CALL for
21409 unconditional bls. */
21410 {
21411 newval = md_chars_to_number (buf, INSN_SIZE);
21412 newval = newval | 0x10000000;
21413 md_number_to_chars (buf, newval, INSN_SIZE);
21414 temp = 1;
21415 fixP->fx_done = 1;
21416 }
39b41c9c
PB
21417 else
21418 temp = 3;
21419 goto arm_branch_common;
21420
21421 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
21422 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21423 && fixP->fx_addsy
34e77a92 21424 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21425 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21426 && THUMB_IS_FUNC (fixP->fx_addsy))
21427 {
21428 /* This would map to a bl<cond>, b<cond>,
21429 b<always> to a Thumb function. We
21430 need to force a relocation for this particular
21431 case. */
21432 newval = md_chars_to_number (buf, INSN_SIZE);
21433 fixP->fx_done = 0;
21434 }
21435
2fc8bdac 21436 case BFD_RELOC_ARM_PLT32:
c19d1205 21437#endif
39b41c9c
PB
21438 case BFD_RELOC_ARM_PCREL_BRANCH:
21439 temp = 3;
21440 goto arm_branch_common;
a737bd4d 21441
39b41c9c 21442 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 21443
39b41c9c 21444 temp = 1;
267bf995
RR
21445 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21446 && fixP->fx_addsy
34e77a92 21447 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21448 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21449 && ARM_IS_FUNC (fixP->fx_addsy))
21450 {
21451 /* Flip the blx to a bl and warn. */
21452 const char *name = S_GET_NAME (fixP->fx_addsy);
21453 newval = 0xeb000000;
21454 as_warn_where (fixP->fx_file, fixP->fx_line,
21455 _("blx to '%s' an ARM ISA state function changed to bl"),
21456 name);
21457 md_number_to_chars (buf, newval, INSN_SIZE);
21458 temp = 3;
21459 fixP->fx_done = 1;
21460 }
21461
21462#ifdef OBJ_ELF
21463 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21464 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21465#endif
21466
39b41c9c 21467 arm_branch_common:
c19d1205 21468 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
21469 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21470 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21471 also be be clear. */
21472 if (value & temp)
c19d1205 21473 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
21474 _("misaligned branch destination"));
21475 if ((value & (offsetT)0xfe000000) != (offsetT)0
21476 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
08f10d51 21477 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21478
2fc8bdac 21479 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21480 {
2fc8bdac
ZW
21481 newval = md_chars_to_number (buf, INSN_SIZE);
21482 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
21483 /* Set the H bit on BLX instructions. */
21484 if (temp == 1)
21485 {
21486 if (value & 2)
21487 newval |= 0x01000000;
21488 else
21489 newval &= ~0x01000000;
21490 }
2fc8bdac 21491 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 21492 }
c19d1205 21493 break;
a737bd4d 21494
25fe350b
MS
21495 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21496 /* CBZ can only branch forward. */
a737bd4d 21497
738755b0
MS
21498 /* Attempts to use CBZ to branch to the next instruction
21499 (which, strictly speaking, are prohibited) will be turned into
21500 no-ops.
21501
21502 FIXME: It may be better to remove the instruction completely and
21503 perform relaxation. */
21504 if (value == -2)
2fc8bdac
ZW
21505 {
21506 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 21507 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
21508 md_number_to_chars (buf, newval, THUMB_SIZE);
21509 }
738755b0
MS
21510 else
21511 {
21512 if (value & ~0x7e)
08f10d51 21513 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
738755b0
MS
21514
21515 if (fixP->fx_done || !seg->use_rela_p)
21516 {
21517 newval = md_chars_to_number (buf, THUMB_SIZE);
21518 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21519 md_number_to_chars (buf, newval, THUMB_SIZE);
21520 }
21521 }
c19d1205 21522 break;
a737bd4d 21523
c19d1205 21524 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac 21525 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
08f10d51 21526 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21527
2fc8bdac
ZW
21528 if (fixP->fx_done || !seg->use_rela_p)
21529 {
21530 newval = md_chars_to_number (buf, THUMB_SIZE);
21531 newval |= (value & 0x1ff) >> 1;
21532 md_number_to_chars (buf, newval, THUMB_SIZE);
21533 }
c19d1205 21534 break;
a737bd4d 21535
c19d1205 21536 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac 21537 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
08f10d51 21538 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
a737bd4d 21539
2fc8bdac
ZW
21540 if (fixP->fx_done || !seg->use_rela_p)
21541 {
21542 newval = md_chars_to_number (buf, THUMB_SIZE);
21543 newval |= (value & 0xfff) >> 1;
21544 md_number_to_chars (buf, newval, THUMB_SIZE);
21545 }
c19d1205 21546 break;
a737bd4d 21547
c19d1205 21548 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
21549 if (fixP->fx_addsy
21550 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21551 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21552 && ARM_IS_FUNC (fixP->fx_addsy)
21553 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21554 {
21555 /* Force a relocation for a branch 20 bits wide. */
21556 fixP->fx_done = 0;
21557 }
08f10d51 21558 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
2fc8bdac
ZW
21559 as_bad_where (fixP->fx_file, fixP->fx_line,
21560 _("conditional branch out of range"));
404ff6b5 21561
2fc8bdac
ZW
21562 if (fixP->fx_done || !seg->use_rela_p)
21563 {
21564 offsetT newval2;
21565 addressT S, J1, J2, lo, hi;
404ff6b5 21566
2fc8bdac
ZW
21567 S = (value & 0x00100000) >> 20;
21568 J2 = (value & 0x00080000) >> 19;
21569 J1 = (value & 0x00040000) >> 18;
21570 hi = (value & 0x0003f000) >> 12;
21571 lo = (value & 0x00000ffe) >> 1;
6c43fab6 21572
2fc8bdac
ZW
21573 newval = md_chars_to_number (buf, THUMB_SIZE);
21574 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21575 newval |= (S << 10) | hi;
21576 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21577 md_number_to_chars (buf, newval, THUMB_SIZE);
21578 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21579 }
c19d1205 21580 break;
6c43fab6 21581
c19d1205 21582 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
21583 /* If there is a blx from a thumb state function to
21584 another thumb function flip this to a bl and warn
21585 about it. */
21586
21587 if (fixP->fx_addsy
34e77a92 21588 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21589 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21590 && THUMB_IS_FUNC (fixP->fx_addsy))
21591 {
21592 const char *name = S_GET_NAME (fixP->fx_addsy);
21593 as_warn_where (fixP->fx_file, fixP->fx_line,
21594 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21595 name);
21596 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21597 newval = newval | 0x1000;
21598 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21599 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21600 fixP->fx_done = 1;
21601 }
21602
21603
21604 goto thumb_bl_common;
21605
c19d1205 21606 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
21607 /* A bl from Thumb state ISA to an internal ARM state function
21608 is converted to a blx. */
21609 if (fixP->fx_addsy
21610 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
34e77a92 21611 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
267bf995
RR
21612 && ARM_IS_FUNC (fixP->fx_addsy)
21613 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21614 {
21615 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21616 newval = newval & ~0x1000;
21617 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21618 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21619 fixP->fx_done = 1;
21620 }
21621
21622 thumb_bl_common:
21623
21624#ifdef OBJ_ELF
2b2f5df9
NC
21625 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21626 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
267bf995
RR
21627 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21628#endif
21629
2fc8bdac
ZW
21630 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21631 /* For a BLX instruction, make sure that the relocation is rounded up
21632 to a word boundary. This follows the semantics of the instruction
21633 which specifies that bit 1 of the target address will come from bit
21634 1 of the base address. */
21635 value = (value + 1) & ~ 1;
404ff6b5 21636
2b2f5df9
NC
21637 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21638 {
21639 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21640 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21641 else if ((value & ~0x1ffffff)
21642 && ((value & ~0x1ffffff) != ~0x1ffffff))
21643 as_bad_where (fixP->fx_file, fixP->fx_line,
21644 _("Thumb2 branch out of range"));
21645 }
4a42ebbc
RR
21646
21647 if (fixP->fx_done || !seg->use_rela_p)
21648 encode_thumb2_b_bl_offset (buf, value);
21649
c19d1205 21650 break;
404ff6b5 21651
c19d1205 21652 case BFD_RELOC_THUMB_PCREL_BRANCH25:
08f10d51
NC
21653 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21654 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
6c43fab6 21655
2fc8bdac 21656 if (fixP->fx_done || !seg->use_rela_p)
4a42ebbc 21657 encode_thumb2_b_bl_offset (buf, value);
6c43fab6 21658
2fc8bdac 21659 break;
a737bd4d 21660
2fc8bdac
ZW
21661 case BFD_RELOC_8:
21662 if (fixP->fx_done || !seg->use_rela_p)
21663 md_number_to_chars (buf, value, 1);
c19d1205 21664 break;
a737bd4d 21665
c19d1205 21666 case BFD_RELOC_16:
2fc8bdac 21667 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 21668 md_number_to_chars (buf, value, 2);
c19d1205 21669 break;
a737bd4d 21670
c19d1205 21671#ifdef OBJ_ELF
0855e32b
NS
21672 case BFD_RELOC_ARM_TLS_CALL:
21673 case BFD_RELOC_ARM_THM_TLS_CALL:
21674 case BFD_RELOC_ARM_TLS_DESCSEQ:
21675 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21676 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21677 break;
21678
21679 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
21680 case BFD_RELOC_ARM_TLS_GD32:
21681 case BFD_RELOC_ARM_TLS_LE32:
21682 case BFD_RELOC_ARM_TLS_IE32:
21683 case BFD_RELOC_ARM_TLS_LDM32:
21684 case BFD_RELOC_ARM_TLS_LDO32:
21685 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21686 /* fall through */
6c43fab6 21687
c19d1205
ZW
21688 case BFD_RELOC_ARM_GOT32:
21689 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
21690 if (fixP->fx_done || !seg->use_rela_p)
21691 md_number_to_chars (buf, 0, 4);
c19d1205 21692 break;
b43420e6
NC
21693
21694 case BFD_RELOC_ARM_GOT_PREL:
21695 if (fixP->fx_done || !seg->use_rela_p)
21696 md_number_to_chars (buf, value, 4);
21697 break;
21698
9a6f4e97
NS
21699 case BFD_RELOC_ARM_TARGET2:
21700 /* TARGET2 is not partial-inplace, so we need to write the
21701 addend here for REL targets, because it won't be written out
21702 during reloc processing later. */
21703 if (fixP->fx_done || !seg->use_rela_p)
21704 md_number_to_chars (buf, fixP->fx_offset, 4);
21705 break;
c19d1205 21706#endif
6c43fab6 21707
c19d1205
ZW
21708 case BFD_RELOC_RVA:
21709 case BFD_RELOC_32:
21710 case BFD_RELOC_ARM_TARGET1:
21711 case BFD_RELOC_ARM_ROSEGREL32:
21712 case BFD_RELOC_ARM_SBREL32:
21713 case BFD_RELOC_32_PCREL:
f0927246
NC
21714#ifdef TE_PE
21715 case BFD_RELOC_32_SECREL:
21716#endif
2fc8bdac 21717 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
21718#ifdef TE_WINCE
21719 /* For WinCE we only do this for pcrel fixups. */
21720 if (fixP->fx_done || fixP->fx_pcrel)
21721#endif
21722 md_number_to_chars (buf, value, 4);
c19d1205 21723 break;
6c43fab6 21724
c19d1205
ZW
21725#ifdef OBJ_ELF
21726 case BFD_RELOC_ARM_PREL31:
2fc8bdac 21727 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
21728 {
21729 newval = md_chars_to_number (buf, 4) & 0x80000000;
21730 if ((value ^ (value >> 1)) & 0x40000000)
21731 {
21732 as_bad_where (fixP->fx_file, fixP->fx_line,
21733 _("rel31 relocation overflow"));
21734 }
21735 newval |= value & 0x7fffffff;
21736 md_number_to_chars (buf, newval, 4);
21737 }
21738 break;
c19d1205 21739#endif
a737bd4d 21740
c19d1205 21741 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 21742 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
21743 if (value < -1023 || value > 1023 || (value & 3))
