* configure.ac (i[34567]86-*): Check if we're targetting x86-64
[deliverable/binutils-gdb.git] / gas / config / tc-arm.c
CommitLineData
b99bd4ef 1/* tc-arm.c -- Assemble for the ARM
f17c130b 2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
f31fef98 3 2004, 2005, 2006, 2007, 2008, 2009
b99bd4ef
NC
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
22d9c8c5 7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
34920d91
NC
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
b99bd4ef
NC
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
ec2655a6 15 the Free Software Foundation; either version 3, or (at your option)
b99bd4ef
NC
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
c19d1205 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
b99bd4ef
NC
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
699d2810
NC
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
b99bd4ef 27
42a68e18 28#include "as.h"
5287ad62 29#include <limits.h>
037e8744 30#include <stdarg.h>
c19d1205 31#define NO_RELOC 0
3882b010 32#include "safe-ctype.h"
b99bd4ef
NC
33#include "subsegs.h"
34#include "obstack.h"
b99bd4ef 35
f263249b
RE
36#include "opcode/arm.h"
37
b99bd4ef
NC
38#ifdef OBJ_ELF
39#include "elf/arm.h"
a394c00f 40#include "dw2gencfi.h"
b99bd4ef
NC
41#endif
42
f0927246
NC
43#include "dwarf2dbg.h"
44
7ed4c4c5
NC
45#ifdef OBJ_ELF
46/* Must be at least the size of the largest unwind opcode (currently two). */
47#define ARM_OPCODE_CHUNK_SIZE 8
48
49/* This structure holds the unwinding state. */
50
51static struct
52{
c19d1205
ZW
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
7ed4c4c5 57 /* The segment containing the function. */
c19d1205
ZW
58 segT saved_seg;
59 subsegT saved_subseg;
7ed4c4c5
NC
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
c19d1205
ZW
62 int opcode_count;
63 int opcode_alloc;
7ed4c4c5 64 /* The number of bytes pushed to the stack. */
c19d1205 65 offsetT frame_size;
7ed4c4c5
NC
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
c19d1205 69 offsetT pending_offset;
7ed4c4c5 70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
c19d1205
ZW
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
7ed4c4c5 74 /* Nonzero if an unwind_setfp directive has been seen. */
c19d1205 75 unsigned fp_used:1;
7ed4c4c5 76 /* Nonzero if the last opcode restores sp from fp_reg. */
c19d1205 77 unsigned sp_restored:1;
7ed4c4c5
NC
78} unwind;
79
8b1ad454
NC
80#endif /* OBJ_ELF */
81
4962c51a
MS
82/* Results from operand parsing worker functions. */
83
84typedef enum
85{
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89} parse_operand_result;
90
33a392fb
PB
91enum arm_float_abi
92{
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96};
97
c19d1205 98/* Types of processor to assemble for. */
b99bd4ef
NC
99#ifndef CPU_DEFAULT
100#if defined __XSCALE__
e74cfd16 101#define CPU_DEFAULT ARM_ARCH_XSCALE
b99bd4ef
NC
102#else
103#if defined __thumb__
e74cfd16 104#define CPU_DEFAULT ARM_ARCH_V5T
b99bd4ef
NC
105#endif
106#endif
107#endif
108
109#ifndef FPU_DEFAULT
c820d418
MM
110# ifdef TE_LINUX
111# define FPU_DEFAULT FPU_ARCH_FPA
112# elif defined (TE_NetBSD)
113# ifdef OBJ_ELF
114# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115# else
116 /* Legacy a.out format. */
117# define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118# endif
4e7fd91e
PB
119# elif defined (TE_VXWORKS)
120# define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
c820d418
MM
121# else
122 /* For backwards compatibility, default to FPA. */
123# define FPU_DEFAULT FPU_ARCH_FPA
124# endif
125#endif /* ifndef FPU_DEFAULT */
b99bd4ef 126
c19d1205 127#define streq(a, b) (strcmp (a, b) == 0)
b99bd4ef 128
e74cfd16
PB
129static arm_feature_set cpu_variant;
130static arm_feature_set arm_arch_used;
131static arm_feature_set thumb_arch_used;
b99bd4ef 132
b99bd4ef 133/* Flags stored in private area of BFD structure. */
c19d1205
ZW
134static int uses_apcs_26 = FALSE;
135static int atpcs = FALSE;
b34976b6
AM
136static int support_interwork = FALSE;
137static int uses_apcs_float = FALSE;
c19d1205 138static int pic_code = FALSE;
845b51d6 139static int fix_v4bx = FALSE;
278df34e
NS
140/* Warn on using deprecated features. */
141static int warn_on_deprecated = TRUE;
142
03b1477f
RE
143
144/* Variables that we set while parsing command-line options. Once all
145 options have been read we re-process these values to set the real
146 assembly flags. */
e74cfd16
PB
147static const arm_feature_set *legacy_cpu = NULL;
148static const arm_feature_set *legacy_fpu = NULL;
149
150static const arm_feature_set *mcpu_cpu_opt = NULL;
151static const arm_feature_set *mcpu_fpu_opt = NULL;
152static const arm_feature_set *march_cpu_opt = NULL;
153static const arm_feature_set *march_fpu_opt = NULL;
154static const arm_feature_set *mfpu_opt = NULL;
7a1d4c38 155static const arm_feature_set *object_arch = NULL;
e74cfd16
PB
156
157/* Constants for known architecture features. */
158static const arm_feature_set fpu_default = FPU_DEFAULT;
159static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
160static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
5287ad62
JB
161static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
162static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
e74cfd16
PB
163static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
164static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
165static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
166static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
167
168#ifdef CPU_DEFAULT
169static const arm_feature_set cpu_default = CPU_DEFAULT;
170#endif
171
172static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
173static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
174static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
175static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
176static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
177static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
178static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
179static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
180static const arm_feature_set arm_ext_v4t_5 =
181 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
182static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
183static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
184static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
185static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
186static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
187static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
188static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
189static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
62b3e311 190static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
7e806470
PB
191static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
62b3e311
PB
193static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
7e806470
PB
197static const arm_feature_set arm_ext_m =
198 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
e74cfd16
PB
199
200static const arm_feature_set arm_arch_any = ARM_ANY;
201static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
2d447fca
JM
205static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
e74cfd16
PB
207static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
62f3b8c8 219static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
5287ad62 220static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
b1cc4aeb
PB
221static const arm_feature_set fpu_vfp_ext_d32 =
222 ARM_FEATURE (0, FPU_VFP_EXT_D32);
5287ad62
JB
223static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
224static const arm_feature_set fpu_vfp_v3_or_neon_ext =
225 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
62f3b8c8
PB
226static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
227static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
228static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
e74cfd16 229
33a392fb 230static int mfloat_abi_opt = -1;
e74cfd16
PB
231/* Record user cpu selection for object attributes. */
232static arm_feature_set selected_cpu = ARM_ARCH_NONE;
ee065d83
PB
233/* Must be long enough to hold any of the names in arm_cpus. */
234static char selected_cpu_name[16];
7cc69913 235#ifdef OBJ_ELF
deeaaff8
DJ
236# ifdef EABI_DEFAULT
237static int meabi_flags = EABI_DEFAULT;
238# else
d507cf36 239static int meabi_flags = EF_ARM_EABI_UNKNOWN;
deeaaff8 240# endif
e1da3f5b 241
ee3c0378
AS
242static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
243
e1da3f5b 244bfd_boolean
5f4273c7 245arm_is_eabi (void)
e1da3f5b
PB
246{
247 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
248}
7cc69913 249#endif
b99bd4ef 250
b99bd4ef 251#ifdef OBJ_ELF
c19d1205 252/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
b99bd4ef
NC
253symbolS * GOT_symbol;
254#endif
255
b99bd4ef
NC
256/* 0: assemble for ARM,
257 1: assemble for Thumb,
258 2: assemble for Thumb even though target CPU does not support thumb
259 instructions. */
260static int thumb_mode = 0;
8dc2430f
NC
261/* A value distinct from the possible values for thumb_mode that we
262 can use to record whether thumb_mode has been copied into the
263 tc_frag_data field of a frag. */
264#define MODE_RECORDED (1 << 4)
b99bd4ef 265
e07e6e58
NC
266/* Specifies the intrinsic IT insn behavior mode. */
267enum implicit_it_mode
268{
269 IMPLICIT_IT_MODE_NEVER = 0x00,
270 IMPLICIT_IT_MODE_ARM = 0x01,
271 IMPLICIT_IT_MODE_THUMB = 0x02,
272 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
273};
274static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
275
c19d1205
ZW
276/* If unified_syntax is true, we are processing the new unified
277 ARM/Thumb syntax. Important differences from the old ARM mode:
278
279 - Immediate operands do not require a # prefix.
280 - Conditional affixes always appear at the end of the
281 instruction. (For backward compatibility, those instructions
282 that formerly had them in the middle, continue to accept them
283 there.)
284 - The IT instruction may appear, and if it does is validated
285 against subsequent conditional affixes. It does not generate
286 machine code.
287
288 Important differences from the old Thumb mode:
289
290 - Immediate operands do not require a # prefix.
291 - Most of the V6T2 instructions are only available in unified mode.
292 - The .N and .W suffixes are recognized and honored (it is an error
293 if they cannot be honored).
294 - All instructions set the flags if and only if they have an 's' affix.
295 - Conditional affixes may be used. They are validated against
296 preceding IT instructions. Unlike ARM mode, you cannot use a
297 conditional affix except in the scope of an IT instruction. */
298
299static bfd_boolean unified_syntax = FALSE;
b99bd4ef 300
5287ad62
JB
301enum neon_el_type
302{
dcbf9037 303 NT_invtype,
5287ad62
JB
304 NT_untyped,
305 NT_integer,
306 NT_float,
307 NT_poly,
308 NT_signed,
dcbf9037 309 NT_unsigned
5287ad62
JB
310};
311
312struct neon_type_el
313{
314 enum neon_el_type type;
315 unsigned size;
316};
317
318#define NEON_MAX_TYPE_ELS 4
319
320struct neon_type
321{
322 struct neon_type_el el[NEON_MAX_TYPE_ELS];
323 unsigned elems;
324};
325
e07e6e58
NC
326enum it_instruction_type
327{
328 OUTSIDE_IT_INSN,
329 INSIDE_IT_INSN,
330 INSIDE_IT_LAST_INSN,
331 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
332 if inside, should be the last one. */
333 NEUTRAL_IT_INSN, /* This could be either inside or outside,
334 i.e. BKPT and NOP. */
335 IT_INSN /* The IT insn has been parsed. */
336};
337
b99bd4ef
NC
338struct arm_it
339{
c19d1205 340 const char * error;
b99bd4ef 341 unsigned long instruction;
c19d1205
ZW
342 int size;
343 int size_req;
344 int cond;
037e8744
JB
345 /* "uncond_value" is set to the value in place of the conditional field in
346 unconditional versions of the instruction, or -1 if nothing is
347 appropriate. */
348 int uncond_value;
5287ad62 349 struct neon_type vectype;
0110f2b8
PB
350 /* Set to the opcode if the instruction needs relaxation.
351 Zero if the instruction is not relaxed. */
352 unsigned long relax;
b99bd4ef
NC
353 struct
354 {
355 bfd_reloc_code_real_type type;
c19d1205
ZW
356 expressionS exp;
357 int pc_rel;
b99bd4ef 358 } reloc;
b99bd4ef 359
e07e6e58
NC
360 enum it_instruction_type it_insn_type;
361
c19d1205
ZW
362 struct
363 {
364 unsigned reg;
ca3f61f7 365 signed int imm;
dcbf9037 366 struct neon_type_el vectype;
ca3f61f7
NC
367 unsigned present : 1; /* Operand present. */
368 unsigned isreg : 1; /* Operand was a register. */
369 unsigned immisreg : 1; /* .imm field is a second register. */
5287ad62
JB
370 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
371 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
c96612cc 372 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
5287ad62
JB
373 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
374 instructions. This allows us to disambiguate ARM <-> vector insns. */
375 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
037e8744 376 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
5287ad62 377 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
037e8744 378 unsigned issingle : 1; /* Operand is VFP single-precision register. */
ca3f61f7
NC
379 unsigned hasreloc : 1; /* Operand has relocation suffix. */
380 unsigned writeback : 1; /* Operand has trailing ! */
381 unsigned preind : 1; /* Preindexed address. */
382 unsigned postind : 1; /* Postindexed address. */
383 unsigned negative : 1; /* Index register was negated. */
384 unsigned shifted : 1; /* Shift applied to operation. */
385 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
c19d1205 386 } operands[6];
b99bd4ef
NC
387};
388
c19d1205 389static struct arm_it inst;
b99bd4ef
NC
390
391#define NUM_FLOAT_VALS 8
392
05d2d07e 393const char * fp_const[] =
b99bd4ef
NC
394{
395 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
396};
397
c19d1205 398/* Number of littlenums required to hold an extended precision number. */
b99bd4ef
NC
399#define MAX_LITTLENUMS 6
400
401LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
402
403#define FAIL (-1)
404#define SUCCESS (0)
405
406#define SUFF_S 1
407#define SUFF_D 2
408#define SUFF_E 3
409#define SUFF_P 4
410
c19d1205
ZW
411#define CP_T_X 0x00008000
412#define CP_T_Y 0x00400000
b99bd4ef 413
c19d1205
ZW
414#define CONDS_BIT 0x00100000
415#define LOAD_BIT 0x00100000
b99bd4ef
NC
416
417#define DOUBLE_LOAD_FLAG 0x00000001
418
419struct asm_cond
420{
d3ce72d0 421 const char * template_name;
c921be7d 422 unsigned long value;
b99bd4ef
NC
423};
424
c19d1205 425#define COND_ALWAYS 0xE
b99bd4ef 426
b99bd4ef
NC
427struct asm_psr
428{
d3ce72d0 429 const char * template_name;
c921be7d 430 unsigned long field;
b99bd4ef
NC
431};
432
62b3e311
PB
433struct asm_barrier_opt
434{
d3ce72d0 435 const char * template_name;
c921be7d 436 unsigned long value;
62b3e311
PB
437};
438
2d2255b5 439/* The bit that distinguishes CPSR and SPSR. */
b99bd4ef
NC
440#define SPSR_BIT (1 << 22)
441
c19d1205
ZW
442/* The individual PSR flag bits. */
443#define PSR_c (1 << 16)
444#define PSR_x (1 << 17)
445#define PSR_s (1 << 18)
446#define PSR_f (1 << 19)
b99bd4ef 447
c19d1205 448struct reloc_entry
bfae80f2 449{
c921be7d
NC
450 char * name;
451 bfd_reloc_code_real_type reloc;
bfae80f2
RE
452};
453
5287ad62 454enum vfp_reg_pos
bfae80f2 455{
5287ad62
JB
456 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
457 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
bfae80f2
RE
458};
459
460enum vfp_ldstm_type
461{
462 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
463};
464
dcbf9037
JB
465/* Bits for DEFINED field in neon_typed_alias. */
466#define NTA_HASTYPE 1
467#define NTA_HASINDEX 2
468
469struct neon_typed_alias
470{
c921be7d
NC
471 unsigned char defined;
472 unsigned char index;
473 struct neon_type_el eltype;
dcbf9037
JB
474};
475
c19d1205
ZW
476/* ARM register categories. This includes coprocessor numbers and various
477 architecture extensions' registers. */
478enum arm_reg_type
bfae80f2 479{
c19d1205
ZW
480 REG_TYPE_RN,
481 REG_TYPE_CP,
482 REG_TYPE_CN,
483 REG_TYPE_FN,
484 REG_TYPE_VFS,
485 REG_TYPE_VFD,
5287ad62 486 REG_TYPE_NQ,
037e8744 487 REG_TYPE_VFSD,
5287ad62 488 REG_TYPE_NDQ,
037e8744 489 REG_TYPE_NSDQ,
c19d1205
ZW
490 REG_TYPE_VFC,
491 REG_TYPE_MVF,
492 REG_TYPE_MVD,
493 REG_TYPE_MVFX,
494 REG_TYPE_MVDX,
495 REG_TYPE_MVAX,
496 REG_TYPE_DSPSC,
497 REG_TYPE_MMXWR,
498 REG_TYPE_MMXWC,
499 REG_TYPE_MMXWCG,
500 REG_TYPE_XSCALE,
bfae80f2
RE
501};
502
dcbf9037
JB
503/* Structure for a hash table entry for a register.
504 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
505 information which states whether a vector type or index is specified (for a
506 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
6c43fab6
RE
507struct reg_entry
508{
c921be7d
NC
509 const char * name;
510 unsigned char number;
511 unsigned char type;
512 unsigned char builtin;
513 struct neon_typed_alias * neon;
6c43fab6
RE
514};
515
c19d1205 516/* Diagnostics used when we don't get a register of the expected type. */
c921be7d 517const char * const reg_expected_msgs[] =
c19d1205
ZW
518{
519 N_("ARM register expected"),
520 N_("bad or missing co-processor number"),
521 N_("co-processor register expected"),
522 N_("FPA register expected"),
523 N_("VFP single precision register expected"),
5287ad62
JB
524 N_("VFP/Neon double precision register expected"),
525 N_("Neon quad precision register expected"),
037e8744 526 N_("VFP single or double precision register expected"),
5287ad62 527 N_("Neon double or quad precision register expected"),
037e8744 528 N_("VFP single, double or Neon quad precision register expected"),
c19d1205
ZW
529 N_("VFP system register expected"),
530 N_("Maverick MVF register expected"),
531 N_("Maverick MVD register expected"),
532 N_("Maverick MVFX register expected"),
533 N_("Maverick MVDX register expected"),
534 N_("Maverick MVAX register expected"),
535 N_("Maverick DSPSC register expected"),
536 N_("iWMMXt data register expected"),
537 N_("iWMMXt control register expected"),
538 N_("iWMMXt scalar register expected"),
539 N_("XScale accumulator register expected"),
6c43fab6
RE
540};
541
c19d1205
ZW
542/* Some well known registers that we refer to directly elsewhere. */
543#define REG_SP 13
544#define REG_LR 14
545#define REG_PC 15
404ff6b5 546
b99bd4ef
NC
547/* ARM instructions take 4bytes in the object file, Thumb instructions
548 take 2: */
c19d1205 549#define INSN_SIZE 4
b99bd4ef
NC
550
551struct asm_opcode
552{
553 /* Basic string to match. */
d3ce72d0 554 const char * template_name;
c19d1205
ZW
555
556 /* Parameters to instruction. */
557 unsigned char operands[8];
558
559 /* Conditional tag - see opcode_lookup. */
560 unsigned int tag : 4;
b99bd4ef
NC
561
562 /* Basic instruction code. */
c19d1205 563 unsigned int avalue : 28;
b99bd4ef 564
c19d1205
ZW
565 /* Thumb-format instruction code. */
566 unsigned int tvalue;
b99bd4ef 567
90e4755a 568 /* Which architecture variant provides this instruction. */
c921be7d
NC
569 const arm_feature_set * avariant;
570 const arm_feature_set * tvariant;
c19d1205
ZW
571
572 /* Function to call to encode instruction in ARM format. */
573 void (* aencode) (void);
b99bd4ef 574
c19d1205
ZW
575 /* Function to call to encode instruction in Thumb format. */
576 void (* tencode) (void);
b99bd4ef
NC
577};
578
a737bd4d
NC
579/* Defines for various bits that we will want to toggle. */
580#define INST_IMMEDIATE 0x02000000
581#define OFFSET_REG 0x02000000
c19d1205 582#define HWOFFSET_IMM 0x00400000
a737bd4d
NC
583#define SHIFT_BY_REG 0x00000010
584#define PRE_INDEX 0x01000000
585#define INDEX_UP 0x00800000
586#define WRITE_BACK 0x00200000
587#define LDM_TYPE_2_OR_3 0x00400000
a028a6f5 588#define CPSI_MMOD 0x00020000
90e4755a 589
a737bd4d
NC
590#define LITERAL_MASK 0xf000f000
591#define OPCODE_MASK 0xfe1fffff
592#define V4_STR_BIT 0x00000020
90e4755a 593
efd81785
PB
594#define T2_SUBS_PC_LR 0xf3de8f00
595
a737bd4d 596#define DATA_OP_SHIFT 21
90e4755a 597
ef8d22e6
PB
598#define T2_OPCODE_MASK 0xfe1fffff
599#define T2_DATA_OP_SHIFT 21
600
a737bd4d
NC
601/* Codes to distinguish the arithmetic instructions. */
602#define OPCODE_AND 0
603#define OPCODE_EOR 1
604#define OPCODE_SUB 2
605#define OPCODE_RSB 3
606#define OPCODE_ADD 4
607#define OPCODE_ADC 5
608#define OPCODE_SBC 6
609#define OPCODE_RSC 7
610#define OPCODE_TST 8
611#define OPCODE_TEQ 9
612#define OPCODE_CMP 10
613#define OPCODE_CMN 11
614#define OPCODE_ORR 12
615#define OPCODE_MOV 13
616#define OPCODE_BIC 14
617#define OPCODE_MVN 15
90e4755a 618
ef8d22e6
PB
619#define T2_OPCODE_AND 0
620#define T2_OPCODE_BIC 1
621#define T2_OPCODE_ORR 2
622#define T2_OPCODE_ORN 3
623#define T2_OPCODE_EOR 4
624#define T2_OPCODE_ADD 8
625#define T2_OPCODE_ADC 10
626#define T2_OPCODE_SBC 11
627#define T2_OPCODE_SUB 13
628#define T2_OPCODE_RSB 14
629
a737bd4d
NC
630#define T_OPCODE_MUL 0x4340
631#define T_OPCODE_TST 0x4200
632#define T_OPCODE_CMN 0x42c0
633#define T_OPCODE_NEG 0x4240
634#define T_OPCODE_MVN 0x43c0
90e4755a 635
a737bd4d
NC
636#define T_OPCODE_ADD_R3 0x1800
637#define T_OPCODE_SUB_R3 0x1a00
638#define T_OPCODE_ADD_HI 0x4400
639#define T_OPCODE_ADD_ST 0xb000
640#define T_OPCODE_SUB_ST 0xb080
641#define T_OPCODE_ADD_SP 0xa800
642#define T_OPCODE_ADD_PC 0xa000
643#define T_OPCODE_ADD_I8 0x3000
644#define T_OPCODE_SUB_I8 0x3800
645#define T_OPCODE_ADD_I3 0x1c00
646#define T_OPCODE_SUB_I3 0x1e00
b99bd4ef 647
a737bd4d
NC
648#define T_OPCODE_ASR_R 0x4100
649#define T_OPCODE_LSL_R 0x4080
c19d1205
ZW
650#define T_OPCODE_LSR_R 0x40c0
651#define T_OPCODE_ROR_R 0x41c0
a737bd4d
NC
652#define T_OPCODE_ASR_I 0x1000
653#define T_OPCODE_LSL_I 0x0000
654#define T_OPCODE_LSR_I 0x0800
b99bd4ef 655
a737bd4d
NC
656#define T_OPCODE_MOV_I8 0x2000
657#define T_OPCODE_CMP_I8 0x2800
658#define T_OPCODE_CMP_LR 0x4280
659#define T_OPCODE_MOV_HR 0x4600
660#define T_OPCODE_CMP_HR 0x4500
b99bd4ef 661
a737bd4d
NC
662#define T_OPCODE_LDR_PC 0x4800
663#define T_OPCODE_LDR_SP 0x9800
664#define T_OPCODE_STR_SP 0x9000
665#define T_OPCODE_LDR_IW 0x6800
666#define T_OPCODE_STR_IW 0x6000
667#define T_OPCODE_LDR_IH 0x8800
668#define T_OPCODE_STR_IH 0x8000
669#define T_OPCODE_LDR_IB 0x7800
670#define T_OPCODE_STR_IB 0x7000
671#define T_OPCODE_LDR_RW 0x5800
672#define T_OPCODE_STR_RW 0x5000
673#define T_OPCODE_LDR_RH 0x5a00
674#define T_OPCODE_STR_RH 0x5200
675#define T_OPCODE_LDR_RB 0x5c00
676#define T_OPCODE_STR_RB 0x5400
c9b604bd 677
a737bd4d
NC
678#define T_OPCODE_PUSH 0xb400
679#define T_OPCODE_POP 0xbc00
b99bd4ef 680
2fc8bdac 681#define T_OPCODE_BRANCH 0xe000
b99bd4ef 682
a737bd4d 683#define THUMB_SIZE 2 /* Size of thumb instruction. */
a737bd4d 684#define THUMB_PP_PC_LR 0x0100
c19d1205 685#define THUMB_LOAD_BIT 0x0800
53365c0d 686#define THUMB2_LOAD_BIT 0x00100000
c19d1205
ZW
687
688#define BAD_ARGS _("bad arguments to instruction")
fdfde340 689#define BAD_SP _("r13 not allowed here")
c19d1205
ZW
690#define BAD_PC _("r15 not allowed here")
691#define BAD_COND _("instruction cannot be conditional")
692#define BAD_OVERLAP _("registers may not be the same")
693#define BAD_HIREG _("lo register required")
694#define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
01cfc07f 695#define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
dfa9f0d5
PB
696#define BAD_BRANCH _("branch must be last instruction in IT block")
697#define BAD_NOT_IT _("instruction not allowed in IT block")
037e8744 698#define BAD_FPU _("selected FPU does not support instruction")
e07e6e58
NC
699#define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
700#define BAD_IT_COND _("incorrect condition in IT block")
701#define BAD_IT_IT _("IT falling in the range of a previous IT block")
921e5f0a 702#define MISSING_FNSTART _("missing .fnstart before unwinding directive")
c19d1205 703
c921be7d
NC
704static struct hash_control * arm_ops_hsh;
705static struct hash_control * arm_cond_hsh;
706static struct hash_control * arm_shift_hsh;
707static struct hash_control * arm_psr_hsh;
708static struct hash_control * arm_v7m_psr_hsh;
709static struct hash_control * arm_reg_hsh;
710static struct hash_control * arm_reloc_hsh;
711static struct hash_control * arm_barrier_opt_hsh;
b99bd4ef 712
b99bd4ef
NC
713/* Stuff needed to resolve the label ambiguity
714 As:
715 ...
716 label: <insn>
717 may differ from:
718 ...
719 label:
5f4273c7 720 <insn> */
b99bd4ef
NC
721
722symbolS * last_label_seen;
b34976b6 723static int label_is_thumb_function_name = FALSE;
e07e6e58 724
3d0c9500
NC
725/* Literal pool structure. Held on a per-section
726 and per-sub-section basis. */
a737bd4d 727
c19d1205 728#define MAX_LITERAL_POOL_SIZE 1024
3d0c9500 729typedef struct literal_pool
b99bd4ef 730{
c921be7d
NC
731 expressionS literals [MAX_LITERAL_POOL_SIZE];
732 unsigned int next_free_entry;
733 unsigned int id;
734 symbolS * symbol;
735 segT section;
736 subsegT sub_section;
737 struct literal_pool * next;
3d0c9500 738} literal_pool;
b99bd4ef 739
3d0c9500
NC
740/* Pointer to a linked list of literal pools. */
741literal_pool * list_of_pools = NULL;
e27ec89e 742
e07e6e58
NC
743#ifdef OBJ_ELF
744# define now_it seg_info (now_seg)->tc_segment_info_data.current_it
745#else
746static struct current_it now_it;
747#endif
748
749static inline int
750now_it_compatible (int cond)
751{
752 return (cond & ~1) == (now_it.cc & ~1);
753}
754
755static inline int
756conditional_insn (void)
757{
758 return inst.cond != COND_ALWAYS;
759}
760
761static int in_it_block (void);
762
763static int handle_it_state (void);
764
765static void force_automatic_it_block_close (void);
766
c921be7d
NC
767static void it_fsm_post_encode (void);
768
e07e6e58
NC
769#define set_it_insn_type(type) \
770 do \
771 { \
772 inst.it_insn_type = type; \
773 if (handle_it_state () == FAIL) \
774 return; \
775 } \
776 while (0)
777
c921be7d
NC
778#define set_it_insn_type_nonvoid(type, failret) \
779 do \
780 { \
781 inst.it_insn_type = type; \
782 if (handle_it_state () == FAIL) \
783 return failret; \
784 } \
785 while(0)
786
e07e6e58
NC
787#define set_it_insn_type_last() \
788 do \
789 { \
790 if (inst.cond == COND_ALWAYS) \
791 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
792 else \
793 set_it_insn_type (INSIDE_IT_LAST_INSN); \
794 } \
795 while (0)
796
c19d1205 797/* Pure syntax. */
b99bd4ef 798
c19d1205
ZW
799/* This array holds the chars that always start a comment. If the
800 pre-processor is disabled, these aren't very useful. */
801const char comment_chars[] = "@";
3d0c9500 802
c19d1205
ZW
803/* This array holds the chars that only start a comment at the beginning of
804 a line. If the line seems to have the form '# 123 filename'
805 .line and .file directives will appear in the pre-processed output. */
806/* Note that input_file.c hand checks for '#' at the beginning of the
807 first line of the input file. This is because the compiler outputs
808 #NO_APP at the beginning of its output. */
809/* Also note that comments like this one will always work. */
810const char line_comment_chars[] = "#";
3d0c9500 811
c19d1205 812const char line_separator_chars[] = ";";
b99bd4ef 813
c19d1205
ZW
814/* Chars that can be used to separate mant
815 from exp in floating point numbers. */
816const char EXP_CHARS[] = "eE";
3d0c9500 817
c19d1205
ZW
818/* Chars that mean this number is a floating point constant. */
819/* As in 0f12.456 */
820/* or 0d1.2345e12 */
b99bd4ef 821
c19d1205 822const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
3d0c9500 823
c19d1205
ZW
824/* Prefix characters that indicate the start of an immediate
825 value. */
826#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
3d0c9500 827
c19d1205
ZW
828/* Separator character handling. */
829
830#define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
831
832static inline int
833skip_past_char (char ** str, char c)
834{
835 if (**str == c)
836 {
837 (*str)++;
838 return SUCCESS;
3d0c9500 839 }
c19d1205
ZW
840 else
841 return FAIL;
842}
c921be7d 843
c19d1205 844#define skip_past_comma(str) skip_past_char (str, ',')
3d0c9500 845
c19d1205
ZW
846/* Arithmetic expressions (possibly involving symbols). */
847
848/* Return TRUE if anything in the expression is a bignum. */
849
850static int
851walk_no_bignums (symbolS * sp)
852{
853 if (symbol_get_value_expression (sp)->X_op == O_big)
854 return 1;
855
856 if (symbol_get_value_expression (sp)->X_add_symbol)
3d0c9500 857 {
c19d1205
ZW
858 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
859 || (symbol_get_value_expression (sp)->X_op_symbol
860 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
3d0c9500
NC
861 }
862
c19d1205 863 return 0;
3d0c9500
NC
864}
865
c19d1205
ZW
866static int in_my_get_expression = 0;
867
868/* Third argument to my_get_expression. */
869#define GE_NO_PREFIX 0
870#define GE_IMM_PREFIX 1
871#define GE_OPT_PREFIX 2
5287ad62
JB
872/* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
873 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
874#define GE_OPT_PREFIX_BIG 3
a737bd4d 875
b99bd4ef 876static int
c19d1205 877my_get_expression (expressionS * ep, char ** str, int prefix_mode)
b99bd4ef 878{
c19d1205
ZW
879 char * save_in;
880 segT seg;
b99bd4ef 881
c19d1205
ZW
882 /* In unified syntax, all prefixes are optional. */
883 if (unified_syntax)
5287ad62
JB
884 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
885 : GE_OPT_PREFIX;
b99bd4ef 886
c19d1205 887 switch (prefix_mode)
b99bd4ef 888 {
c19d1205
ZW
889 case GE_NO_PREFIX: break;
890 case GE_IMM_PREFIX:
891 if (!is_immediate_prefix (**str))
892 {
893 inst.error = _("immediate expression requires a # prefix");
894 return FAIL;
895 }
896 (*str)++;
897 break;
898 case GE_OPT_PREFIX:
5287ad62 899 case GE_OPT_PREFIX_BIG:
c19d1205
ZW
900 if (is_immediate_prefix (**str))
901 (*str)++;
902 break;
903 default: abort ();
904 }
b99bd4ef 905
c19d1205 906 memset (ep, 0, sizeof (expressionS));
b99bd4ef 907
c19d1205
ZW
908 save_in = input_line_pointer;
909 input_line_pointer = *str;
910 in_my_get_expression = 1;
911 seg = expression (ep);
912 in_my_get_expression = 0;
913
f86adc07 914 if (ep->X_op == O_illegal || ep->X_op == O_absent)
b99bd4ef 915 {
f86adc07 916 /* We found a bad or missing expression in md_operand(). */
c19d1205
ZW
917 *str = input_line_pointer;
918 input_line_pointer = save_in;
919 if (inst.error == NULL)
f86adc07
NS
920 inst.error = (ep->X_op == O_absent
921 ? _("missing expression") :_("bad expression"));
c19d1205
ZW
922 return 1;
923 }
b99bd4ef 924
c19d1205
ZW
925#ifdef OBJ_AOUT
926 if (seg != absolute_section
927 && seg != text_section
928 && seg != data_section
929 && seg != bss_section
930 && seg != undefined_section)
931 {
932 inst.error = _("bad segment");
933 *str = input_line_pointer;
934 input_line_pointer = save_in;
935 return 1;
b99bd4ef 936 }
c19d1205 937#endif
b99bd4ef 938
c19d1205
ZW
939 /* Get rid of any bignums now, so that we don't generate an error for which
940 we can't establish a line number later on. Big numbers are never valid
941 in instructions, which is where this routine is always called. */
5287ad62
JB
942 if (prefix_mode != GE_OPT_PREFIX_BIG
943 && (ep->X_op == O_big
944 || (ep->X_add_symbol
945 && (walk_no_bignums (ep->X_add_symbol)
946 || (ep->X_op_symbol
947 && walk_no_bignums (ep->X_op_symbol))))))
c19d1205
ZW
948 {
949 inst.error = _("invalid constant");
950 *str = input_line_pointer;
951 input_line_pointer = save_in;
952 return 1;
953 }
b99bd4ef 954
c19d1205
ZW
955 *str = input_line_pointer;
956 input_line_pointer = save_in;
957 return 0;
b99bd4ef
NC
958}
959
c19d1205
ZW
960/* Turn a string in input_line_pointer into a floating point constant
961 of type TYPE, and store the appropriate bytes in *LITP. The number
962 of LITTLENUMS emitted is stored in *SIZEP. An error message is
963 returned, or NULL on OK.
b99bd4ef 964
c19d1205
ZW
965 Note that fp constants aren't represent in the normal way on the ARM.
966 In big endian mode, things are as expected. However, in little endian
967 mode fp constants are big-endian word-wise, and little-endian byte-wise
968 within the words. For example, (double) 1.1 in big endian mode is
969 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
970 the byte sequence 99 99 f1 3f 9a 99 99 99.
b99bd4ef 971
c19d1205 972 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
b99bd4ef 973
c19d1205
ZW
974char *
975md_atof (int type, char * litP, int * sizeP)
976{
977 int prec;
978 LITTLENUM_TYPE words[MAX_LITTLENUMS];
979 char *t;
980 int i;
b99bd4ef 981
c19d1205
ZW
982 switch (type)
983 {
984 case 'f':
985 case 'F':
986 case 's':
987 case 'S':
988 prec = 2;
989 break;
b99bd4ef 990
c19d1205
ZW
991 case 'd':
992 case 'D':
993 case 'r':
994 case 'R':
995 prec = 4;
996 break;
b99bd4ef 997
c19d1205
ZW
998 case 'x':
999 case 'X':
499ac353 1000 prec = 5;
c19d1205 1001 break;
b99bd4ef 1002
c19d1205
ZW
1003 case 'p':
1004 case 'P':
499ac353 1005 prec = 5;
c19d1205 1006 break;
a737bd4d 1007
c19d1205
ZW
1008 default:
1009 *sizeP = 0;
499ac353 1010 return _("Unrecognized or unsupported floating point constant");
c19d1205 1011 }
b99bd4ef 1012
c19d1205
ZW
1013 t = atof_ieee (input_line_pointer, type, words);
1014 if (t)
1015 input_line_pointer = t;
499ac353 1016 *sizeP = prec * sizeof (LITTLENUM_TYPE);
b99bd4ef 1017
c19d1205
ZW
1018 if (target_big_endian)
1019 {
1020 for (i = 0; i < prec; i++)
1021 {
499ac353
NC
1022 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1023 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1024 }
1025 }
1026 else
1027 {
e74cfd16 1028 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
c19d1205
ZW
1029 for (i = prec - 1; i >= 0; i--)
1030 {
499ac353
NC
1031 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1032 litP += sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1033 }
1034 else
1035 /* For a 4 byte float the order of elements in `words' is 1 0.
1036 For an 8 byte float the order is 1 0 3 2. */
1037 for (i = 0; i < prec; i += 2)
1038 {
499ac353
NC
1039 md_number_to_chars (litP, (valueT) words[i + 1],
1040 sizeof (LITTLENUM_TYPE));
1041 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1042 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1043 litP += 2 * sizeof (LITTLENUM_TYPE);
c19d1205
ZW
1044 }
1045 }
b99bd4ef 1046
499ac353 1047 return NULL;
c19d1205 1048}
b99bd4ef 1049
c19d1205
ZW
1050/* We handle all bad expressions here, so that we can report the faulty
1051 instruction in the error message. */
1052void
1053md_operand (expressionS * expr)
1054{
1055 if (in_my_get_expression)
1056 expr->X_op = O_illegal;
b99bd4ef
NC
1057}
1058
c19d1205 1059/* Immediate values. */
b99bd4ef 1060
c19d1205
ZW
1061/* Generic immediate-value read function for use in directives.
1062 Accepts anything that 'expression' can fold to a constant.
1063 *val receives the number. */
1064#ifdef OBJ_ELF
1065static int
1066immediate_for_directive (int *val)
b99bd4ef 1067{
c19d1205
ZW
1068 expressionS exp;
1069 exp.X_op = O_illegal;
b99bd4ef 1070
c19d1205
ZW
1071 if (is_immediate_prefix (*input_line_pointer))
1072 {
1073 input_line_pointer++;
1074 expression (&exp);
1075 }
b99bd4ef 1076
c19d1205
ZW
1077 if (exp.X_op != O_constant)
1078 {
1079 as_bad (_("expected #constant"));
1080 ignore_rest_of_line ();
1081 return FAIL;
1082 }
1083 *val = exp.X_add_number;
1084 return SUCCESS;
b99bd4ef 1085}
c19d1205 1086#endif
b99bd4ef 1087
c19d1205 1088/* Register parsing. */
b99bd4ef 1089
c19d1205
ZW
1090/* Generic register parser. CCP points to what should be the
1091 beginning of a register name. If it is indeed a valid register
1092 name, advance CCP over it and return the reg_entry structure;
1093 otherwise return NULL. Does not issue diagnostics. */
1094
1095static struct reg_entry *
1096arm_reg_parse_multi (char **ccp)
b99bd4ef 1097{
c19d1205
ZW
1098 char *start = *ccp;
1099 char *p;
1100 struct reg_entry *reg;
b99bd4ef 1101
c19d1205
ZW
1102#ifdef REGISTER_PREFIX
1103 if (*start != REGISTER_PREFIX)
01cfc07f 1104 return NULL;
c19d1205
ZW
1105 start++;
1106#endif
1107#ifdef OPTIONAL_REGISTER_PREFIX
1108 if (*start == OPTIONAL_REGISTER_PREFIX)
1109 start++;
1110#endif
b99bd4ef 1111
c19d1205
ZW
1112 p = start;
1113 if (!ISALPHA (*p) || !is_name_beginner (*p))
1114 return NULL;
b99bd4ef 1115
c19d1205
ZW
1116 do
1117 p++;
1118 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1119
1120 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1121
1122 if (!reg)
1123 return NULL;
1124
1125 *ccp = p;
1126 return reg;
b99bd4ef
NC
1127}
1128
1129static int
dcbf9037
JB
1130arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1131 enum arm_reg_type type)
b99bd4ef 1132{
c19d1205
ZW
1133 /* Alternative syntaxes are accepted for a few register classes. */
1134 switch (type)
1135 {
1136 case REG_TYPE_MVF:
1137 case REG_TYPE_MVD:
1138 case REG_TYPE_MVFX:
1139 case REG_TYPE_MVDX:
1140 /* Generic coprocessor register names are allowed for these. */
79134647 1141 if (reg && reg->type == REG_TYPE_CN)
c19d1205
ZW
1142 return reg->number;
1143 break;
69b97547 1144
c19d1205
ZW
1145 case REG_TYPE_CP:
1146 /* For backward compatibility, a bare number is valid here. */
1147 {
1148 unsigned long processor = strtoul (start, ccp, 10);
1149 if (*ccp != start && processor <= 15)
1150 return processor;
1151 }
6057a28f 1152
c19d1205
ZW
1153 case REG_TYPE_MMXWC:
1154 /* WC includes WCG. ??? I'm not sure this is true for all
1155 instructions that take WC registers. */
79134647 1156 if (reg && reg->type == REG_TYPE_MMXWCG)
c19d1205 1157 return reg->number;
6057a28f 1158 break;
c19d1205 1159
6057a28f 1160 default:
c19d1205 1161 break;
6057a28f
NC
1162 }
1163
dcbf9037
JB
1164 return FAIL;
1165}
1166
1167/* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1168 return value is the register number or FAIL. */
1169
1170static int
1171arm_reg_parse (char **ccp, enum arm_reg_type type)
1172{
1173 char *start = *ccp;
1174 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1175 int ret;
1176
1177 /* Do not allow a scalar (reg+index) to parse as a register. */
1178 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1179 return FAIL;
1180
1181 if (reg && reg->type == type)
1182 return reg->number;
1183
1184 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1185 return ret;
1186
c19d1205
ZW
1187 *ccp = start;
1188 return FAIL;
1189}
69b97547 1190
dcbf9037
JB
1191/* Parse a Neon type specifier. *STR should point at the leading '.'
1192 character. Does no verification at this stage that the type fits the opcode
1193 properly. E.g.,
1194
1195 .i32.i32.s16
1196 .s32.f32
1197 .u16
1198
1199 Can all be legally parsed by this function.
1200
1201 Fills in neon_type struct pointer with parsed information, and updates STR
1202 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1203 type, FAIL if not. */
1204
1205static int
1206parse_neon_type (struct neon_type *type, char **str)
1207{
1208 char *ptr = *str;
1209
1210 if (type)
1211 type->elems = 0;
1212
1213 while (type->elems < NEON_MAX_TYPE_ELS)
1214 {
1215 enum neon_el_type thistype = NT_untyped;
1216 unsigned thissize = -1u;
1217
1218 if (*ptr != '.')
1219 break;
1220
1221 ptr++;
1222
1223 /* Just a size without an explicit type. */
1224 if (ISDIGIT (*ptr))
1225 goto parsesize;
1226
1227 switch (TOLOWER (*ptr))
1228 {
1229 case 'i': thistype = NT_integer; break;
1230 case 'f': thistype = NT_float; break;
1231 case 'p': thistype = NT_poly; break;
1232 case 's': thistype = NT_signed; break;
1233 case 'u': thistype = NT_unsigned; break;
037e8744
JB
1234 case 'd':
1235 thistype = NT_float;
1236 thissize = 64;
1237 ptr++;
1238 goto done;
dcbf9037
JB
1239 default:
1240 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1241 return FAIL;
1242 }
1243
1244 ptr++;
1245
1246 /* .f is an abbreviation for .f32. */
1247 if (thistype == NT_float && !ISDIGIT (*ptr))
1248 thissize = 32;
1249 else
1250 {
1251 parsesize:
1252 thissize = strtoul (ptr, &ptr, 10);
1253
1254 if (thissize != 8 && thissize != 16 && thissize != 32
1255 && thissize != 64)
1256 {
1257 as_bad (_("bad size %d in type specifier"), thissize);
1258 return FAIL;
1259 }
1260 }
1261
037e8744 1262 done:
dcbf9037
JB
1263 if (type)
1264 {
1265 type->el[type->elems].type = thistype;
1266 type->el[type->elems].size = thissize;
1267 type->elems++;
1268 }
1269 }
1270
1271 /* Empty/missing type is not a successful parse. */
1272 if (type->elems == 0)
1273 return FAIL;
1274
1275 *str = ptr;
1276
1277 return SUCCESS;
1278}
1279
1280/* Errors may be set multiple times during parsing or bit encoding
1281 (particularly in the Neon bits), but usually the earliest error which is set
1282 will be the most meaningful. Avoid overwriting it with later (cascading)
1283 errors by calling this function. */
1284
1285static void
1286first_error (const char *err)
1287{
1288 if (!inst.error)
1289 inst.error = err;
1290}
1291
1292/* Parse a single type, e.g. ".s32", leading period included. */
1293static int
1294parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1295{
1296 char *str = *ccp;
1297 struct neon_type optype;
1298
1299 if (*str == '.')
1300 {
1301 if (parse_neon_type (&optype, &str) == SUCCESS)
1302 {
1303 if (optype.elems == 1)
1304 *vectype = optype.el[0];
1305 else
1306 {
1307 first_error (_("only one type should be specified for operand"));
1308 return FAIL;
1309 }
1310 }
1311 else
1312 {
1313 first_error (_("vector type expected"));
1314 return FAIL;
1315 }
1316 }
1317 else
1318 return FAIL;
5f4273c7 1319
dcbf9037 1320 *ccp = str;
5f4273c7 1321
dcbf9037
JB
1322 return SUCCESS;
1323}
1324
1325/* Special meanings for indices (which have a range of 0-7), which will fit into
1326 a 4-bit integer. */
1327
1328#define NEON_ALL_LANES 15
1329#define NEON_INTERLEAVE_LANES 14
1330
1331/* Parse either a register or a scalar, with an optional type. Return the
1332 register number, and optionally fill in the actual type of the register
1333 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1334 type/index information in *TYPEINFO. */
1335
1336static int
1337parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1338 enum arm_reg_type *rtype,
1339 struct neon_typed_alias *typeinfo)
1340{
1341 char *str = *ccp;
1342 struct reg_entry *reg = arm_reg_parse_multi (&str);
1343 struct neon_typed_alias atype;
1344 struct neon_type_el parsetype;
1345
1346 atype.defined = 0;
1347 atype.index = -1;
1348 atype.eltype.type = NT_invtype;
1349 atype.eltype.size = -1;
1350
1351 /* Try alternate syntax for some types of register. Note these are mutually
1352 exclusive with the Neon syntax extensions. */
1353 if (reg == NULL)
1354 {
1355 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1356 if (altreg != FAIL)
1357 *ccp = str;
1358 if (typeinfo)
1359 *typeinfo = atype;
1360 return altreg;
1361 }
1362
037e8744
JB
1363 /* Undo polymorphism when a set of register types may be accepted. */
1364 if ((type == REG_TYPE_NDQ
1365 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1366 || (type == REG_TYPE_VFSD
1367 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1368 || (type == REG_TYPE_NSDQ
1369 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
f512f76f
NC
1370 || reg->type == REG_TYPE_NQ))
1371 || (type == REG_TYPE_MMXWC
1372 && (reg->type == REG_TYPE_MMXWCG)))
21d799b5 1373 type = (enum arm_reg_type) reg->type;
dcbf9037
JB
1374
1375 if (type != reg->type)
1376 return FAIL;
1377
1378 if (reg->neon)
1379 atype = *reg->neon;
5f4273c7 1380
dcbf9037
JB
1381 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1382 {
1383 if ((atype.defined & NTA_HASTYPE) != 0)
1384 {
1385 first_error (_("can't redefine type for operand"));
1386 return FAIL;
1387 }
1388 atype.defined |= NTA_HASTYPE;
1389 atype.eltype = parsetype;
1390 }
5f4273c7 1391
dcbf9037
JB
1392 if (skip_past_char (&str, '[') == SUCCESS)
1393 {
1394 if (type != REG_TYPE_VFD)
1395 {
1396 first_error (_("only D registers may be indexed"));
1397 return FAIL;
1398 }
5f4273c7 1399
dcbf9037
JB
1400 if ((atype.defined & NTA_HASINDEX) != 0)
1401 {
1402 first_error (_("can't change index for operand"));
1403 return FAIL;
1404 }
1405
1406 atype.defined |= NTA_HASINDEX;
1407
1408 if (skip_past_char (&str, ']') == SUCCESS)
1409 atype.index = NEON_ALL_LANES;
1410 else
1411 {
1412 expressionS exp;
1413
1414 my_get_expression (&exp, &str, GE_NO_PREFIX);
1415
1416 if (exp.X_op != O_constant)
1417 {
1418 first_error (_("constant expression required"));
1419 return FAIL;
1420 }
1421
1422 if (skip_past_char (&str, ']') == FAIL)
1423 return FAIL;
1424
1425 atype.index = exp.X_add_number;
1426 }
1427 }
5f4273c7 1428
dcbf9037
JB
1429 if (typeinfo)
1430 *typeinfo = atype;
5f4273c7 1431
dcbf9037
JB
1432 if (rtype)
1433 *rtype = type;
5f4273c7 1434
dcbf9037 1435 *ccp = str;
5f4273c7 1436
dcbf9037
JB
1437 return reg->number;
1438}
1439
1440/* Like arm_reg_parse, but allow allow the following extra features:
1441 - If RTYPE is non-zero, return the (possibly restricted) type of the
1442 register (e.g. Neon double or quad reg when either has been requested).
1443 - If this is a Neon vector type with additional type information, fill
1444 in the struct pointed to by VECTYPE (if non-NULL).
5f4273c7 1445 This function will fault on encountering a scalar. */
dcbf9037
JB
1446
1447static int
1448arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1449 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1450{
1451 struct neon_typed_alias atype;
1452 char *str = *ccp;
1453 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1454
1455 if (reg == FAIL)
1456 return FAIL;
1457
1458 /* Do not allow a scalar (reg+index) to parse as a register. */
1459 if ((atype.defined & NTA_HASINDEX) != 0)
1460 {
1461 first_error (_("register operand expected, but got scalar"));
1462 return FAIL;
1463 }
1464
1465 if (vectype)
1466 *vectype = atype.eltype;
1467
1468 *ccp = str;
1469
1470 return reg;
1471}
1472
1473#define NEON_SCALAR_REG(X) ((X) >> 4)
1474#define NEON_SCALAR_INDEX(X) ((X) & 15)
1475
5287ad62
JB
1476/* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1477 have enough information to be able to do a good job bounds-checking. So, we
1478 just do easy checks here, and do further checks later. */
1479
1480static int
dcbf9037 1481parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
5287ad62 1482{
dcbf9037 1483 int reg;
5287ad62 1484 char *str = *ccp;
dcbf9037 1485 struct neon_typed_alias atype;
5f4273c7 1486
dcbf9037 1487 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
5f4273c7 1488
dcbf9037 1489 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
5287ad62 1490 return FAIL;
5f4273c7 1491
dcbf9037 1492 if (atype.index == NEON_ALL_LANES)
5287ad62 1493 {
dcbf9037 1494 first_error (_("scalar must have an index"));
5287ad62
JB
1495 return FAIL;
1496 }
dcbf9037 1497 else if (atype.index >= 64 / elsize)
5287ad62 1498 {
dcbf9037 1499 first_error (_("scalar index out of range"));
5287ad62
JB
1500 return FAIL;
1501 }
5f4273c7 1502
dcbf9037
JB
1503 if (type)
1504 *type = atype.eltype;
5f4273c7 1505
5287ad62 1506 *ccp = str;
5f4273c7 1507
dcbf9037 1508 return reg * 16 + atype.index;
5287ad62
JB
1509}
1510
c19d1205 1511/* Parse an ARM register list. Returns the bitmask, or FAIL. */
e07e6e58 1512
c19d1205
ZW
1513static long
1514parse_reg_list (char ** strp)
1515{
1516 char * str = * strp;
1517 long range = 0;
1518 int another_range;
a737bd4d 1519
c19d1205
ZW
1520 /* We come back here if we get ranges concatenated by '+' or '|'. */
1521 do
6057a28f 1522 {
c19d1205 1523 another_range = 0;
a737bd4d 1524
c19d1205
ZW
1525 if (*str == '{')
1526 {
1527 int in_range = 0;
1528 int cur_reg = -1;
a737bd4d 1529
c19d1205
ZW
1530 str++;
1531 do
1532 {
1533 int reg;
6057a28f 1534
dcbf9037 1535 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
c19d1205 1536 {
dcbf9037 1537 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
c19d1205
ZW
1538 return FAIL;
1539 }
a737bd4d 1540
c19d1205
ZW
1541 if (in_range)
1542 {
1543 int i;
a737bd4d 1544
c19d1205
ZW
1545 if (reg <= cur_reg)
1546 {
dcbf9037 1547 first_error (_("bad range in register list"));
c19d1205
ZW
1548 return FAIL;
1549 }
40a18ebd 1550
c19d1205
ZW
1551 for (i = cur_reg + 1; i < reg; i++)
1552 {
1553 if (range & (1 << i))
1554 as_tsktsk
1555 (_("Warning: duplicated register (r%d) in register list"),
1556 i);
1557 else
1558 range |= 1 << i;
1559 }
1560 in_range = 0;
1561 }
a737bd4d 1562
c19d1205
ZW
1563 if (range & (1 << reg))
1564 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1565 reg);
1566 else if (reg <= cur_reg)
1567 as_tsktsk (_("Warning: register range not in ascending order"));
a737bd4d 1568
c19d1205
ZW
1569 range |= 1 << reg;
1570 cur_reg = reg;
1571 }
1572 while (skip_past_comma (&str) != FAIL
1573 || (in_range = 1, *str++ == '-'));
1574 str--;
a737bd4d 1575
c19d1205
ZW
1576 if (*str++ != '}')
1577 {
dcbf9037 1578 first_error (_("missing `}'"));
c19d1205
ZW
1579 return FAIL;
1580 }
1581 }
1582 else
1583 {
1584 expressionS expr;
40a18ebd 1585
c19d1205
ZW
1586 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1587 return FAIL;
40a18ebd 1588
c19d1205
ZW
1589 if (expr.X_op == O_constant)
1590 {
1591 if (expr.X_add_number
1592 != (expr.X_add_number & 0x0000ffff))
1593 {
1594 inst.error = _("invalid register mask");
1595 return FAIL;
1596 }
a737bd4d 1597
c19d1205
ZW
1598 if ((range & expr.X_add_number) != 0)
1599 {
1600 int regno = range & expr.X_add_number;
a737bd4d 1601
c19d1205
ZW
1602 regno &= -regno;
1603 regno = (1 << regno) - 1;
1604 as_tsktsk
1605 (_("Warning: duplicated register (r%d) in register list"),
1606 regno);
1607 }
a737bd4d 1608
c19d1205
ZW
1609 range |= expr.X_add_number;
1610 }
1611 else
1612 {
1613 if (inst.reloc.type != 0)
1614 {
1615 inst.error = _("expression too complex");
1616 return FAIL;
1617 }
a737bd4d 1618
c19d1205
ZW
1619 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1620 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1621 inst.reloc.pc_rel = 0;
1622 }
1623 }
a737bd4d 1624
c19d1205
ZW
1625 if (*str == '|' || *str == '+')
1626 {
1627 str++;
1628 another_range = 1;
1629 }
a737bd4d 1630 }
c19d1205 1631 while (another_range);
a737bd4d 1632
c19d1205
ZW
1633 *strp = str;
1634 return range;
a737bd4d
NC
1635}
1636
5287ad62
JB
1637/* Types of registers in a list. */
1638
1639enum reg_list_els
1640{
1641 REGLIST_VFP_S,
1642 REGLIST_VFP_D,
1643 REGLIST_NEON_D
1644};
1645
c19d1205
ZW
1646/* Parse a VFP register list. If the string is invalid return FAIL.
1647 Otherwise return the number of registers, and set PBASE to the first
5287ad62
JB
1648 register. Parses registers of type ETYPE.
1649 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1650 - Q registers can be used to specify pairs of D registers
1651 - { } can be omitted from around a singleton register list
1652 FIXME: This is not implemented, as it would require backtracking in
1653 some cases, e.g.:
1654 vtbl.8 d3,d4,d5
1655 This could be done (the meaning isn't really ambiguous), but doesn't
1656 fit in well with the current parsing framework.
dcbf9037
JB
1657 - 32 D registers may be used (also true for VFPv3).
1658 FIXME: Types are ignored in these register lists, which is probably a
1659 bug. */
6057a28f 1660
c19d1205 1661static int
037e8744 1662parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
6057a28f 1663{
037e8744 1664 char *str = *ccp;
c19d1205
ZW
1665 int base_reg;
1666 int new_base;
21d799b5 1667 enum arm_reg_type regtype = (enum arm_reg_type) 0;
5287ad62 1668 int max_regs = 0;
c19d1205
ZW
1669 int count = 0;
1670 int warned = 0;
1671 unsigned long mask = 0;
a737bd4d 1672 int i;
6057a28f 1673
037e8744 1674 if (*str != '{')
5287ad62
JB
1675 {
1676 inst.error = _("expecting {");
1677 return FAIL;
1678 }
6057a28f 1679
037e8744 1680 str++;
6057a28f 1681
5287ad62 1682 switch (etype)
c19d1205 1683 {
5287ad62 1684 case REGLIST_VFP_S:
c19d1205
ZW
1685 regtype = REG_TYPE_VFS;
1686 max_regs = 32;
5287ad62 1687 break;
5f4273c7 1688
5287ad62
JB
1689 case REGLIST_VFP_D:
1690 regtype = REG_TYPE_VFD;
b7fc2769 1691 break;
5f4273c7 1692
b7fc2769
JB
1693 case REGLIST_NEON_D:
1694 regtype = REG_TYPE_NDQ;
1695 break;
1696 }
1697
1698 if (etype != REGLIST_VFP_S)
1699 {
b1cc4aeb
PB
1700 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1701 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
1702 {
1703 max_regs = 32;
1704 if (thumb_mode)
1705 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 1706 fpu_vfp_ext_d32);
5287ad62
JB
1707 else
1708 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 1709 fpu_vfp_ext_d32);
5287ad62
JB
1710 }
1711 else
1712 max_regs = 16;
c19d1205 1713 }
6057a28f 1714
c19d1205 1715 base_reg = max_regs;
a737bd4d 1716
c19d1205
ZW
1717 do
1718 {
5287ad62 1719 int setmask = 1, addregs = 1;
dcbf9037 1720
037e8744 1721 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
dcbf9037 1722
c19d1205 1723 if (new_base == FAIL)
a737bd4d 1724 {
dcbf9037 1725 first_error (_(reg_expected_msgs[regtype]));
c19d1205
ZW
1726 return FAIL;
1727 }
5f4273c7 1728
b7fc2769
JB
1729 if (new_base >= max_regs)
1730 {
1731 first_error (_("register out of range in list"));
1732 return FAIL;
1733 }
5f4273c7 1734
5287ad62
JB
1735 /* Note: a value of 2 * n is returned for the register Q<n>. */
1736 if (regtype == REG_TYPE_NQ)
1737 {
1738 setmask = 3;
1739 addregs = 2;
1740 }
1741
c19d1205
ZW
1742 if (new_base < base_reg)
1743 base_reg = new_base;
a737bd4d 1744
5287ad62 1745 if (mask & (setmask << new_base))
c19d1205 1746 {
dcbf9037 1747 first_error (_("invalid register list"));
c19d1205 1748 return FAIL;
a737bd4d 1749 }
a737bd4d 1750
c19d1205
ZW
1751 if ((mask >> new_base) != 0 && ! warned)
1752 {
1753 as_tsktsk (_("register list not in ascending order"));
1754 warned = 1;
1755 }
0bbf2aa4 1756
5287ad62
JB
1757 mask |= setmask << new_base;
1758 count += addregs;
0bbf2aa4 1759
037e8744 1760 if (*str == '-') /* We have the start of a range expression */
c19d1205
ZW
1761 {
1762 int high_range;
0bbf2aa4 1763
037e8744 1764 str++;
0bbf2aa4 1765
037e8744 1766 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
dcbf9037 1767 == FAIL)
c19d1205
ZW
1768 {
1769 inst.error = gettext (reg_expected_msgs[regtype]);
1770 return FAIL;
1771 }
0bbf2aa4 1772
b7fc2769
JB
1773 if (high_range >= max_regs)
1774 {
1775 first_error (_("register out of range in list"));
1776 return FAIL;
1777 }
1778
5287ad62
JB
1779 if (regtype == REG_TYPE_NQ)
1780 high_range = high_range + 1;
1781
c19d1205
ZW
1782 if (high_range <= new_base)
1783 {
1784 inst.error = _("register range not in ascending order");
1785 return FAIL;
1786 }
0bbf2aa4 1787
5287ad62 1788 for (new_base += addregs; new_base <= high_range; new_base += addregs)
0bbf2aa4 1789 {
5287ad62 1790 if (mask & (setmask << new_base))
0bbf2aa4 1791 {
c19d1205
ZW
1792 inst.error = _("invalid register list");
1793 return FAIL;
0bbf2aa4 1794 }
c19d1205 1795
5287ad62
JB
1796 mask |= setmask << new_base;
1797 count += addregs;
0bbf2aa4 1798 }
0bbf2aa4 1799 }
0bbf2aa4 1800 }
037e8744 1801 while (skip_past_comma (&str) != FAIL);
0bbf2aa4 1802
037e8744 1803 str++;
0bbf2aa4 1804
c19d1205
ZW
1805 /* Sanity check -- should have raised a parse error above. */
1806 if (count == 0 || count > max_regs)
1807 abort ();
1808
1809 *pbase = base_reg;
1810
1811 /* Final test -- the registers must be consecutive. */
1812 mask >>= base_reg;
1813 for (i = 0; i < count; i++)
1814 {
1815 if ((mask & (1u << i)) == 0)
1816 {
1817 inst.error = _("non-contiguous register range");
1818 return FAIL;
1819 }
1820 }
1821
037e8744
JB
1822 *ccp = str;
1823
c19d1205 1824 return count;
b99bd4ef
NC
1825}
1826
dcbf9037
JB
1827/* True if two alias types are the same. */
1828
c921be7d 1829static bfd_boolean
dcbf9037
JB
1830neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1831{
1832 if (!a && !b)
c921be7d 1833 return TRUE;
5f4273c7 1834
dcbf9037 1835 if (!a || !b)
c921be7d 1836 return FALSE;
dcbf9037
JB
1837
1838 if (a->defined != b->defined)
c921be7d 1839 return FALSE;
5f4273c7 1840
dcbf9037
JB
1841 if ((a->defined & NTA_HASTYPE) != 0
1842 && (a->eltype.type != b->eltype.type
1843 || a->eltype.size != b->eltype.size))
c921be7d 1844 return FALSE;
dcbf9037
JB
1845
1846 if ((a->defined & NTA_HASINDEX) != 0
1847 && (a->index != b->index))
c921be7d 1848 return FALSE;
5f4273c7 1849
c921be7d 1850 return TRUE;
dcbf9037
JB
1851}
1852
5287ad62
JB
1853/* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1854 The base register is put in *PBASE.
dcbf9037 1855 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
5287ad62
JB
1856 the return value.
1857 The register stride (minus one) is put in bit 4 of the return value.
dcbf9037
JB
1858 Bits [6:5] encode the list length (minus one).
1859 The type of the list elements is put in *ELTYPE, if non-NULL. */
5287ad62 1860
5287ad62 1861#define NEON_LANE(X) ((X) & 0xf)
dcbf9037 1862#define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
5287ad62
JB
1863#define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1864
1865static int
dcbf9037
JB
1866parse_neon_el_struct_list (char **str, unsigned *pbase,
1867 struct neon_type_el *eltype)
5287ad62
JB
1868{
1869 char *ptr = *str;
1870 int base_reg = -1;
1871 int reg_incr = -1;
1872 int count = 0;
1873 int lane = -1;
1874 int leading_brace = 0;
1875 enum arm_reg_type rtype = REG_TYPE_NDQ;
1876 int addregs = 1;
20203fb9
NC
1877 const char *const incr_error = _("register stride must be 1 or 2");
1878 const char *const type_error = _("mismatched element/structure types in list");
dcbf9037 1879 struct neon_typed_alias firsttype;
5f4273c7 1880
5287ad62
JB
1881 if (skip_past_char (&ptr, '{') == SUCCESS)
1882 leading_brace = 1;
5f4273c7 1883
5287ad62
JB
1884 do
1885 {
dcbf9037
JB
1886 struct neon_typed_alias atype;
1887 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1888
5287ad62
JB
1889 if (getreg == FAIL)
1890 {
dcbf9037 1891 first_error (_(reg_expected_msgs[rtype]));
5287ad62
JB
1892 return FAIL;
1893 }
5f4273c7 1894
5287ad62
JB
1895 if (base_reg == -1)
1896 {
1897 base_reg = getreg;
1898 if (rtype == REG_TYPE_NQ)
1899 {
1900 reg_incr = 1;
1901 addregs = 2;
1902 }
dcbf9037 1903 firsttype = atype;
5287ad62
JB
1904 }
1905 else if (reg_incr == -1)
1906 {
1907 reg_incr = getreg - base_reg;
1908 if (reg_incr < 1 || reg_incr > 2)
1909 {
dcbf9037 1910 first_error (_(incr_error));
5287ad62
JB
1911 return FAIL;
1912 }
1913 }
1914 else if (getreg != base_reg + reg_incr * count)
1915 {
dcbf9037
JB
1916 first_error (_(incr_error));
1917 return FAIL;
1918 }
1919
c921be7d 1920 if (! neon_alias_types_same (&atype, &firsttype))
dcbf9037
JB
1921 {
1922 first_error (_(type_error));
5287ad62
JB
1923 return FAIL;
1924 }
5f4273c7 1925
5287ad62
JB
1926 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1927 modes. */
1928 if (ptr[0] == '-')
1929 {
dcbf9037 1930 struct neon_typed_alias htype;
5287ad62
JB
1931 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1932 if (lane == -1)
1933 lane = NEON_INTERLEAVE_LANES;
1934 else if (lane != NEON_INTERLEAVE_LANES)
1935 {
dcbf9037 1936 first_error (_(type_error));
5287ad62
JB
1937 return FAIL;
1938 }
1939 if (reg_incr == -1)
1940 reg_incr = 1;
1941 else if (reg_incr != 1)
1942 {
dcbf9037 1943 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
5287ad62
JB
1944 return FAIL;
1945 }
1946 ptr++;
dcbf9037 1947 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
5287ad62
JB
1948 if (hireg == FAIL)
1949 {
dcbf9037
JB
1950 first_error (_(reg_expected_msgs[rtype]));
1951 return FAIL;
1952 }
c921be7d 1953 if (! neon_alias_types_same (&htype, &firsttype))
dcbf9037
JB
1954 {
1955 first_error (_(type_error));
5287ad62
JB
1956 return FAIL;
1957 }
1958 count += hireg + dregs - getreg;
1959 continue;
1960 }
5f4273c7 1961
5287ad62
JB
1962 /* If we're using Q registers, we can't use [] or [n] syntax. */
1963 if (rtype == REG_TYPE_NQ)
1964 {
1965 count += 2;
1966 continue;
1967 }
5f4273c7 1968
dcbf9037 1969 if ((atype.defined & NTA_HASINDEX) != 0)
5287ad62 1970 {
dcbf9037
JB
1971 if (lane == -1)
1972 lane = atype.index;
1973 else if (lane != atype.index)
5287ad62 1974 {
dcbf9037
JB
1975 first_error (_(type_error));
1976 return FAIL;
5287ad62
JB
1977 }
1978 }
1979 else if (lane == -1)
1980 lane = NEON_INTERLEAVE_LANES;
1981 else if (lane != NEON_INTERLEAVE_LANES)
1982 {
dcbf9037 1983 first_error (_(type_error));
5287ad62
JB
1984 return FAIL;
1985 }
1986 count++;
1987 }
1988 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
5f4273c7 1989
5287ad62
JB
1990 /* No lane set by [x]. We must be interleaving structures. */
1991 if (lane == -1)
1992 lane = NEON_INTERLEAVE_LANES;
5f4273c7 1993
5287ad62
JB
1994 /* Sanity check. */
1995 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1996 || (count > 1 && reg_incr == -1))
1997 {
dcbf9037 1998 first_error (_("error parsing element/structure list"));
5287ad62
JB
1999 return FAIL;
2000 }
2001
2002 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2003 {
dcbf9037 2004 first_error (_("expected }"));
5287ad62
JB
2005 return FAIL;
2006 }
5f4273c7 2007
5287ad62
JB
2008 if (reg_incr == -1)
2009 reg_incr = 1;
2010
dcbf9037
JB
2011 if (eltype)
2012 *eltype = firsttype.eltype;
2013
5287ad62
JB
2014 *pbase = base_reg;
2015 *str = ptr;
5f4273c7 2016
5287ad62
JB
2017 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2018}
2019
c19d1205
ZW
2020/* Parse an explicit relocation suffix on an expression. This is
2021 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2022 arm_reloc_hsh contains no entries, so this function can only
2023 succeed if there is no () after the word. Returns -1 on error,
2024 BFD_RELOC_UNUSED if there wasn't any suffix. */
2025static int
2026parse_reloc (char **str)
b99bd4ef 2027{
c19d1205
ZW
2028 struct reloc_entry *r;
2029 char *p, *q;
b99bd4ef 2030
c19d1205
ZW
2031 if (**str != '(')
2032 return BFD_RELOC_UNUSED;
b99bd4ef 2033
c19d1205
ZW
2034 p = *str + 1;
2035 q = p;
2036
2037 while (*q && *q != ')' && *q != ',')
2038 q++;
2039 if (*q != ')')
2040 return -1;
2041
21d799b5
NC
2042 if ((r = (struct reloc_entry *)
2043 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
c19d1205
ZW
2044 return -1;
2045
2046 *str = q + 1;
2047 return r->reloc;
b99bd4ef
NC
2048}
2049
c19d1205
ZW
2050/* Directives: register aliases. */
2051
dcbf9037 2052static struct reg_entry *
c19d1205 2053insert_reg_alias (char *str, int number, int type)
b99bd4ef 2054{
d3ce72d0 2055 struct reg_entry *new_reg;
c19d1205 2056 const char *name;
b99bd4ef 2057
d3ce72d0 2058 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
c19d1205 2059 {
d3ce72d0 2060 if (new_reg->builtin)
c19d1205 2061 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
b99bd4ef 2062
c19d1205
ZW
2063 /* Only warn about a redefinition if it's not defined as the
2064 same register. */
d3ce72d0 2065 else if (new_reg->number != number || new_reg->type != type)
c19d1205 2066 as_warn (_("ignoring redefinition of register alias '%s'"), str);
69b97547 2067
d929913e 2068 return NULL;
c19d1205 2069 }
b99bd4ef 2070
c19d1205 2071 name = xstrdup (str);
d3ce72d0 2072 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
b99bd4ef 2073
d3ce72d0
NC
2074 new_reg->name = name;
2075 new_reg->number = number;
2076 new_reg->type = type;
2077 new_reg->builtin = FALSE;
2078 new_reg->neon = NULL;
b99bd4ef 2079
d3ce72d0 2080 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
c19d1205 2081 abort ();
5f4273c7 2082
d3ce72d0 2083 return new_reg;
dcbf9037
JB
2084}
2085
2086static void
2087insert_neon_reg_alias (char *str, int number, int type,
2088 struct neon_typed_alias *atype)
2089{
2090 struct reg_entry *reg = insert_reg_alias (str, number, type);
5f4273c7 2091
dcbf9037
JB
2092 if (!reg)
2093 {
2094 first_error (_("attempt to redefine typed alias"));
2095 return;
2096 }
5f4273c7 2097
dcbf9037
JB
2098 if (atype)
2099 {
21d799b5
NC
2100 reg->neon = (struct neon_typed_alias *)
2101 xmalloc (sizeof (struct neon_typed_alias));
dcbf9037
JB
2102 *reg->neon = *atype;
2103 }
c19d1205 2104}
b99bd4ef 2105
c19d1205 2106/* Look for the .req directive. This is of the form:
b99bd4ef 2107
c19d1205 2108 new_register_name .req existing_register_name
b99bd4ef 2109
c19d1205 2110 If we find one, or if it looks sufficiently like one that we want to
d929913e 2111 handle any error here, return TRUE. Otherwise return FALSE. */
b99bd4ef 2112
d929913e 2113static bfd_boolean
c19d1205
ZW
2114create_register_alias (char * newname, char *p)
2115{
2116 struct reg_entry *old;
2117 char *oldname, *nbuf;
2118 size_t nlen;
b99bd4ef 2119
c19d1205
ZW
2120 /* The input scrubber ensures that whitespace after the mnemonic is
2121 collapsed to single spaces. */
2122 oldname = p;
2123 if (strncmp (oldname, " .req ", 6) != 0)
d929913e 2124 return FALSE;
b99bd4ef 2125
c19d1205
ZW
2126 oldname += 6;
2127 if (*oldname == '\0')
d929913e 2128 return FALSE;
b99bd4ef 2129
21d799b5 2130 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
c19d1205 2131 if (!old)
b99bd4ef 2132 {
c19d1205 2133 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
d929913e 2134 return TRUE;
b99bd4ef
NC
2135 }
2136
c19d1205
ZW
2137 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2138 the desired alias name, and p points to its end. If not, then
2139 the desired alias name is in the global original_case_string. */
2140#ifdef TC_CASE_SENSITIVE
2141 nlen = p - newname;
2142#else
2143 newname = original_case_string;
2144 nlen = strlen (newname);
2145#endif
b99bd4ef 2146
21d799b5 2147 nbuf = (char *) alloca (nlen + 1);
c19d1205
ZW
2148 memcpy (nbuf, newname, nlen);
2149 nbuf[nlen] = '\0';
b99bd4ef 2150
c19d1205
ZW
2151 /* Create aliases under the new name as stated; an all-lowercase
2152 version of the new name; and an all-uppercase version of the new
2153 name. */
d929913e
NC
2154 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2155 {
2156 for (p = nbuf; *p; p++)
2157 *p = TOUPPER (*p);
c19d1205 2158
d929913e
NC
2159 if (strncmp (nbuf, newname, nlen))
2160 {
2161 /* If this attempt to create an additional alias fails, do not bother
2162 trying to create the all-lower case alias. We will fail and issue
2163 a second, duplicate error message. This situation arises when the
2164 programmer does something like:
2165 foo .req r0
2166 Foo .req r1
2167 The second .req creates the "Foo" alias but then fails to create
5f4273c7 2168 the artificial FOO alias because it has already been created by the
d929913e
NC
2169 first .req. */
2170 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2171 return TRUE;
2172 }
c19d1205 2173
d929913e
NC
2174 for (p = nbuf; *p; p++)
2175 *p = TOLOWER (*p);
c19d1205 2176
d929913e
NC
2177 if (strncmp (nbuf, newname, nlen))
2178 insert_reg_alias (nbuf, old->number, old->type);
2179 }
c19d1205 2180
d929913e 2181 return TRUE;
b99bd4ef
NC
2182}
2183
dcbf9037
JB
2184/* Create a Neon typed/indexed register alias using directives, e.g.:
2185 X .dn d5.s32[1]
2186 Y .qn 6.s16
2187 Z .dn d7
2188 T .dn Z[0]
2189 These typed registers can be used instead of the types specified after the
2190 Neon mnemonic, so long as all operands given have types. Types can also be
2191 specified directly, e.g.:
5f4273c7 2192 vadd d0.s32, d1.s32, d2.s32 */
dcbf9037 2193
c921be7d 2194static bfd_boolean
dcbf9037
JB
2195create_neon_reg_alias (char *newname, char *p)
2196{
2197 enum arm_reg_type basetype;
2198 struct reg_entry *basereg;
2199 struct reg_entry mybasereg;
2200 struct neon_type ntype;
2201 struct neon_typed_alias typeinfo;
2202 char *namebuf, *nameend;
2203 int namelen;
5f4273c7 2204
dcbf9037
JB
2205 typeinfo.defined = 0;
2206 typeinfo.eltype.type = NT_invtype;
2207 typeinfo.eltype.size = -1;
2208 typeinfo.index = -1;
5f4273c7 2209
dcbf9037 2210 nameend = p;
5f4273c7 2211
dcbf9037
JB
2212 if (strncmp (p, " .dn ", 5) == 0)
2213 basetype = REG_TYPE_VFD;
2214 else if (strncmp (p, " .qn ", 5) == 0)
2215 basetype = REG_TYPE_NQ;
2216 else
c921be7d 2217 return FALSE;
5f4273c7 2218
dcbf9037 2219 p += 5;
5f4273c7 2220
dcbf9037 2221 if (*p == '\0')
c921be7d 2222 return FALSE;
5f4273c7 2223
dcbf9037
JB
2224 basereg = arm_reg_parse_multi (&p);
2225
2226 if (basereg && basereg->type != basetype)
2227 {
2228 as_bad (_("bad type for register"));
c921be7d 2229 return FALSE;
dcbf9037
JB
2230 }
2231
2232 if (basereg == NULL)
2233 {
2234 expressionS exp;
2235 /* Try parsing as an integer. */
2236 my_get_expression (&exp, &p, GE_NO_PREFIX);
2237 if (exp.X_op != O_constant)
2238 {
2239 as_bad (_("expression must be constant"));
c921be7d 2240 return FALSE;
dcbf9037
JB
2241 }
2242 basereg = &mybasereg;
2243 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2244 : exp.X_add_number;
2245 basereg->neon = 0;
2246 }
2247
2248 if (basereg->neon)
2249 typeinfo = *basereg->neon;
2250
2251 if (parse_neon_type (&ntype, &p) == SUCCESS)
2252 {
2253 /* We got a type. */
2254 if (typeinfo.defined & NTA_HASTYPE)
2255 {
2256 as_bad (_("can't redefine the type of a register alias"));
c921be7d 2257 return FALSE;
dcbf9037 2258 }
5f4273c7 2259
dcbf9037
JB
2260 typeinfo.defined |= NTA_HASTYPE;
2261 if (ntype.elems != 1)
2262 {
2263 as_bad (_("you must specify a single type only"));
c921be7d 2264 return FALSE;
dcbf9037
JB
2265 }
2266 typeinfo.eltype = ntype.el[0];
2267 }
5f4273c7 2268
dcbf9037
JB
2269 if (skip_past_char (&p, '[') == SUCCESS)
2270 {
2271 expressionS exp;
2272 /* We got a scalar index. */
5f4273c7 2273
dcbf9037
JB
2274 if (typeinfo.defined & NTA_HASINDEX)
2275 {
2276 as_bad (_("can't redefine the index of a scalar alias"));
c921be7d 2277 return FALSE;
dcbf9037 2278 }
5f4273c7 2279
dcbf9037 2280 my_get_expression (&exp, &p, GE_NO_PREFIX);
5f4273c7 2281
dcbf9037
JB
2282 if (exp.X_op != O_constant)
2283 {
2284 as_bad (_("scalar index must be constant"));
c921be7d 2285 return FALSE;
dcbf9037 2286 }
5f4273c7 2287
dcbf9037
JB
2288 typeinfo.defined |= NTA_HASINDEX;
2289 typeinfo.index = exp.X_add_number;
5f4273c7 2290
dcbf9037
JB
2291 if (skip_past_char (&p, ']') == FAIL)
2292 {
2293 as_bad (_("expecting ]"));
c921be7d 2294 return FALSE;
dcbf9037
JB
2295 }
2296 }
2297
2298 namelen = nameend - newname;
21d799b5 2299 namebuf = (char *) alloca (namelen + 1);
dcbf9037
JB
2300 strncpy (namebuf, newname, namelen);
2301 namebuf[namelen] = '\0';
5f4273c7 2302
dcbf9037
JB
2303 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2304 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2305
dcbf9037
JB
2306 /* Insert name in all uppercase. */
2307 for (p = namebuf; *p; p++)
2308 *p = TOUPPER (*p);
5f4273c7 2309
dcbf9037
JB
2310 if (strncmp (namebuf, newname, namelen))
2311 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2312 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2313
dcbf9037
JB
2314 /* Insert name in all lowercase. */
2315 for (p = namebuf; *p; p++)
2316 *p = TOLOWER (*p);
5f4273c7 2317
dcbf9037
JB
2318 if (strncmp (namebuf, newname, namelen))
2319 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2320 typeinfo.defined != 0 ? &typeinfo : NULL);
5f4273c7 2321
c921be7d 2322 return TRUE;
dcbf9037
JB
2323}
2324
c19d1205
ZW
2325/* Should never be called, as .req goes between the alias and the
2326 register name, not at the beginning of the line. */
c921be7d 2327
b99bd4ef 2328static void
c19d1205 2329s_req (int a ATTRIBUTE_UNUSED)
b99bd4ef 2330{
c19d1205
ZW
2331 as_bad (_("invalid syntax for .req directive"));
2332}
b99bd4ef 2333
dcbf9037
JB
2334static void
2335s_dn (int a ATTRIBUTE_UNUSED)
2336{
2337 as_bad (_("invalid syntax for .dn directive"));
2338}
2339
2340static void
2341s_qn (int a ATTRIBUTE_UNUSED)
2342{
2343 as_bad (_("invalid syntax for .qn directive"));
2344}
2345
c19d1205
ZW
2346/* The .unreq directive deletes an alias which was previously defined
2347 by .req. For example:
b99bd4ef 2348
c19d1205
ZW
2349 my_alias .req r11
2350 .unreq my_alias */
b99bd4ef
NC
2351
2352static void
c19d1205 2353s_unreq (int a ATTRIBUTE_UNUSED)
b99bd4ef 2354{
c19d1205
ZW
2355 char * name;
2356 char saved_char;
b99bd4ef 2357
c19d1205
ZW
2358 name = input_line_pointer;
2359
2360 while (*input_line_pointer != 0
2361 && *input_line_pointer != ' '
2362 && *input_line_pointer != '\n')
2363 ++input_line_pointer;
2364
2365 saved_char = *input_line_pointer;
2366 *input_line_pointer = 0;
2367
2368 if (!*name)
2369 as_bad (_("invalid syntax for .unreq directive"));
2370 else
2371 {
21d799b5
NC
2372 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2373 name);
c19d1205
ZW
2374
2375 if (!reg)
2376 as_bad (_("unknown register alias '%s'"), name);
2377 else if (reg->builtin)
2378 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2379 name);
2380 else
2381 {
d929913e
NC
2382 char * p;
2383 char * nbuf;
2384
db0bc284 2385 hash_delete (arm_reg_hsh, name, FALSE);
c19d1205 2386 free ((char *) reg->name);
dcbf9037
JB
2387 if (reg->neon)
2388 free (reg->neon);
c19d1205 2389 free (reg);
d929913e
NC
2390
2391 /* Also locate the all upper case and all lower case versions.
2392 Do not complain if we cannot find one or the other as it
2393 was probably deleted above. */
5f4273c7 2394
d929913e
NC
2395 nbuf = strdup (name);
2396 for (p = nbuf; *p; p++)
2397 *p = TOUPPER (*p);
21d799b5 2398 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2399 if (reg)
2400 {
db0bc284 2401 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2402 free ((char *) reg->name);
2403 if (reg->neon)
2404 free (reg->neon);
2405 free (reg);
2406 }
2407
2408 for (p = nbuf; *p; p++)
2409 *p = TOLOWER (*p);
21d799b5 2410 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
d929913e
NC
2411 if (reg)
2412 {
db0bc284 2413 hash_delete (arm_reg_hsh, nbuf, FALSE);
d929913e
NC
2414 free ((char *) reg->name);
2415 if (reg->neon)
2416 free (reg->neon);
2417 free (reg);
2418 }
2419
2420 free (nbuf);
c19d1205
ZW
2421 }
2422 }
b99bd4ef 2423
c19d1205 2424 *input_line_pointer = saved_char;
b99bd4ef
NC
2425 demand_empty_rest_of_line ();
2426}
2427
c19d1205
ZW
2428/* Directives: Instruction set selection. */
2429
2430#ifdef OBJ_ELF
2431/* This code is to handle mapping symbols as defined in the ARM ELF spec.
2432 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2433 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2434 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2435
cd000bff
DJ
2436/* Create a new mapping symbol for the transition to STATE. */
2437
2438static void
2439make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
b99bd4ef 2440{
a737bd4d 2441 symbolS * symbolP;
c19d1205
ZW
2442 const char * symname;
2443 int type;
b99bd4ef 2444
c19d1205 2445 switch (state)
b99bd4ef 2446 {
c19d1205
ZW
2447 case MAP_DATA:
2448 symname = "$d";
2449 type = BSF_NO_FLAGS;
2450 break;
2451 case MAP_ARM:
2452 symname = "$a";
2453 type = BSF_NO_FLAGS;
2454 break;
2455 case MAP_THUMB:
2456 symname = "$t";
2457 type = BSF_NO_FLAGS;
2458 break;
c19d1205
ZW
2459 default:
2460 abort ();
2461 }
2462
cd000bff 2463 symbolP = symbol_new (symname, now_seg, value, frag);
c19d1205
ZW
2464 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2465
2466 switch (state)
2467 {
2468 case MAP_ARM:
2469 THUMB_SET_FUNC (symbolP, 0);
2470 ARM_SET_THUMB (symbolP, 0);
2471 ARM_SET_INTERWORK (symbolP, support_interwork);
2472 break;
2473
2474 case MAP_THUMB:
2475 THUMB_SET_FUNC (symbolP, 1);
2476 ARM_SET_THUMB (symbolP, 1);
2477 ARM_SET_INTERWORK (symbolP, support_interwork);
2478 break;
2479
2480 case MAP_DATA:
2481 default:
cd000bff
DJ
2482 break;
2483 }
2484
2485 /* Save the mapping symbols for future reference. Also check that
2486 we do not place two mapping symbols at the same offset within a
2487 frag. We'll handle overlap between frags in
2488 check_mapping_symbols. */
2489 if (value == 0)
2490 {
2491 know (frag->tc_frag_data.first_map == NULL);
2492 frag->tc_frag_data.first_map = symbolP;
2493 }
2494 if (frag->tc_frag_data.last_map != NULL)
c5ed243b 2495 know (S_GET_VALUE (frag->tc_frag_data.last_map) < S_GET_VALUE (symbolP));
cd000bff
DJ
2496 frag->tc_frag_data.last_map = symbolP;
2497}
2498
2499/* We must sometimes convert a region marked as code to data during
2500 code alignment, if an odd number of bytes have to be padded. The
2501 code mapping symbol is pushed to an aligned address. */
2502
2503static void
2504insert_data_mapping_symbol (enum mstate state,
2505 valueT value, fragS *frag, offsetT bytes)
2506{
2507 /* If there was already a mapping symbol, remove it. */
2508 if (frag->tc_frag_data.last_map != NULL
2509 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2510 {
2511 symbolS *symp = frag->tc_frag_data.last_map;
2512
2513 if (value == 0)
2514 {
2515 know (frag->tc_frag_data.first_map == symp);
2516 frag->tc_frag_data.first_map = NULL;
2517 }
2518 frag->tc_frag_data.last_map = NULL;
2519 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
c19d1205 2520 }
cd000bff
DJ
2521
2522 make_mapping_symbol (MAP_DATA, value, frag);
2523 make_mapping_symbol (state, value + bytes, frag);
2524}
2525
2526static void mapping_state_2 (enum mstate state, int max_chars);
2527
2528/* Set the mapping state to STATE. Only call this when about to
2529 emit some STATE bytes to the file. */
2530
2531void
2532mapping_state (enum mstate state)
2533{
940b5ce0
DJ
2534 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2535
cd000bff
DJ
2536#define TRANSITION(from, to) (mapstate == (from) && state == (to))
2537
2538 if (mapstate == state)
2539 /* The mapping symbol has already been emitted.
2540 There is nothing else to do. */
2541 return;
2542 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2543 /* This case will be evaluated later in the next else. */
2544 return;
2545 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2546 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2547 {
2548 /* Only add the symbol if the offset is > 0:
2549 if we're at the first frag, check it's size > 0;
2550 if we're not at the first frag, then for sure
2551 the offset is > 0. */
2552 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2553 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2554
2555 if (add_symbol)
2556 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2557 }
2558
2559 mapping_state_2 (state, 0);
2560#undef TRANSITION
2561}
2562
2563/* Same as mapping_state, but MAX_CHARS bytes have already been
2564 allocated. Put the mapping symbol that far back. */
2565
2566static void
2567mapping_state_2 (enum mstate state, int max_chars)
2568{
940b5ce0
DJ
2569 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2570
2571 if (!SEG_NORMAL (now_seg))
2572 return;
2573
cd000bff
DJ
2574 if (mapstate == state)
2575 /* The mapping symbol has already been emitted.
2576 There is nothing else to do. */
2577 return;
2578
cd000bff
DJ
2579 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2580 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
c19d1205
ZW
2581}
2582#else
d3106081
NS
2583#define mapping_state(x) ((void)0)
2584#define mapping_state_2(x, y) ((void)0)
c19d1205
ZW
2585#endif
2586
2587/* Find the real, Thumb encoded start of a Thumb function. */
2588
4343666d 2589#ifdef OBJ_COFF
c19d1205
ZW
2590static symbolS *
2591find_real_start (symbolS * symbolP)
2592{
2593 char * real_start;
2594 const char * name = S_GET_NAME (symbolP);
2595 symbolS * new_target;
2596
2597 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2598#define STUB_NAME ".real_start_of"
2599
2600 if (name == NULL)
2601 abort ();
2602
37f6032b
ZW
2603 /* The compiler may generate BL instructions to local labels because
2604 it needs to perform a branch to a far away location. These labels
2605 do not have a corresponding ".real_start_of" label. We check
2606 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2607 the ".real_start_of" convention for nonlocal branches. */
2608 if (S_IS_LOCAL (symbolP) || name[0] == '.')
c19d1205
ZW
2609 return symbolP;
2610
37f6032b 2611 real_start = ACONCAT ((STUB_NAME, name, NULL));
c19d1205
ZW
2612 new_target = symbol_find (real_start);
2613
2614 if (new_target == NULL)
2615 {
bd3ba5d1 2616 as_warn (_("Failed to find real start of function: %s\n"), name);
c19d1205
ZW
2617 new_target = symbolP;
2618 }
2619
c19d1205
ZW
2620 return new_target;
2621}
4343666d 2622#endif
c19d1205
ZW
2623
2624static void
2625opcode_select (int width)
2626{
2627 switch (width)
2628 {
2629 case 16:
2630 if (! thumb_mode)
2631 {
e74cfd16 2632 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
c19d1205
ZW
2633 as_bad (_("selected processor does not support THUMB opcodes"));
2634
2635 thumb_mode = 1;
2636 /* No need to force the alignment, since we will have been
2637 coming from ARM mode, which is word-aligned. */
2638 record_alignment (now_seg, 1);
2639 }
c19d1205
ZW
2640 break;
2641
2642 case 32:
2643 if (thumb_mode)
2644 {
e74cfd16 2645 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205
ZW
2646 as_bad (_("selected processor does not support ARM opcodes"));
2647
2648 thumb_mode = 0;
2649
2650 if (!need_pass_2)
2651 frag_align (2, 0, 0);
2652
2653 record_alignment (now_seg, 1);
2654 }
c19d1205
ZW
2655 break;
2656
2657 default:
2658 as_bad (_("invalid instruction size selected (%d)"), width);
2659 }
2660}
2661
2662static void
2663s_arm (int ignore ATTRIBUTE_UNUSED)
2664{
2665 opcode_select (32);
2666 demand_empty_rest_of_line ();
2667}
2668
2669static void
2670s_thumb (int ignore ATTRIBUTE_UNUSED)
2671{
2672 opcode_select (16);
2673 demand_empty_rest_of_line ();
2674}
2675
2676static void
2677s_code (int unused ATTRIBUTE_UNUSED)
2678{
2679 int temp;
2680
2681 temp = get_absolute_expression ();
2682 switch (temp)
2683 {
2684 case 16:
2685 case 32:
2686 opcode_select (temp);
2687 break;
2688
2689 default:
2690 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2691 }
2692}
2693
2694static void
2695s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2696{
2697 /* If we are not already in thumb mode go into it, EVEN if
2698 the target processor does not support thumb instructions.
2699 This is used by gcc/config/arm/lib1funcs.asm for example
2700 to compile interworking support functions even if the
2701 target processor should not support interworking. */
2702 if (! thumb_mode)
2703 {
2704 thumb_mode = 2;
2705 record_alignment (now_seg, 1);
2706 }
2707
2708 demand_empty_rest_of_line ();
2709}
2710
2711static void
2712s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2713{
2714 s_thumb (0);
2715
2716 /* The following label is the name/address of the start of a Thumb function.
2717 We need to know this for the interworking support. */
2718 label_is_thumb_function_name = TRUE;
2719}
2720
2721/* Perform a .set directive, but also mark the alias as
2722 being a thumb function. */
2723
2724static void
2725s_thumb_set (int equiv)
2726{
2727 /* XXX the following is a duplicate of the code for s_set() in read.c
2728 We cannot just call that code as we need to get at the symbol that
2729 is created. */
2730 char * name;
2731 char delim;
2732 char * end_name;
2733 symbolS * symbolP;
2734
2735 /* Especial apologies for the random logic:
2736 This just grew, and could be parsed much more simply!
2737 Dean - in haste. */
2738 name = input_line_pointer;
2739 delim = get_symbol_end ();
2740 end_name = input_line_pointer;
2741 *end_name = delim;
2742
2743 if (*input_line_pointer != ',')
2744 {
2745 *end_name = 0;
2746 as_bad (_("expected comma after name \"%s\""), name);
b99bd4ef
NC
2747 *end_name = delim;
2748 ignore_rest_of_line ();
2749 return;
2750 }
2751
2752 input_line_pointer++;
2753 *end_name = 0;
2754
2755 if (name[0] == '.' && name[1] == '\0')
2756 {
2757 /* XXX - this should not happen to .thumb_set. */
2758 abort ();
2759 }
2760
2761 if ((symbolP = symbol_find (name)) == NULL
2762 && (symbolP = md_undefined_symbol (name)) == NULL)
2763 {
2764#ifndef NO_LISTING
2765 /* When doing symbol listings, play games with dummy fragments living
2766 outside the normal fragment chain to record the file and line info
c19d1205 2767 for this symbol. */
b99bd4ef
NC
2768 if (listing & LISTING_SYMBOLS)
2769 {
2770 extern struct list_info_struct * listing_tail;
21d799b5 2771 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
b99bd4ef
NC
2772
2773 memset (dummy_frag, 0, sizeof (fragS));
2774 dummy_frag->fr_type = rs_fill;
2775 dummy_frag->line = listing_tail;
2776 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2777 dummy_frag->fr_symbol = symbolP;
2778 }
2779 else
2780#endif
2781 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2782
2783#ifdef OBJ_COFF
2784 /* "set" symbols are local unless otherwise specified. */
2785 SF_SET_LOCAL (symbolP);
2786#endif /* OBJ_COFF */
2787 } /* Make a new symbol. */
2788
2789 symbol_table_insert (symbolP);
2790
2791 * end_name = delim;
2792
2793 if (equiv
2794 && S_IS_DEFINED (symbolP)
2795 && S_GET_SEGMENT (symbolP) != reg_section)
2796 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2797
2798 pseudo_set (symbolP);
2799
2800 demand_empty_rest_of_line ();
2801
c19d1205 2802 /* XXX Now we come to the Thumb specific bit of code. */
b99bd4ef
NC
2803
2804 THUMB_SET_FUNC (symbolP, 1);
2805 ARM_SET_THUMB (symbolP, 1);
2806#if defined OBJ_ELF || defined OBJ_COFF
2807 ARM_SET_INTERWORK (symbolP, support_interwork);
2808#endif
2809}
2810
c19d1205 2811/* Directives: Mode selection. */
b99bd4ef 2812
c19d1205
ZW
2813/* .syntax [unified|divided] - choose the new unified syntax
2814 (same for Arm and Thumb encoding, modulo slight differences in what
2815 can be represented) or the old divergent syntax for each mode. */
b99bd4ef 2816static void
c19d1205 2817s_syntax (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2818{
c19d1205
ZW
2819 char *name, delim;
2820
2821 name = input_line_pointer;
2822 delim = get_symbol_end ();
2823
2824 if (!strcasecmp (name, "unified"))
2825 unified_syntax = TRUE;
2826 else if (!strcasecmp (name, "divided"))
2827 unified_syntax = FALSE;
2828 else
2829 {
2830 as_bad (_("unrecognized syntax mode \"%s\""), name);
2831 return;
2832 }
2833 *input_line_pointer = delim;
b99bd4ef
NC
2834 demand_empty_rest_of_line ();
2835}
2836
c19d1205
ZW
2837/* Directives: sectioning and alignment. */
2838
2839/* Same as s_align_ptwo but align 0 => align 2. */
2840
b99bd4ef 2841static void
c19d1205 2842s_align (int unused ATTRIBUTE_UNUSED)
b99bd4ef 2843{
a737bd4d 2844 int temp;
dce323d1 2845 bfd_boolean fill_p;
c19d1205
ZW
2846 long temp_fill;
2847 long max_alignment = 15;
b99bd4ef
NC
2848
2849 temp = get_absolute_expression ();
c19d1205
ZW
2850 if (temp > max_alignment)
2851 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2852 else if (temp < 0)
b99bd4ef 2853 {
c19d1205
ZW
2854 as_bad (_("alignment negative. 0 assumed."));
2855 temp = 0;
2856 }
b99bd4ef 2857
c19d1205
ZW
2858 if (*input_line_pointer == ',')
2859 {
2860 input_line_pointer++;
2861 temp_fill = get_absolute_expression ();
dce323d1 2862 fill_p = TRUE;
b99bd4ef 2863 }
c19d1205 2864 else
dce323d1
PB
2865 {
2866 fill_p = FALSE;
2867 temp_fill = 0;
2868 }
b99bd4ef 2869
c19d1205
ZW
2870 if (!temp)
2871 temp = 2;
b99bd4ef 2872
c19d1205
ZW
2873 /* Only make a frag if we HAVE to. */
2874 if (temp && !need_pass_2)
dce323d1
PB
2875 {
2876 if (!fill_p && subseg_text_p (now_seg))
2877 frag_align_code (temp, 0);
2878 else
2879 frag_align (temp, (int) temp_fill, 0);
2880 }
c19d1205
ZW
2881 demand_empty_rest_of_line ();
2882
2883 record_alignment (now_seg, temp);
b99bd4ef
NC
2884}
2885
c19d1205
ZW
2886static void
2887s_bss (int ignore ATTRIBUTE_UNUSED)
b99bd4ef 2888{
c19d1205
ZW
2889 /* We don't support putting frags in the BSS segment, we fake it by
2890 marking in_bss, then looking at s_skip for clues. */
2891 subseg_set (bss_section, 0);
2892 demand_empty_rest_of_line ();
cd000bff
DJ
2893
2894#ifdef md_elf_section_change_hook
2895 md_elf_section_change_hook ();
2896#endif
c19d1205 2897}
b99bd4ef 2898
c19d1205
ZW
2899static void
2900s_even (int ignore ATTRIBUTE_UNUSED)
2901{
2902 /* Never make frag if expect extra pass. */
2903 if (!need_pass_2)
2904 frag_align (1, 0, 0);
b99bd4ef 2905
c19d1205 2906 record_alignment (now_seg, 1);
b99bd4ef 2907
c19d1205 2908 demand_empty_rest_of_line ();
b99bd4ef
NC
2909}
2910
c19d1205 2911/* Directives: Literal pools. */
a737bd4d 2912
c19d1205
ZW
2913static literal_pool *
2914find_literal_pool (void)
a737bd4d 2915{
c19d1205 2916 literal_pool * pool;
a737bd4d 2917
c19d1205 2918 for (pool = list_of_pools; pool != NULL; pool = pool->next)
a737bd4d 2919 {
c19d1205
ZW
2920 if (pool->section == now_seg
2921 && pool->sub_section == now_subseg)
2922 break;
a737bd4d
NC
2923 }
2924
c19d1205 2925 return pool;
a737bd4d
NC
2926}
2927
c19d1205
ZW
2928static literal_pool *
2929find_or_make_literal_pool (void)
a737bd4d 2930{
c19d1205
ZW
2931 /* Next literal pool ID number. */
2932 static unsigned int latest_pool_num = 1;
2933 literal_pool * pool;
a737bd4d 2934
c19d1205 2935 pool = find_literal_pool ();
a737bd4d 2936
c19d1205 2937 if (pool == NULL)
a737bd4d 2938 {
c19d1205 2939 /* Create a new pool. */
21d799b5 2940 pool = (literal_pool *) xmalloc (sizeof (* pool));
c19d1205
ZW
2941 if (! pool)
2942 return NULL;
a737bd4d 2943
c19d1205
ZW
2944 pool->next_free_entry = 0;
2945 pool->section = now_seg;
2946 pool->sub_section = now_subseg;
2947 pool->next = list_of_pools;
2948 pool->symbol = NULL;
2949
2950 /* Add it to the list. */
2951 list_of_pools = pool;
a737bd4d 2952 }
a737bd4d 2953
c19d1205
ZW
2954 /* New pools, and emptied pools, will have a NULL symbol. */
2955 if (pool->symbol == NULL)
a737bd4d 2956 {
c19d1205
ZW
2957 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2958 (valueT) 0, &zero_address_frag);
2959 pool->id = latest_pool_num ++;
a737bd4d
NC
2960 }
2961
c19d1205
ZW
2962 /* Done. */
2963 return pool;
a737bd4d
NC
2964}
2965
c19d1205 2966/* Add the literal in the global 'inst'
5f4273c7 2967 structure to the relevant literal pool. */
b99bd4ef
NC
2968
2969static int
c19d1205 2970add_to_lit_pool (void)
b99bd4ef 2971{
c19d1205
ZW
2972 literal_pool * pool;
2973 unsigned int entry;
b99bd4ef 2974
c19d1205
ZW
2975 pool = find_or_make_literal_pool ();
2976
2977 /* Check if this literal value is already in the pool. */
2978 for (entry = 0; entry < pool->next_free_entry; entry ++)
b99bd4ef 2979 {
c19d1205
ZW
2980 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2981 && (inst.reloc.exp.X_op == O_constant)
2982 && (pool->literals[entry].X_add_number
2983 == inst.reloc.exp.X_add_number)
2984 && (pool->literals[entry].X_unsigned
2985 == inst.reloc.exp.X_unsigned))
2986 break;
2987
2988 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2989 && (inst.reloc.exp.X_op == O_symbol)
2990 && (pool->literals[entry].X_add_number
2991 == inst.reloc.exp.X_add_number)
2992 && (pool->literals[entry].X_add_symbol
2993 == inst.reloc.exp.X_add_symbol)
2994 && (pool->literals[entry].X_op_symbol
2995 == inst.reloc.exp.X_op_symbol))
2996 break;
b99bd4ef
NC
2997 }
2998
c19d1205
ZW
2999 /* Do we need to create a new entry? */
3000 if (entry == pool->next_free_entry)
3001 {
3002 if (entry >= MAX_LITERAL_POOL_SIZE)
3003 {
3004 inst.error = _("literal pool overflow");
3005 return FAIL;
3006 }
3007
3008 pool->literals[entry] = inst.reloc.exp;
3009 pool->next_free_entry += 1;
3010 }
b99bd4ef 3011
c19d1205
ZW
3012 inst.reloc.exp.X_op = O_symbol;
3013 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3014 inst.reloc.exp.X_add_symbol = pool->symbol;
b99bd4ef 3015
c19d1205 3016 return SUCCESS;
b99bd4ef
NC
3017}
3018
c19d1205
ZW
3019/* Can't use symbol_new here, so have to create a symbol and then at
3020 a later date assign it a value. Thats what these functions do. */
e16bb312 3021
c19d1205
ZW
3022static void
3023symbol_locate (symbolS * symbolP,
3024 const char * name, /* It is copied, the caller can modify. */
3025 segT segment, /* Segment identifier (SEG_<something>). */
3026 valueT valu, /* Symbol value. */
3027 fragS * frag) /* Associated fragment. */
3028{
3029 unsigned int name_length;
3030 char * preserved_copy_of_name;
e16bb312 3031
c19d1205
ZW
3032 name_length = strlen (name) + 1; /* +1 for \0. */
3033 obstack_grow (&notes, name, name_length);
21d799b5 3034 preserved_copy_of_name = (char *) obstack_finish (&notes);
e16bb312 3035
c19d1205
ZW
3036#ifdef tc_canonicalize_symbol_name
3037 preserved_copy_of_name =
3038 tc_canonicalize_symbol_name (preserved_copy_of_name);
3039#endif
b99bd4ef 3040
c19d1205 3041 S_SET_NAME (symbolP, preserved_copy_of_name);
b99bd4ef 3042
c19d1205
ZW
3043 S_SET_SEGMENT (symbolP, segment);
3044 S_SET_VALUE (symbolP, valu);
3045 symbol_clear_list_pointers (symbolP);
b99bd4ef 3046
c19d1205 3047 symbol_set_frag (symbolP, frag);
b99bd4ef 3048
c19d1205
ZW
3049 /* Link to end of symbol chain. */
3050 {
3051 extern int symbol_table_frozen;
b99bd4ef 3052
c19d1205
ZW
3053 if (symbol_table_frozen)
3054 abort ();
3055 }
b99bd4ef 3056
c19d1205 3057 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
b99bd4ef 3058
c19d1205 3059 obj_symbol_new_hook (symbolP);
b99bd4ef 3060
c19d1205
ZW
3061#ifdef tc_symbol_new_hook
3062 tc_symbol_new_hook (symbolP);
3063#endif
3064
3065#ifdef DEBUG_SYMS
3066 verify_symbol_chain (symbol_rootP, symbol_lastP);
3067#endif /* DEBUG_SYMS */
b99bd4ef
NC
3068}
3069
b99bd4ef 3070
c19d1205
ZW
3071static void
3072s_ltorg (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 3073{
c19d1205
ZW
3074 unsigned int entry;
3075 literal_pool * pool;
3076 char sym_name[20];
b99bd4ef 3077
c19d1205
ZW
3078 pool = find_literal_pool ();
3079 if (pool == NULL
3080 || pool->symbol == NULL
3081 || pool->next_free_entry == 0)
3082 return;
b99bd4ef 3083
c19d1205 3084 mapping_state (MAP_DATA);
b99bd4ef 3085
c19d1205
ZW
3086 /* Align pool as you have word accesses.
3087 Only make a frag if we have to. */
3088 if (!need_pass_2)
3089 frag_align (2, 0, 0);
b99bd4ef 3090
c19d1205 3091 record_alignment (now_seg, 2);
b99bd4ef 3092
c19d1205 3093 sprintf (sym_name, "$$lit_\002%x", pool->id);
b99bd4ef 3094
c19d1205
ZW
3095 symbol_locate (pool->symbol, sym_name, now_seg,
3096 (valueT) frag_now_fix (), frag_now);
3097 symbol_table_insert (pool->symbol);
b99bd4ef 3098
c19d1205 3099 ARM_SET_THUMB (pool->symbol, thumb_mode);
b99bd4ef 3100
c19d1205
ZW
3101#if defined OBJ_COFF || defined OBJ_ELF
3102 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3103#endif
6c43fab6 3104
c19d1205
ZW
3105 for (entry = 0; entry < pool->next_free_entry; entry ++)
3106 /* First output the expression in the instruction to the pool. */
3107 emit_expr (&(pool->literals[entry]), 4); /* .word */
b99bd4ef 3108
c19d1205
ZW
3109 /* Mark the pool as empty. */
3110 pool->next_free_entry = 0;
3111 pool->symbol = NULL;
b99bd4ef
NC
3112}
3113
c19d1205
ZW
3114#ifdef OBJ_ELF
3115/* Forward declarations for functions below, in the MD interface
3116 section. */
3117static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3118static valueT create_unwind_entry (int);
3119static void start_unwind_section (const segT, int);
3120static void add_unwind_opcode (valueT, int);
3121static void flush_pending_unwind (void);
b99bd4ef 3122
c19d1205 3123/* Directives: Data. */
b99bd4ef 3124
c19d1205
ZW
3125static void
3126s_arm_elf_cons (int nbytes)
3127{
3128 expressionS exp;
b99bd4ef 3129
c19d1205
ZW
3130#ifdef md_flush_pending_output
3131 md_flush_pending_output ();
3132#endif
b99bd4ef 3133
c19d1205 3134 if (is_it_end_of_statement ())
b99bd4ef 3135 {
c19d1205
ZW
3136 demand_empty_rest_of_line ();
3137 return;
b99bd4ef
NC
3138 }
3139
c19d1205
ZW
3140#ifdef md_cons_align
3141 md_cons_align (nbytes);
3142#endif
b99bd4ef 3143
c19d1205
ZW
3144 mapping_state (MAP_DATA);
3145 do
b99bd4ef 3146 {
c19d1205
ZW
3147 int reloc;
3148 char *base = input_line_pointer;
b99bd4ef 3149
c19d1205 3150 expression (& exp);
b99bd4ef 3151
c19d1205
ZW
3152 if (exp.X_op != O_symbol)
3153 emit_expr (&exp, (unsigned int) nbytes);
3154 else
3155 {
3156 char *before_reloc = input_line_pointer;
3157 reloc = parse_reloc (&input_line_pointer);
3158 if (reloc == -1)
3159 {
3160 as_bad (_("unrecognized relocation suffix"));
3161 ignore_rest_of_line ();
3162 return;
3163 }
3164 else if (reloc == BFD_RELOC_UNUSED)
3165 emit_expr (&exp, (unsigned int) nbytes);
3166 else
3167 {
21d799b5
NC
3168 reloc_howto_type *howto = (reloc_howto_type *)
3169 bfd_reloc_type_lookup (stdoutput,
3170 (bfd_reloc_code_real_type) reloc);
c19d1205 3171 int size = bfd_get_reloc_size (howto);
b99bd4ef 3172
2fc8bdac
ZW
3173 if (reloc == BFD_RELOC_ARM_PLT32)
3174 {
3175 as_bad (_("(plt) is only valid on branch targets"));
3176 reloc = BFD_RELOC_UNUSED;
3177 size = 0;
3178 }
3179
c19d1205 3180 if (size > nbytes)
2fc8bdac 3181 as_bad (_("%s relocations do not fit in %d bytes"),
c19d1205
ZW
3182 howto->name, nbytes);
3183 else
3184 {
3185 /* We've parsed an expression stopping at O_symbol.
3186 But there may be more expression left now that we
3187 have parsed the relocation marker. Parse it again.
3188 XXX Surely there is a cleaner way to do this. */
3189 char *p = input_line_pointer;
3190 int offset;
21d799b5 3191 char *save_buf = (char *) alloca (input_line_pointer - base);
c19d1205
ZW
3192 memcpy (save_buf, base, input_line_pointer - base);
3193 memmove (base + (input_line_pointer - before_reloc),
3194 base, before_reloc - base);
3195
3196 input_line_pointer = base + (input_line_pointer-before_reloc);
3197 expression (&exp);
3198 memcpy (base, save_buf, p - base);
3199
3200 offset = nbytes - size;
3201 p = frag_more ((int) nbytes);
3202 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
21d799b5 3203 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
c19d1205
ZW
3204 }
3205 }
3206 }
b99bd4ef 3207 }
c19d1205 3208 while (*input_line_pointer++ == ',');
b99bd4ef 3209
c19d1205
ZW
3210 /* Put terminator back into stream. */
3211 input_line_pointer --;
3212 demand_empty_rest_of_line ();
b99bd4ef
NC
3213}
3214
c921be7d
NC
3215/* Emit an expression containing a 32-bit thumb instruction.
3216 Implementation based on put_thumb32_insn. */
3217
3218static void
3219emit_thumb32_expr (expressionS * exp)
3220{
3221 expressionS exp_high = *exp;
3222
3223 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3224 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3225 exp->X_add_number &= 0xffff;
3226 emit_expr (exp, (unsigned int) THUMB_SIZE);
3227}
3228
3229/* Guess the instruction size based on the opcode. */
3230
3231static int
3232thumb_insn_size (int opcode)
3233{
3234 if ((unsigned int) opcode < 0xe800u)
3235 return 2;
3236 else if ((unsigned int) opcode >= 0xe8000000u)
3237 return 4;
3238 else
3239 return 0;
3240}
3241
3242static bfd_boolean
3243emit_insn (expressionS *exp, int nbytes)
3244{
3245 int size = 0;
3246
3247 if (exp->X_op == O_constant)
3248 {
3249 size = nbytes;
3250
3251 if (size == 0)
3252 size = thumb_insn_size (exp->X_add_number);
3253
3254 if (size != 0)
3255 {
3256 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3257 {
3258 as_bad (_(".inst.n operand too big. "\
3259 "Use .inst.w instead"));
3260 size = 0;
3261 }
3262 else
3263 {
3264 if (now_it.state == AUTOMATIC_IT_BLOCK)
3265 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3266 else
3267 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3268
3269 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3270 emit_thumb32_expr (exp);
3271 else
3272 emit_expr (exp, (unsigned int) size);
3273
3274 it_fsm_post_encode ();
3275 }
3276 }
3277 else
3278 as_bad (_("cannot determine Thumb instruction size. " \
3279 "Use .inst.n/.inst.w instead"));
3280 }
3281 else
3282 as_bad (_("constant expression required"));
3283
3284 return (size != 0);
3285}
3286
3287/* Like s_arm_elf_cons but do not use md_cons_align and
3288 set the mapping state to MAP_ARM/MAP_THUMB. */
3289
3290static void
3291s_arm_elf_inst (int nbytes)
3292{
3293 if (is_it_end_of_statement ())
3294 {
3295 demand_empty_rest_of_line ();
3296 return;
3297 }
3298
3299 /* Calling mapping_state () here will not change ARM/THUMB,
3300 but will ensure not to be in DATA state. */
3301
3302 if (thumb_mode)
3303 mapping_state (MAP_THUMB);
3304 else
3305 {
3306 if (nbytes != 0)
3307 {
3308 as_bad (_("width suffixes are invalid in ARM mode"));
3309 ignore_rest_of_line ();
3310 return;
3311 }
3312
3313 nbytes = 4;
3314
3315 mapping_state (MAP_ARM);
3316 }
3317
3318 do
3319 {
3320 expressionS exp;
3321
3322 expression (& exp);
3323
3324 if (! emit_insn (& exp, nbytes))
3325 {
3326 ignore_rest_of_line ();
3327 return;
3328 }
3329 }
3330 while (*input_line_pointer++ == ',');
3331
3332 /* Put terminator back into stream. */
3333 input_line_pointer --;
3334 demand_empty_rest_of_line ();
3335}
b99bd4ef 3336
c19d1205 3337/* Parse a .rel31 directive. */
b99bd4ef 3338
c19d1205
ZW
3339static void
3340s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3341{
3342 expressionS exp;
3343 char *p;
3344 valueT highbit;
b99bd4ef 3345
c19d1205
ZW
3346 highbit = 0;
3347 if (*input_line_pointer == '1')
3348 highbit = 0x80000000;
3349 else if (*input_line_pointer != '0')
3350 as_bad (_("expected 0 or 1"));
b99bd4ef 3351
c19d1205
ZW
3352 input_line_pointer++;
3353 if (*input_line_pointer != ',')
3354 as_bad (_("missing comma"));
3355 input_line_pointer++;
b99bd4ef 3356
c19d1205
ZW
3357#ifdef md_flush_pending_output
3358 md_flush_pending_output ();
3359#endif
b99bd4ef 3360
c19d1205
ZW
3361#ifdef md_cons_align
3362 md_cons_align (4);
3363#endif
b99bd4ef 3364
c19d1205 3365 mapping_state (MAP_DATA);
b99bd4ef 3366
c19d1205 3367 expression (&exp);
b99bd4ef 3368
c19d1205
ZW
3369 p = frag_more (4);
3370 md_number_to_chars (p, highbit, 4);
3371 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3372 BFD_RELOC_ARM_PREL31);
b99bd4ef 3373
c19d1205 3374 demand_empty_rest_of_line ();
b99bd4ef
NC
3375}
3376
c19d1205 3377/* Directives: AEABI stack-unwind tables. */
b99bd4ef 3378
c19d1205 3379/* Parse an unwind_fnstart directive. Simply records the current location. */
b99bd4ef 3380
c19d1205
ZW
3381static void
3382s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3383{
3384 demand_empty_rest_of_line ();
921e5f0a
PB
3385 if (unwind.proc_start)
3386 {
c921be7d 3387 as_bad (_("duplicate .fnstart directive"));
921e5f0a
PB
3388 return;
3389 }
3390
c19d1205
ZW
3391 /* Mark the start of the function. */
3392 unwind.proc_start = expr_build_dot ();
b99bd4ef 3393
c19d1205
ZW
3394 /* Reset the rest of the unwind info. */
3395 unwind.opcode_count = 0;
3396 unwind.table_entry = NULL;
3397 unwind.personality_routine = NULL;
3398 unwind.personality_index = -1;
3399 unwind.frame_size = 0;
3400 unwind.fp_offset = 0;
fdfde340 3401 unwind.fp_reg = REG_SP;
c19d1205
ZW
3402 unwind.fp_used = 0;
3403 unwind.sp_restored = 0;
3404}
b99bd4ef 3405
b99bd4ef 3406
c19d1205
ZW
3407/* Parse a handlerdata directive. Creates the exception handling table entry
3408 for the function. */
b99bd4ef 3409
c19d1205
ZW
3410static void
3411s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3412{
3413 demand_empty_rest_of_line ();
921e5f0a 3414 if (!unwind.proc_start)
c921be7d 3415 as_bad (MISSING_FNSTART);
921e5f0a 3416
c19d1205 3417 if (unwind.table_entry)
6decc662 3418 as_bad (_("duplicate .handlerdata directive"));
f02232aa 3419
c19d1205
ZW
3420 create_unwind_entry (1);
3421}
a737bd4d 3422
c19d1205 3423/* Parse an unwind_fnend directive. Generates the index table entry. */
b99bd4ef 3424
c19d1205
ZW
3425static void
3426s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3427{
3428 long where;
3429 char *ptr;
3430 valueT val;
940b5ce0 3431 unsigned int marked_pr_dependency;
f02232aa 3432
c19d1205 3433 demand_empty_rest_of_line ();
f02232aa 3434
921e5f0a
PB
3435 if (!unwind.proc_start)
3436 {
c921be7d 3437 as_bad (_(".fnend directive without .fnstart"));
921e5f0a
PB
3438 return;
3439 }
3440
c19d1205
ZW
3441 /* Add eh table entry. */
3442 if (unwind.table_entry == NULL)
3443 val = create_unwind_entry (0);
3444 else
3445 val = 0;
f02232aa 3446
c19d1205
ZW
3447 /* Add index table entry. This is two words. */
3448 start_unwind_section (unwind.saved_seg, 1);
3449 frag_align (2, 0, 0);
3450 record_alignment (now_seg, 2);
b99bd4ef 3451
c19d1205
ZW
3452 ptr = frag_more (8);
3453 where = frag_now_fix () - 8;
f02232aa 3454
c19d1205
ZW
3455 /* Self relative offset of the function start. */
3456 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3457 BFD_RELOC_ARM_PREL31);
f02232aa 3458
c19d1205
ZW
3459 /* Indicate dependency on EHABI-defined personality routines to the
3460 linker, if it hasn't been done already. */
940b5ce0
DJ
3461 marked_pr_dependency
3462 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
c19d1205
ZW
3463 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3464 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3465 {
5f4273c7
NC
3466 static const char *const name[] =
3467 {
3468 "__aeabi_unwind_cpp_pr0",
3469 "__aeabi_unwind_cpp_pr1",
3470 "__aeabi_unwind_cpp_pr2"
3471 };
c19d1205
ZW
3472 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3473 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
c19d1205 3474 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
940b5ce0 3475 |= 1 << unwind.personality_index;
c19d1205 3476 }
f02232aa 3477
c19d1205
ZW
3478 if (val)
3479 /* Inline exception table entry. */
3480 md_number_to_chars (ptr + 4, val, 4);
3481 else
3482 /* Self relative offset of the table entry. */
3483 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3484 BFD_RELOC_ARM_PREL31);
f02232aa 3485
c19d1205
ZW
3486 /* Restore the original section. */
3487 subseg_set (unwind.saved_seg, unwind.saved_subseg);
921e5f0a
PB
3488
3489 unwind.proc_start = NULL;
c19d1205 3490}
f02232aa 3491
f02232aa 3492
c19d1205 3493/* Parse an unwind_cantunwind directive. */
b99bd4ef 3494
c19d1205
ZW
3495static void
3496s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3497{
3498 demand_empty_rest_of_line ();
921e5f0a 3499 if (!unwind.proc_start)
c921be7d 3500 as_bad (MISSING_FNSTART);
921e5f0a 3501
c19d1205
ZW
3502 if (unwind.personality_routine || unwind.personality_index != -1)
3503 as_bad (_("personality routine specified for cantunwind frame"));
b99bd4ef 3504
c19d1205
ZW
3505 unwind.personality_index = -2;
3506}
b99bd4ef 3507
b99bd4ef 3508
c19d1205 3509/* Parse a personalityindex directive. */
b99bd4ef 3510
c19d1205
ZW
3511static void
3512s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3513{
3514 expressionS exp;
b99bd4ef 3515
921e5f0a 3516 if (!unwind.proc_start)
c921be7d 3517 as_bad (MISSING_FNSTART);
921e5f0a 3518
c19d1205
ZW
3519 if (unwind.personality_routine || unwind.personality_index != -1)
3520 as_bad (_("duplicate .personalityindex directive"));
b99bd4ef 3521
c19d1205 3522 expression (&exp);
b99bd4ef 3523
c19d1205
ZW
3524 if (exp.X_op != O_constant
3525 || exp.X_add_number < 0 || exp.X_add_number > 15)
b99bd4ef 3526 {
c19d1205
ZW
3527 as_bad (_("bad personality routine number"));
3528 ignore_rest_of_line ();
3529 return;
b99bd4ef
NC
3530 }
3531
c19d1205 3532 unwind.personality_index = exp.X_add_number;
b99bd4ef 3533
c19d1205
ZW
3534 demand_empty_rest_of_line ();
3535}
e16bb312 3536
e16bb312 3537
c19d1205 3538/* Parse a personality directive. */
e16bb312 3539
c19d1205
ZW
3540static void
3541s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3542{
3543 char *name, *p, c;
a737bd4d 3544
921e5f0a 3545 if (!unwind.proc_start)
c921be7d 3546 as_bad (MISSING_FNSTART);
921e5f0a 3547
c19d1205
ZW
3548 if (unwind.personality_routine || unwind.personality_index != -1)
3549 as_bad (_("duplicate .personality directive"));
a737bd4d 3550
c19d1205
ZW
3551 name = input_line_pointer;
3552 c = get_symbol_end ();
3553 p = input_line_pointer;
3554 unwind.personality_routine = symbol_find_or_make (name);
3555 *p = c;
3556 demand_empty_rest_of_line ();
3557}
e16bb312 3558
e16bb312 3559
c19d1205 3560/* Parse a directive saving core registers. */
e16bb312 3561
c19d1205
ZW
3562static void
3563s_arm_unwind_save_core (void)
e16bb312 3564{
c19d1205
ZW
3565 valueT op;
3566 long range;
3567 int n;
e16bb312 3568
c19d1205
ZW
3569 range = parse_reg_list (&input_line_pointer);
3570 if (range == FAIL)
e16bb312 3571 {
c19d1205
ZW
3572 as_bad (_("expected register list"));
3573 ignore_rest_of_line ();
3574 return;
3575 }
e16bb312 3576
c19d1205 3577 demand_empty_rest_of_line ();
e16bb312 3578
c19d1205
ZW
3579 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3580 into .unwind_save {..., sp...}. We aren't bothered about the value of
3581 ip because it is clobbered by calls. */
3582 if (unwind.sp_restored && unwind.fp_reg == 12
3583 && (range & 0x3000) == 0x1000)
3584 {
3585 unwind.opcode_count--;
3586 unwind.sp_restored = 0;
3587 range = (range | 0x2000) & ~0x1000;
3588 unwind.pending_offset = 0;
3589 }
e16bb312 3590
01ae4198
DJ
3591 /* Pop r4-r15. */
3592 if (range & 0xfff0)
c19d1205 3593 {
01ae4198
DJ
3594 /* See if we can use the short opcodes. These pop a block of up to 8
3595 registers starting with r4, plus maybe r14. */
3596 for (n = 0; n < 8; n++)
3597 {
3598 /* Break at the first non-saved register. */
3599 if ((range & (1 << (n + 4))) == 0)
3600 break;
3601 }
3602 /* See if there are any other bits set. */
3603 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3604 {
3605 /* Use the long form. */
3606 op = 0x8000 | ((range >> 4) & 0xfff);
3607 add_unwind_opcode (op, 2);
3608 }
0dd132b6 3609 else
01ae4198
DJ
3610 {
3611 /* Use the short form. */
3612 if (range & 0x4000)
3613 op = 0xa8; /* Pop r14. */
3614 else
3615 op = 0xa0; /* Do not pop r14. */
3616 op |= (n - 1);
3617 add_unwind_opcode (op, 1);
3618 }
c19d1205 3619 }
0dd132b6 3620
c19d1205
ZW
3621 /* Pop r0-r3. */
3622 if (range & 0xf)
3623 {
3624 op = 0xb100 | (range & 0xf);
3625 add_unwind_opcode (op, 2);
0dd132b6
NC
3626 }
3627
c19d1205
ZW
3628 /* Record the number of bytes pushed. */
3629 for (n = 0; n < 16; n++)
3630 {
3631 if (range & (1 << n))
3632 unwind.frame_size += 4;
3633 }
0dd132b6
NC
3634}
3635
c19d1205
ZW
3636
3637/* Parse a directive saving FPA registers. */
b99bd4ef
NC
3638
3639static void
c19d1205 3640s_arm_unwind_save_fpa (int reg)
b99bd4ef 3641{
c19d1205
ZW
3642 expressionS exp;
3643 int num_regs;
3644 valueT op;
b99bd4ef 3645
c19d1205
ZW
3646 /* Get Number of registers to transfer. */
3647 if (skip_past_comma (&input_line_pointer) != FAIL)
3648 expression (&exp);
3649 else
3650 exp.X_op = O_illegal;
b99bd4ef 3651
c19d1205 3652 if (exp.X_op != O_constant)
b99bd4ef 3653 {
c19d1205
ZW
3654 as_bad (_("expected , <constant>"));
3655 ignore_rest_of_line ();
b99bd4ef
NC
3656 return;
3657 }
3658
c19d1205
ZW
3659 num_regs = exp.X_add_number;
3660
3661 if (num_regs < 1 || num_regs > 4)
b99bd4ef 3662 {
c19d1205
ZW
3663 as_bad (_("number of registers must be in the range [1:4]"));
3664 ignore_rest_of_line ();
b99bd4ef
NC
3665 return;
3666 }
3667
c19d1205 3668 demand_empty_rest_of_line ();
b99bd4ef 3669
c19d1205
ZW
3670 if (reg == 4)
3671 {
3672 /* Short form. */
3673 op = 0xb4 | (num_regs - 1);
3674 add_unwind_opcode (op, 1);
3675 }
b99bd4ef
NC
3676 else
3677 {
c19d1205
ZW
3678 /* Long form. */
3679 op = 0xc800 | (reg << 4) | (num_regs - 1);
3680 add_unwind_opcode (op, 2);
b99bd4ef 3681 }
c19d1205 3682 unwind.frame_size += num_regs * 12;
b99bd4ef
NC
3683}
3684
c19d1205 3685
fa073d69
MS
3686/* Parse a directive saving VFP registers for ARMv6 and above. */
3687
3688static void
3689s_arm_unwind_save_vfp_armv6 (void)
3690{
3691 int count;
3692 unsigned int start;
3693 valueT op;
3694 int num_vfpv3_regs = 0;
3695 int num_regs_below_16;
3696
3697 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3698 if (count == FAIL)
3699 {
3700 as_bad (_("expected register list"));
3701 ignore_rest_of_line ();
3702 return;
3703 }
3704
3705 demand_empty_rest_of_line ();
3706
3707 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3708 than FSTMX/FLDMX-style ones). */
3709
3710 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3711 if (start >= 16)
3712 num_vfpv3_regs = count;
3713 else if (start + count > 16)
3714 num_vfpv3_regs = start + count - 16;
3715
3716 if (num_vfpv3_regs > 0)
3717 {
3718 int start_offset = start > 16 ? start - 16 : 0;
3719 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3720 add_unwind_opcode (op, 2);
3721 }
3722
3723 /* Generate opcode for registers numbered in the range 0 .. 15. */
3724 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
9c2799c2 3725 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
fa073d69
MS
3726 if (num_regs_below_16 > 0)
3727 {
3728 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3729 add_unwind_opcode (op, 2);
3730 }
3731
3732 unwind.frame_size += count * 8;
3733}
3734
3735
3736/* Parse a directive saving VFP registers for pre-ARMv6. */
b99bd4ef
NC
3737
3738static void
c19d1205 3739s_arm_unwind_save_vfp (void)
b99bd4ef 3740{
c19d1205 3741 int count;
ca3f61f7 3742 unsigned int reg;
c19d1205 3743 valueT op;
b99bd4ef 3744
5287ad62 3745 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
c19d1205 3746 if (count == FAIL)
b99bd4ef 3747 {
c19d1205
ZW
3748 as_bad (_("expected register list"));
3749 ignore_rest_of_line ();
b99bd4ef
NC
3750 return;
3751 }
3752
c19d1205 3753 demand_empty_rest_of_line ();
b99bd4ef 3754
c19d1205 3755 if (reg == 8)
b99bd4ef 3756 {
c19d1205
ZW
3757 /* Short form. */
3758 op = 0xb8 | (count - 1);
3759 add_unwind_opcode (op, 1);
b99bd4ef 3760 }
c19d1205 3761 else
b99bd4ef 3762 {
c19d1205
ZW
3763 /* Long form. */
3764 op = 0xb300 | (reg << 4) | (count - 1);
3765 add_unwind_opcode (op, 2);
b99bd4ef 3766 }
c19d1205
ZW
3767 unwind.frame_size += count * 8 + 4;
3768}
b99bd4ef 3769
b99bd4ef 3770
c19d1205
ZW
3771/* Parse a directive saving iWMMXt data registers. */
3772
3773static void
3774s_arm_unwind_save_mmxwr (void)
3775{
3776 int reg;
3777 int hi_reg;
3778 int i;
3779 unsigned mask = 0;
3780 valueT op;
b99bd4ef 3781
c19d1205
ZW
3782 if (*input_line_pointer == '{')
3783 input_line_pointer++;
b99bd4ef 3784
c19d1205 3785 do
b99bd4ef 3786 {
dcbf9037 3787 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
b99bd4ef 3788
c19d1205 3789 if (reg == FAIL)
b99bd4ef 3790 {
9b7132d3 3791 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205 3792 goto error;
b99bd4ef
NC
3793 }
3794
c19d1205
ZW
3795 if (mask >> reg)
3796 as_tsktsk (_("register list not in ascending order"));
3797 mask |= 1 << reg;
b99bd4ef 3798
c19d1205
ZW
3799 if (*input_line_pointer == '-')
3800 {
3801 input_line_pointer++;
dcbf9037 3802 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
c19d1205
ZW
3803 if (hi_reg == FAIL)
3804 {
9b7132d3 3805 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
c19d1205
ZW
3806 goto error;
3807 }
3808 else if (reg >= hi_reg)
3809 {
3810 as_bad (_("bad register range"));
3811 goto error;
3812 }
3813 for (; reg < hi_reg; reg++)
3814 mask |= 1 << reg;
3815 }
3816 }
3817 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3818
c19d1205
ZW
3819 if (*input_line_pointer == '}')
3820 input_line_pointer++;
b99bd4ef 3821
c19d1205 3822 demand_empty_rest_of_line ();
b99bd4ef 3823
708587a4 3824 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3825 the list. */
3826 flush_pending_unwind ();
b99bd4ef 3827
c19d1205 3828 for (i = 0; i < 16; i++)
b99bd4ef 3829 {
c19d1205
ZW
3830 if (mask & (1 << i))
3831 unwind.frame_size += 8;
b99bd4ef
NC
3832 }
3833
c19d1205
ZW
3834 /* Attempt to combine with a previous opcode. We do this because gcc
3835 likes to output separate unwind directives for a single block of
3836 registers. */
3837 if (unwind.opcode_count > 0)
b99bd4ef 3838 {
c19d1205
ZW
3839 i = unwind.opcodes[unwind.opcode_count - 1];
3840 if ((i & 0xf8) == 0xc0)
3841 {
3842 i &= 7;
3843 /* Only merge if the blocks are contiguous. */
3844 if (i < 6)
3845 {
3846 if ((mask & 0xfe00) == (1 << 9))
3847 {
3848 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3849 unwind.opcode_count--;
3850 }
3851 }
3852 else if (i == 6 && unwind.opcode_count >= 2)
3853 {
3854 i = unwind.opcodes[unwind.opcode_count - 2];
3855 reg = i >> 4;
3856 i &= 0xf;
b99bd4ef 3857
c19d1205
ZW
3858 op = 0xffff << (reg - 1);
3859 if (reg > 0
87a1fd79 3860 && ((mask & op) == (1u << (reg - 1))))
c19d1205
ZW
3861 {
3862 op = (1 << (reg + i + 1)) - 1;
3863 op &= ~((1 << reg) - 1);
3864 mask |= op;
3865 unwind.opcode_count -= 2;
3866 }
3867 }
3868 }
b99bd4ef
NC
3869 }
3870
c19d1205
ZW
3871 hi_reg = 15;
3872 /* We want to generate opcodes in the order the registers have been
3873 saved, ie. descending order. */
3874 for (reg = 15; reg >= -1; reg--)
b99bd4ef 3875 {
c19d1205
ZW
3876 /* Save registers in blocks. */
3877 if (reg < 0
3878 || !(mask & (1 << reg)))
3879 {
3880 /* We found an unsaved reg. Generate opcodes to save the
5f4273c7 3881 preceding block. */
c19d1205
ZW
3882 if (reg != hi_reg)
3883 {
3884 if (reg == 9)
3885 {
3886 /* Short form. */
3887 op = 0xc0 | (hi_reg - 10);
3888 add_unwind_opcode (op, 1);
3889 }
3890 else
3891 {
3892 /* Long form. */
3893 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3894 add_unwind_opcode (op, 2);
3895 }
3896 }
3897 hi_reg = reg - 1;
3898 }
b99bd4ef
NC
3899 }
3900
c19d1205
ZW
3901 return;
3902error:
3903 ignore_rest_of_line ();
b99bd4ef
NC
3904}
3905
3906static void
c19d1205 3907s_arm_unwind_save_mmxwcg (void)
b99bd4ef 3908{
c19d1205
ZW
3909 int reg;
3910 int hi_reg;
3911 unsigned mask = 0;
3912 valueT op;
b99bd4ef 3913
c19d1205
ZW
3914 if (*input_line_pointer == '{')
3915 input_line_pointer++;
b99bd4ef 3916
c19d1205 3917 do
b99bd4ef 3918 {
dcbf9037 3919 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
b99bd4ef 3920
c19d1205
ZW
3921 if (reg == FAIL)
3922 {
9b7132d3 3923 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3924 goto error;
3925 }
b99bd4ef 3926
c19d1205
ZW
3927 reg -= 8;
3928 if (mask >> reg)
3929 as_tsktsk (_("register list not in ascending order"));
3930 mask |= 1 << reg;
b99bd4ef 3931
c19d1205
ZW
3932 if (*input_line_pointer == '-')
3933 {
3934 input_line_pointer++;
dcbf9037 3935 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
c19d1205
ZW
3936 if (hi_reg == FAIL)
3937 {
9b7132d3 3938 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
c19d1205
ZW
3939 goto error;
3940 }
3941 else if (reg >= hi_reg)
3942 {
3943 as_bad (_("bad register range"));
3944 goto error;
3945 }
3946 for (; reg < hi_reg; reg++)
3947 mask |= 1 << reg;
3948 }
b99bd4ef 3949 }
c19d1205 3950 while (skip_past_comma (&input_line_pointer) != FAIL);
b99bd4ef 3951
c19d1205
ZW
3952 if (*input_line_pointer == '}')
3953 input_line_pointer++;
b99bd4ef 3954
c19d1205
ZW
3955 demand_empty_rest_of_line ();
3956
708587a4 3957 /* Generate any deferred opcodes because we're going to be looking at
c19d1205
ZW
3958 the list. */
3959 flush_pending_unwind ();
b99bd4ef 3960
c19d1205 3961 for (reg = 0; reg < 16; reg++)
b99bd4ef 3962 {
c19d1205
ZW
3963 if (mask & (1 << reg))
3964 unwind.frame_size += 4;
b99bd4ef 3965 }
c19d1205
ZW
3966 op = 0xc700 | mask;
3967 add_unwind_opcode (op, 2);
3968 return;
3969error:
3970 ignore_rest_of_line ();
b99bd4ef
NC
3971}
3972
c19d1205 3973
fa073d69
MS
3974/* Parse an unwind_save directive.
3975 If the argument is non-zero, this is a .vsave directive. */
c19d1205 3976
b99bd4ef 3977static void
fa073d69 3978s_arm_unwind_save (int arch_v6)
b99bd4ef 3979{
c19d1205
ZW
3980 char *peek;
3981 struct reg_entry *reg;
3982 bfd_boolean had_brace = FALSE;
b99bd4ef 3983
921e5f0a 3984 if (!unwind.proc_start)
c921be7d 3985 as_bad (MISSING_FNSTART);
921e5f0a 3986
c19d1205
ZW
3987 /* Figure out what sort of save we have. */
3988 peek = input_line_pointer;
b99bd4ef 3989
c19d1205 3990 if (*peek == '{')
b99bd4ef 3991 {
c19d1205
ZW
3992 had_brace = TRUE;
3993 peek++;
b99bd4ef
NC
3994 }
3995
c19d1205 3996 reg = arm_reg_parse_multi (&peek);
b99bd4ef 3997
c19d1205 3998 if (!reg)
b99bd4ef 3999 {
c19d1205
ZW
4000 as_bad (_("register expected"));
4001 ignore_rest_of_line ();
b99bd4ef
NC
4002 return;
4003 }
4004
c19d1205 4005 switch (reg->type)
b99bd4ef 4006 {
c19d1205
ZW
4007 case REG_TYPE_FN:
4008 if (had_brace)
4009 {
4010 as_bad (_("FPA .unwind_save does not take a register list"));
4011 ignore_rest_of_line ();
4012 return;
4013 }
93ac2687 4014 input_line_pointer = peek;
c19d1205 4015 s_arm_unwind_save_fpa (reg->number);
b99bd4ef 4016 return;
c19d1205
ZW
4017
4018 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
fa073d69
MS
4019 case REG_TYPE_VFD:
4020 if (arch_v6)
4021 s_arm_unwind_save_vfp_armv6 ();
4022 else
4023 s_arm_unwind_save_vfp ();
4024 return;
c19d1205
ZW
4025 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4026 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4027
4028 default:
4029 as_bad (_(".unwind_save does not support this kind of register"));
4030 ignore_rest_of_line ();
b99bd4ef 4031 }
c19d1205 4032}
b99bd4ef 4033
b99bd4ef 4034
c19d1205
ZW
4035/* Parse an unwind_movsp directive. */
4036
4037static void
4038s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4039{
4040 int reg;
4041 valueT op;
4fa3602b 4042 int offset;
c19d1205 4043
921e5f0a 4044 if (!unwind.proc_start)
c921be7d 4045 as_bad (MISSING_FNSTART);
921e5f0a 4046
dcbf9037 4047 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205 4048 if (reg == FAIL)
b99bd4ef 4049 {
9b7132d3 4050 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
c19d1205 4051 ignore_rest_of_line ();
b99bd4ef
NC
4052 return;
4053 }
4fa3602b
PB
4054
4055 /* Optional constant. */
4056 if (skip_past_comma (&input_line_pointer) != FAIL)
4057 {
4058 if (immediate_for_directive (&offset) == FAIL)
4059 return;
4060 }
4061 else
4062 offset = 0;
4063
c19d1205 4064 demand_empty_rest_of_line ();
b99bd4ef 4065
c19d1205 4066 if (reg == REG_SP || reg == REG_PC)
b99bd4ef 4067 {
c19d1205 4068 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
b99bd4ef
NC
4069 return;
4070 }
4071
c19d1205
ZW
4072 if (unwind.fp_reg != REG_SP)
4073 as_bad (_("unexpected .unwind_movsp directive"));
b99bd4ef 4074
c19d1205
ZW
4075 /* Generate opcode to restore the value. */
4076 op = 0x90 | reg;
4077 add_unwind_opcode (op, 1);
4078
4079 /* Record the information for later. */
4080 unwind.fp_reg = reg;
4fa3602b 4081 unwind.fp_offset = unwind.frame_size - offset;
c19d1205 4082 unwind.sp_restored = 1;
b05fe5cf
ZW
4083}
4084
c19d1205
ZW
4085/* Parse an unwind_pad directive. */
4086
b05fe5cf 4087static void
c19d1205 4088s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
b05fe5cf 4089{
c19d1205 4090 int offset;
b05fe5cf 4091
921e5f0a 4092 if (!unwind.proc_start)
c921be7d 4093 as_bad (MISSING_FNSTART);
921e5f0a 4094
c19d1205
ZW
4095 if (immediate_for_directive (&offset) == FAIL)
4096 return;
b99bd4ef 4097
c19d1205
ZW
4098 if (offset & 3)
4099 {
4100 as_bad (_("stack increment must be multiple of 4"));
4101 ignore_rest_of_line ();
4102 return;
4103 }
b99bd4ef 4104
c19d1205
ZW
4105 /* Don't generate any opcodes, just record the details for later. */
4106 unwind.frame_size += offset;
4107 unwind.pending_offset += offset;
4108
4109 demand_empty_rest_of_line ();
4110}
4111
4112/* Parse an unwind_setfp directive. */
4113
4114static void
4115s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
b99bd4ef 4116{
c19d1205
ZW
4117 int sp_reg;
4118 int fp_reg;
4119 int offset;
4120
921e5f0a 4121 if (!unwind.proc_start)
c921be7d 4122 as_bad (MISSING_FNSTART);
921e5f0a 4123
dcbf9037 4124 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
c19d1205
ZW
4125 if (skip_past_comma (&input_line_pointer) == FAIL)
4126 sp_reg = FAIL;
4127 else
dcbf9037 4128 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
b99bd4ef 4129
c19d1205
ZW
4130 if (fp_reg == FAIL || sp_reg == FAIL)
4131 {
4132 as_bad (_("expected <reg>, <reg>"));
4133 ignore_rest_of_line ();
4134 return;
4135 }
b99bd4ef 4136
c19d1205
ZW
4137 /* Optional constant. */
4138 if (skip_past_comma (&input_line_pointer) != FAIL)
4139 {
4140 if (immediate_for_directive (&offset) == FAIL)
4141 return;
4142 }
4143 else
4144 offset = 0;
a737bd4d 4145
c19d1205 4146 demand_empty_rest_of_line ();
a737bd4d 4147
fdfde340 4148 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
a737bd4d 4149 {
c19d1205
ZW
4150 as_bad (_("register must be either sp or set by a previous"
4151 "unwind_movsp directive"));
4152 return;
a737bd4d
NC
4153 }
4154
c19d1205
ZW
4155 /* Don't generate any opcodes, just record the information for later. */
4156 unwind.fp_reg = fp_reg;
4157 unwind.fp_used = 1;
fdfde340 4158 if (sp_reg == REG_SP)
c19d1205
ZW
4159 unwind.fp_offset = unwind.frame_size - offset;
4160 else
4161 unwind.fp_offset -= offset;
a737bd4d
NC
4162}
4163
c19d1205
ZW
4164/* Parse an unwind_raw directive. */
4165
4166static void
4167s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
a737bd4d 4168{
c19d1205 4169 expressionS exp;
708587a4 4170 /* This is an arbitrary limit. */
c19d1205
ZW
4171 unsigned char op[16];
4172 int count;
a737bd4d 4173
921e5f0a 4174 if (!unwind.proc_start)
c921be7d 4175 as_bad (MISSING_FNSTART);
921e5f0a 4176
c19d1205
ZW
4177 expression (&exp);
4178 if (exp.X_op == O_constant
4179 && skip_past_comma (&input_line_pointer) != FAIL)
a737bd4d 4180 {
c19d1205
ZW
4181 unwind.frame_size += exp.X_add_number;
4182 expression (&exp);
4183 }
4184 else
4185 exp.X_op = O_illegal;
a737bd4d 4186
c19d1205
ZW
4187 if (exp.X_op != O_constant)
4188 {
4189 as_bad (_("expected <offset>, <opcode>"));
4190 ignore_rest_of_line ();
4191 return;
4192 }
a737bd4d 4193
c19d1205 4194 count = 0;
a737bd4d 4195
c19d1205
ZW
4196 /* Parse the opcode. */
4197 for (;;)
4198 {
4199 if (count >= 16)
4200 {
4201 as_bad (_("unwind opcode too long"));
4202 ignore_rest_of_line ();
a737bd4d 4203 }
c19d1205 4204 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
a737bd4d 4205 {
c19d1205
ZW
4206 as_bad (_("invalid unwind opcode"));
4207 ignore_rest_of_line ();
4208 return;
a737bd4d 4209 }
c19d1205 4210 op[count++] = exp.X_add_number;
a737bd4d 4211
c19d1205
ZW
4212 /* Parse the next byte. */
4213 if (skip_past_comma (&input_line_pointer) == FAIL)
4214 break;
a737bd4d 4215
c19d1205
ZW
4216 expression (&exp);
4217 }
b99bd4ef 4218
c19d1205
ZW
4219 /* Add the opcode bytes in reverse order. */
4220 while (count--)
4221 add_unwind_opcode (op[count], 1);
b99bd4ef 4222
c19d1205 4223 demand_empty_rest_of_line ();
b99bd4ef 4224}
ee065d83
PB
4225
4226
4227/* Parse a .eabi_attribute directive. */
4228
4229static void
4230s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4231{
ee3c0378
AS
4232 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4233
4234 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4235 attributes_set_explicitly[tag] = 1;
ee065d83 4236}
8463be01 4237#endif /* OBJ_ELF */
ee065d83
PB
4238
4239static void s_arm_arch (int);
7a1d4c38 4240static void s_arm_object_arch (int);
ee065d83
PB
4241static void s_arm_cpu (int);
4242static void s_arm_fpu (int);
b99bd4ef 4243
f0927246
NC
4244#ifdef TE_PE
4245
4246static void
5f4273c7 4247pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
f0927246
NC
4248{
4249 expressionS exp;
4250
4251 do
4252 {
4253 expression (&exp);
4254 if (exp.X_op == O_symbol)
4255 exp.X_op = O_secrel;
4256
4257 emit_expr (&exp, 4);
4258 }
4259 while (*input_line_pointer++ == ',');
4260
4261 input_line_pointer--;
4262 demand_empty_rest_of_line ();
4263}
4264#endif /* TE_PE */
4265
c19d1205
ZW
4266/* This table describes all the machine specific pseudo-ops the assembler
4267 has to support. The fields are:
4268 pseudo-op name without dot
4269 function to call to execute this pseudo-op
4270 Integer arg to pass to the function. */
b99bd4ef 4271
c19d1205 4272const pseudo_typeS md_pseudo_table[] =
b99bd4ef 4273{
c19d1205
ZW
4274 /* Never called because '.req' does not start a line. */
4275 { "req", s_req, 0 },
dcbf9037
JB
4276 /* Following two are likewise never called. */
4277 { "dn", s_dn, 0 },
4278 { "qn", s_qn, 0 },
c19d1205
ZW
4279 { "unreq", s_unreq, 0 },
4280 { "bss", s_bss, 0 },
4281 { "align", s_align, 0 },
4282 { "arm", s_arm, 0 },
4283 { "thumb", s_thumb, 0 },
4284 { "code", s_code, 0 },
4285 { "force_thumb", s_force_thumb, 0 },
4286 { "thumb_func", s_thumb_func, 0 },
4287 { "thumb_set", s_thumb_set, 0 },
4288 { "even", s_even, 0 },
4289 { "ltorg", s_ltorg, 0 },
4290 { "pool", s_ltorg, 0 },
4291 { "syntax", s_syntax, 0 },
8463be01
PB
4292 { "cpu", s_arm_cpu, 0 },
4293 { "arch", s_arm_arch, 0 },
7a1d4c38 4294 { "object_arch", s_arm_object_arch, 0 },
8463be01 4295 { "fpu", s_arm_fpu, 0 },
c19d1205 4296#ifdef OBJ_ELF
c921be7d
NC
4297 { "word", s_arm_elf_cons, 4 },
4298 { "long", s_arm_elf_cons, 4 },
4299 { "inst.n", s_arm_elf_inst, 2 },
4300 { "inst.w", s_arm_elf_inst, 4 },
4301 { "inst", s_arm_elf_inst, 0 },
4302 { "rel31", s_arm_rel31, 0 },
c19d1205
ZW
4303 { "fnstart", s_arm_unwind_fnstart, 0 },
4304 { "fnend", s_arm_unwind_fnend, 0 },
4305 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4306 { "personality", s_arm_unwind_personality, 0 },
4307 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4308 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4309 { "save", s_arm_unwind_save, 0 },
fa073d69 4310 { "vsave", s_arm_unwind_save, 1 },
c19d1205
ZW
4311 { "movsp", s_arm_unwind_movsp, 0 },
4312 { "pad", s_arm_unwind_pad, 0 },
4313 { "setfp", s_arm_unwind_setfp, 0 },
4314 { "unwind_raw", s_arm_unwind_raw, 0 },
ee065d83 4315 { "eabi_attribute", s_arm_eabi_attribute, 0 },
c19d1205
ZW
4316#else
4317 { "word", cons, 4},
f0927246
NC
4318
4319 /* These are used for dwarf. */
4320 {"2byte", cons, 2},
4321 {"4byte", cons, 4},
4322 {"8byte", cons, 8},
4323 /* These are used for dwarf2. */
4324 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4325 { "loc", dwarf2_directive_loc, 0 },
4326 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
c19d1205
ZW
4327#endif
4328 { "extend", float_cons, 'x' },
4329 { "ldouble", float_cons, 'x' },
4330 { "packed", float_cons, 'p' },
f0927246
NC
4331#ifdef TE_PE
4332 {"secrel32", pe_directive_secrel, 0},
4333#endif
c19d1205
ZW
4334 { 0, 0, 0 }
4335};
4336\f
4337/* Parser functions used exclusively in instruction operands. */
b99bd4ef 4338
c19d1205
ZW
4339/* Generic immediate-value read function for use in insn parsing.
4340 STR points to the beginning of the immediate (the leading #);
4341 VAL receives the value; if the value is outside [MIN, MAX]
4342 issue an error. PREFIX_OPT is true if the immediate prefix is
4343 optional. */
b99bd4ef 4344
c19d1205
ZW
4345static int
4346parse_immediate (char **str, int *val, int min, int max,
4347 bfd_boolean prefix_opt)
4348{
4349 expressionS exp;
4350 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4351 if (exp.X_op != O_constant)
b99bd4ef 4352 {
c19d1205
ZW
4353 inst.error = _("constant expression required");
4354 return FAIL;
4355 }
b99bd4ef 4356
c19d1205
ZW
4357 if (exp.X_add_number < min || exp.X_add_number > max)
4358 {
4359 inst.error = _("immediate value out of range");
4360 return FAIL;
4361 }
b99bd4ef 4362
c19d1205
ZW
4363 *val = exp.X_add_number;
4364 return SUCCESS;
4365}
b99bd4ef 4366
5287ad62 4367/* Less-generic immediate-value read function with the possibility of loading a
036dc3f7 4368 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5287ad62
JB
4369 instructions. Puts the result directly in inst.operands[i]. */
4370
4371static int
4372parse_big_immediate (char **str, int i)
4373{
4374 expressionS exp;
4375 char *ptr = *str;
4376
4377 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4378
4379 if (exp.X_op == O_constant)
036dc3f7
PB
4380 {
4381 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4382 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4383 O_constant. We have to be careful not to break compilation for
4384 32-bit X_add_number, though. */
4385 if ((exp.X_add_number & ~0xffffffffl) != 0)
4386 {
4387 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4388 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4389 inst.operands[i].regisimm = 1;
4390 }
4391 }
5287ad62
JB
4392 else if (exp.X_op == O_big
4393 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4394 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4395 {
4396 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4397 /* Bignums have their least significant bits in
4398 generic_bignum[0]. Make sure we put 32 bits in imm and
4399 32 bits in reg, in a (hopefully) portable way. */
9c2799c2 4400 gas_assert (parts != 0);
5287ad62
JB
4401 inst.operands[i].imm = 0;
4402 for (j = 0; j < parts; j++, idx++)
4403 inst.operands[i].imm |= generic_bignum[idx]
4404 << (LITTLENUM_NUMBER_OF_BITS * j);
4405 inst.operands[i].reg = 0;
4406 for (j = 0; j < parts; j++, idx++)
4407 inst.operands[i].reg |= generic_bignum[idx]
4408 << (LITTLENUM_NUMBER_OF_BITS * j);
4409 inst.operands[i].regisimm = 1;
4410 }
4411 else
4412 return FAIL;
5f4273c7 4413
5287ad62
JB
4414 *str = ptr;
4415
4416 return SUCCESS;
4417}
4418
c19d1205
ZW
4419/* Returns the pseudo-register number of an FPA immediate constant,
4420 or FAIL if there isn't a valid constant here. */
b99bd4ef 4421
c19d1205
ZW
4422static int
4423parse_fpa_immediate (char ** str)
4424{
4425 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4426 char * save_in;
4427 expressionS exp;
4428 int i;
4429 int j;
b99bd4ef 4430
c19d1205
ZW
4431 /* First try and match exact strings, this is to guarantee
4432 that some formats will work even for cross assembly. */
b99bd4ef 4433
c19d1205
ZW
4434 for (i = 0; fp_const[i]; i++)
4435 {
4436 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
b99bd4ef 4437 {
c19d1205 4438 char *start = *str;
b99bd4ef 4439
c19d1205
ZW
4440 *str += strlen (fp_const[i]);
4441 if (is_end_of_line[(unsigned char) **str])
4442 return i + 8;
4443 *str = start;
4444 }
4445 }
b99bd4ef 4446
c19d1205
ZW
4447 /* Just because we didn't get a match doesn't mean that the constant
4448 isn't valid, just that it is in a format that we don't
4449 automatically recognize. Try parsing it with the standard
4450 expression routines. */
b99bd4ef 4451
c19d1205 4452 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
b99bd4ef 4453
c19d1205
ZW
4454 /* Look for a raw floating point number. */
4455 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4456 && is_end_of_line[(unsigned char) *save_in])
4457 {
4458 for (i = 0; i < NUM_FLOAT_VALS; i++)
4459 {
4460 for (j = 0; j < MAX_LITTLENUMS; j++)
b99bd4ef 4461 {
c19d1205
ZW
4462 if (words[j] != fp_values[i][j])
4463 break;
b99bd4ef
NC
4464 }
4465
c19d1205 4466 if (j == MAX_LITTLENUMS)
b99bd4ef 4467 {
c19d1205
ZW
4468 *str = save_in;
4469 return i + 8;
b99bd4ef
NC
4470 }
4471 }
4472 }
b99bd4ef 4473
c19d1205
ZW
4474 /* Try and parse a more complex expression, this will probably fail
4475 unless the code uses a floating point prefix (eg "0f"). */
4476 save_in = input_line_pointer;
4477 input_line_pointer = *str;
4478 if (expression (&exp) == absolute_section
4479 && exp.X_op == O_big
4480 && exp.X_add_number < 0)
4481 {
4482 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4483 Ditto for 15. */
4484 if (gen_to_words (words, 5, (long) 15) == 0)
4485 {
4486 for (i = 0; i < NUM_FLOAT_VALS; i++)
4487 {
4488 for (j = 0; j < MAX_LITTLENUMS; j++)
4489 {
4490 if (words[j] != fp_values[i][j])
4491 break;
4492 }
b99bd4ef 4493
c19d1205
ZW
4494 if (j == MAX_LITTLENUMS)
4495 {
4496 *str = input_line_pointer;
4497 input_line_pointer = save_in;
4498 return i + 8;
4499 }
4500 }
4501 }
b99bd4ef
NC
4502 }
4503
c19d1205
ZW
4504 *str = input_line_pointer;
4505 input_line_pointer = save_in;
4506 inst.error = _("invalid FPA immediate expression");
4507 return FAIL;
b99bd4ef
NC
4508}
4509
136da414
JB
4510/* Returns 1 if a number has "quarter-precision" float format
4511 0baBbbbbbc defgh000 00000000 00000000. */
4512
4513static int
4514is_quarter_float (unsigned imm)
4515{
4516 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4517 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4518}
4519
4520/* Parse an 8-bit "quarter-precision" floating point number of the form:
4521 0baBbbbbbc defgh000 00000000 00000000.
c96612cc
JB
4522 The zero and minus-zero cases need special handling, since they can't be
4523 encoded in the "quarter-precision" float format, but can nonetheless be
4524 loaded as integer constants. */
136da414
JB
4525
4526static unsigned
4527parse_qfloat_immediate (char **ccp, int *immed)
4528{
4529 char *str = *ccp;
c96612cc 4530 char *fpnum;
136da414 4531 LITTLENUM_TYPE words[MAX_LITTLENUMS];
c96612cc 4532 int found_fpchar = 0;
5f4273c7 4533
136da414 4534 skip_past_char (&str, '#');
5f4273c7 4535
c96612cc
JB
4536 /* We must not accidentally parse an integer as a floating-point number. Make
4537 sure that the value we parse is not an integer by checking for special
4538 characters '.' or 'e'.
4539 FIXME: This is a horrible hack, but doing better is tricky because type
4540 information isn't in a very usable state at parse time. */
4541 fpnum = str;
4542 skip_whitespace (fpnum);
4543
4544 if (strncmp (fpnum, "0x", 2) == 0)
4545 return FAIL;
4546 else
4547 {
4548 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4549 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4550 {
4551 found_fpchar = 1;
4552 break;
4553 }
4554
4555 if (!found_fpchar)
4556 return FAIL;
4557 }
5f4273c7 4558
136da414
JB
4559 if ((str = atof_ieee (str, 's', words)) != NULL)
4560 {
4561 unsigned fpword = 0;
4562 int i;
5f4273c7 4563
136da414
JB
4564 /* Our FP word must be 32 bits (single-precision FP). */
4565 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4566 {
4567 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4568 fpword |= words[i];
4569 }
5f4273c7 4570
c96612cc 4571 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
136da414
JB
4572 *immed = fpword;
4573 else
4574 return FAIL;
4575
4576 *ccp = str;
5f4273c7 4577
136da414
JB
4578 return SUCCESS;
4579 }
5f4273c7 4580
136da414
JB
4581 return FAIL;
4582}
4583
c19d1205
ZW
4584/* Shift operands. */
4585enum shift_kind
b99bd4ef 4586{
c19d1205
ZW
4587 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4588};
b99bd4ef 4589
c19d1205
ZW
4590struct asm_shift_name
4591{
4592 const char *name;
4593 enum shift_kind kind;
4594};
b99bd4ef 4595
c19d1205
ZW
4596/* Third argument to parse_shift. */
4597enum parse_shift_mode
4598{
4599 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4600 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4601 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4602 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4603 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4604};
b99bd4ef 4605
c19d1205
ZW
4606/* Parse a <shift> specifier on an ARM data processing instruction.
4607 This has three forms:
b99bd4ef 4608
c19d1205
ZW
4609 (LSL|LSR|ASL|ASR|ROR) Rs
4610 (LSL|LSR|ASL|ASR|ROR) #imm
4611 RRX
b99bd4ef 4612
c19d1205
ZW
4613 Note that ASL is assimilated to LSL in the instruction encoding, and
4614 RRX to ROR #0 (which cannot be written as such). */
b99bd4ef 4615
c19d1205
ZW
4616static int
4617parse_shift (char **str, int i, enum parse_shift_mode mode)
b99bd4ef 4618{
c19d1205
ZW
4619 const struct asm_shift_name *shift_name;
4620 enum shift_kind shift;
4621 char *s = *str;
4622 char *p = s;
4623 int reg;
b99bd4ef 4624
c19d1205
ZW
4625 for (p = *str; ISALPHA (*p); p++)
4626 ;
b99bd4ef 4627
c19d1205 4628 if (p == *str)
b99bd4ef 4629 {
c19d1205
ZW
4630 inst.error = _("shift expression expected");
4631 return FAIL;
b99bd4ef
NC
4632 }
4633
21d799b5
NC
4634 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4635 p - *str);
c19d1205
ZW
4636
4637 if (shift_name == NULL)
b99bd4ef 4638 {
c19d1205
ZW
4639 inst.error = _("shift expression expected");
4640 return FAIL;
b99bd4ef
NC
4641 }
4642
c19d1205 4643 shift = shift_name->kind;
b99bd4ef 4644
c19d1205
ZW
4645 switch (mode)
4646 {
4647 case NO_SHIFT_RESTRICT:
4648 case SHIFT_IMMEDIATE: break;
b99bd4ef 4649
c19d1205
ZW
4650 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4651 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4652 {
4653 inst.error = _("'LSL' or 'ASR' required");
4654 return FAIL;
4655 }
4656 break;
b99bd4ef 4657
c19d1205
ZW
4658 case SHIFT_LSL_IMMEDIATE:
4659 if (shift != SHIFT_LSL)
4660 {
4661 inst.error = _("'LSL' required");
4662 return FAIL;
4663 }
4664 break;
b99bd4ef 4665
c19d1205
ZW
4666 case SHIFT_ASR_IMMEDIATE:
4667 if (shift != SHIFT_ASR)
4668 {
4669 inst.error = _("'ASR' required");
4670 return FAIL;
4671 }
4672 break;
b99bd4ef 4673
c19d1205
ZW
4674 default: abort ();
4675 }
b99bd4ef 4676
c19d1205
ZW
4677 if (shift != SHIFT_RRX)
4678 {
4679 /* Whitespace can appear here if the next thing is a bare digit. */
4680 skip_whitespace (p);
b99bd4ef 4681
c19d1205 4682 if (mode == NO_SHIFT_RESTRICT
dcbf9037 4683 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4684 {
4685 inst.operands[i].imm = reg;
4686 inst.operands[i].immisreg = 1;
4687 }
4688 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4689 return FAIL;
4690 }
4691 inst.operands[i].shift_kind = shift;
4692 inst.operands[i].shifted = 1;
4693 *str = p;
4694 return SUCCESS;
b99bd4ef
NC
4695}
4696
c19d1205 4697/* Parse a <shifter_operand> for an ARM data processing instruction:
b99bd4ef 4698
c19d1205
ZW
4699 #<immediate>
4700 #<immediate>, <rotate>
4701 <Rm>
4702 <Rm>, <shift>
b99bd4ef 4703
c19d1205
ZW
4704 where <shift> is defined by parse_shift above, and <rotate> is a
4705 multiple of 2 between 0 and 30. Validation of immediate operands
55cf6793 4706 is deferred to md_apply_fix. */
b99bd4ef 4707
c19d1205
ZW
4708static int
4709parse_shifter_operand (char **str, int i)
4710{
4711 int value;
4712 expressionS expr;
b99bd4ef 4713
dcbf9037 4714 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
c19d1205
ZW
4715 {
4716 inst.operands[i].reg = value;
4717 inst.operands[i].isreg = 1;
b99bd4ef 4718
c19d1205
ZW
4719 /* parse_shift will override this if appropriate */
4720 inst.reloc.exp.X_op = O_constant;
4721 inst.reloc.exp.X_add_number = 0;
b99bd4ef 4722
c19d1205
ZW
4723 if (skip_past_comma (str) == FAIL)
4724 return SUCCESS;
b99bd4ef 4725
c19d1205
ZW
4726 /* Shift operation on register. */
4727 return parse_shift (str, i, NO_SHIFT_RESTRICT);
b99bd4ef
NC
4728 }
4729
c19d1205
ZW
4730 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4731 return FAIL;
b99bd4ef 4732
c19d1205 4733 if (skip_past_comma (str) == SUCCESS)
b99bd4ef 4734 {
c19d1205
ZW
4735 /* #x, y -- ie explicit rotation by Y. */
4736 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4737 return FAIL;
b99bd4ef 4738
c19d1205
ZW
4739 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4740 {
4741 inst.error = _("constant expression expected");
4742 return FAIL;
4743 }
b99bd4ef 4744
c19d1205
ZW
4745 value = expr.X_add_number;
4746 if (value < 0 || value > 30 || value % 2 != 0)
4747 {
4748 inst.error = _("invalid rotation");
4749 return FAIL;
4750 }
4751 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4752 {
4753 inst.error = _("invalid constant");
4754 return FAIL;
4755 }
09d92015 4756
55cf6793 4757 /* Convert to decoded value. md_apply_fix will put it back. */
c19d1205
ZW
4758 inst.reloc.exp.X_add_number
4759 = (((inst.reloc.exp.X_add_number << (32 - value))
4760 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
09d92015
MM
4761 }
4762
c19d1205
ZW
4763 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4764 inst.reloc.pc_rel = 0;
4765 return SUCCESS;
09d92015
MM
4766}
4767
4962c51a
MS
4768/* Group relocation information. Each entry in the table contains the
4769 textual name of the relocation as may appear in assembler source
4770 and must end with a colon.
4771 Along with this textual name are the relocation codes to be used if
4772 the corresponding instruction is an ALU instruction (ADD or SUB only),
4773 an LDR, an LDRS, or an LDC. */
4774
4775struct group_reloc_table_entry
4776{
4777 const char *name;
4778 int alu_code;
4779 int ldr_code;
4780 int ldrs_code;
4781 int ldc_code;
4782};
4783
4784typedef enum
4785{
4786 /* Varieties of non-ALU group relocation. */
4787
4788 GROUP_LDR,
4789 GROUP_LDRS,
4790 GROUP_LDC
4791} group_reloc_type;
4792
4793static struct group_reloc_table_entry group_reloc_table[] =
4794 { /* Program counter relative: */
4795 { "pc_g0_nc",
4796 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4797 0, /* LDR */
4798 0, /* LDRS */
4799 0 }, /* LDC */
4800 { "pc_g0",
4801 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4802 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4803 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4804 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4805 { "pc_g1_nc",
4806 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4807 0, /* LDR */
4808 0, /* LDRS */
4809 0 }, /* LDC */
4810 { "pc_g1",
4811 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4812 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4813 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4814 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4815 { "pc_g2",
4816 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4817 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4818 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4819 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4820 /* Section base relative */
4821 { "sb_g0_nc",
4822 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4823 0, /* LDR */
4824 0, /* LDRS */
4825 0 }, /* LDC */
4826 { "sb_g0",
4827 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4828 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4829 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4830 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4831 { "sb_g1_nc",
4832 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4833 0, /* LDR */
4834 0, /* LDRS */
4835 0 }, /* LDC */
4836 { "sb_g1",
4837 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4838 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4839 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4840 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4841 { "sb_g2",
4842 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4843 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4844 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4845 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4846
4847/* Given the address of a pointer pointing to the textual name of a group
4848 relocation as may appear in assembler source, attempt to find its details
4849 in group_reloc_table. The pointer will be updated to the character after
4850 the trailing colon. On failure, FAIL will be returned; SUCCESS
4851 otherwise. On success, *entry will be updated to point at the relevant
4852 group_reloc_table entry. */
4853
4854static int
4855find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4856{
4857 unsigned int i;
4858 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4859 {
4860 int length = strlen (group_reloc_table[i].name);
4861
5f4273c7
NC
4862 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4863 && (*str)[length] == ':')
4962c51a
MS
4864 {
4865 *out = &group_reloc_table[i];
4866 *str += (length + 1);
4867 return SUCCESS;
4868 }
4869 }
4870
4871 return FAIL;
4872}
4873
4874/* Parse a <shifter_operand> for an ARM data processing instruction
4875 (as for parse_shifter_operand) where group relocations are allowed:
4876
4877 #<immediate>
4878 #<immediate>, <rotate>
4879 #:<group_reloc>:<expression>
4880 <Rm>
4881 <Rm>, <shift>
4882
4883 where <group_reloc> is one of the strings defined in group_reloc_table.
4884 The hashes are optional.
4885
4886 Everything else is as for parse_shifter_operand. */
4887
4888static parse_operand_result
4889parse_shifter_operand_group_reloc (char **str, int i)
4890{
4891 /* Determine if we have the sequence of characters #: or just :
4892 coming next. If we do, then we check for a group relocation.
4893 If we don't, punt the whole lot to parse_shifter_operand. */
4894
4895 if (((*str)[0] == '#' && (*str)[1] == ':')
4896 || (*str)[0] == ':')
4897 {
4898 struct group_reloc_table_entry *entry;
4899
4900 if ((*str)[0] == '#')
4901 (*str) += 2;
4902 else
4903 (*str)++;
4904
4905 /* Try to parse a group relocation. Anything else is an error. */
4906 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4907 {
4908 inst.error = _("unknown group relocation");
4909 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4910 }
4911
4912 /* We now have the group relocation table entry corresponding to
4913 the name in the assembler source. Next, we parse the expression. */
4914 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4916
4917 /* Record the relocation type (always the ALU variant here). */
21d799b5 4918 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
9c2799c2 4919 gas_assert (inst.reloc.type != 0);
4962c51a
MS
4920
4921 return PARSE_OPERAND_SUCCESS;
4922 }
4923 else
4924 return parse_shifter_operand (str, i) == SUCCESS
4925 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4926
4927 /* Never reached. */
4928}
4929
c19d1205
ZW
4930/* Parse all forms of an ARM address expression. Information is written
4931 to inst.operands[i] and/or inst.reloc.
09d92015 4932
c19d1205 4933 Preindexed addressing (.preind=1):
09d92015 4934
c19d1205
ZW
4935 [Rn, #offset] .reg=Rn .reloc.exp=offset
4936 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4937 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4938 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4939
c19d1205 4940 These three may have a trailing ! which causes .writeback to be set also.
09d92015 4941
c19d1205 4942 Postindexed addressing (.postind=1, .writeback=1):
09d92015 4943
c19d1205
ZW
4944 [Rn], #offset .reg=Rn .reloc.exp=offset
4945 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4946 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4947 .shift_kind=shift .reloc.exp=shift_imm
09d92015 4948
c19d1205 4949 Unindexed addressing (.preind=0, .postind=0):
09d92015 4950
c19d1205 4951 [Rn], {option} .reg=Rn .imm=option .immisreg=0
09d92015 4952
c19d1205 4953 Other:
09d92015 4954
c19d1205
ZW
4955 [Rn]{!} shorthand for [Rn,#0]{!}
4956 =immediate .isreg=0 .reloc.exp=immediate
4957 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
09d92015 4958
c19d1205
ZW
4959 It is the caller's responsibility to check for addressing modes not
4960 supported by the instruction, and to set inst.reloc.type. */
4961
4962c51a
MS
4962static parse_operand_result
4963parse_address_main (char **str, int i, int group_relocations,
4964 group_reloc_type group_type)
09d92015 4965{
c19d1205
ZW
4966 char *p = *str;
4967 int reg;
09d92015 4968
c19d1205 4969 if (skip_past_char (&p, '[') == FAIL)
09d92015 4970 {
c19d1205
ZW
4971 if (skip_past_char (&p, '=') == FAIL)
4972 {
4973 /* bare address - translate to PC-relative offset */
4974 inst.reloc.pc_rel = 1;
4975 inst.operands[i].reg = REG_PC;
4976 inst.operands[i].isreg = 1;
4977 inst.operands[i].preind = 1;
4978 }
4979 /* else a load-constant pseudo op, no special treatment needed here */
09d92015 4980
c19d1205 4981 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4962c51a 4982 return PARSE_OPERAND_FAIL;
09d92015 4983
c19d1205 4984 *str = p;
4962c51a 4985 return PARSE_OPERAND_SUCCESS;
09d92015
MM
4986 }
4987
dcbf9037 4988 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
09d92015 4989 {
c19d1205 4990 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4962c51a 4991 return PARSE_OPERAND_FAIL;
09d92015 4992 }
c19d1205
ZW
4993 inst.operands[i].reg = reg;
4994 inst.operands[i].isreg = 1;
09d92015 4995
c19d1205 4996 if (skip_past_comma (&p) == SUCCESS)
09d92015 4997 {
c19d1205 4998 inst.operands[i].preind = 1;
09d92015 4999
c19d1205
ZW
5000 if (*p == '+') p++;
5001 else if (*p == '-') p++, inst.operands[i].negative = 1;
5002
dcbf9037 5003 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
09d92015 5004 {
c19d1205
ZW
5005 inst.operands[i].imm = reg;
5006 inst.operands[i].immisreg = 1;
5007
5008 if (skip_past_comma (&p) == SUCCESS)
5009 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5010 return PARSE_OPERAND_FAIL;
c19d1205 5011 }
5287ad62
JB
5012 else if (skip_past_char (&p, ':') == SUCCESS)
5013 {
5014 /* FIXME: '@' should be used here, but it's filtered out by generic
5015 code before we get to see it here. This may be subject to
5016 change. */
5017 expressionS exp;
5018 my_get_expression (&exp, &p, GE_NO_PREFIX);
5019 if (exp.X_op != O_constant)
5020 {
5021 inst.error = _("alignment must be constant");
4962c51a 5022 return PARSE_OPERAND_FAIL;
5287ad62
JB
5023 }
5024 inst.operands[i].imm = exp.X_add_number << 8;
5025 inst.operands[i].immisalign = 1;
5026 /* Alignments are not pre-indexes. */
5027 inst.operands[i].preind = 0;
5028 }
c19d1205
ZW
5029 else
5030 {
5031 if (inst.operands[i].negative)
5032 {
5033 inst.operands[i].negative = 0;
5034 p--;
5035 }
4962c51a 5036
5f4273c7
NC
5037 if (group_relocations
5038 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4962c51a
MS
5039 {
5040 struct group_reloc_table_entry *entry;
5041
5042 /* Skip over the #: or : sequence. */
5043 if (*p == '#')
5044 p += 2;
5045 else
5046 p++;
5047
5048 /* Try to parse a group relocation. Anything else is an
5049 error. */
5050 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5051 {
5052 inst.error = _("unknown group relocation");
5053 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5054 }
5055
5056 /* We now have the group relocation table entry corresponding to
5057 the name in the assembler source. Next, we parse the
5058 expression. */
5059 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061
5062 /* Record the relocation type. */
5063 switch (group_type)
5064 {
5065 case GROUP_LDR:
21d799b5 5066 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
4962c51a
MS
5067 break;
5068
5069 case GROUP_LDRS:
21d799b5 5070 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
4962c51a
MS
5071 break;
5072
5073 case GROUP_LDC:
21d799b5 5074 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
4962c51a
MS
5075 break;
5076
5077 default:
9c2799c2 5078 gas_assert (0);
4962c51a
MS
5079 }
5080
5081 if (inst.reloc.type == 0)
5082 {
5083 inst.error = _("this group relocation is not allowed on this instruction");
5084 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5085 }
5086 }
5087 else
5088 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5089 return PARSE_OPERAND_FAIL;
09d92015
MM
5090 }
5091 }
5092
c19d1205 5093 if (skip_past_char (&p, ']') == FAIL)
09d92015 5094 {
c19d1205 5095 inst.error = _("']' expected");
4962c51a 5096 return PARSE_OPERAND_FAIL;
09d92015
MM
5097 }
5098
c19d1205
ZW
5099 if (skip_past_char (&p, '!') == SUCCESS)
5100 inst.operands[i].writeback = 1;
09d92015 5101
c19d1205 5102 else if (skip_past_comma (&p) == SUCCESS)
09d92015 5103 {
c19d1205
ZW
5104 if (skip_past_char (&p, '{') == SUCCESS)
5105 {
5106 /* [Rn], {expr} - unindexed, with option */
5107 if (parse_immediate (&p, &inst.operands[i].imm,
ca3f61f7 5108 0, 255, TRUE) == FAIL)
4962c51a 5109 return PARSE_OPERAND_FAIL;
09d92015 5110
c19d1205
ZW
5111 if (skip_past_char (&p, '}') == FAIL)
5112 {
5113 inst.error = _("'}' expected at end of 'option' field");
4962c51a 5114 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5115 }
5116 if (inst.operands[i].preind)
5117 {
5118 inst.error = _("cannot combine index with option");
4962c51a 5119 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5120 }
5121 *str = p;
4962c51a 5122 return PARSE_OPERAND_SUCCESS;
09d92015 5123 }
c19d1205
ZW
5124 else
5125 {
5126 inst.operands[i].postind = 1;
5127 inst.operands[i].writeback = 1;
09d92015 5128
c19d1205
ZW
5129 if (inst.operands[i].preind)
5130 {
5131 inst.error = _("cannot combine pre- and post-indexing");
4962c51a 5132 return PARSE_OPERAND_FAIL;
c19d1205 5133 }
09d92015 5134
c19d1205
ZW
5135 if (*p == '+') p++;
5136 else if (*p == '-') p++, inst.operands[i].negative = 1;
a737bd4d 5137
dcbf9037 5138 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
c19d1205 5139 {
5287ad62
JB
5140 /* We might be using the immediate for alignment already. If we
5141 are, OR the register number into the low-order bits. */
5142 if (inst.operands[i].immisalign)
5143 inst.operands[i].imm |= reg;
5144 else
5145 inst.operands[i].imm = reg;
c19d1205 5146 inst.operands[i].immisreg = 1;
a737bd4d 5147
c19d1205
ZW
5148 if (skip_past_comma (&p) == SUCCESS)
5149 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4962c51a 5150 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5151 }
5152 else
5153 {
5154 if (inst.operands[i].negative)
5155 {
5156 inst.operands[i].negative = 0;
5157 p--;
5158 }
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4962c51a 5160 return PARSE_OPERAND_FAIL;
c19d1205
ZW
5161 }
5162 }
a737bd4d
NC
5163 }
5164
c19d1205
ZW
5165 /* If at this point neither .preind nor .postind is set, we have a
5166 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5167 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5168 {
5169 inst.operands[i].preind = 1;
5170 inst.reloc.exp.X_op = O_constant;
5171 inst.reloc.exp.X_add_number = 0;
5172 }
5173 *str = p;
4962c51a
MS
5174 return PARSE_OPERAND_SUCCESS;
5175}
5176
5177static int
5178parse_address (char **str, int i)
5179{
21d799b5 5180 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
4962c51a
MS
5181 ? SUCCESS : FAIL;
5182}
5183
5184static parse_operand_result
5185parse_address_group_reloc (char **str, int i, group_reloc_type type)
5186{
5187 return parse_address_main (str, i, 1, type);
a737bd4d
NC
5188}
5189
b6895b4f
PB
5190/* Parse an operand for a MOVW or MOVT instruction. */
5191static int
5192parse_half (char **str)
5193{
5194 char * p;
5f4273c7 5195
b6895b4f
PB
5196 p = *str;
5197 skip_past_char (&p, '#');
5f4273c7 5198 if (strncasecmp (p, ":lower16:", 9) == 0)
b6895b4f
PB
5199 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5200 else if (strncasecmp (p, ":upper16:", 9) == 0)
5201 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5202
5203 if (inst.reloc.type != BFD_RELOC_UNUSED)
5204 {
5205 p += 9;
5f4273c7 5206 skip_whitespace (p);
b6895b4f
PB
5207 }
5208
5209 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5210 return FAIL;
5211
5212 if (inst.reloc.type == BFD_RELOC_UNUSED)
5213 {
5214 if (inst.reloc.exp.X_op != O_constant)
5215 {
5216 inst.error = _("constant expression expected");
5217 return FAIL;
5218 }
5219 if (inst.reloc.exp.X_add_number < 0
5220 || inst.reloc.exp.X_add_number > 0xffff)
5221 {
5222 inst.error = _("immediate value out of range");
5223 return FAIL;
5224 }
5225 }
5226 *str = p;
5227 return SUCCESS;
5228}
5229
c19d1205 5230/* Miscellaneous. */
a737bd4d 5231
c19d1205
ZW
5232/* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5233 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5234static int
5235parse_psr (char **str)
09d92015 5236{
c19d1205
ZW
5237 char *p;
5238 unsigned long psr_field;
62b3e311
PB
5239 const struct asm_psr *psr;
5240 char *start;
09d92015 5241
c19d1205
ZW
5242 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5243 feature for ease of use and backwards compatibility. */
5244 p = *str;
62b3e311 5245 if (strncasecmp (p, "SPSR", 4) == 0)
c19d1205 5246 psr_field = SPSR_BIT;
62b3e311 5247 else if (strncasecmp (p, "CPSR", 4) == 0)
c19d1205
ZW
5248 psr_field = 0;
5249 else
62b3e311
PB
5250 {
5251 start = p;
5252 do
5253 p++;
5254 while (ISALNUM (*p) || *p == '_');
5255
21d799b5
NC
5256 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5257 p - start);
62b3e311
PB
5258 if (!psr)
5259 return FAIL;
09d92015 5260
62b3e311
PB
5261 *str = p;
5262 return psr->field;
5263 }
09d92015 5264
62b3e311 5265 p += 4;
c19d1205
ZW
5266 if (*p == '_')
5267 {
5268 /* A suffix follows. */
c19d1205
ZW
5269 p++;
5270 start = p;
a737bd4d 5271
c19d1205
ZW
5272 do
5273 p++;
5274 while (ISALNUM (*p) || *p == '_');
a737bd4d 5275
21d799b5
NC
5276 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5277 p - start);
c19d1205
ZW
5278 if (!psr)
5279 goto error;
a737bd4d 5280
c19d1205 5281 psr_field |= psr->field;
a737bd4d 5282 }
c19d1205 5283 else
a737bd4d 5284 {
c19d1205
ZW
5285 if (ISALNUM (*p))
5286 goto error; /* Garbage after "[CS]PSR". */
5287
5288 psr_field |= (PSR_c | PSR_f);
a737bd4d 5289 }
c19d1205
ZW
5290 *str = p;
5291 return psr_field;
a737bd4d 5292
c19d1205
ZW
5293 error:
5294 inst.error = _("flag for {c}psr instruction expected");
5295 return FAIL;
a737bd4d
NC
5296}
5297
c19d1205
ZW
5298/* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5299 value suitable for splatting into the AIF field of the instruction. */
a737bd4d 5300
c19d1205
ZW
5301static int
5302parse_cps_flags (char **str)
a737bd4d 5303{
c19d1205
ZW
5304 int val = 0;
5305 int saw_a_flag = 0;
5306 char *s = *str;
a737bd4d 5307
c19d1205
ZW
5308 for (;;)
5309 switch (*s++)
5310 {
5311 case '\0': case ',':
5312 goto done;
a737bd4d 5313
c19d1205
ZW
5314 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5315 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5316 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
a737bd4d 5317
c19d1205
ZW
5318 default:
5319 inst.error = _("unrecognized CPS flag");
5320 return FAIL;
5321 }
a737bd4d 5322
c19d1205
ZW
5323 done:
5324 if (saw_a_flag == 0)
a737bd4d 5325 {
c19d1205
ZW
5326 inst.error = _("missing CPS flags");
5327 return FAIL;
a737bd4d 5328 }
a737bd4d 5329
c19d1205
ZW
5330 *str = s - 1;
5331 return val;
a737bd4d
NC
5332}
5333
c19d1205
ZW
5334/* Parse an endian specifier ("BE" or "LE", case insensitive);
5335 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
a737bd4d
NC
5336
5337static int
c19d1205 5338parse_endian_specifier (char **str)
a737bd4d 5339{
c19d1205
ZW
5340 int little_endian;
5341 char *s = *str;
a737bd4d 5342
c19d1205
ZW
5343 if (strncasecmp (s, "BE", 2))
5344 little_endian = 0;
5345 else if (strncasecmp (s, "LE", 2))
5346 little_endian = 1;
5347 else
a737bd4d 5348 {
c19d1205 5349 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5350 return FAIL;
5351 }
5352
c19d1205 5353 if (ISALNUM (s[2]) || s[2] == '_')
a737bd4d 5354 {
c19d1205 5355 inst.error = _("valid endian specifiers are be or le");
a737bd4d
NC
5356 return FAIL;
5357 }
5358
c19d1205
ZW
5359 *str = s + 2;
5360 return little_endian;
5361}
a737bd4d 5362
c19d1205
ZW
5363/* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5364 value suitable for poking into the rotate field of an sxt or sxta
5365 instruction, or FAIL on error. */
5366
5367static int
5368parse_ror (char **str)
5369{
5370 int rot;
5371 char *s = *str;
5372
5373 if (strncasecmp (s, "ROR", 3) == 0)
5374 s += 3;
5375 else
a737bd4d 5376 {
c19d1205 5377 inst.error = _("missing rotation field after comma");
a737bd4d
NC
5378 return FAIL;
5379 }
c19d1205
ZW
5380
5381 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5382 return FAIL;
5383
5384 switch (rot)
a737bd4d 5385 {
c19d1205
ZW
5386 case 0: *str = s; return 0x0;
5387 case 8: *str = s; return 0x1;
5388 case 16: *str = s; return 0x2;
5389 case 24: *str = s; return 0x3;
5390
5391 default:
5392 inst.error = _("rotation can only be 0, 8, 16, or 24");
a737bd4d
NC
5393 return FAIL;
5394 }
c19d1205 5395}
a737bd4d 5396
c19d1205
ZW
5397/* Parse a conditional code (from conds[] below). The value returned is in the
5398 range 0 .. 14, or FAIL. */
5399static int
5400parse_cond (char **str)
5401{
c462b453 5402 char *q;
c19d1205 5403 const struct asm_cond *c;
c462b453
PB
5404 int n;
5405 /* Condition codes are always 2 characters, so matching up to
5406 3 characters is sufficient. */
5407 char cond[3];
a737bd4d 5408
c462b453
PB
5409 q = *str;
5410 n = 0;
5411 while (ISALPHA (*q) && n < 3)
5412 {
e07e6e58 5413 cond[n] = TOLOWER (*q);
c462b453
PB
5414 q++;
5415 n++;
5416 }
a737bd4d 5417
21d799b5 5418 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
c19d1205 5419 if (!c)
a737bd4d 5420 {
c19d1205 5421 inst.error = _("condition required");
a737bd4d
NC
5422 return FAIL;
5423 }
5424
c19d1205
ZW
5425 *str = q;
5426 return c->value;
5427}
5428
62b3e311
PB
5429/* Parse an option for a barrier instruction. Returns the encoding for the
5430 option, or FAIL. */
5431static int
5432parse_barrier (char **str)
5433{
5434 char *p, *q;
5435 const struct asm_barrier_opt *o;
5436
5437 p = q = *str;
5438 while (ISALPHA (*q))
5439 q++;
5440
21d799b5
NC
5441 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5442 q - p);
62b3e311
PB
5443 if (!o)
5444 return FAIL;
5445
5446 *str = q;
5447 return o->value;
5448}
5449
92e90b6e
PB
5450/* Parse the operands of a table branch instruction. Similar to a memory
5451 operand. */
5452static int
5453parse_tb (char **str)
5454{
5455 char * p = *str;
5456 int reg;
5457
5458 if (skip_past_char (&p, '[') == FAIL)
ab1eb5fe
PB
5459 {
5460 inst.error = _("'[' expected");
5461 return FAIL;
5462 }
92e90b6e 5463
dcbf9037 5464 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5465 {
5466 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5467 return FAIL;
5468 }
5469 inst.operands[0].reg = reg;
5470
5471 if (skip_past_comma (&p) == FAIL)
ab1eb5fe
PB
5472 {
5473 inst.error = _("',' expected");
5474 return FAIL;
5475 }
5f4273c7 5476
dcbf9037 5477 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
92e90b6e
PB
5478 {
5479 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5480 return FAIL;
5481 }
5482 inst.operands[0].imm = reg;
5483
5484 if (skip_past_comma (&p) == SUCCESS)
5485 {
5486 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5487 return FAIL;
5488 if (inst.reloc.exp.X_add_number != 1)
5489 {
5490 inst.error = _("invalid shift");
5491 return FAIL;
5492 }
5493 inst.operands[0].shifted = 1;
5494 }
5495
5496 if (skip_past_char (&p, ']') == FAIL)
5497 {
5498 inst.error = _("']' expected");
5499 return FAIL;
5500 }
5501 *str = p;
5502 return SUCCESS;
5503}
5504
5287ad62
JB
5505/* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5506 information on the types the operands can take and how they are encoded.
037e8744
JB
5507 Up to four operands may be read; this function handles setting the
5508 ".present" field for each read operand itself.