21744 as_bad_where (fixP->fx_file, fixP->fx_line,
21745 _("co-processor offset out of range"));
21746 cp_off_common:
26d97720 21747 sign = value > 0;
c19d1205
ZW
21748 if (value < 0)
21749 value = -value;
8f06b2d8
PB
21750 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21751 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21752 newval = md_chars_to_number (buf, INSN_SIZE);
21753 else
21754 newval = get_thumb32_insn (buf);
26d97720
NS
21755 if (value == 0)
21756 newval &= 0xffffff00;
21757 else
21758 {
21759 newval &= 0xff7fff00;
21760 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21761 }
8f06b2d8
PB
21762 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21763 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21764 md_number_to_chars (buf, newval, INSN_SIZE);
21765 else
21766 put_thumb32_insn (buf, newval);
c19d1205 21767 break;
a737bd4d 21768
c19d1205 21769 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 21770 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
21771 if (value < -255 || value > 255)
21772 as_bad_where (fixP->fx_file, fixP->fx_line,
21773 _("co-processor offset out of range"));
df7849c5 21774 value *= 4;
c19d1205 21775 goto cp_off_common;
6c43fab6 21776
c19d1205
ZW
21777 case BFD_RELOC_ARM_THUMB_OFFSET:
21778 newval = md_chars_to_number (buf, THUMB_SIZE);
21779 /* Exactly what ranges, and where the offset is inserted depends
21780 on the type of instruction, we can establish this from the
21781 top 4 bits. */
21782 switch (newval >> 12)
21783 {
21784 case 4: /* PC load. */
21785 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21786 forced to zero for these loads; md_pcrel_from has already
21787 compensated for this. */
21788 if (value & 3)
21789 as_bad_where (fixP->fx_file, fixP->fx_line,
21790 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
21791 (((unsigned long) fixP->fx_frag->fr_address
21792 + (unsigned long) fixP->fx_where) & ~3)
21793 + (unsigned long) value);
a737bd4d 21794
c19d1205
ZW
21795 if (value & ~0x3fc)
21796 as_bad_where (fixP->fx_file, fixP->fx_line,
21797 _("invalid offset, value too big (0x%08lX)"),
21798 (long) value);
a737bd4d 21799
c19d1205
ZW
21800 newval |= value >> 2;
21801 break;
a737bd4d 21802
c19d1205
ZW
21803 case 9: /* SP load/store. */
21804 if (value & ~0x3fc)
21805 as_bad_where (fixP->fx_file, fixP->fx_line,
21806 _("invalid offset, value too big (0x%08lX)"),
21807 (long) value);
21808 newval |= value >> 2;
21809 break;
6c43fab6 21810
c19d1205
ZW
21811 case 6: /* Word load/store. */
21812 if (value & ~0x7c)
21813 as_bad_where (fixP->fx_file, fixP->fx_line,
21814 _("invalid offset, value too big (0x%08lX)"),
21815 (long) value);
21816 newval |= value << 4; /* 6 - 2. */
21817 break;
a737bd4d 21818
c19d1205
ZW
21819 case 7: /* Byte load/store. */
21820 if (value & ~0x1f)
21821 as_bad_where (fixP->fx_file, fixP->fx_line,
21822 _("invalid offset, value too big (0x%08lX)"),
21823 (long) value);
21824 newval |= value << 6;
21825 break;
a737bd4d 21826
c19d1205
ZW
21827 case 8: /* Halfword load/store. */
21828 if (value & ~0x3e)
21829 as_bad_where (fixP->fx_file, fixP->fx_line,
21830 _("invalid offset, value too big (0x%08lX)"),
21831 (long) value);
21832 newval |= value << 5; /* 6 - 1. */
21833 break;
a737bd4d 21834
c19d1205
ZW
21835 default:
21836 as_bad_where (fixP->fx_file, fixP->fx_line,
21837 "Unable to process relocation for thumb opcode: %lx",
21838 (unsigned long) newval);
21839 break;
21840 }
21841 md_number_to_chars (buf, newval, THUMB_SIZE);
21842 break;
a737bd4d 21843
c19d1205
ZW
21844 case BFD_RELOC_ARM_THUMB_ADD:
21845 /* This is a complicated relocation, since we use it for all of
21846 the following immediate relocations:
a737bd4d 21847
c19d1205
ZW
21848 3bit ADD/SUB
21849 8bit ADD/SUB
21850 9bit ADD/SUB SP word-aligned
21851 10bit ADD PC/SP word-aligned
a737bd4d 21852
c19d1205
ZW
21853 The type of instruction being processed is encoded in the
21854 instruction field:
a737bd4d 21855
c19d1205
ZW
21856 0x8000 SUB
21857 0x00F0 Rd
21858 0x000F Rs
21859 */
21860 newval = md_chars_to_number (buf, THUMB_SIZE);
21861 {
21862 int rd = (newval >> 4) & 0xf;
21863 int rs = newval & 0xf;
21864 int subtract = !!(newval & 0x8000);
a737bd4d 21865
c19d1205
ZW
21866 /* Check for HI regs, only very restricted cases allowed:
21867 Adjusting SP, and using PC or SP to get an address. */
21868 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21869 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21870 as_bad_where (fixP->fx_file, fixP->fx_line,
21871 _("invalid Hi register with immediate"));
a737bd4d 21872
c19d1205
ZW
21873 /* If value is negative, choose the opposite instruction. */
21874 if (value < 0)
21875 {
21876 value = -value;
21877 subtract = !subtract;
21878 if (value < 0)
21879 as_bad_where (fixP->fx_file, fixP->fx_line,
21880 _("immediate value out of range"));
21881 }
a737bd4d 21882
c19d1205
ZW
21883 if (rd == REG_SP)
21884 {
21885 if (value & ~0x1fc)
21886 as_bad_where (fixP->fx_file, fixP->fx_line,
21887 _("invalid immediate for stack address calculation"));
21888 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21889 newval |= value >> 2;
21890 }
21891 else if (rs == REG_PC || rs == REG_SP)
21892 {
21893 if (subtract || value & ~0x3fc)
21894 as_bad_where (fixP->fx_file, fixP->fx_line,
21895 _("invalid immediate for address calculation (value = 0x%08lX)"),
21896 (unsigned long) value);
21897 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21898 newval |= rd << 8;
21899 newval |= value >> 2;
21900 }
21901 else if (rs == rd)
21902 {
21903 if (value & ~0xff)
21904 as_bad_where (fixP->fx_file, fixP->fx_line,
21905 _("immediate value out of range"));
21906 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21907 newval |= (rd << 8) | value;
21908 }
21909 else
21910 {
21911 if (value & ~0x7)
21912 as_bad_where (fixP->fx_file, fixP->fx_line,
21913 _("immediate value out of range"));
21914 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21915 newval |= rd | (rs << 3) | (value << 6);
21916 }
21917 }
21918 md_number_to_chars (buf, newval, THUMB_SIZE);
21919 break;
a737bd4d 21920
c19d1205
ZW
21921 case BFD_RELOC_ARM_THUMB_IMM:
21922 newval = md_chars_to_number (buf, THUMB_SIZE);
21923 if (value < 0 || value > 255)
21924 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 21925 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
21926 (long) value);
21927 newval |= value;
21928 md_number_to_chars (buf, newval, THUMB_SIZE);
21929 break;
a737bd4d 21930
c19d1205
ZW
21931 case BFD_RELOC_ARM_THUMB_SHIFT:
21932 /* 5bit shift value (0..32). LSL cannot take 32. */
21933 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21934 temp = newval & 0xf800;
21935 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21936 as_bad_where (fixP->fx_file, fixP->fx_line,
21937 _("invalid shift value: %ld"), (long) value);
21938 /* Shifts of zero must be encoded as LSL. */
21939 if (value == 0)
21940 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21941 /* Shifts of 32 are encoded as zero. */
21942 else if (value == 32)
21943 value = 0;
21944 newval |= value << 6;
21945 md_number_to_chars (buf, newval, THUMB_SIZE);
21946 break;
a737bd4d 21947
c19d1205
ZW
21948 case BFD_RELOC_VTABLE_INHERIT:
21949 case BFD_RELOC_VTABLE_ENTRY:
21950 fixP->fx_done = 0;
21951 return;
6c43fab6 21952
b6895b4f
PB
21953 case BFD_RELOC_ARM_MOVW:
21954 case BFD_RELOC_ARM_MOVT:
21955 case BFD_RELOC_ARM_THUMB_MOVW:
21956 case BFD_RELOC_ARM_THUMB_MOVT:
21957 if (fixP->fx_done || !seg->use_rela_p)
21958 {
21959 /* REL format relocations are limited to a 16-bit addend. */
21960 if (!fixP->fx_done)
21961 {
39623e12 21962 if (value < -0x8000 || value > 0x7fff)
b6895b4f 21963 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 21964 _("offset out of range"));
b6895b4f
PB
21965 }
21966 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21967 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21968 {
21969 value >>= 16;
21970 }
21971
21972 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21973 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21974 {
21975 newval = get_thumb32_insn (buf);
21976 newval &= 0xfbf08f00;
21977 newval |= (value & 0xf000) << 4;
21978 newval |= (value & 0x0800) << 15;
21979 newval |= (value & 0x0700) << 4;
21980 newval |= (value & 0x00ff);
21981 put_thumb32_insn (buf, newval);
21982 }
21983 else
21984 {
21985 newval = md_chars_to_number (buf, 4);
21986 newval &= 0xfff0f000;
21987 newval |= value & 0x0fff;
21988 newval |= (value & 0xf000) << 4;
21989 md_number_to_chars (buf, newval, 4);
21990 }
21991 }
21992 return;
21993
4962c51a
MS
21994 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21995 case BFD_RELOC_ARM_ALU_PC_G0:
21996 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21997 case BFD_RELOC_ARM_ALU_PC_G1:
21998 case BFD_RELOC_ARM_ALU_PC_G2:
21999 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22000 case BFD_RELOC_ARM_ALU_SB_G0:
22001 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22002 case BFD_RELOC_ARM_ALU_SB_G1:
22003 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 22004 gas_assert (!fixP->fx_done);
4962c51a
MS
22005 if (!seg->use_rela_p)
22006 {
22007 bfd_vma insn;
22008 bfd_vma encoded_addend;
22009 bfd_vma addend_abs = abs (value);
22010
22011 /* Check that the absolute value of the addend can be
22012 expressed as an 8-bit constant plus a rotation. */
22013 encoded_addend = encode_arm_immediate (addend_abs);
22014 if (encoded_addend == (unsigned int) FAIL)
22015 as_bad_where (fixP->fx_file, fixP->fx_line,
22016 _("the offset 0x%08lX is not representable"),
495bde8e 22017 (unsigned long) addend_abs);
4962c51a
MS
22018
22019 /* Extract the instruction. */
22020 insn = md_chars_to_number (buf, INSN_SIZE);
22021
22022 /* If the addend is positive, use an ADD instruction.
22023 Otherwise use a SUB. Take care not to destroy the S bit. */
22024 insn &= 0xff1fffff;
22025 if (value < 0)
22026 insn |= 1 << 22;
22027 else
22028 insn |= 1 << 23;
22029
22030 /* Place the encoded addend into the first 12 bits of the
22031 instruction. */
22032 insn &= 0xfffff000;
22033 insn |= encoded_addend;
5f4273c7
NC
22034
22035 /* Update the instruction. */
4962c51a
MS
22036 md_number_to_chars (buf, insn, INSN_SIZE);
22037 }
22038 break;
22039
22040 case BFD_RELOC_ARM_LDR_PC_G0:
22041 case BFD_RELOC_ARM_LDR_PC_G1:
22042 case BFD_RELOC_ARM_LDR_PC_G2:
22043 case BFD_RELOC_ARM_LDR_SB_G0:
22044 case BFD_RELOC_ARM_LDR_SB_G1:
22045 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 22046 gas_assert (!fixP->fx_done);
4962c51a
MS
22047 if (!seg->use_rela_p)
22048 {
22049 bfd_vma insn;
22050 bfd_vma addend_abs = abs (value);
22051
22052 /* Check that the absolute value of the addend can be
22053 encoded in 12 bits. */
22054 if (addend_abs >= 0x1000)
22055 as_bad_where (fixP->fx_file, fixP->fx_line,
22056 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 22057 (unsigned long) addend_abs);
4962c51a
MS
22058
22059 /* Extract the instruction. */
22060 insn = md_chars_to_number (buf, INSN_SIZE);
22061
22062 /* If the addend is negative, clear bit 23 of the instruction.
22063 Otherwise set it. */
22064 if (value < 0)
22065 insn &= ~(1 << 23);
22066 else
22067 insn |= 1 << 23;
22068
22069 /* Place the absolute value of the addend into the first 12 bits
22070 of the instruction. */
22071 insn &= 0xfffff000;
22072 insn |= addend_abs;
5f4273c7
NC
22073
22074 /* Update the instruction. */
4962c51a
MS
22075 md_number_to_chars (buf, insn, INSN_SIZE);
22076 }
22077 break;
22078
22079 case BFD_RELOC_ARM_LDRS_PC_G0:
22080 case BFD_RELOC_ARM_LDRS_PC_G1:
22081 case BFD_RELOC_ARM_LDRS_PC_G2:
22082 case BFD_RELOC_ARM_LDRS_SB_G0:
22083 case BFD_RELOC_ARM_LDRS_SB_G1:
22084 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 22085 gas_assert (!fixP->fx_done);
4962c51a
MS
22086 if (!seg->use_rela_p)
22087 {
22088 bfd_vma insn;
22089 bfd_vma addend_abs = abs (value);
22090
22091 /* Check that the absolute value of the addend can be
22092 encoded in 8 bits. */
22093 if (addend_abs >= 0x100)
22094 as_bad_where (fixP->fx_file, fixP->fx_line,
22095 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 22096 (unsigned long) addend_abs);
4962c51a
MS
22097
22098 /* Extract the instruction. */
22099 insn = md_chars_to_number (buf, INSN_SIZE);
22100
22101 /* If the addend is negative, clear bit 23 of the instruction.