5287ad62
JB
5509 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5510 else returns FAIL. */
5511
5512static int
5513parse_neon_mov (char **str, int *which_operand)
5514{
5515 int i = *which_operand, val;
5516 enum arm_reg_type rtype;
5517 char *ptr = *str;
dcbf9037 5518 struct neon_type_el optype;
5f4273c7 5519
dcbf9037 5520 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5521 {
5522 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5523 inst.operands[i].reg = val;
5524 inst.operands[i].isscalar = 1;
dcbf9037 5525 inst.operands[i].vectype = optype;
5287ad62
JB
5526 inst.operands[i++].present = 1;
5527
5528 if (skip_past_comma (&ptr) == FAIL)
5529 goto wanted_comma;
5f4273c7 5530
dcbf9037 5531 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5287ad62 5532 goto wanted_arm;
5f4273c7 5533
5287ad62
JB
5534 inst.operands[i].reg = val;
5535 inst.operands[i].isreg = 1;
5536 inst.operands[i].present = 1;
5537 }
037e8744 5538 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
dcbf9037 5539 != FAIL)
5287ad62
JB
5540 {
5541 /* Cases 0, 1, 2, 3, 5 (D only). */
5542 if (skip_past_comma (&ptr) == FAIL)
5543 goto wanted_comma;
5f4273c7 5544
5287ad62
JB
5545 inst.operands[i].reg = val;
5546 inst.operands[i].isreg = 1;
5547 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5548 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5549 inst.operands[i].isvec = 1;
dcbf9037 5550 inst.operands[i].vectype = optype;
5287ad62
JB
5551 inst.operands[i++].present = 1;
5552
dcbf9037 5553 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62 5554 {
037e8744
JB
5555 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5556 Case 13: VMOV <Sd>, <Rm> */
5287ad62
JB
5557 inst.operands[i].reg = val;
5558 inst.operands[i].isreg = 1;
037e8744 5559 inst.operands[i].present = 1;
5287ad62
JB
5560
5561 if (rtype == REG_TYPE_NQ)
5562 {
dcbf9037 5563 first_error (_("can't use Neon quad register here"));
5287ad62
JB
5564 return FAIL;
5565 }
037e8744
JB
5566 else if (rtype != REG_TYPE_VFS)
5567 {
5568 i++;
5569 if (skip_past_comma (&ptr) == FAIL)
5570 goto wanted_comma;
5571 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5572 goto wanted_arm;
5573 inst.operands[i].reg = val;
5574 inst.operands[i].isreg = 1;
5575 inst.operands[i].present = 1;
5576 }
5287ad62 5577 }
037e8744
JB
5578 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5579 &optype)) != FAIL)
5287ad62
JB
5580 {
5581 /* Case 0: VMOV<c><q> <Qd>, <Qm>
037e8744
JB
5582 Case 1: VMOV<c><q> <Dd>, <Dm>
5583 Case 8: VMOV.F32 <Sd>, <Sm>
5584 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5287ad62
JB
5585
5586 inst.operands[i].reg = val;
5587 inst.operands[i].isreg = 1;
5588 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
037e8744
JB
5589 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5590 inst.operands[i].isvec = 1;
dcbf9037 5591 inst.operands[i].vectype = optype;
5287ad62 5592 inst.operands[i].present = 1;
5f4273c7 5593
037e8744
JB
5594 if (skip_past_comma (&ptr) == SUCCESS)
5595 {
5596 /* Case 15. */
5597 i++;
5598
5599 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5600 goto wanted_arm;
5601
5602 inst.operands[i].reg = val;
5603 inst.operands[i].isreg = 1;
5604 inst.operands[i++].present = 1;
5f4273c7 5605
037e8744
JB
5606 if (skip_past_comma (&ptr) == FAIL)
5607 goto wanted_comma;
5f4273c7 5608
037e8744
JB
5609 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5610 goto wanted_arm;
5f4273c7 5611
037e8744
JB
5612 inst.operands[i].reg = val;
5613 inst.operands[i].isreg = 1;
5614 inst.operands[i++].present = 1;
5615 }
5287ad62 5616 }
4641781c
PB
5617 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5618 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5619 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5620 Case 10: VMOV.F32 <Sd>, #<imm>
5621 Case 11: VMOV.F64 <Dd>, #<imm> */
5622 inst.operands[i].immisfloat = 1;
5623 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5624 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5625 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5626 ;
5287ad62
JB
5627 else
5628 {
dcbf9037 5629 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5287ad62
JB
5630 return FAIL;
5631 }
5632 }
dcbf9037 5633 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5634 {
5635 /* Cases 6, 7. */
5636 inst.operands[i].reg = val;
5637 inst.operands[i].isreg = 1;
5638 inst.operands[i++].present = 1;
5f4273c7 5639
5287ad62
JB
5640 if (skip_past_comma (&ptr) == FAIL)
5641 goto wanted_comma;
5f4273c7 5642
dcbf9037 5643 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5287ad62
JB
5644 {
5645 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5646 inst.operands[i].reg = val;
5647 inst.operands[i].isscalar = 1;
5648 inst.operands[i].present = 1;
dcbf9037 5649 inst.operands[i].vectype = optype;
5287ad62 5650 }
dcbf9037 5651 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5287ad62
JB
5652 {
5653 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5654 inst.operands[i].reg = val;
5655 inst.operands[i].isreg = 1;
5656 inst.operands[i++].present = 1;
5f4273c7 5657
5287ad62
JB
5658 if (skip_past_comma (&ptr) == FAIL)
5659 goto wanted_comma;
5f4273c7 5660
037e8744 5661 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
dcbf9037 5662 == FAIL)
5287ad62 5663 {
037e8744 5664 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5287ad62
JB
5665 return FAIL;
5666 }
5667
5668 inst.operands[i].reg = val;
5669 inst.operands[i].isreg = 1;
037e8744
JB
5670 inst.operands[i].isvec = 1;
5671 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
dcbf9037 5672 inst.operands[i].vectype = optype;
5287ad62 5673 inst.operands[i].present = 1;
5f4273c7 5674
037e8744
JB
5675 if (rtype == REG_TYPE_VFS)
5676 {
5677 /* Case 14. */
5678 i++;
5679 if (skip_past_comma (&ptr) == FAIL)
5680 goto wanted_comma;
5681 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5682 &optype)) == FAIL)
5683 {
5684 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5685 return FAIL;
5686 }
5687 inst.operands[i].reg = val;
5688 inst.operands[i].isreg = 1;
5689 inst.operands[i].isvec = 1;
5690 inst.operands[i].issingle = 1;
5691 inst.operands[i].vectype = optype;
5692 inst.operands[i].present = 1;
5693 }
5694 }
5695 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5696 != FAIL)
5697 {
5698 /* Case 13. */
5699 inst.operands[i].reg = val;
5700 inst.operands[i].isreg = 1;
5701 inst.operands[i].isvec = 1;
5702 inst.operands[i].issingle = 1;
5703 inst.operands[i].vectype = optype;
5704 inst.operands[i++].present = 1;
5287ad62
JB
5705 }
5706 }
5707 else
5708 {
dcbf9037 5709 first_error (_("parse error"));
5287ad62
JB
5710 return FAIL;
5711 }
5712
5713 /* Successfully parsed the operands. Update args. */
5714 *which_operand = i;
5715 *str = ptr;
5716 return SUCCESS;
5717
5f4273c7 5718 wanted_comma:
dcbf9037 5719 first_error (_("expected comma"));
5287ad62 5720 return FAIL;
5f4273c7
NC
5721
5722 wanted_arm:
dcbf9037 5723 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5287ad62 5724 return FAIL;
5287ad62
JB
5725}
5726
c19d1205
ZW
5727/* Matcher codes for parse_operands. */
5728enum operand_parse_code
5729{
5730 OP_stop, /* end of line */
5731
5732 OP_RR, /* ARM register */
5733 OP_RRnpc, /* ARM register, not r15 */
5734 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5735 OP_RRw, /* ARM register, not r15, optional trailing ! */
5736 OP_RCP, /* Coprocessor number */
5737 OP_RCN, /* Coprocessor register */
5738 OP_RF, /* FPA register */
5739 OP_RVS, /* VFP single precision register */
5287ad62
JB
5740 OP_RVD, /* VFP double precision register (0..15) */
5741 OP_RND, /* Neon double precision register (0..31) */
5742 OP_RNQ, /* Neon quad precision register */
037e8744 5743 OP_RVSD, /* VFP single or double precision register */
5287ad62 5744 OP_RNDQ, /* Neon double or quad precision register */
037e8744 5745 OP_RNSDQ, /* Neon single, double or quad precision register */
5287ad62 5746 OP_RNSC, /* Neon scalar D[X] */
c19d1205
ZW
5747 OP_RVC, /* VFP control register */
5748 OP_RMF, /* Maverick F register */
5749 OP_RMD, /* Maverick D register */
5750 OP_RMFX, /* Maverick FX register */
5751 OP_RMDX, /* Maverick DX register */
5752 OP_RMAX, /* Maverick AX register */
5753 OP_RMDS, /* Maverick DSPSC register */
5754 OP_RIWR, /* iWMMXt wR register */
5755 OP_RIWC, /* iWMMXt wC register */
5756 OP_RIWG, /* iWMMXt wCG register */
5757 OP_RXA, /* XScale accumulator register */
5758
5759 OP_REGLST, /* ARM register list */
5760 OP_VRSLST, /* VFP single-precision register list */
5761 OP_VRDLST, /* VFP double-precision register list */
037e8744 5762 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5287ad62
JB
5763 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5764 OP_NSTRLST, /* Neon element/structure list */
5765
5766 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5767 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
037e8744 5768 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5287ad62 5769 OP_RR_RNSC, /* ARM reg or Neon scalar. */
037e8744 5770 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5287ad62
JB
5771 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5772 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5773 OP_VMOV, /* Neon VMOV operands. */
5774 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5775 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
2d447fca 5776 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5287ad62
JB
5777
5778 OP_I0, /* immediate zero */
c19d1205
ZW
5779 OP_I7, /* immediate value 0 .. 7 */
5780 OP_I15, /* 0 .. 15 */
5781 OP_I16, /* 1 .. 16 */
5287ad62 5782 OP_I16z, /* 0 .. 16 */
c19d1205
ZW
5783 OP_I31, /* 0 .. 31 */
5784 OP_I31w, /* 0 .. 31, optional trailing ! */
5785 OP_I32, /* 1 .. 32 */
5287ad62
JB
5786 OP_I32z, /* 0 .. 32 */
5787 OP_I63, /* 0 .. 63 */
c19d1205 5788 OP_I63s, /* -64 .. 63 */
5287ad62
JB
5789 OP_I64, /* 1 .. 64 */
5790 OP_I64z, /* 0 .. 64 */
c19d1205 5791 OP_I255, /* 0 .. 255 */
c19d1205
ZW
5792
5793 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5794 OP_I7b, /* 0 .. 7 */
5795 OP_I15b, /* 0 .. 15 */
5796 OP_I31b, /* 0 .. 31 */
5797
5798 OP_SH, /* shifter operand */
4962c51a 5799 OP_SHG, /* shifter operand with possible group relocation */
c19d1205 5800 OP_ADDR, /* Memory address expression (any mode) */
4962c51a
MS
5801 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5802 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5803 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
c19d1205
ZW
5804 OP_EXP, /* arbitrary expression */
5805 OP_EXPi, /* same, with optional immediate prefix */
5806 OP_EXPr, /* same, with optional relocation suffix */
b6895b4f 5807 OP_HALF, /* 0 .. 65535 or low/high reloc. */
c19d1205
ZW
5808
5809 OP_CPSF, /* CPS flags */
5810 OP_ENDI, /* Endianness specifier */
5811 OP_PSR, /* CPSR/SPSR mask for msr */
5812 OP_COND, /* conditional code */
92e90b6e 5813 OP_TB, /* Table branch. */
c19d1205 5814
037e8744
JB
5815 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5816 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5817
c19d1205
ZW
5818 OP_RRnpc_I0, /* ARM register or literal 0 */
5819 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5820 OP_RR_EXi, /* ARM register or expression with imm prefix */
5821 OP_RF_IF, /* FPA register or immediate */
5822 OP_RIWR_RIWC, /* iWMMXt R or C reg */
41adaa5c 5823 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
c19d1205
ZW
5824
5825 /* Optional operands. */
5826 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5827 OP_oI31b, /* 0 .. 31 */
5287ad62 5828 OP_oI32b, /* 1 .. 32 */
c19d1205
ZW
5829 OP_oIffffb, /* 0 .. 65535 */
5830 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5831
5832 OP_oRR, /* ARM register */
5833 OP_oRRnpc, /* ARM register, not the PC */
b6702015 5834 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5287ad62
JB
5835 OP_oRND, /* Optional Neon double precision register */
5836 OP_oRNQ, /* Optional Neon quad precision register */
5837 OP_oRNDQ, /* Optional Neon double or quad precision register */
037e8744 5838 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
c19d1205
ZW
5839 OP_oSHll, /* LSL immediate */
5840 OP_oSHar, /* ASR immediate */
5841 OP_oSHllar, /* LSL or ASR immediate */
5842 OP_oROR, /* ROR 0/8/16/24 */
62b3e311 5843 OP_oBARRIER, /* Option argument for a barrier instruction. */
c19d1205
ZW
5844
5845 OP_FIRST_OPTIONAL = OP_oI7b
5846};
a737bd4d 5847
c19d1205
ZW
5848/* Generic instruction operand parser. This does no encoding and no
5849 semantic validation; it merely squirrels values away in the inst
5850 structure. Returns SUCCESS or FAIL depending on whether the
5851 specified grammar matched. */
5852static int
ca3f61f7 5853parse_operands (char *str, const unsigned char *pattern)
c19d1205
ZW
5854{
5855 unsigned const char *upat = pattern;
5856 char *backtrack_pos = 0;
5857 const char *backtrack_error = 0;
5858 int i, val, backtrack_index = 0;
5287ad62 5859 enum arm_reg_type rtype;
4962c51a 5860 parse_operand_result result;
c19d1205 5861
e07e6e58
NC
5862#define po_char_or_fail(chr) \
5863 do \
5864 { \
5865 if (skip_past_char (&str, chr) == FAIL) \
5866 goto bad_args; \
5867 } \
5868 while (0)
c19d1205 5869
e07e6e58
NC
5870#define po_reg_or_fail(regtype) \
5871 do \
dcbf9037 5872 { \
e07e6e58
NC
5873 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5874 & inst.operands[i].vectype); \
5875 if (val == FAIL) \
5876 { \
5877 first_error (_(reg_expected_msgs[regtype])); \
5878 goto failure; \
5879 } \
5880 inst.operands[i].reg = val; \
5881 inst.operands[i].isreg = 1; \
5882 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5883 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5884 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5885 || rtype == REG_TYPE_VFD \
5886 || rtype == REG_TYPE_NQ); \
dcbf9037 5887 } \
e07e6e58
NC
5888 while (0)
5889
5890#define po_reg_or_goto(regtype, label) \
5891 do \
5892 { \
5893 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5894 & inst.operands[i].vectype); \
5895 if (val == FAIL) \
5896 goto label; \
dcbf9037 5897 \
e07e6e58
NC
5898 inst.operands[i].reg = val; \
5899 inst.operands[i].isreg = 1; \
5900 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5901 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5902 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5903 || rtype == REG_TYPE_VFD \
5904 || rtype == REG_TYPE_NQ); \
5905 } \
5906 while (0)
5907
5908#define po_imm_or_fail(min, max, popt) \
5909 do \
5910 { \
5911 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5912 goto failure; \
5913 inst.operands[i].imm = val; \
5914 } \
5915 while (0)
5916
5917#define po_scalar_or_goto(elsz, label) \
5918 do \
5919 { \
5920 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5921 if (val == FAIL) \
5922 goto label; \
5923 inst.operands[i].reg = val; \
5924 inst.operands[i].isscalar = 1; \
5925 } \
5926 while (0)
5927
5928#define po_misc_or_fail(expr) \
5929 do \
5930 { \
5931 if (expr) \
5932 goto failure; \
5933 } \
5934 while (0)
5935
5936#define po_misc_or_fail_no_backtrack(expr) \
5937 do \
5938 { \
5939 result = expr; \
5940 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5941 backtrack_pos = 0; \
5942 if (result != PARSE_OPERAND_SUCCESS) \
5943 goto failure; \
5944 } \
5945 while (0)
4962c51a 5946
c19d1205
ZW
5947 skip_whitespace (str);
5948
5949 for (i = 0; upat[i] != OP_stop; i++)
5950 {
5951 if (upat[i] >= OP_FIRST_OPTIONAL)
5952 {
5953 /* Remember where we are in case we need to backtrack. */
9c2799c2 5954 gas_assert (!backtrack_pos);
c19d1205
ZW
5955 backtrack_pos = str;
5956 backtrack_error = inst.error;
5957 backtrack_index = i;
5958 }
5959
b6702015 5960 if (i > 0 && (i > 1 || inst.operands[0].present))
c19d1205
ZW
5961 po_char_or_fail (',');
5962
5963 switch (upat[i])
5964 {
5965 /* Registers */
5966 case OP_oRRnpc:
5967 case OP_RRnpc:
5968 case OP_oRR:
5969 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5970 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5971 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5972 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5973 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5974 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5287ad62
JB
5975 case OP_oRND:
5976 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
cd2cf30b
PB
5977 case OP_RVC:
5978 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5979 break;
5980 /* Also accept generic coprocessor regs for unknown registers. */
5981 coproc_reg:
5982 po_reg_or_fail (REG_TYPE_CN);
5983 break;
c19d1205
ZW
5984 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5985 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5986 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5987 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5988 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5989 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5990 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5991 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5992 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5993 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5287ad62
JB
5994 case OP_oRNQ:
5995 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5996 case OP_oRNDQ:
5997 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
037e8744
JB
5998 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5999 case OP_oRNSDQ:
6000 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5287ad62
JB
6001
6002 /* Neon scalar. Using an element size of 8 means that some invalid
6003 scalars are accepted here, so deal with those in later code. */
6004 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6005
6006 /* WARNING: We can expand to two operands here. This has the potential
6007 to totally confuse the backtracking mechanism! It will be OK at
6008 least as long as we don't try to use optional args as well,
6009 though. */
6010 case OP_NILO:
6011 {
6012 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
466bbf93 6013 inst.operands[i].present = 1;
5287ad62
JB
6014 i++;
6015 skip_past_comma (&str);
6016 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
6017 break;
6018 one_reg_only:
6019 /* Optional register operand was omitted. Unfortunately, it's in
6020 operands[i-1] and we need it to be in inst.operands[i]. Fix that
6021 here (this is a bit grotty). */
6022 inst.operands[i] = inst.operands[i-1];
6023 inst.operands[i-1].present = 0;
6024 break;
6025 try_imm:
036dc3f7
PB
6026 /* There's a possibility of getting a 64-bit immediate here, so
6027 we need special handling. */
6028 if (parse_big_immediate (&str, i) == FAIL)
6029 {
6030 inst.error = _("immediate value is out of range");
6031 goto failure;
6032 }
5287ad62
JB
6033 }
6034 break;
6035
6036 case OP_RNDQ_I0:
6037 {
6038 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6039 break;
6040 try_imm0:
6041 po_imm_or_fail (0, 0, TRUE);
6042 }
6043 break;
6044
037e8744
JB
6045 case OP_RVSD_I0:
6046 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6047 break;
6048
5287ad62
JB
6049 case OP_RR_RNSC:
6050 {
6051 po_scalar_or_goto (8, try_rr);
6052 break;
6053 try_rr:
6054 po_reg_or_fail (REG_TYPE_RN);
6055 }
6056 break;
6057
037e8744
JB
6058 case OP_RNSDQ_RNSC:
6059 {
6060 po_scalar_or_goto (8, try_nsdq);
6061 break;
6062 try_nsdq:
6063 po_reg_or_fail (REG_TYPE_NSDQ);
6064 }
6065 break;
6066
5287ad62
JB
6067 case OP_RNDQ_RNSC:
6068 {
6069 po_scalar_or_goto (8, try_ndq);
6070 break;
6071 try_ndq:
6072 po_reg_or_fail (REG_TYPE_NDQ);
6073 }
6074 break;
6075
6076 case OP_RND_RNSC:
6077 {
6078 po_scalar_or_goto (8, try_vfd);
6079 break;
6080 try_vfd:
6081 po_reg_or_fail (REG_TYPE_VFD);
6082 }
6083 break;
6084
6085 case OP_VMOV:
6086 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6087 not careful then bad things might happen. */
6088 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6089 break;
6090
6091 case OP_RNDQ_IMVNb:
6092 {
6093 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
6094 break;
6095 try_mvnimm:
6096 /* There's a possibility of getting a 64-bit immediate here, so
6097 we need special handling. */
6098 if (parse_big_immediate (&str, i) == FAIL)
6099 {
6100 inst.error = _("immediate value is out of range");
6101 goto failure;
6102 }
6103 }
6104 break;
6105
6106 case OP_RNDQ_I63b:
6107 {
6108 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6109 break;
6110 try_shimm:
6111 po_imm_or_fail (0, 63, TRUE);
6112 }
6113 break;
c19d1205
ZW
6114
6115 case OP_RRnpcb:
6116 po_char_or_fail ('[');
6117 po_reg_or_fail (REG_TYPE_RN);
6118 po_char_or_fail (']');
6119 break;
a737bd4d 6120
c19d1205 6121 case OP_RRw:
b6702015 6122 case OP_oRRw:
c19d1205
ZW
6123 po_reg_or_fail (REG_TYPE_RN);
6124 if (skip_past_char (&str, '!') == SUCCESS)
6125 inst.operands[i].writeback = 1;
6126 break;
6127
6128 /* Immediates */
6129 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6130 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6131 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5287ad62 6132 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
c19d1205
ZW
6133 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6134 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5287ad62 6135 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
c19d1205 6136 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5287ad62
JB
6137 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6138 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6139 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
c19d1205 6140 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
c19d1205
ZW
6141
6142 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6143 case OP_oI7b:
6144 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6145 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6146 case OP_oI31b:
6147 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5287ad62 6148 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
c19d1205
ZW
6149 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6150
6151 /* Immediate variants */
6152 case OP_oI255c:
6153 po_char_or_fail ('{');
6154 po_imm_or_fail (0, 255, TRUE);
6155 po_char_or_fail ('}');
6156 break;
6157
6158 case OP_I31w:
6159 /* The expression parser chokes on a trailing !, so we have
6160 to find it first and zap it. */
6161 {
6162 char *s = str;
6163 while (*s && *s != ',')
6164 s++;
6165 if (s[-1] == '!')
6166 {
6167 s[-1] = '\0';
6168 inst.operands[i].writeback = 1;
6169 }
6170 po_imm_or_fail (0, 31, TRUE);
6171 if (str == s - 1)
6172 str = s;
6173 }
6174 break;
6175
6176 /* Expressions */
6177 case OP_EXPi: EXPi:
6178 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6179 GE_OPT_PREFIX));
6180 break;
6181
6182 case OP_EXP:
6183 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6184 GE_NO_PREFIX));
6185 break;
6186
6187 case OP_EXPr: EXPr:
6188 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6189 GE_NO_PREFIX));
6190 if (inst.reloc.exp.X_op == O_symbol)
a737bd4d 6191 {
c19d1205
ZW
6192 val = parse_reloc (&str);
6193 if (val == -1)
6194 {
6195 inst.error = _("unrecognized relocation suffix");
6196 goto failure;
6197 }
6198 else if (val != BFD_RELOC_UNUSED)
6199 {
6200 inst.operands[i].imm = val;
6201 inst.operands[i].hasreloc = 1;
6202 }
a737bd4d 6203 }
c19d1205 6204 break;
a737bd4d 6205
b6895b4f
PB
6206 /* Operand for MOVW or MOVT. */
6207 case OP_HALF:
6208 po_misc_or_fail (parse_half (&str));
6209 break;
6210
e07e6e58 6211 /* Register or expression. */
c19d1205
ZW
6212 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6213 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
a737bd4d 6214
e07e6e58 6215 /* Register or immediate. */
c19d1205
ZW
6216 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6217 I0: po_imm_or_fail (0, 0, FALSE); break;
a737bd4d 6218
c19d1205
ZW
6219 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6220 IF:
6221 if (!is_immediate_prefix (*str))
6222 goto bad_args;
6223 str++;
6224 val = parse_fpa_immediate (&str);
6225 if (val == FAIL)
6226 goto failure;
6227 /* FPA immediates are encoded as registers 8-15.
6228 parse_fpa_immediate has already applied the offset. */
6229 inst.operands[i].reg = val;
6230 inst.operands[i].isreg = 1;
6231 break;
09d92015 6232
2d447fca
JM
6233 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6234 I32z: po_imm_or_fail (0, 32, FALSE); break;
6235
e07e6e58 6236 /* Two kinds of register. */
c19d1205
ZW
6237 case OP_RIWR_RIWC:
6238 {
6239 struct reg_entry *rege = arm_reg_parse_multi (&str);
97f87066
JM
6240 if (!rege
6241 || (rege->type != REG_TYPE_MMXWR
6242 && rege->type != REG_TYPE_MMXWC
6243 && rege->type != REG_TYPE_MMXWCG))
c19d1205
ZW
6244 {
6245 inst.error = _("iWMMXt data or control register expected");
6246 goto failure;
6247 }
6248 inst.operands[i].reg = rege->number;
6249 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6250 }
6251 break;
09d92015 6252
41adaa5c
JM
6253 case OP_RIWC_RIWG:
6254 {
6255 struct reg_entry *rege = arm_reg_parse_multi (&str);
6256 if (!rege
6257 || (rege->type != REG_TYPE_MMXWC
6258 && rege->type != REG_TYPE_MMXWCG))
6259 {
6260 inst.error = _("iWMMXt control register expected");
6261 goto failure;
6262 }
6263 inst.operands[i].reg = rege->number;
6264 inst.operands[i].isreg = 1;
6265 }
6266 break;
6267
c19d1205
ZW
6268 /* Misc */
6269 case OP_CPSF: val = parse_cps_flags (&str); break;
6270 case OP_ENDI: val = parse_endian_specifier (&str); break;
6271 case OP_oROR: val = parse_ror (&str); break;
6272 case OP_PSR: val = parse_psr (&str); break;
6273 case OP_COND: val = parse_cond (&str); break;
62b3e311 6274 case OP_oBARRIER:val = parse_barrier (&str); break;
c19d1205 6275
037e8744
JB
6276 case OP_RVC_PSR:
6277 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6278 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6279 break;
6280 try_psr:
6281 val = parse_psr (&str);
6282 break;
6283
6284 case OP_APSR_RR:
6285 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6286 break;
6287 try_apsr:
6288 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6289 instruction). */
6290 if (strncasecmp (str, "APSR_", 5) == 0)
6291 {
6292 unsigned found = 0;
6293 str += 5;
6294 while (found < 15)
6295 switch (*str++)
6296 {
6297 case 'c': found = (found & 1) ? 16 : found | 1; break;
6298 case 'n': found = (found & 2) ? 16 : found | 2; break;
6299 case 'z': found = (found & 4) ? 16 : found | 4; break;
6300 case 'v': found = (found & 8) ? 16 : found | 8; break;
6301 default: found = 16;
6302 }
6303 if (found != 15)
6304 goto failure;
6305 inst.operands[i].isvec = 1;
6306 }
6307 else
6308 goto failure;
6309 break;
6310
92e90b6e
PB
6311 case OP_TB:
6312 po_misc_or_fail (parse_tb (&str));
6313 break;
6314
e07e6e58 6315 /* Register lists. */
c19d1205
ZW
6316 case OP_REGLST:
6317 val = parse_reg_list (&str);
6318 if (*str == '^')
6319 {
6320 inst.operands[1].writeback = 1;
6321 str++;
6322 }
6323 break;
09d92015 6324
c19d1205 6325 case OP_VRSLST:
5287ad62 6326 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
c19d1205 6327 break;
09d92015 6328
c19d1205 6329 case OP_VRDLST:
5287ad62 6330 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
c19d1205 6331 break;
a737bd4d 6332
037e8744
JB
6333 case OP_VRSDLST:
6334 /* Allow Q registers too. */
6335 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6336 REGLIST_NEON_D);
6337 if (val == FAIL)
6338 {
6339 inst.error = NULL;
6340 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6341 REGLIST_VFP_S);
6342 inst.operands[i].issingle = 1;
6343 }
6344 break;
6345
5287ad62
JB
6346 case OP_NRDLST:
6347 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6348 REGLIST_NEON_D);
6349 break;
6350
6351 case OP_NSTRLST:
dcbf9037
JB
6352 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6353 &inst.operands[i].vectype);
5287ad62
JB
6354 break;
6355
c19d1205
ZW
6356 /* Addressing modes */
6357 case OP_ADDR:
6358 po_misc_or_fail (parse_address (&str, i));
6359 break;
09d92015 6360
4962c51a
MS
6361 case OP_ADDRGLDR:
6362 po_misc_or_fail_no_backtrack (
6363 parse_address_group_reloc (&str, i, GROUP_LDR));
6364 break;
6365
6366 case OP_ADDRGLDRS:
6367 po_misc_or_fail_no_backtrack (
6368 parse_address_group_reloc (&str, i, GROUP_LDRS));
6369 break;
6370
6371 case OP_ADDRGLDC:
6372 po_misc_or_fail_no_backtrack (
6373 parse_address_group_reloc (&str, i, GROUP_LDC));
6374 break;
6375
c19d1205
ZW
6376 case OP_SH:
6377 po_misc_or_fail (parse_shifter_operand (&str, i));
6378 break;
09d92015 6379
4962c51a
MS
6380 case OP_SHG:
6381 po_misc_or_fail_no_backtrack (
6382 parse_shifter_operand_group_reloc (&str, i));
6383 break;
6384
c19d1205
ZW
6385 case OP_oSHll:
6386 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6387 break;
09d92015 6388
c19d1205
ZW
6389 case OP_oSHar:
6390 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6391 break;
09d92015 6392
c19d1205
ZW
6393 case OP_oSHllar:
6394 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6395 break;
09d92015 6396
c19d1205 6397 default:
bd3ba5d1 6398 as_fatal (_("unhandled operand code %d"), upat[i]);
c19d1205 6399 }
09d92015 6400
c19d1205
ZW
6401 /* Various value-based sanity checks and shared operations. We
6402 do not signal immediate failures for the register constraints;
6403 this allows a syntax error to take precedence. */
6404 switch (upat[i])
6405 {
6406 case OP_oRRnpc:
6407 case OP_RRnpc:
6408 case OP_RRnpcb:
6409 case OP_RRw:
b6702015 6410 case OP_oRRw:
c19d1205
ZW
6411 case OP_RRnpc_I0:
6412 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6413 inst.error = BAD_PC;
6414 break;
09d92015 6415
c19d1205
ZW
6416 case OP_CPSF:
6417 case OP_ENDI:
6418 case OP_oROR:
6419 case OP_PSR:
037e8744 6420 case OP_RVC_PSR:
c19d1205 6421 case OP_COND:
62b3e311 6422 case OP_oBARRIER:
c19d1205
ZW
6423 case OP_REGLST:
6424 case OP_VRSLST:
6425 case OP_VRDLST:
037e8744 6426 case OP_VRSDLST:
5287ad62
JB
6427 case OP_NRDLST:
6428 case OP_NSTRLST:
c19d1205
ZW
6429 if (val == FAIL)
6430 goto failure;
6431 inst.operands[i].imm = val;
6432 break;
a737bd4d 6433
c19d1205
ZW
6434 default:
6435 break;
6436 }
09d92015 6437
c19d1205
ZW
6438 /* If we get here, this operand was successfully parsed. */
6439 inst.operands[i].present = 1;
6440 continue;
09d92015 6441
c19d1205 6442 bad_args:
09d92015 6443 inst.error = BAD_ARGS;
c19d1205
ZW
6444
6445 failure:
6446 if (!backtrack_pos)
d252fdde
PB
6447 {
6448 /* The parse routine should already have set inst.error, but set a
5f4273c7 6449 default here just in case. */
d252fdde
PB
6450 if (!inst.error)
6451 inst.error = _("syntax error");
6452 return FAIL;
6453 }
c19d1205
ZW
6454
6455 /* Do not backtrack over a trailing optional argument that
6456 absorbed some text. We will only fail again, with the
6457 'garbage following instruction' error message, which is
6458 probably less helpful than the current one. */
6459 if (backtrack_index == i && backtrack_pos != str
6460 && upat[i+1] == OP_stop)
d252fdde
PB
6461 {
6462 if (!inst.error)
6463 inst.error = _("syntax error");
6464 return FAIL;
6465 }
c19d1205
ZW
6466
6467 /* Try again, skipping the optional argument at backtrack_pos. */
6468 str = backtrack_pos;
6469 inst.error = backtrack_error;
6470 inst.operands[backtrack_index].present = 0;
6471 i = backtrack_index;
6472 backtrack_pos = 0;
09d92015 6473 }
09d92015 6474
c19d1205
ZW
6475 /* Check that we have parsed all the arguments. */
6476 if (*str != '\0' && !inst.error)
6477 inst.error = _("garbage following instruction");
09d92015 6478
c19d1205 6479 return inst.error ? FAIL : SUCCESS;
09d92015
MM
6480}
6481
c19d1205
ZW
6482#undef po_char_or_fail
6483#undef po_reg_or_fail
6484#undef po_reg_or_goto
6485#undef po_imm_or_fail
5287ad62 6486#undef po_scalar_or_fail
e07e6e58 6487
c19d1205 6488/* Shorthand macro for instruction encoding functions issuing errors. */
e07e6e58
NC
6489#define constraint(expr, err) \
6490 do \
c19d1205 6491 { \
e07e6e58
NC
6492 if (expr) \
6493 { \
6494 inst.error = err; \
6495 return; \
6496 } \
c19d1205 6497 } \
e07e6e58 6498 while (0)
c19d1205 6499
fdfde340
JM
6500/* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6501 instructions are unpredictable if these registers are used. This
6502 is the BadReg predicate in ARM's Thumb-2 documentation. */
6503#define reject_bad_reg(reg) \
6504 do \
6505 if (reg == REG_SP || reg == REG_PC) \
6506 { \
6507 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6508 return; \
6509 } \
6510 while (0)
6511
94206790
MM
6512/* If REG is R13 (the stack pointer), warn that its use is
6513 deprecated. */
6514#define warn_deprecated_sp(reg) \
6515 do \
6516 if (warn_on_deprecated && reg == REG_SP) \
6517 as_warn (_("use of r13 is deprecated")); \
6518 while (0)
6519
c19d1205
ZW
6520/* Functions for operand encoding. ARM, then Thumb. */
6521
6522#define rotate_left(v, n) (v << n | v >> (32 - n))
6523
6524/* If VAL can be encoded in the immediate field of an ARM instruction,
6525 return the encoded form. Otherwise, return FAIL. */
6526
6527static unsigned int
6528encode_arm_immediate (unsigned int val)
09d92015 6529{
c19d1205
ZW
6530 unsigned int a, i;
6531
6532 for (i = 0; i < 32; i += 2)
6533 if ((a = rotate_left (val, i)) <= 0xff)
6534 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6535
6536 return FAIL;
09d92015
MM
6537}
6538
c19d1205
ZW
6539/* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6540 return the encoded form. Otherwise, return FAIL. */
6541static unsigned int
6542encode_thumb32_immediate (unsigned int val)
09d92015 6543{
c19d1205 6544 unsigned int a, i;
09d92015 6545
9c3c69f2 6546 if (val <= 0xff)
c19d1205 6547 return val;
a737bd4d 6548
9c3c69f2 6549 for (i = 1; i <= 24; i++)
09d92015 6550 {
9c3c69f2
PB
6551 a = val >> i;
6552 if ((val & ~(0xff << i)) == 0)
6553 return ((val >> i) & 0x7f) | ((32 - i) << 7);
09d92015 6554 }
a737bd4d 6555
c19d1205
ZW
6556 a = val & 0xff;
6557 if (val == ((a << 16) | a))
6558 return 0x100 | a;
6559 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6560 return 0x300 | a;
09d92015 6561
c19d1205
ZW
6562 a = val & 0xff00;
6563 if (val == ((a << 16) | a))
6564 return 0x200 | (a >> 8);
a737bd4d 6565
c19d1205 6566 return FAIL;
09d92015 6567}
5287ad62 6568/* Encode a VFP SP or DP register number into inst.instruction. */
09d92015
MM
6569
6570static void
5287ad62
JB
6571encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6572{
6573 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6574 && reg > 15)
6575 {
b1cc4aeb 6576 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
5287ad62
JB
6577 {
6578 if (thumb_mode)
6579 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
b1cc4aeb 6580 fpu_vfp_ext_d32);
5287ad62
JB
6581 else
6582 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
b1cc4aeb 6583 fpu_vfp_ext_d32);
5287ad62
JB
6584 }
6585 else
6586 {
dcbf9037 6587 first_error (_("D register out of range for selected VFP version"));
5287ad62
JB
6588 return;
6589 }
6590 }
6591
c19d1205 6592 switch (pos)
09d92015 6593 {
c19d1205
ZW
6594 case VFP_REG_Sd:
6595 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6596 break;
6597
6598 case VFP_REG_Sn:
6599 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6600 break;
6601
6602 case VFP_REG_Sm:
6603 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6604 break;
6605
5287ad62
JB
6606 case VFP_REG_Dd:
6607 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6608 break;
5f4273c7 6609
5287ad62
JB
6610 case VFP_REG_Dn:
6611 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6612 break;
5f4273c7 6613
5287ad62
JB
6614 case VFP_REG_Dm:
6615 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6616 break;
6617
c19d1205
ZW
6618 default:
6619 abort ();
09d92015 6620 }
09d92015
MM
6621}
6622
c19d1205 6623/* Encode a <shift> in an ARM-format instruction. The immediate,
55cf6793 6624 if any, is handled by md_apply_fix. */
09d92015 6625static void
c19d1205 6626encode_arm_shift (int i)
09d92015 6627{
c19d1205
ZW
6628 if (inst.operands[i].shift_kind == SHIFT_RRX)
6629 inst.instruction |= SHIFT_ROR << 5;
6630 else
09d92015 6631 {
c19d1205
ZW
6632 inst.instruction |= inst.operands[i].shift_kind << 5;
6633 if (inst.operands[i].immisreg)
6634 {
6635 inst.instruction |= SHIFT_BY_REG;
6636 inst.instruction |= inst.operands[i].imm << 8;
6637 }
6638 else
6639 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
09d92015 6640 }
c19d1205 6641}
09d92015 6642
c19d1205
ZW
6643static void
6644encode_arm_shifter_operand (int i)
6645{
6646 if (inst.operands[i].isreg)
09d92015 6647 {
c19d1205
ZW
6648 inst.instruction |= inst.operands[i].reg;
6649 encode_arm_shift (i);
09d92015 6650 }
c19d1205
ZW
6651 else
6652 inst.instruction |= INST_IMMEDIATE;
09d92015
MM
6653}
6654
c19d1205 6655/* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
09d92015 6656static void
c19d1205 6657encode_arm_addr_mode_common (int i, bfd_boolean is_t)
09d92015 6658{
9c2799c2 6659 gas_assert (inst.operands[i].isreg);
c19d1205 6660 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6661
c19d1205 6662 if (inst.operands[i].preind)
09d92015 6663 {
c19d1205
ZW
6664 if (is_t)
6665 {
6666 inst.error = _("instruction does not accept preindexed addressing");
6667 return;
6668 }
6669 inst.instruction |= PRE_INDEX;
6670 if (inst.operands[i].writeback)
6671 inst.instruction |= WRITE_BACK;
09d92015 6672
c19d1205
ZW
6673 }
6674 else if (inst.operands[i].postind)
6675 {
9c2799c2 6676 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
6677 if (is_t)
6678 inst.instruction |= WRITE_BACK;
6679 }
6680 else /* unindexed - only for coprocessor */
09d92015 6681 {
c19d1205 6682 inst.error = _("instruction does not accept unindexed addressing");
09d92015
MM
6683 return;
6684 }
6685
c19d1205
ZW
6686 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6687 && (((inst.instruction & 0x000f0000) >> 16)
6688 == ((inst.instruction & 0x0000f000) >> 12)))
6689 as_warn ((inst.instruction & LOAD_BIT)
6690 ? _("destination register same as write-back base")
6691 : _("source register same as write-back base"));
09d92015
MM
6692}
6693
c19d1205
ZW
6694/* inst.operands[i] was set up by parse_address. Encode it into an
6695 ARM-format mode 2 load or store instruction. If is_t is true,
6696 reject forms that cannot be used with a T instruction (i.e. not
6697 post-indexed). */
a737bd4d 6698static void
c19d1205 6699encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
09d92015 6700{
c19d1205 6701 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6702
c19d1205 6703 if (inst.operands[i].immisreg)
09d92015 6704 {
c19d1205
ZW
6705 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6706 inst.instruction |= inst.operands[i].imm;
6707 if (!inst.operands[i].negative)
6708 inst.instruction |= INDEX_UP;
6709 if (inst.operands[i].shifted)
6710 {
6711 if (inst.operands[i].shift_kind == SHIFT_RRX)
6712 inst.instruction |= SHIFT_ROR << 5;
6713 else
6714 {
6715 inst.instruction |= inst.operands[i].shift_kind << 5;
6716 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6717 }
6718 }
09d92015 6719 }
c19d1205 6720 else /* immediate offset in inst.reloc */
09d92015 6721 {
c19d1205
ZW
6722 if (inst.reloc.type == BFD_RELOC_UNUSED)
6723 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
09d92015 6724 }
09d92015
MM
6725}
6726
c19d1205
ZW
6727/* inst.operands[i] was set up by parse_address. Encode it into an
6728 ARM-format mode 3 load or store instruction. Reject forms that
6729 cannot be used with such instructions. If is_t is true, reject
6730 forms that cannot be used with a T instruction (i.e. not
6731 post-indexed). */
6732static void
6733encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
09d92015 6734{
c19d1205 6735 if (inst.operands[i].immisreg && inst.operands[i].shifted)
09d92015 6736 {
c19d1205
ZW
6737 inst.error = _("instruction does not accept scaled register index");
6738 return;
09d92015 6739 }
a737bd4d 6740
c19d1205 6741 encode_arm_addr_mode_common (i, is_t);
a737bd4d 6742
c19d1205
ZW
6743 if (inst.operands[i].immisreg)
6744 {
6745 inst.instruction |= inst.operands[i].imm;
6746 if (!inst.operands[i].negative)
6747 inst.instruction |= INDEX_UP;
6748 }
6749 else /* immediate offset in inst.reloc */
6750 {
6751 inst.instruction |= HWOFFSET_IMM;
6752 if (inst.reloc.type == BFD_RELOC_UNUSED)
6753 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
c19d1205 6754 }
a737bd4d
NC
6755}
6756
c19d1205
ZW
6757/* inst.operands[i] was set up by parse_address. Encode it into an
6758 ARM-format instruction. Reject all forms which cannot be encoded
6759 into a coprocessor load/store instruction. If wb_ok is false,
6760 reject use of writeback; if unind_ok is false, reject use of
6761 unindexed addressing. If reloc_override is not 0, use it instead
4962c51a
MS
6762 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6763 (in which case it is preserved). */
09d92015 6764
c19d1205
ZW
6765static int
6766encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
09d92015 6767{
c19d1205 6768 inst.instruction |= inst.operands[i].reg << 16;
a737bd4d 6769
9c2799c2 6770 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
09d92015 6771
c19d1205 6772 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
09d92015 6773 {
9c2799c2 6774 gas_assert (!inst.operands[i].writeback);
c19d1205
ZW
6775 if (!unind_ok)
6776 {
6777 inst.error = _("instruction does not support unindexed addressing");
6778 return FAIL;
6779 }
6780 inst.instruction |= inst.operands[i].imm;
6781 inst.instruction |= INDEX_UP;
6782 return SUCCESS;
09d92015 6783 }
a737bd4d 6784
c19d1205
ZW
6785 if (inst.operands[i].preind)
6786 inst.instruction |= PRE_INDEX;
a737bd4d 6787
c19d1205 6788 if (inst.operands[i].writeback)
09d92015 6789 {
c19d1205
ZW
6790 if (inst.operands[i].reg == REG_PC)
6791 {
6792 inst.error = _("pc may not be used with write-back");
6793 return FAIL;
6794 }
6795 if (!wb_ok)
6796 {
6797 inst.error = _("instruction does not support writeback");
6798 return FAIL;
6799 }
6800 inst.instruction |= WRITE_BACK;
09d92015 6801 }
a737bd4d 6802
c19d1205 6803 if (reloc_override)
21d799b5 6804 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
4962c51a
MS
6805 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6806 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6807 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6808 {
6809 if (thumb_mode)
6810 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6811 else
6812 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6813 }
6814
c19d1205
ZW
6815 return SUCCESS;
6816}
a737bd4d 6817
c19d1205
ZW
6818/* inst.reloc.exp describes an "=expr" load pseudo-operation.
6819 Determine whether it can be performed with a move instruction; if
6820 it can, convert inst.instruction to that move instruction and
c921be7d
NC
6821 return TRUE; if it can't, convert inst.instruction to a literal-pool
6822 load and return FALSE. If this is not a valid thing to do in the
6823 current context, set inst.error and return TRUE.
a737bd4d 6824
c19d1205
ZW
6825 inst.operands[i] describes the destination register. */
6826
c921be7d 6827static bfd_boolean
c19d1205
ZW
6828move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6829{
53365c0d
PB
6830 unsigned long tbit;
6831
6832 if (thumb_p)
6833 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6834 else
6835 tbit = LOAD_BIT;
6836
6837 if ((inst.instruction & tbit) == 0)
09d92015 6838 {
c19d1205 6839 inst.error = _("invalid pseudo operation");
c921be7d 6840 return TRUE;
09d92015 6841 }
c19d1205 6842 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
09d92015
MM
6843 {
6844 inst.error = _("constant expression expected");
c921be7d 6845 return TRUE;
09d92015 6846 }
c19d1205 6847 if (inst.reloc.exp.X_op == O_constant)
09d92015 6848 {
c19d1205
ZW
6849 if (thumb_p)
6850 {
53365c0d 6851 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
c19d1205
ZW
6852 {
6853 /* This can be done with a mov(1) instruction. */
6854 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6855 inst.instruction |= inst.reloc.exp.X_add_number;
c921be7d 6856 return TRUE;
c19d1205
ZW
6857 }
6858 }
6859 else
6860 {
6861 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6862 if (value != FAIL)
6863 {
6864 /* This can be done with a mov instruction. */
6865 inst.instruction &= LITERAL_MASK;
6866 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6867 inst.instruction |= value & 0xfff;
c921be7d 6868 return TRUE;
c19d1205 6869 }
09d92015 6870
c19d1205
ZW
6871 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6872 if (value != FAIL)
6873 {
6874 /* This can be done with a mvn instruction. */
6875 inst.instruction &= LITERAL_MASK;
6876 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6877 inst.instruction |= value & 0xfff;
c921be7d 6878 return TRUE;
c19d1205
ZW
6879 }
6880 }
09d92015
MM
6881 }
6882
c19d1205
ZW
6883 if (add_to_lit_pool () == FAIL)
6884 {
6885 inst.error = _("literal pool insertion failed");
c921be7d 6886 return TRUE;
c19d1205
ZW
6887 }
6888 inst.operands[1].reg = REG_PC;
6889 inst.operands[1].isreg = 1;
6890 inst.operands[1].preind = 1;
6891 inst.reloc.pc_rel = 1;
6892 inst.reloc.type = (thumb_p
6893 ? BFD_RELOC_ARM_THUMB_OFFSET
6894 : (mode_3
6895 ? BFD_RELOC_ARM_HWLITERAL
6896 : BFD_RELOC_ARM_LITERAL));
c921be7d 6897 return FALSE;
09d92015
MM
6898}
6899
5f4273c7 6900/* Functions for instruction encoding, sorted by sub-architecture.
c19d1205
ZW
6901 First some generics; their names are taken from the conventional
6902 bit positions for register arguments in ARM format instructions. */
09d92015 6903
a737bd4d 6904static void
c19d1205 6905do_noargs (void)
09d92015 6906{
c19d1205 6907}
a737bd4d 6908
c19d1205
ZW
6909static void
6910do_rd (void)
6911{
6912 inst.instruction |= inst.operands[0].reg << 12;
6913}
a737bd4d 6914
c19d1205
ZW
6915static void
6916do_rd_rm (void)
6917{
6918 inst.instruction |= inst.operands[0].reg << 12;
6919 inst.instruction |= inst.operands[1].reg;
6920}
09d92015 6921
c19d1205
ZW
6922static void
6923do_rd_rn (void)
6924{
6925 inst.instruction |= inst.operands[0].reg << 12;
6926 inst.instruction |= inst.operands[1].reg << 16;
6927}
a737bd4d 6928
c19d1205
ZW
6929static void
6930do_rn_rd (void)
6931{
6932 inst.instruction |= inst.operands[0].reg << 16;
6933 inst.instruction |= inst.operands[1].reg << 12;
6934}
09d92015 6935
c19d1205
ZW
6936static void
6937do_rd_rm_rn (void)
6938{
9a64e435 6939 unsigned Rn = inst.operands[2].reg;
708587a4 6940 /* Enforce restrictions on SWP instruction. */
9a64e435
PB
6941 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6942 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6943 _("Rn must not overlap other operands"));
c19d1205
ZW
6944 inst.instruction |= inst.operands[0].reg << 12;
6945 inst.instruction |= inst.operands[1].reg;
9a64e435 6946 inst.instruction |= Rn << 16;
c19d1205 6947}
09d92015 6948
c19d1205
ZW
6949static void
6950do_rd_rn_rm (void)
6951{
6952 inst.instruction |= inst.operands[0].reg << 12;
6953 inst.instruction |= inst.operands[1].reg << 16;
6954 inst.instruction |= inst.operands[2].reg;
6955}
a737bd4d 6956
c19d1205
ZW
6957static void
6958do_rm_rd_rn (void)
6959{
6960 inst.instruction |= inst.operands[0].reg;
6961 inst.instruction |= inst.operands[1].reg << 12;
6962 inst.instruction |= inst.operands[2].reg << 16;
6963}
09d92015 6964
c19d1205
ZW
6965static void
6966do_imm0 (void)
6967{
6968 inst.instruction |= inst.operands[0].imm;
6969}
09d92015 6970
c19d1205
ZW
6971static void
6972do_rd_cpaddr (void)
6973{
6974 inst.instruction |= inst.operands[0].reg << 12;
6975 encode_arm_cp_address (1, TRUE, TRUE, 0);
09d92015 6976}
a737bd4d 6977
c19d1205
ZW
6978/* ARM instructions, in alphabetical order by function name (except
6979 that wrapper functions appear immediately after the function they
6980 wrap). */
09d92015 6981
c19d1205
ZW
6982/* This is a pseudo-op of the form "adr rd, label" to be converted
6983 into a relative address of the form "add rd, pc, #label-.-8". */
09d92015
MM
6984
6985static void
c19d1205 6986do_adr (void)
09d92015 6987{
c19d1205 6988 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 6989
c19d1205
ZW
6990 /* Frag hacking will turn this into a sub instruction if the offset turns
6991 out to be negative. */
6992 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
c19d1205 6993 inst.reloc.pc_rel = 1;
2fc8bdac 6994 inst.reloc.exp.X_add_number -= 8;
c19d1205 6995}
b99bd4ef 6996
c19d1205
ZW
6997/* This is a pseudo-op of the form "adrl rd, label" to be converted
6998 into a relative address of the form:
6999 add rd, pc, #low(label-.-8)"
7000 add rd, rd, #high(label-.-8)" */
b99bd4ef 7001
c19d1205
ZW
7002static void
7003do_adrl (void)
7004{
7005 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
a737bd4d 7006
c19d1205
ZW
7007 /* Frag hacking will turn this into a sub instruction if the offset turns
7008 out to be negative. */
7009 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
c19d1205
ZW
7010 inst.reloc.pc_rel = 1;
7011 inst.size = INSN_SIZE * 2;
2fc8bdac 7012 inst.reloc.exp.X_add_number -= 8;
b99bd4ef
NC
7013}
7014
b99bd4ef 7015static void
c19d1205 7016do_arit (void)
b99bd4ef 7017{
c19d1205
ZW
7018 if (!inst.operands[1].present)
7019 inst.operands[1].reg = inst.operands[0].reg;
7020 inst.instruction |= inst.operands[0].reg << 12;
7021 inst.instruction |= inst.operands[1].reg << 16;
7022 encode_arm_shifter_operand (2);
7023}
b99bd4ef 7024
62b3e311
PB
7025static void
7026do_barrier (void)
7027{
7028 if (inst.operands[0].present)
7029 {
7030 constraint ((inst.instruction & 0xf0) != 0x40
7031 && inst.operands[0].imm != 0xf,
bd3ba5d1 7032 _("bad barrier type"));
62b3e311
PB
7033 inst.instruction |= inst.operands[0].imm;
7034 }
7035 else
7036 inst.instruction |= 0xf;
7037}
7038
c19d1205
ZW
7039static void
7040do_bfc (void)
7041{
7042 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7043 constraint (msb > 32, _("bit-field extends past end of register"));
7044 /* The instruction encoding stores the LSB and MSB,
7045 not the LSB and width. */
7046 inst.instruction |= inst.operands[0].reg << 12;
7047 inst.instruction |= inst.operands[1].imm << 7;
7048 inst.instruction |= (msb - 1) << 16;
7049}
b99bd4ef 7050
c19d1205
ZW
7051static void
7052do_bfi (void)
7053{
7054 unsigned int msb;
b99bd4ef 7055
c19d1205
ZW
7056 /* #0 in second position is alternative syntax for bfc, which is
7057 the same instruction but with REG_PC in the Rm field. */
7058 if (!inst.operands[1].isreg)
7059 inst.operands[1].reg = REG_PC;
b99bd4ef 7060
c19d1205
ZW
7061 msb = inst.operands[2].imm + inst.operands[3].imm;
7062 constraint (msb > 32, _("bit-field extends past end of register"));
7063 /* The instruction encoding stores the LSB and MSB,
7064 not the LSB and width. */
7065 inst.instruction |= inst.operands[0].reg << 12;
7066 inst.instruction |= inst.operands[1].reg;
7067 inst.instruction |= inst.operands[2].imm << 7;
7068 inst.instruction |= (msb - 1) << 16;
b99bd4ef
NC
7069}
7070
b99bd4ef 7071static void
c19d1205 7072do_bfx (void)
b99bd4ef 7073{
c19d1205
ZW
7074 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7075 _("bit-field extends past end of register"));
7076 inst.instruction |= inst.operands[0].reg << 12;
7077 inst.instruction |= inst.operands[1].reg;
7078 inst.instruction |= inst.operands[2].imm << 7;
7079 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7080}
09d92015 7081
c19d1205
ZW
7082/* ARM V5 breakpoint instruction (argument parse)
7083 BKPT <16 bit unsigned immediate>
7084 Instruction is not conditional.
7085 The bit pattern given in insns[] has the COND_ALWAYS condition,
7086 and it is an error if the caller tried to override that. */
b99bd4ef 7087
c19d1205
ZW
7088static void
7089do_bkpt (void)
7090{
7091 /* Top 12 of 16 bits to bits 19:8. */
7092 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
09d92015 7093
c19d1205
ZW
7094 /* Bottom 4 of 16 bits to bits 3:0. */
7095 inst.instruction |= inst.operands[0].imm & 0xf;
7096}
09d92015 7097
c19d1205
ZW
7098static void
7099encode_branch (int default_reloc)
7100{
7101 if (inst.operands[0].hasreloc)
7102 {
7103 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7104 _("the only suffix valid here is '(plt)'"));
267bf995 7105 inst.reloc.type = BFD_RELOC_ARM_PLT32;
c19d1205 7106 }
b99bd4ef 7107 else
c19d1205 7108 {
21d799b5 7109 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
c19d1205 7110 }
2fc8bdac 7111 inst.reloc.pc_rel = 1;
b99bd4ef
NC
7112}
7113
b99bd4ef 7114static void
c19d1205 7115do_branch (void)
b99bd4ef 7116{
39b41c9c
PB
7117#ifdef OBJ_ELF
7118 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7119 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7120 else
7121#endif
7122 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7123}
7124
7125static void
7126do_bl (void)
7127{
7128#ifdef OBJ_ELF
7129 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7130 {
7131 if (inst.cond == COND_ALWAYS)
7132 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7133 else
7134 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7135 }
7136 else
7137#endif
7138 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
c19d1205 7139}
b99bd4ef 7140
c19d1205
ZW
7141/* ARM V5 branch-link-exchange instruction (argument parse)
7142 BLX <target_addr> ie BLX(1)
7143 BLX{<condition>} <Rm> ie BLX(2)
7144 Unfortunately, there are two different opcodes for this mnemonic.
7145 So, the insns[].value is not used, and the code here zaps values
7146 into inst.instruction.
7147 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
b99bd4ef 7148
c19d1205
ZW
7149static void
7150do_blx (void)
7151{
7152 if (inst.operands[0].isreg)
b99bd4ef 7153 {
c19d1205
ZW
7154 /* Arg is a register; the opcode provided by insns[] is correct.
7155 It is not illegal to do "blx pc", just useless. */
7156 if (inst.operands[0].reg == REG_PC)
7157 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
b99bd4ef 7158
c19d1205
ZW
7159 inst.instruction |= inst.operands[0].reg;
7160 }
7161 else
b99bd4ef 7162 {
c19d1205 7163 /* Arg is an address; this instruction cannot be executed
267bf995
RR
7164 conditionally, and the opcode must be adjusted.
7165 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7166 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
c19d1205 7167 constraint (inst.cond != COND_ALWAYS, BAD_COND);
2fc8bdac 7168 inst.instruction = 0xfa000000;
267bf995 7169 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
b99bd4ef 7170 }
c19d1205
ZW
7171}
7172
7173static void
7174do_bx (void)
7175{
845b51d6
PB
7176 bfd_boolean want_reloc;
7177
c19d1205
ZW
7178 if (inst.operands[0].reg == REG_PC)
7179 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
b99bd4ef 7180
c19d1205 7181 inst.instruction |= inst.operands[0].reg;
845b51d6
PB
7182 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7183 it is for ARMv4t or earlier. */
7184 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7185 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7186 want_reloc = TRUE;
7187
5ad34203 7188#ifdef OBJ_ELF
845b51d6 7189 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
5ad34203 7190#endif
584206db 7191 want_reloc = FALSE;
845b51d6
PB
7192
7193 if (want_reloc)
7194 inst.reloc.type = BFD_RELOC_ARM_V4BX;
09d92015
MM
7195}
7196
c19d1205
ZW
7197
7198/* ARM v5TEJ. Jump to Jazelle code. */
a737bd4d
NC
7199
7200static void
c19d1205 7201do_bxj (void)
a737bd4d 7202{
c19d1205
ZW
7203 if (inst.operands[0].reg == REG_PC)
7204 as_tsktsk (_("use of r15 in bxj is not really useful"));
7205
7206 inst.instruction |= inst.operands[0].reg;
a737bd4d
NC
7207}
7208
c19d1205
ZW
7209/* Co-processor data operation:
7210 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7211 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7212static void
7213do_cdp (void)
7214{
7215 inst.instruction |= inst.operands[0].reg << 8;
7216 inst.instruction |= inst.operands[1].imm << 20;
7217 inst.instruction |= inst.operands[2].reg << 12;
7218 inst.instruction |= inst.operands[3].reg << 16;
7219 inst.instruction |= inst.operands[4].reg;
7220 inst.instruction |= inst.operands[5].imm << 5;
7221}
a737bd4d
NC
7222
7223static void
c19d1205 7224do_cmp (void)
a737bd4d 7225{
c19d1205
ZW
7226 inst.instruction |= inst.operands[0].reg << 16;
7227 encode_arm_shifter_operand (1);
a737bd4d
NC
7228}
7229
c19d1205
ZW
7230/* Transfer between coprocessor and ARM registers.
7231 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7232 MRC2
7233 MCR{cond}
7234 MCR2
7235
7236 No special properties. */
09d92015
MM
7237
7238static void
c19d1205 7239do_co_reg (void)
09d92015 7240{
fdfde340
JM
7241 unsigned Rd;
7242
7243 Rd = inst.operands[2].reg;
7244 if (thumb_mode)
7245 {
7246 if (inst.instruction == 0xee000010
7247 || inst.instruction == 0xfe000010)
7248 /* MCR, MCR2 */
7249 reject_bad_reg (Rd);
7250 else
7251 /* MRC, MRC2 */
7252 constraint (Rd == REG_SP, BAD_SP);
7253 }
7254 else
7255 {
7256 /* MCR */
7257 if (inst.instruction == 0xe000010)
7258 constraint (Rd == REG_PC, BAD_PC);
7259 }
7260
7261
c19d1205
ZW
7262 inst.instruction |= inst.operands[0].reg << 8;
7263 inst.instruction |= inst.operands[1].imm << 21;
fdfde340 7264 inst.instruction |= Rd << 12;
c19d1205
ZW
7265 inst.instruction |= inst.operands[3].reg << 16;
7266 inst.instruction |= inst.operands[4].reg;
7267 inst.instruction |= inst.operands[5].imm << 5;
7268}
09d92015 7269
c19d1205
ZW
7270/* Transfer between coprocessor register and pair of ARM registers.
7271 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7272 MCRR2
7273 MRRC{cond}
7274 MRRC2
b99bd4ef 7275
c19d1205 7276 Two XScale instructions are special cases of these:
09d92015 7277
c19d1205
ZW
7278 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7279 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
b99bd4ef 7280
5f4273c7 7281 Result unpredictable if Rd or Rn is R15. */
a737bd4d 7282
c19d1205
ZW
7283static void
7284do_co_reg2c (void)
7285{
fdfde340
JM
7286 unsigned Rd, Rn;
7287
7288 Rd = inst.operands[2].reg;
7289 Rn = inst.operands[3].reg;
7290
7291 if (thumb_mode)
7292 {
7293 reject_bad_reg (Rd);
7294 reject_bad_reg (Rn);
7295 }
7296 else
7297 {
7298 constraint (Rd == REG_PC, BAD_PC);
7299 constraint (Rn == REG_PC, BAD_PC);
7300 }
7301
c19d1205
ZW
7302 inst.instruction |= inst.operands[0].reg << 8;
7303 inst.instruction |= inst.operands[1].imm << 4;
fdfde340
JM
7304 inst.instruction |= Rd << 12;
7305 inst.instruction |= Rn << 16;
c19d1205 7306 inst.instruction |= inst.operands[4].reg;
b99bd4ef
NC
7307}
7308
c19d1205
ZW
7309static void
7310do_cpsi (void)
7311{
7312 inst.instruction |= inst.operands[0].imm << 6;
a028a6f5
PB
7313 if (inst.operands[1].present)
7314 {
7315 inst.instruction |= CPSI_MMOD;
7316 inst.instruction |= inst.operands[1].imm;
7317 }
c19d1205 7318}
b99bd4ef 7319
62b3e311
PB
7320static void
7321do_dbg (void)
7322{
7323 inst.instruction |= inst.operands[0].imm;
7324}
7325
b99bd4ef 7326static void
c19d1205 7327do_it (void)
b99bd4ef 7328{
c19d1205 7329 /* There is no IT instruction in ARM mode. We
e07e6e58
NC
7330 process it to do the validation as if in
7331 thumb mode, just in case the code gets
7332 assembled for thumb using the unified syntax. */
7333
c19d1205 7334 inst.size = 0;
e07e6e58
NC
7335 if (unified_syntax)
7336 {
7337 set_it_insn_type (IT_INSN);
7338 now_it.mask = (inst.instruction & 0xf) | 0x10;
7339 now_it.cc = inst.operands[0].imm;
7340 }
09d92015 7341}
b99bd4ef 7342
09d92015 7343static void
c19d1205 7344do_ldmstm (void)
ea6ef066 7345{
c19d1205
ZW
7346 int base_reg = inst.operands[0].reg;
7347 int range = inst.operands[1].imm;
ea6ef066 7348
c19d1205
ZW
7349 inst.instruction |= base_reg << 16;
7350 inst.instruction |= range;
ea6ef066 7351
c19d1205
ZW
7352 if (inst.operands[1].writeback)
7353 inst.instruction |= LDM_TYPE_2_OR_3;
09d92015 7354
c19d1205 7355 if (inst.operands[0].writeback)
ea6ef066 7356 {
c19d1205
ZW
7357 inst.instruction |= WRITE_BACK;
7358 /* Check for unpredictable uses of writeback. */
7359 if (inst.instruction & LOAD_BIT)
09d92015 7360 {
c19d1205
ZW
7361 /* Not allowed in LDM type 2. */
7362 if ((inst.instruction & LDM_TYPE_2_OR_3)
7363 && ((range & (1 << REG_PC)) == 0))
7364 as_warn (_("writeback of base register is UNPREDICTABLE"));
7365 /* Only allowed if base reg not in list for other types. */
7366 else if (range & (1 << base_reg))
7367 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7368 }
7369 else /* STM. */
7370 {
7371 /* Not allowed for type 2. */
7372 if (inst.instruction & LDM_TYPE_2_OR_3)
7373 as_warn (_("writeback of base register is UNPREDICTABLE"));
7374 /* Only allowed if base reg not in list, or first in list. */
7375 else if ((range & (1 << base_reg))
7376 && (range & ((1 << base_reg) - 1)))
7377 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
09d92015 7378 }
ea6ef066 7379 }
a737bd4d
NC
7380}
7381
c19d1205
ZW
7382/* ARMv5TE load-consecutive (argument parse)
7383 Mode is like LDRH.
7384
7385 LDRccD R, mode
7386 STRccD R, mode. */
7387
a737bd4d 7388static void
c19d1205 7389do_ldrd (void)
a737bd4d 7390{
c19d1205
ZW
7391 constraint (inst.operands[0].reg % 2 != 0,
7392 _("first destination register must be even"));
7393 constraint (inst.operands[1].present
7394 && inst.operands[1].reg != inst.operands[0].reg + 1,
7395 _("can only load two consecutive registers"));
7396 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7397 constraint (!inst.operands[2].isreg, _("'[' expected"));
a737bd4d 7398
c19d1205
ZW
7399 if (!inst.operands[1].present)
7400 inst.operands[1].reg = inst.operands[0].reg + 1;
5f4273c7 7401
c19d1205 7402 if (inst.instruction & LOAD_BIT)
a737bd4d 7403 {
c19d1205
ZW
7404 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7405 register and the first register written; we have to diagnose
7406 overlap between the base and the second register written here. */
ea6ef066 7407
c19d1205
ZW
7408 if (inst.operands[2].reg == inst.operands[1].reg
7409 && (inst.operands[2].writeback || inst.operands[2].postind))
7410 as_warn (_("base register written back, and overlaps "
7411 "second destination register"));
b05fe5cf 7412
c19d1205
ZW
7413 /* For an index-register load, the index register must not overlap the
7414 destination (even if not write-back). */
7415 else if (inst.operands[2].immisreg
ca3f61f7
NC
7416 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7417 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
c19d1205 7418 as_warn (_("index register overlaps destination register"));
b05fe5cf 7419 }
c19d1205
ZW
7420
7421 inst.instruction |= inst.operands[0].reg << 12;
7422 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
b05fe5cf
ZW
7423}
7424
7425static void
c19d1205 7426do_ldrex (void)
b05fe5cf 7427{
c19d1205
ZW
7428 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7429 || inst.operands[1].postind || inst.operands[1].writeback
7430 || inst.operands[1].immisreg || inst.operands[1].shifted
01cfc07f
NC
7431 || inst.operands[1].negative
7432 /* This can arise if the programmer has written
7433 strex rN, rM, foo
7434 or if they have mistakenly used a register name as the last
7435 operand, eg:
7436 strex rN, rM, rX
7437 It is very difficult to distinguish between these two cases
7438 because "rX" might actually be a label. ie the register
7439 name has been occluded by a symbol of the same name. So we
7440 just generate a general 'bad addressing mode' type error
7441 message and leave it up to the programmer to discover the
7442 true cause and fix their mistake. */
7443 || (inst.operands[1].reg == REG_PC),
7444 BAD_ADDR_MODE);
b05fe5cf 7445
c19d1205
ZW
7446 constraint (inst.reloc.exp.X_op != O_constant
7447 || inst.reloc.exp.X_add_number != 0,
7448 _("offset must be zero in ARM encoding"));
b05fe5cf 7449
c19d1205
ZW
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.reloc.type = BFD_RELOC_UNUSED;
b05fe5cf
ZW
7453}
7454
7455static void
c19d1205 7456do_ldrexd (void)
b05fe5cf 7457{
c19d1205
ZW
7458 constraint (inst.operands[0].reg % 2 != 0,
7459 _("even register required"));
7460 constraint (inst.operands[1].present
7461 && inst.operands[1].reg != inst.operands[0].reg + 1,
7462 _("can only load two consecutive registers"));
7463 /* If op 1 were present and equal to PC, this function wouldn't
7464 have been called in the first place. */
7465 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
b05fe5cf 7466
c19d1205
ZW
7467 inst.instruction |= inst.operands[0].reg << 12;
7468 inst.instruction |= inst.operands[2].reg << 16;
b05fe5cf
ZW
7469}
7470
7471static void
c19d1205 7472do_ldst (void)
b05fe5cf 7473{
c19d1205
ZW
7474 inst.instruction |= inst.operands[0].reg << 12;
7475 if (!inst.operands[1].isreg)
7476 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
b05fe5cf 7477 return;
c19d1205 7478 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7479}
7480
7481static void
c19d1205 7482do_ldstt (void)
b05fe5cf 7483{
c19d1205
ZW
7484 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7485 reject [Rn,...]. */
7486 if (inst.operands[1].preind)
b05fe5cf 7487 {
bd3ba5d1
NC
7488 constraint (inst.reloc.exp.X_op != O_constant
7489 || inst.reloc.exp.X_add_number != 0,
c19d1205 7490 _("this instruction requires a post-indexed address"));
b05fe5cf 7491
c19d1205
ZW
7492 inst.operands[1].preind = 0;
7493 inst.operands[1].postind = 1;
7494 inst.operands[1].writeback = 1;
b05fe5cf 7495 }
c19d1205
ZW
7496 inst.instruction |= inst.operands[0].reg << 12;
7497 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7498}
b05fe5cf 7499
c19d1205 7500/* Halfword and signed-byte load/store operations. */
b05fe5cf 7501
c19d1205
ZW
7502static void
7503do_ldstv4 (void)
7504{
7505 inst.instruction |= inst.operands[0].reg << 12;
7506 if (!inst.operands[1].isreg)
7507 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
b05fe5cf 7508 return;
c19d1205 7509 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
b05fe5cf
ZW
7510}
7511
7512static void
c19d1205 7513do_ldsttv4 (void)
b05fe5cf 7514{
c19d1205
ZW
7515 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7516 reject [Rn,...]. */
7517 if (inst.operands[1].preind)
b05fe5cf 7518 {
bd3ba5d1
NC
7519 constraint (inst.reloc.exp.X_op != O_constant
7520 || inst.reloc.exp.X_add_number != 0,
c19d1205 7521 _("this instruction requires a post-indexed address"));
b05fe5cf 7522
c19d1205
ZW
7523 inst.operands[1].preind = 0;
7524 inst.operands[1].postind = 1;
7525 inst.operands[1].writeback = 1;
b05fe5cf 7526 }
c19d1205
ZW
7527 inst.instruction |= inst.operands[0].reg << 12;
7528 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7529}
b05fe5cf 7530
c19d1205
ZW
7531/* Co-processor register load/store.
7532 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7533static void
7534do_lstc (void)
7535{
7536 inst.instruction |= inst.operands[0].reg << 8;
7537 inst.instruction |= inst.operands[1].reg << 12;
7538 encode_arm_cp_address (2, TRUE, TRUE, 0);
b05fe5cf
ZW
7539}
7540
b05fe5cf 7541static void
c19d1205 7542do_mlas (void)
b05fe5cf 7543{
8fb9d7b9 7544 /* This restriction does not apply to mls (nor to mla in v6 or later). */
c19d1205 7545 if (inst.operands[0].reg == inst.operands[1].reg
8fb9d7b9 7546 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
c19d1205 7547 && !(inst.instruction & 0x00400000))
8fb9d7b9 7548 as_tsktsk (_("Rd and Rm should be different in mla"));
b05fe5cf 7549
c19d1205
ZW
7550 inst.instruction |= inst.operands[0].reg << 16;
7551 inst.instruction |= inst.operands[1].reg;
7552 inst.instruction |= inst.operands[2].reg << 8;
7553 inst.instruction |= inst.operands[3].reg << 12;
c19d1205 7554}
b05fe5cf 7555
c19d1205
ZW
7556static void
7557do_mov (void)
7558{
7559 inst.instruction |= inst.operands[0].reg << 12;
7560 encode_arm_shifter_operand (1);
7561}
b05fe5cf 7562
c19d1205
ZW
7563/* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7564static void
7565do_mov16 (void)
7566{
b6895b4f
PB
7567 bfd_vma imm;
7568 bfd_boolean top;
7569
7570 top = (inst.instruction & 0x00400000) != 0;
7571 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7572 _(":lower16: not allowed this instruction"));
7573 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7574 _(":upper16: not allowed instruction"));
c19d1205 7575 inst.instruction |= inst.operands[0].reg << 12;
b6895b4f
PB
7576 if (inst.reloc.type == BFD_RELOC_UNUSED)
7577 {
7578 imm = inst.reloc.exp.X_add_number;
7579 /* The value is in two pieces: 0:11, 16:19. */
7580 inst.instruction |= (imm & 0x00000fff);
7581 inst.instruction |= (imm & 0x0000f000) << 4;
7582 }
b05fe5cf 7583}
b99bd4ef 7584
037e8744
JB
7585static void do_vfp_nsyn_opcode (const char *);
7586
7587static int
7588do_vfp_nsyn_mrs (void)
7589{
7590 if (inst.operands[0].isvec)
7591 {
7592 if (inst.operands[1].reg != 1)
7593 first_error (_("operand 1 must be FPSCR"));
7594 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7595 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7596 do_vfp_nsyn_opcode ("fmstat");
7597 }
7598 else if (inst.operands[1].isvec)
7599 do_vfp_nsyn_opcode ("fmrx");
7600 else
7601 return FAIL;
5f4273c7 7602
037e8744
JB
7603 return SUCCESS;
7604}
7605
7606static int
7607do_vfp_nsyn_msr (void)
7608{
7609 if (inst.operands[0].isvec)
7610 do_vfp_nsyn_opcode ("fmxr");
7611 else
7612 return FAIL;
7613
7614 return SUCCESS;
7615}
7616
b99bd4ef 7617static void
c19d1205 7618do_mrs (void)
b99bd4ef 7619{
037e8744
JB
7620 if (do_vfp_nsyn_mrs () == SUCCESS)
7621 return;
7622
c19d1205
ZW
7623 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7624 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7625 != (PSR_c|PSR_f),
7626 _("'CPSR' or 'SPSR' expected"));
7627 inst.instruction |= inst.operands[0].reg << 12;
7628 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7629}
b99bd4ef 7630
c19d1205
ZW
7631/* Two possible forms:
7632 "{C|S}PSR_<field>, Rm",
7633 "{C|S}PSR_f, #expression". */
b99bd4ef 7634
c19d1205
ZW
7635static void
7636do_msr (void)
7637{
037e8744
JB
7638 if (do_vfp_nsyn_msr () == SUCCESS)
7639 return;
7640
c19d1205
ZW
7641 inst.instruction |= inst.operands[0].imm;
7642 if (inst.operands[1].isreg)
7643 inst.instruction |= inst.operands[1].reg;
7644 else
b99bd4ef 7645 {
c19d1205
ZW
7646 inst.instruction |= INST_IMMEDIATE;
7647 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7648 inst.reloc.pc_rel = 0;
b99bd4ef 7649 }
b99bd4ef
NC
7650}
7651
c19d1205
ZW
7652static void
7653do_mul (void)
a737bd4d 7654{
c19d1205
ZW
7655 if (!inst.operands[2].present)
7656 inst.operands[2].reg = inst.operands[0].reg;
7657 inst.instruction |= inst.operands[0].reg << 16;
7658 inst.instruction |= inst.operands[1].reg;
7659 inst.instruction |= inst.operands[2].reg << 8;
a737bd4d 7660
8fb9d7b9
MS
7661 if (inst.operands[0].reg == inst.operands[1].reg
7662 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7663 as_tsktsk (_("Rd and Rm should be different in mul"));
a737bd4d
NC
7664}
7665
c19d1205
ZW
7666/* Long Multiply Parser
7667 UMULL RdLo, RdHi, Rm, Rs
7668 SMULL RdLo, RdHi, Rm, Rs
7669 UMLAL RdLo, RdHi, Rm, Rs
7670 SMLAL RdLo, RdHi, Rm, Rs. */
b99bd4ef
NC
7671
7672static void
c19d1205 7673do_mull (void)
b99bd4ef 7674{
c19d1205
ZW
7675 inst.instruction |= inst.operands[0].reg << 12;
7676 inst.instruction |= inst.operands[1].reg << 16;
7677 inst.instruction |= inst.operands[2].reg;
7678 inst.instruction |= inst.operands[3].reg << 8;
b99bd4ef 7679
682b27ad
PB
7680 /* rdhi and rdlo must be different. */
7681 if (inst.operands[0].reg == inst.operands[1].reg)
7682 as_tsktsk (_("rdhi and rdlo must be different"));
7683
7684 /* rdhi, rdlo and rm must all be different before armv6. */
7685 if ((inst.operands[0].reg == inst.operands[2].reg
c19d1205 7686 || inst.operands[1].reg == inst.operands[2].reg)
682b27ad 7687 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
c19d1205
ZW
7688 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7689}
b99bd4ef 7690
c19d1205
ZW
7691static void
7692do_nop (void)
7693{
e7495e45
NS
7694 if (inst.operands[0].present
7695 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
c19d1205
ZW
7696 {
7697 /* Architectural NOP hints are CPSR sets with no bits selected. */
7698 inst.instruction &= 0xf0000000;
e7495e45
NS
7699 inst.instruction |= 0x0320f000;
7700 if (inst.operands[0].present)
7701 inst.instruction |= inst.operands[0].imm;
c19d1205 7702 }
b99bd4ef
NC
7703}
7704
c19d1205
ZW
7705/* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7706 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7707 Condition defaults to COND_ALWAYS.
7708 Error if Rd, Rn or Rm are R15. */
b99bd4ef
NC
7709
7710static void
c19d1205 7711do_pkhbt (void)
b99bd4ef 7712{
c19d1205
ZW
7713 inst.instruction |= inst.operands[0].reg << 12;
7714 inst.instruction |= inst.operands[1].reg << 16;
7715 inst.instruction |= inst.operands[2].reg;
7716 if (inst.operands[3].present)
7717 encode_arm_shift (3);
7718}
b99bd4ef 7719
c19d1205 7720/* ARM V6 PKHTB (Argument Parse). */
b99bd4ef 7721
c19d1205
ZW
7722static void
7723do_pkhtb (void)
7724{
7725 if (!inst.operands[3].present)
b99bd4ef 7726 {
c19d1205
ZW
7727 /* If the shift specifier is omitted, turn the instruction
7728 into pkhbt rd, rm, rn. */
7729 inst.instruction &= 0xfff00010;
7730 inst.instruction |= inst.operands[0].reg << 12;
7731 inst.instruction |= inst.operands[1].reg;
7732 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
7733 }
7734 else
7735 {
c19d1205
ZW
7736 inst.instruction |= inst.operands[0].reg << 12;
7737 inst.instruction |= inst.operands[1].reg << 16;
7738 inst.instruction |= inst.operands[2].reg;
7739 encode_arm_shift (3);
b99bd4ef
NC
7740 }
7741}
7742
c19d1205
ZW
7743/* ARMv5TE: Preload-Cache
7744
7745 PLD <addr_mode>
7746
7747 Syntactically, like LDR with B=1, W=0, L=1. */
b99bd4ef
NC
7748
7749static void
c19d1205 7750do_pld (void)
b99bd4ef 7751{
c19d1205
ZW
7752 constraint (!inst.operands[0].isreg,
7753 _("'[' expected after PLD mnemonic"));
7754 constraint (inst.operands[0].postind,
7755 _("post-indexed expression used in preload instruction"));
7756 constraint (inst.operands[0].writeback,
7757 _("writeback used in preload instruction"));
7758 constraint (!inst.operands[0].preind,
7759 _("unindexed addressing used in preload instruction"));
c19d1205
ZW
7760 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7761}
b99bd4ef 7762
62b3e311
PB
7763/* ARMv7: PLI <addr_mode> */
7764static void
7765do_pli (void)
7766{
7767 constraint (!inst.operands[0].isreg,
7768 _("'[' expected after PLI mnemonic"));
7769 constraint (inst.operands[0].postind,
7770 _("post-indexed expression used in preload instruction"));
7771 constraint (inst.operands[0].writeback,
7772 _("writeback used in preload instruction"));
7773 constraint (!inst.operands[0].preind,
7774 _("unindexed addressing used in preload instruction"));
7775 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7776 inst.instruction &= ~PRE_INDEX;
7777}
7778
c19d1205
ZW
7779static void
7780do_push_pop (void)
7781{
7782 inst.operands[1] = inst.operands[0];
7783 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7784 inst.operands[0].isreg = 1;
7785 inst.operands[0].writeback = 1;
7786 inst.operands[0].reg = REG_SP;
7787 do_ldmstm ();
7788}
b99bd4ef 7789
c19d1205
ZW
7790/* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7791 word at the specified address and the following word
7792 respectively.
7793 Unconditionally executed.
7794 Error if Rn is R15. */
b99bd4ef 7795
c19d1205
ZW
7796static void
7797do_rfe (void)
7798{
7799 inst.instruction |= inst.operands[0].reg << 16;
7800 if (inst.operands[0].writeback)
7801 inst.instruction |= WRITE_BACK;
7802}
b99bd4ef 7803
c19d1205 7804/* ARM V6 ssat (argument parse). */
b99bd4ef 7805
c19d1205
ZW
7806static void
7807do_ssat (void)
7808{
7809 inst.instruction |= inst.operands[0].reg << 12;
7810 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7811 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7812
c19d1205
ZW
7813 if (inst.operands[3].present)
7814 encode_arm_shift (3);
b99bd4ef
NC
7815}
7816
c19d1205 7817/* ARM V6 usat (argument parse). */
b99bd4ef
NC
7818
7819static void
c19d1205 7820do_usat (void)
b99bd4ef 7821{
c19d1205
ZW
7822 inst.instruction |= inst.operands[0].reg << 12;
7823 inst.instruction |= inst.operands[1].imm << 16;
7824 inst.instruction |= inst.operands[2].reg;
b99bd4ef 7825
c19d1205
ZW
7826 if (inst.operands[3].present)
7827 encode_arm_shift (3);
b99bd4ef
NC
7828}
7829
c19d1205 7830/* ARM V6 ssat16 (argument parse). */
09d92015
MM
7831
7832static void
c19d1205 7833do_ssat16 (void)
09d92015 7834{
c19d1205
ZW
7835 inst.instruction |= inst.operands[0].reg << 12;
7836 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7837 inst.instruction |= inst.operands[2].reg;
09d92015
MM
7838}
7839
c19d1205
ZW
7840static void
7841do_usat16 (void)
a737bd4d 7842{
c19d1205
ZW
7843 inst.instruction |= inst.operands[0].reg << 12;
7844 inst.instruction |= inst.operands[1].imm << 16;
7845 inst.instruction |= inst.operands[2].reg;
7846}
a737bd4d 7847
c19d1205
ZW
7848/* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7849 preserving the other bits.
a737bd4d 7850
c19d1205
ZW
7851 setend <endian_specifier>, where <endian_specifier> is either
7852 BE or LE. */
a737bd4d 7853
c19d1205
ZW
7854static void
7855do_setend (void)
7856{
7857 if (inst.operands[0].imm)
7858 inst.instruction |= 0x200;
a737bd4d
NC
7859}
7860
7861static void
c19d1205 7862do_shift (void)
a737bd4d 7863{
c19d1205
ZW
7864 unsigned int Rm = (inst.operands[1].present
7865 ? inst.operands[1].reg
7866 : inst.operands[0].reg);
a737bd4d 7867
c19d1205
ZW
7868 inst.instruction |= inst.operands[0].reg << 12;
7869 inst.instruction |= Rm;
7870 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
a737bd4d 7871 {
c19d1205
ZW
7872 inst.instruction |= inst.operands[2].reg << 8;
7873 inst.instruction |= SHIFT_BY_REG;
a737bd4d
NC
7874 }
7875 else
c19d1205 7876 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
a737bd4d
NC
7877}
7878
09d92015 7879static void
3eb17e6b 7880do_smc (void)
09d92015 7881{
3eb17e6b 7882 inst.reloc.type = BFD_RELOC_ARM_SMC;
c19d1205 7883 inst.reloc.pc_rel = 0;
09d92015
MM
7884}
7885
09d92015 7886static void
c19d1205 7887do_swi (void)
09d92015 7888{
c19d1205
ZW
7889 inst.reloc.type = BFD_RELOC_ARM_SWI;
7890 inst.reloc.pc_rel = 0;
09d92015
MM
7891}
7892
c19d1205
ZW
7893/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7894 SMLAxy{cond} Rd,Rm,Rs,Rn
7895 SMLAWy{cond} Rd,Rm,Rs,Rn
7896 Error if any register is R15. */
e16bb312 7897
c19d1205
ZW
7898static void
7899do_smla (void)
e16bb312 7900{
c19d1205
ZW
7901 inst.instruction |= inst.operands[0].reg << 16;
7902 inst.instruction |= inst.operands[1].reg;
7903 inst.instruction |= inst.operands[2].reg << 8;
7904 inst.instruction |= inst.operands[3].reg << 12;
7905}
a737bd4d 7906
c19d1205
ZW
7907/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7908 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7909 Error if any register is R15.
7910 Warning if Rdlo == Rdhi. */
a737bd4d 7911
c19d1205
ZW
7912static void
7913do_smlal (void)
7914{
7915 inst.instruction |= inst.operands[0].reg << 12;
7916 inst.instruction |= inst.operands[1].reg << 16;
7917 inst.instruction |= inst.operands[2].reg;
7918 inst.instruction |= inst.operands[3].reg << 8;
a737bd4d 7919
c19d1205
ZW
7920 if (inst.operands[0].reg == inst.operands[1].reg)
7921 as_tsktsk (_("rdhi and rdlo must be different"));
7922}
a737bd4d 7923
c19d1205
ZW
7924/* ARM V5E (El Segundo) signed-multiply (argument parse)
7925 SMULxy{cond} Rd,Rm,Rs
7926 Error if any register is R15. */
a737bd4d 7927
c19d1205
ZW
7928static void
7929do_smul (void)
7930{
7931 inst.instruction |= inst.operands[0].reg << 16;
7932 inst.instruction |= inst.operands[1].reg;
7933 inst.instruction |= inst.operands[2].reg << 8;
7934}
a737bd4d 7935
b6702015
PB
7936/* ARM V6 srs (argument parse). The variable fields in the encoding are
7937 the same for both ARM and Thumb-2. */
a737bd4d 7938
c19d1205
ZW
7939static void
7940do_srs (void)
7941{
b6702015
PB
7942 int reg;
7943
7944 if (inst.operands[0].present)
7945 {
7946 reg = inst.operands[0].reg;
fdfde340 7947 constraint (reg != REG_SP, _("SRS base register must be r13"));
b6702015
PB
7948 }
7949 else
fdfde340 7950 reg = REG_SP;
b6702015
PB
7951
7952 inst.instruction |= reg << 16;
7953 inst.instruction |= inst.operands[1].imm;
7954 if (inst.operands[0].writeback || inst.operands[1].writeback)
c19d1205
ZW
7955 inst.instruction |= WRITE_BACK;
7956}
a737bd4d 7957
c19d1205 7958/* ARM V6 strex (argument parse). */
a737bd4d 7959
c19d1205
ZW
7960static void
7961do_strex (void)
7962{
7963 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7964 || inst.operands[2].postind || inst.operands[2].writeback
7965 || inst.operands[2].immisreg || inst.operands[2].shifted
01cfc07f
NC
7966 || inst.operands[2].negative
7967 /* See comment in do_ldrex(). */
7968 || (inst.operands[2].reg == REG_PC),
7969 BAD_ADDR_MODE);
a737bd4d 7970
c19d1205
ZW
7971 constraint (inst.operands[0].reg == inst.operands[1].reg
7972 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
a737bd4d 7973
c19d1205
ZW
7974 constraint (inst.reloc.exp.X_op != O_constant
7975 || inst.reloc.exp.X_add_number != 0,
7976 _("offset must be zero in ARM encoding"));
a737bd4d 7977
c19d1205
ZW
7978 inst.instruction |= inst.operands[0].reg << 12;
7979 inst.instruction |= inst.operands[1].reg;
7980 inst.instruction |= inst.operands[2].reg << 16;
7981 inst.reloc.type = BFD_RELOC_UNUSED;
e16bb312
NC
7982}
7983
7984static void
c19d1205 7985do_strexd (void)
e16bb312 7986{
c19d1205
ZW
7987 constraint (inst.operands[1].reg % 2 != 0,
7988 _("even register required"));
7989 constraint (inst.operands[2].present
7990 && inst.operands[2].reg != inst.operands[1].reg + 1,
7991 _("can only store two consecutive registers"));
7992 /* If op 2 were present and equal to PC, this function wouldn't
7993 have been called in the first place. */
7994 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
e16bb312 7995
c19d1205
ZW
7996 constraint (inst.operands[0].reg == inst.operands[1].reg
7997 || inst.operands[0].reg == inst.operands[1].reg + 1
7998 || inst.operands[0].reg == inst.operands[3].reg,
7999 BAD_OVERLAP);
e16bb312 8000
c19d1205
ZW
8001 inst.instruction |= inst.operands[0].reg << 12;
8002 inst.instruction |= inst.operands[1].reg;
8003 inst.instruction |= inst.operands[3].reg << 16;
e16bb312
NC
8004}
8005
c19d1205
ZW
8006/* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8007 extends it to 32-bits, and adds the result to a value in another
8008 register. You can specify a rotation by 0, 8, 16, or 24 bits
8009 before extracting the 16-bit value.
8010 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8011 Condition defaults to COND_ALWAYS.
8012 Error if any register uses R15. */
8013
e16bb312 8014static void
c19d1205 8015do_sxtah (void)
e16bb312 8016{
c19d1205
ZW
8017 inst.instruction |= inst.operands[0].reg << 12;
8018 inst.instruction |= inst.operands[1].reg << 16;
8019 inst.instruction |= inst.operands[2].reg;
8020 inst.instruction |= inst.operands[3].imm << 10;
8021}
e16bb312 8022
c19d1205 8023/* ARM V6 SXTH.
e16bb312 8024
c19d1205
ZW
8025 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8026 Condition defaults to COND_ALWAYS.