22102 Otherwise set it. */
22103 if (value < 0)
22104 insn &= ~(1 << 23);
22105 else
22106 insn |= 1 << 23;
22107
22108 /* Place the first four bits of the absolute value of the addend
22109 into the first 4 bits of the instruction, and the remaining
22110 four into bits 8 .. 11. */
22111 insn &= 0xfffff0f0;
22112 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
22113
22114 /* Update the instruction. */
4962c51a
MS
22115 md_number_to_chars (buf, insn, INSN_SIZE);
22116 }
22117 break;
22118
22119 case BFD_RELOC_ARM_LDC_PC_G0:
22120 case BFD_RELOC_ARM_LDC_PC_G1:
22121 case BFD_RELOC_ARM_LDC_PC_G2:
22122 case BFD_RELOC_ARM_LDC_SB_G0:
22123 case BFD_RELOC_ARM_LDC_SB_G1:
22124 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 22125 gas_assert (!fixP->fx_done);
4962c51a
MS
22126 if (!seg->use_rela_p)
22127 {
22128 bfd_vma insn;
22129 bfd_vma addend_abs = abs (value);
22130
22131 /* Check that the absolute value of the addend is a multiple of
22132 four and, when divided by four, fits in 8 bits. */
22133 if (addend_abs & 0x3)
22134 as_bad_where (fixP->fx_file, fixP->fx_line,
22135 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 22136 (unsigned long) addend_abs);
4962c51a
MS
22137
22138 if ((addend_abs >> 2) > 0xff)
22139 as_bad_where (fixP->fx_file, fixP->fx_line,
22140 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 22141 (unsigned long) addend_abs);
4962c51a
MS
22142
22143 /* Extract the instruction. */
22144 insn = md_chars_to_number (buf, INSN_SIZE);
22145
22146 /* If the addend is negative, clear bit 23 of the instruction.
22147 Otherwise set it. */
22148 if (value < 0)
22149 insn &= ~(1 << 23);
22150 else
22151 insn |= 1 << 23;
22152
22153 /* Place the addend (divided by four) into the first eight
22154 bits of the instruction. */
22155 insn &= 0xfffffff0;
22156 insn |= addend_abs >> 2;
5f4273c7
NC
22157
22158 /* Update the instruction. */
4962c51a
MS
22159 md_number_to_chars (buf, insn, INSN_SIZE);
22160 }
22161 break;
22162
845b51d6
PB
22163 case BFD_RELOC_ARM_V4BX:
22164 /* This will need to go in the object file. */
22165 fixP->fx_done = 0;
22166 break;
22167
c19d1205
ZW
22168 case BFD_RELOC_UNUSED:
22169 default:
22170 as_bad_where (fixP->fx_file, fixP->fx_line,
22171 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22172 }
6c43fab6
RE
22173}
22174
c19d1205
ZW
22175/* Translate internal representation of relocation info to BFD target
22176 format. */
a737bd4d 22177
c19d1205 22178arelent *
00a97672 22179tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 22180{
c19d1205
ZW
22181 arelent * reloc;
22182 bfd_reloc_code_real_type code;
a737bd4d 22183
21d799b5 22184 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 22185
21d799b5 22186 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
22187 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22188 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 22189
2fc8bdac 22190 if (fixp->fx_pcrel)
00a97672
RS
22191 {
22192 if (section->use_rela_p)
22193 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22194 else
22195 fixp->fx_offset = reloc->address;
22196 }
c19d1205 22197 reloc->addend = fixp->fx_offset;
a737bd4d 22198
c19d1205 22199 switch (fixp->fx_r_type)
a737bd4d 22200 {
c19d1205
ZW
22201 case BFD_RELOC_8:
22202 if (fixp->fx_pcrel)
22203 {
22204 code = BFD_RELOC_8_PCREL;
22205 break;
22206 }
a737bd4d 22207
c19d1205
ZW
22208 case BFD_RELOC_16:
22209 if (fixp->fx_pcrel)
22210 {
22211 code = BFD_RELOC_16_PCREL;
22212 break;
22213 }
6c43fab6 22214
c19d1205
ZW
22215 case BFD_RELOC_32:
22216 if (fixp->fx_pcrel)
22217 {
22218 code = BFD_RELOC_32_PCREL;
22219 break;
22220 }
a737bd4d 22221
b6895b4f
PB
22222 case BFD_RELOC_ARM_MOVW:
22223 if (fixp->fx_pcrel)
22224 {
22225 code = BFD_RELOC_ARM_MOVW_PCREL;
22226 break;
22227 }
22228
22229 case BFD_RELOC_ARM_MOVT:
22230 if (fixp->fx_pcrel)
22231 {
22232 code = BFD_RELOC_ARM_MOVT_PCREL;
22233 break;
22234 }
22235
22236 case BFD_RELOC_ARM_THUMB_MOVW:
22237 if (fixp->fx_pcrel)
22238 {
22239 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22240 break;
22241 }
22242
22243 case BFD_RELOC_ARM_THUMB_MOVT:
22244 if (fixp->fx_pcrel)
22245 {
22246 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22247 break;
22248 }
22249
c19d1205
ZW
22250 case BFD_RELOC_NONE:
22251 case BFD_RELOC_ARM_PCREL_BRANCH:
22252 case BFD_RELOC_ARM_PCREL_BLX:
22253 case BFD_RELOC_RVA:
22254 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22255 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22256 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22257 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22258 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22259 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
22260 case BFD_RELOC_VTABLE_ENTRY:
22261 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
22262#ifdef TE_PE
22263 case BFD_RELOC_32_SECREL:
22264#endif
c19d1205
ZW
22265 code = fixp->fx_r_type;
22266 break;
a737bd4d 22267
00adf2d4
JB
22268 case BFD_RELOC_THUMB_PCREL_BLX:
22269#ifdef OBJ_ELF
22270 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22271 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22272 else
22273#endif
22274 code = BFD_RELOC_THUMB_PCREL_BLX;
22275 break;
22276
c19d1205
ZW
22277 case BFD_RELOC_ARM_LITERAL:
22278 case BFD_RELOC_ARM_HWLITERAL:
22279 /* If this is called then the a literal has
22280 been referenced across a section boundary. */
22281 as_bad_where (fixp->fx_file, fixp->fx_line,
22282 _("literal referenced across section boundary"));
22283 return NULL;
a737bd4d 22284
c19d1205 22285#ifdef OBJ_ELF
0855e32b
NS
22286 case BFD_RELOC_ARM_TLS_CALL:
22287 case BFD_RELOC_ARM_THM_TLS_CALL:
22288 case BFD_RELOC_ARM_TLS_DESCSEQ:
22289 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
c19d1205
ZW
22290 case BFD_RELOC_ARM_GOT32:
22291 case BFD_RELOC_ARM_GOTOFF:
b43420e6 22292 case BFD_RELOC_ARM_GOT_PREL:
c19d1205
ZW
22293 case BFD_RELOC_ARM_PLT32:
22294 case BFD_RELOC_ARM_TARGET1:
22295 case BFD_RELOC_ARM_ROSEGREL32:
22296 case BFD_RELOC_ARM_SBREL32:
22297 case BFD_RELOC_ARM_PREL31:
22298 case BFD_RELOC_ARM_TARGET2:
22299 case BFD_RELOC_ARM_TLS_LE32:
22300 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
22301 case BFD_RELOC_ARM_PCREL_CALL:
22302 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
22303 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22304 case BFD_RELOC_ARM_ALU_PC_G0:
22305 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22306 case BFD_RELOC_ARM_ALU_PC_G1:
22307 case BFD_RELOC_ARM_ALU_PC_G2:
22308 case BFD_RELOC_ARM_LDR_PC_G0:
22309 case BFD_RELOC_ARM_LDR_PC_G1:
22310 case BFD_RELOC_ARM_LDR_PC_G2:
22311 case BFD_RELOC_ARM_LDRS_PC_G0:
22312 case BFD_RELOC_ARM_LDRS_PC_G1:
22313 case BFD_RELOC_ARM_LDRS_PC_G2:
22314 case BFD_RELOC_ARM_LDC_PC_G0:
22315 case BFD_RELOC_ARM_LDC_PC_G1:
22316 case BFD_RELOC_ARM_LDC_PC_G2:
22317 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22318 case BFD_RELOC_ARM_ALU_SB_G0:
22319 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22320 case BFD_RELOC_ARM_ALU_SB_G1:
22321 case BFD_RELOC_ARM_ALU_SB_G2:
22322 case BFD_RELOC_ARM_LDR_SB_G0:
22323 case BFD_RELOC_ARM_LDR_SB_G1:
22324 case BFD_RELOC_ARM_LDR_SB_G2:
22325 case BFD_RELOC_ARM_LDRS_SB_G0:
22326 case BFD_RELOC_ARM_LDRS_SB_G1:
22327 case BFD_RELOC_ARM_LDRS_SB_G2:
22328 case BFD_RELOC_ARM_LDC_SB_G0:
22329 case BFD_RELOC_ARM_LDC_SB_G1:
22330 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 22331 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
22332 code = fixp->fx_r_type;
22333 break;
a737bd4d 22334
0855e32b 22335 case BFD_RELOC_ARM_TLS_GOTDESC:
c19d1205
ZW
22336 case BFD_RELOC_ARM_TLS_GD32:
22337 case BFD_RELOC_ARM_TLS_IE32:
22338 case BFD_RELOC_ARM_TLS_LDM32:
22339 /* BFD will include the symbol's address in the addend.
22340 But we don't want that, so subtract it out again here. */
22341 if (!S_IS_COMMON (fixp->fx_addsy))
22342 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22343 code = fixp->fx_r_type;
22344 break;
22345#endif
a737bd4d 22346
c19d1205
ZW
22347 case BFD_RELOC_ARM_IMMEDIATE:
22348 as_bad_where (fixp->fx_file, fixp->fx_line,
22349 _("internal relocation (type: IMMEDIATE) not fixed up"));
22350 return NULL;
a737bd4d 22351
c19d1205
ZW
22352 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22353 as_bad_where (fixp->fx_file, fixp->fx_line,
22354 _("ADRL used for a symbol not defined in the same file"));
22355 return NULL;
a737bd4d 22356
c19d1205 22357 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
22358 if (section->use_rela_p)
22359 {
22360 code = fixp->fx_r_type;
22361 break;
22362 }
22363
c19d1205
ZW
22364 if (fixp->fx_addsy != NULL
22365 && !S_IS_DEFINED (fixp->fx_addsy)
22366 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 22367 {
c19d1205
ZW
22368 as_bad_where (fixp->fx_file, fixp->fx_line,
22369 _("undefined local label `%s'"),
22370 S_GET_NAME (fixp->fx_addsy));
22371 return NULL;
a737bd4d
NC
22372 }
22373
c19d1205
ZW
22374 as_bad_where (fixp->fx_file, fixp->fx_line,
22375 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22376 return NULL;
a737bd4d 22377
c19d1205
ZW
22378 default:
22379 {
22380 char * type;
6c43fab6 22381
c19d1205
ZW
22382 switch (fixp->fx_r_type)
22383 {
22384 case BFD_RELOC_NONE: type = "NONE"; break;
22385 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22386 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 22387 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
22388 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22389 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22390 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
db187cb9 22391 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
8f06b2d8 22392 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
22393 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22394 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22395 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22396 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22397 default: type = _("<unknown>"); break;
22398 }
22399 as_bad_where (fixp->fx_file, fixp->fx_line,
22400 _("cannot represent %s relocation in this object file format"),
22401 type);
22402 return NULL;
22403 }
a737bd4d 22404 }
6c43fab6 22405
c19d1205
ZW
22406#ifdef OBJ_ELF
22407 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22408 && GOT_symbol
22409 && fixp->fx_addsy == GOT_symbol)
22410 {
22411 code = BFD_RELOC_ARM_GOTPC;
22412 reloc->addend = fixp->fx_offset = reloc->address;
22413 }
22414#endif
6c43fab6 22415
c19d1205 22416 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 22417
c19d1205
ZW
22418 if (reloc->howto == NULL)
22419 {
22420 as_bad_where (fixp->fx_file, fixp->fx_line,
22421 _("cannot represent %s relocation in this object file format"),
22422 bfd_get_reloc_code_name (code));
22423 return NULL;
22424 }
6c43fab6 22425
c19d1205
ZW
22426 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22427 vtable entry to be used in the relocation's section offset. */
22428 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22429 reloc->address = fixp->fx_offset;
6c43fab6 22430
c19d1205 22431 return reloc;
6c43fab6
RE
22432}
22433
c19d1205 22434/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 22435
c19d1205
ZW
22436void
22437cons_fix_new_arm (fragS * frag,
22438 int where,
22439 int size,
22440 expressionS * exp)
6c43fab6 22441{
c19d1205
ZW
22442 bfd_reloc_code_real_type type;
22443 int pcrel = 0;
6c43fab6 22444
c19d1205
ZW
22445 /* Pick a reloc.
22446 FIXME: @@ Should look at CPU word size. */
22447 switch (size)
22448 {
22449 case 1:
22450 type = BFD_RELOC_8;
22451 break;
22452 case 2:
22453 type = BFD_RELOC_16;
22454 break;
22455 case 4:
22456 default:
22457 type = BFD_RELOC_32;
22458 break;
22459 case 8:
22460 type = BFD_RELOC_64;
22461 break;
22462 }
6c43fab6 22463
f0927246
NC
22464#ifdef TE_PE
22465 if (exp->X_op == O_secrel)
22466 {
22467 exp->X_op = O_symbol;
22468 type = BFD_RELOC_32_SECREL;
22469 }
22470#endif
22471
c19d1205
ZW
22472 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22473}
6c43fab6 22474
4343666d 22475#if defined (OBJ_COFF)
c19d1205
ZW
22476void
22477arm_validate_fix (fixS * fixP)
6c43fab6 22478{
c19d1205
ZW
22479 /* If the destination of the branch is a defined symbol which does not have
22480 the THUMB_FUNC attribute, then we must be calling a function which has
22481 the (interfacearm) attribute. We look for the Thumb entry point to that
22482 function and change the branch to refer to that function instead. */
22483 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22484 && fixP->fx_addsy != NULL
22485 && S_IS_DEFINED (fixP->fx_addsy)
22486 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 22487 {
c19d1205 22488 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 22489 }
c19d1205
ZW
22490}
22491#endif
6c43fab6 22492
267bf995 22493
c19d1205
ZW
22494int
22495arm_force_relocation (struct fix * fixp)
22496{
22497#if defined (OBJ_COFF) && defined (TE_PE)
22498 if (fixp->fx_r_type == BFD_RELOC_RVA)
22499 return 1;
22500#endif
6c43fab6 22501
267bf995
RR
22502 /* In case we have a call or a branch to a function in ARM ISA mode from
22503 a thumb function or vice-versa force the relocation. These relocations
22504 are cleared off for some cores that might have blx and simple transformations
22505 are possible. */
22506
22507#ifdef OBJ_ELF
22508 switch (fixp->fx_r_type)
22509 {
22510 case BFD_RELOC_ARM_PCREL_JUMP:
22511 case BFD_RELOC_ARM_PCREL_CALL:
22512 case BFD_RELOC_THUMB_PCREL_BLX:
22513 if (THUMB_IS_FUNC (fixp->fx_addsy))
22514 return 1;
22515 break;
22516
22517 case BFD_RELOC_ARM_PCREL_BLX:
22518 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22519 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22520 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22521 if (ARM_IS_FUNC (fixp->fx_addsy))
22522 return 1;
22523 break;
22524
22525 default:
22526 break;
22527 }
22528#endif
22529
b5884301
PB
22530 /* Resolve these relocations even if the symbol is extern or weak.
22531 Technically this is probably wrong due to symbol preemption.
22532 In practice these relocations do not have enough range to be useful
22533 at dynamic link time, and some code (e.g. in the Linux kernel)
22534 expects these references to be resolved. */
c19d1205
ZW
22535 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22536 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
b5884301 22537 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
0110f2b8 22538 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
b5884301
PB
22539 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22540 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22541 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
16805f35 22542 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
22543 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22544 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
b5884301
PB
22545 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22546 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22547 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22548 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
c19d1205 22549 return 0;
a737bd4d 22550
4962c51a
MS
22551 /* Always leave these relocations for the linker. */
22552 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22553 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22554 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22555 return 1;
22556
f0291e4c
PB
22557 /* Always generate relocations against function symbols. */
22558 if (fixp->fx_r_type == BFD_RELOC_32
22559 && fixp->fx_addsy
22560 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22561 return 1;
22562
c19d1205 22563 return generic_force_reloc (fixp);
404ff6b5
AH
22564}
22565
0ffdc86c 22566#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
22567/* Relocations against function names must be left unadjusted,
22568 so that the linker can use this information to generate interworking
22569 stubs. The MIPS version of this function
c19d1205
ZW
22570 also prevents relocations that are mips-16 specific, but I do not
22571 know why it does this.
404ff6b5 22572
c19d1205
ZW
22573 FIXME:
22574 There is one other problem that ought to be addressed here, but
22575 which currently is not: Taking the address of a label (rather
22576 than a function) and then later jumping to that address. Such
22577 addresses also ought to have their bottom bit set (assuming that
22578 they reside in Thumb code), but at the moment they will not. */
404ff6b5 22579
c19d1205
ZW
22580bfd_boolean
22581arm_fix_adjustable (fixS * fixP)
404ff6b5 22582{
c19d1205
ZW
22583 if (fixP->fx_addsy == NULL)
22584 return 1;
404ff6b5 22585
e28387c3
PB
22586 /* Preserve relocations against symbols with function type. */
22587 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 22588 return FALSE;
e28387c3 22589
c19d1205
ZW
22590 if (THUMB_IS_FUNC (fixP->fx_addsy)
22591 && fixP->fx_subsy == NULL)
c921be7d 22592 return FALSE;
a737bd4d 22593
c19d1205
ZW
22594 /* We need the symbol name for the VTABLE entries. */
22595 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22596 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 22597 return FALSE;
404ff6b5 22598
c19d1205
ZW
22599 /* Don't allow symbols to be discarded on GOT related relocs. */
22600 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22601 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22602 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22603 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22604 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22605 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22606 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22607 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
0855e32b
NS
22608 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22609 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22610 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22611 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22612 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
c19d1205 22613 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 22614 return FALSE;
a737bd4d 22615
4962c51a
MS
22616 /* Similarly for group relocations. */
22617 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22618 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22619 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 22620 return FALSE;
4962c51a 22621
79947c54
CD
22622 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22623 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22624 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22625 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22626 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22627 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22628 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22629 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22630 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 22631 return FALSE;
79947c54 22632
c921be7d 22633 return TRUE;
a737bd4d 22634}
0ffdc86c
NC
22635#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22636
22637#ifdef OBJ_ELF
404ff6b5 22638
c19d1205
ZW
22639const char *
22640elf32_arm_target_format (void)
404ff6b5 22641{
c19d1205
ZW
22642#ifdef TE_SYMBIAN
22643 return (target_big_endian
22644 ? "elf32-bigarm-symbian"
22645 : "elf32-littlearm-symbian");
22646#elif defined (TE_VXWORKS)
22647 return (target_big_endian
22648 ? "elf32-bigarm-vxworks"
22649 : "elf32-littlearm-vxworks");
b38cadfb
NC
22650#elif defined (TE_NACL)
22651 return (target_big_endian
22652 ? "elf32-bigarm-nacl"
22653 : "elf32-littlearm-nacl");
c19d1205
ZW
22654#else
22655 if (target_big_endian)
22656 return "elf32-bigarm";
22657 else
22658 return "elf32-littlearm";
22659#endif
404ff6b5
AH
22660}
22661
c19d1205
ZW
22662void
22663armelf_frob_symbol (symbolS * symp,
22664 int * puntp)
404ff6b5 22665{
c19d1205
ZW
22666 elf_frob_symbol (symp, puntp);
22667}
22668#endif
404ff6b5 22669
c19d1205 22670/* MD interface: Finalization. */
a737bd4d 22671
c19d1205
ZW
22672void
22673arm_cleanup (void)
22674{
22675 literal_pool * pool;
a737bd4d 22676
e07e6e58
NC
22677 /* Ensure that all the IT blocks are properly closed. */
22678 check_it_blocks_finished ();
22679
c19d1205
ZW
22680 for (pool = list_of_pools; pool; pool = pool->next)
22681 {
5f4273c7 22682 /* Put it at the end of the relevant section. */
c19d1205
ZW
22683 subseg_set (pool->section, pool->sub_section);
22684#ifdef OBJ_ELF
22685 arm_elf_change_section ();
22686#endif
22687 s_ltorg (0);
22688 }
404ff6b5
AH
22689}
22690
cd000bff
DJ
22691#ifdef OBJ_ELF
22692/* Remove any excess mapping symbols generated for alignment frags in
22693 SEC. We may have created a mapping symbol before a zero byte
22694 alignment; remove it if there's a mapping symbol after the
22695 alignment. */
22696static void
22697check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22698 void *dummy ATTRIBUTE_UNUSED)
22699{
22700 segment_info_type *seginfo = seg_info (sec);
22701 fragS *fragp;
22702
22703 if (seginfo == NULL || seginfo->frchainP == NULL)
22704 return;
22705
22706 for (fragp = seginfo->frchainP->frch_root;
22707 fragp != NULL;
22708 fragp = fragp->fr_next)
22709 {
22710 symbolS *sym = fragp->tc_frag_data.last_map;
22711 fragS *next = fragp->fr_next;
22712
22713 /* Variable-sized frags have been converted to fixed size by
22714 this point. But if this was variable-sized to start with,
22715 there will be a fixed-size frag after it. So don't handle
22716 next == NULL. */
22717 if (sym == NULL || next == NULL)
22718 continue;
22719
22720 if (S_GET_VALUE (sym) < next->fr_address)
22721 /* Not at the end of this frag. */
22722 continue;
22723 know (S_GET_VALUE (sym) == next->fr_address);
22724
22725 do
22726 {
22727 if (next->tc_frag_data.first_map != NULL)
22728 {
22729 /* Next frag starts with a mapping symbol. Discard this
22730 one. */
22731 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22732 break;
22733 }
22734
22735 if (next->fr_next == NULL)
22736 {
22737 /* This mapping symbol is at the end of the section. Discard
22738 it. */
22739 know (next->fr_fix == 0 && next->fr_var == 0);
22740 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22741 break;
22742 }
22743
22744 /* As long as we have empty frags without any mapping symbols,
22745 keep looking. */
22746 /* If the next frag is non-empty and does not start with a
22747 mapping symbol, then this mapping symbol is required. */
22748 if (next->fr_address != next->fr_next->fr_address)
22749 break;
22750
22751 next = next->fr_next;
22752 }
22753 while (next != NULL);
22754 }
22755}
22756#endif
22757
c19d1205
ZW
22758/* Adjust the symbol table. This marks Thumb symbols as distinct from
22759 ARM ones. */
404ff6b5 22760
c19d1205
ZW
22761void
22762arm_adjust_symtab (void)
404ff6b5 22763{
c19d1205
ZW
22764#ifdef OBJ_COFF
22765 symbolS * sym;
404ff6b5 22766
c19d1205
ZW
22767 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22768 {
22769 if (ARM_IS_THUMB (sym))
22770 {
22771 if (THUMB_IS_FUNC (sym))
22772 {
22773 /* Mark the symbol as a Thumb function. */
22774 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22775 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22776 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 22777
c19d1205
ZW
22778 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22779 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22780 else
22781 as_bad (_("%s: unexpected function type: %d"),
22782 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22783 }
22784 else switch (S_GET_STORAGE_CLASS (sym))
22785 {
22786 case C_EXT:
22787 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22788 break;
22789 case C_STAT:
22790 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22791 break;
22792 case C_LABEL:
22793 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22794 break;
22795 default:
22796 /* Do nothing. */
22797 break;
22798 }
22799 }
a737bd4d 22800
c19d1205
ZW
22801 if (ARM_IS_INTERWORK (sym))
22802 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 22803 }
c19d1205
ZW
22804#endif
22805#ifdef OBJ_ELF
22806 symbolS * sym;
22807 char bind;
404ff6b5 22808
c19d1205 22809 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 22810 {
c19d1205
ZW
22811 if (ARM_IS_THUMB (sym))
22812 {
22813 elf_symbol_type * elf_sym;
404ff6b5 22814
c19d1205
ZW
22815 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22816 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 22817
b0796911
PB
22818 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22819 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
22820 {
22821 /* If it's a .thumb_func, declare it as so,
22822 otherwise tag label as .code 16. */
22823 if (THUMB_IS_FUNC (sym))
35fc36a8
RS
22824 elf_sym->internal_elf_sym.st_target_internal
22825 = ST_BRANCH_TO_THUMB;
3ba67470 22826 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
22827 elf_sym->internal_elf_sym.st_info =
22828 ELF_ST_INFO (bind, STT_ARM_16BIT);
22829 }
22830 }
22831 }
cd000bff
DJ
22832
22833 /* Remove any overlapping mapping symbols generated by alignment frags. */
22834 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
709001e9
MM
22835 /* Now do generic ELF adjustments. */
22836 elf_adjust_symtab ();
c19d1205 22837#endif
404ff6b5
AH
22838}
22839
c19d1205 22840/* MD interface: Initialization. */
404ff6b5 22841
a737bd4d 22842static void
c19d1205 22843set_constant_flonums (void)
a737bd4d 22844{
c19d1205 22845 int i;
404ff6b5 22846
c19d1205
ZW
22847 for (i = 0; i < NUM_FLOAT_VALS; i++)
22848 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22849 abort ();
a737bd4d 22850}
404ff6b5 22851
3e9e4fcf
JB
22852/* Auto-select Thumb mode if it's the only available instruction set for the
22853 given architecture. */
22854
22855static void
22856autoselect_thumb_from_cpu_variant (void)
22857{
22858 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22859 opcode_select (16);
22860}
22861
c19d1205
ZW
22862void
22863md_begin (void)
a737bd4d 22864{
c19d1205
ZW
22865 unsigned mach;
22866 unsigned int i;
404ff6b5 22867
c19d1205
ZW
22868 if ( (arm_ops_hsh = hash_new ()) == NULL
22869 || (arm_cond_hsh = hash_new ()) == NULL
22870 || (arm_shift_hsh = hash_new ()) == NULL
22871 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 22872 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 22873 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
22874 || (arm_reloc_hsh = hash_new ()) == NULL
22875 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
22876 as_fatal (_("virtual memory exhausted"));
22877
22878 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 22879 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 22880 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 22881 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 22882 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 22883 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 22884 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 22885 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 22886 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
22887 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22888 (void *) (v7m_psrs + i));
c19d1205 22889 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 22890 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
22891 for (i = 0;
22892 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22893 i++)
d3ce72d0 22894 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 22895 (void *) (barrier_opt_names + i));
c19d1205 22896#ifdef OBJ_ELF
3da1d841
NC
22897 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22898 {
22899 struct reloc_entry * entry = reloc_names + i;
22900
22901 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22902 /* This makes encode_branch() use the EABI versions of this relocation. */
22903 entry->reloc = BFD_RELOC_UNUSED;
22904
22905 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22906 }
c19d1205
ZW
22907#endif
22908
22909 set_constant_flonums ();
404ff6b5 22910
c19d1205
ZW
22911 /* Set the cpu variant based on the command-line options. We prefer
22912 -mcpu= over -march= if both are set (as for GCC); and we prefer
22913 -mfpu= over any other way of setting the floating point unit.