8027 Error if any register uses R15. */
e16bb312
NC
8028
8029static void
c19d1205 8030do_sxth (void)
e16bb312 8031{
c19d1205
ZW
8032 inst.instruction |= inst.operands[0].reg << 12;
8033 inst.instruction |= inst.operands[1].reg;
8034 inst.instruction |= inst.operands[2].imm << 10;
e16bb312 8035}
c19d1205
ZW
8036\f
8037/* VFP instructions. In a logical order: SP variant first, monad
8038 before dyad, arithmetic then move then load/store. */
e16bb312
NC
8039
8040static void
c19d1205 8041do_vfp_sp_monadic (void)
e16bb312 8042{
5287ad62
JB
8043 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8044 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8045}
8046
8047static void
c19d1205 8048do_vfp_sp_dyadic (void)
e16bb312 8049{
5287ad62
JB
8050 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8051 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8052 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8053}
8054
8055static void
c19d1205 8056do_vfp_sp_compare_z (void)
e16bb312 8057{
5287ad62 8058 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
e16bb312
NC
8059}
8060
8061static void
c19d1205 8062do_vfp_dp_sp_cvt (void)
e16bb312 8063{
5287ad62
JB
8064 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8065 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
e16bb312
NC
8066}
8067
8068static void
c19d1205 8069do_vfp_sp_dp_cvt (void)
e16bb312 8070{
5287ad62
JB
8071 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8072 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
e16bb312
NC
8073}
8074
8075static void
c19d1205 8076do_vfp_reg_from_sp (void)
e16bb312 8077{
c19d1205 8078 inst.instruction |= inst.operands[0].reg << 12;
5287ad62 8079 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
e16bb312
NC
8080}
8081
8082static void
c19d1205 8083do_vfp_reg2_from_sp2 (void)
e16bb312 8084{
c19d1205
ZW
8085 constraint (inst.operands[2].imm != 2,
8086 _("only two consecutive VFP SP registers allowed here"));
8087 inst.instruction |= inst.operands[0].reg << 12;
8088 inst.instruction |= inst.operands[1].reg << 16;
5287ad62 8089 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
e16bb312
NC
8090}
8091
8092static void
c19d1205 8093do_vfp_sp_from_reg (void)
e16bb312 8094{
5287ad62 8095 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
c19d1205 8096 inst.instruction |= inst.operands[1].reg << 12;
e16bb312
NC
8097}
8098
8099static void
c19d1205 8100do_vfp_sp2_from_reg2 (void)
e16bb312 8101{
c19d1205
ZW
8102 constraint (inst.operands[0].imm != 2,
8103 _("only two consecutive VFP SP registers allowed here"));
5287ad62 8104 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
c19d1205
ZW
8105 inst.instruction |= inst.operands[1].reg << 12;
8106 inst.instruction |= inst.operands[2].reg << 16;
e16bb312
NC
8107}
8108
8109static void
c19d1205 8110do_vfp_sp_ldst (void)
e16bb312 8111{
5287ad62 8112 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
c19d1205 8113 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8114}
8115
8116static void
c19d1205 8117do_vfp_dp_ldst (void)
e16bb312 8118{
5287ad62 8119 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
c19d1205 8120 encode_arm_cp_address (1, FALSE, TRUE, 0);
e16bb312
NC
8121}
8122
c19d1205 8123
e16bb312 8124static void
c19d1205 8125vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8126{
c19d1205
ZW
8127 if (inst.operands[0].writeback)
8128 inst.instruction |= WRITE_BACK;
8129 else
8130 constraint (ldstm_type != VFP_LDSTMIA,
8131 _("this addressing mode requires base-register writeback"));
8132 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8133 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
c19d1205 8134 inst.instruction |= inst.operands[1].imm;
e16bb312
NC
8135}
8136
8137static void
c19d1205 8138vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
e16bb312 8139{
c19d1205 8140 int count;
e16bb312 8141
c19d1205
ZW
8142 if (inst.operands[0].writeback)
8143 inst.instruction |= WRITE_BACK;
8144 else
8145 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8146 _("this addressing mode requires base-register writeback"));
e16bb312 8147
c19d1205 8148 inst.instruction |= inst.operands[0].reg << 16;
5287ad62 8149 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
e16bb312 8150
c19d1205
ZW
8151 count = inst.operands[1].imm << 1;
8152 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8153 count += 1;
e16bb312 8154
c19d1205 8155 inst.instruction |= count;
e16bb312
NC
8156}
8157
8158static void
c19d1205 8159do_vfp_sp_ldstmia (void)
e16bb312 8160{
c19d1205 8161 vfp_sp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8162}
8163
8164static void
c19d1205 8165do_vfp_sp_ldstmdb (void)
e16bb312 8166{
c19d1205 8167 vfp_sp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8168}
8169
8170static void
c19d1205 8171do_vfp_dp_ldstmia (void)
e16bb312 8172{
c19d1205 8173 vfp_dp_ldstm (VFP_LDSTMIA);
e16bb312
NC
8174}
8175
8176static void
c19d1205 8177do_vfp_dp_ldstmdb (void)
e16bb312 8178{
c19d1205 8179 vfp_dp_ldstm (VFP_LDSTMDB);
e16bb312
NC
8180}
8181
8182static void
c19d1205 8183do_vfp_xp_ldstmia (void)
e16bb312 8184{
c19d1205
ZW
8185 vfp_dp_ldstm (VFP_LDSTMIAX);
8186}
e16bb312 8187
c19d1205
ZW
8188static void
8189do_vfp_xp_ldstmdb (void)
8190{
8191 vfp_dp_ldstm (VFP_LDSTMDBX);
e16bb312 8192}
5287ad62
JB
8193
8194static void
8195do_vfp_dp_rd_rm (void)
8196{
8197 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8198 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8199}
8200
8201static void
8202do_vfp_dp_rn_rd (void)
8203{
8204 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8205 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8206}
8207
8208static void
8209do_vfp_dp_rd_rn (void)
8210{
8211 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8212 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8213}
8214
8215static void
8216do_vfp_dp_rd_rn_rm (void)
8217{
8218 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8219 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8220 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8221}
8222
8223static void
8224do_vfp_dp_rd (void)
8225{
8226 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8227}
8228
8229static void
8230do_vfp_dp_rm_rd_rn (void)
8231{
8232 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8233 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8234 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8235}
8236
8237/* VFPv3 instructions. */
8238static void
8239do_vfp_sp_const (void)
8240{
8241 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
00249aaa
PB
8242 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8243 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8244}
8245
8246static void
8247do_vfp_dp_const (void)
8248{
8249 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
00249aaa
PB
8250 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8251 inst.instruction |= (inst.operands[1].imm & 0x0f);
5287ad62
JB
8252}
8253
8254static void
8255vfp_conv (int srcsize)
8256{
8257 unsigned immbits = srcsize - inst.operands[1].imm;
8258 inst.instruction |= (immbits & 1) << 5;
8259 inst.instruction |= (immbits >> 1);
8260}
8261
8262static void
8263do_vfp_sp_conv_16 (void)
8264{
8265 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8266 vfp_conv (16);
8267}
8268
8269static void
8270do_vfp_dp_conv_16 (void)
8271{
8272 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8273 vfp_conv (16);
8274}
8275
8276static void
8277do_vfp_sp_conv_32 (void)
8278{
8279 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8280 vfp_conv (32);
8281}
8282
8283static void
8284do_vfp_dp_conv_32 (void)
8285{
8286 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8287 vfp_conv (32);
8288}
c19d1205
ZW
8289\f
8290/* FPA instructions. Also in a logical order. */
e16bb312 8291
c19d1205
ZW
8292static void
8293do_fpa_cmp (void)
8294{
8295 inst.instruction |= inst.operands[0].reg << 16;
8296 inst.instruction |= inst.operands[1].reg;
8297}
b99bd4ef
NC
8298
8299static void
c19d1205 8300do_fpa_ldmstm (void)
b99bd4ef 8301{
c19d1205
ZW
8302 inst.instruction |= inst.operands[0].reg << 12;
8303 switch (inst.operands[1].imm)
8304 {
8305 case 1: inst.instruction |= CP_T_X; break;
8306 case 2: inst.instruction |= CP_T_Y; break;
8307 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8308 case 4: break;
8309 default: abort ();
8310 }
b99bd4ef 8311
c19d1205
ZW
8312 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8313 {
8314 /* The instruction specified "ea" or "fd", so we can only accept
8315 [Rn]{!}. The instruction does not really support stacking or
8316 unstacking, so we have to emulate these by setting appropriate
8317 bits and offsets. */
8318 constraint (inst.reloc.exp.X_op != O_constant
8319 || inst.reloc.exp.X_add_number != 0,
8320 _("this instruction does not support indexing"));
b99bd4ef 8321
c19d1205
ZW
8322 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8323 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
b99bd4ef 8324
c19d1205
ZW
8325 if (!(inst.instruction & INDEX_UP))
8326 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
b99bd4ef 8327
c19d1205
ZW
8328 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8329 {
8330 inst.operands[2].preind = 0;
8331 inst.operands[2].postind = 1;
8332 }
8333 }
b99bd4ef 8334
c19d1205 8335 encode_arm_cp_address (2, TRUE, TRUE, 0);
b99bd4ef 8336}
c19d1205
ZW
8337\f
8338/* iWMMXt instructions: strictly in alphabetical order. */
b99bd4ef 8339
c19d1205
ZW
8340static void
8341do_iwmmxt_tandorc (void)
8342{
8343 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8344}
b99bd4ef 8345
c19d1205
ZW
8346static void
8347do_iwmmxt_textrc (void)
8348{
8349 inst.instruction |= inst.operands[0].reg << 12;
8350 inst.instruction |= inst.operands[1].imm;
8351}
b99bd4ef
NC
8352
8353static void
c19d1205 8354do_iwmmxt_textrm (void)
b99bd4ef 8355{
c19d1205
ZW
8356 inst.instruction |= inst.operands[0].reg << 12;
8357 inst.instruction |= inst.operands[1].reg << 16;
8358 inst.instruction |= inst.operands[2].imm;
8359}
b99bd4ef 8360
c19d1205
ZW
8361static void
8362do_iwmmxt_tinsr (void)
8363{
8364 inst.instruction |= inst.operands[0].reg << 16;
8365 inst.instruction |= inst.operands[1].reg << 12;
8366 inst.instruction |= inst.operands[2].imm;
8367}
b99bd4ef 8368
c19d1205
ZW
8369static void
8370do_iwmmxt_tmia (void)
8371{
8372 inst.instruction |= inst.operands[0].reg << 5;
8373 inst.instruction |= inst.operands[1].reg;
8374 inst.instruction |= inst.operands[2].reg << 12;
8375}
b99bd4ef 8376
c19d1205
ZW
8377static void
8378do_iwmmxt_waligni (void)
8379{
8380 inst.instruction |= inst.operands[0].reg << 12;
8381 inst.instruction |= inst.operands[1].reg << 16;
8382 inst.instruction |= inst.operands[2].reg;
8383 inst.instruction |= inst.operands[3].imm << 20;
8384}
b99bd4ef 8385
2d447fca
JM
8386static void
8387do_iwmmxt_wmerge (void)
8388{
8389 inst.instruction |= inst.operands[0].reg << 12;
8390 inst.instruction |= inst.operands[1].reg << 16;
8391 inst.instruction |= inst.operands[2].reg;
8392 inst.instruction |= inst.operands[3].imm << 21;
8393}
8394
c19d1205
ZW
8395static void
8396do_iwmmxt_wmov (void)
8397{
8398 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8399 inst.instruction |= inst.operands[0].reg << 12;
8400 inst.instruction |= inst.operands[1].reg << 16;
8401 inst.instruction |= inst.operands[1].reg;
8402}
b99bd4ef 8403
c19d1205
ZW
8404static void
8405do_iwmmxt_wldstbh (void)
8406{
8f06b2d8 8407 int reloc;
c19d1205 8408 inst.instruction |= inst.operands[0].reg << 12;
8f06b2d8
PB
8409 if (thumb_mode)
8410 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8411 else
8412 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8413 encode_arm_cp_address (1, TRUE, FALSE, reloc);
b99bd4ef
NC
8414}
8415
c19d1205
ZW
8416static void
8417do_iwmmxt_wldstw (void)
8418{
8419 /* RIWR_RIWC clears .isreg for a control register. */
8420 if (!inst.operands[0].isreg)
8421 {
8422 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8423 inst.instruction |= 0xf0000000;
8424 }
b99bd4ef 8425
c19d1205
ZW
8426 inst.instruction |= inst.operands[0].reg << 12;
8427 encode_arm_cp_address (1, TRUE, TRUE, 0);
8428}
b99bd4ef
NC
8429
8430static void
c19d1205 8431do_iwmmxt_wldstd (void)
b99bd4ef 8432{
c19d1205 8433 inst.instruction |= inst.operands[0].reg << 12;
2d447fca
JM
8434 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8435 && inst.operands[1].immisreg)
8436 {
8437 inst.instruction &= ~0x1a000ff;
8438 inst.instruction |= (0xf << 28);
8439 if (inst.operands[1].preind)
8440 inst.instruction |= PRE_INDEX;
8441 if (!inst.operands[1].negative)
8442 inst.instruction |= INDEX_UP;
8443 if (inst.operands[1].writeback)
8444 inst.instruction |= WRITE_BACK;
8445 inst.instruction |= inst.operands[1].reg << 16;
8446 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8447 inst.instruction |= inst.operands[1].imm;
8448 }
8449 else
8450 encode_arm_cp_address (1, TRUE, FALSE, 0);
c19d1205 8451}
b99bd4ef 8452
c19d1205
ZW
8453static void
8454do_iwmmxt_wshufh (void)
8455{
8456 inst.instruction |= inst.operands[0].reg << 12;
8457 inst.instruction |= inst.operands[1].reg << 16;
8458 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8459 inst.instruction |= (inst.operands[2].imm & 0x0f);
8460}
b99bd4ef 8461
c19d1205
ZW
8462static void
8463do_iwmmxt_wzero (void)
8464{
8465 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8466 inst.instruction |= inst.operands[0].reg;
8467 inst.instruction |= inst.operands[0].reg << 12;
8468 inst.instruction |= inst.operands[0].reg << 16;
8469}
2d447fca
JM
8470
8471static void
8472do_iwmmxt_wrwrwr_or_imm5 (void)
8473{
8474 if (inst.operands[2].isreg)
8475 do_rd_rn_rm ();
8476 else {
8477 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8478 _("immediate operand requires iWMMXt2"));
8479 do_rd_rn ();
8480 if (inst.operands[2].imm == 0)
8481 {
8482 switch ((inst.instruction >> 20) & 0xf)
8483 {
8484 case 4:
8485 case 5:
8486 case 6:
5f4273c7 8487 case 7:
2d447fca
JM
8488 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8489 inst.operands[2].imm = 16;
8490 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8491 break;
8492 case 8:
8493 case 9:
8494 case 10:
8495 case 11:
8496 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8497 inst.operands[2].imm = 32;
8498 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8499 break;
8500 case 12:
8501 case 13:
8502 case 14:
8503 case 15:
8504 {
8505 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8506 unsigned long wrn;
8507 wrn = (inst.instruction >> 16) & 0xf;
8508 inst.instruction &= 0xff0fff0f;
8509 inst.instruction |= wrn;
8510 /* Bail out here; the instruction is now assembled. */
8511 return;
8512 }
8513 }
8514 }
8515 /* Map 32 -> 0, etc. */
8516 inst.operands[2].imm &= 0x1f;
8517 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8518 }
8519}
c19d1205
ZW
8520\f
8521/* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8522 operations first, then control, shift, and load/store. */
b99bd4ef 8523
c19d1205 8524/* Insns like "foo X,Y,Z". */
b99bd4ef 8525
c19d1205
ZW
8526static void
8527do_mav_triple (void)
8528{
8529 inst.instruction |= inst.operands[0].reg << 16;
8530 inst.instruction |= inst.operands[1].reg;
8531 inst.instruction |= inst.operands[2].reg << 12;
8532}
b99bd4ef 8533
c19d1205
ZW
8534/* Insns like "foo W,X,Y,Z".
8535 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
a737bd4d 8536
c19d1205
ZW
8537static void
8538do_mav_quad (void)
8539{
8540 inst.instruction |= inst.operands[0].reg << 5;
8541 inst.instruction |= inst.operands[1].reg << 12;
8542 inst.instruction |= inst.operands[2].reg << 16;
8543 inst.instruction |= inst.operands[3].reg;
a737bd4d
NC
8544}
8545
c19d1205
ZW
8546/* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8547static void
8548do_mav_dspsc (void)
a737bd4d 8549{
c19d1205
ZW
8550 inst.instruction |= inst.operands[1].reg << 12;
8551}
a737bd4d 8552
c19d1205
ZW
8553/* Maverick shift immediate instructions.
8554 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8555 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
a737bd4d 8556
c19d1205
ZW
8557static void
8558do_mav_shift (void)
8559{
8560 int imm = inst.operands[2].imm;
a737bd4d 8561
c19d1205
ZW
8562 inst.instruction |= inst.operands[0].reg << 12;
8563 inst.instruction |= inst.operands[1].reg << 16;
a737bd4d 8564
c19d1205
ZW
8565 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8566 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8567 Bit 4 should be 0. */
8568 imm = (imm & 0xf) | ((imm & 0x70) << 1);
a737bd4d 8569
c19d1205
ZW
8570 inst.instruction |= imm;
8571}
8572\f
8573/* XScale instructions. Also sorted arithmetic before move. */
a737bd4d 8574
c19d1205
ZW
8575/* Xscale multiply-accumulate (argument parse)
8576 MIAcc acc0,Rm,Rs
8577 MIAPHcc acc0,Rm,Rs
8578 MIAxycc acc0,Rm,Rs. */
a737bd4d 8579
c19d1205
ZW
8580static void
8581do_xsc_mia (void)
8582{
8583 inst.instruction |= inst.operands[1].reg;
8584 inst.instruction |= inst.operands[2].reg << 12;
8585}
a737bd4d 8586
c19d1205 8587/* Xscale move-accumulator-register (argument parse)
a737bd4d 8588
c19d1205 8589 MARcc acc0,RdLo,RdHi. */
b99bd4ef 8590
c19d1205
ZW
8591static void
8592do_xsc_mar (void)
8593{
8594 inst.instruction |= inst.operands[1].reg << 12;
8595 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
8596}
8597
c19d1205 8598/* Xscale move-register-accumulator (argument parse)
b99bd4ef 8599
c19d1205 8600 MRAcc RdLo,RdHi,acc0. */
b99bd4ef
NC
8601
8602static void
c19d1205 8603do_xsc_mra (void)
b99bd4ef 8604{
c19d1205
ZW
8605 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8606 inst.instruction |= inst.operands[0].reg << 12;
8607 inst.instruction |= inst.operands[1].reg << 16;
8608}
8609\f
8610/* Encoding functions relevant only to Thumb. */
b99bd4ef 8611
c19d1205
ZW
8612/* inst.operands[i] is a shifted-register operand; encode
8613 it into inst.instruction in the format used by Thumb32. */
8614
8615static void
8616encode_thumb32_shifted_operand (int i)
8617{
8618 unsigned int value = inst.reloc.exp.X_add_number;
8619 unsigned int shift = inst.operands[i].shift_kind;
b99bd4ef 8620
9c3c69f2
PB
8621 constraint (inst.operands[i].immisreg,
8622 _("shift by register not allowed in thumb mode"));
c19d1205
ZW
8623 inst.instruction |= inst.operands[i].reg;
8624 if (shift == SHIFT_RRX)
8625 inst.instruction |= SHIFT_ROR << 4;
8626 else
b99bd4ef 8627 {
c19d1205
ZW
8628 constraint (inst.reloc.exp.X_op != O_constant,
8629 _("expression too complex"));
8630
8631 constraint (value > 32
8632 || (value == 32 && (shift == SHIFT_LSL
8633 || shift == SHIFT_ROR)),
8634 _("shift expression is too large"));
8635
8636 if (value == 0)
8637 shift = SHIFT_LSL;
8638 else if (value == 32)
8639 value = 0;
8640
8641 inst.instruction |= shift << 4;
8642 inst.instruction |= (value & 0x1c) << 10;
8643 inst.instruction |= (value & 0x03) << 6;
b99bd4ef 8644 }
c19d1205 8645}
b99bd4ef 8646
b99bd4ef 8647
c19d1205
ZW
8648/* inst.operands[i] was set up by parse_address. Encode it into a
8649 Thumb32 format load or store instruction. Reject forms that cannot
8650 be used with such instructions. If is_t is true, reject forms that
8651 cannot be used with a T instruction; if is_d is true, reject forms
8652 that cannot be used with a D instruction. */
b99bd4ef 8653
c19d1205
ZW
8654static void
8655encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8656{
8657 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8658
8659 constraint (!inst.operands[i].isreg,
53365c0d 8660 _("Instruction does not support =N addresses"));
b99bd4ef 8661
c19d1205
ZW
8662 inst.instruction |= inst.operands[i].reg << 16;
8663 if (inst.operands[i].immisreg)
b99bd4ef 8664 {
c19d1205
ZW
8665 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8666 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8667 constraint (inst.operands[i].negative,
8668 _("Thumb does not support negative register indexing"));
8669 constraint (inst.operands[i].postind,
8670 _("Thumb does not support register post-indexing"));
8671 constraint (inst.operands[i].writeback,
8672 _("Thumb does not support register indexing with writeback"));
8673 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8674 _("Thumb supports only LSL in shifted register indexing"));
b99bd4ef 8675
f40d1643 8676 inst.instruction |= inst.operands[i].imm;
c19d1205 8677 if (inst.operands[i].shifted)
b99bd4ef 8678 {
c19d1205
ZW
8679 constraint (inst.reloc.exp.X_op != O_constant,
8680 _("expression too complex"));
9c3c69f2
PB
8681 constraint (inst.reloc.exp.X_add_number < 0
8682 || inst.reloc.exp.X_add_number > 3,
c19d1205 8683 _("shift out of range"));
9c3c69f2 8684 inst.instruction |= inst.reloc.exp.X_add_number << 4;
c19d1205
ZW
8685 }
8686 inst.reloc.type = BFD_RELOC_UNUSED;
8687 }
8688 else if (inst.operands[i].preind)
8689 {
8690 constraint (is_pc && inst.operands[i].writeback,
8691 _("cannot use writeback with PC-relative addressing"));
f40d1643 8692 constraint (is_t && inst.operands[i].writeback,
c19d1205
ZW
8693 _("cannot use writeback with this instruction"));
8694
8695 if (is_d)
8696 {
8697 inst.instruction |= 0x01000000;
8698 if (inst.operands[i].writeback)
8699 inst.instruction |= 0x00200000;
b99bd4ef 8700 }
c19d1205 8701 else
b99bd4ef 8702 {
c19d1205
ZW
8703 inst.instruction |= 0x00000c00;
8704 if (inst.operands[i].writeback)
8705 inst.instruction |= 0x00000100;
b99bd4ef 8706 }
c19d1205 8707 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
b99bd4ef 8708 }
c19d1205 8709 else if (inst.operands[i].postind)
b99bd4ef 8710 {
9c2799c2 8711 gas_assert (inst.operands[i].writeback);
c19d1205
ZW
8712 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8713 constraint (is_t, _("cannot use post-indexing with this instruction"));
8714
8715 if (is_d)
8716 inst.instruction |= 0x00200000;
8717 else
8718 inst.instruction |= 0x00000900;
8719 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8720 }
8721 else /* unindexed - only for coprocessor */
8722 inst.error = _("instruction does not accept unindexed addressing");
8723}
8724
8725/* Table of Thumb instructions which exist in both 16- and 32-bit
8726 encodings (the latter only in post-V6T2 cores). The index is the
8727 value used in the insns table below. When there is more than one
8728 possible 16-bit encoding for the instruction, this table always
0110f2b8
PB
8729 holds variant (1).
8730 Also contains several pseudo-instructions used during relaxation. */
c19d1205 8731#define T16_32_TAB \
21d799b5
NC
8732 X(_adc, 4140, eb400000), \
8733 X(_adcs, 4140, eb500000), \
8734 X(_add, 1c00, eb000000), \
8735 X(_adds, 1c00, eb100000), \
8736 X(_addi, 0000, f1000000), \
8737 X(_addis, 0000, f1100000), \
8738 X(_add_pc,000f, f20f0000), \
8739 X(_add_sp,000d, f10d0000), \
8740 X(_adr, 000f, f20f0000), \
8741 X(_and, 4000, ea000000), \
8742 X(_ands, 4000, ea100000), \
8743 X(_asr, 1000, fa40f000), \
8744 X(_asrs, 1000, fa50f000), \
8745 X(_b, e000, f000b000), \
8746 X(_bcond, d000, f0008000), \
8747 X(_bic, 4380, ea200000), \
8748 X(_bics, 4380, ea300000), \
8749 X(_cmn, 42c0, eb100f00), \
8750 X(_cmp, 2800, ebb00f00), \
8751 X(_cpsie, b660, f3af8400), \
8752 X(_cpsid, b670, f3af8600), \
8753 X(_cpy, 4600, ea4f0000), \
8754 X(_dec_sp,80dd, f1ad0d00), \
8755 X(_eor, 4040, ea800000), \
8756 X(_eors, 4040, ea900000), \
8757 X(_inc_sp,00dd, f10d0d00), \
8758 X(_ldmia, c800, e8900000), \
8759 X(_ldr, 6800, f8500000), \
8760 X(_ldrb, 7800, f8100000), \
8761 X(_ldrh, 8800, f8300000), \
8762 X(_ldrsb, 5600, f9100000), \
8763 X(_ldrsh, 5e00, f9300000), \
8764 X(_ldr_pc,4800, f85f0000), \
8765 X(_ldr_pc2,4800, f85f0000), \
8766 X(_ldr_sp,9800, f85d0000), \
8767 X(_lsl, 0000, fa00f000), \
8768 X(_lsls, 0000, fa10f000), \
8769 X(_lsr, 0800, fa20f000), \
8770 X(_lsrs, 0800, fa30f000), \
8771 X(_mov, 2000, ea4f0000), \
8772 X(_movs, 2000, ea5f0000), \
8773 X(_mul, 4340, fb00f000), \
8774 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8775 X(_mvn, 43c0, ea6f0000), \
8776 X(_mvns, 43c0, ea7f0000), \
8777 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8778 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8779 X(_orr, 4300, ea400000), \
8780 X(_orrs, 4300, ea500000), \
8781 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8782 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8783 X(_rev, ba00, fa90f080), \
8784 X(_rev16, ba40, fa90f090), \
8785 X(_revsh, bac0, fa90f0b0), \
8786 X(_ror, 41c0, fa60f000), \
8787 X(_rors, 41c0, fa70f000), \
8788 X(_sbc, 4180, eb600000), \
8789 X(_sbcs, 4180, eb700000), \
8790 X(_stmia, c000, e8800000), \
8791 X(_str, 6000, f8400000), \
8792 X(_strb, 7000, f8000000), \
8793 X(_strh, 8000, f8200000), \
8794 X(_str_sp,9000, f84d0000), \
8795 X(_sub, 1e00, eba00000), \
8796 X(_subs, 1e00, ebb00000), \
8797 X(_subi, 8000, f1a00000), \
8798 X(_subis, 8000, f1b00000), \
8799 X(_sxtb, b240, fa4ff080), \
8800 X(_sxth, b200, fa0ff080), \
8801 X(_tst, 4200, ea100f00), \
8802 X(_uxtb, b2c0, fa5ff080), \
8803 X(_uxth, b280, fa1ff080), \
8804 X(_nop, bf00, f3af8000), \
8805 X(_yield, bf10, f3af8001), \
8806 X(_wfe, bf20, f3af8002), \
8807 X(_wfi, bf30, f3af8003), \
8808 X(_sev, bf40, f3af8004),
c19d1205
ZW
8809
8810/* To catch errors in encoding functions, the codes are all offset by
8811 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8812 as 16-bit instructions. */
21d799b5 8813#define X(a,b,c) T_MNEM##a
c19d1205
ZW
8814enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8815#undef X
8816
8817#define X(a,b,c) 0x##b
8818static const unsigned short thumb_op16[] = { T16_32_TAB };
8819#define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8820#undef X
8821
8822#define X(a,b,c) 0x##c
8823static const unsigned int thumb_op32[] = { T16_32_TAB };
c921be7d
NC
8824#define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8825#define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
c19d1205
ZW
8826#undef X
8827#undef T16_32_TAB
8828
8829/* Thumb instruction encoders, in alphabetical order. */
8830
92e90b6e 8831/* ADDW or SUBW. */
c921be7d 8832
92e90b6e
PB
8833static void
8834do_t_add_sub_w (void)
8835{
8836 int Rd, Rn;
8837
8838 Rd = inst.operands[0].reg;
8839 Rn = inst.operands[1].reg;
8840
539d4391
NC
8841 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8842 is the SP-{plus,minus}-immediate form of the instruction. */
8843 if (Rn == REG_SP)
8844 constraint (Rd == REG_PC, BAD_PC);
8845 else
8846 reject_bad_reg (Rd);
fdfde340 8847
92e90b6e
PB
8848 inst.instruction |= (Rn << 16) | (Rd << 8);
8849 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8850}
8851
c19d1205
ZW
8852/* Parse an add or subtract instruction. We get here with inst.instruction
8853 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8854
8855static void
8856do_t_add_sub (void)
8857{
8858 int Rd, Rs, Rn;
8859
8860 Rd = inst.operands[0].reg;
8861 Rs = (inst.operands[1].present
8862 ? inst.operands[1].reg /* Rd, Rs, foo */
8863 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8864
e07e6e58
NC
8865 if (Rd == REG_PC)
8866 set_it_insn_type_last ();
8867
c19d1205
ZW
8868 if (unified_syntax)
8869 {
0110f2b8
PB
8870 bfd_boolean flags;
8871 bfd_boolean narrow;
8872 int opcode;
8873
8874 flags = (inst.instruction == T_MNEM_adds
8875 || inst.instruction == T_MNEM_subs);
8876 if (flags)
e07e6e58 8877 narrow = !in_it_block ();
0110f2b8 8878 else
e07e6e58 8879 narrow = in_it_block ();
c19d1205 8880 if (!inst.operands[2].isreg)
b99bd4ef 8881 {
16805f35
PB
8882 int add;
8883
fdfde340
JM
8884 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8885
16805f35
PB
8886 add = (inst.instruction == T_MNEM_add
8887 || inst.instruction == T_MNEM_adds);
0110f2b8
PB
8888 opcode = 0;
8889 if (inst.size_req != 4)
8890 {
0110f2b8
PB
8891 /* Attempt to use a narrow opcode, with relaxation if
8892 appropriate. */
8893 if (Rd == REG_SP && Rs == REG_SP && !flags)
8894 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8895 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8896 opcode = T_MNEM_add_sp;
8897 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8898 opcode = T_MNEM_add_pc;
8899 else if (Rd <= 7 && Rs <= 7 && narrow)
8900 {
8901 if (flags)
8902 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8903 else
8904 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8905 }
8906 if (opcode)
8907 {
8908 inst.instruction = THUMB_OP16(opcode);
8909 inst.instruction |= (Rd << 4) | Rs;
8910 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8911 if (inst.size_req != 2)
8912 inst.relax = opcode;
8913 }
8914 else
8915 constraint (inst.size_req == 2, BAD_HIREG);
8916 }
8917 if (inst.size_req == 4
8918 || (inst.size_req != 2 && !opcode))
8919 {
efd81785
PB
8920 if (Rd == REG_PC)
8921 {
fdfde340 8922 constraint (add, BAD_PC);
efd81785
PB
8923 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8924 _("only SUBS PC, LR, #const allowed"));
8925 constraint (inst.reloc.exp.X_op != O_constant,
8926 _("expression too complex"));
8927 constraint (inst.reloc.exp.X_add_number < 0
8928 || inst.reloc.exp.X_add_number > 0xff,
8929 _("immediate value out of range"));
8930 inst.instruction = T2_SUBS_PC_LR
8931 | inst.reloc.exp.X_add_number;
8932 inst.reloc.type = BFD_RELOC_UNUSED;
8933 return;
8934 }
8935 else if (Rs == REG_PC)
16805f35
PB
8936 {
8937 /* Always use addw/subw. */
8938 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8939 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8940 }
8941 else
8942 {
8943 inst.instruction = THUMB_OP32 (inst.instruction);
8944 inst.instruction = (inst.instruction & 0xe1ffffff)
8945 | 0x10000000;
8946 if (flags)
8947 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8948 else
8949 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8950 }
dc4503c6
PB
8951 inst.instruction |= Rd << 8;
8952 inst.instruction |= Rs << 16;
0110f2b8 8953 }
b99bd4ef 8954 }
c19d1205
ZW
8955 else
8956 {
8957 Rn = inst.operands[2].reg;
8958 /* See if we can do this with a 16-bit instruction. */
8959 if (!inst.operands[2].shifted && inst.size_req != 4)
8960 {
e27ec89e
PB
8961 if (Rd > 7 || Rs > 7 || Rn > 7)
8962 narrow = FALSE;
8963
8964 if (narrow)
c19d1205 8965 {
e27ec89e
PB
8966 inst.instruction = ((inst.instruction == T_MNEM_adds
8967 || inst.instruction == T_MNEM_add)
c19d1205
ZW
8968 ? T_OPCODE_ADD_R3
8969 : T_OPCODE_SUB_R3);
8970 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8971 return;
8972 }
b99bd4ef 8973
7e806470 8974 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
c19d1205 8975 {
7e806470
PB
8976 /* Thumb-1 cores (except v6-M) require at least one high
8977 register in a narrow non flag setting add. */
8978 if (Rd > 7 || Rn > 7
8979 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8980 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
c19d1205 8981 {
7e806470
PB
8982 if (Rd == Rn)
8983 {
8984 Rn = Rs;
8985 Rs = Rd;
8986 }
c19d1205
ZW
8987 inst.instruction = T_OPCODE_ADD_HI;
8988 inst.instruction |= (Rd & 8) << 4;
8989 inst.instruction |= (Rd & 7);
8990 inst.instruction |= Rn << 3;
8991 return;
8992 }
c19d1205
ZW
8993 }
8994 }
c921be7d 8995
fdfde340
JM
8996 constraint (Rd == REG_PC, BAD_PC);
8997 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8998 constraint (Rs == REG_PC, BAD_PC);
8999 reject_bad_reg (Rn);
9000
c19d1205
ZW
9001 /* If we get here, it can't be done in 16 bits. */
9002 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9003 _("shift must be constant"));
9004 inst.instruction = THUMB_OP32 (inst.instruction);
9005 inst.instruction |= Rd << 8;
9006 inst.instruction |= Rs << 16;
9007 encode_thumb32_shifted_operand (2);
9008 }
9009 }
9010 else
9011 {
9012 constraint (inst.instruction == T_MNEM_adds
9013 || inst.instruction == T_MNEM_subs,
9014 BAD_THUMB32);
b99bd4ef 9015
c19d1205 9016 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
b99bd4ef 9017 {
c19d1205
ZW
9018 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9019 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9020 BAD_HIREG);
9021
9022 inst.instruction = (inst.instruction == T_MNEM_add
9023 ? 0x0000 : 0x8000);
9024 inst.instruction |= (Rd << 4) | Rs;
9025 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
b99bd4ef
NC
9026 return;
9027 }
9028
c19d1205
ZW
9029 Rn = inst.operands[2].reg;
9030 constraint (inst.operands[2].shifted, _("unshifted register required"));
b99bd4ef 9031
c19d1205
ZW
9032 /* We now have Rd, Rs, and Rn set to registers. */
9033 if (Rd > 7 || Rs > 7 || Rn > 7)
b99bd4ef 9034 {
c19d1205
ZW
9035 /* Can't do this for SUB. */
9036 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9037 inst.instruction = T_OPCODE_ADD_HI;
9038 inst.instruction |= (Rd & 8) << 4;
9039 inst.instruction |= (Rd & 7);
9040 if (Rs == Rd)
9041 inst.instruction |= Rn << 3;
9042 else if (Rn == Rd)
9043 inst.instruction |= Rs << 3;
9044 else
9045 constraint (1, _("dest must overlap one source register"));
9046 }
9047 else
9048 {
9049 inst.instruction = (inst.instruction == T_MNEM_add
9050 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9051 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
b99bd4ef 9052 }
b99bd4ef 9053 }
b99bd4ef
NC
9054}
9055
c19d1205
ZW
9056static void
9057do_t_adr (void)
9058{
fdfde340
JM
9059 unsigned Rd;
9060
9061 Rd = inst.operands[0].reg;
9062 reject_bad_reg (Rd);
9063
9064 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
0110f2b8
PB
9065 {
9066 /* Defer to section relaxation. */
9067 inst.relax = inst.instruction;
9068 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 9069 inst.instruction |= Rd << 4;
0110f2b8
PB
9070 }
9071 else if (unified_syntax && inst.size_req != 2)
e9f89963 9072 {
0110f2b8 9073 /* Generate a 32-bit opcode. */
e9f89963 9074 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 9075 inst.instruction |= Rd << 8;
e9f89963
PB
9076 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9077 inst.reloc.pc_rel = 1;
9078 }
9079 else
9080 {
0110f2b8 9081 /* Generate a 16-bit opcode. */
e9f89963
PB
9082 inst.instruction = THUMB_OP16 (inst.instruction);
9083 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9084 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9085 inst.reloc.pc_rel = 1;
b99bd4ef 9086
fdfde340 9087 inst.instruction |= Rd << 4;
e9f89963 9088 }
c19d1205 9089}
b99bd4ef 9090
c19d1205
ZW
9091/* Arithmetic instructions for which there is just one 16-bit
9092 instruction encoding, and it allows only two low registers.
9093 For maximal compatibility with ARM syntax, we allow three register
9094 operands even when Thumb-32 instructions are not available, as long
9095 as the first two are identical. For instance, both "sbc r0,r1" and
9096 "sbc r0,r0,r1" are allowed. */
b99bd4ef 9097static void
c19d1205 9098do_t_arit3 (void)
b99bd4ef 9099{
c19d1205 9100 int Rd, Rs, Rn;
b99bd4ef 9101
c19d1205
ZW
9102 Rd = inst.operands[0].reg;
9103 Rs = (inst.operands[1].present
9104 ? inst.operands[1].reg /* Rd, Rs, foo */
9105 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9106 Rn = inst.operands[2].reg;
b99bd4ef 9107
fdfde340
JM
9108 reject_bad_reg (Rd);
9109 reject_bad_reg (Rs);
9110 if (inst.operands[2].isreg)
9111 reject_bad_reg (Rn);
9112
c19d1205 9113 if (unified_syntax)
b99bd4ef 9114 {
c19d1205
ZW
9115 if (!inst.operands[2].isreg)
9116 {
9117 /* For an immediate, we always generate a 32-bit opcode;
9118 section relaxation will shrink it later if possible. */
9119 inst.instruction = THUMB_OP32 (inst.instruction);
9120 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9121 inst.instruction |= Rd << 8;
9122 inst.instruction |= Rs << 16;
9123 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9124 }
9125 else
9126 {
e27ec89e
PB
9127 bfd_boolean narrow;
9128
c19d1205 9129 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9130 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9131 narrow = !in_it_block ();
e27ec89e 9132 else
e07e6e58 9133 narrow = in_it_block ();
e27ec89e
PB
9134
9135 if (Rd > 7 || Rn > 7 || Rs > 7)
9136 narrow = FALSE;
9137 if (inst.operands[2].shifted)
9138 narrow = FALSE;
9139 if (inst.size_req == 4)
9140 narrow = FALSE;
9141
9142 if (narrow
c19d1205
ZW
9143 && Rd == Rs)
9144 {
9145 inst.instruction = THUMB_OP16 (inst.instruction);
9146 inst.instruction |= Rd;
9147 inst.instruction |= Rn << 3;
9148 return;
9149 }
b99bd4ef 9150
c19d1205
ZW
9151 /* If we get here, it can't be done in 16 bits. */
9152 constraint (inst.operands[2].shifted
9153 && inst.operands[2].immisreg,
9154 _("shift must be constant"));
9155 inst.instruction = THUMB_OP32 (inst.instruction);
9156 inst.instruction |= Rd << 8;
9157 inst.instruction |= Rs << 16;
9158 encode_thumb32_shifted_operand (2);
9159 }
a737bd4d 9160 }
c19d1205 9161 else
b99bd4ef 9162 {
c19d1205
ZW
9163 /* On its face this is a lie - the instruction does set the
9164 flags. However, the only supported mnemonic in this mode
9165 says it doesn't. */
9166 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9167
c19d1205
ZW
9168 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9169 _("unshifted register required"));
9170 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9171 constraint (Rd != Rs,
9172 _("dest and source1 must be the same register"));
a737bd4d 9173
c19d1205
ZW
9174 inst.instruction = THUMB_OP16 (inst.instruction);
9175 inst.instruction |= Rd;
9176 inst.instruction |= Rn << 3;
b99bd4ef 9177 }
a737bd4d 9178}
b99bd4ef 9179
c19d1205
ZW
9180/* Similarly, but for instructions where the arithmetic operation is
9181 commutative, so we can allow either of them to be different from
9182 the destination operand in a 16-bit instruction. For instance, all
9183 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9184 accepted. */
9185static void
9186do_t_arit3c (void)
a737bd4d 9187{
c19d1205 9188 int Rd, Rs, Rn;
b99bd4ef 9189
c19d1205
ZW
9190 Rd = inst.operands[0].reg;
9191 Rs = (inst.operands[1].present
9192 ? inst.operands[1].reg /* Rd, Rs, foo */
9193 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9194 Rn = inst.operands[2].reg;
c921be7d 9195
fdfde340
JM
9196 reject_bad_reg (Rd);
9197 reject_bad_reg (Rs);
9198 if (inst.operands[2].isreg)
9199 reject_bad_reg (Rn);
a737bd4d 9200
c19d1205 9201 if (unified_syntax)
a737bd4d 9202 {
c19d1205 9203 if (!inst.operands[2].isreg)
b99bd4ef 9204 {
c19d1205
ZW
9205 /* For an immediate, we always generate a 32-bit opcode;
9206 section relaxation will shrink it later if possible. */
9207 inst.instruction = THUMB_OP32 (inst.instruction);
9208 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9209 inst.instruction |= Rd << 8;
9210 inst.instruction |= Rs << 16;
9211 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 9212 }
c19d1205 9213 else
a737bd4d 9214 {
e27ec89e
PB
9215 bfd_boolean narrow;
9216
c19d1205 9217 /* See if we can do this with a 16-bit instruction. */
e27ec89e 9218 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 9219 narrow = !in_it_block ();
e27ec89e 9220 else
e07e6e58 9221 narrow = in_it_block ();
e27ec89e
PB
9222
9223 if (Rd > 7 || Rn > 7 || Rs > 7)
9224 narrow = FALSE;
9225 if (inst.operands[2].shifted)
9226 narrow = FALSE;
9227 if (inst.size_req == 4)
9228 narrow = FALSE;
9229
9230 if (narrow)
a737bd4d 9231 {
c19d1205 9232 if (Rd == Rs)
a737bd4d 9233 {
c19d1205
ZW
9234 inst.instruction = THUMB_OP16 (inst.instruction);
9235 inst.instruction |= Rd;
9236 inst.instruction |= Rn << 3;
9237 return;
a737bd4d 9238 }
c19d1205 9239 if (Rd == Rn)
a737bd4d 9240 {
c19d1205
ZW
9241 inst.instruction = THUMB_OP16 (inst.instruction);
9242 inst.instruction |= Rd;
9243 inst.instruction |= Rs << 3;
9244 return;
a737bd4d
NC
9245 }
9246 }
c19d1205
ZW
9247
9248 /* If we get here, it can't be done in 16 bits. */
9249 constraint (inst.operands[2].shifted
9250 && inst.operands[2].immisreg,
9251 _("shift must be constant"));
9252 inst.instruction = THUMB_OP32 (inst.instruction);
9253 inst.instruction |= Rd << 8;
9254 inst.instruction |= Rs << 16;
9255 encode_thumb32_shifted_operand (2);
a737bd4d 9256 }
b99bd4ef 9257 }
c19d1205
ZW
9258 else
9259 {
9260 /* On its face this is a lie - the instruction does set the
9261 flags. However, the only supported mnemonic in this mode
9262 says it doesn't. */
9263 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
a737bd4d 9264
c19d1205
ZW
9265 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9266 _("unshifted register required"));
9267 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9268
9269 inst.instruction = THUMB_OP16 (inst.instruction);
9270 inst.instruction |= Rd;
9271
9272 if (Rd == Rs)
9273 inst.instruction |= Rn << 3;
9274 else if (Rd == Rn)
9275 inst.instruction |= Rs << 3;
9276 else
9277 constraint (1, _("dest must overlap one source register"));
9278 }
a737bd4d
NC
9279}
9280
62b3e311
PB
9281static void
9282do_t_barrier (void)
9283{
9284 if (inst.operands[0].present)
9285 {
9286 constraint ((inst.instruction & 0xf0) != 0x40
9287 && inst.operands[0].imm != 0xf,
bd3ba5d1 9288 _("bad barrier type"));
62b3e311
PB
9289 inst.instruction |= inst.operands[0].imm;
9290 }
9291 else
9292 inst.instruction |= 0xf;
9293}
9294
c19d1205
ZW
9295static void
9296do_t_bfc (void)
a737bd4d 9297{
fdfde340 9298 unsigned Rd;
c19d1205
ZW
9299 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9300 constraint (msb > 32, _("bit-field extends past end of register"));
9301 /* The instruction encoding stores the LSB and MSB,
9302 not the LSB and width. */
fdfde340
JM
9303 Rd = inst.operands[0].reg;
9304 reject_bad_reg (Rd);
9305 inst.instruction |= Rd << 8;
c19d1205
ZW
9306 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9307 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9308 inst.instruction |= msb - 1;
b99bd4ef
NC
9309}
9310
c19d1205
ZW
9311static void
9312do_t_bfi (void)
b99bd4ef 9313{
fdfde340 9314 int Rd, Rn;
c19d1205 9315 unsigned int msb;
b99bd4ef 9316
fdfde340
JM
9317 Rd = inst.operands[0].reg;
9318 reject_bad_reg (Rd);
9319
c19d1205
ZW
9320 /* #0 in second position is alternative syntax for bfc, which is
9321 the same instruction but with REG_PC in the Rm field. */
9322 if (!inst.operands[1].isreg)
fdfde340
JM
9323 Rn = REG_PC;
9324 else
9325 {
9326 Rn = inst.operands[1].reg;
9327 reject_bad_reg (Rn);
9328 }
b99bd4ef 9329
c19d1205
ZW
9330 msb = inst.operands[2].imm + inst.operands[3].imm;
9331 constraint (msb > 32, _("bit-field extends past end of register"));
9332 /* The instruction encoding stores the LSB and MSB,
9333 not the LSB and width. */
fdfde340
JM
9334 inst.instruction |= Rd << 8;
9335 inst.instruction |= Rn << 16;
c19d1205
ZW
9336 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9337 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9338 inst.instruction |= msb - 1;
b99bd4ef
NC
9339}
9340
c19d1205
ZW
9341static void
9342do_t_bfx (void)
b99bd4ef 9343{
fdfde340
JM
9344 unsigned Rd, Rn;
9345
9346 Rd = inst.operands[0].reg;
9347 Rn = inst.operands[1].reg;
9348
9349 reject_bad_reg (Rd);
9350 reject_bad_reg (Rn);
9351
c19d1205
ZW
9352 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9353 _("bit-field extends past end of register"));
fdfde340
JM
9354 inst.instruction |= Rd << 8;
9355 inst.instruction |= Rn << 16;
c19d1205
ZW
9356 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9357 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9358 inst.instruction |= inst.operands[3].imm - 1;
9359}
b99bd4ef 9360
c19d1205
ZW
9361/* ARM V5 Thumb BLX (argument parse)
9362 BLX <target_addr> which is BLX(1)
9363 BLX <Rm> which is BLX(2)
9364 Unfortunately, there are two different opcodes for this mnemonic.
9365 So, the insns[].value is not used, and the code here zaps values
9366 into inst.instruction.
b99bd4ef 9367
c19d1205
ZW
9368 ??? How to take advantage of the additional two bits of displacement
9369 available in Thumb32 mode? Need new relocation? */
b99bd4ef 9370
c19d1205
ZW
9371static void
9372do_t_blx (void)
9373{
e07e6e58
NC
9374 set_it_insn_type_last ();
9375
c19d1205 9376 if (inst.operands[0].isreg)
fdfde340
JM
9377 {
9378 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9379 /* We have a register, so this is BLX(2). */
9380 inst.instruction |= inst.operands[0].reg << 3;
9381 }
b99bd4ef
NC
9382 else
9383 {
c19d1205 9384 /* No register. This must be BLX(1). */
2fc8bdac 9385 inst.instruction = 0xf000e800;
00adf2d4 9386 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
c19d1205 9387 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9388 }
9389}
9390
c19d1205
ZW
9391static void
9392do_t_branch (void)
b99bd4ef 9393{
0110f2b8 9394 int opcode;
dfa9f0d5
PB
9395 int cond;
9396
e07e6e58
NC
9397 cond = inst.cond;
9398 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9399
9400 if (in_it_block ())
dfa9f0d5
PB
9401 {
9402 /* Conditional branches inside IT blocks are encoded as unconditional
9403 branches. */
9404 cond = COND_ALWAYS;
dfa9f0d5
PB
9405 }
9406 else
9407 cond = inst.cond;
9408
9409 if (cond != COND_ALWAYS)
0110f2b8
PB
9410 opcode = T_MNEM_bcond;
9411 else
9412 opcode = inst.instruction;
9413
9414 if (unified_syntax && inst.size_req == 4)
c19d1205 9415 {
0110f2b8 9416 inst.instruction = THUMB_OP32(opcode);
dfa9f0d5 9417 if (cond == COND_ALWAYS)
0110f2b8 9418 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
c19d1205
ZW
9419 else
9420 {
9c2799c2 9421 gas_assert (cond != 0xF);
dfa9f0d5 9422 inst.instruction |= cond << 22;
c19d1205
ZW
9423 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9424 }
9425 }
b99bd4ef
NC
9426 else
9427 {
0110f2b8 9428 inst.instruction = THUMB_OP16(opcode);
dfa9f0d5 9429 if (cond == COND_ALWAYS)
c19d1205
ZW
9430 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9431 else
b99bd4ef 9432 {
dfa9f0d5 9433 inst.instruction |= cond << 8;
c19d1205 9434 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
b99bd4ef 9435 }
0110f2b8
PB
9436 /* Allow section relaxation. */
9437 if (unified_syntax && inst.size_req != 2)
9438 inst.relax = opcode;
b99bd4ef 9439 }
c19d1205
ZW
9440
9441 inst.reloc.pc_rel = 1;
b99bd4ef
NC
9442}
9443
9444static void
c19d1205 9445do_t_bkpt (void)
b99bd4ef 9446{
dfa9f0d5
PB
9447 constraint (inst.cond != COND_ALWAYS,
9448 _("instruction is always unconditional"));
c19d1205 9449 if (inst.operands[0].present)
b99bd4ef 9450 {
c19d1205
ZW
9451 constraint (inst.operands[0].imm > 255,
9452 _("immediate value out of range"));
9453 inst.instruction |= inst.operands[0].imm;
e07e6e58 9454 set_it_insn_type (NEUTRAL_IT_INSN);
b99bd4ef 9455 }
b99bd4ef
NC
9456}
9457
9458static void
c19d1205 9459do_t_branch23 (void)
b99bd4ef 9460{
e07e6e58 9461 set_it_insn_type_last ();
c19d1205 9462 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
90e4755a
RE
9463 inst.reloc.pc_rel = 1;
9464
4343666d 9465#if defined(OBJ_COFF)
c19d1205
ZW
9466 /* If the destination of the branch is a defined symbol which does not have
9467 the THUMB_FUNC attribute, then we must be calling a function which has
9468 the (interfacearm) attribute. We look for the Thumb entry point to that
9469 function and change the branch to refer to that function instead. */
9470 if ( inst.reloc.exp.X_op == O_symbol
9471 && inst.reloc.exp.X_add_symbol != NULL
9472 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9473 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9474 inst.reloc.exp.X_add_symbol =
9475 find_real_start (inst.reloc.exp.X_add_symbol);
4343666d 9476#endif
90e4755a
RE
9477}
9478
9479static void
c19d1205 9480do_t_bx (void)
90e4755a 9481{
e07e6e58 9482 set_it_insn_type_last ();
c19d1205
ZW
9483 inst.instruction |= inst.operands[0].reg << 3;
9484 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9485 should cause the alignment to be checked once it is known. This is
9486 because BX PC only works if the instruction is word aligned. */
9487}
90e4755a 9488
c19d1205
ZW
9489static void
9490do_t_bxj (void)
9491{
fdfde340 9492 int Rm;
90e4755a 9493
e07e6e58 9494 set_it_insn_type_last ();
fdfde340
JM
9495 Rm = inst.operands[0].reg;
9496 reject_bad_reg (Rm);
9497 inst.instruction |= Rm << 16;
90e4755a
RE
9498}
9499
9500static void
c19d1205 9501do_t_clz (void)
90e4755a 9502{
fdfde340
JM
9503 unsigned Rd;
9504 unsigned Rm;
9505
9506 Rd = inst.operands[0].reg;
9507 Rm = inst.operands[1].reg;
9508
9509 reject_bad_reg (Rd);
9510 reject_bad_reg (Rm);
9511
9512 inst.instruction |= Rd << 8;
9513 inst.instruction |= Rm << 16;
9514 inst.instruction |= Rm;
c19d1205 9515}
90e4755a 9516
dfa9f0d5
PB
9517static void
9518do_t_cps (void)
9519{
e07e6e58 9520 set_it_insn_type (OUTSIDE_IT_INSN);
dfa9f0d5
PB
9521 inst.instruction |= inst.operands[0].imm;
9522}
9523
c19d1205
ZW
9524static void
9525do_t_cpsi (void)
9526{
e07e6e58 9527 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205 9528 if (unified_syntax
62b3e311
PB
9529 && (inst.operands[1].present || inst.size_req == 4)
9530 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
90e4755a 9531 {
c19d1205
ZW
9532 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9533 inst.instruction = 0xf3af8000;
9534 inst.instruction |= imod << 9;
9535 inst.instruction |= inst.operands[0].imm << 5;
9536 if (inst.operands[1].present)
9537 inst.instruction |= 0x100 | inst.operands[1].imm;
90e4755a 9538 }
c19d1205 9539 else
90e4755a 9540 {
62b3e311
PB
9541 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9542 && (inst.operands[0].imm & 4),
9543 _("selected processor does not support 'A' form "
9544 "of this instruction"));
9545 constraint (inst.operands[1].present || inst.size_req == 4,
c19d1205
ZW
9546 _("Thumb does not support the 2-argument "
9547 "form of this instruction"));
9548 inst.instruction |= inst.operands[0].imm;
90e4755a 9549 }
90e4755a
RE
9550}
9551
c19d1205
ZW
9552/* THUMB CPY instruction (argument parse). */
9553
90e4755a 9554static void
c19d1205 9555do_t_cpy (void)
90e4755a 9556{
c19d1205 9557 if (inst.size_req == 4)
90e4755a 9558 {
c19d1205
ZW
9559 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9560 inst.instruction |= inst.operands[0].reg << 8;
9561 inst.instruction |= inst.operands[1].reg;
90e4755a 9562 }
c19d1205 9563 else
90e4755a 9564 {
c19d1205
ZW
9565 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9566 inst.instruction |= (inst.operands[0].reg & 0x7);
9567 inst.instruction |= inst.operands[1].reg << 3;
90e4755a 9568 }
90e4755a
RE
9569}
9570
90e4755a 9571static void
25fe350b 9572do_t_cbz (void)
90e4755a 9573{
e07e6e58 9574 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
9575 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9576 inst.instruction |= inst.operands[0].reg;
9577 inst.reloc.pc_rel = 1;
9578 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9579}
90e4755a 9580
62b3e311
PB
9581static void
9582do_t_dbg (void)
9583{
9584 inst.instruction |= inst.operands[0].imm;
9585}
9586
9587static void
9588do_t_div (void)
9589{
fdfde340
JM
9590 unsigned Rd, Rn, Rm;
9591
9592 Rd = inst.operands[0].reg;
9593 Rn = (inst.operands[1].present
9594 ? inst.operands[1].reg : Rd);
9595 Rm = inst.operands[2].reg;
9596
9597 reject_bad_reg (Rd);
9598 reject_bad_reg (Rn);
9599 reject_bad_reg (Rm);
9600
9601 inst.instruction |= Rd << 8;
9602 inst.instruction |= Rn << 16;
9603 inst.instruction |= Rm;
62b3e311
PB
9604}
9605
c19d1205
ZW
9606static void
9607do_t_hint (void)
9608{
9609 if (unified_syntax && inst.size_req == 4)
9610 inst.instruction = THUMB_OP32 (inst.instruction);
9611 else
9612 inst.instruction = THUMB_OP16 (inst.instruction);
9613}
90e4755a 9614
c19d1205
ZW
9615static void
9616do_t_it (void)
9617{
9618 unsigned int cond = inst.operands[0].imm;
e27ec89e 9619
e07e6e58
NC
9620 set_it_insn_type (IT_INSN);
9621 now_it.mask = (inst.instruction & 0xf) | 0x10;
9622 now_it.cc = cond;
e27ec89e
PB
9623
9624 /* If the condition is a negative condition, invert the mask. */
c19d1205 9625 if ((cond & 0x1) == 0x0)
90e4755a 9626 {
c19d1205 9627 unsigned int mask = inst.instruction & 0x000f;
90e4755a 9628
c19d1205
ZW
9629 if ((mask & 0x7) == 0)
9630 /* no conversion needed */;
9631 else if ((mask & 0x3) == 0)
e27ec89e
PB
9632 mask ^= 0x8;
9633 else if ((mask & 0x1) == 0)
9634 mask ^= 0xC;
c19d1205 9635 else
e27ec89e 9636 mask ^= 0xE;
90e4755a 9637
e27ec89e
PB
9638 inst.instruction &= 0xfff0;
9639 inst.instruction |= mask;
c19d1205 9640 }
90e4755a 9641
c19d1205
ZW
9642 inst.instruction |= cond << 4;
9643}
90e4755a 9644
3c707909
PB
9645/* Helper function used for both push/pop and ldm/stm. */
9646static void
9647encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9648{
9649 bfd_boolean load;
9650
9651 load = (inst.instruction & (1 << 20)) != 0;
9652
9653 if (mask & (1 << 13))
9654 inst.error = _("SP not allowed in register list");
9655 if (load)
9656 {
e07e6e58
NC
9657 if (mask & (1 << 15))
9658 {
9659 if (mask & (1 << 14))
9660 inst.error = _("LR and PC should not both be in register list");
9661 else
9662 set_it_insn_type_last ();
9663 }
3c707909
PB
9664
9665 if ((mask & (1 << base)) != 0
9666 && writeback)
9667 as_warn (_("base register should not be in register list "
9668 "when written back"));
9669 }
9670 else
9671 {
9672 if (mask & (1 << 15))
9673 inst.error = _("PC not allowed in register list");
9674
9675 if (mask & (1 << base))
9676 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9677 }
9678
9679 if ((mask & (mask - 1)) == 0)
9680 {
9681 /* Single register transfers implemented as str/ldr. */
9682 if (writeback)
9683 {
9684 if (inst.instruction & (1 << 23))
9685 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9686 else
9687 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9688 }
9689 else
9690 {
9691 if (inst.instruction & (1 << 23))
9692 inst.instruction = 0x00800000; /* ia -> [base] */
9693 else
9694 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9695 }
9696
9697 inst.instruction |= 0xf8400000;
9698 if (load)
9699 inst.instruction |= 0x00100000;
9700
5f4273c7 9701 mask = ffs (mask) - 1;
3c707909
PB
9702 mask <<= 12;
9703 }
9704 else if (writeback)
9705 inst.instruction |= WRITE_BACK;
9706
9707 inst.instruction |= mask;
9708 inst.instruction |= base << 16;
9709}
9710
c19d1205
ZW
9711static void
9712do_t_ldmstm (void)
9713{
9714 /* This really doesn't seem worth it. */
9715 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9716 _("expression too complex"));
9717 constraint (inst.operands[1].writeback,
9718 _("Thumb load/store multiple does not support {reglist}^"));
90e4755a 9719
c19d1205
ZW
9720 if (unified_syntax)
9721 {
3c707909
PB
9722 bfd_boolean narrow;
9723 unsigned mask;
9724
9725 narrow = FALSE;
c19d1205
ZW
9726 /* See if we can use a 16-bit instruction. */
9727 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9728 && inst.size_req != 4
3c707909 9729 && !(inst.operands[1].imm & ~0xff))
90e4755a 9730 {
3c707909 9731 mask = 1 << inst.operands[0].reg;
90e4755a 9732
3c707909
PB
9733 if (inst.operands[0].reg <= 7
9734 && (inst.instruction == T_MNEM_stmia
9735 ? inst.operands[0].writeback
9736 : (inst.operands[0].writeback
9737 == !(inst.operands[1].imm & mask))))
90e4755a 9738 {
3c707909
PB
9739 if (inst.instruction == T_MNEM_stmia
9740 && (inst.operands[1].imm & mask)
9741 && (inst.operands[1].imm & (mask - 1)))
c19d1205
ZW
9742 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9743 inst.operands[0].reg);
3c707909
PB
9744
9745 inst.instruction = THUMB_OP16 (inst.instruction);
9746 inst.instruction |= inst.operands[0].reg << 8;
9747 inst.instruction |= inst.operands[1].imm;
9748 narrow = TRUE;
90e4755a 9749 }
3c707909
PB
9750 else if (inst.operands[0] .reg == REG_SP
9751 && inst.operands[0].writeback)
90e4755a 9752 {
3c707909
PB
9753 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9754 ? T_MNEM_push : T_MNEM_pop);
9755 inst.instruction |= inst.operands[1].imm;
9756 narrow = TRUE;
90e4755a 9757 }
3c707909
PB
9758 }
9759
9760 if (!narrow)
9761 {
c19d1205
ZW
9762 if (inst.instruction < 0xffff)
9763 inst.instruction = THUMB_OP32 (inst.instruction);
3c707909 9764
5f4273c7
NC
9765 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9766 inst.operands[0].writeback);
90e4755a
RE
9767 }
9768 }
c19d1205 9769 else
90e4755a 9770 {
c19d1205
ZW
9771 constraint (inst.operands[0].reg > 7
9772 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
1198ca51
PB
9773 constraint (inst.instruction != T_MNEM_ldmia
9774 && inst.instruction != T_MNEM_stmia,
9775 _("Thumb-2 instruction only valid in unified syntax"));
c19d1205 9776 if (inst.instruction == T_MNEM_stmia)
f03698e6 9777 {
c19d1205
ZW
9778 if (!inst.operands[0].writeback)
9779 as_warn (_("this instruction will write back the base register"));
9780 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9781 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9782 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9783 inst.operands[0].reg);
f03698e6 9784 }
c19d1205 9785 else
90e4755a 9786 {
c19d1205
ZW
9787 if (!inst.operands[0].writeback
9788 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9789 as_warn (_("this instruction will write back the base register"));
9790 else if (inst.operands[0].writeback
9791 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9792 as_warn (_("this instruction will not write back the base register"));
90e4755a
RE
9793 }
9794
c19d1205
ZW
9795 inst.instruction = THUMB_OP16 (inst.instruction);
9796 inst.instruction |= inst.operands[0].reg << 8;
9797 inst.instruction |= inst.operands[1].imm;
9798 }
9799}
e28cd48c 9800
c19d1205
ZW
9801static void
9802do_t_ldrex (void)
9803{
9804 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9805 || inst.operands[1].postind || inst.operands[1].writeback
9806 || inst.operands[1].immisreg || inst.operands[1].shifted
9807 || inst.operands[1].negative,
01cfc07f 9808 BAD_ADDR_MODE);
e28cd48c 9809
c19d1205
ZW
9810 inst.instruction |= inst.operands[0].reg << 12;
9811 inst.instruction |= inst.operands[1].reg << 16;
9812 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9813}
e28cd48c 9814
c19d1205
ZW
9815static void
9816do_t_ldrexd (void)
9817{
9818 if (!inst.operands[1].present)
1cac9012 9819 {
c19d1205
ZW
9820 constraint (inst.operands[0].reg == REG_LR,
9821 _("r14 not allowed as first register "
9822 "when second register is omitted"));
9823 inst.operands[1].reg = inst.operands[0].reg + 1;
b99bd4ef 9824 }
c19d1205
ZW
9825 constraint (inst.operands[0].reg == inst.operands[1].reg,
9826 BAD_OVERLAP);
b99bd4ef 9827
c19d1205
ZW
9828 inst.instruction |= inst.operands[0].reg << 12;
9829 inst.instruction |= inst.operands[1].reg << 8;
9830 inst.instruction |= inst.operands[2].reg << 16;
b99bd4ef
NC
9831}
9832
9833static void
c19d1205 9834do_t_ldst (void)
b99bd4ef 9835{
0110f2b8
PB
9836 unsigned long opcode;
9837 int Rn;
9838
e07e6e58
NC
9839 if (inst.operands[0].isreg
9840 && !inst.operands[0].preind
9841 && inst.operands[0].reg == REG_PC)
9842 set_it_insn_type_last ();
9843
0110f2b8 9844 opcode = inst.instruction;
c19d1205 9845 if (unified_syntax)
b99bd4ef 9846 {
53365c0d
PB
9847 if (!inst.operands[1].isreg)
9848 {
9849 if (opcode <= 0xffff)
9850 inst.instruction = THUMB_OP32 (opcode);
9851 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9852 return;
9853 }
0110f2b8
PB
9854 if (inst.operands[1].isreg
9855 && !inst.operands[1].writeback
c19d1205
ZW
9856 && !inst.operands[1].shifted && !inst.operands[1].postind
9857 && !inst.operands[1].negative && inst.operands[0].reg <= 7
0110f2b8
PB
9858 && opcode <= 0xffff
9859 && inst.size_req != 4)
c19d1205 9860 {
0110f2b8
PB
9861 /* Insn may have a 16-bit form. */
9862 Rn = inst.operands[1].reg;
9863 if (inst.operands[1].immisreg)
9864 {
9865 inst.instruction = THUMB_OP16 (opcode);
5f4273c7 9866 /* [Rn, Rik] */
0110f2b8
PB
9867 if (Rn <= 7 && inst.operands[1].imm <= 7)
9868 goto op16;
9869 }
9870 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9871 && opcode != T_MNEM_ldrsb)
9872 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9873 || (Rn == REG_SP && opcode == T_MNEM_str))
9874 {
9875 /* [Rn, #const] */
9876 if (Rn > 7)
9877 {
9878 if (Rn == REG_PC)
9879 {
9880 if (inst.reloc.pc_rel)
9881 opcode = T_MNEM_ldr_pc2;
9882 else
9883 opcode = T_MNEM_ldr_pc;
9884 }
9885 else
9886 {
9887 if (opcode == T_MNEM_ldr)
9888 opcode = T_MNEM_ldr_sp;
9889 else
9890 opcode = T_MNEM_str_sp;
9891 }
9892 inst.instruction = inst.operands[0].reg << 8;
9893 }
9894 else
9895 {
9896 inst.instruction = inst.operands[0].reg;
9897 inst.instruction |= inst.operands[1].reg << 3;
9898 }
9899 inst.instruction |= THUMB_OP16 (opcode);
9900 if (inst.size_req == 2)
9901 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9902 else
9903 inst.relax = opcode;
9904 return;
9905 }
c19d1205 9906 }
0110f2b8
PB
9907 /* Definitely a 32-bit variant. */
9908 inst.instruction = THUMB_OP32 (opcode);
c19d1205
ZW
9909 inst.instruction |= inst.operands[0].reg << 12;
9910 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
b99bd4ef
NC
9911 return;
9912 }
9913
c19d1205
ZW
9914 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9915
9916 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
b99bd4ef 9917 {
c19d1205
ZW
9918 /* Only [Rn,Rm] is acceptable. */
9919 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9920 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9921 || inst.operands[1].postind || inst.operands[1].shifted
9922 || inst.operands[1].negative,
9923 _("Thumb does not support this addressing mode"));
9924 inst.instruction = THUMB_OP16 (inst.instruction);
9925 goto op16;
b99bd4ef 9926 }
5f4273c7 9927
c19d1205
ZW
9928 inst.instruction = THUMB_OP16 (inst.instruction);
9929 if (!inst.operands[1].isreg)
9930 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9931 return;
b99bd4ef 9932
c19d1205
ZW
9933 constraint (!inst.operands[1].preind
9934 || inst.operands[1].shifted
9935 || inst.operands[1].writeback,
9936 _("Thumb does not support this addressing mode"));
9937 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
90e4755a 9938 {
c19d1205
ZW
9939 constraint (inst.instruction & 0x0600,
9940 _("byte or halfword not valid for base register"));
9941 constraint (inst.operands[1].reg == REG_PC
9942 && !(inst.instruction & THUMB_LOAD_BIT),
9943 _("r15 based store not allowed"));
9944 constraint (inst.operands[1].immisreg,
9945 _("invalid base register for register offset"));
b99bd4ef 9946
c19d1205
ZW
9947 if (inst.operands[1].reg == REG_PC)
9948 inst.instruction = T_OPCODE_LDR_PC;
9949 else if (inst.instruction & THUMB_LOAD_BIT)
9950 inst.instruction = T_OPCODE_LDR_SP;
9951 else
9952 inst.instruction = T_OPCODE_STR_SP;
b99bd4ef 9953
c19d1205
ZW
9954 inst.instruction |= inst.operands[0].reg << 8;
9955 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9956 return;
9957 }
90e4755a 9958
c19d1205
ZW
9959 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9960 if (!inst.operands[1].immisreg)
9961 {
9962 /* Immediate offset. */
9963 inst.instruction |= inst.operands[0].reg;
9964 inst.instruction |= inst.operands[1].reg << 3;
9965 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9966 return;
9967 }
90e4755a 9968
c19d1205
ZW
9969 /* Register offset. */
9970 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9971 constraint (inst.operands[1].negative,
9972 _("Thumb does not support this addressing mode"));
90e4755a 9973
c19d1205
ZW
9974 op16:
9975 switch (inst.instruction)
9976 {
9977 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9978 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9979 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9980 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9981 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9982 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9983 case 0x5600 /* ldrsb */:
9984 case 0x5e00 /* ldrsh */: break;
9985 default: abort ();
9986 }
90e4755a 9987
c19d1205
ZW
9988 inst.instruction |= inst.operands[0].reg;
9989 inst.instruction |= inst.operands[1].reg << 3;
9990 inst.instruction |= inst.operands[1].imm << 6;
9991}
90e4755a 9992
c19d1205
ZW
9993static void
9994do_t_ldstd (void)
9995{
9996 if (!inst.operands[1].present)
b99bd4ef 9997 {
c19d1205
ZW
9998 inst.operands[1].reg = inst.operands[0].reg + 1;
9999 constraint (inst.operands[0].reg == REG_LR,
10000 _("r14 not allowed here"));
b99bd4ef 10001 }
c19d1205
ZW
10002 inst.instruction |= inst.operands[0].reg << 12;
10003 inst.instruction |= inst.operands[1].reg << 8;
10004 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
b99bd4ef
NC
10005}
10006
c19d1205
ZW
10007static void
10008do_t_ldstt (void)
10009{
10010 inst.instruction |= inst.operands[0].reg << 12;
10011 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10012}
a737bd4d 10013
b99bd4ef 10014static void
c19d1205 10015do_t_mla (void)
b99bd4ef 10016{
fdfde340 10017 unsigned Rd, Rn, Rm, Ra;
c921be7d 10018
fdfde340
JM
10019 Rd = inst.operands[0].reg;
10020 Rn = inst.operands[1].reg;
10021 Rm = inst.operands[2].reg;
10022 Ra = inst.operands[3].reg;
10023
10024 reject_bad_reg (Rd);
10025 reject_bad_reg (Rn);
10026 reject_bad_reg (Rm);
10027 reject_bad_reg (Ra);
10028
10029 inst.instruction |= Rd << 8;
10030 inst.instruction |= Rn << 16;
10031 inst.instruction |= Rm;
10032 inst.instruction |= Ra << 12;
c19d1205 10033}
b99bd4ef 10034
c19d1205
ZW
10035static void
10036do_t_mlal (void)
10037{
fdfde340
JM
10038 unsigned RdLo, RdHi, Rn, Rm;
10039
10040 RdLo = inst.operands[0].reg;
10041 RdHi = inst.operands[1].reg;
10042 Rn = inst.operands[2].reg;
10043 Rm = inst.operands[3].reg;
10044
10045 reject_bad_reg (RdLo);
10046 reject_bad_reg (RdHi);
10047 reject_bad_reg (Rn);
10048 reject_bad_reg (Rm);
10049
10050 inst.instruction |= RdLo << 12;
10051 inst.instruction |= RdHi << 8;
10052 inst.instruction |= Rn << 16;
10053 inst.instruction |= Rm;
c19d1205 10054}
b99bd4ef 10055
c19d1205
ZW
10056static void
10057do_t_mov_cmp (void)
10058{
fdfde340
JM
10059 unsigned Rn, Rm;
10060
10061 Rn = inst.operands[0].reg;
10062 Rm = inst.operands[1].reg;
10063
e07e6e58
NC
10064 if (Rn == REG_PC)
10065 set_it_insn_type_last ();
10066
c19d1205 10067 if (unified_syntax)
b99bd4ef 10068 {
c19d1205
ZW
10069 int r0off = (inst.instruction == T_MNEM_mov
10070 || inst.instruction == T_MNEM_movs) ? 8 : 16;
0110f2b8 10071 unsigned long opcode;
3d388997
PB
10072 bfd_boolean narrow;
10073 bfd_boolean low_regs;
10074
fdfde340 10075 low_regs = (Rn <= 7 && Rm <= 7);
0110f2b8 10076 opcode = inst.instruction;
e07e6e58 10077 if (in_it_block ())
0110f2b8 10078 narrow = opcode != T_MNEM_movs;
3d388997 10079 else
0110f2b8 10080 narrow = opcode != T_MNEM_movs || low_regs;
3d388997
PB
10081 if (inst.size_req == 4
10082 || inst.operands[1].shifted)
10083 narrow = FALSE;
10084
efd81785
PB
10085 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10086 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10087 && !inst.operands[1].shifted
fdfde340
JM
10088 && Rn == REG_PC
10089 && Rm == REG_LR)
efd81785
PB
10090 {
10091 inst.instruction = T2_SUBS_PC_LR;
10092 return;
10093 }
10094
fdfde340
JM
10095 if (opcode == T_MNEM_cmp)
10096 {
10097 constraint (Rn == REG_PC, BAD_PC);
94206790
MM
10098 if (narrow)
10099 {
10100 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10101 but valid. */
10102 warn_deprecated_sp (Rm);
10103 /* R15 was documented as a valid choice for Rm in ARMv6,
10104 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10105 tools reject R15, so we do too. */
10106 constraint (Rm == REG_PC, BAD_PC);
10107 }
10108 else
10109 reject_bad_reg (Rm);
fdfde340
JM
10110 }
10111 else if (opcode == T_MNEM_mov
10112 || opcode == T_MNEM_movs)
10113 {
10114 if (inst.operands[1].isreg)
10115 {
10116 if (opcode == T_MNEM_movs)
10117 {
10118 reject_bad_reg (Rn);
10119 reject_bad_reg (Rm);
10120 }
10121 else if ((Rn == REG_SP || Rn == REG_PC)
10122 && (Rm == REG_SP || Rm == REG_PC))
10123 reject_bad_reg (Rm);
10124 }
10125 else
10126 reject_bad_reg (Rn);
10127 }
10128
c19d1205
ZW
10129 if (!inst.operands[1].isreg)
10130 {
0110f2b8 10131 /* Immediate operand. */
e07e6e58 10132 if (!in_it_block () && opcode == T_MNEM_mov)
0110f2b8
PB
10133 narrow = 0;
10134 if (low_regs && narrow)
10135 {
10136 inst.instruction = THUMB_OP16 (opcode);
fdfde340 10137 inst.instruction |= Rn << 8;
0110f2b8
PB
10138 if (inst.size_req == 2)
10139 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10140 else
10141 inst.relax = opcode;
10142 }
10143 else
10144 {
10145 inst.instruction = THUMB_OP32 (inst.instruction);
10146 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10147 inst.instruction |= Rn << r0off;
0110f2b8
PB
10148 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10149 }
c19d1205 10150 }
728ca7c9
PB
10151 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10152 && (inst.instruction == T_MNEM_mov
10153 || inst.instruction == T_MNEM_movs))
10154 {
10155 /* Register shifts are encoded as separate shift instructions. */
10156 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10157
e07e6e58 10158 if (in_it_block ())
728ca7c9
PB
10159 narrow = !flags;
10160 else
10161 narrow = flags;
10162
10163 if (inst.size_req == 4)
10164 narrow = FALSE;
10165
10166 if (!low_regs || inst.operands[1].imm > 7)
10167 narrow = FALSE;
10168
fdfde340 10169 if (Rn != Rm)
728ca7c9
PB
10170 narrow = FALSE;
10171
10172 switch (inst.operands[1].shift_kind)
10173 {
10174 case SHIFT_LSL:
10175 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10176 break;
10177 case SHIFT_ASR:
10178 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10179 break;
10180 case SHIFT_LSR:
10181 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10182 break;
10183 case SHIFT_ROR:
10184 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10185 break;
10186 default:
5f4273c7 10187 abort ();
728ca7c9
PB
10188 }
10189
10190 inst.instruction = opcode;
10191 if (narrow)
10192 {
fdfde340 10193 inst.instruction |= Rn;
728ca7c9
PB
10194 inst.instruction |= inst.operands[1].imm << 3;
10195 }
10196 else
10197 {
10198 if (flags)
10199 inst.instruction |= CONDS_BIT;
10200
fdfde340
JM
10201 inst.instruction |= Rn << 8;
10202 inst.instruction |= Rm << 16;
728ca7c9
PB
10203 inst.instruction |= inst.operands[1].imm;
10204 }
10205 }
3d388997 10206 else if (!narrow)
c19d1205 10207 {
728ca7c9
PB
10208 /* Some mov with immediate shift have narrow variants.
10209 Register shifts are handled above. */
10210 if (low_regs && inst.operands[1].shifted
10211 && (inst.instruction == T_MNEM_mov
10212 || inst.instruction == T_MNEM_movs))
10213 {
e07e6e58 10214 if (in_it_block ())
728ca7c9
PB
10215 narrow = (inst.instruction == T_MNEM_mov);
10216 else
10217 narrow = (inst.instruction == T_MNEM_movs);
10218 }
10219
10220 if (narrow)
10221 {
10222 switch (inst.operands[1].shift_kind)
10223 {
10224 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10225 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10226 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10227 default: narrow = FALSE; break;
10228 }
10229 }
10230
10231 if (narrow)
10232 {
fdfde340
JM
10233 inst.instruction |= Rn;
10234 inst.instruction |= Rm << 3;
728ca7c9
PB
10235 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10236 }
10237 else
10238 {
10239 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10240 inst.instruction |= Rn << r0off;
728ca7c9
PB
10241 encode_thumb32_shifted_operand (1);
10242 }
c19d1205
ZW
10243 }
10244 else
10245 switch (inst.instruction)
10246 {
10247 case T_MNEM_mov:
10248 inst.instruction = T_OPCODE_MOV_HR;
fdfde340
JM
10249 inst.instruction |= (Rn & 0x8) << 4;
10250 inst.instruction |= (Rn & 0x7);
10251 inst.instruction |= Rm << 3;
c19d1205 10252 break;
b99bd4ef 10253
c19d1205
ZW
10254 case T_MNEM_movs:
10255 /* We know we have low registers at this point.
10256 Generate ADD Rd, Rs, #0. */
10257 inst.instruction = T_OPCODE_ADD_I3;
fdfde340
JM
10258 inst.instruction |= Rn;
10259 inst.instruction |= Rm << 3;
c19d1205
ZW
10260 break;
10261
10262 case T_MNEM_cmp:
3d388997 10263 if (low_regs)
c19d1205
ZW
10264 {
10265 inst.instruction = T_OPCODE_CMP_LR;
fdfde340
JM
10266 inst.instruction |= Rn;
10267 inst.instruction |= Rm << 3;
c19d1205
ZW
10268 }
10269 else
10270 {
10271 inst.instruction = T_OPCODE_CMP_HR;
fdfde340
JM
10272 inst.instruction |= (Rn & 0x8) << 4;
10273 inst.instruction |= (Rn & 0x7);
10274 inst.instruction |= Rm << 3;
c19d1205
ZW
10275 }
10276 break;
10277 }
b99bd4ef
NC
10278 return;
10279 }
10280
c19d1205 10281 inst.instruction = THUMB_OP16 (inst.instruction);
539d4391
NC
10282
10283 /* PR 10443: Do not silently ignore shifted operands. */
10284 constraint (inst.operands[1].shifted,
10285 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10286
c19d1205 10287 if (inst.operands[1].isreg)
b99bd4ef 10288 {
fdfde340 10289 if (Rn < 8 && Rm < 8)
b99bd4ef 10290 {
c19d1205
ZW
10291 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10292 since a MOV instruction produces unpredictable results. */
10293 if (inst.instruction == T_OPCODE_MOV_I8)
10294 inst.instruction = T_OPCODE_ADD_I3;
b99bd4ef 10295 else
c19d1205 10296 inst.instruction = T_OPCODE_CMP_LR;
b99bd4ef 10297
fdfde340
JM
10298 inst.instruction |= Rn;
10299 inst.instruction |= Rm << 3;
b99bd4ef
NC
10300 }
10301 else
10302 {
c19d1205
ZW
10303 if (inst.instruction == T_OPCODE_MOV_I8)
10304 inst.instruction = T_OPCODE_MOV_HR;
10305 else
10306 inst.instruction = T_OPCODE_CMP_HR;
10307 do_t_cpy ();
b99bd4ef
NC
10308 }
10309 }
c19d1205 10310 else
b99bd4ef 10311 {
fdfde340 10312 constraint (Rn > 7,
c19d1205 10313 _("only lo regs allowed with immediate"));
fdfde340 10314 inst.instruction |= Rn << 8;
c19d1205
ZW
10315 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10316 }
10317}
b99bd4ef 10318
c19d1205
ZW
10319static void
10320do_t_mov16 (void)
10321{
fdfde340 10322 unsigned Rd;
b6895b4f
PB
10323 bfd_vma imm;
10324 bfd_boolean top;
10325
10326 top = (inst.instruction & 0x00800000) != 0;
10327 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10328 {
10329 constraint (top, _(":lower16: not allowed this instruction"));
10330 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10331 }
10332 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10333 {
10334 constraint (!top, _(":upper16: not allowed this instruction"));
10335 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10336 }
10337
fdfde340
JM
10338 Rd = inst.operands[0].reg;
10339 reject_bad_reg (Rd);
10340
10341 inst.instruction |= Rd << 8;
b6895b4f
PB
10342 if (inst.reloc.type == BFD_RELOC_UNUSED)
10343 {
10344 imm = inst.reloc.exp.X_add_number;
10345 inst.instruction |= (imm & 0xf000) << 4;
10346 inst.instruction |= (imm & 0x0800) << 15;
10347 inst.instruction |= (imm & 0x0700) << 4;
10348 inst.instruction |= (imm & 0x00ff);
10349 }
c19d1205 10350}
b99bd4ef 10351
c19d1205
ZW
10352static void
10353do_t_mvn_tst (void)
10354{
fdfde340 10355 unsigned Rn, Rm;
c921be7d 10356
fdfde340
JM
10357 Rn = inst.operands[0].reg;
10358 Rm = inst.operands[1].reg;
10359
10360 if (inst.instruction == T_MNEM_cmp
10361 || inst.instruction == T_MNEM_cmn)
10362 constraint (Rn == REG_PC, BAD_PC);
10363 else
10364 reject_bad_reg (Rn);
10365 reject_bad_reg (Rm);
10366
c19d1205
ZW
10367 if (unified_syntax)
10368 {
10369 int r0off = (inst.instruction == T_MNEM_mvn
10370 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
3d388997
PB
10371 bfd_boolean narrow;
10372
10373 if (inst.size_req == 4
10374 || inst.instruction > 0xffff
10375 || inst.operands[1].shifted
fdfde340 10376 || Rn > 7 || Rm > 7)
3d388997
PB
10377 narrow = FALSE;
10378 else if (inst.instruction == T_MNEM_cmn)
10379 narrow = TRUE;
10380 else if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10381 narrow = !in_it_block ();
3d388997 10382 else
e07e6e58 10383 narrow = in_it_block ();
3d388997 10384
c19d1205 10385 if (!inst.operands[1].isreg)
b99bd4ef 10386 {
c19d1205
ZW
10387 /* For an immediate, we always generate a 32-bit opcode;
10388 section relaxation will shrink it later if possible. */
10389 if (inst.instruction < 0xffff)
10390 inst.instruction = THUMB_OP32 (inst.instruction);
10391 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
fdfde340 10392 inst.instruction |= Rn << r0off;
c19d1205 10393 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
b99bd4ef 10394 }
c19d1205 10395 else
b99bd4ef 10396 {
c19d1205 10397 /* See if we can do this with a 16-bit instruction. */
3d388997 10398 if (narrow)
b99bd4ef 10399 {
c19d1205 10400 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10401 inst.instruction |= Rn;
10402 inst.instruction |= Rm << 3;
b99bd4ef 10403 }
c19d1205 10404 else
b99bd4ef 10405 {
c19d1205
ZW
10406 constraint (inst.operands[1].shifted
10407 && inst.operands[1].immisreg,
10408 _("shift must be constant"));
10409 if (inst.instruction < 0xffff)
10410 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340 10411 inst.instruction |= Rn << r0off;
c19d1205 10412 encode_thumb32_shifted_operand (1);
b99bd4ef 10413 }
b99bd4ef
NC
10414 }
10415 }
10416 else
10417 {
c19d1205
ZW
10418 constraint (inst.instruction > 0xffff
10419 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10420 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10421 _("unshifted register required"));
fdfde340 10422 constraint (Rn > 7 || Rm > 7,
c19d1205 10423 BAD_HIREG);
b99bd4ef 10424
c19d1205 10425 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10426 inst.instruction |= Rn;
10427 inst.instruction |= Rm << 3;
b99bd4ef 10428 }
b99bd4ef
NC
10429}
10430
b05fe5cf 10431static void
c19d1205 10432do_t_mrs (void)
b05fe5cf 10433{
fdfde340 10434 unsigned Rd;
62b3e311 10435 int flags;
037e8744
JB
10436
10437 if (do_vfp_nsyn_mrs () == SUCCESS)
10438 return;
10439
62b3e311
PB
10440 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10441 if (flags == 0)
10442 {
7e806470 10443 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10444 _("selected processor does not support "
10445 "requested special purpose register"));
10446 }
10447 else
10448 {
10449 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10450 _("selected processor does not support "
44bf2362 10451 "requested special purpose register"));
62b3e311
PB
10452 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10453 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10454 _("'CPSR' or 'SPSR' expected"));
10455 }
5f4273c7 10456
fdfde340
JM
10457 Rd = inst.operands[0].reg;
10458 reject_bad_reg (Rd);
10459
10460 inst.instruction |= Rd << 8;
62b3e311
PB
10461 inst.instruction |= (flags & SPSR_BIT) >> 2;
10462 inst.instruction |= inst.operands[1].imm & 0xff;
c19d1205 10463}
b05fe5cf 10464
c19d1205
ZW
10465static void
10466do_t_msr (void)
10467{
62b3e311 10468 int flags;
fdfde340 10469 unsigned Rn;
62b3e311 10470
037e8744
JB
10471 if (do_vfp_nsyn_msr () == SUCCESS)
10472 return;
10473
c19d1205
ZW
10474 constraint (!inst.operands[1].isreg,
10475 _("Thumb encoding does not support an immediate here"));
62b3e311
PB
10476 flags = inst.operands[0].imm;
10477 if (flags & ~0xff)
10478 {
10479 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10480 _("selected processor does not support "
10481 "requested special purpose register"));
10482 }
10483 else
10484 {
7e806470 10485 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
62b3e311
PB
10486 _("selected processor does not support "
10487 "requested special purpose register"));
10488 flags |= PSR_f;
10489 }
c921be7d 10490
fdfde340
JM
10491 Rn = inst.operands[1].reg;
10492 reject_bad_reg (Rn);
10493
62b3e311
PB
10494 inst.instruction |= (flags & SPSR_BIT) >> 2;
10495 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10496 inst.instruction |= (flags & 0xff);
fdfde340 10497 inst.instruction |= Rn << 16;
c19d1205 10498}
b05fe5cf 10499
c19d1205
ZW
10500static void
10501do_t_mul (void)
10502{
17828f45 10503 bfd_boolean narrow;
fdfde340 10504 unsigned Rd, Rn, Rm;
17828f45 10505
c19d1205
ZW
10506 if (!inst.operands[2].present)
10507 inst.operands[2].reg = inst.operands[0].reg;
b05fe5cf 10508
fdfde340
JM
10509 Rd = inst.operands[0].reg;
10510 Rn = inst.operands[1].reg;
10511 Rm = inst.operands[2].reg;
10512
17828f45 10513 if (unified_syntax)
b05fe5cf 10514 {
17828f45 10515 if (inst.size_req == 4
fdfde340
JM
10516 || (Rd != Rn
10517 && Rd != Rm)
10518 || Rn > 7
10519 || Rm > 7)
17828f45
JM
10520 narrow = FALSE;
10521 else if (inst.instruction == T_MNEM_muls)
e07e6e58 10522 narrow = !in_it_block ();
17828f45 10523 else
e07e6e58 10524 narrow = in_it_block ();
b05fe5cf 10525 }
c19d1205 10526 else
b05fe5cf 10527 {
17828f45 10528 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
fdfde340 10529 constraint (Rn > 7 || Rm > 7,
c19d1205 10530 BAD_HIREG);
17828f45
JM
10531 narrow = TRUE;
10532 }
b05fe5cf 10533
17828f45
JM
10534 if (narrow)
10535 {
10536 /* 16-bit MULS/Conditional MUL. */
c19d1205 10537 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340 10538 inst.instruction |= Rd;
b05fe5cf 10539
fdfde340
JM
10540 if (Rd == Rn)
10541 inst.instruction |= Rm << 3;
10542 else if (Rd == Rm)
10543 inst.instruction |= Rn << 3;
c19d1205
ZW
10544 else
10545 constraint (1, _("dest must overlap one source register"));
10546 }
17828f45
JM
10547 else
10548 {
e07e6e58
NC
10549 constraint (inst.instruction != T_MNEM_mul,
10550 _("Thumb-2 MUL must not set flags"));
17828f45
JM
10551 /* 32-bit MUL. */
10552 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10553 inst.instruction |= Rd << 8;
10554 inst.instruction |= Rn << 16;
10555 inst.instruction |= Rm << 0;
10556
10557 reject_bad_reg (Rd);
10558 reject_bad_reg (Rn);
10559 reject_bad_reg (Rm);
17828f45 10560 }
c19d1205 10561}
b05fe5cf 10562
c19d1205
ZW
10563static void
10564do_t_mull (void)
10565{
fdfde340 10566 unsigned RdLo, RdHi, Rn, Rm;
b05fe5cf 10567
fdfde340
JM
10568 RdLo = inst.operands[0].reg;
10569 RdHi = inst.operands[1].reg;
10570 Rn = inst.operands[2].reg;
10571 Rm = inst.operands[3].reg;
10572
10573 reject_bad_reg (RdLo);
10574 reject_bad_reg (RdHi);
10575 reject_bad_reg (Rn);
10576 reject_bad_reg (Rm);
10577
10578 inst.instruction |= RdLo << 12;
10579 inst.instruction |= RdHi << 8;
10580 inst.instruction |= Rn << 16;
10581 inst.instruction |= Rm;
10582
10583 if (RdLo == RdHi)
c19d1205
ZW
10584 as_tsktsk (_("rdhi and rdlo must be different"));
10585}
b05fe5cf 10586
c19d1205
ZW
10587static void
10588do_t_nop (void)
10589{
e07e6e58
NC
10590 set_it_insn_type (NEUTRAL_IT_INSN);
10591
c19d1205
ZW
10592 if (unified_syntax)
10593 {
10594 if (inst.size_req == 4 || inst.operands[0].imm > 15)
b05fe5cf 10595 {
c19d1205
ZW
10596 inst.instruction = THUMB_OP32 (inst.instruction);
10597 inst.instruction |= inst.operands[0].imm;
10598 }
10599 else
10600 {
bc2d1808
NC
10601 /* PR9722: Check for Thumb2 availability before
10602 generating a thumb2 nop instruction. */
10603 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
10604 {
10605 inst.instruction = THUMB_OP16 (inst.instruction);
10606 inst.instruction |= inst.operands[0].imm << 4;
10607 }
10608 else
10609 inst.instruction = 0x46c0;
c19d1205
ZW
10610 }
10611 }
10612 else
10613 {
10614 constraint (inst.operands[0].present,
10615 _("Thumb does not support NOP with hints"));
10616 inst.instruction = 0x46c0;
10617 }
10618}
b05fe5cf 10619
c19d1205
ZW
10620static void
10621do_t_neg (void)
10622{
10623 if (unified_syntax)
10624 {
3d388997
PB
10625 bfd_boolean narrow;
10626
10627 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10628 narrow = !in_it_block ();
3d388997 10629 else
e07e6e58 10630 narrow = in_it_block ();
3d388997
PB
10631 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10632 narrow = FALSE;
10633 if (inst.size_req == 4)
10634 narrow = FALSE;
10635
10636 if (!narrow)
c19d1205
ZW
10637 {
10638 inst.instruction = THUMB_OP32 (inst.instruction);
10639 inst.instruction |= inst.operands[0].reg << 8;
10640 inst.instruction |= inst.operands[1].reg << 16;
b05fe5cf
ZW
10641 }
10642 else
10643 {
c19d1205
ZW
10644 inst.instruction = THUMB_OP16 (inst.instruction);
10645 inst.instruction |= inst.operands[0].reg;
10646 inst.instruction |= inst.operands[1].reg << 3;
b05fe5cf
ZW
10647 }
10648 }
10649 else
10650 {
c19d1205
ZW
10651 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10652 BAD_HIREG);
10653 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10654
10655 inst.instruction = THUMB_OP16 (inst.instruction);
10656 inst.instruction |= inst.operands[0].reg;
10657 inst.instruction |= inst.operands[1].reg << 3;
10658 }
10659}
10660
1c444d06
JM
10661static void
10662do_t_orn (void)
10663{
10664 unsigned Rd, Rn;
10665
10666 Rd = inst.operands[0].reg;
10667 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10668
fdfde340
JM
10669 reject_bad_reg (Rd);
10670 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10671 reject_bad_reg (Rn);
10672
1c444d06
JM
10673 inst.instruction |= Rd << 8;
10674 inst.instruction |= Rn << 16;
10675
10676 if (!inst.operands[2].isreg)
10677 {
10678 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10679 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10680 }
10681 else
10682 {
10683 unsigned Rm;
10684
10685 Rm = inst.operands[2].reg;
fdfde340 10686 reject_bad_reg (Rm);
1c444d06
JM
10687
10688 constraint (inst.operands[2].shifted
10689 && inst.operands[2].immisreg,
10690 _("shift must be constant"));
10691 encode_thumb32_shifted_operand (2);
10692 }
10693}
10694
c19d1205
ZW
10695static void
10696do_t_pkhbt (void)
10697{
fdfde340
JM
10698 unsigned Rd, Rn, Rm;
10699
10700 Rd = inst.operands[0].reg;
10701 Rn = inst.operands[1].reg;
10702 Rm = inst.operands[2].reg;
10703
10704 reject_bad_reg (Rd);
10705 reject_bad_reg (Rn);
10706 reject_bad_reg (Rm);
10707
10708 inst.instruction |= Rd << 8;
10709 inst.instruction |= Rn << 16;
10710 inst.instruction |= Rm;
c19d1205
ZW
10711 if (inst.operands[3].present)
10712 {
10713 unsigned int val = inst.reloc.exp.X_add_number;
10714 constraint (inst.reloc.exp.X_op != O_constant,
10715 _("expression too complex"));
10716 inst.instruction |= (val & 0x1c) << 10;
10717 inst.instruction |= (val & 0x03) << 6;
b05fe5cf 10718 }
c19d1205 10719}
b05fe5cf 10720
c19d1205
ZW
10721static void
10722do_t_pkhtb (void)
10723{
10724 if (!inst.operands[3].present)
1ef52f49
NC
10725 {
10726 unsigned Rtmp;
10727
10728 inst.instruction &= ~0x00000020;
10729
10730 /* PR 10168. Swap the Rm and Rn registers. */
10731 Rtmp = inst.operands[1].reg;
10732 inst.operands[1].reg = inst.operands[2].reg;
10733 inst.operands[2].reg = Rtmp;
10734 }
c19d1205 10735 do_t_pkhbt ();
b05fe5cf
ZW
10736}
10737
c19d1205
ZW
10738static void
10739do_t_pld (void)
10740{
fdfde340
JM
10741 if (inst.operands[0].immisreg)
10742 reject_bad_reg (inst.operands[0].imm);
10743
c19d1205
ZW
10744 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10745}
b05fe5cf 10746
c19d1205
ZW
10747static void
10748do_t_push_pop (void)
b99bd4ef 10749{
e9f89963 10750 unsigned mask;
5f4273c7 10751
c19d1205
ZW
10752 constraint (inst.operands[0].writeback,
10753 _("push/pop do not support {reglist}^"));
10754 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10755 _("expression too complex"));
b99bd4ef 10756
e9f89963
PB
10757 mask = inst.operands[0].imm;
10758 if ((mask & ~0xff) == 0)
3c707909 10759 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
c19d1205 10760 else if ((inst.instruction == T_MNEM_push
e9f89963 10761 && (mask & ~0xff) == 1 << REG_LR)
c19d1205 10762 || (inst.instruction == T_MNEM_pop
e9f89963 10763 && (mask & ~0xff) == 1 << REG_PC))
b99bd4ef 10764 {
c19d1205
ZW
10765 inst.instruction = THUMB_OP16 (inst.instruction);
10766 inst.instruction |= THUMB_PP_PC_LR;
3c707909 10767 inst.instruction |= mask & 0xff;
c19d1205
ZW
10768 }
10769 else if (unified_syntax)
10770 {
3c707909 10771 inst.instruction = THUMB_OP32 (inst.instruction);
5f4273c7 10772 encode_thumb2_ldmstm (13, mask, TRUE);
c19d1205
ZW
10773 }
10774 else
10775 {
10776 inst.error = _("invalid register list to push/pop instruction");
10777 return;
10778 }
c19d1205 10779}
b99bd4ef 10780
c19d1205
ZW
10781static void
10782do_t_rbit (void)
10783{
fdfde340
JM
10784 unsigned Rd, Rm;
10785
10786 Rd = inst.operands[0].reg;
10787 Rm = inst.operands[1].reg;
10788
10789 reject_bad_reg (Rd);
10790 reject_bad_reg (Rm);
10791
10792 inst.instruction |= Rd << 8;
10793 inst.instruction |= Rm << 16;
10794 inst.instruction |= Rm;
c19d1205 10795}
b99bd4ef 10796
c19d1205
ZW
10797static void
10798do_t_rev (void)
10799{
fdfde340
JM
10800 unsigned Rd, Rm;
10801
10802 Rd = inst.operands[0].reg;
10803 Rm = inst.operands[1].reg;
10804
10805 reject_bad_reg (Rd);
10806 reject_bad_reg (Rm);
10807
10808 if (Rd <= 7 && Rm <= 7
c19d1205
ZW
10809 && inst.size_req != 4)
10810 {
10811 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
10812 inst.instruction |= Rd;
10813 inst.instruction |= Rm << 3;
c19d1205
ZW
10814 }
10815 else if (unified_syntax)
10816 {
10817 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
10818 inst.instruction |= Rd << 8;
10819 inst.instruction |= Rm << 16;
10820 inst.instruction |= Rm;
c19d1205
ZW
10821 }
10822 else
10823 inst.error = BAD_HIREG;
10824}
b99bd4ef 10825
1c444d06
JM
10826static void
10827do_t_rrx (void)
10828{
10829 unsigned Rd, Rm;
10830
10831 Rd = inst.operands[0].reg;
10832 Rm = inst.operands[1].reg;
10833
fdfde340
JM
10834 reject_bad_reg (Rd);
10835 reject_bad_reg (Rm);
c921be7d 10836
1c444d06
JM
10837 inst.instruction |= Rd << 8;
10838 inst.instruction |= Rm;
10839}
10840
c19d1205
ZW
10841static void
10842do_t_rsb (void)
10843{
fdfde340 10844 unsigned Rd, Rs;
b99bd4ef 10845
c19d1205
ZW
10846 Rd = inst.operands[0].reg;
10847 Rs = (inst.operands[1].present
10848 ? inst.operands[1].reg /* Rd, Rs, foo */
10849 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
b99bd4ef 10850
fdfde340
JM
10851 reject_bad_reg (Rd);
10852 reject_bad_reg (Rs);
10853 if (inst.operands[2].isreg)
10854 reject_bad_reg (inst.operands[2].reg);
10855
c19d1205
ZW
10856 inst.instruction |= Rd << 8;
10857 inst.instruction |= Rs << 16;
10858 if (!inst.operands[2].isreg)
10859 {
026d3abb
PB
10860 bfd_boolean narrow;
10861
10862 if ((inst.instruction & 0x00100000) != 0)
e07e6e58 10863 narrow = !in_it_block ();
026d3abb 10864 else
e07e6e58 10865 narrow = in_it_block ();
026d3abb
PB
10866
10867 if (Rd > 7 || Rs > 7)
10868 narrow = FALSE;
10869
10870 if (inst.size_req == 4 || !unified_syntax)
10871 narrow = FALSE;
10872
10873 if (inst.reloc.exp.X_op != O_constant
10874 || inst.reloc.exp.X_add_number != 0)
10875 narrow = FALSE;
10876
10877 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10878 relaxation, but it doesn't seem worth the hassle. */
10879 if (narrow)
10880 {
10881 inst.reloc.type = BFD_RELOC_UNUSED;
10882 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10883 inst.instruction |= Rs << 3;
10884 inst.instruction |= Rd;
10885 }
10886 else
10887 {
10888 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10889 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10890 }
c19d1205
ZW
10891 }
10892 else
10893 encode_thumb32_shifted_operand (2);
10894}
b99bd4ef 10895
c19d1205
ZW
10896static void
10897do_t_setend (void)
10898{
e07e6e58 10899 set_it_insn_type (OUTSIDE_IT_INSN);
c19d1205
ZW
10900 if (inst.operands[0].imm)
10901 inst.instruction |= 0x8;
10902}
b99bd4ef 10903
c19d1205
ZW
10904static void
10905do_t_shift (void)
10906{
10907 if (!inst.operands[1].present)
10908 inst.operands[1].reg = inst.operands[0].reg;
10909
10910 if (unified_syntax)
10911 {
3d388997
PB
10912 bfd_boolean narrow;
10913 int shift_kind;
10914
10915 switch (inst.instruction)
10916 {
10917 case T_MNEM_asr:
10918 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10919 case T_MNEM_lsl:
10920 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10921 case T_MNEM_lsr:
10922 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10923 case T_MNEM_ror:
10924 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10925 default: abort ();
10926 }
10927
10928 if (THUMB_SETS_FLAGS (inst.instruction))
e07e6e58 10929 narrow = !in_it_block ();
3d388997 10930 else
e07e6e58 10931 narrow = in_it_block ();
3d388997
PB
10932 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10933 narrow = FALSE;
10934 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10935 narrow = FALSE;
10936 if (inst.operands[2].isreg
10937 && (inst.operands[1].reg != inst.operands[0].reg
10938 || inst.operands[2].reg > 7))
10939 narrow = FALSE;
10940 if (inst.size_req == 4)
10941 narrow = FALSE;
10942
fdfde340
JM
10943 reject_bad_reg (inst.operands[0].reg);
10944 reject_bad_reg (inst.operands[1].reg);
c921be7d 10945
3d388997 10946 if (!narrow)
c19d1205
ZW
10947 {
10948 if (inst.operands[2].isreg)
b99bd4ef 10949 {
fdfde340 10950 reject_bad_reg (inst.operands[2].reg);
c19d1205
ZW
10951 inst.instruction = THUMB_OP32 (inst.instruction);
10952 inst.instruction |= inst.operands[0].reg << 8;
10953 inst.instruction |= inst.operands[1].reg << 16;
10954 inst.instruction |= inst.operands[2].reg;
10955 }
10956 else
10957 {
10958 inst.operands[1].shifted = 1;
3d388997 10959 inst.operands[1].shift_kind = shift_kind;
c19d1205
ZW
10960 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10961 ? T_MNEM_movs : T_MNEM_mov);
10962 inst.instruction |= inst.operands[0].reg << 8;
10963 encode_thumb32_shifted_operand (1);
10964 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10965 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef
NC
10966 }
10967 }
10968 else
10969 {
c19d1205 10970 if (inst.operands[2].isreg)
b99bd4ef 10971 {
3d388997 10972 switch (shift_kind)
b99bd4ef 10973 {
3d388997
PB
10974 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10975 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10976 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10977 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
c19d1205 10978 default: abort ();
b99bd4ef 10979 }
5f4273c7 10980
c19d1205
ZW
10981 inst.instruction |= inst.operands[0].reg;
10982 inst.instruction |= inst.operands[2].reg << 3;
b99bd4ef
NC
10983 }
10984 else
10985 {
3d388997 10986 switch (shift_kind)
b99bd4ef 10987 {
3d388997
PB
10988 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10989 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10990 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
c19d1205 10991 default: abort ();
b99bd4ef 10992 }
c19d1205
ZW
10993 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10994 inst.instruction |= inst.operands[0].reg;
10995 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
10996 }
10997 }
c19d1205
ZW
10998 }
10999 else
11000 {
11001 constraint (inst.operands[0].reg > 7
11002 || inst.operands[1].reg > 7, BAD_HIREG);
11003 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
b99bd4ef 11004
c19d1205
ZW
11005 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11006 {
11007 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11008 constraint (inst.operands[0].reg != inst.operands[1].reg,
11009 _("source1 and dest must be same register"));
b99bd4ef 11010
c19d1205
ZW
11011 switch (inst.instruction)
11012 {
11013 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11014 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11015 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11016 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11017 default: abort ();
11018 }
5f4273c7 11019
c19d1205
ZW
11020 inst.instruction |= inst.operands[0].reg;
11021 inst.instruction |= inst.operands[2].reg << 3;
11022 }
11023 else
b99bd4ef 11024 {
c19d1205
ZW
11025 switch (inst.instruction)
11026 {
11027 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11028 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11029 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11030 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11031 default: abort ();
11032 }
11033 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11034 inst.instruction |= inst.operands[0].reg;
11035 inst.instruction |= inst.operands[1].reg << 3;
b99bd4ef
NC
11036 }
11037 }
b99bd4ef
NC
11038}
11039
11040static void
c19d1205 11041do_t_simd (void)
b99bd4ef 11042{
fdfde340
JM
11043 unsigned Rd, Rn, Rm;
11044
11045 Rd = inst.operands[0].reg;
11046 Rn = inst.operands[1].reg;
11047 Rm = inst.operands[2].reg;
11048
11049 reject_bad_reg (Rd);
11050 reject_bad_reg (Rn);
11051 reject_bad_reg (Rm);
11052
11053 inst.instruction |= Rd << 8;
11054 inst.instruction |= Rn << 16;
11055 inst.instruction |= Rm;
c19d1205 11056}
b99bd4ef 11057
c19d1205 11058static void
3eb17e6b 11059do_t_smc (void)
c19d1205
ZW
11060{
11061 unsigned int value = inst.reloc.exp.X_add_number;
11062 constraint (inst.reloc.exp.X_op != O_constant,
11063 _("expression too complex"));
11064 inst.reloc.type = BFD_RELOC_UNUSED;
11065 inst.instruction |= (value & 0xf000) >> 12;
11066 inst.instruction |= (value & 0x0ff0);
11067 inst.instruction |= (value & 0x000f) << 16;
11068}
b99bd4ef 11069
c19d1205 11070static void
3a21c15a 11071do_t_ssat_usat (int bias)
c19d1205 11072{
fdfde340
JM
11073 unsigned Rd, Rn;
11074
11075 Rd = inst.operands[0].reg;
11076 Rn = inst.operands[2].reg;
11077
11078 reject_bad_reg (Rd);
11079 reject_bad_reg (Rn);
11080
11081 inst.instruction |= Rd << 8;
3a21c15a 11082 inst.instruction |= inst.operands[1].imm - bias;
fdfde340 11083 inst.instruction |= Rn << 16;
b99bd4ef 11084
c19d1205 11085 if (inst.operands[3].present)
b99bd4ef 11086 {
3a21c15a
NC
11087 offsetT shift_amount = inst.reloc.exp.X_add_number;
11088
11089 inst.reloc.type = BFD_RELOC_UNUSED;
11090
c19d1205
ZW
11091 constraint (inst.reloc.exp.X_op != O_constant,
11092 _("expression too complex"));
b99bd4ef 11093
3a21c15a 11094 if (shift_amount != 0)
6189168b 11095 {
3a21c15a
NC
11096 constraint (shift_amount > 31,
11097 _("shift expression is too large"));
11098
c19d1205 11099 if (inst.operands[3].shift_kind == SHIFT_ASR)
3a21c15a
NC
11100 inst.instruction |= 0x00200000; /* sh bit. */
11101
11102 inst.instruction |= (shift_amount & 0x1c) << 10;
11103 inst.instruction |= (shift_amount & 0x03) << 6;
6189168b
NC
11104 }
11105 }
b99bd4ef 11106}
c921be7d 11107
3a21c15a
NC
11108static void
11109do_t_ssat (void)
11110{
11111 do_t_ssat_usat (1);
11112}
b99bd4ef 11113
0dd132b6 11114static void
c19d1205 11115do_t_ssat16 (void)
0dd132b6 11116{
fdfde340
JM
11117 unsigned Rd, Rn;
11118
11119 Rd = inst.operands[0].reg;
11120 Rn = inst.operands[2].reg;
11121
11122 reject_bad_reg (Rd);
11123 reject_bad_reg (Rn);
11124
11125 inst.instruction |= Rd << 8;
c19d1205 11126 inst.instruction |= inst.operands[1].imm - 1;
fdfde340 11127 inst.instruction |= Rn << 16;
c19d1205 11128}
0dd132b6 11129
c19d1205
ZW
11130static void
11131do_t_strex (void)
11132{
11133 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11134 || inst.operands[2].postind || inst.operands[2].writeback
11135 || inst.operands[2].immisreg || inst.operands[2].shifted
11136 || inst.operands[2].negative,
01cfc07f 11137 BAD_ADDR_MODE);
0dd132b6 11138
c19d1205
ZW
11139 inst.instruction |= inst.operands[0].reg << 8;
11140 inst.instruction |= inst.operands[1].reg << 12;
11141 inst.instruction |= inst.operands[2].reg << 16;
11142 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
0dd132b6
NC
11143}
11144
b99bd4ef 11145static void
c19d1205 11146do_t_strexd (void)
b99bd4ef 11147{
c19d1205
ZW
11148 if (!inst.operands[2].present)
11149 inst.operands[2].reg = inst.operands[1].reg + 1;
b99bd4ef 11150
c19d1205
ZW
11151 constraint (inst.operands[0].reg == inst.operands[1].reg
11152 || inst.operands[0].reg == inst.operands[2].reg
11153 || inst.operands[0].reg == inst.operands[3].reg
11154 || inst.operands[1].reg == inst.operands[2].reg,
11155 BAD_OVERLAP);
b99bd4ef 11156
c19d1205
ZW
11157 inst.instruction |= inst.operands[0].reg;
11158 inst.instruction |= inst.operands[1].reg << 12;
11159 inst.instruction |= inst.operands[2].reg << 8;
11160 inst.instruction |= inst.operands[3].reg << 16;
b99bd4ef
NC
11161}
11162
11163static void
c19d1205 11164do_t_sxtah (void)
b99bd4ef 11165{
fdfde340
JM
11166 unsigned Rd, Rn, Rm;
11167
11168 Rd = inst.operands[0].reg;
11169 Rn = inst.operands[1].reg;
11170 Rm = inst.operands[2].reg;
11171
11172 reject_bad_reg (Rd);
11173 reject_bad_reg (Rn);
11174 reject_bad_reg (Rm);
11175
11176 inst.instruction |= Rd << 8;
11177 inst.instruction |= Rn << 16;
11178 inst.instruction |= Rm;
c19d1205
ZW
11179 inst.instruction |= inst.operands[3].imm << 4;
11180}
b99bd4ef 11181
c19d1205
ZW
11182static void
11183do_t_sxth (void)
11184{
fdfde340
JM
11185 unsigned Rd, Rm;
11186
11187 Rd = inst.operands[0].reg;
11188 Rm = inst.operands[1].reg;
11189
11190 reject_bad_reg (Rd);
11191 reject_bad_reg (Rm);
c921be7d
NC
11192
11193 if (inst.instruction <= 0xffff
11194 && inst.size_req != 4
fdfde340 11195 && Rd <= 7 && Rm <= 7
c19d1205 11196 && (!inst.operands[2].present || inst.operands[2].imm == 0))
b99bd4ef 11197 {
c19d1205 11198 inst.instruction = THUMB_OP16 (inst.instruction);
fdfde340
JM
11199 inst.instruction |= Rd;
11200 inst.instruction |= Rm << 3;
b99bd4ef 11201 }
c19d1205 11202 else if (unified_syntax)
b99bd4ef 11203 {
c19d1205
ZW
11204 if (inst.instruction <= 0xffff)
11205 inst.instruction = THUMB_OP32 (inst.instruction);
fdfde340
JM
11206 inst.instruction |= Rd << 8;
11207 inst.instruction |= Rm;
c19d1205 11208 inst.instruction |= inst.operands[2].imm << 4;
b99bd4ef 11209 }
c19d1205 11210 else
b99bd4ef 11211 {
c19d1205
ZW
11212 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11213 _("Thumb encoding does not support rotation"));
11214 constraint (1, BAD_HIREG);
b99bd4ef 11215 }
c19d1205 11216}
b99bd4ef 11217
c19d1205
ZW
11218static void
11219do_t_swi (void)
11220{
11221 inst.reloc.type = BFD_RELOC_ARM_SWI;
11222}
b99bd4ef 11223
92e90b6e
PB
11224static void
11225do_t_tb (void)
11226{
fdfde340 11227 unsigned Rn, Rm;
92e90b6e
PB
11228 int half;
11229
11230 half = (inst.instruction & 0x10) != 0;
e07e6e58 11231 set_it_insn_type_last ();
dfa9f0d5
PB
11232 constraint (inst.operands[0].immisreg,
11233 _("instruction requires register index"));
fdfde340
JM
11234
11235 Rn = inst.operands[0].reg;
11236 Rm = inst.operands[0].imm;
c921be7d 11237
fdfde340
JM
11238 constraint (Rn == REG_SP, BAD_SP);
11239 reject_bad_reg (Rm);
11240
92e90b6e
PB
11241 constraint (!half && inst.operands[0].shifted,
11242 _("instruction does not allow shifted index"));
fdfde340 11243 inst.instruction |= (Rn << 16) | Rm;
92e90b6e
PB
11244}
11245
c19d1205
ZW
11246static void
11247do_t_usat (void)
11248{
3a21c15a 11249 do_t_ssat_usat (0);
b99bd4ef
NC
11250}
11251
11252static void
c19d1205 11253do_t_usat16 (void)
b99bd4ef 11254{
fdfde340
JM
11255 unsigned Rd, Rn;
11256
11257 Rd = inst.operands[0].reg;
11258 Rn = inst.operands[2].reg;
11259
11260 reject_bad_reg (Rd);
11261 reject_bad_reg (Rn);
11262
11263 inst.instruction |= Rd << 8;
c19d1205 11264 inst.instruction |= inst.operands[1].imm;
fdfde340 11265 inst.instruction |= Rn << 16;
b99bd4ef 11266}
c19d1205 11267
5287ad62 11268/* Neon instruction encoder helpers. */
5f4273c7 11269
5287ad62 11270/* Encodings for the different types for various Neon opcodes. */
b99bd4ef 11271
5287ad62
JB
11272/* An "invalid" code for the following tables. */
11273#define N_INV -1u
11274
11275struct neon_tab_entry
b99bd4ef 11276{
5287ad62
JB
11277 unsigned integer;
11278 unsigned float_or_poly;
11279 unsigned scalar_or_imm;
11280};
5f4273c7 11281
5287ad62
JB
11282/* Map overloaded Neon opcodes to their respective encodings. */
11283#define NEON_ENC_TAB \
11284 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11285 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11286 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11287 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11288 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11289 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11290 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11291 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11292 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11293 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11294 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11295 /* Register variants of the following two instructions are encoded as
e07e6e58 11296 vcge / vcgt with the operands reversed. */ \
92559b5b
PB
11297 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11298 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
62f3b8c8
PB
11299 X(vfma, N_INV, 0x0000c10, N_INV), \
11300 X(vfms, N_INV, 0x0200c10, N_INV), \
5287ad62
JB
11301 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11302 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11303 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11304 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11305 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11306 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11307 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11308 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11309 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11310 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11311 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11312 X(vshl, 0x0000400, N_INV, 0x0800510), \
11313 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11314 X(vand, 0x0000110, N_INV, 0x0800030), \
11315 X(vbic, 0x0100110, N_INV, 0x0800030), \
11316 X(veor, 0x1000110, N_INV, N_INV), \
11317 X(vorn, 0x0300110, N_INV, 0x0800010), \
11318 X(vorr, 0x0200110, N_INV, 0x0800010), \
11319 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11320 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11321 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11322 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11323 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11324 X(vst1, 0x0000000, 0x0800000, N_INV), \
11325 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11326 X(vst2, 0x0000100, 0x0800100, N_INV), \
11327 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11328 X(vst3, 0x0000200, 0x0800200, N_INV), \
11329 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11330 X(vst4, 0x0000300, 0x0800300, N_INV), \
11331 X(vmovn, 0x1b20200, N_INV, N_INV), \
11332 X(vtrn, 0x1b20080, N_INV, N_INV), \
11333 X(vqmovn, 0x1b20200, N_INV, N_INV), \
037e8744
JB
11334 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11335 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
e6655fda
PB
11336 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11337 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
62f3b8c8
PB
11338 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11339 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
037e8744
JB
11340 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11341 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11342 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11343 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
5287ad62
JB
11344
11345enum neon_opc
11346{
11347#define X(OPC,I,F,S) N_MNEM_##OPC
11348NEON_ENC_TAB
11349#undef X
11350};
b99bd4ef 11351
5287ad62
JB
11352static const struct neon_tab_entry neon_enc_tab[] =
11353{
11354#define X(OPC,I,F,S) { (I), (F), (S) }
11355NEON_ENC_TAB
11356#undef X
11357};
b99bd4ef 11358
5287ad62
JB
11359#define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11360#define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11361#define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11362#define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11363#define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11364#define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11365#define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11366#define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11367#define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
037e8744
JB
11368#define NEON_ENC_SINGLE(X) \
11369 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11370#define NEON_ENC_DOUBLE(X) \
11371 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
5287ad62 11372
037e8744
JB
11373/* Define shapes for instruction operands. The following mnemonic characters
11374 are used in this table:
5287ad62 11375
037e8744 11376 F - VFP S<n> register
5287ad62
JB
11377 D - Neon D<n> register
11378 Q - Neon Q<n> register
11379 I - Immediate
11380 S - Scalar
11381 R - ARM register
11382 L - D<n> register list
5f4273c7 11383
037e8744
JB
11384 This table is used to generate various data:
11385 - enumerations of the form NS_DDR to be used as arguments to
11386 neon_select_shape.