22914 Use of legacy options with new options are faulted. */
e74cfd16 22915 if (legacy_cpu)
404ff6b5 22916 {
e74cfd16 22917 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
22918 as_bad (_("use of old and new-style options to set CPU type"));
22919
22920 mcpu_cpu_opt = legacy_cpu;
404ff6b5 22921 }
e74cfd16 22922 else if (!mcpu_cpu_opt)
c19d1205 22923 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 22924
e74cfd16 22925 if (legacy_fpu)
c19d1205 22926 {
e74cfd16 22927 if (mfpu_opt)
c19d1205 22928 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
22929
22930 mfpu_opt = legacy_fpu;
22931 }
e74cfd16 22932 else if (!mfpu_opt)
03b1477f 22933 {
45eb4c1b
NS
22934#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22935 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
22936 /* Some environments specify a default FPU. If they don't, infer it
22937 from the processor. */
e74cfd16 22938 if (mcpu_fpu_opt)
03b1477f
RE
22939 mfpu_opt = mcpu_fpu_opt;
22940 else
22941 mfpu_opt = march_fpu_opt;
39c2da32 22942#else
e74cfd16 22943 mfpu_opt = &fpu_default;
39c2da32 22944#endif
03b1477f
RE
22945 }
22946
e74cfd16 22947 if (!mfpu_opt)
03b1477f 22948 {
493cb6ef 22949 if (mcpu_cpu_opt != NULL)
e74cfd16 22950 mfpu_opt = &fpu_default;
493cb6ef 22951 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 22952 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 22953 else
e74cfd16 22954 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
22955 }
22956
ee065d83 22957#ifdef CPU_DEFAULT
e74cfd16 22958 if (!mcpu_cpu_opt)
ee065d83 22959 {
e74cfd16
PB
22960 mcpu_cpu_opt = &cpu_default;
22961 selected_cpu = cpu_default;
ee065d83 22962 }
e74cfd16
PB
22963#else
22964 if (mcpu_cpu_opt)
22965 selected_cpu = *mcpu_cpu_opt;
ee065d83 22966 else
e74cfd16 22967 mcpu_cpu_opt = &arm_arch_any;
ee065d83 22968#endif
03b1477f 22969
e74cfd16 22970 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 22971
3e9e4fcf
JB
22972 autoselect_thumb_from_cpu_variant ();
22973
e74cfd16 22974 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 22975
f17c130b 22976#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 22977 {
7cc69913
NC
22978 unsigned int flags = 0;
22979
22980#if defined OBJ_ELF
22981 flags = meabi_flags;
d507cf36
PB
22982
22983 switch (meabi_flags)
33a392fb 22984 {
d507cf36 22985 case EF_ARM_EABI_UNKNOWN:
7cc69913 22986#endif
d507cf36
PB
22987 /* Set the flags in the private structure. */
22988 if (uses_apcs_26) flags |= F_APCS26;
22989 if (support_interwork) flags |= F_INTERWORK;
22990 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 22991 if (pic_code) flags |= F_PIC;
e74cfd16 22992 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
22993 flags |= F_SOFT_FLOAT;
22994
d507cf36
PB
22995 switch (mfloat_abi_opt)
22996 {
22997 case ARM_FLOAT_ABI_SOFT:
22998 case ARM_FLOAT_ABI_SOFTFP:
22999 flags |= F_SOFT_FLOAT;
23000 break;
33a392fb 23001
d507cf36
PB
23002 case ARM_FLOAT_ABI_HARD:
23003 if (flags & F_SOFT_FLOAT)
23004 as_bad (_("hard-float conflicts with specified fpu"));
23005 break;
23006 }
03b1477f 23007
e74cfd16
PB
23008 /* Using pure-endian doubles (even if soft-float). */
23009 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 23010 flags |= F_VFP_FLOAT;
f17c130b 23011
fde78edd 23012#if defined OBJ_ELF
e74cfd16 23013 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 23014 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
23015 break;
23016
8cb51566 23017 case EF_ARM_EABI_VER4:
3a4a14e9 23018 case EF_ARM_EABI_VER5:
c19d1205 23019 /* No additional flags to set. */
d507cf36
PB
23020 break;
23021
23022 default:
23023 abort ();
23024 }
7cc69913 23025#endif
b99bd4ef
NC
23026 bfd_set_private_flags (stdoutput, flags);
23027
23028 /* We have run out flags in the COFF header to encode the
23029 status of ATPCS support, so instead we create a dummy,
c19d1205 23030 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
23031 if (atpcs)
23032 {
23033 asection * sec;
23034
23035 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23036
23037 if (sec != NULL)
23038 {
23039 bfd_set_section_flags
23040 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23041 bfd_set_section_size (stdoutput, sec, 0);
23042 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23043 }
23044 }
7cc69913 23045 }
f17c130b 23046#endif
b99bd4ef
NC
23047
23048 /* Record the CPU type as well. */
2d447fca
JM
23049 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23050 mach = bfd_mach_arm_iWMMXt2;
23051 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 23052 mach = bfd_mach_arm_iWMMXt;
e74cfd16 23053 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 23054 mach = bfd_mach_arm_XScale;
e74cfd16 23055 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 23056 mach = bfd_mach_arm_ep9312;
e74cfd16 23057 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 23058 mach = bfd_mach_arm_5TE;
e74cfd16 23059 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 23060 {
e74cfd16 23061 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
23062 mach = bfd_mach_arm_5T;
23063 else
23064 mach = bfd_mach_arm_5;
23065 }
e74cfd16 23066 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 23067 {
e74cfd16 23068 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
23069 mach = bfd_mach_arm_4T;
23070 else
23071 mach = bfd_mach_arm_4;
23072 }
e74cfd16 23073 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 23074 mach = bfd_mach_arm_3M;
e74cfd16
PB
23075 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23076 mach = bfd_mach_arm_3;
23077 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23078 mach = bfd_mach_arm_2a;
23079 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23080 mach = bfd_mach_arm_2;
23081 else
23082 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
23083
23084 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23085}
23086
c19d1205 23087/* Command line processing. */
b99bd4ef 23088
c19d1205
ZW
23089/* md_parse_option
23090 Invocation line includes a switch not recognized by the base assembler.
23091 See if it's a processor-specific option.
b99bd4ef 23092
c19d1205
ZW
23093 This routine is somewhat complicated by the need for backwards
23094 compatibility (since older releases of gcc can't be changed).
23095 The new options try to make the interface as compatible as
23096 possible with GCC.
b99bd4ef 23097
c19d1205 23098 New options (supported) are:
b99bd4ef 23099
c19d1205
ZW
23100 -mcpu=<cpu name> Assemble for selected processor
23101 -march=<architecture name> Assemble for selected architecture
23102 -mfpu=<fpu architecture> Assemble for selected FPU.
23103 -EB/-mbig-endian Big-endian
23104 -EL/-mlittle-endian Little-endian
23105 -k Generate PIC code
23106 -mthumb Start in Thumb mode
23107 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 23108
278df34e 23109 -m[no-]warn-deprecated Warn about deprecated features
267bf995 23110
c19d1205 23111 For now we will also provide support for:
b99bd4ef 23112
c19d1205
ZW
23113 -mapcs-32 32-bit Program counter
23114 -mapcs-26 26-bit Program counter
23115 -macps-float Floats passed in FP registers
23116 -mapcs-reentrant Reentrant code
23117 -matpcs
23118 (sometime these will probably be replaced with -mapcs=<list of options>
23119 and -matpcs=<list of options>)
b99bd4ef 23120
c19d1205
ZW
23121 The remaining options are only supported for back-wards compatibility.
23122 Cpu variants, the arm part is optional:
23123 -m[arm]1 Currently not supported.
23124 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23125 -m[arm]3 Arm 3 processor
23126 -m[arm]6[xx], Arm 6 processors
23127 -m[arm]7[xx][t][[d]m] Arm 7 processors
23128 -m[arm]8[10] Arm 8 processors
23129 -m[arm]9[20][tdmi] Arm 9 processors
23130 -mstrongarm[110[0]] StrongARM processors
23131 -mxscale XScale processors
23132 -m[arm]v[2345[t[e]]] Arm architectures
23133 -mall All (except the ARM1)
23134 FP variants:
23135 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23136 -mfpe-old (No float load/store multiples)
23137 -mvfpxd VFP Single precision
23138 -mvfp All VFP
23139 -mno-fpu Disable all floating point instructions
b99bd4ef 23140
c19d1205
ZW
23141 The following CPU names are recognized:
23142 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23143 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23144 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23145 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23146 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23147 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23148 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 23149
c19d1205 23150 */
b99bd4ef 23151
c19d1205 23152const char * md_shortopts = "m:k";
b99bd4ef 23153
c19d1205
ZW
23154#ifdef ARM_BI_ENDIAN
23155#define OPTION_EB (OPTION_MD_BASE + 0)
23156#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 23157#else
c19d1205
ZW
23158#if TARGET_BYTES_BIG_ENDIAN
23159#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 23160#else
c19d1205
ZW
23161#define OPTION_EL (OPTION_MD_BASE + 1)
23162#endif
b99bd4ef 23163#endif
845b51d6 23164#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 23165
c19d1205 23166struct option md_longopts[] =
b99bd4ef 23167{
c19d1205
ZW
23168#ifdef OPTION_EB
23169 {"EB", no_argument, NULL, OPTION_EB},
23170#endif
23171#ifdef OPTION_EL
23172 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 23173#endif
845b51d6 23174 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
23175 {NULL, no_argument, NULL, 0}
23176};
b99bd4ef 23177
c19d1205 23178size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 23179
c19d1205 23180struct arm_option_table
b99bd4ef 23181{
c19d1205
ZW
23182 char *option; /* Option name to match. */
23183 char *help; /* Help information. */
23184 int *var; /* Variable to change. */
23185 int value; /* What to change it to. */
23186 char *deprecated; /* If non-null, print this message. */
23187};
b99bd4ef 23188
c19d1205
ZW
23189struct arm_option_table arm_opts[] =
23190{
23191 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23192 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23193 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23194 &support_interwork, 1, NULL},
23195 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23196 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23197 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23198 1, NULL},
23199 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23200 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23201 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23202 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23203 NULL},
b99bd4ef 23204
c19d1205
ZW
23205 /* These are recognized by the assembler, but have no affect on code. */
23206 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23207 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
23208
23209 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23210 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23211 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
23212 {NULL, NULL, NULL, 0, NULL}
23213};
23214
23215struct arm_legacy_option_table
23216{
23217 char *option; /* Option name to match. */
23218 const arm_feature_set **var; /* Variable to change. */
23219 const arm_feature_set value; /* What to change it to. */
23220 char *deprecated; /* If non-null, print this message. */
23221};
b99bd4ef 23222
e74cfd16
PB
23223const struct arm_legacy_option_table arm_legacy_opts[] =
23224{
c19d1205
ZW
23225 /* DON'T add any new processors to this list -- we want the whole list
23226 to go away... Add them to the processors table instead. */
e74cfd16
PB
23227 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23228 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23229 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23230 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23231 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23232 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23233 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23234 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23235 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23236 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23237 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23238 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23239 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23240 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23241 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23242 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23243 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23244 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23245 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23246 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23247 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23248 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23249 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23250 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23251 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23252 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23253 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23254 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23255 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23256 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23257 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23258 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23259 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23260 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23261 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23262 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23263 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23264 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23265 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23266 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23267 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23268 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23269 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23270 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23271 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23272 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23273 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23274 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23275 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23276 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23277 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23278 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23279 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23280 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23281 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23282 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23283 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23284 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23285 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23286 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23287 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23288 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23289 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23290 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23291 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23292 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23293 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23294 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23295 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23296 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23297 N_("use -mcpu=strongarm110")},
e74cfd16 23298 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23299 N_("use -mcpu=strongarm1100")},
e74cfd16 23300 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 23301 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
23302 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23303 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23304 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 23305
c19d1205 23306 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
23307 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23308 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23309 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23310 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23311 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23312 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23313 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23314 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23315 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23316 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23317 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23318 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23319 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23320 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23321 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23322 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23323 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23324 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 23325
c19d1205 23326 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
23327 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23328 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23329 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23330 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 23331 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 23332
e74cfd16 23333 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 23334};
7ed4c4c5 23335
c19d1205 23336struct arm_cpu_option_table
7ed4c4c5 23337{
c19d1205 23338 char *name;
f3bad469 23339 size_t name_len;
e74cfd16 23340 const arm_feature_set value;
c19d1205
ZW
23341 /* For some CPUs we assume an FPU unless the user explicitly sets
23342 -mfpu=... */
e74cfd16 23343 const arm_feature_set default_fpu;
ee065d83
PB
23344 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23345 case. */
23346 const char *canonical_name;
c19d1205 23347};
7ed4c4c5 23348
c19d1205
ZW
23349/* This list should, at a minimum, contain all the cpu names
23350 recognized by GCC. */
f3bad469 23351#define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
e74cfd16 23352static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 23353{
f3bad469
MGD
23354 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23355 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23356 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23357 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23358 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23359 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23360 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23361 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23362 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23363 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23364 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23365 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23366 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23367 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23368 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23369 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23370 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23371 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23372 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23373 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23374 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23375 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23376 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23377 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23378 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23379 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23380 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23381 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23382 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23383 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23384 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23385 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23386 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23387 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23388 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23389 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23390 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23391 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23392 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23393 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23394 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23395 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23396 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23397 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23398 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23399 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
c19d1205
ZW
23400 /* For V5 or later processors we default to using VFP; but the user
23401 should really set the FPU type explicitly. */
f3bad469
MGD
23402 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23403 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23404 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23405 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23406 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23407 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23408 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23409 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23410 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23411 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23412 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23413 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23414 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23415 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23416 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23417 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23418 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23419 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23420 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23421 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23422 "ARM1026EJ-S"),
23423 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23424 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23425 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23426 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23427 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23428 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23429 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23430 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23431 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23432 "ARM1136JF-S"),
23433 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23434 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23435 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23436 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23437 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23438 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23439 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23440 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23441 FPU_NONE, "Cortex-A5"),
23442 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23443 FPU_ARCH_NEON_VFP_V4,
23444 "Cortex-A7"),
23445 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23446 ARM_FEATURE (0, FPU_VFP_V3
5287ad62 23447 | FPU_NEON_EXT_V1),
f3bad469
MGD
23448 "Cortex-A8"),
23449 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23450 ARM_FEATURE (0, FPU_VFP_V3
15290f0a 23451 | FPU_NEON_EXT_V1),
f3bad469
MGD
23452 "Cortex-A9"),
23453 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23454 FPU_ARCH_NEON_VFP_V4,
23455 "Cortex-A15"),
23456 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23457 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23458 "Cortex-R4F"),
23459 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23460 FPU_NONE, "Cortex-R5"),
23461 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23462 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23463 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23464 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
ce32bd10 23465 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
c19d1205 23466 /* ??? XSCALE is really an architecture. */
f3bad469 23467 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23468 /* ??? iwmmxt is not a processor. */
f3bad469
MGD
23469 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23470 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23471 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
c19d1205 23472 /* Maverick */
f3bad469
MGD
23473 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23474 FPU_ARCH_MAVERICK,
23475 "ARM920T"),
23476 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
c19d1205 23477};
f3bad469 23478#undef ARM_CPU_OPT
7ed4c4c5 23479
c19d1205 23480struct arm_arch_option_table
7ed4c4c5 23481{
c19d1205 23482 char *name;
f3bad469 23483 size_t name_len;
e74cfd16
PB
23484 const arm_feature_set value;
23485 const arm_feature_set default_fpu;
c19d1205 23486};
7ed4c4c5 23487
c19d1205
ZW
23488/* This list should, at a minimum, contain all the architecture names
23489 recognized by GCC. */
f3bad469 23490#define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
e74cfd16 23491static const struct arm_arch_option_table arm_archs[] =
c19d1205 23492{
f3bad469
MGD
23493 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23494 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23495 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23496 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23497 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23498 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23499 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23500 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23501 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23502 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23503 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23504 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23505 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23506 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23507 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23508 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23509 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23510 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23511 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23512 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23513 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23514 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23515 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23516 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23517 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23518 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23519 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23520 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23521 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
c450d570
PB
23522 /* The official spelling of the ARMv7 profile variants is the dashed form.