11387 - a table classifying shapes into single, double, quad, mixed.
5f4273c7 11388 - a table used to drive neon_select_shape. */
b99bd4ef 11389
037e8744
JB
11390#define NEON_SHAPE_DEF \
11391 X(3, (D, D, D), DOUBLE), \
11392 X(3, (Q, Q, Q), QUAD), \
11393 X(3, (D, D, I), DOUBLE), \
11394 X(3, (Q, Q, I), QUAD), \
11395 X(3, (D, D, S), DOUBLE), \
11396 X(3, (Q, Q, S), QUAD), \
11397 X(2, (D, D), DOUBLE), \
11398 X(2, (Q, Q), QUAD), \
11399 X(2, (D, S), DOUBLE), \
11400 X(2, (Q, S), QUAD), \
11401 X(2, (D, R), DOUBLE), \
11402 X(2, (Q, R), QUAD), \
11403 X(2, (D, I), DOUBLE), \
11404 X(2, (Q, I), QUAD), \
11405 X(3, (D, L, D), DOUBLE), \
11406 X(2, (D, Q), MIXED), \
11407 X(2, (Q, D), MIXED), \
11408 X(3, (D, Q, I), MIXED), \
11409 X(3, (Q, D, I), MIXED), \
11410 X(3, (Q, D, D), MIXED), \
11411 X(3, (D, Q, Q), MIXED), \
11412 X(3, (Q, Q, D), MIXED), \
11413 X(3, (Q, D, S), MIXED), \
11414 X(3, (D, Q, S), MIXED), \
11415 X(4, (D, D, D, I), DOUBLE), \
11416 X(4, (Q, Q, Q, I), QUAD), \
11417 X(2, (F, F), SINGLE), \
11418 X(3, (F, F, F), SINGLE), \
11419 X(2, (F, I), SINGLE), \
11420 X(2, (F, D), MIXED), \
11421 X(2, (D, F), MIXED), \
11422 X(3, (F, F, I), MIXED), \
11423 X(4, (R, R, F, F), SINGLE), \
11424 X(4, (F, F, R, R), SINGLE), \
11425 X(3, (D, R, R), DOUBLE), \
11426 X(3, (R, R, D), DOUBLE), \
11427 X(2, (S, R), SINGLE), \
11428 X(2, (R, S), SINGLE), \
11429 X(2, (F, R), SINGLE), \
11430 X(2, (R, F), SINGLE)
11431
11432#define S2(A,B) NS_##A##B
11433#define S3(A,B,C) NS_##A##B##C
11434#define S4(A,B,C,D) NS_##A##B##C##D
11435
11436#define X(N, L, C) S##N L
11437
5287ad62
JB
11438enum neon_shape
11439{
037e8744
JB
11440 NEON_SHAPE_DEF,
11441 NS_NULL
5287ad62 11442};
b99bd4ef 11443
037e8744
JB
11444#undef X
11445#undef S2
11446#undef S3
11447#undef S4
11448
11449enum neon_shape_class
11450{
11451 SC_SINGLE,
11452 SC_DOUBLE,
11453 SC_QUAD,
11454 SC_MIXED
11455};
11456
11457#define X(N, L, C) SC_##C
11458
11459static enum neon_shape_class neon_shape_class[] =
11460{
11461 NEON_SHAPE_DEF
11462};
11463
11464#undef X
11465
11466enum neon_shape_el
11467{
11468 SE_F,
11469 SE_D,
11470 SE_Q,
11471 SE_I,
11472 SE_S,
11473 SE_R,
11474 SE_L
11475};
11476
11477/* Register widths of above. */
11478static unsigned neon_shape_el_size[] =
11479{
11480 32,
11481 64,
11482 128,
11483 0,
11484 32,
11485 32,
11486 0
11487};
11488
11489struct neon_shape_info
11490{
11491 unsigned els;
11492 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11493};
11494
11495#define S2(A,B) { SE_##A, SE_##B }
11496#define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11497#define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11498
11499#define X(N, L, C) { N, S##N L }
11500
11501static struct neon_shape_info neon_shape_tab[] =
11502{
11503 NEON_SHAPE_DEF
11504};
11505
11506#undef X
11507#undef S2
11508#undef S3
11509#undef S4
11510
5287ad62
JB
11511/* Bit masks used in type checking given instructions.
11512 'N_EQK' means the type must be the same as (or based on in some way) the key
11513 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11514 set, various other bits can be set as well in order to modify the meaning of
11515 the type constraint. */
11516
11517enum neon_type_mask
11518{
8e79c3df
CM
11519 N_S8 = 0x0000001,
11520 N_S16 = 0x0000002,
11521 N_S32 = 0x0000004,
11522 N_S64 = 0x0000008,
11523 N_U8 = 0x0000010,
11524 N_U16 = 0x0000020,
11525 N_U32 = 0x0000040,
11526 N_U64 = 0x0000080,
11527 N_I8 = 0x0000100,
11528 N_I16 = 0x0000200,
11529 N_I32 = 0x0000400,
11530 N_I64 = 0x0000800,
11531 N_8 = 0x0001000,
11532 N_16 = 0x0002000,
11533 N_32 = 0x0004000,
11534 N_64 = 0x0008000,
11535 N_P8 = 0x0010000,
11536 N_P16 = 0x0020000,
11537 N_F16 = 0x0040000,
11538 N_F32 = 0x0080000,
11539 N_F64 = 0x0100000,
c921be7d
NC
11540 N_KEY = 0x1000000, /* Key element (main type specifier). */
11541 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
8e79c3df 11542 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
c921be7d
NC
11543 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11544 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11545 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11546 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11547 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11548 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11549 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
5287ad62 11550 N_UTYP = 0,
037e8744 11551 N_MAX_NONSPECIAL = N_F64
5287ad62
JB
11552};
11553
dcbf9037
JB
11554#define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11555
5287ad62
JB
11556#define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11557#define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11558#define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11559#define N_SUF_32 (N_SU_32 | N_F32)
11560#define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11561#define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11562
11563/* Pass this as the first type argument to neon_check_type to ignore types
11564 altogether. */
11565#define N_IGNORE_TYPE (N_KEY | N_EQK)
11566
037e8744
JB
11567/* Select a "shape" for the current instruction (describing register types or
11568 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11569 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11570 function of operand parsing, so this function doesn't need to be called.
11571 Shapes should be listed in order of decreasing length. */
5287ad62
JB
11572
11573static enum neon_shape
037e8744 11574neon_select_shape (enum neon_shape shape, ...)
5287ad62 11575{
037e8744
JB
11576 va_list ap;
11577 enum neon_shape first_shape = shape;
5287ad62
JB
11578
11579 /* Fix missing optional operands. FIXME: we don't know at this point how
11580 many arguments we should have, so this makes the assumption that we have
11581 > 1. This is true of all current Neon opcodes, I think, but may not be
11582 true in the future. */
11583 if (!inst.operands[1].present)
11584 inst.operands[1] = inst.operands[0];
11585
037e8744 11586 va_start (ap, shape);
5f4273c7 11587
21d799b5 11588 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
037e8744
JB
11589 {
11590 unsigned j;
11591 int matches = 1;
11592
11593 for (j = 0; j < neon_shape_tab[shape].els; j++)
11594 {
11595 if (!inst.operands[j].present)
11596 {
11597 matches = 0;
11598 break;
11599 }
11600
11601 switch (neon_shape_tab[shape].el[j])
11602 {
11603 case SE_F:
11604 if (!(inst.operands[j].isreg
11605 && inst.operands[j].isvec
11606 && inst.operands[j].issingle
11607 && !inst.operands[j].isquad))
11608 matches = 0;
11609 break;
11610
11611 case SE_D:
11612 if (!(inst.operands[j].isreg
11613 && inst.operands[j].isvec
11614 && !inst.operands[j].isquad
11615 && !inst.operands[j].issingle))
11616 matches = 0;
11617 break;
11618
11619 case SE_R:
11620 if (!(inst.operands[j].isreg
11621 && !inst.operands[j].isvec))
11622 matches = 0;
11623 break;
11624
11625 case SE_Q:
11626 if (!(inst.operands[j].isreg
11627 && inst.operands[j].isvec
11628 && inst.operands[j].isquad
11629 && !inst.operands[j].issingle))
11630 matches = 0;
11631 break;
11632
11633 case SE_I:
11634 if (!(!inst.operands[j].isreg
11635 && !inst.operands[j].isscalar))
11636 matches = 0;
11637 break;
11638
11639 case SE_S:
11640 if (!(!inst.operands[j].isreg
11641 && inst.operands[j].isscalar))
11642 matches = 0;
11643 break;
11644
11645 case SE_L:
11646 break;
11647 }
11648 }
11649 if (matches)
5287ad62 11650 break;
037e8744 11651 }
5f4273c7 11652
037e8744 11653 va_end (ap);
5287ad62 11654
037e8744
JB
11655 if (shape == NS_NULL && first_shape != NS_NULL)
11656 first_error (_("invalid instruction shape"));
5287ad62 11657
037e8744
JB
11658 return shape;
11659}
5287ad62 11660
037e8744
JB
11661/* True if SHAPE is predominantly a quadword operation (most of the time, this
11662 means the Q bit should be set). */
11663
11664static int
11665neon_quad (enum neon_shape shape)
11666{
11667 return neon_shape_class[shape] == SC_QUAD;
5287ad62 11668}
037e8744 11669
5287ad62
JB
11670static void
11671neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11672 unsigned *g_size)
11673{
11674 /* Allow modification to be made to types which are constrained to be
11675 based on the key element, based on bits set alongside N_EQK. */
11676 if ((typebits & N_EQK) != 0)
11677 {
11678 if ((typebits & N_HLF) != 0)
11679 *g_size /= 2;
11680 else if ((typebits & N_DBL) != 0)
11681 *g_size *= 2;
11682 if ((typebits & N_SGN) != 0)
11683 *g_type = NT_signed;
11684 else if ((typebits & N_UNS) != 0)
11685 *g_type = NT_unsigned;
11686 else if ((typebits & N_INT) != 0)
11687 *g_type = NT_integer;
11688 else if ((typebits & N_FLT) != 0)
11689 *g_type = NT_float;
dcbf9037
JB
11690 else if ((typebits & N_SIZ) != 0)
11691 *g_type = NT_untyped;
5287ad62
JB
11692 }
11693}
5f4273c7 11694
5287ad62
JB
11695/* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11696 operand type, i.e. the single type specified in a Neon instruction when it
11697 is the only one given. */
11698
11699static struct neon_type_el
11700neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11701{
11702 struct neon_type_el dest = *key;
5f4273c7 11703
9c2799c2 11704 gas_assert ((thisarg & N_EQK) != 0);
5f4273c7 11705
5287ad62
JB
11706 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11707
11708 return dest;
11709}
11710
11711/* Convert Neon type and size into compact bitmask representation. */
11712
11713static enum neon_type_mask
11714type_chk_of_el_type (enum neon_el_type type, unsigned size)
11715{
11716 switch (type)
11717 {
11718 case NT_untyped:
11719 switch (size)
11720 {
11721 case 8: return N_8;
11722 case 16: return N_16;
11723 case 32: return N_32;
11724 case 64: return N_64;
11725 default: ;
11726 }
11727 break;
11728
11729 case NT_integer:
11730 switch (size)
11731 {
11732 case 8: return N_I8;
11733 case 16: return N_I16;
11734 case 32: return N_I32;
11735 case 64: return N_I64;
11736 default: ;
11737 }
11738 break;
11739
11740 case NT_float:
037e8744
JB
11741 switch (size)
11742 {
8e79c3df 11743 case 16: return N_F16;
037e8744
JB
11744 case 32: return N_F32;
11745 case 64: return N_F64;
11746 default: ;
11747 }
5287ad62
JB
11748 break;
11749
11750 case NT_poly:
11751 switch (size)
11752 {
11753 case 8: return N_P8;
11754 case 16: return N_P16;
11755 default: ;
11756 }
11757 break;
11758
11759 case NT_signed:
11760 switch (size)
11761 {
11762 case 8: return N_S8;
11763 case 16: return N_S16;
11764 case 32: return N_S32;
11765 case 64: return N_S64;
11766 default: ;
11767 }
11768 break;
11769
11770 case NT_unsigned:
11771 switch (size)
11772 {
11773 case 8: return N_U8;
11774 case 16: return N_U16;
11775 case 32: return N_U32;
11776 case 64: return N_U64;
11777 default: ;
11778 }
11779 break;
11780
11781 default: ;
11782 }
5f4273c7 11783
5287ad62
JB
11784 return N_UTYP;
11785}
11786
11787/* Convert compact Neon bitmask type representation to a type and size. Only
11788 handles the case where a single bit is set in the mask. */
11789
dcbf9037 11790static int
5287ad62
JB
11791el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11792 enum neon_type_mask mask)
11793{
dcbf9037
JB
11794 if ((mask & N_EQK) != 0)
11795 return FAIL;
11796
5287ad62
JB
11797 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11798 *size = 8;
dcbf9037 11799 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
5287ad62 11800 *size = 16;
dcbf9037 11801 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
5287ad62 11802 *size = 32;
037e8744 11803 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
5287ad62 11804 *size = 64;
dcbf9037
JB
11805 else
11806 return FAIL;
11807
5287ad62
JB
11808 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11809 *type = NT_signed;
dcbf9037 11810 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
5287ad62 11811 *type = NT_unsigned;
dcbf9037 11812 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
5287ad62 11813 *type = NT_integer;
dcbf9037 11814 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
5287ad62 11815 *type = NT_untyped;
dcbf9037 11816 else if ((mask & (N_P8 | N_P16)) != 0)
5287ad62 11817 *type = NT_poly;
037e8744 11818 else if ((mask & (N_F32 | N_F64)) != 0)
5287ad62 11819 *type = NT_float;
dcbf9037
JB
11820 else
11821 return FAIL;
5f4273c7 11822
dcbf9037 11823 return SUCCESS;
5287ad62
JB
11824}
11825
11826/* Modify a bitmask of allowed types. This is only needed for type
11827 relaxation. */
11828
11829static unsigned
11830modify_types_allowed (unsigned allowed, unsigned mods)
11831{
11832 unsigned size;
11833 enum neon_el_type type;
11834 unsigned destmask;
11835 int i;
5f4273c7 11836
5287ad62 11837 destmask = 0;
5f4273c7 11838
5287ad62
JB
11839 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11840 {
21d799b5
NC
11841 if (el_type_of_type_chk (&type, &size,
11842 (enum neon_type_mask) (allowed & i)) == SUCCESS)
dcbf9037
JB
11843 {
11844 neon_modify_type_size (mods, &type, &size);
11845 destmask |= type_chk_of_el_type (type, size);
11846 }
5287ad62 11847 }
5f4273c7 11848
5287ad62
JB
11849 return destmask;
11850}
11851
11852/* Check type and return type classification.
11853 The manual states (paraphrase): If one datatype is given, it indicates the
11854 type given in:
11855 - the second operand, if there is one
11856 - the operand, if there is no second operand
11857 - the result, if there are no operands.
11858 This isn't quite good enough though, so we use a concept of a "key" datatype
11859 which is set on a per-instruction basis, which is the one which matters when
11860 only one data type is written.
11861 Note: this function has side-effects (e.g. filling in missing operands). All
037e8744 11862 Neon instructions should call it before performing bit encoding. */
5287ad62
JB
11863
11864static struct neon_type_el
11865neon_check_type (unsigned els, enum neon_shape ns, ...)
11866{
11867 va_list ap;
11868 unsigned i, pass, key_el = 0;
11869 unsigned types[NEON_MAX_TYPE_ELS];
11870 enum neon_el_type k_type = NT_invtype;
11871 unsigned k_size = -1u;
11872 struct neon_type_el badtype = {NT_invtype, -1};
11873 unsigned key_allowed = 0;
11874
11875 /* Optional registers in Neon instructions are always (not) in operand 1.
11876 Fill in the missing operand here, if it was omitted. */
11877 if (els > 1 && !inst.operands[1].present)
11878 inst.operands[1] = inst.operands[0];
11879
11880 /* Suck up all the varargs. */
11881 va_start (ap, ns);
11882 for (i = 0; i < els; i++)
11883 {
11884 unsigned thisarg = va_arg (ap, unsigned);
11885 if (thisarg == N_IGNORE_TYPE)
11886 {
11887 va_end (ap);
11888 return badtype;
11889 }
11890 types[i] = thisarg;
11891 if ((thisarg & N_KEY) != 0)
11892 key_el = i;
11893 }
11894 va_end (ap);
11895
dcbf9037
JB
11896 if (inst.vectype.elems > 0)
11897 for (i = 0; i < els; i++)
11898 if (inst.operands[i].vectype.type != NT_invtype)
11899 {
11900 first_error (_("types specified in both the mnemonic and operands"));
11901 return badtype;
11902 }
11903
5287ad62
JB
11904 /* Duplicate inst.vectype elements here as necessary.
11905 FIXME: No idea if this is exactly the same as the ARM assembler,
11906 particularly when an insn takes one register and one non-register
11907 operand. */
11908 if (inst.vectype.elems == 1 && els > 1)
11909 {
11910 unsigned j;
11911 inst.vectype.elems = els;
11912 inst.vectype.el[key_el] = inst.vectype.el[0];
11913 for (j = 0; j < els; j++)
dcbf9037
JB
11914 if (j != key_el)
11915 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11916 types[j]);
11917 }
11918 else if (inst.vectype.elems == 0 && els > 0)
11919 {
11920 unsigned j;
11921 /* No types were given after the mnemonic, so look for types specified
11922 after each operand. We allow some flexibility here; as long as the
11923 "key" operand has a type, we can infer the others. */
11924 for (j = 0; j < els; j++)
11925 if (inst.operands[j].vectype.type != NT_invtype)
11926 inst.vectype.el[j] = inst.operands[j].vectype;
11927
11928 if (inst.operands[key_el].vectype.type != NT_invtype)
5287ad62 11929 {
dcbf9037
JB
11930 for (j = 0; j < els; j++)
11931 if (inst.operands[j].vectype.type == NT_invtype)
11932 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11933 types[j]);
11934 }
11935 else
11936 {
11937 first_error (_("operand types can't be inferred"));
11938 return badtype;
5287ad62
JB
11939 }
11940 }
11941 else if (inst.vectype.elems != els)
11942 {
dcbf9037 11943 first_error (_("type specifier has the wrong number of parts"));
5287ad62
JB
11944 return badtype;
11945 }
11946
11947 for (pass = 0; pass < 2; pass++)
11948 {
11949 for (i = 0; i < els; i++)
11950 {
11951 unsigned thisarg = types[i];
11952 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11953 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11954 enum neon_el_type g_type = inst.vectype.el[i].type;
11955 unsigned g_size = inst.vectype.el[i].size;
11956
11957 /* Decay more-specific signed & unsigned types to sign-insensitive
11958 integer types if sign-specific variants are unavailable. */
11959 if ((g_type == NT_signed || g_type == NT_unsigned)
11960 && (types_allowed & N_SU_ALL) == 0)
11961 g_type = NT_integer;
11962
11963 /* If only untyped args are allowed, decay any more specific types to
11964 them. Some instructions only care about signs for some element
11965 sizes, so handle that properly. */
11966 if ((g_size == 8 && (types_allowed & N_8) != 0)
11967 || (g_size == 16 && (types_allowed & N_16) != 0)
11968 || (g_size == 32 && (types_allowed & N_32) != 0)
11969 || (g_size == 64 && (types_allowed & N_64) != 0))
11970 g_type = NT_untyped;
11971
11972 if (pass == 0)
11973 {
11974 if ((thisarg & N_KEY) != 0)
11975 {
11976 k_type = g_type;
11977 k_size = g_size;
11978 key_allowed = thisarg & ~N_KEY;
11979 }
11980 }
11981 else
11982 {
037e8744
JB
11983 if ((thisarg & N_VFP) != 0)
11984 {
11985 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11986 unsigned regwidth = neon_shape_el_size[regshape], match;
11987
11988 /* In VFP mode, operands must match register widths. If we
11989 have a key operand, use its width, else use the width of
11990 the current operand. */
11991 if (k_size != -1u)
11992 match = k_size;
11993 else
11994 match = g_size;
11995
11996 if (regwidth != match)
11997 {
11998 first_error (_("operand size must match register width"));
11999 return badtype;
12000 }
12001 }
5f4273c7 12002
5287ad62
JB
12003 if ((thisarg & N_EQK) == 0)
12004 {
12005 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12006
12007 if ((given_type & types_allowed) == 0)
12008 {
dcbf9037 12009 first_error (_("bad type in Neon instruction"));
5287ad62
JB
12010 return badtype;
12011 }
12012 }
12013 else
12014 {
12015 enum neon_el_type mod_k_type = k_type;
12016 unsigned mod_k_size = k_size;
12017 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12018 if (g_type != mod_k_type || g_size != mod_k_size)
12019 {
dcbf9037 12020 first_error (_("inconsistent types in Neon instruction"));
5287ad62
JB
12021 return badtype;
12022 }
12023 }
12024 }
12025 }
12026 }
12027
12028 return inst.vectype.el[key_el];
12029}
12030
037e8744 12031/* Neon-style VFP instruction forwarding. */
5287ad62 12032
037e8744
JB
12033/* Thumb VFP instructions have 0xE in the condition field. */
12034
12035static void
12036do_vfp_cond_or_thumb (void)
5287ad62
JB
12037{
12038 if (thumb_mode)
037e8744 12039 inst.instruction |= 0xe0000000;
5287ad62 12040 else
037e8744 12041 inst.instruction |= inst.cond << 28;
5287ad62
JB
12042}
12043
037e8744
JB
12044/* Look up and encode a simple mnemonic, for use as a helper function for the
12045 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12046 etc. It is assumed that operand parsing has already been done, and that the
12047 operands are in the form expected by the given opcode (this isn't necessarily
12048 the same as the form in which they were parsed, hence some massaging must
12049 take place before this function is called).
12050 Checks current arch version against that in the looked-up opcode. */
5287ad62 12051
037e8744
JB
12052static void
12053do_vfp_nsyn_opcode (const char *opname)
5287ad62 12054{
037e8744 12055 const struct asm_opcode *opcode;
5f4273c7 12056
21d799b5 12057 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
5287ad62 12058
037e8744
JB
12059 if (!opcode)
12060 abort ();
5287ad62 12061
037e8744
JB
12062 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12063 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12064 _(BAD_FPU));
5287ad62 12065
037e8744
JB
12066 if (thumb_mode)
12067 {
12068 inst.instruction = opcode->tvalue;
12069 opcode->tencode ();
12070 }
12071 else
12072 {
12073 inst.instruction = (inst.cond << 28) | opcode->avalue;
12074 opcode->aencode ();
12075 }
12076}
5287ad62
JB
12077
12078static void
037e8744 12079do_vfp_nsyn_add_sub (enum neon_shape rs)
5287ad62 12080{
037e8744
JB
12081 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12082
12083 if (rs == NS_FFF)
12084 {
12085 if (is_add)
12086 do_vfp_nsyn_opcode ("fadds");
12087 else
12088 do_vfp_nsyn_opcode ("fsubs");
12089 }
12090 else
12091 {
12092 if (is_add)
12093 do_vfp_nsyn_opcode ("faddd");
12094 else
12095 do_vfp_nsyn_opcode ("fsubd");
12096 }
12097}
12098
12099/* Check operand types to see if this is a VFP instruction, and if so call
12100 PFN (). */
12101
12102static int
12103try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12104{
12105 enum neon_shape rs;
12106 struct neon_type_el et;
12107
12108 switch (args)
12109 {
12110 case 2:
12111 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12112 et = neon_check_type (2, rs,
12113 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12114 break;
5f4273c7 12115
037e8744
JB
12116 case 3:
12117 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12118 et = neon_check_type (3, rs,
12119 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12120 break;
12121
12122 default:
12123 abort ();
12124 }
12125
12126 if (et.type != NT_invtype)
12127 {
12128 pfn (rs);
12129 return SUCCESS;
12130 }
12131 else
12132 inst.error = NULL;
12133
12134 return FAIL;
12135}
12136
12137static void
12138do_vfp_nsyn_mla_mls (enum neon_shape rs)
12139{
12140 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
5f4273c7 12141
037e8744
JB
12142 if (rs == NS_FFF)
12143 {
12144 if (is_mla)
12145 do_vfp_nsyn_opcode ("fmacs");
12146 else
12147 do_vfp_nsyn_opcode ("fmscs");
12148 }
12149 else
12150 {
12151 if (is_mla)
12152 do_vfp_nsyn_opcode ("fmacd");
12153 else
12154 do_vfp_nsyn_opcode ("fmscd");
12155 }
12156}
12157
62f3b8c8
PB
12158static void
12159do_vfp_nsyn_fma_fms (enum neon_shape rs)
12160{
12161 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12162
12163 if (rs == NS_FFF)
12164 {
12165 if (is_fma)
12166 do_vfp_nsyn_opcode ("ffmas");
12167 else
12168 do_vfp_nsyn_opcode ("ffnmas");
12169 }
12170 else
12171 {
12172 if (is_fma)
12173 do_vfp_nsyn_opcode ("ffmad");
12174 else
12175 do_vfp_nsyn_opcode ("ffnmad");
12176 }
12177}
12178
037e8744
JB
12179static void
12180do_vfp_nsyn_mul (enum neon_shape rs)
12181{
12182 if (rs == NS_FFF)
12183 do_vfp_nsyn_opcode ("fmuls");
12184 else
12185 do_vfp_nsyn_opcode ("fmuld");
12186}
12187
12188static void
12189do_vfp_nsyn_abs_neg (enum neon_shape rs)
12190{
12191 int is_neg = (inst.instruction & 0x80) != 0;
12192 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12193
12194 if (rs == NS_FF)
12195 {
12196 if (is_neg)
12197 do_vfp_nsyn_opcode ("fnegs");
12198 else
12199 do_vfp_nsyn_opcode ("fabss");
12200 }
12201 else
12202 {
12203 if (is_neg)
12204 do_vfp_nsyn_opcode ("fnegd");
12205 else
12206 do_vfp_nsyn_opcode ("fabsd");
12207 }
12208}
12209
12210/* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12211 insns belong to Neon, and are handled elsewhere. */
12212
12213static void
12214do_vfp_nsyn_ldm_stm (int is_dbmode)
12215{
12216 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12217 if (is_ldm)
12218 {
12219 if (is_dbmode)
12220 do_vfp_nsyn_opcode ("fldmdbs");
12221 else
12222 do_vfp_nsyn_opcode ("fldmias");
12223 }
12224 else
12225 {
12226 if (is_dbmode)
12227 do_vfp_nsyn_opcode ("fstmdbs");
12228 else
12229 do_vfp_nsyn_opcode ("fstmias");
12230 }
12231}
12232
037e8744
JB
12233static void
12234do_vfp_nsyn_sqrt (void)
12235{
12236 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12237 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12238
037e8744
JB
12239 if (rs == NS_FF)
12240 do_vfp_nsyn_opcode ("fsqrts");
12241 else
12242 do_vfp_nsyn_opcode ("fsqrtd");
12243}
12244
12245static void
12246do_vfp_nsyn_div (void)
12247{
12248 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12249 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12250 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12251
037e8744
JB
12252 if (rs == NS_FFF)
12253 do_vfp_nsyn_opcode ("fdivs");
12254 else
12255 do_vfp_nsyn_opcode ("fdivd");
12256}
12257
12258static void
12259do_vfp_nsyn_nmul (void)
12260{
12261 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12262 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12263 N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12264
037e8744
JB
12265 if (rs == NS_FFF)
12266 {
12267 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12268 do_vfp_sp_dyadic ();
12269 }
12270 else
12271 {
12272 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12273 do_vfp_dp_rd_rn_rm ();
12274 }
12275 do_vfp_cond_or_thumb ();
12276}
12277
12278static void
12279do_vfp_nsyn_cmp (void)
12280{
12281 if (inst.operands[1].isreg)
12282 {
12283 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12284 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
5f4273c7 12285
037e8744
JB
12286 if (rs == NS_FF)
12287 {
12288 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12289 do_vfp_sp_monadic ();
12290 }
12291 else
12292 {
12293 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12294 do_vfp_dp_rd_rm ();
12295 }
12296 }
12297 else
12298 {
12299 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12300 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12301
12302 switch (inst.instruction & 0x0fffffff)
12303 {
12304 case N_MNEM_vcmp:
12305 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12306 break;
12307 case N_MNEM_vcmpe:
12308 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12309 break;
12310 default:
12311 abort ();
12312 }
5f4273c7 12313
037e8744
JB
12314 if (rs == NS_FI)
12315 {
12316 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
12317 do_vfp_sp_compare_z ();
12318 }
12319 else
12320 {
12321 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
12322 do_vfp_dp_rd ();
12323 }
12324 }
12325 do_vfp_cond_or_thumb ();
12326}
12327
12328static void
12329nsyn_insert_sp (void)
12330{
12331 inst.operands[1] = inst.operands[0];
12332 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
fdfde340 12333 inst.operands[0].reg = REG_SP;
037e8744
JB
12334 inst.operands[0].isreg = 1;
12335 inst.operands[0].writeback = 1;
12336 inst.operands[0].present = 1;
12337}
12338
12339static void
12340do_vfp_nsyn_push (void)
12341{
12342 nsyn_insert_sp ();
12343 if (inst.operands[1].issingle)
12344 do_vfp_nsyn_opcode ("fstmdbs");
12345 else
12346 do_vfp_nsyn_opcode ("fstmdbd");
12347}
12348
12349static void
12350do_vfp_nsyn_pop (void)
12351{
12352 nsyn_insert_sp ();
12353 if (inst.operands[1].issingle)
22b5b651 12354 do_vfp_nsyn_opcode ("fldmias");
037e8744 12355 else
22b5b651 12356 do_vfp_nsyn_opcode ("fldmiad");
037e8744
JB
12357}
12358
12359/* Fix up Neon data-processing instructions, ORing in the correct bits for
12360 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12361
12362static unsigned
12363neon_dp_fixup (unsigned i)
12364{
12365 if (thumb_mode)
12366 {
12367 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12368 if (i & (1 << 24))
12369 i |= 1 << 28;
5f4273c7 12370
037e8744 12371 i &= ~(1 << 24);
5f4273c7 12372
037e8744
JB
12373 i |= 0xef000000;
12374 }
12375 else
12376 i |= 0xf2000000;
5f4273c7 12377
037e8744
JB
12378 return i;
12379}
12380
12381/* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12382 (0, 1, 2, 3). */
12383
12384static unsigned
12385neon_logbits (unsigned x)
12386{
12387 return ffs (x) - 4;
12388}
12389
12390#define LOW4(R) ((R) & 0xf)
12391#define HI1(R) (((R) >> 4) & 1)
12392
12393/* Encode insns with bit pattern:
12394
12395 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12396 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
5f4273c7 12397
037e8744
JB
12398 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12399 different meaning for some instruction. */
12400
12401static void
12402neon_three_same (int isquad, int ubit, int size)
12403{
12404 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12405 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12406 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12407 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12408 inst.instruction |= LOW4 (inst.operands[2].reg);
12409 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12410 inst.instruction |= (isquad != 0) << 6;
12411 inst.instruction |= (ubit != 0) << 24;
12412 if (size != -1)
12413 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 12414
037e8744
JB
12415 inst.instruction = neon_dp_fixup (inst.instruction);
12416}
12417
12418/* Encode instructions of the form:
12419
12420 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12421 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
5287ad62
JB
12422
12423 Don't write size if SIZE == -1. */
12424
12425static void
12426neon_two_same (int qbit, int ubit, int size)
12427{
12428 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12429 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12430 inst.instruction |= LOW4 (inst.operands[1].reg);
12431 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12432 inst.instruction |= (qbit != 0) << 6;
12433 inst.instruction |= (ubit != 0) << 24;
12434
12435 if (size != -1)
12436 inst.instruction |= neon_logbits (size) << 18;
12437
12438 inst.instruction = neon_dp_fixup (inst.instruction);
12439}
12440
12441/* Neon instruction encoders, in approximate order of appearance. */
12442
12443static void
12444do_neon_dyadic_i_su (void)
12445{
037e8744 12446 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12447 struct neon_type_el et = neon_check_type (3, rs,
12448 N_EQK, N_EQK, N_SU_32 | N_KEY);
037e8744 12449 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12450}
12451
12452static void
12453do_neon_dyadic_i64_su (void)
12454{
037e8744 12455 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12456 struct neon_type_el et = neon_check_type (3, rs,
12457 N_EQK, N_EQK, N_SU_ALL | N_KEY);
037e8744 12458 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12459}
12460
12461static void
12462neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12463 unsigned immbits)
12464{
12465 unsigned size = et.size >> 3;
12466 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12467 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12468 inst.instruction |= LOW4 (inst.operands[1].reg);
12469 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12470 inst.instruction |= (isquad != 0) << 6;
12471 inst.instruction |= immbits << 16;
12472 inst.instruction |= (size >> 3) << 7;
12473 inst.instruction |= (size & 0x7) << 19;
12474 if (write_ubit)
12475 inst.instruction |= (uval != 0) << 24;
12476
12477 inst.instruction = neon_dp_fixup (inst.instruction);
12478}
12479
12480static void
12481do_neon_shl_imm (void)
12482{
12483 if (!inst.operands[2].isreg)
12484 {
037e8744 12485 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
12486 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12487 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 12488 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
5287ad62
JB
12489 }
12490 else
12491 {
037e8744 12492 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12493 struct neon_type_el et = neon_check_type (3, rs,
12494 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12495 unsigned int tmp;
12496
12497 /* VSHL/VQSHL 3-register variants have syntax such as:
12498 vshl.xx Dd, Dm, Dn
12499 whereas other 3-register operations encoded by neon_three_same have
12500 syntax like:
12501 vadd.xx Dd, Dn, Dm
12502 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12503 here. */
12504 tmp = inst.operands[2].reg;
12505 inst.operands[2].reg = inst.operands[1].reg;
12506 inst.operands[1].reg = tmp;
5287ad62 12507 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12508 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12509 }
12510}
12511
12512static void
12513do_neon_qshl_imm (void)
12514{
12515 if (!inst.operands[2].isreg)
12516 {
037e8744 12517 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62 12518 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
627907b7 12519
5287ad62 12520 inst.instruction = NEON_ENC_IMMED (inst.instruction);
037e8744 12521 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
12522 inst.operands[2].imm);
12523 }
12524 else
12525 {
037e8744 12526 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12527 struct neon_type_el et = neon_check_type (3, rs,
12528 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
627907b7
JB
12529 unsigned int tmp;
12530
12531 /* See note in do_neon_shl_imm. */
12532 tmp = inst.operands[2].reg;
12533 inst.operands[2].reg = inst.operands[1].reg;
12534 inst.operands[1].reg = tmp;
5287ad62 12535 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12536 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
5287ad62
JB
12537 }
12538}
12539
627907b7
JB
12540static void
12541do_neon_rshl (void)
12542{
12543 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12544 struct neon_type_el et = neon_check_type (3, rs,
12545 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12546 unsigned int tmp;
12547
12548 tmp = inst.operands[2].reg;
12549 inst.operands[2].reg = inst.operands[1].reg;
12550 inst.operands[1].reg = tmp;
12551 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12552}
12553
5287ad62
JB
12554static int
12555neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12556{
036dc3f7
PB
12557 /* Handle .I8 pseudo-instructions. */
12558 if (size == 8)
5287ad62 12559 {
5287ad62
JB
12560 /* Unfortunately, this will make everything apart from zero out-of-range.
12561 FIXME is this the intended semantics? There doesn't seem much point in
12562 accepting .I8 if so. */
12563 immediate |= immediate << 8;
12564 size = 16;
036dc3f7
PB
12565 }
12566
12567 if (size >= 32)
12568 {
12569 if (immediate == (immediate & 0x000000ff))
12570 {
12571 *immbits = immediate;
12572 return 0x1;
12573 }
12574 else if (immediate == (immediate & 0x0000ff00))
12575 {
12576 *immbits = immediate >> 8;
12577 return 0x3;
12578 }
12579 else if (immediate == (immediate & 0x00ff0000))
12580 {
12581 *immbits = immediate >> 16;
12582 return 0x5;
12583 }
12584 else if (immediate == (immediate & 0xff000000))
12585 {
12586 *immbits = immediate >> 24;
12587 return 0x7;
12588 }
12589 if ((immediate & 0xffff) != (immediate >> 16))
12590 goto bad_immediate;
12591 immediate &= 0xffff;
5287ad62
JB
12592 }
12593
12594 if (immediate == (immediate & 0x000000ff))
12595 {
12596 *immbits = immediate;
036dc3f7 12597 return 0x9;
5287ad62
JB
12598 }
12599 else if (immediate == (immediate & 0x0000ff00))
12600 {
12601 *immbits = immediate >> 8;
036dc3f7 12602 return 0xb;
5287ad62
JB
12603 }
12604
12605 bad_immediate:
dcbf9037 12606 first_error (_("immediate value out of range"));
5287ad62
JB
12607 return FAIL;
12608}
12609
12610/* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12611 A, B, C, D. */
12612
12613static int
12614neon_bits_same_in_bytes (unsigned imm)
12615{
12616 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12617 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12618 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12619 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12620}
12621
12622/* For immediate of above form, return 0bABCD. */
12623
12624static unsigned
12625neon_squash_bits (unsigned imm)
12626{
12627 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12628 | ((imm & 0x01000000) >> 21);
12629}
12630
136da414 12631/* Compress quarter-float representation to 0b...000 abcdefgh. */
5287ad62
JB
12632
12633static unsigned
12634neon_qfloat_bits (unsigned imm)
12635{
136da414 12636 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
5287ad62
JB
12637}
12638
12639/* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12640 the instruction. *OP is passed as the initial value of the op field, and
12641 may be set to a different value depending on the constant (i.e.
12642 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
5f4273c7 12643 MVN). If the immediate looks like a repeated pattern then also
036dc3f7 12644 try smaller element sizes. */
5287ad62
JB
12645
12646static int
c96612cc
JB
12647neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12648 unsigned *immbits, int *op, int size,
12649 enum neon_el_type type)
5287ad62 12650{
c96612cc
JB
12651 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12652 float. */
12653 if (type == NT_float && !float_p)
12654 return FAIL;
12655
136da414
JB
12656 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12657 {
12658 if (size != 32 || *op == 1)
12659 return FAIL;
12660 *immbits = neon_qfloat_bits (immlo);
12661 return 0xf;
12662 }
036dc3f7
PB
12663
12664 if (size == 64)
5287ad62 12665 {
036dc3f7
PB
12666 if (neon_bits_same_in_bytes (immhi)
12667 && neon_bits_same_in_bytes (immlo))
12668 {
12669 if (*op == 1)
12670 return FAIL;
12671 *immbits = (neon_squash_bits (immhi) << 4)
12672 | neon_squash_bits (immlo);
12673 *op = 1;
12674 return 0xe;
12675 }
12676
12677 if (immhi != immlo)
12678 return FAIL;
5287ad62 12679 }
036dc3f7
PB
12680
12681 if (size >= 32)
5287ad62 12682 {
036dc3f7
PB
12683 if (immlo == (immlo & 0x000000ff))
12684 {
12685 *immbits = immlo;
12686 return 0x0;
12687 }
12688 else if (immlo == (immlo & 0x0000ff00))
12689 {
12690 *immbits = immlo >> 8;
12691 return 0x2;
12692 }
12693 else if (immlo == (immlo & 0x00ff0000))
12694 {
12695 *immbits = immlo >> 16;
12696 return 0x4;
12697 }
12698 else if (immlo == (immlo & 0xff000000))
12699 {
12700 *immbits = immlo >> 24;
12701 return 0x6;
12702 }
12703 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12704 {
12705 *immbits = (immlo >> 8) & 0xff;
12706 return 0xc;
12707 }
12708 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12709 {
12710 *immbits = (immlo >> 16) & 0xff;
12711 return 0xd;
12712 }
12713
12714 if ((immlo & 0xffff) != (immlo >> 16))
12715 return FAIL;
12716 immlo &= 0xffff;
5287ad62 12717 }
036dc3f7
PB
12718
12719 if (size >= 16)
5287ad62 12720 {
036dc3f7
PB
12721 if (immlo == (immlo & 0x000000ff))
12722 {
12723 *immbits = immlo;
12724 return 0x8;
12725 }
12726 else if (immlo == (immlo & 0x0000ff00))
12727 {
12728 *immbits = immlo >> 8;
12729 return 0xa;
12730 }
12731
12732 if ((immlo & 0xff) != (immlo >> 8))
12733 return FAIL;
12734 immlo &= 0xff;
5287ad62 12735 }
036dc3f7
PB
12736
12737 if (immlo == (immlo & 0x000000ff))
5287ad62 12738 {
036dc3f7
PB
12739 /* Don't allow MVN with 8-bit immediate. */
12740 if (*op == 1)
12741 return FAIL;
12742 *immbits = immlo;
12743 return 0xe;
5287ad62 12744 }
5287ad62
JB
12745
12746 return FAIL;
12747}
12748
12749/* Write immediate bits [7:0] to the following locations:
12750
12751 |28/24|23 19|18 16|15 4|3 0|
12752 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12753
12754 This function is used by VMOV/VMVN/VORR/VBIC. */
12755
12756static void
12757neon_write_immbits (unsigned immbits)
12758{
12759 inst.instruction |= immbits & 0xf;
12760 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12761 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12762}
12763
12764/* Invert low-order SIZE bits of XHI:XLO. */
12765
12766static void
12767neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12768{
12769 unsigned immlo = xlo ? *xlo : 0;
12770 unsigned immhi = xhi ? *xhi : 0;
12771
12772 switch (size)
12773 {
12774 case 8:
12775 immlo = (~immlo) & 0xff;
12776 break;
12777
12778 case 16:
12779 immlo = (~immlo) & 0xffff;
12780 break;
12781
12782 case 64:
12783 immhi = (~immhi) & 0xffffffff;
12784 /* fall through. */
12785
12786 case 32:
12787 immlo = (~immlo) & 0xffffffff;
12788 break;
12789
12790 default:
12791 abort ();
12792 }
12793
12794 if (xlo)
12795 *xlo = immlo;
12796
12797 if (xhi)
12798 *xhi = immhi;
12799}
12800
12801static void
12802do_neon_logic (void)
12803{
12804 if (inst.operands[2].present && inst.operands[2].isreg)
12805 {
037e8744 12806 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
12807 neon_check_type (3, rs, N_IGNORE_TYPE);
12808 /* U bit and size field were set as part of the bitmask. */
12809 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12810 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12811 }
12812 else
12813 {
037e8744
JB
12814 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12815 struct neon_type_el et = neon_check_type (2, rs,
12816 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
21d799b5 12817 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
5287ad62
JB
12818 unsigned immbits;
12819 int cmode;
5f4273c7 12820
5287ad62
JB
12821 if (et.type == NT_invtype)
12822 return;
5f4273c7 12823
5287ad62
JB
12824 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12825
036dc3f7
PB
12826 immbits = inst.operands[1].imm;
12827 if (et.size == 64)
12828 {
12829 /* .i64 is a pseudo-op, so the immediate must be a repeating
12830 pattern. */
12831 if (immbits != (inst.operands[1].regisimm ?
12832 inst.operands[1].reg : 0))
12833 {
12834 /* Set immbits to an invalid constant. */
12835 immbits = 0xdeadbeef;
12836 }
12837 }
12838
5287ad62
JB
12839 switch (opcode)
12840 {
12841 case N_MNEM_vbic:
036dc3f7 12842 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12843 break;
5f4273c7 12844
5287ad62 12845 case N_MNEM_vorr:
036dc3f7 12846 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
5287ad62 12847 break;
5f4273c7 12848
5287ad62
JB
12849 case N_MNEM_vand:
12850 /* Pseudo-instruction for VBIC. */
5287ad62
JB
12851 neon_invert_size (&immbits, 0, et.size);
12852 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12853 break;
5f4273c7 12854
5287ad62
JB
12855 case N_MNEM_vorn:
12856 /* Pseudo-instruction for VORR. */
5287ad62
JB
12857 neon_invert_size (&immbits, 0, et.size);
12858 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12859 break;
5f4273c7 12860
5287ad62
JB
12861 default:
12862 abort ();
12863 }
12864
12865 if (cmode == FAIL)
12866 return;
12867
037e8744 12868 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
12869 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12870 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12871 inst.instruction |= cmode << 8;
12872 neon_write_immbits (immbits);
5f4273c7 12873
5287ad62
JB
12874 inst.instruction = neon_dp_fixup (inst.instruction);
12875 }
12876}
12877
12878static void
12879do_neon_bitfield (void)
12880{
037e8744 12881 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037 12882 neon_check_type (3, rs, N_IGNORE_TYPE);
037e8744 12883 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12884}
12885
12886static void
dcbf9037
JB
12887neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12888 unsigned destbits)
5287ad62 12889{
037e8744 12890 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
dcbf9037
JB
12891 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12892 types | N_KEY);
5287ad62
JB
12893 if (et.type == NT_float)
12894 {
12895 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
037e8744 12896 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
12897 }
12898 else
12899 {
12900 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 12901 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
5287ad62
JB
12902 }
12903}
12904
12905static void
12906do_neon_dyadic_if_su (void)
12907{
dcbf9037 12908 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12909}
12910
12911static void
12912do_neon_dyadic_if_su_d (void)
12913{
12914 /* This version only allow D registers, but that constraint is enforced during
12915 operand parsing so we don't need to do anything extra here. */
dcbf9037 12916 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
5287ad62
JB
12917}
12918
5287ad62
JB
12919static void
12920do_neon_dyadic_if_i_d (void)
12921{
428e3f1f
PB
12922 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12923 affected if we specify unsigned args. */
12924 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
5287ad62
JB
12925}
12926
037e8744
JB
12927enum vfp_or_neon_is_neon_bits
12928{
12929 NEON_CHECK_CC = 1,
12930 NEON_CHECK_ARCH = 2
12931};
12932
12933/* Call this function if an instruction which may have belonged to the VFP or
12934 Neon instruction sets, but turned out to be a Neon instruction (due to the
12935 operand types involved, etc.). We have to check and/or fix-up a couple of
12936 things:
12937
12938 - Make sure the user hasn't attempted to make a Neon instruction
12939 conditional.
12940 - Alter the value in the condition code field if necessary.
12941 - Make sure that the arch supports Neon instructions.
12942
12943 Which of these operations take place depends on bits from enum
12944 vfp_or_neon_is_neon_bits.
12945
12946 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12947 current instruction's condition is COND_ALWAYS, the condition field is
12948 changed to inst.uncond_value. This is necessary because instructions shared
12949 between VFP and Neon may be conditional for the VFP variants only, and the
12950 unconditional Neon version must have, e.g., 0xF in the condition field. */
12951
12952static int
12953vfp_or_neon_is_neon (unsigned check)
12954{
12955 /* Conditions are always legal in Thumb mode (IT blocks). */
12956 if (!thumb_mode && (check & NEON_CHECK_CC))
12957 {
12958 if (inst.cond != COND_ALWAYS)
12959 {
12960 first_error (_(BAD_COND));
12961 return FAIL;
12962 }
12963 if (inst.uncond_value != -1)
12964 inst.instruction |= inst.uncond_value << 28;
12965 }
5f4273c7 12966
037e8744
JB
12967 if ((check & NEON_CHECK_ARCH)
12968 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12969 {
12970 first_error (_(BAD_FPU));
12971 return FAIL;
12972 }
5f4273c7 12973
037e8744
JB
12974 return SUCCESS;
12975}
12976
5287ad62
JB
12977static void
12978do_neon_addsub_if_i (void)
12979{
037e8744
JB
12980 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12981 return;
12982
12983 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12984 return;
12985
5287ad62
JB
12986 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12987 affected if we specify unsigned args. */
dcbf9037 12988 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
5287ad62
JB
12989}
12990
12991/* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12992 result to be:
12993 V<op> A,B (A is operand 0, B is operand 2)
12994 to mean:
12995 V<op> A,B,A
12996 not:
12997 V<op> A,B,B
12998 so handle that case specially. */
12999
13000static void
13001neon_exchange_operands (void)
13002{
13003 void *scratch = alloca (sizeof (inst.operands[0]));
13004 if (inst.operands[1].present)
13005 {
13006 /* Swap operands[1] and operands[2]. */
13007 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13008 inst.operands[1] = inst.operands[2];
13009 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13010 }
13011 else
13012 {
13013 inst.operands[1] = inst.operands[2];
13014 inst.operands[2] = inst.operands[0];
13015 }
13016}
13017
13018static void
13019neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13020{
13021 if (inst.operands[2].isreg)
13022 {
13023 if (invert)
13024 neon_exchange_operands ();
dcbf9037 13025 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
5287ad62
JB
13026 }
13027 else
13028 {
037e8744 13029 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
dcbf9037
JB
13030 struct neon_type_el et = neon_check_type (2, rs,
13031 N_EQK | N_SIZ, immtypes | N_KEY);
5287ad62
JB
13032
13033 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13034 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13035 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13036 inst.instruction |= LOW4 (inst.operands[1].reg);
13037 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13038 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13039 inst.instruction |= (et.type == NT_float) << 10;
13040 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13041
5287ad62
JB
13042 inst.instruction = neon_dp_fixup (inst.instruction);
13043 }
13044}
13045
13046static void
13047do_neon_cmp (void)
13048{
13049 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13050}
13051
13052static void
13053do_neon_cmp_inv (void)
13054{
13055 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13056}
13057
13058static void
13059do_neon_ceq (void)
13060{
13061 neon_compare (N_IF_32, N_IF_32, FALSE);
13062}
13063
13064/* For multiply instructions, we have the possibility of 16-bit or 32-bit
13065 scalars, which are encoded in 5 bits, M : Rm.
13066 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13067 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13068 index in M. */
13069
13070static unsigned
13071neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13072{
dcbf9037
JB
13073 unsigned regno = NEON_SCALAR_REG (scalar);
13074 unsigned elno = NEON_SCALAR_INDEX (scalar);
5287ad62
JB
13075
13076 switch (elsize)
13077 {
13078 case 16:
13079 if (regno > 7 || elno > 3)
13080 goto bad_scalar;
13081 return regno | (elno << 3);
5f4273c7 13082
5287ad62
JB
13083 case 32:
13084 if (regno > 15 || elno > 1)
13085 goto bad_scalar;
13086 return regno | (elno << 4);
13087
13088 default:
13089 bad_scalar:
dcbf9037 13090 first_error (_("scalar out of range for multiply instruction"));
5287ad62
JB
13091 }
13092
13093 return 0;
13094}
13095
13096/* Encode multiply / multiply-accumulate scalar instructions. */
13097
13098static void
13099neon_mul_mac (struct neon_type_el et, int ubit)
13100{
dcbf9037
JB
13101 unsigned scalar;
13102
13103 /* Give a more helpful error message if we have an invalid type. */
13104 if (et.type == NT_invtype)
13105 return;
5f4273c7 13106
dcbf9037 13107 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
5287ad62
JB
13108 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13109 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13110 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13111 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13112 inst.instruction |= LOW4 (scalar);
13113 inst.instruction |= HI1 (scalar) << 5;
13114 inst.instruction |= (et.type == NT_float) << 8;
13115 inst.instruction |= neon_logbits (et.size) << 20;
13116 inst.instruction |= (ubit != 0) << 24;
13117
13118 inst.instruction = neon_dp_fixup (inst.instruction);
13119}
13120
13121static void
13122do_neon_mac_maybe_scalar (void)
13123{
037e8744
JB
13124 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13125 return;
13126
13127 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13128 return;
13129
5287ad62
JB
13130 if (inst.operands[2].isscalar)
13131 {
037e8744 13132 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13133 struct neon_type_el et = neon_check_type (3, rs,
13134 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13135 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 13136 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13137 }
13138 else
428e3f1f
PB
13139 {
13140 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13141 affected if we specify unsigned args. */
13142 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13143 }
5287ad62
JB
13144}
13145
62f3b8c8
PB
13146static void
13147do_neon_fmac (void)
13148{
13149 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13150 return;
13151
13152 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13153 return;
13154
13155 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13156}
13157
5287ad62
JB
13158static void
13159do_neon_tst (void)
13160{
037e8744 13161 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13162 struct neon_type_el et = neon_check_type (3, rs,
13163 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
037e8744 13164 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13165}
13166
13167/* VMUL with 3 registers allows the P8 type. The scalar version supports the
13168 same types as the MAC equivalents. The polynomial type for this instruction
13169 is encoded the same as the integer type. */
13170
13171static void
13172do_neon_mul (void)
13173{
037e8744
JB
13174 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13175 return;
13176
13177 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13178 return;
13179
5287ad62
JB
13180 if (inst.operands[2].isscalar)
13181 do_neon_mac_maybe_scalar ();
13182 else
dcbf9037 13183 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
5287ad62
JB
13184}
13185
13186static void
13187do_neon_qdmulh (void)
13188{
13189 if (inst.operands[2].isscalar)
13190 {
037e8744 13191 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
5287ad62
JB
13192 struct neon_type_el et = neon_check_type (3, rs,
13193 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13194 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
037e8744 13195 neon_mul_mac (et, neon_quad (rs));
5287ad62
JB
13196 }
13197 else
13198 {
037e8744 13199 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13200 struct neon_type_el et = neon_check_type (3, rs,
13201 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13202 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13203 /* The U bit (rounding) comes from bit mask. */
037e8744 13204 neon_three_same (neon_quad (rs), 0, et.size);
5287ad62
JB
13205 }
13206}
13207
13208static void
13209do_neon_fcmp_absolute (void)
13210{
037e8744 13211 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62
JB
13212 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13213 /* Size field comes from bit mask. */
037e8744 13214 neon_three_same (neon_quad (rs), 1, -1);
5287ad62
JB
13215}
13216
13217static void
13218do_neon_fcmp_absolute_inv (void)
13219{
13220 neon_exchange_operands ();
13221 do_neon_fcmp_absolute ();
13222}
13223
13224static void
13225do_neon_step (void)
13226{
037e8744 13227 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
5287ad62 13228 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
037e8744 13229 neon_three_same (neon_quad (rs), 0, -1);
5287ad62
JB
13230}
13231
13232static void
13233do_neon_abs_neg (void)
13234{
037e8744
JB
13235 enum neon_shape rs;
13236 struct neon_type_el et;
5f4273c7 13237
037e8744
JB
13238 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13239 return;
13240
13241 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13242 return;
13243
13244 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13245 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
5f4273c7 13246
5287ad62
JB
13247 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13248 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13249 inst.instruction |= LOW4 (inst.operands[1].reg);
13250 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13251 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13252 inst.instruction |= (et.type == NT_float) << 10;
13253 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13254
5287ad62
JB
13255 inst.instruction = neon_dp_fixup (inst.instruction);
13256}
13257
13258static void
13259do_neon_sli (void)
13260{
037e8744 13261 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13262 struct neon_type_el et = neon_check_type (2, rs,
13263 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13264 int imm = inst.operands[2].imm;
13265 constraint (imm < 0 || (unsigned)imm >= et.size,
13266 _("immediate out of range for insert"));
037e8744 13267 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13268}
13269
13270static void
13271do_neon_sri (void)
13272{
037e8744 13273 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13274 struct neon_type_el et = neon_check_type (2, rs,
13275 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13276 int imm = inst.operands[2].imm;
13277 constraint (imm < 1 || (unsigned)imm > et.size,
13278 _("immediate out of range for insert"));
037e8744 13279 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
5287ad62
JB
13280}
13281
13282static void
13283do_neon_qshlu_imm (void)
13284{
037e8744 13285 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
13286 struct neon_type_el et = neon_check_type (2, rs,
13287 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13288 int imm = inst.operands[2].imm;
13289 constraint (imm < 0 || (unsigned)imm >= et.size,
13290 _("immediate out of range for shift"));
13291 /* Only encodes the 'U present' variant of the instruction.
13292 In this case, signed types have OP (bit 8) set to 0.
13293 Unsigned types have OP set to 1. */
13294 inst.instruction |= (et.type == NT_unsigned) << 8;
13295 /* The rest of the bits are the same as other immediate shifts. */
037e8744 13296 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
5287ad62
JB
13297}
13298
13299static void
13300do_neon_qmovn (void)
13301{
13302 struct neon_type_el et = neon_check_type (2, NS_DQ,
13303 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13304 /* Saturating move where operands can be signed or unsigned, and the
13305 destination has the same signedness. */
13306 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13307 if (et.type == NT_unsigned)
13308 inst.instruction |= 0xc0;
13309 else
13310 inst.instruction |= 0x80;
13311 neon_two_same (0, 1, et.size / 2);
13312}
13313
13314static void
13315do_neon_qmovun (void)
13316{
13317 struct neon_type_el et = neon_check_type (2, NS_DQ,
13318 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13319 /* Saturating move with unsigned results. Operands must be signed. */
13320 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13321 neon_two_same (0, 1, et.size / 2);
13322}
13323
13324static void
13325do_neon_rshift_sat_narrow (void)
13326{
13327 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13328 or unsigned. If operands are unsigned, results must also be unsigned. */
13329 struct neon_type_el et = neon_check_type (2, NS_DQI,
13330 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13331 int imm = inst.operands[2].imm;
13332 /* This gets the bounds check, size encoding and immediate bits calculation
13333 right. */
13334 et.size /= 2;
5f4273c7 13335
5287ad62
JB
13336 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13337 VQMOVN.I<size> <Dd>, <Qm>. */
13338 if (imm == 0)
13339 {
13340 inst.operands[2].present = 0;
13341 inst.instruction = N_MNEM_vqmovn;
13342 do_neon_qmovn ();
13343 return;
13344 }
5f4273c7 13345
5287ad62
JB
13346 constraint (imm < 1 || (unsigned)imm > et.size,
13347 _("immediate out of range"));
13348 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13349}
13350
13351static void
13352do_neon_rshift_sat_narrow_u (void)
13353{
13354 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13355 or unsigned. If operands are unsigned, results must also be unsigned. */
13356 struct neon_type_el et = neon_check_type (2, NS_DQI,
13357 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13358 int imm = inst.operands[2].imm;
13359 /* This gets the bounds check, size encoding and immediate bits calculation
13360 right. */
13361 et.size /= 2;
13362
13363 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13364 VQMOVUN.I<size> <Dd>, <Qm>. */
13365 if (imm == 0)
13366 {
13367 inst.operands[2].present = 0;
13368 inst.instruction = N_MNEM_vqmovun;
13369 do_neon_qmovun ();
13370 return;
13371 }
13372
13373 constraint (imm < 1 || (unsigned)imm > et.size,
13374 _("immediate out of range"));
13375 /* FIXME: The manual is kind of unclear about what value U should have in
13376 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13377 must be 1. */
13378 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13379}
13380
13381static void
13382do_neon_movn (void)
13383{
13384 struct neon_type_el et = neon_check_type (2, NS_DQ,
13385 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13386 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13387 neon_two_same (0, 1, et.size / 2);
13388}
13389
13390static void
13391do_neon_rshift_narrow (void)
13392{
13393 struct neon_type_el et = neon_check_type (2, NS_DQI,
13394 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13395 int imm = inst.operands[2].imm;
13396 /* This gets the bounds check, size encoding and immediate bits calculation
13397 right. */
13398 et.size /= 2;
5f4273c7 13399
5287ad62
JB
13400 /* If immediate is zero then we are a pseudo-instruction for
13401 VMOVN.I<size> <Dd>, <Qm> */
13402 if (imm == 0)
13403 {
13404 inst.operands[2].present = 0;
13405 inst.instruction = N_MNEM_vmovn;
13406 do_neon_movn ();
13407 return;
13408 }
5f4273c7 13409
5287ad62
JB
13410 constraint (imm < 1 || (unsigned)imm > et.size,
13411 _("immediate out of range for narrowing operation"));
13412 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13413}
13414
13415static void
13416do_neon_shll (void)
13417{
13418 /* FIXME: Type checking when lengthening. */
13419 struct neon_type_el et = neon_check_type (2, NS_QDI,
13420 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13421 unsigned imm = inst.operands[2].imm;
13422
13423 if (imm == et.size)
13424 {
13425 /* Maximum shift variant. */
13426 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13427 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13428 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13429 inst.instruction |= LOW4 (inst.operands[1].reg);
13430 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13431 inst.instruction |= neon_logbits (et.size) << 18;
5f4273c7 13432
5287ad62
JB
13433 inst.instruction = neon_dp_fixup (inst.instruction);
13434 }
13435 else
13436 {
13437 /* A more-specific type check for non-max versions. */
13438 et = neon_check_type (2, NS_QDI,
13439 N_EQK | N_DBL, N_SU_32 | N_KEY);
13440 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13441 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13442 }
13443}
13444
037e8744 13445/* Check the various types for the VCVT instruction, and return which version
5287ad62
JB
13446 the current instruction is. */
13447
13448static int
13449neon_cvt_flavour (enum neon_shape rs)
13450{
037e8744
JB
13451#define CVT_VAR(C,X,Y) \
13452 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13453 if (et.type != NT_invtype) \
13454 { \
13455 inst.error = NULL; \
13456 return (C); \
5287ad62
JB
13457 }
13458 struct neon_type_el et;
037e8744
JB
13459 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13460 || rs == NS_FF) ? N_VFP : 0;
13461 /* The instruction versions which take an immediate take one register
13462 argument, which is extended to the width of the full register. Thus the
13463 "source" and "destination" registers must have the same width. Hack that
13464 here by making the size equal to the key (wider, in this case) operand. */
13465 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
5f4273c7 13466
5287ad62
JB
13467 CVT_VAR (0, N_S32, N_F32);
13468 CVT_VAR (1, N_U32, N_F32);
13469 CVT_VAR (2, N_F32, N_S32);
13470 CVT_VAR (3, N_F32, N_U32);
8e79c3df
CM
13471 /* Half-precision conversions. */
13472 CVT_VAR (4, N_F32, N_F16);
13473 CVT_VAR (5, N_F16, N_F32);
5f4273c7 13474
037e8744 13475 whole_reg = N_VFP;
5f4273c7 13476
037e8744 13477 /* VFP instructions. */
8e79c3df
CM
13478 CVT_VAR (6, N_F32, N_F64);
13479 CVT_VAR (7, N_F64, N_F32);
13480 CVT_VAR (8, N_S32, N_F64 | key);
13481 CVT_VAR (9, N_U32, N_F64 | key);
13482 CVT_VAR (10, N_F64 | key, N_S32);
13483 CVT_VAR (11, N_F64 | key, N_U32);
037e8744 13484 /* VFP instructions with bitshift. */
8e79c3df
CM
13485 CVT_VAR (12, N_F32 | key, N_S16);
13486 CVT_VAR (13, N_F32 | key, N_U16);
13487 CVT_VAR (14, N_F64 | key, N_S16);
13488 CVT_VAR (15, N_F64 | key, N_U16);
13489 CVT_VAR (16, N_S16, N_F32 | key);
13490 CVT_VAR (17, N_U16, N_F32 | key);
13491 CVT_VAR (18, N_S16, N_F64 | key);
13492 CVT_VAR (19, N_U16, N_F64 | key);
5f4273c7 13493
5287ad62
JB
13494 return -1;
13495#undef CVT_VAR
13496}
13497
037e8744
JB
13498/* Neon-syntax VFP conversions. */
13499
5287ad62 13500static void
037e8744 13501do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
5287ad62 13502{
037e8744 13503 const char *opname = 0;
5f4273c7 13504
037e8744 13505 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
5287ad62 13506 {
037e8744
JB
13507 /* Conversions with immediate bitshift. */
13508 const char *enc[] =
13509 {
13510 "ftosls",
13511 "ftouls",
13512 "fsltos",
13513 "fultos",
13514 NULL,
13515 NULL,
8e79c3df
CM
13516 NULL,
13517 NULL,
037e8744
JB
13518 "ftosld",
13519 "ftould",
13520 "fsltod",
13521 "fultod",
13522 "fshtos",
13523 "fuhtos",
13524 "fshtod",
13525 "fuhtod",
13526 "ftoshs",
13527 "ftouhs",
13528 "ftoshd",
13529 "ftouhd"
13530 };
13531
13532 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13533 {
13534 opname = enc[flavour];
13535 constraint (inst.operands[0].reg != inst.operands[1].reg,
13536 _("operands 0 and 1 must be the same register"));
13537 inst.operands[1] = inst.operands[2];
13538 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13539 }
5287ad62
JB
13540 }
13541 else
13542 {
037e8744
JB
13543 /* Conversions without bitshift. */
13544 const char *enc[] =
13545 {
13546 "ftosis",
13547 "ftouis",
13548 "fsitos",
13549 "fuitos",
8e79c3df
CM
13550 "NULL",
13551 "NULL",
037e8744
JB
13552 "fcvtsd",
13553 "fcvtds",
13554 "ftosid",
13555 "ftouid",
13556 "fsitod",
13557 "fuitod"
13558 };
13559
13560 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13561 opname = enc[flavour];
13562 }
13563
13564 if (opname)
13565 do_vfp_nsyn_opcode (opname);
13566}
13567
13568static void
13569do_vfp_nsyn_cvtz (void)
13570{
13571 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13572 int flavour = neon_cvt_flavour (rs);
13573 const char *enc[] =
13574 {
13575 "ftosizs",
13576 "ftouizs",
13577 NULL,
13578 NULL,
13579 NULL,
13580 NULL,
8e79c3df
CM
13581 NULL,
13582 NULL,
037e8744
JB
13583 "ftosizd",
13584 "ftouizd"
13585 };
13586
13587 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13588 do_vfp_nsyn_opcode (enc[flavour]);
13589}
f31fef98 13590
037e8744
JB
13591static void
13592do_neon_cvt (void)
13593{
13594 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
8e79c3df 13595 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
037e8744
JB
13596 int flavour = neon_cvt_flavour (rs);
13597
13598 /* VFP rather than Neon conversions. */
8e79c3df 13599 if (flavour >= 6)
037e8744
JB
13600 {
13601 do_vfp_nsyn_cvt (rs, flavour);
13602 return;
13603 }
13604
13605 switch (rs)
13606 {
13607 case NS_DDI:
13608 case NS_QQI:
13609 {
35997600
NC
13610 unsigned immbits;
13611 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13612
037e8744
JB
13613 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13614 return;
13615
13616 /* Fixed-point conversion with #0 immediate is encoded as an
13617 integer conversion. */
13618 if (inst.operands[2].present && inst.operands[2].imm == 0)
13619 goto int_encode;
35997600 13620 immbits = 32 - inst.operands[2].imm;
037e8744
JB
13621 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13622 if (flavour != -1)
13623 inst.instruction |= enctab[flavour];
13624 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13625 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13626 inst.instruction |= LOW4 (inst.operands[1].reg);
13627 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13628 inst.instruction |= neon_quad (rs) << 6;
13629 inst.instruction |= 1 << 21;
13630 inst.instruction |= immbits << 16;
13631
13632 inst.instruction = neon_dp_fixup (inst.instruction);
13633 }
13634 break;
13635
13636 case NS_DD:
13637 case NS_QQ:
13638 int_encode:
13639 {
13640 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13641
13642 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13643
13644 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13645 return;
13646
13647 if (flavour != -1)
13648 inst.instruction |= enctab[flavour];
13649
13650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13651 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13652 inst.instruction |= LOW4 (inst.operands[1].reg);
13653 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13654 inst.instruction |= neon_quad (rs) << 6;
13655 inst.instruction |= 2 << 18;
13656
13657 inst.instruction = neon_dp_fixup (inst.instruction);
13658 }
13659 break;
13660
8e79c3df
CM
13661 /* Half-precision conversions for Advanced SIMD -- neon. */
13662 case NS_QD:
13663 case NS_DQ:
13664
13665 if ((rs == NS_DQ)
13666 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13667 {
13668 as_bad (_("operand size must match register width"));
13669 break;
13670 }
13671
13672 if ((rs == NS_QD)
13673 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13674 {
13675 as_bad (_("operand size must match register width"));
13676 break;
13677 }
13678
13679 if (rs == NS_DQ)
13680 inst.instruction = 0x3b60600;
13681 else
13682 inst.instruction = 0x3b60700;
13683
13684 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13685 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13686 inst.instruction |= LOW4 (inst.operands[1].reg);
13687 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13688 inst.instruction = neon_dp_fixup (inst.instruction);
13689 break;
13690
037e8744
JB
13691 default:
13692 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13693 do_vfp_nsyn_cvt (rs, flavour);
5287ad62 13694 }
5287ad62
JB
13695}
13696
8e79c3df
CM
13697static void
13698do_neon_cvtb (void)
13699{
13700 inst.instruction = 0xeb20a40;
13701
13702 /* The sizes are attached to the mnemonic. */
13703 if (inst.vectype.el[0].type != NT_invtype
13704 && inst.vectype.el[0].size == 16)
13705 inst.instruction |= 0x00010000;
13706
13707 /* Programmer's syntax: the sizes are attached to the operands. */
13708 else if (inst.operands[0].vectype.type != NT_invtype
13709 && inst.operands[0].vectype.size == 16)
13710 inst.instruction |= 0x00010000;
13711
13712 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13713 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13714 do_vfp_cond_or_thumb ();
13715}
13716
13717
13718static void
13719do_neon_cvtt (void)
13720{
13721 do_neon_cvtb ();
13722 inst.instruction |= 0x80;
13723}
13724
5287ad62
JB
13725static void
13726neon_move_immediate (void)
13727{
037e8744
JB
13728 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13729 struct neon_type_el et = neon_check_type (2, rs,
13730 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
5287ad62 13731 unsigned immlo, immhi = 0, immbits;
c96612cc 13732 int op, cmode, float_p;
5287ad62 13733
037e8744
JB
13734 constraint (et.type == NT_invtype,
13735 _("operand size must be specified for immediate VMOV"));
13736
5287ad62
JB
13737 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13738 op = (inst.instruction & (1 << 5)) != 0;
13739
13740 immlo = inst.operands[1].imm;
13741 if (inst.operands[1].regisimm)
13742 immhi = inst.operands[1].reg;
13743
13744 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13745 _("immediate has bits set outside the operand size"));
13746
c96612cc
JB
13747 float_p = inst.operands[1].immisfloat;
13748
13749 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
136da414 13750 et.size, et.type)) == FAIL)
5287ad62
JB
13751 {
13752 /* Invert relevant bits only. */
13753 neon_invert_size (&immlo, &immhi, et.size);
13754 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13755 with one or the other; those cases are caught by
13756 neon_cmode_for_move_imm. */
13757 op = !op;
c96612cc
JB
13758 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13759 &op, et.size, et.type)) == FAIL)
5287ad62 13760 {
dcbf9037 13761 first_error (_("immediate out of range"));
5287ad62
JB
13762 return;
13763 }
13764 }
13765
13766 inst.instruction &= ~(1 << 5);
13767 inst.instruction |= op << 5;
13768
13769 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13770 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
037e8744 13771 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13772 inst.instruction |= cmode << 8;
13773
13774 neon_write_immbits (immbits);
13775}
13776
13777static void
13778do_neon_mvn (void)
13779{
13780 if (inst.operands[1].isreg)
13781 {
037e8744 13782 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5f4273c7 13783
5287ad62
JB
13784 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13785 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13786 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13787 inst.instruction |= LOW4 (inst.operands[1].reg);
13788 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
037e8744 13789 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13790 }
13791 else
13792 {
13793 inst.instruction = NEON_ENC_IMMED (inst.instruction);
13794 neon_move_immediate ();
13795 }
13796
13797 inst.instruction = neon_dp_fixup (inst.instruction);
13798}
13799
13800/* Encode instructions of form:
13801
13802 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
5f4273c7 13803 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
5287ad62
JB
13804
13805static void
13806neon_mixed_length (struct neon_type_el et, unsigned size)
13807{
13808 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13809 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13810 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13811 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13812 inst.instruction |= LOW4 (inst.operands[2].reg);
13813 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13814 inst.instruction |= (et.type == NT_unsigned) << 24;
13815 inst.instruction |= neon_logbits (size) << 20;
5f4273c7 13816
5287ad62
JB
13817 inst.instruction = neon_dp_fixup (inst.instruction);
13818}
13819
13820static void
13821do_neon_dyadic_long (void)
13822{
13823 /* FIXME: Type checking for lengthening op. */
13824 struct neon_type_el et = neon_check_type (3, NS_QDD,
13825 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
13826 neon_mixed_length (et, et.size);
13827}
13828
13829static void
13830do_neon_abal (void)
13831{
13832 struct neon_type_el et = neon_check_type (3, NS_QDD,
13833 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13834 neon_mixed_length (et, et.size);
13835}
13836
13837static void
13838neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13839{
13840 if (inst.operands[2].isscalar)
13841 {
dcbf9037
JB
13842 struct neon_type_el et = neon_check_type (3, NS_QDS,
13843 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
5287ad62
JB
13844 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13845 neon_mul_mac (et, et.type == NT_unsigned);
13846 }
13847 else
13848 {
13849 struct neon_type_el et = neon_check_type (3, NS_QDD,
13850 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13851 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13852 neon_mixed_length (et, et.size);
13853 }
13854}
13855
13856static void
13857do_neon_mac_maybe_scalar_long (void)
13858{
13859 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13860}
13861
13862static void
13863do_neon_dyadic_wide (void)
13864{
13865 struct neon_type_el et = neon_check_type (3, NS_QQD,
13866 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13867 neon_mixed_length (et, et.size);
13868}
13869
13870static void
13871do_neon_dyadic_narrow (void)
13872{
13873 struct neon_type_el et = neon_check_type (3, NS_QDD,
13874 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
428e3f1f
PB
13875 /* Operand sign is unimportant, and the U bit is part of the opcode,
13876 so force the operand type to integer. */
13877 et.type = NT_integer;
5287ad62
JB
13878 neon_mixed_length (et, et.size / 2);
13879}
13880
13881static void
13882do_neon_mul_sat_scalar_long (void)
13883{
13884 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13885}
13886
13887static void
13888do_neon_vmull (void)
13889{
13890 if (inst.operands[2].isscalar)
13891 do_neon_mac_maybe_scalar_long ();
13892 else
13893 {
13894 struct neon_type_el et = neon_check_type (3, NS_QDD,
13895 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13896 if (et.type == NT_poly)
13897 inst.instruction = NEON_ENC_POLY (inst.instruction);
13898 else
13899 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13900 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13901 zero. Should be OK as-is. */
13902 neon_mixed_length (et, et.size);
13903 }
13904}
13905
13906static void
13907do_neon_ext (void)
13908{
037e8744 13909 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
5287ad62
JB
13910 struct neon_type_el et = neon_check_type (3, rs,
13911 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13912 unsigned imm = (inst.operands[3].imm * et.size) / 8;
35997600
NC
13913
13914 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13915 _("shift out of range"));
5287ad62
JB
13916 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13917 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13918 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13919 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13920 inst.instruction |= LOW4 (inst.operands[2].reg);
13921 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
037e8744 13922 inst.instruction |= neon_quad (rs) << 6;
5287ad62 13923 inst.instruction |= imm << 8;
5f4273c7 13924
5287ad62
JB
13925 inst.instruction = neon_dp_fixup (inst.instruction);
13926}
13927
13928static void
13929do_neon_rev (void)
13930{
037e8744 13931 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
13932 struct neon_type_el et = neon_check_type (2, rs,
13933 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13934 unsigned op = (inst.instruction >> 7) & 3;
13935 /* N (width of reversed regions) is encoded as part of the bitmask. We
13936 extract it here to check the elements to be reversed are smaller.
13937 Otherwise we'd get a reserved instruction. */
13938 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
9c2799c2 13939 gas_assert (elsize != 0);
5287ad62
JB
13940 constraint (et.size >= elsize,
13941 _("elements must be smaller than reversal region"));
037e8744 13942 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
13943}
13944
13945static void
13946do_neon_dup (void)
13947{
13948 if (inst.operands[1].isscalar)
13949 {
037e8744 13950 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
dcbf9037
JB
13951 struct neon_type_el et = neon_check_type (2, rs,
13952 N_EQK, N_8 | N_16 | N_32 | N_KEY);
5287ad62 13953 unsigned sizebits = et.size >> 3;
dcbf9037 13954 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
5287ad62 13955 int logsize = neon_logbits (et.size);
dcbf9037 13956 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
037e8744
JB
13957
13958 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13959 return;
13960
5287ad62
JB
13961 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13962 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13963 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13964 inst.instruction |= LOW4 (dm);
13965 inst.instruction |= HI1 (dm) << 5;
037e8744 13966 inst.instruction |= neon_quad (rs) << 6;
5287ad62
JB
13967 inst.instruction |= x << 17;
13968 inst.instruction |= sizebits << 16;
5f4273c7 13969
5287ad62
JB
13970 inst.instruction = neon_dp_fixup (inst.instruction);
13971 }
13972 else
13973 {
037e8744
JB
13974 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13975 struct neon_type_el et = neon_check_type (2, rs,
13976 N_8 | N_16 | N_32 | N_KEY, N_EQK);
5287ad62
JB
13977 /* Duplicate ARM register to lanes of vector. */
13978 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13979 switch (et.size)
13980 {
13981 case 8: inst.instruction |= 0x400000; break;
13982 case 16: inst.instruction |= 0x000020; break;
13983 case 32: inst.instruction |= 0x000000; break;
13984 default: break;
13985 }
13986 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13987 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13988 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
037e8744 13989 inst.instruction |= neon_quad (rs) << 21;
5287ad62
JB
13990 /* The encoding for this instruction is identical for the ARM and Thumb
13991 variants, except for the condition field. */
037e8744 13992 do_vfp_cond_or_thumb ();
5287ad62
JB
13993 }
13994}
13995
13996/* VMOV has particularly many variations. It can be one of:
13997 0. VMOV<c><q> <Qd>, <Qm>
13998 1. VMOV<c><q> <Dd>, <Dm>
13999 (Register operations, which are VORR with Rm = Rn.)
14000 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14001 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14002 (Immediate loads.)
14003 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14004 (ARM register to scalar.)
14005 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14006 (Two ARM registers to vector.)
14007 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14008 (Scalar to ARM register.)
14009 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14010 (Vector to two ARM registers.)
037e8744
JB
14011 8. VMOV.F32 <Sd>, <Sm>
14012 9. VMOV.F64 <Dd>, <Dm>
14013 (VFP register moves.)
14014 10. VMOV.F32 <Sd>, #imm
14015 11. VMOV.F64 <Dd>, #imm
14016 (VFP float immediate load.)
14017 12. VMOV <Rd>, <Sm>
14018 (VFP single to ARM reg.)
14019 13. VMOV <Sd>, <Rm>
14020 (ARM reg to VFP single.)
14021 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14022 (Two ARM regs to two VFP singles.)
14023 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14024 (Two VFP singles to two ARM regs.)
5f4273c7 14025
037e8744
JB
14026 These cases can be disambiguated using neon_select_shape, except cases 1/9
14027 and 3/11 which depend on the operand type too.
5f4273c7 14028
5287ad62 14029 All the encoded bits are hardcoded by this function.
5f4273c7 14030
b7fc2769
JB
14031 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14032 Cases 5, 7 may be used with VFPv2 and above.
5f4273c7 14033
5287ad62 14034 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
5f4273c7 14035 can specify a type where it doesn't make sense to, and is ignored). */
5287ad62
JB
14036
14037static void
14038do_neon_mov (void)
14039{
037e8744
JB
14040 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14041 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14042 NS_NULL);
14043 struct neon_type_el et;
14044 const char *ldconst = 0;
5287ad62 14045
037e8744 14046 switch (rs)
5287ad62 14047 {
037e8744
JB
14048 case NS_DD: /* case 1/9. */
14049 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14050 /* It is not an error here if no type is given. */
14051 inst.error = NULL;
14052 if (et.type == NT_float && et.size == 64)
5287ad62 14053 {
037e8744
JB
14054 do_vfp_nsyn_opcode ("fcpyd");
14055 break;
5287ad62 14056 }
037e8744 14057 /* fall through. */
5287ad62 14058
037e8744
JB
14059 case NS_QQ: /* case 0/1. */
14060 {
14061 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14062 return;
14063 /* The architecture manual I have doesn't explicitly state which
14064 value the U bit should have for register->register moves, but
14065 the equivalent VORR instruction has U = 0, so do that. */
14066 inst.instruction = 0x0200110;
14067 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14068 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14069 inst.instruction |= LOW4 (inst.operands[1].reg);
14070 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14071 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14072 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14073 inst.instruction |= neon_quad (rs) << 6;
14074
14075 inst.instruction = neon_dp_fixup (inst.instruction);
14076 }
14077 break;
5f4273c7 14078
037e8744
JB
14079 case NS_DI: /* case 3/11. */
14080 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14081 inst.error = NULL;
14082 if (et.type == NT_float && et.size == 64)
5287ad62 14083 {
037e8744
JB
14084 /* case 11 (fconstd). */
14085 ldconst = "fconstd";
14086 goto encode_fconstd;
5287ad62 14087 }
037e8744
JB
14088 /* fall through. */
14089
14090 case NS_QI: /* case 2/3. */
14091 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14092 return;
14093 inst.instruction = 0x0800010;
14094 neon_move_immediate ();
14095 inst.instruction = neon_dp_fixup (inst.instruction);
5287ad62 14096 break;
5f4273c7 14097
037e8744
JB
14098 case NS_SR: /* case 4. */
14099 {
14100 unsigned bcdebits = 0;
14101 struct neon_type_el et = neon_check_type (2, NS_NULL,
14102 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14103 int logsize = neon_logbits (et.size);
14104 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14105 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14106
14107 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14108 _(BAD_FPU));
14109 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14110 && et.size != 32, _(BAD_FPU));
14111 constraint (et.type == NT_invtype, _("bad type for scalar"));
14112 constraint (x >= 64 / et.size, _("scalar index out of range"));
14113
14114 switch (et.size)
14115 {
14116 case 8: bcdebits = 0x8; break;
14117 case 16: bcdebits = 0x1; break;
14118 case 32: bcdebits = 0x0; break;
14119 default: ;
14120 }
14121
14122 bcdebits |= x << logsize;
14123
14124 inst.instruction = 0xe000b10;
14125 do_vfp_cond_or_thumb ();
14126 inst.instruction |= LOW4 (dn) << 16;
14127 inst.instruction |= HI1 (dn) << 7;
14128 inst.instruction |= inst.operands[1].reg << 12;
14129 inst.instruction |= (bcdebits & 3) << 5;
14130 inst.instruction |= (bcdebits >> 2) << 21;
14131 }
14132 break;
5f4273c7 14133
037e8744 14134 case NS_DRR: /* case 5 (fmdrr). */
b7fc2769 14135 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
037e8744 14136 _(BAD_FPU));
b7fc2769 14137
037e8744
JB
14138 inst.instruction = 0xc400b10;
14139 do_vfp_cond_or_thumb ();
14140 inst.instruction |= LOW4 (inst.operands[0].reg);
14141 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14142 inst.instruction |= inst.operands[1].reg << 12;
14143 inst.instruction |= inst.operands[2].reg << 16;
14144 break;
5f4273c7 14145
037e8744
JB
14146 case NS_RS: /* case 6. */
14147 {
14148 struct neon_type_el et = neon_check_type (2, NS_NULL,
14149 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14150 unsigned logsize = neon_logbits (et.size);
14151 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14152 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14153 unsigned abcdebits = 0;
14154
14155 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14156 _(BAD_FPU));
14157 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14158 && et.size != 32, _(BAD_FPU));
14159 constraint (et.type == NT_invtype, _("bad type for scalar"));
14160 constraint (x >= 64 / et.size, _("scalar index out of range"));
14161
14162 switch (et.size)
14163 {
14164 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14165 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14166 case 32: abcdebits = 0x00; break;
14167 default: ;
14168 }
14169
14170 abcdebits |= x << logsize;
14171 inst.instruction = 0xe100b10;
14172 do_vfp_cond_or_thumb ();
14173 inst.instruction |= LOW4 (dn) << 16;
14174 inst.instruction |= HI1 (dn) << 7;
14175 inst.instruction |= inst.operands[0].reg << 12;
14176 inst.instruction |= (abcdebits & 3) << 5;
14177 inst.instruction |= (abcdebits >> 2) << 21;
14178 }
14179 break;
5f4273c7 14180
037e8744
JB
14181 case NS_RRD: /* case 7 (fmrrd). */
14182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14183 _(BAD_FPU));
14184
14185 inst.instruction = 0xc500b10;
14186 do_vfp_cond_or_thumb ();
14187 inst.instruction |= inst.operands[0].reg << 12;
14188 inst.instruction |= inst.operands[1].reg << 16;
14189 inst.instruction |= LOW4 (inst.operands[2].reg);
14190 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14191 break;
5f4273c7 14192
037e8744
JB
14193 case NS_FF: /* case 8 (fcpys). */
14194 do_vfp_nsyn_opcode ("fcpys");
14195 break;
5f4273c7 14196
037e8744
JB
14197 case NS_FI: /* case 10 (fconsts). */
14198 ldconst = "fconsts";
14199 encode_fconstd:
14200 if (is_quarter_float (inst.operands[1].imm))
5287ad62 14201 {
037e8744
JB
14202 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14203 do_vfp_nsyn_opcode (ldconst);
5287ad62
JB
14204 }
14205 else
037e8744
JB
14206 first_error (_("immediate out of range"));
14207 break;
5f4273c7 14208
037e8744
JB
14209 case NS_RF: /* case 12 (fmrs). */
14210 do_vfp_nsyn_opcode ("fmrs");
14211 break;
5f4273c7 14212
037e8744
JB
14213 case NS_FR: /* case 13 (fmsr). */
14214 do_vfp_nsyn_opcode ("fmsr");
14215 break;
5f4273c7 14216
037e8744
JB
14217 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14218 (one of which is a list), but we have parsed four. Do some fiddling to
14219 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14220 expect. */
14221 case NS_RRFF: /* case 14 (fmrrs). */
14222 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14223 _("VFP registers must be adjacent"));
14224 inst.operands[2].imm = 2;
14225 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14226 do_vfp_nsyn_opcode ("fmrrs");
14227 break;
5f4273c7 14228
037e8744
JB
14229 case NS_FFRR: /* case 15 (fmsrr). */
14230 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14231 _("VFP registers must be adjacent"));
14232 inst.operands[1] = inst.operands[2];
14233 inst.operands[2] = inst.operands[3];
14234 inst.operands[0].imm = 2;
14235 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14236 do_vfp_nsyn_opcode ("fmsrr");
5287ad62 14237 break;
5f4273c7 14238
5287ad62
JB
14239 default:
14240 abort ();
14241 }
14242}
14243
14244static void
14245do_neon_rshift_round_imm (void)
14246{
037e8744 14247 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
5287ad62
JB
14248 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14249 int imm = inst.operands[2].imm;
14250
14251 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14252 if (imm == 0)
14253 {
14254 inst.operands[2].present = 0;
14255 do_neon_mov ();
14256 return;
14257 }
14258
14259 constraint (imm < 1 || (unsigned)imm > et.size,
14260 _("immediate out of range for shift"));
037e8744 14261 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
5287ad62
JB
14262 et.size - imm);
14263}
14264
14265static void
14266do_neon_movl (void)
14267{
14268 struct neon_type_el et = neon_check_type (2, NS_QD,
14269 N_EQK | N_DBL, N_SU_32 | N_KEY);
14270 unsigned sizebits = et.size >> 3;
14271 inst.instruction |= sizebits << 19;
14272 neon_two_same (0, et.type == NT_unsigned, -1);
14273}
14274
14275static void
14276do_neon_trn (void)
14277{
037e8744 14278 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14279 struct neon_type_el et = neon_check_type (2, rs,
14280 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14281 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
037e8744 14282 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14283}
14284
14285static void
14286do_neon_zip_uzp (void)
14287{
037e8744 14288 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14289 struct neon_type_el et = neon_check_type (2, rs,
14290 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14291 if (rs == NS_DD && et.size == 32)
14292 {
14293 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14294 inst.instruction = N_MNEM_vtrn;
14295 do_neon_trn ();
14296 return;
14297 }
037e8744 14298 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14299}
14300
14301static void
14302do_neon_sat_abs_neg (void)
14303{
037e8744 14304 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14305 struct neon_type_el et = neon_check_type (2, rs,
14306 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14307 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14308}
14309
14310static void
14311do_neon_pair_long (void)
14312{
037e8744 14313 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14314 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14315 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14316 inst.instruction |= (et.type == NT_unsigned) << 7;
037e8744 14317 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14318}
14319
14320static void
14321do_neon_recip_est (void)
14322{
037e8744 14323 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14324 struct neon_type_el et = neon_check_type (2, rs,
14325 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14326 inst.instruction |= (et.type == NT_float) << 8;
037e8744 14327 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14328}
14329
14330static void
14331do_neon_cls (void)
14332{
037e8744 14333 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14334 struct neon_type_el et = neon_check_type (2, rs,
14335 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
037e8744 14336 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14337}
14338
14339static void
14340do_neon_clz (void)
14341{
037e8744 14342 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14343 struct neon_type_el et = neon_check_type (2, rs,
14344 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
037e8744 14345 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14346}
14347
14348static void
14349do_neon_cnt (void)
14350{
037e8744 14351 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
5287ad62
JB
14352 struct neon_type_el et = neon_check_type (2, rs,
14353 N_EQK | N_INT, N_8 | N_KEY);
037e8744 14354 neon_two_same (neon_quad (rs), 1, et.size);
5287ad62
JB
14355}
14356
14357static void
14358do_neon_swp (void)
14359{
037e8744
JB
14360 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14361 neon_two_same (neon_quad (rs), 1, -1);
5287ad62
JB
14362}
14363
14364static void
14365do_neon_tbl_tbx (void)
14366{
14367 unsigned listlenbits;
dcbf9037 14368 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
5f4273c7 14369
5287ad62
JB
14370 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14371 {
dcbf9037 14372 first_error (_("bad list length for table lookup"));
5287ad62
JB
14373 return;
14374 }
5f4273c7 14375
5287ad62
JB
14376 listlenbits = inst.operands[1].imm - 1;
14377 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14378 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14379 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14380 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14381 inst.instruction |= LOW4 (inst.operands[2].reg);
14382 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14383 inst.instruction |= listlenbits << 8;
5f4273c7 14384
5287ad62
JB
14385 inst.instruction = neon_dp_fixup (inst.instruction);
14386}
14387
14388static void
14389do_neon_ldm_stm (void)
14390{
14391 /* P, U and L bits are part of bitmask. */
14392 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14393 unsigned offsetbits = inst.operands[1].imm * 2;
14394
037e8744
JB
14395 if (inst.operands[1].issingle)
14396 {
14397 do_vfp_nsyn_ldm_stm (is_dbmode);
14398 return;
14399 }
14400
5287ad62
JB
14401 constraint (is_dbmode && !inst.operands[0].writeback,
14402 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14403
14404 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14405 _("register list must contain at least 1 and at most 16 "
14406 "registers"));
14407
14408 inst.instruction |= inst.operands[0].reg << 16;
14409 inst.instruction |= inst.operands[0].writeback << 21;
14410 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14411 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14412
14413 inst.instruction |= offsetbits;
5f4273c7 14414
037e8744 14415 do_vfp_cond_or_thumb ();
5287ad62
JB
14416}
14417
14418static void
14419do_neon_ldr_str (void)
14420{
5287ad62 14421 int is_ldr = (inst.instruction & (1 << 20)) != 0;
5f4273c7 14422
037e8744
JB
14423 if (inst.operands[0].issingle)
14424 {
cd2f129f
JB
14425 if (is_ldr)
14426 do_vfp_nsyn_opcode ("flds");
14427 else
14428 do_vfp_nsyn_opcode ("fsts");
5287ad62
JB
14429 }
14430 else
5287ad62 14431 {
cd2f129f
JB
14432 if (is_ldr)
14433 do_vfp_nsyn_opcode ("fldd");
5287ad62 14434 else
cd2f129f 14435 do_vfp_nsyn_opcode ("fstd");
5287ad62 14436 }
5287ad62
JB
14437}
14438
14439/* "interleave" version also handles non-interleaving register VLD1/VST1
14440 instructions. */
14441
14442static void
14443do_neon_ld_st_interleave (void)
14444{
037e8744 14445 struct neon_type_el et = neon_check_type (1, NS_NULL,
5287ad62
JB
14446 N_8 | N_16 | N_32 | N_64);
14447 unsigned alignbits = 0;
14448 unsigned idx;
14449 /* The bits in this table go:
14450 0: register stride of one (0) or two (1)
14451 1,2: register list length, minus one (1, 2, 3, 4).
14452 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14453 We use -1 for invalid entries. */
14454 const int typetable[] =
14455 {
14456 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14457 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14458 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14459 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14460 };
14461 int typebits;
14462
dcbf9037
JB
14463 if (et.type == NT_invtype)
14464 return;
14465
5287ad62
JB
14466 if (inst.operands[1].immisalign)
14467 switch (inst.operands[1].imm >> 8)
14468 {
14469 case 64: alignbits = 1; break;
14470 case 128:
14471 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14472 goto bad_alignment;
14473 alignbits = 2;
14474 break;
14475 case 256:
14476 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
14477 goto bad_alignment;
14478 alignbits = 3;
14479 break;
14480 default:
14481 bad_alignment:
dcbf9037 14482 first_error (_("bad alignment"));
5287ad62
JB
14483 return;
14484 }
14485
14486 inst.instruction |= alignbits << 4;
14487 inst.instruction |= neon_logbits (et.size) << 6;
14488
14489 /* Bits [4:6] of the immediate in a list specifier encode register stride
14490 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14491 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14492 up the right value for "type" in a table based on this value and the given
14493 list style, then stick it back. */
14494 idx = ((inst.operands[0].imm >> 4) & 7)
14495 | (((inst.instruction >> 8) & 3) << 3);
14496
14497 typebits = typetable[idx];
5f4273c7 14498
5287ad62
JB
14499 constraint (typebits == -1, _("bad list type for instruction"));
14500
14501 inst.instruction &= ~0xf00;
14502 inst.instruction |= typebits << 8;
14503}
14504
14505/* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14506 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14507 otherwise. The variable arguments are a list of pairs of legal (size, align)
14508 values, terminated with -1. */
14509
14510static int
14511neon_alignment_bit (int size, int align, int *do_align, ...)
14512{
14513 va_list ap;
14514 int result = FAIL, thissize, thisalign;
5f4273c7 14515
5287ad62
JB
14516 if (!inst.operands[1].immisalign)
14517 {
14518 *do_align = 0;
14519 return SUCCESS;
14520 }
5f4273c7 14521
5287ad62
JB
14522 va_start (ap, do_align);
14523
14524 do
14525 {
14526 thissize = va_arg (ap, int);
14527 if (thissize == -1)
14528 break;
14529 thisalign = va_arg (ap, int);
14530
14531 if (size == thissize && align == thisalign)
14532 result = SUCCESS;
14533 }
14534 while (result != SUCCESS);
14535
14536 va_end (ap);
14537
14538 if (result == SUCCESS)
14539 *do_align = 1;
14540 else
dcbf9037 14541 first_error (_("unsupported alignment for instruction"));
5f4273c7 14542
5287ad62
JB
14543 return result;
14544}
14545
14546static void
14547do_neon_ld_st_lane (void)
14548{
037e8744 14549 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14550 int align_good, do_align = 0;
14551 int logsize = neon_logbits (et.size);
14552 int align = inst.operands[1].imm >> 8;
14553 int n = (inst.instruction >> 8) & 3;
14554 int max_el = 64 / et.size;
5f4273c7 14555
dcbf9037
JB
14556 if (et.type == NT_invtype)
14557 return;
5f4273c7 14558
5287ad62
JB
14559 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14560 _("bad list length"));
14561 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14562 _("scalar index out of range"));
14563 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14564 && et.size == 8,
14565 _("stride of 2 unavailable when element size is 8"));
5f4273c7 14566
5287ad62
JB
14567 switch (n)
14568 {
14569 case 0: /* VLD1 / VST1. */
14570 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14571 32, 32, -1);
14572 if (align_good == FAIL)
14573 return;
14574 if (do_align)
14575 {
14576 unsigned alignbits = 0;
14577 switch (et.size)
14578 {
14579 case 16: alignbits = 0x1; break;
14580 case 32: alignbits = 0x3; break;
14581 default: ;
14582 }
14583 inst.instruction |= alignbits << 4;
14584 }
14585 break;
14586
14587 case 1: /* VLD2 / VST2. */
14588 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14589 32, 64, -1);
14590 if (align_good == FAIL)
14591 return;
14592 if (do_align)
14593 inst.instruction |= 1 << 4;
14594 break;
14595
14596 case 2: /* VLD3 / VST3. */
14597 constraint (inst.operands[1].immisalign,
14598 _("can't use alignment with this instruction"));
14599 break;
14600
14601 case 3: /* VLD4 / VST4. */
14602 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14603 16, 64, 32, 64, 32, 128, -1);
14604 if (align_good == FAIL)
14605 return;
14606 if (do_align)
14607 {
14608 unsigned alignbits = 0;
14609 switch (et.size)
14610 {
14611 case 8: alignbits = 0x1; break;
14612 case 16: alignbits = 0x1; break;
14613 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14614 default: ;
14615 }
14616 inst.instruction |= alignbits << 4;
14617 }
14618 break;
14619
14620 default: ;
14621 }
14622
14623 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14624 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14625 inst.instruction |= 1 << (4 + logsize);
5f4273c7 14626
5287ad62
JB
14627 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14628 inst.instruction |= logsize << 10;
14629}
14630
14631/* Encode single n-element structure to all lanes VLD<n> instructions. */
14632
14633static void
14634do_neon_ld_dup (void)
14635{
037e8744 14636 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
5287ad62
JB
14637 int align_good, do_align = 0;
14638
dcbf9037
JB
14639 if (et.type == NT_invtype)
14640 return;
14641
5287ad62
JB
14642 switch ((inst.instruction >> 8) & 3)
14643 {
14644 case 0: /* VLD1. */
9c2799c2 14645 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
5287ad62
JB
14646 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14647 &do_align, 16, 16, 32, 32, -1);
14648 if (align_good == FAIL)
14649 return;
14650 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14651 {
14652 case 1: break;
14653 case 2: inst.instruction |= 1 << 5; break;
dcbf9037 14654 default: first_error (_("bad list length")); return;
5287ad62
JB
14655 }
14656 inst.instruction |= neon_logbits (et.size) << 6;
14657 break;
14658
14659 case 1: /* VLD2. */
14660 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14661 &do_align, 8, 16, 16, 32, 32, 64, -1);
14662 if (align_good == FAIL)
14663 return;
14664 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14665 _("bad list length"));
14666 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14667 inst.instruction |= 1 << 5;
14668 inst.instruction |= neon_logbits (et.size) << 6;
14669 break;
14670
14671 case 2: /* VLD3. */
14672 constraint (inst.operands[1].immisalign,
14673 _("can't use alignment with this instruction"));
14674 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14675 _("bad list length"));
14676 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14677 inst.instruction |= 1 << 5;
14678 inst.instruction |= neon_logbits (et.size) << 6;
14679 break;
14680
14681 case 3: /* VLD4. */
14682 {
14683 int align = inst.operands[1].imm >> 8;
14684 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14685 16, 64, 32, 64, 32, 128, -1);
14686 if (align_good == FAIL)
14687 return;
14688 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14689 _("bad list length"));
14690 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14691 inst.instruction |= 1 << 5;
14692 if (et.size == 32 && align == 128)
14693 inst.instruction |= 0x3 << 6;
14694 else
14695 inst.instruction |= neon_logbits (et.size) << 6;
14696 }
14697 break;
14698
14699 default: ;
14700 }
14701
14702 inst.instruction |= do_align << 4;
14703}
14704
14705/* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14706 apart from bits [11:4]. */
14707
14708static void
14709do_neon_ldx_stx (void)
14710{
14711 switch (NEON_LANE (inst.operands[0].imm))
14712 {
14713 case NEON_INTERLEAVE_LANES:
14714 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
14715 do_neon_ld_st_interleave ();
14716 break;
5f4273c7 14717
5287ad62
JB
14718 case NEON_ALL_LANES:
14719 inst.instruction = NEON_ENC_DUP (inst.instruction);
14720 do_neon_ld_dup ();
14721 break;
5f4273c7 14722
5287ad62
JB
14723 default:
14724 inst.instruction = NEON_ENC_LANE (inst.instruction);
14725 do_neon_ld_st_lane ();
14726 }
14727
14728 /* L bit comes from bit mask. */
14729 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14730 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14731 inst.instruction |= inst.operands[1].reg << 16;
5f4273c7 14732
5287ad62
JB
14733 if (inst.operands[1].postind)
14734 {
14735 int postreg = inst.operands[1].imm & 0xf;
14736 constraint (!inst.operands[1].immisreg,
14737 _("post-index must be a register"));
14738 constraint (postreg == 0xd || postreg == 0xf,
14739 _("bad register for post-index"));
14740 inst.instruction |= postreg;
14741 }
14742 else if (inst.operands[1].writeback)
14743 {
14744 inst.instruction |= 0xd;
14745 }
14746 else
5f4273c7
NC
14747 inst.instruction |= 0xf;
14748
5287ad62
JB
14749 if (thumb_mode)
14750 inst.instruction |= 0xf9000000;
14751 else
14752 inst.instruction |= 0xf4000000;
14753}
5287ad62
JB
14754\f
14755/* Overall per-instruction processing. */
14756
14757/* We need to be able to fix up arbitrary expressions in some statements.
14758 This is so that we can handle symbols that are an arbitrary distance from
14759 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14760 which returns part of an address in a form which will be valid for
14761 a data instruction. We do this by pushing the expression into a symbol
14762 in the expr_section, and creating a fix for that. */
14763
14764static void
14765fix_new_arm (fragS * frag,
14766 int where,
14767 short int size,
14768 expressionS * exp,
14769 int pc_rel,
14770 int reloc)
14771{
14772 fixS * new_fix;
14773
14774 switch (exp->X_op)
14775 {
14776 case O_constant:
14777 case O_symbol:
14778 case O_add:
14779 case O_subtract:
21d799b5
NC
14780 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14781 (enum bfd_reloc_code_real) reloc);
5287ad62
JB
14782 break;
14783
14784 default:
21d799b5
NC
14785 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14786 pc_rel, (enum bfd_reloc_code_real) reloc);
5287ad62
JB
14787 break;
14788 }
14789
14790 /* Mark whether the fix is to a THUMB instruction, or an ARM
14791 instruction. */
14792 new_fix->tc_fix_data = thumb_mode;
14793}
14794
14795/* Create a frg for an instruction requiring relaxation. */
14796static void
14797output_relax_insn (void)
14798{
14799 char * to;
14800 symbolS *sym;
0110f2b8
PB
14801 int offset;
14802
6e1cb1a6
PB
14803 /* The size of the instruction is unknown, so tie the debug info to the
14804 start of the instruction. */
14805 dwarf2_emit_insn (0);
6e1cb1a6 14806
0110f2b8
PB
14807 switch (inst.reloc.exp.X_op)
14808 {
14809 case O_symbol:
14810 sym = inst.reloc.exp.X_add_symbol;
14811 offset = inst.reloc.exp.X_add_number;
14812 break;
14813 case O_constant:
14814 sym = NULL;
14815 offset = inst.reloc.exp.X_add_number;
14816 break;
14817 default:
14818 sym = make_expr_symbol (&inst.reloc.exp);
14819 offset = 0;
14820 break;
14821 }
14822 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
14823 inst.relax, sym, offset, NULL/*offset, opcode*/);
14824 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
0110f2b8
PB
14825}
14826
14827/* Write a 32-bit thumb instruction to buf. */
14828static void
14829put_thumb32_insn (char * buf, unsigned long insn)
14830{
14831 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
14832 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
14833}
14834
b99bd4ef 14835static void
c19d1205 14836output_inst (const char * str)
b99bd4ef 14837{
c19d1205 14838 char * to = NULL;
b99bd4ef 14839
c19d1205 14840 if (inst.error)
b99bd4ef 14841 {
c19d1205 14842 as_bad ("%s -- `%s'", inst.error, str);
b99bd4ef
NC
14843 return;
14844 }
5f4273c7
NC
14845 if (inst.relax)
14846 {
14847 output_relax_insn ();
0110f2b8 14848 return;
5f4273c7 14849 }
c19d1205
ZW
14850 if (inst.size == 0)
14851 return;
b99bd4ef 14852
c19d1205 14853 to = frag_more (inst.size);
8dc2430f
NC
14854 /* PR 9814: Record the thumb mode into the current frag so that we know
14855 what type of NOP padding to use, if necessary. We override any previous
14856 setting so that if the mode has changed then the NOPS that we use will
14857 match the encoding of the last instruction in the frag. */
cd000bff 14858 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
c19d1205
ZW
14859
14860 if (thumb_mode && (inst.size > THUMB_SIZE))
b99bd4ef 14861 {
9c2799c2 14862 gas_assert (inst.size == (2 * THUMB_SIZE));
0110f2b8 14863 put_thumb32_insn (to, inst.instruction);
b99bd4ef 14864 }
c19d1205 14865 else if (inst.size > INSN_SIZE)
b99bd4ef 14866 {
9c2799c2 14867 gas_assert (inst.size == (2 * INSN_SIZE));
c19d1205
ZW
14868 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14869 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
b99bd4ef 14870 }
c19d1205
ZW
14871 else
14872 md_number_to_chars (to, inst.instruction, inst.size);
b99bd4ef 14873
c19d1205
ZW
14874 if (inst.reloc.type != BFD_RELOC_UNUSED)
14875 fix_new_arm (frag_now, to - frag_now->fr_literal,
14876 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14877 inst.reloc.type);
b99bd4ef 14878
c19d1205 14879 dwarf2_emit_insn (inst.size);
c19d1205 14880}
b99bd4ef 14881
e07e6e58
NC
14882static char *
14883output_it_inst (int cond, int mask, char * to)
14884{
14885 unsigned long instruction = 0xbf00;
14886
14887 mask &= 0xf;
14888 instruction |= mask;
14889 instruction |= cond << 4;
14890
14891 if (to == NULL)
14892 {
14893 to = frag_more (2);
14894#ifdef OBJ_ELF
14895 dwarf2_emit_insn (2);
14896#endif
14897 }
14898
14899 md_number_to_chars (to, instruction, 2);
14900
14901 return to;
14902}
14903
c19d1205
ZW
14904/* Tag values used in struct asm_opcode's tag field. */
14905enum opcode_tag
14906{
14907 OT_unconditional, /* Instruction cannot be conditionalized.
14908 The ARM condition field is still 0xE. */
14909 OT_unconditionalF, /* Instruction cannot be conditionalized
14910 and carries 0xF in its ARM condition field. */
14911 OT_csuffix, /* Instruction takes a conditional suffix. */
037e8744
JB
14912 OT_csuffixF, /* Some forms of the instruction take a conditional
14913 suffix, others place 0xF where the condition field
14914 would be. */
c19d1205
ZW
14915 OT_cinfix3, /* Instruction takes a conditional infix,
14916 beginning at character index 3. (In
14917 unified mode, it becomes a suffix.) */
088fa78e
KH
14918 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14919 tsts, cmps, cmns, and teqs. */
e3cb604e
PB
14920 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14921 character index 3, even in unified mode. Used for
14922 legacy instructions where suffix and infix forms
14923 may be ambiguous. */
c19d1205 14924 OT_csuf_or_in3, /* Instruction takes either a conditional
e3cb604e 14925 suffix or an infix at character index 3. */
c19d1205
ZW
14926 OT_odd_infix_unc, /* This is the unconditional variant of an
14927 instruction that takes a conditional infix
14928 at an unusual position. In unified mode,
14929 this variant will accept a suffix. */
14930 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14931 are the conditional variants of instructions that
14932 take conditional infixes in unusual positions.
14933 The infix appears at character index
14934 (tag - OT_odd_infix_0). These are not accepted
14935 in unified mode. */
14936};
b99bd4ef 14937
c19d1205
ZW
14938/* Subroutine of md_assemble, responsible for looking up the primary
14939 opcode from the mnemonic the user wrote. STR points to the
14940 beginning of the mnemonic.
14941
14942 This is not simply a hash table lookup, because of conditional
14943 variants. Most instructions have conditional variants, which are
14944 expressed with a _conditional affix_ to the mnemonic. If we were
14945 to encode each conditional variant as a literal string in the opcode
14946 table, it would have approximately 20,000 entries.
14947
14948 Most mnemonics take this affix as a suffix, and in unified syntax,
14949 'most' is upgraded to 'all'. However, in the divided syntax, some
14950 instructions take the affix as an infix, notably the s-variants of
14951 the arithmetic instructions. Of those instructions, all but six
14952 have the infix appear after the third character of the mnemonic.
14953
14954 Accordingly, the algorithm for looking up primary opcodes given
14955 an identifier is:
14956
14957 1. Look up the identifier in the opcode table.
14958 If we find a match, go to step U.
14959
14960 2. Look up the last two characters of the identifier in the
14961 conditions table. If we find a match, look up the first N-2
14962 characters of the identifier in the opcode table. If we
14963 find a match, go to step CE.
14964
14965 3. Look up the fourth and fifth characters of the identifier in
14966 the conditions table. If we find a match, extract those
14967 characters from the identifier, and look up the remaining
14968 characters in the opcode table. If we find a match, go
14969 to step CM.
14970
14971 4. Fail.
14972
14973 U. Examine the tag field of the opcode structure, in case this is
14974 one of the six instructions with its conditional infix in an
14975 unusual place. If it is, the tag tells us where to find the
14976 infix; look it up in the conditions table and set inst.cond
14977 accordingly. Otherwise, this is an unconditional instruction.
14978 Again set inst.cond accordingly. Return the opcode structure.
14979
14980 CE. Examine the tag field to make sure this is an instruction that
14981 should receive a conditional suffix. If it is not, fail.
14982 Otherwise, set inst.cond from the suffix we already looked up,
14983 and return the opcode structure.
14984
14985 CM. Examine the tag field to make sure this is an instruction that
14986 should receive a conditional infix after the third character.
14987 If it is not, fail. Otherwise, undo the edits to the current
14988 line of input and proceed as for case CE. */
14989
14990static const struct asm_opcode *
14991opcode_lookup (char **str)
14992{
14993 char *end, *base;
14994 char *affix;
14995 const struct asm_opcode *opcode;
14996 const struct asm_cond *cond;
e3cb604e 14997 char save[2];
c19d1205
ZW
14998
14999 /* Scan up to the end of the mnemonic, which must end in white space,
721a8186 15000 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
c19d1205 15001 for (base = end = *str; *end != '\0'; end++)
721a8186 15002 if (*end == ' ' || *end == '.')
c19d1205 15003 break;
b99bd4ef 15004
c19d1205 15005 if (end == base)
c921be7d 15006 return NULL;
b99bd4ef 15007
5287ad62 15008 /* Handle a possible width suffix and/or Neon type suffix. */
c19d1205 15009 if (end[0] == '.')
b99bd4ef 15010 {
5287ad62 15011 int offset = 2;
5f4273c7 15012
267d2029
JB
15013 /* The .w and .n suffixes are only valid if the unified syntax is in
15014 use. */
15015 if (unified_syntax && end[1] == 'w')
c19d1205 15016 inst.size_req = 4;
267d2029 15017 else if (unified_syntax && end[1] == 'n')
c19d1205
ZW
15018 inst.size_req = 2;
15019 else
5287ad62
JB
15020 offset = 0;
15021
15022 inst.vectype.elems = 0;
15023
15024 *str = end + offset;
b99bd4ef 15025
5f4273c7 15026 if (end[offset] == '.')
5287ad62 15027 {
267d2029
JB
15028 /* See if we have a Neon type suffix (possible in either unified or
15029 non-unified ARM syntax mode). */
dcbf9037 15030 if (parse_neon_type (&inst.vectype, str) == FAIL)
c921be7d 15031 return NULL;
5287ad62
JB
15032 }
15033 else if (end[offset] != '\0' && end[offset] != ' ')
c921be7d 15034 return NULL;
b99bd4ef 15035 }
c19d1205
ZW
15036 else
15037 *str = end;
b99bd4ef 15038
c19d1205 15039 /* Look for unaffixed or special-case affixed mnemonic. */
21d799b5
NC
15040 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15041 end - base);
c19d1205 15042 if (opcode)
b99bd4ef 15043 {
c19d1205
ZW
15044 /* step U */
15045 if (opcode->tag < OT_odd_infix_0)
b99bd4ef 15046 {
c19d1205
ZW
15047 inst.cond = COND_ALWAYS;
15048 return opcode;
b99bd4ef 15049 }
b99bd4ef 15050
278df34e 15051 if (warn_on_deprecated && unified_syntax)
c19d1205
ZW
15052 as_warn (_("conditional infixes are deprecated in unified syntax"));
15053 affix = base + (opcode->tag - OT_odd_infix_0);
21d799b5 15054 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
9c2799c2 15055 gas_assert (cond);
b99bd4ef 15056
c19d1205
ZW
15057 inst.cond = cond->value;
15058 return opcode;
15059 }
b99bd4ef 15060
c19d1205
ZW
15061 /* Cannot have a conditional suffix on a mnemonic of less than two
15062 characters. */
15063 if (end - base < 3)
c921be7d 15064 return NULL;
b99bd4ef 15065
c19d1205
ZW
15066 /* Look for suffixed mnemonic. */
15067 affix = end - 2;
21d799b5
NC
15068 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15069 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15070 affix - base);
c19d1205
ZW
15071 if (opcode && cond)
15072 {
15073 /* step CE */
15074 switch (opcode->tag)
15075 {
e3cb604e
PB
15076 case OT_cinfix3_legacy:
15077 /* Ignore conditional suffixes matched on infix only mnemonics. */
15078 break;
15079
c19d1205 15080 case OT_cinfix3:
088fa78e 15081 case OT_cinfix3_deprecated:
c19d1205
ZW
15082 case OT_odd_infix_unc:
15083 if (!unified_syntax)
e3cb604e 15084 return 0;
c19d1205
ZW
15085 /* else fall through */
15086
15087 case OT_csuffix:
037e8744 15088 case OT_csuffixF:
c19d1205
ZW
15089 case OT_csuf_or_in3:
15090 inst.cond = cond->value;
15091 return opcode;
15092
15093 case OT_unconditional:
15094 case OT_unconditionalF:
dfa9f0d5 15095 if (thumb_mode)
c921be7d 15096 inst.cond = cond->value;
dfa9f0d5
PB
15097 else
15098 {
c921be7d 15099 /* Delayed diagnostic. */
dfa9f0d5
PB
15100 inst.error = BAD_COND;
15101 inst.cond = COND_ALWAYS;
15102 }
c19d1205 15103 return opcode;
b99bd4ef 15104
c19d1205 15105 default:
c921be7d 15106 return NULL;
c19d1205
ZW
15107 }
15108 }
b99bd4ef 15109
c19d1205
ZW
15110 /* Cannot have a usual-position infix on a mnemonic of less than
15111 six characters (five would be a suffix). */
15112 if (end - base < 6)
c921be7d 15113 return NULL;
b99bd4ef 15114
c19d1205
ZW
15115 /* Look for infixed mnemonic in the usual position. */
15116 affix = base + 3;
21d799b5 15117 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
e3cb604e 15118 if (!cond)
c921be7d 15119 return NULL;
e3cb604e
PB
15120
15121 memcpy (save, affix, 2);
15122 memmove (affix, affix + 2, (end - affix) - 2);
21d799b5
NC
15123 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15124 (end - base) - 2);
e3cb604e
PB
15125 memmove (affix + 2, affix, (end - affix) - 2);
15126 memcpy (affix, save, 2);
15127
088fa78e
KH
15128 if (opcode
15129 && (opcode->tag == OT_cinfix3
15130 || opcode->tag == OT_cinfix3_deprecated
15131 || opcode->tag == OT_csuf_or_in3
15132 || opcode->tag == OT_cinfix3_legacy))
b99bd4ef 15133 {
c921be7d 15134 /* Step CM. */
278df34e 15135 if (warn_on_deprecated && unified_syntax
088fa78e
KH
15136 && (opcode->tag == OT_cinfix3
15137 || opcode->tag == OT_cinfix3_deprecated))
c19d1205
ZW
15138 as_warn (_("conditional infixes are deprecated in unified syntax"));
15139
15140 inst.cond = cond->value;
15141 return opcode;
b99bd4ef
NC
15142 }
15143
c921be7d 15144 return NULL;
b99bd4ef
NC
15145}
15146
e07e6e58
NC
15147/* This function generates an initial IT instruction, leaving its block
15148 virtually open for the new instructions. Eventually,
15149 the mask will be updated by now_it_add_mask () each time
15150 a new instruction needs to be included in the IT block.
15151 Finally, the block is closed with close_automatic_it_block ().
15152 The block closure can be requested either from md_assemble (),
15153 a tencode (), or due to a label hook. */
15154
15155static void
15156new_automatic_it_block (int cond)
15157{
15158 now_it.state = AUTOMATIC_IT_BLOCK;
15159 now_it.mask = 0x18;
15160 now_it.cc = cond;
15161 now_it.block_length = 1;
cd000bff 15162 mapping_state (MAP_THUMB);
e07e6e58
NC
15163 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15164}
15165
15166/* Close an automatic IT block.
15167 See comments in new_automatic_it_block (). */
15168
15169static void
15170close_automatic_it_block (void)
15171{
15172 now_it.mask = 0x10;
15173 now_it.block_length = 0;
15174}
15175
15176/* Update the mask of the current automatically-generated IT
15177 instruction. See comments in new_automatic_it_block (). */
15178
15179static void
15180now_it_add_mask (int cond)
15181{
15182#define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15183#define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15184 | ((bitvalue) << (nbit)))
e07e6e58 15185 const int resulting_bit = (cond & 1);
c921be7d 15186
e07e6e58
NC
15187 now_it.mask &= 0xf;
15188 now_it.mask = SET_BIT_VALUE (now_it.mask,
15189 resulting_bit,
15190 (5 - now_it.block_length));
15191 now_it.mask = SET_BIT_VALUE (now_it.mask,
15192 1,
15193 ((5 - now_it.block_length) - 1) );
15194 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15195
15196#undef CLEAR_BIT
15197#undef SET_BIT_VALUE
e07e6e58
NC
15198}
15199
15200/* The IT blocks handling machinery is accessed through the these functions:
15201 it_fsm_pre_encode () from md_assemble ()
15202 set_it_insn_type () optional, from the tencode functions
15203 set_it_insn_type_last () ditto
15204 in_it_block () ditto
15205 it_fsm_post_encode () from md_assemble ()
15206 force_automatic_it_block_close () from label habdling functions
15207
15208 Rationale:
15209 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15210 initializing the IT insn type with a generic initial value depending
15211 on the inst.condition.
15212 2) During the tencode function, two things may happen:
15213 a) The tencode function overrides the IT insn type by
15214 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15215 b) The tencode function queries the IT block state by
15216 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15217
15218 Both set_it_insn_type and in_it_block run the internal FSM state
15219 handling function (handle_it_state), because: a) setting the IT insn
15220 type may incur in an invalid state (exiting the function),
15221 and b) querying the state requires the FSM to be updated.
15222 Specifically we want to avoid creating an IT block for conditional
15223 branches, so it_fsm_pre_encode is actually a guess and we can't
15224 determine whether an IT block is required until the tencode () routine
15225 has decided what type of instruction this actually it.
15226 Because of this, if set_it_insn_type and in_it_block have to be used,
15227 set_it_insn_type has to be called first.
15228
15229 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15230 determines the insn IT type depending on the inst.cond code.
15231 When a tencode () routine encodes an instruction that can be
15232 either outside an IT block, or, in the case of being inside, has to be
15233 the last one, set_it_insn_type_last () will determine the proper
15234 IT instruction type based on the inst.cond code. Otherwise,
15235 set_it_insn_type can be called for overriding that logic or
15236 for covering other cases.
15237
15238 Calling handle_it_state () may not transition the IT block state to
15239 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15240 still queried. Instead, if the FSM determines that the state should
15241 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15242 after the tencode () function: that's what it_fsm_post_encode () does.
15243
15244 Since in_it_block () calls the state handling function to get an
15245 updated state, an error may occur (due to invalid insns combination).
15246 In that case, inst.error is set.
15247 Therefore, inst.error has to be checked after the execution of
15248 the tencode () routine.
15249
15250 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15251 any pending state change (if any) that didn't take place in
15252 handle_it_state () as explained above. */
15253
15254static void
15255it_fsm_pre_encode (void)
15256{
15257 if (inst.cond != COND_ALWAYS)
15258 inst.it_insn_type = INSIDE_IT_INSN;
15259 else
15260 inst.it_insn_type = OUTSIDE_IT_INSN;
15261
15262 now_it.state_handled = 0;
15263}
15264
15265/* IT state FSM handling function. */
15266
15267static int
15268handle_it_state (void)
15269{
15270 now_it.state_handled = 1;
15271
15272 switch (now_it.state)
15273 {
15274 case OUTSIDE_IT_BLOCK:
15275 switch (inst.it_insn_type)
15276 {
15277 case OUTSIDE_IT_INSN:
15278 break;
15279
15280 case INSIDE_IT_INSN:
15281 case INSIDE_IT_LAST_INSN:
15282 if (thumb_mode == 0)
15283 {
c921be7d 15284 if (unified_syntax
e07e6e58
NC
15285 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15286 as_tsktsk (_("Warning: conditional outside an IT block"\
15287 " for Thumb."));
15288 }
15289 else
15290 {
15291 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15292 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15293 {
15294 /* Automatically generate the IT instruction. */
15295 new_automatic_it_block (inst.cond);
15296 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15297 close_automatic_it_block ();
15298 }
15299 else
15300 {
15301 inst.error = BAD_OUT_IT;
15302 return FAIL;
15303 }
15304 }
15305 break;
15306
15307 case IF_INSIDE_IT_LAST_INSN:
15308 case NEUTRAL_IT_INSN:
15309 break;
15310
15311 case IT_INSN:
15312 now_it.state = MANUAL_IT_BLOCK;
15313 now_it.block_length = 0;
15314 break;
15315 }
15316 break;
15317
15318 case AUTOMATIC_IT_BLOCK:
15319 /* Three things may happen now:
15320 a) We should increment current it block size;
15321 b) We should close current it block (closing insn or 4 insns);
15322 c) We should close current it block and start a new one (due
15323 to incompatible conditions or
15324 4 insns-length block reached). */
15325
15326 switch (inst.it_insn_type)
15327 {
15328 case OUTSIDE_IT_INSN:
15329 /* The closure of the block shall happen immediatelly,
15330 so any in_it_block () call reports the block as closed. */
15331 force_automatic_it_block_close ();
15332 break;
15333
15334 case INSIDE_IT_INSN:
15335 case INSIDE_IT_LAST_INSN:
15336 case IF_INSIDE_IT_LAST_INSN:
15337 now_it.block_length++;
15338
15339 if (now_it.block_length > 4
15340 || !now_it_compatible (inst.cond))
15341 {
15342 force_automatic_it_block_close ();
15343 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15344 new_automatic_it_block (inst.cond);
15345 }
15346 else
15347 {
15348 now_it_add_mask (inst.cond);
15349 }
15350
15351 if (now_it.state == AUTOMATIC_IT_BLOCK
15352 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15353 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15354 close_automatic_it_block ();
15355 break;
15356
15357 case NEUTRAL_IT_INSN:
15358 now_it.block_length++;
15359
15360 if (now_it.block_length > 4)
15361 force_automatic_it_block_close ();
15362 else
15363 now_it_add_mask (now_it.cc & 1);
15364 break;
15365
15366 case IT_INSN:
15367 close_automatic_it_block ();
15368 now_it.state = MANUAL_IT_BLOCK;
15369 break;
15370 }
15371 break;
15372
15373 case MANUAL_IT_BLOCK:
15374 {
15375 /* Check conditional suffixes. */
15376 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15377 int is_last;
15378 now_it.mask <<= 1;
15379 now_it.mask &= 0x1f;
15380 is_last = (now_it.mask == 0x10);
15381
15382 switch (inst.it_insn_type)
15383 {
15384 case OUTSIDE_IT_INSN:
15385 inst.error = BAD_NOT_IT;
15386 return FAIL;
15387
15388 case INSIDE_IT_INSN:
15389 if (cond != inst.cond)
15390 {
15391 inst.error = BAD_IT_COND;
15392 return FAIL;
15393 }
15394 break;
15395
15396 case INSIDE_IT_LAST_INSN:
15397 case IF_INSIDE_IT_LAST_INSN:
15398 if (cond != inst.cond)
15399 {
15400 inst.error = BAD_IT_COND;
15401 return FAIL;
15402 }
15403 if (!is_last)
15404 {
15405 inst.error = BAD_BRANCH;
15406 return FAIL;
15407 }
15408 break;
15409
15410 case NEUTRAL_IT_INSN:
15411 /* The BKPT instruction is unconditional even in an IT block. */
15412 break;
15413
15414 case IT_INSN:
15415 inst.error = BAD_IT_IT;
15416 return FAIL;
15417 }
15418 }
15419 break;
15420 }
15421
15422 return SUCCESS;
15423}
15424
15425static void
15426it_fsm_post_encode (void)
15427{
15428 int is_last;
15429
15430 if (!now_it.state_handled)
15431 handle_it_state ();
15432
15433 is_last = (now_it.mask == 0x10);
15434 if (is_last)
15435 {
15436 now_it.state = OUTSIDE_IT_BLOCK;
15437 now_it.mask = 0;
15438 }
15439}
15440
15441static void
15442force_automatic_it_block_close (void)
15443{
15444 if (now_it.state == AUTOMATIC_IT_BLOCK)
15445 {
15446 close_automatic_it_block ();
15447 now_it.state = OUTSIDE_IT_BLOCK;
15448 now_it.mask = 0;
15449 }
15450}
15451
15452static int
15453in_it_block (void)
15454{
15455 if (!now_it.state_handled)
15456 handle_it_state ();
15457
15458 return now_it.state != OUTSIDE_IT_BLOCK;
15459}
15460
c19d1205
ZW
15461void
15462md_assemble (char *str)
b99bd4ef 15463{
c19d1205
ZW
15464 char *p = str;
15465 const struct asm_opcode * opcode;
b99bd4ef 15466
c19d1205
ZW
15467 /* Align the previous label if needed. */
15468 if (last_label_seen != NULL)
b99bd4ef 15469 {
c19d1205
ZW
15470 symbol_set_frag (last_label_seen, frag_now);
15471 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15472 S_SET_SEGMENT (last_label_seen, now_seg);
b99bd4ef
NC
15473 }
15474
c19d1205
ZW
15475 memset (&inst, '\0', sizeof (inst));
15476 inst.reloc.type = BFD_RELOC_UNUSED;
b99bd4ef 15477
c19d1205
ZW
15478 opcode = opcode_lookup (&p);
15479 if (!opcode)
b99bd4ef 15480 {
c19d1205 15481 /* It wasn't an instruction, but it might be a register alias of
dcbf9037 15482 the form alias .req reg, or a Neon .dn/.qn directive. */
c921be7d
NC
15483 if (! create_register_alias (str, p)
15484 && ! create_neon_reg_alias (str, p))
c19d1205 15485 as_bad (_("bad instruction `%s'"), str);
b99bd4ef 15486
b99bd4ef
NC
15487 return;
15488 }
15489
278df34e 15490 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
088fa78e
KH
15491 as_warn (_("s suffix on comparison instruction is deprecated"));
15492
037e8744
JB
15493 /* The value which unconditional instructions should have in place of the
15494 condition field. */
15495 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15496
c19d1205 15497 if (thumb_mode)
b99bd4ef 15498 {
e74cfd16 15499 arm_feature_set variant;
8f06b2d8
PB
15500
15501 variant = cpu_variant;
15502 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
e74cfd16
PB
15503 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15504 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
c19d1205 15505 /* Check that this instruction is supported for this CPU. */
62b3e311
PB
15506 if (!opcode->tvariant
15507 || (thumb_mode == 1
15508 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
b99bd4ef 15509 {
c19d1205 15510 as_bad (_("selected processor does not support `%s'"), str);
b99bd4ef
NC
15511 return;
15512 }
c19d1205
ZW
15513 if (inst.cond != COND_ALWAYS && !unified_syntax
15514 && opcode->tencode != do_t_branch)
b99bd4ef 15515 {
c19d1205 15516 as_bad (_("Thumb does not support conditional execution"));
b99bd4ef
NC
15517 return;
15518 }
15519
752d5da4 15520 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
076d447c 15521 {
7e806470 15522 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
752d5da4
NC
15523 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15524 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15525 {
15526 /* Two things are addressed here.
15527 1) Implicit require narrow instructions on Thumb-1.
15528 This avoids relaxation accidentally introducing Thumb-2
15529 instructions.
15530 2) Reject wide instructions in non Thumb-2 cores. */
15531 if (inst.size_req == 0)
15532 inst.size_req = 2;
15533 else if (inst.size_req == 4)
15534 {
15535 as_bad (_("selected processor does not support `%s'"), str);
15536 return;
15537 }
15538 }
076d447c
PB
15539 }
15540
c19d1205
ZW
15541 inst.instruction = opcode->tvalue;
15542
15543 if (!parse_operands (p, opcode->operands))
e07e6e58
NC
15544 {
15545 /* Prepare the it_insn_type for those encodings that don't set
15546 it. */
15547 it_fsm_pre_encode ();
c19d1205 15548
e07e6e58
NC
15549 opcode->tencode ();
15550
15551 it_fsm_post_encode ();
15552 }
e27ec89e 15553
0110f2b8 15554 if (!(inst.error || inst.relax))
b99bd4ef 15555 {
9c2799c2 15556 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
c19d1205
ZW
15557 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15558 if (inst.size_req && inst.size_req != inst.size)
b99bd4ef 15559 {
c19d1205 15560 as_bad (_("cannot honor width suffix -- `%s'"), str);
b99bd4ef
NC
15561 return;
15562 }
15563 }
076d447c
PB
15564
15565 /* Something has gone badly wrong if we try to relax a fixed size
15566 instruction. */
9c2799c2 15567 gas_assert (inst.size_req == 0 || !inst.relax);
076d447c 15568
e74cfd16
PB
15569 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15570 *opcode->tvariant);
ee065d83 15571 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
708587a4 15572 set those bits when Thumb-2 32-bit instructions are seen. ie.
7e806470 15573 anything other than bl/blx and v6-M instructions.
ee065d83 15574 This is overly pessimistic for relaxable instructions. */
7e806470
PB
15575 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15576 || inst.relax)
e07e6e58
NC
15577 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15578 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
e74cfd16
PB
15579 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15580 arm_ext_v6t2);
cd000bff
DJ
15581
15582 if (!inst.error)
c877a2f2
NC
15583 {
15584 mapping_state (MAP_THUMB);
15585 }
c19d1205 15586 }
3e9e4fcf 15587 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
c19d1205 15588 {
845b51d6
PB
15589 bfd_boolean is_bx;
15590
15591 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15592 is_bx = (opcode->aencode == do_bx);
15593
c19d1205 15594 /* Check that this instruction is supported for this CPU. */
845b51d6
PB
15595 if (!(is_bx && fix_v4bx)
15596 && !(opcode->avariant &&
15597 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
b99bd4ef 15598 {
c19d1205
ZW
15599 as_bad (_("selected processor does not support `%s'"), str);
15600 return;
b99bd4ef 15601 }
c19d1205 15602 if (inst.size_req)
b99bd4ef 15603 {
c19d1205
ZW
15604 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15605 return;
b99bd4ef
NC
15606 }
15607
c19d1205
ZW
15608 inst.instruction = opcode->avalue;
15609 if (opcode->tag == OT_unconditionalF)
15610 inst.instruction |= 0xF << 28;
15611 else
15612 inst.instruction |= inst.cond << 28;
15613 inst.size = INSN_SIZE;
15614 if (!parse_operands (p, opcode->operands))
e07e6e58
NC
15615 {
15616 it_fsm_pre_encode ();
15617 opcode->aencode ();
15618 it_fsm_post_encode ();
15619 }
ee065d83
PB
15620 /* Arm mode bx is marked as both v4T and v5 because it's still required
15621 on a hypothetical non-thumb v5 core. */
845b51d6 15622 if (is_bx)
e74cfd16 15623 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
ee065d83 15624 else
e74cfd16
PB
15625 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15626 *opcode->avariant);
cd000bff 15627 if (!inst.error)
c877a2f2
NC
15628 {
15629 mapping_state (MAP_ARM);
15630 }
b99bd4ef 15631 }
3e9e4fcf
JB
15632 else
15633 {
15634 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15635 "-- `%s'"), str);
15636 return;
15637 }
c19d1205
ZW
15638 output_inst (str);
15639}
b99bd4ef 15640
e07e6e58
NC
15641static void
15642check_it_blocks_finished (void)
15643{
15644#ifdef OBJ_ELF
15645 asection *sect;
15646
15647 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15648 if (seg_info (sect)->tc_segment_info_data.current_it.state
15649 == MANUAL_IT_BLOCK)
15650 {
15651 as_warn (_("section '%s' finished with an open IT block."),
15652 sect->name);
15653 }
15654#else
15655 if (now_it.state == MANUAL_IT_BLOCK)
15656 as_warn (_("file finished with an open IT block."));
15657#endif
15658}
15659
c19d1205
ZW
15660/* Various frobbings of labels and their addresses. */
15661
15662void
15663arm_start_line_hook (void)
15664{
15665 last_label_seen = NULL;
b99bd4ef
NC
15666}
15667
c19d1205
ZW
15668void
15669arm_frob_label (symbolS * sym)
b99bd4ef 15670{
c19d1205 15671 last_label_seen = sym;
b99bd4ef 15672
c19d1205 15673 ARM_SET_THUMB (sym, thumb_mode);
b99bd4ef 15674
c19d1205
ZW
15675#if defined OBJ_COFF || defined OBJ_ELF
15676 ARM_SET_INTERWORK (sym, support_interwork);
15677#endif
b99bd4ef 15678
e07e6e58
NC
15679 force_automatic_it_block_close ();
15680
5f4273c7 15681 /* Note - do not allow local symbols (.Lxxx) to be labelled
c19d1205
ZW
15682 as Thumb functions. This is because these labels, whilst
15683 they exist inside Thumb code, are not the entry points for
15684 possible ARM->Thumb calls. Also, these labels can be used
15685 as part of a computed goto or switch statement. eg gcc
15686 can generate code that looks like this:
b99bd4ef 15687
c19d1205
ZW
15688 ldr r2, [pc, .Laaa]
15689 lsl r3, r3, #2
15690 ldr r2, [r3, r2]
15691 mov pc, r2
b99bd4ef 15692
c19d1205
ZW
15693 .Lbbb: .word .Lxxx
15694 .Lccc: .word .Lyyy
15695 ..etc...
15696 .Laaa: .word Lbbb
b99bd4ef 15697
c19d1205
ZW
15698 The first instruction loads the address of the jump table.
15699 The second instruction converts a table index into a byte offset.
15700 The third instruction gets the jump address out of the table.
15701 The fourth instruction performs the jump.
b99bd4ef 15702
c19d1205
ZW
15703 If the address stored at .Laaa is that of a symbol which has the
15704 Thumb_Func bit set, then the linker will arrange for this address
15705 to have the bottom bit set, which in turn would mean that the
15706 address computation performed by the third instruction would end
15707 up with the bottom bit set. Since the ARM is capable of unaligned
15708 word loads, the instruction would then load the incorrect address
15709 out of the jump table, and chaos would ensue. */
15710 if (label_is_thumb_function_name
15711 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15712 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
b99bd4ef 15713 {
c19d1205
ZW
15714 /* When the address of a Thumb function is taken the bottom
15715 bit of that address should be set. This will allow
15716 interworking between Arm and Thumb functions to work
15717 correctly. */
b99bd4ef 15718
c19d1205 15719 THUMB_SET_FUNC (sym, 1);
b99bd4ef 15720
c19d1205 15721 label_is_thumb_function_name = FALSE;
b99bd4ef 15722 }
07a53e5c 15723
07a53e5c 15724 dwarf2_emit_label (sym);
b99bd4ef
NC
15725}
15726
c921be7d 15727bfd_boolean
c19d1205 15728arm_data_in_code (void)
b99bd4ef 15729{
c19d1205 15730 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
b99bd4ef 15731 {
c19d1205
ZW
15732 *input_line_pointer = '/';
15733 input_line_pointer += 5;
15734 *input_line_pointer = 0;
c921be7d 15735 return TRUE;
b99bd4ef
NC
15736 }
15737
c921be7d 15738 return FALSE;
b99bd4ef
NC
15739}
15740
c19d1205
ZW
15741char *
15742arm_canonicalize_symbol_name (char * name)
b99bd4ef 15743{
c19d1205 15744 int len;
b99bd4ef 15745
c19d1205
ZW
15746 if (thumb_mode && (len = strlen (name)) > 5
15747 && streq (name + len - 5, "/data"))
15748 *(name + len - 5) = 0;
b99bd4ef 15749
c19d1205 15750 return name;
b99bd4ef 15751}
c19d1205
ZW
15752\f
15753/* Table of all register names defined by default. The user can
15754 define additional names with .req. Note that all register names
15755 should appear in both upper and lowercase variants. Some registers
15756 also have mixed-case names. */
b99bd4ef 15757
dcbf9037 15758#define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
c19d1205 15759#define REGNUM(p,n,t) REGDEF(p##n, n, t)
5287ad62 15760#define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
c19d1205
ZW
15761#define REGSET(p,t) \
15762 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15763 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15764 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15765 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
5287ad62
JB
15766#define REGSETH(p,t) \
15767 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15768 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15769 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15770 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15771#define REGSET2(p,t) \
15772 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15773 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15774 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15775 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
7ed4c4c5 15776
c19d1205 15777static const struct reg_entry reg_names[] =
7ed4c4c5 15778{
c19d1205
ZW
15779 /* ARM integer registers. */
15780 REGSET(r, RN), REGSET(R, RN),
7ed4c4c5 15781
c19d1205
ZW
15782 /* ATPCS synonyms. */
15783 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15784 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15785 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
7ed4c4c5 15786
c19d1205
ZW
15787 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15788 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15789 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
7ed4c4c5 15790
c19d1205
ZW
15791 /* Well-known aliases. */
15792 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15793 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15794
15795 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
15796 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
15797
15798 /* Coprocessor numbers. */
15799 REGSET(p, CP), REGSET(P, CP),
15800
15801 /* Coprocessor register numbers. The "cr" variants are for backward
15802 compatibility. */
15803 REGSET(c, CN), REGSET(C, CN),
15804 REGSET(cr, CN), REGSET(CR, CN),
15805
15806 /* FPA registers. */
15807 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
15808 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
15809
15810 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
15811 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
15812
15813 /* VFP SP registers. */
5287ad62
JB
15814 REGSET(s,VFS), REGSET(S,VFS),
15815 REGSETH(s,VFS), REGSETH(S,VFS),
c19d1205
ZW
15816
15817 /* VFP DP Registers. */
5287ad62
JB
15818 REGSET(d,VFD), REGSET(D,VFD),
15819 /* Extra Neon DP registers. */
15820 REGSETH(d,VFD), REGSETH(D,VFD),
15821
15822 /* Neon QP registers. */
15823 REGSET2(q,NQ), REGSET2(Q,NQ),
c19d1205
ZW
15824
15825 /* VFP control registers. */
15826 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
15827 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
cd2cf30b
PB
15828 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
15829 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
15830 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
15831 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
c19d1205
ZW
15832
15833 /* Maverick DSP coprocessor registers. */
15834 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
15835 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
15836
15837 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
15838 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
15839 REGDEF(dspsc,0,DSPSC),
15840
15841 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
15842 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
15843 REGDEF(DSPSC,0,DSPSC),
15844
15845 /* iWMMXt data registers - p0, c0-15. */
15846 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
15847
15848 /* iWMMXt control registers - p1, c0-3. */
15849 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
15850 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
15851 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
15852 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
15853
15854 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
15855 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
15856 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
15857 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
15858 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
15859
15860 /* XScale accumulator registers. */
15861 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
15862};
15863#undef REGDEF
15864#undef REGNUM
15865#undef REGSET
7ed4c4c5 15866
c19d1205
ZW
15867/* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
15868 within psr_required_here. */
15869static const struct asm_psr psrs[] =
15870{
15871 /* Backward compatibility notation. Note that "all" is no longer
15872 truly all possible PSR bits. */
15873 {"all", PSR_c | PSR_f},
15874 {"flg", PSR_f},
15875 {"ctl", PSR_c},
15876
15877 /* Individual flags. */
15878 {"f", PSR_f},
15879 {"c", PSR_c},
15880 {"x", PSR_x},
15881 {"s", PSR_s},
15882 /* Combinations of flags. */
15883 {"fs", PSR_f | PSR_s},
15884 {"fx", PSR_f | PSR_x},
15885 {"fc", PSR_f | PSR_c},
15886 {"sf", PSR_s | PSR_f},
15887 {"sx", PSR_s | PSR_x},
15888 {"sc", PSR_s | PSR_c},
15889 {"xf", PSR_x | PSR_f},
15890 {"xs", PSR_x | PSR_s},
15891 {"xc", PSR_x | PSR_c},
15892 {"cf", PSR_c | PSR_f},
15893 {"cs", PSR_c | PSR_s},
15894 {"cx", PSR_c | PSR_x},
15895 {"fsx", PSR_f | PSR_s | PSR_x},
15896 {"fsc", PSR_f | PSR_s | PSR_c},
15897 {"fxs", PSR_f | PSR_x | PSR_s},
15898 {"fxc", PSR_f | PSR_x | PSR_c},
15899 {"fcs", PSR_f | PSR_c | PSR_s},
15900 {"fcx", PSR_f | PSR_c | PSR_x},
15901 {"sfx", PSR_s | PSR_f | PSR_x},
15902 {"sfc", PSR_s | PSR_f | PSR_c},
15903 {"sxf", PSR_s | PSR_x | PSR_f},
15904 {"sxc", PSR_s | PSR_x | PSR_c},
15905 {"scf", PSR_s | PSR_c | PSR_f},
15906 {"scx", PSR_s | PSR_c | PSR_x},
15907 {"xfs", PSR_x | PSR_f | PSR_s},
15908 {"xfc", PSR_x | PSR_f | PSR_c},
15909 {"xsf", PSR_x | PSR_s | PSR_f},
15910 {"xsc", PSR_x | PSR_s | PSR_c},
15911 {"xcf", PSR_x | PSR_c | PSR_f},
15912 {"xcs", PSR_x | PSR_c | PSR_s},
15913 {"cfs", PSR_c | PSR_f | PSR_s},
15914 {"cfx", PSR_c | PSR_f | PSR_x},
15915 {"csf", PSR_c | PSR_s | PSR_f},
15916 {"csx", PSR_c | PSR_s | PSR_x},
15917 {"cxf", PSR_c | PSR_x | PSR_f},
15918 {"cxs", PSR_c | PSR_x | PSR_s},
15919 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
15920 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
15921 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
15922 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
15923 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
15924 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
15925 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
15926 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
15927 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
15928 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
15929 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
15930 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
15931 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
15932 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
15933 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
15934 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
15935 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
15936 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
15937 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
15938 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
15939 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
15940 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
15941 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
15942 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
15943};
15944
62b3e311
PB
15945/* Table of V7M psr names. */
15946static const struct asm_psr v7m_psrs[] =
15947{
2b744c99
PB
15948 {"apsr", 0 }, {"APSR", 0 },
15949 {"iapsr", 1 }, {"IAPSR", 1 },
15950 {"eapsr", 2 }, {"EAPSR", 2 },
15951 {"psr", 3 }, {"PSR", 3 },
15952 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
15953 {"ipsr", 5 }, {"IPSR", 5 },
15954 {"epsr", 6 }, {"EPSR", 6 },
15955 {"iepsr", 7 }, {"IEPSR", 7 },
15956 {"msp", 8 }, {"MSP", 8 },
15957 {"psp", 9 }, {"PSP", 9 },
15958 {"primask", 16}, {"PRIMASK", 16},
15959 {"basepri", 17}, {"BASEPRI", 17},
15960 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
15961 {"faultmask", 19}, {"FAULTMASK", 19},
15962 {"control", 20}, {"CONTROL", 20}
62b3e311
PB
15963};
15964
c19d1205
ZW
15965/* Table of all shift-in-operand names. */
15966static const struct asm_shift_name shift_names [] =
b99bd4ef 15967{
c19d1205
ZW
15968 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
15969 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
15970 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
15971 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
15972 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
15973 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
15974};
b99bd4ef 15975
c19d1205
ZW
15976/* Table of all explicit relocation names. */
15977#ifdef OBJ_ELF
15978static struct reloc_entry reloc_names[] =
15979{
15980 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
15981 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
15982 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
15983 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
15984 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
15985 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
15986 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
15987 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
15988 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
15989 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
15990 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
15991};
15992#endif
b99bd4ef 15993
c19d1205
ZW
15994/* Table of all conditional affixes. 0xF is not defined as a condition code. */
15995static const struct asm_cond conds[] =
15996{
15997 {"eq", 0x0},
15998 {"ne", 0x1},
15999 {"cs", 0x2}, {"hs", 0x2},
16000 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16001 {"mi", 0x4},
16002 {"pl", 0x5},
16003 {"vs", 0x6},
16004 {"vc", 0x7},
16005 {"hi", 0x8},
16006 {"ls", 0x9},
16007 {"ge", 0xa},
16008 {"lt", 0xb},
16009 {"gt", 0xc},
16010 {"le", 0xd},
16011 {"al", 0xe}
16012};
bfae80f2 16013
62b3e311
PB
16014static struct asm_barrier_opt barrier_opt_names[] =
16015{
16016 { "sy", 0xf },
16017 { "un", 0x7 },
16018 { "st", 0xe },
16019 { "unst", 0x6 }
16020};
16021
c19d1205
ZW
16022/* Table of ARM-format instructions. */
16023
16024/* Macros for gluing together operand strings. N.B. In all cases
16025 other than OPS0, the trailing OP_stop comes from default
16026 zero-initialization of the unspecified elements of the array. */
16027#define OPS0() { OP_stop, }
16028#define OPS1(a) { OP_##a, }
16029#define OPS2(a,b) { OP_##a,OP_##b, }
16030#define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16031#define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16032#define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16033#define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16034
16035/* These macros abstract out the exact format of the mnemonic table and
16036 save some repeated characters. */
16037
16038/* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16039#define TxCE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16040 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
1887dd22 16041 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16042
16043/* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16044 a T_MNEM_xyz enumerator. */
16045#define TCE(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16046 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16047#define tCE(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16048 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16049
16050/* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16051 infix after the third character. */
16052#define TxC3(mnem, op, top, nops, ops, ae, te) \
21d799b5 16053 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
1887dd22 16054 THUMB_VARIANT, do_##ae, do_##te }
088fa78e 16055#define TxC3w(mnem, op, top, nops, ops, ae, te) \
21d799b5 16056 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
088fa78e 16057 THUMB_VARIANT, do_##ae, do_##te }
c19d1205 16058#define TC3(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16059 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
088fa78e 16060#define TC3w(mnem, aop, top, nops, ops, ae, te) \
e07e6e58 16061 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
c19d1205 16062#define tC3(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16063 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
088fa78e 16064#define tC3w(mnem, aop, top, nops, ops, ae, te) \
21d799b5 16065 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16066
16067/* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16068 appear in the condition table. */
16069#define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
21d799b5 16070 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
1887dd22 16071 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16072
16073#define TxCM(m1, m2, op, top, nops, ops, ae, te) \
e07e6e58
NC
16074 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16075 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16076 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16077 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16078 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16079 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16080 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16081 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16082 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16083 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16084 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16085 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16086 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16087 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16088 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16089 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16090 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16091 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16092 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
c19d1205
ZW
16093
16094#define TCM(m1,m2, aop, top, nops, ops, ae, te) \
e07e6e58
NC
16095 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16096#define tCM(m1,m2, aop, top, nops, ops, ae, te) \
21d799b5 16097 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
c19d1205
ZW
16098
16099/* Mnemonic that cannot be conditionalized. The ARM condition-code
dfa9f0d5
PB
16100 field is still 0xE. Many of the Thumb variants can be executed
16101 conditionally, so this is checked separately. */
c19d1205 16102#define TUE(mnem, op, top, nops, ops, ae, te) \
21d799b5 16103 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16104 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16105
16106/* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16107 condition code field. */
16108#define TUF(mnem, op, top, nops, ops, ae, te) \
21d799b5 16109 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
1887dd22 16110 THUMB_VARIANT, do_##ae, do_##te }
c19d1205
ZW
16111
16112/* ARM-only variants of all the above. */
6a86118a 16113#define CE(mnem, op, nops, ops, ae) \
21d799b5 16114 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
6a86118a
NC
16115
16116#define C3(mnem, op, nops, ops, ae) \
16117 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16118
e3cb604e
PB
16119/* Legacy mnemonics that always have conditional infix after the third
16120 character. */
16121#define CL(mnem, op, nops, ops, ae) \
21d799b5 16122 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16123 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16124
8f06b2d8
PB
16125/* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16126#define cCE(mnem, op, nops, ops, ae) \
21d799b5 16127 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16128
e3cb604e
PB
16129/* Legacy coprocessor instructions where conditional infix and conditional
16130 suffix are ambiguous. For consistency this includes all FPA instructions,
16131 not just the potentially ambiguous ones. */
16132#define cCL(mnem, op, nops, ops, ae) \
21d799b5 16133 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
e3cb604e
PB
16134 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16135
16136/* Coprocessor, takes either a suffix or a position-3 infix
16137 (for an FPA corner case). */
16138#define C3E(mnem, op, nops, ops, ae) \
21d799b5 16139 { mnem, OPS##nops ops, OT_csuf_or_in3, \
e3cb604e 16140 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
8f06b2d8 16141
6a86118a 16142#define xCM_(m1, m2, m3, op, nops, ops, ae) \
21d799b5
NC
16143 { m1 #m2 m3, OPS##nops ops, \
16144 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
6a86118a
NC
16145 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16146
16147#define CM(m1, m2, op, nops, ops, ae) \
e07e6e58
NC
16148 xCM_ (m1, , m2, op, nops, ops, ae), \
16149 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16150 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16151 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16152 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16153 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16154 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16155 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16156 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16157 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16158 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16159 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16160 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16161 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16162 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16163 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16164 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16165 xCM_ (m1, le, m2, op, nops, ops, ae), \
16166 xCM_ (m1, al, m2, op, nops, ops, ae)
6a86118a
NC
16167
16168#define UE(mnem, op, nops, ops, ae) \
16169 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16170
16171#define UF(mnem, op, nops, ops, ae) \
16172 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16173
5287ad62
JB
16174/* Neon data-processing. ARM versions are unconditional with cond=0xf.
16175 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16176 use the same encoding function for each. */
16177#define NUF(mnem, op, nops, ops, enc) \
16178 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16179 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16180
16181/* Neon data processing, version which indirects through neon_enc_tab for
16182 the various overloaded versions of opcodes. */
16183#define nUF(mnem, op, nops, ops, enc) \
21d799b5 16184 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16185 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16186
16187/* Neon insn with conditional suffix for the ARM version, non-overloaded
16188 version. */
037e8744
JB
16189#define NCE_tag(mnem, op, nops, ops, enc, tag) \
16190 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
5287ad62
JB
16191 THUMB_VARIANT, do_##enc, do_##enc }
16192
037e8744 16193#define NCE(mnem, op, nops, ops, enc) \
e07e6e58 16194 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16195
16196#define NCEF(mnem, op, nops, ops, enc) \
e07e6e58 16197 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16198
5287ad62 16199/* Neon insn with conditional suffix for the ARM version, overloaded types. */
037e8744 16200#define nCE_tag(mnem, op, nops, ops, enc, tag) \
21d799b5 16201 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
5287ad62
JB
16202 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16203
037e8744 16204#define nCE(mnem, op, nops, ops, enc) \
e07e6e58 16205 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
037e8744
JB
16206
16207#define nCEF(mnem, op, nops, ops, enc) \
e07e6e58 16208 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
037e8744 16209
c19d1205
ZW
16210#define do_0 0
16211
16212/* Thumb-only, unconditional. */
e07e6e58 16213#define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
c19d1205 16214
c19d1205 16215static const struct asm_opcode insns[] =
bfae80f2 16216{
e74cfd16
PB
16217#define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16218#define THUMB_VARIANT &arm_ext_v4t
21d799b5
NC
16219 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16220 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16221 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16222 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16223 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16224 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16225 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16226 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16227 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16228 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16229 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16230 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16231 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16232 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16233 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16234 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
c19d1205
ZW
16235
16236 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16237 for setting PSR flag bits. They are obsolete in V6 and do not
16238 have Thumb equivalents. */
21d799b5
NC
16239 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16240 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16241 CL("tstp", 110f000, 2, (RR, SH), cmp),
16242 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16243 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16244 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16245 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16246 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16247 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16248
16249 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16250 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16251 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16252 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16253
16254 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16255 tC3("ldrb", 4500000, _ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16256 tCE("str", 4000000, _str, 2, (RR, ADDRGLDR),ldst, t_ldst),
16257 tC3("strb", 4400000, _strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
16258
16259 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16260 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16261 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16262 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16263 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16264 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16265
16266 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16267 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16268 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16269 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
bfae80f2 16270
c19d1205 16271 /* Pseudo ops. */
21d799b5 16272 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
2fc8bdac 16273 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21d799b5 16274 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
c19d1205
ZW
16275
16276 /* Thumb-compatibility pseudo ops. */
21d799b5
NC
16277 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16278 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16279 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16280 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16281 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16282 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16283 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16284 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16285 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16286 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16287 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16288 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
c19d1205 16289
16a4cf17 16290 /* These may simplify to neg. */
21d799b5
NC
16291 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16292 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16a4cf17 16293
c921be7d
NC
16294#undef THUMB_VARIANT
16295#define THUMB_VARIANT & arm_ext_v6
16296
21d799b5 16297 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
c19d1205
ZW
16298
16299 /* V1 instructions with no Thumb analogue prior to V6T2. */
c921be7d
NC
16300#undef THUMB_VARIANT
16301#define THUMB_VARIANT & arm_ext_v6t2
16302
21d799b5
NC
16303 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16304 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16305 CL("teqp", 130f000, 2, (RR, SH), cmp),
c19d1205 16306
21d799b5
NC
16307 TC3("ldrt", 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
16308 TC3("ldrbt", 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
16309 TC3("strt", 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
16310 TC3("strbt", 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
c19d1205 16311
21d799b5
NC
16312 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16313 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205 16314
21d799b5
NC
16315 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16316 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
c19d1205
ZW
16317
16318 /* V1 instructions with no Thumb analogue at all. */
21d799b5 16319 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
c19d1205
ZW
16320 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16321
16322 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16323 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16324 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16325 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16326 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16327 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16328 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16329 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16330
c921be7d
NC
16331#undef ARM_VARIANT
16332#define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16333#undef THUMB_VARIANT
16334#define THUMB_VARIANT & arm_ext_v4t
16335
21d799b5
NC
16336 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16337 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
c19d1205 16338
c921be7d
NC
16339#undef THUMB_VARIANT
16340#define THUMB_VARIANT & arm_ext_v6t2
16341
21d799b5 16342 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
c19d1205
ZW
16343 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16344
16345 /* Generic coprocessor instructions. */
21d799b5
NC
16346 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16347 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16348 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16349 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16350 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16351 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16352 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16353
c921be7d
NC
16354#undef ARM_VARIANT
16355#define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16356
21d799b5 16357 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
c19d1205
ZW
16358 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16359
c921be7d
NC
16360#undef ARM_VARIANT
16361#define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16362#undef THUMB_VARIANT
16363#define THUMB_VARIANT & arm_ext_msr
16364
21d799b5
NC
16365 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16366 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
c19d1205 16367
c921be7d
NC
16368#undef ARM_VARIANT
16369#define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16370#undef THUMB_VARIANT
16371#define THUMB_VARIANT & arm_ext_v6t2
16372
21d799b5
NC
16373 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16374 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16375 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16376 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16377 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16378 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16379 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16380 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
c19d1205 16381
c921be7d
NC
16382#undef ARM_VARIANT
16383#define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16384#undef THUMB_VARIANT
16385#define THUMB_VARIANT & arm_ext_v4t
16386
21d799b5
NC
16387 tC3("ldrh", 01000b0, _ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16388 tC3("strh", 00000b0, _strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16389 tC3("ldrsh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16390 tC3("ldrsb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16391 tCM("ld","sh", 01000f0, _ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
16392 tCM("ld","sb", 01000d0, _ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
c19d1205 16393
c921be7d
NC
16394#undef ARM_VARIANT
16395#define ARM_VARIANT & arm_ext_v4t_5
16396
c19d1205
ZW
16397 /* ARM Architecture 4T. */
16398 /* Note: bx (and blx) are required on V5, even if the processor does
16399 not support Thumb. */
21d799b5 16400 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
c19d1205 16401
c921be7d
NC
16402#undef ARM_VARIANT
16403#define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16404#undef THUMB_VARIANT
16405#define THUMB_VARIANT & arm_ext_v5t
16406
c19d1205
ZW
16407 /* Note: blx has 2 variants; the .value coded here is for
16408 BLX(2). Only this variant has conditional execution. */
21d799b5
NC
16409 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16410 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
c19d1205 16411
c921be7d
NC
16412#undef THUMB_VARIANT
16413#define THUMB_VARIANT & arm_ext_v6t2
16414
21d799b5
NC
16415 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16416 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16417 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16418 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16419 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16420 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16421 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16422 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
c19d1205 16423
c921be7d
NC
16424#undef ARM_VARIANT
16425#define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16426
21d799b5
NC
16427 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16428 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16429 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16430 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16431
21d799b5
NC
16432 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16433 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
c19d1205 16434
21d799b5
NC
16435 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16436 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16437 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16438 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
c19d1205 16439
21d799b5
NC
16440 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16441 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16442 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16443 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16444
21d799b5
NC
16445 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16446 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
c19d1205 16447
21d799b5
NC
16448 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16449 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16450 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
16451 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
c19d1205 16452
c921be7d
NC
16453#undef ARM_VARIANT
16454#define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16455
21d799b5
NC
16456 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16457 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
16458 TC3("strd", 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
c19d1205 16459
21d799b5
NC
16460 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16461 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
c19d1205 16462
c921be7d
NC
16463#undef ARM_VARIANT
16464#define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16465
21d799b5 16466 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
c19d1205 16467
c921be7d
NC
16468#undef ARM_VARIANT
16469#define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16470#undef THUMB_VARIANT
16471#define THUMB_VARIANT & arm_ext_v6
16472
21d799b5
NC
16473 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16474 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16475 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16476 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16477 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16478 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16479 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16480 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16481 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16482 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
c19d1205 16483
c921be7d
NC
16484#undef THUMB_VARIANT
16485#define THUMB_VARIANT & arm_ext_v6t2
16486
21d799b5
NC
16487 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
16488 TCE("strex", 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
16489 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16490 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
62b3e311 16491
21d799b5
NC
16492 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16493 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
62b3e311
PB
16494
16495/* ARM V6 not included in V7M (eg. integer SIMD). */
c921be7d
NC
16496#undef THUMB_VARIANT
16497#define THUMB_VARIANT & arm_ext_v6_notm
16498
21d799b5
NC
16499 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16500 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16501 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16502 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16503 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16504 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16505 /* Old name for QASX. */
21d799b5
NC
16506 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16507 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16508 /* Old name for QSAX. */
21d799b5
NC
16509 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16510 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16511 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16512 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16513 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16514 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16515 /* Old name for SASX. */
21d799b5
NC
16516 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16517 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16518 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16519 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16520 /* Old name for SHASX. */
21d799b5
NC
16521 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16522 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16523 /* Old name for SHSAX. */
21d799b5
NC
16524 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16525 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16526 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16527 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16528 /* Old name for SSAX. */
21d799b5
NC
16529 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16530 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16531 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16532 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16533 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16534 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16535 /* Old name for UASX. */
21d799b5
NC
16536 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16537 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16538 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16539 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16540 /* Old name for UHASX. */
21d799b5
NC
16541 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16542 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16543 /* Old name for UHSAX. */
21d799b5
NC
16544 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16545 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16546 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16547 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16548 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16549 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16550 /* Old name for UQASX. */
21d799b5
NC
16551 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16552 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16553 /* Old name for UQSAX. */
21d799b5
NC
16554 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16555 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16556 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16557 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16558 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
4f80ef3e 16559 /* Old name for USAX. */
21d799b5
NC
16560 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16561 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16562 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
c19d1205
ZW
16563 UF(rfeib, 9900a00, 1, (RRw), rfe),
16564 UF(rfeda, 8100a00, 1, (RRw), rfe),
21d799b5
NC
16565 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16566 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
c19d1205
ZW
16567 UF(rfefa, 9900a00, 1, (RRw), rfe),
16568 UF(rfeea, 8100a00, 1, (RRw), rfe),
21d799b5
NC
16569 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16570 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16571 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16572 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16573 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16574 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16575 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16576 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16577 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16578 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16579 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16580 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16581 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16582 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16583 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16584 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16585 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16586 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16587 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16588 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16589 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16590 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16591 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16592 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16593 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16594 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16595 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16596 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16597 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
b6702015
PB
16598 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16599 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
21d799b5
NC
16600 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16601 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16602 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16603 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16604 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16605 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
c19d1205 16606
c921be7d
NC
16607#undef ARM_VARIANT
16608#define ARM_VARIANT & arm_ext_v6k
16609#undef THUMB_VARIANT
16610#define THUMB_VARIANT & arm_ext_v6k
16611
21d799b5
NC
16612 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16613 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16614 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16615 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
c19d1205 16616
c921be7d
NC
16617#undef THUMB_VARIANT
16618#define THUMB_VARIANT & arm_ext_v6_notm
16619
21d799b5
NC
16620 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
16621 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
ebdca51a 16622
c921be7d
NC
16623#undef THUMB_VARIANT
16624#define THUMB_VARIANT & arm_ext_v6t2
16625
21d799b5
NC
16626 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16627 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
16628 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16629 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
16630 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
c19d1205 16631
c921be7d
NC
16632#undef ARM_VARIANT
16633#define ARM_VARIANT & arm_ext_v6z
16634
21d799b5 16635 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
c19d1205 16636
c921be7d
NC
16637#undef ARM_VARIANT
16638#define ARM_VARIANT & arm_ext_v6t2
16639
21d799b5
NC
16640 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16641 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16642 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16643 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
c19d1205 16644
21d799b5
NC
16645 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16646 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16647 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16648 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
c19d1205 16649
21d799b5
NC
16650 TC3("ldrht", 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16651 TC3("ldrsht", 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16652 TC3("ldrsbt", 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
16653 TC3("strht", 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
c19d1205 16654
21d799b5
NC
16655 UT("cbnz", b900, 2, (RR, EXP), t_cbz),
16656 UT("cbz", b100, 2, (RR, EXP), t_cbz),
c921be7d
NC
16657
16658 /* ARM does not really have an IT instruction, so always allow it.
16659 The opcode is copied from Thumb in order to allow warnings in
16660 -mimplicit-it=[never | arm] modes. */
16661#undef ARM_VARIANT
16662#define ARM_VARIANT & arm_ext_v1
16663
21d799b5
NC
16664 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16665 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16666 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16667 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16668 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16669 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16670 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16671 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16672 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16673 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16674 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16675 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16676 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16677 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16678 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
1c444d06 16679 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
21d799b5
NC
16680 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16681 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
c19d1205 16682
92e90b6e 16683 /* Thumb2 only instructions. */
c921be7d
NC
16684#undef ARM_VARIANT
16685#define ARM_VARIANT NULL
92e90b6e 16686
21d799b5
NC
16687 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16688 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16689 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16690 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16691 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16692 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
92e90b6e 16693
62b3e311 16694 /* Thumb-2 hardware division instructions (R and M profiles only). */
c921be7d
NC
16695#undef THUMB_VARIANT
16696#define THUMB_VARIANT & arm_ext_div
16697
21d799b5
NC
16698 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16699 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
62b3e311 16700
7e806470 16701 /* ARM V6M/V7 instructions. */
c921be7d
NC
16702#undef ARM_VARIANT
16703#define ARM_VARIANT & arm_ext_barrier
16704#undef THUMB_VARIANT
16705#define THUMB_VARIANT & arm_ext_barrier
16706
21d799b5
NC
16707 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16708 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16709 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
7e806470 16710
62b3e311 16711 /* ARM V7 instructions. */
c921be7d
NC
16712#undef ARM_VARIANT
16713#define ARM_VARIANT & arm_ext_v7
16714#undef THUMB_VARIANT
16715#define THUMB_VARIANT & arm_ext_v7
16716
21d799b5
NC
16717 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16718 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
62b3e311 16719
c921be7d
NC
16720#undef ARM_VARIANT
16721#define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16722
21d799b5
NC
16723 cCE("wfs", e200110, 1, (RR), rd),
16724 cCE("rfs", e300110, 1, (RR), rd),
16725 cCE("wfc", e400110, 1, (RR), rd),
16726 cCE("rfc", e500110, 1, (RR), rd),
16727
16728 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16729 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16730 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16731 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16732
16733 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16734 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16735 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16736 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16737
16738 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16739 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16740 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16741 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16742 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16743 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16744 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16745 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16746 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16747 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16748 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16749 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16750
16751 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16752 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16753 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
16754 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
16755 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
16756 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
16757 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
16758 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
16759 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
16760 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
16761 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
16762 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
16763
16764 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
16765 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
16766 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
16767 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
16768 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
16769 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
16770 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
16771 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
16772 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
16773 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
16774 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
16775 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
16776
16777 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
16778 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
16779 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
16780 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
16781 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
16782 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
16783 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
16784 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
16785 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
16786 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
16787 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
16788 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
16789
16790 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
16791 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
16792 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
16793 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
16794 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
16795 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
16796 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
16797 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
16798 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
16799 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
16800 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
16801 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
16802
16803 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
16804 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
16805 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
16806 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
16807 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
16808 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
16809 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
16810 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
16811 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
16812 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
16813 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
16814 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
16815
16816 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
16817 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
16818 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
16819 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
16820 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
16821 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
16822 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
16823 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
16824 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
16825 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
16826 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
16827 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
16828
16829 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
16830 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
16831 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
16832 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
16833 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
16834 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
16835 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
16836 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
16837 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
16838 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
16839 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
16840 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
16841
16842 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
16843 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
16844 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
16845 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
16846 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
16847 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
16848 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
16849 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
16850 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
16851 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
16852 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
16853 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
16854
16855 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
16856 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
16857 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
16858 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
16859 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
16860 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
16861 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
16862 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
16863 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
16864 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
16865 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
16866 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
16867
16868 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
16869 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
16870 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
16871 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
16872 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
16873 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
16874 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
16875 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
16876 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
16877 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
16878 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
16879 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
16880
16881 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
16882 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
16883 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
16884 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
16885 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
16886 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
16887 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
16888 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
16889 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
16890 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
16891 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
16892 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
16893
16894 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
16895 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
16896 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
16897 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
16898 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
16899 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
16900 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
16901 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
16902 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
16903 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
16904 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
16905 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
16906
16907 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
16908 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
16909 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
16910 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
16911 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
16912 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
16913 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
16914 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
16915 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
16916 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
16917 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
16918 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
16919
16920 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
16921 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
16922 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
16923 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
16924 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
16925 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
16926 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
16927 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
16928 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
16929 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
16930 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
16931 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
16932
16933 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
16934 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
16935 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
16936 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
16937 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
16938 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
16939 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
16940 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
16941 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
16942 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
16943 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
16944 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
16945
16946 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
16947 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
16948 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
16949 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
16950 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
16951 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16952 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16953 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16954 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
16955 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
16956 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
16957 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
16958
16959 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
16960 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
16961 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
16962 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
16963 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
16964 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16965 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16966 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16967 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
16968 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
16969 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
16970 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
16971
16972 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
16973 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
16974 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
16975 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
16976 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
16977 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16978 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16979 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16980 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
16981 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
16982 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
16983 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
16984
16985 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
16986 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
16987 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
16988 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
16989 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
16990 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
16991 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
16992 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
16993 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
16994 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
16995 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
16996 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
16997
16998 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
16999 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17000 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17001 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17002 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17003 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17004 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17005 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17006 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17007 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17008 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17009 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17010
17011 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17012 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17013 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17014 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17015 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17016 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17017 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17018 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17019 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17020 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17021 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17022 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17023
17024 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17025 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17026 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17027 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17028 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17029 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17030 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17031 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17032 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17033 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17034 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17035 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17036
17037 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17038 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17039 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17040 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17041 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17042 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17043 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17044 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17045 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17046 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17047 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17048 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17049
17050 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17051 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17052 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17053 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17054 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17055 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17056 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17057 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17058 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17059 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17060 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17061 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17062
17063 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17064 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17065 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17066 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17067 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17068 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17069 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17070 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17071 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17072 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17073 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17074 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17075
17076 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17077 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17078 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17079 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17080 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17081 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17082 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17083 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17084 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17085 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17086 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17087 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17088
17089 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17090 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17091 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17092 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17093 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17094 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17095 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17096 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17097 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17098 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17099 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17100 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17101
17102 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17103 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17104 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17105 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17106 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17107 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17108 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17109 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17110 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17111 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17112 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17113 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17114
17115 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17116 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17117 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17118 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17119
17120 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17121 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17122 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17123 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17124 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17125 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17126 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17127 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17128 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17129 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17130 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17131 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
b99bd4ef 17132
c19d1205
ZW
17133 /* The implementation of the FIX instruction is broken on some
17134 assemblers, in that it accepts a precision specifier as well as a
17135 rounding specifier, despite the fact that this is meaningless.