23523 Accept the non-dashed form for compatibility with old toolchains. */
f3bad469
MGD
23524 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23525 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23526 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23527 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23528 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23529 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23530 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
bca38921 23531 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
f3bad469
MGD
23532 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23533 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23534 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23535 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
c19d1205 23536};
f3bad469 23537#undef ARM_ARCH_OPT
7ed4c4c5 23538
69133863
MGD
23539/* ISA extensions in the co-processor and main instruction set space. */
23540struct arm_option_extension_value_table
c19d1205
ZW
23541{
23542 char *name;
f3bad469 23543 size_t name_len;
e74cfd16 23544 const arm_feature_set value;
69133863 23545 const arm_feature_set allowed_archs;
c19d1205 23546};
7ed4c4c5 23547
69133863
MGD
23548/* The following table must be in alphabetical order with a NULL last entry.
23549 */
f3bad469 23550#define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
69133863 23551static const struct arm_option_extension_value_table arm_extensions[] =
c19d1205 23552{
bca38921
MGD
23553 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23554 ARM_FEATURE (ARM_EXT_V8, 0)),
23555 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23556 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
23557 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23558 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23559 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23560 ARM_EXT_OPT ("iwmmxt2",
23561 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23562 ARM_EXT_OPT ("maverick",
23563 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23564 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23565 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
bca38921
MGD
23566 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23567 ARM_FEATURE (ARM_EXT_V8, 0)),
f3bad469
MGD
23568 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23569 ARM_FEATURE (ARM_EXT_V6M, 0)),
23570 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23571 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23572 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23573 | ARM_EXT_DIV, 0),
23574 ARM_FEATURE (ARM_EXT_V7A, 0)),
23575 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23576 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
69133863 23577};
f3bad469 23578#undef ARM_EXT_OPT
69133863
MGD
23579
23580/* ISA floating-point and Advanced SIMD extensions. */
23581struct arm_option_fpu_value_table
23582{
23583 char *name;
23584 const arm_feature_set value;
c19d1205 23585};
7ed4c4c5 23586
c19d1205
ZW
23587/* This list should, at a minimum, contain all the fpu names
23588 recognized by GCC. */
69133863 23589static const struct arm_option_fpu_value_table arm_fpus[] =
c19d1205
ZW
23590{
23591 {"softfpa", FPU_NONE},
23592 {"fpe", FPU_ARCH_FPE},
23593 {"fpe2", FPU_ARCH_FPE},
23594 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23595 {"fpa", FPU_ARCH_FPA},
23596 {"fpa10", FPU_ARCH_FPA},
23597 {"fpa11", FPU_ARCH_FPA},
23598 {"arm7500fe", FPU_ARCH_FPA},
23599 {"softvfp", FPU_ARCH_VFP},
23600 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23601 {"vfp", FPU_ARCH_VFP_V2},
23602 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 23603 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
23604 {"vfp10", FPU_ARCH_VFP_V2},
23605 {"vfp10-r0", FPU_ARCH_VFP_V1},
23606 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
23607 {"vfpv2", FPU_ARCH_VFP_V2},
23608 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 23609 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 23610 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
23611 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23612 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23613 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
23614 {"arm1020t", FPU_ARCH_VFP_V1},
23615 {"arm1020e", FPU_ARCH_VFP_V2},
23616 {"arm1136jfs", FPU_ARCH_VFP_V2},
23617 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23618 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 23619 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 23620 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
23621 {"vfpv4", FPU_ARCH_VFP_V4},
23622 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
ada65aa3 23623 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
62f3b8c8 23624 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
bca38921
MGD
23625 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23626 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23627 {"crypto-neon-fp-armv8",
23628 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
e74cfd16
PB
23629 {NULL, ARM_ARCH_NONE}
23630};
23631
23632struct arm_option_value_table
23633{
23634 char *name;
23635 long value;
c19d1205 23636};
7ed4c4c5 23637
e74cfd16 23638static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
23639{
23640 {"hard", ARM_FLOAT_ABI_HARD},
23641 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23642 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 23643 {NULL, 0}
c19d1205 23644};
7ed4c4c5 23645
c19d1205 23646#ifdef OBJ_ELF
3a4a14e9 23647/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 23648static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
23649{
23650 {"gnu", EF_ARM_EABI_UNKNOWN},
23651 {"4", EF_ARM_EABI_VER4},
3a4a14e9 23652 {"5", EF_ARM_EABI_VER5},
e74cfd16 23653 {NULL, 0}
c19d1205
ZW
23654};
23655#endif
7ed4c4c5 23656
c19d1205
ZW
23657struct arm_long_option_table
23658{
23659 char * option; /* Substring to match. */
23660 char * help; /* Help information. */
23661 int (* func) (char * subopt); /* Function to decode sub-option. */
23662 char * deprecated; /* If non-null, print this message. */
23663};
7ed4c4c5 23664
c921be7d 23665static bfd_boolean
f3bad469 23666arm_parse_extension (char *str, const arm_feature_set **opt_p)
7ed4c4c5 23667{
21d799b5
NC
23668 arm_feature_set *ext_set = (arm_feature_set *)
23669 xmalloc (sizeof (arm_feature_set));
e74cfd16 23670
69133863 23671 /* We insist on extensions being specified in alphabetical order, and with
fa94de6b
RM
23672 extensions being added before being removed. We achieve this by having
23673 the global ARM_EXTENSIONS table in alphabetical order, and using the
69133863 23674 ADDING_VALUE variable to indicate whether we are adding an extension (1)
fa94de6b 23675 or removing it (0) and only allowing it to change in the order
69133863
MGD
23676 -1 -> 1 -> 0. */
23677 const struct arm_option_extension_value_table * opt = NULL;
23678 int adding_value = -1;
23679
e74cfd16
PB
23680 /* Copy the feature set, so that we can modify it. */
23681 *ext_set = **opt_p;
23682 *opt_p = ext_set;
23683
c19d1205 23684 while (str != NULL && *str != 0)
7ed4c4c5 23685 {
f3bad469
MGD
23686 char *ext;
23687 size_t len;
7ed4c4c5 23688
c19d1205
ZW
23689 if (*str != '+')
23690 {
23691 as_bad (_("invalid architectural extension"));
c921be7d 23692 return FALSE;
c19d1205 23693 }
7ed4c4c5 23694
c19d1205
ZW
23695 str++;
23696 ext = strchr (str, '+');
7ed4c4c5 23697
c19d1205 23698 if (ext != NULL)
f3bad469 23699 len = ext - str;
c19d1205 23700 else
f3bad469 23701 len = strlen (str);
7ed4c4c5 23702
f3bad469 23703 if (len >= 2 && strncmp (str, "no", 2) == 0)
69133863
MGD
23704 {
23705 if (adding_value != 0)
23706 {
23707 adding_value = 0;
23708 opt = arm_extensions;
23709 }
23710
f3bad469 23711 len -= 2;
69133863
MGD
23712 str += 2;
23713 }
f3bad469 23714 else if (len > 0)
69133863
MGD
23715 {
23716 if (adding_value == -1)
23717 {
23718 adding_value = 1;
23719 opt = arm_extensions;
23720 }
23721 else if (adding_value != 1)
23722 {
23723 as_bad (_("must specify extensions to add before specifying "
23724 "those to remove"));
23725 return FALSE;
23726 }
23727 }
23728
f3bad469 23729 if (len == 0)
c19d1205
ZW
23730 {
23731 as_bad (_("missing architectural extension"));
c921be7d 23732 return FALSE;
c19d1205 23733 }
7ed4c4c5 23734
69133863
MGD
23735 gas_assert (adding_value != -1);
23736 gas_assert (opt != NULL);
23737
23738 /* Scan over the options table trying to find an exact match. */
23739 for (; opt->name != NULL; opt++)
f3bad469 23740 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23741 {
69133863
MGD
23742 /* Check we can apply the extension to this architecture. */
23743 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23744 {
23745 as_bad (_("extension does not apply to the base architecture"));
23746 return FALSE;
23747 }
23748
23749 /* Add or remove the extension. */
23750 if (adding_value)
23751 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23752 else
23753 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23754
c19d1205
ZW
23755 break;
23756 }
7ed4c4c5 23757
c19d1205
ZW
23758 if (opt->name == NULL)
23759 {
69133863
MGD
23760 /* Did we fail to find an extension because it wasn't specified in
23761 alphabetical order, or because it does not exist? */
23762
23763 for (opt = arm_extensions; opt->name != NULL; opt++)
f3bad469 23764 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
69133863
MGD
23765 break;
23766
23767 if (opt->name == NULL)
23768 as_bad (_("unknown architectural extension `%s'"), str);
23769 else
23770 as_bad (_("architectural extensions must be specified in "
23771 "alphabetical order"));
23772
c921be7d 23773 return FALSE;
c19d1205 23774 }
69133863
MGD
23775 else
23776 {
23777 /* We should skip the extension we've just matched the next time
23778 round. */
23779 opt++;
23780 }
7ed4c4c5 23781
c19d1205
ZW
23782 str = ext;
23783 };
7ed4c4c5 23784
c921be7d 23785 return TRUE;
c19d1205 23786}
7ed4c4c5 23787
c921be7d 23788static bfd_boolean
f3bad469 23789arm_parse_cpu (char *str)
7ed4c4c5 23790{
f3bad469
MGD
23791 const struct arm_cpu_option_table *opt;
23792 char *ext = strchr (str, '+');
23793 size_t len;
7ed4c4c5 23794
c19d1205 23795 if (ext != NULL)
f3bad469 23796 len = ext - str;
7ed4c4c5 23797 else
f3bad469 23798 len = strlen (str);
7ed4c4c5 23799
f3bad469 23800 if (len == 0)
7ed4c4c5 23801 {
c19d1205 23802 as_bad (_("missing cpu name `%s'"), str);
c921be7d 23803 return FALSE;
7ed4c4c5
NC
23804 }
23805
c19d1205 23806 for (opt = arm_cpus; opt->name != NULL; opt++)
f3bad469 23807 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23808 {
e74cfd16
PB
23809 mcpu_cpu_opt = &opt->value;
23810 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 23811 if (opt->canonical_name)
5f4273c7 23812 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
23813 else
23814 {
f3bad469 23815 size_t i;
c921be7d 23816
f3bad469 23817 for (i = 0; i < len; i++)
ee065d83
PB
23818 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23819 selected_cpu_name[i] = 0;
23820 }
7ed4c4c5 23821
c19d1205
ZW
23822 if (ext != NULL)
23823 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 23824
c921be7d 23825 return TRUE;
c19d1205 23826 }
7ed4c4c5 23827
c19d1205 23828 as_bad (_("unknown cpu `%s'"), str);
c921be7d 23829 return FALSE;
7ed4c4c5
NC
23830}
23831
c921be7d 23832static bfd_boolean
f3bad469 23833arm_parse_arch (char *str)
7ed4c4c5 23834{
e74cfd16 23835 const struct arm_arch_option_table *opt;
c19d1205 23836 char *ext = strchr (str, '+');
f3bad469 23837 size_t len;
7ed4c4c5 23838
c19d1205 23839 if (ext != NULL)
f3bad469 23840 len = ext - str;
7ed4c4c5 23841 else
f3bad469 23842 len = strlen (str);
7ed4c4c5 23843
f3bad469 23844 if (len == 0)
7ed4c4c5 23845 {
c19d1205 23846 as_bad (_("missing architecture name `%s'"), str);
c921be7d 23847 return FALSE;
7ed4c4c5
NC
23848 }
23849
c19d1205 23850 for (opt = arm_archs; opt->name != NULL; opt++)
f3bad469 23851 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
c19d1205 23852 {
e74cfd16
PB
23853 march_cpu_opt = &opt->value;
23854 march_fpu_opt = &opt->default_fpu;
5f4273c7 23855 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 23856
c19d1205
ZW
23857 if (ext != NULL)
23858 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 23859
c921be7d 23860 return TRUE;
c19d1205
ZW
23861 }
23862
23863 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 23864 return FALSE;
7ed4c4c5 23865}
eb043451 23866
c921be7d 23867static bfd_boolean
c19d1205
ZW
23868arm_parse_fpu (char * str)
23869{
69133863 23870 const struct arm_option_fpu_value_table * opt;
b99bd4ef 23871
c19d1205
ZW
23872 for (opt = arm_fpus; opt->name != NULL; opt++)
23873 if (streq (opt->name, str))
23874 {
e74cfd16 23875 mfpu_opt = &opt->value;
c921be7d 23876 return TRUE;
c19d1205 23877 }
b99bd4ef 23878
c19d1205 23879 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 23880 return FALSE;
c19d1205
ZW
23881}
23882
c921be7d 23883static bfd_boolean
c19d1205 23884arm_parse_float_abi (char * str)
b99bd4ef 23885{
e74cfd16 23886 const struct arm_option_value_table * opt;
b99bd4ef 23887
c19d1205
ZW
23888 for (opt = arm_float_abis; opt->name != NULL; opt++)
23889 if (streq (opt->name, str))
23890 {
23891 mfloat_abi_opt = opt->value;
c921be7d 23892 return TRUE;
c19d1205 23893 }
cc8a6dd0 23894
c19d1205 23895 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 23896 return FALSE;
c19d1205 23897}
b99bd4ef 23898
c19d1205 23899#ifdef OBJ_ELF
c921be7d 23900static bfd_boolean
c19d1205
ZW
23901arm_parse_eabi (char * str)
23902{
e74cfd16 23903 const struct arm_option_value_table *opt;
cc8a6dd0 23904
c19d1205
ZW
23905 for (opt = arm_eabis; opt->name != NULL; opt++)
23906 if (streq (opt->name, str))
23907 {
23908 meabi_flags = opt->value;
c921be7d 23909 return TRUE;
c19d1205
ZW
23910 }
23911 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 23912 return FALSE;
c19d1205
ZW
23913}
23914#endif
cc8a6dd0 23915
c921be7d 23916static bfd_boolean
e07e6e58
NC
23917arm_parse_it_mode (char * str)
23918{
c921be7d 23919 bfd_boolean ret = TRUE;
e07e6e58
NC
23920
23921 if (streq ("arm", str))
23922 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23923 else if (streq ("thumb", str))
23924 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23925 else if (streq ("always", str))
23926 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23927 else if (streq ("never", str))
23928 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23929 else
23930 {
23931 as_bad (_("unknown implicit IT mode `%s', should be "\
23932 "arm, thumb, always, or never."), str);
c921be7d 23933 ret = FALSE;
e07e6e58
NC
23934 }
23935
23936 return ret;
23937}
23938
c19d1205
ZW
23939struct arm_long_option_table arm_long_opts[] =
23940{
23941 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23942 arm_parse_cpu, NULL},
23943 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23944 arm_parse_arch, NULL},
23945 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23946 arm_parse_fpu, NULL},
23947 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23948 arm_parse_float_abi, NULL},
23949#ifdef OBJ_ELF
7fac0536 23950 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
23951 arm_parse_eabi, NULL},
23952#endif
e07e6e58
NC
23953 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23954 arm_parse_it_mode, NULL},
c19d1205
ZW
23955 {NULL, NULL, 0, NULL}
23956};
cc8a6dd0 23957
c19d1205
ZW
23958int
23959md_parse_option (int c, char * arg)
23960{
23961 struct arm_option_table *opt;
e74cfd16 23962 const struct arm_legacy_option_table *fopt;
c19d1205 23963 struct arm_long_option_table *lopt;
b99bd4ef 23964
c19d1205 23965 switch (c)
b99bd4ef 23966 {
c19d1205
ZW
23967#ifdef OPTION_EB
23968 case OPTION_EB:
23969 target_big_endian = 1;
23970 break;
23971#endif
cc8a6dd0 23972
c19d1205
ZW
23973#ifdef OPTION_EL
23974 case OPTION_EL:
23975 target_big_endian = 0;
23976 break;
23977#endif
b99bd4ef 23978
845b51d6
PB
23979 case OPTION_FIX_V4BX:
23980 fix_v4bx = TRUE;
23981 break;
23982
c19d1205
ZW
23983 case 'a':
23984 /* Listing option. Just ignore these, we don't support additional
23985 ones. */
23986 return 0;
b99bd4ef 23987
c19d1205
ZW
23988 default:
23989 for (opt = arm_opts; opt->option != NULL; opt++)
23990 {
23991 if (c == opt->option[0]
23992 && ((arg == NULL && opt->option[1] == 0)
23993 || streq (arg, opt->option + 1)))
23994 {
c19d1205 23995 /* If the option is deprecated, tell the user. */
278df34e 23996 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
23997 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23998 arg ? arg : "", _(opt->deprecated));
b99bd4ef 23999
c19d1205
ZW
24000 if (opt->var != NULL)
24001 *opt->var = opt->value;
cc8a6dd0 24002
c19d1205
ZW
24003 return 1;
24004 }
24005 }
b99bd4ef 24006
e74cfd16
PB
24007 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
24008 {
24009 if (c == fopt->option[0]
24010 && ((arg == NULL && fopt->option[1] == 0)
24011 || streq (arg, fopt->option + 1)))
24012 {
e74cfd16 24013 /* If the option is deprecated, tell the user. */
278df34e 24014 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
24015 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24016 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
24017
24018 if (fopt->var != NULL)
24019 *fopt->var = &fopt->value;
24020
24021 return 1;
24022 }
24023 }
24024
c19d1205
ZW
24025 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24026 {
24027 /* These options are expected to have an argument. */
24028 if (c == lopt->option[0]
24029 && arg != NULL
24030 && strncmp (arg, lopt->option + 1,
24031 strlen (lopt->option + 1)) == 0)
24032 {
c19d1205 24033 /* If the option is deprecated, tell the user. */
278df34e 24034 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
24035 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24036 _(lopt->deprecated));
b99bd4ef 24037
c19d1205
ZW
24038 /* Call the sup-option parser. */
24039 return lopt->func (arg + strlen (lopt->option) - 1);
24040 }
24041 }
a737bd4d 24042
c19d1205
ZW
24043 return 0;
24044 }
a394c00f 24045
c19d1205
ZW
24046 return 1;
24047}
a394c00f 24048
c19d1205
ZW
24049void
24050md_show_usage (FILE * fp)
a394c00f 24051{
c19d1205
ZW
24052 struct arm_option_table *opt;
24053 struct arm_long_option_table *lopt;
a394c00f 24054
c19d1205 24055 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 24056
c19d1205
ZW
24057 for (opt = arm_opts; opt->option != NULL; opt++)
24058 if (opt->help != NULL)
24059 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 24060
c19d1205
ZW
24061 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24062 if (lopt->help != NULL)
24063 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 24064
c19d1205
ZW
24065#ifdef OPTION_EB
24066 fprintf (fp, _("\
24067 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
24068#endif
24069
c19d1205
ZW
24070#ifdef OPTION_EL
24071 fprintf (fp, _("\
24072 -EL assemble code for a little-endian cpu\n"));
a737bd4d 24073#endif
845b51d6
PB
24074
24075 fprintf (fp, _("\
24076 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 24077}
ee065d83
PB
24078
24079
24080#ifdef OBJ_ELF
62b3e311
PB
24081typedef struct
24082{
24083 int val;
24084 arm_feature_set flags;
24085} cpu_arch_ver_table;
24086
24087/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24088 least features first. */
24089static const cpu_arch_ver_table cpu_arch_ver[] =
24090{
24091 {1, ARM_ARCH_V4},
24092 {2, ARM_ARCH_V4T},
24093 {3, ARM_ARCH_V5},
ee3c0378 24094 {3, ARM_ARCH_V5T},
62b3e311
PB
24095 {4, ARM_ARCH_V5TE},
24096 {5, ARM_ARCH_V5TEJ},
24097 {6, ARM_ARCH_V6},
7e806470 24098 {9, ARM_ARCH_V6K},
f4c65163 24099 {7, ARM_ARCH_V6Z},
91e22acd 24100 {11, ARM_ARCH_V6M},
b2a5fbdc 24101 {12, ARM_ARCH_V6SM},
7e806470 24102 {8, ARM_ARCH_V6T2},
bca38921 24103 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
62b3e311
PB
24104 {10, ARM_ARCH_V7R},
24105 {10, ARM_ARCH_V7M},
bca38921 24106 {14, ARM_ARCH_V8A},
62b3e311
PB
24107 {0, ARM_ARCH_NONE}
24108};
24109
ee3c0378
AS
24110/* Set an attribute if it has not already been set by the user. */
24111static void
24112aeabi_set_attribute_int (int tag, int value)
24113{
24114 if (tag < 1
24115 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24116 || !attributes_set_explicitly[tag])
24117 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24118}
24119
24120static void
24121aeabi_set_attribute_string (int tag, const char *value)
24122{
24123 if (tag < 1
24124 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24125 || !attributes_set_explicitly[tag])
24126 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24127}
24128
ee065d83
PB
24129/* Set the public EABI object attributes. */
24130static void
24131aeabi_set_public_attributes (void)
24132{
24133 int arch;
69239280 24134 char profile;
90ec0d68 24135 int virt_sec = 0;
bca38921 24136 int fp16_optional = 0;
e74cfd16 24137 arm_feature_set flags;
62b3e311
PB
24138 arm_feature_set tmp;
24139 const cpu_arch_ver_table *p;
ee065d83
PB
24140
24141 /* Choose the architecture based on the capabilities of the requested cpu
24142 (if any) and/or the instructions actually used. */
e74cfd16
PB
24143 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24144 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24145 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
ddd7f988
RE
24146
24147 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24148 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24149
24150 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24151 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24152
24153 /* Allow the user to override the reported architecture. */
7a1d4c38
PB
24154 if (object_arch)
24155 {
24156 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24157 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24158 }
24159
251665fc
MGD
24160 /* We need to make sure that the attributes do not identify us as v6S-M
24161 when the only v6S-M feature in use is the Operating System Extensions. */
24162 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24163 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24164 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24165
62b3e311
PB
24166 tmp = flags;
24167 arch = 0;
24168 for (p = cpu_arch_ver; p->val; p++)
24169 {
24170 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24171 {
24172 arch = p->val;
24173 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24174 }
24175 }
ee065d83 24176
9e3c6df6
PB
24177 /* The table lookup above finds the last architecture to contribute
24178 a new feature. Unfortunately, Tag13 is a subset of the union of
24179 v6T2 and v7-M, so it is never seen as contributing a new feature.