17136 To be more compatible, we accept it as well, though of course it
17137 does not set any bits. */
21d799b5
NC
17138 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17139 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17140 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17141 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17142 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17143 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17144 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17145 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17146 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17147 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17148 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17149 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17150 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
bfae80f2 17151
c19d1205 17152 /* Instructions that were new with the real FPA, call them V2. */
c921be7d
NC
17153#undef ARM_VARIANT
17154#define ARM_VARIANT & fpu_fpa_ext_v2
17155
21d799b5
NC
17156 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17157 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17158 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17159 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17160 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17161 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
c19d1205 17162
c921be7d
NC
17163#undef ARM_VARIANT
17164#define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17165
c19d1205 17166 /* Moves and type conversions. */
21d799b5
NC
17167 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17168 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17169 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17170 cCE("fmstat", ef1fa10, 0, (), noargs),
17171 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17172 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17173 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17174 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17175 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17176 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17177 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17178 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
c19d1205
ZW
17179
17180 /* Memory operations. */
21d799b5
NC
17181 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17182 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17183 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17184 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17185 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17186 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17187 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17188 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17189 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17190 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17191 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17192 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17193 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17194 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17195 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17196 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17197 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17198 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
bfae80f2 17199
c19d1205 17200 /* Monadic operations. */
21d799b5
NC
17201 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17202 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17203 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
c19d1205
ZW
17204
17205 /* Dyadic operations. */
21d799b5
NC
17206 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17207 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17208 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17209 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17210 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17211 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17212 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17213 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17214 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
b99bd4ef 17215
c19d1205 17216 /* Comparisons. */
21d799b5
NC
17217 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17218 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17219 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17220 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
b99bd4ef 17221
62f3b8c8
PB
17222 /* Double precision load/store are still present on single precision
17223 implementations. */
17224 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17225 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17226 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17227 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17228 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17229 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17230 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17231 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17232 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17233 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17234
c921be7d
NC
17235#undef ARM_VARIANT
17236#define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17237
c19d1205 17238 /* Moves and type conversions. */
21d799b5
NC
17239 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17240 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17241 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17242 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17243 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17244 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17245 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17246 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17247 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17248 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17249 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17250 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17251 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
c19d1205 17252
c19d1205 17253 /* Monadic operations. */
21d799b5
NC
17254 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17255 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17256 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
c19d1205
ZW
17257
17258 /* Dyadic operations. */
21d799b5
NC
17259 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17260 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17261 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17262 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17263 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17264 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17265 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17266 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17267 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
b99bd4ef 17268
c19d1205 17269 /* Comparisons. */
21d799b5
NC
17270 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17271 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17272 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17273 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
c19d1205 17274
c921be7d
NC
17275#undef ARM_VARIANT
17276#define ARM_VARIANT & fpu_vfp_ext_v2
17277
21d799b5
NC
17278 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17279 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17280 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17281 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
5287ad62 17282
037e8744
JB
17283/* Instructions which may belong to either the Neon or VFP instruction sets.
17284 Individual encoder functions perform additional architecture checks. */
c921be7d
NC
17285#undef ARM_VARIANT
17286#define ARM_VARIANT & fpu_vfp_ext_v1xd
17287#undef THUMB_VARIANT
17288#define THUMB_VARIANT & fpu_vfp_ext_v1xd
17289
037e8744
JB
17290 /* These mnemonics are unique to VFP. */
17291 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17292 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
21d799b5
NC
17293 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17294 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17295 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17296 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17297 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
037e8744
JB
17298 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17299 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17300 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17301
17302 /* Mnemonics shared by Neon and VFP. */
21d799b5
NC
17303 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17304 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17305 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
037e8744 17306
21d799b5
NC
17307 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17308 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
037e8744
JB
17309
17310 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17311 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17312
17313 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17314 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17315 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17316 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17317 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17318 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
4962c51a
MS
17319 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17320 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
037e8744 17321
21d799b5
NC
17322 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17323 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17324 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
f31fef98 17325
037e8744
JB
17326
17327 /* NOTE: All VMOV encoding is special-cased! */
17328 NCE(vmov, 0, 1, (VMOV), neon_mov),
17329 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17330
c921be7d
NC
17331#undef THUMB_VARIANT
17332#define THUMB_VARIANT & fpu_neon_ext_v1
17333#undef ARM_VARIANT
17334#define ARM_VARIANT & fpu_neon_ext_v1
17335
5287ad62
JB
17336 /* Data processing with three registers of the same length. */
17337 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17338 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17339 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17340 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17341 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17342 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17343 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17344 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17345 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17346 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17347 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17348 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17349 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17350 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
627907b7
JB
17351 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17352 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17353 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17354 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
5287ad62
JB
17355 /* If not immediate, fall back to neon_dyadic_i64_su.
17356 shl_imm should accept I8 I16 I32 I64,
17357 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
21d799b5
NC
17358 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17359 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17360 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17361 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
5287ad62 17362 /* Logic ops, types optional & ignored. */
21d799b5
NC
17363 nUF(vand, _vand, 2, (RNDQ, NILO), neon_logic),
17364 nUF(vandq, _vand, 2, (RNQ, NILO), neon_logic),
17365 nUF(vbic, _vbic, 2, (RNDQ, NILO), neon_logic),
17366 nUF(vbicq, _vbic, 2, (RNQ, NILO), neon_logic),
17367 nUF(vorr, _vorr, 2, (RNDQ, NILO), neon_logic),
17368 nUF(vorrq, _vorr, 2, (RNQ, NILO), neon_logic),
17369 nUF(vorn, _vorn, 2, (RNDQ, NILO), neon_logic),
17370 nUF(vornq, _vorn, 2, (RNQ, NILO), neon_logic),
17371 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17372 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
5287ad62
JB
17373 /* Bitfield ops, untyped. */
17374 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17375 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17376 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17377 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17378 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17379 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17380 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
21d799b5
NC
17381 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17382 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17383 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17384 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17385 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17386 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
5287ad62
JB
17387 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17388 back to neon_dyadic_if_su. */
21d799b5
NC
17389 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17390 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17391 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17392 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17393 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17394 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17395 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17396 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
428e3f1f 17397 /* Comparison. Type I8 I16 I32 F32. */
21d799b5
NC
17398 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17399 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
5287ad62 17400 /* As above, D registers only. */
21d799b5
NC
17401 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17402 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
5287ad62 17403 /* Int and float variants, signedness unimportant. */
21d799b5
NC
17404 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17405 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17406 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
5287ad62 17407 /* Add/sub take types I8 I16 I32 I64 F32. */
21d799b5
NC
17408 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17409 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
5287ad62
JB
17410 /* vtst takes sizes 8, 16, 32. */
17411 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17412 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17413 /* VMUL takes I8 I16 I32 F32 P8. */
21d799b5 17414 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
5287ad62 17415 /* VQD{R}MULH takes S16 S32. */
21d799b5
NC
17416 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17417 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17418 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17419 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
5287ad62
JB
17420 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17421 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17422 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17423 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
92559b5b
PB
17424 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17425 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17426 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17427 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
5287ad62
JB
17428 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17429 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17430 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17431 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17432
17433 /* Two address, int/float. Types S8 S16 S32 F32. */
5287ad62 17434 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
5287ad62
JB
17435 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17436
17437 /* Data processing with two registers and a shift amount. */
17438 /* Right shifts, and variants with rounding.
17439 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17440 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17441 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17442 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17443 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17444 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17445 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17446 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17447 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17448 /* Shift and insert. Sizes accepted 8 16 32 64. */
17449 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17450 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17451 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17452 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17453 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17454 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17455 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17456 /* Right shift immediate, saturating & narrowing, with rounding variants.
17457 Types accepted S16 S32 S64 U16 U32 U64. */
17458 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17459 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17460 /* As above, unsigned. Types accepted S16 S32 S64. */
17461 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17462 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17463 /* Right shift narrowing. Types accepted I16 I32 I64. */
17464 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17465 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17466 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
21d799b5 17467 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
5287ad62 17468 /* CVT with optional immediate for fixed-point variant. */
21d799b5 17469 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
b7fc2769 17470
21d799b5
NC
17471 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
17472 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
5287ad62
JB
17473
17474 /* Data processing, three registers of different lengths. */
17475 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17476 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17477 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17478 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17479 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17480 /* If not scalar, fall back to neon_dyadic_long.
17481 Vector types as above, scalar types S16 S32 U16 U32. */
21d799b5
NC
17482 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17483 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
5287ad62
JB
17484 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17485 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17486 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17487 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17488 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17489 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17490 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17491 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17492 /* Saturating doubling multiplies. Types S16 S32. */
21d799b5
NC
17493 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17494 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17495 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
5287ad62
JB
17496 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17497 S16 S32 U16 U32. */
21d799b5 17498 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
5287ad62
JB
17499
17500 /* Extract. Size 8. */
3b8d421e
PB
17501 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17502 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
5287ad62
JB
17503
17504 /* Two registers, miscellaneous. */
17505 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17506 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17507 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17508 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17509 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17510 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17511 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17512 /* Vector replicate. Sizes 8 16 32. */
21d799b5
NC
17513 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17514 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
5287ad62
JB
17515 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17516 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17517 /* VMOVN. Types I16 I32 I64. */
21d799b5 17518 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
5287ad62 17519 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
21d799b5 17520 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
5287ad62 17521 /* VQMOVUN. Types S16 S32 S64. */
21d799b5 17522 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
5287ad62
JB
17523 /* VZIP / VUZP. Sizes 8 16 32. */
17524 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17525 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17526 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17527 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17528 /* VQABS / VQNEG. Types S8 S16 S32. */
17529 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17530 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17531 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17532 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17533 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17534 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17535 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17536 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17537 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17538 /* Reciprocal estimates. Types U32 F32. */
17539 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17540 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17541 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17542 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17543 /* VCLS. Types S8 S16 S32. */
17544 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17545 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17546 /* VCLZ. Types I8 I16 I32. */
17547 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17548 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17549 /* VCNT. Size 8. */
17550 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17551 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17552 /* Two address, untyped. */
17553 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17554 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17555 /* VTRN. Sizes 8 16 32. */
21d799b5
NC
17556 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17557 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
5287ad62
JB
17558
17559 /* Table lookup. Size 8. */
17560 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17561 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17562
c921be7d
NC
17563#undef THUMB_VARIANT
17564#define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17565#undef ARM_VARIANT
17566#define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17567
5287ad62 17568 /* Neon element/structure load/store. */
21d799b5
NC
17569 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17570 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17571 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17572 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17573 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17574 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17575 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17576 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
5287ad62 17577
c921be7d 17578#undef THUMB_VARIANT
62f3b8c8
PB
17579#define THUMB_VARIANT &fpu_vfp_ext_v3xd
17580#undef ARM_VARIANT
17581#define ARM_VARIANT &fpu_vfp_ext_v3xd
17582 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17583 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17584 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17585 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17586 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17587 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17588 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17589 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17590 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17591
17592#undef THUMB_VARIANT
c921be7d
NC
17593#define THUMB_VARIANT & fpu_vfp_ext_v3
17594#undef ARM_VARIANT
17595#define ARM_VARIANT & fpu_vfp_ext_v3
17596
21d799b5 17597 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
21d799b5 17598 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17599 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17600 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17601 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17602 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17603 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
21d799b5 17604 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
21d799b5 17605 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
c19d1205 17606
62f3b8c8
PB
17607#undef ARM_VARIANT
17608#define ARM_VARIANT &fpu_vfp_ext_fma
17609#undef THUMB_VARIANT
17610#define THUMB_VARIANT &fpu_vfp_ext_fma
17611 /* Mnemonics shared by Neon and VFP. These are included in the
17612 VFP FMA variant; NEON and VFP FMA always includes the NEON
17613 FMA instructions. */
17614 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17615 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17616 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17617 the v form should always be used. */
17618 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17619 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17620 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17621 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17622 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17623 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17624
5287ad62 17625#undef THUMB_VARIANT
c921be7d
NC
17626#undef ARM_VARIANT
17627#define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17628
21d799b5
NC
17629 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17630 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17631 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17632 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17633 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17634 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17635 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17636 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
c19d1205 17637
c921be7d
NC
17638#undef ARM_VARIANT
17639#define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17640
21d799b5
NC
17641 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17642 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17643 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17644 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17645 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17646 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17647 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17648 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17649 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17650 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17651 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17652 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17653 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17654 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17655 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17656 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17657 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17658 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17659 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17660 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17661 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17662 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17663 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17664 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17665 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17666 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17667 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17668 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17669 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17670 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17671 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17672 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17673 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17674 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17675 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17676 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17677 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17678 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17679 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17680 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17681 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17682 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17683 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17684 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17685 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17686 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17687 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17688 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17689 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17690 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17691 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17692 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17693 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17694 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17695 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17696 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17697 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17698 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17699 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17700 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17701 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17702 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17703 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17704 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17705 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17706 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17707 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17708 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17709 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17710 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17711 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17712 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17713 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17714 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17715 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17716 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17717 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17718 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17719 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17720 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17721 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17722 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17723 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17724 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17725 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17726 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17727 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17728 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17729 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17730 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17731 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17732 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17733 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17734 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17735 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17736 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17737 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17738 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17739 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17740 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17741 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17742 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17743 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17744 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17745 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17746 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17747 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17748 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17749 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17750 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17751 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17752 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17753 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17754 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17755 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17756 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17757 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17758 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17759 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17760 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17761 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17762 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17763 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17764 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17765 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17766 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17767 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17768 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17769 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17770 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17771 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17772 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17773 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17774 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17775 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17776 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17777 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17778 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17779 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17780 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17781 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17782 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17783 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
17784 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
17785 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
17786 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
17787 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
17788 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
17789 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17790 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17791 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17792 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
17793 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
17794 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
17795 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
17796 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
17797 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
17798 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17799 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17800 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17801 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17802 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
c19d1205 17803
c921be7d
NC
17804#undef ARM_VARIANT
17805#define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
17806
21d799b5
NC
17807 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
17808 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
17809 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
17810 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
17811 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
17812 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
17813 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17814 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17815 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17816 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17817 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17818 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17819 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17820 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17821 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17822 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17823 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17824 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17825 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17826 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17827 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
17828 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17829 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17830 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17831 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17832 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17833 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17834 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17835 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17836 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17837 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17838 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17839 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17840 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17841 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17842 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17843 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17844 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17845 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17846 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17847 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17848 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17849 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17850 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17851 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17852 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17853 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17854 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17855 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17856 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17857 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17858 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17859 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17860 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17861 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17862 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17863 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
2d447fca 17864
c921be7d
NC
17865#undef ARM_VARIANT
17866#define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
17867
21d799b5
NC
17868 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17869 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17870 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17871 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17872 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
17873 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
17874 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
17875 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
17876 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
17877 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
17878 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
17879 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
17880 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
17881 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
17882 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
17883 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
17884 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
17885 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
17886 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
17887 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
17888 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
17889 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
17890 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
17891 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
17892 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
17893 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
17894 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
17895 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
17896 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
17897 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
17898 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
17899 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
17900 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
17901 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
17902 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
17903 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
17904 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
17905 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
17906 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
17907 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
17908 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
17909 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
17910 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
17911 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
17912 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
17913 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
17914 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
17915 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
17916 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
17917 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
17918 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
17919 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
17920 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
17921 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
17922 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
17923 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
17924 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
17925 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
17926 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
17927 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
17928 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
17929 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
17930 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
17931 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
17932 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17933 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17934 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17935 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17936 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17937 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
17938 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17939 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
17940 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17941 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
17942 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
17943 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
c19d1205
ZW
17944};
17945#undef ARM_VARIANT
17946#undef THUMB_VARIANT
17947#undef TCE
17948#undef TCM
17949#undef TUE
17950#undef TUF
17951#undef TCC
8f06b2d8 17952#undef cCE
e3cb604e
PB
17953#undef cCL
17954#undef C3E
c19d1205
ZW
17955#undef CE
17956#undef CM
17957#undef UE
17958#undef UF
17959#undef UT
5287ad62
JB
17960#undef NUF
17961#undef nUF
17962#undef NCE
17963#undef nCE
c19d1205
ZW
17964#undef OPS0
17965#undef OPS1
17966#undef OPS2
17967#undef OPS3
17968#undef OPS4
17969#undef OPS5
17970#undef OPS6
17971#undef do_0
17972\f
17973/* MD interface: bits in the object file. */
bfae80f2 17974
c19d1205
ZW
17975/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
17976 for use in the a.out file, and stores them in the array pointed to by buf.
17977 This knows about the endian-ness of the target machine and does
17978 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
17979 2 (short) and 4 (long) Floating numbers are put out as a series of
17980 LITTLENUMS (shorts, here at least). */
b99bd4ef 17981
c19d1205
ZW
17982void
17983md_number_to_chars (char * buf, valueT val, int n)
17984{
17985 if (target_big_endian)
17986 number_to_chars_bigendian (buf, val, n);
17987 else
17988 number_to_chars_littleendian (buf, val, n);
bfae80f2
RE
17989}
17990
c19d1205
ZW
17991static valueT
17992md_chars_to_number (char * buf, int n)
bfae80f2 17993{
c19d1205
ZW
17994 valueT result = 0;
17995 unsigned char * where = (unsigned char *) buf;
bfae80f2 17996
c19d1205 17997 if (target_big_endian)
b99bd4ef 17998 {
c19d1205
ZW
17999 while (n--)
18000 {
18001 result <<= 8;
18002 result |= (*where++ & 255);
18003 }
b99bd4ef 18004 }
c19d1205 18005 else
b99bd4ef 18006 {
c19d1205
ZW
18007 while (n--)
18008 {
18009 result <<= 8;
18010 result |= (where[n] & 255);
18011 }
bfae80f2 18012 }
b99bd4ef 18013
c19d1205 18014 return result;
bfae80f2 18015}
b99bd4ef 18016
c19d1205 18017/* MD interface: Sections. */
b99bd4ef 18018
0110f2b8
PB
18019/* Estimate the size of a frag before relaxing. Assume everything fits in
18020 2 bytes. */
18021
c19d1205 18022int
0110f2b8 18023md_estimate_size_before_relax (fragS * fragp,
c19d1205
ZW
18024 segT segtype ATTRIBUTE_UNUSED)
18025{
0110f2b8
PB
18026 fragp->fr_var = 2;
18027 return 2;
18028}
18029
18030/* Convert a machine dependent frag. */
18031
18032void
18033md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18034{
18035 unsigned long insn;
18036 unsigned long old_op;
18037 char *buf;
18038 expressionS exp;
18039 fixS *fixp;
18040 int reloc_type;
18041 int pc_rel;
18042 int opcode;
18043
18044 buf = fragp->fr_literal + fragp->fr_fix;
18045
18046 old_op = bfd_get_16(abfd, buf);
5f4273c7
NC
18047 if (fragp->fr_symbol)
18048 {
0110f2b8
PB
18049 exp.X_op = O_symbol;
18050 exp.X_add_symbol = fragp->fr_symbol;
5f4273c7
NC
18051 }
18052 else
18053 {
0110f2b8 18054 exp.X_op = O_constant;
5f4273c7 18055 }
0110f2b8
PB
18056 exp.X_add_number = fragp->fr_offset;
18057 opcode = fragp->fr_subtype;
18058 switch (opcode)
18059 {
18060 case T_MNEM_ldr_pc:
18061 case T_MNEM_ldr_pc2:
18062 case T_MNEM_ldr_sp:
18063 case T_MNEM_str_sp:
18064 case T_MNEM_ldr:
18065 case T_MNEM_ldrb:
18066 case T_MNEM_ldrh:
18067 case T_MNEM_str:
18068 case T_MNEM_strb:
18069 case T_MNEM_strh:
18070 if (fragp->fr_var == 4)
18071 {
5f4273c7 18072 insn = THUMB_OP32 (opcode);
0110f2b8
PB
18073 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18074 {
18075 insn |= (old_op & 0x700) << 4;
18076 }
18077 else
18078 {
18079 insn |= (old_op & 7) << 12;
18080 insn |= (old_op & 0x38) << 13;
18081 }
18082 insn |= 0x00000c00;
18083 put_thumb32_insn (buf, insn);
18084 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18085 }
18086 else
18087 {
18088 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18089 }
18090 pc_rel = (opcode == T_MNEM_ldr_pc2);
18091 break;
18092 case T_MNEM_adr:
18093 if (fragp->fr_var == 4)
18094 {
18095 insn = THUMB_OP32 (opcode);
18096 insn |= (old_op & 0xf0) << 4;
18097 put_thumb32_insn (buf, insn);
18098 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18099 }
18100 else
18101 {
18102 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18103 exp.X_add_number -= 4;
18104 }
18105 pc_rel = 1;
18106 break;
18107 case T_MNEM_mov:
18108 case T_MNEM_movs:
18109 case T_MNEM_cmp:
18110 case T_MNEM_cmn:
18111 if (fragp->fr_var == 4)
18112 {
18113 int r0off = (opcode == T_MNEM_mov
18114 || opcode == T_MNEM_movs) ? 0 : 8;
18115 insn = THUMB_OP32 (opcode);
18116 insn = (insn & 0xe1ffffff) | 0x10000000;
18117 insn |= (old_op & 0x700) << r0off;
18118 put_thumb32_insn (buf, insn);
18119 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18120 }
18121 else
18122 {
18123 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18124 }
18125 pc_rel = 0;
18126 break;
18127 case T_MNEM_b:
18128 if (fragp->fr_var == 4)
18129 {
18130 insn = THUMB_OP32(opcode);
18131 put_thumb32_insn (buf, insn);
18132 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18133 }
18134 else
18135 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18136 pc_rel = 1;
18137 break;
18138 case T_MNEM_bcond:
18139 if (fragp->fr_var == 4)
18140 {
18141 insn = THUMB_OP32(opcode);
18142 insn |= (old_op & 0xf00) << 14;
18143 put_thumb32_insn (buf, insn);
18144 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18145 }
18146 else
18147 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18148 pc_rel = 1;
18149 break;
18150 case T_MNEM_add_sp:
18151 case T_MNEM_add_pc:
18152 case T_MNEM_inc_sp:
18153 case T_MNEM_dec_sp:
18154 if (fragp->fr_var == 4)
18155 {
18156 /* ??? Choose between add and addw. */
18157 insn = THUMB_OP32 (opcode);
18158 insn |= (old_op & 0xf0) << 4;
18159 put_thumb32_insn (buf, insn);
16805f35
PB
18160 if (opcode == T_MNEM_add_pc)
18161 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18162 else
18163 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
0110f2b8
PB
18164 }
18165 else
18166 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18167 pc_rel = 0;
18168 break;
18169
18170 case T_MNEM_addi:
18171 case T_MNEM_addis:
18172 case T_MNEM_subi:
18173 case T_MNEM_subis:
18174 if (fragp->fr_var == 4)
18175 {
18176 insn = THUMB_OP32 (opcode);
18177 insn |= (old_op & 0xf0) << 4;
18178 insn |= (old_op & 0xf) << 16;
18179 put_thumb32_insn (buf, insn);
16805f35
PB
18180 if (insn & (1 << 20))
18181 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18182 else
18183 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
0110f2b8
PB
18184 }
18185 else
18186 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18187 pc_rel = 0;
18188 break;
18189 default:
5f4273c7 18190 abort ();
0110f2b8
PB
18191 }
18192 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
21d799b5 18193 (enum bfd_reloc_code_real) reloc_type);
0110f2b8
PB
18194 fixp->fx_file = fragp->fr_file;
18195 fixp->fx_line = fragp->fr_line;
18196 fragp->fr_fix += fragp->fr_var;
18197}
18198
18199/* Return the size of a relaxable immediate operand instruction.
18200 SHIFT and SIZE specify the form of the allowable immediate. */
18201static int
18202relax_immediate (fragS *fragp, int size, int shift)
18203{
18204 offsetT offset;
18205 offsetT mask;
18206 offsetT low;
18207
18208 /* ??? Should be able to do better than this. */
18209 if (fragp->fr_symbol)
18210 return 4;
18211
18212 low = (1 << shift) - 1;
18213 mask = (1 << (shift + size)) - (1 << shift);
18214 offset = fragp->fr_offset;
18215 /* Force misaligned offsets to 32-bit variant. */
18216 if (offset & low)
5e77afaa 18217 return 4;
0110f2b8
PB
18218 if (offset & ~mask)
18219 return 4;
18220 return 2;
18221}
18222
5e77afaa
PB
18223/* Get the address of a symbol during relaxation. */
18224static addressT
5f4273c7 18225relaxed_symbol_addr (fragS *fragp, long stretch)
5e77afaa
PB
18226{
18227 fragS *sym_frag;
18228 addressT addr;
18229 symbolS *sym;
18230
18231 sym = fragp->fr_symbol;
18232 sym_frag = symbol_get_frag (sym);
18233 know (S_GET_SEGMENT (sym) != absolute_section
18234 || sym_frag == &zero_address_frag);
18235 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18236
18237 /* If frag has yet to be reached on this pass, assume it will
18238 move by STRETCH just as we did. If this is not so, it will
18239 be because some frag between grows, and that will force
18240 another pass. */
18241
18242 if (stretch != 0
18243 && sym_frag->relax_marker != fragp->relax_marker)
4396b686
PB
18244 {
18245 fragS *f;
18246
18247 /* Adjust stretch for any alignment frag. Note that if have
18248 been expanding the earlier code, the symbol may be
18249 defined in what appears to be an earlier frag. FIXME:
18250 This doesn't handle the fr_subtype field, which specifies
18251 a maximum number of bytes to skip when doing an
18252 alignment. */
18253 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18254 {
18255 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18256 {
18257 if (stretch < 0)
18258 stretch = - ((- stretch)
18259 & ~ ((1 << (int) f->fr_offset) - 1));
18260 else
18261 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18262 if (stretch == 0)
18263 break;
18264 }
18265 }
18266 if (f != NULL)
18267 addr += stretch;
18268 }
5e77afaa
PB
18269
18270 return addr;
18271}
18272
0110f2b8
PB
18273/* Return the size of a relaxable adr pseudo-instruction or PC-relative
18274 load. */
18275static int
5e77afaa 18276relax_adr (fragS *fragp, asection *sec, long stretch)
0110f2b8
PB
18277{
18278 addressT addr;
18279 offsetT val;
18280
18281 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 18282 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
18283 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18284 return 4;
18285
5f4273c7 18286 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18287 addr = fragp->fr_address + fragp->fr_fix;
18288 addr = (addr + 4) & ~3;
5e77afaa 18289 /* Force misaligned targets to 32-bit variant. */
0110f2b8 18290 if (val & 3)
5e77afaa 18291 return 4;
0110f2b8
PB
18292 val -= addr;
18293 if (val < 0 || val > 1020)
18294 return 4;
18295 return 2;
18296}
18297
18298/* Return the size of a relaxable add/sub immediate instruction. */
18299static int
18300relax_addsub (fragS *fragp, asection *sec)
18301{
18302 char *buf;
18303 int op;
18304
18305 buf = fragp->fr_literal + fragp->fr_fix;
18306 op = bfd_get_16(sec->owner, buf);
18307 if ((op & 0xf) == ((op >> 4) & 0xf))
18308 return relax_immediate (fragp, 8, 0);
18309 else
18310 return relax_immediate (fragp, 3, 0);
18311}
18312
18313
18314/* Return the size of a relaxable branch instruction. BITS is the
18315 size of the offset field in the narrow instruction. */
18316
18317static int
5e77afaa 18318relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
0110f2b8
PB
18319{
18320 addressT addr;
18321 offsetT val;
18322 offsetT limit;
18323
18324 /* Assume worst case for symbols not known to be in the same section. */
5f4273c7 18325 if (!S_IS_DEFINED (fragp->fr_symbol)
0110f2b8
PB
18326 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18327 return 4;
18328
267bf995
RR
18329#ifdef OBJ_ELF
18330 if (S_IS_DEFINED (fragp->fr_symbol)
18331 && ARM_IS_FUNC (fragp->fr_symbol))
18332 return 4;
18333#endif
18334
5f4273c7 18335 val = relaxed_symbol_addr (fragp, stretch);
0110f2b8
PB
18336 addr = fragp->fr_address + fragp->fr_fix + 4;
18337 val -= addr;
18338
18339 /* Offset is a signed value *2 */
18340 limit = 1 << bits;
18341 if (val >= limit || val < -limit)
18342 return 4;
18343 return 2;
18344}
18345
18346
18347/* Relax a machine dependent frag. This returns the amount by which
18348 the current size of the frag should change. */
18349
18350int
5e77afaa 18351arm_relax_frag (asection *sec, fragS *fragp, long stretch)
0110f2b8
PB
18352{
18353 int oldsize;
18354 int newsize;
18355
18356 oldsize = fragp->fr_var;
18357 switch (fragp->fr_subtype)
18358 {
18359 case T_MNEM_ldr_pc2:
5f4273c7 18360 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18361 break;
18362 case T_MNEM_ldr_pc:
18363 case T_MNEM_ldr_sp:
18364 case T_MNEM_str_sp:
5f4273c7 18365 newsize = relax_immediate (fragp, 8, 2);
0110f2b8
PB
18366 break;
18367 case T_MNEM_ldr:
18368 case T_MNEM_str:
5f4273c7 18369 newsize = relax_immediate (fragp, 5, 2);
0110f2b8
PB
18370 break;
18371 case T_MNEM_ldrh:
18372 case T_MNEM_strh:
5f4273c7 18373 newsize = relax_immediate (fragp, 5, 1);
0110f2b8
PB
18374 break;
18375 case T_MNEM_ldrb:
18376 case T_MNEM_strb:
5f4273c7 18377 newsize = relax_immediate (fragp, 5, 0);
0110f2b8
PB
18378 break;
18379 case T_MNEM_adr:
5f4273c7 18380 newsize = relax_adr (fragp, sec, stretch);
0110f2b8
PB
18381 break;
18382 case T_MNEM_mov:
18383 case T_MNEM_movs:
18384 case T_MNEM_cmp:
18385 case T_MNEM_cmn:
5f4273c7 18386 newsize = relax_immediate (fragp, 8, 0);
0110f2b8
PB
18387 break;
18388 case T_MNEM_b:
5f4273c7 18389 newsize = relax_branch (fragp, sec, 11, stretch);
0110f2b8
PB
18390 break;
18391 case T_MNEM_bcond:
5f4273c7 18392 newsize = relax_branch (fragp, sec, 8, stretch);
0110f2b8
PB
18393 break;
18394 case T_MNEM_add_sp:
18395 case T_MNEM_add_pc:
18396 newsize = relax_immediate (fragp, 8, 2);
18397 break;
18398 case T_MNEM_inc_sp:
18399 case T_MNEM_dec_sp:
18400 newsize = relax_immediate (fragp, 7, 2);
18401 break;
18402 case T_MNEM_addi:
18403 case T_MNEM_addis:
18404 case T_MNEM_subi:
18405 case T_MNEM_subis:
18406 newsize = relax_addsub (fragp, sec);
18407 break;
18408 default:
5f4273c7 18409 abort ();
0110f2b8 18410 }
5e77afaa
PB
18411
18412 fragp->fr_var = newsize;
18413 /* Freeze wide instructions that are at or before the same location as
18414 in the previous pass. This avoids infinite loops.
5f4273c7
NC
18415 Don't freeze them unconditionally because targets may be artificially
18416 misaligned by the expansion of preceding frags. */
5e77afaa 18417 if (stretch <= 0 && newsize > 2)
0110f2b8 18418 {
0110f2b8 18419 md_convert_frag (sec->owner, sec, fragp);
5f4273c7 18420 frag_wane (fragp);
0110f2b8 18421 }
5e77afaa 18422
0110f2b8 18423 return newsize - oldsize;
c19d1205 18424}
b99bd4ef 18425
c19d1205 18426/* Round up a section size to the appropriate boundary. */
b99bd4ef 18427
c19d1205
ZW
18428valueT
18429md_section_align (segT segment ATTRIBUTE_UNUSED,
18430 valueT size)
18431{
f0927246
NC
18432#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18433 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18434 {
18435 /* For a.out, force the section size to be aligned. If we don't do
18436 this, BFD will align it for us, but it will not write out the
18437 final bytes of the section. This may be a bug in BFD, but it is
18438 easier to fix it here since that is how the other a.out targets
18439 work. */
18440 int align;
18441
18442 align = bfd_get_section_alignment (stdoutput, segment);
18443 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18444 }
c19d1205 18445#endif
f0927246
NC
18446
18447 return size;
bfae80f2 18448}
b99bd4ef 18449
c19d1205
ZW
18450/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18451 of an rs_align_code fragment. */
18452
18453void
18454arm_handle_align (fragS * fragP)
bfae80f2 18455{
e7495e45
NS
18456 static char const arm_noop[2][2][4] =
18457 {
18458 { /* ARMv1 */
18459 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18460 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18461 },
18462 { /* ARMv6k */
18463 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18464 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18465 },
18466 };
18467 static char const thumb_noop[2][2][2] =
18468 {
18469 { /* Thumb-1 */
18470 {0xc0, 0x46}, /* LE */
18471 {0x46, 0xc0}, /* BE */
18472 },
18473 { /* Thumb-2 */
18474 {0x00, 0xbf}, /* LE */
18475 {0xbf, 0x00} /* BE */
18476 }
18477 };
18478 static char const wide_thumb_noop[2][4] =
18479 { /* Wide Thumb-2 */
18480 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18481 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18482 };
c921be7d 18483
e7495e45 18484 unsigned bytes, fix, noop_size;
c19d1205
ZW
18485 char * p;
18486 const char * noop;
e7495e45 18487 const char *narrow_noop = NULL;
cd000bff
DJ
18488#ifdef OBJ_ELF
18489 enum mstate state;
18490#endif
bfae80f2 18491
c19d1205 18492 if (fragP->fr_type != rs_align_code)
bfae80f2
RE
18493 return;
18494
c19d1205
ZW
18495 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18496 p = fragP->fr_literal + fragP->fr_fix;
18497 fix = 0;
bfae80f2 18498
c19d1205
ZW
18499 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18500 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
bfae80f2 18501
539d4391 18502#ifdef OBJ_ELF
cd000bff 18503 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
539d4391 18504#endif
8dc2430f 18505
cd000bff 18506 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
a737bd4d 18507 {
e7495e45
NS
18508 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18509 {
18510 narrow_noop = thumb_noop[1][target_big_endian];
18511 noop = wide_thumb_noop[target_big_endian];
18512 }
c19d1205 18513 else
e7495e45
NS
18514 noop = thumb_noop[0][target_big_endian];
18515 noop_size = 2;
cd000bff
DJ
18516#ifdef OBJ_ELF
18517 state = MAP_THUMB;
18518#endif
7ed4c4c5
NC
18519 }
18520 else
18521 {
e7495e45
NS
18522 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18523 [target_big_endian];
18524 noop_size = 4;
cd000bff
DJ
18525#ifdef OBJ_ELF
18526 state = MAP_ARM;
18527#endif
7ed4c4c5 18528 }
c921be7d 18529
e7495e45 18530 fragP->fr_var = noop_size;
c921be7d 18531
c19d1205 18532 if (bytes & (noop_size - 1))
7ed4c4c5 18533 {
c19d1205 18534 fix = bytes & (noop_size - 1);
cd000bff
DJ
18535#ifdef OBJ_ELF
18536 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18537#endif
c19d1205
ZW
18538 memset (p, 0, fix);
18539 p += fix;
18540 bytes -= fix;
a737bd4d 18541 }
a737bd4d 18542
e7495e45
NS
18543 if (narrow_noop)
18544 {
18545 if (bytes & noop_size)
18546 {
18547 /* Insert a narrow noop. */
18548 memcpy (p, narrow_noop, noop_size);
18549 p += noop_size;
18550 bytes -= noop_size;
18551 fix += noop_size;
18552 }
18553
18554 /* Use wide noops for the remainder */
18555 noop_size = 4;
18556 }
18557
c19d1205 18558 while (bytes >= noop_size)
a737bd4d 18559 {
c19d1205
ZW
18560 memcpy (p, noop, noop_size);
18561 p += noop_size;
18562 bytes -= noop_size;
18563 fix += noop_size;
a737bd4d
NC
18564 }
18565
c19d1205 18566 fragP->fr_fix += fix;
a737bd4d
NC
18567}
18568
c19d1205
ZW
18569/* Called from md_do_align. Used to create an alignment
18570 frag in a code section. */
18571
18572void
18573arm_frag_align_code (int n, int max)
bfae80f2 18574{
c19d1205 18575 char * p;
7ed4c4c5 18576
c19d1205 18577 /* We assume that there will never be a requirement
6ec8e702 18578 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
c19d1205 18579 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
6ec8e702
NC
18580 {
18581 char err_msg[128];
18582
18583 sprintf (err_msg,
18584 _("alignments greater than %d bytes not supported in .text sections."),
18585 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20203fb9 18586 as_fatal ("%s", err_msg);
6ec8e702 18587 }
bfae80f2 18588
c19d1205
ZW
18589 p = frag_var (rs_align_code,
18590 MAX_MEM_FOR_RS_ALIGN_CODE,
18591 1,
18592 (relax_substateT) max,
18593 (symbolS *) NULL,
18594 (offsetT) n,
18595 (char *) NULL);
18596 *p = 0;
18597}
bfae80f2 18598
8dc2430f
NC
18599/* Perform target specific initialisation of a frag.
18600 Note - despite the name this initialisation is not done when the frag
18601 is created, but only when its type is assigned. A frag can be created
18602 and used a long time before its type is set, so beware of assuming that
18603 this initialisationis performed first. */
bfae80f2 18604
cd000bff
DJ
18605#ifndef OBJ_ELF
18606void
18607arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18608{
18609 /* Record whether this frag is in an ARM or a THUMB area. */
18610 fragP->tc_frag_data.thumb_mode = thumb_mode;
18611}
18612
18613#else /* OBJ_ELF is defined. */
c19d1205 18614void
cd000bff 18615arm_init_frag (fragS * fragP, int max_chars)
c19d1205 18616{
8dc2430f
NC
18617 /* If the current ARM vs THUMB mode has not already
18618 been recorded into this frag then do so now. */
cd000bff
DJ
18619 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18620 {
18621 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18622
18623 /* Record a mapping symbol for alignment frags. We will delete this
18624 later if the alignment ends up empty. */
18625 switch (fragP->fr_type)
18626 {
18627 case rs_align:
18628 case rs_align_test:
18629 case rs_fill:
18630 mapping_state_2 (MAP_DATA, max_chars);
18631 break;
18632 case rs_align_code:
18633 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18634 break;
18635 default:
18636 break;
18637 }
18638 }
bfae80f2
RE
18639}
18640
c19d1205
ZW
18641/* When we change sections we need to issue a new mapping symbol. */
18642
18643void
18644arm_elf_change_section (void)
bfae80f2 18645{
c19d1205
ZW
18646 /* Link an unlinked unwind index table section to the .text section. */
18647 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18648 && elf_linked_to_section (now_seg) == NULL)
18649 elf_linked_to_section (now_seg) = text_section;
bfae80f2
RE
18650}
18651
c19d1205
ZW
18652int
18653arm_elf_section_type (const char * str, size_t len)
e45d0630 18654{
c19d1205
ZW
18655 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18656 return SHT_ARM_EXIDX;
e45d0630 18657
c19d1205
ZW
18658 return -1;
18659}
18660\f
18661/* Code to deal with unwinding tables. */
e45d0630 18662
c19d1205 18663static void add_unwind_adjustsp (offsetT);
e45d0630 18664
5f4273c7 18665/* Generate any deferred unwind frame offset. */
e45d0630 18666
bfae80f2 18667static void
c19d1205 18668flush_pending_unwind (void)
bfae80f2 18669{
c19d1205 18670 offsetT offset;
bfae80f2 18671
c19d1205
ZW
18672 offset = unwind.pending_offset;
18673 unwind.pending_offset = 0;
18674 if (offset != 0)
18675 add_unwind_adjustsp (offset);
bfae80f2
RE
18676}
18677
c19d1205
ZW
18678/* Add an opcode to this list for this function. Two-byte opcodes should
18679 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18680 order. */
18681
bfae80f2 18682static void
c19d1205 18683add_unwind_opcode (valueT op, int length)
bfae80f2 18684{
c19d1205
ZW
18685 /* Add any deferred stack adjustment. */
18686 if (unwind.pending_offset)
18687 flush_pending_unwind ();
bfae80f2 18688
c19d1205 18689 unwind.sp_restored = 0;
bfae80f2 18690
c19d1205 18691 if (unwind.opcode_count + length > unwind.opcode_alloc)
bfae80f2 18692 {
c19d1205
ZW
18693 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18694 if (unwind.opcodes)
21d799b5
NC
18695 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18696 unwind.opcode_alloc);
c19d1205 18697 else
21d799b5 18698 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
bfae80f2 18699 }
c19d1205 18700 while (length > 0)
bfae80f2 18701 {
c19d1205
ZW
18702 length--;
18703 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18704 op >>= 8;
18705 unwind.opcode_count++;
bfae80f2 18706 }
bfae80f2
RE
18707}
18708
c19d1205
ZW
18709/* Add unwind opcodes to adjust the stack pointer. */
18710
bfae80f2 18711static void
c19d1205 18712add_unwind_adjustsp (offsetT offset)
bfae80f2 18713{
c19d1205 18714 valueT op;
bfae80f2 18715
c19d1205 18716 if (offset > 0x200)
bfae80f2 18717 {
c19d1205
ZW
18718 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18719 char bytes[5];
18720 int n;
18721 valueT o;
bfae80f2 18722
c19d1205
ZW
18723 /* Long form: 0xb2, uleb128. */
18724 /* This might not fit in a word so add the individual bytes,
18725 remembering the list is built in reverse order. */
18726 o = (valueT) ((offset - 0x204) >> 2);
18727 if (o == 0)
18728 add_unwind_opcode (0, 1);
bfae80f2 18729
c19d1205
ZW
18730 /* Calculate the uleb128 encoding of the offset. */
18731 n = 0;
18732 while (o)
18733 {
18734 bytes[n] = o & 0x7f;
18735 o >>= 7;
18736 if (o)
18737 bytes[n] |= 0x80;
18738 n++;
18739 }
18740 /* Add the insn. */
18741 for (; n; n--)
18742 add_unwind_opcode (bytes[n - 1], 1);
18743 add_unwind_opcode (0xb2, 1);
18744 }
18745 else if (offset > 0x100)
bfae80f2 18746 {
c19d1205
ZW
18747 /* Two short opcodes. */
18748 add_unwind_opcode (0x3f, 1);
18749 op = (offset - 0x104) >> 2;
18750 add_unwind_opcode (op, 1);
bfae80f2 18751 }
c19d1205
ZW
18752 else if (offset > 0)
18753 {
18754 /* Short opcode. */
18755 op = (offset - 4) >> 2;
18756 add_unwind_opcode (op, 1);
18757 }
18758 else if (offset < 0)
bfae80f2 18759 {
c19d1205
ZW
18760 offset = -offset;
18761 while (offset > 0x100)
bfae80f2 18762 {
c19d1205
ZW
18763 add_unwind_opcode (0x7f, 1);
18764 offset -= 0x100;
bfae80f2 18765 }
c19d1205
ZW
18766 op = ((offset - 4) >> 2) | 0x40;
18767 add_unwind_opcode (op, 1);
bfae80f2 18768 }
bfae80f2
RE
18769}
18770
c19d1205
ZW
18771/* Finish the list of unwind opcodes for this function. */
18772static void
18773finish_unwind_opcodes (void)
bfae80f2 18774{
c19d1205 18775 valueT op;
bfae80f2 18776
c19d1205 18777 if (unwind.fp_used)
bfae80f2 18778 {
708587a4 18779 /* Adjust sp as necessary. */
c19d1205
ZW
18780 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
18781 flush_pending_unwind ();
bfae80f2 18782
c19d1205
ZW
18783 /* After restoring sp from the frame pointer. */
18784 op = 0x90 | unwind.fp_reg;
18785 add_unwind_opcode (op, 1);
18786 }
18787 else
18788 flush_pending_unwind ();
bfae80f2
RE
18789}
18790
bfae80f2 18791
c19d1205
ZW
18792/* Start an exception table entry. If idx is nonzero this is an index table
18793 entry. */
bfae80f2
RE
18794
18795static void
c19d1205 18796start_unwind_section (const segT text_seg, int idx)
bfae80f2 18797{
c19d1205
ZW
18798 const char * text_name;
18799 const char * prefix;
18800 const char * prefix_once;
18801 const char * group_name;
18802 size_t prefix_len;
18803 size_t text_len;
18804 char * sec_name;
18805 size_t sec_name_len;
18806 int type;
18807 int flags;
18808 int linkonce;
bfae80f2 18809
c19d1205 18810 if (idx)
bfae80f2 18811 {
c19d1205
ZW
18812 prefix = ELF_STRING_ARM_unwind;
18813 prefix_once = ELF_STRING_ARM_unwind_once;
18814 type = SHT_ARM_EXIDX;
bfae80f2 18815 }
c19d1205 18816 else
bfae80f2 18817 {
c19d1205
ZW
18818 prefix = ELF_STRING_ARM_unwind_info;
18819 prefix_once = ELF_STRING_ARM_unwind_info_once;
18820 type = SHT_PROGBITS;
bfae80f2
RE
18821 }
18822
c19d1205
ZW
18823 text_name = segment_name (text_seg);
18824 if (streq (text_name, ".text"))
18825 text_name = "";
18826
18827 if (strncmp (text_name, ".gnu.linkonce.t.",
18828 strlen (".gnu.linkonce.t.")) == 0)
bfae80f2 18829 {
c19d1205
ZW
18830 prefix = prefix_once;
18831 text_name += strlen (".gnu.linkonce.t.");
bfae80f2
RE
18832 }
18833
c19d1205
ZW
18834 prefix_len = strlen (prefix);
18835 text_len = strlen (text_name);
18836 sec_name_len = prefix_len + text_len;
21d799b5 18837 sec_name = (char *) xmalloc (sec_name_len + 1);
c19d1205
ZW
18838 memcpy (sec_name, prefix, prefix_len);
18839 memcpy (sec_name + prefix_len, text_name, text_len);
18840 sec_name[prefix_len + text_len] = '\0';
bfae80f2 18841
c19d1205
ZW
18842 flags = SHF_ALLOC;
18843 linkonce = 0;
18844 group_name = 0;
bfae80f2 18845
c19d1205
ZW
18846 /* Handle COMDAT group. */
18847 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
bfae80f2 18848 {
c19d1205
ZW
18849 group_name = elf_group_name (text_seg);
18850 if (group_name == NULL)
18851 {
bd3ba5d1 18852 as_bad (_("Group section `%s' has no group signature"),
c19d1205
ZW
18853 segment_name (text_seg));
18854 ignore_rest_of_line ();
18855 return;
18856 }
18857 flags |= SHF_GROUP;
18858 linkonce = 1;
bfae80f2
RE
18859 }
18860
c19d1205 18861 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
bfae80f2 18862
5f4273c7 18863 /* Set the section link for index tables. */
c19d1205
ZW
18864 if (idx)
18865 elf_linked_to_section (now_seg) = text_seg;
bfae80f2
RE
18866}
18867
bfae80f2 18868
c19d1205
ZW
18869/* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
18870 personality routine data. Returns zero, or the index table value for
18871 and inline entry. */
18872
18873static valueT
18874create_unwind_entry (int have_data)
bfae80f2 18875{
c19d1205
ZW
18876 int size;
18877 addressT where;
18878 char *ptr;
18879 /* The current word of data. */
18880 valueT data;
18881 /* The number of bytes left in this word. */
18882 int n;
bfae80f2 18883
c19d1205 18884 finish_unwind_opcodes ();
bfae80f2 18885
c19d1205
ZW
18886 /* Remember the current text section. */
18887 unwind.saved_seg = now_seg;
18888 unwind.saved_subseg = now_subseg;
bfae80f2 18889
c19d1205 18890 start_unwind_section (now_seg, 0);
bfae80f2 18891
c19d1205 18892 if (unwind.personality_routine == NULL)
bfae80f2 18893 {
c19d1205
ZW
18894 if (unwind.personality_index == -2)
18895 {
18896 if (have_data)
5f4273c7 18897 as_bad (_("handlerdata in cantunwind frame"));
c19d1205
ZW
18898 return 1; /* EXIDX_CANTUNWIND. */
18899 }
bfae80f2 18900
c19d1205
ZW
18901 /* Use a default personality routine if none is specified. */
18902 if (unwind.personality_index == -1)
18903 {
18904 if (unwind.opcode_count > 3)
18905 unwind.personality_index = 1;
18906 else
18907 unwind.personality_index = 0;
18908 }
bfae80f2 18909
c19d1205
ZW
18910 /* Space for the personality routine entry. */
18911 if (unwind.personality_index == 0)
18912 {
18913 if (unwind.opcode_count > 3)
18914 as_bad (_("too many unwind opcodes for personality routine 0"));
bfae80f2 18915
c19d1205
ZW
18916 if (!have_data)
18917 {
18918 /* All the data is inline in the index table. */
18919 data = 0x80;
18920 n = 3;
18921 while (unwind.opcode_count > 0)
18922 {
18923 unwind.opcode_count--;
18924 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
18925 n--;
18926 }
bfae80f2 18927
c19d1205
ZW
18928 /* Pad with "finish" opcodes. */
18929 while (n--)
18930 data = (data << 8) | 0xb0;
bfae80f2 18931
c19d1205
ZW
18932 return data;
18933 }
18934 size = 0;
18935 }
18936 else
18937 /* We get two opcodes "free" in the first word. */
18938 size = unwind.opcode_count - 2;
18939 }
18940 else
18941 /* An extra byte is required for the opcode count. */
18942 size = unwind.opcode_count + 1;
bfae80f2 18943
c19d1205
ZW
18944 size = (size + 3) >> 2;
18945 if (size > 0xff)
18946 as_bad (_("too many unwind opcodes"));
bfae80f2 18947
c19d1205
ZW
18948 frag_align (2, 0, 0);
18949 record_alignment (now_seg, 2);
18950 unwind.table_entry = expr_build_dot ();
18951
18952 /* Allocate the table entry. */
18953 ptr = frag_more ((size << 2) + 4);
18954 where = frag_now_fix () - ((size << 2) + 4);
bfae80f2 18955
c19d1205 18956 switch (unwind.personality_index)
bfae80f2 18957 {
c19d1205
ZW
18958 case -1:
18959 /* ??? Should this be a PLT generating relocation? */
18960 /* Custom personality routine. */
18961 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
18962 BFD_RELOC_ARM_PREL31);
bfae80f2 18963
c19d1205
ZW
18964 where += 4;
18965 ptr += 4;
bfae80f2 18966
c19d1205
ZW
18967 /* Set the first byte to the number of additional words. */
18968 data = size - 1;
18969 n = 3;
18970 break;
bfae80f2 18971
c19d1205
ZW
18972 /* ABI defined personality routines. */
18973 case 0:
18974 /* Three opcodes bytes are packed into the first word. */
18975 data = 0x80;
18976 n = 3;
18977 break;
bfae80f2 18978
c19d1205
ZW
18979 case 1:
18980 case 2:
18981 /* The size and first two opcode bytes go in the first word. */
18982 data = ((0x80 + unwind.personality_index) << 8) | size;
18983 n = 2;
18984 break;
bfae80f2 18985
c19d1205
ZW
18986 default:
18987 /* Should never happen. */
18988 abort ();
18989 }
bfae80f2 18990
c19d1205
ZW
18991 /* Pack the opcodes into words (MSB first), reversing the list at the same
18992 time. */
18993 while (unwind.opcode_count > 0)
18994 {
18995 if (n == 0)
18996 {
18997 md_number_to_chars (ptr, data, 4);
18998 ptr += 4;
18999 n = 4;
19000 data = 0;
19001 }
19002 unwind.opcode_count--;
19003 n--;
19004 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19005 }
19006
19007 /* Finish off the last word. */
19008 if (n < 4)
19009 {
19010 /* Pad with "finish" opcodes. */
19011 while (n--)
19012 data = (data << 8) | 0xb0;
19013
19014 md_number_to_chars (ptr, data, 4);
19015 }
19016
19017 if (!have_data)
19018 {
19019 /* Add an empty descriptor if there is no user-specified data. */
19020 ptr = frag_more (4);
19021 md_number_to_chars (ptr, 0, 4);
19022 }
19023
19024 return 0;
bfae80f2
RE
19025}
19026
f0927246
NC
19027
19028/* Initialize the DWARF-2 unwind information for this procedure. */
19029
19030void
19031tc_arm_frame_initial_instructions (void)
19032{
19033 cfi_add_CFA_def_cfa (REG_SP, 0);
19034}
19035#endif /* OBJ_ELF */
19036
c19d1205
ZW
19037/* Convert REGNAME to a DWARF-2 register number. */
19038
19039int
1df69f4f 19040tc_arm_regname_to_dw2regnum (char *regname)
bfae80f2 19041{
1df69f4f 19042 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
c19d1205
ZW
19043
19044 if (reg == FAIL)
19045 return -1;
19046
19047 return reg;
bfae80f2
RE
19048}
19049
f0927246 19050#ifdef TE_PE
c19d1205 19051void
f0927246 19052tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
bfae80f2 19053{
f0927246 19054 expressionS expr;
bfae80f2 19055
f0927246
NC
19056 expr.X_op = O_secrel;
19057 expr.X_add_symbol = symbol;
19058 expr.X_add_number = 0;
19059 emit_expr (&expr, size);
19060}
19061#endif
bfae80f2 19062
c19d1205 19063/* MD interface: Symbol and relocation handling. */
bfae80f2 19064
2fc8bdac
ZW
19065/* Return the address within the segment that a PC-relative fixup is
19066 relative to. For ARM, PC-relative fixups applied to instructions
19067 are generally relative to the location of the fixup plus 8 bytes.
19068 Thumb branches are offset by 4, and Thumb loads relative to PC
19069 require special handling. */
bfae80f2 19070
c19d1205 19071long
2fc8bdac 19072md_pcrel_from_section (fixS * fixP, segT seg)
bfae80f2 19073{
2fc8bdac
ZW
19074 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19075
19076 /* If this is pc-relative and we are going to emit a relocation
19077 then we just want to put out any pipeline compensation that the linker
53baae48
NC
19078 will need. Otherwise we want to use the calculated base.
19079 For WinCE we skip the bias for externals as well, since this
19080 is how the MS ARM-CE assembler behaves and we want to be compatible. */
5f4273c7 19081 if (fixP->fx_pcrel
2fc8bdac 19082 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
53baae48
NC
19083 || (arm_force_relocation (fixP)
19084#ifdef TE_WINCE
19085 && !S_IS_EXTERNAL (fixP->fx_addsy)
19086#endif
19087 )))
2fc8bdac 19088 base = 0;
bfae80f2 19089
267bf995 19090
c19d1205 19091 switch (fixP->fx_r_type)
bfae80f2 19092 {
2fc8bdac
ZW
19093 /* PC relative addressing on the Thumb is slightly odd as the
19094 bottom two bits of the PC are forced to zero for the
19095 calculation. This happens *after* application of the
19096 pipeline offset. However, Thumb adrl already adjusts for
19097 this, so we need not do it again. */
c19d1205 19098 case BFD_RELOC_ARM_THUMB_ADD:
2fc8bdac 19099 return base & ~3;
c19d1205
ZW
19100
19101 case BFD_RELOC_ARM_THUMB_OFFSET:
19102 case BFD_RELOC_ARM_T32_OFFSET_IMM:
e9f89963 19103 case BFD_RELOC_ARM_T32_ADD_PC12:
8f06b2d8 19104 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
2fc8bdac 19105 return (base + 4) & ~3;
c19d1205 19106
2fc8bdac
ZW
19107 /* Thumb branches are simply offset by +4. */
19108 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19109 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19110 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19111 case BFD_RELOC_THUMB_PCREL_BRANCH20:
2fc8bdac 19112 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac 19113 return base + 4;
bfae80f2 19114
267bf995
RR
19115 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19116 if (fixP->fx_addsy
19117 && ARM_IS_FUNC (fixP->fx_addsy)
19118 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19119 base = fixP->fx_where + fixP->fx_frag->fr_address;
19120 return base + 4;
19121
00adf2d4
JB
19122 /* BLX is like branches above, but forces the low two bits of PC to
19123 zero. */
267bf995
RR
19124 case BFD_RELOC_THUMB_PCREL_BLX:
19125 if (fixP->fx_addsy
19126 && THUMB_IS_FUNC (fixP->fx_addsy)
19127 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19128 base = fixP->fx_where + fixP->fx_frag->fr_address;
00adf2d4
JB
19129 return (base + 4) & ~3;
19130
2fc8bdac
ZW
19131 /* ARM mode branches are offset by +8. However, the Windows CE
19132 loader expects the relocation not to take this into account. */
267bf995
RR
19133 case BFD_RELOC_ARM_PCREL_BLX:
19134 if (fixP->fx_addsy
19135 && ARM_IS_FUNC (fixP->fx_addsy)
19136 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19137 base = fixP->fx_where + fixP->fx_frag->fr_address;
19138 return base + 8;
19139
19140 case BFD_RELOC_ARM_PCREL_CALL:
19141 if (fixP->fx_addsy
19142 && THUMB_IS_FUNC (fixP->fx_addsy)
19143 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19144 base = fixP->fx_where + fixP->fx_frag->fr_address;
19145 return base + 8;
19146
2fc8bdac 19147 case BFD_RELOC_ARM_PCREL_BRANCH:
39b41c9c 19148 case BFD_RELOC_ARM_PCREL_JUMP:
2fc8bdac 19149 case BFD_RELOC_ARM_PLT32:
c19d1205 19150#ifdef TE_WINCE
5f4273c7 19151 /* When handling fixups immediately, because we have already
53baae48
NC
19152 discovered the value of a symbol, or the address of the frag involved
19153 we must account for the offset by +8, as the OS loader will never see the reloc.
19154 see fixup_segment() in write.c
19155 The S_IS_EXTERNAL test handles the case of global symbols.
19156 Those need the calculated base, not just the pipe compensation the linker will need. */
19157 if (fixP->fx_pcrel
19158 && fixP->fx_addsy != NULL
19159 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19160 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19161 return base + 8;
2fc8bdac 19162 return base;
c19d1205 19163#else
2fc8bdac 19164 return base + 8;
c19d1205 19165#endif
2fc8bdac 19166
267bf995 19167
2fc8bdac
ZW
19168 /* ARM mode loads relative to PC are also offset by +8. Unlike
19169 branches, the Windows CE loader *does* expect the relocation
19170 to take this into account. */
19171 case BFD_RELOC_ARM_OFFSET_IMM:
19172 case BFD_RELOC_ARM_OFFSET_IMM8:
19173 case BFD_RELOC_ARM_HWLITERAL:
19174 case BFD_RELOC_ARM_LITERAL:
19175 case BFD_RELOC_ARM_CP_OFF_IMM:
19176 return base + 8;
19177
19178
19179 /* Other PC-relative relocations are un-offset. */
19180 default:
19181 return base;
19182 }
bfae80f2
RE
19183}
19184
c19d1205
ZW
19185/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19186 Otherwise we have no need to default values of symbols. */
19187
19188symbolS *
19189md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
bfae80f2 19190{
c19d1205
ZW
19191#ifdef OBJ_ELF
19192 if (name[0] == '_' && name[1] == 'G'
19193 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19194 {
19195 if (!GOT_symbol)
19196 {
19197 if (symbol_find (name))
bd3ba5d1 19198 as_bad (_("GOT already in the symbol table"));
bfae80f2 19199
c19d1205
ZW
19200 GOT_symbol = symbol_new (name, undefined_section,
19201 (valueT) 0, & zero_address_frag);
19202 }
bfae80f2 19203
c19d1205 19204 return GOT_symbol;
bfae80f2 19205 }
c19d1205 19206#endif
bfae80f2 19207
c921be7d 19208 return NULL;
bfae80f2
RE
19209}
19210
55cf6793 19211/* Subroutine of md_apply_fix. Check to see if an immediate can be
c19d1205
ZW
19212 computed as two separate immediate values, added together. We
19213 already know that this value cannot be computed by just one ARM
19214 instruction. */
19215
19216static unsigned int
19217validate_immediate_twopart (unsigned int val,
19218 unsigned int * highpart)
bfae80f2 19219{
c19d1205
ZW
19220 unsigned int a;
19221 unsigned int i;
bfae80f2 19222
c19d1205
ZW
19223 for (i = 0; i < 32; i += 2)
19224 if (((a = rotate_left (val, i)) & 0xff) != 0)
19225 {
19226 if (a & 0xff00)
19227 {
19228 if (a & ~ 0xffff)
19229 continue;
19230 * highpart = (a >> 8) | ((i + 24) << 7);
19231 }
19232 else if (a & 0xff0000)
19233 {
19234 if (a & 0xff000000)
19235 continue;
19236 * highpart = (a >> 16) | ((i + 16) << 7);
19237 }
19238 else
19239 {
9c2799c2 19240 gas_assert (a & 0xff000000);
c19d1205
ZW
19241 * highpart = (a >> 24) | ((i + 8) << 7);
19242 }
bfae80f2 19243
c19d1205
ZW
19244 return (a & 0xff) | (i << 7);
19245 }
bfae80f2 19246
c19d1205 19247 return FAIL;
bfae80f2
RE
19248}
19249
c19d1205
ZW
19250static int
19251validate_offset_imm (unsigned int val, int hwse)
19252{
19253 if ((hwse && val > 255) || val > 4095)
19254 return FAIL;
19255 return val;
19256}
bfae80f2 19257
55cf6793 19258/* Subroutine of md_apply_fix. Do those data_ops which can take a
c19d1205
ZW
19259 negative immediate constant by altering the instruction. A bit of
19260 a hack really.
19261 MOV <-> MVN
19262 AND <-> BIC
19263 ADC <-> SBC
19264 by inverting the second operand, and
19265 ADD <-> SUB
19266 CMP <-> CMN
19267 by negating the second operand. */
bfae80f2 19268
c19d1205
ZW
19269static int
19270negate_data_op (unsigned long * instruction,
19271 unsigned long value)
bfae80f2 19272{
c19d1205
ZW
19273 int op, new_inst;
19274 unsigned long negated, inverted;
bfae80f2 19275
c19d1205
ZW
19276 negated = encode_arm_immediate (-value);
19277 inverted = encode_arm_immediate (~value);
bfae80f2 19278
c19d1205
ZW
19279 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19280 switch (op)
bfae80f2 19281 {
c19d1205
ZW
19282 /* First negates. */
19283 case OPCODE_SUB: /* ADD <-> SUB */
19284 new_inst = OPCODE_ADD;
19285 value = negated;
19286 break;
bfae80f2 19287
c19d1205
ZW
19288 case OPCODE_ADD:
19289 new_inst = OPCODE_SUB;
19290 value = negated;
19291 break;
bfae80f2 19292
c19d1205
ZW
19293 case OPCODE_CMP: /* CMP <-> CMN */
19294 new_inst = OPCODE_CMN;
19295 value = negated;
19296 break;
bfae80f2 19297
c19d1205
ZW
19298 case OPCODE_CMN:
19299 new_inst = OPCODE_CMP;
19300 value = negated;
19301 break;
bfae80f2 19302
c19d1205
ZW
19303 /* Now Inverted ops. */
19304 case OPCODE_MOV: /* MOV <-> MVN */
19305 new_inst = OPCODE_MVN;
19306 value = inverted;
19307 break;
bfae80f2 19308
c19d1205
ZW
19309 case OPCODE_MVN:
19310 new_inst = OPCODE_MOV;
19311 value = inverted;
19312 break;
bfae80f2 19313
c19d1205
ZW
19314 case OPCODE_AND: /* AND <-> BIC */
19315 new_inst = OPCODE_BIC;
19316 value = inverted;
19317 break;
bfae80f2 19318
c19d1205
ZW
19319 case OPCODE_BIC:
19320 new_inst = OPCODE_AND;
19321 value = inverted;
19322 break;
bfae80f2 19323
c19d1205
ZW
19324 case OPCODE_ADC: /* ADC <-> SBC */
19325 new_inst = OPCODE_SBC;
19326 value = inverted;
19327 break;
bfae80f2 19328
c19d1205
ZW
19329 case OPCODE_SBC:
19330 new_inst = OPCODE_ADC;
19331 value = inverted;
19332 break;
bfae80f2 19333
c19d1205
ZW
19334 /* We cannot do anything. */
19335 default:
19336 return FAIL;
b99bd4ef
NC
19337 }
19338
c19d1205
ZW
19339 if (value == (unsigned) FAIL)
19340 return FAIL;
19341
19342 *instruction &= OPCODE_MASK;
19343 *instruction |= new_inst << DATA_OP_SHIFT;
19344 return value;
b99bd4ef
NC
19345}
19346
ef8d22e6
PB
19347/* Like negate_data_op, but for Thumb-2. */
19348
19349static unsigned int
16dd5e42 19350thumb32_negate_data_op (offsetT *instruction, unsigned int value)
ef8d22e6
PB
19351{
19352 int op, new_inst;
19353 int rd;
16dd5e42 19354 unsigned int negated, inverted;
ef8d22e6
PB
19355
19356 negated = encode_thumb32_immediate (-value);
19357 inverted = encode_thumb32_immediate (~value);
19358
19359 rd = (*instruction >> 8) & 0xf;
19360 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19361 switch (op)
19362 {
19363 /* ADD <-> SUB. Includes CMP <-> CMN. */
19364 case T2_OPCODE_SUB:
19365 new_inst = T2_OPCODE_ADD;
19366 value = negated;
19367 break;
19368
19369 case T2_OPCODE_ADD:
19370 new_inst = T2_OPCODE_SUB;
19371 value = negated;
19372 break;
19373
19374 /* ORR <-> ORN. Includes MOV <-> MVN. */
19375 case T2_OPCODE_ORR:
19376 new_inst = T2_OPCODE_ORN;
19377 value = inverted;
19378 break;
19379
19380 case T2_OPCODE_ORN:
19381 new_inst = T2_OPCODE_ORR;
19382 value = inverted;
19383 break;
19384
19385 /* AND <-> BIC. TST has no inverted equivalent. */
19386 case T2_OPCODE_AND:
19387 new_inst = T2_OPCODE_BIC;
19388 if (rd == 15)
19389 value = FAIL;
19390 else
19391 value = inverted;
19392 break;
19393
19394 case T2_OPCODE_BIC:
19395 new_inst = T2_OPCODE_AND;
19396 value = inverted;
19397 break;
19398
19399 /* ADC <-> SBC */
19400 case T2_OPCODE_ADC:
19401 new_inst = T2_OPCODE_SBC;
19402 value = inverted;
19403 break;
19404
19405 case T2_OPCODE_SBC:
19406 new_inst = T2_OPCODE_ADC;
19407 value = inverted;
19408 break;
19409
19410 /* We cannot do anything. */
19411 default:
19412 return FAIL;
19413 }
19414
16dd5e42 19415 if (value == (unsigned int)FAIL)
ef8d22e6
PB
19416 return FAIL;
19417
19418 *instruction &= T2_OPCODE_MASK;
19419 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19420 return value;
19421}
19422
8f06b2d8
PB
19423/* Read a 32-bit thumb instruction from buf. */
19424static unsigned long
19425get_thumb32_insn (char * buf)
19426{
19427 unsigned long insn;
19428 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19429 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19430
19431 return insn;
19432}
19433
a8bc6c78
PB
19434
19435/* We usually want to set the low bit on the address of thumb function
19436 symbols. In particular .word foo - . should have the low bit set.
19437 Generic code tries to fold the difference of two symbols to
19438 a constant. Prevent this and force a relocation when the first symbols
19439 is a thumb function. */
c921be7d
NC
19440
19441bfd_boolean
a8bc6c78
PB
19442arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19443{
19444 if (op == O_subtract
19445 && l->X_op == O_symbol
19446 && r->X_op == O_symbol
19447 && THUMB_IS_FUNC (l->X_add_symbol))
19448 {
19449 l->X_op = O_subtract;
19450 l->X_op_symbol = r->X_add_symbol;
19451 l->X_add_number -= r->X_add_number;
c921be7d 19452 return TRUE;
a8bc6c78 19453 }
c921be7d 19454
a8bc6c78 19455 /* Process as normal. */
c921be7d 19456 return FALSE;
a8bc6c78
PB
19457}
19458
c19d1205 19459void
55cf6793 19460md_apply_fix (fixS * fixP,
c19d1205
ZW
19461 valueT * valP,
19462 segT seg)
19463{
19464 offsetT value = * valP;
19465 offsetT newval;
19466 unsigned int newimm;
19467 unsigned long temp;
19468 int sign;
19469 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
b99bd4ef 19470
9c2799c2 19471 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
b99bd4ef 19472
c19d1205 19473 /* Note whether this will delete the relocation. */
4962c51a 19474
c19d1205
ZW
19475 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19476 fixP->fx_done = 1;
b99bd4ef 19477
adbaf948 19478 /* On a 64-bit host, silently truncate 'value' to 32 bits for
5f4273c7 19479 consistency with the behaviour on 32-bit hosts. Remember value
adbaf948
ZW
19480 for emit_reloc. */
19481 value &= 0xffffffff;
19482 value ^= 0x80000000;
5f4273c7 19483 value -= 0x80000000;
adbaf948
ZW
19484
19485 *valP = value;
c19d1205 19486 fixP->fx_addnumber = value;
b99bd4ef 19487
adbaf948
ZW
19488 /* Same treatment for fixP->fx_offset. */
19489 fixP->fx_offset &= 0xffffffff;
19490 fixP->fx_offset ^= 0x80000000;
19491 fixP->fx_offset -= 0x80000000;
19492
c19d1205 19493 switch (fixP->fx_r_type)
b99bd4ef 19494 {
c19d1205
ZW
19495 case BFD_RELOC_NONE:
19496 /* This will need to go in the object file. */
19497 fixP->fx_done = 0;
19498 break;
b99bd4ef 19499
c19d1205
ZW
19500 case BFD_RELOC_ARM_IMMEDIATE:
19501 /* We claim that this fixup has been processed here,
19502 even if in fact we generate an error because we do
19503 not have a reloc for it, so tc_gen_reloc will reject it. */
19504 fixP->fx_done = 1;
b99bd4ef 19505
c19d1205
ZW
19506 if (fixP->fx_addsy
19507 && ! S_IS_DEFINED (fixP->fx_addsy))
b99bd4ef 19508 {
c19d1205
ZW
19509 as_bad_where (fixP->fx_file, fixP->fx_line,
19510 _("undefined symbol %s used as an immediate value"),
19511 S_GET_NAME (fixP->fx_addsy));
19512 break;
b99bd4ef
NC
19513 }
19514
42e5fcbf
AS
19515 if (fixP->fx_addsy
19516 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19517 {
19518 as_bad_where (fixP->fx_file, fixP->fx_line,
19519 _("symbol %s is in a different section"),
19520 S_GET_NAME (fixP->fx_addsy));
19521 break;
19522 }
19523
c19d1205
ZW
19524 newimm = encode_arm_immediate (value);
19525 temp = md_chars_to_number (buf, INSN_SIZE);
19526
19527 /* If the instruction will fail, see if we can fix things up by
19528 changing the opcode. */
19529 if (newimm == (unsigned int) FAIL
19530 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
b99bd4ef 19531 {
c19d1205
ZW
19532 as_bad_where (fixP->fx_file, fixP->fx_line,
19533 _("invalid constant (%lx) after fixup"),
19534 (unsigned long) value);
19535 break;
b99bd4ef 19536 }
b99bd4ef 19537
c19d1205
ZW
19538 newimm |= (temp & 0xfffff000);
19539 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19540 break;
b99bd4ef 19541
c19d1205
ZW
19542 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19543 {
19544 unsigned int highpart = 0;
19545 unsigned int newinsn = 0xe1a00000; /* nop. */
b99bd4ef 19546
42e5fcbf
AS
19547 if (fixP->fx_addsy
19548 && ! S_IS_DEFINED (fixP->fx_addsy))
19549 {
19550 as_bad_where (fixP->fx_file, fixP->fx_line,
19551 _("undefined symbol %s used as an immediate value"),
19552 S_GET_NAME (fixP->fx_addsy));
19553 break;
19554 }
19555
19556 if (fixP->fx_addsy
19557 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19558 {
19559 as_bad_where (fixP->fx_file, fixP->fx_line,
19560 _("symbol %s is in a different section"),
19561 S_GET_NAME (fixP->fx_addsy));
19562 break;
19563 }
19564
c19d1205
ZW
19565 newimm = encode_arm_immediate (value);
19566 temp = md_chars_to_number (buf, INSN_SIZE);
b99bd4ef 19567
c19d1205
ZW
19568 /* If the instruction will fail, see if we can fix things up by
19569 changing the opcode. */
19570 if (newimm == (unsigned int) FAIL
19571 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19572 {
19573 /* No ? OK - try using two ADD instructions to generate
19574 the value. */
19575 newimm = validate_immediate_twopart (value, & highpart);
b99bd4ef 19576
c19d1205
ZW
19577 /* Yes - then make sure that the second instruction is
19578 also an add. */
19579 if (newimm != (unsigned int) FAIL)
19580 newinsn = temp;
19581 /* Still No ? Try using a negated value. */
19582 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19583 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19584 /* Otherwise - give up. */
19585 else
19586 {
19587 as_bad_where (fixP->fx_file, fixP->fx_line,
19588 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19589 (long) value);
19590 break;
19591 }
b99bd4ef 19592
c19d1205
ZW
19593 /* Replace the first operand in the 2nd instruction (which
19594 is the PC) with the destination register. We have
19595 already added in the PC in the first instruction and we
19596 do not want to do it again. */
19597 newinsn &= ~ 0xf0000;
19598 newinsn |= ((newinsn & 0x0f000) << 4);
19599 }
b99bd4ef 19600
c19d1205
ZW
19601 newimm |= (temp & 0xfffff000);
19602 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
b99bd4ef 19603
c19d1205
ZW
19604 highpart |= (newinsn & 0xfffff000);
19605 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19606 }
19607 break;
b99bd4ef 19608
c19d1205 19609 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
19610 if (!fixP->fx_done && seg->use_rela_p)
19611 value = 0;
19612
c19d1205
ZW
19613 case BFD_RELOC_ARM_LITERAL:
19614 sign = value >= 0;
b99bd4ef 19615
c19d1205
ZW
19616 if (value < 0)
19617 value = - value;
b99bd4ef 19618
c19d1205 19619 if (validate_offset_imm (value, 0) == FAIL)
f03698e6 19620 {
c19d1205
ZW
19621 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19622 as_bad_where (fixP->fx_file, fixP->fx_line,
19623 _("invalid literal constant: pool needs to be closer"));
19624 else
19625 as_bad_where (fixP->fx_file, fixP->fx_line,
19626 _("bad immediate value for offset (%ld)"),
19627 (long) value);
19628 break;
f03698e6
RE
19629 }
19630
c19d1205
ZW
19631 newval = md_chars_to_number (buf, INSN_SIZE);
19632 newval &= 0xff7ff000;
19633 newval |= value | (sign ? INDEX_UP : 0);
19634 md_number_to_chars (buf, newval, INSN_SIZE);
19635 break;
b99bd4ef 19636
c19d1205
ZW
19637 case BFD_RELOC_ARM_OFFSET_IMM8:
19638 case BFD_RELOC_ARM_HWLITERAL:
19639 sign = value >= 0;
b99bd4ef 19640
c19d1205
ZW
19641 if (value < 0)
19642 value = - value;
b99bd4ef 19643
c19d1205 19644 if (validate_offset_imm (value, 1) == FAIL)
b99bd4ef 19645 {
c19d1205
ZW
19646 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19647 as_bad_where (fixP->fx_file, fixP->fx_line,
19648 _("invalid literal constant: pool needs to be closer"));
19649 else
f9d4405b 19650 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
c19d1205
ZW
19651 (long) value);
19652 break;
b99bd4ef
NC
19653 }
19654
c19d1205
ZW
19655 newval = md_chars_to_number (buf, INSN_SIZE);
19656 newval &= 0xff7ff0f0;
19657 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19658 md_number_to_chars (buf, newval, INSN_SIZE);
19659 break;
b99bd4ef 19660
c19d1205
ZW
19661 case BFD_RELOC_ARM_T32_OFFSET_U8:
19662 if (value < 0 || value > 1020 || value % 4 != 0)
19663 as_bad_where (fixP->fx_file, fixP->fx_line,
19664 _("bad immediate value for offset (%ld)"), (long) value);
19665 value /= 4;
b99bd4ef 19666
c19d1205 19667 newval = md_chars_to_number (buf+2, THUMB_SIZE);
c19d1205
ZW
19668 newval |= value;
19669 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19670 break;
b99bd4ef 19671
c19d1205
ZW
19672 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19673 /* This is a complicated relocation used for all varieties of Thumb32
19674 load/store instruction with immediate offset:
19675
19676 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19677 *4, optional writeback(W)
19678 (doubleword load/store)
19679
19680 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19681 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19682 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19683 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19684 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19685
19686 Uppercase letters indicate bits that are already encoded at
19687 this point. Lowercase letters are our problem. For the
19688 second block of instructions, the secondary opcode nybble
19689 (bits 8..11) is present, and bit 23 is zero, even if this is
19690 a PC-relative operation. */
19691 newval = md_chars_to_number (buf, THUMB_SIZE);
19692 newval <<= 16;
19693 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
b99bd4ef 19694
c19d1205 19695 if ((newval & 0xf0000000) == 0xe0000000)
b99bd4ef 19696 {
c19d1205
ZW
19697 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19698 if (value >= 0)
19699 newval |= (1 << 23);
19700 else
19701 value = -value;
19702 if (value % 4 != 0)
19703 {
19704 as_bad_where (fixP->fx_file, fixP->fx_line,
19705 _("offset not a multiple of 4"));
19706 break;
19707 }
19708 value /= 4;
216d22bc 19709 if (value > 0xff)
c19d1205
ZW
19710 {
19711 as_bad_where (fixP->fx_file, fixP->fx_line,
19712 _("offset out of range"));
19713 break;
19714 }
19715 newval &= ~0xff;
b99bd4ef 19716 }
c19d1205 19717 else if ((newval & 0x000f0000) == 0x000f0000)
b99bd4ef 19718 {
c19d1205
ZW
19719 /* PC-relative, 12-bit offset. */
19720 if (value >= 0)
19721 newval |= (1 << 23);
19722 else
19723 value = -value;
216d22bc 19724 if (value > 0xfff)
c19d1205
ZW
19725 {
19726 as_bad_where (fixP->fx_file, fixP->fx_line,
19727 _("offset out of range"));
19728 break;
19729 }
19730 newval &= ~0xfff;
b99bd4ef 19731 }
c19d1205 19732 else if ((newval & 0x00000100) == 0x00000100)
b99bd4ef 19733 {
c19d1205
ZW
19734 /* Writeback: 8-bit, +/- offset. */
19735 if (value >= 0)
19736 newval |= (1 << 9);
19737 else
19738 value = -value;
216d22bc 19739 if (value > 0xff)
c19d1205
ZW
19740 {
19741 as_bad_where (fixP->fx_file, fixP->fx_line,
19742 _("offset out of range"));
19743 break;
19744 }
19745 newval &= ~0xff;
b99bd4ef 19746 }
c19d1205 19747 else if ((newval & 0x00000f00) == 0x00000e00)
b99bd4ef 19748 {
c19d1205 19749 /* T-instruction: positive 8-bit offset. */
216d22bc 19750 if (value < 0 || value > 0xff)
b99bd4ef 19751 {
c19d1205
ZW
19752 as_bad_where (fixP->fx_file, fixP->fx_line,
19753 _("offset out of range"));
19754 break;
b99bd4ef 19755 }
c19d1205
ZW
19756 newval &= ~0xff;
19757 newval |= value;
b99bd4ef
NC
19758 }
19759 else
b99bd4ef 19760 {
c19d1205
ZW
19761 /* Positive 12-bit or negative 8-bit offset. */
19762 int limit;
19763 if (value >= 0)
b99bd4ef 19764 {
c19d1205
ZW
19765 newval |= (1 << 23);
19766 limit = 0xfff;
19767 }
19768 else
19769 {
19770 value = -value;
19771 limit = 0xff;
19772 }
19773 if (value > limit)
19774 {
19775 as_bad_where (fixP->fx_file, fixP->fx_line,
19776 _("offset out of range"));
19777 break;
b99bd4ef 19778 }
c19d1205 19779 newval &= ~limit;
b99bd4ef 19780 }
b99bd4ef 19781
c19d1205
ZW
19782 newval |= value;
19783 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
19784 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
19785 break;
404ff6b5 19786
c19d1205
ZW
19787 case BFD_RELOC_ARM_SHIFT_IMM:
19788 newval = md_chars_to_number (buf, INSN_SIZE);
19789 if (((unsigned long) value) > 32
19790 || (value == 32
19791 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
19792 {
19793 as_bad_where (fixP->fx_file, fixP->fx_line,
19794 _("shift expression is too large"));
19795 break;
19796 }
404ff6b5 19797
c19d1205
ZW
19798 if (value == 0)
19799 /* Shifts of zero must be done as lsl. */
19800 newval &= ~0x60;
19801 else if (value == 32)
19802 value = 0;
19803 newval &= 0xfffff07f;
19804 newval |= (value & 0x1f) << 7;
19805 md_number_to_chars (buf, newval, INSN_SIZE);
19806 break;
404ff6b5 19807
c19d1205 19808 case BFD_RELOC_ARM_T32_IMMEDIATE:
16805f35 19809 case BFD_RELOC_ARM_T32_ADD_IMM:
92e90b6e 19810 case BFD_RELOC_ARM_T32_IMM12:
e9f89963 19811 case BFD_RELOC_ARM_T32_ADD_PC12:
c19d1205
ZW
19812 /* We claim that this fixup has been processed here,
19813 even if in fact we generate an error because we do
19814 not have a reloc for it, so tc_gen_reloc will reject it. */
19815 fixP->fx_done = 1;
404ff6b5 19816
c19d1205
ZW
19817 if (fixP->fx_addsy
19818 && ! S_IS_DEFINED (fixP->fx_addsy))
19819 {
19820 as_bad_where (fixP->fx_file, fixP->fx_line,
19821 _("undefined symbol %s used as an immediate value"),
19822 S_GET_NAME (fixP->fx_addsy));
19823 break;
19824 }
404ff6b5 19825
c19d1205
ZW
19826 newval = md_chars_to_number (buf, THUMB_SIZE);
19827 newval <<= 16;
19828 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
404ff6b5 19829
16805f35
PB
19830 newimm = FAIL;
19831 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19832 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
ef8d22e6
PB
19833 {
19834 newimm = encode_thumb32_immediate (value);
19835 if (newimm == (unsigned int) FAIL)
19836 newimm = thumb32_negate_data_op (&newval, value);
19837 }
16805f35
PB
19838 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
19839 && newimm == (unsigned int) FAIL)
92e90b6e 19840 {
16805f35
PB
19841 /* Turn add/sum into addw/subw. */
19842 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
19843 newval = (newval & 0xfeffffff) | 0x02000000;
19844
e9f89963
PB
19845 /* 12 bit immediate for addw/subw. */
19846 if (value < 0)
19847 {
19848 value = -value;
19849 newval ^= 0x00a00000;
19850 }
92e90b6e
PB
19851 if (value > 0xfff)
19852 newimm = (unsigned int) FAIL;
19853 else
19854 newimm = value;
19855 }
cc8a6dd0 19856
c19d1205 19857 if (newimm == (unsigned int)FAIL)
3631a3c8 19858 {
c19d1205
ZW
19859 as_bad_where (fixP->fx_file, fixP->fx_line,
19860 _("invalid constant (%lx) after fixup"),
19861 (unsigned long) value);
19862 break;
3631a3c8
NC
19863 }
19864
c19d1205
ZW
19865 newval |= (newimm & 0x800) << 15;
19866 newval |= (newimm & 0x700) << 4;
19867 newval |= (newimm & 0x0ff);
cc8a6dd0 19868
c19d1205
ZW
19869 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
19870 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
19871 break;
a737bd4d 19872
3eb17e6b 19873 case BFD_RELOC_ARM_SMC:
c19d1205
ZW
19874 if (((unsigned long) value) > 0xffff)
19875 as_bad_where (fixP->fx_file, fixP->fx_line,
3eb17e6b 19876 _("invalid smc expression"));
2fc8bdac 19877 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
19878 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
19879 md_number_to_chars (buf, newval, INSN_SIZE);
19880 break;
a737bd4d 19881
c19d1205 19882 case BFD_RELOC_ARM_SWI:
adbaf948 19883 if (fixP->tc_fix_data != 0)
c19d1205
ZW
19884 {
19885 if (((unsigned long) value) > 0xff)
19886 as_bad_where (fixP->fx_file, fixP->fx_line,
19887 _("invalid swi expression"));
2fc8bdac 19888 newval = md_chars_to_number (buf, THUMB_SIZE);
c19d1205
ZW
19889 newval |= value;
19890 md_number_to_chars (buf, newval, THUMB_SIZE);
19891 }
19892 else
19893 {
19894 if (((unsigned long) value) > 0x00ffffff)
19895 as_bad_where (fixP->fx_file, fixP->fx_line,
19896 _("invalid swi expression"));
2fc8bdac 19897 newval = md_chars_to_number (buf, INSN_SIZE);
c19d1205
ZW
19898 newval |= value;
19899 md_number_to_chars (buf, newval, INSN_SIZE);
19900 }
19901 break;
a737bd4d 19902
c19d1205
ZW
19903 case BFD_RELOC_ARM_MULTI:
19904 if (((unsigned long) value) > 0xffff)
19905 as_bad_where (fixP->fx_file, fixP->fx_line,
19906 _("invalid expression in load/store multiple"));
19907 newval = value | md_chars_to_number (buf, INSN_SIZE);
19908 md_number_to_chars (buf, newval, INSN_SIZE);
19909 break;
a737bd4d 19910
c19d1205 19911#ifdef OBJ_ELF
39b41c9c 19912 case BFD_RELOC_ARM_PCREL_CALL:
267bf995
RR
19913
19914 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19915 && fixP->fx_addsy
19916 && !S_IS_EXTERNAL (fixP->fx_addsy)
19917 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19918 && THUMB_IS_FUNC (fixP->fx_addsy))
19919 /* Flip the bl to blx. This is a simple flip
19920 bit here because we generate PCREL_CALL for
19921 unconditional bls. */
19922 {
19923 newval = md_chars_to_number (buf, INSN_SIZE);
19924 newval = newval | 0x10000000;
19925 md_number_to_chars (buf, newval, INSN_SIZE);
19926 temp = 1;
19927 fixP->fx_done = 1;
19928 }
39b41c9c
PB
19929 else
19930 temp = 3;
19931 goto arm_branch_common;
19932
19933 case BFD_RELOC_ARM_PCREL_JUMP:
267bf995
RR
19934 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19935 && fixP->fx_addsy
19936 && !S_IS_EXTERNAL (fixP->fx_addsy)
19937 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19938 && THUMB_IS_FUNC (fixP->fx_addsy))
19939 {
19940 /* This would map to a bl<cond>, b<cond>,
19941 b<always> to a Thumb function. We
19942 need to force a relocation for this particular
19943 case. */
19944 newval = md_chars_to_number (buf, INSN_SIZE);
19945 fixP->fx_done = 0;
19946 }
19947
2fc8bdac 19948 case BFD_RELOC_ARM_PLT32:
c19d1205 19949#endif
39b41c9c
PB
19950 case BFD_RELOC_ARM_PCREL_BRANCH:
19951 temp = 3;
19952 goto arm_branch_common;
a737bd4d 19953
39b41c9c 19954 case BFD_RELOC_ARM_PCREL_BLX:
267bf995 19955
39b41c9c 19956 temp = 1;
267bf995
RR
19957 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
19958 && fixP->fx_addsy
19959 && !S_IS_EXTERNAL (fixP->fx_addsy)
19960 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19961 && ARM_IS_FUNC (fixP->fx_addsy))
19962 {
19963 /* Flip the blx to a bl and warn. */
19964 const char *name = S_GET_NAME (fixP->fx_addsy);
19965 newval = 0xeb000000;
19966 as_warn_where (fixP->fx_file, fixP->fx_line,
19967 _("blx to '%s' an ARM ISA state function changed to bl"),
19968 name);
19969 md_number_to_chars (buf, newval, INSN_SIZE);
19970 temp = 3;
19971 fixP->fx_done = 1;
19972 }
19973
19974#ifdef OBJ_ELF
19975 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
19976 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
19977#endif
19978
39b41c9c 19979 arm_branch_common:
c19d1205 19980 /* We are going to store value (shifted right by two) in the
39b41c9c
PB
19981 instruction, in a 24 bit, signed field. Bits 26 through 32 either
19982 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
19983 also be be clear. */
19984 if (value & temp)
c19d1205 19985 as_bad_where (fixP->fx_file, fixP->fx_line,
2fc8bdac
ZW
19986 _("misaligned branch destination"));
19987 if ((value & (offsetT)0xfe000000) != (offsetT)0
19988 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
19989 as_bad_where (fixP->fx_file, fixP->fx_line,
19990 _("branch out of range"));
a737bd4d 19991
2fc8bdac 19992 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 19993 {
2fc8bdac
ZW
19994 newval = md_chars_to_number (buf, INSN_SIZE);
19995 newval |= (value >> 2) & 0x00ffffff;
7ae2971b
PB
19996 /* Set the H bit on BLX instructions. */
19997 if (temp == 1)
19998 {
19999 if (value & 2)
20000 newval |= 0x01000000;
20001 else
20002 newval &= ~0x01000000;
20003 }
2fc8bdac 20004 md_number_to_chars (buf, newval, INSN_SIZE);
c19d1205 20005 }
c19d1205 20006 break;
a737bd4d 20007
25fe350b
MS
20008 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20009 /* CBZ can only branch forward. */
a737bd4d 20010
738755b0
MS
20011 /* Attempts to use CBZ to branch to the next instruction
20012 (which, strictly speaking, are prohibited) will be turned into
20013 no-ops.
20014
20015 FIXME: It may be better to remove the instruction completely and
20016 perform relaxation. */
20017 if (value == -2)
2fc8bdac
ZW
20018 {
20019 newval = md_chars_to_number (buf, THUMB_SIZE);
738755b0 20020 newval = 0xbf00; /* NOP encoding T1 */
2fc8bdac
ZW
20021 md_number_to_chars (buf, newval, THUMB_SIZE);
20022 }
738755b0
MS
20023 else
20024 {
20025 if (value & ~0x7e)
20026 as_bad_where (fixP->fx_file, fixP->fx_line,
20027 _("branch out of range"));
20028
20029 if (fixP->fx_done || !seg->use_rela_p)
20030 {
20031 newval = md_chars_to_number (buf, THUMB_SIZE);
20032 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20033 md_number_to_chars (buf, newval, THUMB_SIZE);
20034 }
20035 }
c19d1205 20036 break;
a737bd4d 20037
c19d1205 20038 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
2fc8bdac
ZW
20039 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20040 as_bad_where (fixP->fx_file, fixP->fx_line,
20041 _("branch out of range"));
a737bd4d 20042
2fc8bdac
ZW
20043 if (fixP->fx_done || !seg->use_rela_p)
20044 {
20045 newval = md_chars_to_number (buf, THUMB_SIZE);
20046 newval |= (value & 0x1ff) >> 1;
20047 md_number_to_chars (buf, newval, THUMB_SIZE);
20048 }
c19d1205 20049 break;
a737bd4d 20050
c19d1205 20051 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
2fc8bdac
ZW
20052 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20053 as_bad_where (fixP->fx_file, fixP->fx_line,
20054 _("branch out of range"));
a737bd4d 20055
2fc8bdac
ZW
20056 if (fixP->fx_done || !seg->use_rela_p)
20057 {
20058 newval = md_chars_to_number (buf, THUMB_SIZE);
20059 newval |= (value & 0xfff) >> 1;
20060 md_number_to_chars (buf, newval, THUMB_SIZE);
20061 }
c19d1205 20062 break;
a737bd4d 20063
c19d1205 20064 case BFD_RELOC_THUMB_PCREL_BRANCH20:
267bf995
RR
20065 if (fixP->fx_addsy
20066 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20067 && !S_IS_EXTERNAL (fixP->fx_addsy)
20068 && S_IS_DEFINED (fixP->fx_addsy)
20069 && ARM_IS_FUNC (fixP->fx_addsy)
20070 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20071 {
20072 /* Force a relocation for a branch 20 bits wide. */
20073 fixP->fx_done = 0;
20074 }
2fc8bdac
ZW
20075 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20076 as_bad_where (fixP->fx_file, fixP->fx_line,
20077 _("conditional branch out of range"));
404ff6b5 20078
2fc8bdac
ZW
20079 if (fixP->fx_done || !seg->use_rela_p)
20080 {
20081 offsetT newval2;
20082 addressT S, J1, J2, lo, hi;
404ff6b5 20083
2fc8bdac
ZW
20084 S = (value & 0x00100000) >> 20;
20085 J2 = (value & 0x00080000) >> 19;
20086 J1 = (value & 0x00040000) >> 18;
20087 hi = (value & 0x0003f000) >> 12;
20088 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20089
2fc8bdac
ZW
20090 newval = md_chars_to_number (buf, THUMB_SIZE);
20091 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20092 newval |= (S << 10) | hi;
20093 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20094 md_number_to_chars (buf, newval, THUMB_SIZE);
20095 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20096 }
c19d1205 20097 break;
6c43fab6 20098
c19d1205 20099 case BFD_RELOC_THUMB_PCREL_BLX:
267bf995
RR
20100
20101 /* If there is a blx from a thumb state function to
20102 another thumb function flip this to a bl and warn
20103 about it. */
20104
20105 if (fixP->fx_addsy
20106 && S_IS_DEFINED (fixP->fx_addsy)
20107 && !S_IS_EXTERNAL (fixP->fx_addsy)
20108 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20109 && THUMB_IS_FUNC (fixP->fx_addsy))
20110 {
20111 const char *name = S_GET_NAME (fixP->fx_addsy);
20112 as_warn_where (fixP->fx_file, fixP->fx_line,
20113 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20114 name);
20115 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20116 newval = newval | 0x1000;
20117 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20118 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20119 fixP->fx_done = 1;
20120 }
20121
20122
20123 goto thumb_bl_common;
20124
c19d1205 20125 case BFD_RELOC_THUMB_PCREL_BRANCH23:
267bf995
RR
20126
20127 /* A bl from Thumb state ISA to an internal ARM state function
20128 is converted to a blx. */
20129 if (fixP->fx_addsy
20130 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20131 && !S_IS_EXTERNAL (fixP->fx_addsy)
20132 && S_IS_DEFINED (fixP->fx_addsy)
20133 && ARM_IS_FUNC (fixP->fx_addsy)
20134 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20135 {
20136 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20137 newval = newval & ~0x1000;
20138 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20139 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20140 fixP->fx_done = 1;
20141 }
20142
20143 thumb_bl_common:
20144
20145#ifdef OBJ_ELF
20146 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20147 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20148 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20149#endif
20150
2fc8bdac
ZW
20151 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20152 as_bad_where (fixP->fx_file, fixP->fx_line,
20153 _("branch out of range"));
404ff6b5 20154
2fc8bdac
ZW
20155 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20156 /* For a BLX instruction, make sure that the relocation is rounded up
20157 to a word boundary. This follows the semantics of the instruction
20158 which specifies that bit 1 of the target address will come from bit
20159 1 of the base address. */
20160 value = (value + 1) & ~ 1;
404ff6b5 20161
2fc8bdac 20162 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20163 {
2fc8bdac
ZW
20164 offsetT newval2;
20165
20166 newval = md_chars_to_number (buf, THUMB_SIZE);
20167 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20168 newval |= (value & 0x7fffff) >> 12;
20169 newval2 |= (value & 0xfff) >> 1;
20170 md_number_to_chars (buf, newval, THUMB_SIZE);
20171 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
c19d1205 20172 }
c19d1205 20173 break;
404ff6b5 20174
c19d1205 20175 case BFD_RELOC_THUMB_PCREL_BRANCH25:
2fc8bdac
ZW
20176 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20177 as_bad_where (fixP->fx_file, fixP->fx_line,
20178 _("branch out of range"));
6c43fab6 20179
2fc8bdac
ZW
20180 if (fixP->fx_done || !seg->use_rela_p)
20181 {
20182 offsetT newval2;
20183 addressT S, I1, I2, lo, hi;
6c43fab6 20184
2fc8bdac
ZW
20185 S = (value & 0x01000000) >> 24;
20186 I1 = (value & 0x00800000) >> 23;
20187 I2 = (value & 0x00400000) >> 22;
20188 hi = (value & 0x003ff000) >> 12;
20189 lo = (value & 0x00000ffe) >> 1;
6c43fab6 20190
2fc8bdac
ZW
20191 I1 = !(I1 ^ S);
20192 I2 = !(I2 ^ S);
a737bd4d 20193
2fc8bdac
ZW
20194 newval = md_chars_to_number (buf, THUMB_SIZE);
20195 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20196 newval |= (S << 10) | hi;
20197 newval2 |= (I1 << 13) | (I2 << 11) | lo;
20198 md_number_to_chars (buf, newval, THUMB_SIZE);
20199 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20200 }
20201 break;
a737bd4d 20202
2fc8bdac
ZW
20203 case BFD_RELOC_8:
20204 if (fixP->fx_done || !seg->use_rela_p)
20205 md_number_to_chars (buf, value, 1);
c19d1205 20206 break;
a737bd4d 20207
c19d1205 20208 case BFD_RELOC_16:
2fc8bdac 20209 if (fixP->fx_done || !seg->use_rela_p)
c19d1205 20210 md_number_to_chars (buf, value, 2);
c19d1205 20211 break;
a737bd4d 20212
c19d1205
ZW
20213#ifdef OBJ_ELF
20214 case BFD_RELOC_ARM_TLS_GD32:
20215 case BFD_RELOC_ARM_TLS_LE32:
20216 case BFD_RELOC_ARM_TLS_IE32:
20217 case BFD_RELOC_ARM_TLS_LDM32:
20218 case BFD_RELOC_ARM_TLS_LDO32:
20219 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20220 /* fall through */
6c43fab6 20221
c19d1205
ZW
20222 case BFD_RELOC_ARM_GOT32:
20223 case BFD_RELOC_ARM_GOTOFF:
2fc8bdac
ZW
20224 if (fixP->fx_done || !seg->use_rela_p)
20225 md_number_to_chars (buf, 0, 4);
c19d1205 20226 break;
9a6f4e97
NS
20227
20228 case BFD_RELOC_ARM_TARGET2:
20229 /* TARGET2 is not partial-inplace, so we need to write the
20230 addend here for REL targets, because it won't be written out
20231 during reloc processing later. */
20232 if (fixP->fx_done || !seg->use_rela_p)
20233 md_number_to_chars (buf, fixP->fx_offset, 4);
20234 break;
c19d1205 20235#endif
6c43fab6 20236
c19d1205
ZW
20237 case BFD_RELOC_RVA:
20238 case BFD_RELOC_32:
20239 case BFD_RELOC_ARM_TARGET1:
20240 case BFD_RELOC_ARM_ROSEGREL32:
20241 case BFD_RELOC_ARM_SBREL32:
20242 case BFD_RELOC_32_PCREL:
f0927246
NC
20243#ifdef TE_PE
20244 case BFD_RELOC_32_SECREL:
20245#endif
2fc8bdac 20246 if (fixP->fx_done || !seg->use_rela_p)
53baae48
NC
20247#ifdef TE_WINCE
20248 /* For WinCE we only do this for pcrel fixups. */
20249 if (fixP->fx_done || fixP->fx_pcrel)
20250#endif
20251 md_number_to_chars (buf, value, 4);
c19d1205 20252 break;
6c43fab6 20253
c19d1205
ZW
20254#ifdef OBJ_ELF
20255 case BFD_RELOC_ARM_PREL31:
2fc8bdac 20256 if (fixP->fx_done || !seg->use_rela_p)
c19d1205
ZW
20257 {
20258 newval = md_chars_to_number (buf, 4) & 0x80000000;
20259 if ((value ^ (value >> 1)) & 0x40000000)
20260 {
20261 as_bad_where (fixP->fx_file, fixP->fx_line,
20262 _("rel31 relocation overflow"));
20263 }
20264 newval |= value & 0x7fffffff;
20265 md_number_to_chars (buf, newval, 4);
20266 }
20267 break;
c19d1205 20268#endif
a737bd4d 20269
c19d1205 20270 case BFD_RELOC_ARM_CP_OFF_IMM:
8f06b2d8 20271 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
c19d1205
ZW
20272 if (value < -1023 || value > 1023 || (value & 3))
20273 as_bad_where (fixP->fx_file, fixP->fx_line,
20274 _("co-processor offset out of range"));
20275 cp_off_common:
20276 sign = value >= 0;
20277 if (value < 0)
20278 value = -value;
8f06b2d8
PB
20279 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20280 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20281 newval = md_chars_to_number (buf, INSN_SIZE);
20282 else
20283 newval = get_thumb32_insn (buf);
20284 newval &= 0xff7fff00;
c19d1205 20285 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
8f06b2d8
PB
20286 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20287 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20288 md_number_to_chars (buf, newval, INSN_SIZE);
20289 else
20290 put_thumb32_insn (buf, newval);
c19d1205 20291 break;
a737bd4d 20292
c19d1205 20293 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
8f06b2d8 20294 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
c19d1205
ZW
20295 if (value < -255 || value > 255)
20296 as_bad_where (fixP->fx_file, fixP->fx_line,
20297 _("co-processor offset out of range"));
df7849c5 20298 value *= 4;
c19d1205 20299 goto cp_off_common;
6c43fab6 20300
c19d1205
ZW
20301 case BFD_RELOC_ARM_THUMB_OFFSET:
20302 newval = md_chars_to_number (buf, THUMB_SIZE);
20303 /* Exactly what ranges, and where the offset is inserted depends
20304 on the type of instruction, we can establish this from the
20305 top 4 bits. */
20306 switch (newval >> 12)
20307 {
20308 case 4: /* PC load. */
20309 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20310 forced to zero for these loads; md_pcrel_from has already
20311 compensated for this. */
20312 if (value & 3)
20313 as_bad_where (fixP->fx_file, fixP->fx_line,
20314 _("invalid offset, target not word aligned (0x%08lX)"),
0359e808
NC
20315 (((unsigned long) fixP->fx_frag->fr_address
20316 + (unsigned long) fixP->fx_where) & ~3)
20317 + (unsigned long) value);
a737bd4d 20318
c19d1205
ZW
20319 if (value & ~0x3fc)
20320 as_bad_where (fixP->fx_file, fixP->fx_line,
20321 _("invalid offset, value too big (0x%08lX)"),
20322 (long) value);
a737bd4d 20323
c19d1205
ZW
20324 newval |= value >> 2;
20325 break;
a737bd4d 20326
c19d1205
ZW
20327 case 9: /* SP load/store. */
20328 if (value & ~0x3fc)
20329 as_bad_where (fixP->fx_file, fixP->fx_line,
20330 _("invalid offset, value too big (0x%08lX)"),
20331 (long) value);
20332 newval |= value >> 2;
20333 break;
6c43fab6 20334
c19d1205
ZW
20335 case 6: /* Word load/store. */
20336 if (value & ~0x7c)
20337 as_bad_where (fixP->fx_file, fixP->fx_line,
20338 _("invalid offset, value too big (0x%08lX)"),
20339 (long) value);
20340 newval |= value << 4; /* 6 - 2. */
20341 break;
a737bd4d 20342
c19d1205
ZW
20343 case 7: /* Byte load/store. */
20344 if (value & ~0x1f)
20345 as_bad_where (fixP->fx_file, fixP->fx_line,
20346 _("invalid offset, value too big (0x%08lX)"),
20347 (long) value);
20348 newval |= value << 6;
20349 break;
a737bd4d 20350
c19d1205
ZW
20351 case 8: /* Halfword load/store. */
20352 if (value & ~0x3e)
20353 as_bad_where (fixP->fx_file, fixP->fx_line,
20354 _("invalid offset, value too big (0x%08lX)"),
20355 (long) value);
20356 newval |= value << 5; /* 6 - 1. */
20357 break;
a737bd4d 20358
c19d1205
ZW
20359 default:
20360 as_bad_where (fixP->fx_file, fixP->fx_line,
20361 "Unable to process relocation for thumb opcode: %lx",
20362 (unsigned long) newval);
20363 break;
20364 }
20365 md_number_to_chars (buf, newval, THUMB_SIZE);
20366 break;
a737bd4d 20367
c19d1205
ZW
20368 case BFD_RELOC_ARM_THUMB_ADD:
20369 /* This is a complicated relocation, since we use it for all of
20370 the following immediate relocations:
a737bd4d 20371
c19d1205
ZW
20372 3bit ADD/SUB
20373 8bit ADD/SUB
20374 9bit ADD/SUB SP word-aligned
20375 10bit ADD PC/SP word-aligned
a737bd4d 20376
c19d1205
ZW
20377 The type of instruction being processed is encoded in the
20378 instruction field:
a737bd4d 20379
c19d1205
ZW
20380 0x8000 SUB
20381 0x00F0 Rd
20382 0x000F Rs
20383 */
20384 newval = md_chars_to_number (buf, THUMB_SIZE);
20385 {
20386 int rd = (newval >> 4) & 0xf;
20387 int rs = newval & 0xf;
20388 int subtract = !!(newval & 0x8000);
a737bd4d 20389
c19d1205
ZW
20390 /* Check for HI regs, only very restricted cases allowed:
20391 Adjusting SP, and using PC or SP to get an address. */
20392 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20393 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20394 as_bad_where (fixP->fx_file, fixP->fx_line,
20395 _("invalid Hi register with immediate"));
a737bd4d 20396
c19d1205
ZW
20397 /* If value is negative, choose the opposite instruction. */
20398 if (value < 0)
20399 {
20400 value = -value;
20401 subtract = !subtract;
20402 if (value < 0)
20403 as_bad_where (fixP->fx_file, fixP->fx_line,
20404 _("immediate value out of range"));
20405 }
a737bd4d 20406
c19d1205
ZW
20407 if (rd == REG_SP)
20408 {
20409 if (value & ~0x1fc)
20410 as_bad_where (fixP->fx_file, fixP->fx_line,
20411 _("invalid immediate for stack address calculation"));
20412 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20413 newval |= value >> 2;
20414 }
20415 else if (rs == REG_PC || rs == REG_SP)
20416 {
20417 if (subtract || value & ~0x3fc)
20418 as_bad_where (fixP->fx_file, fixP->fx_line,
20419 _("invalid immediate for address calculation (value = 0x%08lX)"),
20420 (unsigned long) value);
20421 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20422 newval |= rd << 8;
20423 newval |= value >> 2;
20424 }
20425 else if (rs == rd)
20426 {
20427 if (value & ~0xff)
20428 as_bad_where (fixP->fx_file, fixP->fx_line,
20429 _("immediate value out of range"));
20430 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20431 newval |= (rd << 8) | value;
20432 }
20433 else
20434 {
20435 if (value & ~0x7)
20436 as_bad_where (fixP->fx_file, fixP->fx_line,
20437 _("immediate value out of range"));
20438 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20439 newval |= rd | (rs << 3) | (value << 6);
20440 }
20441 }
20442 md_number_to_chars (buf, newval, THUMB_SIZE);
20443 break;
a737bd4d 20444
c19d1205
ZW
20445 case BFD_RELOC_ARM_THUMB_IMM:
20446 newval = md_chars_to_number (buf, THUMB_SIZE);
20447 if (value < 0 || value > 255)
20448 as_bad_where (fixP->fx_file, fixP->fx_line,
4e6e072b 20449 _("invalid immediate: %ld is out of range"),
c19d1205
ZW
20450 (long) value);
20451 newval |= value;
20452 md_number_to_chars (buf, newval, THUMB_SIZE);
20453 break;
a737bd4d 20454
c19d1205
ZW
20455 case BFD_RELOC_ARM_THUMB_SHIFT:
20456 /* 5bit shift value (0..32). LSL cannot take 32. */
20457 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20458 temp = newval & 0xf800;
20459 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20460 as_bad_where (fixP->fx_file, fixP->fx_line,
20461 _("invalid shift value: %ld"), (long) value);
20462 /* Shifts of zero must be encoded as LSL. */
20463 if (value == 0)
20464 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20465 /* Shifts of 32 are encoded as zero. */
20466 else if (value == 32)
20467 value = 0;
20468 newval |= value << 6;
20469 md_number_to_chars (buf, newval, THUMB_SIZE);
20470 break;
a737bd4d 20471
c19d1205
ZW
20472 case BFD_RELOC_VTABLE_INHERIT:
20473 case BFD_RELOC_VTABLE_ENTRY:
20474 fixP->fx_done = 0;
20475 return;
6c43fab6 20476
b6895b4f
PB
20477 case BFD_RELOC_ARM_MOVW:
20478 case BFD_RELOC_ARM_MOVT:
20479 case BFD_RELOC_ARM_THUMB_MOVW:
20480 case BFD_RELOC_ARM_THUMB_MOVT:
20481 if (fixP->fx_done || !seg->use_rela_p)
20482 {
20483 /* REL format relocations are limited to a 16-bit addend. */
20484 if (!fixP->fx_done)
20485 {
39623e12 20486 if (value < -0x8000 || value > 0x7fff)
b6895b4f 20487 as_bad_where (fixP->fx_file, fixP->fx_line,
ff5075ca 20488 _("offset out of range"));
b6895b4f
PB
20489 }
20490 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20491 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20492 {
20493 value >>= 16;
20494 }
20495
20496 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20497 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20498 {
20499 newval = get_thumb32_insn (buf);
20500 newval &= 0xfbf08f00;
20501 newval |= (value & 0xf000) << 4;
20502 newval |= (value & 0x0800) << 15;
20503 newval |= (value & 0x0700) << 4;
20504 newval |= (value & 0x00ff);
20505 put_thumb32_insn (buf, newval);
20506 }
20507 else
20508 {
20509 newval = md_chars_to_number (buf, 4);
20510 newval &= 0xfff0f000;
20511 newval |= value & 0x0fff;
20512 newval |= (value & 0xf000) << 4;
20513 md_number_to_chars (buf, newval, 4);
20514 }
20515 }
20516 return;
20517
4962c51a
MS
20518 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20519 case BFD_RELOC_ARM_ALU_PC_G0:
20520 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20521 case BFD_RELOC_ARM_ALU_PC_G1:
20522 case BFD_RELOC_ARM_ALU_PC_G2:
20523 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20524 case BFD_RELOC_ARM_ALU_SB_G0:
20525 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20526 case BFD_RELOC_ARM_ALU_SB_G1:
20527 case BFD_RELOC_ARM_ALU_SB_G2:
9c2799c2 20528 gas_assert (!fixP->fx_done);
4962c51a
MS
20529 if (!seg->use_rela_p)
20530 {
20531 bfd_vma insn;
20532 bfd_vma encoded_addend;
20533 bfd_vma addend_abs = abs (value);
20534
20535 /* Check that the absolute value of the addend can be
20536 expressed as an 8-bit constant plus a rotation. */
20537 encoded_addend = encode_arm_immediate (addend_abs);
20538 if (encoded_addend == (unsigned int) FAIL)
20539 as_bad_where (fixP->fx_file, fixP->fx_line,
20540 _("the offset 0x%08lX is not representable"),
495bde8e 20541 (unsigned long) addend_abs);
4962c51a
MS
20542
20543 /* Extract the instruction. */
20544 insn = md_chars_to_number (buf, INSN_SIZE);
20545
20546 /* If the addend is positive, use an ADD instruction.
20547 Otherwise use a SUB. Take care not to destroy the S bit. */
20548 insn &= 0xff1fffff;
20549 if (value < 0)
20550 insn |= 1 << 22;
20551 else
20552 insn |= 1 << 23;
20553
20554 /* Place the encoded addend into the first 12 bits of the
20555 instruction. */
20556 insn &= 0xfffff000;
20557 insn |= encoded_addend;
5f4273c7
NC
20558
20559 /* Update the instruction. */
4962c51a
MS
20560 md_number_to_chars (buf, insn, INSN_SIZE);
20561 }
20562 break;
20563
20564 case BFD_RELOC_ARM_LDR_PC_G0:
20565 case BFD_RELOC_ARM_LDR_PC_G1:
20566 case BFD_RELOC_ARM_LDR_PC_G2:
20567 case BFD_RELOC_ARM_LDR_SB_G0:
20568 case BFD_RELOC_ARM_LDR_SB_G1:
20569 case BFD_RELOC_ARM_LDR_SB_G2:
9c2799c2 20570 gas_assert (!fixP->fx_done);
4962c51a
MS
20571 if (!seg->use_rela_p)
20572 {
20573 bfd_vma insn;
20574 bfd_vma addend_abs = abs (value);
20575
20576 /* Check that the absolute value of the addend can be
20577 encoded in 12 bits. */
20578 if (addend_abs >= 0x1000)
20579 as_bad_where (fixP->fx_file, fixP->fx_line,
20580 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
495bde8e 20581 (unsigned long) addend_abs);
4962c51a
MS
20582
20583 /* Extract the instruction. */
20584 insn = md_chars_to_number (buf, INSN_SIZE);
20585
20586 /* If the addend is negative, clear bit 23 of the instruction.
20587 Otherwise set it. */
20588 if (value < 0)
20589 insn &= ~(1 << 23);
20590 else
20591 insn |= 1 << 23;
20592
20593 /* Place the absolute value of the addend into the first 12 bits
20594 of the instruction. */
20595 insn &= 0xfffff000;
20596 insn |= addend_abs;
5f4273c7
NC
20597
20598 /* Update the instruction. */
4962c51a
MS
20599 md_number_to_chars (buf, insn, INSN_SIZE);
20600 }
20601 break;
20602
20603 case BFD_RELOC_ARM_LDRS_PC_G0:
20604 case BFD_RELOC_ARM_LDRS_PC_G1:
20605 case BFD_RELOC_ARM_LDRS_PC_G2:
20606 case BFD_RELOC_ARM_LDRS_SB_G0:
20607 case BFD_RELOC_ARM_LDRS_SB_G1:
20608 case BFD_RELOC_ARM_LDRS_SB_G2:
9c2799c2 20609 gas_assert (!fixP->fx_done);
4962c51a
MS
20610 if (!seg->use_rela_p)
20611 {
20612 bfd_vma insn;
20613 bfd_vma addend_abs = abs (value);
20614
20615 /* Check that the absolute value of the addend can be
20616 encoded in 8 bits. */
20617 if (addend_abs >= 0x100)
20618 as_bad_where (fixP->fx_file, fixP->fx_line,
20619 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
495bde8e 20620 (unsigned long) addend_abs);
4962c51a
MS
20621
20622 /* Extract the instruction. */
20623 insn = md_chars_to_number (buf, INSN_SIZE);
20624
20625 /* If the addend is negative, clear bit 23 of the instruction.
20626 Otherwise set it. */
20627 if (value < 0)
20628 insn &= ~(1 << 23);
20629 else
20630 insn |= 1 << 23;
20631
20632 /* Place the first four bits of the absolute value of the addend
20633 into the first 4 bits of the instruction, and the remaining
20634 four into bits 8 .. 11. */
20635 insn &= 0xfffff0f0;
20636 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
5f4273c7
NC
20637
20638 /* Update the instruction. */
4962c51a
MS
20639 md_number_to_chars (buf, insn, INSN_SIZE);
20640 }
20641 break;
20642
20643 case BFD_RELOC_ARM_LDC_PC_G0:
20644 case BFD_RELOC_ARM_LDC_PC_G1:
20645 case BFD_RELOC_ARM_LDC_PC_G2:
20646 case BFD_RELOC_ARM_LDC_SB_G0:
20647 case BFD_RELOC_ARM_LDC_SB_G1:
20648 case BFD_RELOC_ARM_LDC_SB_G2:
9c2799c2 20649 gas_assert (!fixP->fx_done);
4962c51a
MS
20650 if (!seg->use_rela_p)
20651 {
20652 bfd_vma insn;
20653 bfd_vma addend_abs = abs (value);
20654
20655 /* Check that the absolute value of the addend is a multiple of
20656 four and, when divided by four, fits in 8 bits. */
20657 if (addend_abs & 0x3)
20658 as_bad_where (fixP->fx_file, fixP->fx_line,
20659 _("bad offset 0x%08lX (must be word-aligned)"),
495bde8e 20660 (unsigned long) addend_abs);
4962c51a
MS
20661
20662 if ((addend_abs >> 2) > 0xff)
20663 as_bad_where (fixP->fx_file, fixP->fx_line,
20664 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
495bde8e 20665 (unsigned long) addend_abs);
4962c51a
MS
20666
20667 /* Extract the instruction. */
20668 insn = md_chars_to_number (buf, INSN_SIZE);
20669
20670 /* If the addend is negative, clear bit 23 of the instruction.
20671 Otherwise set it. */
20672 if (value < 0)
20673 insn &= ~(1 << 23);
20674 else
20675 insn |= 1 << 23;
20676
20677 /* Place the addend (divided by four) into the first eight
20678 bits of the instruction. */
20679 insn &= 0xfffffff0;
20680 insn |= addend_abs >> 2;
5f4273c7
NC
20681
20682 /* Update the instruction. */
4962c51a
MS
20683 md_number_to_chars (buf, insn, INSN_SIZE);
20684 }
20685 break;
20686
845b51d6
PB
20687 case BFD_RELOC_ARM_V4BX:
20688 /* This will need to go in the object file. */
20689 fixP->fx_done = 0;
20690 break;
20691
c19d1205
ZW
20692 case BFD_RELOC_UNUSED:
20693 default:
20694 as_bad_where (fixP->fx_file, fixP->fx_line,
20695 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20696 }
6c43fab6
RE
20697}
20698
c19d1205
ZW
20699/* Translate internal representation of relocation info to BFD target
20700 format. */
a737bd4d 20701
c19d1205 20702arelent *
00a97672 20703tc_gen_reloc (asection *section, fixS *fixp)
a737bd4d 20704{
c19d1205
ZW
20705 arelent * reloc;
20706 bfd_reloc_code_real_type code;
a737bd4d 20707
21d799b5 20708 reloc = (arelent *) xmalloc (sizeof (arelent));
a737bd4d 20709
21d799b5 20710 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
c19d1205
ZW
20711 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20712 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
a737bd4d 20713
2fc8bdac 20714 if (fixp->fx_pcrel)
00a97672
RS
20715 {
20716 if (section->use_rela_p)
20717 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20718 else
20719 fixp->fx_offset = reloc->address;
20720 }
c19d1205 20721 reloc->addend = fixp->fx_offset;
a737bd4d 20722
c19d1205 20723 switch (fixp->fx_r_type)
a737bd4d 20724 {
c19d1205
ZW
20725 case BFD_RELOC_8:
20726 if (fixp->fx_pcrel)
20727 {
20728 code = BFD_RELOC_8_PCREL;
20729 break;
20730 }
a737bd4d 20731
c19d1205
ZW
20732 case BFD_RELOC_16:
20733 if (fixp->fx_pcrel)
20734 {
20735 code = BFD_RELOC_16_PCREL;
20736 break;
20737 }
6c43fab6 20738
c19d1205
ZW
20739 case BFD_RELOC_32:
20740 if (fixp->fx_pcrel)
20741 {
20742 code = BFD_RELOC_32_PCREL;
20743 break;
20744 }
a737bd4d 20745
b6895b4f
PB
20746 case BFD_RELOC_ARM_MOVW:
20747 if (fixp->fx_pcrel)
20748 {
20749 code = BFD_RELOC_ARM_MOVW_PCREL;
20750 break;
20751 }
20752
20753 case BFD_RELOC_ARM_MOVT:
20754 if (fixp->fx_pcrel)
20755 {
20756 code = BFD_RELOC_ARM_MOVT_PCREL;
20757 break;
20758 }
20759
20760 case BFD_RELOC_ARM_THUMB_MOVW:
20761 if (fixp->fx_pcrel)
20762 {
20763 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
20764 break;
20765 }
20766
20767 case BFD_RELOC_ARM_THUMB_MOVT:
20768 if (fixp->fx_pcrel)
20769 {
20770 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
20771 break;
20772 }
20773
c19d1205
ZW
20774 case BFD_RELOC_NONE:
20775 case BFD_RELOC_ARM_PCREL_BRANCH:
20776 case BFD_RELOC_ARM_PCREL_BLX:
20777 case BFD_RELOC_RVA:
20778 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20779 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20780 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20781 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20782 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20783 case BFD_RELOC_THUMB_PCREL_BRANCH25:
c19d1205
ZW
20784 case BFD_RELOC_VTABLE_ENTRY:
20785 case BFD_RELOC_VTABLE_INHERIT:
f0927246
NC
20786#ifdef TE_PE
20787 case BFD_RELOC_32_SECREL:
20788#endif
c19d1205
ZW
20789 code = fixp->fx_r_type;
20790 break;
a737bd4d 20791
00adf2d4
JB
20792 case BFD_RELOC_THUMB_PCREL_BLX:
20793#ifdef OBJ_ELF
20794 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20795 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
20796 else
20797#endif
20798 code = BFD_RELOC_THUMB_PCREL_BLX;
20799 break;
20800
c19d1205
ZW
20801 case BFD_RELOC_ARM_LITERAL:
20802 case BFD_RELOC_ARM_HWLITERAL:
20803 /* If this is called then the a literal has
20804 been referenced across a section boundary. */
20805 as_bad_where (fixp->fx_file, fixp->fx_line,
20806 _("literal referenced across section boundary"));
20807 return NULL;
a737bd4d 20808
c19d1205
ZW
20809#ifdef OBJ_ELF
20810 case BFD_RELOC_ARM_GOT32:
20811 case BFD_RELOC_ARM_GOTOFF:
20812 case BFD_RELOC_ARM_PLT32:
20813 case BFD_RELOC_ARM_TARGET1:
20814 case BFD_RELOC_ARM_ROSEGREL32:
20815 case BFD_RELOC_ARM_SBREL32:
20816 case BFD_RELOC_ARM_PREL31:
20817 case BFD_RELOC_ARM_TARGET2:
20818 case BFD_RELOC_ARM_TLS_LE32:
20819 case BFD_RELOC_ARM_TLS_LDO32:
39b41c9c
PB
20820 case BFD_RELOC_ARM_PCREL_CALL:
20821 case BFD_RELOC_ARM_PCREL_JUMP:
4962c51a
MS
20822 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20823 case BFD_RELOC_ARM_ALU_PC_G0:
20824 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20825 case BFD_RELOC_ARM_ALU_PC_G1:
20826 case BFD_RELOC_ARM_ALU_PC_G2:
20827 case BFD_RELOC_ARM_LDR_PC_G0:
20828 case BFD_RELOC_ARM_LDR_PC_G1:
20829 case BFD_RELOC_ARM_LDR_PC_G2:
20830 case BFD_RELOC_ARM_LDRS_PC_G0:
20831 case BFD_RELOC_ARM_LDRS_PC_G1:
20832 case BFD_RELOC_ARM_LDRS_PC_G2:
20833 case BFD_RELOC_ARM_LDC_PC_G0:
20834 case BFD_RELOC_ARM_LDC_PC_G1:
20835 case BFD_RELOC_ARM_LDC_PC_G2:
20836 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20837 case BFD_RELOC_ARM_ALU_SB_G0:
20838 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20839 case BFD_RELOC_ARM_ALU_SB_G1:
20840 case BFD_RELOC_ARM_ALU_SB_G2:
20841 case BFD_RELOC_ARM_LDR_SB_G0:
20842 case BFD_RELOC_ARM_LDR_SB_G1:
20843 case BFD_RELOC_ARM_LDR_SB_G2:
20844 case BFD_RELOC_ARM_LDRS_SB_G0:
20845 case BFD_RELOC_ARM_LDRS_SB_G1:
20846 case BFD_RELOC_ARM_LDRS_SB_G2:
20847 case BFD_RELOC_ARM_LDC_SB_G0:
20848 case BFD_RELOC_ARM_LDC_SB_G1:
20849 case BFD_RELOC_ARM_LDC_SB_G2:
845b51d6 20850 case BFD_RELOC_ARM_V4BX:
c19d1205
ZW
20851 code = fixp->fx_r_type;
20852 break;
a737bd4d 20853
c19d1205
ZW
20854 case BFD_RELOC_ARM_TLS_GD32:
20855 case BFD_RELOC_ARM_TLS_IE32:
20856 case BFD_RELOC_ARM_TLS_LDM32:
20857 /* BFD will include the symbol's address in the addend.
20858 But we don't want that, so subtract it out again here. */
20859 if (!S_IS_COMMON (fixp->fx_addsy))
20860 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
20861 code = fixp->fx_r_type;
20862 break;
20863#endif
a737bd4d 20864
c19d1205
ZW
20865 case BFD_RELOC_ARM_IMMEDIATE:
20866 as_bad_where (fixp->fx_file, fixp->fx_line,
20867 _("internal relocation (type: IMMEDIATE) not fixed up"));
20868 return NULL;
a737bd4d 20869
c19d1205
ZW
20870 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20871 as_bad_where (fixp->fx_file, fixp->fx_line,
20872 _("ADRL used for a symbol not defined in the same file"));
20873 return NULL;
a737bd4d 20874
c19d1205 20875 case BFD_RELOC_ARM_OFFSET_IMM:
00a97672
RS
20876 if (section->use_rela_p)
20877 {
20878 code = fixp->fx_r_type;
20879 break;
20880 }
20881
c19d1205
ZW
20882 if (fixp->fx_addsy != NULL
20883 && !S_IS_DEFINED (fixp->fx_addsy)
20884 && S_IS_LOCAL (fixp->fx_addsy))
a737bd4d 20885 {
c19d1205
ZW
20886 as_bad_where (fixp->fx_file, fixp->fx_line,
20887 _("undefined local label `%s'"),
20888 S_GET_NAME (fixp->fx_addsy));
20889 return NULL;
a737bd4d
NC
20890 }
20891
c19d1205
ZW
20892 as_bad_where (fixp->fx_file, fixp->fx_line,
20893 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
20894 return NULL;
a737bd4d 20895
c19d1205
ZW
20896 default:
20897 {
20898 char * type;
6c43fab6 20899
c19d1205
ZW
20900 switch (fixp->fx_r_type)
20901 {
20902 case BFD_RELOC_NONE: type = "NONE"; break;
20903 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
20904 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
3eb17e6b 20905 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
c19d1205
ZW
20906 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
20907 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
20908 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
8f06b2d8 20909 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
c19d1205
ZW
20910 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
20911 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
20912 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
20913 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
20914 default: type = _("<unknown>"); break;
20915 }
20916 as_bad_where (fixp->fx_file, fixp->fx_line,
20917 _("cannot represent %s relocation in this object file format"),
20918 type);
20919 return NULL;
20920 }
a737bd4d 20921 }
6c43fab6 20922
c19d1205
ZW
20923#ifdef OBJ_ELF
20924 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
20925 && GOT_symbol
20926 && fixp->fx_addsy == GOT_symbol)
20927 {
20928 code = BFD_RELOC_ARM_GOTPC;
20929 reloc->addend = fixp->fx_offset = reloc->address;
20930 }
20931#endif
6c43fab6 20932
c19d1205 20933 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
6c43fab6 20934
c19d1205
ZW
20935 if (reloc->howto == NULL)
20936 {
20937 as_bad_where (fixp->fx_file, fixp->fx_line,
20938 _("cannot represent %s relocation in this object file format"),
20939 bfd_get_reloc_code_name (code));
20940 return NULL;
20941 }
6c43fab6 20942
c19d1205
ZW
20943 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
20944 vtable entry to be used in the relocation's section offset. */
20945 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
20946 reloc->address = fixp->fx_offset;
6c43fab6 20947
c19d1205 20948 return reloc;
6c43fab6
RE
20949}
20950
c19d1205 20951/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
6c43fab6 20952
c19d1205
ZW
20953void
20954cons_fix_new_arm (fragS * frag,
20955 int where,
20956 int size,
20957 expressionS * exp)
6c43fab6 20958{
c19d1205
ZW
20959 bfd_reloc_code_real_type type;
20960 int pcrel = 0;
6c43fab6 20961
c19d1205
ZW
20962 /* Pick a reloc.
20963 FIXME: @@ Should look at CPU word size. */
20964 switch (size)
20965 {
20966 case 1:
20967 type = BFD_RELOC_8;
20968 break;
20969 case 2:
20970 type = BFD_RELOC_16;
20971 break;
20972 case 4:
20973 default:
20974 type = BFD_RELOC_32;
20975 break;
20976 case 8:
20977 type = BFD_RELOC_64;
20978 break;
20979 }
6c43fab6 20980
f0927246
NC
20981#ifdef TE_PE
20982 if (exp->X_op == O_secrel)
20983 {
20984 exp->X_op = O_symbol;
20985 type = BFD_RELOC_32_SECREL;
20986 }
20987#endif
20988
c19d1205
ZW
20989 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
20990}
6c43fab6 20991
4343666d 20992#if defined (OBJ_COFF)
c19d1205
ZW
20993void
20994arm_validate_fix (fixS * fixP)
6c43fab6 20995{
c19d1205
ZW
20996 /* If the destination of the branch is a defined symbol which does not have
20997 the THUMB_FUNC attribute, then we must be calling a function which has
20998 the (interfacearm) attribute. We look for the Thumb entry point to that
20999 function and change the branch to refer to that function instead. */
21000 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21001 && fixP->fx_addsy != NULL
21002 && S_IS_DEFINED (fixP->fx_addsy)
21003 && ! THUMB_IS_FUNC (fixP->fx_addsy))
6c43fab6 21004 {
c19d1205 21005 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
6c43fab6 21006 }
c19d1205
ZW
21007}
21008#endif
6c43fab6 21009
267bf995 21010
c19d1205
ZW
21011int
21012arm_force_relocation (struct fix * fixp)
21013{
21014#if defined (OBJ_COFF) && defined (TE_PE)
21015 if (fixp->fx_r_type == BFD_RELOC_RVA)
21016 return 1;
21017#endif
6c43fab6 21018
267bf995
RR
21019 /* In case we have a call or a branch to a function in ARM ISA mode from
21020 a thumb function or vice-versa force the relocation. These relocations
21021 are cleared off for some cores that might have blx and simple transformations
21022 are possible. */
21023
21024#ifdef OBJ_ELF
21025 switch (fixp->fx_r_type)
21026 {
21027 case BFD_RELOC_ARM_PCREL_JUMP:
21028 case BFD_RELOC_ARM_PCREL_CALL:
21029 case BFD_RELOC_THUMB_PCREL_BLX:
21030 if (THUMB_IS_FUNC (fixp->fx_addsy))
21031 return 1;
21032 break;
21033
21034 case BFD_RELOC_ARM_PCREL_BLX:
21035 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21036 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21037 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21038 if (ARM_IS_FUNC (fixp->fx_addsy))
21039 return 1;
21040 break;
21041
21042 default:
21043 break;
21044 }
21045#endif
21046
c19d1205
ZW
21047 /* Resolve these relocations even if the symbol is extern or weak. */
21048 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21049 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
0110f2b8 21050 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
16805f35 21051 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
0110f2b8
PB
21052 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21053 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21054 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
c19d1205 21055 return 0;
a737bd4d 21056
4962c51a
MS
21057 /* Always leave these relocations for the linker. */
21058 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21059 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21060 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21061 return 1;
21062
f0291e4c
PB
21063 /* Always generate relocations against function symbols. */
21064 if (fixp->fx_r_type == BFD_RELOC_32
21065 && fixp->fx_addsy
21066 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21067 return 1;
21068
c19d1205 21069 return generic_force_reloc (fixp);
404ff6b5
AH
21070}
21071
0ffdc86c 21072#if defined (OBJ_ELF) || defined (OBJ_COFF)
e28387c3
PB
21073/* Relocations against function names must be left unadjusted,
21074 so that the linker can use this information to generate interworking
21075 stubs. The MIPS version of this function
c19d1205
ZW
21076 also prevents relocations that are mips-16 specific, but I do not
21077 know why it does this.
404ff6b5 21078
c19d1205
ZW
21079 FIXME:
21080 There is one other problem that ought to be addressed here, but
21081 which currently is not: Taking the address of a label (rather
21082 than a function) and then later jumping to that address. Such
21083 addresses also ought to have their bottom bit set (assuming that
21084 they reside in Thumb code), but at the moment they will not. */
404ff6b5 21085
c19d1205
ZW
21086bfd_boolean
21087arm_fix_adjustable (fixS * fixP)
404ff6b5 21088{
c19d1205
ZW
21089 if (fixP->fx_addsy == NULL)
21090 return 1;
404ff6b5 21091
e28387c3
PB
21092 /* Preserve relocations against symbols with function type. */
21093 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
c921be7d 21094 return FALSE;
e28387c3 21095
c19d1205
ZW
21096 if (THUMB_IS_FUNC (fixP->fx_addsy)
21097 && fixP->fx_subsy == NULL)
c921be7d 21098 return FALSE;
a737bd4d 21099
c19d1205
ZW
21100 /* We need the symbol name for the VTABLE entries. */
21101 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21102 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
c921be7d 21103 return FALSE;
404ff6b5 21104
c19d1205
ZW
21105 /* Don't allow symbols to be discarded on GOT related relocs. */
21106 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21107 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21108 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21109 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21110 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21111 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21112 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21113 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21114 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
c921be7d 21115 return FALSE;
a737bd4d 21116
4962c51a
MS
21117 /* Similarly for group relocations. */
21118 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21119 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21120 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
c921be7d 21121 return FALSE;
4962c51a 21122
79947c54
CD
21123 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21124 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21125 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21126 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21127 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21128 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21129 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21130 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21131 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
c921be7d 21132 return FALSE;
79947c54 21133
c921be7d 21134 return TRUE;
a737bd4d 21135}
0ffdc86c
NC
21136#endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21137
21138#ifdef OBJ_ELF
404ff6b5 21139
c19d1205
ZW
21140const char *
21141elf32_arm_target_format (void)
404ff6b5 21142{
c19d1205
ZW
21143#ifdef TE_SYMBIAN
21144 return (target_big_endian
21145 ? "elf32-bigarm-symbian"
21146 : "elf32-littlearm-symbian");
21147#elif defined (TE_VXWORKS)
21148 return (target_big_endian
21149 ? "elf32-bigarm-vxworks"
21150 : "elf32-littlearm-vxworks");
21151#else
21152 if (target_big_endian)
21153 return "elf32-bigarm";
21154 else
21155 return "elf32-littlearm";
21156#endif
404ff6b5
AH
21157}
21158
c19d1205
ZW
21159void
21160armelf_frob_symbol (symbolS * symp,
21161 int * puntp)
404ff6b5 21162{
c19d1205
ZW
21163 elf_frob_symbol (symp, puntp);
21164}
21165#endif
404ff6b5 21166
c19d1205 21167/* MD interface: Finalization. */
a737bd4d 21168
c19d1205
ZW
21169void
21170arm_cleanup (void)
21171{
21172 literal_pool * pool;
a737bd4d 21173
e07e6e58
NC
21174 /* Ensure that all the IT blocks are properly closed. */
21175 check_it_blocks_finished ();
21176
c19d1205
ZW
21177 for (pool = list_of_pools; pool; pool = pool->next)
21178 {
5f4273c7 21179 /* Put it at the end of the relevant section. */
c19d1205
ZW
21180 subseg_set (pool->section, pool->sub_section);
21181#ifdef OBJ_ELF
21182 arm_elf_change_section ();
21183#endif
21184 s_ltorg (0);
21185 }
404ff6b5
AH
21186}
21187
cd000bff
DJ
21188#ifdef OBJ_ELF
21189/* Remove any excess mapping symbols generated for alignment frags in
21190 SEC. We may have created a mapping symbol before a zero byte
21191 alignment; remove it if there's a mapping symbol after the
21192 alignment. */
21193static void
21194check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21195 void *dummy ATTRIBUTE_UNUSED)
21196{
21197 segment_info_type *seginfo = seg_info (sec);
21198 fragS *fragp;
21199
21200 if (seginfo == NULL || seginfo->frchainP == NULL)
21201 return;
21202
21203 for (fragp = seginfo->frchainP->frch_root;
21204 fragp != NULL;
21205 fragp = fragp->fr_next)
21206 {
21207 symbolS *sym = fragp->tc_frag_data.last_map;
21208 fragS *next = fragp->fr_next;
21209
21210 /* Variable-sized frags have been converted to fixed size by
21211 this point. But if this was variable-sized to start with,
21212 there will be a fixed-size frag after it. So don't handle
21213 next == NULL. */
21214 if (sym == NULL || next == NULL)
21215 continue;
21216
21217 if (S_GET_VALUE (sym) < next->fr_address)
21218 /* Not at the end of this frag. */
21219 continue;
21220 know (S_GET_VALUE (sym) == next->fr_address);
21221
21222 do
21223 {
21224 if (next->tc_frag_data.first_map != NULL)
21225 {
21226 /* Next frag starts with a mapping symbol. Discard this
21227 one. */
21228 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21229 break;
21230 }
21231
21232 if (next->fr_next == NULL)
21233 {
21234 /* This mapping symbol is at the end of the section. Discard
21235 it. */
21236 know (next->fr_fix == 0 && next->fr_var == 0);
21237 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21238 break;
21239 }
21240
21241 /* As long as we have empty frags without any mapping symbols,
21242 keep looking. */
21243 /* If the next frag is non-empty and does not start with a
21244 mapping symbol, then this mapping symbol is required. */
21245 if (next->fr_address != next->fr_next->fr_address)
21246 break;
21247
21248 next = next->fr_next;
21249 }
21250 while (next != NULL);
21251 }
21252}
21253#endif
21254
c19d1205
ZW
21255/* Adjust the symbol table. This marks Thumb symbols as distinct from
21256 ARM ones. */
404ff6b5 21257
c19d1205
ZW
21258void
21259arm_adjust_symtab (void)
404ff6b5 21260{
c19d1205
ZW
21261#ifdef OBJ_COFF
21262 symbolS * sym;
404ff6b5 21263
c19d1205
ZW
21264 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21265 {
21266 if (ARM_IS_THUMB (sym))
21267 {
21268 if (THUMB_IS_FUNC (sym))
21269 {
21270 /* Mark the symbol as a Thumb function. */
21271 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21272 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21273 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
404ff6b5 21274
c19d1205
ZW
21275 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21276 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21277 else
21278 as_bad (_("%s: unexpected function type: %d"),
21279 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21280 }
21281 else switch (S_GET_STORAGE_CLASS (sym))
21282 {
21283 case C_EXT:
21284 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21285 break;
21286 case C_STAT:
21287 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21288 break;
21289 case C_LABEL:
21290 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21291 break;
21292 default:
21293 /* Do nothing. */
21294 break;
21295 }
21296 }
a737bd4d 21297
c19d1205
ZW
21298 if (ARM_IS_INTERWORK (sym))
21299 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
404ff6b5 21300 }
c19d1205
ZW
21301#endif
21302#ifdef OBJ_ELF
21303 symbolS * sym;
21304 char bind;
404ff6b5 21305
c19d1205 21306 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
404ff6b5 21307 {
c19d1205
ZW
21308 if (ARM_IS_THUMB (sym))
21309 {
21310 elf_symbol_type * elf_sym;
404ff6b5 21311
c19d1205
ZW
21312 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21313 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
404ff6b5 21314
b0796911
PB
21315 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21316 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
c19d1205
ZW
21317 {
21318 /* If it's a .thumb_func, declare it as so,
21319 otherwise tag label as .code 16. */
21320 if (THUMB_IS_FUNC (sym))
21321 elf_sym->internal_elf_sym.st_info =
21322 ELF_ST_INFO (bind, STT_ARM_TFUNC);
3ba67470 21323 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
c19d1205
ZW
21324 elf_sym->internal_elf_sym.st_info =
21325 ELF_ST_INFO (bind, STT_ARM_16BIT);
21326 }
21327 }
21328 }
cd000bff
DJ
21329
21330 /* Remove any overlapping mapping symbols generated by alignment frags. */
21331 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
c19d1205 21332#endif
404ff6b5
AH
21333}
21334
c19d1205 21335/* MD interface: Initialization. */
404ff6b5 21336
a737bd4d 21337static void
c19d1205 21338set_constant_flonums (void)
a737bd4d 21339{
c19d1205 21340 int i;
404ff6b5 21341
c19d1205
ZW
21342 for (i = 0; i < NUM_FLOAT_VALS; i++)
21343 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21344 abort ();
a737bd4d 21345}
404ff6b5 21346
3e9e4fcf
JB
21347/* Auto-select Thumb mode if it's the only available instruction set for the
21348 given architecture. */
21349
21350static void
21351autoselect_thumb_from_cpu_variant (void)
21352{
21353 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21354 opcode_select (16);
21355}
21356
c19d1205
ZW
21357void
21358md_begin (void)
a737bd4d 21359{
c19d1205
ZW
21360 unsigned mach;
21361 unsigned int i;
404ff6b5 21362
c19d1205
ZW
21363 if ( (arm_ops_hsh = hash_new ()) == NULL
21364 || (arm_cond_hsh = hash_new ()) == NULL
21365 || (arm_shift_hsh = hash_new ()) == NULL
21366 || (arm_psr_hsh = hash_new ()) == NULL
62b3e311 21367 || (arm_v7m_psr_hsh = hash_new ()) == NULL
c19d1205 21368 || (arm_reg_hsh = hash_new ()) == NULL
62b3e311
PB
21369 || (arm_reloc_hsh = hash_new ()) == NULL
21370 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
c19d1205
ZW
21371 as_fatal (_("virtual memory exhausted"));
21372
21373 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
d3ce72d0 21374 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
c19d1205 21375 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
d3ce72d0 21376 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
c19d1205 21377 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
5a49b8ac 21378 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
c19d1205 21379 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
d3ce72d0 21380 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
62b3e311 21381 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
d3ce72d0
NC
21382 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21383 (void *) (v7m_psrs + i));
c19d1205 21384 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
5a49b8ac 21385 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
62b3e311
PB
21386 for (i = 0;
21387 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21388 i++)
d3ce72d0 21389 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
5a49b8ac 21390 (void *) (barrier_opt_names + i));
c19d1205
ZW
21391#ifdef OBJ_ELF
21392 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
5a49b8ac 21393 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
c19d1205
ZW
21394#endif
21395
21396 set_constant_flonums ();
404ff6b5 21397
c19d1205
ZW
21398 /* Set the cpu variant based on the command-line options. We prefer
21399 -mcpu= over -march= if both are set (as for GCC); and we prefer
21400 -mfpu= over any other way of setting the floating point unit.
21401 Use of legacy options with new options are faulted. */
e74cfd16 21402 if (legacy_cpu)
404ff6b5 21403 {
e74cfd16 21404 if (mcpu_cpu_opt || march_cpu_opt)
c19d1205
ZW
21405 as_bad (_("use of old and new-style options to set CPU type"));
21406
21407 mcpu_cpu_opt = legacy_cpu;
404ff6b5 21408 }
e74cfd16 21409 else if (!mcpu_cpu_opt)
c19d1205 21410 mcpu_cpu_opt = march_cpu_opt;
404ff6b5 21411
e74cfd16 21412 if (legacy_fpu)
c19d1205 21413 {
e74cfd16 21414 if (mfpu_opt)
c19d1205 21415 as_bad (_("use of old and new-style options to set FPU type"));
03b1477f
RE
21416
21417 mfpu_opt = legacy_fpu;
21418 }
e74cfd16 21419 else if (!mfpu_opt)
03b1477f 21420 {
45eb4c1b
NS
21421#if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21422 || defined (TE_NetBSD) || defined (TE_VXWORKS))
39c2da32
RE
21423 /* Some environments specify a default FPU. If they don't, infer it
21424 from the processor. */
e74cfd16 21425 if (mcpu_fpu_opt)
03b1477f
RE
21426 mfpu_opt = mcpu_fpu_opt;
21427 else
21428 mfpu_opt = march_fpu_opt;
39c2da32 21429#else
e74cfd16 21430 mfpu_opt = &fpu_default;
39c2da32 21431#endif
03b1477f
RE
21432 }
21433
e74cfd16 21434 if (!mfpu_opt)
03b1477f 21435 {
493cb6ef 21436 if (mcpu_cpu_opt != NULL)
e74cfd16 21437 mfpu_opt = &fpu_default;
493cb6ef 21438 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
e74cfd16 21439 mfpu_opt = &fpu_arch_vfp_v2;
03b1477f 21440 else
e74cfd16 21441 mfpu_opt = &fpu_arch_fpa;
03b1477f
RE
21442 }
21443
ee065d83 21444#ifdef CPU_DEFAULT
e74cfd16 21445 if (!mcpu_cpu_opt)
ee065d83 21446 {
e74cfd16
PB
21447 mcpu_cpu_opt = &cpu_default;
21448 selected_cpu = cpu_default;
ee065d83 21449 }
e74cfd16
PB
21450#else
21451 if (mcpu_cpu_opt)
21452 selected_cpu = *mcpu_cpu_opt;
ee065d83 21453 else
e74cfd16 21454 mcpu_cpu_opt = &arm_arch_any;
ee065d83 21455#endif
03b1477f 21456
e74cfd16 21457 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
03b1477f 21458
3e9e4fcf
JB
21459 autoselect_thumb_from_cpu_variant ();
21460
e74cfd16 21461 arm_arch_used = thumb_arch_used = arm_arch_none;
ee065d83 21462
f17c130b 21463#if defined OBJ_COFF || defined OBJ_ELF
b99bd4ef 21464 {
7cc69913
NC
21465 unsigned int flags = 0;
21466
21467#if defined OBJ_ELF
21468 flags = meabi_flags;
d507cf36
PB
21469
21470 switch (meabi_flags)
33a392fb 21471 {
d507cf36 21472 case EF_ARM_EABI_UNKNOWN:
7cc69913 21473#endif
d507cf36
PB
21474 /* Set the flags in the private structure. */
21475 if (uses_apcs_26) flags |= F_APCS26;
21476 if (support_interwork) flags |= F_INTERWORK;
21477 if (uses_apcs_float) flags |= F_APCS_FLOAT;
c19d1205 21478 if (pic_code) flags |= F_PIC;
e74cfd16 21479 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
7cc69913
NC
21480 flags |= F_SOFT_FLOAT;
21481
d507cf36
PB
21482 switch (mfloat_abi_opt)
21483 {
21484 case ARM_FLOAT_ABI_SOFT:
21485 case ARM_FLOAT_ABI_SOFTFP:
21486 flags |= F_SOFT_FLOAT;
21487 break;
33a392fb 21488
d507cf36
PB
21489 case ARM_FLOAT_ABI_HARD:
21490 if (flags & F_SOFT_FLOAT)
21491 as_bad (_("hard-float conflicts with specified fpu"));
21492 break;
21493 }
03b1477f 21494
e74cfd16
PB
21495 /* Using pure-endian doubles (even if soft-float). */
21496 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
7cc69913 21497 flags |= F_VFP_FLOAT;
f17c130b 21498
fde78edd 21499#if defined OBJ_ELF
e74cfd16 21500 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
d507cf36 21501 flags |= EF_ARM_MAVERICK_FLOAT;
d507cf36
PB
21502 break;
21503
8cb51566 21504 case EF_ARM_EABI_VER4:
3a4a14e9 21505 case EF_ARM_EABI_VER5:
c19d1205 21506 /* No additional flags to set. */
d507cf36
PB
21507 break;
21508
21509 default:
21510 abort ();
21511 }
7cc69913 21512#endif
b99bd4ef
NC
21513 bfd_set_private_flags (stdoutput, flags);
21514
21515 /* We have run out flags in the COFF header to encode the
21516 status of ATPCS support, so instead we create a dummy,
c19d1205 21517 empty, debug section called .arm.atpcs. */
b99bd4ef
NC
21518 if (atpcs)
21519 {
21520 asection * sec;
21521
21522 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21523
21524 if (sec != NULL)
21525 {
21526 bfd_set_section_flags
21527 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21528 bfd_set_section_size (stdoutput, sec, 0);
21529 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21530 }
21531 }
7cc69913 21532 }
f17c130b 21533#endif
b99bd4ef
NC
21534
21535 /* Record the CPU type as well. */
2d447fca
JM
21536 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21537 mach = bfd_mach_arm_iWMMXt2;
21538 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
e16bb312 21539 mach = bfd_mach_arm_iWMMXt;
e74cfd16 21540 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
b99bd4ef 21541 mach = bfd_mach_arm_XScale;
e74cfd16 21542 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
fde78edd 21543 mach = bfd_mach_arm_ep9312;
e74cfd16 21544 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
b99bd4ef 21545 mach = bfd_mach_arm_5TE;
e74cfd16 21546 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
b99bd4ef 21547 {
e74cfd16 21548 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21549 mach = bfd_mach_arm_5T;
21550 else
21551 mach = bfd_mach_arm_5;
21552 }
e74cfd16 21553 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
b99bd4ef 21554 {
e74cfd16 21555 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
b99bd4ef
NC
21556 mach = bfd_mach_arm_4T;
21557 else
21558 mach = bfd_mach_arm_4;
21559 }
e74cfd16 21560 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
b99bd4ef 21561 mach = bfd_mach_arm_3M;
e74cfd16
PB
21562 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21563 mach = bfd_mach_arm_3;
21564 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21565 mach = bfd_mach_arm_2a;
21566 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21567 mach = bfd_mach_arm_2;
21568 else
21569 mach = bfd_mach_arm_unknown;
b99bd4ef
NC
21570
21571 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21572}
21573
c19d1205 21574/* Command line processing. */
b99bd4ef 21575
c19d1205
ZW
21576/* md_parse_option
21577 Invocation line includes a switch not recognized by the base assembler.
21578 See if it's a processor-specific option.
b99bd4ef 21579
c19d1205
ZW
21580 This routine is somewhat complicated by the need for backwards
21581 compatibility (since older releases of gcc can't be changed).
21582 The new options try to make the interface as compatible as
21583 possible with GCC.
b99bd4ef 21584
c19d1205 21585 New options (supported) are:
b99bd4ef 21586
c19d1205
ZW
21587 -mcpu=<cpu name> Assemble for selected processor
21588 -march=<architecture name> Assemble for selected architecture
21589 -mfpu=<fpu architecture> Assemble for selected FPU.
21590 -EB/-mbig-endian Big-endian
21591 -EL/-mlittle-endian Little-endian
21592 -k Generate PIC code
21593 -mthumb Start in Thumb mode
21594 -mthumb-interwork Code supports ARM/Thumb interworking
b99bd4ef 21595
278df34e 21596 -m[no-]warn-deprecated Warn about deprecated features
267bf995 21597
c19d1205 21598 For now we will also provide support for:
b99bd4ef 21599
c19d1205
ZW
21600 -mapcs-32 32-bit Program counter
21601 -mapcs-26 26-bit Program counter
21602 -macps-float Floats passed in FP registers
21603 -mapcs-reentrant Reentrant code
21604 -matpcs
21605 (sometime these will probably be replaced with -mapcs=<list of options>
21606 and -matpcs=<list of options>)
b99bd4ef 21607
c19d1205
ZW
21608 The remaining options are only supported for back-wards compatibility.
21609 Cpu variants, the arm part is optional:
21610 -m[arm]1 Currently not supported.
21611 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21612 -m[arm]3 Arm 3 processor
21613 -m[arm]6[xx], Arm 6 processors
21614 -m[arm]7[xx][t][[d]m] Arm 7 processors
21615 -m[arm]8[10] Arm 8 processors
21616 -m[arm]9[20][tdmi] Arm 9 processors
21617 -mstrongarm[110[0]] StrongARM processors
21618 -mxscale XScale processors
21619 -m[arm]v[2345[t[e]]] Arm architectures
21620 -mall All (except the ARM1)
21621 FP variants:
21622 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21623 -mfpe-old (No float load/store multiples)
21624 -mvfpxd VFP Single precision
21625 -mvfp All VFP
21626 -mno-fpu Disable all floating point instructions
b99bd4ef 21627
c19d1205
ZW
21628 The following CPU names are recognized:
21629 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21630 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21631 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21632 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21633 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21634 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21635 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
b99bd4ef 21636
c19d1205 21637 */
b99bd4ef 21638
c19d1205 21639const char * md_shortopts = "m:k";
b99bd4ef 21640
c19d1205
ZW
21641#ifdef ARM_BI_ENDIAN
21642#define OPTION_EB (OPTION_MD_BASE + 0)
21643#define OPTION_EL (OPTION_MD_BASE + 1)
b99bd4ef 21644#else
c19d1205
ZW
21645#if TARGET_BYTES_BIG_ENDIAN
21646#define OPTION_EB (OPTION_MD_BASE + 0)
b99bd4ef 21647#else
c19d1205
ZW
21648#define OPTION_EL (OPTION_MD_BASE + 1)
21649#endif
b99bd4ef 21650#endif
845b51d6 21651#define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
b99bd4ef 21652
c19d1205 21653struct option md_longopts[] =
b99bd4ef 21654{
c19d1205
ZW
21655#ifdef OPTION_EB
21656 {"EB", no_argument, NULL, OPTION_EB},
21657#endif
21658#ifdef OPTION_EL
21659 {"EL", no_argument, NULL, OPTION_EL},
b99bd4ef 21660#endif
845b51d6 21661 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
c19d1205
ZW
21662 {NULL, no_argument, NULL, 0}
21663};
b99bd4ef 21664
c19d1205 21665size_t md_longopts_size = sizeof (md_longopts);
b99bd4ef 21666
c19d1205 21667struct arm_option_table
b99bd4ef 21668{
c19d1205
ZW
21669 char *option; /* Option name to match. */
21670 char *help; /* Help information. */
21671 int *var; /* Variable to change. */
21672 int value; /* What to change it to. */
21673 char *deprecated; /* If non-null, print this message. */
21674};
b99bd4ef 21675
c19d1205
ZW
21676struct arm_option_table arm_opts[] =
21677{
21678 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21679 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21680 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21681 &support_interwork, 1, NULL},
21682 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21683 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21684 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21685 1, NULL},
21686 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21687 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21688 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21689 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21690 NULL},
b99bd4ef 21691
c19d1205
ZW
21692 /* These are recognized by the assembler, but have no affect on code. */
21693 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21694 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
278df34e
NS
21695
21696 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21697 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21698 &warn_on_deprecated, 0, NULL},
e74cfd16
PB
21699 {NULL, NULL, NULL, 0, NULL}
21700};
21701
21702struct arm_legacy_option_table
21703{
21704 char *option; /* Option name to match. */
21705 const arm_feature_set **var; /* Variable to change. */
21706 const arm_feature_set value; /* What to change it to. */
21707 char *deprecated; /* If non-null, print this message. */
21708};
b99bd4ef 21709
e74cfd16
PB
21710const struct arm_legacy_option_table arm_legacy_opts[] =
21711{
c19d1205
ZW
21712 /* DON'T add any new processors to this list -- we want the whole list
21713 to go away... Add them to the processors table instead. */
e74cfd16
PB
21714 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21715 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21716 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21717 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21718 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21719 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21720 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21721 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21722 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21723 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21724 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21725 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21726 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21727 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21728 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21729 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21730 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21731 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21732 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21733 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21734 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21735 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21736 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21737 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21738 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21739 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21740 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21741 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21742 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21743 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21744 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21745 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21746 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21747 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
21748 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21749 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
21750 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21751 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
21752 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21753 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
21754 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21755 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
21756 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21757 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
21758 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21759 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
21760 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21761 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21762 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21763 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
21764 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21765 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
21766 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21767 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
21768 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21769 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
21770 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21771 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
21772 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21773 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
21774 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21775 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
21776 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21777 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
21778 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21779 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
21780 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21781 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
21782 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
21783 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 21784 N_("use -mcpu=strongarm110")},
e74cfd16 21785 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
c19d1205 21786 N_("use -mcpu=strongarm1100")},
e74cfd16 21787 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
c19d1205 21788 N_("use -mcpu=strongarm1110")},
e74cfd16
PB
21789 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
21790 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
21791 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
7ed4c4c5 21792
c19d1205 21793 /* Architecture variants -- don't add any more to this list either. */
e74cfd16
PB
21794 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21795 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
21796 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21797 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
21798 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21799 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
21800 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21801 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
21802 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21803 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
21804 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21805 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
21806 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21807 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
21808 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21809 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
21810 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
21811 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
7ed4c4c5 21812
c19d1205 21813 /* Floating point variants -- don't add any more to this list either. */
e74cfd16
PB
21814 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
21815 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
21816 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
21817 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
c19d1205 21818 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
7ed4c4c5 21819
e74cfd16 21820 {NULL, NULL, ARM_ARCH_NONE, NULL}
c19d1205 21821};
7ed4c4c5 21822
c19d1205 21823struct arm_cpu_option_table
7ed4c4c5 21824{
c19d1205 21825 char *name;
e74cfd16 21826 const arm_feature_set value;
c19d1205
ZW
21827 /* For some CPUs we assume an FPU unless the user explicitly sets
21828 -mfpu=... */
e74cfd16 21829 const arm_feature_set default_fpu;
ee065d83
PB
21830 /* The canonical name of the CPU, or NULL to use NAME converted to upper
21831 case. */
21832 const char *canonical_name;
c19d1205 21833};
7ed4c4c5 21834
c19d1205
ZW
21835/* This list should, at a minimum, contain all the cpu names
21836 recognized by GCC. */
e74cfd16 21837static const struct arm_cpu_option_table arm_cpus[] =
c19d1205 21838{
ee065d83
PB
21839 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
21840 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
21841 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
21842 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21843 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
21844 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21845 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21846 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21847 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21848 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21849 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21850 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21851 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21852 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21853 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21854 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
21855 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21856 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21857 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21858 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21859 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21860 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21861 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21862 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21863 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21864 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21865 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21866 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
21867 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21868 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21869 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21870 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21871 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21872 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21873 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21874 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21875 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21876 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21877 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21878 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
21879 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21880 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21881 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
21882 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
7fac0536
NC
21883 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
21884 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
c19d1205
ZW
21885 /* For V5 or later processors we default to using VFP; but the user
21886 should really set the FPU type explicitly. */
ee065d83
PB
21887 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21888 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21889 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21890 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
21891 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
21892 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21893 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
21894 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21895 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
21896 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
21897 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21898 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21899 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21900 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21901 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21902 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
21903 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
21904 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21905 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
21906 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
21907 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
7fac0536
NC
21908 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
21909 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
ee065d83
PB
21910 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
21911 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
21912 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
21913 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
21914 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
21915 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
21916 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
21917 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
21918 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
21919 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
b38f9f31 21920 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
e07e6e58 21921 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
5287ad62 21922 | FPU_NEON_EXT_V1),
15290f0a 21923 NULL},
e07e6e58 21924 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
15290f0a 21925 | FPU_NEON_EXT_V1),
5287ad62 21926 NULL},
62b3e311 21927 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
307c948d 21928 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
62b3e311 21929 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
7e806470 21930 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
5b19eaba 21931 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
c19d1205 21932 /* ??? XSCALE is really an architecture. */
ee065d83 21933 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 21934 /* ??? iwmmxt is not a processor. */
ee065d83 21935 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
2d447fca 21936 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
ee065d83 21937 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
c19d1205 21938 /* Maverick */
e07e6e58 21939 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
e74cfd16 21940 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
c19d1205 21941};
7ed4c4c5 21942
c19d1205 21943struct arm_arch_option_table
7ed4c4c5 21944{
c19d1205 21945 char *name;
e74cfd16
PB
21946 const arm_feature_set value;
21947 const arm_feature_set default_fpu;
c19d1205 21948};
7ed4c4c5 21949
c19d1205
ZW
21950/* This list should, at a minimum, contain all the architecture names
21951 recognized by GCC. */
e74cfd16 21952static const struct arm_arch_option_table arm_archs[] =
c19d1205
ZW
21953{
21954 {"all", ARM_ANY, FPU_ARCH_FPA},
21955 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
21956 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
21957 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
21958 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
21959 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
21960 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
21961 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
21962 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
21963 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
21964 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
21965 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
21966 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
21967 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
21968 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
21969 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
21970 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
21971 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
21972 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
21973 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
21974 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
21975 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
21976 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
21977 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
21978 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
21979 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
7e806470 21980 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
62b3e311 21981 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
c450d570
PB
21982 /* The official spelling of the ARMv7 profile variants is the dashed form.
21983 Accept the non-dashed form for compatibility with old toolchains. */
62b3e311
PB
21984 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
21985 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
21986 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c450d570
PB
21987 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
21988 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
21989 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
c19d1205
ZW
21990 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
21991 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
2d447fca 21992 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
e74cfd16 21993 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
c19d1205 21994};
7ed4c4c5 21995
c19d1205 21996/* ISA extensions in the co-processor space. */
e74cfd16 21997struct arm_option_cpu_value_table
c19d1205
ZW
21998{
21999 char *name;
e74cfd16 22000 const arm_feature_set value;
c19d1205 22001};
7ed4c4c5 22002
e74cfd16 22003static const struct arm_option_cpu_value_table arm_extensions[] =
c19d1205 22004{
e74cfd16
PB
22005 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22006 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22007 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
2d447fca 22008 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
e74cfd16 22009 {NULL, ARM_ARCH_NONE}
c19d1205 22010};
7ed4c4c5 22011
c19d1205
ZW
22012/* This list should, at a minimum, contain all the fpu names
22013 recognized by GCC. */
e74cfd16 22014static const struct arm_option_cpu_value_table arm_fpus[] =
c19d1205
ZW
22015{
22016 {"softfpa", FPU_NONE},
22017 {"fpe", FPU_ARCH_FPE},
22018 {"fpe2", FPU_ARCH_FPE},
22019 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22020 {"fpa", FPU_ARCH_FPA},
22021 {"fpa10", FPU_ARCH_FPA},
22022 {"fpa11", FPU_ARCH_FPA},
22023 {"arm7500fe", FPU_ARCH_FPA},
22024 {"softvfp", FPU_ARCH_VFP},
22025 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22026 {"vfp", FPU_ARCH_VFP_V2},
22027 {"vfp9", FPU_ARCH_VFP_V2},
b1cc4aeb 22028 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
c19d1205
ZW
22029 {"vfp10", FPU_ARCH_VFP_V2},
22030 {"vfp10-r0", FPU_ARCH_VFP_V1},
22031 {"vfpxd", FPU_ARCH_VFP_V1xD},
b1cc4aeb
PB
22032 {"vfpv2", FPU_ARCH_VFP_V2},
22033 {"vfpv3", FPU_ARCH_VFP_V3},
62f3b8c8 22034 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
b1cc4aeb 22035 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
62f3b8c8
PB
22036 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22037 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22038 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
c19d1205
ZW
22039 {"arm1020t", FPU_ARCH_VFP_V1},
22040 {"arm1020e", FPU_ARCH_VFP_V2},
22041 {"arm1136jfs", FPU_ARCH_VFP_V2},
22042 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22043 {"maverick", FPU_ARCH_MAVERICK},
5287ad62 22044 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
8e79c3df 22045 {"neon-fp16", FPU_ARCH_NEON_FP16},
62f3b8c8
PB
22046 {"vfpv4", FPU_ARCH_VFP_V4},
22047 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22048 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
e74cfd16
PB
22049 {NULL, ARM_ARCH_NONE}
22050};
22051
22052struct arm_option_value_table
22053{
22054 char *name;
22055 long value;
c19d1205 22056};
7ed4c4c5 22057
e74cfd16 22058static const struct arm_option_value_table arm_float_abis[] =
c19d1205
ZW
22059{
22060 {"hard", ARM_FLOAT_ABI_HARD},
22061 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22062 {"soft", ARM_FLOAT_ABI_SOFT},
e74cfd16 22063 {NULL, 0}
c19d1205 22064};
7ed4c4c5 22065
c19d1205 22066#ifdef OBJ_ELF
3a4a14e9 22067/* We only know how to output GNU and ver 4/5 (AAELF) formats. */
e74cfd16 22068static const struct arm_option_value_table arm_eabis[] =
c19d1205
ZW
22069{
22070 {"gnu", EF_ARM_EABI_UNKNOWN},
22071 {"4", EF_ARM_EABI_VER4},
3a4a14e9 22072 {"5", EF_ARM_EABI_VER5},
e74cfd16 22073 {NULL, 0}
c19d1205
ZW
22074};
22075#endif
7ed4c4c5 22076
c19d1205
ZW
22077struct arm_long_option_table
22078{
22079 char * option; /* Substring to match. */
22080 char * help; /* Help information. */
22081 int (* func) (char * subopt); /* Function to decode sub-option. */
22082 char * deprecated; /* If non-null, print this message. */
22083};
7ed4c4c5 22084
c921be7d 22085static bfd_boolean
e74cfd16 22086arm_parse_extension (char * str, const arm_feature_set **opt_p)
7ed4c4c5 22087{
21d799b5
NC
22088 arm_feature_set *ext_set = (arm_feature_set *)
22089 xmalloc (sizeof (arm_feature_set));
e74cfd16
PB
22090
22091 /* Copy the feature set, so that we can modify it. */
22092 *ext_set = **opt_p;
22093 *opt_p = ext_set;
22094
c19d1205 22095 while (str != NULL && *str != 0)
7ed4c4c5 22096 {
e74cfd16 22097 const struct arm_option_cpu_value_table * opt;
c19d1205
ZW
22098 char * ext;
22099 int optlen;
7ed4c4c5 22100
c19d1205
ZW
22101 if (*str != '+')
22102 {
22103 as_bad (_("invalid architectural extension"));
c921be7d 22104 return FALSE;
c19d1205 22105 }
7ed4c4c5 22106
c19d1205
ZW
22107 str++;
22108 ext = strchr (str, '+');
7ed4c4c5 22109
c19d1205
ZW
22110 if (ext != NULL)
22111 optlen = ext - str;
22112 else
22113 optlen = strlen (str);
7ed4c4c5 22114
c19d1205
ZW
22115 if (optlen == 0)
22116 {
22117 as_bad (_("missing architectural extension"));
c921be7d 22118 return FALSE;
c19d1205 22119 }
7ed4c4c5 22120
c19d1205
ZW
22121 for (opt = arm_extensions; opt->name != NULL; opt++)
22122 if (strncmp (opt->name, str, optlen) == 0)
22123 {
e74cfd16 22124 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
c19d1205
ZW
22125 break;
22126 }
7ed4c4c5 22127
c19d1205
ZW
22128 if (opt->name == NULL)
22129 {
5f4273c7 22130 as_bad (_("unknown architectural extension `%s'"), str);
c921be7d 22131 return FALSE;
c19d1205 22132 }
7ed4c4c5 22133
c19d1205
ZW
22134 str = ext;
22135 };
7ed4c4c5 22136
c921be7d 22137 return TRUE;
c19d1205 22138}
7ed4c4c5 22139
c921be7d 22140static bfd_boolean
c19d1205 22141arm_parse_cpu (char * str)
7ed4c4c5 22142{
e74cfd16 22143 const struct arm_cpu_option_table * opt;
c19d1205
ZW
22144 char * ext = strchr (str, '+');
22145 int optlen;
7ed4c4c5 22146
c19d1205
ZW
22147 if (ext != NULL)
22148 optlen = ext - str;
7ed4c4c5 22149 else
c19d1205 22150 optlen = strlen (str);
7ed4c4c5 22151
c19d1205 22152 if (optlen == 0)
7ed4c4c5 22153 {
c19d1205 22154 as_bad (_("missing cpu name `%s'"), str);
c921be7d 22155 return FALSE;
7ed4c4c5
NC
22156 }
22157
c19d1205
ZW
22158 for (opt = arm_cpus; opt->name != NULL; opt++)
22159 if (strncmp (opt->name, str, optlen) == 0)
22160 {
e74cfd16
PB
22161 mcpu_cpu_opt = &opt->value;
22162 mcpu_fpu_opt = &opt->default_fpu;
ee065d83 22163 if (opt->canonical_name)
5f4273c7 22164 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22165 else
22166 {
22167 int i;
c921be7d 22168
ee065d83
PB
22169 for (i = 0; i < optlen; i++)
22170 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22171 selected_cpu_name[i] = 0;
22172 }
7ed4c4c5 22173
c19d1205
ZW
22174 if (ext != NULL)
22175 return arm_parse_extension (ext, &mcpu_cpu_opt);
7ed4c4c5 22176
c921be7d 22177 return TRUE;
c19d1205 22178 }
7ed4c4c5 22179
c19d1205 22180 as_bad (_("unknown cpu `%s'"), str);
c921be7d 22181 return FALSE;
7ed4c4c5
NC
22182}
22183
c921be7d 22184static bfd_boolean
c19d1205 22185arm_parse_arch (char * str)
7ed4c4c5 22186{
e74cfd16 22187 const struct arm_arch_option_table *opt;
c19d1205
ZW
22188 char *ext = strchr (str, '+');
22189 int optlen;
7ed4c4c5 22190
c19d1205
ZW
22191 if (ext != NULL)
22192 optlen = ext - str;
7ed4c4c5 22193 else
c19d1205 22194 optlen = strlen (str);
7ed4c4c5 22195
c19d1205 22196 if (optlen == 0)
7ed4c4c5 22197 {
c19d1205 22198 as_bad (_("missing architecture name `%s'"), str);
c921be7d 22199 return FALSE;
7ed4c4c5
NC
22200 }
22201
c19d1205
ZW
22202 for (opt = arm_archs; opt->name != NULL; opt++)
22203 if (streq (opt->name, str))
22204 {
e74cfd16
PB
22205 march_cpu_opt = &opt->value;
22206 march_fpu_opt = &opt->default_fpu;
5f4273c7 22207 strcpy (selected_cpu_name, opt->name);
7ed4c4c5 22208
c19d1205
ZW
22209 if (ext != NULL)
22210 return arm_parse_extension (ext, &march_cpu_opt);
7ed4c4c5 22211
c921be7d 22212 return TRUE;
c19d1205
ZW
22213 }
22214
22215 as_bad (_("unknown architecture `%s'\n"), str);
c921be7d 22216 return FALSE;
7ed4c4c5 22217}
eb043451 22218
c921be7d 22219static bfd_boolean
c19d1205
ZW
22220arm_parse_fpu (char * str)
22221{
e74cfd16 22222 const struct arm_option_cpu_value_table * opt;
b99bd4ef 22223
c19d1205
ZW
22224 for (opt = arm_fpus; opt->name != NULL; opt++)
22225 if (streq (opt->name, str))
22226 {
e74cfd16 22227 mfpu_opt = &opt->value;
c921be7d 22228 return TRUE;
c19d1205 22229 }
b99bd4ef 22230
c19d1205 22231 as_bad (_("unknown floating point format `%s'\n"), str);
c921be7d 22232 return FALSE;
c19d1205
ZW
22233}
22234
c921be7d 22235static bfd_boolean
c19d1205 22236arm_parse_float_abi (char * str)
b99bd4ef 22237{
e74cfd16 22238 const struct arm_option_value_table * opt;
b99bd4ef 22239
c19d1205
ZW
22240 for (opt = arm_float_abis; opt->name != NULL; opt++)
22241 if (streq (opt->name, str))
22242 {
22243 mfloat_abi_opt = opt->value;
c921be7d 22244 return TRUE;
c19d1205 22245 }
cc8a6dd0 22246
c19d1205 22247 as_bad (_("unknown floating point abi `%s'\n"), str);
c921be7d 22248 return FALSE;
c19d1205 22249}
b99bd4ef 22250
c19d1205 22251#ifdef OBJ_ELF
c921be7d 22252static bfd_boolean
c19d1205
ZW
22253arm_parse_eabi (char * str)
22254{
e74cfd16 22255 const struct arm_option_value_table *opt;
cc8a6dd0 22256
c19d1205
ZW
22257 for (opt = arm_eabis; opt->name != NULL; opt++)
22258 if (streq (opt->name, str))
22259 {
22260 meabi_flags = opt->value;
c921be7d 22261 return TRUE;
c19d1205
ZW
22262 }
22263 as_bad (_("unknown EABI `%s'\n"), str);
c921be7d 22264 return FALSE;
c19d1205
ZW
22265}
22266#endif
cc8a6dd0 22267
c921be7d 22268static bfd_boolean
e07e6e58
NC
22269arm_parse_it_mode (char * str)
22270{
c921be7d 22271 bfd_boolean ret = TRUE;
e07e6e58
NC
22272
22273 if (streq ("arm", str))
22274 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22275 else if (streq ("thumb", str))
22276 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22277 else if (streq ("always", str))
22278 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22279 else if (streq ("never", str))
22280 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22281 else
22282 {
22283 as_bad (_("unknown implicit IT mode `%s', should be "\
22284 "arm, thumb, always, or never."), str);
c921be7d 22285 ret = FALSE;
e07e6e58
NC
22286 }
22287
22288 return ret;
22289}
22290
c19d1205
ZW
22291struct arm_long_option_table arm_long_opts[] =
22292{
22293 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22294 arm_parse_cpu, NULL},
22295 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22296 arm_parse_arch, NULL},
22297 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22298 arm_parse_fpu, NULL},
22299 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22300 arm_parse_float_abi, NULL},
22301#ifdef OBJ_ELF
7fac0536 22302 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
c19d1205
ZW
22303 arm_parse_eabi, NULL},
22304#endif
e07e6e58
NC
22305 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22306 arm_parse_it_mode, NULL},
c19d1205
ZW
22307 {NULL, NULL, 0, NULL}
22308};
cc8a6dd0 22309
c19d1205
ZW
22310int
22311md_parse_option (int c, char * arg)
22312{
22313 struct arm_option_table *opt;
e74cfd16 22314 const struct arm_legacy_option_table *fopt;
c19d1205 22315 struct arm_long_option_table *lopt;
b99bd4ef 22316
c19d1205 22317 switch (c)
b99bd4ef 22318 {
c19d1205
ZW
22319#ifdef OPTION_EB
22320 case OPTION_EB:
22321 target_big_endian = 1;
22322 break;
22323#endif
cc8a6dd0 22324
c19d1205
ZW
22325#ifdef OPTION_EL
22326 case OPTION_EL:
22327 target_big_endian = 0;
22328 break;
22329#endif
b99bd4ef 22330
845b51d6
PB
22331 case OPTION_FIX_V4BX:
22332 fix_v4bx = TRUE;
22333 break;
22334
c19d1205
ZW
22335 case 'a':
22336 /* Listing option. Just ignore these, we don't support additional
22337 ones. */
22338 return 0;
b99bd4ef 22339
c19d1205
ZW
22340 default:
22341 for (opt = arm_opts; opt->option != NULL; opt++)
22342 {
22343 if (c == opt->option[0]
22344 && ((arg == NULL && opt->option[1] == 0)
22345 || streq (arg, opt->option + 1)))
22346 {
c19d1205 22347 /* If the option is deprecated, tell the user. */
278df34e 22348 if (warn_on_deprecated && opt->deprecated != NULL)
c19d1205
ZW
22349 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22350 arg ? arg : "", _(opt->deprecated));
b99bd4ef 22351
c19d1205
ZW
22352 if (opt->var != NULL)
22353 *opt->var = opt->value;
cc8a6dd0 22354
c19d1205
ZW
22355 return 1;
22356 }
22357 }
b99bd4ef 22358
e74cfd16
PB
22359 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22360 {
22361 if (c == fopt->option[0]
22362 && ((arg == NULL && fopt->option[1] == 0)
22363 || streq (arg, fopt->option + 1)))
22364 {
e74cfd16 22365 /* If the option is deprecated, tell the user. */
278df34e 22366 if (warn_on_deprecated && fopt->deprecated != NULL)
e74cfd16
PB
22367 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22368 arg ? arg : "", _(fopt->deprecated));
e74cfd16
PB
22369
22370 if (fopt->var != NULL)
22371 *fopt->var = &fopt->value;
22372
22373 return 1;
22374 }
22375 }
22376
c19d1205
ZW
22377 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22378 {
22379 /* These options are expected to have an argument. */
22380 if (c == lopt->option[0]
22381 && arg != NULL
22382 && strncmp (arg, lopt->option + 1,
22383 strlen (lopt->option + 1)) == 0)
22384 {
c19d1205 22385 /* If the option is deprecated, tell the user. */
278df34e 22386 if (warn_on_deprecated && lopt->deprecated != NULL)
c19d1205
ZW
22387 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22388 _(lopt->deprecated));
b99bd4ef 22389
c19d1205
ZW
22390 /* Call the sup-option parser. */
22391 return lopt->func (arg + strlen (lopt->option) - 1);
22392 }
22393 }
a737bd4d 22394
c19d1205
ZW
22395 return 0;
22396 }
a394c00f 22397
c19d1205
ZW
22398 return 1;
22399}
a394c00f 22400
c19d1205
ZW
22401void
22402md_show_usage (FILE * fp)
a394c00f 22403{
c19d1205
ZW
22404 struct arm_option_table *opt;
22405 struct arm_long_option_table *lopt;
a394c00f 22406
c19d1205 22407 fprintf (fp, _(" ARM-specific assembler options:\n"));
a394c00f 22408
c19d1205
ZW
22409 for (opt = arm_opts; opt->option != NULL; opt++)
22410 if (opt->help != NULL)
22411 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
a394c00f 22412
c19d1205
ZW
22413 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22414 if (lopt->help != NULL)
22415 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
a394c00f 22416
c19d1205
ZW
22417#ifdef OPTION_EB
22418 fprintf (fp, _("\
22419 -EB assemble code for a big-endian cpu\n"));
a394c00f
NC
22420#endif
22421
c19d1205
ZW
22422#ifdef OPTION_EL
22423 fprintf (fp, _("\
22424 -EL assemble code for a little-endian cpu\n"));
a737bd4d 22425#endif
845b51d6
PB
22426
22427 fprintf (fp, _("\
22428 --fix-v4bx Allow BX in ARMv4 code\n"));
c19d1205 22429}
ee065d83
PB
22430
22431
22432#ifdef OBJ_ELF
62b3e311
PB
22433typedef struct
22434{
22435 int val;
22436 arm_feature_set flags;
22437} cpu_arch_ver_table;
22438
22439/* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22440 least features first. */
22441static const cpu_arch_ver_table cpu_arch_ver[] =
22442{
22443 {1, ARM_ARCH_V4},
22444 {2, ARM_ARCH_V4T},
22445 {3, ARM_ARCH_V5},
ee3c0378 22446 {3, ARM_ARCH_V5T},
62b3e311
PB
22447 {4, ARM_ARCH_V5TE},
22448 {5, ARM_ARCH_V5TEJ},
22449 {6, ARM_ARCH_V6},
22450 {7, ARM_ARCH_V6Z},
7e806470 22451 {9, ARM_ARCH_V6K},
91e22acd 22452 {11, ARM_ARCH_V6M},
7e806470 22453 {8, ARM_ARCH_V6T2},
62b3e311
PB
22454 {10, ARM_ARCH_V7A},
22455 {10, ARM_ARCH_V7R},
22456 {10, ARM_ARCH_V7M},
22457 {0, ARM_ARCH_NONE}
22458};
22459
ee3c0378
AS
22460/* Set an attribute if it has not already been set by the user. */
22461static void
22462aeabi_set_attribute_int (int tag, int value)
22463{
22464 if (tag < 1
22465 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22466 || !attributes_set_explicitly[tag])
22467 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22468}
22469
22470static void
22471aeabi_set_attribute_string (int tag, const char *value)
22472{
22473 if (tag < 1
22474 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22475 || !attributes_set_explicitly[tag])
22476 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22477}
22478
ee065d83
PB
22479/* Set the public EABI object attributes. */
22480static void
22481aeabi_set_public_attributes (void)
22482{
22483 int arch;
e74cfd16 22484 arm_feature_set flags;
62b3e311
PB
22485 arm_feature_set tmp;
22486 const cpu_arch_ver_table *p;
ee065d83
PB
22487
22488 /* Choose the architecture based on the capabilities of the requested cpu
22489 (if any) and/or the instructions actually used. */
e74cfd16
PB
22490 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22491 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22492 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
7a1d4c38
PB
22493 /*Allow the user to override the reported architecture. */
22494 if (object_arch)
22495 {
22496 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22497 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22498 }
22499
62b3e311
PB
22500 tmp = flags;
22501 arch = 0;
22502 for (p = cpu_arch_ver; p->val; p++)
22503 {
22504 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22505 {
22506 arch = p->val;
22507 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22508 }
22509 }
ee065d83
PB
22510
22511 /* Tag_CPU_name. */
22512 if (selected_cpu_name[0])
22513 {
22514 char *p;
22515
22516 p = selected_cpu_name;
5f4273c7 22517 if (strncmp (p, "armv", 4) == 0)
ee065d83
PB
22518 {
22519 int i;
5f4273c7 22520
ee065d83
PB
22521 p += 4;
22522 for (i = 0; p[i]; i++)
22523 p[i] = TOUPPER (p[i]);
22524 }
ee3c0378 22525 aeabi_set_attribute_string (Tag_CPU_name, p);
ee065d83 22526 }
62f3b8c8 22527
ee065d83 22528 /* Tag_CPU_arch. */
ee3c0378 22529 aeabi_set_attribute_int (Tag_CPU_arch, arch);
62f3b8c8 22530
62b3e311
PB
22531 /* Tag_CPU_arch_profile. */
22532 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
ee3c0378 22533 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
62b3e311 22534 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
ee3c0378 22535 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
7e806470 22536 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
ee3c0378 22537 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
62f3b8c8 22538
ee065d83 22539 /* Tag_ARM_ISA_use. */
ee3c0378
AS
22540 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22541 || arch == 0)
22542 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
62f3b8c8 22543
ee065d83 22544 /* Tag_THUMB_ISA_use. */
ee3c0378
AS
22545 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22546 || arch == 0)
22547 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22548 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
62f3b8c8 22549
ee065d83 22550 /* Tag_VFP_arch. */
62f3b8c8
PB
22551 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22552 aeabi_set_attribute_int (Tag_VFP_arch,
22553 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22554 ? 5 : 6);
22555 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
ee3c0378
AS
22556 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22557 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
22558 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22559 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22560 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22561 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22562 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22563 aeabi_set_attribute_int (Tag_VFP_arch, 1);
62f3b8c8 22564
ee065d83 22565 /* Tag_WMMX_arch. */
ee3c0378
AS
22566 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22567 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22568 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22569 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
62f3b8c8 22570
ee3c0378 22571 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
8e79c3df 22572 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
62f3b8c8
PB
22573 aeabi_set_attribute_int
22574 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22575 ? 2 : 1));
22576
ee3c0378 22577 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
62f3b8c8 22578 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
ee3c0378 22579 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
ee065d83
PB
22580}
22581
104d59d1 22582/* Add the default contents for the .ARM.attributes section. */
ee065d83
PB
22583void
22584arm_md_end (void)
22585{
ee065d83
PB
22586 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22587 return;
22588
22589 aeabi_set_public_attributes ();
ee065d83 22590}
8463be01 22591#endif /* OBJ_ELF */
ee065d83
PB
22592
22593
22594/* Parse a .cpu directive. */
22595
22596static void
22597s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22598{
e74cfd16 22599 const struct arm_cpu_option_table *opt;
ee065d83
PB
22600 char *name;
22601 char saved_char;
22602
22603 name = input_line_pointer;
5f4273c7 22604 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22605 input_line_pointer++;
22606 saved_char = *input_line_pointer;
22607 *input_line_pointer = 0;
22608
22609 /* Skip the first "all" entry. */
22610 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22611 if (streq (opt->name, name))
22612 {
e74cfd16
PB
22613 mcpu_cpu_opt = &opt->value;
22614 selected_cpu = opt->value;
ee065d83 22615 if (opt->canonical_name)
5f4273c7 22616 strcpy (selected_cpu_name, opt->canonical_name);
ee065d83
PB
22617 else
22618 {
22619 int i;
22620 for (i = 0; opt->name[i]; i++)
22621 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22622 selected_cpu_name[i] = 0;
22623 }
e74cfd16 22624 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22625 *input_line_pointer = saved_char;
22626 demand_empty_rest_of_line ();
22627 return;
22628 }
22629 as_bad (_("unknown cpu `%s'"), name);
22630 *input_line_pointer = saved_char;
22631 ignore_rest_of_line ();
22632}
22633
22634
22635/* Parse a .arch directive. */
22636
22637static void
22638s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22639{
e74cfd16 22640 const struct arm_arch_option_table *opt;
ee065d83
PB
22641 char saved_char;
22642 char *name;
22643
22644 name = input_line_pointer;
5f4273c7 22645 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22646 input_line_pointer++;
22647 saved_char = *input_line_pointer;
22648 *input_line_pointer = 0;
22649
22650 /* Skip the first "all" entry. */
22651 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22652 if (streq (opt->name, name))
22653 {
e74cfd16
PB
22654 mcpu_cpu_opt = &opt->value;
22655 selected_cpu = opt->value;
5f4273c7 22656 strcpy (selected_cpu_name, opt->name);
e74cfd16 22657 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22658 *input_line_pointer = saved_char;
22659 demand_empty_rest_of_line ();
22660 return;
22661 }
22662
22663 as_bad (_("unknown architecture `%s'\n"), name);
22664 *input_line_pointer = saved_char;
22665 ignore_rest_of_line ();
22666}
22667
22668
7a1d4c38
PB
22669/* Parse a .object_arch directive. */
22670
22671static void
22672s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22673{
22674 const struct arm_arch_option_table *opt;
22675 char saved_char;
22676 char *name;
22677
22678 name = input_line_pointer;
5f4273c7 22679 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
7a1d4c38
PB
22680 input_line_pointer++;
22681 saved_char = *input_line_pointer;
22682 *input_line_pointer = 0;
22683
22684 /* Skip the first "all" entry. */
22685 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22686 if (streq (opt->name, name))
22687 {
22688 object_arch = &opt->value;
22689 *input_line_pointer = saved_char;
22690 demand_empty_rest_of_line ();
22691 return;
22692 }
22693
22694 as_bad (_("unknown architecture `%s'\n"), name);
22695 *input_line_pointer = saved_char;
22696 ignore_rest_of_line ();
22697}
22698
ee065d83
PB
22699/* Parse a .fpu directive. */
22700
22701static void
22702s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22703{
e74cfd16 22704 const struct arm_option_cpu_value_table *opt;
ee065d83
PB
22705 char saved_char;
22706 char *name;
22707
22708 name = input_line_pointer;
5f4273c7 22709 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
ee065d83
PB
22710 input_line_pointer++;
22711 saved_char = *input_line_pointer;
22712 *input_line_pointer = 0;
5f4273c7 22713
ee065d83
PB
22714 for (opt = arm_fpus; opt->name != NULL; opt++)
22715 if (streq (opt->name, name))
22716 {
e74cfd16
PB
22717 mfpu_opt = &opt->value;
22718 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
ee065d83
PB
22719 *input_line_pointer = saved_char;
22720 demand_empty_rest_of_line ();
22721 return;
22722 }
22723
22724 as_bad (_("unknown floating point format `%s'\n"), name);
22725 *input_line_pointer = saved_char;
22726 ignore_rest_of_line ();
22727}
ee065d83 22728
794ba86a 22729/* Copy symbol information. */
f31fef98 22730
794ba86a
DJ
22731void
22732arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
22733{
22734 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
22735}
e04befd0 22736
f31fef98 22737#ifdef OBJ_ELF
e04befd0
AS
22738/* Given a symbolic attribute NAME, return the proper integer value.
22739 Returns -1 if the attribute is not known. */
f31fef98 22740
e04befd0
AS
22741int
22742arm_convert_symbolic_attribute (const char *name)
22743{
f31fef98
NC
22744 static const struct
22745 {
22746 const char * name;
22747 const int tag;
22748 }
22749 attribute_table[] =
22750 {
22751 /* When you modify this table you should
22752 also modify the list in doc/c-arm.texi. */
e04befd0 22753#define T(tag) {#tag, tag}
f31fef98
NC
22754 T (Tag_CPU_raw_name),
22755 T (Tag_CPU_name),
22756 T (Tag_CPU_arch),
22757 T (Tag_CPU_arch_profile),
22758 T (Tag_ARM_ISA_use),
22759 T (Tag_THUMB_ISA_use),
22760 T (Tag_VFP_arch),
22761 T (Tag_WMMX_arch),
22762 T (Tag_Advanced_SIMD_arch),
22763 T (Tag_PCS_config),
22764 T (Tag_ABI_PCS_R9_use),
22765 T (Tag_ABI_PCS_RW_data),
22766 T (Tag_ABI_PCS_RO_data),
22767 T (Tag_ABI_PCS_GOT_use),
22768 T (Tag_ABI_PCS_wchar_t),
22769 T (Tag_ABI_FP_rounding),
22770 T (Tag_ABI_FP_denormal),
22771 T (Tag_ABI_FP_exceptions),
22772 T (Tag_ABI_FP_user_exceptions),
22773 T (Tag_ABI_FP_number_model),
22774 T (Tag_ABI_align8_needed),
22775 T (Tag_ABI_align8_preserved),
22776 T (Tag_ABI_enum_size),
22777 T (Tag_ABI_HardFP_use),
22778 T (Tag_ABI_VFP_args),
22779 T (Tag_ABI_WMMX_args),
22780 T (Tag_ABI_optimization_goals),
22781 T (Tag_ABI_FP_optimization_goals),
22782 T (Tag_compatibility),
22783 T (Tag_CPU_unaligned_access),
22784 T (Tag_VFP_HP_extension),
22785 T (Tag_ABI_FP_16bit_format),
22786 T (Tag_nodefaults),
22787 T (Tag_also_compatible_with),
22788 T (Tag_conformance),
22789 T (Tag_T2EE_use),
22790 T (Tag_Virtualization_use),
22791 T (Tag_MPextension_use)
e04befd0 22792#undef T
f31fef98 22793 };
e04befd0
AS
22794 unsigned int i;
22795
22796 if (name == NULL)
22797 return -1;
22798
f31fef98 22799 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
c921be7d 22800 if (streq (name, attribute_table[i].name))
e04befd0
AS
22801 return attribute_table[i].tag;
22802
22803 return -1;
22804}
267bf995
RR
22805
22806
22807/* Apply sym value for relocations only in the case that
22808 they are for local symbols and you have the respective
22809 architectural feature for blx and simple switches. */
22810int
22811arm_apply_sym_value (struct fix * fixP)
22812{
22813 if (fixP->fx_addsy
22814 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
22815 && !S_IS_EXTERNAL (fixP->fx_addsy))
22816 {
22817 switch (fixP->fx_r_type)
22818 {
22819 case BFD_RELOC_ARM_PCREL_BLX:
22820 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22821 if (ARM_IS_FUNC (fixP->fx_addsy))
22822 return 1;
22823 break;
22824
22825 case BFD_RELOC_ARM_PCREL_CALL:
22826 case BFD_RELOC_THUMB_PCREL_BLX:
22827 if (THUMB_IS_FUNC (fixP->fx_addsy))
22828 return 1;
22829 break;
22830
22831 default:
22832 break;
22833 }
22834
22835 }
22836 return 0;
22837}
f31fef98 22838#endif /* OBJ_ELF */
This page took 2.146483 seconds and 4 git commands to generate.