24180 We can not search for the last entry which is entirely used,
24181 because if no CPU is specified we build up only those flags
24182 actually used. Perhaps we should separate out the specified
24183 and implicit cases. Avoid taking this path for -march=all by
24184 checking for contradictory v7-A / v7-M features. */
24185 if (arch == 10
24186 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24187 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24188 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24189 arch = 13;
24190
ee065d83
PB
24191 /* Tag_CPU_name. */
24192 if (selected_cpu_name[0])
24193 {
91d6fa6a 24194 char *q;
ee065d83 24195
91d6fa6a
NC
24196 q = selected_cpu_name;
24197 if (strncmp (q, "armv", 4) == 0)
ee065d83
PB
24198 {
24199 int i;
5f4273c7 24200
91d6fa6a
NC
24201 q += 4;
24202 for (i = 0; q[i]; i++)
24203 q[i] = TOUPPER (q[i]);
ee065d83 24204 }
91d6fa6a 24205 aeabi_set_attribute_string (Tag_CPU_name, q);
ee065d83 24206 }
62f3b8c8 24207
ee065d83 24208 /* Tag_CPU_arch. */
ee3c0378 24209 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 24210
62b3e311
PB
24211 /* Tag_CPU_arch_profile. */
24212 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
69239280 24213 profile = 'A';
62b3e311 24214 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
69239280 24215 profile = 'R';
7e806470 24216 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
69239280
MGD
24217 profile = 'M';
24218 else
24219 profile = '\0';
24220
24221 if (profile != '\0')
24222 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
62f3b8c8 24223
ee065d83 24224 /* Tag_ARM_ISA_use. */
ee3c0378
AS
24225 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24226 || arch == 0)
24227 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 24228
ee065d83 24229 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
24230 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24231 || arch == 0)
24232 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24233 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 24234
ee065d83 24235 /* Tag_VFP_arch. */
bca38921
MGD
24236 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24237 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24238 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
62f3b8c8
PB
24239 aeabi_set_attribute_int (Tag_VFP_arch,
24240 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24241 ? 5 : 6);
24242 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
bca38921
MGD
24243 {
24244 fp16_optional = 1;
24245 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24246 }
ada65aa3 24247 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
bca38921
MGD
24248 {
24249 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24250 fp16_optional = 1;
24251 }
ee3c0378
AS
24252 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24253 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24254 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24255 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24256 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 24257
4547cb56
NC
24258 /* Tag_ABI_HardFP_use. */
24259 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24260 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24261 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24262
ee065d83 24263 /* Tag_WMMX_arch. */
ee3c0378
AS
24264 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24265 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24266 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24267 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 24268
ee3c0378 24269 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
bca38921
MGD
24270 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24271 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24272 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24273 {
24274 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24275 {
24276 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24277 }
24278 else
24279 {
24280 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24281 fp16_optional = 1;
24282 }
24283 }
fa94de6b 24284
ee3c0378 24285 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
bca38921 24286 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
ee3c0378 24287 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
4547cb56 24288
69239280
MGD
24289 /* Tag_DIV_use.
24290
24291 We set Tag_DIV_use to two when integer divide instructions have been used
24292 in ARM state, or when Thumb integer divide instructions have been used,
24293 but we have no architecture profile set, nor have we any ARM instructions.
24294
bca38921
MGD
24295 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24296 architecture.
24297
69239280 24298 For new architectures we will have to check these tests. */
bca38921
MGD
24299 gas_assert (arch <= TAG_CPU_ARCH_V8);
24300 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24301 aeabi_set_attribute_int (Tag_DIV_use, 0);
24302 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24303 || (profile == '\0'
24304 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24305 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
eea54501 24306 aeabi_set_attribute_int (Tag_DIV_use, 2);
60e5ef9f
MGD
24307
24308 /* Tag_MP_extension_use. */
24309 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24310 aeabi_set_attribute_int (Tag_MPextension_use, 1);
f4c65163
MGD
24311
24312 /* Tag Virtualization_use. */
24313 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
90ec0d68
MGD
24314 virt_sec |= 1;
24315 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24316 virt_sec |= 2;
24317 if (virt_sec != 0)
24318 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
ee065d83
PB
24319}
24320
104d59d1 24321/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
24322void
24323arm_md_end (void)
24324{
ee065d83
PB
24325 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24326 return;
24327
24328 aeabi_set_public_attributes ();
ee065d83 24329}
8463be01 24330#endif /* OBJ_ELF */
ee065d83
PB
24331
24332
24333/* Parse a .cpu directive. */
24334
24335static void
24336s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24337{
e74cfd16 24338 const struct arm_cpu_option_table *opt;
ee065d83
PB
24339 char *name;
24340 char saved_char;
24341
24342 name = input_line_pointer;
5f4273c7 24343 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24344 input_line_pointer++;
24345 saved_char = *input_line_pointer;
24346 *input_line_pointer = 0;
24347
24348 /* Skip the first "all" entry. */
24349 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24350 if (streq (opt->name, name))
24351 {
e74cfd16
PB
24352 mcpu_cpu_opt = &opt->value;
24353 selected_cpu = opt->value;
ee065d83 24354 if (opt->canonical_name)
5f4273c7 24355 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
24356 else
24357 {
24358 int i;
24359 for (i = 0; opt->name[i]; i++)
24360 selected_cpu_name[i] = TOUPPER (opt->name[i]);
f3bad469 24361
ee065d83
PB
24362 selected_cpu_name[i] = 0;
24363 }
e74cfd16 24364 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24365 *input_line_pointer = saved_char;
24366 demand_empty_rest_of_line ();
24367 return;
24368 }
24369 as_bad (_("unknown cpu `%s'"), name);
24370 *input_line_pointer = saved_char;
24371 ignore_rest_of_line ();
24372}
24373
24374
24375/* Parse a .arch directive. */
24376
24377static void
24378s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24379{
e74cfd16 24380 const struct arm_arch_option_table *opt;
ee065d83
PB
24381 char saved_char;
24382 char *name;
24383
24384 name = input_line_pointer;
5f4273c7 24385 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24386 input_line_pointer++;
24387 saved_char = *input_line_pointer;
24388 *input_line_pointer = 0;
24389
24390 /* Skip the first "all" entry. */
24391 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24392 if (streq (opt->name, name))
24393 {
e74cfd16
PB
24394 mcpu_cpu_opt = &opt->value;
24395 selected_cpu = opt->value;
5f4273c7 24396 strcpy (selected_cpu_name, opt->name);
e74cfd16 24397 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24398 *input_line_pointer = saved_char;
24399 demand_empty_rest_of_line ();
24400 return;
24401 }
24402
24403 as_bad (_("unknown architecture `%s'\n"), name);
24404 *input_line_pointer = saved_char;
24405 ignore_rest_of_line ();
24406}
24407
24408
7a1d4c38
PB
24409/* Parse a .object_arch directive. */
24410
24411static void
24412s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24413{
24414 const struct arm_arch_option_table *opt;
24415 char saved_char;
24416 char *name;
24417
24418 name = input_line_pointer;
5f4273c7 24419 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
24420 input_line_pointer++;
24421 saved_char = *input_line_pointer;
24422 *input_line_pointer = 0;
24423
24424 /* Skip the first "all" entry. */
24425 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24426 if (streq (opt->name, name))
24427 {
24428 object_arch = &opt->value;
24429 *input_line_pointer = saved_char;
24430 demand_empty_rest_of_line ();
24431 return;
24432 }
24433
24434 as_bad (_("unknown architecture `%s'\n"), name);
24435 *input_line_pointer = saved_char;
24436 ignore_rest_of_line ();
24437}
24438
69133863
MGD
24439/* Parse a .arch_extension directive. */
24440
24441static void
24442s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24443{
24444 const struct arm_option_extension_value_table *opt;
24445 char saved_char;
24446 char *name;
24447 int adding_value = 1;
24448
24449 name = input_line_pointer;
24450 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24451 input_line_pointer++;
24452 saved_char = *input_line_pointer;
24453 *input_line_pointer = 0;
24454
24455 if (strlen (name) >= 2
24456 && strncmp (name, "no", 2) == 0)
24457 {
24458 adding_value = 0;
24459 name += 2;
24460 }
24461
24462 for (opt = arm_extensions; opt->name != NULL; opt++)
24463 if (streq (opt->name, name))
24464 {
24465 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24466 {
24467 as_bad (_("architectural extension `%s' is not allowed for the "
24468 "current base architecture"), name);
24469 break;
24470 }
24471
24472 if (adding_value)
24473 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24474 else
24475 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24476
24477 mcpu_cpu_opt = &selected_cpu;
24478 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24479 *input_line_pointer = saved_char;
24480 demand_empty_rest_of_line ();
24481 return;
24482 }
24483
24484 if (opt->name == NULL)
24485 as_bad (_("unknown architecture `%s'\n"), name);
24486
24487 *input_line_pointer = saved_char;
24488 ignore_rest_of_line ();
24489}
24490
ee065d83
PB
24491/* Parse a .fpu directive. */
24492
24493static void
24494s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24495{
69133863 24496 const struct arm_option_fpu_value_table *opt;
ee065d83
PB
24497 char saved_char;
24498 char *name;
24499
24500 name = input_line_pointer;
5f4273c7 24501 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
24502 input_line_pointer++;
24503 saved_char = *input_line_pointer;
24504 *input_line_pointer = 0;
5f4273c7 24505
ee065d83
PB
24506 for (opt = arm_fpus; opt->name != NULL; opt++)
24507 if (streq (opt->name, name))
24508 {
e74cfd16
PB
24509 mfpu_opt = &opt->value;
24510 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
24511 *input_line_pointer = saved_char;
24512 demand_empty_rest_of_line ();
24513 return;
24514 }
24515
24516 as_bad (_("unknown floating point format `%s'\n"), name);
24517 *input_line_pointer = saved_char;
24518 ignore_rest_of_line ();
24519}
ee065d83 24520
794ba86a 24521/* Copy symbol information. */
f31fef98 24522
794ba86a
DJ
24523void
24524arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24525{
24526 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24527}
e04befd0 24528
f31fef98 24529#ifdef OBJ_ELF
e04befd0
AS
24530/* Given a symbolic attribute NAME, return the proper integer value.
24531 Returns -1 if the attribute is not known. */
f31fef98 24532
e04befd0
AS
24533int
24534arm_convert_symbolic_attribute (const char *name)
24535{
f31fef98
NC
24536 static const struct
24537 {
24538 const char * name;
24539 const int tag;
24540 }
24541 attribute_table[] =
24542 {
24543 /* When you modify this table you should
24544 also modify the list in doc/c-arm.texi. */
e04befd0 24545#define T(tag) {#tag, tag}
f31fef98
NC
24546 T (Tag_CPU_raw_name),
24547 T (Tag_CPU_name),
24548 T (Tag_CPU_arch),
24549 T (Tag_CPU_arch_profile),
24550 T (Tag_ARM_ISA_use),
24551 T (Tag_THUMB_ISA_use),
75375b3e 24552 T (Tag_FP_arch),
f31fef98
NC
24553 T (Tag_VFP_arch),
24554 T (Tag_WMMX_arch),
24555 T (Tag_Advanced_SIMD_arch),
24556 T (Tag_PCS_config),
24557 T (Tag_ABI_PCS_R9_use),
24558 T (Tag_ABI_PCS_RW_data),
24559 T (Tag_ABI_PCS_RO_data),
24560 T (Tag_ABI_PCS_GOT_use),
24561 T (Tag_ABI_PCS_wchar_t),
24562 T (Tag_ABI_FP_rounding),
24563 T (Tag_ABI_FP_denormal),
24564 T (Tag_ABI_FP_exceptions),
24565 T (Tag_ABI_FP_user_exceptions),
24566 T (Tag_ABI_FP_number_model),
75375b3e 24567 T (Tag_ABI_align_needed),
f31fef98 24568 T (Tag_ABI_align8_needed),
75375b3e 24569 T (Tag_ABI_align_preserved),
f31fef98
NC
24570 T (Tag_ABI_align8_preserved),
24571 T (Tag_ABI_enum_size),
24572 T (Tag_ABI_HardFP_use),
24573 T (Tag_ABI_VFP_args),
24574 T (Tag_ABI_WMMX_args),
24575 T (Tag_ABI_optimization_goals),
24576 T (Tag_ABI_FP_optimization_goals),
24577 T (Tag_compatibility),
24578 T (Tag_CPU_unaligned_access),
75375b3e 24579 T (Tag_FP_HP_extension),
f31fef98
NC
24580 T (Tag_VFP_HP_extension),
24581 T (Tag_ABI_FP_16bit_format),
cd21e546
MGD
24582 T (Tag_MPextension_use),
24583 T (Tag_DIV_use),
f31fef98
NC
24584 T (Tag_nodefaults),
24585 T (Tag_also_compatible_with),
24586 T (Tag_conformance),
24587 T (Tag_T2EE_use),
24588 T (Tag_Virtualization_use),
cd21e546 24589 /* We deliberately do not include Tag_MPextension_use_legacy. */
e04befd0 24590#undef T
f31fef98 24591 };
e04befd0
AS
24592 unsigned int i;
24593
24594 if (name == NULL)
24595 return -1;
24596
f31fef98 24597 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 24598 if (streq (name, attribute_table[i].name))
e04befd0
AS
24599 return attribute_table[i].tag;
24600
24601 return -1;
24602}
267bf995
RR
24603
24604
24605/* Apply sym value for relocations only in the case that
24606 they are for local symbols and you have the respective
24607 architectural feature for blx and simple switches. */
24608int
24609arm_apply_sym_value (struct fix * fixP)
24610{
24611 if (fixP->fx_addsy
24612 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
34e77a92 24613 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
267bf995
RR
24614 {
24615 switch (fixP->fx_r_type)
24616 {
24617 case BFD_RELOC_ARM_PCREL_BLX:
24618 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24619 if (ARM_IS_FUNC (fixP->fx_addsy))
24620 return 1;
24621 break;
24622
24623 case BFD_RELOC_ARM_PCREL_CALL:
24624 case BFD_RELOC_THUMB_PCREL_BLX:
24625 if (THUMB_IS_FUNC (fixP->fx_addsy))
24626 return 1;
24627 break;
24628
24629 default:
24630 break;
24631 }
24632
24633 }
24634 return 0;
24635}
f31fef98 24636#endif /* OBJ_ELF */
This page took 2.645118 seconds and 4 git commands to generate.